
HAL Id: tel-03953635
https://theses.hal.science/tel-03953635v1

Submitted on 24 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards lighter and faster deep neural networks with
parameter pruning

Nathan Hubens

To cite this version:
Nathan Hubens. Towards lighter and faster deep neural networks with parameter pruning. Informa-
tion Retrieval [cs.IR]. Institut Polytechnique de Paris; Université de Mons, 2022. English. �NNT :
2022IPPAS025�. �tel-03953635�

https://theses.hal.science/tel-03953635v1
https://hal.archives-ouvertes.fr

626

N
N

T
:

2
0

2
2

IP
P

A
S

0
2

5

Towards Lighter and Faster Deep Neural
Networks with Parameter Pruning

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Télécom SudParis en cotutelle avec l’Université de Mons

École doctorale n�626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Mons (Belgique), le 07/12/2022, par

NATHAN HUBENS

Composition du Jury :

Véronique Moeyaert
Professeure, Université de Mons Président

John Lee
Professeur, Université Catholique de Louvain Rapporteur

Ioan Tabus
Professeur, Université de Tampere Rapporteur

Bruno Grilhères
Senior Expert Machine Learning, Airbus Defence and Space Examinateur

Bernard Gosselin
Professeur, Université de Mons Directeur de thèse

Matei Mancas
Docteur, Université de Mons Co-directeur de thèse

Titus Zaharia
Professeur, Télécom SudParis Directeur de thèse

Marius Preda
Maı̂tre de Conférence, Télécom SudParis Co-directeur de thèse

Thierry Dutoit
Professeur, Université de Mons Invité

“If I had more time, I would have written a shorter thesis.”

— Nathan Hubens (inspired by Blaise Pascal)

— iii —

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisors, Professors

Bernard Gosselin and Titus Zaharia, for their warm reception in their respective de-

partments. They knew how to be present while leaving me great freedom of work, and

I had the privilege to benefit from their valuable teachings during the last four years.

I would also like to thank my co-supervisors, professors Marius Preda and Matei Man-

cas, for their availability and their attentive listening. I will remember their open-

mindedness and curiosity, always proposing new paths to explore.

Moreover, I would like to thank the other members of my thesis committee: Professor

Thierry Dutoit, Professor Sidi Mahmoudi, Professor Gilles Louppe and Doctor Khaled

Mammou, who ensured the good evolution of the thesis by giving me constructive

remarks, suggestions and advice.

A huge thank you to the members of the jury: Professor Véronique Moeyaert, Professor

Ioan Tabus, Professor John Lee and Doctor Bruno Grilhères. Their comments and

advice helped to make this document better.

I am deeply thankful to my fellows at ISIA Lab, more particularly to the Paysager

2 team: Maio, Victor, Luca, Bastien and Omar, with whom I shared a lot of good

moments and that have been of inestimable help. The co↵ee-conversations and the

boulets-frites-orval shared together will be deeply missed. I wish them many twerks.

Sincere thanks to my colleagues at the Artemis department: Traian, Abhaya-Dhathri,

Nicolas, Minderis, Chao, Zied, Lisa, Tan-Khoa, for their contagious good mood, the

philosophical debates, and our daily games of table soccer.

Finally, this work would not have been possible without the unconditional support

of all my friends and family. I can never thank them enough for their presence and

encouragement in good, as well as in bad times.

I would like to address my last thanks to Adéläıde, who has been sharing my life for

the past 10 years. She continues to be my main source of inspiration and my daily

motivation.

— v —

Contents

1 Fundamentals 9

1.1 Introduction . 10

1.1.1 A bit of History . 10

1.2 Multi-Layer Perceptron . 12

1.2.1 Definition . 12

1.2.2 Perceptron . 13

1.2.3 Training . 14

1.3 Convolutional Neural Networks . 17

1.3.1 Definition . 17

1.3.2 Convolutional Layer . 18

1.3.3 Pooling Layer . 20

1.3.4 Training . 20

1.4 In Brief . 21

2 Neural Network Compression 23

2.1 Introduction . 24

2.2 Sparse Neural Networks . 25

2.2.1 Designed Sparsity . 25

2.2.2 Learned Sparsity . 28

— vii —

2.2.3 Ephemeral Sparsity . 31

2.3 Knowledge Distillation . 33

2.4 Quantization . 35

2.4.1 Post-Training Quantization . 38

2.4.2 Quantization Aware Training 38

2.4.3 Automatic Mixed Precision . 39

2.5 Compact Neural Network Architectures 40

2.5.1 Matrix Factorization . 40

2.5.2 Batch Normalization Folding . 45

2.5.3 Kernel Size Reduction . 46

2.5.4 Channel Amount Reduction . 48

2.6 In Brief . 50

3 Neural Network Pruning 51

3.1 Introduction . 52

3.2 Motivation . 53

3.2.1 Improves Generalization . 53

3.2.2 Lowers Complexity . 54

3.2.3 Reduces Processing Time and Storage 55

3.3 Neural Network Pruning . 56

3.3.1 How to prune ? . 57

3.3.2 Where to prune ? . 62

3.3.3 What to prune ? . 63

3.3.4 When to prune ? . 69

3.4 In Brief . 73

4 Developed Tools: FasterAI 75

4.1 Introduction . 76

4.2 Sparsify . 77

4.2.1 Granularity . 78

4.2.2 Context . 80

4.2.3 Criteria . 82

4.2.4 Schedule . 84

4.2.5 Lottery Ticket Hypothesis . 87

4.2.6 Prune . 88

— viii —

4.3 Distill . 89

4.4 Regularize . 90

4.5 Misc . 91

4.5.1 Batch Normalization Folding . 92

4.5.2 Fully-Connected Layers Decomposition 92

4.6 In Brief . 93

5 Advances in Neural Network Pruning 95

5.1 Introduction . 96

5.2 How to prune? . 96

5.2.1 Methodology . 97

5.2.2 Experiments . 100

5.2.3 Discussion & Conclusion . 105

5.3 Where to prune? . 106

5.3.1 Methodology . 108

5.3.2 Experiments . 110

5.3.3 Discussion & Conclusion . 116

5.4 What to prune? . 116

5.4.1 Methodology . 117

5.4.2 Experiments . 120

5.4.3 Discussion & Conclusion . 124

5.5 When to prune? . 124

5.5.1 Methodology . 125

5.5.2 Experiments . 126

5.5.3 Discussion & Conclusion . 131

5.6 In Brief . 132

6 Use-Case: DeepFake Detection 133

6.1 Introduction . 134

6.1.1 DeepFakes Detection Challenge 134

6.1.2 Related Work . 135

6.2 Methodology . 136

6.2.1 The Dataset . 136

6.2.2 The Network . 137

6.2.3 Data Augmentation . 141

— ix —

6.2.4 Compression of the solution . 142

6.3 Results . 143

6.3.1 Ablation Study . 143

6.3.2 Comparison to other methods 144

6.3.3 Interpretation . 145

6.4 Proof-of-Concept: Deepfake Buster . 146

6.5 Discussion and Conclusions . 148

6.6 In Brief . 149

7 Conclusions 151

Bibliography 157

List of Figures 169

List of Pseudo-Code 177

List of Tables 179

— x —

List of acronyms

AI Artificial Intelligence . 4

AGI Artificial General Intelligence . 11

AM Activation Maximization . 117

AGP Automated Gradual Pruning . 124

AMP Automatic Mixed-Precision . 38

ANN Artificial Neural Network . 10

BM Bitmap . 55

BN Batch Normalization . 45

CNN Convolutional Neural Network . 10

COO Coordinate O↵set . 55

CSR Compressed Sparse Row . 55

CSC Compressed Sparse Column . 55

DFDC DeepFake Detection Challenge . 134

DL Deep Learning . 4

DNN Deep Neural Network . 4

DSD Dense-Sparse-Dense . 86

FCL Fully-Connected Layer . 13

FCN Fully-Connected Network . 25

— xi —

Index xii

FFN Feed-Forward Network . 12

FLOPs Floating Point Operations . 104

LTH Lottery Ticket Hypothesis . 70

LTHR Lottery Ticket Hypothesis with Rewinding 70

MDL Minimum Description Length . 54

MLP Multi-Layer Perceptron . 12

NAS Neural Architecture Search . 154

NLP Natural Language Processing . 4

NMS Non-Maximum Suppression . 139

OCP One-Cycle Pruning . 124

PAI Pruning At Initialization . 71

PAT Pruning After Training . 71

PDT Pruning During Training . 71

PTQ Post-Training Quantization . 38

QAT Quantization-Aware Training . 38

RNN Recurrent Neural Network . 106

ReLU Rectified Linear Unit . 140

SGD Stochastic Gradient Descent . 14

SVD Singular Value Decomposition . 43

XAI Explainable Artificial Intelligence 153

Introduction

“The beginning is the most important part of the work.”
— Plato

— 3 —

Introduction 4

Motivations

Since their resurgence in 2012, Deep Neural Networks (DNNs) have become ubiquitous
in most disciplines attributed to the field of Artificial Intelligence (AI), such as image
recognition, speech processing, Natural Language Processing (NLP), and recommender
systems. This Deep Learning (DL) era has emerged in the last ten years thanks to the
considerable improvements in high-performance hardware and access to a large amount
of data, enabling the creation of those so-called Deep Neural Networks. However, over
the last few years, neural networks have grown exponentially deeper, involving more
and more parameters, and with an amount of computing doubling every 3.4 months [1].
Nowadays, it is not unusual to encounter architectures involving several billions of pa-
rameters, while they mostly contained hundreds of thousand less than ten years ago [2].
Indeed, it has recently been discovered that the performance of a neural network evolves
as a power-law with three factors: the model size, the dataset size, and the amount
of computing for training [3]. Such a discovery corroborates the trend of increasingly
larger networks and has further motivated the main research actors to dedicate even
more resources to neural network training. As represented in Figure 0.1, reporting the
evolution of the parameter count in state-of-the-art models, such an increase has been
observed in most fields of application of DL.

1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 20121960 2016 2020

Publication date

1e+2

1e+4

1e+6

1e+0

1e+8

1e+10

1e+12

1e+1

1e+3

1e+5

1e+7

1e+9

1e+11

1e+13

Pa
ra

m
et

er
s

Vision
Language
Games
Drawing
Speech
Other

Domain

Parameters of milestone Machine Learning systems over time
n = 252

Figure 0.1. Evolution of the amount of parameters present in Deep Learning architec-
tures. Each research field has known an exponential increase in parameters
involved in their architectures. Image created with [2].

5 Introduction

This generalized increase in the number of parameters makes such large models compute-
intensive and essentially energy ine�cient. Indeed, it has been reported that some large
models require more than 400 years of compute time, thus costing more than $3 million
and releasing an amount of CO2 equivalent to more than 50 years of the one emitted by
a single person [4,5]. In addition to the training costs, the inference pass of such models
is also impacted. It is currently estimated that approximately 90% of the workload of
a machine learning model is dedicated to inference processing [6, 7], making deployed
models costly to maintain but also their use in applications where latency is a critical
requirement, e.g. autonomous driving, very challenging. On top of that, a growth in
parameter count implies an increase in the storage footprint of such networks. This
severely hinders the deployment of such solutions on resource-constrained devices, as
the costs of transfer and storage of such models become an issue. Even in large-scale
environments, where the amount of stored neural networks become important, storage
and transfer costs of networks have to be minimized for better cost-e�ciency.

For these reasons, much research has recently been conducted to provide techniques
able to reduce the amount of storage and computing required by neural networks.
Such techniques can operate at di↵erent levels of the deep learning development stack.
Indeed, some techniques are involved in hardware optimization to improve the through-
put and energy e�ciency of neural networks, leading to either new hardware designs,
providing acceleration capabilities for matrix multiplications, or leveraging new mem-
ory access methods to support specialized processing dataflows [8]. Other techniques
operate directly on the models, and seek to either design more e�cient architectures
with fewer parameters or computations, or develop techniques that reduce the compu-
tations requirements from existing networks [9].

Among those techniques, neural network pruning has been recently at the forefront
of research. This technique creates sparsely connected neural networks, usually by
starting from trained models, and gradually removing their parameters. It has been
shown that such a technique allows to produce non-trivially sparse models without
degrading their performance, illustrating the over-parameterization of current neural
networks. However, although pruning is a prevalent compression technique, there is
currently no standard way of implementing or evaluating novel pruning techniques,
making the comparison with previous research challenging [10]. Moreover, pruning
methods are still in an early stage of development, and are thus primarily designed
for the research community. Indeed, most pruning works are usually implemented in
a self-contained and sophisticated way, making it troublesome for non-researchers to
apply such techniques to obtain smaller and faster neural networks without having to
learn all the intricacies of the field.

Introduction 6

Objectives

This thesis aims to tackle the problem of neural network compression and, more specif-
ically, neural network pruning.

More precisely, the objectives of the thesis are:

• Provide a universal description of the pruning problem, facilitating the evaluation
and benchmarking of novel methods;

• Create a well-rounded toolbox for a seamless implementation of di↵erent compres-
sion techniques, and based on the previous pruning description;

• Propose new pruning techniques, improving on current methods in the field;

• Validate the e�ciency of the developed techniques through a real use-case and
through challenges;

• Make the research reproducible and openly available to the AI community.

Contributions

According to the motivations and objectives of the thesis, contributions can be sum-
marized as:

• The description of the pruning problem according to 4 independent parameters,
su�cient to fully describe most pruning techniques: granularity, context, criteria,
and schedule;

• The creation of FasterAI 1, an open-source library for neural networks compres-
sion, suited for professionals as well as enthusiasts;

• A study of the granularity of pruning, highlighting which granularity to use de-
pending on the type of training.

• A study of the context of pruning, highlighting which context to use depending on
the type of training.

• The proposal of a novel method to improve current pruning criteria, allowing to
reduce redundancy while retaining rare filters.

• The proposal of a novel pruning schedule, better incorporated in the training
dynamics.

• The validation of proposed techniques for a real use-case scenario, DeepFake De-
tection.

1https://github.com/nathanhubens/fasterai

https://github.com/nathanhubens/fasterai

7 Introduction

• The creation of a proof-of-concept application, allowing users to perform DeepFake
Detection with a lightweight solution.

Each contribution comes with an open-source implementation, available on GitHub 2. If
applicable, contributions have directly been incorporated into the developed FasterAI
library for more convenient usage. The FasterAI library was further improved during
a 6-month internship at AMD 3, and is now an integral part of the development of one
of their projects.

Moreover, those contributions are supported by publications, published as peer-reviewed
papers, listed in order of apparition:

• Nathan Hubens, Matei Mancas, Marc Decombas, Marius Preda, Titus Zaharia,
Bernard Gosselin, and Thierry Dutoit. “An Experimental Study of the Impact
of Pre-Training on the Pruning of a Convolutional Neural Network”. In Proceed-
ings of the 3rd International Conference on Applications of Intelligent Systems
(APPIS), 2020.

• Nathan Hubens, Matei Mancas, Bernard Gosselin, Marius Preda, and Titus
Zaharia. “One-Cycle Pruning: Pruning ConvNets under a Tight Training Budget”.
In Sparsity in Neural Networks: Advancing Understanding and Practice (SNN),
2021.

• Nathan Hubens, Matei Mancas, Bernard Gosselin, Marius Preda, Titus Za-
haria. “Fake-buster: a lightweight solution for deepfake detection”. SPIE Optical
Engineering + Applications: Applications of Digital Image Processing, 2021

• Maiorca, A.; Hubens, N.; Laraba, S. and Dutoit, T.. “Towards Lightweight
Neural Animation: Exploration of Neural Network Pruning in Mixture of Experts-
based Animation Models”. In Proceedings of the 17th International Joint Confer-
ence on Computer Vision, Imaging and Computer Graphics Theory and Applica-
tions (GRAPP), 2022.

• Nathan Hubens, Matei Mancas, Bernard Gosselin, Marius Preda, and Titus
Zaharia. “Improve Convolutional Neural Network Pruning by Maximizing Filter
Variety”. In Image Analysis and Processing (ICIAP), 2022.

• Nathan Hubens, Matei Mancas, Bernard Gosselin, Marius Preda, and Titus Za-
haria. “Fasterai: A Lightweight Library for Sparse Neural Networks”. In Sparsity
in Neural Networks: Advancing Understanding and Practice (SNN), 2022.

• Nathan Hubens, Matei Mancas, Bernard Gosselin, Marius Preda, and Titus
Zaharia. “One-Cycle Pruning: Pruning ConvNets under a Tight Training Budget”.
In International Conference of Image Processing (ICIP), 2022.

2https://github.com/nathanhubens/contributions
3https://www.amd.com/en/corporate/research

https://github.com/nathanhubens/contributions
https://www.amd.com/en/corporate/research

Introduction 8

• Nathan Hubens, Matei Mancas, Bernard Gosselin, Marius Preda, and Titus
Zaharia. “Fasterai: A Lightweight Library for Neural Networks Compression”.
Under Review in Important Features Selection in Deep Neural Networks, MDPI
Electronics, 2022.

• Nathan Hubens, Matei Mancas, Bernard Gosselin, Marius Preda, and Titus
Zaharia.“Induced Feature Selection by Structured Pruning”. Preprint at ArXiv,
2022.

Thesis Structure

This thesis is organized according to a top-down approach, by first identifying the big
picture and presenting general concepts, then gradually diving deeper into all of the
components. In particular, the thesis is structured as follows:

• Chapter 1 presents the theoretical notions required for the reader to understand
the field of deep learning and its principal components, the neural networks.

• The Chapter 2 provides an introduction to the main compression techniques that
currently exist for neural networks.

• In Chapter 3, we dive into a particular compression technique: parameter pruning.
It consists in removing parameters in a network while aiming to keep its perfor-
mance intact. In particular, we identify 4 research axes according to which pruning
can be considered, and base our description according to those.

• The Chapter 4 describes FasterAI, a PyTorch-based library that aims to bring
compression capabilities to newcomers, but also to provide to researchers an ex-
haustive tool to implement new compression methods and to perform various ex-
periments easily.

• Chapter 5 presents advances in each of the previously identified 4 research axes of
pruning.

• The Chapter 6 describes a use-case scenario chosen to test the e�ciency of com-
pression techniques developed throughout the thesis. For this purpose, we have
chosen the case of DeepFake Detection, aiming to detect manipulations that have
occurred in an image or a video.

CHAPTER 1

Fundamentals

Contents

1.1 Introduction . 10

1.1.1 A bit of History . 10

1.2 Multi-Layer Perceptron 12

1.2.1 Definition . 12

1.2.2 Perceptron . 13

1.2.3 Training . 14

1.3 Convolutional Neural Networks 17

1.3.1 Definition . 17

1.3.2 Convolutional Layer . 18

1.3.3 Pooling Layer . 20

1.3.4 Training . 20

1.4 In Brief . 21

“Nothing has yet been said that’s not been said before.”
— Publius Terentius

— 9 —

Fundamentals 10

1.1 Introduction

This chapter aims to introduce the topic of artificial neural networks and convolutional
neural networks. Firstly, a brief introduction to Artificial Neural Networks (ANNs)
and their training will be given in section 1.2. Subsequently, Convolutional Neural
Networks (CNNs) will be discussed more thoroughly in section 1.3.

1.1.1 A bit of History

For a very long time, the idea of an autonomous and decision-making entity has fed the
fantasies of many humans from all over the world. Examples of such a system can be
traced back to Greek mythology, where Talos, a giant automaton made of bronze o↵ered
by the god Hephaestus, was responsible for protecting Europa in Crete from pirates and
invaders by throwing rocks at any ship approaching the island. It was also present in
Chinese mythology, when chancellor Zhuge Liang visited the house of Yueying Huang,
and was greeted by two large watchdogs. After panicking at the sight of those dogs,
he realized that they were actually made of wood. Yueying Huang was said to be tal-
ented in creating artificial intelligent animals. Another example is present in Jewish
folklore, where the golem is an animated and anthropomorphic being entirely created
from inanimate matter. The creation of such an entity could be achieved by the inser-
tion of a piece of paper with any of God’s names on it, into the mouth of the clay figure.

The creation of articulated living beings continued to interest most eminent engineers
and inventors throughout the years, such as Leonardo Da Vinci, who created complex
mechanical soldiers and lions, and Jacques de Vaucanson, well renowned for the cre-
ation of many automata. However, while creating more and more realistic version of
physical bodies, those were devoid of decision capabilities. The creation of automated
entities then led to a field, named robotics, which is primarily disjoint to creating AI,
as it does not seek to create a logical machine, mimicking the decision process of a
human brain.

AI as we know it nowadays finds its roots in the assumption that the process of human
thought can be mechanized. Early attempts to develop such a method were proposed
by philosophers such as Aristotle, who gave a formal analysis of the syllogism, and
Euclid, whose Elements mathematical treatise was a model of formal reasoning, and
al-Khwārizmı̄, who developed algebra. However, in the 17th century, Leibniz envisioned
a universal language of reasoning, the Characteristica universalis, that would reduce
argumentation to calculation, and conducted to foundations of the evolution of AI.
His work was later developed by Hobbes and Descartes that postulated that rational
thought could be made as systematic as algebra or geometry.

11 1.1. Introduction

The next breakthrough happened in the 20th century in the field of mathematics
with Boole’s work The Laws of Thought [11] and more particularly with the first pro-
grammable digital computer being innovated in the 1943. This was shortly followed
by McCulloch and Pitts, who formalized the computational model of an artificial neu-
ron [12]. In 1950, Alan Turing published a landmark paper [13] in which he speculated
about the possibility of creating machines that can think by themselves. He proposed
a way to verify if a machine was able to think, called the Turing test. But it was
in 1956 with the Darmouth Conference organized by Minsky, Shannon and Rochester
that the term AI was first used and accepted as the name for this field of research. In
these early days, the advances in AI were accompanied with very high expectations, so
high that Simon and Minsky claimed that the problem of creating Artificial General
Intelligence (AGI), i.e. a machine able to perform any intellectual task that a human
being can, was about to be solved, particularly with Rosenblatt invention providing to
an articificial neuron the ability to learn, giving the Perceptron [14]. A few years later,
scientists realized that the problem was more complex than what they thought and
the promises that they made failed to materialize. Researchers and government funds
turned away from the field, marking the start of the first AI winter.

The 1980s brought a renewal in the field with the apparition of expert systems, simulat-
ing human experts’ knowledge and analytical skills. It did not take long before seeing
funding and researchers coming back in the field, driving new expectations about fu-
ture AI capabilities. However, those networks took too much time to train, were still
expensive to maintain, and di�cult to scale. As a result, the interest progressively died
down in the 1990s, announcing the second AI winter.

In the past decade, considerable improvements in computer hardware and access to
large amounts of data allowed to enter a new AI era, Deep Learning. Those improve-
ments lead to deeper neural networks, which are currently driving progress in many
research fields such as image and video processing, speech recognition and text analy-
sis. Those architectures are now able to compete with human-level accuracy in most
basic perception tasks. Such successes revived AI investments, with most prominent
tech companies leading the research. Nowadays, in the 2020s, we are currently in sim-
ilar situations as the early 1960s and 1980s, with the AI field defying all expectations
again. There are still ongoing debates in the scientific community about the timeline
before AGI will be achieved. On the other hand, some scientists try to mitigate the
short-term expectations, to avoid disappointing investors and potentially to lead to
a third AI winter. Their task begins by ensuring that the general public has a clear
understanding of what AI is capable of, and most importantly, not capable of nowadays.

Fundamentals 12

In the next chapter, we will present more formally the mathematical models of Artificial
Neural Networks and how they are able to learn, which shapes what is known nowadays
as the Artificial Intelligence field.

1.2 Multi-Layer Perceptron

1.2.1 Definition

An Multi-Layer Perceptron (MLP) is the most basic type of ANN. As the name sug-
gests, it consists of several layers of perceptrons, the fundamental computational unit.
Each layer performs a change in the representation of its input data, such that the
whole system maps its inputs x to outputs a. A MLP composed of 4 layers is repre-
sented in Figure 1.1.

a1

a2

x1

x2

x3

Figure 1.1. Representation of a 4-layer MLP. It takes a 3-dimensional input and has a 2-
dimensional output. Each neuron is connected to all previous and following
neurons.

This type of neural network falls into the Feed-Forward Network (FFN) category, i.e.
networks whose connections do not form any cycle or recursive structure. Despite
the inherent simplicity of its components, MLPs are able to represent highly complex
functions, and are thus capable of high performance on complex perceptual tasks. In
particular, it has been proven that even a two-layer MLP is able to approximate any
continuous and multivariate function to any desired precision [15, 16], which is right-
fully called the Universal Approximation Theorem. However, for such a theorem to be
verified, the number of neurons needs to grow very large. To counteract this e↵ect, sev-
eral layers are usually stacked to increase the network’s abstraction and expressiveness,
allowing it to model more complex functions with fewer parameters.

13 1.2. Multi-Layer Perceptron

1.2.2 Perceptron

The perceptron is the most elementary computation unit in the domain of ANNs. It
is inspired by a biological neuron in the sense that it activates for particular incoming
data. When connected to other neurons, it allows the detection of complex features from
the input data. In particular, a perceptron takes in a set of input values, associated
with a weight. It then computes the weighted sum of each input, adds in the bias,
and sends results to a non-linear activation function. More formally, the output of a
perceptron is computed as:

a = f(wTx) = f(
nX

i=1

wixi + b) (1.1)

where x is the vector containing the inputs, w is the vector containing the weights, b
is the bias and f(.), a non-linear function. A perceptron is represented in Figure 1.2.

b

x1

x2

x3

� f(.)z a

w1

w2

w3

Figure 1.2. The representation of a single artificial neuron, also called perceptron. Each
of the 3 inputs is associated with a weight. The perceptron computes the
weighted sum of the inputs, adds in the bias, and sends the results through
an activation function.

When several perceptrons are aggregated into a single layer, i.e. they all take the same
input values, they are called a Fully-Connected Layer (FCL), motivated by the fact
that all of the inputs are connected to all of the neurons. The weights of such a layer
are thus a concatenation of each perceptron weight vector, which gives a weight matrix,
describing how each input is connected to each output.

Fundamentals 14

1.2.3 Training

A MLP with L layers takes in two set of parameters :

(W, b) = (W (1), b(1),W (2), b(2), ...,W (l), b(l), ...W (L), b(L)) (1.2)

where W (l) contains the weight matrices of layer l and b(l) the biases.

The training phase consists in finding values for the parameters (W, b) of all the layers
in the network so that the network’s output given the input training data is as close
as possible to its targets. The main challenge is to avoid the network to overfit, i.e.
adapt too much to the training data, but to learn general features, that can be applied
to unseen data. The training is performed iteratively by computing the output of the
network for a given input and updating the weights so that it minimizes the so-called
loss function, defined as :

L =
1

n

nX

i=1

L(ŷi, yi) (1.3)

where L denotes the loss function, ŷ the network’s predictions, and y the ground truth
labels, computed for n input data.

The purpose of this loss function is to measure how far the current output of the network
is from the target output and to use this distance score as a feedback signal to adjust
the values of the weights. The algorithm in charge of adjusting the weights is called
Stochastic Gradient Descent (SGD), which updates trainable parameters according to
their gradient value for each training iteration as:

w
(l)
i,j

= w
(l)
i,j

� ↵
@L

@w
(l)
i,j

(1.4)

b
(l)
i

= b
(l)
i

� ↵
@L

@b
(l)
i

(1.5)

where ↵ is the learning rate, w
(l)
ij

denotes the weights between neuron j in layer l and

neuron i in layer l + 1 and b
(l)
i

denotes the bias added to neuron i in layer l + 1.

15 1.2. Multi-Layer Perceptron

Numerically evaluating the analytical expression for the gradient of each parameter can
be computationally expensive. However, this can be resolved by using the backprop-
agation algorithm, computing the gradient for the parameter of the last layer, then
progressively going back in the network, computing gradients with the so-called chain

rule. The value of the gradient for a weight w
(l)
i,j

at layer l, can be computed as :

@L

@w
(l)
i,j

=
@L

@z
(l)
j

·
@z

(l)
j

@w
(l)
i,j

(1.6)

with z
(l)
j

the output of the neuron j, as defined in equation 1.1. After having computed
the gradient, we can update each weight according to equations 1.4 and 1.5.

Training a neural network thus consists of two phases: (1) A forward pass, where a
subset of training data, namely a batch, is fed to the network, producing the output
values from which the loss value can be computed; (2) a backward pass, computing
the gradient of each parameter and updating them accordingly. The combination of
forward pass and backward pass on the entire training dataset is called an epoch. Several
epochs are usually required in order to ensure the proper convergence of the network’s
weights and generalization on the test set.

Learning Rate

The learning rate ↵ in Equation 1.5 is an essential hyperparameter to set when training
a neural network as it determines the size of the steps of updates of each parameter
in the network. As can be observed in Figure 1.3a, when the learning rate is set too
small, tiny updates are performed to the parameters, leading to slow convergence of
the training. On the other hand, if the learning rate is set too large, the updates will
be substantial, leading to divergent behavior in training, as represented in Figure 1.3b.
The goal is thus to find the learning rate value so that loss updates allow to rapidly
converge towards an optimal value, such as represented in Figure 1.3c.

For a long time, the learning rate value was determined by trial and error. However,
recent research developed good practice to identify an optimal value. In particular,
the learning rate range test is nowadays a ubiquitous method to find such learning
rates [17]. This method consists in training a network with a very small learning rate,
then gradually increasing it during the training. By observing the evolution of the loss
value when such a technique is applied, we can usually observe the behavior represented
in Figure 1.4.

Fundamentals 16

(a) Example of a learning rate
chosen too small.

(b) Example of a learning rate
chosen too large.

(c) Example of a well-chosen
learning rate.

Figure 1.3. Examples of impact of learning rate values on convergence of SGD. The
optimal value greatly depends on the architecture and dataset, making it a
di�cult hyperparameter to set.

Learning Rate

Tr
ai

ni
ng

 L
os

s

1. 2. 3.

Figure 1.4. The Learning Rate Range Test. It consists in training a model starting
from a very small learning rate and gradually increasing its value. The area
of greatest descent in the loss is where the optimal learning rate value is
located.

17 1.3. Convolutional Neural Networks

It consists of three parts:

1. The first part is when the learning rate is too low, leading to tiny updates and
thus, not much improvement in the loss value;

2. The optimal range, where updates lead to steep decrease in the loss value;

3. The last part, where the learning rate begins to be too high for the training, leading
to an increasing loss value.

The optimal learning rate value is thus located in the optimal range, ideally the highest
value that can be a↵orded.

1.3 Convolutional Neural Networks

A Convolutional Neural Network is a particular kind of the Multi-Layer Perceptron
model. This kind of network takes inspiration from how the visual cortex processes
neurobiological signals [18]. Indeed, the visual cortex has small regions of cells that are
sensitive to specific regions of the visual field. In particular, CNNs have been created
for natural signals that present three major properties:

• Locality, i.e. there is a strong local correlation between close values of the signal;

• Stationarity, i.e. similar features appear several times in the signal;

• Compositionality, i.e. the features hierarchically compose the signal.

1.3.1 Definition

CNNs adds two types of layers to the standard MLP layers: a convolution layer and
a pooling layer. The idea behind these two layers is to extract the local structures
of the signal. Early layers of a CNN are able to extract elementary structures, e.g.
edges, corners, gradients of color, while deeper layers are able to extract more complex
features, e.g. faces or eyes, because they combine previously extracted features.

From a high-level point of view, a CNN is architecturally separated into two parts,
each designed to fulfill a di↵erent purpose. The first part of the network, containing
only convolutional layers and pooling layers, is aimed at performing feature extraction.
The second part uses fully-connected layers and performs classification based on the
extracted features. A complete network is illustrated in Figure 1.5.

A CNN is not always used to perform classification and it can be used to do feature
extraction only. In this case, the second part of the network is not required.

Fundamentals 18

Feature Extraction Classification

Conv ConvPool Pool FC FC FC

Figure 1.5. Representation of the LeNet-5 CNN [19]. It is composed of several convo-
lution layers (Conv) and pooling layers (Pool), connected to an MLP, with
Fully-Connected layers (FC) .

1.3.2 Convolutional Layer

The CNNs derive their names from the convolution operator. Convolution layers act
as filters and their purpose is to extract a set of features from input images.

The extraction of features is done by performing a convolution operation on the im-
age, with a convolution filter. The filter contains a set of kernels, which are matrices
composed of trainable weights. Depending on the values of those weights, the kernel
extracts di↵erent features from the input images, producing the so-called feature map.
This feature map is then usually sent to a non-linear activation function, producing the
Activation Map.

For an input image I of dimension w ⇥ h ⇥ d, with w the width, h the height and d
the depth of the image (1 for a grey image and 3 for a color image, corresponding to
the RGB channels) and a filter composed of d kernels K of dimension Kh ⇥Kw, with
d being equal to the depth of the image, the filter slides over and convolves with the
image, producing a feature map. The convolution result is the sum of the element-wise
multiplication of the filter weights W and the original image, computed as:

zij =

Kh
2X

a=
�Kh

2

Kw
2X

b=�Kw
2

Wabx(i+a)(j+b) (1.7)

The convolution operation is more usually written as:

z = W ⇤ x (1.8)

19 1.3. Convolutional Neural Networks

With ⇤ denoting the convolution operation. An example of the application of the con-
volution operation with a convolution filter computing an average value is represented
in Figure 1.6.

Figure 1.6. Application of the convolution filter to an input image. The convolution
filter slides over the whole image and computes the sum of element-wise
multiplication between the filter and the corresponding pixels. In this case,
the filter is computing an average, leading to an image that is blurred.

The step size of successive convolution operation is called the stride and is a parameter
of convolutional layers. Using a larger stride thus computes fewer activation pixels and
results in a smaller sized output. Even with a unitary stride, the dimension of feature
maps decreases as we progress in the network, as pixels on borders are lost for a kernel
dimension large than 1 ⇥ 1. In order to keep our image dimension intact, we can add
padding, i.e. add rows and columns on the input image so that the output dimensions
are as expected. There exist several types of padding, such as repeating the nearest
values, or doing a reflection of the image but the most commonly used is the zero-
padding, which adds rows and columns of zero value pixels on each side of the image.
The output dimensions Oh ⇥ Ow of the feature map after convolution are determined
by:

Oh =
h�Kh + 2p

s
+ 1, (1.9)

Ow =
w �Kw + 2p

s
+ 1 (1.10)

with p the padding value, i.e. the number of rows and columns that are added to the
image.

Fundamentals 20

1.3.3 Pooling Layer

After a convolution layer, a pooling layer can sometimes be added. This additional
layer does not have trainable weights but is only concerned with reducing the spatial
dimensions of the image. By downsizing the images, the pooling layer allows the fol-
lowing convolutional layer to operate on a downsampled image and thus, to take e↵ect
on a virtually larger input size.

To do so, a pooling layer first subsamples the feature map into several submatrices,
then performs a selection operation on each submatrix. Several selection methods such
as average or maximum have been providing good performance. and are nowadays the
most commonly used. The example of a max-pooling operation with a filter of dimen-
sion 2⇥ 2 and a stride of 2 is represented in Figure 1.7.

Figure 1.7. Result of a max-pooling operation with a 2⇥ 2 kernel and stride of 2. The
resulting image consists in the maximum value contained for each position
of the max-pooling kernel.

1.3.4 Training

As for MLPs, the general objective when training a CNN is to minimize the network
cost function. By training our CNN, each filter learns the weights that allows it to
extract relevant features. Each parameter in the convolutional layers is updated by
following the same methods as described in Section 1.2.3. Because of the assumptions
made about input data, i.e. locality, stationarity and compositionality, CNNs usually
possess fewer parameters than MLPs. As a result, their training is often easier as fewer
parameters make up for an easier convergence. Such assumptions about input data,
allowing to adapt a model are called inductive biases.

21 1.4. In Brief

1.4 In Brief

Summary 1

• The field of Artificial Intelligence has always fascinated human kind. We
may be closer than ever to achieving Artificial General Intelligence.

• Multi-Layer Perceptrons are the most basic kind of neural network. Al-
though being simple, they are already su�cient to approximate any
function, provided that they have enough parameters.

• Multi-Layer Perceptrons learn their weights with the use of Stochastic Gra-
dient Descent, using a loss as a feedback signal to adjust their weights
to fit the training data better.

• Convolutional Neural Networks is a particular architecture of Multi-Layer
Perceptrons involving Convolution Filters as weights.

• Convolutional Neural Networks have been designed under 3 assumptions,
making them more e�cient on input data that present: (1) locality, i.e. a
strong local correlation between close values; (2) stationarity, i.e. similar
features appearing several times; (3) compositionality, i.e. the features
hierarchically compose the signal.

CHAPTER 2

Neural Network Compression

Contents

2.1 Introduction . 24

2.2 Sparse Neural Networks 25

2.2.1 Designed Sparsity . 25

2.2.2 Learned Sparsity . 28

2.2.3 Ephemeral Sparsity . 31

2.3 Knowledge Distillation 33

2.4 Quantization . 35

2.4.1 Post-Training Quantization 38

2.4.2 Quantization Aware Training 38

2.4.3 Automatic Mixed Precision 39

2.5 Compact Neural Network Architectures 40

2.5.1 Matrix Factorization . 40

2.5.2 Batch Normalization Folding 45

2.5.3 Kernel Size Reduction 46

2.5.4 Channel Amount Reduction 48

2.6 In Brief . 50

“Pluralitas non est ponenda sine necessitate.”
— William of Occam

— 23 —

Neural Network Compression 24

2.1 Introduction

An e�cient neural network usually corresponds to: (1) a model having few parame-
ters; (2) a model having a fast inference. Although generally related, obtaining one
of those does not necessarily lead to obtaining the other.

In this chapter, we primarily rely on the first aforementioned definition of e�ciency
and present the compression techniques that are mainly concerned with reducing the
number of parameters in a neural network. In particular, those compression techniques
aim to find an optimum between parameter amount and generalization capacity. This
corresponds to finding Pareto-optimal models, such that no model gets a better accu-
racy for a given parameter amount or no model can have fewer parameters for a given
accuracy, as represented in Figure 2.1.

Parameters

A
cc

ur
ac

y
(%

)

Pareto-Optimal Model

Non Pareto-Optimal Model

Pareto Frontier

Figure 2.1. Pareto Optimality. The Pareto Frontier represents the limit at which no
model can either be more accurate or with fewer parameters.

There are thus two ways to create more e�cient models: (1) Reduce the number of pa-
rameters while keeping the performance unaltered; (2) Improve the performance while
maintaining the same number of parameters.

The di↵erent techniques presented in this chapter are concerned with the first manner of
generating models closer to the Pareto frontier, i.e. reducing the number of parameters.
In particular, we expose the di↵erent manners to create sparse neural networks in
Section 2.2. Then, the technique of Knowledge Distillation is presented in Section 2.3.
Subsequently, the Quantization technique is detailed in Section 2.4. Finally, recent
techniques for creating e�cient neural network architectures are presented in 2.5.

25 2.2. Sparse Neural Networks

2.2 Sparse Neural Networks

A first set of techniques to compress neural networks concerns the introduction of
sparsity in the weight matrices, i.e. replacing elements with zeros. In particular, we
identify three main ways to create sparse models: (1) Designed Sparsity, i.e. sparsity
in the weights that is willingly imposed when designing the architecture; (2) Learned
Sparsity, i.e. sparsity that first undergoes a phase of learning in order to be applied;
(3) Ephemeral Sparsity; i.e. sparsity being imposed in a reversible way.

2.2.1 Designed Sparsity

Sparsity in the weights can be introduced at the design step of a neural network archi-
tecture. This usually results from assumptions about the data, i.e. inductive biases,
which translates to simpler architectures. In particular, we illustrate this phenomenon
for the convolution operation.

Convolution as a particular case of fully-connected layer

In Section 1.3, we described the three properties of the input signal that allowed to
create the convolution operation: (1) Locality, i.e. a strong correlation between values
that are close in the signal; (2) Stationarity, i.e. similar features can appear several
times in the signal; (3) Compositionality., i.e. features compose the signal in a hier-
archical manner.

Introducing such inductive biases in the operation allows convolutions to perform bet-
ter than regular fully-connected layers when the aforementioned assumptions are met
on the training data. The introduction of convolutions and the apparition of CNNs
thus lead to more simply connected neural networks, having sparse connectivity when
compared to Fully-Connected Networks (FCNs).

The convolution operation can thus be seen as a particular case of a fully-connected
layer, where sparsity has been imposed by design. As an illustration, we describe how
a Fully-Connected layer can be re-expressed when considering the three hypotheses
about input data. For readability, we will show here how simplifications can be made
in the case of 1D-convolutions, i.e. when the training data is one-dimensional, e.g. a
monophonic audio signal, and will omit the bias term. In the case of a fully-connected
layer, the operation performed on the input data is a dot product between the layer’s
weight and the data itself. It is usually written as:

W · x = y

Neural Network Compression 26

with W , the weights of the layer, x the input data and y, the resulting output. As
seen in Section 1.2, a perceptron containing n weights takes a n-dimensional input, and
performs a dot product between its weights and the input. If the output of that layer
is m-dimensional, the weight matrix is thus of shape m ⇥ n. The previous operation
can be extended to:

2

66666664

w1,1 w1,2 w1,3 w1,4 · · · w1,n

w2,1 w2,2 w2,3 w2,4 · · · w2,n

w3,1 w3,2 w3,3 w3,4 · · · w3,n
...

...
...

...
. . .

...

wm,1 wm,2 wm,3 wm,4 · · · wm,n

3

77777775

2

666664

x1

x2
...

xn

3

777775
=

2

666664

y1

y2
...

ym

3

777775

The first property, locality, suggests that data points close to each other are strongly
correlated, while the correlation to points that are far away is negligible. As a result,
we can remove the interaction between data points that are far away from each other by
restricting the weight matrix to compute only around a neighborhood. This translates
to a sparse weight matrix, where data points that are far from each other are not
connected. By introducing this property on the previously obtained weight matrix, we
have:

2

66666664

w1,1 w1,2 w1,3 · · · w1,k 0 0 · · · 0

0 w2,1 w2,2 w2,3 · · · w2,k 0 · · · 0

0 0 w3,1 w3,2 w3,3 · · · w3,k · · · 0
...

...
...

...
...

. . .
...

0 0 0 · · · wm,n�k · · · wm,n�2 wm,n�1 wm,n

3

77777775

2

666664

x1

x2
...

xn

3

777775
=

2

666664

y1

y2
...

ym

3

777775

The resulting operation is called a locally-connected layer, where weights are only
a↵ected by its k closest data points, while having no impact on other data points that
are further away.

The second property, stationarity, states that similar patterns can appear in several
places in the signal. This implies that the same feature extractor can be used several
times in the weight matrix. As a result, a weight-sharing technique can be applied,
so that the same set of weight is repeated throughout the matrix. Applying such a
property results in the following operation:

27 2.2. Sparse Neural Networks

2

66666664

w1 w2 w3 · · · wk 0 0 · · · 0

0 w1 w2 w3 · · · wk 0 · · · 0

0 0 w1 w2 w3 · · · wk · · · 0
...

...
...

...
...

. . .
...

0 0 0 · · · w1 · · · wk�2 wk�1 wk

3

77777775

2

666664

x1

x2
...

xn

3

777775
=

2

666664

y1

y2
...

ym

3

777775

This results in a Toeplitz weight matrix, possessing k, with k  n, trainable parameters
instead of the initial m⇥ n.

When combining the two first data properties to modify the fully-connected weight
matrix accordingly, the latter now behaves as a sliding window, significantly reducing
the number of trainable parameters in the layer. The obtained convolution operation
is usually expressed by:

W ⇤ x = y

with ⇤ being the convolution operator.

The Figure 2.2 graphically summarizes the consequence of the locality and stationarity
hypothesis on a fully-connected layer.

Designed

 Sparsity

Weight

 Sharing

Fully-Connected Locally-Connected Convolutional

Figure 2.2. Convolution as designed sparsity. Each assumption about input data allows
to simplify and sparsify the original fully-connected network. Image inspired
by [20].

Neural Network Compression 28

The last property, compositionality, has no impact on the individual operation but
supports the rationale behind the stacking of several convolutional layers in order to
create a convolutional neural network. Indeed, feature extraction in a CNN is performed
hierarchically, with shallow layers extracting low-level information about the input data,
while deeper layers are able to build upon features extracted previously to discover
high-level information. An illustration of such a phenomenon is provided in Figure 2.3.

Low-level features Mid-level features High-level features

C
on

v
1

C
on

v
3

C
on

v
5

C
on

v
2

C
on

v
4

Convolutional Neural Network

Figure 2.3. Convolutional Neural Network extracting data features in a hierarchical
manner, illustrating the compositionality property of input data. While
shallow layers allows to extract low-level features, deeper layers extract
higher-level features.

2.2.2 Learned Sparsity

Instead of being explicitly designed in the architecture, sparsity can be introduced in
the training process. This results in more flexible methods as fewer assumptions about
the data are made. In particular, we present three methods to learn sparse models:
weight decay, pruning and growing.

Weight Decay

As the name suggests, weight decay is a technique that concerns the reduction of
the weight magnitudes in a neural network. It is generally associated to imposing a l2

penalty on the weights, computed as kWk2 =
qP

i
|wi|

2, and was historically directly
specified in the weight update rule. However, since the introduction of more complex
optimization processes, the penalty is preferably imposed in the loss function [21].

29 2.2. Sparse Neural Networks

Instead of penalizing the weights based on their l2 norm, we can use the l1 norm. While
also reducing the magnitude of weights, l1 norm has the convenient property of acting
as a feature selection method, by introducing sparsity in the weights. This can be
graphically interpreted when solving a problem in a 2D space, as represented in Figure
2.4. In that scenario, as the constraint region imposed by the l1 penalty possesses
corners, the solution is likely to happen at one of those corners, producing a sparse
solution, i.e. one of the parameters w1 or w2 is equal to 0. This is not the case for l2
penalty, where sparse solutions are less likely.

w1

w2

y

(a) l2 norm.

w1

w2

y

(b) l1 norm.

Figure 2.4. Representation of the solution imposed by di↵erent types of norms. While
l2-norm rarely leads to sparse solutions, the sharp edged shape imposed by
l1-norm often leads to solution that are sparse.

In practice, the regularization term is added to the loss value L, with a hyperparameter
� mitigating its e↵ect, as:

L̃ = L+ �R(W) (2.1)

with, in the case of l1 regularization:

R(W) = kWk1 =
X

i

|wi| (2.2)

Neural Network Compression 30

Pruning

Instead of encouraging weight values to decay towards zero, it can be done in a more
strictly, directly replacing certain weights with zeros. This process is called parameter
pruning and thus removes connections in a neural network. Pruning methods have
been a popular way to introduce sparsity in neural networks in recent years. Such a
technique allows for obtaining a final sparse neural network which usually reaches non-
trivial levels of sparsity without witnessing performance degradation. The simplified
process is represented in Figure 2.5.

Pruning

Figure 2.5. Pruning connections in a neural network. By starting from an overparame-
terized network and removing connections, a sparse network can be obtained.

Growing

The method followed by most compression techniques is to start with a network that
is supposed to be overparameterized with a too large capacity and then to reduce
the number of parameters to obtain a capacity that can reach the optimal trade-o↵
between performance and model size. There exist techniques that allow to reach such
a trade-o↵ by turning the problem upside down. Instead of starting from a network
having too many parameters, they start from a network having too few. The goal is
then to progressively add parameters until the desired performance is obtained. Such
a technique is called neural network growing as we grow weights during the training.
The general concept of network growing is represented in Figure 2.6.

31 2.2. Sparse Neural Networks

Growing

Figure 2.6. Growing connections in a neural network. By starting from an extremely
sparsely-connected network and gradually adding connections, a sparse net-
work can be obtained.

2.2.3 Ephemeral Sparsity

Sparsity can also be introduced in an ephemeral manner which, as opposed to other
sparsity methods, restores values that have been sparsified after training. Such an
operation is usually not performed with the purpose of compressing a neural network,
but rather to improve the generalization performance of a model, leading to models
closer to the Pareto-optimality.

Dropout

The most common ephemeral sparsity technique is the so-called Dropout. It intro-
duces sparsity at training time to decrease neuron co-adaptation, i.e. neuron units hav-
ing too highly correlated behavior. In practice, it is performed by deactivating some
neuron in the training phase, along with all its incoming and outgoing connections,
with a defined probability p. By this means, neurons cannot rely on their neighbors
as they might be deactivated at any moment, forcing neurons to learn good feature
extractions on their own, and increasing the model robustness.

For a neural network composed of n neurons, there are 2n possible subnetworks, all
sharing a large portion of weights. At each training iteration, Dropout thus samples
a subnetwork, consisting of the units that survived. As a result, it provides a way of
e�ciently combining exponentially many di↵erent neural network architectures, thus
acting as a sort ofmodel ensembling [22]. A representation of Dropout is provided in 2.7.

Neural Network Compression 32

Dropout

Figure 2.7. Illustration of the Dropout technique, introducing sparsity in the neurons.
Greyed Neurons are temporarily dropped and do not participate in the cur-
rent forward pass, forcing neurons to not rely on other ones.

DropConnect

A generalization of the Dropout technique is called DropConnect. Instead of setting
complete neuron units, DropConnect randomly drops weight connections, allowing for
greater flexibility. The principle is represented in Figure 2.8.

DropConnect

Figure 2.8. Illustration of the DropConnect technique, introducing sparsity in the con-
nections. Greyed connections are temporarily dropped and do not partici-
pate in the current forward pass.

33 2.3. Knowledge Distillation

DropBlock

Instead of operating on the weights, several methods have been proposed to zero-out
parts of the feature maps. The Cutout method first introduced such an operation,
randomly dropping input pixels [23]. It was later generalized by DropBlock, removing
blocks of feature maps from the whole network. The idea consists of dropping sections
of the input image, such that those dropped sections are propagated across all layers,
leading to a final representation of the image, containing no information about the
missing section other than what can be recovered from the context [24]. An example
of such an operation is represented in Figure 2.9.

Low-level features Mid-level features High-level features

C
on

v
1

C
on

v
3

C
on

v
5

C
on

v
2

C
on

v
4

Convolutional Neural Network

Figure 2.9. DropBlock technique introducing sparsity in the activations. Such tech-
niques remove pixels from input image or activation maps, forcing the neu-
ron to recognize generic features about the images.

2.3 Knowledge Distillation

The Knowledge Distillation method is a compression technique involving a student-
teacher based training. In such a training, a large and performant model, the teacher,
guides a small and less performant model, the student, in its learning process [25]. This
is achieved by encouraging the student network to replicate the teacher model’s pre-
dictions, i.e. the logits, and the correct predictions coming from the dataset, i.e. the
ground-truth labels. The rationale behind this teacher-student training is to provide
inter-class information, called the Dark Knowledge [26], that is not present in hard-
labeled data, and is usually discarded when using a softmax activation function.

Neural Network Compression 34

Initially, Knowledge Distillation was applied by comparing the predictions of the teacher
and the student after passing through an altered softmax function. This new function
is similar to the basic softmax function but possesses a temperature parameter T ,
parameterizing how much inter-class information is retained. The equation of such an
operation is given by:

pi =
exp

�
zi
T

�
P

n

j
exp

�
zj

T

� (2.3)

with pi the prediction value for a given class, zi the logit value corresponding to that
class and j the amount of di↵erent classes. When the temperature T is set to 1, then
the previous equation is equivalent to a regular softmax.

Knowledge Distillation was later extended to the di↵erent set of techniques involving
a teacher-student training, which can use computations coming from di↵erent places
in the network. The general Knowledge Distillation concept is illustrated in Figure 2.10.

Teacher Logits

Student Logits

Input

Lf Ll
Data

Preds

Labels

Lc

Teacher

Student

softmax

Figure 2.10. Illustration of the Knowledge Distillation Concept. The student model is
guided in its learning phase by taking hints from features and/or predic-
tions of the teacher, but still uses labels from the data.

In that case, we are able to compare the logits from the teacher and the students
according to the desired loss function Ll, which we call the logits loss. Moreover,
intermediate states from the networks can also be compared, e.g. the activation maps
and attention maps, between which is applied the Lf loss function, which we call the
feature loss. The classification loss Lc computed between the student predictions and
the hard labels coming from data is still applied to ensure the good convergence of the

35 2.4. Quantization

student network.The global loss, used to train the student, can thus be expressed in its
general form as:

L = �(↵Ll + (1� ↵)Lf) + (1� �)Lc (2.4)

It consists of a linear interpolation between the classification loss Lc and the distillation
loss, itself being an interpolation between the logits loss Ll and the feature loss Lf .

2.4 Quantization

Quantization of a neural network is the process of reducing the numerical precision
of its weights or activations. Most of the time, the storage of the weights, as well as
the computation of activations is performed using the single-precision floating-point
format, i.e. each value is encoded with 32 bits. Reducing this precision therefore saves
processing time and storage. However, this usually results in a lossy process. Indeed,
as represented in Figure 2.11, quantization reduces the representation possibilities, by
squeezing a small range of floating-point values into a fixed number of information
channels [27].

0 maxmin 3e38-3e38

-127 127

Figure 2.11. Mapping of a small range of floating-point format float32 to a fixed-point
format int8. Quantized representation only has 255 information channels,
leading to loss of precision. Image inspired by [27].

A floating-point vector x can approximately be expressed as a transformation of its
quantized values xq as:

bx = s · (xq � z) ⇡ x (2.5)

Neural Network Compression 36

where s is a floating-point scaling factor and z the zero-point, which are used to map
the floating point value to the quantized grid.

There exist several schemes of quantization:

• Asymmetric quantization, which is the most commonly used scheme as it al-
lows an e�cient implementation of fixed-point arithmetic. After setting the scale
parameter s, the zero-point z and the bit-width b, we can first map the real-valued
vector x to the unsigned quantized grid 0, ..., 2b� 1 as:

xq = clamp
⇣jx

s

m
+ z; 0, 2b � 1

⌘
(2.6)

where b·e is the round-to-nearest operator and clamping is defined as:

clamp(x; a, c) =

8
><

>:

a, x < a

x, a  x  c

c, x > c

(2.7)

which leads to a final representation of the vector x as:

bx = s
h
clamp

⇣jx
s

m
+ z; 0, 2b � 1

⌘
� z

i
(2.8)

The grid limits are thus set to [�sz, s(2b � 1 � z)]. Values outside of this range
will be clipped, incurring a clipping error. This error can be reduced by expanding
the quantization range. However, this requires to increase the scale factor, thus
increasing the rounding error.

• Symmetric Quantization is a simplified version of the general asymmetric case,
where the zero-point z is set to 0, which slightly reduces the computational over-
head. Furthermore, the symmetric quantization can either be signed, in which
case the quantization operation is defined by:

xq = clamp
⇣jx

s

m
;�2b�1, 2b�1

� 1
⌘

(2.9)

which leads to a final representation of the vector x as:

37 2.4. Quantization

bx = s
h
clamp

⇣jx
s

m
;�2b�1, 2b�1

� 1
⌘i

(2.10)

Or unsigned, in which case the quantization operation is defined by

xq = clamp
⇣jx

s

m
; 0, 2b � 1

⌘
(2.11)

which leads to a final representation of the vector x as:

bx = s
h
clamp

⇣jx
s

m
; 0, 2b � 1

⌘i
(2.12)

A representation of quantization grids for all quantization operations is available in
Figure 2.12.

0 max

2550

smin = � sz

(a) Asymmetric quantization.

0 max

127-128 0

s

(b) Symmetric signed quanti-
zation.

0 max

2550

s

(c) Symmetric unsigned quan-
tization.

Figure 2.12. A visual illustration of the di↵erent uniform quantization grids for int8
representation. The floating-point grid is in black, the integer quantized
grid in green. Image inspired from [28].

The quantization process is not only challenging to represent weight and activation val-
ues, but it also induces several problems related to the training of a neural network. In
particular, the following three problems might occur when training using low-precision
values:

• Imprecise Weight Update. When we update the weights by performing the
operation w = w�↵ @L

@w
, the updating term ↵ @L

@w
is usually ranging around a value

of 1e� 3 [29]. The lack of power of representation of lower precision can thus lead
to imprecise updates.

Neural Network Compression 38

• Gradient Underflow. As we compute the gradients with a lower precision, they
can sometimes be so small that they are not representable and thus are replaced
by 0, leading to no update at all.

• Loss Overflow. The problem of representation does not only concerns small
numbers. Indeed, with lower precision, big numbers are more di�cult to represent
and can make the training diverge.

There are however several techniques able to cope with those problems. In the following
sections, we will describe the three most important techniques:(1) Post-Training Quan-
tization (PTQ); (2) Quantization-Aware Training (QAT) and (3) Automatic Mixed-
Precision (AMP).

2.4.1 Post-Training Quantization

The most straightforward manner to avoid the problems related to training a quantized
network is to train it in high precision and perform quantization afterwards. This is
the principle behind the PTQ method, which quantizes the weights and activations
of a pre-trained model in a single step, without the need of additional training. This
method can be data-free or require a small calibration set to fine-tune the quantized
network and minimize the loss of information between the high-precision network and
the new low-precision one. The general concept of PTQ is represented in Figure 2.13.

Train

Calibrate

-

If data available

If no data available

Quantization

Quantized ModelFP32 Model

Figure 2.13. Illustration of the Post-Training Quantization process. Quantization is ap-
plied on the trained model, further requiring calibration is data is available.

2.4.2 Quantization Aware Training

When aiming for low precision quantization, PTQ can have limitations as they do not
mitigate the significant quantization error induced. For that reason, QAT has been
introduced to help the model to take the quantization noise source into account.

39 2.4. Quantization

In practice, QAT is performed by introducing extra modules that emulate the quan-
tization of each computation module. The main principle is that QAT simulates low-
precision forward pass computation in the training process, introducing quantization
error as noise during the training. By doing so, the weights are optimized to be more
robust to quantization. The general concept of QAT is represented in Figure 2.14.

Simulate
Quantization Train Quantize

Quantized ModelFP32 Model

Figure 2.14. Illustration of the Quantization-Aware Training process. It emulates the
quantization noise during the training, before quantizing the model.

2.4.3 Automatic Mixed Precision

AMP is an a↵ordable way to perform quantization as it leverages the power of quantiza-
tion with minor changes to the model or training loop. This method consists in training
a model where compute-intensive operations are performed in low precision while criti-
cal operations such as gradient computation or backpropagation are performed in higher
precision. The principle behind AMP is represented in Figure 2.15.

Quantized
Gradients

FP32
Gradients

FP32
Weights

Quantized
Weights

Quantized Model FP32 Model

Train

Figure 2.15. Illustration of the Automatic Mixed-Precision process. Computation of the
forward pass is performed on the quantized model while the computation of
the backward pass is performed on the full precision master model, helping
reducing issues related to low-precision gradient descent updates.

Neural Network Compression 40

Such a method thus allows to significantly speed up the training as considerable opera-
tions are performed using lower precision but without witnessing too much performance
degradation as important computations are done with high precision.

2.5 Compact Neural Network Architectures

Several research studies have been concerned with creating more e�cient architectures,
i.e. architectures able to reach similar performance while minimizing the number of
parameters or compute operations. In this Section, we present several design method-
ologies that have been used to create compact architectures.

2.5.1 Matrix Factorization

This technique consists in expressing a weight matrix by a product of smaller matri-
ces. By replacing the initial matrix with the new product, a gain in performance can
generally be achieved.

Depthwise Separable Convolution

As presented in Section 2.2.1, convolutions are the usual building block when the task
involves natural data such as images. Although convolutions already are more e�cient
in terms of number of parameters and computations than fully-connected layers, it has
been shown that they are not the optimal trade-o↵ between performance and compu-
tational cost [30]. A stronger hypothesis about CNNs is that the activation maps of
the hidden layers are mostly uncorrelated. This means that the computations in the
spatial space can be separated from the ones in the channel space. As a result, an alter-
native to the convolution operation, called the depthwise separable convolution,
has been proposed. It consists of two operations: (1) a depthwise convolution which
only operates on spatial features; (2) a pointwise convolution, which only operates on
channel features. Using this type of convolution in the MobileNet architecture allowed
it to reach better accuracy of ImageNet classification than the ImageNet Large Scale
Visual Recognition Challenge winners, VGG16 [31] and AlexNet [32], which use regular
convolutions, for respectively 32 and 45 times fewer parameters.

In the regular convolutional layer, the convolution is performed over multiple input
channels, with a filter as deep as the input image, and the channels are combined to
generate each channel of the output. So, if an input image has three channels, applying
a convolution operation results in an output image with only one channel per pixel, as
illustrated in Figure 2.16.

41 2.5. Compact Neural Network Architectures

Input Output

Figure 2.16. Representation of the e↵ect of applying a regular convolution on an in-
put image of three channels. The convolution operates on both spatial
dimension and channel dimension.

Depthwise convolutions di↵er from regular convolutions as they keep the channels sep-
arated. As a result, for an input image with three channels, applying a depthwise
convolution operation on the image results in an output image with also three chan-
nels. The principle is shown in Figure 2.17.

Input Output

Figure 2.17. Representation of the e↵ect of applying a depthwise convolution on an
input image of three channels. The depthwise convolution only operates
on the spatial dimension.

This depthwise convolution is followed by a pointwise convolution which actually is
a regular convolution with a kernel of dimension 1 ⇥ 1. The goal is thus to com-
bine the channels previously kept separated by the depthwise convolution to obtain a
single resulting channel. The principle of pointwise convolution is shown in Figure 2.18.

Neural Network Compression 42

Input Output

Figure 2.18. Representation of the e↵ect of applying a pointwise convolution on an input
image of three channels. The pointwise convolution only operates on the
channel dimension.

We can compare the number of parameters needed to do a regular convolution to those
needed for a depthwise separable convolution. The number of parameter in a standard
convolution can be computed as:

Kh ·Kw ·M ·N (2.13)

whereM is the number of input channels, N is the number of output channels, Kh⇥Kw

is the dimension of the kernel.

The total amount of parameter in a depthwise separable convolution is given by the
sum of its two constituent operations. The depthwise convolution only operates on
individual channels, and does not create new combinations of them, while the pointwise
convolution is a regular convolution with a kernel size of 1⇥ 1. The sum of both terms
gives us the following expression.

Kh ·Kw ·M +M ·N (2.14)

The reduction of the parameter amount is given by computing the ratio between both
types of convolutions, computed from Equations 2.13 and 2.14:

Reduction =
Kh ·Kw ·M +M ·N

Kh ·Kw ·M ·N
=

1

N
+

1

Kh ·Kw

(2.15)

43 2.5. Compact Neural Network Architectures

In most architectures, the kernel dimensions are set to 3 ⇥ 3. The amount of output
channels is usually a factor of 8, ranging from 64 to 512. This means that we can expect
a reduction of parameters of a factor close to 9⇥ by replacing regular convolution with
depthwise separable convolutions. Applying the same reasoning to the amount of com-
pute operations provides the same ratio. This means that not only depthwise separable
convolution allow a become to be significantly lighter, but also faster. By implementing
the MobileNet architecture with both types of convolutions, it has been observed that
the depthwise-convolutional MobileNet has 7⇥ fewer parameters and 8.5⇥ fewer oper-
ations, for a drop in accuracy of only 1% on ImageNet classification compared to the
regular-convolutional MobileNet [30], illustrating that depthwise separable convolutions
help to move networks closer to the Pareto optimality.

Fully-Connected Layers Decomposition

Generally, CNNs are composed of two parts:

1. A feature extraction part using only convolutional operations.

2. A classification part using only fully-connected operations.

For a long time, the second part of the network has been responsible for most of the
parameter count in the network. Indeed, for competition-winning networks such as
AlexNet, ZFNet or VGG-16, the classification part represented around 90% of the
parameters in the network, as presented in Table 2.1, thus largely dominating their
global storage footprint.

Total (M) Conv (M) FC (M) % FC

AlexNet 61.10 2.46 58.63 95.96

ZFNet 62.36 37.26 58.63 94.04

VGG16 138.36 14.71 123.64 89.36

Table 2.1. The repartition of parameter in each part of a CNN, designed for ImageNet-
1K classification.

The Singular Value Decomposition (SVD) allows expressing a large weight matrix X
into the product of three smaller ones as:

X = U⌃V T (2.16)

with ⌃ the diagonal matrix of singular values, ordered by importance.

Neural Network Compression 44

We can approximate the matrix X by selecting the leading k ⇥ k sub-blocks of ⌃, and
the corresponding k leading columns of U and V . The larger the value of k, the better
the approximation. The concept of this truncated-SVD decomposition is represented
in Figure 2.19.

�

n � d n � n d � dn � d

n � k

k � k
k � d

� VTU

Ũ

�̃ ṼT

X

Figure 2.19. Truncated-SVD decomposition of a fully-connected layer. Keeping only
a subset of singular values allows to greatly reduce the total amount of
parameters.

Nowadays, architectures usually reduce the amount of fully-connected layers to its bare
minimum, i.e. a single layer, reducing the benefit of using a decomposition. However,
in the case of e�cient architectures able to significantly reduce the number of param-
eters in the convolutional part, the fully-connected layer starts to dominate again the
parameter count, especially when the number of classes to discriminate increases. The
example chosen of MobileNetV2, SqueezeNet and Shu✏eNetV2 x0.5, all designed to be
parameter e�cient, is provided in Table 2.2.

Total (M) Conv (M) FC (M) % FC

MobilenetV2 3.50 2.22 1.28 36.55

SqueezeNet 1.25 0.74 0.51 41.09

Shu✏eNetV2 x0.5 1.37 0.34 1.03 74.99

Table 2.2. The repartition of parameter in each part of an already parameter-e�cient
CNN, designed for ImageNet-1K classification. Because the feature extraction
part is parameter-e�cient, the fully-connected layer represent a large part of
the parameter count.

45 2.5. Compact Neural Network Architectures

2.5.2 Batch Normalization Folding

The Batch Normalization (BN) layer is a normalization layer, usually placed between
the computation layer and the activation function, and whose role is to normalize the
input data [33]. More formally, the BN operation is performed as:

bz =
z � µBq
�2
B
+ ✏

y = �bz + �

(2.17)

This normalization is performed in two steps:

1. Subtract to incoming data the mean µB = 1
m

P
m

i=1 zi and divide it by the standard

deviation �B =
q

1
m

P
m

i=1 (zi � µB)
2 of input data batches. Normalizing each

incoming batch to a mean of 0 and standard deviation of 1 at each computation
layer has been shown to significantly improve the training performance and help
obtain a better-behaved optimization process. The BN is believed to reduce the
so-called internal covariate shift, i.e. the change in the distribution of network
activations due to the change in network parameters during training [33];

2. Multiply the result by a weight � and add a bias �, two learnable parameters of
the Batch Normalization layer. Such parameters allow the data distribution to be
shifted and scaled adequately, potentially undoing the previous step if needed.

In order to apply BN at inference, moving average of those statistics are computed and
kept fixed once the training has ended. Those values can thus be incorporated into
the computation layer preceding each of them. This can be achieved by re-expressing,
the weights and the bias of the computation layer, taking the normalization e↵ect into
account. The output of a Batch Normalization layer y, given an input z is given by:

y = �
z � µBq
�2
B
+ ✏

+ � (2.18)

With z the output of the previous computation layer, expressed as:

z = Wx+ b (2.19)

with W and b respectively being the weights and bias of the layer.

Neural Network Compression 46

From the equations 2.18 and 2.19, we can re-arrange the weights W and bias b and
express those terms, accounting for the parameters of the batch normalization layer as:

Wfold = � ·
µBq
�2
B
+ ✏

bfold = � ·
b� µBq
�2
B
+ ✏

+ �
(2.20)

By replacing the parametersW and b of the computation layer with their folded counter-
parts Wfold and bfold , this computation layer now normalizes incoming data according
to the computed statistics. As a result, the entire Batch Normalization layer can be
considered as useless and removed from the network without impacting its performance,
which provides a reduction of the number of parameters and computation.

2.5.3 Kernel Size Reduction

While the most commonly encountered kernel dimension in CNNs is 3 ⇥ 3, it is not
unusual in recent architectures to observe kernels of larger dimensions, especially in
shallow layers. The rationale behind using large kernels is to help the network to ex-
tract higher dimension features earlier. However, it has recently been found that using
higher dimensions filters actually negatively impacts the parameter count while show-
ing no improvements over smaller filters [34].

To better understand this phenomenon, let us first introduce the concept of receptive
field, i.e the region of the input space that a particular filter is a↵ected by. In a CNN
using kernel dimensions of Kh ⇥Kw, the first layer operates on a region of the input
image that only depends on its kernel size, i.e Kh ⇥ Kw. The second layer then op-
erates on regions Kh ⇥Kw of the result of the first layer. However, when reported to
the input image, this virtually corresponds to a region that is larger than Kh ⇥ Kw,
as each value in the second layer was already computed from a neighborhood from
input image. Deeper layer thus computes on increasingly larger regions, i.e. they have
a larger receptive field. This phenomenon is represented in Figure 2.20 for kernels of
dimensions 3⇥ 3 and a unitary stride.

47 2.5. Compact Neural Network Architectures

Receptive field5 � 5 Receptive field3 � 3

Input Layer First Layer Second Layer

Figure 2.20. Receptive field of a pixel from the second layer, when using 3 ⇥ 3 filters.
Each pixel of each feature from the second layer is computed from an
equivalent region of 5⇥ 5 of the input image.

The size of the receptive field R
(l) of a layer l can be computed by the following

expression:

R
(l) = R

(l�1)s(l�1) + (K(l�1)
� s(l�1)) (2.21)

with s being the stride value and K the kernel dimension. We can thus replace the
layer having a larger kernel by the adequate amount of layer with kernels of dimensions
3⇥ 3. Using smaller filters has two main advantages:

1. Using more layers and thus more non-linearities allows the network to extract
richer and more expressive features. Indeed, the expressivity in neural networks is
believed to grow exponentially with its depth [35].

2. Using smaller kernels is more parameter e�cient. Indeed, if we take the example of
a single layer with a 7⇥7 kernel and suppose that all feature maps have a number of
channel C, then the total amount of parameter in that layer is C⇥7⇥7⇥C = 49C2.
However this layer can be replaced by three layers of 3⇥ 3 kernels, equating to a
number of parameter of 3⇥ (C ⇥ 3⇥ 3⇥ C) = 27C2.

For those reasons, kernels of dimension 3⇥3 should be privileged over higher resolution
when model e�ciency is to be taken into account.

Neural Network Compression 48

2.5.4 Channel Amount Reduction

In a Convolutional Neural Network layer, the number of channels is another hyperpa-
rameter to set. A widely adopted heuristic is to set channels to a power of two, with
the number of channels increasing as going deeper in the network, as extracted fea-
tures are incrementally more specific. The challenge thus resides in finding the correct
amount of channels, avoiding unnecessary computations and storage. Several recent
research propose to create bottlenecks in the network to be more parameter e�cient.
In particular, two types of bottleneck modules have emerged: (1) Inverted Residuals;
(2) Fire Module.

Inverted Residuals

The Inverted Residual module has been proposed for the MobileNetV2 architecture [36].
While the MobileNetV1 proposed to use Depthwise Separable Convolutions to replace
regular convolutions as detailed in Section 2.5.1, the second version proposes to go one
step further.

The Inverted Residual module takes in a low-dimensional tensor with n channels and
performs three separate convolutions, as represented in Figure 2.21. The first is a point-
wise convolution, expanding the low-dimensional input tensor to a higher-dimensional
space. The expansion factor is here referred to as ✏, leading to ✏n channels. The
second operation is a depthwise convolution, only achieving spatial filtering of the
higher-dimensional tensor. The spatially-filtered feature map is then projected back to
a low-dimensional subspace, by using a second pointwise convolution. As the initial
and final feature maps are of the same dimension n, they can be added back together,
facilitating gradient flow during backpropagation.

 Conv1 � 1 DW Conv3 � 3 Conv1 � 1n n�n �n

Figure 2.21. The Inverted Residual module, proposed by MobileNetV2. It consists of a
first pointwise convolution expanding the channels to allow feature extrac-
tion by a depthwise convolution and finally another pointwise convolution
projecting the result back to its lower dimension.

49 2.5. Compact Neural Network Architectures

This module ensures that the amount of data flowing between blocks stays reasonably
small as it is encoded as low-dimensional features. The Inverted Residual thus acts as a
decompressor-filter-compressor block, allowing low-dimensional information to be first
expanded for feature extraction on spatial information, before being projected back to
its low dimension.

Fire Module

The Fire module has been first introduced for the SqueezeNet architecture [37]. It
consists of two modules: (1) a Squeeze part; (2) an Expand part. The general Fire
block is represented in Figure 2.22.

 Conv1 � 1n

 Conv3 � 3

 Conv1 � 1

�1
n
s

n
s

(�1 + �2) n
s

�2
n
s

Figure 2.22. The Fire module proposed by SqueezeNet. It consists of a first pointwise
convolution squeezing the number of channels, then a mix between point-
wise and regular 3 ⇥ 3 convolutions performing the feature extraction on
lower-dimensional data.

The goal behind the Fire module is two-fold: (1) reduce the kernel size of convolutions
in the network, as explained in Section 2.5.3 by replacing 3⇥ 3 convolutions by point-
wise convolution where possible; (2) reduce the number of incoming channels to the
remaining 3⇥ 3 to minimize their amount of parameters.

The Fire module takes in a high-dimension tensor, with n channels and is first reduced
by a factor s through the squeeze module, a pointwise convolution. The low-dimensional
input tensor then flows through two branches. It is first expanded by a factor ✏1, for
the 3⇥ 3 convolutional branch, and by a factor ✏2, for the other pointwise convolution.
The output tensors are then concatenated to form a higher-dimensional output tensor.
This allows expensive filtering operations to be performed on lower-dimensional data,
allowing to greatly reduce the number of parameters involved in the network.

Neural Network Compression 50

2.6 In Brief

Summary 2

• The parameter count in Neural Networks can be reduced by introducing
sparsity in the weights. This sparsity can be introduced in di↵erent man-
ners: (1) It can be designed, as it is the case for CNNs; (2) it can be
learned during training, which is called pruning; (3) it can be ephemeral,
and mainly used for its regularization capabilities.

• The Knowledge Distillation technique allows taking advantage of a large
and competent model, i.e. the teacher, by using it to guide the learning
process of a smaller model; i.e. the student. The student uses cues from the
teacher that can come from: (1) the logits ; (2) intermediate computation
states.

• Quantization does not reduce the number of parameters contained in the
network but rather reduces the precision that those parameters are stored in.
It can be introduced in several ways: (1) Post-Training Quantization;
(2) Quantization Aware Training; (3) Automatic Mixed Precision

• Matrix decomposition consists of approximating and replacing heavy com-
putation layers by smaller ones. In the case of CNNs, both the convolutions
and fully-connected layers can be decomposed.

• Batch Normalization Folding is a technique allowing the batch normaliza-
tion layer to be removed at inference time and thus accelerates the network
and reduces parameters.

• The size of kernels in a CNN is a crucial hyperparameter. In practice, it is
best to stack layers of 3 ⇥ 3 convolution instead of using larger ones, as it
benefits from: (1) an increased expressivity due to more non-linearities;
(2) a gain in parameter amount.

• The number of channels contained in each layer can be reduced for further
compression by introducing bottlenecks in the network. Two well-known
methods are: (1) Inverted residual; (2) Fire module.

CHAPTER 3

Neural Network Pruning

Contents

3.1 Introduction . 52

3.2 Motivation . 53

3.2.1 Improves Generalization 53

3.2.2 Lowers Complexity . 54

3.2.3 Reduces Processing Time and Storage 55

3.3 Neural Network Pruning 56

3.3.1 How to prune ? . 57

3.3.2 Where to prune ? . 62

3.3.3 What to prune ? . 63

3.3.4 When to prune ? . 69

3.4 In Brief . 73

“Every block of stone has a statue inside it and it is the
task of the sculptor to discover it.”
— Michelangelo Buonarroti

— 51 —

Neural Network Pruning 52

3.1 Introduction

This chapter presents the topic of neural network pruning, i.e. the removal from the
network of parameters considered less valuable. The inspiration behind neural net-
work pruning is taken from how the human brain evolves during early life. Indeed,
between birth and adulthood, the number of synapses, i.e. the structures responsi-
ble for transmitting signals to other neurons, dramatically varies. More precisely, the
brain experiences a large amount of growth in synapses during infancy, then gradually
proceeds to a pruning operation, removing any synapse that is not needed anymore,
allowing it to become more e�cient over time and to reach an optimum between per-
formance and energy consumption [38]. This phenomenon is called synaptic pruning,
and is illustrated in Figure 3.1.

Figure 3.1. Evolution of the synaptic density in the human brain during early life. A
growth in the amount of synapses happens during childhood, followed by a
synaptic pruning process. Image inspired by [38].

This chapter details the neural network pruning technique. In particular, it first intro-
duces the motivations behind introducing sparsity in the weights of a neural network
in Section 3.2. In the Section 3.3, we decompose the neural network pruning problem
into 4 questions that need to be answered to fully describe each pruning technique.

53 3.2. Motivation

3.2 Motivation

There are several motivating factors for performing such a pruning process in a neural
network:

• It improves generalization by regularizing over-parametrized networks.

• It reduces the complexity of the network by identifying well-performing smaller
networks.

• It reduces energy costs, computations, storage and latency which are all
beneficial for deployment on both mobile devices and on remote servers.

These features will be detailed in the following sections, before expanding on the details
of neural network pruning.

3.2.1 Improves Generalization

The generalization of a neural network measures how well the latter performs on unseen
data, i.e how good the network is at extracting generic features from training data.
Several pieces of work have reported an improvement in generalization performance
when sparsity increases in the network [39,40]. When plotted against the sparsity, the
generalization performance typically follows an Occam’s Hill [41], which can be divided
into three parts, as represented in Figure 3.2:

Sparsity (%)

A
cc

ur
ac

y
(%

)

1. 2. 3.

Trained Models

Baseline

Figure 3.2. Schematic representation of evolution of accuracy of trained models accord-
ing to pruning level. The performance of models follows a Occam’s Hill
shape, where accuracy slightly increases with sparsity, then suddenly drops
at extreme sparsity levels.

1. A first part where the performance increases with sparsity. In this part, pruning
acts as a regularizer, helping the network to improve generalization.

Neural Network Pruning 54

2. A second part where performance reaches a plateau and where adding sparsity
does not really improve nor decrease the performance.

3. A third part where the performance quickly decreases.

Despite several works reporting that adding parameters in a network helps it to gen-
eralize better [42, 43], it has been shown that removing parameters in a network can
also improve generalization [44]. The reason behind this apparent contradiction is that
the pruning process can be seen as a noise injection mechanism that, despite degrading
the model’s performance by introducing instability, helps the learning process to reach
a flatter region of the loss landscape [44] and thus reduce overfitting. The sharper the
minimum in the training loss the model has converged to, the worse the generalization
capability on the test data, as a subtle shift in the distribution of the data and thus
in the loss function results in a big jump in performance [45]. On the other hand, if
the model has converged to a wider loss solution, then the performance on the test
data does not su↵er much from a subtle shift in distribution. This phenomenon is
represented in Figure 3.3. In practice, we thus aim to make our network converge to
an area as flat and wide as possible.

Flat Minimum Sharp Minimum

Testing LossTraining Loss

Figure 3.3. Conceptual representation of flat and sharp minimum of the loss function.
When a model finds its solution in a flat part of the loss, a subtle change
of distribution does not a↵ect the performance too much. The opposite
happens if the solution belongs to a sharp minimum. Image inspired by [45].

3.2.2 Lowers Complexity

It has been shown that models with flat minima can be described with low precision,
whereas those having a sharp minimum require high precision [46]. This comes from
the Minimum Description Length (MDL) principle, which states that fewer bits of
information are required to describe a flat minimum [47]. The MDL principle introduces
the notion of parametric complexity, a measure of the richness of the model, i.e. its

55 3.2. Motivation

ability to fit random data. It has been shown that larger models are able to fit random
labels, but also more easily than smaller ones [42], indicating that models having more
parameters are more complex from a parametric complexity sense. The MDL principle
is a more formal expression of the Occam’s Razor [41], which can be defined as:

Let H1,H2, ... be a list of candidate models, able to explain the dataset D. The
best model is the one that minimizes:

Hbest = argmin
H

[L(H) + L(D|H)]

with L(H) the length of the description of H in bits, and L(D|H), the length in
bits of the description of the data D when encoded by model H. Then, the best
model to explain D is the smallest one.

As for Occam’s Razor, the MDL principle thus favors simple models, i.e. with small
parametric complexity. Such a definition is also in line with the Kolmogorov complexity,
defined as the length of the shortest binary computer program that describes the object
[48]. As smaller models lead to flatter minima, thus requiring fewer bit to describe,
they also happen to have a lower Kolmogorov complexity.

3.2.3 Reduces Processing Time and Storage

By removing parameters and introducing sparsity in neural networks, pruning is able
not only to reduce the operations required to evaluate a model, but also the memory
needed to store such a model. However, sparse neural networks require overhead to
index their non-zero elements. This overhead depends on the encoding scheme used to
store sparse weights. The simplest scheme is Bitmap (BM), which stores a map with n
bit, each bit indicating whether an element is present or not. It is mostly e�cient for
low sparsity levels, typically between 10% and 70% [20]. Another encoding scheme that
is e�cient for moderate levels of sparsity, i.e. between 70% and 90% is the Delta coding
where only the di↵erence between two elements is stored. In the high sparsity, i.e. spar-
sities > 90% regime, schemes known from scientific and high-performance computing
such as Compressed Sparse Row (CSR) or Compressed Sparse Column (CSC) can be
considered. Other schemes such as Coordinate O↵set (COO), storing each non-zero
element together with its absolute o↵set, would be very e↵ective for extreme sparsity
levels i.e. > 99.9%, but those levels are yet to be achieved for neural networks.

In some cases, it is not necessary to store indices of non-zero elements. This can happen
when complete neurons or filters are zeroed-out. In that case, the model can be re-

Neural Network Pruning 56

arranged into a smaller and dense structure, eliminating the need for dedicated sparse
storage and benefiting directly from the pruning process in terms of speed and storage.

3.3 Neural Network Pruning

Neural network pruning thus consists in introducing sparsity in the weights of a network.
More formally, pruning is the application of a binary criteria deciding on the weights
to assign a value of zero. In practice, this is done by performing an element-wise
multiplication between the weights W and the binary pruning mask m as:

W = m�W (3.1)

By zeroing-out some weight, we ensure they do not take part in the forward propa-
gation process anymore. However, to ensure that those weights are not updated, the
same mask is applied during the backpropagation phase of training, multiplying the
respective gradient of sparse weights by the mask as:

dW = m�
@L

@W
(3.2)

The primary objective of pruning techniques is thus to define the pruning mask m to be
applied. To find those masks and apply pruning to any architectures, we identify four
fundamental questions to be addressed, and find that answering each of those questions
allows to define current pruning techniques unequivocally. Those questions are:

• How to prune? The pruning of parameters can be performed at di↵erent struc-
ture levels, which we refer to as the granularities. On the one hand we have the
so-called structured granularities, i.e when there is an intent to keep some struc-
ture in the pruned network, typically when the pruning is performed at the level of
vector, kernel or filter. On the other hand, we have unstructured pruning, i.e when
it is performed at the granularity of individual weight, leading to sparse weight
matrices devoid of any structure in terms of how the zero elements are arranged.

• Where to prune? Two schemes exist to define from which layer should param-
eters be removed. This can be done either in a locally, imposing a chosen amount
of sparsity in each layer separately, or in a globally, comparing parameters from
the whole model and leading to layers with potentially di↵erent sparsity levels.

• What to prune? A pruning criteria assessing the importance of parameters in
the network needs to be defined. Such pruning criteria are generally either data-
agnostic, meaning that they do not require any training data information and are

57 3.3. Neural Network Pruning

only based on the values of the weights themselves, or they can be data-aware,
thus requiring training information such as gradient values.

• When to prune? Pruning can occur at di↵erent times in the training process.
In particular, this can happen before, during or after the training. The pruning
schedules, i.e. how the level of sparsity evolves during the pruning process, usually
fall into one of the following categories: one-shot, i.e. when sparsity is induced in
a single step; iterative, i.e. when sparsity is induced in several steps; and gradual,
i.e. when sparsity evolves gradually during the training process.

3.3.1 How to prune ?

When pruning a neural network, the first question addresses the granularity at which
the sparsity is introduced, i.e. the structure of block of weights that are removed. Lit-
erature usually di↵erentiates between two categories: (1) unstructured, i.e. when the
sparsity is induced at the level of individual weights; (2) structured, i.e. when sparsity
is induced at a more coarse level, such as kernels or filters. As we will see, structured
pruning is usually used as a catch-all term, but a lot more nuance can be provided.

In the case of Convolutional Neural Networks, we can represent the weights constituting
a layer by a 4-dimensional tensor: Co⇥Ci⇥Kh⇥Kw, with Co and Ci being respectively
the number of output and input channels and Kh and Kw being the height and width of
the kernels. Weights constituting a convolutional layer are represented in the Figure 3.4.

Kh

KwCi

Figure 3.4. Representation of Co filters, composed of Ci kernels of Kh ⇥ Kw weights
each, and constituting the layer of a CNN.

Parameters can thus be removed from the weight tensor according to any of those four
dimensions. In particular, we can remove weights (0-dimensional tensors), vectors (1-
dimensional tensors), slices (2-dimensional tensors) or even filters (3-dimensional ten-
sors). In this section, we will also propose and describe a novel family of granularities,
that we name shared granularities.

Neural Network Pruning 58

• Weight-Level Pruning. This granularity removes parameters in an unstruc-
tured way, by comparing each 0-dimensional element contained in the layer and re-
moving the ones considered as less important. Since there are no extra constraints
on the pruning pattern, the parameters can be pruned with a high sparsity. Figure
3.5 shows how weight pruning a↵ects the structure of the weights.

Figure 3.5. Representation of weight pruning. As weights are removed individually from
each filter, no sparsity pattern is emerging.Removed weight are in color.

• Vector-Level Pruning. It removes 1-dimensional vectors from the initial weight
tensor. The most common structures, represented in Figure 3.6 are: (a) row vec-
tors; (b) column vectors; (c) channel vectors. In addition to those three granu-
larities, there is another one that is possible. We name it shared-weight granularity,
removing weights along the Ci dimension, in an apparently unstructured pattern
from a single filter, but sharing it across all filters, as represented in Figure 3.7.

(a) Row Pruning. (b) Column Pruning (c) Channel Pruning.

Figure 3.6. Variations of vector pruning in a convolutional layer. Vectors that are hor-
izontal, vertical and transversal to the filters can be removed. Removed
weight are in color.

59 3.3. Neural Network Pruning

Figure 3.7. Representation of Shared-Weight Pruning. Although it appears to be un-
structured at the scale of an individual filter, the same sparsity pattern is
shared across all filters of the layer. Removed weights are in color.

• Slice-level pruning. This type of granularity removes 2-dimensional tensors
from the weight tensor. This type of granularity is most of the time associated with
kernel pruning but, as represented in Figure 3.8, there are more options that can
be considered. In particular, we can remove: (a) vertical slices; (b) horizontal
slices; (c) kernels. In addition, as it was the case for the shared-weight granu-
larity, we can remove weights along the Ci dimension, which leads to granularities
that are similar to the vector-level ones presented in 3.6, but this time shared in
all filters, as represented in Figure 3.9: (a) shared-row; (b) shared-columns;
(c) shared-channels.

(a) Horizontal Slice Pruning. (b) Vertical Slice Pruning (c) Kernel Pruning.

Figure 3.8. Variations of slice-level pruning in a convolutional layer. Slices that are
horizontal, vertical and transversal to the filters can be removed. Removed
weight are in color.

Neural Network Pruning 60

(a) Shared-Row Pruning. (b) Shared-Column Pruning (c) Shared-Channel Pruning.

Figure 3.9. Variations of shared-vector pruning in a convolutional layer. The same vec-
tor patterns emerge in all filters of the layer. Removed weight are in color.

• Filter-Level Pruning. This type of pruning removes 3-dimensional tensors
from the weight tensor and particularly concerns removing entire convolutional
filters, as represented in Figure 3.10. Again, there are other 3-dimensional gran-
ularities that are possible, i.e. the shared counterparts of slice granularities, as
represented in Figure 3.11: (a) shared horizontal slice; (b) shared vertical
slice; (c) shared kernel.

Figure 3.10. Filter Pruning. Entire filters are removed from the layer.Removed weight
are in color.

After enumerating those granularities, it is now obvious that the structured and un-
structured categories are insu�cient to categorize all the possible sparsity structures.
Instead of falling in either of those groups, granularity rather evolves along a structured
scale, ranging from weight pruning being the less structured to filter pruning being
the most structured granularity. Also, the less structured the pruning, the more pre-
cise will be the decision on the weights to remove. As a result, a higher sparsity level
can be reached before witnessing a performance degradation. On the other hand, the

61 3.3. Neural Network Pruning

(a) Shared-Horizontal
Slice Pruning.

(b) Shared-Vertical Slice
Pruning.

(c) Shared-Kernel Prun-
ing.

Figure 3.11. Variations of shared-slice pruning in a convolutional layer. The same slice
is removed from all filters in the layer. Removed weight are in color.

more structured the granularity, the easier it is for hardware speed-up, as there is less
overhead to store the zero-weight indices. There is thus a trade-o↵ to find between
performance and speed-up when choosing at which granularity the pruning should be
performed.

Several granularities allow going one step further. Indeed, when pruning according to
those granularities, it is possible to completely remove parts from the network, allowing
to return to a dense model, e↵ectively taking advantage of the compression to witness
speed-up without any dedicated resource. Two granularities allow performing such fea-
ture: (1) filter and (2) shared-kernel.

Let us consider two consecutive convolutional layers i+ 1 and i+ 2, in which we want
to remove structures. Each of these layers take feature maps, i.e. the results of the pre-
vious layer as input. We di↵erentiate the e↵ects of those two granularities, as depicted
in Figure 3.12.

Filter Removal. If we want to remove a single filter from layer i + 1, the direct im-
plication on the network is that the removed filter will not produce a resulting feature
map anymore. The corresponding feature map i + 1 should thus be removed as well.
But as those feature maps serve as input of layer i+2, removing a feature map directly
a↵ects that particular layer. Indeed, the corresponding kernels in each filter of layer
i+ 2 are now found to be useless and can also be removed.

Share-Kernel Removal. If we now want to apply pruning with the granularity of
shared-kernel, the impact on the network will be very similar but with the dependencies

Neural Network Pruning 62

inverted. Indeed, if we want to remove a single shared-kernel of all filters in layer i+2,
then the input feature map corresponding to that kernel will not be useful anymore
and can be removed. Moreover, the filter in layer i + 1 also has no utility anymore as
its corresponding output feature maps have been removed, and can be dropped as well.

. 

. 

.

. . .

. . .

. . .

. . .

. . .

. . .

. 

. 

.

Feature Maps  
of layer i

Feature Maps  
of layer i + 1

Feature Maps  
of layer i + 2

Filters of layer
i + 1 Filters of layer

i + 2

. . .

. . .

. . .

. . .

Figure 3.12. Filter and shared-kernel granularities allow to remove parts from the model.
This enables the architecture of the model to be changed to a smaller and
dense one. Removed weight are in color.

Removing filters or shared-kernel has exactly the same impact on the architecture for
all intermediate layers. The di↵erence between both granularities resides in the very
first and last layers, as filter pruning impacts the last layer by removing some of its
output, while shared-kernel impacts the very first layer, by removing some of its input.

3.3.2 Where to prune ?

When removing parameters of a neural network, their utility may vary a lot depend-
ing on the layer from where they come. Indeed, as indicated in Section 2.2.1, neural
networks are built in a hierarchical manner, with shallow layer extracting low-level
information and deeper layers extracting high-level information about the input data.
Generally, a network possesses fewer neurons in shallow layers than in deep layers.
This comes from the fact that low-level features are more generalizable to a wide range
of applications, which is not the case for more specific, high-level features [49]. As a
result, deeper layers usually contain redundant features, that can be removed without
hurting the network. For that reason, there exist two main ways to distinguish where
in the network to apply the pruning: (1) Local pruning, where the selection of the
parameters to remove is performed on a per-layer comparison. This implies that each
layer will have the same final sparsity level; (2) Global pruning, where the selection

63 3.3. Neural Network Pruning

of the parameters to remove is performed on the whole model. This implies that each
layer will potentially have di↵erent sparsities.

Pruning a network according to the local context usually leads to decent results. How-
ever, local pruning assumes that all network layers are equally important. This is not
necessarily true, which can make local pruning more challenging when the network
involves bottleneck layers, where reducing the number of parameters too much can
profoundly a↵ect the performance of the model. On the other hand, using a global
context is usually more computationally expensive, as the pruning process potentially
sorts and compares several millions of weights. However, because it is more flexible and
does not introduce any prior on the importance of the weights according to their depth
in the network, global pruning usually provides better-performing neural networks.

A representation of the per-layer sparsity level for both pruning contexts in the case
of a 20-layer network being pruning to 50% of sparsity can be found in Figure 3.13. It
can be observed that local pruning leads to all layers having the same sparsity level, as
represented in Subfigure 3.13a and that global pruning leads to layers having di↵erent
sparsity levels as represented in Subfigure 3.13b.

S
pa

rs
it
y

(%
)

Layer Number

(a) Sparity levels after local pruning.

S
pa

rs
it
y

(%
)

Layer Number

(b) Sparsity levels after global pruning.

Figure 3.13. E↵ect of local and global pruning on the individual sparsity level of a 20-
layer neural network. Local pruning leads to equally sparse layers while
global pruning leads to layers that have di↵erent sparsity levels.

3.3.3 What to prune ?

After choosing the granularity and the context according to which the network will be
pruned, we need to select a criteria of selection for its weights. This selection criteria
is used as a proxy for parameter importance. In particular, di↵erent heuristic criteria
were developed to identify the promising structures to be pruned without harming
the prediction performance. We classify these criteria into two categories: (1) Data-

Neural Network Pruning 64

Agnostic, concerning criteria using only weight information to decide which weight
to remove; (2) Data-Aware, concerning criteria using training information such as
gradients or the loss in order to select the weights to remove.

Data-Agnostic Methods

After grouping weights in the model according to a chosen granularity, the pruning cri-
teria assigns a score to each weight group. A threshold � is then computed according
to the desired sparsity, and the values of the binary pruning mask m are assigned to 1
where the weight values are above � and 0 where they are below. Several ways exist to
score the weights, and the more common ones will be detailed below. In particular, we
provide the expression of the mask m, and illustrate the resulting decision boundaries
in relation to weights values at initialization Wi and their value at the current training
step Wf .

• Random: A random criteria is often used as a control case. As the name
suggests, the values of the mask m are then assigned randomly. In this case, the
mask m is a random variable, following a Bernoulli distribution with probability
p = 1 � s, s being the desired sparsity. In this case, the mask m is computed by
the following expression:

m =

(
1 : with P = 1� s

0 : with P = s
(3.3)

A representation of selected weights to remove is provided in Figure 3.14.

Figure 3.14. Result of the application of the Random criteria on the weights. Parame-
ters that are greyed out are the parameters removed.

65 3.3. Neural Network Pruning

• Large Final: The mask is determined according to the magnitude of the param-
eters after training. In this case, the highest magnitude ones will be retained while
others will be removed. This criteria is often named “l1-pruning” as the weights
are ranked by their l1-norm [50]. In this case, the mask m is computed by the
following expression:

m =

(
1, if

��wf

�� > �

0, otherwise
(3.4)

We represent in Figure 3.15 the decision boundaries imposed by such a criteria.

Figure 3.15. Result of the application of the Large Final criteria on the weights. Pa-
rameters that are greyed out are the parameters removed.

• Large Inititialization: The mask is determined according to the initial value of
the parameters and is totally independent of their current value. The computation
of the mask is very similar to the large final criteria but in this case, the initial
value of the weights Wi is used, according to the following expression:

m =

(
1, if |wi| > �

0, otherwise
(3.5)

The decision boundaries are provided in Figure 3.16.

Neural Network Pruning 66

Figure 3.16. Result of the application of the Large Initialization criteria on the weights.
Parameters that are greyed out are the parameters removed.

• Large Initialization Large Final: This criteria combines both previous ones,
by selecting the weights that have the highest initial and final values. The mask
is computed by the following expression:

m =

(
1, if min(

��wf

�� , |wi|) > �

0, otherwise
(3.6)

The decision boundaries are provided in Figure 3.17.

Figure 3.17. Result of the application of the Large Initialization Large Final criteria on
the weights. Parameters that are greyed out are the parameters removed.

67 3.3. Neural Network Pruning

• Magnitude Increase Pruning: Magnitude Increase Pruning proposes to retain
weights whose magnitude has increased during the fine-tuning process, indicating
that the optimization phase has given them more importance for the task at hand
[51]. To compute the maskm, it is thus required to compare the current magnitude
of the weights to the magnitude they had at initialization, as:

m =

(
1, if |wf |� |wi| > �

0, otherwise
(3.7)

The decision boundaries are provided in Figure 3.18.

Figure 3.18. Result of the application of the Magnitude Increase criteria on the weights.
Parameters that are greyed out are the parameters removed.

• Movement Pruning: the movement criteria is a variation of magnitude increase
one. The rationale is slightly di↵erent, as movement puts emphasis on weights that
undergo significant change in their value, as it indicates that those weights are
highly updated by the optimization process. The mask m is computed following:

m =

(
1, if |wf � wi| > �

0, otherwise
(3.8)

The decision boundaries are provided in Figure 3.19.

Neural Network Pruning 68

Figure 3.19. Result of the application of the Movement criteria on the weights. Param-
eters that are greyed out are the parameters removed.

Data-Aware Methods

Data-aware methods are techniques that use information from the data in order to
score the weights. There also exists plenty of methods, but only the most commonly
used will be described:

• Hessian. One of the first proposed criteria was based on the second-order deriva-
tive of the loss function [52, 53]. However, these Hessian-based methods were
rapidly set aside, the Hessian matrix being neither diagonal nor positive definite
in general, they were intractable for large neural networks.

The mask is computed by:

m =

(
1, if

w
2
fHf

2 > �

0, otherwise
(3.9)

Where Hf is the value of the Hessian matrix corresponding to wf , where the
Hessian H = �2L/�W 2.

• First-Order Taylor Approximation. To reduce the computation needs of the
Hessian matrix, some work approximated the squared di↵erence of the loss with
a first-order approximation [54]. This allowed to compute the criteria of weights,
using only their value and gradient, readily available during backpropagation.

69 3.3. Neural Network Pruning

In practice, the mask m is computed by:

m =

(
1, if gfw

2
f
> �

0, otherwise
(3.10)

where gf is the gradient corresponding to wf .

• Gradient. Other works have hypothesized that the parameter importance is solely
defined by its gradient magnitude [55]. This means that, if the gradient magnitude
is high, a weight significantly impacts the loss, and thus must be preserved.

In this case, the mask m is computed by:

m =

(
1, if |gf |Pn

k=1 |gf,k|
> �

0, otherwise
(3.11)

where k is the amount of gradients compared when applying the pruning.

3.3.4 When to prune ?

A neural network is parameterized by a set of weights W . Those weights evolves during
training, such that we can define the set of weight values possessed by the network along
training as:

{W0,W1, · · · ,Wt · · · ,WT}

where t denotes the t-th training iteration and T is the total number of training iter-
ations. Let us denote mT the pruning mask computed on the final set of values WT .
Traditional pruning methods require to compute mT and to apply it on WT , thus cre-
ating the pruned network. However, recent techniques have proposed to decouple the
selection of mask from its application. The mask is computed based on the weights
WT but is applied on the weights W0, suggesting that pruning could be applied at
initialization. This idea was recently popularized by LTH [56], that goes as follows:

The Lottery Ticket Hypothesis: A randomly-initialized, dense neural network
contains a subnetwork that is initialized such that — when trained in isolation —
it can match the test accuracy of the original network after training for at most the
same number of iterations.

Neural Network Pruning 70

Such a subnetwork is said to have won at the initialization lottery and is thus named a
winning ticket. However, a limitation of the LTH is its lack of generalization to larger
datasets and architectures [57]. Indeed, it was shown that resetting the weights to
their original values was hindering the good convergence in early training iterations
and the inability to find winning tickets. The authors resolve the problem by weaken-
ing the original hypothesis. Instead of resetting the weights to initialization, they reset
them to some phase early in training [57]. This generalization is called Lottery Ticket
Hypothesis with Rewinding (LTHR) as the weights are now rewound to a previous
training iteration. Found subnetworks are no longer called winning tickets but rather
matching tickets as they are found from an early iteration instead of initialization. The
process to find such a subnetwork is represented in Figure 3.20 and consists of six steps.

W0

(1)

WT

(3)

m � WT

(4)

m � Wk

(5)

(6)

Wk

(2)

Figure 3.20. Performing Lottery Ticket Hypothesis with Rewinding to discover the opti-
mal subnetwork. If the iteration k is set to 0, then this process corresponds
to the classic Lottery Ticket Hypothesis.

1. Initialize the weights of a neural network to a value W0;

2. Train the network for k iterations , creating the set of weights Wk and save those
weights;

3. Train the network to convergence, creating the set of weights WT ;

4. Prune the smallest magnitude weights by applying a binary mask mT ;

5. Reinitialize the weights to the saved value, i.e. at iteration k, and apply the mask
found at the preceding step;

6. Return to step 3 until reaching the desired level of sparsity.

When the iteration k is chosen to be 0, then LTHR degenerates into the classic Lottery
Ticket Hypothesis (LTH). Those results present important implications, as they sug-
gest that it should be possible to extract the winning ticket without undergoing the
time-consuming pruning process. More surprisingly, when applying the mask mT on
the network W0, i.e. on the untrained network, the latter is already able to reach non-
random accuracies even without any training.

71 3.3. Neural Network Pruning

When elaborating on the schedules of pruning, there are two main aspects to take into
account: (1) When is the pruning process starting? That is, on which set of weights is
the mask applied? (2) When is the mask computed ? That is, how does the sparsity
evolve during training?

There exist three possibilities of when the pruning process should occur:

• Pruning After Training (PAT). This type of pruning, i.e. after the model
has been trained to convergence, is the most basic way to prune a model. In this
pruning scheme, we prune from the model WT , creating the model WT � mT .
We may eventually fine-tune the model to recover from potential lost performance
endured during the pruning process. We then obtain a pruned model WM �mT ,
with M > T . Sometimes, the pruning process can also be continued, updating the
mask until desired sparsity is obtained.

• Pruning During Training (PDT). This type of pruning computes the mask
m on a set of weights that has been trained, but not to convergence, Wt, creating
the sparse network Wt � mt, that can further be trained to create the network
WT �mt. Doing so ensures that su�cient information about weight’s importance
is available, but usually results in a cheaper training process.

• Pruning At Initialization (PAI). The last method intends to compute the
mask m and apply it to the initial set of weights, W0. This has for objective of
decreasing the training costs in order to find the sparse model. The mask can
however be found in several manners. Indeed, the mask can be said to be post-
selected, i.e. the mask is computed on weights WT and applied to create the
sparse network W0 � mT . This is the case with methods such as Lottery Ticket
Hypothesis [56]. The mask can also be said pre-selected, i.e. computed on weights
W0, creating the sparse network W0 � m0, such as in SNIP [55] or GraSP [58]
methods. In both cases, the pruning phase is followed by a challenging training of
a sparse model to convergence.

The pruning mask m can be computed in di↵erent ways. This defines how sparsity
evolves during the pruning phase. In particular, three categories can be identified:

• One-Shot Pruning. As the name suggests, One-Shot Pruning computes the
mask m and prunes the network, i.e. applies the mask m, in a single step. In this
case, when the model has been pruned, the mask is no longer updated. Although
this method is e↵ective to some extent, it generally provides suboptimal results.
An illustration of One-Cycle Pruning applied at di↵erent training iterations can
be found in Figure 3.21.

Neural Network Pruning 72

(a) One-Shot, PAT. (b) One-Shot, PDT. (c) One-Shot, PAI.

Figure 3.21. Evolution of sparsity for the One-Shot pruning schedule, removing param-
eters in a single pruning phase, and applied at di↵erent training times.

• Iterative Pruning. This method proposes to perform the pruning interleaved
with retraining phases. This proved to reach higher levels of accuracy before
witnessing a performance drop, but also to require a more extensive training budget
to obtain the final sparse model. An illustration of Iterative Pruning applied at
di↵erent training iterations can be found in Figure 3.22.

(a) Iterative, PAT. (b) Iterative, PDT. (c) Iterative, PAI.

Figure 3.22. Evolution of sparsity for the Iterative pruning schedule, removing param-
eters in several pruning steps, and applied at di↵erent training times.

• Gradual Pruning. Gradual Pruning provides a smoother schedule, better in-
tegrated into the training dynamics. It usually follows a slightly more complex
schedule function, allowing to smoothly update the mask during the training. The
most famous Gradual Pruning method has been proposed to remove a large part of
weights early in training, then gradually reduce the rate of removal until training
has been completed [59]. In particular, it is represented in Figure 3.23.

73 3.4. In Brief

(a) Gradual, PAT. (b) Gradual, PDT. (c) Gradual, PAI.

Figure 3.23. Evolution of sparsity for the Iterative pruning schedule, removing param-
eters gradually along the training, and applied at di↵erent training times.

3.4 In Brief

Summary 3

• Neural Network pruning introduces sparsity in the weights, which allows
the network to: (1) improve the generalization of models, (2) lower their
complexity, (3) reduce their processing time and memory storage.

• We identify four open questions that must be addressed to define a pruning
technique: (1) How to prune? (2) Where to prune it? (3) What to prune
a model? (4) When to prune?

• The answer to “How to prune?” concerns the pruning granularities, rang-
ing from weights to entire filters.

• The answer to “Where to prune?” concerns the pruning context, which
a↵ects the sparsity level of each layer in the network.

• The answer to “What to prune?” concerns the pruning criteria, predicting
the importance of the weights.

• The answer to “When to prune?” concerns the pruning schedule, defining
how the sparsity evolves during the training phase.

CHAPTER 4

Developed Tools: FasterAI

Contents

4.1 Introduction . 76

4.2 Sparsify . 77

4.2.1 Granularity . 78

4.2.2 Context . 80

4.2.3 Criteria . 82

4.2.4 Schedule . 84

4.2.5 Lottery Ticket Hypothesis 87

4.2.6 Prune . 88

4.3 Distill . 89

4.4 Regularize . 90

4.5 Misc . 91

4.5.1 Batch Normalization Folding 92

4.5.2 Fully-Connected Layers Decomposition 92

4.6 In Brief . 93

“We shape our tools and thereafter our tools shape us.”
— Marshall McLuhan

— 75 —

Contributions 76

4.1 Introduction

Although many theoretical research studies have been conducted on compression, the
field still lacks convenient tools for: (1) practical case applications; (2) testing and
performing research. Also, because of this lack of tools, there is no standard way of
implementing new compression techniques, making the comparison with previous tech-
niques more di�cult [10]. To solve this issue, we propose FasterAI [60], an open-source
library, released under an Apache-2.0 license. It also includes extensive documentation
and several tutorials to help users to get acquainted with the library 1.

Compression libraries such as PyTorch Pruning [61] and Sparse ML [62] have been re-
leased in the last few years but those are mainly concerned with sparsification, neglect-
ing other compression techniques such as Knowledge Distillation and Regularization.
Another library, Nervana Distiller [63], provides a complete compression toolset, but
is intended primarily for research usage. Also, most of those libraries require imple-
menting new compression techniques in a self-contained way, limiting the opportunities
for extensive experiments. In FasterAI, we aim to reduce the need for implemen-
tation to its bare minimum. Indeed, implementing a new method in FasterAI boils
down to writing a single line of code. Moreover, to the best of our knowledge, FasterAI
is the first compression library available for both fastai [64] and PyTorch Lightning [65].

The objective of FasterAI is twofold: (1) allow inexperienced users to apply compres-
sion techniques; (2) allow researchers to easily implement new compression methods
and perform various experiments. FasterAI is organized around four modules:

Sparsify. The first module is responsible for making sparse neural networks, either in
a static way, when retraining cannot be considered, or in a dynamic way, using callback
systems, thus occurring during the training of the neural network.

Distill. This module is in charge of Knowledge Distillation techniques, i.e. training
with a teacher-student paradigm, where a large model guides a smaller one to reach
better performance, compressing the knowledge of a large model into a smaller one.

Regularize. The regularize module handles group regularization methods, i.e. tech-
niques adding a penalty term on the magnitude of the weights, where some weights will
be pushed towards 0, leading to a sparse learned model.

Misc. The last module includes singular compression methods such as batch normal-
ization folding, removing batch normalization layers, which are useless for inference. It
also includes factorization methods for fully-connected layers, that replace large weight
matrices with smaller ones, thus reducing the total amount of weight.

1https://nathanhubens.github.io/fasterai/

https://nathanhubens.github.io/fasterai/

77 4.2. Sparsify

This chapter is divided into four sections, each one describing a compression mod-
ule of FasterAI. In particular, we want to highlight how convenient it is to perform
di↵erent kinds of experiments, either using well-known techniques, or creating novel
ones. Indeed, by leveraging the callback system of recent deep learning libraries such
as fastai and Pytorch lightning, FasterAI provides a user-friendly and high-level API,
allowing to easily combine and customize compression techniques. To summarize, with
FasterAI, we provide:

• An extensive, documented and open-source PyTorch-based neural network com-
pression library.

• A new granular design approach for compression techniques, allowing to seamlessly
perform thousands of di↵erent compression methods, by simply choosing between
available options.

• A framework suited for practical cases as well as for research, by providing common
compression techniques available out-of-the-box and allowing the conception of
new compression methods in a single line of code.

To this day, the FasterAI library has been downloaded more than 12, 000 times and is
currently being used in the industry sector at AMD 2, in one of their research project.

4.2 Sparsify

The core of FasterAI resides in its sparsify module, containing capabilities allowing
the creation of sparse networks. FasterAI possesses two main ways to create a sparse
network: (1) the static way, by using the Sparsifier class, able to sparsify either a spec-
ified layer, or the whole model, (2) the dynamic way, by using the SparsifyCallback,
that must be used in conjunction with training, and that removes weights while the
network is learning. Examples of usage for both methods are expressed in Pseudo-Code
4.1.

While the static way is faster to apply as it does not require any additional step, the
lack of retraining after the removal of some parameters deeply impairs the model per-
formance. For that reason, the dynamic way is most of the time preferred when trying
to achieve compression while keeping the performance as high as possible. Within
FasterAI, we make the distinction between the process of sparsification, i.e. making
the neural network’s weight sparse, and pruning, i.e. physically removing those sparse
weights. Indeed, the SparsifyCallback does not allow to remove any network’s weight
but rather to create a binary mask, of the same structure as the weights, and applies it
to either sparsify a weight (when the mask value is 0) or keep it unchanged (when the
mask value is 1). Weights sparsified in the process are still present in the computation

2https://www.amd.com/en/corporate/research

https://www.amd.com/en/corporate/research

Contributions 78

(1) Static
sp=Sparsifier(model, granularity, context, criteria)
sp.prune_model(sparsity)

(2) Dynamic
sp_cb=SparsifyCallback(sparsity, granularity, context, criteria, schedule)
learner.fit(n_epochs, cbs=sp_cb)

Pseudo-Code 4.1. The two ways of sparsifying a model. The static is done o✏ine,
disconnected from training, while the dynamic is performed during
training, allowing the model to recover from lost performance.

graph but do not participate in the final decision anymore.

The whole power of the sparsification capabilities of FasterAI lies in its SparsifyCallback,
designed around four independent building blocks: granularity, context, criteria,
and schedule, fully describing the most common sparsification techniques. Those build-
ing blocks correspond to the four main axes of research in the field, described in Section
3.3.

• granularity: how to sparsify?

• context: where to sparsify?

• criteria: what to sparsify?

• schedule: when to sparsify?

The purpose is to decompose the sparsifying problem into four subproblems. By doing
so, each argument can be modified independently from the others, which allows for:
(1) creating a vast number of opportunities and combinations for experiments; (2)
providing a unique and versatile callback, reducing the problem of implementing a
novel sparsification technique to the modification of a single argument.

4.2.1 Granularity

In FasterAI, the granularity designates the structure of the blocks of weights that are
removed during the sparsification process. FasterAI handles most common sparsifying
granularities, e.g. weight, kernel and filter, but also allows the use of more seldom
ones, e.g. horizontal slices, shared-kernels. In the literature, the terms unstructured
and structured sparsity are often used to designate when sparsity is applied on weights
(unstructured) or on larger blocks (structured). In FasterAI, we adopt a more nu-
anced approach by defining as many granularities as there are slicing combinations of
the weight tensor. In the case of 2D convolutions, 16 granularities, described in Section

79 4.2. Sparsify

3.3.1, are thus available by default. On top of the presented granularities, suited for
ConvNets, FasterAI also proposes granularities for Fully-Connected Layers, as well as
for Self-Attention layers, required in Transformers architectures [66].

By following PyTorch conventions [61], the weights of a Convolutional layer are given by
a 4D tensor of dimension [O, I, Kh, Kw], with O,I being respectively the output and
input dimensions, and Kh, Kw, dimensions of the convolutional kernel. The selection of
granularities is given by the Pseudo-Code 4.2.

Weight (0D) = Weights[o, i, kh, kw]
Column (1D) = Weights[o, i, : , kw]
Row (1D) = Weights[o, i, kh, :]
Shared-Weight (1D) = Weights[:, i, kh, kw]
Channel (1D) = Weights[o, :, kh, kw]
Kernel (2D) = Weights[o, i, : , :]
Shared-Channel (2D) = Weights[:, :, kh, kw]
Shared-Column (2D) = Weights[:, i, : , kw]
Shared-Row (2D) = Weights[:, i, kh, :]
Vertical-Slice (2D) = Weights[o, :, kh, :]
Horizontal-Slice (2D) = Weights[o, :, : , kw]
Shared-Vertical-Slice (3D) = Weights[:, :, kh, :]
Shared-Horizontal-Slice (3D) = Weights[:, :, : , kw]
Shared-Kernel (3D) = Weights[:, i, : , :]
Filter (3D) = Weights[o, :, : , :]
Layer (4D) = Weights[:, :, : , :]

Pseudo-Code 4.2. Slicing of 4D weight tensor of dimension [O, I, Kh, Kw] to extract
the desired granularity.

As a proof-of-concept, we conduct an experiment to highlight granularity’s impact on
the performance of a neural network. We choose the ResNet-18 architecture [67], a
CNN using residual connections, as it is a model commonly used for benchmarking
and apply it to the CALTECH-101 dataset [68], various in images and classes. We
thus compare the final validation accuracy when training for 30 epochs, obtained after
sparsifying with each of the available granularities. There are four sparsity levels that
are studied: 30%, 50%, 70% and 90%. Two initialization methods are considered: (1)
the model is either trained from scratch, i.e. randomly initialization, or (2) fine-tuned
from a pre-trained weights. To serve as a baseline, the context, criteria and schedule
are respectively set to local, large final and one cycle. The results are presented
in Table 4.1. For readability constraints, the names of criteria in Table 4.1 have been
abbreviated, e.g. s-v-slice corresponds to the shared vertical slice criteria.

Contributions 80

Scratch Fine-tune

30% 50% 70% 90% 30% 50% 70% 90%

Baseline 80.61 ± 0.42 90.03 ± 0.54

weight 80.40±0.22 80.20±0.71 79.74±0.85 78.46±0.40 91.39±0.14 91.67±0.56 91.43±0.10 88.75±0.90

column 81.04±0.46 80.58±0.15 80.34±0.22 75.60±0.50 91.85±0.59 91.23±0.34 90.43±0.47 83.55±1.53

row 81.13±1.01 80.18±0.56 79.80±0.19 75.97±0.65 91.56±0.79 90.57±0.54 90.88±1.06 85.12±0.97

s-weight 80.49±0.69 80.14±0.19 78.57±1.03 66.23±0.97 90.83±1.20 90.06±0.25 88.40±0.67 46.97±0.87

channel 81.29±0.43 79.50±0.62 79.81±0.63 65.85±0.32 91.16±0.41 90.34±1.03 86.60±0.43 44.97±0.62

kernel 80.27±0.49 79.50±0.51 79.52±1.52 67.34±1.57 91.79±0.43 91.25±0.43 89.88±0.73 77.64±0.80

s-channel 79.54±0.87 80.85±0.98 78.21±0.56 38.60±3.12 90.75±0.55 90.55±0.52 86.20±1.34 23.03±0.92

s-column 79.69±0.64 79.87±0.23 80.23±0.40 59.90±1.71 90.70±0.69 89.93±0.31 86.00±0.32 41.28±3.53

s-row 80.51±0.34 79.78±0.29 77.92±0.56 57.99±0.89 90.30±0.51 89.88±0.53 85.38±0.57 40.43±0.92

v slice 80.01±0.85 80.43±0.91 78.28±0.35 48.09±1.55 90.59±0.45 89.46±0.71 82.90±0.30 29.81±1.78

h slice 80.22±0.79 79.19±0.82 77.13±1.60 43.95±1.02 91.01±0.87 88.75±0.36 82.48±0.96 29.60±2.35

s-v-slice 79.91±0.84 80.40±0.50 76.97±0.47 74.98±0.92 89.28±0.35 89.17±0.62 75.47±0.75 73.49±1.09

s-h-slice 79.81±0.76 80.07±0.64 76.22±0.11 74.58±0.35 89.77±0.22 88.60±0.58 73.41±1.21 69.15±0.77

s-kernel 79.96±0.11 81.00±0.21 75.84±1.60 48.56±0.94 89.77±0.43 89.30±0.48 81.25±0.27 31.86±1.23

filter 80.76±1.65 78.41±1.01 72.92±2.40 37.47±1.90 89.86±0.85 87.78±0.18 77.52±1.84 29.05±0.09

Table 4.1. Results of sparsifying ResNet-18 for all available granularities. Context, cri-
teria and schedule are respectively set to local, large final and one cycle.
Mean and standard deviation of accuracy over 3 rounds are reported. The
darker the shade of red, the further the accuracy is from the baseline.

4.2.2 Context

In FasterAI, the context refers to the locality of selection of the weights. In the
literature, the two most common options are: (1) local pruning, selecting the weights in
each layer separately, producing equally sparse layers, and (2) global pruning, selecting
the weights by comparing those of the whole network, producing di↵erent sparsity levels
for each layer. Both techniques are expressed in a simplified way in Pseudo-Code 4.3.

(1) Local
for layer in layers:

mask = compute_mask(layer.weight, sparsity)
pruned_model = prune_layer(layer, mask)

(2) Global
global_weights = concat[(layer.weight) for layer in layers]
mask = compute_mask(global_weights, sparsity)
pruned_model = prune_model(mask)

Pseudo-Code 4.3. Representation of local sparsification, performed in each layer in-
dependently and global sparsification, performed on all the layers.

81 4.2. Sparsify

FasterAI can handle both methods by default, only by selecting the local or global
method accordingly. in the SparsifyCallback. In the case the user wants to specify
the sparsity level of layers, FasterAI accepts a list of sparsities, that will be applied to
the corresponding layers.

In Table 4.2, we provide the results for the same experiments as the one conducted in
Subsection 4.2.1, but using a global context instead. For readability constraints, the
name of the granularities in Table 4.2 have also been abbreviated.

Scratch Fine-tuned

30% 50% 70% 90% 30% 50% 70% 90%

Baseline 80.61 ± 0.42 90.03 ± 0.54

weight 80.58±1.21 80.42±0.73 80.31±1.01 79.63±0.59 91.12±0.59 91.17±0.19 91.79±0.35 89.90±0.14

column 80.51±0.58 80.78±0.48 80.03±1.08 78.87±0.85 91.54±0.50 90.90±0.46 91.43±0.61 87.48±0.44

row 81.13±1.30 80.65±0.71 79.50±1.52 78.57±0.45 91.19±0.88 91.72±0.26 91.32±0.90 87.78±0.48

s-weight 79.96±0.57 80.45±0.30 76.84±0.72 58.92±3.78 90.99±0.23 90.96±0.68 84.65±1.28 35.83±1.12

channel 80.78±0.52 80.53±0.12 77.79±1.31 63.91±0.74 91.27±0.22 90.55±0.38 80.91±0.70 18.29±1.88

kernel 81.89±0.39 80.49±0.29 79.74±0.41 72.08±1.91 91.08±0.37 91.05±0.52 90.43±0.36 85.25±0.66

s-channel 79.01±1.33 78.70±0.72 73.54±0.92 72.87±1.10 89.00±0.35 85.65±1.72 74.03±1.52 61.82±1.69

s-column 80.87±0.93 79.74±0.39 75.78±0.54 68.85±3.59 90.28±0.22 89.26±0.51 72.14±0.52 18.47±5.31

s-row 80.36±0.87 80.80±0.67 74.58±1.68 68.31±1.23 91.21±0.45 89.57±0.11 65.55±4.13 23.01±11.27

v slice 80.34±0.99 78.72±0.54 75.09±0.39 45.40±4.10 90.81±0.62 87.98±0.64 76.68±0.66 25.36±1.99

h slice 80.36±0.67 79.83±0.34 75.47±0.22 47.52±1.77 90.85±0.41 87.96±0.34 78.46±0.62 27.66±2.97

s-v-slice 79.54±0.36 78.67±0.27 78.14±1.03 78.39±0.90 90.04±0.43 87.56±0.86 85.45±0.40 81.89±0.85

s-h-slice 79.72±0.23 79.19±0.45 78.79±0.49 78.36±0.79 89.30±0.42 86.49±1.05 85.39±0.43 83.39±0.47

s-kernel 79.18±0.56 76.79±1.32 75.64±1.47 75.05±1.64 86.34±0.47 84.76±1.43 75.33±6.07 25.60±2.26

filter 79.36±1.22 78.52±0.65 72.83±1.44 68.09±4.39 90.39±0.89 84.43±0.11 62.64±1.58 44.15±1.64

Table 4.2. Results of sparsifying ResNet-18 for all available granularities. Context, cri-
teria and schedule are respectively set to global, large final and one cycle.
Mean and standard deviation of accuracy over three rounds are reported.
The darker the shade of red, the further the accuracy is from the baseline.

As can be observed by comparing Table 4.1 and Table 4.2, global sparsifying seems to
achieve better results, especially for higher sparsity levels. This can be explained by
the fact that global methods are more flexible, as they allow the sparsifying process to
select weights from anywhere in the network, reducing the risk of removing too many
weights in the more important layers, which can hurt performance.

Contributions 82

4.2.3 Criteria

The criteria is a fundamental component of any sparsifying technique as it acts as a
proxy for weight importance. In practice, applying the desired criteria to each group
of weights returns a score, according to which the selection of remaining weights will
be based. The groups of weights having the lowest score will be zeroed out first in
the sparsifying process, while those having the largest will be retained. There currently
exist many sparsifying criteria, with 14 currently available by default in FasterAI. Most
of them have been described in Section 3.3.3 and are now expressed in a simplified way,
following PyTorch notation, in Pseudo-Code 4.4. To that end, we define wi and wf
respectively as the initial and final values of the weights, i.e. their values at initialization
and at the current training step. Additionally, FasterAI keeps track of the values of
the weights during training. This paves the way to creating criteria using first-order
information, thus considering the training dynamics.

random = torch.randn_like(wf)
large_final = torch.abs(wf)
squared_final = torch.square(wf)
small_final = torch.neg(torch.abs(wf))
large_init = torch.abs(wi)
small_init = torch.abs(torch.neg(wi))
large_init_large_final = torch.abs(torch.min(wf, wi))
small_init_small_final = torch.abs(torch.neg(torch.max(wf, wi)))
magnitude_increase = torch.sub(torch.abs(wf),torch.abs(wi))
movement = torch.abs(torch.sub(wf,wi))

Pseudo-Code 4.4. The list of all criteria available in FasterAI and their corresponding
PyTorch implementation.

Because of how the criteria are implemented in FasterAI, it is very convenient to create
custom criteria. Indeed, implementing new selection criteria boils down to writing a
single function, to be applied to each weight before the computing of the sparsification
mask. For example, we introduce a novel criteria named mov large final, similar
to the movement one, but emphasizing the final value of weights more. Similarly, we
introduce, mov mag, which considers weights whose absolute value has moved the most.
Those criteria are expressed in Pseudo-Code 4.5 and represented in Figure 4.1.

mov_large_final = torch.abs(torch.mul(x, torch.sub(x,y))))
mov_mag = torch.abs(torch.sub(torch.abs(x),torch.abs(y))))

Pseudo-Code 4.5. Custom criteria and their corresponding implementation in PyTorch.

83 4.2. Sparsify

(a) mov large final (b) mov mag

Figure 4.1. Result of the application of our proposed criteria on the weights. Parameters
that are greyed out are the parameters removed.

In Table 4.3, we report the comparison between all the available criteria. Experiments
are conducted in the same conditions as previous ones. The granularity is fixed to
weight, the context to local, and the schedule to one cycle. For readability con-
straints, the name of criteria in Table 4.3 have been abbreviated, e.g. large i,f
corresponds to the large i large f criteria.

Scratch Fine-Tune

30% 50% 70% 90% 30% 50% 70% 90%

Baseline 80.61 ± 0.42 90.03 ± 0.54

random 80.53±0.70 80.38±0.23 80.01±0.94 66.34±0.92 90.24±1.47 90.32±0.55 86.38±0.80 30.23±4.25

large f 80.03±1.07 80.93±0.97 80.82±0.48 77.99±0.72 91.41±0.43 91.17±0.32 91.41±1.08 88.09±0.45

small f 79.05±0.66 75.42±0.44 48.49±1.42 19.38±3.42 84.37±0.61 74.20±0.50 18.76±0.27 0.91±0.52

sq f 80.76±0.71 79.34±1.10 79.58±0.58 78.61±0.23 91.39±0.35 90.99±0.30 90.97±0.12 88.97±0.92

large i 80.42±0.85 79.67±0.44 79.61±0.73 75.62±0.25 91.56±0.52 92.58±0.49 92.34±1.13 90.30±0.49

small i 80.67±0.90 80.78±1.19 79.60±0.74 73.19±0.50 86.52±0.09 85.61±1.03 83.42±1.20 0.88±0.31

large i,f 80.03±0.43 80.07±0.54 79.18±0.57 72.37±0.78 92.21±0.43 92.43±0.89 91.74±0.12 88.00±0.67

small i,f 80.25±0.97 76.39±0.83 65.50±0.76 23.27±1.66 85.23±0.83 76.75±1.07 31.27±1.31 3.48±3.88

mag inc 80.40±0.44 80.27±0.34 79.72±0.16 79.19±1.99 90.83±0.92 90.06±0.52 88.88±0.38 83.13±0.61

mov 80.45±0.63 79.98±0.43 80.20±0.39 78.26±0.37 89.73±0.19 89.99±0.43 88.58±0.63 80.56±1.23

movmag 80.16±1.16 82.24±0.67 81.47±0.38 79.12±0.14 90.90±0.14 90.96±0.99 89.93±0.22 86.18±0.48

movmag 80.05±0.37 80.99±0.97 80.32±0.61 79.69±0.57 90.12±1.52 90.55±0.83 90.06±0.34 88.22±0.25

Table 4.3. Results of sparsifying ResNet-18 for all available criteria. Granularity, context
and schedule are respectively set to weight, local and one cycle. Mean and
standard deviation of accuracy over three rounds are reported. The darker
the shade of red, the further the accuracy is from the baseline.

Contributions 84

From those results, we can observe that the criteria has a minor e↵ect on the perfor-
mance for low sparsity levels. Indeed, the network still possesses enough capacity to
compensate for removed weights and achieve decent performance. When the sparsity
level increases, criteria based on lower weight values, e.g. small f and small i perform
poorly. This happens because weights having low values do not participate much in
final results, and thus are not holding much discriminative information about the data.

4.2.4 Schedule

The last argument required in the SparsifyCallback is the sparsification schedule.
It defines when the sparsification process will occur during the training phase. In
FasterAI, all schedules are implemented within a single class. To do so, each schedule
has to be defined according to three parameters:

• start pct: the percentage of training at which the sparsification process starts,
i.e. for how long the model will be pre-trained.

• end pct: the percentage of training at which the sparsification process stops, i.e.
for how long the model will be fine-tuned after being sparsified.

• schedule function: the function describing the evolution of the sparsity during
the training. There are four currently available by default: one shot, iterative,
gradual [59], and one cycle [69], expressed in the Pseudo-Code 4.6.

def one_shot(sparsity, train_step): return sparsity

def iterative(sparsity, train_step, n_steps=5):
return (sparsity/n_steps)*(np.ceil((train_step)*n_steps))

def gradual(sparsity, train_step): return sparsity * (1 - train_step)**3

def one_cycle(sparsity, train_step, ↵=14, �=6):
return (1+np.exp(-↵+�)) / (1 + (np.exp(-↵*train_step+�)))*sparsity

Pseudo-Code 4.6. Available schedules in FasterAI and their PyTorch implementation.

In Figure 4.2, we represent variations of the four available sparsifying schedules. As can
be observed, adjustments to start epoch and end epoch can be made to further help
the user customize the pruning schedule as desired. For example, in Figure 4.2a, the
One-Shot pruning schedule could also be used with a value of start pct=0, becoming
what is more well-known as Pruning at Initialization [70], achieving the target amount
of sparsity right from the start of training. For readability constraints, we abbreviate
the names of our schedules, e.g. one shot becomes os.

85 4.2. Sparsify

(a) os, start pct=0.25 (b) os, start pct=0.5 (c) os, start pct=0.75

(d) it, n steps=3 (e) it, n steps=5 (f) it, n steps=7

(g) grad,start pct=0.25 (h) grad, start pct=0.5 (i) grad,start pct=0.75

(j) ocp, ↵=20, �=4 (k) ocp, ↵=15, �=5 (l) ocp, ↵=10, �=6

Figure 4.2. Evolution of sparsity along training for the available pruning schedules.
While the sched func parameters defines the general evolution, the schedule
can further be customized by modifying the start pct and end pct values.

We report in Table 4.4 the results of applying the schedules represented in Figure 4.2.
Experiments have been conducted in the same training conditions as previous ones.
The granularity has been set to weight, context to local and criteria to large final.
For readability constraints, in Table 4.4, the name of the schedule directly refers to the
subfigure index in Figure 4.2.

Contributions 86

Scratch Fine-tune

30% 50% 70% 90% 30% 50% 70% 90%

Baseline 80.61 ± 0.42 90.03 ± 0.54

(a) 79.60±1.02 79.69±0.69 79.29±0.38 77.33±0.25 91.47±0.54 91.48±0.27 91.63±0.13 91.08±0.34

(b) 80.32±0.95 81.02±0.39 80.31±0.31 78.59±0.94 91.99±0.56 91.28±0.18 91.65±0.36 90.55±0.73

(c) 80.58±0.73 80.12±0.34 80.49±0.61 79.45±1.00 91.90±0.74 90.94±0.48 91.34±0.57 89.28±0.34

(d) 80.73±0.14 80.31±0.71 80.31±0.43 77.94±1.05 91.59±0.94 91.28±0.25 91.32±0.20 88.42±0.18

(e) 80.65±1.12 80.49±1.07 81.33±0.80 72.39±1.34 90.86±0.18 90.65±0.50 90.34±0.63 85.47±0.67

(f) 81.05±0.67 81.05±0.52 79.80±0.72 69.91±3.01 90.90±0.34 90.63±0.34 91.08±0.31 80.94±0.57

(g) 80.78±0.55 80.01±0.41 80.65±0.69 79.54±0.83 90.96±0.43 90.43±0.65 91.52±0.57 90.94±0.49

(h) 80.31±0.86 81.24±0.58 80.47±0.54 79.96±0.42 91.34±0.28 91.05±0.97 90.96±0.41 89.72±0.47

(i) 81.25±1.18 81.35±0.88 80.65±1.21 78.26±0.94 90.86±0.69 91.36±0.43 91.25±0.66 87.24±0.65

(j) 80.56±0.76 80.74±0.26 81.27±0.69 79.60±0.12 91.45±0.53 91.89±0.05 92.01±0.65 91.87±0.22

(k) 80.74±0.27 80.11±0.86 79.08±0.35 78.83±0.38 91.58±0.50 91.94±0.56 92.03±0.85 90.61±0.45

(l) 80.32±0.36 81.25±0.33 80.80±0.43 79.46±0.62 91.58±0.23 90.83±0.19 91.87±0.51 88.13±0.20

Table 4.4. Results of sparsifying ResNet-18 for all available criteria. Granularity, context
and criteria are respectively set to weight, local and large final. Mean and
standard deviation of accuracy over three rounds are reported. The darker
the shade of red, the further the accuracy is from the baseline.

As can be observed, schedules implying a weight removal later in training seem to
produce suboptimal results, especially in the fine-tuning regime. Indeed, removing pa-
rameters close to the end of training does not provide enough time for the network to
adjust its remaining weights to accommodate its weight loss. Also, schedules produc-
ing a gradual increase in sparsity, such as the Gradual and One-Cycle, seem to provide
better and more stable results.

By modifying the three schedule parameters, users can also create their own pruning
schedule or easily implement other existing ones, such as the Dense-Sparse-Dense (DSD)
schedule [71] for example, which increases the sparsity for the first half of training,
then gradually decay it until the network is 0% sparse again. The corresponding
schedule function, defining how the sparsity evolves with such a schedule, is pro-
vided in Pseudo-Code 4.7.

def dsd(sparsity, t_step):
if t_step<0.5: return (1 + math.cos(math.pi*(1-t_step*2))) * sparsity / 2
else: return (1 - math.cos(math.pi*(1-t_step*2))) * sparsity / 2

Pseudo-Code 4.7. Implementation of the Dense-Sparse-Dense technique in FasterAI.

87 4.2. Sparsify

By then modifying the values of start pct and end pct in the SparifyCallback,
we can further customize our pruning schedule, as displayed in Figure 4.3. Such
schedule function also shows that it is possible not only to use a schedule to per-
form sparsification, but also weight growing, i.e. start from a sparse network, and
gradually retrain previously zeroed-out connections.

(a) dsd, start pct=0, end pct=1 (b) dsd, start pct>0, end pct=1 (c) dsd, start pct=0,end pct<1

Figure 4.3. Variation of the dsd schedule. The use of start epoch and end epoch help to
further customize a given pruning schedule by a↵ecting the start and end of
the pruning process.

4.2.5 Lottery Ticket Hypothesis

In Section 3.3.4, we described the Lottery Ticket Hypothesis experiments, that are
used to discover the optimal subnetworks from initialization. Those experiments were
conducted by removing individual weights, globally, according to their l1-norm, and
by following an iterative schedule. FasterAI handles such LTH experiments by de-
fault but allows to expand them to any granularities, contexts, criteria and schedules,
opening the way to many novel experiments about finding winning tickets. To accom-
plish such procedure in FasterAI, some additional arguments can be provided to the
SparsifyCallback:

• lth: whether to perform LTH, i.e. reinitialize weights to their saved value after
each pruning round.

• rewind epoch: the epoch of training where weights values are saved for further
reinitialization.

• reset end: whether to reset the weights to their saved values after training.

Performing the classic Lottery Ticket Experiments [56,72] following the original prun-
ing settings in FasterAI can be achieved with Pseudo-Code 4.8.

Contributions 88

Classic LTH
SparsifyCallback(sp,�weights�,�global�, large_final, iterative, lth=True)

LTH with Rewinding
SparsifyCallback(sp, �weights�, �global�, large_final, iterative, lth=True,\
rewind_epoch=1)

Pseudo-Code 4.8. Changes to SparsifyCallback in order to perform Lottery Tickets
Experiments.

In Table 4.5, we report the results obtained when performing the classic LTH and
LTHR techniques using the same architecture and datasets as previous experiments.
Each LTH round is performed for 30 epochs and, when using rewinding, the weights
are rewound to their epoch 1 value. We can observe that, in our case, both techniques
provide similar results. Also, results show that it is possible to find high-performing
pruned networks, even for high sparsity levels.

LTH LTH with Rewind

30% 50% 70% 90% 30% 50% 70% 90%

80.05±0.72 81.86±0.40 84.59±0.09 84.79±0.37 80.65± 1.02 82.97± 1.15 83.92± 0.49 84.77±0.46

Table 4.5. Results of pruning ResNet-18 and VGG-16 with 4 di↵erent schedules. Mean
and standard deviation of accuracy over 3 rounds are reported.

4.2.6 Prune

As described previously, sparsification is usually introduced by applying a binary mask,
multiplying the value to keep by 1, and those to remove by 0. This leads to a sparse
network, di�cult to accelerate in practice. However, as described in Section 3.3.1, some
particular granularities allow the sparse weights to be physically removed from the net-
work, e↵ectively taking advantage of the compression to witness speed-up without any
dedicated resource. Two granularities allow performing such a feature: (1) filter and
(2) shared-kernel.

As it removes parameters that have no impact on the computation of the result, the
pruning is considered to be lossless, as it reduces the number of parameters and oper-
ation of the network, without altering its performance. To perform such an operation
in FasterAI, the code required is expressed in Pseudo-Code 4.9, with model being the
model, sparsified according to the filter granularity beforehand.

89 4.3. Distill

pruner = Pruner()
pruned_model = pruner.prune_model(model)

Pseudo-Code 4.9. Code required to prune a filter-sparse model with FasterAI.

4.3 Distill

FasterAI also brings Knowledge Distillation capabilities to users with the help of its
Distill module. This is managed by KnowledgeDistillationCallback, which of-
fers Knowledge Distillation capabilities in a single line of code. As Knowledge Dis-
tillation is managed by an independent callback, it can be used in conjunction with
SparsifyCallback, for even more flexibility to extreme compression or perform original
experiments. The FasterAI usage for the KnowledgeDistillationCallback is given be-
low in Pseudo-Code 4.10, where layers std and layers tch are optional lists of layers,
which will be used to compute the feature loss Lf if desired, and ↵, � the interpolation
parameters as defined in Equation 2.4.

kd_cb = KnowledgeDistillationCallback(tch, L_l, L_f, layers_std, layers_tch, ↵, �)

Pseudo-Code 4.10. Code required to perform Knowledge Distillation in FasterAI.

Knowledge Distillation losses can be modified or created according to the user’s needs.
There are currently three logit losses and four feature losses available by default in
FasterAI. We compare two of those losses in the same training conditions as previous
experiments. In this scenario, the teacher model is a ResNet-34 model trained for 30
epochs from pre-trained weights, and the student is a ResNet-18 model starting from
random initialization. In particular, we compare a logit loss to a feature loss, used in-
dividually for di↵erent interpolation levels: (1) SoftTarget, the loss computed between
the logits of the teacher and the student and (2) Attention, a loss computed from
features extracted after each residual block of the teacher and the student. We report
the results in Table 4.6. It can be observed that basing the Knowledge Distillation
process on logits provides better results than Attention. While SoftTarget compares
the respective predictions of the teacher and the student, Attention holds a stronger
hypothesis, that the layers used to compare are extracting the same information, which
can make it harder to set up correctly.

Contributions 90

SoftTarget Attention

0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9

83.32±0.14 84.65±0.31 84.74±0.49 84.34±0.17 81.56±0.25 81.55±0.41 81.64±0.27 81.73±0.67

Table 4.6. Results of applying Knowledge Distillaion from a ResNet34 to a ResNet18
architecture for di↵erent interpolation values of �. Mean and standard devi-
ation of accuracy over 3 rounds are reported.

4.4 Regularize

The regularize module of FasterAI concerns regularization techniques reducing the
magnitude of weights in the network, as described in Section 2.2.2. Moreover, it allows
to do so according to a chosen granularity. Such regularization can be applied to
groups of weights, according to a chosen granularity. However, as it is dependent
on the optimization process, the sparsity level cannot be defined beforehand. It is
nonetheless possible to control the importance of the penalty, to impose more or less
sparsity in the final network, thanks to a penalty factor ↵. The final loss thus receives
an extra term, adding the absolute value of weights for each layer l, according to the
chosen granularity, as:

L = Lc + ↵
X

l

R(Wl) (4.1)

With Lc the classification loss, generally a cross-entropy computed between predictions
and labels, and R(Wl) =

1
G

P
g

P
i
|wg,i| the regularization term, G being the number

of elements in each group.

Such regularization can be applied in FasterAI by using the RegularizationCallback,
is presented in Pseudo-Code 4.11.

reg_cb = RegularizationCallback(granularity, ↵)

Pseudo-Code 4.11. Code required to perform Group Regularization in FasterAI.

We provide results of experiments conducted for di↵erent values of penalty ↵ in Table
4.7, and for all of available granularities. Those experiments are using same the dataset
and architecture as previous ones.

91 4.5. Misc

1e-7 1e-5 1e-3 1e-1

Baseline 80.61 ± 0.42

weight 80.91±0.44 79.45±0.88 54.50±0.94 23.91±0.54

column 80.45±0.29 81.02±1.32 65.68±1.32 25.91±0.41

row 80.62±1.31 79.39±0.58 65.35±0.49 25.67±0.92

s-weight 80.11±0.30 80.49±0.65 80.67±0.42 66.05±0.59

channel 80.40±0.49 81.56±0.31 80.67±0.11 63.02±1.14

kernel 80.34±0.14 81.29±0.16 73.16±0.14 27.81±0.84

s-channel 80.35±0.63 79.94±0.59 80.31±0.90 81.00±1.22

s-column 80.09±1.14 80.80±0.31 81.46±0.23 72.96±0.49

s-row 80.71±0.91 81.47±0.30 80.29±0.83 74.25±0.21

v slice 80.46±0.92 80.45±0.52 80.43±0.35 72.96±0.84

h slice 80.73±0.40 80.85±0.85 80.98±0.76 71.85±0.63

s-v-slice 81.02±0.74 81.31±0.39 80.58±0.74 80.56±1.52

s-h-slice 80.40±0.14 80.98±0.89 80.12±1.07 81.33±1.92

s-kernel 81.42±0.59 80.93±0.57 81.66±0.41 77.70±0.84

filter 81.13±0.43 81.15±1.31 80.56±0.47 76.48±1.01

Table 4.7. Results of regularizing ResNet-18 with four di↵erent penalty strengths. Mean
and standard deviation of accuracy over three rounds are reported. The
darker the shade of red, the further the accuracy is from the baseline.

As can be observed, a higher value of ↵ leads to a degradation in accuracy, as too much
penalty is added to the loss value, making the optimization process put more emphasis
on having small magnitude weights instead of an accurate network. Moreover, we
can see that, as opposed to sparsifying, regularization performs better for more coarse
granularities. This can be explained by the fact that the penalty value is dependent on
the granularity structure, as the l1-norm is averaged over the size of each block. This
means that smaller structures will be penalized more, with the regularization term
driving the loss value, thus giving more importance to the l1-norm of weights than to
the correct classification of data.

4.5 Misc

The last module of FasterAI is composed of compression techniques that do not fall
into previous categories, but might potentially deserve their own category in the future.
Such techniques for example include:

• Batch Normalization Folding

• Fully-Connected layer decomposition

Contributions 92

4.5.1 Batch Normalization Folding

It is possible to perform Batch Normalization Folding in FasterAI, i.e. remove the
batch normalization layers from the trained network. This consists in replacing the
values of convolutions preceding the batch normalization layer using Equation 2.20.
Once the weights and bias of the computation layer have been modified, the batch
normalization layer can be considered useless and removed, slightly reducing the net-
work’s total amount of parameters and computation. This operation can be achieved
in FasterAI by following the Pseudo-Code 4.12.

bn = BN_Folder()
bn.fold(model)

Pseudo-Code 4.12. Code required to perform Batch Normalization Folding in FasterAI.

Batch Norm Folding is thus another lossless compression technique as it does not a↵ect
the performance of the neural network but helps to reduce the number of parameters
and computation of the model. The results of applying batch normalization folding
to a trained ResNet-18 are reported in Table 4.8. As can be observed, the accuracy
remains the same while the parameter count slightly decreases.

Trained Model BN Folded Model

Accuracy (%) 80.61±0.42 80.61±0.42

Parameters 11228838 11224038

Table 4.8. Results of performing batch normalization folding on ResNet-18. Mean and
standard deviation of accuracy over three rounds are reported.

4.5.2 Fully-Connected Layers Decomposition

Fully-Connected Layers Decomposition, as described in Section 2.5.1, can also be per-
formed in FasterAI to further reduce the number of parameters contained in Fully-
Connected Layers. In FasterAI, this corresponds to performing a truncated-SVD,
which can be achieved in FasterAI by applying the Pseudo-Code 4.13.

The pct removed term corresponds to the percentage of singular values kept from the
matrix of singular values ⌃. The results of applying Fully-Connected Layers Decom-

93 4.6. In Brief

fc = FC_Decomposer()
fc.decompose(model, pct_removed)

Pseudo-Code 4.13. Code required to perform Knowledge Distillation in FasterAI.

position on a trained ResNet-18 are reported in Table 4.9. As can be observed, a high
compression rate can be achieved before a↵ecting the performance negatively.

Trained Model pct removed 25% pct removed 50% pct removed 75%

Accuracy (%) 80.61±0.42 80.84±0.17 80.67±0.61 77.24±0.74

FC Parameters 52326 46766 31416 15452

Table 4.9. Results of decomposing the FCLs of ResNet-18 with 3 di↵erent compression
levels. Mean and standard deviation of accuracy over 3 rounds are reported.
The darker the shade of red, the further the accuracy is from the baseline.

4.6 In Brief

Summary 4

• FasterAI is a PyTorch-based library, that leverages the callback system of
fastai and PyTorch Lightning to provide extensive and readily-available
compression techniques.

• FasterAI is built on four modules, each dedicated to a research field of
neural network compression: (1) sparsify, concerned with techniques in-
troducing sparsity in the weights; (2) distill, concerned with techniques
related to Knowledge Distillation; (3) regularize, concerned with tech-
niques reducing the value of weights during training; (4) misc, related to
other compression techniques.

• The core of FasterAI lies in the SparsifyCallback class, allowing to com-
pose any pruning technique by customizing its parameters: granularity,
context, criteria and schedule.

• Experiments conducted for each module demonstrate the flexibility of
FasterAI and the ability to combine and customize di↵erent compres-
sion techniques.

CHAPTER 5

Advances in Neural Network Pruning

Contents

5.1 Introduction . 96

5.2 How to prune? . 96

5.2.1 Methodology . 97

5.2.2 Experiments . 100

5.2.3 Discussion & Conclusion 105

5.3 Where to prune? . 106

5.3.1 Methodology . 108

5.3.2 Experiments . 110

5.3.3 Discussion & Conclusion 116

5.4 What to prune? . 116

5.4.1 Methodology . 117

5.4.2 Experiments . 120

5.4.3 Discussion & Conclusion 124

5.5 When to prune? . 124

5.5.1 Methodology . 125

5.5.2 Experiments . 126

5.5.3 Discussion & Conclusion 131

5.6 In Brief . 132

“Less is more.”
— Mies Van Der Rohe

— 95 —

Advances in Neural Network Pruning 96

5.1 Introduction

This chapter presents contributions in the field of neural network pruning that have
been proposed throughout the realization of the thesis. As presented in Section 3, we
identify four open research axis regarding neural network pruning, which we formalize
into four questions:

• How to prune?

• Where to prune?

• What to prune?

• When to prune?

The present chapter is therefore subdivided into four sections, each one aiming to
provide elements of answer to each one of those questions.

5.2 How to prune?

When it comes to pruning granularities, the most commonly used ones are those lying
at both ends of the spectrum presented in Section 3.3.1, i.e. weight pruning and filter
pruning. Weight pruning is very popular because it allows to operate on the smallest
structures available in a network, thus being very precise in the removal of the weights.
As a result, weight pruning allows to reach high sparsity level without degrading a
model’s performance. However, because of how scattered the weight removal is, it is
challenging to take advantage of such sparsity for actual speed-up and compression. On
the other hand, filter pruning allows to operate at one of the most coarse structures in
the network. Consequently, keeping the performance intact requires imposing a limited
level of sparsity. Although it does not allow to reach comparable levels of sparsity to
weight pruning, removing entire filters allows for a more significant and straightforward
speed-up because it intrinsically changes the neural network architecture to a smaller
one.

As presented in Section 3.3.1, we propose another granularity able to provide practical
speed-up. We call it shared-kernel as it removes kernels in a position that is shared
with every filter in the same layer. As a result, the architecture can also be changed to
a smaller one, hence providing speed-up.

In this contribution, we thus would like to compare the performances of filter pruning
to those of shared-kernel. In particular, we highlight a distinct di↵erence in how both
granularities impact input images and describe our results in the following section.

97 5.2. How to prune?

5.2.1 Methodology

To better grasp the implications of filter and shared-kernel granularities, we first intro-
duce the general concept with Multi-Layer Perceptrons.

Pruning of Multi-Layer Perceptrons

In Multi-Layer Perceptrons, parameter pruning can be performed in two ways: (1) in an
unstructured manner, removing individual connections in the network; (2) structured,
removing complete neurons and all the related connections. If we represent the weights
of each layer as 2D matrices of shape M ⇥ N , with M and N being respectively the
dimension of output and input of a layer, then unstructured pruning removes individual
values in the matrix, while structured pruning removes a complete weight row. Those
two methods are represented in Figure 5.1.

(a) Unstructured Pruning (b) Structured Pruning

Figure 5.1. Di↵erent types of sparsity in a fully-connected weight matrices. Zeroed
weights are in color.

We express in Pseudo-Code 5.1 the di↵erent methods of weight selection, following
NumPy standards.

Weight (0D) = Weights[m,n]
Row (1D) = Weights[m,:]

Pseudo-Code 5.1. Granularity selection for a Fully-Connected Layer.

As depicted in Figure 5.2, when zeroing a complete row in the weight matrix of layer i,
this has for e↵ect to also zero out the corresponding output result in the hidden layer.
As the next layer now has an input of smaller dimension, the following weight matrix
of layer i+ 1 must be adapted accordingly, i.e. corresponding columns are zeroed out.

Advances in Neural Network Pruning 98

Input Weights i Hidden i Weights i + 1 Output i + 1

Figure 5.2. Pruning rows in layer i impacts its output and consequently the columns of
layer i+ 1. Zeroed weights are in color.

The selection of which neuron to remove is usually performed by applying a pruning
criteria to its input weights. However, instead of selecting neurons to remove based on
their input weights, we can base the selection on their output weights. To do so, we
remove a column in the weight matrix, which has the e↵ect of removing the neuron from
the previous layer instead of the current one. By referring to Figure 5.2, this would
be equivalent to basing the removal selection on columns in the weight matrix of layer
i + 1, leading to the removal of rows in the weight matrix of layer i. Column pruning
thus acts as the inverse operation of row pruning and leads to di↵erent neurons being
dropped. Moreover, because pruning is usually applied to each layer of the network,
both methods have a significant di↵erence in their impact on the first and last layers of
the network. Indeed, row pruning leads to the removal of neurons from the last layer,
while column pruning leads to the removal of neurons from the input layer.

The column pruning is particularly interesting because it acts as a feature selection
method that discards input data. Indeed, each neuron of the input layer corresponds
to an input data feature, e.g. a pixel from an image. For this reason, removing a single
column from the first layer’s weight matrix removes the corresponding data feature
from all input data. We can thus decide on the amount of input information to keep
by selecting the sparsity level in the first weight matrix.

99 5.2. How to prune?

Pruning of Convolutional Neural Networks

As described in Section 3.3.1, removing filters in a Convolutional Neural Network im-
pacts the feature map and further requires removing every kernel that correspond to
it. This is thus the equivalent of row pruning for MLP. The opposite operation, which
would be the equivalent column pruning of MLP, is to base the pruning process on
removing the same kernel in each filter of a layer, which in turn allows the removal of
the previous filter corresponding to that kernel. As it requires removing a kernel from
a position shared from all filters in the layer, we name this granularity shared-kernel.
Both techniques are represented in Figure 5.3.

(a) Filter Pruning (b) Shared-Kernel Pruning

Figure 5.3. Di↵erent types of structured granularities for CNNs. Those granularities
allow to remove parts of the network, leading to a smaller architecture.

Those two granularities have an equivalent impact on the architecture for all interme-
diate layers. However, those two approaches have a key di↵erence at the very first and
very last convolutional layers. Indeed, for the very first layer, the previous inputs are
the model inputs. Removing a shared-kernel from the first convolution layer is thus
equivalent to removing a channel to all input images. This last side-e↵ect is the one
we want to take advantage of. Shared-kernel pruning not only allows a change in ar-
chitecture, e↵ectively inducing compression and speed-up, but also acts as a feature
selection, reducing the input dimension by removing input channels. The selection of
filters and shared-kernels following the NumPy standard is provided in Pseudo-Code 5.2.

Weights = Array(O, I, Kh, Kw)

Shared-Kernel (3-Dim) = Weights[:,i,:,:]
Filter(3-Dim) = Weights[o, :, :, :]

Pseudo-Code 5.2. Filter and Shared-Kernel Selection.

Advances in Neural Network Pruning 100

5.2.2 Experiments

Experiments are conducted on two types of architectures: Multi-Layer Perceptrons and
Convolutional Neural Networks. In particular, we want to compare the performance of
the di↵erent structured granularities, but also investigate how it a↵ects input data.

Multi-Layer Perceptrons

In our first experiment, we compare the e↵ects of row or column pruning on the per-
formance of an MLP and how pruning induces a feature selection of input data.

Pruning Method. The di↵erent parameters used for performing pruning are sum-
marized in Table 5.1, expressed using FasterAI terminology. In our experiments, we
compare the row and column granularities. The weight importance is evaluated locally,
using the large final criteria, selecting weights having the largest l1-norm. More-
over, the schedule followed for pruning is the One-Cycle Pruning, gradually adjusting
the sparsity level during the training [69]. Because the network only contains fully-
connected layers, we apply pruning only on the two first layers, avoiding issues occur-
ring when row pruning in the last layer, significantly degrading performance.

Granularity Criteria Context Schedule

row vs column large final local one cycle

Table 5.1. Pruning parameters used in FasterAI.

Datasets and Architecture. For our experiments, the datasets are chosen to be var-
ious in terms of image resolution and number of classes. In particular, we have selected
three datasets: MNIST [73], CIFAR-10 [74], CIFAR-100 [74]. Those datasets are used
to train a 3-Layer MLP, with ReLU non-linearities between each computation layer.

Training Procedure. Our network is trained from randomly initialized weights. For
datasets involving color images, we first convert them to grayscale, following a weighted
average of color channels [75], to keep the same architecture for all MLP experiments.
Models are trained for 20 epochs, using a learning rate warm-up method [76] until a
nominal value of 1e� 3, then gradually decay until the end of the training.

In Table 5.2, we report the results for the two studied granularities, pruned to 25%,
50% and 75% of sparsity.

101 5.2. How to prune?

Row Columns

MNIST

S
p
ar
si
ty 25% 97.79 ± 0.12 97.71 ± 0.16

50% 97.75 ± 0.10 97.90 ± 0.13

75% 96.81 ± 0.20 97.30 ± 0.16

CIFAR-10

S
p
ar
si
ty 25% 40.93 ± 0.39 41.73 ± 0.21

50% 39.72 ± 0.37 42.05 ± 0.80

75% 38.11 ± 0.27 42.63 ± 0.33

CIFAR-100

S
p
ar
si
ty 25% 13.71 ± 0.33 14.11 ± 0.19

50% 12.90 ± 0.22 14.09 ± 0.15

75% 11.62 ± 0.14 15.01 ± 0.34

Table 5.2. Accuracies of MLP model for three di↵erent datasets and for three levels of
sparsity. Reported values are mean and standard deviation over 5 iterations

Although not reaching decent performance on all datasets due to the lack of capacity
of the network, columns pruning overperforms row pruning in most cases. Also, we
can analyze which input features were removed when column pruning, by matching the
removed weights to the corresponding input features, as depicted in Figure 5.4.

MNIST

CIFAR10

CIFAR100

50% 75%25%

Figure 5.4. Pixels removed after column pruning. Colored pixels can be removed from
all input images, e↵ectively reducing the storage need of the dataset.

Advances in Neural Network Pruning 102

We can observe a general trend of preserving central pixels, corresponding to the region
where most of the important information is contained [77].

Being able to retrieve the information about which pixels are the most useful in a
dataset for training has important implications. Indeed, the results presented in Table
5.2 show that training a model with only 25% of input pixels does not negatively a↵ect
the network’s performance, and sometimes even seems to help it reach better accuracy.
This implies that, instead of storing the images in full resolution, only a part of the
image can be stored and used for training. This allows for a greater reduction of the
storage cost of the dataset, as well as a reduction of the computation cost of the model.

Convolutional Neural Networks

In the second experiment, we evaluate the e↵ects of filter or shared-kernel pruning on
the network’s performance and how it a↵ects incoming data.

Pruning Method. The di↵erent parameters used for performing pruning are sum-
marized in Table 5.3, where they are expressed using FasterAI terminology. In our
experiments, we compare the filter granularity to the shared-kernel granularity. The
comparison is performed according to the global context, to better highlight how those
granularities di↵er in the selection of parameters to remove along the network. The
criteria according to which weight importance is evaluated is large final, meaning
that the group of weights having the lowest l1-norms are considered less useful and
removed. Moreover, the schedule followed for pruning is the One-Cycle Pruning.

Granularity Criteria Context Schedule

filter vs shared kernel large final global one cycle

Table 5.3. Pruning parameters used in FasterAI.

Datasets and Architectures. We evaluate our method on the ResNet-18 [67] ar-
chitecture, trained on three datasets having a good variability of number of classes,
image resolution and content. As targeted datasets, we have selected CIFAR-10 [74],
CIFAR-100 [74],and the CALTECH-101 corpus [68].

Training Procedure. When experimenting with CNNs, we consider di↵erent ini-
tialization schemes. Indeed, networks are either trained from scratch, i.e. random
initialization, or fine-tuned from pre-trained weights. The images are first resized to

103 5.2. How to prune?

224⇥ 224 and are augmented by using horizontal flips, rotations, warping and random
cropping. CNNs are trained for 50 epochs, with a learning rate warm-up method [76]
until a nominal value of 1e� 3, then gradually decay until the end of the training.

The results of our experiment, performed for four levels of sparsity: 30%, 50%, 70%
and 90% are reported in Table 5.4. As can be observed, the shared-kernel pruning
overperforms filter pruning for most datasets and sparsity levels. More particularly,
the di↵erence is more noticeable for high sparsity levels, where pruning based on filter
granularity often drops dramatically.

Scratch Fine-tune

Filter Shared-Kernel Filter Shared-Kernel

CIFAR-10

S
p
ar
si
ty

30% 94.69 ± 0.08 94.56 ± 0.04 95.52 ± 0.07 95.76 ± 0.37

50% 92.60 ± 0.17 92.70 ± 0.74 94.22 ± 0.19 94.64 ± 0.13

70% 91.11 ± 0.17 91.13 ± 0.25 91.41 ± 0.24 91.61 ± 0.35

90% 50.47 ± 4.24 79.70 ± 0.86 80.55 ± 1.71 82.86 ± 0.18

CIFAR-100

S
p
ar
si
ty

30% 76.34 ± 0.19 76.00 ± 0.25 74.54 ± 0.19 74.06 ± 0.33

50% 74.51 ± 0.34 74.57 ± 0.11 68.87 ± 0.36 69.89 ± 0.25

70% 70.06 ± 0.83 70.06 ± 0.80 61.96 ± 1.34 66.55 ± 0.18

90% 21.55 ± 3.54 47.36 ± 2.66 34.18 ± 2.63 49.66 ± 3.80

CALTECH-101

S
p
ar
si
ty

30% 82.24 ± 0.72 82.36 ± 0.46 90.86 ± 0.61 90.99 ± 0.27

50% 80.94 ± 0.64 81.31 ± 1.23 87.33 ± 0.27 89.68 ± 0.74

70% 70.50 ± 0.63 75.93 ± 0.49 85.69 ± 0.54 87.20 ± 0.55

90% 34.99 ± 1.86 61.58 ± 1.72 60.27 ± 1.81 70.97 ± 1.54

Table 5.4. Comparison of accuracies of ResNet-18 trained on three di↵erent datasets and
for four levels of sparsity. Reported values are mean and standard deviation
for three iterations.

When performing the shared-kernel pruning, the input layer is a↵ected by the removal
of parameters. As a result, some channels from the input RGB images can be dropped.
Because only channels are a↵ected, there are fewer options that might occur, i.e. there
can be 0, 1 or 2 channels that are removed. This number depends on the number of
shared-kernels that are removed from the first convolutional layer when performing the

Advances in Neural Network Pruning 104

pruning operation. In Figure 5.5, we report the di↵erent scenarios and the remaining
channels corresponding. We observe that the first channel to be removed is consistently
the blue one, the next being the red one. This seems to suggest that the green channel
holds the most information in an image, which correlates with how the human visual
system works, i.e. more weight is given to green colors, then red and finally blue when
mixing colors for grayscale conversion [75].

B
G

CIFAR10

CIFAR100

CALTECH101

0 removed

R

1 removed 2 removed

Figure 5.5. Remaining channels after performing shared-kernel pruning. The blue chan-
nel is the first to be removed, and the red one is the second. Removed
channels are greyed out.

As observed for MLPs, results presented in Figure 5.5 suggest that the entire image
is not necessary when performing the training of a neural network. Indeed, additional
data storage gains can be obtained by only storing the relevant channels for our sparsity
level, thus reducing storage costs by 1/3 or 2/3, depending if we keep 1 or 2 channels.
This also suggests that using other color spaces such as YUV that hold a lot of infor-
mation in the luminance channel might be considered.

We also report the impact of both granularities on the remaining amount of parameters
and Floating Point Operations (FLOPs) in Table 5.5. As can be observed, the shared-
kernel granularity usually leads to models that contain a smaller amount of parameters.
On the other hand, the impact on the number of FLOPs seems to be more dataset and

105 5.2. How to prune?

sparsity-level dependent, with shared-kernel performing better on CALTECH-101 and
for high levels of sparsity. These di↵erences mainly come from the global pruning
setting, which removes weights at di↵erent parts of the network, thus impacting more
the parameter count if a filter is removed in late layers as they contain more channels,
and impacting more the number of operations when a filter is removed in early layers,
as they operate on larger resolution images.

Scratch Fine-tune

Filter Shared-Kernel Filter Shared-Kernel

CIFAR-10

S
p
ar
si
ty

30% 4.57/1.47 3.54/1.44 8.42/0.98 3.76/1.05

50% 2.53/0.98 2.64/1.16 4.27/0.53 2.54/0.83

70% 0.97/0.44 0.59/0.44 1.88/0.25 0.72/0.43

90% 0.02/0.02 0.02/0.02 0.10/0.10 0.14/0.11

CIFAR-100

S
p
ar
si
ty

30% 5.00/1.36 3.43/1.27 9.46/0.73 7.90/0.81

50% 2.50/0.83 2.33/0.97 6.47/0.42 2.24/0.49

70% 0.98/0.30 0.42/0.35 4.47/0.32 0.63/0.30

90% 0.01/0.02 0.01/0.02 0.54/0.12 0.01/0.02

CALTECH-101

S
p
ar
si
ty

30% 4.14/1.47 3.53/1.41 5.56/1.39 3.10/1.22

50% 2.23/1.30 1.77/1.10 2.49/1.14 1.36/0.94

70% 0.41/0.76 0.43/0.56 0.74/0.72 0.57/0.64

90% 0.02/0.12 0.01/0.03 0.13/0.35 0.05/0.17

Table 5.5. Comparison of remaining #Params(1e6)/FLOPs(1e9) for ResNet-18 trained
on di↵erent datasets for four sparsity levels.

5.2.3 Discussion & Conclusion

For this first research axis, we provide an element of answer to the question of “How
to prune?”, we propose another granularity according to which Convolutional Neural
Networks can be pruned. This granularity, which we call shared-kernel, removes com-
mon kernels in all of the filters in a layer. This granularity benefits from the same
property as removing filters as it allows to physically remove sparse structures from the
network, and to re-arrange the architecture to have a smaller and dense one, allowing

Advances in Neural Network Pruning 106

for practical speed-up without the need for dedicated systems.

The experiments conducted on three datasets: CIFAR-10, CIFAR-100 and CALTECH-
101, demonstrate that shared-kernel pruning is an alternative to the popular filter prun-
ing as it allows to provide better accuracy, especially for high levels of sparsity, but also
a more significant reduction in parameters and, in some cases, operations.

Moreover, because it removes incoming data, shared-kernel pruning allows acquiring
information about the data itself. Indeed, as it was also demonstrated for its MLP-
equivalent, such granularity allows to remove part of the data that are considered less
valuable. As a result, this pruning technique not only allows to reduce the storage and
compute costs for the neural network, but also for the dataset in itself.

Such a pruning approach could further be extended to other and types of architectures
such as Transformers or Recurrent Neural Network (RNN) architectures, providing
other types of insights about the input data.

5.3 Where to prune?

As described in Section 3.3.2, there exist two primary contexts of selection for param-
eter pruning: local and global. While local pruning leads to layers of equal sparsity,
performing global pruning yields a network of layers with di↵erent sparsity levels. How-
ever, when performing global pruning, the assumption that we can directly compare
weights from early layers to those of the last layers is missing a key factor: networks
are built in a hierarchical manner, and layers are not extracting the same kind of in-
formation depending on their depth in the network. Indeed, weights of early layers are
only able to extract low-level features, likely to be common to most image classification
tasks. On the other hand, weights belonging to deeper layers are focusing on higher-
level features, which are more dependent on the classification task that is performed,
and thus less likely to be transferable to another classification task.

Also, when initializing the weights in a neural network, two choices are usually avail-
able: (1) random initialization, which ensures that the network has no prior knowledge
of a task. In this case, when the network is trained on a new task, it is said to be
trained from-scratch; (2) pre-trained initialization, which is obtained after training
the network on a generic database that usually contains a large number of data points
and classes, such as ImageNet [78]. The goal is to have a network that already performs
on a broad set of task before training it on a target one. In this case, when the network
is trained, it is said to be fine-tuned.

107 5.3. Where to prune?

When comparing the evolution of the weight values in the model when using both
of those training methods, we are confronted with a striking di↵erence. Indeed, in
the fine-tuning regime, the weight values after training are almost entirely determined
by their initialization values. While also present in the from-scratch training regime,
this phenomenon is more moderate. The evolution of weight values for both training
regimes is represented in Figure 5.6.

Pretrained Weights

Fi
ne

-tu
ne

d
W

eig
ht

s

(a) Plot of the weight distribution after train-
ing, i.e. fine-tuning, against their distribu-
tion at initialization, i.e. pre-trained values.

Initialized Weights

Tr
ain

ed
 W

eig
ht

s

(b) Plot of the weight distribution after training
against their distribution at initialization,
i.e. randomly initialized.

Figure 5.6. Di↵erence of weight distributions when the network is fine-tuned compared
to when it is trained from-scratch for the first convolutional layer of ResNet-
18 trained on CIFAR-10.

Usually, the pre-training task involves many classes, e.g. 1000 in the case of ImageNet,
and the fine-tuning tasks that we are interested in often involve fewer. Furthermore,
because weight values are kept close during training, there are potentially many pa-
rameters that will no longer be relevant to the fine-tuning task. This means that, when
performing pruning in such a network, more parameters should be removed in deeper
layers of the network rather than in early ones.

In this contribution, our goal is to investigate how this initialization di↵erence impacts
the pruning of a neural network and, more particularly, how it a↵ects the locality of
where the pruning happens in the network. To do so, we adopt an empirical approach,
studying the sensitivity to pruning of each layer, and performing pruning accordingly.
It allows to understand more about which layer contains more important parameters,
and to provide an alternative to the local and global pruning methods.

Advances in Neural Network Pruning 108

5.3.1 Methodology

To better apprehend how important the parameters of a network depend on the layer
they belong to, we propose to perform a sensitivity analysis of the network. This
provides a heuristic to discover which parameters are the least useful in the network.
It consists of a 4-steps process:

1. Select a layer l from a model.

2. Sort the parameters in layer l according to their l1-norm.

3. Remove portions of parameters having the lowest l1-norm, reporting the accuracy
of the remaining model each time.

4. Restore the initial model and perform the previous operations for each layer.

This can be done with FasterAI by iterating over each layer, removing a fraction of
filters and reporting the accuracy, as represented in Pseudo-Code 5.3.

sparsifier = Sparsifier(model, granularity, context, criteria)

for l in model.layers():
for sp in sparsities:

pruned_model = sparsifier.prune_layer(l, sp)
_, acc = pruned_model.validate()

Pseudo-Code 5.3. Performing sensitivity analysis with FasterAI.

After performing the sensitivity analysis, we can plot the evolution of accuracy when
parameters are removed from each layer. Layers whose accuracy remains stable for
higher sparsity levels are said to be more robust, or least sensitive, to pruning. Those
are the layers that will be first targeted when performing pruning. As an example,
Figure 5.7 provides an example of a sensitivity analysis performed on VGG-16 trained
on MNIST. In Figure 5.7a are represented the sorted l1-norms of filters in each layer of
the network. The Figure 5.7b demonstrates the evolution of accuracy when performing
the sensitivity analysis. In that case, the layer that is the least sensitive to pruning is
Layer11. As can be observed, the l1-norms of filters are closely related to their sensitiv-
ity. Indeed, layers that are the least sensitive to pruning are the ones whose majority of
filters have a low l1-norm, while layers with more high-normed filters are more sensitive
to pruning. The sensitivity analysis can thus be performed in an equivalent manner by
studying the l1-norm of filters contained in a layer [50].

109 5.3. Where to prune?

N
or

m
al

ize
d

-n
or

m
l 1

Filter index / # channels

(a) Filters ranked by ascending l1-norm for a
VGG16 network trained on MNIST.

% Pruned

Ac
cu

ra
cy

(b) Sensitivity of each convolutional layer

pruned individually.

Figure 5.7. Visualization of the sensitivity to pruning of a VGG-16 trained on MNIST.
Layers with most low-norm filters are those that are less sensitive to pruning.

Performing filter pruning following an iterative schedule usually consists of a three-step
method: (1) train the network to convergence, (2) prune a portion of the convolution
filters, according to a chosen criterion and, (3) fine-tune the model to recover from
the lost performance. Steps (2) and (3) are then repeated, alternating pruning and
fine-tuning until the desired sparsity is reached. We propose to add the sensitivity
analysis prior to the pruning step, to provide information about the layers from which
parameters should be removed. The whole proposed process is represented in Figure 5.8.

Training PruningSensitivity
Analysis Fine-Tuning

(1) (2) (3)

Figure 5.8. The proposed pruning pipeline. We introduce a fourth step in the common
iterative pruning process, aiming to evaluate the sensivity of each layer to
pruning. By then performing pruning in the least sensitive layer, we en-
sure to reduce the number of parameter contained in the network without
a↵ecting the performance too much.

Advances in Neural Network Pruning 110

5.3.2 Experiments

In this section, we evaluate the e↵ects of selecting the layers to prune based on their
sensitivity as presented in section 5.3.1 .

Pruning Method. The di↵erent parameters used for performing pruning are summa-
rized in Table 5.6, where they are expressed using FasterAI terminology. Basically, we
operate at the granularity of entire convolution filters, whose importance is evaluated
using their l1-norm. The context of pruning is neither local or global, but rather iden-
tified empirically by first performing the sensitivity analysis and removing filters from
the least sensitive layer. The pruning is performed iteratively, layer by layer and by
alternating phases of pruning and fine-tuning. During each pruning phase, we remove
a subset of filters from the current layer. As a result, the sparsity level is not imposed
beforehand, but discovered in the process.

Granularity Criteria Context Schedule

filter large final - iterative

Table 5.6. Pruning parameters used in FasterAI.

Datasets. We have carried out our experiments on four di↵erent datasets, chosen to
be various in resolution and content. In particular, we use CIFAR-10 [74], CIFAR-
100 [74], SVHN [79], and CALTECH-101 corpus [68].

Network architectures. In order to validate our results, we have adopted two well-
known network architectures. The first one is VGG-16 [31]. Here, we have replaced
the original fully-connected layers with a Global Average Pooling layer and two narrow
fully-connected layers. In this way, most parameters are contained in the convolutional
layers. The network thus consists of 13 convolutional layers and two fully-connected lay-
ers. The second network retained is MobileNetV1 [30], specifically designed to achieve
e�ciency both in parameter number and in computation complexity. MobileNet uses
a factorized form of convolutions called Depthwise Separable Convolutions. The Mo-
bileNet architecture used in our experiments thus consists of one standard convolution
layer acting on the input image, 13 depthwise separable convolutions, and finally a
global average pooling and two fully connected layers.

Training Procedure. Two types of initialization are evaluated: (1) Networks ini-
tialized from pre-trained weights and fine-tuned on the selected datasets, which we
refer to as Fine-Tuned or FT networks in the experiments; (2) Networks randomly

111 5.3. Where to prune?

initialized and directly trained on the datasets, that we refer to as From-Scratch or FS
networks in the experiments. Images of our dataset are first resized to 224 ⇥ 224 and
augmented using horizontal flips, rotations, image warping and cropping. Our models
are first trained until convergence, with an initial learning rate of 1e � 3 and a step
decay scheduling, gradually reducing the learning rate every 40 epochs. They are then
tested on the validation set to get the baseline accuracy. After each pruning phase,
a retraining is performed for 5 epochs, with the lowest learning rate reached during
baseline training. We also monitor the accuracy on the validation set, and proceed to
another pruning phase if it has not dropped by more than 1% from the baseline accuracy.

VGG16. The experiment is first conducted on the VGG-16 network. As shown in
Figure 5.9a, the result of the sensitivity analysis before starting the pruning process
indicates that most of the least important filters are contained in the later layers, sug-
gesting that those layers will be less sensitive to pruning than others. On the other
hand, Figure 5.9b illustrates that the network trained from-scratch, FS-Network, has
a more even distribution of filter importance, suggesting that the network is more sen-
sitive to pruning than FT-Network, specifically in the later layers.

N
or

m
al

ize
d

-n
or

m
l 1

Filter index / # channels

(a) Filters ranked by ascending l1-norm for FT-
Network.

N
or

m
al

ize
d

-n
or

m
l 1

Filter index / # channels

(b) Filters ranked by ascending l1-norm for FS-
Network.

Figure 5.9. Visualization of the importance of filters of VGG-16 trained on CIFAR-10.
The deep layers of FT-Network possesses an important fraction of low-norms
filters, whereas FS-Network has filters of balanced norms.

The results of performing our pruning method on both networks are summarized in
Figure 5.10. As can be observed, FT-Network undergoes extensive pruning in deeper
layers, while pruning is more spread across all layers for FS-Network.

Advances in Neural Network Pruning 112

(a) Sparsity level in each layer of FT-Network (b) Sparsity level in each layer of FS-Network

Figure 5.10. Repartition of sparsities in the layers of VGG-16 trained on CIFAR-10.

Table 5.7 summarizes the results on all the tested datasets, and shows the resulting
number of parameters, their corresponding storage size, as well as the number of FLOPs
needed for an input image to traverse the whole network at the testing phase.

Dataset Network Params (M) FLOPs (M)

CIFAR10 Baseline 14.98 627.48

FT-pruned 3.43 421.20

FS-pruned 8.26 397.85

CIFAR100 Baseline 15.03 627.57

FT-pruned 8.26 503.47

FS-pruned 8.69 444.56

SVHN Baseline 14.98 627.48

FT-pruned 3.15 414.12

FS-pruned 4.08 311.04

CALTECH-101 Baseline 15.03 30,720.99

FT-pruned 8.44 25,402.11

FS-pruned 13.59 30,171.17

Table 5.7. Results of the pruning on VGG-16 for the four studied datasets. FT-Network
leads to smaller networks, while FS-Network leads to faster ones, due to the
location of removed filters in the network.

We can observe that for all the tested datasets, pruning is more e↵ective in terms of
parameters removed for FT-Network than for FS-Network. However, fewer parameters
do not necessarily lead to a greater reduction in FLOPs. This phenomenon can be
explained by the fact that, while most of the parameters are contained in the later
layers, most operations are performed in the first ones, where the resolutions of the
activation maps are higher. For FT-Network, most of the pruning is performed in the
later layers. In contrast, for FS-Network the pruning is more distributed throughout

113 5.3. Where to prune?

the network. Thus, FT-Network has the fewest parameters but FS-Network often has
the fewest FLOPs.

A closer look at the filters of the first convolutional layer, represented in Figure 5.11, ex-
hibits the di↵erence between learned filters. The reason of this di↵erence is because the
pre-training of FT-Network helped to find valuable filters on the ImageNet database.
As FS-Network only had access to fewer and smaller images, it could not learn the same
kind of filters by itself and had to distribute the feature extraction across the network,
reason why the later layers are more sensitive to pruning.

(a) Filters ranked by ascending l1-norm for FT-
Network.

(b) Filters ranked by ascending l1-norm for FS-
Network.

Figure 5.11. Visualization of the 64 filters in the first convolutional layer of VGG-16
trained on CIFAR-10. FT-Network filters have more structure than those
of FS-Network.

MobileNet. The Depthwise Separable Convolutions operations that are used in Mo-
bileNet are composed of two operations.: (1) a Depthwise Convolution, filtering each
input map independently; (2) a Pointwise Convolution, i.e. a regular convolution with
a kernel dimension of 1⇥1. As most parameters are contained in the second operation,
we propose to operate the pruning only on Pointwise Convolutions.

The first sensitivity analysis, performed before starting the pruning process, reveals a
smaller di↵erence between the sensitivity of FT-Network, represented in Figure 5.12a
and FS-Network, represented in Figure 5.12b, than in the case of VGG16. However, we
can still observe that the highest norm filters of FS-Network are still in the later layers,
which is not necessarily the case for FT-Network. This again suggests that FT-Network
can be pruned further in the later layers. Also, the FT-Network surprisingly possesses
filters with a l1-norm of 0 in its first convolutional layer.

Advances in Neural Network Pruning 114

N
or

m
al

ize
d

-n
or

m
l 1

Filter index / # channels

(a) Filters ranked by ascending l1-norm for FT-
Network.

N
or

m
al

ize
d

-n
or

m
l 1

Filter index / # channels

(b) Filters ranked by ascending l1-norm for FS-
Network.

Figure 5.12. Visualization of the importance of filters of MobileNet trained on CIFAR-
10. The deep layers of FT-Network possesses an important fraction of
low-norms filters, whereas FS-Network has filters of balanced norms.

The results of the pruning process for both types of initializations is reported in Figure
5.13. At the exception of the first layer, for which we observed a fraction of low-normed
filters in 5.12b and that are consequently removed,most pruning of the FT-Network is
performed in late layers, while it is slightly more spread across the layers for FS-
Network.

(a) Sparsity level in each layer of FT-Network. (b) Sparsity level in each layer of FS-Network.

Figure 5.13. Repartition of sparsities in the layers of MobileNet trained on CIFAR-10

The results of the pruning of MobileNet on the di↵erent datasets are summarized in
Table 5.8. As it was the case for VGG16, the pruning of FT-Network also leads to a
smaller number of parameters than for the FS-Network, even if the di↵erence is smaller
in this case. However, due to the location of the removal, FS-Network is reaching a
comparable or lower FLOPs count.

115 5.3. Where to prune?

Dataset Network Params (M) FLOPs (M)

CIFAR10 Baseline 3.76 24.23

FT-pruned 1.05 13.83

FS-pruned 0.98 12.26

CIFAR100 Baseline 3.80 24.32

FT-pruned 2.54 21.42

FS-pruned 3.12 21.89

SVHN Baseline 3.76 24.23

FT-pruned 1.50 17.66

FS-pruned 1.75 16.57

CALTECH-101 Baseline 3.81 1136.59

FT-pruned 3.08 1078.30

FS-pruned 3.43 1105.83

Table 5.8. Results of the pruning on MobileNet for the four studied datasets. FT-
Network leads to smaller network while not necessarily the fastest ones, due
to the location of removed filters in the network.

Again, looking at the filters of the first convolutional layer exhibits the di↵erence of
learned filters between FT-Network, represented in Figure 5.14a, and the FS-Network,
represented in Figure 5.14b. The filters of the FT-Network show some structure where
those from FS-Network do not appear to. Moreover, as it was suggested in Figure
5.12a, we can observe the low-norm filters in the first convolutional layer.

(a) Filters ranked by ascending l1-norm for
FT-Network.

(b) Filters ranked by ascending l1-norm for
FS-Network.

Figure 5.14. Visualization of the 32 filters in the first convolutional layer of MobileNet
trained on CIFAR-10. Filters of FT-Network exhibit more structure than
the filters of FS-Network.

Advances in Neural Network Pruning 116

5.3.3 Discussion & Conclusion

For this second research axis, concerned about the question “Where to prune?”, we
provide elements of answers for the two most common methods of neural network ini-
tialization: random and pre-trained. In particular, we have compared the sensitivity to
pruning of both initialization schemes and discovered that it significantly impacts the
location of parameters to remove.

The experiments conducted on three dataset: CIFAR-10, CIFAR-100, SVHN and
CALTECH-101, demonstrate that fine-tuned networks tend to possess fewer useful
filters in later layers, which leads to pruned networks that contain fewer parameters.
However, the number of parameters does not necessarily correlate to a lower amount
of computations, as later layers process images of low resolution. For that reason, net-
works trained from-scratch, where the pruning can be performed more evenly across
the network, usually require fewer computations.

According to the targeted usage of the compressed network, either to require smaller
storage space or fewer computations, a specific initialization scheme and pruning tech-
nique can thus be used. This can help to improve existing CNNs architectures, but
also to find new training strategies, better suited to target lower storage or compute
budgets.

5.4 What to prune?

Our third pruning contribution concerns the pruning criteria and aims to provide an
answer to the question: “What to prune?”. In this regard, we propose a novel pruning
method, that can be applied prior to any criteria, and allowing to reduce the redun-
dancy of weights remaining in a pruned network.

The most commonly used pruning criteria is magnitude pruning, removing weights hav-
ing the lowest l1-norm in the network. Indeed, weights having the smallest magnitude
participate less in the activations of the model and can be thus removed without im-
pacting too much the performance. Despite its apparent simplicity, magnitude pruning
has been shown to be highly generalizable to di↵erent datasets and architectures [80].
More recently, the movement criteria, particularly e�cient in the fine-tuning regime,
has been proposed [51]. This criteria was designed to tackle the problem that we ob-
served in Section 5.2, i.e. that the weight values after fine-tuning are close to their
initialization values. While e�cient, the magnitude and movement criteria only base
their decision on the value of the weight and do not explicitly seek to reduce the re-
dundancy. Indeed, as long as they are above the pruning threshold, redundant weights

117 5.4. What to prune?

can be kept by those criteria. Moreover, weights that might be unique and have an
important impact on the final decision might be removed if they happen to be below
the decision threshold.

Therefore, we propose injecting a filter clustering method before applying common
pruning criteria to each group independently. By doing so, we ensure that, not only do
we reduce the redundancy in the filters, but also that we do not remove the rare ones.
This clustering method is inspired by a neural network interpretation method called
Activation Maximization (AM) [81]. The idea behind AM is to generate an input image
that maximizes a filter output activation. This image is found by performing gradient
ascent in the input space, updating each pixel value until the response of the filter
is maximal, as represented in Figure 5.15. The images created will thus correspond
to images that excite the most a given convolutional filter, i.e the feature that that
particular filter is looking for.

Figure 5.15. Illustration of the Activation Maximization technique. It starts from ran-
dom noise and gradually optimizes the values of the pixels to activate a
particular neuron. Image taken from [82].

5.4.1 Methodology

Starting from the three-step iterative pruning schedule, we propose an additional step,
prior to pruning, as represented in Figure 5.16. Indeed, before selecting the weights to
remove according to a chosen criteria, we first cluster filters exhibiting similar behaviour
and to perform pruning in each cluster separately, and consequently only on redundant
filters. By doing so, pruning will only retain independent filters while also retaining
filters that have uncommon behaviors, thus maximizing the variety of remaining filters.

For each convolutional filter in a layer of the network, we can synthesize its correspond-
ing signature image based on Activation Maximization. The goal is then to perform
K-Means clustering of those images, e↵ectively grouping similar images together while
also keeping unique ones in their dedicated group. To e↵ectively reduce dimensionality
and facilitate the task of K-Means clustering, we first feed our images to the convo-
lutional part of an AlexNet model [32] pre-trained on ImageNet [78], encoding those

Advances in Neural Network Pruning 118

Training PruningClustering Fine-Tuning

(1) (2) (3)

Figure 5.16. The proposed pruning pipeline. We introduce a fourth step in the common
iterative pruning process, aiming to cluster convolution filters by similar
functionality. By then performing pruning in each cluster, we ensure that
we remove redundant filters, while preserving the rare ones.

into a feature vector, which will serve as input data to the clustering algorithm. The
proposed clustering technique is represented in Figure 5.17.

CNNAM

Cluster 1

Cluster k

. 

. 

.

Cluster 2

Cluster 3

The filtersnf The generated featuresnf

Encoded features

K-Means

Figure 5.17. Representation of the clustering process. We first generate the feature
image corresponding to each filter with the Activation Maximization tech-
nique. Those synthesized images are then encoded to a lower dimension by
a pre-trained CNN, and clustered with K-Means, allowing to group filters
sensitive to similar features together.

Once each feature image has been clustered, we can then apply the pruning process, se-
lecting remaining filters according to a chosen criteria but, this time not by comparing
all the filters in the layer, but by comparing filters whose feature images are located in
the same group. By doing so in each group, we will only preserve each feature’s best
representative filter. The number of clusters k is thus chosen as a compression param-
eter, depending on the desired sparsity. Setting a high number of clusters k creates
more groups and thus removes fewer filters.

119 5.4. What to prune?

When comparing common criteria before and after the addition of our clustering
method, we observe that a greater variety of filters are retained. As an example, Figure
5.18 represents features extracted from the filters of the first layer of a simple CNN,
AlexNet [32], using the Activation Maximization technique. Three clusters of similar
features have been highlighted in color, and the corresponding remaining features are
shown for each pruning technique, with the removed one being greyed out. We can
observe that, by clustering similar features, we ensure that: (1) redundant features
are removed and (2) rare features are being kept, which is not the case when using
magnitude and movement pruning alone, where some features belonging to the same
cluster are still present.

Movement Pruning

 Pruningl1 Cluster Pruningl1

Features generated by AM

Cluster Movement Pruning

Figure 5.18. Comparison of the remaining features after applying di↵erent pruning tech-
niques until a sparsity of 50% in the first layer of AlexNet. Three dominant
clusters are highlighted in color. Features removed are greyed out.

Advances in Neural Network Pruning 120

5.4.2 Experiments

Comparison to Common Criteria

In this section, we evaluate the e↵ects of adding the proposed extra clustering step in
the iterative pruning pipeline and apply the pruning criteria in each group separately.

Pruning Method. The di↵erent parameters used for performing pruning are sum-
marized in Table 5.9, where they are expressed using FasterAI terminology. We use
the proposed 4-step schedule presented in Figure 5.16. To do so, we iterate over each
layer and remove a specific number of filters in order to reach the desired sparsity.
Before proceeding to the pruning step, our clustering method takes care of dividing the
filters of a target layer into k groups, with k = s ⇥ nf , s being the desired sparsity
in percent and nf the number of filters in that layer. The desired pruning criteria is
then separately applied to each filter group, retaining a single filter from each cluster.
We evaluate the benefits of our extra clustering step according to two pruning criteria:
(1) l1-norm of the filters, i.e. remove the filters that possess the lowest norm, and (2)
movement pruning, i.e. only keep the filters whose magnitude has increased the most
during training.

Granularity Criteria Context Schedule

weight large final vs movement local iterative

Table 5.9. Pruning parameters used in FasterAI.

Datasets and Architectures. For our experiments, the datasets have been chosen to
be varied in terms of image resolution and number of classes. In particular, we evaluate
our methods on the three following datasets: (1) CIFAR-10 [74], (2) CIFAR-100 [74],
and (3) Caltech-101 [68]. Those datasets are then tested on two types of popular con-
volutional network architectures: VGG-16 [31] and ResNet-18 [67]. In particular, we
use a modified version of VGG-16 which consists of 13 convolutional layers and 2 fully-
connected layers, with each convolutional layer being followed by a batch normalization
layer [83].

Training Procedure. The networks used for our experiments are initialized from
pre-trained weights, i.e. networks were previously trained on ImageNet and we reuse
their weights. Images of our dataset are first resized to 224⇥224 and are augmented by
using horizontal flips, rotations, image warping and random cropping. We train each
model for 15 epochs, at a learning rate of 1e � 3, and using the 1cycle learning rate

121 5.4. What to prune?

method [76], where the training starts with a learning rate warm-up until a nominal
value, then gradually decays until the end of the training. After each pruning phase,
we fine-tune our model for 3 epochs, with a learning rate of 3e�4, to allow the network
to recover from the loss of its parameters.

Results. We report the results of our experiments for VGG-16 in Table 5.10, and for
ResNet-18 in Table 5.11. As can be observed, for almost all sparsity levels, datasets and
criteria tested, adding the proposed clustering step is beneficial to the pruning process.
Indeed, for the same sparsity level, accuracy increases up to 5% can be observed, which
also means that the same networks could be pruned to a higher sparsity level without
witnessing performance degradation.

l1 Cluster l1 Movement Cluster Movement

CIFAR-10

S
p
ar
si
ty 60% 90.89 ± 0.17 92.39 ± 0.07 91.55 ± 0.18 92.45 ± 0.26

70% 89.47 ± 0.09 90.91 ± 0.13 90.35 ± 0.12 90.89 ± 0.10

80% 84.95 ± 0.08 87.04 ± 0.23 86.50 ± 0.19 87.48 ± 0.10

CIFAR-100

S
p
ar
si
ty 60% 54.94 ± 0.21 58.72 ± 0.30 54.81 ± 0.34 57.29 ± 0.71

70% 47.56 ± 0.94 51.67 ± 0.61 47.59 ± 0.29 51.25 ± 0.41

80% 35.67 ± 0.90 39.30 ± 0.65 36.82 ± 1.42 42.30 ± 0.94

Caltech-101

S
p
ar
si
ty 60% 86.63 ± 0.39 87.44 ± 0.28 86.94 ± 0.28 87.40 ± 0.51

70% 84.87 ± 0.41 86.01 ± 0.79 82.89 ± 0.19 84.43 ± 0.25

80% 79.18 ± 0.63 79.03 ± 0.72 76.00 ± 0.59 78.75 ± 0.63

Table 5.10. Results of applying di↵erent pruning criteria on VGG-16. The benefit of
applying our clustering method before selecting the filters to remove trans-
lates to a higher accuracy for most sparsity levels and datasets. Values in
bold are the best when comparing a criteria with and without the clustering
process. Accuracies and standard deviation over 3 runs are reported.

Advances in Neural Network Pruning 122

l1 Cluster l1 Movement Cluster Movement

CIFAR-10

S
p
ar
si
ty 60% 93.32 ± 0.11 93.76 ± 0.18 92.73 ± 0.16 93.57 ± 0.10

70% 92.17 ± 0.11 92.20 ± 0.11 90.79 ± 0.14 92.35 ± 0.03

80% 89.58 ± 0.17 90.13 ± 0.09 87.04 ± 0.24 89.53 ± 0.23

CIFAR-100

S
p
ar
si
ty 60% 71.65 ± 0.22 72.61 ± 0.41 70.95 ± 0.13 72.27 ± 0.37

70% 67.18 ± 0.17 68.46 ± 0.25 66.19 ± 0.15 68.44 ± 0.21

80% 59.14 ± 0.13 60.32 ± 0.30 58.50 ± 0.41 59.86 ± 0.23

Caltech-101

S
p
ar
si
ty 60% 92.63 ± 0.05 93.00 ± 0.16 90.77 ± 0.18 91.81 ± 0.26

70% 88.75 ± 0.42 89.48 ± 0.30 85.32 ± 0.27 87.75 ± 0.24

80% 79.89 ± 0.10 80.31 ± 0.35 75.05 ± 0.56 76.29 ± 0.39

Table 5.11. Results of applying di↵erent pruning criteria on ResNet-18. The benefit of
applying our clustering method before selecting the filters to remove trans-
lates to a higher accuracy for most sparsity levels and datasets. Values in
bold are the best when comparing a criteria with and without the clustering
process. Accuracies and standard deviation over 3 runs are reported.

Application to Lottery Ticket Hypothesis

In addition to comparing the impact of our proposed clustering technique, we also
would like to compare the quality of the remaining subnetworks, obtained after prun-
ing. Such an analysis may be performed using the Lottery Ticket Hypothesis.

Finding Lottery Tickets. As described in Section 3.3.4, Lottery Tickets are found
using an iterative process, repeatedly pruning a portion of remaining weights according
to their l1-norm, then resetting them to their initial value, i.e. the value before any
training has occurred [56]. It was later generalized to higher complexity use-cases by
resetting weights to a value from early training instead [57].

Comparison of Tickets. We compare the performance of discovered tickets us-
ing the same pruning criteria, datasets and training procedure as described in Section
5.4.2, and for the ResNet-18 architecture. As our experiment concerns large datasets
and complex architecture, we propose to study the e↵ect of our pruning technique on
the Lottery Ticket Hypothesis with Rewinding. To uncover the tickets, we adopt the
same methodology as presented in Section 5.4.1, but reinitializing the weights after each

123 5.4. What to prune?

pruning step to the value they had after the initial training step, i.e. to their value
after Step (1) in Figure 5.16. The operation is performed for each criteria evaluated
in the Section 5.4.2 and for sparsity levels ranging from 10% to 80%. After extracting
the subnetwork, we train it for 15 epochs and then compare the versions obtained with
and without the addition of our variety-enforcing clustering method.

Results. From this experiment, whose results are reported in Figures 5.21, we can
observe that in most cases, the addition of the clustering method prior to the criteria
selection helps to find a better performing ticket, thus validating the quality of the
pruned network. While adding a clustering technique before applying the pruning cri-
teria seems profitable in most cases, it benefits movement pruning the most. Indeed,
increases up to 2% in accuracy may be observed in the case of l1 pruning, and up to
5% in the case of movement pruning.

Figure 5.19. Results of the Lottery Ticket Hypothesis with Rewind test for di↵erent
sparsities, performed with ResNet-18 on CIFAR-10.

Figure 5.20. Results of the Lottery Ticket Hypothesis with Rewind test for di↵erent
sparsities, performed with ResNet-18 on CIFAR-100.

Figure 5.21. Results of the Lottery Ticket Hypothesis with Rewind test for di↵erent
sparsities, performed with ResNet-18 on CALTECH-101.

Advances in Neural Network Pruning 124

5.4.3 Discussion & Conclusion

In this contribution, we propose a novel pruning method, introducing a clustering pro-
cess before applying the pruning criteria. This clustering process, based on an inter-
pretation technique called Activation Maximization groups filters sensitive to similar
features in the input image. By then applying the pruning criteria to each feature
group, we ensure that pruning is applied on redundant filters, and that rare filters,
which may be alone in their group, are retained. Experiments have shown that our
method leads to better results than classical methods on both VGG-16 and ResNet-18
architectures and for CIFAR-10, CIFAR-100 and CALTECH-101 datasets. Those re-
sults demonstrate that one should avoid pruning rare or unique filters and that keeping
a wide filter variability is crucial to achieving both a higher pruning rate and a lower ac-
curacy loss. Moreover, by performing Lottery Ticket Hypothesis with Rewinding tests,
we have demonstrated that the subnetworks discovered after pruning were of better
quality, as they were able to reach higher performance in the same training time.

5.5 When to prune?

Our fourth pruning contribution concerns the pruning schedule and aims to provide an
answer to the question: “When to prune?”. In this regard, we propose a novel pruning
schedule, allowing to reach higher sparsity levels in a shorter period of time.

In particular, we propose a new pruning schedule, called One-Cycle Pruning (OCP),
expanding on the state-of-the-art of gradual pruning techniques, i.e. pruning while the
network is training. As of now, only one gradual pruning schedule has been proposed,
the Automated Gradual Pruning (AGP) [59]. The latter performs most of the pruning
early in the training, the motivation being that early training is the phase where the
network has the most redundancy. However, recent studies have shown that the training
of a neural network is conditioned very early by its regularization and parameters [72].
As a result, applying regularization too early in the network can irremediably impair
the network performance, no matter how much training is performed afterwards [84].
However, to leverage the regularization e↵ect of the sparsity imposed in the weights, it
is still necessary to perform gentle pruning in early phases [85]. Finally, because prun-
ing methods a↵ect the optimization process, it is necessary to provide enough training
iterations for the sparse network to fine-tune its remaining weights, allowing it to ac-
commodate from the loss of capacity.

The purpose of One-Cycle Pruning is thus to propose a schedule that: (1) prunes gently
in early training iterations; (2) provides a more extended fine-tuning phase to allow the
network to reach an optimal performance; (3) performs the pruning and training jointly,

125 5.5. When to prune?

removing any sparsity level discontinuities. Adopting such a schedule thus provides the
regularization benefits of sparse weights, but also performs the pruning process in a
single training stage, drastically reducing the training budget.

5.5.1 Methodology

The proposed method for pruning consists of starting from a dense network and induc-
ing sparsity during the whole training phase. The idea is thus to make the network
jointly optimize for a given task, taking the pruning constraints into account. More
precisely, we propose to induce sparsity in the network according to the following sched-
ule:

st = si + (sf � si) ·
1 + e�↵+�

1 + e�↵t+�
(5.1)

with st, the level of sparsity at training step t, si and sf respectively the initial and final
level of sparsity, and ↵, � being two tuning parameters, modifying either the steepness
of the scheduling, as represented in Figure 5.22a, or its horizontal o↵set, as represented
in Figure 5.22b, to better suit the problem or architecture that is used.

(a) Evolution of the schedule for di↵erent ↵
variations.

(b) Evolution of the schedule for di↵erent �
variations.

Figure 5.22. Visualization of the variation of the scheduling for di↵erent ↵ and � values.
The ↵ parameter a↵ects the steepness of the curve, while � a↵ects the
horizontal o↵set.

The implementation of OCP in FasterAI is provided in Pseudo-Code 5.4.

Advances in Neural Network Pruning 126

def sched_onecycle(start, end, pos, ↵,�):
return start + (end-start)*(1+np.exp(-↵+�)) / (1 + (np.exp((-↵*pos)+�)))

Pseudo-Code 5.4. One-Cycle Pruning

Those design parameters ↵ and � may di↵er according to the architecture, dataset and
training procedure that are employed. However, by performing a grid-search to find
the best pair for a Resnet-18 trained on CIFAR-10 to 90% sparsity, we find that the
final accuracy is pretty stable to di↵erent ↵ and �, as reported in Table 5.12. The best
pair seems to be ↵ = 14 and � = 5, which will be used as default in further experiments.

�

3 4 5 6 7

↵

13 93.10 ± 0.18 93.23 ± 0.12 93.30 ± 0.07 93.31 ± 0.05 92.97 ± 0.07

14 93.13 ± 0.06 93.16 ± 0.07 93.46 ± 0.13 93.09 ± 0.18 93.25 ± 0.12

15 93.10 ± 0.03 93.21 ± 0.14 93.19 ± 0.19 93.17 ± 0.08 93.28 ± 0.03

Table 5.12. Grid search of ↵ and � for Resnet-18 trained on CIFAR-10 to for 90%
sparsity. Mean and standard deviation over 3 rounds are reported.

5.5.2 Experiments

Comparison to traditional schedules

In this section, we compare our proposed schedule, the One-Cycle Pruning, to other
commonly used pruning schedules.

Pruning Methods. The di↵erent parameters used for performing pruning are sum-
marized in Table 5.13, where they are expressed using FasterAI terminology.

Granularity Criteria Context Schedule

weight large final local one shot vs iterative vs gradual vs one cycle

Table 5.13. Pruning parameters used in FasterAI.

127 5.5. When to prune?

We compare our pruning technique to several state-of-the-art pruning schedules: One-
Shot Pruning, Iterative Pruning and Automated Gradual Pruning. As explained in
Section 4.2.4, pruning schedules may be further customized by setting starting and
ending points. We thus perform a grid search to identify those points for each sched-
ule. The ending point for all schedules is found to be at the very end of training, i.e.
the pruning process is carried on until training ends. On the other hand, the best start-
ing iterations are found at 40%, 20% and 20% of the training for One-Shot Pruning,
Iterative Pruning and AGP, respectively. In the case of OCP, default values identified
in Section 5.5.1 are used. A visual comparison of all the schedules that we will study
can be found in Figure 5.23.

Figure 5.23. Comparison of the evolution of sparsity during training of the 4 studied
pruning schedules.

Datasets and Architectures. For our experiments, the datasets have been chosen
to be various in terms of image resolution and number of classes. In particular, we
evaluate our methods on the three following datasets: CIFAR-10 [74], CIFAR-100 [74]
and Caltech-101 [68]. Moreover, those datasets are tested on two types of popular
convolutional network architectures: VGG-16 [31] and ResNet-18 [67].

Training Procedure. The networks used for our experiments are trained from a ran-
dom initialization. The images are first resized to 224⇥224 and are augmented by using
horizontal flips, rotations, image warping and random cropping. We train each model
using the 1cycle learning rate method [76], where the training starts with a learning
rate warm-up until a nominal value of 1e�3, then gradually decays until the end of the
training. For a fairer comparison, the experiments are conducted under a fixed training
budget of 50 epochs. In particular, two experiments are conducted: (1) A comparison

Advances in Neural Network Pruning 128

of the final validation accuracy of models trained with the di↵erent schedules; (2) A
comparison of the training time required to reach a target validation accuracy.

Experiment 1. The first experiment is conducted with a fixed training budget of 50
epochs. The objective is to identify the pruning schedule that is the most e�cient for a
tight training budget. The experiment is conducted for three levels of sparsity, namely
80%, 90% and 95% and repeated three times. The results are reported in Table 5.14.

ResNet-18 VGG-16

One-Shot Iterative AGP One-Cycle One-Shot Iterative AGP One-Cycle

CIFAR-10

S
p
a
r
s
it
y 80% 93.10±0.03 93.13±0.03 93.22±0.22 93.49±0.14 90.25±0.14 90.64±0.19 90.87±0.15 90.84±0.09

90% 92.42±0.21 91.72±0.08 92.85±0.09 93.31±0.20 89.82±0.19 89.76±0.18 90.67±0.25 90.72±0.40

95% 91.58±0.04 87.54±0.39 92.04±0.07 92.76±0.16 89.73±0.37 81.46±2.87 90.56±0.31 90.67±0.11

CIFAR-100

S
p
a
r
s
it
y 80% 74.21±0.09 74.18±0.29 74.78±0.09 74.81±0.16 67.83±0.19 67.80±0.15 67.93±0.06 68.34±0.38

90% 73.34±0.23 71.80±0.05 73.83±0.41 74.50±0.24 67.33±0.16 62.66±1.31 67.88±0.39 68.24±0.45

95% 71.68±0.16 62.88±0.27 71.92±0.30 73.34±0.21 66.16±0.49 61.95±0.70 67.51±0.19 67.51±0.16

Caltech-101

S
p
a
r
s
it
y 80% 80.31±0.89 79.78±0.56 81.93±0.85 82.31±0.88 77.81±0.96 78.23±0.35 78.45±0.85 78.90±0.88

90% 79.87±0.54 77.84±0.31 80.89±0.90 81.84±0.16 78.77±1.06 74.42±2.79 78.57±0.21 78.56±0.31

95% 78.57±1.02 73.83±1.28 78.76±1.27 79.81±0.92 76.99±0.78 42.61±2.60 78.68±0.53 78.99±0.50

Table 5.14. Results of pruning ResNet-18 and VGG-16 with 4 di↵erent schedules. Mean
and standard deviation of accuracy over 3 rounds are reported. Best results
are in bold.

As can be observed in Table 5.14, One-Cycle Pruning usually outperforms other pruning
schedules. To better understand how the performance of the network evolves during
the training, we present the evolution of accuracy of the studied pruning schedules
when pruning ResNet-18 to a sparsity of 95% on CIFAR-10 in Figure 5.24.We can ob-
serve that, although One-Cycle Pruning is the only method starting to prune at first
iterations, it allows to reach a higher accuracy right from the start. We can also ob-
serve that Iterative Pruning witnesses a significant performance drop when starting its
last pruning iteration. This can be explained by the fact that, the learning rate being
decayed towards the end of the training, a too-large perturbation happening at that
moment does not allow the network to recover quickly enough.

129 5.5. When to prune?

Figure 5.24. Evolution of accuracy of ResNet18 trained on CIFAR10, when applying
di↵erent pruning schedules to a sparsity of 95%

Experiment 2. To better emphasize the impact of the pruning schedule on the training
dynamics, we propose to perform another experiment. This time, the target validation
is fixed and we let the training budget evolve according to the needs of each pruning
method in order to reach the desired performance. For One-Shot and Iterative pruning,
the pre-training budget is kept identical, only the fine-tuning budget is extended, i.e.
the training after the pruning has occurred. We provide in Table 5.15 the results of
the training budget required to reach 90%, 70% and 80% of accuracy on CIFAR-10,
CIFAR-100, Caltech-101 dataset respectively, using ResNet-18 pruned to a sparsity of
95%. Training budget is expressed relatively to method One-Cycle Pruning.

One-Shot Iterative AGP One-Cycle

CIFAR-10 2.5⇥ 4⇥ 1⇥ 1⇥
CIFAR-100 3.33⇥ 7.5⇥ 1.25⇥ 1⇥
Caltech-101 2⇥ 3.2⇥ 1.4⇥ 1⇥

Table 5.15. Training budget required to prune ResNet-18 to 95% to achieve a fixed
validation accuracy.

Overall, the technique requiring the most-important training budget while providing the
worst validation accuracy when that budget is fixed is the Iterative Pruning. Several
papers have also reported a similar phenomenon, indicating that Iterative Pruning
required a long fine-tuning time in order to compensate [50, 86] for the removal of
weights. On the other hand, One-Cycle Pruning seems to overperform other pruning

Advances in Neural Network Pruning 130

schedules both when the training budget is fixed and when the target accuracy is fixed,
indicating that such a schedule is able to reach higher performance faster.

Experiments with Lottery Tickets

We also conduct experiments concerning the Lottery Ticket Hypothesis, described in
Section 2.2.1. In particular, we want to compare the quality of winning tickets found
with One-Cycle Pruning to the ones found with other schedules.

Finding Lottery Tickets The experiment to discover winning tickets consists in re-
peating several rounds of one-shot pruning, and reinitializing the remaining weights
to their original value after each pruning round [56]. This experiment thus requires
several rounds of one-shot pruning to unveil winning tickets. We propose to compare
the quality of found tickets when they are uncovered with di↵erent pruning schedules.

Comparison of Tickets. We conduct the LTH experiments using ResNet-18 and
CIFAR-10 with the same hyperparameters as described in Section 5.5.2. In the original
LTH experiments, each pruning round was performed with One-Shot Pruning. We thus
perform the LTH, with di↵erent pruning schedules, until 95% of sparsity, creating the
network W0 � m, whose mask m consists of 95% of zeroes. We report in Table 5.16
the accuracy of those tickets retrained for a single epoch.As can be observed, the ticket
obtained with One-Cycle Pruning significantly outperforms the subnetwork discovered
with other schedules.

Accuracy (%)

One-Shot Iterative

72.213 ± 0.009 85.778 ± 0.003

AGP OCP

86.114 ± 0.001 89.239 ± 0.004

Table 5.16. Validation accuracy of the reinitialized ResNet-18 sub-networks found by
several pruning schedules at their last pruning round, i.e. at a sparsity level
of 95%. The training is performed on the CIFAR-10 dataset.

Stability of OCP. To further study the di↵erence in the results, we conduct a stability
analysis of the found Lottery Tickets [57]. This analysis consists of retraining two copies,
subject to a di↵erent SGD noise, of the same ticketW0�m, thus leading to two di↵erent
trained versions W1�m and W2�m. By then linearly interpolating their set of weights,

131 5.5. When to prune?

we can create a new network with weights W3 �m = ↵(W1 �m) + (1 � ↵)(W2 �m)
with ↵ 2 [0, 1]. The two copies will then be said linearly connected, i.e. they converged
to the same linearly connected minimum, if the validation error of W3 � m remains
stable for all the ↵ values. We report in Figure 5.25 the instability evolution against
the sparsity level. We denote instability error the validation error, i.e. 1�accuracy,
with network W3 � m, whose weights were interpolated at half-way between the two
trained copies, i.e. for ↵ = 0.5. We can observe that OCP, as well as AGP, become
stable at really low level of sparsity, i.e. after performing only a few rounds of LTH,
while One-Shot Pruning and Iterative Pruning take more rounds before getting stable.
However, AGP seems to be the only one to show signs of increasing instability for high
sparsity values, i.e. for late LTH pruning rounds.

Figure 5.25. Evolution of instability error after each round of the Lottery Ticket Hy-
pothesis when using a di↵erent pruning schedule. A low instability error
indicates that the found ticket W0 � m is stable to retraining for that
particular sparsity level.

5.5.3 Discussion & Conclusion

In this contribution, we proposed One-Cycle Pruning, a novel pruning schedule that
allows a network to be pruned during the training phase, removing the need for an ini-
tial pre-training phase but also a complex and time-consuming fine-tuning phase. This
pruning schedule has been designed to prune gently in early training iterations while
providing a long fine-tuning phase. When compared to common pruning schedules,
One-Cycle Pruning provides comparable or better results when the training budget is
fixed, but also requires significantly less computation to attain a target accuracy.

Advances in Neural Network Pruning 132

We also investigated the quality of found tickets, by performing the LTH with di↵erent
pruning schedules and showed that OCP is able to discover better-performing tickets,
that also happen to be more stable when submitted to SGD noise.

5.6 In Brief

Summary 5

• Our contribution to the granularity is the proposal of a novel way to select
and remove filters by turning the selection problem upside-down. Instead
of selecting filters, we select shared-kernels, i.e. kernels shared among all
filters of a layer. Despite not improving much the performance of a model
for a fixed pruning ratio, removing shared-kernels allows to further reduce
the number of operation and remaining parameters. Furthermore, because
of the specificity of the granularity, it also allows to remove input features
from the input images, reducing the size of the dataset that is used for
training.

• The contribution about the pruning context is the introduction of another
way to select from which layer to prune filters. In particular, this was
studied by comparing two types of initialization: random and pre-trained
weights. This dramatically impacts the layers from which filters can be
removed. While random initialization leads to an even removal between all
layers in the network, pre-trained weights remove filter towards the end of
the network.

• The contribution about the pruning criteria concerns the introduction of a
clustering technique prior to the selection of weight by the pruning criteria.
In particular, this allows to explicitly reduce the redundancy while preserv-
ing rare features in the network, helping to improve the final performance
of the pruned network.

• Our contribution to the schedule research axis is a novel schedule named
One-Cycle Pruning, that allows to perform pruning in a single training
stage. It thus performs pruning and training in a common process, allowing
to both save computations but also to reach higher performing and more
stable models.

CHAPTER 6

Use-Case: DeepFake Detection

Contents

6.1 Introduction . 134

6.1.1 DeepFakes Detection Challenge 134

6.1.2 Related Work . 135

6.2 Methodology . 136

6.2.1 The Dataset . 136

6.2.2 The Network . 137

6.2.3 Data Augmentation . 141

6.2.4 Compression of the solution 142

6.3 Results . 143

6.3.1 Ablation Study . 143

6.3.2 Comparison to other methods 144

6.3.3 Interpretation . 145

6.4 Proof-of-Concept: Deepfake Buster 146

6.5 Discussion and Conclusions 148

6.6 In Brief . 149

“People almost invariably arrive at their beliefs not on
the basis of proof but on the basis of what they find at-
tractive.”
— Blaise Pascal

— 133 —

Contributions 134

6.1 Introduction

Over the last few years, the rise of synthetic media has forced us to realize that we
cannot trust images, videos and audio records anymore. With the growth of generative
models, we are now able to create realistic content and even worse, those models are
now widely available to the public at large. The commodification of such technologies
will importantly impact the way we consume information every day. In particular,
DeepFakes, i.e. manipulation technique swapping the identity of someone in an image
or video, have produced increasing worries among specialists. Indeed, despite not being
perfect, such techniques already have enabled a new attack vector for social engineer-
ing, blackmailing, and political destabilization.

Fake news are particularly spreading on social media. They are estimated to be shared
six times as fast as real news [87]. With a perpetually growing number of social me-
dia users and more accessible tools for DeepFake creation, the sharing of fake news
could pose a real problem in the near future. Indeed, if deep fakes reach a point where
humans can no longer distinguish true information from false one, this could greatly
impair mainstream media information.

For this reason, we propose to investigate the problem of DeepFake detection with the
use of deep learning techniques. Moreover, because DeepFake creation is now available
at scale, the detection method should be able to process large amounts of data in re-
stricted time frames to keep up with the increasing number of shared media. To do so,
we propose to apply the knowledge acquired by previous contributions to compress a
neural network, reducing its parameter count and processing time, while retaining its
performance.

The motivation is twofold: (1) show that compression techniques can be applied to real-
case applications, involving datasets of a greater complexity than most benchmarking
datasets: (2) provide a light detection network, suited for spotting DeepFakes images
on a large flow of images, such as present on social media.

6.1.1 DeepFakes Detection Challenge

The DeepFake Detection Challenge (DFDC) is a challenge that has been created follow-
ing a collaboration between several big technology actors such as Facebook, Microsoft,
Amazon, the Partnership on AI’s Media Integrity Steering Committee and academics
partners such as Cornell Tech, MIT, University of Oxford, UC Berkeley, University of
Maryland, College Park, and University at Albany-SUNY.

135 6.1. Introduction

This challenge has two objectives: (1) Produce accessible technologies for DeepFake De-
tection, helping users to discover when a video or image has deceptively been altered;
(2) Release a high-quality and freely available dataset, to speed-up research in the field
and provide a common benchmark, facilitating comparison of newly proposed methods.

This challenge was thus the perfect opportunity for us to join the research of DeepFake
detection and to be at the forefront of new developments in the field. During the
challenge, we proposed a DeepFake detection method that reached respectively top 4%
and top 6% on the public and private leaderboards 1.

6.1.2 Related Work

DeepFakes creation often generates artifacts that are usually exploited by recent meth-
ods. Those artifacts can generally be separated into two groups: spatial and temporal.
Detection techniques can thus focus on either of those types of artifacts, or even both.

Spatial Artifacts Detection. This type of artifact generally appears when the
generated content is embedded into the original frame. Treating the problem as im-
age classification allows CNN models to detect the artifacts present in the frames [88],
thus classifying each frame individually. Those artifacts can come in many forms and
dimensions, requiring di↵erent techniques to be detected. For example, mesoscopic
information can be analyzed to detect the forgery [89]. Because the generated and
original contents usually do not come from the same source, some warping artifacts
may appear during the blending phase, which can also be detected [90]. Model finger-
prints related to the forgery method that was used also can be exploited [91,92].

Temporal Artifacts Detection. Because a majority of DeepFake generation tech-
niques are used in frame-by-frame mode on videos, this can leave temporal inconsisten-
cies or artifacts such as flickering or jitter that can be detected [93–95]. For example,
biometric features such as eye blinking, lip-sync and facial movements can be exploited
to detected manipulated faces [96, 97]. More recent methods even study the visual
heartbeat rhythm to assess the veracity of a video [98].

Hybrid Techniques. Because both spatial and temporal artifacts usually appear
in DeepFakes videos, they can both be exploited in order to detect forged videos.
Combining those techniques usually requires more data-intensive models such as 3D
CNNs [99], or a combination of CNN and RNN [100].

1https://www.kaggle.com/competitions/deepfake-detection-challenge/leaderboard

https://www.kaggle.com/competitions/deepfake-detection-challenge/leaderboard

Contributions 136

6.2 Methodology

6.2.1 The Dataset

The dataset used for our research is the DFDC dataset [101], released for the challenge.
This dataset belongs to the so-called third generation of Deepfakes datasets [102], as
it contains a large number of high-quality videos, with agreements from individuals
appearing in the dataset. It is the largest currently available dataset consisting of 124k
videos, divided into three subsets: (1) Training Set; (2) Validation Set; (3) Test Set.

Training Set. The training set provided in DFDC is comprised of 119,154 video clips,
of 486 unique subjects and from which 100,000 videos are altered. Di↵erent techniques
can be used to create DeepFakes, e.g. DFAE, MM/NN face swap [103], NTH [104] and
FS-GAN [105], that are of various quality to better reflect the sporadic behavior of
social networks. Each video is 10 seconds long, and composed of 300 frames. Examples
of manipulated faces can be found in Figure 6.1.

Figure 6.1. Examples of manipulated faces present in the DFDC dataset. Di↵erent
deception methods are used to generate the faces.

Validation Set. The validation set consists of 4,000 video clips, which are also 10
seconds long, in which 2,000 clips contain Deepfakes. This set was created using 214
unique subjects, none of which were present in the training set. The same Deepfake
generation techniques were used, with the addition of a new one, StyleGAN [106]. Aug-
mentations, e.g. noise, blur, JPEG artifacts, and distractions, e.g. logo or face overlay,
are also added to 80% of the videos.

Test Set. The test set is comprised of 5,000 video clips of 260 unique subjects that
have not been seen before. Again, augmentations and distractions were added to 80%
of the set, including new distractions such as dog masks or flower crown filters.

137 6.2. Methodology

6.2.2 The Network

In this paper, we propose a lightweight solution for DeepFakes detection. The gen-
eral pipeline is represented in Figure 6.2 and is composed of two networks: (1) a face
detection network, extracting detected faces contained in an image or a video; (2) a
DeepFake recognition network, classifying the extracted faces as real or fake.

REAL
FAKE

Input Frames
Faces

Face Detector Classifier

Figure 6.2. The general framework of our proposed solution. It takes a single frame
(an image) or several frames (a video) as an input, that are fed to a face
detection network, to extract the di↵erent faces that are present. Those faces
are then used as the input of our DeepFake detection network, yielding the
final prediction.

Face Detection. To detect faces, several state-of-the-art methods have been consid-
ered. The objective is to find a good trade-o↵ between detection performance and speed
of processing. In particular, several publicly-available methods have been tested on 50
videos chosen randomly from the DFDC dataset, each of 300 frames. The detection
accuracy and the speed of execution are reported in Table 6.1.

Algorithm Accuracy (%) Speed (im/s)

MTCNN [107] 87.5 14.2

BlazeFace [108] 61.0 133.6

DSFD [109] 95.8 3.9

RetinaFace [110] 97.7 7.5

Table 6.1. Characteristics of Face Detection models. Speed is measured on a Nvidia
GTX 1080 GPU.

As can be observed, the method providing the best detection accuracy is RetinaFace,
while the fastest one is BlazeFace.

Contributions 138

We investigate the reason that could make BlazeFace less performant than other meth-
ods and observe that the proposed model first resizes the input frame to a 128 ⇥ 128
square image before performing the prediction. Because videos in the dataset are of
dimension 1920⇥1080, or 1080⇥1920, BlazeFace thus greatly downsizes frames, losing
crucial information about the data. Moreover, as images are not initially of a square
shape, it introduces some distortion in the image, making the detection of faces more
di�cult. Instead, we propose to improve the preprocessing step of BlazeFace by ex-
tracting three square crops from the image and performing the detection on those three
extracted crops independently, as presented in Pseudo-Code 6.1.

Image = Array(H, W, C)
if W<H:

left_crop= Image[:, :H, :]
middle_crop= Image[:, W//2-H//2:W//2+H//2, :]
right_crop= Image[:, -H:, :]

if H>W:
top_crop= Image[:W, :, :]
middle_crop= Image[H//2-W//2:H//2+W//2, :, :]
bottom_crop= Image[-W:, :, :]

else:
pass

Pseudo-Code 6.1. Implementation of the proposed cropping method

This allows to extract the crops for horizontal images as represented in Figure 6.3a or
vertical images as represented in Figure 6.3b.

1 2 3

(a) Di↵erent crops for an horizontal Image.

1

2

3

(b) Di↵erent crops for a vertical Image.

Figure 6.3. The proposed crop extraction method for di↵erent image formats.

139 6.2. Methodology

After having extracted the three crops, we finally feed them to BlazeFace to make
its prediction. Detected faces from the crops are then filtered by an Non-Maximum
Suppression (NMS), keeping only the best face in case there are overlapping predictions,
i.e. if a face happens to be inside multiple crops. The accuracy and processing speed
of the new method is reported in Table 6.2.

Algorithm Accuracy (%) Speed (im/s)

Improved BlazeFace 89.6 50.4

Table 6.2. Characteristics of Face Detection models. Speed is measured on a Nvidia
GTX 1080 GPU

As can be observed in Table 6.2, extracting three crops to perform face detection with
BlazeFace significantly improves the results of the face detection mechanism. It also
allows us to obtain a better trade-o↵ between accuracy and speed than other methods.

Moreover, there are two failure modes for detection models: (1) not detecting a face
when there is one, also known as a false negative; (2) detecting a face when there is
not, also known as a false positive. From our experiments, we find that the proposed
BlazeFace detection is more sensitive to false negatives than false positives, with 89.6%
of frames correctly predicted, 7.4% of missing faces and 3% of extra faces. To further
improve the quality of our face extraction step, we decide to provide a fallback model
for the cases of BlazeFace not detecting a face in an image. In this regard, the most
accurate face extractor, RetinaNet, is used when no face is detected in a frame. The
principle of our final proposed face detection method can be found in Figure 6.4.

Input Frames

Improved BlazeFace
RetinaNet

Faces

Faces

Figure 6.4. The general framework of our proposed face extraction method. In case no
face is found with our main face extractor, a more accurate second one is
used as a fallback.

The final performance, provided in Table 6.3, indicates that it provides a substantial
increase in the detection rate, with an accuracy of 96.8%, with only 0.1% of false
negatives and 3% of false positives, at the cost of a slight decrease in processing speed.

Contributions 140

Algorithm Accuracy (%) Speed (im/s)

Improved BlazeFace with Fallback 96.8 48.3

Table 6.3. Characteristics of Face Detection models.

DeepFake Classification. After having extracted the faces in the frames of our input
videos, we now have to classify them as real faces or DeepFakes. We empirically find
that extracting the faces from 32 evenly-spaced frames out of the initial 300 provides
a good performance, while avoiding the classification model to overfit. The classifica-
tion network used for this purpose uses a custom architecture inspired by the design of
ResNets [67], but replacing the common convolution blocks by our custom block, that
we name DFBlock. This block, represented in Figure 6.5, consists of 2 modules: (1)
an inverted residual module [36], composed of a first pointwise convolution, allowing
to expand the amount of channels before performing the spatial feature extraction by
a depthwise convolution and finally squeeze the channels by another pointwise convo-
lution, each of those convolutions being followed by a batch normalization layer and
a Rectified Linear Unit (ReLU); (2) a Squeeze-Excite module [37], a content-aware
mechanism that weights each feature map adaptively, which, at the cost of a slight
increase in the total parameter count, allows to substantially increase the classification
performance.

Inverted Residual

 Conv1 � 1 DW Conv3 � 3 Conv1 � 1 SE Module

Figure 6.5. DFBlock, the building block of DFBuster. It consists of an inverted residual
module, a squeeze-excite (SE) module.

Our architecture, which we name DFBuster, and represented in Figure 6.6, is com-
posed of a stem of 3 convolutional layers, then 4 double DFBlocks, each followed by
a MaxPooling layer. After the first block, we insert a Self-Attention module, enforc-
ing attention to long-range dependencies, helping the model to focus on object shapes
rather than local regions [111], significantly improving the performances while slightly
increasing the number of parameters. This Self-Attention module also allows to retrieve
information about the network’s decision, helping us to further interpret the results.

141 6.2. Methodology

128
�1

28
�3

2

128
�1

28
�3

2

128
�1

28
�6

4

32
�3

2�
128

16
�1

6�
256

8�
8�

512

256 � 256 � 3

64
�6

4�
64

64
�6

4�
64

� 2 � 2 � 2 � 2

Stem

 C
on

v
3�

3 C
on

v
3�

3 C
on

v
3�

3

D
F

Bl
oc

k

SA
 M

od
ul

e

D
F

Bl
oc

k

D
F

Bl
oc

k

D
F

Bl
oc

k

Po
ol

 +
 F

C

Figure 6.6. Our proposed DeepFake classification network: DFBuster. It consists of a
3-convolutional layers stem, and 4 double DFBlocks. A Self-Attention (SA)
module is also introduced to further improve classification performance.

6.2.3 Data Augmentation

As we discussed in Section 6.2.1, organic content found on the internet is subject to
come from various environments and to undergo quality degradation. For those reasons,
the data augmentation that we apply during training has been thoughtfully chosen, in
order to make our model as robust as possible. The augmentations we apply to our
training data are represented in Figure 6.7. They consist of image transforms of two
types: (1) transforms that increase the scenarios of recording scenes such as warping,
zooming, and contrast; (2) transforms replicating picture acquisition imperfections that
can be observed on organic videos such as JPEG artifacts, motion blur, and Gaussian
noise.

Original

Flip

Warp Contrast Rotation JPEG Artifacts Downscaling

Zoom Brightness Motion Blur Gaussian Noise Cutout

Figure 6.7. Illustration of the augmentations applied to training data. The transforms
have been chosen to create a model robust to organic videos that it might
encounter in real-world settings.

Contributions 142

To make our model even more robust and less prone to overfitting, the di↵erent data
augmentation techniques are injected following a Progressive Learning technique [112].
This method is inspired by Curriculum Learning methods, i.e. starting the training
with easy examples then gradually increase their di�culty [113]. The idea is thus
to impose subtle transformations as the training starts, then gradually increase their
strength as the training progresses. By doing so, we ensure that the model has the
ability to extract relevant features from the images, before learning to di↵erentiate im-
ages in more challenging contexts. We also use a technique called Mixup [114], which
blends two input images as well as their labels, which we found to be very e�cient to
improve our classification performance on this dataset.

The training is performed for 20 epochs, with a learning rate of 1e�2, with the AdamW
optimizer [21] and following the 1cycle learning rate technique, performing a learning
rate warm-up, then gradually decaying the learning rate value towards zero [76].

6.2.4 Compression of the solution

By design, the architecture is meant to be as parameter e�cient as possible. However,
there is still much that can be made to further reduce the number of parameters and
processing speed. For this purpose, we consequently use pruning, quantization, knowl-
edge distillation and batch normalization folding techniques.

Pruning. In order to reduce the number of parameters, we apply pruning to our
architecture. The pruning parameters, expressed using the FasterAI terminology, are
summarized in Table 6.4. In particular, we perform filter pruning, allowing us to easily
take advantage of the removal of parameters for model speedup. The selection of filters
to remove is performed according to their l1-norm, with local and global removal both
evaluated. Moreover, pruning is applied right from the start of training, by using the
One-Cycle Pruning schedule, presented in Section 5.5, which not only allows to reach a
higher accuracy than most pruning schedules, but allows to do it in a more constrained
training budget. We empirically find the upper bound for sparsity to impose in the
network to be at 50%, above which the performance of the model decreases.

Granularity Criteria Context Schedule

filter large final global vs local one cycle

Table 6.4. Pruning parameters used in FasterAI.

143 6.3. Results

Quantization. The quantization that we apply in our work uses the Automatic
Mixed-Precision [115] technique, presented in Section 2.4.3. It allows us to obtain a
model using FP16 precision, but performing all the training updates using FP32. As
the forward pass is performed using FP16, Mixed-Precision thus allows us not only to
have a model that has a faster inference, but also a faster training.

Knowledge Distillation. Pruning and Quantization are usually not lossless, i.e.
a trade-o↵ must be found between the reduction of the size of the network and the
performance drop. In order to mitigate that drop, we propose to perform Knowledge
Distillation [26] where the student model is the pruned and quantized one and the
teacher model is the model before compression. Doing so encourages the compressed
model to better recover its lost performance.

Batch Normalization Folding. After training, the parameters of the Batch Nor-
malization layers in a model are fixed. This means that we can blend the e↵ect of
normalization into the weights of the convolution operation preceding it. We can thus
replace the weights and biases of convolutional layers preceding batch normalizations
as presented in Section 2.5.2 and remove the batch normalization layers.

6.3 Results

6.3.1 Ablation Study

To better understand the impact of each technique used to create our final lightweight
model, we perform an ablation study, whose results are presented in Table 6.5.

Accuracy Loss Model Size (Mb) ROC-AUC

Baseline 74.34 0.5563 46.22 0.893

+ Self-Attention 75.36 0.5511 46.35 0.903

+ Squeeze-Excite 75.54 0.5445 49.17 0.909

+ Mixup 78.24 0.5312 49.17 0.917

+ Progressive Learning 81.64 0.5098 49.17 0.935

+ Pruning (Local) 82.08 0.5057 19.13 0.937

+ Mixed-Precision 81.79 0.5062 9.59 0.929

+ KD 81.93 0.5041 9.59 0.934

+ BN Folding 81.93 0.5041 9.58 0.934

Table 6.5. Ablation Study of the proposed model.

Contributions 144

The baseline model uses simplified DFBlocks, which only contain the inverted residual
module. It is also trained using the data augmentation presented in Figure 6.7. The
first phase of our ablation study uses techniques aiming to improve the classification
performance, while maintaining the parameter count. It consists in gradually adding
components to the architecture, i.e. the Self-Attention and Squeeze-Excite modules,
which help the model to reach a higher performance, at the price of a slight increase in
the parameter count. We then adjust the data augmentation process, to incorporate the
Mixup and Progressive Learning methods, which dramatically improve the network’s
performance. The second phase of our ablation study concerns the methods aiming to
reduce the parameter count while maintaining the performance. In particular, we show
that the pruning, Knowledge Distillation, Quantization and Batch Normalization lead
to a 5⇥ reduction of the model size, while keeping the performance intact.

6.3.2 Comparison to other methods

We compare our DeepFake classifier to other state-of-the-art classifiers such as Mesonet
[89], ResNet-18 [67], E�cientNet-B0 [116], Xception [117], that were used for DeepFake
classification, but also to the two best solutions proposed at the DeepFake Detection
Challenge.

ROC-AUC Model Size (Mb) FLOPS (1e9) Inference Time (ms)

MesoNet 0.786 0.91 0.06 3.84 ± 0.22

Resnet18 0.886 357.53 1.81 4.35 ± 0.24

E�cientNet-B0 0.913 127.65 0.39 16.17 ± 0.13

Xception 0.929 665.08 38.92 13.52 ± 0.32

Selim Seferbekov [118] 0.984 6109.12 111.00 197.02 ± 21.76

WM [119] 0.985 1722.85 95.84 56.21 ± 8.63

DFBuster - Global 0.941 7.23 0.88 (FP16) 6.17 ± 0.19

DFBuster - Local 0.934 9.58 0.42 (FP16) 6.09 ± 0.21

Table 6.6. Comparison to the state-of-the-art DeepFake classification methods. The
Inference Time is computed on single image, using a Nvidia GTX 1080 and
averaged over 10 iterations.

As can be observed in Table 6.6, our proposed model is able to outperform most of
state-of-the-art classification models, with the exception of Selim Seferbekov and WM,

145 6.3. Results

the two top solutions of the DeepFake Detection Challenge. However, those two solu-
tions involve a technique called Model Ensembling, consisting in making several vote
for the final prediction, which results in a very costly model storage and inference pass.
The solution providing the lightest and fastest solution is by far MesoNet. However,
even though it was able to accurately classify on the Face2Face dataset [120], the DFDC
dataset is more challenging and requires more power than MesoNet is able to provide.
We thus find that our solution is able to provide a better trade-o↵ between performance
and computation costs.

6.3.3 Interpretation

As it is increasingly di�cult to notice DeepFakes, especially for the human eye, it is
essential to provide tools to better understand our model’s decisions. This can be
achieved with attention techniques, highlighting parts of the input image that are cru-
cial for the decision of our model. The self-attention module that we introduced in
DFBuster provides such a functionality. Indeed, it enforces the model to consider long-
range dependencies, thus better capturing details from the input image. The attention
maps generated by our model can then be visualized, as presented in Figure 6.8. As
can be observed, the highlighted parts generally concern central face parts, such as
the eyes, nose, and mouth. This shows that DeepFakes generation methods still create
visual artifacts that classification models can exploit.

RealFake Fake Fake Real Real

Figure 6.8. Examples of extracted faces and their corresponding attention map. Face
parts that are the most useful for the final prediction are highlighted.

Contributions 146

6.4 Proof-of-Concept: Deepfake Buster

As a proof-of-concept, we developed a DeepFake Detection application. This applica-
tion was created using a Jupyter Notebook [121], allowing to execute pieces of code
sequentially. This notebook has been turned into a standalone web application, with
interactive widgets using the Voilà extension [122]. Finally, the application is hosted
and turned into an executable environment, making it reproducible by anyone with the
Binder service [123].

More precisely, the application runs a simplified version of the solution proposed in
Section 6.2. The face extraction network is exclusively based on the improved BlazeFace
network and the classification network based on a compressed version of the model
proposed for the DFDC. The application, represented in Figure 6.9, is composed of 3
buttons:

• An Upload button that the user can click to upload an image or video.

• A Get Prediction button that the user can click to obtain the prediction of the
model about the uploaded file.

• A Show Attention button that the user can click to show the Attention heatmap
once the application has made its prediction.

Figure 6.9. The DeepFake Buster application, running in a web browser.

147 6.4. Proof-of-Concept: Deepfake Buster

An example of the usage of the application is presented in Figure 6.10, where it is
tested for a manipulated face extracted from a video of the DFDC dataset. The predic-
tion result, depicted in Figure 6.10a, illustrates that the model is confident about the
falsity of the provided image. The result of the attention analysis, provided in Figure
6.10b, highlights parts of the image that the model found valuable for its prediction.
The most important parts are concentrated towards the person’s glasses, indicating
that the model found clues of forgery in the glasses, likely because of the presence of
rendering artifacts.

(a) Result of the prediction on the provided
face.

(b) Result of the prediction of the attention
heatmap on the provided face.

Figure 6.10. Example of usage of the web-based application. An image extracted from
a forged video is uploaded and fed to the model, which predicts it to be
false and provides an attention map, allowing for a better interpretation of
results.

The DeepFake Buster application also allows the user to upload videos. Those videos
will first be decomposed into frames, then the model predicts its results on each frame
separately, as shown in Figure 6.11a. The Attention option is also available, indicating
important parts in each video frame, as depicted in Figure 6.11b.

Contributions 148

(a) Result of the prediction on the provided
video and the extracted faces.

(b) Result of the prediction of the attention
heatmap on the provided face.

Figure 6.11. Example of usage of the web-based application. A forged video is uploaded
and fed to the model, which first extracts faces from each frames, and then
makes its prediction. It also provides the corresponding attention maps,
allowing for a better interpretation of results.

6.5 Discussion and Conclusions

In this contribution, we propose a lightweight solution for DeepFake detection. This
solution consists of two networks: (1) a face extraction network, using an improved
version of BlazeFace; (2) a classification network, that has been built with e�cient
computation layers, but also several compression techniques such pruning, knowledge
distillation, quantization and batch normalization folding.

We show that our solution is able to compete with state-of-the-art DeepFake detection
techniques in terms of performance, but also that it provides a better trade-o↵ between
performance and compute costs. Moreover, because it contains a Self-Attention layer,
it is possible to directly visualize the important features for the model’s prediction.

In addition, we propose a proof-of-concept application, running the detection model
in a web-based application, that can be used by anybody that desires to verify if the
video or picture being looked at is real or fake.

149 6.6. In Brief

6.6 In Brief

Summary 6

• DeepFakes creation is becoming a commodity, with many publicly-
available tools for image and video creation.

• To counteract the menaces of DeepFakes, several influential actors joined
forces to organize the DeepFake Detection Challenge challenge and release
an extensive dataset.

• We propose Fake-Buster, a lightweight neural network, designed for Deep-
Fakes Detection.

• Our solution o↵ers competitive performance, while being smaller and
faster.

• We validate our results on real-case scenarios, by participating to the DFDC,
and rank at 4% and 6% on the public and private test set respectively.

• We also release a proof-of-concept application to perform DeepFake
detection on the web.

CHAPTER 7

Conclusions

“Every new beginning comes from some other beginning’s
end.”
— Seneca

— 151 —

Conclusions 152

The present thesis proposes a number of novel research ideas in the field of neural
network compression, and neural network pruning in particular. During our research,
we identified a lack of description conventions for pruning methods. For that reason,
the first presented contribution concerns a novel description of pruning techniques, de-
veloped according to four axes, that we hope will help to federate further research.
Consequently, we propose a compression library, built according to the provided prun-
ing description, thus allowing for a seamless mapping between research ideas and their
implementation. In addition to the pruning study and description and the related prun-
ing toolbox, we proposed four theoretical contributions, each advancing in one of the
four description axes. We also presented a proof-of-concept application, combining dif-
ferent contributions and methods learned throughout this dissertation, and applied to
a real-case scenario concerning DeepFake detection on visual data. In this Conclusion,
we proceed to synthesize our di↵erent contributions and provide ideas for improvements
and further development. Finally, we conclude with more general considerations about
the field of neural network compression and the future of deep learning.

Contributions

The following synthesizes the di↵erent contributions presented in the thesis:

• A universal description of pruning techniques. We identify four components
allowing us to unequivocally and completely define currently existing pruning tech-
niques. Those components are: the granularity, the context, the criteria, and the
schedule. Defining the pruning problem according to those components allows us
to subdivide the pruning problem into four mostly independent subproblems and
also to better determine potential research lines.

• A lightweight compression library. As of today, few tools are available to make
neural network compression accessible. Indeed, either those tools are dedicated to
research, making them often inconvenient to apply to other usecases than those
they were designed for; or they are one-sided, only allowing to apply a single com-
pression method. To fill this gap, we proposed FasterAI, a PyTorch-based library,
that is intended to be helpful to researchers, eager to create and experiment with
di↵erent compression techniques, but also to newcomers, that desire to compress
their neural network for a concrete application. In particular, the sparsification
capabilities of FasterAI have been built according to the previously defined prun-
ing components. This allows to perform various experiments seamlessly, but also
to more easily integrate new methods.

• Advances in pruning granularity. In this study, we propose an alternative
to the filter granularity when performing pruning. The filter granularity is often

153 Conclusions

used because of its ability to reduce the number of parameters in a network while
allowing it to remain dense. Indeed, once filters have been zeroed-out, they can be
removed from the architecture, and re-expressed accordingly. As a result, such type
of pruning does not require dedicated resources to take advantage of parameter
compression and speed-up. However, instead of selecting filters to remove, the
same benefit can be achieved by removing kernels in the same position from all
filters in a layer. We call this granularity shared-kernel and show that, not only
does it allow to reach higher compression rates in some cases, but also that it gives
indications of important input features. This also allows to reduce the size of the
dataset to be stored and the size of input data to be used.

• Advances in pruning context. When comparing parameters to remove dur-
ing the pruning process, two methods are usually used: (1) local pruning, which
compares the parameters in each layer independently; (2) global pruning , which
compares parameters from the whole network. In this contribution, we propose to
base our selection on the sensitivity of di↵erent layers. More precisely, we compare
the sensitivity of models that are trained in two ways: from random initialization
and from pretrained weights. We observe that networks trained from pretrained
weights usually possess deep layers that are less sensitive to pruning than net-
works trained from random initialization. As a result, the pruned fine-tuned mod-
els usually possess fewer parameters but more computation than networks trained
from-scratch. This suggests that pruning methods can be tailored for di↵erent
initialization methods according to the budget constraints.

• Advances in pruning criteria. There exist a lot of di↵erent pruning criteria
that are used as a proxy for parameter importance. Simple ones such as evaluating
parameters according to their magnitude turned out to be the most e�cient and
generalizable. However, such criteria are lacking of a critical concept: they do not
seek to explicitly reduce the redundancy in parameters that they use. To overcome
this situation, we propose to use a technique inspired from Explainable Artificial
Intelligence (XAI), called Activation Maximization, to cluster parameters having
similar functionalities in the decision process. By then applying common pruning
criteria in each group, we ensure to retain a candidate for each functionality, while
removing redundant ones.

• Advances in pruning schedule. Most pruning techniques are suggesting to
start from a trained model. While generating decent results, such techniques turn
out to be time-consuming. Moreover, it has been shown that pruning acts as a
regularization, and that such regularization should be used early in training to
take advantage of its e↵ects. For this reason, we propose the One-Cycle schedule,
allowing to start the pruning directly from the start of the training phase. As
a result, networks are trained in a significantly shorter training time and usually
reach better performance.

Conclusions 154

• A use-case. To demonstrate the advantages of compression techniques and use
the knowledge acquired in previous experiments, we decide to apply our compres-
sion technique to an actual problem: the DeepFake detection. To do so, we propose
a lightweight solution, able to extract faces from a video and to perform classifi-
cation on those faces. The architecture uses many techniques to be as e�cient as
possible.

• A proof of concept application. To further demonstrate the capabilities that
can be achieved by neural network compression, we provide a publicly available
and web-based application that executes the previously designed DeepFake detec-
tion technique. This application thus allows anyone to perform detection on an
image or video of their choice.

Perpectives

Several research directions can be inferred from the proposed work. In particular, we
propose four directions for future works:

• Sparse training. The best pruning techniques currently require some data in-
formation before removing weights in the network. Studying the possibility to
directly start from a sparse network could not only save training time, but also
would allow training models whose dense counterparts would not fit in memory.

• Hardware co-design. Pruning techniques are often incompatible with most
current hardware and compilation kernels. Although specialized kernels to support
sparse computing are being developed, one could investigate at a lower level the
interaction between hardware and pruning techniques, to provide the best trade-o↵
between cost, accuracy and sparsity.

• Architecture Design. Pruning can be seen as a Neural Architecture Search
(NAS) technique. As demonstrated in Section 2.2.2, it is possible to remove con-
nections but also to grow them. One could thus study novel techniques, at the
intersection of pruning and growing, allowing to discover new and e�cient archi-
tectures.

• Interaction of compression techniques. Pruning is only one of available com-
pression techniques and, as shown in Chapter 2, one way among others to discover
models that are closer to the Pareto optimality. To some extent, there thus are
interactions and potential interferences that can occur when mixing di↵erent com-
pression techniques. One could thus study the di↵erent ways to combine compres-
sion techniques to develop novel methods and more e�cient models.

155 Conclusions

Final Considerations

Although it held for decades, Moore’s Law is coming to an end as we approach the fun-
damental limits of CMOS technologies [124]. This means that we are not guaranteed
more computing power in the future. Instead, we might enter a new era of collaboration
between software, hardware, and machine learning communities. Indeed, to continue
to provide more computing capabilities, there is currently a shift from task-agnostic to
domain-specialized hardware, optimizing for operations common to neural networks. To
be economically viable, machine learning accelerator hardware must have a lifetime of
at least three years, making the development of new hardware architectures challenging,
especially in a fast-paced field such as machine learning [125]. On the other hand, the
quest for more e�ciency will thus undeniably go through neural network compression
techniques, and particularly sparse computations. Indeed, popular hardware vendors
have recently started to release accelerators for sparse computations [126], which will
continue to facilitate the development and deployment of new pruning methods.

For those reasons, co-design approaches should be preferred in order to facilitate a si-
multaneous breakthrough in hardware, software and algorithmic fields [127]. However,
the main danger of increasingly specialized hardware is that it will hinder novel research
directions. Indeed, it is believed that the design choices of hardware have shaped the
machine learning field as we know it today [128]. For example, several techniques such
as Capsule Networks include new operations to fix some Convolutional Neural Networks
shortcomings. However, because those operations are not optimally-implemented on
current hardware, performances of Capsule Networks are highly sub-optimal and inter-
est in those architectures has dried out [129].

Debates are currently ongoing about future trends and research directions, that will
allow us to reach Artificial General Intelligence [130]. However, it is unclear whether
current versions of neural networks will be su�cient to create a general thinking ma-
chine, nor will current hardware enable to develop and execute such methods. It is
therefore essential to keep the software-hardware search space as wide as possible to
continue exploring new research directions and avoid machine learning researchers be-
coming what they fear the most, models that have overfit to their environment.

Bibliography

[1] D. Amodei, D. Hernandez, G. Sastry, J. Clark, G. Brockman, and I. Sutskever,

“Ai and compute”, 2018, accessed on 17 September 2022. [Online]. Available:

https://openai.com/blog/ai-and-compute/

[2] J. Sevilla, P. Villalobos, J. F. Cerón, M. Burtell, L. Heim, A. B. Nanjajjar,

A. Ho, T. Besiroglu, and M. Hobbhahn, “Parameter, compute and data trends in

machine learning”, 2021, accessed on 2 August 2022. [Online]. Available: https:

//www.lesswrong.com/s/T9pBzinPXYB3mxSGi/p/GzoWcYibWYwJva8aL

[3] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray,

A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural language models”,

CoRR, vol. abs/2001.08361, 2020.

[4] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considerations

for deep learning in NLP”, in Proceedings of the Association for Computational

Linguistics, ACL, 2019.

[5] D. A. Patterson, J. Gonzalez, Q. V. Le, C. Liang, L.-M. Mungúıa, D. Rothchild,

D. R. So, M. Texier, and J. Dean, “Carbon emissions and large neural network

training”, ArXiv, vol. abs/2104.10350, 2021.

[6] J. Barr, “Amazon ec2 update – inf1 instances with aws inferentia chips for high

— 157 —

https://openai.com/blog/ai-and-compute/
https://www.lesswrong.com/s/T9pBzinPXYB3mxSGi/p/GzoWcYibWYwJva8aL
https://www.lesswrong.com/s/T9pBzinPXYB3mxSGi/p/GzoWcYibWYwJva8aL

Bibliography 158

performance cost-e↵ective inferencing”, 2019, accessed on 8 September 2022.

[Online]. Available: https://aws.amazon.com/fr/blogs/aws/amazon-ec2-update-

inf1-instances-with-aws-inferentia-chips-for-high-performance-cost-e↵ective-infe

rencing/

[7] G. Leopold, “Aws to o↵er nvidia’s t4 gpus for ai inferencing”, 2019, accessed on

4 October 2022. [Online]. Available: https://www.hpcwire.com/2019/03/19/aws

-upgrades-its-gpu-backed-ai-inference-platform/

[8] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “E�cient processing of deep

neural networks: A tutorial and survey”, Proceedings of the IEEE, 2017.

[9] R. Mishra, H. P. Gupta, and T. Dutta, “A survey on deep neural network com-

pression: Challenges, overview, and solutions”, arXiv, vol. abs/2010.03954, 2020.

[10] D. W. Blalock, J. G. Ortiz, J. Frankle, and J. Guttag, “What is the state of

neural network pruning?” ArXiv, vol. abs/2003.03033, 2020.

[11] G. Boole, Investigation of The Laws of Thought On Which Are Founded the

Mathematical Theories of Logic and Probabilities, 1853.

[12] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity”, The Bulletin of Mathematical Biophysics, 1943.

[13] A. M. Turing, “Computing machinery and intelligence”, Mind, 1950.

[14] F. Rosenblatt, “The perceptron: A probabilistic model for information storage

and organization in the brain.” Psychological Review, 1958.

[15] G. Cybenko, “Approximation by superpositions of a sigmoidal function”, Math-

ematics of Control, Signals, and Systems, MCSS, 1989.

[16] K. Hornik, “Approximation capabilities of multilayer feedforward networks”, Neu-

ral Networks, 1991.

[17] L. N. Smith, “A disciplined approach to neural network hyper-parameters:

Part 1 - learning rate, batch size, momentum, and weight decay”, ArXiv, vol.

abs/1803.09820, 2018.

[18] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurons in the cat’s

striate cortex”, Journal of Physiology, 1959.

[19] Y. Lecun, L. Bottou, Y. Bengio, and P. Ha↵ner, “Gradient-based learning applied

https://aws.amazon.com/fr/blogs/aws/amazon-ec2-update-inf1-instances-with-aws-inferentia-chips-for-high-performance-cost-effective-inferencing/
https://aws.amazon.com/fr/blogs/aws/amazon-ec2-update-inf1-instances-with-aws-inferentia-chips-for-high-performance-cost-effective-inferencing/
https://aws.amazon.com/fr/blogs/aws/amazon-ec2-update-inf1-instances-with-aws-inferentia-chips-for-high-performance-cost-effective-inferencing/
https://www.hpcwire.com/2019/03/19/aws-upgrades-its-gpu-backed-ai-inference-platform/
https://www.hpcwire.com/2019/03/19/aws-upgrades-its-gpu-backed-ai-inference-platform/

159 Bibliography

to document recognition”, in Proceedings of the IEEE, 1998.

[20] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, “Sparsity in

deep learning: Pruning and growth for e�cient inference and training in neural

networks”, The Journal of Machine Learning Research, JMLR, 2021.

[21] L. Ilya and H. Frank, “Decoupled weight decay regularization”, in International

Conference on Learning Representations, ICLR, 2019.

[22] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting”, Journal

of Machine Learning Research, JMLR, 2014.

[23] T. Devries and G. W. Taylor, “Improved regularization of convolutional neural

networks with cutout”, arXiv, vol. abs/1708.04552, 2017.

[24] G. Ghiasi, T.-Y. Lin, and Q. V. Le, “Dropblock: A regularization method for

convolutional networks”, in Advances in Neural Information Processing Systems,

NeurIPS, 2018.

[25] C. Bucilua, R. Caruana, and A. Niculescu-Mizil, “Model compression”, in Pro-

ceedings of the ACM International Conference on Knowledge Discovery and Data

Mining, SIGKDD, 2006.

[26] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural

network”, in Advances in Neural Information Processing Systems Workshops,

NeurIPS, 2015.

[27] TensorFlow Model Optimization team, “Quantization aware training with

tensorflow model optimization toolkit - performance with accuracy”, 2020,

accessed on 5 October 2022. [Online]. Available: https://blog.tensorflow.org/20

20/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit

.html

[28] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. van Baalen, and

T. Blankevoort, “A white paper on neural network quantization”, ArXiv, vol.

abs/2106.08295, 2021.

[29] Fei-Fei Li and Jiajun Wu and Ruohan Gao, “CS231n Convolutional Neural

Networks for Visual Recognition”, 2022, accessed on 23 July 2022. [Online].

Available: https://cs231n.github.io/neural-networks-3/

https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html
https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html
https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html
https://cs231n.github.io/neural-networks-3/

Bibliography 160

[30] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, and H. Adam, “Mobilenets: E�cient convolutional neural networks for

mobile vision applications”, 2017.

[31] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition”, in in International Conference on Learning Representations,

ICLR, 2015.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks”, in Advances in Neural Information Processing

Systems, NeurIPS, 2012.

[33] S. Io↵e and C. Szegedy, “Batch normalization: Accelerating deep network training

by reducing internal covariate shift”, in Proceedings of the 32nd International

Conference on Machine Learning, ICML, 2015.

[34] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of tricks for image

classification with convolutional neural networks”, 2019.

[35] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. S. Dickstein, “On the

expressive power of deep neural networks”, in Proceedings of the International

Conference on Machine Learning, ICML, 2017.

[36] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Inverted

residuals and linear bottlenecks: Mobile networks for classification, detection and

segmentation”, arXiv, vol. abs/1801.04381, 2018.

[37] A. Gholami, K. Kwon, B. Wu, Z. Tai, X. Yue, P. Jin, S. Zhao, and K. Keutzer,

“Squeezenext: Hardware-aware neural network design”, in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshop,

CVPR, 2018.

[38] R. Shore, “Rethinking the brain: New insights into early development”, Families

and Work Institute, 1997.

[39] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural

networks with pruning, trained quantization and hu↵man coding”, in Interna-

tional Conference on Learning Representations, ICLR, 2016.

[40] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. Dally, “Exploring the

regularity of sparse structure in convolutional neural networks”, 2017.

161 Bibliography

[41] C. Rasmussen and Z. Ghahramani, “Occam's razor”, in Advances in Neural In-

formation Processing Systems, NeurIPS, 2000.

[42] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep

learning (still) requires rethinking generalization”, in Communications of the As-

sociation for Computing Machinery, ACM, 2021.

[43] B. Neyshabur, R. Tomioka, and N. Srebro, “In search of the real inductive bias:

On the role of implicit regularization in deep learning.” in International Confer-

ence on Learning Representations Workshop, ICLR, 2015.

[44] B. Bartoldson, A. Morcos, A. Barbu, and G. Erlebacher, “The generalization-

stability tradeo↵ in neural network pruning”, in Advances in Neural Information

Processing Systems, NeurIPS, 2020.

[45] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On

large-batch training for deep learning: Generalization gap and sharp minima”, in

International Conference on Learning Representations, ICLR, 2017.

[46] S. Hochreiter and J. Schmidhuber, “Flat Minima”, Neural Computation, 1997.

[47] J. Rissanen, “A Universal Prior for Integers and Estimation by Minimum De-

scription Length”, The Annals of Statistics, 1983.

[48] P. D. Grünwald and P. M. B. Vitányi, “Kolmogorov complexity and information

theory. with an interpretation in terms of questions and answers”, Journal of

Logic, Language and Information, 2003.

[49] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-

works”, in in European Conference of Computer Vision, ECCV, 2014.

[50] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. Graf, “Pruning filters for e�-

cient convnets”, in International Conference on Learning Representations, ICLR,

2017.

[51] V. Sanh, T. Wolf, and A. Rush, “Movement pruning: Adaptive sparsity by fine-

tuning”, in Advances in Neural Information Processing Systems, NeurIPS, 2020.

[52] B. Hassibi, D. G.Stork, and G. Wol↵, “Optimal brain surgeon and general network

pruning”, in in IEEE International Conference on Neural Networks, ICNN, 1993.

[53] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage”, in Advances

Bibliography 162

in Neural Information Processing Systems, NeurIPS, 1990.

[54] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance estima-

tion for neural network pruning”, 2019.

[55] N. Lee, T. Ajanthan, and P. H. S. Torr, “Snip: single-shot network pruning based

on connection sensitivity”, in International Conference on Learning Representa-

tions, ICLR, 2019.

[56] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, train-

able neural networks.” in International Conference on Learning Representations,

ICLR, 2019.

[57] J. Frankle, G. K. Dziugaite, D. Roy, and M. Carbin, “Linear mode connectiv-

ity and the lottery ticket hypothesis”, in International Conference on Machine

Learning, ICML, 2020.

[58] C. Wang, G. Zhang, and R. Grosse, “Picking winning tickets before training by

preserving gradient flow”, in International Conference on Learning Representa-

tions, ICLR, 2020.

[59] M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the e�cacy of prun-

ing for model compression”, in in International Conference on Learning Repre-

sentations, ICLR, 2018.

[60] N. Hubens, “FasterAI: Prune and Distill your models with FastAI and PyTorch”,

2020. [Online]. Available: https://github.com/nathanhubens/fasterai

[61] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-

tala, “Pytorch: An imperative style, high-performance deep learning library”, in

Advances in Neural Information Processing Systems, NeurIPS, 2019.

[62] M. Kurtz, J. Kopinsky, R. Gelashvili, A. Matveev, J. Carr, M. Goin, W. Leiserson,

S. Moore, B. Nell, N. Shavit, and D. Alistarh, “Inducing and exploiting activation

sparsity for fast inference on deep neural networks”, in International Conference

on Machine Learning, ICML, 2020.

[63] N. Zmora, G. Jacob, L. Zlotnik, B. Elharar, and G. Novik, “Neural network

distiller: A python package for DNN compression research”, vol. abs/1910.12232,

https://github.com/nathanhubens/fasterai

163 Bibliography

2019.

[64] J. Howard and S. Gugger, “Fastai: A layered api for deep learning”, Information,

2020.

[65] W. Falcon and The PyTorch Lightning team, “PyTorch Lightning”, https://gith

ub.com/PyTorchLightning/pytorch-lightning, 2019.

[66] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.

Kaiser, and I. Polosukhin, “Attention is all you need”, in Advances in Neural

Information Processing Systems, NeurIPS, 2017.

[67] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-

tion”, 2016.

[68] R. F. L. Fei-Fei and P. Perona, “Learning generative visual models from few train-

ing examples: an incremental bayesian approach tested on 101 object categories”,

2003.

[69] N. Hubens, M. Mancas, B. Gosselin, M. Preda, and T. Zaharia, “One-cycle prun-

ing: Pruning convnets under a tight training budget”, in International Conference

on Image Processing, ICIP, 2022.

[70] J. Frankle, G. K. Dziugaite, D. Roy, and M. Carbin, “Pruning neural networks

at initialization: Why are we missing the mark?” in International Conference on

Learning Representations, ICLR, 2021.

[71] S. H. et al., “Dsd: Dense-sparse-dense training for deep neural networks”, in

International Conference on Learning Representations, ICLR, 2017.

[72] J. Frankle, D. J. Schwab, and A. S. Morcos, “The early phase of neural network

training”, in International Conference on Learning Representations, ICLR, 2020.

[73] Y. LeCun and C. Cortes, “MNIST handwritten digit database”, 2005.

[74] A. Krizhevsky, “Learning multiple layers of features from tiny images”, 2009.

[75] I. T. Union, Studio Encoding Parameters of Digital Television for Standard 4:3

and Wide-screen 16:9 Aspect Ratios, 2007.

[76] L. N. Smith and N. Topin, “Super-convergence: very fast training of neural net-

works using large learning rates”, in International Society for Optics and Pho-

tonics, SPIE, 2019.

https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning

Bibliography 164

[77] H. Touvron, A. Vedaldi, M. Douze, and H. Jegou, “Fixing the train-test resolution

discrepancy”, in Advances in Neural Information Processing Systems, NeurIPS,

2019.

[78] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-

scale hierarchical image database”, in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, CVPR, 2009.

[79] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading

digits in natural images with unsupervised feature learning”, 2011.

[80] T. Gale, E. Elsen, and S. Hooker, “The state of sparsity in deep neural networks”,

in International Conference on Machine Learning, ICML, 2019.

[81] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing higher-layer

features of a deep network”, Technical Report, Univeristé de Montréal, 01 2009.

[82] C. Olah, A. Mordvintsev, and L. Schubert, “Feature visualization”, Distill, 2017.

[83] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value of net-

work pruning”, in International Conference on Learning Representations, ICLR,

2019.

[84] A. Achille, M. Rovere, and S. Soatto, “Critical learning periods in deep networks”,

in International Conference on Learning Representations, ICLR, 2019.

[85] A. Golatkar, A. Achille, and S. Soatto, “Time matters in regularizing deep net-

works: Weight decay and data augmentation a↵ect early learning dynamics, mat-

ter little near convergence”, in Advances in Neural Information Processing Sys-

tems, NeurIPS, 2019.

[86] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connec-

tions for e�cient neural networks”, in Advances in Neural Information Processing

Systems, NeurIPS, 2015.

[87] S. Vosoughi, D. Roy, and S. Aral, “The spread of true and false news online”,

Science, 2018.

[88] S. Tariq, S. Lee, H. Kim, Y. Shin, and S. S. Woo, “Detecting both machine and

human created fake face images in the wild”, in Proceedings of the International

Workshop on Multimedia Privacy and Security, MPS, 2018.

165 Bibliography

[89] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, “Mesonet: a compact fa-

cial video forgery detection network”, in International Workshop on Information

Forensics and Security (WIFS), 2018.

[90] Y. Li and S. Lyu, “Exposing deepfake videos by detecting face warping artifacts”,

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, Workshop CVPR, 2019.

[91] N. Yu, L. Davis, and M. Fritz, “Attributing fake images to gans: Learning and an-

alyzing gan fingerprints”, International Conference on Computer Vision, ICCV,

2019.

[92] J. Pu, N. Mangaokar, B. Wang, C. K. Reddy, and B. Viswanath, “Noisescope:

Detecting deepfake images in a blind setting”, in Annual Computer Security Ap-

plications Conference, ACSAC, 2020.

[93] I. Amerini, L. Galteri, R. Caldelli, and A. Bimbo, “Deepfake video detection

through optical flow based cnn”, International Conference on Computer Vision

Workshop, ICCVW, 2019.

[94] D. Güera and E. J. Delp, “Deepfake video detection using recurrent neural net-

works”, in IEEE International Conference on Advanced Video and Signal Based

Surveillance, AVSS, 2018.

[95] E. Sabir, J. Cheng, A. Jaiswal, W. AbdAlmageed, I. Masi, and P. Natarajan,

“Recurrent convolutional strategies for face manipulation detection in videos”,

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshop, CVPR, 2019.

[96] S.-Y. Wang, O. Wang, A. Owens, R. Zhang, and A. A. Efros, “Detecting photo-

shopped faces by scripting photoshop”, IEEE International Conference on Com-

puter Vision, ICCV, 2019.

[97] L. Yuezun, C. Ming-Ching, and L. Siwei, “In ictu oculi: Exposing ai created

fake videos by detecting eye blinking”, in in IEEE International Workshop on

Information Forensics and Security, WIFS, 2018.

[98] H. Qi, Q. Guo, F. Juefei-Xu, X. Xie, L. Ma, W. Feng, Y. Liu, and J. Zhao,

“Deeprhythm: Exposing deepfakes with attentional visual heartbeat rhythms”,

ACM International Conference on Multimedia, MM, 2020.

Bibliography 166

[99] Y. Wang and A. Dantcheva, “A video is worth more than 1000 lies. comparing

3dcnn approaches for detecting deepfakes”, 2020 15th IEEE International Con-

ference on Automatic Face and Gesture Recognition, FG, 2020.

[100] D. M. Montserrat, H. Hao, S. K. Yarlagadda, S. Baireddy, R. Shao, J. Horvath,

E. Bartusiak, J. Yang, D. Guera, F. Zhu, and E. J. Delp, “Deepfakes detection

with automatic face weighting”, in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, CVPR, 2020.

[101] B. Dolhansky, J. Bitton, B. Pflaum, J. Lu, R. Howes, M. Wang, and C. Canton-

Ferrer, “The deepfake detection challenge dataset”, arXiv, vol. abs/2006.07397,

2020.

[102] Y. Li, P. Sun, H. Qi, and S. Lyu, “Celeb-DF: A Large-scale Challenging Dataset

for DeepFake Forensics”, in Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, CVPR, 2020.

[103] D. Huang and F. De La Torre, “Facial action transfer with personalized bilinear

regression”, in European Conference for Computer Vision, ECCV, 2012.

[104] E. Zakharov, A. Shysheya, E. Burkov, and V. Lempitsky, “Few-shot adversarial

learning of realistic neural talking head models”, International Conference on

Computer Vision, ICCV, 2019.

[105] Y. Nirkin, Y. Keller, and T. Hassner, “Fsgan: Subject agnostic face swapping

and reenactment”, International Conference on Computer Vision, ICCV, 2019.

[106] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for gen-

erative adversarial networks”, 2019.

[107] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment us-

ing multitask cascaded convolutional networks”, IEEE Signal Processing Letters,

2016.

[108] V. Bazarevsky, Y. Kartynnik, A. Vakunov, K. Raveendran, and M. Grundmann,

“BlazeFace: Sub-Millisecond Neural Face Detection on Mobile GPUs”, arXiv,

vol. abs/1907.05047, 2019.

[109] J. Li, Y. Wang, C. Wang, Y. Tai, J. Qian, J. Yang, C. Wang, J. Li, and F. Huang,

“DSFD: Dual Shot Face Detector”, in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, CVPR, 2019.

167 Bibliography

[110] J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou, “RetinaFace: Single-

Shot Multi-Level Face Localisation in the Wild”, in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, CVPR, 2020.

[111] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention generative

adversarial networks”, in Proceedings of the International Conference on Machine

Learning, ICML, 2019.

[112] M. Tan and Q. V. Le, “E�cientNetV2: Smaller Models and Faster Training”, in

Proceedings of the International Conference on Machine Learning, ICML, 2021.

[113] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning”, in

Proceedings of International Conference on Machine Learning, ICML, 2009.

[114] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond Empiri-

cal Risk Minimization”, in International Conference on Learning Representations,

ICLR, 2018.

[115] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,

B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, and H. Wu, “Mixed

precision training”, in International Conference on Learning Representations

(ICLR), 2018. [Online]. Available: https://openreview.net/forum?id=r1gs9JgRZ

[116] M. Tan and Q. Le, “E�cientNet: Rethinking model scaling for convolutional

neural networks”, in International Conference on Machine Learning, ICML, 2019.

[117] F. Chollet, “Xception: Deep learning with depthwise separable convolutions”,

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, CVPR, 2017.

[118] S. Seferbekov, “Dfdc solution”, in Kaggle, 2020. [Online]. Available:

https://github.com/selimsef/dfdc deepfake challenge

[119] H. Zhao, H. Cui, , and W. Zhou, “Dfdc solution”, in Kaggle, 2020. [Online].

Available: https://github.com/cuihaoleo/kaggle-dfdc.

[120] J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner, “Face2face:

real-time face capture and reenactment of RGB videos”, in Communications of

the Association for Computing Machinery, ACM, 2019.

[121] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic,

K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, and

https://openreview.net/forum?id=r1gs9JgRZ
https://github.com/selimsef/dfdc_deepfake_challenge
https://github.com/cuihaoleo/kaggle-dfdc.

C. Willing, “Jupyter notebooks - a publishing format for reproducible compu-

tational workflows”, in Positioning and Power in Academic Publishing: Players,

Agents and Agendas, 2016.

[122] The Voilà Development Team, “Voilà”, 2020, accessed on 15 May 2021. [Online].

Available: https://github.com/voila-dashboards/voila

[123] The Binder Team, “Binder”, 2017, accessed on 15 May 2021. [Online]. Available:

https://github.com/jupyterhub/binderhub

[124] J. L. Hennessy and D. A. Patterson, “A new golden age for computer architec-

ture”, in Communications of the Association for Computing Machinery, ACM,

2019.

[125] J. Dean, “The deep learning revolution and its implications for computer archi-

tecture and chip design”, in IEEE International Solid- State Circuits Conference,

ISSCC, 2020.

[126] R. Krashinsky, O. Giroux, S. Jones, N. Stam, and S. Ramaswamy, “Nvidia ampere

architecture in-depth”, 2020, accessed on 4 October 2022. [Online]. Available:

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

[127] F. Sun, M. Qin, T. Zhang, L. Liu, Y.-K. Chen, and Y. Xie, “Computation on

sparse neural networks and its implications for future hardware”, in Proceedings

of the ACM/EDAC/IEEE Design Automation Conference, DAC, 2020.

[128] S. Hooker, “The hardware lottery”, in Communications of the Association for

Computing Machinery, ACM, 2021.

[129] P. Barham and M. Isard, “Machine Learning Systems Are Stuck in a Rut”, in

Proceedings of the Workshop on Hot Topics in Operating Systems, 2019.

[130] G. Marcus, “The new science of alt intelligence”, 2022, accessed on 4 October

2022. [Online]. Available: https://garymarcus.substack.com/p/the-new-science-

of-alt-intelligence

https://github.com/voila-dashboards/voila
https://github.com/jupyterhub/binderhub
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://garymarcus.substack.com/p/the-new-science-of-alt-intelligence
https://garymarcus.substack.com/p/the-new-science-of-alt-intelligence

List of Figures

0.1 Evolution of the amount of parameters present in Deep Learning archi-

tectures. 4

1.1 Representation of a 4-layer MLP. 12

1.2 The representation of a single artificial neuron, also called perceptron.

Each of the 3 inputs is associated with a weight. The perceptron com-

putes the weighted sum of the inputs, adds in the bias, and sends the

results through an activation function. 13

1.3 Examples of impact of learning rate values on convergence of SGD. . . 16

1.4 Learning Rate Range Test. 16

1.5 Representation of the LeNet-5 CNN [19]. 18

1.6 Application of the convolution filter to an input image. 19

1.7 Result of a max-pooling operation with a 2⇥ 2 kernel and stride of 2 . 20

2.1 Pareto Optimality of compressed model. 24

2.2 Convolution as designed sparsity. 27

— 169 —

List of Figures 170

2.3 Convolutional Neural Network extracting data features in a hierarchical

manner, illustrating the compositionality property of input data. 28

2.4 Representation of the solution imposed by di↵erent types of norms. . . 29

2.5 Pruning connections in a neural network. 30

2.6 Growing connections in a neural network. 31

2.7 Illustration of the Dropout technique, introducing sparsity in the neurons. 32

2.8 Illustration of the DropConnect technique, introducing sparsity in the

connections. 32

2.9 Illustration of the DropConnect technique, introducing sparsity in the

activations. 33

2.10 Illustration of the Knowledge Distillation Concept. 34

2.11 Mapping of a small range of floating-point format float32 to a fixed-

point format int8. 35

2.12 A visual illustration of the di↵erent uniform quantization grids for int8

representation. 37

2.13 Illustration of the Post-Training Quantization process. 38

2.14 Illustration of the Quantization-Aware Training process. 39

2.15 Illustration of the Automatic Mixed-Precision process. 39

2.16 Representation of the e↵ect of applying a regular convolution on an input

image of three channels. 41

2.17 Representation of the e↵ect of applying a depthwise convolution on an

input image of three channels. 41

2.18 Representation of the e↵ect of applying a pointwise convolution on an

input image of three channels. 42

2.19 Truncated-SVD decomposition of a fully-connected layer 44

2.20 Receptive field of a pixel from the second layer, when using 3⇥ 3 filters. 47

2.21 The Inverted Residual module, proposed by MobileNetV2. 48

2.22 The Fire module proposed by SqueezeNet 49

171 List of Figures

3.1 Evolution of the synaptic density in the human brain during early life. 52

3.2 Schematic representation of evolution of accuracy of trained models ac-

cording to pruning level . 53

3.3 Conceptual representation of flat and sharp minima of the loss function 54

3.4 Representation of Co filters, composed of Ci kernels of Kh⇥Kw weights

each, and constituting the layer of a CNN. 57

3.5 Representation of weight pruning. 58

3.6 Variations of vector pruning in a convolutional layer. 58

3.7 Representation of Shared-Weight Pruning. Although it appears to be

unstructured at the scale of an individual filter, the same sparsity pattern

is shared across all filters of the layer. Removed weights are in color. . . 59

3.8 Variations of slice-level pruning in a convolutional layer. 59

3.9 Variations of shared-vector pruning in a convolutional layer. 60

3.10 Filter Pruning. 60

3.11 Variations of shared-slice pruning in a convolutional layer. 61

3.12 Filter and shared-kernel granularities allow to remove parts from the

model. 62

3.13 E↵ect of local and global pruning on the individual sparsity level of a

20-layer neural network. 63

3.14 Result of the application of the Random criteria on the weights. Param-

eters that are greyed out are the parameters removed. 64

3.15 Result of the application of the Large Final criteria on the weights. Pa-

rameters that are greyed out are the parameters removed. 65

3.16 Result of the application of the Large Initialization criteria on the weights.

Parameters that are greyed out are the parameters removed. 66

3.17 Result of the application of the Large Initialization Large Final criteria

on the weights. Parameters that are greyed out are the parameters

removed. 66

List of Figures 172

3.18 Result of the application of the Magnitude Increase criteria on the weights.

Parameters that are greyed out are the parameters removed. 67

3.19 Result of the application of the Movement criteria on the weights. Pa-

rameters that are greyed out are the parameters removed. 68

3.20 Lottery Ticket Hypothesis with Rewinding 70

3.21 Evolution of sparsity for the One-Shot pruning schedule., applied at

di↵erent training times. 72

3.22 Evolution of sparsity for the Iterative pruning schedule, applied at dif-

ferent training times. 72

3.23 Evolution of sparsity for the Iterative pruning schedule, applied at dif-

ferent training times. 73

4.1 Result of the application of our proposed criteria on the weights. Pa-

rameters that are greyed out are the parameters removed. 83

4.2 Evolution of sparsity along training for the available pruning sched-

ules. While the sched func parameters defines the general evolution,

the schedule can further be customized by modifying the start pct and

end pct values. 85

4.3 Variation of the dsd schedule. The use of start epoch and end epoch

help to further customize a given pruning schedule by a↵ecting the start

and end of the pruning process. 87

5.1 Di↵erent types of sparsity in a fully-connected weight matrices. Zeroed

weights are in color. 97

5.2 Pruning rows in layer i impacts its output and consequently the columns

of layer i+ 1. Zeroed weights are in color. 98

5.3 Di↵erent types of structured granularities for CNNs. Those granularities

allow to remove parts of the network, leading to a smaller architecture. 99

5.4 Pixels removed after column pruning. Colored pixels can be removed

from all input images, e↵ectively reducing the storage need of the dataset.101

173 List of Figures

5.5 Remaining channels after performing shared-kernel pruning. The blue

channel is the first to be removed, and the red one is the second. Re-

moved channels are greyed out. 104

5.6 Di↵erence of weight distributions when the network is fine-tuned com-

pared to when it is trained from-scratch for the first convolutional layer

of ResNet-18 trained on CIFAR-10. 107

5.7 Visualization of the sensitivity to pruning of a VGG-16 trained on MNIST.

Layers with most low-norm filters are those that are less sensitive to

pruning. 109

5.8 The proposed pruning pipeline. We introduce a fourth step in the com-

mon iterative pruning process, aiming to evaluate the sensivity of each

layer to pruning. By then performing pruning in the least sensitive layer,

we ensure to reduce the number of parameter contained in the network

without a↵ecting the performance too much. 109

5.9 Visualization of the importance of filters of VGG-16 trained on CIFAR-

10. The deep layers of FT-Network possesses an important fraction of

low-norms filters, whereas FS-Network has filters of balanced norms. . 111

5.10 Repartition of sparsities in the layers of VGG-16 trained on CIFAR-10. 112

5.11 Visualization of the 64 filters in the first convolutional layer of VGG-

16 trained on CIFAR-10. FT-Network filters have more structure than

those of FS-Network. 113

5.12 Visualization of the importance of filters of MobileNet trained on CIFAR-

10. The deep layers of FT-Network possesses an important fraction of

low-norms filters, whereas FS-Network has filters of balanced norms. . . 114

5.13 Repartition of sparsities in the layers of MobileNet trained on CIFAR-10 114

5.14 Visualization of the 32 filters in the first convolutional layer of MobileNet

trained on CIFAR-10. Filters of FT-Network exhibit more structure than

the filters of FS-Network. 115

5.15 Illustration of the Activation Maximization technique. 117

List of Figures 174

5.16 The proposed pruning pipeline. We introduce a fourth step in the com-

mon iterative pruning process, aiming to cluster convolution filters by

similar functionality. By then performing pruning in each cluster, we

ensure that we remove redundant filters, while preserving the rare ones. 118

5.17 Representation of the clustering process. We first generate the feature

image corresponding to each filter with the Activation Maximization

technique. Those synthesized images are then encoded to a lower di-

mension by a pre-trained CNN, and clustered with K-Means, allowing

to group filters sensitive to similar features together. 118

5.18 Comparison of the remaining features after applying di↵erent pruning

techniques until a sparsity of 50% in the first layer of AlexNet. Three

dominant clusters are highlighted in color. Features removed are greyed

out. 119

5.19 Results of the Lottery Ticket Hypothesis with Rewind test for di↵erent

sparsities, performed with ResNet-18 on CIFAR-10. 123

5.20 Results of the Lottery Ticket Hypothesis with Rewind test for di↵erent

sparsities, performed with ResNet-18 on CIFAR-100. 123

5.21 Results of the Lottery Ticket Hypothesis with Rewind test for di↵erent

sparsities, performed with ResNet-18 on CALTECH-101. 123

5.22 Visualization of the variation of the scheduling for di↵erent ↵ and � values.125

5.23 Comparison of the evolution of sparsity during training of the 4 studied

pruning schedules. 127

5.24 Evolution of accuracy of ResNet18 trained on CIFAR10, when applying

di↵erent pruning schedules to a sparsity of 95% 129

5.25 Evolution of instability error after each round of the Lottery Ticket Hy-

pothesis when using a di↵erent pruning schedule 131

6.1 Examples of manipulated faces present in the DFDC dataset. Di↵erent

deception methods are used to generate the faces. 136

175 List of Figures

6.2 The general framework of our proposed solution. It takes a single frame

(an image) or several frames (a video) as an input, that are fed to a face

detection network, to extract the di↵erent faces that are present. Those

faces are then used as the input of our DeepFake detection network,

yielding the final prediction. 137

6.3 The proposed crop extraction method for di↵erent image formats. . . . 138

6.4 The general framework of our proposed face extraction method. In case

no face is found with our main face extractor, a more accurate second

one is used as a fallback. 139

6.5 DFBlock, the building block of DFBuster. It consists of an inverted

residual module, a squeeze-excite (SE) module. 140

6.6 Our proposed DeepFake classification network: DFBuster. It consists of

a 3-convolutional layers stem, and 4 double DFBlocks. A Self-Attention

(SA) module is also introduced to further improve classification perfor-

mance. 141

6.7 Illustration of the augmentations applied to training data. The trans-

forms have been chosen to create a model robust to organic videos that

it might encounter in real-world settings. 141

6.8 Examples of extracted faces and their corresponding attention map. Face

parts that are the most useful for the final prediction are highlighted. . 145

6.9 The DeepFake Buster application, running in a web browser. 146

6.10 Example of usage of the web-based application. An image extracted from

a forged video is uploaded and fed to the model, which predicts it to be

false and provides an attention map, allowing for a better interpretation

of results. 147

6.11 Example of usage of the web-based application. A forged video is up-

loaded and fed to the model, which first extracts faces from each frames,

and then makes its prediction. It also provides the corresponding atten-

tion maps, allowing for a better interpretation of results. 148

List of Pseudo-Code

4.1 The two ways of sparsifying a model. The static is done o✏ine, dis-

connected from training, while the dynamic is performed during training,

allowing the model to recover from lost performance. 78

4.2 Slicing of 4D weight tensor of dimension [O, I, Kh, Kw] to extract the

desired granularity. 79

4.3 Representation of local sparsification, performed in each layer indepen-

dently and global sparsification, performed on all the layers. 80

4.4 The list of all criteria available in FasterAI and their corresponding

PyTorch implementation. 82

4.5 Custom criteria and their corresponding implementation in PyTorch. . . 82

4.6 Available schedules in FasterAI and their PyTorch implementation. . . . 84

4.7 Implementation of the Dense-Sparse-Dense technique in FasterAI. . . . 86

4.8 Changes to SparsifyCallback in order to perform Lottery Tickets Ex-

periments. 88

4.9 Code required to prune a filter-sparse model with FasterAI. 89

— 177 —

List of Pseudo-Code 178

4.10 Code required to perform Knowledge Distillation in FasterAI. 89

4.11 Code required to perform Group Regularization in FasterAI. 90

4.12 Code required to perform Batch Normalization Folding in FasterAI. . . 92

4.13 Code required to perform Knowledge Distillation in FasterAI. 93

5.1 Granularity selection for a Fully-Connected Layer. 97

5.2 Filter and Shared-Kernel Selection. 99

5.3 Performing sensitivity analysis with FasterAI. 108

5.4 One-Cycle Pruning . 126

6.1 Implementation of the proposed cropping method. 138

List of Tables

2.1 The repartition of parameter in each part of a CNN, designed for ImageNet-

1K classification. 43

2.2 The repartition of parameter in each part of an already parameter-

e�cient CNN, designed for ImageNet-1K classification. Because the

feature extraction part is parameter-e�cient, the fully-connected layer

represent a large part of the parameter count. 44

4.1 Results of sparsifying ResNet-18 for all available granularities. Con-

text, criteria and schedule are respectively set to local, large final

and one cycle. Mean and standard deviation of accuracy over 3 rounds

are reported. The darker the shade of red, the further the accuracy is

from the baseline. 80

4.2 Results of sparsifying ResNet-18 for all available granularities. Context,

criteria and schedule are respectively set to global, large final and one cycle.

Mean and standard deviation of accuracy over three rounds are reported.

The darker the shade of red, the further the accuracy is from the baseline. 81

— 179 —

List of Tables 180

4.3 Results of sparsifying ResNet-18 for all available criteria. Granularity,

context and schedule are respectively set to weight, local and one cycle.

Mean and standard deviation of accuracy over three rounds are reported.

The darker the shade of red, the further the accuracy is from the baseline. 83

4.4 Results of sparsifying ResNet-18 for all available criteria. Granularity,

context and criteria are respectively set to weight, local and large final.

Mean and standard deviation of accuracy over three rounds are reported.

The darker the shade of red, the further the accuracy is from the baseline. 86

4.5 Results of pruning ResNet-18 and VGG-16 with 4 di↵erent schedules.

Mean and standard deviation of accuracy over 3 rounds are reported. . . 88

4.6 Results of applying Knowledge Distillaion from a ResNet34 to a ResNet18

architecture for di↵erent interpolation values of �. Mean and standard

deviation of accuracy over 3 rounds are reported. 90

4.7 Results of regularizing ResNet-18 with four di↵erent penalty strengths.

Mean and standard deviation of accuracy over three rounds are reported.

The darker the shade of red, the further the accuracy is from the baseline. 91

4.8 Results of performing batch normalization folding on ResNet-18. Mean

and standard deviation of accuracy over three rounds are reported. . . 92

4.9 Results of decomposing the FCLs of ResNet-18 with 3 di↵erent compres-

sion levels. Mean and standard deviation of accuracy over 3 rounds are

reported. The darker the shade of red, the further the accuracy is from

the baseline. 93

5.1 Pruning parameters used in FasterAI. 100

5.2 Accuracies of MLP model for three di↵erent datasets and for three levels

of sparsity. Reported values are mean and standard deviation over 5

iterations . 101

5.3 Pruning parameters used in FasterAI. 102

5.4 Comparison of accuracies of ResNet-18 trained on three di↵erent datasets

and for four levels of sparsity. Reported values are mean and standard

deviation for three iterations. 103

181 List of Tables

5.5 Comparison of remaining #Params(1e6)/FLOPs(1e9) for ResNet-18 trained

on di↵erent datasets for four sparsity levels. 105

5.6 Pruning parameters used in FasterAI. 110

5.7 Results of the pruning on VGG-16 for the four studied datasets. FT-

Network leads to smaller networks, while FS-Network leads to faster

ones, due to the location of removed filters in the network. 112

5.8 Results of the pruning on MobileNet for the four studied datasets. FT-

Network leads to smaller network while not necessarily the fastest ones,

due to the location of removed filters in the network. 115

5.9 Pruning parameters used in FasterAI. 120

5.10 Results of applying di↵erent pruning criteria on VGG-16. The benefit

of applying our clustering method before selecting the filters to remove

translates to a higher accuracy for most sparsity levels and datasets.

Values in bold are the best when comparing a criteria with and without

the clustering process. Accuracies and standard deviation over 3 runs

are reported. 121

5.11 Results of applying di↵erent pruning criteria on ResNet-18. The benefit

of applying our clustering method before selecting the filters to remove

translates to a higher accuracy for most sparsity levels and datasets.

Values in bold are the best when comparing a criteria with and without

the clustering process. Accuracies and standard deviation over 3 runs

are reported. 122

5.12 Grid search of ↵ and � for Resnet-18 trained on CIFAR-10 to for 90%

sparsity. Mean and standard deviation over 3 rounds are reported. . . . 126

5.13 Pruning parameters used in FasterAI. 126

5.14 Results of pruning ResNet-18 and VGG-16 with 4 di↵erent schedules.

Mean and standard deviation of accuracy over 3 rounds are reported. Best

results are in bold. 128

5.15 Training budget required to prune ResNet-18 to 95% to achieve a fixed

validation accuracy. 129

List of Tables 182

5.16 Validation accuracy of the reinitialized ResNet-18 sub-networks found by

several pruning schedules at their last pruning round, i.e. at a sparsity

level of 95% . 130

6.1 Characteristics of Face Detection models. Speed is measured on a Nvidia

GTX 1080 GPU. 137

6.2 Characteristics of Face Detection models. Speed is measured on a Nvidia

GTX 1080 GPU . 139

6.3 Characteristics of Face Detection models. 140

6.4 Pruning parameters used in FasterAI. 142

6.5 Ablation Study of the proposed model. 143

6.6 Comparison to the state-of-the-art DeepFake classification methods. The

Inference Time is computed on single image, using a Nvidia GTX 1080

and averaged over 10 iterations. 144

Titre : Compression et accélération de réseaux de neurones profonds par élagage synaptique

Mots clés : Élagage de réseaux de neurones, Compression de réseaux de neurones, Apprentissage profond.

Résumé : Depuis leur résurgence en 2012, les
réseaux de neurones profonds sont devenus om-
niprésents dans la plupart des disciplines de l’in-
telligence artificielle, comme la reconnaissance
d’images, le traitement de la parole et le traitement du
langage naturel. Cependant, au cours des dernières
années, les réseaux de neurones sont devenus ex-
ponentiellement profonds, faisant intervenir de plus
en plus de paramètres. Aujourd’hui, il n’est pas rare
de rencontrer des architectures impliquant plusieurs
milliards de paramètres, alors qu’elles en contenaient
le plus souvent des milliers il y a moins de dix ans.

Cette augmentation généralisée du nombre de pa-
ramètres rend ces grands modèles gourmands en
ressources informatiques et essentiellement ineffi-
caces sur le plan énergétique. Cela rend les modèles
déployés coûteux à maintenir, mais aussi leur utilisa-
tion dans des environnements limités en ressources
très difficile.

Pour ces raisons, de nombreuses recherches ont été
menées pour proposer des techniques permettant de
réduire la quantité de stockage et de calcul requise
par les réseaux neuronaux. Parmi ces techniques,
l’élagage synaptique, consistant à créer des modèles
réduits, a récemment été mis en évidence. Cepen-
dant, bien que l’élagage soit une technique de com-
pression courante, il n’existe actuellement aucune
méthode standard pour mettre en œuvre ou évaluer
les nouvelles méthodes, rendant la comparaison avec
les recherches précédentes difficile.

Notre première contribution concerne donc une des-
cription inédite des techniques d’élagage, développée
selon quatre axes, et permettant de définir de manière
univoque et complète les méthodes existantes. Ces
composantes sont : la granularité, le contexte, les
critères et le programme. Cette nouvelle définition du
problème de l’élagage nous permet de le subdiviser
en quatre sous-problèmes indépendants et de mieux
déterminer les axes de recherche potentiels.

De plus, les méthodes d’élagage en sont encore à
un stade de développement précoce et principale-

ment destinées aux chercheurs, rendant difficile pour
les novices d’appliquer ces techniques. Pour com-
bler cette lacune, nous avons proposé l’outil Fas-
terAI, destiné aux chercheurs, désireux de créer et
d’expérimenter différentes techniques de compres-
sion, mais aussi aux nouveaux venus, souhaitant
compresser leurs modèles pour des applications
concrètes. Cet outil a de plus été construit selon les
quatre composantes précédemment définis, permet-
tant une correspondance aisée entre les idées de
recherche et leur mise en œuvre.

Nous proposons ensuite quatre contributions
théoriques, chacune visant à fournir de nouvelles
perspectives et à améliorer les méthodes actuelles
dans chacun des quatre axes de description iden-
tifiés. De plus, ces contributions ont été réalisées
en utilisant l’outil précédemment développé, validant
ainsi son utilité scientifique.

Enfin, afin de démontrer que l’outil développé, ainsi
que les différentes contributions scientifiques pro-
posées, peuvent être applicables à un problème
complexe et réel, nous avons sélectionné un cas
d’utilisation : la détection de la manipulation faciale,
également appelée détection de DeepFakes. Cette
dernière contribution est accompagnée d’une appli-
cation de preuve de concept, permettant à quiconque
de réaliser la détection sur une image ou une vidéo
de son choix.

L’ère actuelle du Deep Learning a émergé grâce aux
améliorations considérables des puissances de cal-
cul et à l’accès à une grande quantité de données.
Cependant, depuis le déclin de la loi de Moore, les
experts suggèrent que nous pourrions observer un
changement dans la façon dont nous concevons les
ressources de calcul, conduisant ainsi à une nou-
velle ère de collaboration entre les communautés du
logiciel, du matériel et de l’apprentissage automa-
tique. Cette nouvelle quête de plus d’efficacité pas-
sera donc indéniablement par les différentes tech-
niques de compression des réseaux neuronaux, et
notamment les techniques d’élagage.

Title : Towards Lighter and Faster Deep Neural Networks with Parameter Pruning

Keywords : Neural Network Pruning, Neural Network Compression, Deep Learning.

Abstract : Since their resurgence in 2012, Deep
Neural Networks have become ubiquitous in most
disciplines of Artificial Intelligence, such as image re-
cognition, speech processing, and Natural Language
Processing. However, over the last few years, neu-
ral networks have grown exponentially deeper, invol-
ving more and more parameters. Nowadays, it is not
unusual to encounter architectures involving several
billions of parameters, while they mostly contained
thousands less than ten years ago.

This generalized increase in the number of para-
meters makes such large models compute-intensive
and essentially energy inefficient. This makes de-
ployed models costly to maintain but also their use in
resource-constrained environments very challenging.

For these reasons, much research has been conduc-
ted to provide techniques reducing the amount of
storage and computing required by neural networks.
Among those techniques, neural network pruning,
consisting in creating sparsely connected models,
has been recently at the forefront of research. Ho-
wever, although pruning is a prevalent compression
technique, there is currently no standard way of im-
plementing or evaluating novel pruning techniques,
making the comparison with previous research chal-
lenging.

Our first contribution thus concerns a novel descrip-
tion of pruning techniques, developed according to
four axes, and allowing us to unequivocally and com-
pletely define currently existing pruning techniques.
Those components are: the granularity, the context,
the criteria, and the schedule. Defining the pruning
problem according to those components allows us to
subdivide the problem into four mostly independent
subproblems and also to better determine potential
research lines.

Moreover, pruning methods are still in an early de-
velopment stage, and primarily designed for the re-
search community. Indeed, most pruning works are
usually implemented in a self-contained and sophisti-

cated way, making it troublesome for non-researchers
to apply such techniques without having to learn all
the intricacies of the field. To fill this gap, we proposed
FasterAI toolbox, intended to be helpful to resear-
chers, eager to create and experiment with different
compression techniques, but also to newcomers, that
desire to compress their neural network for concrete
applications. In particular, the sparsification capabili-
ties of FasterAI have been built according to the pre-
viously defined pruning components, allowing for a
seamless mapping between research ideas and their
implementation.

We then propose four theoretical contributions, each
one aiming at providing new insights and improving
on state-of-the-art methods in each of the four iden-
tified description axes. Also, those contributions have
been realized by using the previously developed tool-
box, thus validating its scientific utility.

Finally, to validate the applicative character of the pru-
ning technique, we have selected a use case: the de-
tection of facial manipulation, also called DeepFakes
Detection. The goal is to demonstrate that the deve-
loped tool, as well as the different proposed scientific
contributions, can be applicable to a complex and ac-
tual problem. This last contribution is accompanied
by a proof-of-concept application, providing Deep-
Fake detection capabilities in a web-based environ-
ment, thus allowing anyone to perform detection on
an image or video of their choice.

This Deep Learning era has emerged thanks to
the considerable improvements in high-performance
hardware and access to a large amount of data.
However, since the decline of Moore’s Law, experts
are suggesting that we might observe a shift in how
we conceptualize the hardware, by going from task-
agnostic to domain-specialized computations, thus
leading to a new era of collaboration between soft-
ware, hardware, and machine learning communities.
This new quest for more efficiency will thus undeniably
go through neural network compression techniques,
and particularly sparse computations.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Fundamentals
	Introduction
	A bit of History

	Multi-Layer Perceptron
	Definition
	Perceptron
	Training

	Convolutional Neural Networks
	Definition
	Convolutional Layer
	Pooling Layer
	Training

	In Brief

	Neural Network Compression
	Introduction
	Sparse Neural Networks
	Designed Sparsity
	Learned Sparsity
	Ephemeral Sparsity

	Knowledge Distillation
	Quantization
	Post-Training Quantization
	Quantization Aware Training
	Automatic Mixed Precision

	Compact Neural Network Architectures
	Matrix Factorization
	Batch Normalization Folding
	Kernel Size Reduction
	Channel Amount Reduction

	In Brief

	Neural Network Pruning
	Introduction
	Motivation
	Improves Generalization
	Lowers Complexity
	Reduces Processing Time and Storage

	Neural Network Pruning
	How to prune ?
	Where to prune ?
	What to prune ?
	When to prune ?

	In Brief

	Developed Tools: FasterAI
	Introduction
	Sparsify
	Granularity
	Context
	Criteria
	Schedule
	Lottery Ticket Hypothesis
	Prune

	Distill
	Regularize
	Misc
	Batch Normalization Folding
	Fully-Connected Layers Decomposition

	In Brief

	Advances in Neural Network Pruning
	Introduction
	How to prune?
	Methodology
	Experiments
	Discussion & Conclusion

	Where to prune?
	Methodology
	Experiments
	Discussion & Conclusion

	What to prune?
	Methodology
	Experiments
	Discussion & Conclusion

	When to prune?
	Methodology
	Experiments
	Discussion & Conclusion

	In Brief

	Use-Case: DeepFake Detection
	Introduction
	DeepFakes Detection Challenge
	Related Work

	Methodology
	The Dataset
	The Network
	Data Augmentation
	Compression of the solution

	Results
	Ablation Study
	Comparison to other methods
	Interpretation

	Proof-of-Concept: Deepfake Buster
	Discussion and Conclusions
	In Brief

	Conclusions
	Bibliography
	List of Figures
	List of Pseudo-Code
	List of Tables

