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“Give me a nice system of algebraic equations, and a
large enough random-access memory to place it,

and I shall cryptanalyze the world.”

Archimades, 3rd century BC.
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Notation and Acronyms

All along this document, we use the following notation:

• q is a power of a prime p, Fq is the finite field with q elements, and Fqm its
extension of degree m.

• for a field F, we denote by F× the multiplicative group of non-zero elements
of F.

• α ∈ Fqm is a primitive element, and

β := (1, α, . . . , αm−1) ∈ Fmqm

is a basis of Fqm seen as an Fq-vector space.

• We denote by K a field, and K its algebraic closure.

• For a fieldK, we denote byK[x1, x2, . . . , xn] the ring of multivariate polynomials
in n variables overs K.

• Matrices and vectors are written in boldface font: M , v. By extension, we
identify a point p to its position vector, thus it is also written in boldface font.

• The general linear group of non-singular n × n matrices with entries in Fq is
denoted GLn(Fq).

• For a positive integer n, 0n refers to the zero vector of length n. However,
when there is no ambiguity, we might just denote it 0.

• The identity matrix of size n× n is denoted In.

• The transpose of a matrix M is denoted by M ᵀ.

• For a given ring R, the set of matrices with n rows, m columns, and entries in
R, is denoted by Rn×m.
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• {1, 2, . . . , n} and {1..n} stand for the set of integers from 1 to n, we use them
indifferently.

• For a subset I ⊂ {1..n}, #I stands for the number of elements in I.

• For two subsets I ⊂ {1..n} and J ⊂ {1..m}, M I,J denotes the submatrix of
M formed by its rows (resp. columns) with indices in I (resp. J).

• For an m× n matrix M , we use the shorthand notation

M ∗,J = M {1...m},J ,M I,∗ = M I,{1...n}.

• M i,j denotes the entry in M at row i and column j.

• |M | denotes the determinant of a matrix M , |M |I,J is the determinant of the
submatrix M I,J .

• We extend the aforementioned shorthand notation to determinant:

|M |∗,J = |M ∗,J | , |M |I,∗ = |M I,∗| .

• We recall the definition and notation for a Gaussian coefficient over q:[
m
t

]
q

:=
t−1∏
i=0

qm − qi

qt − qi
.

• For a set A, the notation a
$← A means that the element a ∈ A is picked

uniformly at random in A.

• We say that ε(x) ≥ 0 is a negligible function of x if for all positive polynomial p:

∃Np ∈ N, x > Np =⇒ ε(x) <
1

p(x)
.

For instance, 2−x is a negligible function of x. For the sake of clarity, we might
omit the parameter x when there is no ambiguity; indeed, we just say that ε
is negligible.

• In this document, we when say that an event happens with overwhelming prob-
ability, it means that it happens with probability 1− ε, where ε is negligible.
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• When the complexity of an algorithm, or an attack, is said to be of n bits, it
means that the attacker would have to perform at least 2n operations (usually
elementary operations in the field Fq). In other words, saying that an attack
has a cost of 100 bits is just a simpler way of saying that at least 2100 operations
are required to perform the attack.

• 1λ is a security parameter in unary which will parameterize in practice the key
lengths, group sizes, and complexity for our cryptographic primitives. It affects
the success probability of adversaries to win specific security games.

• For a bit string s, we denote its length by len(s).
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Here is a list of the main acronyms used in this document:

Acronym Refers to
RD Rank Decoding
NHRD Non-Homogeneous RD
RSL Rank Support Learning
NHRSL Non-Homogeneous RSL
DRD Decisional RD
DRSL Decisional RSL
DNHRSL Decisional NHRSL
IRD Ideal RD
IRSL Ideal RSL
NHIRSL Ideal NHRSL
DIRD Decisional IRD
DNHIRSL Decisional NHIRSL
PSSI Product Spaces Subspaces Indistinguishability
IND-CPA Indistinguishability under Chosen-Plaintext Attack
EUF-CMA Existential Unforgeability under Chosen-Message Attack
DFR Decoding or Decryption Failure Rate

(depending on the context)
PPT Probabilistic Polynomial-Time
KEM Key Encapsulation Mechanism
HQC Hamming Quasi-Cyclic
RQC Rank Quasi-Cyclic
Multi-RQC-AG Multi-syndrome RQC Augmented Gabidulin
Multi-UR-AG Multi-syndrome Unstructured Rank Augmented Gabidulin
NH-Multi-RQC-AG Multi-RQC-AG using Non-Homogeneous errors
NH-Multi-UR-AG Multi-UR-AG using Non-Homogeneous errors
NIST National Institute of Standards and Technology
NIST PQSP NIST Post-Quantum Standardization Process
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Chapter 1

Introduction

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.1 Quantum threat . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.2 Post-Quantum Cryptography . . . . . . . . . . . . . . . . . . 18
1.1.3 Rank-based Cryptography . . . . . . . . . . . . . . . . . . . . 19

1.1.3.1 Encryption schemes . . . . . . . . . . . . . . . . . . 20
1.1.3.2 Signature schemes . . . . . . . . . . . . . . . . . . . 22

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.1 Cryptanalysis results . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.2 Improvements on rank-based cryptosystems . . . . . . . . . . 25
1.2.3 Introduction of a new problem . . . . . . . . . . . . . . . . . . 26

1.1 Context
Public key cryptography is a primordial tool used to render digital communications
secure. All currently used public key cryptosystems share a property: they rely on
two distinct but connected problems: the factorization of integers and the discrete
logarithm problems.

The first public key cryptosystem, namely a key exchange algorithm, was invented
in 1976 by Diffie and Hellman [DH76], it relies on the discrete logarithm problem.
Shortly after, the first public key encryption and signature scheme was invented
[RSA78]. It is called RSA after the names of its inventors: Rivest, Shamir, Adleman,
and it relies on the hardness of factoring large integers.
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1.1.1 Quantum threat

In 1994, Shor described a quantum algorithm [Sho99] that solves both of these
problems efficiently. This means that, with a powerful and stable enough quan-
tum computer, Shor’s breakthrough algorithm would enable one to break all current
cryptosystems.

In the last two decades, there have been a lot of developments in building quantum
computers; this is why, in 2017, NIST (National Institute of Standards and Technol-
ogy) launched its call for cryptosystems that would resist both classical and quantum
computers [C+16, AAAS+19]. Such cryptosystems are said to be quantum-resistant
or post-quantum.

The goal of this call for proposals, referred to as the NIST Post-Quantum (Cryp-
tography) Standardization Process, is to select a list of post-quantum cryptosystems,
namely encryption and signature schemes, for standardization.

1.1.2 Post-Quantum Cryptography

Surprisingly, the first post-quantum cryptosystem was invented at the same time
as RSA, even if it was not said to be post-quantum at that time. It is McEliece’s
cryptosystem [McE78], which was published in 1978.

McEliece’s cryptosystem belongs to the so-called code-based cryptography since
its security relies on the hardness of decoding error correcting codes.

While code-based cryptography was the first kind of post-quantum cryptog-
raphy, it is not the only one. There are currently four other main categories in
post-quantum cryptography:

Hash-based cryptography started in 1979 with Lamport’s one time signature
[Lam79], which evolved with the use of Merkle trees [Mer89].

Multivariate-based cryptography started in 1988 with the C* cryptosystem by
Matsumoto and Imai [MI88]. C* has been broken in 1995 by Patarin [Pat95] who
later fixed it and created HFE [Pat96].

Lattice-based cryptography started in 1996 with [Ajt96] and the NTRU cryp-
tosystem [HPS98]. The Learning With Error (LWE) problem was later introduced
in the seminal paper by Regev [Reg05].
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Isogeny-based cryptography started in 2011 with [JF11] by Jao and De Feo using
results from Couveignes [Cou06], Rostovtsev and Stolbunov [RS06].

The NIST Post-Quantum Standardization Process stimulated the community to
develop new designs and attacks. For instance, very recently some Third Round Fi-
nalists and Alternate candidates were attacked, namely Rainbow by Beullens [Beu22],
and SIDH/SIKE by Castryck and Decru, Maino and Martindale [CD22, MM22].

In July 2022, NIST released the results of the Third Round [AAC+22], that is to
say, the list of candidates to be standardized and the ones advancing to the Fourth
round; this is summarized in Table 1.1.

Cryptosystem Type Category Decision
CRYSTALS-Kyber KEM Lattice To be standardized

CRYSTALS-Dilithium Signature Lattice To be standardized
Falcon Signature Lattice To be standardized

SPHINCS+ Signature Hash To be standardized

BIKE KEM Code Moving to 4th Round
Classic McEliece KEM Code Moving to 4th Round

HQC KEM Code Moving to 4th Round
SIKE KEM Isogeny Moving to 4th Round

Table 1.1: Third Round results announced by NIST in July 2022. KEM stands for
“Key Encapsulation Mechanism”.

While the attacks against Rainbow and SIKE do not necessarily mean the end
of multivariate or isogeny-based cryptography, they alter the confidence in these
approaches. This strengthens the interest for code and lattice-based cryptography.

1.1.3 Rank-based Cryptography

The rank metric was introduced in 1978 by Delsarte [Del78] for matrix codes. In 1985,
Gabidulin introduced the first efficiently decodable rank metric Fqm-linear codes,
namely Gabidulin codes [Gab85].

In a cryptographic context and for a given security level, rank metric codes
have the advantage to usually enable one to have shorter public keys and cipher-
texts/signatures compared to classical Hamming metric codes.
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This is why, in the last decade, rank metric code-based cryptography, often short-
ened in rank-based cryptography, has evolved to become a real alternative to tradi-
tional code-based cryptography using the Hamming metric.

1.1.3.1 Encryption schemes

The original scheme based on rank metric was the GPT cryptosystem, named after
its inventors: Gabidulin, Paramonov, and Tretjakov [GPT91].

This is an adaptation of the McEliece scheme in a rank metric context; in other
words, in the GPT cryptosystem, Gabidulin codes, which can be seen as rank metric
analogs of Reed-Solomon codes, are the masked codes.

However, the strong algebraic structure of these codes was successfully exploited
for attacking the original GPT cryptosystem and its variants with the Overbeck
attack [Ove05] (see [OTKN18] for the latest developments).

This situation is similar to the Hamming metric setting where most of McEliece
cryptosystems based on variants of Reed-Solomon codes have been broken.

Besides McEliece-like schemes where a secret code is masked using permutation,
it is possible to generalize the approach by considering public key matrices with a
trapdoor.

Examples of such an approach are NTRU [HPS98], and MDPC (Moderate Density
Parity-Check) [MTSB13] cryptosystems where the masking consists in knowing a
very small weight vector of the given public matrix.

Such an approach was adapted to the rank metric through the introduction of
LRPC (Low Rank Parity-Check) codes [GMRZ13], a rank metric analog of MDPC.
These codes lead to the ROLLO cryptosystem [ABD+19].

The security of these cryptosystems relies on the general rank decoding problem
together with the computational indistinguishability of the public key, i.e., a public
matrix, from a random one.

This enables one to obtain very efficient schemes, however this comes at the price
of a matrix inversion to compute the public key matrix.

It is worth noticing that Loidreau’s encryption scheme [Loi17], which uses
Gabidulin matrices in a McEliece context, masked with homogeneous matrices of
low rank weight, seems to resist to structural attacks as long as the masking matrix
has a sufficiently large rank.

Another approach, pioneered in 2003 by Aleknovich [Ale03], permits to rely solely
on random instances of the decoding problem without any masking of a public key.
However, such an approach is strongly inefficient in practice.
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A few years later, a more optimized approach was proposed with the HQC (Ham-
ming Quasi-Cyclic) scheme [AAB+21b], relying on Quasi-Cyclic codes.

It has been adapted to the rank metric with the RQC (Rank Quasi-Cyclic) scheme
[AAB+20].

In these schemes, two types of codes are used: first, a random double circulant
code permits to ensure the security of the scheme, second, a public code permits to
decode/decrypt the ciphertext.

In RQC scheme, Gabidulin codes are used as public decryption codes.

Besides RQC, some other variations were proposed in [GHPT17, Wan19, GGH+20].
The main advantage of the RQC cryptosystem is the fact that its security reduces
to decoding random ideal codes whereas LRPC cryptosystems require an additional
indistinguishability assumption; however, this advantage comes at a price since pa-
rameters are larger for RQC than for LRPC.

The RQC scheme was proposed to the NIST Post-Quantum Standardization Pro-
cess with very competitive parameters.

In 2020, algebraic attacks [BBB+20, BBC+20], published during the standard-
ization process, had a dreadful impact on RQC parameters.

In order to limit the impact of these algebraic attacks, that is to say, not to
increase too much RQC parameters, non-homogeneous errors were introduced in
[AAB+20].

The idea of non-homogeneous errors is to consider errors in three parts of length
n such that the error weight is the same for the first two sets, but larger for the third
one. Such an approach permits to limit the impact of the security reduction of RQC
to decoding random [3n, n] codes rather than [2n, n] codes in LRPC cryptosystems.

The notion of non-homogeneous error led to the introduction of the Non Homo-
geneous Rank Decoding problem (NHRD).

It is worth noticing that for both LRPC and RQC cryptosystems, the weight of
the error to attack is structurally O (

√
n), where n is the length of the code, which

is a range of parameters for which algebraic attacks turn out to be very efficient.

Besides the classical RD (Rank Decoding) problem, the RSL (Rank Sup-
port Learning) problem, which consists in having N syndromes whose associated er-
rors share the same support, was introduced in [GHPT17] to construct a RankPKE
scheme, and used later in [Wan19].
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This problem, which generalizes RD, is meaningful to give more freedom while
building cryptosystems; for instance, it has been recently used to improve the LRPC
scheme [AAD+22].

RSL permits, in particular, to increase the weight of the error to decode from
O (
√
n) to a weight closer to the Rank Gilbert-Varshamov (RGV) bound; this is

primordial since for that type of parameters, i.e., close to the RGV bound, algebraic
attacks become relatively less efficient than classical combinatorial attacks.

1.1.3.2 Signature schemes

While two rank-metric encryption schemes, ROLLO [ABD+19] and RQC [AAB+20],
were selected for the Second Round of the NIST Post-Quantum Standardization
Process, designing rank-metric signature schemes is a more challenging task.

Code-based signature schemes in general, and rank metric schemes in particular,
can essentially be split in two categories: the hash-and-sign schemes and the proof
of knowledge ones.

For building an hash-and-sign signature scheme, one needs to be able to find a
low rank error vector associated to a syndrome.

Ranksign [GRSZ14b] was built using this technique together with LRPC codes.
However, it has been shown in [DT18] that it is possible to recover the secret LRPC
matrix from the public key.

Designing proof of knowledge signature schemes can be done in two ways.

The first one consists in turning a zero-knowledge authentication scheme into a
signature scheme using the Fiat-Shamir transformation (also called the Fiat-Shamir
heuristic) [FS87]. This approach usually leads to schemes with large signature sizes
since the authentication protocol needs to be repeated multiple times, depending on
the soundness of the underlying authentication scheme, in order to reach an arbitrary
high security level.

Instead of using zero-knowledge authentication schemes, one can build upon the
work of Lyubashevsky [Lyu09], which adapts the Schnorr signature scheme [Sch91]
to the Euclidian metric.

In the rank metric setting, this idea gave rise to the Durandal [ABG+19] signature
scheme, and to the Rank Preserving Signature (RPS) scheme [LT20b], broken in
[ABG21].
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1.2 Contributions
Our contributions are divided in three parts: cryptanalysis results (Chapter 3), im-
provements of cryptosystems (Chapter 4), and the introduction of a new problem
(Chapter 5). These contributions are summarized in Table 1.2 on page 27.

1.2.1 Cryptanalysis results

Rank-based cryptography is a subfield of code-based cryptography where one uses
the rank metric instead of the traditional Hamming metric.

The Rank Decoding (RD) and the MinRank problems are at the core, respec-
tively, of rank-based cryptography and multivariate-based cryptography. Moreover,
RD reduces to MinRank, thus the MinRank problem is important in rank-based
cryptography as well.

MinRank. In Section 3.1, we propose a new algebraic attack against theMinRank
problem.

Unlike previous approaches, such as Kipnis-Shamir’s or minors modeling [KS99,
FSEDS13, FLdVP08, VBC+19], our system of algebraic equations uses linearization
techniques to replace maximal minors.

More specifically, we replace each determinant of degree r with roughly r! terms
by a single variable that we denote cT . By doing so, our system of algebraic equations,
i.e., our modeling, is far smaller compared to previous approaches; which leads to
better complexities.

This modeling, namely the SupportMinors modeling, has been introduced in
[BBC+20], and further improved in [BBB+22].

RD. For a long time, combinatorial attacks were considered to be the only effi-
cient attacks to solve RD, see for instance [GPT91, GRS16, AGHT18, AMBD+18].
Roughly, combinatorial attacks rely on picking elements at random before solving a
linear system.

For instance, in the case of RD, the guessing process concerns vector spaces:
one picks vector spaces of a given dimension and tries to solve a linear system.
This process eventually ends and one gets the solution when the picked vector space
contains the support of the solution error.

In Section 3.2, we present our results [BBB+20, BBC+20, BBB+22]: we show
that algebraic attacks can be drastically more efficient than combinatorial attacks
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to solve RD. More precisely, when the target rank weight r to decode is in O (
√
n),

where n is the length of the code, then algebraic attacks are far more efficient than
classical combinatorial attacks.

Since this area is typically the one used in cryptography, these attacks were dev-
astating against the parameters of ROLLO and RQC, two rank-based cryptosystems
that made it to the Second Round of the NIST Post-Quantum Standardization Pro-
cess. Our approach to get this far more efficient algebraic attack against RD relies
on the same aforementioned technique used to solve the MinRank problem.

Generalizations of RD. There exist generalizations of the classical Rank Decod-
ing (RD) problem, for instance the Rank Support Learning (RSL) problem, the
Non-Homogeneous Rank Decoding (NHRD) problem, and the Non-Homogeneous
Rank Support Learning (NHRSL) problem.

These problems enable one to build more advanced or more efficient cryptographic
primitives; for instance RSL is used in the Durandal signature scheme [ABG+19],
and NHRD is used in the latest version of RQC [AAB+20].

Thus, studying the complexity of these problems is primordial to evaluate the se-
curity of rank-based cryptosystems, with respect to both combinatorial and algebraic
attacks.

Recall that an Fqm-linear code in the rank metric is defined by the following
parameters: m is the degree of the extension field Fqm , n the length of the code, k
its dimension, and r the target rank weight to decode.

In Section 3.3, we describe a combinatorial attack against RSL, moreover, this
new attack enabled us to refine a fundamental bound on the complexity of this
problem. More specifically, in the Rank Support Learning problem, one is given N
syndromes, whose corresponding errors all share the same support; when N = 1,
it is the classical RD problem, and it was proven in [GHPT17] that the problem
could be solved in polynomial time if N ≥ nr. Later, in [DT18], it was proven that
RSL could be solved in subexponential time as long as N ≥ kr.

It is this bound that we improved upon by showing that any RSL instance
fulfilling

N ≥ kr
m

m− r
can be solved in polynomial time.
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We also propose explicit formulas for the algebraic attack against RSL [BB21];
and then we give a way to visualize the complexities of the different attacks against
RSL using graphs.

Then, we adapt the classical combinatorial and algebraic attacks against RD to
the case of NHRD, extending the analysis we made in [AAB+20].

Finally, we propose a combinatorial attack against the NHRSL problem.

PSSI. Durandal [ABG+19] is a rank-based signature scheme built using the
Schnorr-Lyubashevsky framework [Sch91, Lyu09]. The security of Durandal relies
on RSL, but also on a problem whose hardness has been less studied, namely the
Product Spaces Subspaces Indistinguishability problem (PSSI).

In Section 3.4, we give a randomized reduction from PSSI to MinRank. This
reduction enables one to attack any PSSI instance using state-of-the-art attacks
against MinRank. Note that this leads to the first algebraic attack against PSSI.

Cryptanalysis of a signature scheme. In Section 3.5, we describe the Rank
Preserving Signature scheme (RPS), published in 2020 by Lau and Tan [LT20b]. In
a few words, it is a rank-based signature scheme that uses the Schnorr-Lyubashevsky
framework [Sch91, Lyu09] together with ephemeral keys, i.e., keys that change with
every signature.

Then, we give two attacks of combinatorial nature against the RPS scheme: the
first one uses one single valid signature in order to forge a new one, whereas the
second attack does not require any signature since it aims at simply forging one.

Since our attacks are combinatorial, they benefit from a quantum speedup using
Grover’s algorithm; this is why we also give a quantum version of our attacks.

Overall, our attacks, published in [ABG21], show the flaws in the RPS signature
scheme, and they break all its proposed parameters, both the classical parameters
and the quantum ones, that is to say the ones targeting quantum security levels.

1.2.2 Improvements on rank-based cryptosystems

Rank Quasi-Cyclic. Rank Quasi-Cyclic [AMBD+18] is a rank-based encryption
scheme that made it to the Second Round of the NIST Post-Quantum Standard-
ization Process. Its main advantage is that its security relies solely on decoding a
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random code, whereas LRPC-like cryptosystems require an additional indistinguisha-
bility assumption.

The fact that RQC is more secure comes at a price: its parameters are bigger
than the ones of other cryptosystems such as ROLLO. This means that the sizes of
RQC’s public key and ciphertext are larger.

In Section 4.1, we introduce a new family of efficiently decodable codes in the
rank metric, namely the Augmented Gabidulin codes.

Then, using these codes together with techniques coming from [AAD+22, AAB+20,
Wan19], we propose two new versions of the RQC scheme.

The first one uses the ideal structure and has very competitive parameters; the
second one relies only on random codes, thus it is more secure, yet it still offers
competitive parameters.

In order to study the security of these cryptosystems, namely Multi-RQC-AG
and Multi-UR-AG, we use the results obtained in Sections 3.2 and 3.3.

1.2.3 Introduction of a new problem

The last chapter of this document, Chapter 5, is dedicated to the introduction of a
new problem, namely SquareSpace.

Let E = 〈e1, e2, . . . , er〉 be a vector space of Fqm of dimension r, let U be the
vector space of dimension t spanned by the products eiej, 1 ≤ i ≤ j ≤ r; we
call this vector space the square space of E. In a few words, given U = E2, the
SquareSpace problem asks one to recover the secret space E.

In Chapter 5, we present this problem and then study its complexity by providing
several combinatorial and algebraic attacks against it. Using the results from the
aforementioned attacks, we introduce four SquareSpace challenges targeting the
security level of 128 bits.

Most importantly, we apply this problem to the design of an authentication pro-
tocol; then, using the Fiat-Shamir transformation [FS87], we turn this protocol into
a signature scheme whose security relies on the SquareSpace problem.

Last but not least, we propose a C implementation of this signature scheme.
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Article /
PreprintContributions Sec. Impacts

New algebraic
attacks against
MinRank, namely
SupportMinors

[BBC+20]
[BBB+22]∗

Improves the previous attacks, our attack
has been used by Beullens in Rainbow’s
cryptanalysis [Beu22].

3.1

New algebraic
attacks against RD,
namely MaxMinors

[BBB+20]
[BBC+20]
[BBB+22]∗

Improves the previous attacks, it caused
ROLLO and RQC not to move to the 3rd
Round of NIST PQSP.

3.2

New attacks against
NHRD, RSL, and
NHRSL

[BBBG22]∗
These improve the previous attacks, and
lead to a better understanding of
rank-based cryptography problems.

3.3

Randomized
reduction from
PSSI to MinRank

In progress

PSSI (problem associated to the
Durandal signature scheme) now benefits
from all the combinatorial and algebraic
attacks against MinRank.

3.4

Attacks against the
RPS signature
scheme

[ABG21]
All proposed RPS parameters, both
classical and quantum, are broken.3.5

Improvements of the
RQC scheme [BBBG22]∗

We propose two new schemes, with or
without ideal structure, with competitive
parameters.

4

Introduction of a
new problem,
namely
SquareSpace

In progress

Analysis of its hardness, description of a
few attacks, proposition of 4 challenges,
design of a signature scheme, and
implementation in C language.

5

Table 1.2: Summary of our contributions. For each of them: the corresponding
section in this document (column “Sec.”), our work associated to it, and the impacts
it has in a few words. The star symbol by a citation means that it has not been
peer-reviewed yet. The acronym NIST PQSP stands for NIST Post-Quantum Stan-
dardization Process, see the list of acronyms on page 16.
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2.1 Coding Theory
In this section, we give some basic materials in coding theory.

For more information about codes in the Hamming metric, the reader may refer
to the very complete book by Pless [Ple98], or to the introduction to coding theory
lecture by Couvreur [Cou19].

Concerning the rank metric, the reader may refer to Loidreau’s HDR1 thesis [Loi07].

2.1.1 Coding theory Basics

An error-detecting code or an error-correcting code aims at detect or correct errors
that might occur when a message is transmitted through a noisy channel.

In the rest of this document, we will only focus on error-correcting codes, that
we simply call codes for the sake of simplicity.

The key point in coding theory is to add an extra information to a message, called
the redundancy.

Let k, n be integers such that k ≤ n, let m ∈ Fkq be a message.
The encoding process is an application E which goes from Fkq to Fnq , we say that

E(m) is the codeword associated to the message m.

In what follows, we will only focus on linear codes, that is to say, codes for which
any Fq-linear combination of codewords belongs to the code.

Definition 1 (Linear code (length, dimension)). Let k, n be integers such that k ≤ n.
A linear code C is an Fq-vector space of Fnq of dimension k.
The length of the code is n, and its dimension is k, we say that it is a [n, k]q

code, or simply [n, k] when there is no ambiguity.

A code can be described by a generator matrix or a parity-check matrix.
1Acronym of ”Habilitation à Diriger des Recherches”, highest french academic degree.
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Definition 2 (Generator matrix). Let C be a [n, k]q code. A generator matrix of C
is a matrix G in Fk×nq whose rows span C:

C = {mG,m ∈ Fkq}.

Definition 3 (Parity-check matrix). Let C be a [n, k]q code. A parity-check matrix
of C is a matrix H in F(n−k)×n

q such that:

C = {x ∈ Fnq ,Hxᵀ = (0n)ᵀ ∈ Fkq}.

For the sake of simplicity, when there is no ambiguity, we might write simply

Hxᵀ = 0.

There are several generator matrices (resp. parity-check matrices) for a given
code, we speak about the generator matrix (resp. the parity-check matrix) when it
has an identity block on its left. Such matrices always exist for a given code, up to
a permutation of the coordinates.

In that case, we say that the generator matrix (resp. parity-check matrix) is in
systematic form, for instance

G = (Ik|A)

is a generator matrix in systematic form.

A fundamental point in coding theory is the notion of weight. Let us start with
the classical Hamming weight, see Definition 4.

Definition 4 (Hamming weight and distance). Let x = (x1, x2, . . . , xn) ∈ Fnq , the
Hamming weight of x is defined as

wH(x) := #{i, xi 6= 0}.

The Hamming distance between two vectors x,y ∈ Fnq is defined as

dH(x,y) := wH(x− y).

The minimal distance of a code, denoted d, is the minimal distance between two
distinct codeword. By linearity, it is straightforward that it is equal to the minimum
weight of a non-zero codeword.

If C is a code over Fq of length n, dimension k, and minimal distance d, we say
that it is an [n, k, d]q code, or simply an [n, k, d] when there is no ambiguity.
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The notion of minimal distance is very important since it gives the error-correcting
capacity of a code, often referred to as the decoding capacity of a code, see Proposi-
tion 1.

The decoding capacity of a code C corresponds to the maximum distance t such
that any noisy codeword at distance t of a codeword in C can be uniquely decoded.

In other words, it means that if one receives y = c+ e where c ∈ C and w(e) ≤ t,
then the noisy codeword y cannot be decoded into another codeword c′ 6= c.

Proposition 1 (Decoding capacity). Let C be a [n, k, d]q code, and let y be a noisy
codeword of C where its associated error has weight t. If

t ≤
⌊
d− 1

2

⌋
,

then the problem of decoding y has at most a unique solution.

Proof. Let c1 ∈ C, and let us assume that y = c1 + e1 such that w(e1) ≤ t can be
decoded into another codeword c2.
This means that there exists e2 such that y = c2 +e2, and w(e2) ≤ t. One gets that:

d(c1, c2) = d(e1, e2) (by hypothesis)
≤ d(e1, 0) + d(0, e2) (triangle inequality)
≤ 2t (by hypothesis)
≤ d− 1 (by definition).

Since c1, c2 both belong to a code of minimal distance d, it means by definition that
the distance between them is greater or equal to d or 0.

So, the distance between c1 and c2 is 0, which means that c1 = c2; thus, y is
uniquely decoded into c1.

Remark 1. Note that the decoding capacity t mentioned in Proposition 1 does not
depend on the metric chosen. For instance, this proposition still holds for the rank
metric which will be defined later in this document.

So far, we have seen that given a [n, k, d]Fq code C, one can uniquely decode a
noisy codeword with at most t :=

⌊
d−1
2

⌋
errors.

However, this decoding process is hard if the code does not have a specific struc-
ture.
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For example, in the Hamming metric: Reed-Solomon or MDPC (Moderate Den-
sity Parity-Check matrix) codes benefit from efficient, i.e., polynomial-time, decoding
algorithms, whereas decoding random linear codes is an NP-complete problem, see
Definition 5.

Definition 5 (Decoding problem (Hamming metric)).
Input : a matrix G ∈ Fk×nq , an integer r, and a vector y ∈ Fnq .
Output : e ∈ Fnq , such that

y − e = mG, m ∈ Fkq , and wH(e) ≤ r.

In 1978, this problem has been proven to be NP-complete by Berlekamp, McEliece,
and VanTilborg in [BMvT78].

Using the same notation as in Definition 5, if H is a parity-check matrix of the
code generated by the rows of G, one has that

Hyᵀ = H(mG + e)ᵀ = H(mG)ᵀ + Heᵀ = Heᵀ (2.1)

by definition of H .
The quantity Heᵀ is called the syndrome associated to the error e; using Equa-

tion (2.1), one notices that it only depends on the error. In other words, two noisy
codewords y = c1 + e and y = c2 + e with c1 6= c2, lead to the same syndrome.

This yields another version of the decoding problem, namely the Syndrome De-
coding problem; in this version, one is simply given a syndrome and has to recover
an error of small weight, see Definition 6.

Definition 6 (Syndrome Decoding problem (Hamming metric)).
Input : a matrix H ∈ F(n−k)×n

q , an integer r, and a vector s ∈ Fn−kq .
Output : e ∈ Fnq , such that

Heᵀ = sᵀ, and wH(e) ≤ r.

Remark 2. It is worth noticing that the Decoding and the Syndrome Decoding prob-
lem are two different formulations of the very same problem. This remains true no
matter the metric one chooses. In this document, for the rank metric for instance,
we always refers to the Rank Decoding (RD) problem, even if one uses a parity-check
matrix.

32



Last but not least, there is a primordial bound for code in the Hamming metric,
namely the Gilbert-Varshamov bound.

Definition 7 (Gilbert-Varshamov bound (Hamming metric)). Let n, k be integers
such that k ≤ n. The Gilbert-Varshamov bound GV(q, n, k) for Fq-linear code of
length n and dimension k in the Hamming metric is defined as the smallest positive
integer t such that

qn−k ≤
t∑
i=0

(
n

i

)
(q − 1)i.

Remark 3. A very interesting property of random linear codes is that their minimal
distance is given by the Gilbert-Varshamov bound with overwhelming probability. For
a proof of this result, the reader may refer to [Cou19].

2.1.2 Rank metric

In this section, we will consider Fqm-linear codes, that is to say codes that are sub-
spaces of Fnqm for a given length n.

Let n, k be integers such that k ≤ n, given a [n, k]Fqm -code, instead of using
the Hamming weight in Fnqm , in what follows we will consider the rank weight, see
Definition 8.

In a few words, while the Hamming metric looks at the number of non-zero entries
of a vector v ∈ Fnqm , the rank metric looks at the rank of the matrix V ∈ Fm×nq

containing the coordinates of every entries of v in a basis β of Fqm over Fq.

Definition 8 (Rank weight). Let x = (x1, . . . , xn) ∈ Fnqm be a vector. The rank
weight of x, denoted ‖x‖, is defined as the rank of the matrix

Mat (x) := (xi,j)i,j ∈ Fm×nq

where
∀ j ∈ {1..n}, xj = β1x1,j + · · ·+ βmxm,j.

Recall that with the Hamming metric, the support of a vector is the set containing
the indices of all its non-zero coordinates. Definition 9 adapts this notion to the rank
metric.
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Definition 9 (Support of a word in Fnqm). The support of x ∈ Fnqm, denoted
Support(x), is the Fq-linear space generated by the coordinates of x, i.e.,

Support(x) := 〈x1, . . . , xn〉Fq .

It follows from the definition that

‖x‖ = dimFq (Support(x)).

These notions can be extended to matrices. The support of a matrix M ∈ Fr×cqm ,
denoted Support(M), is the Fq-vector space spanned by all its rc entries, and the
rank weight ‖M‖ is defined as the dimension of this support.

Note that the rank weight ‖M‖ of a matrix M is very different from the actual
rank of M ; for example ‖In‖ = 1 while Rank (In) = n.

We can now define formally an Fqm-linear code, and we naturally extend the
notions of generator and parity-check matrices in this context:

Definition 10 (Fqm-linear code). An Fqm-linear code C of length n and dimension k
is an Fqm-linear subspace of dimension k of Fnqm embedded with the rank metric. We
say that C is a [n, k]qm-code, or simply [n, k] when there is no ambiguity.

A generator matrix of C is a matrix G ∈ Fk×nqm such that

C =
{
mG, m ∈ Fkqm

}
.

A parity-check matrix of C is a matrix H ∈ F(n−k)×n
qm such that

C =
{
x ∈ Fnqm , Hxᵀ = 0

}
.

We say that G (respectively H) is in systematic form if it is of the form (Ik | A)
(respectively (In−k | B)).

The rank metric is very natural to use when dealing with matrix codes [Del78].
Gabidulin introduced the first efficiently decodable Fqm-linear codes with the rank

metric, namely the Gabidulin codes, see Section 2.1.4.

Remark 4. As noted in [BBC+20], every Fqm-linear code of length n and dimension
k can be seen as a very particular matrix code of length nm and dimension km.
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2.1.3 Ideal codes for the rank metric

In a cryptographic context, one wants to reduce keysizes; a typical way to do this in
code-based cryptography is to use ideal codes, see Definition 12 below.

Let P ∈ Fq[X] denote a polynomial of degree n.

Ψ: Fnqm −→ Fqm [X]/〈P 〉 (2.2)

u := (u0, . . . , un−1) 7−→
n−1∑
i=0

uiX
i. (2.3)

The linear map Ψ given by Equation (2.2) is a vector space isomorphism between
Fnqm and Fqm [X]/〈P 〉.

We can use it to define a product between two elements u,v in Fnqm : u ·v := w ∈
Fnqm is the only vector such that

Ψ(w) = Ψ(u)Ψ(v) mod P.

In the rest of this document, for the sake of simplicity and to lighten the formulas,
we might omit the Ψ or the · symbols when there is no ambiguity.

Since one has that

Ψ(u · v) = Ψ(u)Ψ(v) mod P

=
n−1∑
i=0

uiX
iΨ(v) mod P

=
n−1∑
i=0

ui
(
X iΨ(v) mod P

)

= (u0, . . . , un−1)


Ψ(v) mod P

XΨ(v) mod P

X2Ψ(v) mod P
...

Xn−1Ψ(v) mod P

 ,

it is natural to define the n× n matrix IM(v) with entries in Fqm such that:

u · v = uIM(v) ∈ Fnqm .
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This matrix is called the multiplication matrix or the ideal matrix generated by v
and P , see Definition 11.

Definition 11 (Ideal matrix). Let P ∈ Fq[X] be a polynomial of degree n, and let v
be a vector in Fnqm.

The ideal matrix generated by v and P , noted IMP (v), is defined by:

IMP (v) :=


v

Ψ−1 (XΨ(v) mod P )

Ψ−1 (X2Ψ(v) mod P )
...

Ψ−1 (Xn−1Ψ(v) mod P )

 ∈ Fn×nqm .

For conciseness, we use the notation IM(v) since there will be no ambiguity in
the choice of P in this document.

With ideal matrices, the product of two elements in Fnqm is equivalent to the usual
vector-matrix product, namely:

u · v = uIM(v) = IM(u)ᵀv = v · u.

An ideal code C of parameters [sn, tn]qm is an Fqm-linear code which admits a
generating matrix made of s× t ideal matrix blocks in Fn×nqm .

Hereafter, we only consider [sn, n]qm-ideal codes, i.e., t = 1.

A very important point, regarding the choice of the modulus P , is that if P ∈
Fq[X] is irreducible of degree n, and if n and m are different prime numbers, then
an ideal code using P always admits a systematic generator matrix made of ideal
blocks, see Lemma 1 in [AAB+20].

Definition 12 (Ideal codes). Let P ∈ Fq[X] a polynomial of degree n. An [ns, n]qm-
code C is an ideal code if it has a generator matrix of the form

G = (In | IM(g1) | . . . | IM(gs−1)) ∈ Fn×nsqm ,

where gi ∈ Fnqm , ∀ i ∈ {1..s− 1}.
Similarly, C is an ideal code if it admits a parity-check matrix of the form

H =

 IM(h1)
ᵀ

In(s−1)
...

IM(hs−1)
ᵀ

 ∈ Fn(s−1)×nsqm .
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2.1.4 Gabidulin codes

Gabidulin codes were introduced by Gabidulin in 1985 [Gab85]. These codes can
be seen as the rank metric analog of Reed-Solomon codes [RS60], where standard
polynomials are replaced by q-polynomials (also called Ore polynomials or linearized
polynomials).

Definition 13 (q-polynomials). The set of q-polynomials over Fqm is the set of
polynomials with the following shape:{

P (X) =
r∑
i=0

piX
qi , with pi ∈ Fqm and pr 6= 0

}
.

The q-degree of a q-polynomial P is defined as degq(P ) = r.

Definition 14 (Ring structure). The set of q-polynomials over Fqm is a non-
commutative ring when equipped with the two following operations (+, ◦):

• Addition: (P +Q)(X) = P (X) +Q(X),

• Composition: (P ◦Q)(X) = P [Q(X)].

Due to their structure, the q-polynomials are inherently related to decoding prob-
lems in the rank metric as stated by the following propositions.

Theorem 1 ([Ore33]). Any Fq-subspace of Fqm of dimension r is the set of the roots
of a unique monic q-polynomial P such that degq(P ) = r.

Corollary 1. Let x = (x1, x2, . . . , xn) ∈ Fnqm and V be the monic q-polynomial of
smallest q-degree such that V (xi) = 0 for 1 ≤ i ≤ n, then ‖x‖ = r if, and only if, if
degq(V ) = r.

Finally, Gabidulin codes can be seen as evaluation codes using q-polynomials of
bounded degree.

Definition 15 (Gabidulin codes). Let k, n,m ∈ N such that k ≤ n ≤ m, and
let g = (g1, . . . , gn) be an-Fq linearly independent family of elements of Fqm. The
Gabidulin code Gg(n, k,m) is the code of parameters [n, k]qm defined by

Gg(n, k,m) :=
{
P (g), degq(P ) < k

}
,where P (g) := (P (g1), . . . , P (gn)).
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Thus, a generator matrix for Gg is given by:

G =


g1 . . . gn

gq1 . . . gqn
...

...
...

gq
k−1

1 . . . gq
k−1

n

 ∈ Fk×nqm .

Proposition 2 (Properties of Gabidulin codes, [Gab85]). Let Gg(n, k,m) be a
Gabidulin code, it benefits from an efficient decoding algorithm with can correct up to⌊

n− k
2

⌋
errors.

Moreover, if m = n, Gg(n, k,m) satisfies the Singleton bound with a minimal
distance d = n − k + 1; in that case, they are said to be Maximal Rank Distance
(MRD) codes.

2.2 Hard problems in rank-based cryptography

2.2.1 Decisional versus Search

An NP-complete problem is by definition a decisional problem; i.e., it asks to decide
whether a solution exists or not.

For instance, the MinRank problem, see Definition 16, asks whether there exists
a non-trivial linear combination of a set of matrices such that the rank of this linear
combination is smaller than a threshold.

A search problem, sometimes called a computational problem, is a problem for
which the output is a solution, or a special output such as FAIL if there is no solution.

For all the problems described in Section 2.2.2, there is no known reduction from
the search to the decision version of the problem.

In other words, the current best way for an adversary to solve an instance of a
decisional problem is to try to solve the associated search instance, and to reply YES
if she finds a solution, and NO otherwise.

In this document, we give only the definitions of the search versions, and we refer
to the decisional version by adding an uppercase “D” in front of the problem’s name.
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For instance DRD refers to the decisional version of the RD problem, see the list
of acronyms on page 16.

When we mention the NP-completeness of a problem, we obviously refer to its
decisional version; even if for the sake of clarity, we might omit to explicitly men-
tion it.

2.2.2 Definitions of the problems

The MinRank problem has been introduced in [BFS99] where its NP-completeness
was proven.

For another quite more easy to understand proof of its NP-completeness, the
reader may refer to [Cou01b].

Definition 16 (MinRank problem (search)). The MinRank problem with param-
eters (m,n,K, r) is given by:
Input : an integer r ∈ N, and K matrices M 1,M 2, . . . ,MK ∈ Fm×nq .
Output : elements x1, x2, . . . , xK ∈ Fq, non all zeros, such that

Rank

(
K∑
i=1

xiM i

)
≤ r.

Remark 5. The MinRank problem is sometimes defined with K + 1 matrices
M 0,M 1,M 2, . . . ,MK where one wants M 0 +

∑K
i=1 xiM i to be of rank smaller

or equal to r. This version is sometimes referred to as affine or inhomogeneous
MinRank.

TheRD problem given by Definition 17 is at the core of rank-based cryptography.

Definition 17 (Rank Decoding (RD) problem (search)). The RD problem with
parameters (q,m, n, k, r), or parameters (m,n, k, r) over Fq, is given by:
Input : an Fqm-linear subspace C of Fnqm, an integer r ∈ N, and a vector y ∈ Fnqm
such that ‖y − c‖ ≤ r for some c ∈ C.
Output : c ∈ C, and an error e ∈ Fnqm such that y = c + e, and ‖e‖ ≤ r.
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The syndrome version of the Rank Decoding problem is called the Rank Syndrome
Decoding problem (RSD). In this version, one is given a parity check matrix H ∈
F(n−k)×n
qm of the code C, and a syndrome sᵀ = Heᵀ ∈ Fn−kqm where ‖e‖ ≤ r, and she is

asked to recover e. Recall that in this document, we only refer to RD, see Remark 2.

The RD problem is not known to be NP-complete, however there is a randomized
reduction from an NP-complete problem, namely decoding in the Hamming metric,
to RD in [GZ16].

Decoding generic matrix codes is precisely the MinRank problem, see Defini-
tion 16, and decoding generic Fqm-linear codes is the Rank Decoding problem, see
Definition 17.

By Remark 4 in Section 2.1.2, one readily sees that it is always possible to decode
an Fqm-linear code by solving the MinRank instance associated to its matrix code;
this corresponds to the reduction from RD to MinRank.

However, this approach is not efficient since it does not take advantage of the
Fqm-linearity.

In order to build more advanced cryptosystems, see for instance Section 4.1, one
needs more general versions of this problem.

For instance the Rank Support Learning (RSL) problem roughly corresponds to
RD where one is given several syndromes whose associated errors share the same
support. The RSL problem has been in introduced in [GHPT17], and it is at the
core of the Durandal signature scheme [ABG+19], and the recent Multi-LRPC scheme
[AAD+22].

Definition 18 (Rank Support Learning (RSL) problem (search)). The RSL prob-
lem with parameters (m,n, k, r,N) is given by:
Input : a full-rank matrix H ∈ F(n−k)×n

qm , and a matrix HEᵀ ∈ F(n−k)×N
qm where

E ∈ FN×nqm has all its entries in a subspace V ⊂ Fqm of dimension r ∈ N.
Output : the subspace V.

Another generalization of RD is the Non-Homogeneous Rank Decoding problem
(NHRD). In this problem, the rank weight of the error is not the same for different
parts of the error. The NHRD problem has been introduced in the Second Round
update of RQC [AAB+20] in NIST Post-Quantum Standardization process.
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Definition 19 (Non-Homogeneous Rank Decoding (NHRD) problem (search)).
The NHRD problem with parameters (m,n, n1, w1, w2) is given by:
Input : a full-rank matrix H ∈ F(n+n1)×(2n+n1)

qm , and a syndrome s ∈ Fn+n1
qm .

Output : a vector e = (e1, e2, e3) ∈ F2n+n1
qm such that ‖(e1, e3)‖ = w1, ‖e2‖ =

w1 + w2, Support ((e1, e3)) ⊂ Support (e2), and Heᵀ = sᵀ.

Last but not least, one can somehow combine the NHRD and RSL problems
in order to get the Non-Homogeneous Rank Support Learning problem (NHRSL)
given by Definition 20.

Definition 20 (Non-Homogeneous Rank Support Learning (NHRSL) problem
(search)). The NHRSL problem with parameters (m,n, n1, w1, w2, N) is given by:
Input : a full-rank matrix H ∈ F(n+n1)×(2n+n1)

qm , and a matrix HEᵀ ∈ F(n+n1)×N
qm

where E ∈ FN×(2n+n1)
qm such that, for all i in {1..N}:

ei = Ei,∗ = (ei,1, ei,2, ei,3), ‖(ei,1, ei,3)‖ = w1, ‖ei,2‖ = w1 + w2, and
V := Support(ei,1, ei,3) ⊂ W := Support(ei,2).

Output : the subspaces V and W.

2.2.3 Gilbert-Varshamov bounds for RD and MinRank

Similarly to the Gilbert-Varshamov bound in the Hamming metric, see Definition 7,
there exists a rank metric equivalent of this bound for Fqm-linear codes:

Definition 21 (The Rank Gilbert-Varshamov bound (RGV)). The Rank Gilbert-
Varshamov bound RGV (q,m, n, k) for Fqm-linear codes of length n and dimension k
in the rank metric is defined as the smallest positive integer t such that

qm(n−k) ≤ Bt,

where

Bt :=
t∑

j=0

(
j−1∏
i=0

(qn − qi)

)[
m

j

]
q

=
t∑

j=0

(
j−1∏
i=0

(qn − qi)(qm − qi)
qj − qi

)

is the size of the ball of radius t in the rank metric.
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Similarly to the Hamming metric, it means that, as long as w ≤ RGV (q,m, n, k),
a random RD(m,n, k, w) instance will have at most a unique solution with an
overwhelming probability [Loi06].

Concerning the MinRank problem, one can use the adaptation of the Gilbert-
Varshamov bound to matrix codes.

Definition 22 (The Rank Gilbert-Varshamov bound for matrix codes). The Gilbert-
Varshamov bound for matrix codes of length mn and dimension K over Fq in the
rank metric is defined as the smallest positive integer t such that

qmn−K ≤ Bt,

where

Bt :=
t∑

j=0

(
j−1∏
i=0

(qn − qi)

)[
m

j

]
q

=
t∑

j=0

(
j−1∏
i=0

(qn − qi)(qm − qi)
qj − qi

)
is the size of the ball of radius t in the rank metric.

Let w be an integer smaller than the Gilbert-Varshamov bound for matrix codes
of length mn and dimension K over Fq.

Applied to MinRank, this bound means that if one picks at random K matri-
ces in Fm×nq , a MinRank instance with parameters (q,m, n,K,w) will have, with
overwhelming probability, at most a unique solution.

It is common to see the condition K ≤ (m − t)(n − t) when dealing with
MinRank instances [Cou01b, FLdVP08, FSEDS13, VBC+19]; this condition is sim-
ply an approximation of the condition given in Definition 22. More precisely, one
can replace Bt by an approximation of its greater term:

q(n+m−t)t,

then, applying logq to both sides of the inequality, the condition becomes

mn−K ≤ (n+m− t)t ⇐⇒ mn− (n+m− t)t ≤ K

⇐⇒ (m− t)(n− t) ≤ K.

Since the Gilbert-Varshamov bound is defined as the smallest integer such that this
condition is fulfilled, taking K ≤ (m − t)(n − t) guarantees that the associated
MinRank instance will have at most a unique solution with overwhelming proba-
bility.
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2.2.4 Uniqueness of a solution

In this document, we will focus on instances for which there is always a solution,
plus we want this solution to be unique.

This assumption is not very strong since in a cryptographic context, there is
always a solution, typically a part of the secret, and it is often unique.

In order to get such instances, i.e., with a unique solution, one uses the bounds
given in Section 2.2.3.

For instance, let us apply this to the RD problem; let m,n, k be integers, and
let r be an integer smaller than RGV(q,m, n, k), see Definition 21. If one picks a
full-rank matrix H in F(n−k)×n

qm , and a vector e ∈ Fnqm such that ‖e‖ = r, then, with
overwhelming probability, theRD(m,n, k, r) instance given by the couple (H ,Heᵀ)
will have a single solution of rank exactly r, namely e.

The fact that it cannot have another spurious solution with overwhelming prob-
ability is given by the aforementioned result about random Fqm-linear codes and the
Rank Gilbert-Varshamov bound.

In a cryptographic context, the integer r is publicly known since it is usually a
parameter of the cryptosystem.

2.3 Algebraic Cryptanalysis
An algebraic attack aims at attacking a cryptosystem by solving a system of algebraic
equations. The associated research field is usually called algebraic cryptanalysis.

By extension, if a cryptosystem relies on a problem P , we speak about algebraic
attacks against P .

In this document, what we call solving an algebraic system of m equations
f1, f2, . . . , fm ∈ Fq[x1, x2, . . . , xn] refers to finding a point

c = (c1, c2, . . . , cn) ∈ Fnq

such that
f1(c) = f2(c) = . . . = fm(c) = 0.

A system of algebraic equations one uses to describe a cryptosystem is called a
modeling.
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In this document, we will only focus on algebraic attacks against problems related
to public key cryptography. For more general information about algebraic attacks,
the reader may refer to [Bar09, Jou09, Spa12, Bar04].

There are several ways to solve a system of algebraic equations; in this document
we will use Gröbner bases.

In Section 2.3.1, we recall some basics about Gröbner bases. Then, in Sec-
tion 2.3.2, we give the reader a general idea of the techniques we will use, in the
rest of this document, to compute Gröbner bases.

2.3.1 Gröbner bases

Roughly, computing a Gröbner basis can be seen as applying an elimination algorithm
on a system of multivariate polynomials; for instance, a parallel can be made between
this process and the Gaussian elimination for linear systems.

For instance, solving the system of polynomial equations over F2[x, y, z, t] given
by f1 = f2 = . . . = f5 = 0, where

f1 = xz + xt+ zt+ z + t

f2 = xy + xz + yt+ x+ y + z + t+ 1

f3 = xy + yz + zt+ x+ t+ 1

f4 = xz + xt+ yz + yt+ zt+ 1

f5 = yz + yt+ zt+ x+ y + z

is not straightforward.
On the contrary, the Gröbner basis of the ideal generated by f1, f2, . . . , f5 is given

by 
x+ 1

y

z + 1

t

,

and the solutions of this new system are the very same as the ones of the original
system F . Thus, one immediately finds the only solution which is

(1, 0, 1, 0) ∈ F4
2.
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In what follows, we will only give the definitions and results we need, for more
details and the proofs, the reader may refer to the very complete book by Cox, Little,
and O’Shea [CLO92].

2.3.1.1 Ideals and Varieties

Let K be a field, recall that K refers to its algebraic closure.

Given a subset S of K[x1, x2, . . . , xn], we denote by 〈S〉 the ideal generated by S,
i.e.,

〈S〉 :=

{
N∑
i=1

aisi, N ∈ N, si ∈ S, ai ∈ K[x1, x2, . . . , xn],

}
⊆ K[x1, x2, . . . , xn].

As mentioned above, we want to find the solutions to a given system of polynomial
equations, that is to say, the points where all the polynomials simultaneously vanish.
More formally, this relies on the definition of affine variety.

Definition 23 (Affine variety, set of solutions). Let L be an extension field of K.
The affine variety over L of a set of polynomials S ⊆ K[x1, x2, . . . , xn], is defined as

VL(S) := {z ∈ Ln, f(z) = 0,∀f ∈ S} .

The variety VK(S) is called the (set of) solutions to the system S.

Remark 6. Given S ⊆ K[x1, x2, . . . , xn], it is readily seen that a point belongs to
VL(S) if, and only if, if it vanished on every K[x1, x2, . . . , xn]-linear combination
elements of S, hence one has

VL(S) = VL(I), where I = 〈S〉 .

In practice, we often consider a finite set of polynomials, i.e., {f1, f2, . . . , fm} ⊆
K[x1, x2, . . . , xn]. For the sake of clarity, we simply write VL(f1, f2, . . . , fm) instead
of VL({f1, f2, . . . , fm}).

Hence, by Remark 6 one has

VL(f1, f2, . . . , fm) = VL(I), where I = 〈f1, f2, . . . , fm〉 .

Notice that since every ideal is finitely generated by Hilbert’s theorem, every affine
variety of an ideal is the set of solutions of a finite system of algebraic equations;
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more precisely for all I ⊆ K[x1, x2, . . . , xn], there exists a finite set of polynomials
f1, f2, . . . , fm such that

I = 〈f1, f2, . . . , fm〉 ,
hence

VL(I) = VL(f1, f2, . . . , fm).

Definition 24 (Zero-dimensional ideal). An ideal

I = 〈f1, f2, . . . , fm〉 ∈ K[x1, x2, . . . , xn]

is said to be zero-dimensional, or of dimension zero, if VK(I) is finite.

2.3.1.2 Monomial orders and Multivariate division

In order to define the division of multivariate polynomials, see Definition 29, we need
to introduce admissible monomial orders.

Definition 25 (Admissible monomial order). An admissible monomial order over
K[x1, x2, . . . , xn] is a total order < on the set of monomials in K[x1, x2, . . . , xn] which
fulfills the following conditions:

• if m1,m2 are monomials in K[x1, x2, . . . , xn] such that m1 < m2, then for any
monomials m3 ∈ K[x1, x2, . . . , xn]: m1m3 < m2m3,

• any non-empty set of monomials in K[x1, x2, . . . , xn] has a smallest element
with respect to <; we say that < is a well-ordering.

A classical and very natural admissible monomial order is the lexicographical
order, given by Definition 26. In this document, we will mostly deal with graded
monomials order, such as the graded reverse lexicographical order, see Definition 27.

Roughly, a graded monomial order is an order where one first compares the
degrees of the monomials, and if there are the same, one uses another admissible
monomial order.

Definition 26 (Lexicographical monomial order (lex)). The lexicographical mono-
mial order over K[x1, x2, . . . , xn] with x1 > x2 > . . . > xn is denoted <lex, and it is
defined as follow: let m1,m2 be two monomials in K[x1, x2, . . . , xn] where

m1 := xα1
1 x

α2
2 . . . xαnn , m2 := xβ11 x

β2
2 . . . xβnn ;

one has that m1 <lex m2 if the left-most non-zero term in

(α1 − β1, α2 − β2, . . . , αn − βn)

is negative.
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Let us have a look at a few examples for the lexicographical order over K[x, y, z]
with x > y > z:

• y <lex x since (0, 1, 0)− (1, 0, 0) = (−1, 1, 0)

• y2 <lex x since (0, 2, 0)− (1, 0, 0) = (−1, 2, 0),

• y2 <lex xz since (0, 2, 0)− (1, 0, 1) = (−1, 2,−1).

• xz <lex xy since (1, 0, 1)− (1, 1, 0) = (0,−1, 1).

The degree of a monomial

m1 := xα1
1 x

α2
2 . . . xαnn ∈ K[x1, x2, . . . , xn]

is naturally defined as

deg(m1) =
n∑
i=1

αi.

Definition 27 (Graded Reverse Lexicographical monomial order (grevlex)). The
graded reverse lexicographical monomial order over K[x1, x2, . . . , xn] with x1 > x2 >
. . . > xn is denoted <grevlex, and it is defined as follow: let m1,m2 be two monomials
in K[x1, x2, . . . , xn] where

m1 := xα1
1 x

α2
2 . . . xαnn , m2 := xβ11 x

β2
2 . . . xβnn ;

one has that m1 <grevlex m2 if

deg(m1) < deg(m2),

or deg(m1) = deg(m2), and the right-most non-zero term in

(α1 − β1, α2 − β2, . . . , αn − βn)

is positive.

As we did for the lexicographical order, let us have a look at a few examples for
<grevlex:

• y <grevlex x since (0, 1, 0)− (1, 0, 0) = (−1,1, 0),

• x <grevlex y
2 since deg(y2) = 2 > 1 = deg(x),
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• xz <grevlex y
2 since deg(xz) = deg(y2) = 2, and (1, 0, 1)− (0, 2, 0) = (1,−2,1),

• xz <grevlex xy since deg(xz) = deg(xy) = 2, and (1, 0, 1)− (1, 1, 0) = (0,−1,1).

Overall, from the smallest to the greatest monomial (of degree less or equal to
two) over K[x, y, z] with x > y > z with respect to the lexicographical order, one has

1, z, z2, y, yz, y2, x, xz, xy, x2,

and for the graded lexicographical order

1, z, y, x, z2, yz, xz, y2, xy, x2.

Using an admissible monomial order, it is natural to define the leading monomial,
coefficient, and term of a multivariate polynomial:

Definition 28. Let < be an admissible monomial order on a polynomial ring
K[x1, x2, . . . , xn], and let P be a polynomial in K[x1, x2, . . . , xn].

We will denote by

• LM(P ) the leading monomial of P , that is to say, the greatest, with respect to
<, monomials that appear in P ,

• LC(P ) the leading coefficient of P , that is to say, the coefficient of the monomial
LM(P ),

• LT(P ) the leading term of P , that is to say, LC(P ) LM(P ).

Let m1,m2 be two monomials in K[x1, x2, . . . , xn], we define LCM(m1,m2) as the
least common multiple of m1 and m2; that is to say, the monomial with smallest
degree which is a multiple of both m1 and m2.

We naturally extend the degree of a monomial to the degree of a polynomial in
K[x1, x2, . . . , xn]: deg(P ) is simply the maximum degree of the monomials of P . It
is sometimes referred to as the total degree.

Note that the notions of LCM and the total degree, see Definition 28, do not
depend on the choice of any admissible monomial order. For instance the total
degree of x+y3 ∈ K[x, y] is always 3, even if its leading term might change according
to the order one chooses.

Now that we have defined admissible orders on monomials together with Defini-
tion 28, we can define the multivariate division, see Definition 29.
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Definition 29 (Multivariate division. [CLO92], Theorem 3, page 64). Let < be an
admissible monomial order over K[x1, x2, . . . , xn], and let F = {f1, f2, . . . , fs} be an
ordered s-tuple of polynomials in K[x1, x2, . . . , xn].

Then every f ∈ K[x1, x2, . . . , xn] can be written as

f = q1f1 + q2f2 + . . .+ qsfs + r,

where qi, r ∈ K[x1, x2, . . . , xn], and either r = 0 or r is a linear combination, with
coefficients in K, of monomials, none of which is divisible by any of LT(f1), LT(f2),
. . ., LT(fs).

We call r a reminder of f on division by F , we will denote it f
F
.

Remark 7. It worth noticing that it is not unique since it heavily depends on the
order of the fi’s in F . In fact, f

F
is unique if, and only if, if F is a Gröbner basis

of the ideal < f1, f2, . . . , fs >.

2.3.1.3 Gröbner basis: existence and unicity

Gröbner bases, see Definition 30, were introduced by Buchberger in 1965 in his PhD
thesis [Buc65]. He named them as a tribute to his PhD advisor W. Gröbner.

Given a set S ⊆ K[x1, x2, . . . , xn], in what follows, we denote by LM(S) the set
of leading monomials of polynomials in S, more precisely:

LM(S) := {LM(s), ∀ s ∈ S} .

As mentioned above, the affine variety of an ideal does not depend on the choice
of the ideal’s basis. A property of Gröbner bases is that they enable one to efficiently
compute the solutions, i.e., the affine variety, associated to an ideal, especially when
it is zero-dimensional.

Definition 30 (Gröbner basis.). Let I be an ideal of K[x1, x2, . . . , xn], and let < be
an admissible monomial order.

A finite subset G ⊂ I is a Gröbner basis of I for < if

〈LM(G)〉 = 〈LM(I)〉 .

Note that a Gröbner basis of I is not unique; when we speak about the Gröbner
basis of an ideal, we refer to its reduced Gröbner basis, see Definition 31.
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Definition 31 (Reduced Gröbner basis.). Let I be an ideal of K[x1, x2, . . . , xn], and
let < be an admissible monomial order. A finite subset G ⊂ I is a reduced Gröbner
basis of I for < if:

• LC(g) = 1 for all g ∈ G, and

• for all g ∈ G, none of the monomials of g belongs to 〈LT(G\g)〉.

Let I be an ideal of K[x1, x2, . . . , xn], and let < be an admissible monomial
order. A primordial result in the theory of Gröbner bases is that it is always possible
to compute a Gröbner basis of I for <, for instance using Buchberger’s algorithm
[Buc65].

Moreover, we have the following result:

Proposition 3 ([Bar04], Proposition 1.2.7, page 8). Let I 6= {0} be an ideal of
K[x1, x2, . . . , xn], and let < be an admissible monomial order.

Then I admits a unique reduced Gröbner basis G for <, and G is a basis of I. In
particular,

G = {1} ⇐⇒ VK(I) = ∅.

2.3.2 Computing Gröbner bases

Historically, the first algorithm to compute a Gröbner basis was described by Buch-
berger in [Buc65].

It has been drastically improved by Faugère who proposed F4 in 1999 [Fau99],
and then F5 in 2002 [Fau02]. Approximately at the same time, Courtois described
the algorithm XL in [CKPS00].

2.3.2.1 Macaulay matrices and linear algebra

In a few words, Buchberger’s algorithm computes a Gröbner basis of an ideal by
computing, and then reducing, S-polynomials, see Definition 32.

Definition 32 (S-polynomial). Let < be an admissible monomial order, let f1, f2
be two non-zero polynomials in K[x1, x2, . . . , xn], the S-polynomial of f1 and f2 is
defined by

Spoly(f1, f2) :=
LCM(LM(f1),LM(f2))

LT(f1)
f1 −

LCM(LM(f1),LM(f2))

LT(f2)
f2.

50



For example, relatively to the grevlex order induced by x > y > z over F3[x, y, z]:

Spoly(xy + xz + 1, 2x2 + y) =
x2y

xy
(xy + xz + 1)− x2y

2x2
(2x2 + y)

= (x)(xy + xz + 1)− (2y)(2x2 + y)

= x2y + x2z + x− (x2y + 2y2)

= x2z + y2 + x.

Note that according to Definition 32, one has that

Spoly(2x2 + y, xy + xz + 1) = 2x2z + 2y2 + 2x,

so the S-polynomial is unique up to sign; it does not matter though, since the only
role of an S-polynomial is to cancel the leading terms.

A key observation is that the computation of S-polynomials, and the computation
of their reminder on multivariate division by a set of polynomials, can be done by
computing a row echelon form of a particular matrix. Roughly, it is a matrix whose
entries are the coefficients of the polynomials multiplied by monomials, and whose
columns are indexed by the monomials, usually sorted using an admissible graded
monomial order.

This matrix is called a Macaulay matrix, and it is denotedMac
d for homogeneous

systems, orMac
≤d for affine systems. The index d corresponds to the maximum degree

of the polynomials that are written in the Macaulay matrix.

From this observation, in 1983, Lazard published a seminal paper [Laz83]: in
a few words, computing a Gröbner basis can be done using linear algebra, namely
performing Gaussian elimination on Macaulay matrices up to a large enough degree d.

All the aforementioned algorithms, namely F4, F5, and XL, such as their variants,
are built upon this result, that is why we commonly say that these algorithms are
linear algebra-based algorithms, see for instance [CG23].

For more information about linear algebra-based algorithms to compute Gröbner
bases, the reader may refer to the original papers [Fau99, Fau02, CKPS00] together
with, for instance, [Bar04, Spa12, CG23, CLO92].

2.3.2.2 Direct linearization

One can see the aforementioned Gröbner basis algorithms as refined, sophisticated,
advanced, linearization algorithms.
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Indeed, what we call linearization can be described very easily. Given a system
{f1, f2, . . . , fm} ⊂ Fq[x1, x2, . . . , xn] where all the polynomials are homogeneous and
of degree d, if one looks for an element in the right kernel of its Macaulay matrix
Mac

d , one gets values in Fq for the monomials such that f1 = f2 = . . . = fm = 0.
This is referred to as linearization techniques since it relies on considering each

monomial as a new variable, and then solving the associated linear system, hence
getting possible values for each monomial.

Remark 8. It is worth noting that a solution to a system of algebraic equations
yields a vector in the right kernel of its Macaulay matrix, but the converse is false.
More precisely, there could be values of the monomials for which there does not exist
any consistent affectation of the variables resulting in these values.

Let us see this on a toy example over F3[x1, x2, x3] with the lexicographical mono-
mial order: 

f1 = x21 + x22 + x2x3 + 2x23
f2 = x1x2 + x22 + x2x3 + x23
f3 = x21 + x1x2 + x1x3 + x2x3

.

Since this system is made of homogeneous polynomials, if (x0, y0, z0) ∈ F3
3 is a solu-

tion, then for every λ ∈ F3, so will λ(x0, y0, z0). Thus, (0, 0, 0) ∈ F3
3 is solution, but

we want to find the other non-trivial solutions.

The Macaulay matrix of this system of homogeneous polynomials at degree 3 is
given by the following 9× 10 matrix:

Mac
3 =

x31 x21x2 x21x3 x1x
2
2 x1x2x3 x1x

2
3 x32 x22x3 x2x

2
3 x33

x1f1 1 0 0 1 1 2 0 0 0 0

x1f2 0 1 0 1 1 1 0 0 0 0

x1f3 1 1 1 0 1 0 0 0 0 0

x2f1 0 1 0 0 0 0 1 1 2 0

x2f2 0 0 0 1 0 0 1 1 1 0

x2f3 0 1 0 1 1 0 0 1 0 0

x3f1 0 0 1 0 0 0 0 1 1 2

x3f2 0 0 0 0 1 0 0 1 1 1

x3f3 0 0 1 0 1 1 0 0 1 0
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whose rank is exactly 9. Thus, it has a kernel of dimension 1, spanned by the
following vector:

(1, 2, 1, 1, 2, 1, 2, 1, 2, 1)ᵀ.

This vector gives that x1x2x3 = 2, thus none of the variables is zero; using the
aforementioned fact about the homogeneity, we can then set x3 = 1. This gives

• x2 = 2 since x2x23 = 2,

• x1 = 1 since x1x23 = 1.

Thus, we found the non-trivial solution (1, 2, 1) which, by homogeneity, gives
(2, 1, 2), and the zero vector we already had.

The aforementioned technique can be generalized to non-homogeneous systems
of algebraic equations as long as all the constant terms of the polynomials are zero.

In the case where 1 would index a column of the Macaulay matrix, that is to say,
if some polynomials had a non-trivial constant term, a solution to the system could
still be found by computing a right kernel.

More precisely, if Mac
≤d is an M × N Macaulay matrix of a system of algebraic

equations at degree d, and such that 1 indexes its last column; the values of the N−1
monomials, distinct from 1, will be given by the first N−1 entries of v ∈ kerR(Mac

≤d)
such that

v = (v1, v2, . . . , vN−1, 1).

The last entry of v corresponds to the value of the monomial of degree 0, i.e., 1.
This corresponds to the straightforward reduction from solving a linear system

Axᵀ = bᵀ, i.e. with a non-zero right-hand side, to computing kerR ((A|bᵀ)).

Clearly, these classical linearization techniques have two main limitations when
used in order to find a solution to a system of algebraic equations:

• The dimension of the kernel may be large, making it computationally hard for
one to recover an actual solution from the values of the system’s monomials.

• Sometimes, it is not straightforward to go from the values of the monomials to
an actual solution.
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2.3.2.3 Complexity

This section is dedicated to the complexity of finding a vector belonging to the right
kernel of a matrix.

Let M,N be positive integers, let M be an M × N matrix with entries in Fq,
the complexity, in terms of elementary operations in Fq, to find a vector in its right
kernel is given by

O
(
rank(M )ω−2 ×M ×N

)
⊂ O

(
M ×Nω−1) , (2.4)

where 2 < ω ≤ 3 is the linear algebra constant, [BH74, Sto00, vzGG13].
In this document, we will consider Strassen’s algorithm which yields

ω = log2(7) ≈ 2.807.

However, if the matrix is sparse, that is to say, that it only has τ non-zero
terms per row, it is sometimes worth using Wiedemann’s algorithm [Wie86] whose
complexity is given by

O (τ ×M ×N) .

For a more thorough analysis of Wiedemann’s algorithm and its improvements,
the reader may refer to [Cop94, Kal95, Vil97].

Remark 9. One notices that if τ = O(1), then the complexity of Wiedemann’s
algorithm is the same as the one given by Equation (2.4) using ω = 2.

2.3.2.4 A non-exhaustive list of potential issues

In this introduction about computing Gröbner bases through direct linearization, we
did not address a lot of points which make algebraic attacks challenging to perform
and study. However, here is a glimpse of these questions one has to consider while
looking for an efficient algebraic attack:

• Most importantly: what is the value of d one needs to go up to? Or what is
the rank of the Macaulay matrix at a given step degree?

• Should we linearize using a new variable per monomial or could we go further?

• Should we consider homogenized systems? Or instead their homogeneous com-
ponents of highest degree?
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• In order to build the Macaulay matrix, do we multiply by every monomials or
by a subset of them?

• Do we add the field equations for Fq, given by

(xqi − xi)i ,

to the initial system?

• Do we use Wiedemann or Strassen’s algorithm in order to solve the linear
system?

• Is it worth considering only a subset of the rows of the Macaulay matrix at
degree d?

Naturally, for the algebraic attacks described in Sections 3.1 and 3.2, we will
address, as much as we can, the above items.

2.3.3 Maximal minors and Plücker coordinates

We will see in this document that it is sometimes very beneficial to consider the
maximal minors of a matrix as new variables in the aforementioned linearization
process.

This corresponds to using the so-called Plücker coordinates, as in [BBC+20,
BBB+22].

For more information about determinantal systems, the reader may refer to the
book by Bruns and Vetter [BV06], or to the PhD thesis of Spaenlehauer [Spa12].

Let us start with a toy example: we want to compute a basis matrix of the row
space of

M :=

2 2 2 1

1 2 0 1

1 1 1 2

 ∈ F3×4
3 .

Let us assume that we know that this matrix has rank 2, so the variables will be the
entries of the following matrix:

C :=

(
x1 x2 x3 x4

x5 x6 x7 x8

)
∈ Fq[x1, x2, x3, x4, x5, x6, x7, x8]2×4.
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A natural modeling is to cancel all the maximal minors, i.e., 3× 3, of(
M{i},∗

C

)
∈ Fq[x1, x2, x3, x4, x5, x6, x7, x8]3×4, ∀i ∈ {1, 2, 3}.

This system of algebraic equations will contain

3

(
4

3

)
= 12 equations.

For example, one of these equations is:∣∣∣∣∣∣∣
 2 2 2 1

x1 x2 x3 x4

x5 x6 x7 x8


∣∣∣∣∣∣∣
∗,{1,2,3}

= 2(x2x7−x3x6)−2(x1x7−x3x5)+2(x1x6−x2x5). (2.5)

We will not describe the full system nor the associated Gröbner basis; however,
here are its properties: for the lexicographical order, the Gröbner basis of the ideal
generated by this system to which one appends the field equations x3i − xi contains
29 polynomials of degree 2 up to 5.

Most importantly, there are 369 solutions, all in F8
3 since we added the field

equations.

This large number of solutions comes from the fact that we did not add a con-
straint on the rank of C, thus any matrix in F2×4

q of rank less or equal to 1 is solution,
and there are

(q4 − 1)(q2 − 1)

(q − 1)
+ 1 = 321

such matrices. On top of these solutions, there are the ones of interest to us, namely
the

(q2 − 1)(q2 − q) = 48

solutions corresponding to bases of the row space of C.
The total adds up to 321 + 48 = 369.

Now, let us consider the same toy example, but we replace each maximal minor
of C involving T ⊂ {1..4} columns as a new variable that we denote cT . Note that,
for the sake of clarity, we might omit the curly brackets “{}” symbols around the
set T .
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Thus there are
(
4
2

)
= 6 variables cT ’s, namely c1,2, c1,3, c1,4, c2,3, c2,4, c3,4, and we

now deal with the following polynomial ring F3[c1,2, c1,3, c1,4, c2,3, c2,4, c3,4].
With this modeling, the above Equation (2.5) becomes:

2c2,3 − 2c1,3 + 2c1,2 ∈ F3[c1,2, c1,3, c1,4, c2,3, c2,4, c3,4].

This new system in the polynomial ring F3[c1,2, c1,3, c1,4, c2,3, c2,4, c3,4] still contains
12 equations, however they are now linear.

The Gröbner basis of the ideal they generate is given by the following polynomials:

c1,2 + 2c3,4

c1,3 + c3,4

c1,4 + c3,4

c2,3 + 2c3,4

c2,4

,

whose solutions are given by the 3 points in F6
3:

(0, 0, 0, 0, 0, 0)

(1, 2, 2, 1, 0, 1)

(2, 1, 1, 2, 0, 2)

. (2.6)

It is immediate to notice that the 2 last points give the solutions we are looking
for, in fact they yield a full rank matrix.

Roughly, the first zero solution embeds the 321 aforementioned ones, and the two
last ones embed the remaining 48 of interest to us.

The process of going from a solution point to the actual entries of the matrix will
be very important in the rest of this document.

Basically, one just picks a non-zero maximal minor, let us say c1,2 and set it to 1.
This is authorized as long as this minor is non-singular since all multiples of the
matrix C by a non-singular 2× 2 matrix is still a basis.

The key observation is that some particular maximal minors of the following
matrix give its entries; more precisely, if

U :=

(
1 0 x y

0 1 z t

)
,
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then 
x = − |U |∗,{2,3}
y = − |U |∗,{2,4}
z = |U |∗,{1,3}
t = |U |∗,{1,4}

.

Thus, since we set c1,2 to 1, we can consider that the first 2× 2 block of C contains
the identity matrix, then the values of the 4 remaining entries, C3,1, C3,2, C4,1, C4,2,
are given, respectively, by the values of −c2,3, −c2,4, c1,3, c1,4 taken from the second
point in Equation (2.6).

This process can be generalized very easily to arbitrary large matrices: as long
as one knows the values of all the maximal minors, it suffices to set one to 1, then to
put an identity block at its associated spot, and finally to get the remaining entries
using some wisely chosen minors.

The aforementioned algebraic modeling is absolutely terrible to find a basis of
the row space of a matrix!

However, it is a good illustration of the differences between the two approaches;
namely quadratic system with 369 solutions in one case, and linear system with 3
solutions in the other.

This gives one a glimpse of the power of the so-called Plücker coordinates when
used for a system which admits solutions up to multiplication by non-singular ma-
trices, typically these are systems whose solutions are given by vector spaces.

Last but not least, let us describe formally what Plücker coordinates are. Roughly,
Plücker coordinates are given by a map between vector spaces and the maximal
minors of one of their basis matrix, see Definition 33.

It is readily seen that if C ∈ Fr×nq is a basis matrix of a vector space W ∈ Fnq of
dimension r, then so is AC for any A ∈ GLr(Fq). The effect of multiplying C by
a non-singular matrix A leads to multiplying all its maximal minors by a non-zero
element of Fq, namely by |A|. This is why the following definition uses projective
space.

Definition 33 (Plücker map and coordinates). Let N :=
(
n
r

)
− 1, we denote by

PN(Fq) the projective space P(FN+1
q ). Let T1, T2, . . . , TN+1 be the sets in {1..n} with r

elements.
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The Plücker map p is defined as follow:

p : {W ⊂ Fnq : dim(W ) = r} −→ PN(Fq)
W 7−→ (|C|∗,Ti)i∈{1..N+1}.

where C ∈ Fr×nq is a matrix whose rows span the vector space W .
We call Plücker coordinates of a vector space W the homogeneous coordinates

p(W ).

Notice that the Plücker map p is well-defined since if two distinct matrices C1

and C2 contain basis of a vector space W , then

p(W ) = (|C1|∗,Ti)i∈{1..N+1} = (|C2|∗,Ti)i∈{1..N+1}.

2.4 Provable Security Basics
Introduced in the eighties with the seminal papers by Bellare, Goldwasser, Micali,
Rackoff, and Rogaway [GM82, GMR85, BR93], provable security is a powerful tool
which allows designers of primitives and protocols to mathematically prove the se-
curity guaranteed by their schemes; and even exactly quantify the loss of security. It
enables cryptographic constructions that follow the paradigm of security by design.

In this document, we will not go too deep in the notions of provable security, the
interested reader may refer to the very complete book by Katz and Lindell, namely
“Introduction to modern cryptography” [KL20].

We recall that an encryption scheme is made of 4 algorithms: Setup, KeyGen,
Encrypt, Decrypt; and a signature scheme is also made of 4 algorithms: Setup, KeyGen,
Sign, Verif. When there is no ambiguity, we might omit the Setup algorithm.

In provable security, we can define security based on games, that is to say, that
the adversary plays a game against the challenger; or we can use simulation based
definitions in which the goal is to distinguish between real world (with an adversary)
and an ideal world (with a simulator).

In this thesis, we focus on the more prevalent game-based definitions.

In what follows, we first define IND-CPA security (for public key encryption
schemes) and EUF-CMA security (for signature schemes).
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Then, we will present the Fiat-Shamir authentication protocol and a mechanism
to turn it into a signature scheme, also due to Fiat and Shamir.

Our proofs are in the Random Oracle security Model (ROM) due to Bellare and
Rogaway [BR93], see the end of Section 2.4.3. This model has some flaws as noted
in [CGH04], basically because real world hash functions are not random oracles;
however, it is usually sufficient to assume that hash functions behave like random
oracles.

However, most schemes that are secure in the ROM provide a reasonable level of
security in practice, when instantiated with “good” hash functions, such as SHA256
or Keccak.

2.4.1 IND-CPA and EUF-CMA

2.4.1.1 IND-CPA

Indistinguishability under Chosen-Plaintext Attacks, denoted IND-CPA, is a secu-
rity property for encryption schemes [GM82]; IND-CPA-secure encryption schemes
reveal no information about the plaintext when given the corresponding ciphertext.

More precisely, an adversary cannot distinguish which of two adversarially-chosen
messages is hidden in a given ciphertext.

IND-CPA security is formalized in Definition 34 where the event “A wins” refers
to the security game depicted in Figure 2.1. Recall that the parameter λ gives the
security level.

Definition 34 (IND-CPA security). A public key encryption scheme E is said to
be IND-CPA-secure if for any probabilistic polynomial time (PPT) algorithm A,
the advantage of A to win the game ExpIND-CPA

E depicted in Figure 2.1, denoted
Adv(A), is smaller than ε, where ε is negligible, and

Adv(A) :=

∣∣∣∣P (A wins)− 1

2

∣∣∣∣ .
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ExpIND-CPA
E (1λ):

(pk, sk)← KeyGen(1λ)

b
$← {0, 1}

(m0,m1)← A
(
1λ, pk

)
, s.t. len(m0) = len(m1)

c∗ ← Encrypt(pk,mb)

b′ ← A
(
1λ, pk, c∗,m0,m1

)
The adversary A wins the game if, and only if, b = b′.

Figure 2.1: IND-CPA security game for a public key encryption scheme E .

2.4.1.2 EUF-CMA

Existential Unforgeability under Chosen-Message Attacks, denoted EUF-CMA, is
a security property for signature schemes [GMR85]; EUF-CMA-secure signature
schemes guarantee that it is impossible for an adversary to forge a valid signature
not knowing the secret key, even if she is given access to a signature oracle.

For the sake of simplicity, in this document we always refer to public and secret
keys even though signature schemes technically feature signing and verification keys.

More formally, it can also be formalized through the security game depicted
in Figure 2.2, where Osign(·) is a signature oracle which returns a valid signature
Osign(m) := Sign(sk,m) when given a message m. Note that after each request on a
message m, the oracle adds m to a set of signed messages SM .

Definition 35 (EUF-CMA security). A signature scheme S is EUF-CMA-secure
if for any probabilistic polynomial time (PPT) algorithm A, the advantage of A to win
the game ExpEUF-CMA

S depicted in Figure 2.2, denoted Adv(A), is smaller than ε,
where ε is negligible, and

Adv(A) := P (A wins) .

In other words, to win the EUF-CMA security game, an adversary has to be
able to forge a signature for a fresh message m∗, different from all the queries she
made to the signing oracle (stored in SM).
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ExpEUF-CMA
S (1λ):

(pk, sk)← KeyGen(1λ)

(m∗, σ∗)← A
(
1λ, pk,Osign(·)

)
b← Verif(pk,m∗, σ∗)

IF m∗ ∈ SM THEN return 0

ELSE return b.

The adversary A wins the game if, and only if, b = 1 is returned.

Figure 2.2: EUF-CMA security game for a signature scheme S.

2.4.2 The Fiat-Shamir authentication protocol

We recall that an authentication protocol allows a prover to prove to a verifier that
she knows a secret associated to her public key.

The verifier ultimately computes a validity bit depending on whether it deems
the prover legitimate or not; by contrast, in an identification protocol, the verifier
also outputs the identity of the prover.

Remark 10. The Fiat-Shamir protocol which we present below is often defined in the
literature as an identification protocol, as the public key corresponds to an identity;
however, in this document, we choose to refer to it as an authentication protocol, as
the verifier output is a validity bit.

The Fiat-Shamir authentication scheme [FS87] is depicted in Figure 2.3.

This protocol has much stronger security properties than standard authentication
protocol. Indeed, the scheme is an interactive zero-knowledge proof of knowledge
and it allows the prover to prove knowledge of her secret without revealing any
information about it.

More formally, interactive zero-knowledge proofs of knowledge have to guarantee
three properties; in what follows we briefly describe these properties. Then we give a
sketch of the proof that the Fiat-Shamir authentication scheme depicted in Figure 2.3
provides all of them:
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Prover Verifier
sk: a s.t. A = a2 mod n pk: A

k
$← Zn commitment: K := k2 mod n

b
$← {0, 1}challenge: b

response: r := kab mod n
r2

?
= KAb mod n

Figure 2.3: Fiat-Shamir authentication scheme.

1. Completeness. Does it work? An honest verifier following the protocol will
always deem an honest prover legitimate.

2. Soundness. How much can an adversary cheat? A cheater, that is to say,
a prover who does not know the secret but wants to prove otherwise, will be
able to convince the verifier only with a negligible probability.

3. Zero-Knowledge. Does it leak information about the secret? The verifier
will learn nothing else than the fact that the prover knows the secret, that is
to say, no information will leak about the secret during the protocol.

The Fiat-Shamir authentication scheme depicted in Figure 2.3 relies on the hard-
ness of finding square roots, also called quadratic residues, modulo an integer n which
is an RSA-modulus, i.e., the product of two distinct large primes p and q.

Assuming the hardness of this problem, the Fiat-Shamir authentication protocol
guarantees the three aforementioned properties.

Completeness. If the prover is honest, she sends kab, and no matter the value of
b, one has that (

kab
)2

= k2
(
a2
)b

= KAb

thanks to the commutativity in Zn.
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Soundness. A cheater, i.e., a prover who does not know the secret a, but wants
to prove she does, can predict one of the challenges very easily. That is to say that
the cheater picks k and sends K := k2, and then hope to get the challenge b = 0.

If the verifier sends b = 0, then the cheater responds with r := k.
We claim that by using this strategy, the cheater can win and be authenticated as

a legitimate prover. Indeed, the verifier expects to receive r such that r2 = KAb = K,
which is the case for the presented strategy.

Since b = 0 happens with probability 1/2, the cheater wins about half the time.

To prove that this trivial winning probability is actually no more than 1/2, we
need to check if a cheater has a non-negligible probability to win if b = 1. This is
the point of Proposition 4.

Proposition 4. If an adversary can produce a valid response for both challenges in
the Fiat-Shamir authentication protocol, then she knows how to compute a square
root of A modulo n.

Proof. If an adversary can produce a valid response for both challenges, then she can
produce y1 and y2 such that : {

y21 = KA mod n

y22 = K mod n
.

Note this does not necessarily mean that y1 = ka or y2 = k, just that the cheater
knows one of the square roots for both.

Then the cheater can easily compute y1y−12 whose square is given by(
y1y
−1
2

)2
= y21y

−2
2 = KAK−1 = A mod n,

thus the cheater does know a square root of A.

Since anticipating both challenges is equivalent to computing a square root mod-
ulo n, the soundness of the Fiat-Shamir authentication protocol is 1/2 + ε for a
negligible value of ε.

Recall that soundness requires an at most negligible winning probability for the
cheater, see above; hence, in practice, to render the Fiat-Shamir protocol sound, one
repeats the scheme depicted in Figure 2.3 multiple times in parallel. The soundness
then becomes 1

2N
where N is the number of repetitions.
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Zero-Knowledge. The Zero-Knowledge part is straightforward: the only commu-
nication which involves the secret is the response, sent when the challenge b = 1,

r := ka mod n.

However, since k is chosen uniformly at random in Z×n , it is clear that ka is uni-
formly distributed in Z×n . This means that the verifier will not learn any information
about the secret a from ka.

Moreover, as the protocol executions are independent, the verifier will learn no
more from executing it multiple times then it would from executing it once.

2.4.3 The Fiat-Shamir heuristic

The Fiat-Shamir authentication scheme can be turned into a signature scheme by
using the Fiat-Shamir heuristic, also described in [FS87].

In what follows, we briefly recall how the Fiat-Shamir heuristic works.
Suppose that we are executing N parallel runs of the Fiat-Shamir protocol; to

understand the need for multiple executions, see the soundness argument in the
previous section. The prover begins by sending N parallel commitments

(K1, K2, . . . , KN) ∈ (Zn)N

to N independent ki values.
The verifier responds with N independent challenge bits (bi)i. Finally the prover

must produce N responses

(R1, R2, . . . , RN) ∈ (Zn)N ,

such that,
∀i ∈ {1..N}, R2

i = KiA
bi .

In order to render this protocol non-interactive, the prover must be able to sim-
ulate the verifier’s challenges. The Fiat-Shamir heuristic allows the prover to use a
hash function, idealized as a random oracle, to produce these challenges.

Specifically, the challenges correspond to the first N bits bi of

H(K1||K2|| . . . ||KN ||pk)
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where H is the hash function, || is the concatenation operator, the Ki’s are the
commitments, and pk = A is the public key.

To further turn this scheme into a signature scheme, one must be able to sign
messages. Thus, the signature of the message m will be given by

σ = (K1||K2|| . . . ||KN , R1||R2|| . . . ||RN) (2.7)

where Ri is computed as

∀i ∈ {1..N}, Ri = kia
bi ,

and bi is the ith bit of
H(K1||K2|| . . . ||KN ||pk||m).

The use of a hash function modeled as random oracle guarantees the unpre-
dictability of the challenge bits (and their high entropy).

The verification process is straightforward, the verifier uses the message and the
public key to compute the challenges, then she checks them one by one using the
verification process of the Fiat-Shamir protocol.

If at least one response is not valid, then the signature is not valid; conversely, if
all responses are valid, so is the signature.

Pointcheval and Stern proved in [PS96] that the Fiat-Shamir heuristic yields
signature schemes that are EUF-CMA-secure in the ROM.

More generically, any interactive zero-knowledge proof of knowledge can be turned
into an EUF-CMA-secure signature scheme by using this transformation.

The Random Oracle Model (ROM). Intuitively, the Random Oracle Model
assumes that hash functions behave like idealized functions

RO : {0, 1}∗ −→ {0, 1}N

x 7−→ RO(x)

where N ∈ N+ is fixed, and such that:

• Randomness: when called on a bit string of arbitrary length x, RO outputs
a random N -bit string RO, totally independent from x,

• Consistency: multiple calls to RO on an input x yields the same output.
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Remark 11. Security proofs in the ROM rely on the random oracle behaving like
a black box, which has to be queried, either by the adversary or by honest parties
in order to receive the response. This is not the case for the use of hash functions,
which parties can use freely as a white box.
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3.1 Algebraic Attack against MinRank

In this Section, we present a new algebraic attack against theMinRank problem, see
Definition 16, namely the SupportMinors attack; it has been published in [BBC+20],
and further improved in [BBB+22].

3.1.1 SupportMinors Modeling

Let M 1,M 2, . . . ,MK be the K matrices of a MinRank instance with parameters
(q,m, n,K, r). Recall that in this document, we consider only instances for which
there exists only one solution; in this case, it means that there is a single non trivial
Fq-linear combination of the matrices M i’s which has rank exactly r.

Remark 12. The fact that the target rank is exactly r is a very light assumption,
see for instance the discussions about the unicity of the solution in Section 2.2.4.

Usually the value r is publicly known, if it is not, one can simply use the incre-
mental approach described at the beginning of Section 3 in [BBB+20].

First of all, there is a very simple result in linear algebra that we will extensively
use in this document: an m × n matrix M of rank r can be factorized into two
matrices S ∈ Fm×rq and C ∈ Fr×nq which are both of full rank r.
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The matrix S can be seen as basis of the column space of M , and the matrix C
as the coordinates of each column of M into this basis. Conversely, one can see C
as a basis of the row space of M .

This factorization is unique if, and only if, one wants S or C to be in reduced
echelon form.

Coming back to our MinRank instance, using the fact we just mentioned, one
can write that

K∑
i=1

xiM i = SC (3.1)

since one wants the matrix
∑K

i=1 xiM i to be of small rank r.
Taking S and C as matrices of unknowns, Equation (3.1) gives an algebraic

modeling to solve the MinRank problem.

We call the entries of S the support variables, and the entries of C the coefficient
variables. Note that in this system, the variables xi only occur linearly. As such, we
will name them the linear variables.

For all j ∈ {1..m}, let rj be the j-th row of
∑K

i=1 xiM i. Equation (3.1) implies
that each row rj is in the row space of C.

Thus, the following (r + 1)× n matrix(
rj

C

)

cannot be of full rank. This means that all its maximal minors, i.e. (r+ 1)× (r+ 1)
minors, are all equal to 0.

By using cofactor expansion, also called Laplace expansion, for these maximal
minors with respect to their first row, one notices that they can be seen as bilinear
forms in the xi’s and in the r × r minors of C.

The core of the SupportMinors modeling is then to replace each of these maximal
minors of C by a new variable, this linearization process corresponds precisely to
using Plücker coordinates as described in Section 2.3.3.

For these new variables, we use the following notation:
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Notation 1. Let T ⊂ {1..n} where #T = r. Let cT be the maximal minor of C
corresponding to the columns of C that belong to T , i.e.

cT := |C|∗,T .

We can now describe our modeling to solve MinRank, namely the SupportMi-
nors algebraic modeling:

Modeling 1 (Support Minors modeling). For all j ∈ {1 . . .m}, let rj be the j-th
row of the matrix

K∑
i=1

xiM i.

We consider the system of bilinear equations, given by canceling the maximal minors

of the m matrices
rj
C

, j ∈ {1 . . .m}, i.e.

{
f = 0

∣∣∣ f ∈MaxMinors

(
rj

C

)
, j ∈ {1..m}

}
. (3.2)

This system contains:

• m
(
n
r+1

)
bilinear equations with coefficients in Fq,

• K +
(
n
r

)
unknowns: x = (x1, · · · , xK) and the cT ’s, T ⊂ {1..n} where #T = r.

We search for the solutions xi’s, and cT ’s in Fq.

In this next section, we will describe how we compute the solution of this system in
order to get the solution to the MinRank instance, and we will give the complexity
to do so.

3.1.2 Complexity

3.1.2.1 Initial system (b = 1)

First of all, note that the SupportMinors system, see Modeling 1, is far smaller than
the one where one would use the coefficients Ci,j of the matrix C instead of the cT ’s,
roughly by a factor r!.
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In addition to this, this system has degree 2 whereas it would have degree r + 1
polynomials using the actual maximal minors of C.

It is straightforward to see that this system has at most K
(
n
r

)
monomials of

degree 2 (of the form xicT , i.e. of bi-degree (1, 1)), if the number of linearly indepen-
dent equations is equal to the number of monomials minus 1, then one can solve the
system by direct linearization, see Section 2.3.2.2.

More precisely, given a MinRank(m,n,K, r) instance, if the condition:

m

(
n

r + 1

)
≥ K

(
n

r

)
− 1, (3.3)

is fulfilled, then one expects to solve the system by linearization.

We did a lot of experiments and it appears that, as long as the condition given
by Equation (3.3) is fulfilled, the rank of the Macaulay matrix of the SupportMinors
system at degree 2 is K

(
n
r

)
− 1. Thus, one can get the values of all the monomials

in the system by finding a vector in the right kernel of the Macaulay matrix, see
Section 2.3.2.2.

However, even knowing this kernel vector, one only has the values of all the
monomials of the system, i.e. degree 2 monomials of the form

xicT .

In order to recover the actual solution to theMinRank instance, recall that it means
getting the values of the K linear variables xi, one can follow the procedure given in
Section 3.1.2.6.

Remark 13. The SupportMinors modeling, see Modeling 1, is an algebraic system
of bi-degree (1, 1) in the xi’s and cT ’s variables; since for higher degrees, see Sec-
tion 3.1.2.2, we write (b, 1), b > 1, the aforementioned system is referred to as the
b = 1 system.

3.1.2.2 Solving at higher degree (b > 1)

When the condition given by Equation (3.3) is not fulfilled, i.e. when there are more
variables than equations, one wants to increase the number of equations in order to
linearize the system.
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More precisely, when the condition given by Equation (3.3) is not fulfilled, we
can get new equations by multiplying the original degree 2 equations by monomials
involving only the linear variables, i.e. the xi’s.

By multiplying the initial equations by monomials of degree b−1 with b ≥ 2, one
gets a bilinear system of bi-degree (b, 1) in the xi’s and cT ’s variables.

It is straightforward that this SupportMinors algebraic system at bi-degree (b, 1)
has

m

(
n

r + 1

)(
K + b− 2

b− 1

)
(3.4)

equations containing at most (
K + b− 1

b

)(
n

r

)
(3.5)

distinct monomials of bi-degree (b, 1).

Remark 14. All along this section, we suppose that q > b, the particular case q = 2
is discussed in Section 3.1.2.3.

However, among these

m

(
n

r + 1

)(
K + b− 2

b− 1

)
equations at bi-degree (b, 1), there are some linear dependencies; in order to use the
linearization techniques described in Section 2.3.2.2, we need to compute the number
of linearly independent equations, which corresponds to the rank of the Macaulay
matrix of the SupportMinors system.

Before going further, we need to recall the definition of a (symmetric) tensor,
then we give a lemma which will be useful in what is to follow.

Definition 36 (Tensor, Symmetric tensor). Let m, b be integers such that 2 ≤ b ≤ m.
A tensor of dimension m and order b over Fq is a set

(Si1,i2,...,ib)1≤i1,i2,...,ib≤m ∈ Fmbq .

Such a tensor is called a symmetric tensor of dimension m and order b over Fq
if for any permutation σ in the symmetric group Sb, one has

Si1,i2,...,ib = Siσ(1),iσ(2),...,iσ(b) .
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In other words, a symmetric tensor is a tensor which is invariant under the action
of the symmetric group on its indices.

Remark 15. The Fq-vector space of symmetric tensors of dimension m and order b
over Fq is isomorphic to the vector space of homogeneous polynomials of degree b in
m variables over Fq.

The latter admits the homogeneous monomials of degree b in m variables as a
basis, thus it is of dimension (

m+ b− 1

b

)
.

Hence, the dimension of the vector space of symmetric tensors of dimension m
and order b over Fq is given by

(
m+b−1

b

)
as well.

Lemma 1. For all j ∈ {1..m}, let rj be the j-th row of
∑K

i=1 xiM i.
Let b ≥ 1 be an integer, let J be a subset of {1..n} such that #J = r + b, then

there are (
n

r + b

)(
m+ b− 1

b

)
(3.6)

relations of the form

m∑
i1=1

m∑
i2=1

. . .
m∑
ib=1

Si1,i2,...,ib

∣∣∣∣∣∣∣∣∣∣∣∣


ri1
ri2
. . .

rib
C



∣∣∣∣∣∣∣∣∣∣∣∣
∗,J

= 0 (3.7)

where the Si1,i2,...,ib’s are symmetric tensors of dimension m and order b over Fq.

Proof. First of all, it is clear that the minor∣∣∣∣∣∣∣∣∣∣∣∣


ri1
ri2
. . .

rib
C



∣∣∣∣∣∣∣∣∣∣∣∣
∗,J

will vanish if two rows are identical, i.e. if ij = ik for any 1 ≤ j, k ≤ b such that
j 6= k.
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Thus, the left-hand side of Equation (3.7) can be restricted to a sum over all
indices that are pairwise distinct since all the other terms are zero. This means
that we can rewrite Equation (3.7) as a sum over sets of distinct indices and their
permutations:

∑
{i1,i2,...,ib}⊂{1..m}

∑
σ∈Sb

Siσ(1),iσ(2),...,iσ(b)

∣∣∣∣∣∣∣∣∣∣∣∣


riσ(1)
riσ(2)
. . .

riσ(b)
C



∣∣∣∣∣∣∣∣∣∣∣∣
∗,J

= 0 (3.8)

where Sb denotes the set of permutations over b symbols, also called the symmetric
group of degree b.

By definition, a symmetric tensor is a tensor such that:

Si1,i2,...,ib = Siσ(1),iσ(2),...,iσ(b) , ∀σ ∈ Sb.

Thus, Equation (3.8) can be rewritten:

∑
{i1,i2,...,ib}⊂{1..m}

Si1,i2,...,ib
∑
σ∈Sb

∣∣∣∣∣∣∣∣∣∣∣∣


riσ(1)
riσ(2)
. . .

riσ(b)
C



∣∣∣∣∣∣∣∣∣∣∣∣
∗,J

= 0. (3.9)

Applying a permutation σ on rows of a square matrix switches the sign of its deter-
minant if, and only if, the signature of σ is −1.

Since the symmetric group Sb contains as many permutations whose signature
is −1 as permutations whose signature is 1, the sum

∑
σ∈Sb

∣∣∣∣∣∣∣∣∣∣∣∣


riσ(1)
riσ(2)
. . .

riσ(b)
C



∣∣∣∣∣∣∣∣∣∣∣∣
∗,J

equals 0; which ends the proof of Equation (3.7).
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By Remark 15, about the dimension of the space of symmetric tensors, one has
that there are (

m+ b− 1

b

)
such relations; this holds for any set J ⊂ {1..n} of size r + b, hence the result.

With Lemma 1, we now have the tools to count the number of linearly indepen-
dent equations in the SupportMinors system at bi-degree (b, 1), b ≥ 2.

Let us start with the b = 2 case. Recall that the SupportMinors system at
bi-degree (2, 1) contains

Km

(
n

r + 1

)
equations containing at most (

K + 1

2

)(
n

r

)
distinct monomials of bi-degree (2, 1), see Equations (3.4) and (3.5).

Lemma 1 gives explicit linear dependencies between these equations. More pre-
cisely, expanding the minors in∣∣∣∣∣∣∣

ri

rj

C


∣∣∣∣∣∣∣
∗,J

+

∣∣∣∣∣∣∣
rj

ri

C


∣∣∣∣∣∣∣
∗,J

= 0

with respect to their first rows, one gets a non trivial linear combination of the
equations of bi-degree (1, 1) multiplied by linear variables xi’s which vanishes.

These are precisely syzygies in the system at bi-degree (2, 1), and there are(
n

r + 2

)(
m+ 1

2

)
of them by Lemma 1.

This means that there are at most

Km

(
n

r + 1

)
−
(

n

r + 2

)(
m+ 1

2

)
(3.10)
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linearly independent equations in the SupportMinors system at bi-degree (2, 1).

Experimentally, we often obtained precisely the number given by Equation (3.10)
of linearly independent equations. This is why we assume that we managed to identify
all the linear dependencies between the equations of the SupportMinors system at
bi-degree (2, 1).

Counting the number of linearly independent equations when b = 3, namely at
bi-degree (3, 1), is a little bit trickier.

Using Equations (3.4) and (3.5), the SupportMinors system at bi-degree (3, 1)
contains (

K + 1

2

)
m

(
n

r + 1

)
equations containing at most (

K + 2

3

)(
n

r

)
distinct monomials of bi-degree (3, 1).

Recall that the system at bi-degree (3, 1) is obtained by multiplying all the equa-
tions of the system at bi-degree (2, 1) by the K linear variables xi’s.

Hence, the syzygies at the previous degree, i.e. (2, 1), will give K times more
syzygies at degree (3, 1).

However, this time the syzygies are not linearly independent. In other words, it
means that there exist non-trivial linear dependencies among the syzygies themselves.
These linear dependencies come from relations of the form∣∣∣∣∣∣∣∣∣


ri

rj

rk

C


∣∣∣∣∣∣∣∣∣
∗,J

+

∣∣∣∣∣∣∣∣∣


ri

rk

rj

C


∣∣∣∣∣∣∣∣∣
∗,J

+

∣∣∣∣∣∣∣∣∣


rj

ri

rk

C


∣∣∣∣∣∣∣∣∣
∗,J

+

∣∣∣∣∣∣∣∣∣


rj

rk

ri

C


∣∣∣∣∣∣∣∣∣
∗,J

+

∣∣∣∣∣∣∣∣∣


rk

ri

rj

C


∣∣∣∣∣∣∣∣∣
∗,J

+

∣∣∣∣∣∣∣∣∣


rk

rj

ri

C


∣∣∣∣∣∣∣∣∣
∗,J

= 0.

(3.11)

In fact, by expanding the determinants in Equation (3.11) with respect to their
first row, one gets precisely non-trivial relations between the syzygies that appear at
degree (3, 1).
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Like we did before, using Lemma 1, one gets exactly the number of such depen-
dencies: (

n

r + 3

)(
m+ 2

3

)
.

Overall, at degree (3, 1), there are
(
K+1
2

)
m
(
n
r+1

)
equations among which there are

K
(
n
r+2

)(
m+1
2

)
syzygies; and last but not least, there are

(
n
r+3

)(
m+2
3

)
linear dependen-

cies among these syzygies.

Thus, the number of linearly independent equations in the SupportMinors system
at bi-degree (3, 1) is at most(

K + 1

2

)
m

(
n

r + 1

)
−K

(
n

r + 2

)(
m+ 1

2

)
+

(
n

r + 3

)(
m+ 2

3

)
. (3.12)

One more time, experimentally, we often had a Macaulay matrix whose rank was
exactly given by Equation (3.12).

Thus, it is natural to extend the results given by Equation 3.12 to higher values
of b using Lemma 1 and an alternating sum.

More precisely, let b be an integer such that 1 ≤ b < r + 2 < q, we expect
the number of linearly independent equations in the SupportMinors system at a
bi-degree (b, 1) to be given by:

b∑
i=1

(−1)i+1

(
n

r + i

)(
m+ i− 1

i

)(
K + b− i− 1

b− i

)
,

of course as long as this value is smaller than the total number of monomials minus 1.

This means that if
b∑
i=1

(−1)i+1

(
n

r + i

)(
m+ i− 1

i

)(
K + b− i− 1

b− i

)
≥
(
K + b− 1

b

)(
n

r

)
− 1, (3.13)

we expect the rank of the Macaulay matrix of the system to be precisely
(
K+b−1

b

)(
n
r

)
−

1, thus one could find the values of each monomials using techniques described in
Section 2.3.2.2.

Once one has the values of each monomials, she recovers the solution to the
MinRank instance using the procedure described in Section 3.1.2.6.
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Thus, since the most costly step in this attack is to find a vector in the right kernel
of the Macaulay matrix, we can derive a complexity for our SupportMinors attack
using Equation (3.13) together with the complexity formulas given in Section 2.3.2.3.

Overall, let b be the smallest positive integer such that 1 ≤ b < r + 2 < q, and
let Eb and Ub be defined as follow:

Eb :=
b∑
i=1

(−1)i+1

(
n

r + i

)(
m+ i− 1

i

)(
K + b− i− 1

b− i

)
, (3.14)

Ub :=

(
K + b− 1

b

)(
n

r

)
. (3.15)

If Ub − 1 ≤ Eb, and if the Macaulay matrix of the SupportMinors system at degree
b + 1 has rank Ub − 1, then the complexity to solve a MinRank instance with
parameters (m,n,K, r) using the SupportMinors attack at bi-degree (b, 1) is in

O
(
min

(
EbU

ω−1
b , K(r + 1)EbUb

))
(3.16)

operations in Fq, where ω is the linear algebra constant.

The minimum in Equation (3.16) comes from the use of Wiedemann or Strassen’s
algorithms, see Section 2.3.2.3.

3.1.2.3 Discussions about the cases q = 2 and b ≥ r + 2

In the previous section, there were two conditions on b, namely b < r + 2 and q < b.
Let us start with the former.

When dealing with a MinRank over F2, one wants to find the solution vector
with entries in F2, which means using the field equations x2i = xi for every linear
variable xi.

When b ≥ 2, this leads to the collapse of some monomials to lower degree, hence
the system is no longer homogeneous.

Thus, in this case it is most profitable to combine the equations obtained at a
given value of b with those produced using all smaller values of b. Similar consider-
ations to the general case imply that as long as b < r + 2 we will have

Eb :=
b∑

j=1

j∑
i=1

(−1)i+1

(
n

r + i

)(
m+ i− 1

i

)(
K

j − i

)
. (3.17)
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equations with which to linearize the

Ub :=
b∑

j=1

(
n

r

)(
K

j

)
monomials that occur at a given value of b.

Since our experiments support the number of linearly independent equations given
by Equation (3.17), we therefore expect to be able to solve by linearization when
b < r + 2 and b is large enough so that

Ub − 1 ≤ Eb. (3.18)

Similarly to the general case for any q described in the previous section, when
q = 2 and b < r + 2, the complexity to find the kernel vector is given by

O (K(r + 1)EbUb) (3.19)

in terms of binary operations, where b is the smallest positive integer so that the
condition (3.18) is fulfilled.

Like in the previous Section, once one has this kernel vector, finding the solution
to the MinRank instance can be done using Section 3.1.2.6.

Last but not least, the condition b < r+ 2 comes from the fact that we can build
additional syzygies at this degree using Theorem 1 in [BBB+20] from [FSEDS11].
Note that Theorem 14 in this document is the same theorem but applied to generic
matrices containing elements in Fq instead of linear forms.

However, such high degrees are not relevant in a cryptographic context.
Indeed, most cryptanalysis are performed at bi-degree (b, 1) where b is small

before r, in particular with the techniques described in Sections 3.1.2.4 and 3.1.2.5.
For instance, Beullens performed his cryptanalysis on the Rainbow signature

scheme at bi-degree (2, 1) when the target rank was r = 5, see [Beu22].

3.1.2.4 Hybrid case

For a givenMinRank instance with parameters (q,m, n,K, r), it sometimes happens
that the linearization condition Ub−1 ≤ Eb, where Ub and Eb are defined, respectively,
by Equations (3.15) and (3.14), is not fulfilled for any b ∈ {1..r + 1}.
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In that case, it is possible to use an hybrid approach by guessing Khyb > 0 linear
variables xi at an exponential cost of qKhyb , as described in [BBC+20].

Doing so, one is left with a MinRank instance with parameters

(q,m, n,K −Khyb, r),

which will be solvable at bi-degree (b, 1) with b < r + 2; see Table 3.1 for some
examples.

Note that, even if a SupportMinors system is solvable at bi-degree (b, 1) for some
b < r + 2, it is sometimes worth guessing a few linear variables in order to reach
smaller values of b. In fact, there is a tradeoff between the exponential cost of
guessing linear variables and the cost to solve a “smaller” MinRank instance.

3.1.2.5 Improvements

All along this section, one is given a MinRank instance with parameters

(q,m, n,K, r).

First of all, note that for non-square MinRank instances, it is sometimes worth
considering the transposed matrices, in fact it could lead to smaller complexities.

Overdetermined case. In Section 3.1.2.4, we considered the case where the lin-
earization condition is not fulfilled; in the opposite case, it could be fulfilled too
much.

More precisely, if the ratio between the number of linearly independent equations
and the number of monomials that appear in the system is above 1, it is sometimes
worth considering only n′ < n columns of the matrices.

In fact, if there is a unique solution to a MinRank instance where the matrices
have size m×n, and if there is also one solution to the instance one gets from keeping
only the first n′ < n columns of the matrices, then these solutions are the same.

Generically, we will keep a unique solution in the smaller instance as long as we
respect the Gilbert-Varshamov bound for matrix codes, see Definition 22.

This improvement of the attack corresponds to puncturing the matrix code given
by the MinRank instance. It is worth noticing that a tradeoff might be found, like
in Section 3.1.2.4, between the degree b and the number of kept columns n′.
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More precisely, it is always beneficial for the attacker to reduce n to the minimum
value n′ allowing linearization at a given degree b, however, it can sometimes lead to
an even lower complexity to reduce n further and solve at a higher degree b.

New hybrid approach. In [BBB+22], we introduced an hybrid strategy different
from the one presented in Section 3.1.2.4; in a few words, for a > 0, at an exponential
cost of qar, one is left with solving a smaller MinRank instance with parameters

(q,m, n− a,K − am, r).

This approach may allow one to reach smaller complexities than the ones ob-
tained with the aforementioned specialization technique of [BBC+20], especially for
instances with larger q. As an illustration, we present some parameter sets in Ta-
ble 3.1. The first one comes from Table 24.7.1 in [Cou01b], and the following ones
are obtained by increasing the value of q from 2 to 64 but by keeping the same
parameters (m,n,K, r).

(q,m, n,K, r) SM 20 b Khyb SM 22 b a comb
(2, 19, 19, 81, 10) 115 1 66 75 1 4 45
(4, 19, 19, 81, 10) 180 2 62 115 1 4 90
(8, 19, 19, 81, 10) 219 11 34 155 1 4 135
(16, 19, 19, 81, 10) 253 11 34 195 1 4 180
(64, 19, 19, 81, 10) 321 11 34 256 1 4 270

Table 3.1: Comparison between the SupportMinors hybrid approach of [BBC+20]
(specialization of Khyb linear variables), see Section 3.1.2.4, in column “SM 20”, and
the approach of [BBB+22], see Section 3.1.2.5, in column “SM 22”. The “comb”
column refers to the complexity of the best combinatorial attacks against MinRank,
see §4.2 in [Cou01a] for a broader description of these attacks.

Note that for q = 64, and also for even larger values which are not presented
here, the SupportMinors attack starts beating the best combinatorial attacks, and
the greater q, the bigger the gap.

The MinRank-based sigma protocol by Courtois [Cou01a] has been recently
improved in [BESV22]. The parameters of this scheme have been computed by
relying on our analysis and they can be found in Table 1 in [BESV22].
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3.1.2.6 Last step of the attack

Using the SupportMinors attack described in Sections 3.1.2.1 to 3.1.2.5, one gets the
values of each monomials involved in the system; they have the following form

xi1xi2 . . . xibcT ,

and are thus of degree b+ 1 for some 1 ≤ b ≤ r + 1.

Recall that if v is a non-zero vector which gives the values of each monomials in
Fq (i.e, v is in the right-kernel of the Macaulay matrix, see Section 2.3.2.2), then for
any α ∈ F×q , αv still gives valid values for the monomials.

Thus, picking an index i0 and a set T0 such that the monomial

xbi0cT0

is not zero enables one to set xi0 = 1. Then one gets the values of all the linear
variables by computing the following ratios

xi =
xi
xi0

=
xix

b−1
i0
cT0

xbi0cT0
, ∀ i ∈ {1, 2, . . . , K}.

3.1.2.7 Complexity results on some cryptosystems

In this section, we apply the complexity formulas for our SupportMinors algebraic
attack to some multivariate-based cryptosystems, namely GeMSS [CFMR+19], and
Rainbow [DCP+19], see in Table 3.2.

In the case of GeMSS, one sees that our attack against MinRank drastically
improved the previous ones. However, it is not sufficient to go below the security
levels.

As for the Rainbow signature scheme, our attack does improve on the previous
MinRank attack, and for the two last sets of parameters, it also beats by a few bits
the best attack against the scheme, namely the Direct Algebraic (DA) attack. Note
that the acronym RBS stands for Rainbow Band Separation attack.

It is worth noticing that since the first paper [BBC+20] where we presented
the SupportMinors attack, it has been used for some multivariate-based signatures
cryptanalysis, for instance in [BBC+22] and [Beu22].
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Complexity

GeMSS(D,n,∆, v) n K r n′ b New Previous Type

GeMSS128(513, 174, 12, 12) 174 162 34 61 2 154 522 MinRank

GeMSS192(513, 256, 22, 20) 265 243 52 94 2 223 537 MinRank

GeMSS256(513, 354, 30, 33) 354 324 73 126 3 299 1254 MinRank

RedGeMSS128(17, 177, 15, 15) 177 162 35 62 2 156 538 MinRank

RedGeMSS192(17, 266, 23, 25) 266 243 53 95 2 224 870 MinRank

RedGeMSS256(17, 358, 34, 35) 358 324 74 127 3 301 1273 MinRank

BlueGeMSS128(129, 175, 13, 14) 175 162 35 63 2 158 537 MinRank

BlueGeMSS192(129, 265, 22, 23) 265 243 53 95 2 224 870 MinRank

BlueGeMSS256(129, 358, 34, 32) 358 324 74 127 3 301 1273 MinRank

Rainbow(GF (q), v1, o1, o2) n K r n′ b New Previous Best / Type

Ia(GF (16), 32, 32, 32) 96 33 64 82 3 155 161 145 / RBS

IIIc(GF (256), 68, 36, 36) 140 37 104 125 5 208 585 215 / DA

Vc(GF (256), 92, 48, 48) 188 49 140 169 5 272 778 275 / DA

Table 3.2: Complexity comparison between the new and the previous attacks against
GeMSS [CFMR+19], and Rainbow [DCP+19].

Last but not least, the very last improvement of our SupportMinors attack,
namely the hybrid strategy described in [BBB+22], see Section 3.1.2.5, has been
used to compute the parameters of the MR-DSS signature scheme, see Table 1 in
[BESV22].

3.2 Algebraic Attack against RD

There are two general classes of attacks against RD, see Definition 17: the combi-
natorial and the algebraic attacks.

Combinatorial attacks can be seen as the equivalent of ISD-based (Information
Set Decoding) attacks in a rank metric context. The current best combinatorial
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attacks against RD are given by [GRS16, AGHT18].

In a few words, they state that, if one is given an RD instance with parameters
(q,m, n, k, r), then one can solve it using

Õ
(

min
(
q(w−1)b

(k+1)m
n c, qwd

(k+1)m
n e−m

))
(3.20)

elementary operations in Fq.

In what follows, we describe an algebraic attack against RD, namely the MaxMi-
nors attack.

3.2.1 MaxMinors Modeling

In this section, we consider an RD(m,n, k, r) instance over Fq, let G ∈ Fk×nqm be a
generator matrix of the code associated to this instance, that we call C.

It means that one is given a noisy codeword

y = xG + e ∈ Fnqm

where ‖e‖ ≤ r, and the goal is to recover e, hence x. As mentioned in Remark 12,
in what follows we will consider that ‖e‖ = r.

First of all, let us add the word y to the code C, this creates a new augmented
code C̃ of length n, dimension k + 1, generated by the following matrix:(

G

y

)
∈ F(k+1)×n

qm .

Let H ∈ F(n−k−1)×n
qm be a parity check matrix of C̃, then eHᵀ = 0n−k−1.

We say that we homogenized the problem, because now we are left with a syn-
drome equation whose right-hand side is zero.

Remark 16. Note that not only e belongs to C̃, but all its F×qm-multiples.

Although this last remark was very important in our previous attack against RD,
described in [BBB+20], it will not be as important for this attack. We will just use
it in the last step, see the end of the proof of Proposition 5.

The error vector e can be written

βMat (e) ;
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recall that β is a fixed basis of Fqm seen as a vector space over Fq, and Mat (·) has
been defined in Definition 8.

By definition, the matrix Mat (e) has rank r; thus it can be factorized exactly
like we did in Equation (3.1).

Overall,
e = βSC,

where S ∈ Fm×rq , and C ∈ Fr×nq both have full rank r.

By replacing this expression for e in the aforementioned homogenized syndrome
equation, one gets

βSCHᵀ = 0n−k−1. (3.21)

One of the primordial points in our attack is given by the following theorem.

Theorem 2. The maximal minors of the matrix CHᵀ ∈ Fr×(n−k−1)qm are equal to
zero.

Proof. The key point is to notice that the vector βS is not zero by construction,
thus there is at least one non trivial element in the left kernel of the matrix CHᵀ ∈
Fr×(n−k−1)qm . This means that its rank is smaller than r, thus all its maximal minors
will vanish.

Theorem 2 already enables one to have an algebraic modeling to solve the RD in-
stance: let C be an r × n matrix containing variables:

{f = 0 | f ∈ MaxMinors (CHᵀ)}. (3.22)

More precisely, the solutions in Frnq of the algebraic system given by Equation (3.22)
are possible values for the entries of the matrix C.

It is important to notice that despite the fact the maximal minors of the matrix
CHᵀ have coefficients in Fqm , the variables in the matrix C belong to Fq. This is
why we can get m times more equations by considering each equation f = 0 as m
equations over Fq. We call this process the unfolding, and it is formally defined by
the following definition.

Definition 37 (Unfolding). Let S := {
∑

j aijmij = 0, 1 ≤ i ≤ N} be a set of
polynomial equations where the mij’s are the monomials in the unknowns that are
assumed to belong to Fq, whereas the aij’s are known coefficients that belong to Fqm.
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We define the aijk’s as aij =
∑m−1

k=0 aijkα
k, where the aijk’s belong to Fq. From this

we can define the unfolding of the system over Fq as

Unfold(S) :=

{∑
j

aijkmij = 0, 1 ≤ i ≤ N, 0 ≤ k ≤ m− 1

}
.

The important point is that the solutions of S over Fq are exactly the solutions
of Unfold(S) over Fq; in that sense the two systems are equivalent.

The second primordial point of our attack is to write each maximal minor of the
matrix CHᵀ as a linear combination of maximal minors of C seen as new variables.

This linearization process is the same as the one described in Section 3.1.1, i.e.
one considers

(
n
r

)
variables cT ’s that are the maximal minors of the matrix C.

In order to write the maximal minors of the matrix CHᵀ as linear combinations
of maximal minors of C, we need the following theorem:

Theorem 3. Let J ⊂ {1..n− k − 1} such that #J = r, then

|CHᵀ|∗,J =
∑

T⊂{1..n}, #T=r

|Hᵀ|T,J cT

Proof. The Cauchy-Binet formula generalizes the formula

det(AB) = det(A) det(B)

to non-square matrices.

Theorem 4 (Cauchy-Binet formula). Let m be an integer such that 1 ≤ m ≤ n, let
A ∈ Km×n, and B ∈ Kn×m, then

|AB| =
∑

T∈{1,2,...,n}, #T=m

|A|∗,S |B|S,∗ .

The Cauchy-Binet formula is then readily adapted to minors of a product of two
matrices. Theorem 3 is a straightforward application of this formula to the maximal
minors of the matrix CHᵀ.

We have now described all the elements that are necessary to define the so-called
MaxMinors modeling:
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Modeling 2 (MaxMinors). With the previously defined notation, the MaxMinors
modeling is the linear system of algebraic equations defined by

Unfold ({f = 0 | f ∈ MaxMinors (CHᵀ)}) .

This system contains:

• m
(
n−k−1

r

)
linear equations with coefficients in Fq,

•
(
n
r

)
variables cT that are searched in Fq.

3.2.2 Complexity

As noted at the beginning of Section 3.1.2.1, using the variables cT ’s instead of
degree r polynomials for the maximal minors of C enables one to drastically reduce
the size of the system, roughly by a factor r!.

In addition to this, the MaxMinors modeling is a linear system.

This choice of linearization corresponds to using Plücker coordinates as described
in Section 2.3.3.

Conjecture 1. With overwhelming probability, as long as

m

(
n− k − 1

r

)
≥
(
n

r

)
− 1, (3.23)

the matrix of the linear system given by the MaxMinors modeling, see Modeling 2,
will have rank

(
n
r

)
− 1.

We extensively checked Conjecture 1 on RD instances generated at random and
it was always verified.

Proposition 5 (Complexity of the MaxMinors attack). If m
(
n−k−1

r

)
≥
(
n
r

)
− 1, and

if the matrix of the linear system given by the MaxMinors modeling has rank
(
n
r

)
−1,

then the complexity to solve the associated RD instance is in

O

(
m

(
n− k − 1

r

)(
n

r

)ω−1)
(3.24)

operations in Fq, where ω is the linear algebra constant.
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Proof. If the matrix associated to the linear system given by the MaxMinors mod-
eling has rank

(
n
r

)
− 1, its single non-zero right kernel vector gives the values of all

the maximal minors cT ’s, see Section 2.3.2.2 for more details about this so-called
linearization process.

Computing this kernel requires linear algebra on a
(
m
(
n−k−1

r

))
×
(
n
r

)
matrix with

entries in Fq, this yields the complexity given by Equation (3.24). This step is
clearly the one that concentrates the majority of the complexity since the last step
only involves linear algebra on far shorter matrices.

More precisely, to recover the entries of C from the values of all the cT ’s, one
uses the straightforward procedure described in Section 2.3.3.

Last, knowing the entries of the matrix C, one only has to solve a linear system
to recover the coefficients of the matrix S, hence the error vector e. This last step
corresponds to the end of Algorithm 1 in [BBC+20].

3.2.2.1 Overdetermined case

In case the ratio
m
(
n−k−1

r

)(
n
r

)
− 1

(3.25)

is strictly greater than 1, which means that there are more equations than unknowns
in the linear system given by the MaxMinors modeling, one can reduce the complexity
by puncturing the code C̃.

Note that, by removing p coordinates, the code C̃ will have length n − p and so
will be the number of columns of the matrix C. This has an impact on the number
of variables but also on the number of equations; this is very convenient since it leads
to a smaller linear system, thus it decreases the complexity to solve it.

More precisely, one wants to find the biggest integer p such that

m

(
n− k − 1−p

r

)
≥
(
n−p
r

)
− 1, (3.26)

then the complexity to solve the associated RD instance, as long as the linear system
has rank

(
n−p
r

)
− 1, becomes

O

(
m

(
n− k − 1−p

r

)(
n−p
r

)ω−1)
.

This is referred to as the overdetermined case.
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3.2.2.2 Hybrid case

On the contrary, if the condition given by Equation (3.23) is not fulfilled, i.e. if
the ratio given by Equation (3.25) is smaller than 1; one can guess, formally one
says specialize, a > 0 columns of the matrix C at an exponential cost of qar, and
solve a new system with less variables but as many equations, i.e. it increases the
aforementioned ratio.

More precisely, one wants to find the smallest integer a such that

m

(
n− k − 1

r

)
≥
(
n−a
r

)
− 1, (3.27)

then the complexity to solve the associated RD instance, as long as the linear system
has rank

(
n−a
r

)
− 1, becomes

O

(
qarm

(
n− k − 1

r

)(
n−a
r

)ω−1)
.

This is referred to as the hybrid case.

Specializing a columns in C. Since we know the value of a columns of the matrix
C, it seems pretty natural that one is left with a system containing only(

n− a
r

)
variables cT ’s.

However, getting this number of variables is not a straightforward process. This
is why this section is dedicated to explaining it. Let us start with a toy example in
characteristic 2 to avoid sign issues, here is a small 2× 5 matrix C:(

λ a b c d

µ e f g h

)
,

it contains 8 variables (a, b, c, . . . , h) and 2 known coefficients λ, µ ∈ F2
2.

There are
(
5
2

)
= 10 maximal minors, i.e. 2× 2 minors, in this matrix:

• c{1,2} = λe+ µa

• c{1,3} = λf + µb
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• c{1,4} = λg + µc

• c{1,5} = λh+ µd

• c{2,3} = af + be

• c{2,4} = ag + ce

• c{2,5} = ah+ de

• c{3,4} = bg + cf

• c{3,5} = bh+ df

• c{4,5} = ch+ dg

One notices that even if we did specialize one column, i.e. the actual values of λ and
µ are known, there are still 10 variables cT ’s, which is different from the expected(
5−1
2

)
= 6. And there is no way of expressing a variable cT in terms of the others

without introducing new variables; recall that we do not deal with the variables
a, b, c, . . . , h, only with the cT ’s.

The trick is to pick a cT , and put an identity block in C on the T coordinates.
Without loss of generality, let us assume that here T = {1, 2}. Thus c{1,2} = 1, and
the matrix C becomes (

1 0 λ a b

0 1 µ c d

)
,

and its maximal minors now are:

• c{1,2} = 1

• c{1,3} = µ

• c{1,4} = c

• c{1,5} = d

• c{2,3} = λ

• c{2,4} = a

• c{2,5} = b
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• c{3,4} = λc+ µa

• c{3,5} = λd+ µb

• c{4,5} = ad+ bc.

This time we have only 6 variables left, the ones in blue above. This is precisely(
5− 1

2

)
= 6.

More precisely, while computing the MaxMinors linear system, only the 6 blue
variables will appear, the others will be replaced by F2-linear combinations of the
blue variables using the following rules:

• c{1,3} = µc{1,2}

• c{2,3} = λc{1,2}

• c{3,4} = λc{1,4} + µc{2,4}

• c{3,5} = λc{1,5} + µc{2,5}.

Remark 17. This specialization depends on the choice c{1,2} = 1, if it does not work,
that is to say, if the linear system at the end is inconsistent, it simply means that
this particular maximal minor is singular in any solution matrix C.

Then one picks another set T and start again, eventually this works since C is
of full rank by construction.

In practice, the number of attempts before it works is about the same as the inverse
of the probability for an r×r matrix to be non-singular over Fq. that is to say, around
4 attempts over F2 and it increases exponentially fast up to 1 as q increases.

This specialization process is generalized with Proposition 6.

Proposition 6. Let a be an integer such that 1 ≤ a < n− r.
Let C be an r × n matrix which is made of an identity block of size r, a matrix

A ∈ Fr×aq , and variables on the remaining r(n− r − a) entries, i.e.

C := ( Ir | A | (Ci,j)i,j ) .
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One can express all the maximal minors of C as Fq-linear combinations of only(
n− a
r

)
variables cT , where cT := |C|∗,T .
Proof. Let us split the sets T ⊂ {1..n} of size r in two sets:

S1 := {T ⊂ {1..n} | #T = r, T ∩ {r + 1..r + a} 6= ∅},

and
S2 := {T ⊂ {1..n} | #T = r}\S1.

that is to say that the set S2 contains all the sets T ⊂ {1..n} of size r which do not
contain any indices in {r + 1..r + a}.

The set S2 clearly contains
(
n−a
r

)
elements.

It is trivial to see that every maximal minor of C on a set of columns indexed by
T ∈ S2 can be written as an Fq-linear combination of the following variables:

{cT | T ∈ S2}.

The rest of the proof consists in showing that every maximal minors of C on a
set of columns indexed by T ∈ S1 can also be written as an Fq-linear combination of
the following variables:

{cT | T ∈ S2}.

Let cT be such that T ∈ S1, then it is possible to write

T ∩ {r + 1..r + a} = {i1, i2, . . . , is}

for an integer s smaller or equal to r.
Using several times Laplace expansion, one has that

cT := |C|∗,T (3.28)

=
∑

J⊂{1..r}, #J=r−s

λJ |C|J, T\{i1,i2,...,is} (3.29)

=
∑

J⊂{1..r}, #J=r−s

λJ

∣∣∣∣ ((Ir)∗, {1..r}\J | C∗, T\{i1,i2,...,is}) ∣∣∣∣
∗,∗

(3.30)

=
∑

J⊂{1..r}, #J=r−s

λJc{J ∪ T\{i1,i2,...,is}} (3.31)
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The λ’s are elements in Fq, and the key observation is to notice that the last
variable

c{J ∪ T\{i1,i2,...,is}}

is a cT where T belongs to S2, which finishes the proof.

Last but not least, there is another way to perform an hybrid MaxMinors algebraic
attack.

We described this new process in [BBB+22]; it is based on a randomized algorithm
with success probability q−ar; with this algorithm, one is then left with solving a
smaller RD instance. Namely, the instance will have parameters (q,m, n−a, k−a, r)
instead of (q,m, n, k, r).

Plugging these new values in the complexity of the MaxMinors approach, see
Equation (3.24), one precisely gets the hybrid complexity given above.

Note that this way of performing the hybrid attack is the same as the one men-
tioned in Section 3.1.2.5, basically it applies to both MinRank and RD, see Sec-
tion 5 of [BBB+22].

3.2.2.3 Complexity results on some cryptosystems

In this Section, we apply the MaxMinors algebraic attack to some cryptosystems.
Before that, in the next paragraph, we explain how to actually compute complex-

ities for the MaxMinors attack.

Find the optimal complexity for MaxMinors. While computing the com-
plexity of our MaxMinors attack against an RD instance, it is not always in the
overdetermined or in the hybrid case; actually, the best complexity is sometimes
obtained by combining both.

Recall that when the ratio given by Equation (3.25) is smaller than 1, one needs to
specialize a > 0 columns ofC, this corresponds to the hybrid case, see Section 3.2.2.2.

However, when it becomes greater than 1, it is sometimes large enough so that
one could puncture the code, this is the overdetermined case, see Section 3.2.2.1.

Let us see that on a concrete example: for an RD instance with parameters
[q = 2, m = 50, n = 50, k = 25, r = 12], the ratio is around 10−3, so one definitely
has to specialize a few columns. The smallest integer a such that the ratio is bigger
than 1 is 20, however with a = 20, the ratio reaches 1.56.
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Thus, one could puncture the code on 2 coordinates, i.e. set p = 2, to bring the
ratio down to 1.06.

In conclusion, the couple (a, p) = (20, 2) is somehow optimal, and the complexity
of the attack is then 310 bits instead of 315 if one had only considered the hybrid
attack with a = 20 and p = 0.

Our attack on some cryptosystems. Table 3.3 gives the complexity of our
attack together with the (a, p) couples against some rank-based cryptosystems. They
are compared with the claimed security levels of the cryptosystems and with our
previous algebraic attack against RD, namely [BBB+20].

We can see that our attack improves the previous one by a great deal, and it is
clearly below the security level for some cryptosystems.

Note that the ROLLO and RQC parameters considered are the ones before the
Second Round updates.

Cryptosystem RD(m,n, k, r) Sec. [BBB+20] MaxMinors (a, p)

Loidreau [Loi17] (128, 120, 80, 4) 256 98 65 (0, 3)

ROLLO-I (79, 94, 47, 5) 128 117 71 (0, 9)

ROLLO-I (89, 106, 53, 6) 192 144 87 (0, 0)

ROLLO-I (113, 134, 67, 7) 256 197 158 (8, 0)

ROLLO-II (83, 298, 149, 5) 128 134 93 (0, 40)

ROLLO-II (107, 302, 151, 6) 192 164 111 (0, 18)

ROLLO-II (127, 314, 157, 7) 256 217 170 (6, 0)

ROLLO-III (101, 94, 47, 5) 128 119 70 (0, 12)

ROLLO-III (107, 118, 59, 6) 192 148 88 (0, 4)

ROLLO-III (131, 134, 67, 7) 256 200 138 (5, 0)

RQC-I (97, 134, 67, 5) 128 123 77 (0, 18)

RQC-II (107, 202, 101, 6) 192 156 101 (0, 10)

RQC-III (137, 262, 131, 7) 256 214 144 (3, 0)

Table 3.3: Complexity of the MaxMinors algebraic attack against some rank-based
cryptosystems. The complexities (in bits) are compared to the claimed security levels
(column “Sec.”), and to our previous algebraic attack [BBB+20].
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3.3 Attacks against NHRD, RSL, NHRSL

3.3.1 Attacks against the NHRD problem

This section is dedicated to the first cryptanalysis of NHRD, see Definition 19, for
which we propose two attacks exploiting the non-homogeneous structure of the error.

3.3.1.1 A new combinatorial attack.

Before explaining our new combinatorial attack against NHRD, let us recall how
the combinatorial attacks [GRS16, AGHT18] against RD work.

Given an RD(m,n, k, w1) instance whose solution is an error e of rank weight
w1, the main idea is to pick a vector space V ⊂ Fqm of dimension r ≥ w1 such that
Support (e) ⊂ V .

If it is the case, one is basically left with solving a linear system.
This process can be seen as an adaptation of the Information Set Decoding, used

in the Hamming metric, to the rank metric.

The probability that a vector space of dimension r ≥ w1 picked at random in Fqm
contains Support (e), is given by[

m− w1

r − w1

]
q[

m

r

]
q

≈ q−w1(m−r) (3.32)

where the approximation is obtained from the classical approximation of a Gaussian
coefficient: [

x

y

]
q

≈ qy(x−y).

For more details, the reader may refer to [GRS16].
Then, the complexity of the attack is derived from choosing the optimal value of

r to get a single solution in the linear system.

In the case of a non-homogeneous error, our combinatorial approach follows the
same path, roughly, we will pick 2 vector spaces V and Z of dimension, respectively,
r and ρ, and we hope that Support ((e1, e3)) ⊂ V , and that Support (e2) ⊂ V ⊕ Z.
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More formally, let (e1, e2, e3) ∈ Fn+n1+n
qm be a non-homogeneous error of rank

weight (w1, w2), see Definition 19; one is given a noisy codeword y = c + e where c
belongs to an [2n+n1, n1]Fqm -code C, let us assume that y is uniquely decodable, i.e.
there is a single solution to this NHRD instance with parameters (m,n, n1, w1, w2).

Let S1 be Support ((e1, e3)), and let S2 be Support (e2)). This means that S1

and S2 are two vector spaces of Fqm of dimension w1 and w1 + w2, respectively. By
definition, recall that S1 ⊂ S2.

Let H be the parity check matrix of the augmented code C + 〈y〉, this means
that H is an (n+ n1 − 1)× (2n+ n1) matrix in Fqm , and that we want to solve

H(e1, e2, e3)
ᵀ = 0n+n1−1. (3.33)

If we know two spaces V and Z in Fqm of dimension, respectively, r and ρ, such
that S1 ⊂ V and S2 ⊂ V ⊕ Z; then, we can express each coefficient of e1 as an
Fq-linear combination of the r elements in a basis of V . Doing so for each of its n
coefficients, it means that we can write e1 using nr unknowns in Fq.

Doing the same for e2 and e3, we need a total of

2nr + n1(r + ρ)

unknowns in Fq.
The Equation (3.33) gives n + n1 − 1 linear equations over Fqm , hence m times

more equations over Fq.
Overall, once can solve this linear system and get its single solution as long as

2nr + n1(r + ρ) ≤ m(n+ n1 − 1). (3.34)

In order to get the complexity of our combinatorial attack, we need to know the
probability that two random spaces contain the secret spaces; more precisely: if one
picks a subspace V of dimension r ≥ w1 and a random subspace Z ⊂ Fqm/V of
dimension ρ ∈ {w2..m− r}, what is the probability that S1 ⊂ V and S2 ⊂ V ⊕ Z?

This probability is approximately

p := q(w1+w2)(r−m)+w2ρ,

the proof is given in the appendix of [BBBG22].

Last but not least, we can use the same trick as in [AGHT18] to raise this prob-
ability. More precisely, one can take advantage of the Fqm-linearity by considering
the probability

PV,Z
(
∃α ∈ F∗qm , αS1 ⊂ V, αS2 ⊂ V ⊕ Z

)
≈ qm − 1

q − 1
p. (3.35)
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In other words, picking V and Z such that

αS1 ⊂ V, αS2 ⊂ V ⊕ Z

enables one to decode the word αe instead of e.

Overall, the complexity of our combinatorial attack against NHRD, in terms of
operations over Fq, and discarding the polynomial terms that are not relevant for us,
is given by:

Õ
(
q(w1+w2)(m−r)−w2ρ−m

)
(3.36)

where r, ρ ∈ N are chosen to maximize (w1 + w2)r + w2ρ under the following con-
straints: 

w1 ≤ r,

w2 ≤ ρ,

r + ρ ≤ m− 1

(2n+ n1)r + n1ρ ≤ m(n+ n1 − 1).

(3.37)

Remark 18. The optimization problem given by Equation (3.37) is over the inte-
gers and there is a finite and “small” set of possible pairs (r, ρ) when given crypto-
graphic parameters (m,n, k, w1, w2); thus it is really easy to solve it by performing
an exhaustive search over all these pairs and taking the one maximizing the quantity
(w1 + w2)r + w2ρ.

3.3.1.2 Algebraic attack against NHRD.

In this section, we adapt the algebraic attack against RD [BBC+20], see Section3.2,
to the case of non-homogeneous errors.

Recall that the core of the algebraic attackRD, namely MaxMinors, is to consider
the system made of the maximal minors of the matrix CHᵀ, then one linearizes
looking at the maximal minors of C as new variables, see Section 3.2.1 for more
details.

This approach would obviously work against an NHRD(m,n, n1, w1, w2) in-
stance, however one would have to see the non-homogeneous error e as a vector
of rank weight w1 + w2, which would lead to an inefficient attack.
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In the case of a non-homogeneous error e = (e1, e2, e3) ∈ Fn+n1+n
q , one has

βSCHᵀ = 0

where S = (S1 |S2) ∈ Fm×(w1+w2)
q ,C =

(
C1 C2 C3

0 C ′2 0

)
∈ F(w1+w2)×(n+n1+n)

q

with C1, C3 ∈ Fw1×n
q , C2 ∈ Fw1×n1

q , C ′2 ∈ Fw2×n1
q , S1 ∈ Fm×w1

q , S2 ∈ Fm×w2
q .

(3.38)

In the factorization of e given by Equation (3.38), the columns of the matrix S1

gives a basis of Support ((e1, e3)), and the columns of the matrix S gives a basis of
Support (e2); recall that Support ((e1, e3)) ⊂ Support (e2).

The advantage of writing the matrix C as in Equation (3.38) is that

M :=

w2−1∑
i=0

(
n1

i

)(
2n

w1 + w2 − i

)
(3.39)

of its maximal minors will be zero; basically they are the minors |C|∗,T such that
T ∩ {n+ 1..n+ n1} ≤ w2 − 1.

Since the maximal minors of C are the variables in the MaxMinors modeling,
it yields a more efficient algebraic attack which does take into account the non-
homogeneous structure.

Moreover, in order to get an hybrid algebraic attack like we did in Section 3.2.2.2,
one can guess entries of a columns in the matrix C.

One more time, it is possible to take advantage of the particular structure of C
given by Equation (3.38) by fixing a columns containing only w1 non-zero coordinates.

This leads to a smaller exponential factor of qaw1 in the final cost, instead of the
naive qa(w1+w2).

This algebraic attack against NHRD was first described in 2020, in the Second
Round update of RQC [AAB+20]; then a more thorough analysis of its complexity
was proposed in [BBBG22], see Theorem 5.
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Theorem 5 (Algebraic attack against NHRD. [BBBG22], Theorem 5, page 17).
Let a ≥ 0 be the smallest integer such that

NFq ≥
(

2n+ n1 − a
w1 + w2

)
−Ma − νFq − 1,

where

NFq = m

w1+w2∑
i=w2

(
n1 − 1

i

)(
n

w1 + w2 − i

)
, νFq = m

(
n1 − 1

w2 − 1

)(
n− 1

w1

)
,

and

Ma :=

ω2−1∑
i=0

(
n1

i

)(
2n− a

ω1 + ω2 − i

)
.

The hybrid MaxMinors attack adapted to NHRD costs

O
(
qaw1NFq

((
2n+n1−a
w1+w2

)
−Ma − νFq

)ω−1)
operations in Fq, where ω is a linear algebra constant.

3.3.2 Attacks against the RSL problem

In this section, we consider an RSL(m,n, k, r,N)-instance, say N distinct RD in-
stances whose errors share the same support of dimension r, see Definition 18.

This number N is a crucial parameter to estimate the hardness of RSL, in par-
ticular to compare it to RD.

For instance, this problem can be solved in polynomial time when N ≥ nr, due
to [GHPT17]. A more powerful attack was later found in [DT18]; it suggests that
secure RSL instances must satisfy a stronger condition: N < kr.

In what follows, we give a new combinatorial attack against RSL, it is more
efficient than the previous combinatorial attacks, plus it enables us to decrease the
threshold on N where the RSL problem starts to be solvable in polynomial time. In
addition to this, we give more explicit formulas to clarify the recent algebraic attack
of [BB21].

Last but not least, we propose a graph so that one could visualize how the hard-
ness of an RSL instance changes when N grows.
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3.3.2.1 New combinatorial attack on RSL.

Theorem 6 (Combinatorial attack on RSL). There exists a combinatorial attack
against an RSL(m,n, k, r,N) instance whose complexity is

Õ
(
qr(m−b

m(n−k)−N
n−a c)

)
operations in Fq, where a :=

⌊
N
r

⌋
.

Proof. Let si ∈ Fn−kqm , 1 ≤ i ≤ N , denote theN syndromes from anRSL(m,n, k, r,N)
instance.

By definition, there exist

ei ∈ Fnqm , ‖ei‖ = r, Heᵀ
i = sᵀi , ∀ i ∈ {1, 2, . . . , N},

whereH ∈ F(n−k)×n
qm is a parity-check matrix, and where Support(ei) does not depend

on i.
Similarly to [GRSZ14a, BB21], this last property enables us to use the fact that

there exists an Fq-linear combination ( 0a | ẽ ) ∈ Fnqm of the ei’s which is all-zero on
its first a :=

⌊
N
r

⌋
coordinates.

This error corresponds to a secret linear combination of the syndromes, more
precisely

∃λ1, λ2, . . . , λN ∈ Fq, H( 0a | ẽ )ᵀ =
N∑
i=1

λis
ᵀ
i .

By setting H̃ := H∗,{a+1...n}, this is equivalent to

H̃ẽᵀ =
N∑
i=1

λis
ᵀ
i . (3.40)

Similarly to what was done in Section 3.3.1.1, we can pick a vector space V ⊂ Fqm
of dimension r1 ≥ r such that Support(ẽ) ⊂ V .

Knowing such a vector space V , Equation (3.40) can be seen as n − k linear
equations over Fqm involving:

• (n− a)r1 unknowns in Fq to write each coefficient of ẽ in a basis of V ,

• N unknowns over Fq, namely the λi’s.
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Note that since all the unknowns are in Fq, one can project the equations over Fq in
order to get a total of m(n− k) equations.

Thus, one can expect to solve this linear system as long as:

(n− a)r1 +N ≤ m(n− k) =⇒ r1 ≤
m(n− k)−N

n− a
. (3.41)

Using the result from [GRS16] that we described at the beginning of Section
3.3.1.1, the probability that a vector space V of dimension r1, taken uniformly at
random in Fqm , contains the support of ẽ which has dimension r can be approximated
by:

q−r(m−r1).

In order to maximize this probability, according to the constraint given by Equa-
tion (3.41), one sets

r1 =

⌊
m(n− k)−N

n− a

⌋
,

hence the result.

Thanks to Theorem 6, we can derive a new bound on N so that an RSL instance
with N syndromes can be solved in polynomial time:

Corollary 2 (Polynomial bound). Using the attack of Theorem 6, an RSL instance
with parameters (m,n, k, r,N) can be solved in polynomial time as long as

N > kr
m

m− r
.

Proof. The exponential factor in the cost of the attack given by Theorem 6 is

qr(m−δ)

where
δ :=

⌊
m(n− k)−N

n− a

⌋
, and a :=

⌊
N

r

⌋
.

Since r > 0 by definition, this attack will be polynomial as long as δ > m.

Without loss of generality, let us assume that both N
r
and δ are integers.

One readily has that δ > m is equivalent to

N > kr
m

m− r
,

hence the result.
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Note that as long as
m

m− r
<
n

k
,

which is almost always the case for cryptographic parameters, our bound is lower
than the former one given in [GHPT17], namely N > nr.

3.3.2.2 Algebraic Attack of [BB21].

This attack consists in solving a bilinear system at some bi-degree (b, 1) for b ≥ 1 by
using linearization techniques such as the ones used in [BBC+20], see Section 2.3.2
for more details.

The two cases “δ = 0” and “δ > 0” presented below correspond to two different
specializations of this bilinear system which lead to different costs.

In what follows, we provide explicit formulas to compute these two complexities
(for the binary field F2).

In particular, we also include the values of αR and αλ which correspond to the
hybrid approach mentioned in [BB21].

Finally, note that these formulas are valid only when N > n− k − r.

First case: δ = 0. Let a be the unique integer such that

ar < N ≤ (a+ 1)r,

and set N ′ := ar + 1.
For 1 ≤ b ≤ r + 1, the number of variables for linearization is

MF2
≤b :=

b∑
i=1

(
n− a− αR

r

)(
N ′ − αλ

i

)
, (3.42)

where 0 ≤ αR < n− a− r, and 0 ≤ αλ < N ′ − b.
The number of linearly independent equations is equal to mN F2

≤b where

N F2
≤b :=

b∑
i=1

i∑
d=1

n−k∑
j=1

(
j − 1

d− 1

)(
n− k − j
r − d+ 1

)(
N ′ − αλ − j

i− d

)
. (3.43)
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The complexity is given by

O

(
min

(
2rαR+αλmN F2

≤b(M
F2
≤b)

ω−1,

2rαR+αλ(N ′ − αλ)
(
k − a+ 1 + r

r

)
(MF2

≤b)
2

))
(3.44)

provided that mN F2
≤b ≥ M

F2
≤b − 1, and where the values of b, αR, and αλ are chosen

to minimize the complexity.

Second case: δ > 0. Let δ be a positive integer such that

N ≥ δ(n− r + δ),

let a be the greatest integer such that

N > δ(n− r + δ) + a(r − δ),

and set N ′ := δ(n− r + δ) + a(r − δ).
To find the complexity of this attack, one replaces r by r − δ in the expressions

ofMF2
≤b and N

F2
≤b , respectively in Equations (3.42) and (3.43).

The complexity is finally obtained with Equation (3.44), and its minimal value
now depends on δ > 0 as well as on b, αR, αλ as above.

3.3.2.3 Visualization of the attacks against RSL.

Last but not least, in order to visualize how the number of syndromes N affects the
complexity of an RSL instance, we drew a graph of the complexities of different
attacks with respect to N .

More precisely, on Figure 3.1, the x-axis indicates the value of N , the number of
syndromes of an RSL instance with parameters

[m,n, k, r,N ] = [61, 100, 50, 7, N ],

and the y-axis gives the complexity of different attacks.
The blue/red squares and triangles refer to the different cases of the algebraic

attack described in Section 3.3.2.2, and the green squares refer to our new combina-
torial attack described in Section 3.3.2.1.
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Figure 3.1: Complexity C (in bits) of the best known attacks against an RSL in-
stance with parameters [m,n, k, r] = [61, 100, 50, 7] in terms of the number N >
n − k − r of syndromes. In the legend: C stands for our combinatorial attack (see
Theorem 6), all the other symbols correspond to the 2 cases of the algebraic attack
[BB21] where the “*” indicates the use of Wiedemann algorithm instead of Strassen’s.
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The complexity to solve the associated RD instance, i.e. taking only N = 1
syndrome, using the algebraic attack MaxMinors, see Section 3.2, is 196 bits; it
corresponds to the horizontal black thick line on Figure 3.1.

Starting with N = 44 syndromes, recall that it is the threshold for the algebraic
attack against RSL (see Section 3.3.2), one sees that it already beats the RD attack.

It is worth noticing that with approximately N = 225 syndromes, our new com-
binatorial attack against RSL, see Section 3.3.2.1, starts to beat the algebraic attack
of [BB21].

Finally, one notices that, with a lot of syndromes, all the aforementioned attacks
complexities drop down, which is quite logical.

The parameters [m,n, k, r] = [61, 100, 50, 7] were not chosen at random: they
precisely correspond to attacking our scheme NH-Multi-RQC-AG-128, described in
Section 4.2.4, see Table 4.1 for the parameters.
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More details are given about the links between Figure 3.1 and our new scheme
in Section 4.2.7.

3.3.3 Attack against the NHRSL problem

In this section, we adapt the combinatorial attack against RSL, given in the proof
of Theorem 6, to the case of non-homogeneous errors, i.e. to the NHRSL problem,
see Definition 20.

For the sake of simplicity, and since it is the case for all cryptographic parameters
studied in this document, we focus only on NHRSL instances where n1 < n.

Theorem 7 (Combinatorial attack against NHRSL ). There exists a combinatorial
attack against an NHRSL instance with parameters

(m,n, n1, w1, w2, N)

whose complexity, in terms of elementary operations in Fq, is given by

Õ
(
q(w1+w2)(m−r)−w2ρ

)
,

where r, ρ are integers chosen to maximize the quantity

(w1 + w2)r + w2ρ

under the following constraints:

w1 ≤ r,

w2 ≤ ρ,

r + ρ ≤ m− 1,

N1, N2 ∈ N,
N1 +N2 = N,

a :=
⌊
N1

w1

⌋
≤ n1,

b :=
⌊

N2

w1+w2

⌋
≤ 2n,

m(n+ n1) ≥ (n1 − b)(r + ρ) + (2n− a)r +N.

(3.45)

Proof. Straightforward adaptation of the attack in the proof of Theorem 6, combined
with the probability results given in the appendix of [BBBG22].
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3.4 Attacks against PSSI (Durandal signature)
Section 1.1.3.2, and the beginning of Section 3.5 give an overview of rank-based
signature schemes in general, and about Durandal [ABG+19] in particular.

In this section, we will only focus on the Product Spaces Subspaces Indistin-
guishability (PSSI) problem, see Definition 40, which is central for the security of
Durandal signature scheme.

First, we will give a randomized reduction from PSSI to MinRank, see Defini-
tion 16; then we will use this reduction to give some complexity estimations.

Throughout this section, Gr(d,Fqm) refers to the set of the Fq-vector subspaces
in Fqm of dimension d. Hence, V $← Gr(d,Fqm) means that V ⊂ Fqm is a vector
space picked uniformly at random among the vector spaces of dimension d in Fqm .

3.4.1 The PSSI problem

Before introducing the PSSI problem, we need the two following definitions.

Definition 38 (PSSI distribution DPSSI). Let E be a Fq-subspace of Fqm of dimen-
sion r. Let DPSSI(E) be the distribution that outputs N samples (Fi, Zi)1≤i≤N defined
as follows:

• Fi
$← Gr(d,Fqm)

• Ui
$← Gr(rd− λ,EFi)

• Wi
$← Gr(w,Fqm)

• Zi = Wi + Ui

The pairs of subspaces (Fi,Wi)1≤i≤N are picked independently. When there is no
ambiguity on the vector space E, we use DPSSI as a shorthand.

Definition 39 (Random distribution DRandom). Let DRandom the distribution that
outputs N samples (Fi, Zi)1≤i≤N where Fi and Zi are independent random variables
picked uniformly in, respectively, Gr(d,Fqm) and Gr(w + rd− λ,Fqm).
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The PSSI problem, see Definition 40, consists in distinguishing between random
spaces of dimension w + rd− λ and subspaces of codimension λ in EFi (where Fi is
public and E is a fixed secret space) masked with random subspaces of dimension w.

Definition 40 (Product Spaces Subspaces Indistinguishability (PSSI) problem).
Let E be a Fq-subspace of Fqm of dimension r. The PSSI problem with parameters
(m, r, d, λ, w,N) consists in distinguishing samples (Zi, Fi)i∈{1..N}

$← DPSSI(E) and
samples (Zi, Fi)i∈{1..N}

$← DRandom.

Remark 19. In the original paper of Durandal [ABG+19], the PSSI problem was
defined with a mandatory filtering on Ui, i.e. {ef, e ∈ E, f ∈ Fi} ∩ Ui = {0}. In
this version, we define PSSI as a more general problem in which weak instances are
those with a subspace Ui for which {ef, e ∈ E, f ∈ Fi} ∩ Ui 6= {0}. More details
about these weak instances are given right below.

Weak instances. The PSSI problem is related to the decoding of LRPC codes
[GMRZ13]. Indeed we can consider a subspace Z = U + W as the noisy support of
a syndrome for an LRPC code, the noise corresponding to W . Consequently, it is
natural to try and apply techniques used for decoding LRPC codes in order to solve
the PSSI problem.

The first idea is to use the basic decoding algorithm, see [GMRZ13]. It consists
in computing intersections I of the form f−1Z ∩ f ′−1Z with (f, f ′) ∈ F 2.

This technique only works when U contains product elements of the form ef
with e ∈ E and f ∈ F . We categorize these occurrences as weak instances. A strong
instance ofPSSI is thus an instance in which all the subspaces Ui are filtered, meaning
that {ef, e ∈ E, f ∈ Fi} ∩ Ui = {0}.

Clearly, in the Durandal signature scheme, only strong PSSI instances are used.

3.4.2 Reduction to MinRank

In this section, we will need the following assumption:

Assumption 1. For integers r, d, w, λ of the same order of magnitude as the param-
eters in Table 3.4. When a pair (Zi, Fi) is picked uniformly at random in

Gr(w + rd− λ,Fqm)×Gr(d,Fqm),
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then there does not exist, with overwhelming probability, a vector space E such that

Zi = Wi + Ui, where Ui ⊂ EFi, dim(Ui) = rd− λ,

for any space Wi of dimension w.

Roughly, Assumption 1 states that a vector space picked uniformly at random
will correspond to a PSSI instance with a negligible probability. This assumption
has been supported by our experiments.

Proposition 7. There is a randomized polynomial-time reduction from PSSI to
MinRank. More precisely, there exists a probabilistic polynomial-time algorithm A
such that:

• (Zi, Fi)← DPSSI =⇒ P(MinRank.Solve(A(Zi, Fi)) = 1) ≥ 1/4,

• (Zi, Fi) ← DRandom =⇒ P(MinRank.Solve(A(Zi, Fi)) = 0) ≥ 1 − ε, where ε is
negligible.

Proof. Note that in the following reduction, one only uses a single couple (Zi, Fi),
that is to say that i ∈ {1..N} is fixed all along this proof.

Let (Zi, Fi) be an instance of PSSI, i.e. coming either from DPSSI or DRandom, see
Definitions 38 and 39.

Let Zi be an m× (w + rd− λ) matrix with entries in Fq whose columns form a
basis of the vector space Zi written over Fq.

Let Ẽ be an m × r matrix containing (m − r)r variables ẽi,j with 1 ≤ i ≤ r,
and r + 1 ≤ j ≤ m, and an identity block as on Equation (3.46):

Ẽ :=



Ir

ẽ1,r+1 . . . ẽr,r+1

ẽ1,r+2 . . . ẽr,r+2

...
...

...
ẽ1,m . . . ẽr,m



. (3.46)
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Without loss of generality, we put the identity block at the first r× r spot in the
matrix Ẽ, see the remark at the very end of this proof.

This matrix can be seen as a symbolic basis over Fq of a vector space of dimension
at most r, namely E.

The fact that we consider this matrix Ẽ in systematic form ensures that its
column space is of dimension exactly r.

From the matrix Ẽ, since the vector space Fi is known, one can easily build a
symbolic basis matrix ẼF i of the product vector space EFi; this m× rd matrix has
entries which are polynomials of degree at most 1 in the polynomial ring

Fq[ẽ1,r+1, ẽ1,r+2, . . . , ẽr,m−1, ẽr,m].

Note that these polynomials might have non-zero constant term due to the sys-
tematic form of the matrix Ẽ. Let

M̃ :=
(
Zi | ẼF i

)
be the matrix obtained by appending horizontally ẼF i to Zi; M̃ is an m × (w +
rd− λ+ rd) matrix with entries in Fq[ẽ1,r+1, ẽ1,r+2, . . . , ẽr,m−1, ẽr,m].

We define the matrixM 0 ∈ Fm×(w+rd−λ+rd)q , and for 1 ≤ i ≤ r, and r+1 ≤ j ≤ m,
the matrices M i,j ∈ Fm×(w+rd−λ+rd)q such that:

M̃ = M 0 +
r∑
i=1

m∑
j=r+1

ẽi,jM i,j.

These matrices are uniquely defined since they contain, for each corresponding
entry in M̃ , the coefficient of the ẽi,j variables, and M 0 contains the constant term.

These matrices form the MinRank instance, see Definition 16, i.e.

A(Zi, Fi) := (M 0,M 1,1,M 1,2, . . . ,M r,m−1,M r,m),

and its parameters are given by:

(m,w + 2rd− λ, (m− r)r + 1, w + rd).

The reason for the choice of the target rank, namely w + rd, is explained below.
We will now prove that A is a suitable algorithm for the reduction of PSSI to

MinRank, by considering the two cases where (Zi, Fi) comes from either DPSSI or
DRandom.
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First case. Let us assume that (Zi, Fi) comes from the PSSI distribution gener-
ated by some subspace E, i.e. DPSSI(E).

Since the vector space E is picked uniformly at random, there is a probability
bounded from below by 1/4 that the first r× r block in a basis matrix of E, written
over Fq, is non-singular, see for instance the aforementioned Lemma 7 in [BGL03].

So, let E be a basis matrix of E of the following form:

E :=



Ir

e1,r+1 . . . er,r+1

e1,r+2 . . . er,r+2

...
...

...
e1,m . . . er,m



∈ Fm×rq , (3.47)

Similarly to the previous transformation, since the vector space Fi is known, one
can easily build a basis matrix EF i of the product vector space EFi using the basis
of E in a systematic form.

The matrix defined as
M := (Zi | EF i)

has a rank less or equal to w + rd. The proof is straightforward from the fact that
Ui ⊂ EFi.

It is also readily seen that the matrix M corresponds to the evaluation of the
matrix M̃ with the variable assignments ẽi,j ← ei,j. In other words,

M = M 0 +
r∑
i=1

m∑
j=r+1

ei,jM i,j.

This shows that the MinRank instance given by A(Zi, Fi) admits a solution

(e1,r+1, e1,r+2, . . . , er,m−1, er,m),

and consequently, the solver MinRank.Solve will return 1.
Due to the probability that the first r× r block is not singular, one gets the first

probability of Proposition 7.
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Second case. Let us now assume that (Zi, Fi) comes from the uniform distribution,
i.e. DRandom.

By Assumption 1, using the same notation as in Definition 40, with overwhelming
probability, there does not exist a solution vector space E of dimension r such that
Zi = Wi + Ui.

LetM = A(Zi, Fi) be theMinRank instance built using the procedure described
above.

IfM has a solution, by construction and more specifically thanks to the system-
atic form, it is readily guaranteed that there exists a solution E of dimension r to
the associated PSSI instance.

Since by hypothesis no such solution vector space exists, it means that the
MinRank instance M will not have any solution. Hence, MinRank.Solve is bound
to return 0.

The second probability in Proposition 7 simply comes from the 1− ε probability
in Assumption 1.

Turning a PSSI instance into a MinRank instance following the aforementioned
procedure is probabilistic polynomial-time because the r × r systematic block is
chosen at random, see Equation (3.46), and all the subsequent computations are
clearly polynomial. This concludes the proof.

Remark 20. Recall that Assumption 1 is supported by experiments. Furthermore,
recall that the MinRank instance coming from the reduction in the proof of Propo-
sition 7 has parameters

(m,w + 2rd− λ, (m− r)r + 1, w + rd).

By applying these parameters to the bound given by Definition 22, one gets the
condition:

(m− r)r + 1 < (m− (w + rd))(w + 2rd− λ− (w + rd)). (3.48)

And it is worth noticing that this last condition is always fulfilled for parameters of
interest, see for instance Table 3.4, which is consistent with Assumption 1.

3.4.3 Application to Durandal parameters

Table 3.4 gives the parameters of the two PSSI instances associated to Durandal
sets of parameters [ABG+19], and the complexities to attacking a MinRank in-
stance coming from the aforementioned reduction. Note that the algebraic attacks
we considered are the ones described in Section 3.1.
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m r = d w λ [ABG+19] MinRank param Comb. Alg.
241 6 57 12 193 (241, 117, 1411, 93) 558 803
263 7 56 14 193 (263, 140, 1793, 105) 736 990

Table 3.4: PSSI parameters where for each set q = 2, and the targeted level of secu-
rity is 128 bits. The column “[ABG+19]” refers to the complexity of the distinguisher
against PSSI described in this paper, the column “Comb.” (resp. “Alg.”) refers to
the combinatorial attacks (resp. the algebraic attacks) against generic MinRank.

One notices that the reduction does not enable one to beat the previous at-
tack against PSSI using state-of-the-art attack against generic MinRank instances.
However the comparison is somehow biased for the reasons explained below.

It is worth noticing that the previous attack against PSSI in [ABG+19] is a
distinguisher that does not enable one to retrieve the secret space E unlike the
MinRank attack.

Moreover, as mentioned in Chapter 6, there is a lot of room for improvements.
First, these MinRank instances are very structured and one could take advantage
of that by adapting the MinRank attacks. Second, the distinguisher makes use of
several connected PSSI instances, whereas here we only used one in the reduction
to MinRank.

3.5 Cryptanalysis of the RPS signature scheme
As seen in Section 1.1, code-based signature schemes can belong to two categories:
the hash-and-sign schemes and the proof of knowledge ones. The latter is due to
Schnorr-Lyubashevsky [Sch91, Lyu09].

In the rank-metric, it gave rise to Durandal [ABG+19] and RPS [LT20b] signature
schemes.

The main idea is the following: the public key consists of a random matrix H
and a matrix T = HS where S is a secret matrix of low weight syndromes. To
prove the knowledge of S, the signer outputs a signature consisting of a challenge c
and a vector z = y + cS. The idea is that y acts as a mask that hides the secret
value cS.
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While the Durandal scheme reuses the same secret matrix S across all signatures
and checks that the techniques used in the decoding algorithm of the LRPC codes
do not leak information, the RPS scheme uses ephemeral keys in order to randomize
this matrix for each signature.

3.5.1 Presentation of the scheme

Let us describe the RPS scheme from [LT20b].

In what follows, Swn denotes the set of vectors of length n and weight w over Fqm .
For the sake of clarity, we omit the dot · for the product between vectors of length k,
see Section 2.1.3 for its definition.

Keygen:

• Sample x
$← Srxk and y

$← Sryk .

• Let h = x−1y.

• Output (pk = h, sk = (x,y)).

Sign(µ, pk, sk): for 1 ≤ i ≤ l, sample:

• ei
$← Srek

• f i
$← Srfk

• ui
$← Sruk

• vi
$← Srvk

Let H be a hash function which outputs values in S1
k and H be the parity-check

matrix generated by (h,h−1). Compute:

• si = (eix,f iy)Hᵀ

• wi = (uix,viy)Hᵀ

• ci = H({wi, si}, µ, pk)

• ai = (ui + ciei)x

• bi = (vi + cif i)y

Then output σ = ({ci,ai, bi, si}1≤i≤l).
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Verify(σ, µ, pk): for 1 ≤ i ≤ l, we check the rank of the following values:

• ‖ai‖ = (ru + re)rx

• ‖aih‖ = (ru + re)ry

• ‖bi‖ = (rv + rf )ry

• ‖bih−1‖ = (rv + rf )rx

• ‖si‖ = rery + rfrx

• ‖sih‖ ≥ min(m− 1, k)

• ‖sih−1‖ ≥ min(m− 1, k)

If one of them is not valid, reject the signature. Otherwise, compute wi as
(ai, bi)H

ᵀ − cisi. Accept the signature if ci = H({wi, si}, µ, pk) for 1 ≤ i ≤ l.

In [LT20b], the authors proposed the following parameter sets, where rx = ry,
re = rv and ru = rf :

Parameter set (l, q,m, k, rx, re, ru) Security
RPS-C1 (3, 2, 61, 59, 5, 6, 5) 128 (classical)
RPS-C2 (4, 2, 67, 59, 5, 6, 5) 192 (classical)
RPS-P1 (3, 2, 89, 83, 7, 6, 5) 128 (post-quantum)
RPS-P2 (3, 2, 89, 107, 11, 4, 3) 192 (post-quantum)

Table 3.5: Parameters of the RPS signature scheme.

3.5.2 Some useful propositions

We will need several propositions about vector spaces of Fqm or vector spaces in
general, there are given in this section.

Proposition 8 (Dimension of random vectors, [AGH+19]). Let X be a vector space
of Fqm of dimension wr and let x be a random vector in Xn.

The probability that ‖x‖ = wr − i can be approximated by:

q−i(max(n,wr)−min(n,wr)+i)
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Lemma 2 (Intersection of 2 vector spaces). Let A and B be two vector spaces of
Fqm, their dimensions fulfill the following inequality:

dim(A ∩B) ≥ dim(A) + dim(B)−m.

Proof. Straightforward using Grassmann’s formula: dim(A∩B) = dim(A)+dim(B)−
dim(A+B).

Lemma 2 can easily be generalized to the intersection of 3 subspaces of Fqm . The
proof is straightforward and only requires to use lemma 2.

Lemma 3 (Intersection of 3 vector spaces). Let A, B, and C, be 3 vector spaces of
Fqm, their dimensions fulfill the following inequality:

dim(A ∩B ∩ C) ≥ dim(A) + dim(B) + dim(C)− 2m.

Lemma 4 (Random vector in vector space). Let X ⊂ Y be two vector spaces of Fqm
of dimensions x and y, respectively. If one picks at random a vector v ∈ Y , it will
belong to X with probability qx−y.

Proof. Straightforward by computing the ratio of favorable vectors over all possible
vectors.

Proposition 9. Let X ⊂ Y be two vector spaces of Fqm of dimensions x and y,
respectively. If one picks at random x vectors v1, . . . , vx in Y , {v1, . . . , vx} will be a
basis of X with probability

x−1∏
j=0

q−y(qx − qj).

Proof. When one picks x vectors in the vector space Y , the probability that these
vectors form a basis of a subvector space of dimension x, i.e. that they are linearly
independent, is

x−1∏
j=0

(1− qj−y) =
x−1∏
j=0

q−y(qy − qj). (3.49)

There are [
y

x

]
q

:=
x−1∏
j=0

qy − qj

qx − qj
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distinct vector spaces of dimension x in the vector space Y . Thus, each time one
picks a random vector space in Y , it will be X with probability

x−1∏
j=0

qx − qj

qy − qj
. (3.50)

One ends the proof by multiplying the two probabilities given by (3.49) and (3.50).

3.5.3 Our attacks

3.5.3.1 Information leakage attack

In this section, we present our first attack, namely the information leakage attack. It
shows that one can exploit information leakage from the signatures when m is high
enough in order to recover the ephemeral keys eix,uix,viy and f iy.

Given a valid signature σ = ({ci,ai, bi, si}1≤i≤l) and using the public key h, one
can easily compute the three following vectors:

aih = uiy + cieiy,

wi = uiy + vix,

wi + bih
−1 = uiy + cif ix.

The weights of those vectors are respectively bounded from above by the following
values: (ru+re)ry, rury+rvrx, rury+rfrx; however, in practice, with high probability,
those inequalities are equalities. Moreover, those 3 vectors have length k and their
weights are bounded from above by values that are always strictly smaller than k for
the given sets of parameters. Thus, using Proposition 8, we can consider that, with
high probability:

‖aih‖ = (ru + re)ry, ‖wi‖ = rury + rvrx, ‖wi + bih
−1‖ = rury + rfrx.

Thus, one can easily compute the intersection of the supports of those vectors
and using Lemma 3, one gets the following bound:

dim
(
Support(aih) ∩ Support(wi) ∩ Support(wi + bih

−1)
)

≥ 2(rx(re + 2ru)−m). (3.51)
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Note that, for the sake of clarity, we considered, like the authors of [LT20b], that
rx = ry, rv = re, and rf = ru. One can get an equality from Equation (3.51) by
replacing m by

dim(Support(aih) + Support(wi) + Support(wi + bih
−1))

which is exactly m with high probability.

So far, one has computed an intersection of 3 vector spaces, denoted Z in the
following, whose dimension is 2(rx(re + 2ru)−m) and which contains Support(uiy)
of dimension rury = rurx.

Finding uiyi. Then, we use the knowledge of Z to recover the ephemeral key uiyi
using the following procedure:

• Sample a random subspace T of Z of dimension rurx.

• Let A = Support(aih). Find a vector space T ′ such that A = T + T ′ where T
and T ′ are in direct sum.

• Write aih as t + t′ where t ∈ T k and t′ ∈ T ′k. t is a candidate for uiyi.

• If ‖th−1‖ = ‖t‖, then with overwhelming probability t = uiyi. Otherwise,
start over by sampling an other vector space T .

Finishing the attack. Once we recover uiyi for 1 ≤ i ≤ l, we can recover the
other ephemeral keys by computing:

• uix = h−1uiyi

• viy = h(wi − uiy)

• eix = c−1i (ai − uix)

• f iy = c−1i (bi − viy)

Using these keys and a valid signature σ = ({ci,ai, bi, si}1≤i≤l) on a message µ,
one can forge a valid signature σ′ = ({c′i,a′i, b′i, s′i}1≤i≤l) for a message µ′ using the
following procedure for 1 ≤ i ≤ l:

• Compute wi = (ai, bi)H
ᵀ − cisi
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• Set s′i = si and w′i = wi

• Compute c′i = H({wi, si}, µ′, pk)

• Set a′i = uix + c′ieix

• Set b′i = viy + c′if iy

Finally, we derive the complexity of this attack:

Theorem 8. The information leakage attack forges a valid signature using:

l ×m× k ×min(m, k)×
rurx−1∏
j=0

qz(qrurx − qj)

operations over Fq, where z is dimension of the recovered vector space Z.

Proof. Using Proposition 9, we know that the probability of finding the correct sup-
port of uiy is

∏rurx−1
j=0 q−z(qrurx − qj).

The most costly step in verifying that the sampled support T is the correct one
is checking the rank of th−1, which can be done using a Gaussian elimination in
m× k ×min(m, k) operations over Fq.

This process needs to be repeated l times to forge a complete signature, hence
the result.

Table 3.6 gives the complexity of our information leakage attack on the RPS
parameters given in [LT20b].

Parameter set Claimed security Success probability Complexity
RPS-C1 128 2−327 2347

RPS-C2 192 2−27 247

Table 3.6: Complexities of our information leakage attack on the RPS parameters
given in [LT20b], and comparison with their claimed security.
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3.5.3.2 Random low rank vectors attack

In this section, we present our second attack, namely the random low rank vectors
attack.

In order to do so, we describe a procedure that can be used to forge valid signa-
tures when the parameters m and k are too close to the weight of the vectors ai and
bi.

On input (pk, µ), our goal is to find a signature σ such that Verify(σ, µ, pk)
accepts it. For each 1 ≤ i ≤ l, we start by computing si, wi and ci as follows:

• Sample si as a random vector of weight rery + rfrx

• Sample wi as a random vector of weight rury + rvrx

• Let ci = H({wi, si}, µ, pk)

Since si is chosen randomly, the following conditions are fulfilled:

• ‖sih‖ ≥ min(m− 1, k)

• ‖sih−1‖ ≥ min(m− 1, k)

Now we need to find ai and bi such that:

(ai, bi)H
ᵀ − cisi = wi ⇐⇒ (ai, bi)H

ᵀ = wi + cisi

⇐⇒ aih + bih
−1 = wi + cisi.

Let z = wi + cisi. We start by splitting z into a sum of two vectors z1 and z2

such that ‖z1‖ = (ru + re)ry and ‖z2‖ = (rv + rf )rx.

In order to do so, one needs to write the vector z as matrix Z in Fm×kq using
a basis of Fqm seen as an Fq-vector space. Then, one picks 2 matrices Z1 and Z2,
of rank respectively (ru + re)ry and (rv + rf )rx, at random in Fm×kq and solves the
following linear system:

V × (Z1|Z2)
ᵀ = Z

where V is a m× 2m matrix containing unknowns.
Since ‖z1‖ and ‖z2‖ have the same order of magnitude as k, this system has far

more unknowns than equations, thus, it has a lot of solutions.
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Those solutions are of the form V 0 +K where K is a matrix whose rows belong
to the left kernel of (Z1|Z2)

ᵀ. Each one of these solutions yields different matrices
Z ′1 and Z ′2 which can easily be turned into vectors z1 and z2 in Fkqm .

The two vectors z1 and z2 will have correct weights (respectively (ru + re)ry and
(rv + rf )rx) with a probability bounded from below by 0.282 ≈ 8%. This is due to
the fact that one is looking for a solution matrix V 0 + K whose two first blocks
of size m×m are non-singular. This happens with probability asymptotically close
to 1 when q grows but bounded from below by 0.288, see for instance Lemma 7
in [BGL03].

In order to verify this assumption in an RPS context, we computed 10.000 so-
lutions for a system with parameters q = 2,m = 100, k = 90, r1 = r2 = 80, and it
appeared that 8.1% of the associated z1 and z2 had the expected weights.

The cost of computing this decomposition is basically the one of performing linear
algebra (solving a system, computing rank, multiplying two matrices, ...) on matrices
of size m2 × k, m×m and m× k.

Most importantly, the number of different decompositions of the form z = z1+z2

(with correct weights) that can be found is huge, roughly[
m

(ru + re)ry

]
q

×

[
m

(rv + rf )rx

]
q

× 0.282 × 2m(2m−k). (3.52)

The two first terms concern the choice of the two supports of z1 and z2, the third
one the aforementioned probability and the last one the number of possible choices
for the matrix K. This is only a very rough estimation since it does not consider
the probability that the two vector spaces have a non-trivial intersection nor the
probability that the rank of (Z1|Z2)

ᵀ is maximal.
However, this rough estimation enables one to grasp the order of magnitude of

the number of distinct solutions.

Then, we compute ai = z1h
−1 and bi = z2h. By construction, the following

conditions are verified:

• (ai, bi)H
ᵀ − cisi = wi

• ‖aih‖ = (ru + re)ry

• ‖bih‖ = (rv + rf )rx
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Applying Proposition 8 with X = Fqm , and ai ∈ Fkqm , one gets the following result:

Proposition 10. Assuming ai and bi behave like independent vectors chosen uni-
formly at random, the probability that this procedure outputs ai and bi such that

‖ai‖ = (ru + re)ry, and ‖bi‖ = (rv + rf )rx

is:
q−i1(max(m,k)−min(m,k)+i1) × q−i2(max(m,k)−min(m,k)+i2)

where i1 = min(m, k)− (ru + re)rx, and i2 = min(m, k)− (rv + rf )ry.

Note that the assumption in Proposition 10 above is supported by experiments.

Finally, we derive the complexity of this attack:

Theorem 9. The random low rank vectors attack forges a valid signature using:

l × 2(m× k ×min(m, k))× 1

p

operations over Fq, where p is the probability of success given in Proposition 10.

Proof. Checking the rank of ai and bi is done by performing two Gaussian elimi-
nations on m × k matrices over Fq, and each Gaussian elimination costs m × k ×
min(m, k) operations over Fq.

This process needs to be repeated 1
p
times on average in order to find a valid pair

of vectors.
Finally, this process needs to be repeated for l times, hence the result.

Table 3.7 gives the complexity of our random low rank vectors attack on the RPS
parameters given in [LT20b].

Parameter set Claimed security Success probability Attack complexity
RPS-C1 128 2−48 268

RPS-C2 192 2−96 2117

Table 3.7: Complexities of our random low rank vectors attack on the RPS param-
eters given in [LT20b], and comparison with their claimed security.
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3.5.3.3 Quantum speedup

In [GHT16], the authors described how solving the rank decoding problem using
a quantum computer gives a quadratic speed-up when considering combinatorial
algorithms.

In this section, we use similar techniques to show that we obtain a quadratic
speedup for both attacks described in Sections 3.5.3.1 and 3.5.3.2.

Theorem 10 ([GHT16], Theorem 1.). Let f be a Boolean function f : {0, 1}b → {0, 1}
that is computable by a NAND circuit of size S. Let p be the proportion of roots of
the Boolean function:

p
def
=

#{x ∈ {0, 1}b : f(x) = 0}
2b

.

Then there is a quantum algorithm based on iterating a quantum circuit O
(

1√
p

)
many times that outputs with probability at least 1

2
one of the roots of the Boolean

function. The size of this circuit is O(S).

Information leakage attack. For this attack, we want to speed up the process
of finding the correct vector space Support(uiy) from the vector space leaked from
the signatures. From Proposition 9, we have:

p =
x−1∏
j=0

q−y(qx − qj).

As explained in Section 3.5.3.1, checking whether the vector space is the right
one can be done by solving a linear system with rury unknowns, performing a mul-
tiplication in Fqm [X]/P , and checking the rank of the resulting vector, which is the
most costly operation. Hence, there exists a NAND classical circuit that performs
this verification using O (max(m, k)3) gates.

Random low rank vectors attack. For this attack, we want to speed up the
search of vectors ai = z1h

−1 and bi = z2h with correct weights. Proposition 10
gives the value for p:

p = q−i1(max(m,k)−min(m,k)+i1) × q−i2(max(m,k)−min(m,k)+i2)

where i1 = min(m, k)− (ru + re)rx and i2 = min(m, k)− (rv + rf )ry.
As for the previous attack, checking whether the two resulting vectors have the

desired weight can be performed by a NAND classical circuit using O (max(m, k)3)
gates.
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Resulting complexities. These results show that, for both of our attacks, the
search for, respectively, the correct vector space and vectors with right weight, can
be performed in O

(
1√
p

)
iterations of the circuit when using a quantum computer.

The cost of evaluating this circuit remains unchanged.

Parameter set Claimed security Quantum attack complexity
RPS-P1 128 294

RPS-P2 192 2170

Table 3.8: Complexities of our attacks with a quantum speedup on the RPS pa-
rameters given in [LT20b], and comparison with their claimed security.

This yields the complexities given in Table 3.8 where they are compared with the
RPS parameters targeting quantum security.

Note that the attack against RPS-P1 uses the random low rank vectors attack,
whereas the attack against RPS-P2 uses the information leakage attack.

3.5.4 Conclusion

In this section, we have described attacks against the RPS signature scheme which
break all sets of parameters proposed in [LT20b].

More precisely, our attacks enable us to forge valid signatures in 268 and 247

operations for sets of parameters whose claimed securities are, respectively, 128 and
192 bits.

In addition to this, we give a quantum adaptation of our attack; this yields an
attack on the last two sets of parameters given in [LT20b] which target quantum
security.

Overall, our attacks highlight weaknesses of the RPS scheme and give new con-
straints when designing new parameter sets.

Last but not least, we performed simulations for both of our attacks in order
to support our theoretical claims. More details about these experimental results
together with the source code are given in [ABG21].
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4.1 Rank Quasi-Cyclic (RQC) Encryption scheme
Rank Quasi-Cyclic (RQC) is a code-based encryption scheme using the rank metric,
it has been introduced in [AMBD+18].

The main advantage of RQC is that its security relies on random ideal codes, thus
it does not require any masking process like in classical McEliece-like cryptosystems
such as ROLLO.

In this section, we recall its classical version, before introducing three improve-
ments: Augmented Gabidulin codes, the multi-syndromes, and the non-homogeneous
error approaches. Finally, using all this improvements together, we propose two
new encryption schemes, namely Multi-RQC-AG and Multi-UR-AG in Sections 4.2.4
and 4.2.5.

4.1.1 Classic RQC

On Figure 4.1, we briefly recall the classic RQC scheme as described in [AAB+20].
In order to do so, we need to introduce the following notation:

Snw(Fqm) = {x ∈ Fnqm : ‖x‖ = w},
Snw,1(Fqm) = {x ∈ Fnqm : ‖x‖ = w, 1 ∈ Support(x)}.

Moreover, as indicated by its name, RQC relies on ideal codes, see Definition 12
and Section 2.1.3, which are a generalization of quasi-cyclic codes.

In this section, when we mention the name of a coding theory problem with an
upper case “I” in it, it stands for its version relying on ideal codes; see the list of
acronyms on page 16.

For instance, IRD stands for the Ideal Rank Decoding problem.

4.1.1.1 Correctness.

Let us have a look at the correctness of the scheme, that is to say, check if the
decryption process works. For the sake of clarity, the “modP ” operators are omitted
below, but all the computations are done modulo P .

v − y · u = mG + s · r2 + e− y · (r1 + h · r2)

= mG + (x + h · y) · r2 + e− y · (r1 + h · r2)

= mG + x · r2 − y · r1 + e
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Setup(1λ): Generates and outputs param = (n, k, δ, w, w1, P ) where P ∈ Fq[X] is
an irreducible polynomial of degree n.

KeyGen(param): Samples h
$← Fnqm , g

$← Snn (Fqm), and (x,y)
$← S2n

w,1(Fqm).
Computes the generator matrix G ∈ Fk×nqm of a code C which corrects up to δ
errors, sets pk = (g,h, s = x + h · y mod P ), and sk = (x,y), returns (pk, sk).

Encrypt(pk,m, θ): Uses randomness θ to generate (r1, e, r2)
$← S3n

w1
(Fqm), sets

u = r1 + h · r2 mod P and v = mG + s · r2 + e mod P , returns c = (u,v).

Decrypt(sk, c): Returns C.Decode(v − u · y mod P ).

Figure 4.1: Description of the RQC encryption scheme.

Since
v − y · u = mG + (x · r2 − y · r1 + e) ∈ Fnqm ,

it means that, as long as
‖x · r2 − y · r1 + e‖ ≤ δ,

one recovers m by decoding v − y · u; in other words:

C.Decode(v − u · y mod P ) = m.

4.1.1.2 Security.

Theorem 11. The RQC scheme depicted in Figure 4.1 is IND-CPA under the
DIRD assumption.

Proof. For the proof of Theorem 11, the reader may refer to [AMBD+18, AAB+20].

Despite the fact that the aforementioned proof is not given in this document, we
would like to recall the two instances an adversary could attack:

(
In IM (h)

)
×

(
xᵀ

yᵀ

)
=
(
sᵀ
)
, (4.1)

(
In 0 IM (h)

0 In IM (s)

)
×

rᵀ
1

eᵀ

rᵀ
2

 =

(
uᵀ

(v −mG)ᵀ

)
. (4.2)
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On the one hand, the decoding instance given by Equation (4.1) corresponds to
attacking a code with parameters [m, 2n, n, w], this is a key recovery attack.

On the other hand, the decoding instance given by Equation (4.2) corresponds
to attacking a code with parameters [m, 3n, n, w1], this is an attack on the security
of the message.

4.2 Our Multi-RQC-AG and Multi-UR-AG encryp-
tion schemes

4.2.1 Augmented Gabidulin codes

In this section, we introduce a new family of efficiently decodable codes, namely
Augmented Gabidulin codes.

The main idea behind these codes is to add a sequence of zeros at the end of a
Gabidulin codes, see Definition 15; by doing this, one directly gets elements of the
support of the error, which correspond to support erasure in a rank metric context.
Decoding these codes corresponds to decoding classical Gabidulin codes to which
support erasures are added.

In practice, this approach permits to decrease m, i.e. the degree of the extension
field Fqm , at the cost of having a probabilistic decoding.

This approach is particularly suitable when many errors have to be corrected,
which is exactly the case in code-based cryptography where the code to be decoded
has a very low rate.

In what follows, we give a definition of augmented Gabidulin codes, and for
didactic purpose, in Proposition 12, we recall a simple and natural way to decode
Gabidulin code with support erasures. For others or more efficient approaches, the
reader may refer to [ALR18, CB22, GP08].

Remark 21. Notice that this type of approach (adding zeros) is not relevant in Ham-
ming metric since the errors are independent in a classical noisy channel, whereas
in rank metric, errors located on different coordinates are linked since they share the
same support.

Definition 41 (Augmented Gabidulin codes). Let (k, n, n′,m) ∈ N4 such that k ≤
n′ ≤ m < n. Let g = (g1, . . . , gn′) be an Fq-linearly independent family of n′ elements
of Fqm, and let g be the vector of length n which is equal to g padded with n − n′

extra zeros on the right.
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The Augmented Gabidulin code G+g (n, n′, k,m) is the [n, k]qm-code defined by

G+g (n, n′, k,m) :=
{
P (g), degq(P ) < k

}
,

where P (g) := (P (g1), . . . , P (gn′), 0, . . . , 0).

A generator matrix for Gg is given by:

G =


g1 . . . gn′ 0 . . . 0

gq1 . . . gqn′ 0 . . . 0
...

...
...

...
...

...
gq

k−1

1 . . . gq
k−1

n′ 0 . . . 0

 ∈ Fk×nqm .

Proposition 11 (Decoding capacity of Augmented Gabidulin codes).
Let G+g (n, n′, k,m) be an augmented Gabidulin code, and let

ε ∈ {1, 2, . . . ,min(n− n′, n′ − k)}

be the dimension of the vector space generated by the support erasures.
Then, G+g (n, n′, k,m) can uniquely decode an error of rank weight up to

t :=

⌊
n′ − k + ε

2

⌋
.

Proof. The minimal distance of G+g (n, n′, k,m) is clearly d = n′ − k + 1 since it is
made of a Gabidulin code augmented with zeros.

Let x = c1 + e1 be a noisy codeword where c1 ∈ G+g , and ‖e1‖ ≤ t.
Let us assume that x is not uniquely decodable to find a contradiction.
If x is not uniquely decodable, it means that there exists c2 in G+g such that

c2 6= c1 and x = c2 + e2 where ‖e2‖ ≤ t.
Recall that we assume that one knows support erasures which span a vector space

of dimension ε. These support erasures come from the n− n′ last coordinates of the
code G+g , thus these support elements are common to e1 and e2. Since Support(e1)
and Support(e2) share ε elements, one has that

d(e1, e2) ≤ 2(t− ε) + ε = 2t− ε ≤ n′ − k.

Since x = c1 + e1 = c2 + e2, one clearly has that d(c1, c2) = d(e1, e2), thus
d(c1, c2) ≤ n′ − k, which is a contradiction.

Thus, G+g can uniquely decode errors of rank weight up to t :=
⌊
n′−k+ε

2

⌋
.
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Finally, the condition 1 ≤ ε ≤ min(n − n′, n′ − k) comes from the fact that the
dimension of the vector space spanned by support erasures cannot exceed the maxi-
mum rank weight of the error nor the number of zero coordinates of the augmented
Gabidulin code; in other words, on one hand ε is clearly smaller than n− n′, and on
the other hand

ε ≤
⌊
n′ − k + ε

2

⌋
=⇒ 2ε ≤ n′ − k + ε

=⇒ ε ≤ n′ − k.

Proposition 12 (Decoding Algorithm for Augmented Gabidulin codes).
Let G+g (n, n′, k,m) be an augmented Gabidulin code, and let

ε ∈ {1, 2, . . . ,min(n− n′, n′ − k)}

be the dimension of the vector space generated by the support erasures.
This code benefits from an efficient decoding algorithm correcting errors of rank

weight up to δ :=
⌊
n′−k+ε

2

⌋
with a decoding failure rate (DFR) of

1− qδ(n′−n)
δ∑
i=ε

ε−1∏
j=0

(qδ − qj)(qn−n′ − qj)
qi − qj

. (4.3)

Proof. The proof gives the decoding algorithm. One is given a noisy encoded word
y = c + e ∈ Fnqm where c := xG belongs to G+g (n, n′, k,m) and ‖e‖ ≤ δ.

Step 1: recovering a part of the error support. By construction we have c =
(∗|0 . . . 0), so that the last n−n′ coordinates of y are exactly the last coefficients of e.
Thus, one may use these coefficients to recover ε elements in E := Support(e). This
will be doable as long as these n−n′ coefficients contain at least ε linearly independent
ones. The converse probability is the probability that a random δ × (n− n′) matrix
with coefficients in Fq has rank less than ε. This yields the probability given by
Equation (4.3).

Step 2: recovering c. Assume now that ε elements in the support of e are known
and let E2 be the vector space spanned by these elements. In what follows, we focus
on the first n′ coordinates of y, c, and e which are denoted by y, c and e respectively.
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By definition of G+g (n, n′, k,m), there exists a q-polynomial P of q-degree at most
k − 1 such that for 1 ≤ i ≤ n′:

yi = P (gi) + ei. (4.4)

Let also V and V2 be the unique monic q-polynomials of q-degree δ and ε which
vanish on the vector spaces E and E2 respectively. The ring of q-polynomials being
left Euclidean, there exists a unique monic q-polynomial W of degree δ− ε such that
V = W ◦ V2. As E2 is known, one can easily build the q-polynomial V2, for instance
using the iterative process described in [Ore33, Loi07]. Evaluating V at both sides
of Equation (4.4), one gets V (yi) = (V ◦ P )(gi) + V (ei) = V ◦ P (gi). This secret
polynomial can be written symbolically using δ − ε unknowns in Fqm , and similarly
we view R := V ◦P as a q-polynomial of q-degree k−1+δ with unknown coefficients.
Thus, we can derive a linear equation containing k + 2δ − ε unknowns in Fqm from

V (yi) = R(gi), (4.5)

and the same goes for any i ∈ {1, 2, . . . n′}. Overall, this gives a linear system with
n′ equations in k + 2δ − ε variables. This linear system has more equations than
unknowns as long as δ ≤

⌊
n′−k+ε

2

⌋
, which is the case by assumption. Moreover, this

system has a unique solution by Proposition 11. This means that exactly k+ 2δ− ε
equations are linearly independent, thus one can solve the system to recover V and
R, so one finally gets P .

4.2.2 Multiple syndromes approach

The multiple syndrome approach has recently been used in [AAD+22] for LRPC-
based cryptosystems.

Roughly, it relies on the use of multiple RD instances to significantly decrease
the value of n, i.e. the length of the code.

In order to understand the core of the multiple syndromes approach, let us use
figures.

On Figure 4.2, one is able to notice that the length of the code C used in RQC,
i.e. n, sets the lengths of all the other vectors of the scheme: x, y, s, etc.

Since this length depends on the rank weight of the error one needs to correct, it
cannot be decreased, however, one could decrease the length of the secret and public
key.

More precisely, Figure 4.3 shows that, using 3 times a shorter public key s of
length n2 = n

3
still enables one to encrypt a message.
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+

+
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EncodeC(m)

EC(m)sr2EC(m)

EC(m)eEC(m)

Figure 4.2: Classic RQC.

n2

yhxyh
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pk =
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+

s = x + hy

r′′1r1 + r2hr
′′
1 r′′1r

′
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′′
1 r′′1r

′′
1 + r′′2hr

′′
1

EncodeC(m)

r′′1sr2r
′′
1 r′′1sr

′
2r
′′
1 r′′1sr

′′
2r
′′
1

EC(m)eEC(m)

Figure 4.3: Multiple syndromes approach.

The decryption process is straightforward; still referring to Figure 4.3: in order
to recover m, one simply has to decode

v −
(
u1 · y | u2 · y | u3 · y

)
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where the ui’s are the three parts, each of length n2, of u.

Overall, this approach does not change the size of the ciphertext, but it enables
one to significantly decrease the size of the public key.

Most importantly, the vectors r1, r2, r
′
1, r
′
2, r
′′
1, r

′′
2 have to share the same support,

otherwise the rank weight of the error to be decoded would be far too high.
Naturally, this approach, described as an example on Figure 4.3, is readily gen-

eralized to any multiple of n2, as we will see in Sections 4.2.4 and 4.2.5.

Last but not least, this approach enables one to switch the regime of the error
to an area closer to the rank Gilbert-Varshamov bound. More precisely, in RQC,
the rank weight of the error to be decoded is in O (

√
n) where n is the length of the

code.
For instance, with the multiple syndromes approach, the public key security of

the scheme relies on a decoding instance with parameters [m, 2n2, n2] instead of
[m, 2n, n], without modifying the rank weight of the error; this mechanically leads
to an RD instance with a target rank closer to the Gilbert-Varshamov bound since
n2 < n.

This is of interest in a cryptographic context since this area is the one where the
decoding instances are the hardest to solve.

4.2.3 Non-homogeneous error approach

Recall that the security of the RQC encryption scheme relies on two decoding in-
stances with parameters [m, 2n, n, w] and [m, 3n, n, w1], see Equations (4.1) and (4.2).

For a given rank weight, it is far easier to attack a [3n, n]Fqm -code than a [2n, n]Fqm -
code, see Section 3.2.

Thus, one has to take w1 � w in order to reach a certain level of security. This
has a strong impact on the parameters of RQC since it increases the total rank weight
of the error to be decoded, i.e. ww1.

Our idea to mitigate the impact of the [3n, n]Fqm attack is to increase only a part
of the error. More precisely, we increase only the rank weight of a third of the error
vector, namely the vector e.

Formally, the error vector (r1, e, r2) ∈ F3n
qm will be picked such that

‖(r1, r2)‖ = w1, ‖e‖ = w1 + w2, Support(r1, r2) ⊂ Support(e).
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Doing so, the decoding instance given by Equation (4.2) is now a decoding in-
stance with a non-homogeneous error; and the total rank weight to be decoded in
RQC becomes ww1 + w2.

We introduced this new approach in the Second Round (of NIST PQC Standard-
ization Process) update of RQC [AAB+20].

4.2.4 Our Multi-RQC-AG encryption scheme

4.2.4.1 Notation and procedures

Before introducing Multi-RQC-AG, let us define a few notation and procedures. Let
S2n
w,1(Fqm) and Sn2×3n1

(w1,w2)
(Fqm) be defined as:

S2n
w,1(Fqm) = {x = (x1,x2) ∈ F2n

qm

∣∣ ‖x‖ = w, 1 ∈ Support(x)},
Sn2×3n1

(w1,w2)
(Fqm) = {X = (X1,X2,X3) ∈ Fn2×3n1

qm

∣∣ ‖(X1,X3)‖ = w1,

‖X2‖ = w1 + w2, Support(X1,X3) ⊂ Support(X2)}.

Let n1, n2 be positive integers such that n = n1 × n2, for a vector v ∈ Fn2
qm and

a matrix M ∈ Fn2×n1
qm whose columns are labeled M1, . . . ,Mn1 , we extend the dot

product (defined for ideal codes in Section 2.1.3) such that:

v · M =
(
(v ·Mᵀ

1 mod P )ᵀ, . . . , (v ·Mᵀ
n1

mod P )ᵀ
)

∈ Fn2×n1
qm ,

Let v = (v1, . . . ,vn1) ∈ Fnqm with vi ∈ Fn2
qm ∀i ∈ {1, . . . , n1}, the Fold () procedure

turns the vector v into a n2 × n1 matrix

Fold (v) = (vᵀ
1, . . . ,v

ᵀ
n1

) ∈ Fn2×n1
qm .

The procedure Unfold () is naturally defined as the converse of Fold ().

4.2.4.2 Multi-RQC-AG

By using all the aforementioned improvements together, we were able to design a
new scheme, namely Multi-RQC-AG, which stands for Multiple Syndromes RQC
with Augmented Gabidulin-code. This scheme is described on Figure 4.4.

It can be instantiated with or without the use of non-homogeneous error, this is
why we sometimes call it Multi-RQC-AG-NH; however, in general and when there is
no ambiguity, we just call it Multi-RQC-AG.

Multi-RQC-AG relies on two codes, an augmented Gabidulin code G+g (n, n′, k,m)

that can correct up to δ :=
⌊
n′−k+ε

2

⌋
errors using the efficient decoding algorithm
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Setup(1λ)

Generate and output the parameters

param = (n′, n1, n2, k, ε, δ, w, w1, w2, P )

where P ∈ Fq[X] is an irreducible polynomial of degree n2.

KeyGen(param):

Sample g
$← Sn′n′ (Fqm), h $← Fn2

qm and (x,y)
$← S2n2

w,1 (Fqm)

Compute s = x + h · y mod P

Output pk = (g,h, s) and sk = (x,y)

Encrypt(pk,m, θ):
Compute g = (g | 0 . . . 0) ∈ Fn1n2

qm

Compute the generator matrix G ∈ Fk×(n1n2)
qm of G+g (n1n2, n

′, k,m)

Sample (R1,E,R2)
$← Sn2×3n1

w1,w2
(Fqm) using randomness θ

Compute U = R1 + h ·R2 and V = Fold (mG) + s ·R2 + E

Output C = (U,V)

Decrypt(pk, sk,C):

Output m = G+g .Decode (Unfold (V − y ·U))

Figure 4.4: Multi-RQC-AG encryption scheme

G+g .Decode(.) as well as a random ideal [2n2, n2]Fqm -code with parity check matrix
(I IM(h)). The correctness of the protocol follows from:

V − y ·U = Fold (mG) + (x + h · y) ·R2 + E− y · (R1 + h ·R2)

= Fold (mG) + x ·R2 − y ·R1 + E.

As a consequence,

Unfold (V − y ·U) = mG + Unfold (x ·R2 − y ·R1 + E) ∈ Fnqm

which means that Gg.Decode (Unfold (V − y ·U)) = m as long as:

‖ Unfold (x ·R2 − y ·R1 + E) ‖ ≤ δ.
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4.2.5 Our Multi-UR-AG encryption scheme

4.2.5.1 Notation and procedures

To define Multi-UR-AG, we use the same procedures defined in the previous section,
namely Fold () and Unfold (). In addition to this, we just need the following notation:

Sn×2n1
w,1 (Fqm) = {X = (X1,X2) ∈ Fn×2n1

qm

∣∣ ‖X‖ = w, 1 ∈ Support(X)},

Sn2×(n+n1+n)
(w1,w2)

(Fqm) = {X = (X1,X2,X3) ∈ Fn2×(n+n1+n)
qm

∣∣ ‖(X1,X3)‖ = w1,

‖X2‖ = w1 + w2, Support(X1,X3) ⊂ Support(X2)}.

4.2.5.2 Multi-UR-AG

For more security, one could want to rely on unstructured decoding instances, that
is to say, without ideal structure.

With the classical RQC encryption scheme, removing the ideal structure would
drastically increase the size the public key and the ciphertext.

However, with all the improvements that we introduced, it is now possible to
remove the ideal structure and yet still have competitive sizes, see Table 4.2.

We call this new scheme Multi-UR-AG(-NH), which stands for Multiple Syn-
dromes Unstructured Rank with Augmented Gabidulin-code, still with or without
the use of non-homogeneous error. Multi-UR-AG is described on Figure 4.5.

It relies on two codes: an augmented Gabidulin code G+g (n, n′, k,m) that can can
correct up to δ :=

⌊
n′−k+ε

2

⌋
errors using the efficient decoding algorithm G+g .Decode(.)

as well as a random [2n, n]Fqm -code with parity check matrix (I H). The correctness
of the protocol follows from:

V −UY = Fold (mG) + R2(X + HY) + E− (R1 + R2H)Y

= Fold (mG) + R2X−R1Y + E.

As a consequence,

Unfold (V −YU) = mG + Unfold (XR2 −YR1 + E) ∈ Fnqm ,

which means that Gg.Decode (Unfold (V −YU)) = m as long as

‖ Unfold (XR2 −YR1 + E) ‖ ≤ δ.
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Setup(1λ)

Generate and output

param = (n, n′, n1, n2, k, ε, δ, w, w1, w2).

KeyGen(param):

Sample g
$← Sn′n′ (Fqm), H $← Fn×nqm and (X,Y)

$← Sn×2n1
w,1 (Fqm)

Compute S = X + HY

Output pk = (g,H,S) and sk = (X,Y)

Encrypt(pk,m, θ):
Compute g = (g | 0 . . . 0) ∈ Fn1n2

qm

Compute the generator matrix G ∈ Fk×(n1n2)
qm of G+g (n1n2, n

′, k,m)

Sample (R1,E,R2)
$← Sn2×(n+n1+n)

w1,w2 (Fqm) using randomness θ
Compute U = R1 + R2H and V = Fold (mG) + R2S + E

Output C = (U,V)

Decrypt(pk, sk,C):

Output m = G+g .Decode (Unfold (V −UY))

Figure 4.5: Multi-UR-AG encryption scheme

4.2.6 Conclusion and Security

Let us sum up the 3 improvements described in Sections 4.2.1 to 4.2.3:

• The Augmented Gabidulin codes enables one to decrease the value of m, i.e.
the degree of the extension field Fqm .

• The Multiple Syndromes approach enables one to decrease the value of n,
i.e. the length of the random code. Moreover, this improvement leads to
RD instances for which the target rank is closer to the rank Gilbert-Varshamov
bound compared to classical RQC.

• The non-homogeneous error approach enables one to mitigate the impact of
attacks against the [3n, n]Fqm -code, thus one can take w = w1 (and no longer
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w1 � w) with an extra rank weight w2 which will not have a strong impact on
the total weight to be decoded.

Since everything comes at a price, each of the aforementioned improvements has
consequences. More specifically, the three following sections, namely Sections 4.2.6.1
to 4.2.6.3, give details about the implications of each improvements.

4.2.6.1 Augmented Gabidulin codes.

The use of Gabidulin codes introduces a decryption failure rate whereas the decoding
algorithm for classical RQC is deterministic.

However, the probability of decoding failure can be easily controlled by sacrificing
only a few support erasures or by slightly increasing the number of extra zeros;
indeed, the decoding failure probability decreases exponentially fast, with a quadratic
exponent, see Equation (4.3).

4.2.6.2 Multiple Syndromes.

The use of multiple syndromes changes the problem an adversary can attack. Let
us come back to the toy example from Figures 4.2 and 4.3; in the case of classical
RQC, recall that the adversary can attack the following decoding instance (in order
to attack the ciphertext):

(
In IM (h)

)
×

(
rᵀ
1

rᵀ
2

)
=
(
uᵀ
)
,

When using multiple syndromes like on Figure 4.3, an adversary could attack the
following decoding instances:

(
In IM (h)

)
×

(
rᵀ
1 r′ᵀ1 r′′ᵀ1

rᵀ
2 r′ᵀ2 r′′ᵀ2

)
=
(
uᵀ

1 uᵀ
2 uᵀ

3

)
, (4.6)

It is clear that Equation (4.6) corresponds to an RSL instance instead of an
RD instance in the case of classic RQC.

This is, in a sense, the drawback of using multiple syndromes: one does not
rely on the classical decoding problem but on its generalization, namely the Rank
Support Learning (RSL) problem, see Definition 18.
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4.2.6.3 Non-Homogeneous Error.

Recall than in classic RQC, the adversary can attack the following [3n, n]Fqm -code:

(
In 0 IM (h)

0 In IM (s)

)
×

rᵀ
1

eᵀ

rᵀ
2

 =

(
uᵀ

(v −mG)ᵀ

)
. (4.7)

If one uses non-homogeneous error, the instance given by Equation (4.7) becomes an
NHRD instance.

Similarly to what happened with the multiple syndrome approach, the use of
non-homogeneous error changes the problem which appears in the security proof.

4.2.6.4 Security.

The security of NH-Multi-RQC-AG relies on the Decisional Ideal Rank Decoding
problem (DIRD), and on the Decisional Ideal Non-Homogeneous Rank Support
Learning problem (DNHIRSL), see Theorem 12.

Recall that, so far, there is no known attack to solve the decisional versions of
these problems without solving the associated search instances.

In addition to this, there is currently no attack that takes advantage of the
ideal structure; thus, studying the security of NH-Multi-RQC-AG comes down to
evaluating the complexity of RD and NHRSL.

Unlike NH-Multi-RQC-AG, our new scheme NH-Multi-UR-AG does not use ideal
structure. Despite the aforementioned absence of attack that exploits ideal structure,
it might induce a weakness in a scheme.

This is why NH-Multi-UR-AG, which does not use any structure like its name
suggests it, is more secure.

To study its security, according to Theorem 13, one has to evaluate the complexity
of RSL and NHRSL.

However, for an even better security, one could use Multi-UR-AG, i.e. with
homogeneous weight, making its security relying solely on RSL, see for instance the
parameters sets Multi-UR-AG-128 and Multi-UR-AG-192 in Section 4.2.7.

Theorem 12. The NH-Multi-RQC-AG scheme depicted in Figure 4.4 is IND-CPA
under the DIRD and the DNHIRSL assumptions.
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Proof. The proof of Theorem 12 is a straightforward adaptation of the proof given
in [AAB+20]. One simply has to use the following instances: an IRD(m, 2n2, n2, w)
instance defined from a [2n2, n2] code given by Equation (4.8), and an

NHIRSL(m,n2, n2, w1, w2, n1)

instance defined from a [3n2, n2] code given by Equation (4.9).(
In2 IM (h)

)
× (x,y)ᵀ = sᵀ, (4.8)

(
In2 0 IM (h)

0 In2 IM (s)

)
× (R1,E,R2)

ᵀ = (U,V − Fold(mG)) . (4.9)

Theorem 13. The NH-Multi-UR-AG scheme depicted in Figure 4.5 is IND-CPA
under the DRSL and the DNHRSL assumptions.

Proof. Similarly to the previous proof, the proof of Theorem 13 is a straightforward
adaptation of the proof given in [AAB+20]. One simply has to use the following
instances: an RSL(m, 2n, n, w, n1) instance defined from a [2n, n] code given by
Equation (4.10), and an NHRSL(m,n, n1, w1, w2, n2) instance defined from a [2n+
n1, n] code given by Equation (4.11).(

In H
)
× (X,Y)ᵀ = S, (4.10)

(R1,E,R2)×

(
In 0 H

0 In1 S

)ᵀ

= (U,V − Fold(mG)) . (4.11)

4.2.7 Parameters and comparisons

In this section, we propose parameters for our new encryption schemes, see Table 4.1;
all parameters are chosen to resist to attacks described in Chapter 3.

Among the different codes that can be attacked for each of our schemes (see
proofs of Theorems 12 and 13), there is not a weaker one which enables us to fix all
of our parameters.
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For instance, sometimes attacking the public key, i.e., a code [2n, n], gives the
lowest complexity, but for another set of parameters, it will be the [2n+n1, n, w1, w2]-
code instead.

However, there seems to be an invariant: no matter the length n of the code or
the dimension m of the extension, it looks like the closer to RGV bound the target
rank weight r is, the better the combinatorial attacks are, and the worse are the
algebraic attacks.

In other words, for a given [m,n, k]-code, there seems to always be a value of r
such that all the combinatorial attacks will beat the algebraic ones. This seems to be
the case both for homogeneous and non-homogeneous versions of the aforementioned
problems, and with or without multiple syndromes.

Instance Struct. m n′ n n1 n2 k ε w w1 w2 DFR
Sizes in KB

pk ct Total

Loong-128 [Wan19] Random 191 182 35 13 14 6 0 8 11 0 0 10.9 16.0 26.9

Multi-RQC-AG-128 Ideal 83 82 - 5 38 2 74 7 11 0 -138 0.4 3.9 4.4

NH-Multi-RQC-AG-128 Ideal 61 60 - 3 50 3 51 7 7 5 -158 0.4 2.3 2.7

Multi-RQC-AG-192 Ideal 113 112 - 4 60 2 98 8 13 0 -215 0.9 6.8 7.7

NH-Multi-RQC-AG-192 Ideal 79 78 - 2 95 5 65 8 8 5 -238 0.9 3.8 4.7

Multi-UR-AG-128 Random 97 96 24 14 15 3 83 8 11 0 -190 4.1 6.9 11.0

NH-Multi-UR-AG-128 Random 73 72 22 13 14 2 66 8 8 4 -133 2.7 4.5 7.1

Multi-UR-AG-192 Random 127 126 35 15 16 3 93 9 12 0 -350 8.4 12.7 21.1

NH-Multi-UR-AG-192 Random 97 96 30 14 14 3 77 9 9 4 -214 5.1 7.5 12.6

Table 4.1: Parameters for our scheme with q = 2.

Similarly to [AAB+20], we use the fact that 1 ∈ Support(x,y) to set δ := ww1 in
the homogeneous case and δ := ww1 +w2 in the non-homogeneous case. Recall that
this quantity corresponds to the weight of the error decoded by the public Augmented
Gabidulin code. For all our protocols (where “NH” denote non-homogeneous errors),
both 128 and 192 bits security level are considered.

As a comparison, we also updated the parameters of the code-based KEM Loong
[Wan19]. Note that this scheme does not use augmented Gabidulin codes nor non-
homogeneous error but it does use multiple syndromes.

The parameter sets given in Table 4.1 come with the sizes of the associated public
key pk and ciphertext ct expressed in kilo-bytes (KB).
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Instance 128 bits 192 bits

NH-Multi-UR-AG 7,122 12,602

LRPC-MS [AAD+22] 7,205 14,270

Multi-UR-AG 11,026 21,075

FrodoKEM [ABD+21] 19,336 31,376

Loong-128 [Wan19] 26,948 -

Loidreau [Pha21] 36,300 -

Classic McEliece [BCL+17] 261,248 524,348

Instance 128 bits 192 bits

CRYSTALS-KYBER [BDK+18] 1,568 2,272

NH-Multi-RQC-AG 2,710 4,732

ILRPC-MS [AAD+22] 2,439 4,851

BIKE [AAB+21a] 3,113 6,197

Multi-RQC-AG 4,378 7,668

HQC [AAB+21b] 6,730 13,548

Table 4.2: Comparison of sizes for unstructured (random), and structured (ideal)
KEMs. The sizes represent the sum of the public key and the ciphertext, expressed
in bytes.

For Multi-RQC-AG:

|pk| = 40 +
⌈n2m

8

⌉
, and |ct| =

⌈
2n1n2m

8

⌉
.

For Multi-UR-AG:

|pk| = 40 +
⌈nn1m

8

⌉
, and |ct| =

⌈
m(nn2 + n1n2)

8

⌉
.

The term 40 represents the length of a seed used to generate (g,h), recall that
the public key consists in (g,h, s) and the ciphertext in the couple (u,v). Note that
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the size of the secret key is not relevant since it is only a seed, thus it always has size
40 bytes.

Our most competitive parameter set in terms of sizes is NH-Multi-RQC-AG-128
which relies on non-homogeneous errors together with an ideal structure.

Otherwise, our best non-structured parameter set whose security solely depends
on RSL is Multi-UR-AG-128.

Overall, Table 4.2 enables one to compare all our sizes to the ones of other KEMs
based on ideal or non-structured matrices. For structured lattice-based schemes,
we chose to focus on CRYSTALS-KYBER [BDK+18] which will be considered for
standardization by NIST.

Last but not least, the vertical green line at N = 150 on Figure 3.1 shows the
number of syndromes available for an adversary trying to attack a ciphertext of our
scheme NH-Multi-RQC-AG-128. It is worth noticing that, even though the blue
squares are below the black line (complexity of the plain RD attack), they are still
way above the security level of 128 bits, and even given 150 syndromes, an attacker
could not break our scheme. Note that it is far away from the area where the
complexities of the different RSL attacks start to drop. More generally, we picked
all our parameters that way, not only to resist to these attacks, but to be sure not
to be targeted by any minor improvements.
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A new problem: the Square Space
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5.1 Presentation of the problem
Recall that in this document, β = {1, α, . . . , αm−1} is a basis of Fqm seen as an
Fq-vector space of dimension m.

Definition 42 (Product of Vector Spaces in Fqm). Let A,B be Fq-vector spaces in
Fqm. We define the product AB as the Fq-vector space in Fqm spanned by the following
elements:

{ab | a ∈ A, b ∈ B}.

Definition 43 (SquareSpace problem (search)). The SquareSpace problem with
parameters (q,m, r) is given by:
Input : an integer r ∈ N, and a vector space U ⊂ Fqm of dimension

t :=
(r + 1)r

2
.

Output : E ⊂ Fqm such that dim(E) = r, and U = E2.

Remark 22 (Parameters range). In this document, we will mainly focus on
SquareSpace instances for which the parameters (q,m, r) fulfill the following con-
ditions:

q > 2, r > 2, m odd, m > t2.

There are several reasons for these conditions choice, one of the most important
being that this range is suitable for cryptography, see Section 5.4 and the challenges
in Section 5.3.

In what follows, before studying the attacks against the SquareSpace problem,
we will discuss two points: if one picks a vector space E uniformly at random in Fqm ,
what will be the dimension of U = E2? Then, will there be other solutions than E
to the equation U = E2?

5.1.1 Discussion about the dimension

Let m, r be integers such that

t :=
(r + 1)r

2
< m.
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For any vector space E of dimension r in Fqm , the dimension of U = E2 cannot be
larger than t. In fact, there are t products of two elements belonging to basis of E,
and U is by definition generated by these products, see Definition 42.

Moreover, if E is picked uniformly at random in Fqm , it looks like, with over-
whelming probability, the dimension of U will be exactly t. This is the purpose of
Proposition 13.

It is worth noticing that this latter result is similar to what happens with the
dimension of square codes studied in [CCMZ15], even if these mathematical objects
are different.

Proposition 13. Let E be a vector space spanned by r ≥ 1 elements picked uniformly
at random in Fqm. The probability that the vector space U = E2 has dimension
smaller than t := (r + 1)r/2 is bounded from above by

4

qm−1

r−1∑
i=0

q
(i+2)(i+1)

2 ≤ 4rqt−m+1

Proof. Let f be an element in Fqm , let dim(E) = r, we set F := 〈E, f〉, and we want
to study the dimension of F 2.

It is readily seen that

dim(F 2) ≤ dim(E2) + r + 1,

moreover dim(F 2) < dim(E2)+r+1 if, and only if, there exists a linear combination
of elements in F 2 which is zero.

This is equivalent to saying that ∃b ∈ {0, 1}, e ∈ E, h ∈ E2 such that f is a root
of bX2 + eX + h ∈ Fqm [X]. Since this univariate polynomial has degree at most 2,
for fixed b, e, h, if f is picked uniformly at random in Fqm , the probability that f is
a root is smaller than 2/qm.

Considering all the possible values for b, e, h, we get that:

P(dim(F 2) < dim(E2) + r + 1) ≤ 2︸︷︷︸
# {0,1}

× qr︸︷︷︸
# E

× qt︸︷︷︸
# E2≤qt

×2/qm.

Using this upper bound, one can construct E2 in an incremental way by adding
elements ei’s picked uniformly at random in Fqm one by one. More precisely one has
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that:

P(dim(〈e1〉2) < 1 = 0 + 0 + 1) ≤ 4/qm

P(dim(〈e1, e2〉2) < 3 = 1 + 1 + 1) ≤ 4q2/qm

P(dim(〈e1, e2, e3〉2) < 6 = 2 + 3 + 1) ≤ 4q5/qm

...

P(dim(〈e1, e2, . . . , ei〉2) < i(i− 1)/2 + (i− 1) + 1) ≤ 4q
(i+2)(i+1)

2
−1/qm

The event “〈e1, e2, . . . , ei〉2 has dimension less than t” is the union of all the above
events, thus one can bound the probability we are looking for from above, namely:

P(dim(〈e1, e2, . . . , er〉2) < (r + 1)r/2 = t) ≤ 4

qm−1

r−1∑
i=0

q
(i+2)(i+1)

2 .

The upper bound given by Proposition 13 is not very tight, especially for small
parameters (q,m, r), however it is clear that it tends to zero when m grows, which
proves the aforementioned assumption: with overwhelming probability, the dimen-
sion of U = E2 will be t.

Another way to look at the dimension of E2 when E is picked uniformly at random
in Fqm , is to consider that the generating elements, i.e., the products eiej’s, behave
like if they were “random”.

More precisely, if these products were independent and identically distributed
among vectors in Fqm , then the probability that U has rank t would be given by
Equation (5.1), that is to say, the probability for an m× t matrix in Fq to be of full
rank.

q−mt
t−1∏
i=0

(qm − qi) (5.1)

Experimentally, the percentage of vector spaces E such that dim(E2) = t is very
close to the probability given by Equation (5.1), see Table 5.1. One notices that the
error decreases when m grows.
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Parameters (q,m, r) Equation (5.1) Experimental ratio Error
(3, 4, 2) 0.84540 0.92147 9.00%
(3, 5, 2) 0.94716 1 5.58%
(3, 6, 2) 0.98224 0.99198 0.99%
(3, 7, 2) 0.99406 1 0.60%
(3, 9, 2) 0.99934 1 0.07%

(3, 7, 3) 0.84038 0.89172 6.11%
(3, 8, 3) 0.94528 0.95335 0.85%
(3, 9, 3) 0.98159 0.98859 0.71%
(3, 10, 3) 0.99385 0.9522 0.14%

(5, 7, 3) 0.95042 0.96032 1.04%
(5, 8, 3) 0.99002 0.99023 0.02%
(5, 9, 3) 0.99800 0.99857 0.06%
(5, 10, 3) 0.99960 0.99961 0.00%

(3, 11, 4) 0.84019 0.84494 0.57%
(3, 12, 4) 0.94521 0.94598 0.08%
(3, 13, 4) 0.98157 0.98249 0.09%

Table 5.1: Experimental percentage of spaces E of dimension r s.t. dim(U) = t for
different parameters, each time 100, 000 attempts were made; and comparison with
the formula given by Equation (5.1).

Remark 23. This is similar to what happens with the product of two vector spaces
A,B ⊂ Fqm, a lower bound on the probability that dim(AB) is maximal is given in
[AGH+19]; however, if one simply makes the same assumption as above, i.e., that
every generating pair is independent from the others, then one finds a probability very
close to the lower bound proved in [AGH+19].

5.1.2 Discussion about the uniqueness

The uniqueness of the solution to a SquareSpace instance is a very important point
in a cryptographic context, see Section 5.4; this is the topic of this section.

First, one notices that, if m = t, then any instance of the SquareSpace problem
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with parameters (q,m, r) is trivial to solve.
In fact, for almost all spaces E ⊂ Fqm of dimension r, E2 will span the whole

space, thus E will be a solution. This degenerate case shows that if m is too small,
instances of the SquareSpace problem have too many solutions, and the problem
is trivial.

Whenm� t, we think that there is a unique solution to a SquareSpace instance
given by (U = E2,m, r) for a space E of dimension r in Fqm .

That is to say that, with overwhelming probability, there will not be any other
space Ẽ 6= E of dimension r such that U = Ẽ2. When such a space Ẽ exists, one
often speaks about spurious solution, or spurious key in a cryptographic context.

Similarly to the dimension of the square space discussed in Section 5.1.1, we do
not have a proof of this result, but we do have experimental results.

Parameters (q,m, r) N Percentage of SquareSpace instances
such that ∃Ẽ 6= E which is solution

(3, 9, 3) 10 70.0% (alg.)
(3, 11, 3) 1000 4.2%
(3, 13, 3) 1000 0.4%
(3, 15, 3) 1000 0.1%
(3, 17, 3) 10000 0.02%
(3, 21, 3) 10000 0%

(5, 9, 3) 10 50% (alg.)
(5, 11, 3) 100 1.0%
(5, 13, 3) 1000 0.1%
(5, 15, 3) 10000 0.01%

Table 5.2: For each set of parameters (q,m, r), N SquareSpace instances where
generated, and the right column indicates the percentage of instances for which we
found spurious solutions using the intersection or the algebraic attack “(alg.)”.

One notices, on Table 5.2, that whenm grows, the percentage of SquareSpace in-
stances having a non-unique solution rapidly decreases down to zero.

Most values in Table 5.2 were computed using the intersection attack described
in Section 5.2.1.2, however, when “(alg.)” is written by a percentage, it means that
the algebraic attack, described in Section 5.2.2, was used instead.
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5.2 Attacks and Complexities
Recall that all along this document,

t :=
(r + 1)r

2
.

In this section, let us consider a SquareSpace instance (U = E2, q,m, r) where
E ⊂ Fqm such that dim(E) = r, and dim(U) = t.

5.2.1 Combinatorial attacks

The plainest combinatorial attack is the bruteforce attack where one simply picks
a vector space E ′ ⊂ Fqm of dimension r and checks whether E ′2 = U ; if yes, one
returns E ′, otherwise she picks another space, and so on.

There are

[
m

r

]
q

vector spaces of dimension r in Fqm .

Thus, the complexity of the brute force attack, on average, in terms of the number
of spaces one has to pick before finding a solution, is upper bounded by[

m

r

]
q

.

In the two following sections, we propose two combinatorial attacks that are far
more efficient than the bruteforce attack.

5.2.1.1 First combinatorial attack

Let {e1, e2, . . . , er} ⊂ Fqm be a basis of the secret space E.

A less naive combinatorial attack than brute force could take advantage of the
fact that

{e21, e22, . . . , e2r} ⊂ U. (5.2)

Thus, by picking elements at random in U , one eventually finds an element of
the form e2i , and having r such elements gives a candidate for E ′, see Algorithm 1.

There are [
t

r

]
q
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Algorithm 1: A first combinatorial attack against SquareSpace
Input: A SquareSpace instance (U = E2, q,m, r) where dim(E) = r, and

dim(U) = t.
Output: E ′ such that dim(E ′) = r, and U = E ′2

found← 0;
while found = 0 do
∀i ∈ {1..r}, ui

$← U ;
if IsSquare(u1) and IsSquare(u2) and . . . and IsSquare(ur) then
∀i ∈ {1..r}, xi ←

√
ui;

E ′ ← 〈x1, x2, . . . , xr〉;
if dim(E ′) = r and E ′2 = U then

found← 1;
end

end
end
return E ′;

vector spaces of dimension r in U , and at least one of them, namely 〈e21, e22, . . . , e2r〉
yields the secret space E and breaks the loop.

Thus, the success probability of finding a solution space E ′ is bounded from
below by [

t

r

]−1
q

.

The complexity of the algorithm follows from the expectancy of a geometric distri-
bution, in term of iterations of its while loop.

On a SquareSpace instance

(U = E2, q,m, r)

where dim(E) = r, and dim(U) = t, Algorithm 1 finds a solution space E ′ with, on
average, at most

O

[ t

r

]
q


iterations of its while loop.
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5.2.1.2 Intersection combinatorial attack

In this section, we give another combinatorial attack against the SquareSpace prob-
lem, namely the intersection attack. It is more efficient than the one described in
Section 5.2.1.1.

Concerning this section, I would like to thank Jean-Pierre Tillich for very fruitful
discussions.

The intersection attack is based on a simple fact given by Lemma 5.

Lemma 5. Let {e1, e2, . . . , er} ⊂ Fqm be a basis of the secret space E, then for two
integers i, j in {1..r}, one has that:

E ⊂
(
e−1i U

)
∩
(
e−1j U

)
. (5.3)

Proof. Recall that by definition:

U := 〈eiej〉1≤i,j≤r.

Then the proof is straightforward since for any i ∈ {1..r}:

e−1i U = 〈. . . , e−1i e1ei, e
−1
i e2ei, . . . , e

−1
i er−1ei, e

−1
i erei, . . .〉

= 〈. . . , e1, e2, . . . , er−1, er, . . .〉,

thus E ⊂ e−1i U , for all i ∈ {1..r}.

Remark 24. Using the same notation as in the proof of Lemma 5, let us call A and B
two complement vector spaces of E in e−1i U and e−1j U , in other words, E⊕A = e−1i U ,
and E ⊕B = e−1j U .

In what follows, we assume that A and B are vector spaces uniformly distributed
among the vector spaces of dimension t − r in Fqm. This assumption is very light
since it is similar to the one used in [AGH+19], and it is supported by experiments.

Lemma 6. Let A,B be two vector spaces in Fqm, of dimension, respectively, d1 and
d2, and such that d1 + d2 ≤ m. If A,B are picked uniformly at random in Fqm, then
the probability that

A ∩B = {0}
is equal to:

d2−1∏
i=0

qm − qd1+i

qm − qi
. (5.4)
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Algorithm 2: The intersection attack against SquareSpace
Input: A SquareSpace instance (U = E2, q,m, r) where dim(E) = r, and

dim(U) = t.
Output: E ′ such that dim(E) = r, and U = E ′2

found← 0;
while found = 0 do

u1
$← U ;

u2
$← U ;

if IsSquare(u1) and IsSquare(u2) then
E ′ ←

(√
u1
−1U

)
∩
(√

u2
−1U

)
;

if dim(E ′) = r and E ′2 = U then
found← 1;

end
end

end
return E ′;

Proof. Let A ∈ Fm×d1q (resp. B ∈ Fm×d2q ), be a basis matrix of A (resp. B) with
respect to a basis β of Fqm over Fq. It is readily seen that the rank of the matrix
(A|B) will be d1 + d2 if, and only if, if A ∩B = {0}.

Thus, the probability we are looking for is the probability for a matrix made of
two full rank matrices (of size m× d1 and m× d2) to be of full rank.

Using Lemma 5, Lemma 6, and using the same assumption as in Remark 24,
one has that, as long as m � t, with overwhelming probability, the intersection in
Algorithm 1 will be exactly E if u1 and u2 are linearly independent square elements
of the form e2i .

There are

[
t

2

]
q

pairs of linearly independent elements in U , and we assume

that

[
r

2

]
q

of them are squares of elements in E.

Thus, we expect the complexity of the intersection attack depicted in Algorithm 2
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to be given by

O

[ t

2

]
q

×

[
r

2

]−1
q

 (5.5)

in terms of iterations of the main loop of the algorithm.

Our experiments support the complexity formula given by Equation (5.5), see
Table 5.3.

Remark 25. If m is too close to t, Algorithm 2 can very well go on forever. In fact,
in that case, the dimension of the intersection would never be r.

A possible way to fix this issue is to look at subspaces of dimension r in the
intersection; however we do not focus on that case since the parameters of interest
are all such that m� t.

5.2.1.3 Experimental results and conclusion

Overall, the combinatorial attack given by Algorithm 1 is far more efficient than
brute force; and the intersection combinatorial attack, given by Algorithm 2, is even
more efficient, this is confirmed by our experiments depicted in Table 5.3.

It is worth noticing that the complexities of our combinatorial attacks (Algo-
rithm 1 and Algorithm 2) are both independent from the value of m, as long as it is
greater than t.

This is totally different from the brute force attack or the algebraic attacks de-
scribed in Section 5.2.2.

5.2.2 Algebraic Attacks

When one is given a SquareSpace instance U = E2 with parameters (q,m, r), the
secret space E is unknown, so it is natural to consider elements in a basis of E to be
the variables.

More precisely, let E be an m × r matrix of variables with an identity block on
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Parameters (q,m, r) Bruteforce Algorithm 1 Algorithm 2
[3, 11, 3] 38.8 18.1 11.8

[3, 13, 3] 48.4 18.2 11.8

[3, 15, 3] 57.9 18.4 11.7

[3, 17, 3] 67.4 18.0 11.8

[3, 21, 3] 86.4 18.2 11.8

[5, 11, 3] 56.1 24.7∗ 16.0

[5, 13, 3] 70.1 23.8∗ 16.0

[5, 15, 3] 84.0 24.3∗ 15.9

[3, 21, 4] 108.6 − 21.1∗

[3, 23, 4] 121.3 − 21.0∗

Table 5.3: Experimental complexities (in term of main loop iterations) of combina-
torial attacks against the SquareSpace problem and comparison with brute force.
All values are binary logarithms, and they are average values over 100 experiments
(only 10 for the values with a star symbol “∗”). The “−” symbol denotes experiments
out of reach for a personal computer in a reasonable time.

its first r × r block:

E :=



Ir

e1,r+1 . . . er,r+1

e1,r+2 . . . er,r+2

... . . .
...

e1,m . . . er,m


. (5.6)

In order to match a basis matrix of E with the matrix E, one simply requires
the first maximal minor of a basis matrix E to be non-singular. Since E is picked
at random, this happens with overwhelming probability if q is large, and it is lower
bounded by 0.288, see for instance Lemma 7 in [BGL03]. If the following algebraic
attack does not find any solution, then one simply picks another spot to put the
identity matrix, and it eventually works since E has dimension r by definition.

This systematic form for E helps with the 3 following points:
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• it enables one to reduce the number of variables from mr down to (m − r)r,
which is an important point when dealing with algebraic attacks,

• it prevents one from getting singular solutions, for instance solution spaces with
dimension smaller than r or even 0,

• last but not least, if E is the only solution, then our algebraic modelings will
have a single solution as well whereas it would have a lot of solutions, namely
# GLr(Fq), without this specialization.

This last point is similar to what happens in Section 2.3.3 when one does not use
Plücker coordinates.

5.2.2.1 The symbolic basis U symb

Once one has built the matrix E containing variables, that is to say, the symbolic
basis of the secret space E, she can derive a symbolic basis of U involving the very
same variables; this is done by considering all the pairwise products of columns in E
seen as elements in Fqm , see the toy example below.

We denote by U symb this m× t matrix containing quadratic polynomials in

Fq[er+1,1, er+2,1, . . . , em−1,r, em,r].

Here is a toy example corresponding to a SquareSpace instance with parameters
(q,m, r) = (3, 4, 2). Let {1, α, α2, α3} be an F3-basis of F34 where α4 = α3 + 1.

In that case, the matrix E would be

E :=


1 0

0 1

e1,3 e2,3

e1,4 e2,4

 ∈ F3[e1,3, e1,4, e2,3, e2,4]
4×2.

In order to compute the entries of the first column of U symb, one computes

(1 + e1,3α
2 + e1,4α

3)2 = (e21,3 + 2e1,3e1,4 + e21,4 + 1) + (2e1,3e1,4 + e21,4)α

+ (e21,4 + 2e1,3)α
2 + (e21,3 + 2e1,3e1,4 + e21,4 + 2e1,4)α

3
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where the 4 entries are in blue. More precisely, the first column of U symb is given by
e21,3 + 2e1,3e1,4 + e21,4 + 1

2e1,3e1,4 + e21,4
e21,4 + 2e1,3

e21,3 + 2e1,3e1,4 + e21,4 + 2e1,4


Then by computing

(1 + e1,3α
2 + e1,4α

3)(α + e2,3α
2 + e1,4α

3),

and
(α + e2,3α

2 + e1,4α
3)2,

one gets the 2 remaining columns.

Overall:

U symb =
(
E2

1

∣∣ E1E2

∣∣ E2
2

)
∈ F3[e1,3, e1,4, e2,3, e2,4]

4×3

where

E2
1 :=


e21,3 + 2e1,3e1,4 + e21,4 + 1

2e1,3e1,4 + e21,4
e21,4 + 2e1,3

e21,3 + 2e1,3e1,4 + e21,4 + 2e1,4

 ,

E1E2 :=


e1,3e2,3 + e1,4e2,3 + e1,3e2,4 + e1,4e2,4 + e1,4

e1,4e2,3 + e1,3e2,4 + e1,4e2,4 + 1

e1,4e2,4 + e2,3

e1,3e2,3 + e1,4e2,3 + e1,3e2,4 + e1,4e2,4 + e1,3 + e1,4 + e2,4

 ,

E2
2 :=


e22,3 + 2e2,3e2,4 + e22,4 + 2e2,4

2e2,3e2,4 + e22,4
e22,4 + 1

e22,3 + 2e2,3e2,4 + e22,4 + 2e2,3 + 2e2,4

 .
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5.2.2.2 The minors modeling

Using the aforementioned matrix U symb, we can derive an algebraic modeling for the
SquareSpace problem, namely the minors modeling, see Modeling 3.

Modeling 3 (SquareSpace minors modeling). Let U = E2 be a SquareSpace in-
stance of parameters (q,m, r). Let U ∈ Fm×tq be a basis matrix of the space U , and
let U symb be the m × t matrix of polynomials previously defined. For all i in {1..t},
we denote by U

[i]
symb the ith column of the matrix U symb.

Then, the minors modeling is given by{
f = 0

∣∣∣∣ f =
∣∣∣(U ∣∣U [i]

symb

)∣∣∣
T,∗
, ∀T ⊂ {1..t+ 1}, ∀i ∈ {1..t},

}
(5.7)

The minors modeling has the following properties:

• it contains (m− r)r variables over Fq,

• it contains t
(
m
t+1

)
polynomial equations with coefficients in Fq,

• its polynomials have degree at most 2, this is readily seen by looking at the
Laplace expansion of the maximal minors with respect to their last column.

The fact that the coefficients of the basis matrix of E in systematic form are
solution to the minors modeling is straightforward. The converse is also true by
construction and thanks to the identity block which guarantees that any solution
leads to a space E ′ of dimension precisely r.

In what follows, we will see that among the equations of Modeling 3, a lot are
linear combinations of the others that we do not need. Then, we will give a way to
only generate the equations of interest, i.e., the set of linearly independent equations.

For instance, with parameters (q,m, r) = (3, 15, 3), one has 38610 equations given
by the maximal minors but only 54 = (m− t)t of them are linearly independent, see
the experimental results in Table 5.4.

We were able to prove this result, see Proposition 14.
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Proposition 14. Assuming that the matrix U behaves like a matrix picked at random
in Fm×tq , among the t

(
m
t+1

)
equations given by the minors modeling, see Modeling 3,

generically, at most
(m− t)t

are linearly independent.

Proof. The idea of the proof is to write each maximal minor as a vector-matrix
product between a vector of maximal minors of U and a column of U symb.

Then, using the following theorem, one notices that this vector of maximal minors
is an element belonging to the left-kernel of U . Theorem 14 has been proved in
[Onn94] as mentioned in [Spa12], however the formulation we use is taken from
[BBB+20].

Theorem 14 ([Onn94]). Let M be an M × t matrix in Fq.
If t < M , then generically the left kernel of M is generated by vectors whose

coefficients are maximal minors of M , specifically vectors of the form

V J = (. . . , 0︸︷︷︸
j /∈J

, . . . , (−1)l+1 |M |J\{j},∗︸ ︷︷ ︸
j∈J, j=jl

, . . .)1≤j≤M

where J = {j1 < j2 < . . . < jt+1} ⊂ {1, 2, . . . ,M}, #J = t+ 1.

For T = {T1 < T2 < . . . < Tt+1} ⊂ {1..t+1} such that #T = t+1, and k ∈ {1..t},
by definition ∣∣∣(U ∣∣U [k]

symb

)∣∣∣
T,∗

= 0

gives an equation in the minor modeling. In what follows, we denote by U
[l,k]
symb the

(l, k)-entry in the matrix U symb.

One has that ∣∣∣(U ∣∣U [k]
symb

)∣∣∣
T,∗

=
∑

i∈T, i=Tj

(−1)j+1U
[i,k]
symb |U |T\{i},∗

which can be rewritten as a vector-matrix product:

(. . . , 0︸︷︷︸
i/∈T

, . . . , (−1)j+1 |U |T\{i},∗︸ ︷︷ ︸
i∈T, i=Tj

, . . .)1≤j≤M × U
[k]
symb
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Using Theorem 14, this means that the equations∣∣∣(U ∣∣U [k]
symb

)∣∣∣
T,∗

= 0

can be written as vU [k]
symb = 0 where v is a vector in the left kernel of U .

Since U has rank t by definition, its kernel has rankm−t, and there are t columns
in U symb, this means that there cannot be more than (m− t)t linearly independent
equations in the minors modeling.

Note that the assumption about the matrix U in Proposition 14 is supported by
our experiments.

5.2.2.3 The kernel modeling

From Proposition 14, one can easily derive a new algebraic modeling for the
SquareSpace problem by computing the left-kernel of U and then multiply U symb

by it.
This can be seen as a “nice” modeling, since one will not have to compute t

(
m
t+1

)
maximal minors, but she will instead directly get the (m− t)t equations.

We call this modeling of the SquareSpace problem the kernel modeling, see
Modeling 4.

Modeling 4 (SquareSpace kernel modeling). Let U = E2 be a SquareSpace in-
stance of parameters (q,m, r). Let U ∈ Fm×tq be a basis matrix of the space U , and
let U symb be the m× t matrix of polynomials previously defined.

Then, the minors modeling is given by

KerL(U)U symb = 0(m−t)×t (5.8)

The minors modeling has the following properties:

• it contains (m− r)r variables over Fq,

• it contains at most (m − t)t linearly independent polynomials equations with
coefficients in Fq,

• its polynomials have degree at most 2.
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Last but not least, in the previous section and in Modeling 4, we mentioned that
at most (m− t)t equations could be linearly independent; in what follows, we show
that this bound is generically reached, see Proposition 15.

Proposition 15. The kernel modeling, see Modeling 4, when used without any spe-
cialization, i.e., with mr variables ei,j’s, yields a system of (m − t)t quadratic poly-
nomial equations, and they are all linearly independent over Fq.

In other words, the rank of the Macaulay matrix of the kernel system at degree 2
is always of full rank.

Proof. Recall that α is a primitive element and thus β := (1, α, α2, . . . , αm−1) is
a basis of Fqm over Fq. Let us start by considering a product eiej where all the
coefficients over Fq are variables, i.e. without the aforementioned specialization.

This product can be written as follow:

(ei,1 + ei,2α + ei,3α
2 + . . .+ ei,mα

m−1)(ej,1 + ej,2α + ej,3α
2 + . . .+ ej,mα

m−1)

Writing eiej in the basis β, one notices that the monomials ei,1ej,1 will only appear
in the coefficient of 1.

Similarly, the monomial ei,1ej,2 will only appear in the coefficient of α, and so on.

An equation in the kernel modeling corresponds to a vector-matrix product be-
tween a row of the (m − t) ×m kernel matrix and a column of the symbolic basis
U symb.

It is readily seen that for a given kernel row, the t corresponding equations will
be linearly independent since they involve different pairwise products eiej’s.

For a given column eiej, assuming without loss of generality that the kernel
matrix is in systematic form, and using the aforementioned fact, it is straightforward
that every polynomial will contain a monomial that none of the other polynomials
contains.

Thus all the (m− t)t equations are linearly independent.

Proposition 15 is a bit frustrating to us in the sense that it gives the linear
independence only without the r× r identity block in E; however, we are convinced
by extensive experiments that this result generalizes when using E in systematic
form as described in Modeling 4.

See for instance the experimental results in Table 5.4, for which we always used
the specialized kernel modeling.
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(q,m, r) # var. # eq. Mod. 3 # indep. (m− t)t Time GB (s) d

[3, 9, 3] 18 216 18 18 ≈ 2 5
[3, 11, 3] 24 1980 30 30 ≈ 100 6
[3, 13, 3] 30 10296 42 42 ≈ 200 5
[3, 15, 3] 36 38610 54 54 ≈ 1500 5
[5, 9, 3] 18 216 18 18 ≈ 300 6
[5, 11, 3] 24 1980 30 30 ≈ 13000 6
[5, 13, 3] 30 10296 42 42 crash -
[5, 15, 3] 36 38610 54 54 crash -

Table 5.4: Experimental results of our algebraic attacks against SquareSpace. For
a given set of parameters, the “var” column gives the number of variables which is
the same for both modelings, then there is the number of equations in Modeling 3,
and the number of linearly independent among them. The column “Time GB” in-
dicates the time needed (in seconds) to compute the Gröbner basis (with the field
equations) using the F4 implementation by Allan Steel in Magma V2.27-1 on a per-
sonal computer with 16GB of RAM. When it is written “crash”, it means that the
RAM saturated during the computation, causing the process to crash. Last but not
least, the “d” column gives the greatest degree reached during this computation, see
Section 2.3.2.

5.3 SquareSpace Challenges
According to our complexity estimations of the SquareSpace problem, see Defini-
tion 43, we propose 4 challenges in Table 5.5.

q m r Security

SquareSpace I 79 251 5 128
SquareSpace II 1451 131 4 128
SquareSpace III 65521 131 4 128
SquareSpace IV 2097169 167 3 128

Table 5.5: SquareSpace challenges parameters.

Based on the attacks described in this document, we think that they would require
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Irreducible Polynomial in Fq[X]

SquareSpace I X251 +X2 +X + 4

SquareSpace II X131 + 2X + 60

SquareSpace III X131 +X + 9

SquareSpace IV X167 +X + 29

Table 5.6: Irreducible Polynomials in Fq[X] used to define Fqm for the
SquareSpace challenges given in Table 5.5.

2128 elementary bit operations to be solved. This correspond to the first level of
security in NIST Post-Quantum Standardization process.

Challenge instances can be generated using our program, see Section 5.4.3, avail-
able at

https://github.com/MaximeBros/SquareSpace_signature.

5.4 Application to Cryptography
A natural way to use the SquareSpace problem in cryptography is to look at cryp-
tosystems which rely on the use of a “similar” problem. This is for instance the case
of the Fiat-Shamir authentication protocol, see Section 2.4.2.

5.4.1 Our authentication scheme

The authentication scheme described in Figure 5.1 is our adaptation of the afore-
mentioned Fiat-Shamir authentication protocol using the SquareSpace problem,
see Definition 43.

It is readily seen that recovering the private key from the public key is exactly
an instance of the SquareSpace problem.

The rest of this section is dedicated to prove the correctness, and the soundness
of this protocol, as defined in Section 2.4.2.
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Prover Verifier
sk: E ⊂ Fqm s.t. |E| = r, and U = E2 pk: U

X
$← Gr(r,Fqm) commitment: K := X2

b
$← {0, 1}challenge: b

response: Y := XEb

Y 2 ?
= KU b

Figure 5.1: Our authentication scheme based on the SquareSpace problem.

The correctness is straightforward, similarly to the Fiat-Shamir authentication
protocol, one has that (XE)2 = KU by construction and using the commutativity
of the multiplication of vector spaces in Fqm .

The soundness probability is 1/2 as well, however the tools used to prove it are
a bit trickier than for the Fiat-Shamir authentication scheme.

First of all, it is clear that a cheater can predict the challenge b = 0 very easily,
thus, for the same reasons mentioned in Section 2.4.2, it means that an adversary
can cheat with probability at least 1/2.

To prove that the soundness probability is exactly 1/2, we will proceed as we did
in the previous section and consider an adversary that could predict both challenges;
this is the point of Proposition 16.

Proposition 16. Let us assume the uniqueness for solution of the SquareSpace prob-
lem, see Section 5.1.2.

If an adversary can predict both challenges in the authentication scheme depicted
in Figure 5.1, then she can solve the SquareSpace problem with overwhelming prob-
ability.

Proof. Let us assume that an adversary can predict both challenges, thus she knows
Y1 and Y2 such that : {

Y 2
1 = KU

Y 2
2 = K

.
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By assumption, the solutions to SquareSpace instances are unique, thus{
Y1 = XE

Y2 = X
.

Let x1, x2, . . . , xr ∈ Fqm be a basis of the secret space X. In order to recover E
from Y1 and Y2, the adversary can compute the following intersections:

r⋂
i=1

x−11 Y1. (5.9)

Using results from LRPC decoding algorithm, see [AGH+19], the intersection in
Equation (5.9) will be exactly E with overwhelming probability.

5.4.2 Our signature scheme

Using the Fiat-Shamir heuristic, see Section 2.4.3, we can turn our authentication
scheme into a signature scheme whose security relies on the SquareSpace problem.

However, to claim that this signature scheme is EUF-CMA in the ROM, one
needs the zero-knowledge property, see Section 2.4.3. Indeed, with this property, our
authentication scheme would become an interactive zero-knowledge proof of knowl-
edge, and the results from Pointcheval and Stern would apply.

Even if this last property is not proved yet, as mentioned in Chapter 6, we propose
parameters for our SquareSpace signature scheme together with an implementation
in C, this is the topic of the last sections of this document.

5.4.2.1 Parameters

Table 5.7 gives our proposed parameters for the signature scheme based on the
SquareSpace problem. They are matching the challenges given in Section 5.3.
Since these challenges target the security level of 128 bits, we took λ = 128 for the
number of iterations in the Fiat-Shamir heuristic.

Table 5.7 also gives the sizes of the public key pk and of the signature |σ| for each
set of parameters.
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Parameters (q,m, r) |pk| |σ|
SquareSpace Signature I (79, 251, 5) 3.1 KB 1.0 MB
SquareSpace Signature II (1451, 131, 4) 1.7 KB 0.5 MB
SquareSpace Signature III (65521, 131, 4) 2.4 KB 0.8 MB
SquareSpace Signature IV (2097169, 167, 3) 2.7 KB 0.8 MB

Table 5.7: Parameters for our SquareSpace signature scheme for security 128 bits.
The sizes are expressed in kilo-bytes (KB) and mega-bytes (MB).

These sizes, in bytes, where computed using the following formulas:

|pk| =
⌈

(m− t)× t× dlog2(q)e
8

⌉
, (5.10)

|σ| = 128

8
×
(
(m− t)× t× dlog2(q)e+ (m− r2)× r2 × dlog2(q)e

)
(5.11)

where t := (r + 1)r/2.

Note that the size of the secret key sk is not relevant since it is only a seed, thus
it always has size 40 bytes.

Last but not least, we store all M × N matrices, where M > N , in systematic
form, this is why it only requires (M −N)N entries for each matrix, the rest being
an identity block.

Remark 26. It is worth noticing that the signature sizes given in Table 5.7 using
Equation (5.11) are smaller in practice. Indeed, about half of the time, when the
challenge bit is 0, only Y = X is sent, and it has dimension r, whereas Y = XE has
dimension r2 when the challenge bit is 1.

Thus, the signature sizes given in Table 5.7 correspond to the maximum size a
signature could have in the worst case.

5.4.3 Implementation

5.4.3.1 Presentation

We propose a pure C implementation of the signature scheme described in Sec-
tion 5.4.2. This implementation is available at

https://github.com/MaximeBros/SquareSpace_signature.
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This is a joint work with Frédéric Canaud.

Our code uses the following libraries:

• FLINT (Fast Library for Number Theory) [Har11] (which depends on [FHL+07,
Gra96]) for the operations in Fqm , and the linear algebra operations on matrices
with entries in Fq.

• arc4random pseudo-random number generator by David Mazieres and Damien
Miller,

• SHA2 implementation by D. J. Bernstein for the hash function SHA256.

5.4.3.2 Execution times

Table 5.8 gives the times we obtained when executing our C code for the three
signature algorithms: KeyGen, Sign, Verif.

These benchmarks have been performed on a personal computer that has 8 giga-
bytes of memory, and an Intel® CoreTM i5-8300H 2.30GHz CPU. Note that the
Hyper-Threading, the Turbo Boost, and the SpeedStep features were disabled, and
the gcc compiler version was 11.2.0.

Key generation Signature Verification
SquareSpace I 0.9 ms 178 ms 1292 ms
SquareSpace II 0.4 ms 63 ms 256 ms
SquareSpace III 0.4 ms 66 ms 270 ms
SquareSpace IV 0.3 ms 53 ms 138 ms

Table 5.8: Average times (in milliseconds) over 100 executions of each algorithm of
our SquareSpace signature scheme implementation, for each set of parameters.
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Chapter 6

Perspectives

Attacks against RD and its variants
Rank-metric complexity estimator. There are a lot of different attacks for each
problem in rank-based cryptography, such as RD, RSL, NHRD, etc.

Even if the complexities of each attack are available in research papers, we want
to develop a useful software that everybody could use to compute the complexities
of all state-of-the-art attacks for a given parameter set.

This would be similar to what exists for multivariate-based cryptography with
the tool developed by Bellini, Makarim, Sanna, and Verbel [BMSV22].

MaxMinors and SupportMinors implementations. As we performed a lot of
experiments to study the MaxMinors and SupportMinors attacks, we do have Magma
implementations for both.

However, we would like to propose a more efficient C/C++ implementation of
these attacks, for instance taking advantage of the state-of-the-art libraries for dense
linear algebra (NTL, Flint, fflas-ffpack, m4ri/m4rie), and for sparse linear algebra
(polycephaly, linbox).

Formulas for the complexity of MaxMinors, SupportMinors, and bilinear
systems in general. In a few words, to compute the complexity of the MaxMinors
attack against an RD (q,m, n, k, r) instance, one has to find the smallest integer a
such that

m

(
n− k − 1

r

)
≥
(
n− a
r

)
− 1, (6.1)
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and then the complexity is given by

qarm

(
n− k − 1

r

)(
n− a
r

)ω−1
.

This formula is very different from the classical complexity formulas, usually
written as a power of q, where the exponent is a rather simple function depending
on the parameters.

We recently managed to find a closed formula of this form for the MaxMinors
attack. However, we need to go deeper in its analysis to both make it more accurate
and study its error thoroughly.

In addition to this, we would like to extend this analysis to the complexity of the
SupportMinors attack, and even to the complexity of bilinear systems in general, as
these complexity formulas all have the same form.

Algebraic attacks against RSL. The RSL problem, see Definition 18 and Sec-
tion 3.3.2, is at the core of some cryptosystems [Wan19, ABG+19, AAD+22], and
it will very likely be important in the new NIST Call for Post-Quantum Signatures
where some candidates might rely on it.

However, as described in [BB21] and in Section 3.3.2.2, there is a threshold below
which these algebraic attacks are not well understood. More precisely, the aforemen-
tioned algebraic attacks have complexity formulas when N > n−k−r. Nonetheless,
they could work for smaller values of N , as we experimentally checked it.

We would like to study this specific area and derive a complexity formula valid
for any value of N .

Algebraic attacks against NHRSL. In Section 3.3.3, we described the first
attack against the NHRSL problem, recall that it is of combinatorial nature.

Although we feel that the adaptation of the algebraic attacks againstNHRD and
RSL to non-homogeneous error support learning will not be straightforward, this is
an interesting task that we look forward to studying.

Algebraic attack against RD. In the most recent attack against the RD prob-
lem [BBB+22], one part remains to be solved: what is the complexity when the
equations are projected from Fqm to Fq? Despite conducting many experiments, the
precise number of linearly independent equations has not yet been found.

Continuing this work would be interesting, as it is the last promising lead we
have concerning the algebraic attacks against RD.
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The PSSI problem.
The PSSI problem is very important for the security of the Durandal signature
scheme [ABG+19].

Even if the reduction from PSSI toMinRank described in Section 3.4 enabled us
to benefit from all the attacks against MinRank, both combinatorial and algebraic,
the complexities we got from them are still far too high.

We would like to take advantage of the strong structure of these MinRank in-
stances in order to improve these attacks against PSSI.

Last but not least, it would be very interesting to have algebraic attacks against
PSSI that take advantage of the several instances one is given, like the current
combinatorial attacks do.

Miscellaneous
Improve the decoding of LRPC codes. The decoding of Low Rank Parity-
Check codes (LRPC) [AGH+19] relies on computing several intersections, which is
done by performing linear algebra on block matrices.

We would like to improve this process by solving a slightly different linear system
for which we would try to take advantage of its structure.

It is not clear if this new decoding algorithm would be more efficient for every
LRPC code; therefore we would have to look for the specific parameter areas where
our new approach would beat the classic one, if they exist.

MQ-cyclic. The Multivariate Quadratic problem (MQ) asks one to find a solution
to a system of multivariate polynomial equations of degree 2 over Fq. The decisional
version of this problem is NP-complete and it is clearly connected to the algebraic
attacks studied in this document; indeed, an algebraic attack is nothing but an
instance of MQ, usually with a strong structure.

Some signature schemes rely on MQ, see for instance [CHR+16, Beu20, BG22].
Quasi-cyclic or ideal codes, see Section 2.1.3, were introduced in code-based cryp-
tography to reduce key sizes; in the same spirit, an adapted notion of cyclicity can
be used for MQ.

We would like to study the complexity of this problem, that is to say, check if
this cyclicity structure can be exploited.

170



SquareSpace encryption and more.
The SquareSpace problem has been introduced in this document and we described
a few attacks against it.

As for the algebraic attacks, we need to further investigate their solving degree
in order to derive more precise complexity formulas, as we currently have rough
estimations.

We would also like to study the zero-knowledge part of our authentication scheme
based on the SquareSpace problem, see Section 5.4. That is to say, make sure
that when one is given a lot of SquareSpace instances relying on the same secret
space, it does not leak secret information that an attacker could retrieve using less
computations than the level of security allows.

In addition to this, we would like to study a more general version of this problem,
namely the factorization of vector spaces over Fqm . More precisely, let r, d be positive
integers, one is given a vector space X ⊂ Fqm of dimension rd and tries to find
whether there exist spaces A and B of dimensions r and d, respectively, such that
X = AB. This more general problem is mentioned in the MURAVE rank-based
signature scheme [LT20a].

Last but not least, we have a promising idea that could lead to the construction
of a SquareSpace-based encryption scheme. As it would be exciting to have both a
signature scheme and an encryption scheme that rely on the SquareSpace problem,
we look forward to studying this.
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