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Chapter 1

GENERAL INTRODUCTION

Aeronautical structures are often exposed to extreme loadings during bird-strike or light-
ning for example: particularly in terms of temperatures and strain-rates. When exposed to
these loadings, multi-physical phenomena, especially thermomechanical ones can happen
and thus considerably change the behaviour of the structure, sometimes leading to its
ruin. In order to deepen our understanding of such events, the development of experimen-
tal procedures is needed. Such procedures should enable the in situ observation of these
coupled events. These observations will either be used to enrich existing models or lead
to the elaboration of new models.

The characterization of a metal’s behaviour requires, in the general case, to have ac-
cess to the stress distribution. Obtaining such an un-observable quantity is generally an
ill-posed mechanical problem. However, several strategies have been developed to close
the problem. Classically, one way to close the problem is by performing statically deter-
mined tests e.g. Kolky’s bar for high strain-rates. This test constitutes the gold standard
for rate-dependent material characterization. However, these tests rely heavily on scalar
measurements (through the use of strain gauges). Furthermore, the conditions needed
(e.g. for Kolky’s bar) — 1D, quasi-static equilibrium — still limit heavily quantitative
measurements under real case scenario. As a result heterogeneous transient phenomena
naturally induced by dynamic loadings cannot be thoroughly characterized and under-
stood. Another route consists in using constitutive laws to close the problem. The problem
then changes from obtaining stress distribution to the inverse identification of constitu-
tive parameters. This strategy assumes that the constitutive laws, usually constructed
and calibrated on statically determined tests, can be extrapolated for complex loadings.
Nevertheless, it allows to retrieve stress fields during heterogeneous tests that lead to
loadings closer to real life scenario.

Besides the fundamental question of stress distribution evaluation, experimentally
characterizing dynamic behaviours of metals faces several difficulties:

• the observation and characterization of heterogeneous transient phenomena require
measurements with both high spatial and temporal resolutions. This is still, to this
day, a challenge,

• the intrinsic multi-physical aspect of the dynamic processes requires finding alter-
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General Introduction

natives to the mono-parametric approaches. Particularly, thermo-coupled analysis
are, in that context, helpful.

In the last few years, these difficulties has been partially tackled. Indeed, the progress
in ultra high-speed imaging paired with digital image correlation made possible measure-
ments at precise resolutions (a few µm and µs) [Moulart et al., 2011,Malchow et al., 2019].
This opened the way to the realization of heterogeneous tests and enables the identifica-
tion of dynamic constitutive parameters [Kajberg and Wikman, 2007,Peirs et al., 2011].
However, since constitutive laws are established using statically determined tests, their
ability to accurately capture the behaviour of metals submitted to complex loadings (e.g.
heterogeneous, multi-axial and coupled) is questionable.

Would it be possible to observe the heterogeneous dynamic stress response of materials
without modelling a priori ?

In the recent years strategies have been developed to retrieve stress fields without hav-
ing to rely on constitutive laws. For instance, the measurement of acceleration fields during
1D dynamic experiments allows now the direct estimation of stress-strain relations [Pier-
ron et al., 2014,Koohbor et al., 2016,Seghir and Pierron, 2018,Forquin and Lukić, 2018].
Recently, an attempt to extend these approaches to 2D case [Seghir et al., 2019] has been
proposed through the resolution of an inverse problem. Similarly, the recent development
of Data-Driven approaches applied to mechanics [Kirchdoerfer and Ortiz, 2016, Leygue
et al., 2018, Leygue et al., 2019] allows the estimation of heterogeneous stress distribu-
tions, in a regularized but non-parametric way, from heterogeneous kinematic fields, both
in quasi-static and dynamic. Regarding the thermodynamical side of the problem, the
recent improvement in infrared thermography enables high-speed coupled measurements
during experiments [Seidt et al., 2017]. Thus, in principle, the thermodynamical quantities
needed for a behaviour model elaboration can now all be measured experimentally.

Nevertheless, combining thermo-coupled measurements with high spatial and tempo-
ral resolutions and non-parametric stress estimation approaches is still a scientific and
technological challenge, which is yet to be overcome. This PhD thesis is part of a col-
laboration between the GeM and the Materials and Structures Department (DMAS) of
ONERA, one of whose missions is the characterization of structures’ dynamic behaviour
during a crash or an impact. The objective of this PhD thesis is to develop such tests and
the associated analysis methodology. The aim of this work is to pave the way for a new
material characterization strategy for high strain-rate and heterogeneous experiments, by
combining the use of state-of-the-art cameras with unparalleled spatio-temporal samplings
and the use of innovative stress estimation methods.

After an introduction about material behaviour modelling, the work proposed in this
manuscript is divided in three main parts. First, both the ultra high-speed and infrared
cameras will be presented. A particular focus is given to the methodologies used to extract
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General Introduction

kinematic and thermal fields and their accuracies. Then, an inertial impact test is per-
formed on a PMMA sample for validation purposes. The following part is dedicated to the
design of a dynamic tensile test and its realization. Using Finite Element simulations, a
sample design is chosen. Then, synthetic images as well as virtual deformation processes
are used to ensure that the resulting kinematic fields can be retrieved experimentally
with the presented methodologies. A test campaign is then performed on an XES steel
from ONERA and both kinematic and temperature fields are retrieved. Finally, the last
part focuses on the exploitation of the thermomechanical fields obtained. In this part, a
non-parametric approach is investigated to characterize the material’s behaviour. First
the proposed methodology is applied on a numerical test case. Then it is applied to the
experimental data. The results of the proposed approach is compared to, first the simula-
tions predictions. And then, the comparison with a constitutive model traditionally used
to model the material of this study will be discussed. Since non-parametric approaches
are a very recent open subject, this work is of a seminal nature and aims to explore and
discuss the possibilities offered by non-parametric approaches. Obviously, many questions
remain open and a long journey remains before thinking of substituting methodologies
that have been established over decades by the investigated one.

11



Chapter 2

MATERIAL BEHAVIOUR MODELLING AND

CHARACTERIZATION

2.1 A brief recall of the mechanical problems

In this section, the definition of some problems in continuum mechanics will be re-
called [Pierron and Grédiac, 2012], especially the so-called direct and inverse problems.
In what follows, the small strain formalism is assumed.

To this effect let us consider a continuous deformable body Ω (see Fig. 2.1). This body
is submitted to imposed displacements uD on the boundary ΓD, and to a load distribution
tN on the boundary ΓN . Note that when neither a displacement nor a load is imposed one
can consider that a 0 load is imposed, as a result the boundary where nothing is applied
(in the schematic the black boundary for instance) can be considered as a part of ΓN . In
addition, this solid is subjected to a distributed body force f, defined per unit of volume.

Usually, when boundary conditions are known, the mechanical problem is to find the
displacement field u and the stress field σ that verify:

• ε = 1
2

(
∇u + ∇T u

)
(strain compatibility),

• σT = σ (for Cauchy medium).

• u = uD on ΓD,

• σ · n = tN on ΓN ,

• div(σ) + f = ρa.

This problem is ill-posed since the number of equations, e.g. 9 in 3D, is lower than the
number of unknowns, e.g. 15 in 3D. As a result, the solution is not unique.

In practice, experimentally knowing u(X) (from DIC) and
∫

ΓN
σ(X) · ndΩ (from load-

cell) is not sufficient to get σ(X) in the general case. Historically, one of the first way
to solve this problem is to perform statically determined tests (see Section 2.2), i.e. by
considering particular geometries and loadings the number of unknowns of the problem
can be reduced which allows to close the problem. Alternatively, the assumption of a
constitutive law that links the primary variables (e.g. strains and its time derivatives,
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Material behaviour modelling and characterization

Figure 2.1: Schematic of a mechanical problem in the deformed configuration.

temperature) to constitutive variables (e.g. stresses) closes the problem. Through the use
of a constitutive law, two mechanical problems can be defined:

• The so called direct problem. For this problem, the geometry and boundary condi-
tions are known. Furthermore, a constitutive law is chosen and its parameters are
supposed known. Then, the problem consists in finding u and σ. This is typically
the problem solved by Finite Element solvers.

• The so called inverse problem. For this problem, the applied load as well as the
displacement fields are supposed known. As a result, the problem consists in finding
σ and either identify a parameterized constitutive law or its parameters.

It follows that, for complex and statistically undetermined tests, constitutive laws are
considered as a mandatory brick for simulations and material characterization. To model
the wide variety of materials and specific responses to specific loading conditions, a large
quantity of constitutive laws have been developed. These constitutive laws result generally
from models that are motivated by either theoretical background (e.g. the Klepaczko
model [Klepaczko and Chiem, 1986] or the Gao-Zhang model [Gao and Zhang, 2010] that
are based on dislocation mechanics), or heuristic considerations (such as the Johnson-Cook
model [Johnson and Cook, 1983]). The parameters involved in constitutive laws are often
considered as material parameters. Despite the freedom that is allowed for the creation
of constitutive laws let us note that four main physical principles must be verified:

• physical admissibility: the constitutive variables respect conservation laws as well
as the second law of thermodynamics,

• determinism: constitutive variables at time t = ti are only determined by primary
variables at previous times (t ≤ ti),

• locality: constitutive variables at the point X are dependent of the primary variables
in the vicinity of X,
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• objectivity: constitutive laws are invariant with respect to a rigid body motion of
the spatial frame of reference. This induces that constitutive laws depend on strain
tensor rather than the displacement.

Both strategies, statically determined tests or complex tests combined with the use of
a priori modelled behaviours, have some limitations:

• Statically determined tests assume that complex responses can be characterized
through the sum of various “simple tests”. One of the consequences is that it requires
a multitude of experiments in order to characterize a material response for a wide
range of strain-rates, temperatures and multi-axiality ratios.

• Inverse identification of material parameters heavily relies on the assumption that
the constitutive laws, that are constructed and calibrated on statically determined
tests, can be extrapolated for complex loadings (e.g. heterogeneous, multi-axial,
subjected to strong gradients of all sorts). This assumption is undermined by the
fact that parameters identified for a material during heterogeneous tests often differ
from the one identified for the same material using statically determined tests.
Moreover, even though the use of constitutive laws allows to close the problem, its
resolution requires the use of complex identification methods (see Section 2.3.1). At
last but not least, such strategy denotes a change of paradigm: rather than trying to
measure the material response, one focuses on parameter optimizations which may
limit our ability to truly characterize new materials.

In the following sections, the principle of statically determined test will be first pre-
sented as well as the measurement methods. Then, statically undetermined tests will be
discussed. In particular, different strategies to solve the closed mechanical inverse prob-
lem will be presented, as well as full-field measurement methods allowing to fully take
advantage of such approaches. The main interest of the two sections to come (Section 2.2
and 2.3) is to provide a series of information, test configurations and basic concepts that
will implicitly be used in the rest of the document.

At last, since 2016 a new strategy to close and solve the mechanical problem has
been developed. It consists in assuming the existence of a constitutive space in which the
material behaviour can be described as a manifold. This strategy relies on the availability
of a significant database in order to estimate stresses. The use of such an approach could
potentially allow to build constitutive equations from local full-field imaging only, in a
bottom-up approach rather than in the classically used top-down approach. This would
allow the constitutive law to naturally take into account all the richness of the material
(e.g. thermomechanical couplings, influence of the multi-axiality...). This innovative and
original strategy will be presented and discussed in depth in Chapter 8.
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2.2 Statically determined tests

2.2.1 Principle

The first way to solve the ill-posed problem described above is to perform statically de-
termined tests. These tests (and in particular the geometry used) are designed so that the
stress distribution can be computed analytically using the loads measured. This strategy
relies mainly on the assumption that the quantities of interest remain homogeneous in
the region of interest (the gauge length) during the whole duration of the test.

Ensuring the homogeneity of the fields in the gauge length can be challenging, es-
pecially when one wants to characterize a material under extreme conditions (very high
or low temperatures, dynamic loadings...). Furthermore, an additional condition when
characterizing a material at high strain-rate is that the strain-rate has to remain constant
during the duration of the experiment in the whole gauge length. As a result, the specimen
geometry and the loading paths have to be carefully chosen with respect to the material
and the domain of characterization investigated. To this effect, multiple standardized tests
have been developed (ASTM, ISO, EN...). These norms help to ensure the respect of the
conditions needed to perform a statically determined test by fixing the specimen geome-
try, the boundary conditions as well as the possible loading paths. Hence, the test design
space is strongly constrained.

Let us note that the statically determined tests presented can also lead to the identi-
fication of the parameters of a constitutive law. It is done by minimizing a cost function
in the least-square sense, generally defined as:

ϕ(P ) =
N∑

k=1
∥σexp(k) − σlaw(k, P )∥2, (2.1)

where N is the number of experimental points, ∥∥ is a chosen norm (usually the Von-
Mises norm), σexp are the experimental stresses, σlaw are the stresses obtained using the
constitutive law considered and P the parameters of the constitutive law that are sought.

2.2.2 Measurement methods

For statically determined tests, since a homogeneous state of the fields of interest is as-
sumed in the gauge length, loads, displacements, strains and temperatures can be obtained
directly using pointwise measurement techniques such as load cells, extensometers, strain
gauges and thermocouples.
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2.2.3 Examples

2.2.3.1 Uniaxial tensile test

The uniaxial tensile test is one of the most used experimental techniques for the charac-
terization of a material. It consists in the application of a uniaxial tension to a specimen
(see Fig. 2.2 for an example of the apparatus). The specimen geometry is chosen so that
the dimension in the tensile direction is preponderant versus the other two. When the
fields are homogeneous in the gauge length (i.e. before the necking of the specimen), the
engineering strain and the engineering stress are computed as follows:

εeng(t) = ∆L(t)
L0

,

σeng(t) = F (t)
S0

,

(2.2)

where L0 is the initial gauge length, ∆L(t) is the elongation of the gauge length at the
time t, S0 is the initial cross-section and F (t) is the measured load at t. The true strains
and stresses, that represent the true material behaviour are obtained using the following
relations:

εtrue(t) =
∫ L(t)

L0

∆L
L

= ln(1 + εeng(t)),

σtrue(t) = F (t)
S(t) .

(2.3)

In the case of an incompressible and isotropic material, Eq. 2.3 can be further simplified
into σtrue = F (t)

S0
ln(1 + εeng(t)).

Figure 2.2: Example of a uniaxial tensile test apparatus for elastomers. From [Dalemat,
2019], the captions were translated in english.

2.2.3.2 Split Hopkinson Pressure Bar tests

Another fundamental statically determined test that is extensively used to characterize
materials at high-strain rates is the Split Hopkinson Pressure Bar test [Gray III, 2000,
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Gama et al., 2004]. The experimental apparatus usually consists in a striker bar, an
input and an output bar. The two bars (input and output) are instrumented with strain
gauges and the specimen is usually sandwiched between these two bars (see Fig. 2.3 for a
schematic of a SHPB apparatus). Furthermore, the two bars have a uniform cross section,
and their length to diameter ratio is often taken between 20 and 100. The input and
output bars are usually in the same material. The properties of the bar material as well
as the specimen dimension are supposed to be known. Then, using 1D stress wave analysis
in the bars [Gray III, 2000], the strains and stresses in the specimen can be analytically
computed using the strains and stresses in the bars:

σ(t) = AbEbεT (t)
As

,

ε̇(t) = −2cbεR(t)
Ls

,

ε(t) =
∫ t

0
ε̇(τ)dτ,

(2.4)

where, Ab, Eb, cb are respectively the cross-section, the Young modulus and the wave
speed of the bars, As, Ls are the initial cross-section and initial length of the specimen
and εR, εT are respectively the axial strain of the reflected wave in the input bar and the
axial strain of the transmitted wave in the output bar.

However, the use of such tests relies on several assumptions [Gama et al., 2004]:

• The stress wave propagation in the bar is 1D. This is usually ensured if the bar
material is homogeneous and isotropic, and if the bars remain in their linear elasticity
domain during the experiments. Furthermore, in order to guarantee that the stress
distribution is uniform in the entire cross section of the bars, the length to diameter
ratio has to be higher than 20.

• The interfaces between the bars and the specimen remain plane during the experi-
ment.

• The effect of inertia in the sample is negligible. It classically means waiting 3 to 4
wave rebounds within the material until it reaches quasi-static equilibrium Fin =
Fout. This makes the accurate characterization of brittle materials or of the elasto-
plastic transition very difficult.

Figure 2.3: Schematic of a classical Split Hopkinson Pressure Bar test apparatus.
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• The stress fields in the sample are homogeneous. This condition is usually considered
true when quasi-static equilibrium is reached.

To summarize, by taking advantage of the a priori knowledge of analytical solutions
thanks to carefully chosen simple geometries, the statically determined tests can be used
to identify the behaviour of a material without the use of a constitutive law and by only
measuring loads and strains. However, this identification only yields a sparse sampling
of the material’s response. To bypass this drawback, these experimental techniques can
also be used to fit the parameters of a constitutive law modelling the material. Yet, this
often leads to an important number of tests, since the more complex the material the
more parameters have to be identified. Furthermore, the complex couplings that appears
during high strain-rate experiments with localization phenomena will never be captured.

2.3 Statically undetermined tests using a constitu-
tive law

The recent developments in optical sensors as well as in full-field measurements tech-
niques enable the quantitative measurement of kinematic and temperature fields during
an experiment. Hence, statically undetermined tests leading to heterogeneous fields –
and thus potentially larger spectra of strain, strain-rate and temperature during a single
experiment – can be considered. Furthermore, since heterogeneous fields are influenced
by a higher number of parameters than homogeneous ones, these tests also potentially
lead to the identification of a greater number of parameters at the same time [Pierron
and Grédiac, 2012]. In what follows, non exhaustive different methodologies allowing to
identify material parameters using statically undetermined tests will be presented. These
descriptions are based on literature reviews [Avril et al., 2008], the reader may refer to
this article for further information.

2.3.1 Principle of different identification methods

2.3.1.1 The Finite Element Model Updating (FEMU) method

The FEMU method is one of the most commonly used and most intuitive method. It was
first introduced by [Cottin et al., 1984] and relies on the use of a Finite Element solver. By
using a FE model of the experiment, the method consists in finding a set of parameters P
which minimizes the discrepancy between the measured and predicted forces (FEMU-F)
or displacement fields (FEMU-U):

• FEMU-U: This method consists in comparing measured displacement fields Um to
the one obtained after a FE simulation using a set of parameters P and known
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boundary conditions w, Us(P ,w). The cost function used takes the form of:

ϕU(P ,w) = 1
2(Um − Us(P ,w))TWU(Um − Us(P ,w)), (2.5)

whereWU is a symmetric, positive definite weighting matrix. This method is iterative
and thus several FE simulations have to be conducted. As a result, this method can
be costly in term of computation times.

• FEMU-F: This method consists in comparing the measured loads Rm and the one
obtained for the FE model Rs. Let us note that FE simulations are not needed to
compute Rs, however this method needs the availability of the displacements fields
for every node as well as the prescribed loads. The cost function is usually written
as:

ϕF (P ) = 1
2(Rm −Rs(P ))TWF (Rm −Rs(P )), (2.6)

where WF is a symmetric, positive definite weighting matrix.

Many variations of these two proposed methods exist, one can for instance combine ϕU

and ϕF and perform FEMU-F-U. This identification method has been used to identify
constitutive parameters for a broad range of materials as well as models. For instance, it
has been applied to identify viscoplastic parameters for high strain-rate tests on steels [Ka-
jberg and Wikman, 2007], or the Johnson-Cook parameters for an aluminium alloy using
a method derived from FEMU [Peirs et al., 2011]. More recently, this methodology has
been used to identify Johnson-Cook damage model parameters [Verleysen and Peirs, 2017].
The FEMU method has also been applied for hyperelastic parameters identification [Giton
et al., 2006]. Note that even more recently, the temperature has been introduced to iden-
tify thermomechanical properties, giving birth to the FEMU-T [Herb et al., 2019,Archer
et al., 2020].

One of the notable drawback of such a method is its heavy dependency on the FE
modelling of the experiment. Indeed, it is especially important to have a good knowledge
of the boundary conditions during the experiment in order to have access to relevant
predictions of either displacements or loads.

2.3.1.2 The Virtual Fields Method (VFM)

This method is usable when the strain field ε is measured in the volume Ω or simply
computed within the volume from surface measurements (2D extruded, bending shell
theory...). The Virtual Fields Method is based on the use of the Principle of Virtual
Work [Grediac, 1989]:

−
∫

Ω
σ(P ) : ε∗dV +

∫
∂Ω

T · u∗dS +
∫

Ω
f · u∗dV =

∫
Ω
ρa · u∗dV, (2.7)
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where u∗ denotes a virtual displacement field, ε∗ its associated virtual strain field, t
the stress vector acting on the boundary ∂Ω and f the body load. ρ is the density of the
material, a is the acceleration fields obtained through full-field measurement methods and
σ(P ) the stress tensor computed from the constitutive law and the experimental strains
ε. The methodology relies on the choice of relevant virtual fields. Each virtual field chosen
combined with Eq. 2.7 leads to a scalar equation, as a result a number of virtual field equal
to the material parameters sought is needed. The virtual fields are usually chosen case by
case, however some authors developed methods to automatically choose the virtual fields
for elastic cases [Grédiac et al., 2002], then for non-linear cases [Marek et al., 2017].

This method has been extensively used for quasi-static loadings to characterize various
materials as well as models. For a thorough review of the VFM applications the reader can
refer to [Grédiac et al., 2008]. More recently, it has recently been extended to dynamics by
using the acceleration as a load cell [Pierron et al., 2014] and applied to identify Johnson-
Cook strain-rate parameters for titanium alloys [Fourest et al., 2020]. In addition, the
VFM has been applied to identify the dynamic tensile strength of concrete [Forquin and
Lukić, 2018], or hyperelastic parameters [Tayeb et al., 2021].

The main drawbacks of such a method can be summarized as follows [Grediac, 1989].
First and foremost, in order to use this method the strains in the volume must be directly
related to the surface strains (as a result it is difficult to use it to study 3D composite
for example). As a result, this method is usually applied to 2D geometries and loadings.
Furthermore, the choice of the virtual fields, even if it can be automatic, requires an ex-
pertise of the user of the method.

The two methods presented in this section heavily rely on the ability to retrieve full-
field measurements during experiments. This has been rendered possible with the develop-
ment of full-field measurement techniques as well as the recent advances in optical sensors.
As a result in the following paragraphs, such measurement methods will be presented.

2.3.2 Full-field measurement methods

The recent advance in optical sensors as well as full-field measurement methods have
opened the way to quantitative kinematic and temperature measurements during complex
experiments. Several methods of contactless full-field measurement exist. A small selection
of them will be presented in this section.

2.3.2.1 Interferometry

Interferometric methods are one of the oldest non-destructive method to capture full-field
displacement fields and have been extensively studied [Rastogi, 2000]. These methods use
a monochromatic light source to simultaneously illuminate directly a CCD sensor and the
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specimen (see Figure. 2.4). Because of the difference of optical path, the illumination on
the CCD sensor will create fringe patterns. By comparing fringe patterns obtained with
the specimen unloaded and then loaded, one can retrieve the displacement fields. Among
these interferometric methods speckle interferometry and Moiré interferometry are the
most popular and widely used.

Figure 2.4: Schematic of a speckle-pattern interferometer, figure from [Rastogi, 2000].

For speckle interferometry, the specimen surface is used to generate a speckle pattern,
which when compared to a reference one leads to interference patterns. For this method
to work, the specimen has to be able to diffuse the illumination light. Furthermore, this
method is especially relevant to track small displacements. Moiré interferometry relies
on the comparison between an underformed reference grid and one transferred on the
specimen. The overlapping of this two grids will lead to Moiré fringes. As a result, in
plane displacements fields can be retrieved.

While interferometric methods are very efficient, especially for small displacements,
their implementation in practice is quite difficult. Indeed, it requires a complex optical
apparatus which is especially sensitive to external vibration.

2.3.2.2 White light methods

Grid method The grid method is an in-plane full-field kinematic measurement method
which has been thoroughly reviewed in [Grédiac et al., 2016]. This method relies on the
use of a known regular pattern: a grid that is transferred onto the specimen. This grid
main property, namely its pitch which can range from the micron to the millimeter, is
chosen accordingly with the imaging setup and the magnitude of the strain that needs to
be measured. Several techniques exist to create and then transfer such a grid on the test
specimen (film bonding, high resolution printing, lithography, laser etching).

The procedure to extract displacements from experimental images is presented in
details in [Grédiac et al., 2016]. To this effect, the light intensity is considered quasi-
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Figure 2.5: Example of a grid used for an ultrasonic experiment in [Seghir et al., 2019].

periodic and is described by the following relation

s(x, y) = A

2 (2 + γfrng(2πfx+ ϕx(x, y)) + γfrng(2πfy + ϕy(x, y)), (2.8)

where s(x, y) is the light intensity at the point (x, y), A is the average global field illumi-
nation, γ the contrast of the pattern between 0 and 1, f is the grid frequency, frng is a
2π periodic function with an amplitude of 1 and an average value of 0, ϕx and ϕy denote
the phase modulations. The phase modulations of the grid are caused by displacements
and the following relation can be demonstrated:

u(x) = − 1
2πf

(
ϕd(x + u(x)) − ϕr(x)

)
, (2.9)

where u(x) is the displacement vector at point x = (x, y), ϕr and ϕd are respectively
the phases in the reference image and in the deformed image. This relation is obtained
by assuming the conservation of the optical flux. The displacements are then retrieved
by either linearizing this relation or by using an iterative computation method. As a
result, to measure displacements the phase modulations have to be extracted from the
images. This is usually done through the use of methods based on Fourier Transform.
As the phase modulation thus extracted is known modulo 2π spatially and temporally,
unwrapping techniques are then employed to cancel phase jumps.

The main advantages of this technique are the simplicity of the algorithms, the re-
producibility (since it relies on perfect grids) and the high metrological performance of
phase-shift techniques. Nevertheless, the main constraint resides in the use of regular pat-
tern, since the transfer of the grid onto the specimen may not be trivial. In addition,
actual technologies still limit spatial grid resolutions to 100 µm per period at best, while
airbrush paint patterns can go down to a few microns, potentially leading to resolutions
of tens of micron with DIC.

Digital Image Correlation Digital Image Correlation (DIC) is also a kinematic mea-
surement method [Sutton et al., 1983, Chu et al., 1985, Schreier et al., 2009]. It consists
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in finding the displacement and deformation between two images based on the grey level
variation. To this effect, a random speckle pattern is classically used: it is usually ob-
tained by using black and white paint, but sometimes the natural material texture may
be sufficient [El Bartali et al., 2008].

Figure 2.6: Example of a black and white painted speckle pattern.

The objective is to find the displacement between the reference image f and a deformed
image g. Using the conservation of the grey level, the following equation is obtained:

f(X) = g(X + u(X)), (2.10)

where u(X) is the sought displacement at position X, i.e. in the reference configuration.
Since the problem is ill-posed and in order to be robust to the acquisition noise, the
problem is usually transformed into a minimization problem of a chosen criterion over
a subset of the image. Several criteria can be used [Pan et al., 2009] for the correlation
problem. They are mainly based on the sum of square differences. One notably used
metric is the Zero-Normalized Sum of Squared Differences (ZNSSD) which is robust to
noise and mitigates the impact of change of lighting between two images. In addition,
two main different strategies can be distinguished for the consideration of the subset. One
strategy consists in considering each subset independently, which leads to the so called
local DIC [Hild and Roux, 2012]. Another strategy consists in considering all the subsets
at the same time, named global DIC [Sun et al., 2005,Besnard et al., 2006].

2.3.2.3 Infrared thermography

Infrared thermography is based on Planck’s law, which states that a perfect blackbody,
i.e. a body whose emitted radiation depends solely on its temperature, with a temperature
superior to 0 K will be the source of electromagnetic radiations following the relation:

I(λ, T ) = 2πhc
λ5

1
e

hc
λkT − 1

, (2.11)

where I(λ, T ) is the spectral radiance of a blackbody for the wavelength λ at T . h denotes
Planck’s constant, c the speed of light and k the Boltzmann constant. The differentiation of
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this relation with regard to the wavelength leads to Wien’s law that states that for a given
temperature, the spectral radiance of a blackbody will reach a maximum for a particular
wavelength. As a result, blackbodies with a temperature superior to room temperature
and inferior to 1500 K have a peak of emission between 2 µm and 10 µm, which are in
the infrared wavelengths. Cameras, similar to the ones used for visible wavelengths, but
with photo-sites based on material sensitive to IR wavelengths (e.g. indium antimonide
(InSb)) and dedicated cooling systems can be used to capture such infrared emissions.
In practice, since the materials recorded are not perfect blackbodies, the relation has to
be adapted. In particular, materials usually absorb only partially the incident radiations
a(λ), reflect partially other radiations r(λ), transmit t(λ) radiations and emit ϵ(λ). The
thermodynamic equilibrium leads to these relations:

a(λ) = ϵ(λ),

ϵ(λ) + r(λ) + t(λ) = 1.
(2.12)

Furthermore, for opaque materials t(λ) = 0. It follows that opaque materials emit radi-
ations and reflect radiations from their environment. A typical thermal scene is depicted
in Figure 2.7, the IR camera records the radiations emitted and reflected by the specimen
that passes through the atmosphere, as well as the radiations emitted by the atmosphere
itself. At the end, the user has access to digital levels. As a result, in order to retrieve
the temperature fields a proper calibration procedure has to be used, and attention has
to be given to the sample’s emissivity and the test environment. This last point is usually
tackled by spraying a very thin coating of black paint which leads to an emissivity close
to 1.

IR Camera

Sample at Tsample

Environment at Tenv

Atmosphere at Tatm

Figure 2.7: Schematic of a thermal scene recorded by an IR camera.

2.3.2.4 Coupled measurements

Finally, the strategies used to have access to both temperature and kinematic fields dur-
ing a single experiment will be briefly introduced here. Three main techniques can be
mentioned:

One shot measurement This strategy consists in using a single camera to capture both
kinematic and temperature fields during an experiment. This allows to have both fields in
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the same configuration and with the same spatio-temporal sampling. This can be achieved
by using an infrared camera [Maynadier et al., 2012]. In this case, the method relies on
the heterogeneity of the sample’s emissivity using a special coating to perform DIC to
extract displacement fields. However, since the grey level recorded by the camera evolve
with the temperature, the optical flow conservation used for DIC is no longer verified. As a
result, calibrations procedure have to be performed for each specimen. However, the main
drawback of such a method lies in the fact that the spatial resolution of IR sensors is far
inferior to those of CCD or CMOS sensors (it can be ten times lower when compared to
the best existing CCD sensors). Another method is proposed in [Orteu et al., 2008], which
uses CCD cameras that are able to capture near-infrared range radiations. In their work,
the authors were able to measure kinematic fields as well as the apparent temperature
of the object. In order to retrieve quantitative temperature fields, the evaluation of the
emissivity of the specimen is required. The main drawback of the proposed method is that
only temperatures above 300 ◦C can be measured since the CCD camera captures only
near-infrared radiations. Hence, this technique cannot be applied for the study of metals
at room temperature.

Simultaneous recording on the same face This strategy consists in recording the
same face of the sample simultaneously using both visible and infrared cameras. When
using one CCD camera to retrieve in-plane kinematic fields, Bodelot and her collabora-
tors [Bodelot et al., 2011] proposed a setup that enables the recording of the specimen
surface while ensuring that the cameras optical axis are perpendicular to it. The setup
uses a dichroic mirror in front of the sample (see Fig. 2.8). This mirror transmits the
infrared radiations of the sample directly to the IR camera, while the visible radiations
are reflected into the CCD camera. However, in order to be able to use such methods, the
specimen preparation requires proper care. Indeed, temperature measurements require a
homogeneous coating with high emissivity, while kinematic measurements require hetero-
geneous and contrasted coating. One solution proposed by Bodelot et al. [Bodelot et al.,
2011] is to use a specific coating, made of different oxide powders, that appears uniform in
the IR range and heterogeneous in the visible spectrum due to intrinsic coating properties
and camera resolutions.

Simultaneous recording on the two faces This strategy may be considered as the
most intuitive. Since the temperature measurements require a homogeneous coating and
the kinematic measurements require a heterogeneous one, each camera records a different
face of the specimen. This setup is possible only if the temperature and the kinematic
fields are constant through the thickness. This reduces the application range of this setup
to thin specimens. Furthermore, in order to retrieve both information in the same con-
figuration, a spatial matching of the two different fields is needed. This can be done by
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Figure 2.8: Schematic of the experimental setup used to simultaneously measure displace-
ment and temperature fields. The figure is from [Bodelot et al., 2011].

either using a calibration procedure with a calibration target [Wang et al., 2016a] or by
using specific points in the sample’s geometry [Toussaint et al., 2012].

To summarize, by taking advantage of the recent advance in optics and in full-field
measurements methods, it is now possible to have access to both kinematic and temper-
ature fields in the same configuration during an experiment. In addition, complex stress
distribution can now be estimated. This strongly widen the mechanical test design space,
opening the way to the development of statically undetermined tests leading to heteroge-
neous and complex fields.

In the last 6 years, very recent developments of different strategies to estimate stress
resultants or fields during experiments without using constitutive laws have been devel-
oped [Pierron et al., 2014, Kirchdoerfer and Ortiz, 2016, Leygue et al., 2018, Liu, 2021,
Cameron and Tasan, 2021]. In particular, the strategy devised in [Leygue et al., 2018]
allows to take advantage of the high spatio-temporal resolutions of available cameras to
estimate stress fields during statically undetermined tests without the use of a constitutive
law. These innovative methodologies will be presented and explored more in depth in the
last part of this work.
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3.1 Introduction

The measurement of strains is fundamental when studying the mechanical behaviour of a
material. In conjunction with load force measurement, it allows constitutive equations to
be established, which is the mandatory brick for material and structure behaviour sim-
ulations and safety predictions. Since the 80s and the emergence of contactless full-field
measurement techniques, strain fields can nowadays be quantitatively captured within
more and more complex experimental and loading configurations. Nevertheless, they re-
main challenging when studying transient phenomena in opaque materials subjected to
heterogeneous loadings, for instance: wave and crack propagation, adiabatic shear band
instabilities, shock-induced damage, microstructure transformations and/or phase transi-
tion. Such phenomena require, to be captured and understood, both high temporal and
high spatial samplings. Recent developments of full-field measurement methods, combined
with the development of time and space-resolved ultra-high speed cameras, opened the
way to the study of such dynamic phenomena during high strain-rate tests.

Figure 3.1 is a chart that represents the majority of the high speed cameras available
on the market. The rectangle area denotes the image size of the camera and the circular
pie represents the shutter time as a fraction of the interframe time. High speed cameras
are in the top left corner of the chart. Due to limited memory transfer times between
the camera and a computer, a trade-off has to be made between the temporal and the
spatial sampling. This is highlighted by the fact that the areas decrease when the number
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of frames per second increases. Ultra-high speed cameras (located at the bottom side of
the chart) propose technologies that allow to bypass such limitations. To do so several
strategies are adopted. For example, some cameras (e.g. Kirana, Shimadzu) store the data
on their chip. This enables these cameras to have a constant spatial sampling for the range
of frames per second available. However, due to the in-situ storage, their spatial sampling
is quite low (400 × 250 pixels for the Shimadzu HPV-X) as depicted by the red and blue
square areas. Another strategy is to rely on multi-sensor technologies (gated intensified
cameras or cameras with a rotating mirror). These technologies are the only ones that
allow to record images at ultra-high speed with spatial samplings higher than 1 mega-
pixel. Nevertheless, ultra-high speed technologies remain limited regarding the number of
frames they can record (e.g. 78 for the Cordin-580, 128 for the Shimadzu HPV-X2, 180
for the Kirana).

Figure 3.1: High speed camera chart from [Reu and Nissen, 2014]. The rectangle area
denotes the image size while the circular pie represents the shutter time as a fraction of
the interframe time.

In that technological context, dynamic processes observation and characterization have
been developed over the past years. For instance, in 2007, Kajberg et al. [Kajberg and
Wikman, 2007] imaged impact tests with 15 frames of 166 × 192 pixels at 125,000 frames
per second (fps) with a high speed camera. Using a speckle pattern and Digital Image
Correlation (DIC), the authors were able to retrieve the displacement and strain fields
with random errors of 0.1 pixel and 15 mm/m, respectively. In 2015, Gao et al. [Gao et al.,
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2015] studied brittle fracture mechanisms considering a notched semi-circular specimen
made of concrete subjected to dynamic three-point bending. By taking 24 photographs of
1082 × 974 pixels at a speed of 180k fps and with the use of both DIC and elastic fracture
mechanics theory, the authors were able to extract the crack-tip position, its speed and
the dynamic fracture initiation toughness of the material for different loading rates. In
2018, Forquin et al. [Forquin and Lukić, 2018], studied the tensile response of concrete
when exposed to high strain-rates. Using the grid method, the authors extracted the dis-
placement and the strain fields from 102 images of 312 × 260 pixels taken at 1 million fps.
Furthermore, experimentally computing acceleration fields and using the Virtual Fields
Method (VFM), the mean stress and Young modulus were identified. Results were con-
sistent with the data obtained using numerical simulations and a PRM Damage model.
These works demonstrate the ability to measure mechanical values of interest during a
high strain-rate experiment. However, the presented works highlight the actual systematic
trade-off to find between the number of frames used to sample the event, the temporal
sampling and its spatial counterpart, when using a mono-sensor camera.

On the other hand, multi-sensor technologies provide two ways of recording at high and
ultra-high frame rates while maintaining an image resolution higher than 1 mega-pixel.
Gated Intensified CCD cameras split the beam into the number of captured frames (usu-
ally less than 16). The resulting low intensity beams have to be amplified. This technology
allows the user to record few frames at ultra-high speed with an image resolution above 1
mega-pixel. This technology has been successfully used for dynamic experiments [Tiwari
et al., 2007,Pierron et al., 2011a,Pierron et al., 2011b,Le Louëdec et al., 2015]. However,
these works highlight a high level of noise [Pierron et al., 2011b]. According to the authors,
this noise, spatially correlated, is attributed to a “leakage” of the photons from an ampli-
fier to the pixels surrounding it. It creates, in practice, significant blurring of the images,
compromising the quality of strain measurements. In 2019, Rubino et al. [Rubino et al.,
2019] delivered an interesting comparison of DIC fields obtained from gated-intensified
and mono-sensor technologies, emphasizing such a strong increase of measurement un-
certainty. Moreover, as only few frames can be recorded for practical consideration, a
trade-off has to be made anyway between the acquisition speed and the duration of the
recorded event. The second technology is, to the authors’ knowledge, the only one that
allows a significant number of frames to be recorded with an image resolution higher than
1 mega-pixel (see Fig 3.1). It relies on a rotating mirror and multiple sensors. Haboussa
et al. [Haboussa et al., 2011] studied in 2011 the effect of a hole or a pre-crack on the
propagation of a dynamic crack. The authors recorded the dynamic crack propagation
in a PMMA sample at 200k fps using a rotating mirror camera Cordin-550. They were
able to extract the crack tip position, which was in good agreement with the results of X-
FEM simulations. Using the rotating mirror camera Cordin-550, Jajam et al. [Jajam and
Tippur, 2011] studied in 2011 the dynamic crack propagation through a glass inclusion
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in an epoxy pre-notched sample. By recording the events at 300k fps, with 32 images of
1000 × 1000 pixels, Jajam et al. were able to extract the crack tip position, its speed and
the stress intensity factors (SIFs). They could observe the influence of the bond between
the inclusion and the matrix as well as the influence of the inclusion’s position on the
crack growth and the SIFs. Similarly, Lee et al. [Lee et al., 2012] studied the dynamic
fracture of unidirectional graphite/epoxy composite. A Cordin-550 was used to record the
events between 100k fps and 250k fps. Using DIC, the authors were able to extract the
SIFs values for different samples.

While a series of works has used such technology to observe in details dynamic
processes and even extract some fracture mechanics parameters, only a couple have
achieved quantitative measurements and performed a metrological analysis of such cam-
eras, where important measurement bias can arise due to the multiplicity of the optical
paths [Kirugulige et al., 2007, Pierron et al., 2011a, Moulart et al., 2011]. Moreover, in
these few valuable works, displacement and strain noise floors were evaluated using a
route that may be questionable. Indeed, the methodology, which will be referred to as
sensor-to-sensor approach, consists in using two sets of successive and independent image
sequences of static samples, and in evaluating kinematic errors by comparing the images
taken by the same sensor. Hence, displacement fields are computed for each image in a
different and distorted configuration due to the complex optical path. This has to be op-
posed to the classical Lagragian approach in mechanics where the whole kinematic history
has to be expressed in a single undistorted reference configuration. Such a procedure is a
way to bypass the issue of evaluating individual sensor distortions by assuming that they
are sensor-dependent but small and constant from one shot to another. In the present
work, it will be demonstrated that these assumptions are not necessarily fulfilled. Fur-
thermore, it will be shown that the use of these assumptions may lead to significant errors
on the displacement and strain fields. In that context, the various authors only obtained
lower bounds of displacement and strain random errors, in the order of 0.1 pixels and
1 mm/m, respectively. Kirugulige et al. [Kirugulige et al., 2007] went one step further by
identifying an affine distortion correction for each sensor, in order to mitigate the impact
of the distortions induced by the optical apparatus.

In this PhD work, we will focus on a camera using a rotating mirror as well as multiple
sensors. While a proper metrological assessment has yet to be done before using this kind
of camera to perform proper DIC, the technology has now achieved an unprecedented
combined spatio-temporal sampling and length of recording, compared to the other avail-
able technologies. This spatio-temporal sampling will allow, for instance, to fully take
advantage of statically undetermined tests at high strain-rates leading to heterogeneous
fields, in order to characterize materials. This also potentially opens the way to the char-
acterization of materials during transient and localization phenomena. In that context,
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the present chapter proposes a new, potentially more robust, calibration procedure ded-
icated to such a multi-sensor ultra-high-speed camera. The displacement field measured
is a composition between the effective displacement field and the distortions induced by
the camera. Thus, the dedicated calibration procedure for the ultra-high-speed camera
Cordin-580 that enables the retrieval of the effective displacement field is presented first.
Hence, particular attention is given to the distortions induced by the complex optical ap-
paratus and the chosen way to model them. The metrological issues raised by the camera
will also be discussed and the performances obtained analysed.

Notice that the majority of the information in this chapter can be found in [Vinel
et al., 2021].

3.2 Digital Image Correlation

The methodology relies on Digital Image Correlation (DIC) at two stages. First for the
estimation of the total displacement and also for the distortion model calibration. In this
section, the principle of DIC is presented, as well as some details about its implementation
in the open source software Ufreckles [Réthoré, 2018]. DIC is based on the optical flow
equation which stands for the conservation of brightness between one reference image f
and a deformed image g. This fundamental principle is

f(X) = g(X + u(X)), (3.1)

where u(X) is the sought displacement vector at the position X in the frame of the refer-
ence image. Note that this non-linear inverse problem is ill-posed, since two components
are sought for the displacement but only one equation can be written for the grey level
conservation. Images are discrete by nature, since they are acquired by a sensor composed
of a matrix of photosites where photons are collected. The grey level is thus known at
the integer pixel position Xp. In the following, F is a vector with as many rows as pix-
els considered in the region of interest (ROI), which collects the value of f at the pixel
location Xp. In this same spirit, Ḡ collects the value of the advected deformed image
g(Xp + u(Xp)). To reduce the number of unknowns in the problem, a finite-element de-
scription of the displacement fields is adopted. A mesh conforming to the ROI is thus
created. It might be a regular mesh of square elements [Besnard et al., 2006] or, as in
finite element simulation, a mesh of arbitrary shaped finite elements of different types.
Only linear elements are considered in the following; they can be either quadrangles or
triangles. A generic form for the displacement field is

u(X) =
∑

n∈Nn

Nn(X)Un. (3.2)
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Note that Un is the nodal displacement at the node n, which has two components. In
the same manner as for the image, N will collect the value of the finite-element shape
functions Nn at each pixel of the reference image. N is thus a matrix with a number of
rows equal to the number of pixels, and the number of columns is the number of nodes
Nn. If U is the vector collecting the nodal displacement vector, then the vector collecting
the displacement vector at all the pixels of the ROI is:

Up = NU. (3.3)

The resolution of the optical flow equation, even in its discrete format, is a non-linear
problem that will be solved following an iterative process. Given an initial vector of nodal
displacement U i, a solution increment dU is sought. After a linearisation of the deformed
image advected by this new solution, the problem is written in a matrix format for all the
pixels within the ROI:

F = Ḡ+ ∇XḠ. ∗ NdUX + ∇Y Ḡ. ∗ NdUY . (3.4)

In this equation, ∇XḠ,∇Y Ḡ are vectors collecting the value of the two components of
the advected image gradient, dUX , dUY vectors collecting the components of the vector
nodal displacement increment dU and .∗ stands for the element-wise multiplication of the
vector/matrix element along the line index. After some manipulations, one obtains the
following linear system of equations:

[ ∇XF. ∗ N ∇Y F. ∗ N ]
dUX

dUY

 = F − Ḡ. (3.5)

In this system of equations, the gradient of the advected image has been replaced by
the gradient of the reference image. This generally affects the convergence speed, but it
allows for this gradient to be computed once. This over-determined system is solved in
a least-squares sense by assembling the usual operator of the Sum of Squared Difference
(SSD) criterion in DIC:

M

dUX

dUY

 = b, (3.6)

with

M =
(∇XF. ∗ N )T ∇XF. ∗ N (∇XF. ∗ N )T ∇Y F. ∗ N

(∇Y F. ∗ N )T ∇XF. ∗ N (∇Y F. ∗ N )T ∇Y F. ∗ N

 (3.7)

and

b =
 (∇XF. ∗ N )T (F − Ḡ)

(∇Y F. ∗ N )T (F − Ḡ)

 . (3.8)
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Moreover, a penalty term is usually added to this least-square problem in order to filter-
out spatial noise and thus prevent any issue that may arise from a bad conditioning of M .
In the present work, a Tikhonov regularization is used [Poggio et al., 1988, Witz et al.,
2017b], so Eq. 3.6 becomes:

(M + ωR)
dUX

dUY

 = b− ωR

U i
X

U i
Y

 , (3.9)

with

R =
(∇XN )T ∇XN (∇XN )T ∇Y N

(∇Y N )T ∇XN (∇Y N )T ∇Y N

 , (3.10)

and where ω sets the cut-off wave length of the induced smearing of the displacement
variation. This regularization acts like a low-pass filter on the displacement fields.

In the following, this DIC formulation is used in order to obtain the total displacements
(ensuing from the effective mechanical fields and the distortions from the camera). As we
will see later on, no camera image is free of distortions so none can be considered as a
reference. In this case, the reference image f is a synthetic image of a tailored pattern.
This pattern is then used to engrave the surface of the sample (either the target for
calibration or the experimental sample). The images acquired by the camera are considered
as deformed images g.

3.3 Distortion modelling, calibration and correction

3.3.1 Distortion model

In this study, the distortions are considered continuous and bounded. It is then reasonable
to approximate them with polynomials. Therefore, the distortion field is written as:

ud(X,P ) =
∑

k

PkQk(X), (3.11)

where {Qk} is the family of polynomials used to approximate the distortion field and
{Pk} are the corresponding coefficients. In the present case, Zernike’s polynomials are
considered. These polynomials are generally used in ophthalmology [Thibos et al., 2002]
to describe the retina’s deformation and aberration. They are defined on the unit circle,
and thus rely on polar coordinates: θ ∈ [0; 2π] and ρ ∈ [0; 1]. The polynomials are defined
as follows [Lakshminarayanan and Fleck, 2011]:

Zi
j(ρ, θ) = Ri

j(ρ)cos(iθ),

Z−i
j (ρ, θ) = Ri

j(ρ)sin(iθ),
(3.12)
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where j is the order of the model, j ≥ i ≥ 0, and Ri
j are radial polynomials defined as:

Ri
j(ρ) =


0, if j-i is odd,

j−i
2∑

k=0

(−1)k(j − k)!
k!( i+j

2 − k)!( j−i
2 − k)!

ρj−2k, else.
(3.13)

Figure 3.2 displays the various polynomials involved in a 5th order model. Using this
basis gives a physical meaning to the modes: for instance Z−1

1 and Z1
1 are the stretch and

rotation components when Z−1
3 and Z1

3 describe a barrel effect.

Figure 3.2: Zernike modes up to the 5th order.

3.3.2 Calibration of the distortion model

To calibrate the distortion model, i.e. to obtain its parameters from a set of images, a
FE-DIC problem is solved on a reduced basis. This reduced basis is the finite-element
approximation of the Zernike polynomials of order j. Hence, the component in the X

direction of the sought displacement has the following form:

uX
d (X) =

∑
k

∑
n∈Nn

Nn(X)PX
k Qk(Xn), (3.14)

where Xn are the nodal positions. Using the notation introduced in Section 3.2, this
description of the displacement field is recast as:

UX
d = NQPX , (3.15)
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where, in the same spirit as in Section 3.2, Q collects the value of the selected Zernike
polynomials at the nodal positions and PX collects the amplitude of the polynomials for
the X component of the displacement. Using this reduced description of the displacement
fields, the DIC problem is rewritten as:

QT MQ

dPX

dPY

 = QT b, (3.16)

where Q is a block diagonal matrix filled with two Q matrices. The incremental correction
of the Zernike amplitudes for the two components of the distortion field are thus obtained
directly from the images of a dedicated target obtained by the camera (used as deformed
images) and a synthetic image of the target (used as a reference image).

3.3.3 Computation of the effective displacements

Once the distortion model is calibrated, the effective displacements ur have to be re-
trieved from the total displacements uT obtained by DIC. However, its computation is
not straightforward since it results, in the general case, from the composition of the dis-
tortion and the sample deformation as presented in Fig. 3.3. This leads to the following
non-linear equation:

uT (X) = ur(X) + udi (X + ur(X)) , (3.17)

where udi is the distortion field during the recording. Contrary to the DIC problem pre-
sented above, this non-linear inverse problem is well-posed. There is thus no need to solve
it in average in a least-squares sense. Hence, the resolution is performed point-wise. From
an initial estimate of ur = uT (X) −udi (X), an incremental correction dU r to the current
nodal displacement U r is sought. Equation (3.17) is linearized assuming that the correc-
tion is small and the following linear system is solved at each node of the finite-element
mesh used for estimating ur:

∇ udi (Xn + U r) dU r = UT − U r − udi (Xn + U r) . (3.18)

After solving this linear system at each node, the effective displacement U r is updated
using the estimated correction dU r. Note that the distortion field udi is defined by poly-
nomials whose gradient can be estimated analytically. The convergence of this non-linear
iterative process is thus extremely fast, robust and accurate. Convergence to a numerically
zero correction is usually obtained after 2 to 3 iterations. Notice that the initial guess sug-
gested above corresponds to an additive composition of the distortions and the effective
sample transformation, which in practice is closely related to the solution obtained when
using a sensor-to-sensor approach. A correction to this first (rough) estimate is accessed
through the proposed procedure.
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Fig. 3.3 summarizes the various transformations occurring when recording a static
sample (in blue) or a moving sample (in red). X, Xd, x and xd denote, respectively, the
reference configuration, the reference configuration but distorted, the deformed config-
uration and the deformed configuration but distorted. In addition, ud1 and ud2 denote,
respectively, the distortion fields when recording a static (moving) sample. Indeed, we will
see in Section 3.4.3 that a non-negligible level of variability can be observed on camera
distortions from one shot to another, which must be taken into account when attempting
to compare series of images. Finally, uss denotes the displacements obtained when using
a sensor-to-sensor approach (e.g. [Moulart et al., 2011]). From this figure, the following
relation can be deduced:

uss(Xd) = ur(X) + ud2(X + ur(X)) − ud1(X). (3.19)

It follows that the first order error, ϵ, when using a sensor-to-sensor strategy can be
computed as follows:

ϵ ≈ −∇ ud2(X) · ur(X) + ud1(X) − ud2(X). (3.20)

In this relation, three terms appear: the gradient of the experiment’s distortions, the
effective displacement and the difference between the calibration’s distortions, and those of
the experiment. Hence, for this error to be negligible, three conditions have to be met: the
displacements must be small enough during the experiment, the distortions must be small
and constant enough from one shot to another. It will be shown that these conditions are
not fulfilled when using a Cordin-580. An estimation of the error introduced when using a
sensor-to-sensor (or additive) approach in comparison with a true composition approach,
in terms of resulting displacement and strain fields, will be discussed in Sections 3.4.5 and
5.2.

3.3.4 Target design and manufacturing artefacts

Usually, DIC is performed between two images taken by the same camera. In the present
case, as distortions are induced by the camera, a true reference is needed. In order to have
an undistorted image of reference, a highly spatially resolved (e.g. 50M pix) image of a
black and white sprayed paint speckle can be taken or a synthetic one can be created. Both
options will be used in this work, but only a synthetic reference image will be used within
this metrological chapter. Several kinds of targets are proposed in the literature for optical
calibration. Usually, dot patterns [Kirugulige et al., 2007] or grids [Pierron et al., 2011a]
are used. However, in this study, a speckle pattern will be used. It will provide information
all over the sensor, for all distortion spatial frequencies, and will fall into a single DIC
framework. Several articles have been published tackling the issue of generating optimized
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Figure 3.3: Schematic diagram of the transformations for a static sample (in blue) and
for a moving sample (in red). This Figure emphasizes the fact that the distortions can
differ from one shot to another. ur is the effective displacement, while uss denotes the
displacement obtained using a sensor-to-sensor approach.

speckle patterns for DIC [Kirkpatrick et al., 2007,Song et al., 2016]. This is usually done
by working in Fourier’s space then applying an inverse transformation [Bossuyt, 2013].
In the present methodology, an image twice the size of the sensor’s size is generated, in
order to avoid any boundary effects. A ring is constructed in Fourier’s space, in which
the amplitude and the phase are randomly attributed following a Gaussian law between
−1 and 1. The radius of the ring defines the size of the pattern, the thickness defines
the pattern’s variation and the random values define the pattern intensity’s variation.
The speckle pattern is obtained using an Inverse Fast Fourier Transform (IFFT). It is
then cropped to the sensor’s size (Fig. 3.4a). The obtained pattern is then dynamically
renormalized in 16 bits so that the whole range of grey level is used (Fig. 3.4b).

(a) Portion of the speckle pattern generated. (b) Histogram of the speckle pattern.

Figure 3.4: Generation of a speckle pattern.

Several techniques have been tried to transfer this synthetic speckle pattern to a phys-
ical target: using a standard printer, using a professional printer on a dibond plate, and
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using a laser-etching machine. All of these induced some specific artefacts. Here, only the
artefacts induced by the laser-etching machine will be discussed, since this is the tech-
nology used in the rest of the metrological analysis of the Cordin-580. The laser-etching
machine used for this work produces a beam with a size of approximately 200 µm. By con-
trolling the intensity of the beam and its speed, the speckle can be printed on a PMMA
sample with an approximate etching depth of 50 µm. Due to the beam size of this machine,
the manufacturing of patterns smaller than 600 µm to 800 µm cannot be achieved. As a
result, for small specimen, the reference image will be created using a highly spatially
resolved image of a black and white sprayed paint speckle (see Chapter 7). The effective
displacement uraw obtained (after deconvolution, see Eq. 3.18) when performing DIC be-
tween the synthetic speckle pattern and the first frame taken by the camera is depicted in
Fig. 3.5a. Vertical and horizontal (not shown) bands with a magnitude of approximately
1 pixel are detected. To study the evolution of these bands over time, a pixel line orthog-
onal to the bands (depicted by the black dashes in Fig. 3.5a) is plotted for all the frames
(Fig. 3.5b). This highlights the fact that these bands are stationary. Hence, it is thought
that these bands are induced by the printing method (for instance by the screws con-
trolling the displacement of the beam-head). Considering the very low amplitude of such
systematic bias induced by the printing technology, and in order to cancel-out contribu-
tion, in the rest of this work the effective displacements will systematically be corrected,
in an additive manner, as follows:

ui
corr = ui

raw − u1
raw, (3.21)

where i is the frame number. Notice that this procedure implies that the first frame taken,
during the experiment, is an image of the sample at rest. In this case, it only encloses
such a stationary printing bias.

3.3.5 Error definition

The indicator classically used in DIC to quantify the quality of the measurement is the
mean value and the standard deviation of displacement fields computed using a series of
images of a static sample. The first one refers to the systematic error (bias), while the
second assesses the random error; i.e. the uncertainty. However, since the camera used in
this work relies on multiple sensors, systematic error can be different from one frame to
another; thus, the global standard deviation, over a series of images, may include both
systematic and random errors. To avoid any confusion, systematic error is simply obtained
from the mean error over field and sensors, while the global camera random error indicator
is obtained from the square root of the average of the sensor variances (V̄ s see Eq. 3.22),
noted as σcam. In comparison, single-sensor random error (see, e.g., in Section 3.4.2) is
simply noted as σ (s).
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(b) Evolution of the artefacts along all of the
sensors,

Figure 3.5: Example of the artefacts induced by the printing and their evolution on the
sensors.

V s = 1
Nn

∑
n

(U s
n − U s)2,

σ(s) = (V s) 1
2 ,

σcam = (V s) 1
2 ,

(3.22)

where U s denotes the displacement field obtained for the sensor s.
Notice that such definition of the systematic error and the random error is totally fair

as long as we deal with displacement, strain and strain-rates, which is the objective of this
chapter. Nevertheless, it does not clearly highlight the error arising when differentiating
displacement from one frame to another; i.e. dealing with speed and acceleration. Indeed,
in that case, an additional indicator capturing the systematic error jump from one frame
to another would need to be defined. It may be computed, for instance, as the standard
deviation over a series of images of the mean displacement value per sensor.

3.4 Application to the Cordin-580

3.4.1 Presentation of the Cordin-580

As introduced above, the camera used in this work is a Cordin-580. This camera is a
rotating mirror camera that is able to capture 78 images with a resolution of 2472 × 3296
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pixels (i.e., 8 mega-pixels), up to a speed of 4 millions fps. For speeds below 500k fps, an
electric turbine is used for mirror rotation. Between 500 kfps and 700k fps, a dedicated
gas turbine is fed with compressed air. Finally, above 700 kfps, both the gas turbine
and the camera must be fed with helium to increase the rotation speed and mitigate
friction. Within the framework of this PhD thesis only the electric drive will be used, so
we will focus on speeds lower than 500 kfps. Nevertheless, the proposed methodology is
not turbine dependent.

The optical apparatus used in the camera is depicted in Fig. 3.6a. The light-beam,
depicted by the black arrows, enters the camera through the objective. It then encounters
a cube beam-splitter, that will either transmit the light or reflect it with an angle of 45◦.
The light is then reflected on mirrors until it reaches a lens. After this lens, another mirror
reflects the light beam onto a 3-faced rotating mirror. Finally, the light goes through a lens,
used to mitigate the bias induced by the mirror rotation over individual sensor exposure
time, and eventually reaches the sensor. Additionally, some specificities of the camera’s
geometry are worth mentioning. First, in order to let the light beams pass, Sensors 40 and
80 do not exist, thus black images are given for these theoretical sensors. Furthermore,
due to their positioning, Sensors 21 to 60 are always the ones hit by the beam reflected
by the beam-splitter. For the same geometrical reasons, Sensors 1, 39, 41 and 79 are
illuminated when the rotating mirror is nearly perpendicular to the light beam. On the
contrary, Sensors 20, 21, 60 and 61 are illuminated when the rotating mirror is hit by the
beam with a shallow angle. This is illustrated in Fig. 3.6b.

Since each optical element (mirror, lens) may have an influence on the final distortion
field, it is in practice impossible to determine the contribution of each one. Therefore, a
phenomenological model has been chosen (see Section 3.3.1). However, it is possible to
identify some physical dependencies of the distortion field. Indeed, given that the beam
is split, the distortion field may depend on whether the light has been transmitted or
reflected by the beam-splitter. In addition, since the rotating mirror has three faces with
their own defects, the distortion field may also depend on which face reflected the light.
Furthermore, since there are 78 independent lens – mirror – sensor combinations, the field
may differ from one sensor to another. At last, as the mirror can rotate at a speed up
to 16,000 rotations per second (RPS), inertial forces may deform the mirror making the
distortion field speed dependent.

The objective of the following sections is to identify the minimal bricks and parameters
that we need in order to statistically capture camera-induced intrinsic distortions.
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(a) Schematic diagram of the Cordin-580 and its components: M, mirrors; F, lens; CCD, CCD
sensors.

(b) Schematic diagram of the sensor layout.

Figure 3.6: Schematic diagram of the Cordin-580.

3.4.2 Single shot model

Capturing high-order distortions requires a high number of polynomials, which thus de-
creases the robustness of the identification, especially with respect to noise. To enhance
the robustness while maintaining an accurate identification, one can reduce the order
of the basis used. In order to find the optimal order of Zernike polynomials, several or-
ders (from 2 to 7) are used to perform a calibration on a particular frame. Indeed, since
each sensor has its own focusing system, a relatively significant variation of the focus can
be observed from one sensor to another — thus the sharpest image, using the criterion
from [De and Masilamani, 2013], is used to identify the model parameters. Once the order
is chosen, a calibration is performed on all the frames to ascertain its relevance and see
how it behaves as a function of image sharpness.

Frame 12 is first used to perform different calibrations using a different order of the
Zernike basis (from 2 to 7). Fig. 3.7 depicts σ(12) obtained versus the basis’ order for both
directionsX and Y . As expected, the higher the order, the lower the projection error. From
this figure, a 6th order basis is chosen since no significant improvement is achieved with
higher orders. This 6th order basis leads to 28 sought parameters per direction. To evaluate
this choice and underline relative image sharpness influence, a calibration is performed
on a whole image set taken at 480 kfps. Fig. 3.8 depicts the random error obtained for
each frame in both directions. Notice that the higher the sharpness, the lower the errors.
The influence of the sharpness on the projection error is clearly visible — minimizing the
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Figure 3.7: σ(12) versus the polynomial order.

issue of focus variation from one sensor to another is thus a necessity however it has not
been tackled in this PhD thesis. In the end, a calibration with a 6th order basis leads, on
average, to a displacement random error, noted as σcam, of 0.084 and 0.078 pixels in the
X and Y directions, respectively. It is interesting to notice that, in practice, the observed
variability of the displacement random error from one frame to another is not random
over time. This point can be observed in Fig. 3.9, where random errors are displayed, not
as a function of sharpness, but rather as a function of sensor number; i.e. in the order
they appear within the recording time sequence. The relative sharpness variability is still
underlined through the use of a linear colour scale. The two dashed lines delineate the
sensors hit by the reflected beam from those illuminated by the transmitted beam. Let us
recall that Sensors 40 and 80 are non-existent and are replaced by dark images. Hence,
their random errors are equal to zero. In Fig. 3.9, two particular signals are obtained: for
the X direction (see Fig. 3.9a) random errors have a square-like signal, whereas for the
other direction (see Fig. 3.9b) they have a triangular-like signal. It has been verified that
these signals are obtained for all the speeds tested. In the X direction, the random error
is higher for sensors in the centre of the timeline, meaning when light beams are reflected
by the beam-splitter (Fig. 3.6a), from Sensor 21 to 60. Hence, the reflection by the beam-
splitter seems to increase the noise obtained on the concerned sensors. On the other side,
the triangular signal obtained on Y direction seems to be related to the angle between
the mirror face and the incident light beam. Indeed, the random errors are minimal when
the light beam hits the mirror face perpendicularly; i.e., close to Sensors 1, 39, 41 and 79,
and increase when the angle of reflection becomes more and more shallow (up to Sensor
20 and 60). Notice that, in practice, sharpness issues (see Fig. 3.8) and incident beam
angle issues (see Fig. 3.9b) are closely related. Indeed, shallow angles increase the image

44



3.4. Application to the Cordin-580

blurring. Therefore, such a random error pattern over time is somewhat inherent to the
technology.
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Figure 3.8: Random errors obtained for all frames of a shot taken at 480 kfps, with a full
6th order basis.

Finally, Fig. 3.10 depicts distortion fields for both directions identified on a particular
frame. It highlights the complexity of the distortion fields. Furthermore, let us note that
the amplitude of the distortion identified is about 40 pixels, which is non-negligible com-
pared to the effective displacement that we wish to capture during real experiments. This
further justifies the need to properly model these distortions.

It is observed, in this section, that a 6th order Zernike polynomial basis and sensor-
dependent optimized parameters can capture the complex distortion pattern induced by
the camera apparatus for a single shot reasonably well. While the random error is mainly
kept below 10−1 pixels, it clearly remains sensor-dependent at least for two connected rea-
sons: relative sharpness variation and relative sensor position within the rotation sequence.
Such variabilities can potentially be slightly mitigated by finely tuning the individual focus
ring but cannot be eliminated.

3.4.3 Camera model

The purpose of the camera model is to deal with potential parameter variation from one
shot to another. As introduced earlier, many parts of the apparatus can affect the ultimate
distortion perceived by each sensor. Some bias can be systematic, some probabilistic like
the impact of the mirror face, and some random like vibrations. The final objective is
to have a unique model that is statistically representative of the distortions induced
by the camera and calibrated once for all. To do so, the parameters’ dependencies are
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Figure 3.9: Example of the random errors obtained with a shot at 480 kfps, in both
directions.

(a) Distortion field in the X direction (pix), (b) Distortion field in the Y direction (pix),

Figure 3.10: Example of distortion field obtained on a particular frame of a shot at
480 kfps, using a 90 mm Tamron objective lens at a working distance of approximatly
50 cm.

investigated over a large set of recording sequences. To study the possible impact of
the rotation speed, shots have been taken for different speeds. In order to statistically
have each sensor illuminated by each face of the mirror, several shots have been taken
for each speed. Then, using the optimal order polynomial basis found previously, the
distortion parameters can be identified for each frame and for each recording shot. Finally,
a global camera model is constructed by averaging the parameters associated with the
same sensor, the same mirror face permutation (1 over 3) and rotation speed. That is
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to say that, for a given speed and a given sensor, the model will have three possible
values for each parameter, depending on the mirror face that illuminated the sensor. In
the end, the camera distortion model is parameterized by 28 (coefficients of 6th order
polynomial) × 2 (directions) × 3 (faces) × 78 (sensors) parameters per acquisition speed;
i.e., a total of 13,104 parameters per acquisition speed.

In order to carry out the construction of the model, the mirror face illuminating
each sensor has to be determined. Since the mirror is rotating, and since the sensors’
layout is known, only the mirror face illuminating one of the sensors has actually to be
determined. Using optics considerations and the fact that the mirror is not a perfect
equilateral triangle, the mirror face can be determined using the parameter corresponding
to the rigid-body motion in the Y direction. Indeed, when plotting the value of this
parameter for all the shots, three distinctive clusters can easily be identified by means
of the k-means clustering algorithm (see Fig. 3.11, each cluster is depicted by a colour).
In addition, several typical parameter variabilities can also be underlined. It is observed,
in Fig. 3.11, that depending on the mirror position when triggering (1 possibility among
three permutations) a rigid-body motion variation of up to 12 pixels can be obtained from
one shot to another. It particularly calls into question the classical methodology, which
consists in using a previous recording sequence as a reference to cancel-out distortion bias.
Furthermore, parameter variation from one rotation speed to another can also be observed
on the plot. It induces about 5 pixels of variation over the studied range. Finally, let us
note that, at a given rotation speed, there is a spread of about 2 pixels even between
the shots from the same cluster. This trend illustrates the variability of the parameters,
which is attributed to the vibrations induced by the system. Notice that 2 pixels means
a rigid-body motion of 11 µm (with the current experimental settings), which is minor
when considering an electric drive rotating at 2,000 RPS. It is obvious at that stage that
averaging parameters over a large series of calibration shots will increase the robustness
of the model but it is also clear that the residual ±1 pixel variation within individual
clusters cannot be eliminated and will lead to a slight increase in the measurement errors
obtained, in the previous section, on a single shot.

Once the camera model has been built, it can be re-applied to the calibration shots.
The random errors can then be computed and compared to the one obtained previously,
where a model was specifically identified for every single shot. In Tab. 3.1 the random
errors obtained using the single shot model are compared to those obtained from the
camera model, for the shots taken at 480 kfps. The systematic error increases by an order
of magnitude but remains reasonably low; see for example the systematic Y displacement
error, which is 0.15 pixels. Nevertheless, random errors remain in the same order; i.e. kept
below 0.1 pixels. Note that the levels of strain error are similar to those obtained using a
single shot model with a negligible systematic error lower than 40 µm/m combined with
a random error lower than 2 mm/m.
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Figure 3.11: Amplitude of Y0
0 versus the mirror’s rotating speed, for each shot taken, for

one frame.

Let us note that the pairing between the sensors and the mirror faces illuminating
them is a priori unknown during an acquisition. Hence, it is necessary to apply the
three possible permutations of the global camera model to the experimental data. For
the same reasons as explained earlier, the use of the wrong permutation will introduce
non-physical displacements in the Y direction, for example a displacement jump of 12
pixels (see Fig. 3.11), from Sensor 20 to 21 and from Sensor 60 to 61. As a consequence,
in what follows the correct permutation; i.e. appropriate model parameters, are identified
manually using, as a figure of merit, the time variation of the displacement field obtained
in the Y direction. However, recent developments from the constructor now allow to
automatically know the absolute permutation index, thus allowing to skip the metrological
step described in this last paragraph.

Shot-dependent model Camera model
Mean σcam Mean σcam

ux
corr 0.003 pix 0.08 pix -0.020 pix 0.09 pix
uy

corr 0.026 pix 0.08 pix 0.152 pix 0.09 pix
εxx −13.0 µε 1.6 mε −11.3 µε 1.6 mε
εxy 36.3 µε 2.0 mε 32.9 µε 2.0 mε
εyy −27.2 µε 1.4 mε −29.6 µε 1.4 mε

Table 3.1: Errors obtained for all of the shots taken at 480 kfps, using a 6th order Zernike
basis and both single-shot and global camera model.
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3.4.4 Extrinsic parameters

As explained earlier, the final objective is to have a unique camera model calibrated once
for all. However, since the experimental conditions between the calibration procedure and
a true experiment may differ, the evaluation of extrinsic parameters has to be addressed.

Since the positioning of the sample, during calibration and/or real experiment, rela-
tive to the camera sensor is done manually, measurement fields may differ by an affine
transformation. Hence, a correction to the camera model’s parameters has to be found
and applied, in order to account for the change of these extrinsic parameters. The diffi-
culty here lies in the fact that the sought affine transformation is composed with all the
distortions produced along each individual optical path. Therefore, this does not neces-
sarily produce the same effect on each sensor, especially from one side to another of the
beam-splitter. Since our camera model is both phenomenological and statistical, a proper
deconvolution is complex. In that context, we propose a sensor-dependent evaluation of
the apparent change of extrinsic parameters through the acquisition of a set of images
prior to the experiment. These images must be taken in the same configuration as for the
experiment and the sample has to be static.

Once the pairing is identified, the camera model can be applied to obtain displace-
ments from the images of this static shot. An apparent change of extrinsic parameters
can then be evaluated from these fields. In practice, for each sensor, the parameters are
obtained from a simple least-squares projection of these displacement fields onto a 6th

order Zernike polynomial basis. The camera model parameters are then updated in an
additive manner using the parameters obtained from this projection. Let us remark that
this correction methodology relies on the assumption that the displacements, captured
on a static sequence, are solely induced by the change of physically extrinsic parameters
(the respective position between the camera and the sample) and that the change actually
induced on the images is more complex (to be captured with the full 6th order Zernike
polynomial basis).

3.4.5 Validation of the model: Imposed translation

In order to validate the model constructed previously, controlled translations along the X
direction have been imposed to the sample using positioning stages (see Fig. 3.12). The
controlled translations have been imposed along the X axis from −2.5 mm to 2.5 mm with
a step of 0.5 mm. Since the positioning stages have a 10 µm graduation, the systematic
error on the imposed displacement is estimated to be 5 µm. Furthermore, the alignment
between the focal plane and the sample has been ensured using a laser setup. Using this
setup, the misalignment error is estimated to be about 0.1◦. The images were acquired
with the camera at 100 kfps. In addition, a set of images were taken with no displacement
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imposed. These images are used in order to correct the change of the extrinsic parameters,
as explained previously. Once the correct permutation of the model is identified, the
displacement and strain fields can be recovered, as well as the resulting errors (Tab. 3.2).
Given that only translations are imposed on the sample, the strains should be zero. The
strains obtained remain of the same order of magnitude of those obtained previously (see
Section 3.4.3). Focusing on displacement and applying the appropriate pixel to millimetre
ratio, here 33.7 µm/pixel, imposed displacements are recovered on average within 8.3 µm
(or 0.25 pixels), with a random error of 4.8 µm (or about 0.11 pixels) in the X direction,
and −15.6 µm (or -0.47 pixels), with a random error of 4.0 µm (or about 0.12 pixels) in
the Y direction. While the random error is close to that obtained previously on stationary
images, the systematic error increased slightly. While a significant part of the errors (at
least along the X direction) can be explained by the uncertainty of the stage positioning
(5 µm), the origin of the systematic error in the Y direction remains unclear. A tiny play
within the 3-angle rotation stage composing the experimental setup (see Fig. 3.12) may
explain part of the result, but no obvious reason has been found.

Figure 3.12: Setup for the imposed translation experiment.

While errors obtained following the proposed methodology are apparently close to
those reported in the literature [Moulart et al., 2011] it is interesting to look at the
hidden error implicitly induced in previous works when assuming an additive composition
of the distortion and the effective displacement. In this work, the composition equation
is solved to recover the effective displacement from the knowledge of the distortion and
the total displacement (Eq. 3.17). Using Fig. 3.3 and Eq. 3.20, the difference between the
two methodologies can be quantitatively assessed. As an illustration, Fig. 3.13 depicts
an example of displacement fields and the resulting strain fields obtained using either
a composition scheme or an additive scheme, noted respectively as ur and uss, for an
imposed displacement of 2500 µm. First, let us remark that the use of an additive scheme
leads to heterogeneous displacement fields, with amplitude of about 5 pixels. Furthermore,
since the displacement fields obtained using an additive scheme are heterogeneous over the
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sensor, they will lead to errors in the strain fields. For example, this lead to errors of about
10 mm/m (or 1 %) on the axial strain, which is 5 times higher than the random error
discussed in the previous section. Even more critical, such strain field errors committed
when assuming an additive composition are not systematic errors, but are heterogeneous
over the sensors, which could strongly affect the analysis of the data. This demonstrates
the relevance of the composition assumption in order to obtain the effective displacement
and correct strain fields. The importance of this step will be further demonstrated in
Section 5.2, where the transformation applied to the sample is no longer homogeneous.

It is important to underline here that the impact of the two additive steps introduced
within our methodology to account for extrinsic parameters and printing bias has not
been evaluated. Nevertheless, both are associated with tiny displacement fields compared
to the camera distortion itself (see Fig. 3.10); thus, it will introduce minor errors.

In the end, a global model has been constructed that is able to model the distortions
for a given speed, a given sensor and for a given mirror permutation. By recording a
reference sequence prior to the test in its configuration, the change of extrinsic parameters
can be accounted for with a correction. The measurement random error obtained with
this methodology, for imposed translations, is about 0.2 pixels for the displacement, and
2.0 mm/m for the strain. The global procedure and the errors obtained at each step
are summarized in Fig. 3.14. These values are rather high compared to standards in
DIC using mono-sensor technologies: 10−3 pixels for the displacement and 0.1 mm/m for
the strain when using a Shimadzu HPV-X [Fletcher et al., 2019]. However, these results
are promising, since the imaging technology used allows images with unparalleled image
resolution (8 mega-pixels) to be recorded at ultra-high speeds.

52



3.4. Application to the Cordin-580

(a
)

u
r

in
th

e
X

di
re

ct
io

n
(p

ix
),

(b
)

u
r

in
th

e
Y

di
re

ct
io

n
(p

ix
),

(c
)

ε x
x

de
riv

ed
fro

m
u

r
(m

m
/m

),

(d
)

u
ss

in
th

e
X

di
re

ct
io

n
(p

ix
),

(e
)

u
ss

in
th

e
Y

di
re

ct
io

n
(p

ix
),

(f
)

ε x
x

de
riv

ed
fro

m
u

ss
(m

m
/
m

),

Fi
gu

re
3.

13
:C

om
pa

ris
on

of
th

e
di

sp
la

ce
m

en
t

fie
ld

s
ob

ta
in

ed
us

in
g

a
co

m
po

sit
io

na
la

pp
ro

ac
h

(u
r
)

or
an

ad
di

tiv
e

ap
pr

oa
ch

(u
ss

)
an

d
th

ei
r

co
rr

es
po

nd
in

g
st

ra
in

fie
ld

s
ob

ta
in

ed
fo

r
an

im
po

se
d

di
sp

la
ce

m
en

t
of

25
00

µm
(7

4.
18

pi
xe

ls)
fo

r
a

gi
ve

n
se

ns
or

.

53



Part I, Chapter 3 – Kinematic fields measurement: methodology and metrology

Figure 3.14: Schematic representation of the calibration and experimental procedures used
to obtain quantitative kinematic data using a Cordin-580.
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3.5 Outstanding issues and scope of the method

Although the feasibility of a very high spatial and temporal sampling DIC measurement
based on the multi-sensor and rotating mirror technology has clearly been evidenced
within this chapter, it is important to understand the limitations and outstanding issues
of the proposed methodology. A few points need to be raised.

Even if this work attempts to propose a general camera model that could be built
once for all in the laboratory and then probably occasionally checked and adjusted to
take into account any camera behaviour variation over time, the present work has focused
on a specific lens and field of view. However, the lens is part of the distortion chain
and no attempt to deconvolve its contribution from the camera contribution has been
undertaken. A series of measurements for different magnifications has been performed
(not presented here) and results evidence a variation of the camera model parameters.
Nevertheless, integrating a lens parametrization would probably require a deviation from
a simple phenomenological and polynomial camera model to a physical one introducing
ray tracing, which is beyond the scope of the present work. In that context, the present
methodology requires, in practice, the realization of the calibration under experimental
conditions (speed, field of view, lens), thus doing it every time the set-up configuration
changes.

In line with the previous point, the impact of the mirror rotation speed has been
evidenced, but no obvious parametrization has emerged from the data. The progressive
deformation of the mirror when increasing speed, due to centrifugal effects, would have
logically mainly implied an increasing vertical compression of the image, but the data
shows much more complex variations with a clear trend transition beyond 300 kfps. This
transition seems to be related to PID parameters. Indeed, PID parameters affect the
speed ramp which in turn affect distortions, but in a manner which still remain not fully
understood. In that context, the present camera model does not allow for extrapolating
parameters over acquisition speeds. Only calibrated speeds, in our case 100, 200, 300,
400 and 480 kfps, can be used for material testing. This point is critical, since the short
term main goal is to perform tests beyond a million frames per second. However, at that
speed, the helium drive is required and only 5 to 6 shots can be run with a 50 L bottle.
This implies that at least 2 bottles have to be used to run a test, one and a half for
calibration, plus one or two tests. This introduces significant additional cost, but more
importantly, requires long camera run times at very high speed which has strong impact
on the mirror-bearing lifetime. A way of mitigating that would be to avoid changing the
setup configuration. In that case, this material and supply over-cost would be reduced to
a single calibration campaign.

All the results presented in this chapter are based on a single, non-optimized, speckle
pattern. The characteristic period of the pattern, 32 pixels, has been chosen to account for
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the weak sharpness of the images, which are blurred over about 20 pixels. Such blurring is
partly due to the camera itself, where the light reaches each sensor with a different reflected
angle up to very shallow ones. Secondly, each sensor has its own focusing system which
is tuned manually in factory. If a significant sharpness improvement could be achieved,
a finer DIC mesh could be used and better performances could be reached. Thus, it is
important to notice that the results provided here are speckle-dependent.

3.6 Conclusion

In this chapter, a dedicated calibration methodology for a multi-sensor rotating mirror
ultra-high-speed camera is presented. The accuracy of the method has been assessed using
images from a static sample, then using images after an imposed translation. The main
conclusions are as follows:
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3.6. Conclusion

• Since complex and non-negligible distortions are induced by the optical apparatus
of the multi-sensor rotating mirror camera, they need to be modelled and corrected.
These distortions are modelled with Zernike polynomials and identified using DIC
and a synthetic speckle pattern.

• The error usually made when using a sensor-to-sensor approach is given, in a first
order approximation, by the following equation: ϵ ≈ −∇ ud2(X) · ur(X) + ud1(X) −
ud2(X). Hence, three requirements are needed to use this strategy: the distortions
have to be constant from one shot to another and small; the effective displacements
also have to be small. When using a Cordin-580, the first two conditions are not
met. Furthermore, during an actual experiment, the last condition is not necessarily
fulfilled either. It follows that the use of such an approach would lead to a dis-
placement error proportional to the displacement of the sample and the distortion
gradient. For example, for a translation of 2.5 mm (74.2 pixels) an error of nearly
0.2 mm (6 pixels) is obtained on the displacement, which induces strain errors of
about 15 mm/m. This highlights the great interest of using the proposed methodol-
ogy.

• The proposed methodology achieved statistical accuracy, over shots, of 0.15 ± 0.09
pixels for the displacements and 40 µm/m ± 2 mm/m for the strains. Applying
this dedicated calibration, on a moving sample, using imposed micrometer displace-
ments, an ultimate accuracy of about 0.5 ± 0.2 pixels and 100 µm/m ± 2 mm/m
for the strains was eventually achieved. These errors include algorithmic, camera
variability and experimental bias.

• These kinematic fields obtained have a better spatial sampling than what can tradi-
tionally be obtained with classically used high-speed cameras, at the price of higher
strain random errors.
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4.1 Introduction

Constitutive models are mandatory in order to perform material and structure behaviour
simulations. It stands for reason that the choice of the material parameters is crucial in
these simulations, since it can drastically affect their results. It is thus essential to be
able to accurately identify the material parameters experimentally, and thus one needs
to be able to accurately capture both kinematic and thermal fields. Since the 80s and
the developments in electronics, infrared (IR) cameras now allow to have access to full-
field temperature measurements. Furthermore, methodologies are now well-established to
retrieve heat sources during quasi-static experiments, from macro to micro scale [Chryso-
choos et al., 2010,Seghir et al., 2013,Wang et al., 2016b]. For instance, in 2016 Wang and
his collaborators [Wang et al., 2016b] performed tensile tests on aluminium oligocrystals
at an axial strain rate of 1.20 × 10−2 s−1. Through the use of an infrared camera and
visible-light one, they were able to study the plastic deformation at grain scale.

Up until recently, the thermomechanical behaviour of a material was often character-
ized by realizing several experiments with different sample temperatures. However, these
approaches are not sufficient to accurately model what happens to the material when
couplings play an important role, as in adiabatic shear bands or during high strain-rate
and heterogeneous experiments for example. Hence the need to be able to couple both
thermal and kinematic fields. In 2014, Martinez et al. [Samaca Martinez et al., 2015] re-
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alized coupled measurement to observe the crack tip of filled rubber during quasi-static
cyclic loadings. By recording the events at 50 fps with both an infrared and a visible-light
camera, the authors were able to observe the events taking place at the crack tip of filled
rubber, during cyclic loadings. They demonstrated that the crack tip is a zone that al-
ways produces heat during these tests, and that the heat production decreases with the
number of cycles. Let us note that in this example, the kinematic data is mainly used in
order to transfer the Eulerian temperature field into the lagrangian configuration. Very
recently, Rose and Menzel [Rose and Menzel, 2021] went one step further and fully coupled
both kinematic and thermal fields in order to perform inverse identification of material
parameters. The authors developed a methodology which, similarly to FEMU, allows the
identification of parameters for thermomechanicaly coupled material models. By perform-
ing quasi-static tensile test on an aluminium alloy and recording it with both visible-light
and infrared cameras, they were able to identify parameters for thermomechanical models.

Furthermore, the improvement of electronics and infrared cameras’ technologies have
rendered these applications possible for experiments involving intermediate to high strain-
rates. To this effect, Guzman and his collaborators performed dynamic compressive tests
on different alloys [Guzmán et al., 2009]. By using an infrared camera during compressive
tests performed on a split Hopkinson bar, they were able to measure the temperature rise
due to the plastic deformation. In 2017, Seidt et al. [Seidt et al., 2017] performed syn-
chronous full-field strain and temperature measurement for tensile tests on steel at inter-
mediate and high strain-rates. The authors collected thermomechanical data by recording
the events at up to 30,000 fps for the temperatures and 90,000 fps for the visible-light
camera.

These recent works demonstrate that it is now possible to collect thermomechanical
data during high strain-rate experiments. Furthermore, these coupled data can now be
used to identify the parameters of fully coupled thermomechanical constitutive models. In
that context, this PhD thesis proposes to take advantage of the spatio-temporal sampling
possible with one of the most recent high speed IR cameras available on the market.
However, the accurate measurement of intermediate temperature increase (≤ 100 ◦C) at
room temperature and high speed requires a dedicated calibration procedure, which is the
focus of this chapter. Hence, the calibration procedure used to retrieve the temperatures
will be presented first. Then its accuracy will be measured and discussed. At last, since
the goal is to collect thermomechanical data during an experiment, a methodology to
transfer the Eulerian temperatures into the same configuration as the kinematic fields is
proposed.
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4.2 Calibration methodology

Several issues have to be tackled in order to be able to extract the temperature of a ma-
terial point during an experiment. First and foremost, the infrared (IR) camera measures
radiative fluxes and returns digital levels (DL) which is a non-physical unit. The relation-
ship between the fluxes and the temperature depends on the material surface’s properties
such as emissivity. Moreover, the fluxes recorded by the camera may be altered by the
presence of heat sources, such as flashes, in the thermal scene or other elements in its
vicinity. In addition, each pixel of an IR camera sensor has its own dynamics and noise
which induces a spatially and dynamically non-uniform behaviour of the sensor. Pixels
that exhibit singular behaviour compared to the majority of the pixels have to be handled.

Hence, a calibration methodology has to be implemented in order to be able to retrieve
the Eulerian temperature fields from the DL recorded by the IR camera, while minimizing
the errors at the different steps. The methodology presented in this section is similar to the
one employed in [Berthel, 2007,Bodelot, 2008,Seghir, 2012], but the handling of singular
pixels is done slightly differently.

Let us first introduce some notations that will be used in this thesis. For this purpose,
let us consider a function ψ of N variables {Vk}k∈[1:N ]. For a given set of values of these
variables, the average and the standard deviation of ψ over the kth variable will be denoted
as:

ψ|V k({V i}|i ̸=k) = 1
NV k

∑
V k

ψ({V i}), (4.1)

σ|V k[ψ]({V i}|i ̸=k) =
√√√√ 1
NV k

∑
V k

(ψ({V i}) − ψ|V k({V i}|i ̸=k))2. (4.2)

4.2.1 Radiometric, pixel-wise calibration

Since an infrared camera converts fluxes into DLs, a calibration is necessary to convert
these DLs back into fluxes. Obviously, every IR camera is delivered with a built-in calibra-
tion done to match as much as possible different settings and experimental configurations
(integration time, temperature...). Nevertheless, a finer precision can always be achieved
when conducting a dedicated calibration for a given temperature range that will be inves-
tigated experimentally and for given parameters (integration time (IT), window size...).
A comparison will be presented in Section 4.4. The calibration is done pixel-wise in order
to address the issue of spatially non-uniform response as well as dynamically non-uniform
behaviour (the DL range may vary from one pixel to another). Some explanations about
the origin of the non-uniformities may be found in [Marcotte et al., 2013,Tremblay et al.,
2010]. In addition, the calibration is performed for a given integration time.
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4.2.1.1 From fluxes to temperatures

Let us first consider the origin of the flux received by a pixel. Figure 4.1 depicts a thermal
scene during an experiment. The fluxes recorded by an IR camera have various sources:
they can come from the radiation emitted by the sample or by elements in the thermal
scene’s environment (e.g. flashes). The sample also reflects the fluxes emitted by some
elements in the environment. Finally, the atmosphere can also (humidity, temperature
of the room) affect these fluxes. Thus, the flux received by a pixel is usually written
as [Berthel, 2007]:

ϕp = τatm [ϵsϕs(Ts) + (1 − ϵs)ϕenv(Tenv) + ϵenvϕenv(Tenv)]

+ (1 − τatm)ϕatm(Tatm).
(4.3)

With ϕp, ϕs, ϕenv and ϕatm being respectively the flux received by the pixel p considered,
the one emitted by the sample, the environment or the atmosphere. τatm is the transmis-
sion factor of the atmosphere and ϵs, ϵenv respectively the emissivity of the sample or the
environment. In the present case, the emissivity and the transmission are assumed high
enough and the environment well controlled enough so that the surrounding’s perturba-
tions can be neglected. Furthermore, the Stefan-Boltzmann’s model for a grey body is
considered to model the sample. This leads to the following simplified equation of the
radiated flux:

ϕp(Ts) = ϵsσT
4
s . (4.4)

4.2.1.2 From DL to fluxes

A pixel-wise polynomial expansion is chosen in order to convert the DLs into fluxes. Using
a blackbody (BB) at different given temperatures TBB, one can construct an abacus curve
for each pixel of the sensor. Moreover, in order to make it robust to the sensor’s noise, the
DLs of each pixel are averaged over 500 frames for every given temperatures. Thus, the
expansion’s parameters αk are identified for each pixel p by solving the following problem

IR Camera

Sample at Tsample

Environment at Tenv

Atmosphere at Tatm

Figure 4.1: Schematic of a real thermal scene captured with an IR camera.
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in a least square sense:

∀ TBB : ϕp(TBB) ≈
N∑

k=0
αk(DL|t(p, TBB))k, (4.5)

where TBB are the given temperatures of the blackbody, N is the expansion’s order and
DL|t(p, TBB) is the averaged DL over 500 frames for a given pixel and temperature. The
choice of these temperatures will be discussed in Section 4.7.

The order of the polynomial expansion has been determined by looking at the system-
atic and random errors for orders ranging from 5 to 9. Here, the so called systematic error
is the error averaged over every pixel of the sensor and all the frames for a given TBB,
whereas the random error is its standard deviation. For the sake of simplicity, only the
results for an IT of 22.31 µs are presented in Figure 4.2. First let us note that the random
error seldom changes with the polynomial expansion’s order. Its values range from 0.12 ◦C
at low temperature to 0.065 ◦C at high temperature. For the systematic error however,
two different behaviours appear. With a 5th order expansion, the systematic error ranges
from −0.06 ◦C to 0.05 ◦C. When updating the expansion’s order to 6, the systematic er-
ror’s range decreases between −0.04 ◦C and 0.03 ◦C. The systematic error remains stable
beyond the order 6 and no significant change is visible. The same level of systematic
error can be found in the literature, e.g. [Bodelot, 2008]. Thus, a 6th order expansion is
considered sufficient and will be used in the rest of the work.

4.2.2 Outlier pixel detection

The pixel-wise calibration presented previously addresses the issue of the spatially and
dynamically non-uniform behaviour of the camera’s sensor. However, even after this pro-
cedure, some pixels still exhibit singular behaviour compared to the majority. These pixels
are considered as “bad” pixels and will be ignored for the analysis. This step is essential in
order to have accurate measurements at high speeds since only a few pixels are available
(e.g. 4 × 64 pixels at 100k fps). Different kinds of behaviour can be observed, hence three
criteria have been implemented to detect and exclude these pixels.

4.2.2.1 Criterion 1: temperature dependence

A pixel is considered defective if its response is almost independent of the temperature’s
variation. In this case, this is a dead pixel. This can be induced by manufacturing issue,
especially with the less developed semiconductors used in IR cameras, or ageing. The
criterion hence takes the following form:

∀ TBB : |DL|t(p, TBB) − DL|t,p(TBB)| < 4σ|p[DL|t](TBB). (4.6)
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Figure 4.2: Polynomial’s order influence, for an IT=22.31 µs between 25 and 65 ◦C.

In Figure 4.3, all the curves are tightly packed and no monotonous curve is observed. This
shows that there is no dead pixel on the sensor of the IR camera.

Figure 4.3: DL|t for each pixel versus the BB’s temperature, IT = 20 µs.

4.2.2.2 Criterion 2: time dependence

A pixel is considered defective if its temporal response is significantly unstable compared
to the rest of the pixels. This step tackles noise issues. The criterion takes the following
form:

∀ TBB : |σ|t[DL](p, TBB) − σ|t[DL]|p(TBB)| < 3σ|p[σ|t[DL]](TBB). (4.7)

However, enforcing this criterion for all the temperatures may be too restrictive, as some
experimentally induced errors might have to be accounted for. Hence, this criterion is
relaxed so that a pixel is considered defective if the last criterion is verified for a majority
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of temperatures, i.e. if:

Size(TBB verifying Eq. (4.7)) > Size(TBB)
2 (4.8)

Figure 4.4 shows for all the pixels, the temporal standard deviation of the DL as a function
of the blackbody’s temperature. The pixels considered defective using Eq. 4.8 are depicted
in red stars. For this particular case of an IT of 20 µs in 32 × 64 windowed mode, 0.49%
of the pixels are removed.

Figure 4.4: σ|t[DL] as a function of TBB for all the pixels, IT = 20 µs.

4.2.2.3 Criterion 3: spatial dependence

A pixel is considered as defective if its response is significantly different from the rest of
the sensor. This results mainly from vignetting effect. Compared to the 2 previous criteria,
this criterion requires the temperature T and not the raw DL as the pixel-wise radiometric
model tackles the spatial non-uniformity of the sensor’s response. The criterion proposed
here is inspired from [Bodelot, 2008].

This criterion is divided in two steps. First, if a pixel’s temperature varies too greatly
from the average response of the sensor it is considered defective. This translates into the
following criterion, where δT is a given threshold:

∀ TBB : |T |t(p, TBB) − T |t,p(TBB)| < δT (4.9)

Once these defective pixels singled out, the previous quantities are recomputed ignoring
the bad pixels. Then, in the same spirit of the previous step, if a pixel’s temperature is too
different from the average response of the sensor, it is considered as a bad pixel. However,
for this step, the threshold used is quite specific:

∀ TBB : |T |t(p, TBB) − T |t,p(TBB)| < kα, (4.10)
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where α can be interpreted as the overall variation of the sensor’s response:

α = σ|p[T |t]|TBB
. (4.11)

In this methodology, k is an integer that has to be determined specifically. Figure 4.5
shows the evolution of the number of bad pixels identified using Eq. (4.10), as a function
of k, for an IT of 20 µs. The progression is logical: the higher k is, the less restrictive the
criterion is and thus less bad pixels are detected. Heuristically, it appears that the number
of bad pixel reaches a plateau (which is here depicted in black). This indicates that the
remaining bad pixels detected on this plateau are truly defective. Indeed, no matter how
loose the restrictions are, they are still having an abnormal response. Hence, these pixels
are considered as defective and are singled-out. The number k chosen for the criterion is
then the first integer corresponding to the plateau.

0 10 20 30

k

0

20

40

60

80

100

N
u

m
b

er
 o

f 
b

ad
 p

ix
el

 (
%

)

Figure 4.5: Number of bad pixels as a function of k using Eq. (4.10).

4.2.2.4 Singular pixels’ cartographies and analysis

After implementing the presented methodology, bad pixels cartographies have been ob-
tained for several IT (see Section 4.3 for further details). For all the IT considered (IT ∈
[5.02 – 22.31 µs]), the bad pixels are consistent despite the different windowing used. This
highlights the robustness of the bad pixels’ detection method.

Figure 4.6 presents different bad pixels’ cartographies, the bad pixels are depicted
with black dots. The first is the one obtained in this study and the following two are
cartographies that can be found in the literature. The bad pixels’ repartition seems to
be random over the sensor, which is coherent with what is found in the literature. In
addition, the number of bad pixels obtained after the use of each criterion is summarized
in Table 4.1. The percentages represent the number of the bad pixels relatively to the
windows’ size. Let us note that the increase of these percentages observed after windowing
is biased as the windowing is always done in the centre, which may not be representative
of the whole sensor. These values can be compared to the literature, e.g. Bodelot found
0.5% [Bodelot, 2008] and Honorat found 0.29% [Honorat et al., 2005] (see Fig. 4.6).
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(a) Telops M3K
IT = 22.31 µs,

(b) [Berthel, 2007], Jade 3
at 50 FPS,

(c) [Honorat et al., 2005],
Jade

IT = 2 ms,

Figure 4.6: Bad pixels’ cartographies obtained in this work and by other authors.

Moreover, it is to be noted that the number of bad pixels does not significantly change
between the second and last criteria of the identification process. By doing a pixel-wise
calibration, one tries to guarantee a spatial uniformity. But the temporal variations are
not taken into account when doing the calibration. This may explain why the temporal
variation criterion is able to detect most of the bad pixels.

4.3 Thermal scene setup

4.3.1 Calibration setup

As explained in Section 4.2, the calibration methodology requires reference data. This is
usually done by recording with the IR camera a calibrated blackbody, which is set to a
predetermined set of temperatures. The following section describes the equipment and the
setting used for the acquisition of these data. They have been chosen in order to match
the future experimental conditions.

In this work, a M3K Telops camera is used with a lens from Janos Technology (ASIOS
SERIES 55 mm F/2.3 MWIR). The camera recorded the DCN1000 H4 blackbody from
HGH Infrared. The blackbody’s emissivity is 0.98 ± 0.02 [HGH-Infrared, nd]. The camera
was set approximately 50 cm from the BB, and it was tilted with a small angle in order to
minimize the sensor’s reflection on the BB (Fig. 4.7). Four different couples of integration
times and frame rates have been investigated while keeping the other parameters identical.
Notice that the selected IT are the longest integration times allowed for the selected frame

Table 4.1: Number of bad pixel identified at different steps for the different IT, for a
calibration between 25 and 65 ◦C with 6th order polynomials.
hhhhhhhhhhhhhhhhhhFPS

Number of bad pixels after criterion 1 after criterion 2 after criterion 3

3,000 (256 pix × 320 pix) 0 290 (0.35 %) 316 (0.39 %)
25,000 (32 pix × 64 pix) 0 10 (0.49 %) 10 (0.49 %))
50,000 (16 pix × 64 pix) 0 4 (0.39 %) 4 (0.39 %)

95,000 (4 × 64) 0 2 (0.78 %) 2 (0.78 %)

66



4.4. Calibration uncertainty

Figure 4.7: Experimental setup for the calibration of an IR camera.

rates. In each case, 500 frames were recorded to take into account the temporal noise. The
camera was switched on at least one hour before the test’s start to mitigate the camera’s
temperature drift due to its self-heating. Furthermore, a waiting time of 2 minutes for
the blackbody’s stabilization was set to ensure its spatial and temporal homogeneity. The
experimental parameters are summarized in Table 4.2.

4.4 Calibration uncertainty

Naturally, a commercial software that allows the acquisition of directly calibrated temper-
atures is available. This is possible because an embedded calibration can be used during
the recording. However, since the camera can be used for very different experimental
conditions (in temperature and in IT), the embedded calibration is the more versatile
possible [Tremblay et al., 2010, Marcotte et al., 2013]. As a result, it is very likely that
better uncertainties can be reached when applying the presented methodology. In this
section, the temperature measurement’s uncertainties resulting from the IR camera em-
bedded calibration will be compared to the ones resulting from the pixel wise calibration
previously introduced.

Notice that interested readers can refer to [Tremblay et al., 2010] in order to have

Table 4.2: IR camera calibration’s parameters.

Test FPS IT Frame size (pix) Stabilization time Camera launching time
1 3,000 22.31 µs 256 × 320 2 min 2 h
2 25,000 20 µs 32 × 64 2 min 2 h
31 50,000 9.45 µs 16 × 64 2 min 1

4 95,000 5.02 µs 4 × 64 2 min 1 h
Set of temperatures

From 25 to 40 ◦C with a 1 ◦C step
From 40 to 80 ◦C with a 5 ◦C step

From 80 to 130 ◦C with a 10 ◦C step
1 The test was done in two days: from 25 to 65 ◦C the first day, and 65 to 130 ◦C the last one. The camera launching time was 2 hours the

first day, and 1 hour the second one.
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further details about the IR camera’s “built-in” calibration.

4.4.1 IR camera software settings

To apply the embedded calibration to the raw data, a set of parameters can be adjusted.
The default parameters are summarized in Table 4.3.

Figure 4.8 depicts the influence on the temperature measurements of the two main
user controlled parameters: the emissivity ϵ and the target distance. On the influence of
the working distance, only the extrema are presented. In this figure the systematic error
is considered, that is to say the spatio-temporal average of the error between the camera
output and the blackbody’s temperature. This figure shows that the real experimental
conditions, an emissivity of 0.98 and a working distance of 50 cm, do not give a minimum
error wise. The minimum is obtained when considering an emissivity of 1 and a working
distance of 0 m, i.e. when the environment influence is neglected. We have no explanation
regarding this point. Nevertheless, in order to have a fair comparison between the built-in
calibration and the proposed methodology, the parameters used will be the one yielding
in the minimal error: ϵ = 1 and WD = 0 m.

4.4.2 Spatio-temporal uniformity

Figures 4.9 and 4.10 illustrate the comparison between the embedded calibration and
the implemented one. The two figures are done for two different windows sizes (fullframe
(256 × 320) for Fig. 4.9 and 32 × 64 pixels for Fig. 4.10), and for a blackbody at 50 ◦C. In
these figures, the first row depicts the IR fields for a random frame (here the 342th one),
the second one shows the spatial standard deviation as a function of time. The last row
of these figures shows the temporal standard deviation for each pixel.

The raw DL image shows a vignetting effect that is due to the lens. This vignetting
disappears when a windowing is performed (see Fig. 4.10) as the windowing is done using
the lens’ center. It is interesting to note that this vignetting effect is not tackled by
the “built-in” calibration. Indeed, an edge effect is still present with a gradient of 2 ◦C

Table 4.3: Default embedded calibration’s parameters.

Air temperature 25 ◦C
Relative humidity 50 %
CO2 concentration 100 ppm

Visibility 10 km
External optics temperature 25 ◦C

External optics transmittance 100 %
Environment temperature 25 ◦C

Target distance 0 m
Emissivity 1
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Figure 4.8: Influence of the working distance and the emissivity on the systematic error.

(Fig. 4.9). Whereas the implemented methodology yields a homogeneous response of 50
± 0.3 ◦C for a blackbody’s temperature of 50 ◦C. It has been noticed that the vignetting
progressively appears the higher the temperature gets (it is not presented here). This seems
to demonstrate that the data base used for the embedded calibration is not rich enough to
capture the sensor’s behaviour in these conditions of very low IT (< 25 µs). Furthermore,
it is worth noticing that for both the “built-in” and the implemented calibration, vertical
bands appear in the temperature fields (see Fig. 4.9) with different frequencies. For the
case of the “built-in” calibration, this may be linked to the pixel matrix and the read-out
technology used. However, the origin is not clear for the implemented calibration and
needs to be checked. At last, it can be noted that the spatial uniformity obtained with
the “custom” calibration is in line with the thermal uniformity of the blackbody (0.3 ◦C
at 50 ◦C).

By looking at the spatial standard deviation (Fig. 4.9), a 46 Hz (obtained by us-
ing an FFT) signal can be identified. This signal is present in all three plots: raw DL,
“built-in” calibration and even in “custom” calibration despite its very low amplitude.
Sub-windowing analysis have shown that this is not due to the edge effects. This may
be due to either the camera’s cooling system or the blackbody’s temperature control.
The blackbody’s documentation [HGH-Infrared, nd] indicates a temperature stability of
0.5 mK, which is ten times lower than the variations observed for the embedded calibra-
tion. This is in line with the variations observed for the implemented calibration, however
this calibration considers the blackbody as perfect. This may hence confirm the first hy-
pothesis. Nevertheless, there is a very marge decrease of the spatial variation (from 250 mK
to 78 mK) between the two calibrations. This is mainly due to the edge effect obtained in
the temperature fields.

Additionally, no significant difference between the temporal standard deviations (which
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can be interpreted as pixel noise) of the two calibrations can be seen. In both cases, a
pixel noise of about 100 mK is obtained. This is explained by the fact that none of the
calibration tries to correct the temporal noise.

Furthermore, when windowing in order to increase the frame rate, a particular artefact
appears. Indeed, raw DL shows a systematic off-set of about 200 DL in the first line.
This artefact is interestingly not corrected in the “built-in” calibration. It leads to an
overestimated temperature of 1 ◦C. This issue is likely to be a read-out issue and not
a hardware one as it appears for every windowing size available despite the first line
of pixels not being the same. One possible explanation for the non correction, is that
the embedded calibration used is probably based on the fullframe one and then simply
cropped whereas the implemented one was done specifically for the windowed data. If the
first line is removed when computing the spatial uncertainty of the embedded calibration,
it decreases to 100 mK which is close to the 80 mK obtained with the “custom” calibration.

Finally, it may be interesting to compare the uncertainty of measurement obtained
here, with very low IT, to the one obtained in quasi-static condition that can be found
in the literature. To do so, the temporal average of the error between the measured
temperature and the one assigned to the blackbody is considered. Figure 4.11 compares
the histogram of this error obtained at 28 ◦C for an IT of 22.31 µs in this study to the one
obtained in [Bodelot, 2008] with an IT of 1.1 ms. This figure shows that the uncertainty
obtained in this study is similar to the one found in literature, despite the significant
decrease of the IT (from 1.1 ms to 22.31 µs), i.e. by increasing the frame rate from 140 to
95,000 fps.

4.4.3 Calibration uncertainties

After studying the spatial and temporal uniformity of the sensor for the built-in and
the developed calibrations, the global systematic and random error will be studied. The
global systematic, respectively random, error is the spatio-temporal average, respectively
standard deviation, of the difference between the calibrated temperature and the black-
body’s one. First, let us specify that the bad pixels identified previously are never taken
into account in these quantities. These two given errors are indicators of the reliability of
the temperature measured using the IR camera with either the embedded calibration or
the presented one. Figure 4.12 summarizes these errors obtained using both calibrations
for every tested IT. In the first row are plotted the errors obtained using the “built-in”
calibration (in red) and the “custom” one (in blue) for the 4 IT considered. In the second
row, using the same colours, are plotted the random error.

The systematic errors obtained are about 10 times higher for the “built-in” calibra-
tion. Near room temperature, these errors can be up to 1 ◦C. The gap between the two
calibrations increases as the IT decreases. It is to be noted that the “custom” calibra-
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tion’s errors oscillate around 0 ± 50 mK, whereas the embedded calibration systematically
underestimates the blackbody’s temperature. Nevertheless, these biases decrease as the
temperature increases (i.e. as the signal-to-noise ratio increases).

On the other hand, all random errors follow the same trends. The error decreases when
the temperature increases, but it increases when the IT decreases. The singular behaviour
obtained with the embedded calibration using the fullframe (3,000 fps) can be explained
with the edge effects. Indeed, the vignetting effect is stronger as the temperature increases.

To conclude, both methods yield temperature fields with random errors of the same
order of magnitude. However, the implemented calibration is more accurate, while the
“built-in” one systematically underestimates the temperature. The implemented calibra-
tion yields temperature fields with an accuracy of 100 ± 300 mK at worst over a tempera-
ture range of 25-65 ◦C, for IT over the range 22.31-5.02 µs. Hence, apart for thermoelastic
phenomena, the IR camera with the proposed calibration can be used for high strain-rate
tests. Obviously this precision is obtained at the cost of having to perform a calibration
campaign for each integration time desired and over a specific range of temperature.
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Part I, Chapter 4 – Thermal field measurement: methodology and metrology

(a) IT = 22.31 µs, at 28 ◦C,

Chapitre 2 
Mise en œuvre expérimentale 

 
 

 83 

mise au point sur le corps noir, mais ceci nous éloignerait des conditions d'essai en termes de 
chemin optique et introduirait une incertitude difficilement quantifiable. C'est pourquoi nous 
préférons étalonner en faisant la mise au point sur le corps noir et, ensuite, appliquer le critère 
de bad pixels pour repérer les détecteurs mal étalonnés à cause des non-uniformités. 

Pour évaluer la précision des mesures effectuées, les acquisitions faites pour construire un 
étalonnage pixel par pixel en conditions d'essai ont été relues après étalonnage. Après retrait 
des informations liées aux bad pixels (cf. 2.2.3), les écarts moyens entre la température de 
consigne du corps noir et la température mesurée sont tracés sur la Figure 2.33. 

 

Figure 2.33. Écarts moyens lors de la relecture des températures d'étalonnage. 

Dans la plage qui nous intéresse au sein de la gamme de températures de travail (22-30°C), la 
température correspondant au plus grand écart observé lors de la relecture (28°C) est choisie 
et la répartition des erreurs pour les détecteurs est tracée sur la Figure 2.34. La moyenne des 
écarts est de 27,6 mK et l'écart type de 6,8 mK. 

 

Figure 2.34. Histogramme de répartition des écarts entre la température de consigne du corps 
noir et la réponse des détecteurs non listés comme bad pixels, dans le cas où la réponse 

moyenne des détecteurs est la plus éloignée de la température de consigne (28°C). 

Les résultats précédents montrent que la précision des mesures thermiques possède une borne 
supérieure de l'ordre de 28 mK. 

(b) [Bodelot, 2008], IT = 1.100 µs, 28 ◦C,

Figure 4.11: Comparison of the systematic error’s histogram obtained after the imple-
mented calibration and the one found in [Bodelot, 2008].
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Part I, Chapter 4 – Thermal field measurement: methodology and metrology

4.5 Lagrangian thermography

4.5.1 Methodology

Once extracted, the temperatures recorded by an infrared camera are available in the
current deformed configuration (Eulerian configuration). However, the kinematic data
obtained through the help of DIC, are expressed in the initial configuration (Lagrangian
configuration). Hence, in order to be able to couple kinematic and thermal data, the
temperature fields have to be expressed in the same configuration. The methodology
proposed here is very similar to what is done in the literature [Bodelot, 2008, Toussaint
et al., 2012, Seghir et al., 2013]. It is designed for experiments where each camera is
recording one face of the specimen.

4.5.1.1 DIC measurements

The displacement fields are needed in order to map the temperature fields in the initial
configuration. These kinematic fields are obtained using DIC and the methodology pro-
posed in Chapter 3. In the end, the displacement fields are known at each node of the
mesh used to map the specimen.

4.5.1.2 Space and time synchronization

Since the spatial and temporal resolutions of both cameras differ, a space and time syn-
chronization is required. Especially since the scenes captured by the two cameras may
also differ slightly.

Since the acquisition rate of the IR camera is lower than that of the other camera,
the temperature fields obtained are first interpolated linearly time-wise in order to have
temperature fields in the same timeline as the kinematic fields.

Then, it is assumed in this methodology that the whole specimen is seen by both
cameras when used in fullframe. The objective of the spatial synchronization is to place
both visible and infrared images in the same point of view (POV). Since DIC has been
performed, the pixel size and the initial position of the sample in the images recorded
by the visible camera are both known. To obtain these informations for the IR images,
the sample edges are selected manually using fullframe images. This step thus allows to
transfer the resized DIC mesh into the IR images. The temperature fields from the IR
images are then interpolated linearly onto this DIC mesh. Hence, at the end of this step,
the temperature fields are available in the same deformed configuration as the kinematic
data.

Finally, at the end of this space and time synchronization, the temperature fields
are available in the same spatio-temporal coordinate system as the kinematic data. Let
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4.6. Outstanding issues

us note that the fields hence obtained are smoothed since two interpolations have been
performed.

4.5.1.3 Lagragian thermography

Let us consider Xn a given point in the reference configuration. Since the kinematic data
are available, the position xn(t) of Xn at any given time t is known using the following
relation:

xn(t) = Xn + U(Xn, t). (4.12)

As the temperature fields are available in the same spatio-temporal coordinate system as
the kinematic data, T (xn, t) can be retrieved as depicted in Fig. 4.13. Indeed, by attribut-
ing T (xn, t) to Xn, the temperature fields is then available in the lagrangian configuration
i.e.: T (Xn, t) is known for any given point Xn in the reference configuration, at any given
time t.

Figure 4.13: Schematic of the lagrangian thermography procedure.

In the presented methodology, it is supposed that the images from the two cameras
can be synchronized spatially by performing only a rescaling and translations. This in
particular assumes that the cameras are perfectly aligned with the sample. Furthermore,
the distortions induced by the objective lens used with the IR camera are not taken into
account. However, methodologies have been developed to tackle more complex transfor-
mations between IR images and visible images if necessary [Toussaint et al., 2012,Wang
et al., 2016b].

4.6 Outstanding issues

For a metrological analysis the setup is quite simple: it solely consists of a blackbody and
the infrared camera. However, during an experiment all the machinery needed may be
in the vicinity of the camera, potentially influencing the fluxes recorded. Hence, during
an experiment careful attention has to be given to the setup, in order to reduce the
interferences of the environment on the thermal scene as much as possible. In particular
in our case, the Cordin and its flashes will be used at the same time as the infrared camera.
The flashes used are Xenon flashes (see Section 5.1.3), which emit 5 % of their output in
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Part I, Chapter 4 – Thermal field measurement: methodology and metrology

the recording range of the IR camera (between 1500 nm and 5400 nm) (see Fig. 5.9b in
Chapter 5 for a detailed graph). As a result, precautions have to be taken in order to
minimize the impact of the flashes and their possible reflections on the fluxes recorded by
the IR camera.

In order to isolate the IR camera from external interferences several techniques can be
used. One can, for example, use a box that isolates the camera from the environment and
focuses the camera on the sample only [Guzmán et al., 2009, Wang et al., 2016b]. This
technique is used in Chapter 5 through the use of a tube, on which black paint is applied
on its interior beforehand. Since in this work we focus only on experiments where each
camera record its own face, another way to isolate the camera is to put a thermal barrier
between the sample and the camera with an opening tailored to the sample’s size. This is
the approach used in Chapter 7 where an aluminium foil painted in black is put between
the IR camera and the sample.

However, even though these techniques allow for a better control on the impact of
the environment on the IR images, they do not tackle the influence of the flashes on the
sample and thus the fluxes it emits. Indeed, since the flashes needed by the Cordin are
very powerful, they may have an impact on the sample’s temperature. In addition, one has
to bear in mind that the sample’s material may also be transparent for some wavelengths.
Which, in turn may create an apparent rise of the sample’s temperature. These points
will be further discussed in Section 5.3.1 and 7.

4.7 Conclusion

In this chapter, a pixel-wise radiometric calibration for high-speed infrared camera is
presented. The accuracy of the method has been assessed with the use of a blackbody
and compared to the native calibration of the camera, for four different integration times
over a medium temperature range. A strategy allowing the mapping of the temperature
fields obtained from the deformed configuration into the reference configuration is then
presented. The main conclusions are as follows:
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4.7. Conclusion

• The proposed calibration procedure achieves an accuracy of 100 ± 300 mK over a
temperature range of 25 – 65 ◦C, for IT over the range 5.02 – 22.31 µs. The accuracy
obtained is in line with the ones found in the literature for significantly higher IT
(e.g. 1.1 ms in [Bodelot, 2008]).

• The comparison with the embedded calibration highlights the relevance of perform-
ing a dedicated calibration. The random errors obtained with these calibrations are
comparable. However, the native one yields systematic errors that are about 10
times higher, with errors near room temperature that reach 1 ◦C.

• A particular attention has to be given to the control of the thermal scene to minimize
the interferences on the temperature measurement. Especially when performing ex-
periments with coupled measurements where lights are used for the digital image
correlation. Hence, in our case, since the flashes used are partly emitting in the
wavelength range recorded by our IR camera, the isolation of the camera has to be
ensured with great care.

• In order to be optimal, the present methodology requires, in practice, the realiza-
tion of the calibration under experimental conditions (speed, IT, windowing, lens,
temperature range).
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Chapter 5

COUPLED MEASUREMENTS: AN

EXPERIMENTAL VALIDATION
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5.1 Experimental application

In Chapter 3, a methodology enabling the extraction of kinematic fields from images
recorded using a multi-sensor, rotating mirror camera was presented. Furthermore, pre-
liminary validation tests were performed. In Chapter 4, a calibration strategy was pro-
posed in order to retrieve thermal fields from images recorded using an infrared camera.
Furthermore, through the use of kinematic fields, a methodology to perform lagrangian
thermography is also proposed. These methodologies will now be applied to an experi-
mental validation test. This test is an impact test partly inspired from the one performed
by Kalthoff [Kalthoff, 1988, Pierron et al., 2014] (see Fig. 5.1). The experimental setup
and the test results will be presented in this section.

fracture

wave guide

foam

stand

projectile

gas gun

46 m/s

pre-crack

sample

Figure 5.1: Principle of the experimental test.

5.1.1 Specimen material and geometry

For this experiment, a sample made of PMMA (Polymethylmethacrylate) of the brand
Altuglas CN manufactured by Arkema is used. It is an amorphous thermoplastic polymer
with a Vicat B 50 softening point at 115 ◦C. Its mechanical properties are known to be
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5.1. Experimental application

dependent on the temperature and the strain rate. They have been extensively studied
and constitutive models have been developed to describe its viscoelastic behaviour [Arruda
et al., 1995,Dar et al., 2014].

The specimen used is a 100 mm × 75 mm × 5 mm PMMA sample, with a 37.5 mm
long notch at half its height (see Fig. 5.2). The sample and the notch were obtained using
a laser cutting machine. The size of its beam is approximately 200 µm. Hence, the width
of the notch is estimated to be of the same size. Sample dimensions have been chosen to
match the Cordin-580 images aspect ratio, with a slight margin to be able to keep the
sample boundaries in the frame all along the recording. Finally, in order to apply the DIC
procedure previously described, the tailored synthetic speckle pattern was carved into the
sample using the laser cutting machine. The depth of the engraved speckle pattern is
about 50 µm.

Figure 5.2: Specimen with an etched speckle pattern.

5.1.2 Loading and test configurations

As presented in Fig. 5.1, the test configuration can be described as a purely inertial
impact loading. This configuration has been used in a series of recent papers [Pierron
et al., 2014, Fletcher and Pierron, 2018, Fletcher et al., 2019]. It consists in impacting a
self-supported flat sample glued on a wave-guide by means of a projectile. The wave-guide
has two purposes: holding the sample in place and shaping the input wave, for instance,
mitigating misalignment issues. The true interest of this configuration is the control of
the boundary conditions. Indeed, all boundaries are free edges, except for the impact
edge, where a smooth pulse is introduced. The sample is then simply loaded by its own
acceleration. In the present case, by impacting the sample only along half of its height, a
compression wave and a shear wave (at notch tip) are introduced. The applied compression
stress in the wave-guide can be estimated using the following formula: σ ∼ ρCVp, where
ρ is the density of the material, C is its wave celerity, and Vp is the projectile speed. In
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Part I, Chapter 5 – Coupled measurements: an experimental validation

our case, using ρ = 1190 kg/m3, C = 2150 m/s and Vp = 46 m/s, it yields an estimated
pulse stress of 118 MPa; i.e., on the order of the expected intermediate strain-rate tensile
strength (≈ 100 MPa [Wu et al., 2004]).

The impact is performed by propelling a cylinder projectile, made of POM (Poly-
oxymethylene), at high speed with a compressed air gun. The projectile has a diameter of
40 mm and is 80 mm long. The projectile’s speed is controlled by the pressure imposed in
the gas gun. In this test, a pressure of 0.20 MPa is used, which leads to an approximate
speed of 46 m/s. The length of the wave-guide, which has the same dimension as the
projectile, has been carefully chosen to ensure that no reflected wave enters the specimen
before the crack starts.

Given that the alignment between the projectile and the specimen is critical in this kind
of experiment, the specimen is placed as close as possible to the air gun exit. Moreover,
the alignment is checked each time before the test by introducing a long dummy projectile
at the gas gun end and verifying that the contact with the wave-guide is planar. Fig. 5.3
presents different views of the experimental setup and the specimen in place.

5.1.3 Experimental setup

The event is recorded using an ultra-high speed camera, the Cordin-580, equipped with a
90 mm Tamron objective, at 480k fps with a CCD gain 1 of 35 % and a CDS 2 gain of 0 dB.
At such speed, the film duration is about 167 µs. In order to provide enough light, two
Pro-10 Xenon flashes from Profoto are used. They are set in freeze mode, at 8.5 f-stops,
thus delivering about 1600 J. In that configuration, the illumination typically lasts 1 ms.
To trigger the flashes and the camera, an infrared light-gate system is used (SPX1189
series Honeywell). When obscured by the projectile, the optical system sends a 5 V TTL
signal to the camera after a delay of 200 µs, which triggers the flashes immediately and
itself after 170 µs. This light gate is thus placed as close as possible to the barrel’s exit.
The specimen is then placed in a manner that the wave-guide is 20 mm after the optical
barrier, so that the Cordin starts recording when the waves enter the specimen. Let us
note that the precision of the specimen’s positioning is estimated to be about 2 mm. The
170 µs delay is set manually within the camera, estimating a priori the projectile flight
time and the duration of the wave propagation within the wave-guide. This methodology
is extremely dependent on the reliability of the gas gun to propel at a specific speed.
Considering our equipment, the triggering reliability is about 40 to 50 µs, which is high
compared to the recording length (167 µs).

1. Gain on a CCD camera represents the conversion factor from electrons (e−) into digital counts,
or Analog-Digital Units (ADUs). Gain is expressed as the number of electrons that get converted into a
digital number, or electrons per ADU (e−/ADU).

2. Correlated double sampling (CDS). In this method the output signal is sampled twice for each pixel
- just after precharging capacitor and after the pixel charge packet is added. The difference between these
two values does not include the noise component induced by the switch.
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5.1. Experimental application

The inertial impact test is also recorded using an infrared camera, the Telops M3K,
equipped with a Janos Technology (ASIOS SERIES 55 mm F/2.3 MWIR) objective. As
depicted in Fig. 5.3, the IR came ra recorded the other face of the sample. In order to
reduce the influence of the experimental setup (in particular the metallic parts which can
reflect the flashes light), a tube with its interior painted in black was used. It was placed
in such a manner that the camera is focused on the sample and the interferences caused
by the setup is considered minimal. Furthermore, in order to ensure a high emissivity of
the observed face, a small layer of black paint was deposited on it. The events are recorded
at 40,000 fps with an integration time of 6 µs, and a windows size of 32 × 64 pixels2 in
order to keep a reasonable spatial resolution around the crack. This window size allows
for only a partial recording of the sample: approximately two thirds of its length and a
little more than half of its height (see Fig. 5.10). Hence, it was chosen to record the upper
left part of the sample, including the upper and left border of the sample as well as a part
of the notch, in order to capture the events induced by the wave propagation near the
notch’s tip. The camera is triggered using the same light-gate system as for the Cordin.
However, the camera starts recording as soon as the trigger is sent. In fine, 7 IR images
are available during the recording time of the Cordin (≈ 170 µs). Moreover, in order to
apply the methodology previously described, full-frame images taken from the IR camera
are needed. These images were taken prior to the experiment, in its exact configuration.
Finally, the temperature fields were extracted, for a first approach, using the “built-in”
calibration of the camera.

Figure 5.3: Experimental setup for an inertial impact test on a PMMA sample.
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5.1.4 Mesh and DIC parameters

Since a crack is propagating in the sample during the test, a specific mesh is used. It is
an unstructured mesh, with twin nodes along the crack path (see Fig. 5.4). The use of
twin nodes allows the mesh to open in order to properly capture displacement jumps and
strain localization at the crack location. The definition of such a mesh is done in two steps.
First, DIC is performed on a continuous and structured mesh. This allows for transferring
deformed images of the sample in the reference configuration. Then, the crack path can be
defined in the undeformed configuration, a new unstructured mesh can be made, and the
DIC run again. Fig. 5.4 presents the mesh, deformed and superimposed, in the last image
of the test. The element size, defining the kinematic resolution, is 32 pixels on average,
but less along the crack (about 20 pix). A Tikhonov regularization of 4 elements is used to
filter-out spatial noise. This is achieved, within the DIC framework, by adding a penalty
term in Equation 3.16. Finally, the pixel size, obtained by recording an image of a ruler
prior to the test, is 33.7 µm. This leads to a field of view of 83.3 mm × 111.1 mm (see
Tab. 5.1).

Prior to computing time derivatives, it is also usual to filter-out temporal noise at
least when a simple finite difference scheme is used. In order to capture strain-rate fields,
displacements are firstly pointwise convolved with a temporal Gaussian filtering kernel
with a window size equal to 25 frames. The size of the Gaussian kernel is chosen manually,
in order to obtain smooth first and second time derivatives of the displacement. Then
strain-rates are obtained using a simple 1st order finite difference scheme. Such data
filtering marginally affects strain, but significantly decreases the amount of noise on strain-
rates. An estimation of the strain-rate random error is given in Tab. 5.2. It is evaluated
using the sequence of images, taken prior to the experiment, on a static sample.

5.2 Displacement and strain fields

To deconvolve the distortions and the real displacements, the global camera model built
earlier for an acquisition rate of 480k fps is used. At this step, the pairing between the
sensors and the mirror faces illuminating them is unknown. It requires the application of
the 3 different parameter permutations to the experimental data. Using the same optical
considerations previously mentioned, the optimal pairing is obtained by considering the
displacement in the Y direction. Furthermore, using the reference shot performed before
the test with the sample remaining static, changes in extrinsic parameters between the
calibration procedure and the experiment (see Section 3.4.3), are evaluated. Once the
correct pairing is identified and the model parameters are updated, displacement, strain
and strain-rate fields can be extracted.

Let us first look at the temporal evolution of the axial displacement and speed of a
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Figure 5.4: Unstructured mesh (in red) with twin nodes along the crack path, deformed
and superimposed onto the final frame taken during an impact test.

Camera Cordin-580
Image resolution 2472 pixels x 3296 pixels
Dynamic Range, Detector 12 bits
Dynamic Range, Image 16 bits
Acquisition Rate 480k fps
Lens Tamron SP 90 mm Di Macro
Aperture f/2.8
Field of view 83.3 mm × 111.1 mm
Image scale 1 pixel = 33.7 µm
Stand-off distance 50 cm
Patterning Technique Laser etching of a synthetic

speckle pattern
Pattern period size 32 pixels

Table 5.1: DIC hardware parameters.

DIC Software Ufreckles [Réthoré, 2018]
Shape Function linear FE triangle elements
Matching Criterion element-wise ZNSSD
Image Filtering sensor flattening (vignetting)
Data Processing U : Tikhonov regularization

over 4 elements
Experimental systematic U : 0.5 pix ± 0.2 pix
and random error ε: 100 µε ± 2.0 mε

ε̇: 0.5 s−1 ± 50 s−1

Data Post-Processing ε̇ : temporal Gaussian filter
applied onto U (win = 25 fr)

Table 5.2: DIC analysis parameters.
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node located at the middle of the impacted edge. Fig. 5.5 shows displacement in blue
and speed in red. The four vertical dashed lines are the time steps for which associated
fields will be discussed later-on. The two black circles depict, respectively, the crack initi-
ation and crack branching time steps. The loading of the specimen induces, at the impact
edge, a displacement ramp starting at 225 µs and reaching about 3 mm at the end of the
record. Note that it corresponds to the range investigated above, in the method validation
Section 3.4.5. The speed evidences three stages: between 170 µs and 210 µs the velocity
increases in the positive direction, then there is a nearly linear increase in magnitude
followed by a plateau at −40 m/s. The first stage can be explained by a clockwise rota-
tion of the sample, this will be described later. The plateau is reached in approximately
60 µs, which corresponds to an acceleration on the order of 106 m s−2. According to [Ravi-
Chandar et al., 1999], such loading leads to a brittle mode crack regime in PMMA. This
is also confirmed by the data presented in Fig. 5.6.
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Figure 5.5: Temporal evolution of the displacement and velocity in the X direction of a
node located in the middle of the impacted edge.

Fig. 5.6, shows sample images and displacement fields in both directions for the four
time steps introduced previously. In what follows, the time count starts when the optical
barrier is cut; hence, the camera recording starts at 170 µs. During the first 55 µs, the
displacement fields obtained are consistent with a clockwise rotation of the sample. This
rotation can be explained by considering that, at the time of the impact, the sample
and wave-guide were slightly misaligned with a small anti-clockwise angle. This initial
inclination is thought to be induced by the air blast preceding the projectile, due to the
lack of air exit in the barrel’s nozzle. This is verified by comparing a frame of a calibration
shot taken before the test to its corresponding frame of the test; a rotation of 0.7◦ is found.
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The displacement field in the X direction at 235 µs further confirms this explanation, since
the compression starts at the bottom corner of the impacted edge. Notice that it is not
an issue, since the whole kinematic field history is captured. Then, as the wave enters
the sample, the Poisson effect due to the compression is captured in the Y direction,
as shown in Fig. 5.6 at t = 276.98 µs. Notice that, at that stage the crack has already
initiated, which is highlighted by the opening of the mesh. This result shows that the crack
initiates as the compression wave goes into the sample and not after any wave rebound. A
proper capture of the displacement jump from crack initiation to branching is recovered.
Branching of the crack is visible along both the X and Y directions at 330.84 µs. In line
with [Ravi-Chandar et al., 1999], the crack propagates globally with a 60◦ inclination.

Furthermore, strain fields can be obtained and Fig. 5.7 depicts some of them. The
strain fields obtained at 214.84 µs confirm the fact that the displacement fields obtained
in the early stages of the experiment are due to a rigid-body rotation of the sample.
The compression wave in the X direction and the Poisson effect induced are captured
by the strain fields (for example at 276.98 µs). The sample undergoes, on its top right
part, a uni-axial compression of 30 mm/m. Under the assumption that only compression
is taking place in this part of the sample, a Poisson ratio of ν = 0.38 can be obtained.
It is computed by averaging the ratios over a small vertical band, about 2 elements
wide, located 18.5 mm away from the impacted edge. This spatially averaged ratio is then
averaged in time between the 42nd and the 65th frames (i.e., between 260 µs and 310 µs).
This value is in line with the Poisson ratio obtained in the literature [Yee and Takemori,
1982], and the one given by the manufacturer (0.39). At the same time, ahead of the notch
tip, the sample undergoes shear strain concentration but the crack does not propagate
in this direction. It is interesting to note that at higher impact speeds (55 m/s), and in
less fragile material such as polycarbonate, the crack would propagate horizontally [Ravi-
Chandar et al., 1999] within this shear region. Classically, this kind of propagation is
associated with shear band formation. Performing such temporally and spatially resolved
analysis for different impact speeds would certainly increase our understanding of the
origin of such a Mode I / shear band fracture mechanism transition. Additionally, the
axial strain-rate fields are depicted in Fig. 5.7. During the experiment, the axial strain-
rate reaches 600 s−1. Locally, at the crack tip, the axial strain-rate is even higher than
1.000 s−1.

Finally, similarly to what has been done in Section 3.4.5, the effective displacement
fields obtained when using a composition scheme can be compared to those that would
have been obtained assuming an additive decomposition. The differences, which are the
errors introduced when using a sensor-to-sensor approach, obtained in both directions for
the last image taken during the test, and the errors induced on the strain field are depicted
in Fig. 5.8. From Eq. 3.20, we know that these errors are, in a first order approximation,
linked to the effective displacement, the distortion’s gradient and the difference between
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the distortions from the experiment and those from the calibration. The discrepancy has
an amplitude of 6 pixels, which represents approximately 10% of the final displacements
obtained during the experiment. Moreover, let us note that the differences obtained in the
lower right part of the sample have an amplitude of 1 pixel. This can be explained by the
fact that this part is subjected to nearly no deformation. Indeed, the differences are higher
in the heavily translated and deformed parts of the sample. This is why the differences are
highlighted in the regions where the effective displacement is important. Furthermore, the
strain errors induced have an amplitude of about 15 mm/m, which is the same order of
magnitude of the strains obtained during the experiment. This further demonstrates the
necessity to correctly model the distortions. Furthermore, it justifies the need to compute
the kinematic data in the undistorted reference configuration. Otherwise, strong errors
and both strain levels and strain localization would be experienced.
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Part I, Chapter 5 – Coupled measurements: an experimental validation

(a) εxx (mm/m), t =
214.84 µs,

(b) εxx (mm/m), t =
276.98 µs,

(c) εxx (mm/m), t =
330.84 µs,

(d) εxy (mm/m), t =
214.84 µs,

(e) εxy (mm/m), t =
276.98 µs,

(f) εxy (mm/m), t =
330.84 µs,

(g) εyy (mm/m), t =
214.84 µs,

(h) εyy (mm/m), t =
276.98 µs,

(i) εxx (mm/m), t =
330.84 µs,

(j) ε̇xx (s−1), t = 214.84 µs, (k) ε̇xx (s−1), t = 276.98 µs, (l) ε̇xx (s−1), t = 330.84 µs,

Figure 5.7: Strain and strain-rate fields obtained during an impact test for different time
steps.
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5.2. Displacement and strain fields

(a) Displacement errors along X (pix), (b) Axial strain errors (mm/m),

(c) Displacement errors along Y (pix), (d) Transverse strain errors (mm/m),

Figure 5.8: Estimation of the displacement errors committed when using a sensor-to-sensor
(or additive) approach (ϵ in Eq. 3.20), and the associated strain errors.
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Part I, Chapter 5 – Coupled measurements: an experimental validation

5.3 Temperature fields

The main goal of the infrared measurement, on such an experiment, is methodological,
i.e. trying to face and overcome all the practical constraints that coupled measurement
induces as well as validate the practical achievement of quantitative thermography.

Indeed, PMMA, i.e. quasi-brittle material, subjected to a pure inertial impact test, i.e.
subjected to a couple of percent of strain in compression and in tension, is not supposed to
induce significant dissipation. This statement can be checked using Lord Kelvin equation.
For a test on a homogeneous and isotropic material during linear elasticity and under
adiabatic conditions:

∆T = − αT

ρCε

To∆σ, (5.1)

where αT is the thermal expansion coefficient, ρ its density, Cε the specific heat, ∆σ the
applied stress and To the room temperature. Using αT = 70 × 10−6 K−1, ρ = 1190 kg/m3,
Cε = 1450 J/(K kg), To = 298 K and the stress impulse estimated close to 120 MPa in Sec-
tion 5.1.2, the formula yields ∆T = −1.45 K, which in line with what is found in [Rodriguez
and Filisko, 1986]. While such a variation is higher than the temperature measurement
uncertainty, we will see that the main challenge of coupling IR and visible measurements
at high speed consists, in this experiment, in getting rid of the bias induced by the flashes,
the latter being significantly larger than the raw uncertainty of the camera itself.

5.3.1 Flash influence

In order to assess the influence of the flashes on the temperature measurements, 5 record-
ings were made before mechanical loading. During these recordings, the sample was in
the same configuration as for the test and images were acquired before, during and after
the flashes. Figure 5.9a depicts the rise of temperature, averaged over the sensor, caused
by the flashes for the 5 recordings. In this figure, the time starts when the flash is trig-
gered and ends after 525 µs. The dashed black lines represent the recording window of the
Cordin-580 during the experiment.

The flashes induce an apparent rise of temperature of about 25 ◦C in 500 µs. Further-
more, the rise of temperature is highly reproducible. Indeed, the difference between the
rises remains below 1 ◦C, except between 125 µs and 200 µs where the difference can reach
3 ◦C. Let us recall that the Telops M3k camera records wavelengths from 1500 nm to
5400 nm. Furthermore, the Xenon flashes used emit 5 % of their output in the same range
wavelength. Hence, as PMMA transmits approximately 60 % of the infrared wavelengths
between 1800 nm and 2100 nm, it has been concluded that the apparent rise of tempera-
ture is mainly induced by the transmission of these wavelengths and not by the heating of
the sample. This is summarized in Figure 5.9b. This can be further validated using basic
thermal conduction considerations. Let us suppose that one face of the sample is exposed
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to a homogeneous source of temperature. The time needed for the opposite face to reach
the same temperature can be roughly estimated using the following formula:

e2 ≈ κτ, (5.2)

where e is the sample’s thickness, τ an estimation of the time and κ the thermal diffusivity
of the material. In this particular case e = 5 mm, κ = 9.85 × 10−8 m2 s−1. Hence, a rough
estimation of the time needed for the temperature to propagate through the thickness of a
PMMA sample is τ ≈ 250 s. As this estimation is several orders of magnitude higher than
the rises of temperature obtained, this further validate the idea that these rises are not
caused by a heating of the sample. So while this apparent rise in temperature can easily
be understandable by the fact that the material is not opaque to flashes IR radiations, it
remains unclear to us why the layer of black paint put on the sample for IR measurements
did not significantly mitigate this effect. The rise in temperature may be the consequence
of different phenomena, the transmission through PMMA thickness from the uncoated
faced (observed by the Cordin) to the other face then conduction through the thin layer
of paint could partly explain such a quick rise. Nevertheless, notice that a 10 µm thin
layer of black paint will delay the signal by a little less than 1 ms, which remains long
compared to the 500 µs observed.
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(a) Rise of temperature caused by the
flashes for the 5 different recordings,

(b) Flash outputs and PMMA
transmittance spectra,

Figure 5.9: Influence of the flashes on the temperature measurements and spectrum of the
Xenon flash ouputs as well as the PMMA transmittance.

Finally, as the flashes induce an apparent rise of temperature with a high repeatability,
their influence can be taken into consideration during real experiments. As a result, the
rise of temperature will be averaged over the 5 acquisitions. The resulting apparent rise of
temperature will then be subtracted to the temperature fields obtained during the inertial
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Part I, Chapter 5 – Coupled measurements: an experimental validation

impact test. Notice that the ± 1 ◦C variability remains.

5.3.2 Temperature fields from an inertial impact test

Once the apparent rise of temperature deducted from the experimental fields, the room
temperature, 28 ◦C, is also subtracted. Then, using the methodology presented in Chap-
ter 4, the resulting fields are transferred in the reference configuration. Figure 5.10 depicts
the variation of temperature occurring during the experiment in the reference configura-
tion for different time steps.

The methodology proposed in this work successfully replaced the temperature fields in
the reference configuration. Due to the size of the infrared images, only half of the sample
was observed and the crack did not propagate in it. The temperature variations captured
during the experiment remain under 2 ◦C in all the sample except in the crack vicinity and
no specific localization in line with strain maps are observed. The temperature evolution
during the test consists in a homogeneous and slight increase of the sample temperature
(see Figure E.7d). As previously said, it can be explained by the not so dissipative nature
of the material. In addition, since the systematic error of the calibration used is about
1 ◦C, no relevant information is obtained using an infrared camera during this experiment.
It is in line with the predictions made previously. Regarding the temperature rise at the
crack lip, the uncertainty can not be guaranteed any longer due to the change in apparent
emissivity, the light diffraction from behind...
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5.4 Conclusion

In this chapter, an experimental validation test is performed. It consists in an inertial
impact test performed on a pre-notched PMMA sample. The methodologies presented in
Chapter 3 and 4 are used in order to retrieve both kinematic and thermal fields during
the experiment. The main conclusions are as follows:

• Quantitative kinematic full-field data from an inertial impact test on a pre-notched
PMMA sample have been acquired at a rate of 480,000 fps. These kinematic fields
quantitatively captured the events occurring during the test, such as the compression
wave and the Poisson effect induced, or the shear strain concentration at the notch
tip.

• These kinematic fields have a better spatial sampling than what can traditionally
be obtained with classically used high-speed cameras, at the price of higher strain
random errors. In the present configuration we reach a spatial sampling of about
1 mm over a FOV of approximately 100 mm × 100 mm.

• The flashes used induce a highly reproducible apparent rise of the sample’s tempera-
ture of about 25 ◦C in 500 µs. Hence, this apparent rise – induced by the transparency
of PMMA to the IR wavelengths recorded by the camera – can be subtracted from
the fields obtained during the experiment.

• The methodology presented to perform Lagrangian thermography successfully re-
placed the temperature fields in the reference configuration. However, the tempera-
ture variations captured during the experiment remain under 2 ◦C in all the sample
except near the crack. Hence, no relevant information is obtained using an infrared
camera during this experiment.
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Chapter 6

NUMERICAL SIMULATION AND ANALYSIS

OF A DYNAMIC TENSILE TEST
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6.1 Introduction

In the previous chapters, the visible light and infrared cameras that are used to record high
strain-rate experiments are presented as well as their limitations (Chapter 3). First, these
cameras, as all cameras, act as spatio-temporal low-pass filters, and limit the measurability
of strong gradients (spatial or temporal). In addition, sensor noise and the intrinsic vari-
ability of the optical distortions involved in multi-sensors cameras also restrict the lowest
strain that can be measured accurately, and for similar reasons the measurable temper-
atures are also affected. Since the non-parametric approach to estimate stress fields that
will be used (presented in depth in Chapter 8) only relies on measurements, it is essential
to design experiments with these restrictions in mind. To do so, numerical twins can be
used to take into account the errors introduced at the different steps of the experimental
procedure. The use of these twins hence allows to assess the ability to capture kinematic
and temperature fields during the designed experiment and to have an estimation of the
uncertainties achievable.

Historically, in dynamics, statically determined tests have been conducted using hy-
draulic machines or SHPB for instance. Characterizing the material response over a wide
range of strain-rates used to require different setups. Indeed, hydraulic tensile machines
are classically limited to a strain-rate range of [10−3 s−1 – 102 s−1], while the SHPB covers
the [102 s−1 – 103 s−1] range. This implies that the realization of tensile tests at 103 s−1 or
compressive tests at 101 s−1, for instance, is not an easy task. However, the new oppor-
tunities opened with the inverse identification of either constitutive parameters or of the

99



Part II, Chapter 6 – Numerical simulation and analysis of a dynamic tensile test

stress distribution itself (see Chapter 8) allows to completely reconsider the experimental
design. In particular, it allows to consider geometries and boundary conditions that would
lead to heterogeneous fields, which in turn enable the analysis of couplings, localization
phenomena as well as complex loadings history. One of the potential outcome would be,
in one experiment, to characterize the material for wide spectra of strains, strain-rates
and temperatures for loadings closer to real case. Such a route may be of great interest
for companies.

As a side point, notice however that some limitations remain hard to overcome. In
particular, the difficulty to accurately capture the external load during transient, highly
dynamic loadings, even if an elegant solution has been proposed in [Pierron et al., 2014]
to get the load directly from images using particular loading configurations [Fletcher and
Pierron, 2018,Seghir and Pierron, 2018,Fletcher and Pierron, 2020] and ultra-high speed
imaging. Nevertheless, such methodologies do not provide, yet, a way to address significant
strain levels (e.g. tens of percent).

In practice, for dynamic characterization two main routes are followed: the first one
consists in devising complex experimental set-ups allowing to conduct statically deter-
mined tests. This was the strategy chosen by Haugou and his collaborators. In his work [Hau-
gou et al., 2006], a non direct tensile testing device using SHPB is proposed. Using this
apparatus, the authors were able to model the constitutive behaviour of a XES steel
and an aluminium alloy in tension for plastic strain-rates between 180 s−1 and 440 s−1.
The results were consistent with previous studies performed with more traditional ex-
perimental set-ups. The other one is to go back to more traditional experiments, and
perform statically undetermined tests using complex geometries, combined with inverse
identification methods (see Section 6.3). Following this strategy, in 2019 Fourest and his
collaborators [Fourest et al., 2020] introduced strain concentrators in the sample geome-
try (see Section 6.3 for the geometry used). Then, using the Image-Based Inertial Impact
test methodology and the Virtual Fields Method, the authors were able to identify one of
the parameters (named C in our case, see Eq. 6.2.2.1) of the Johnson-Cook law used to
model their titanium alloy (up to 500 s−1). Furthermore, they also demonstrated that the
introduction of holes or notches induced non homogeneous fields and a significant gain in
the strain and strain-rate spectra was observed.

In this PhD work, the latter strategy will be adopted. Hence, through the use of FE
simulations, this Chapter aims to design a statically undetermined test which is compatible
with our experimental restrictions. Furthermore, the accuracy of the measurements will
be assessed. To this effect, the material that will be used in this work is first presented.
Then the design of the geometry is discussed, based on FE simulations. Finally, using
Virtual Image Deformation (VID), the measurability of the kinematic fields induced by
the geometry is assessed. The chosen geometry will then be used to create a rich material
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database in Chapter 7. The goal is then to use this rich database to characterize the
material with a recently proposed and so called Data-Driven Identification method. This
will be further discussed in Chapter 8.

6.2 Material and constitutive behaviour

The material chosen for this experimental campaign is the rate-dependent, low-carbon
mild-steel XES (French standards). Its chemical composition is presented in Tab. 6.1. The
quasi-static and dynamic behaviour of this material are relatively well-known. Indeed, for
example in the mid 90s, methodologies were developed allowing to perform double-shear
experiments on thin metal sheet in both quasi-static and high strain-rate conditions with
highly homogeneous stress and strain states [Gary and Nowacki, 1994]. These methodolo-
gies were used to study the shear behaviour of the XES steel – in particular the evolution
of the rate sensitivity, for strain-rates ranging from 10−3 s−1 to 103 s−1 [Klepaczko et al.,
1999]. The tensile behaviour of this steel has also been investigated. For this purpose,
Haugou and its collaborators [Haugou et al., 2006] developed a tensile testing device for
split Hopkinson bars. This device allows for non-direct tensile tests to be performed on
metal sheets. The configuration was used to characterize the mild-steel for plastic strain-
rates between 180 s−1 and 440 s−1. At last, more recently, some researchers focused on the
modelling of spot weld for this material. For instance, using experiments based on Arcan
principle, Langrand et al. [Langrand and Combescure, 2004, Langrand and Markiewicz,
2010] were able to model and characterize the joint when submitted to pure and mixed
tensile/shear loads in both quasi-static and dynamic conditions. In 2016, Markiewicz et
al. [Markiewicz et al., 2016] went one step further and investigated the behaviour of the
material when heat affected by spot welding. Furthermore, the authors studied the strain-
rate dependency of the heat affected material and identified parameters for a visco-plastic
model describing the material.

C S N Mn P Si Al Ni Cr
0.0268 0.0175 0.006 0.202 0.007 0.007 0.07 0.018 0.036

Cu Mo Sn Nb V Ti B Ca
0.014 0.002 0.004 0.001 0.002 0.002 ≤ 0.0003 ≤ 0.0003

Table 6.1: XES chemical composition (in wt%), data from [Markiewicz et al., 2016].

As a consequence, we use this material as model material to develop our heterogeneous
high strain-rates tests as well as stress reconstruction approaches. In this Section, the
material will be presented as well as the constitutive laws usually used at ONERA.
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6.2.1 XES steel reference data

In the following, late results from an ONERA characterization campaign [Markiewicz
et al., 2016] will be used as a reference database. For this campaign, tensile tests were per-
formed on samples respecting the standard ISO6892-1, using a hydraulic jack. Three differ-
ent cross-head speeds were used for this experimental investigation: 5 mm/min, 0.01 m/s
and 1 m/s, which lead to estimated average plastic strain-rates of respectively 0.006 s−1,
0.7 s−1 and 70 s−1. An optical extensometer and a piezoelectric load cell were used in or-
der to retrieve the engineering strain (εeng) and stress (σeng) (see Section 2.2.3). The true
stress-strain curves obtained are depicted in Figure 6.1a. As previously said, notice that
dynamic measurements (see the curve for 1 m s−1) tends to be strongly affected by wave
propagations [Markiewicz et al., 2016]. This figure highlights the fact that the material
considered in this work is heavily strain-rate dependent [Gary, 2000]. Indeed, both the
elastic limit and the hardening modulus change with the strain-rate: while the elastic
limit increases with the strain-rate, the hardening modulus decreases. Furthermore, it has
been shown by other authors that this dependency fades away beyond 102 s−1 [Haugou
et al., 2006], underlying a non-linear rate-dependency. This is illustrated in Fig. 6.1b,
where the curves for strain-rates between 200 s−1 and 440 s−1 have the same behaviour
and are nearly superimposed. As a side comment, notice how stress-strain relationships
can be difficult to properly obtain beyond 1 × 102 s−1(oscillations), even on such a basic
uniaxial loading configuration.

(a) True stress-strain curves for XES steel,
reference data [Markiewicz et al., 2016].

(b) True stress-strain curves for XES steel,
figure from [Haugou et al., 2006].

Figure 6.1: True stress-strain curves for XES steel obtained from reference data from
ONERA, or found in the literature. The first is obtained using a dynamic hydraulic
machine while the later is obtained from tensile Hopkinson Bar tests.
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6.2.2 Constitutive model

From experimental data, one can extract constitutive parameters to model the behaviour
of the material. In what follows, two phenomenological constitutive models are considered:
the classical Johnson-Cook model and a dedicated one, named modified Krupkowsky
model. The first one, even if not really predictive for the considered material (see the
following section) is investigated since it is implemented by default in any commercial FE
code and will be used later for simplicity’s sake (see Section 6.3). The later, much more
complex is analysed for its ability to accurately capture the complex material response of
the XES.

6.2.2.1 Johnson-Cook model

The Johnson-Cook hardening model is one of the most well-known model for visco-plastic
materials [Johnson and Cook, 1983]. This model is usually written as:

σJC =
[
A+Bεn

p

] [
1 + Cln

(
ε̇p

ε̇0

)] [
1 −

(
T − T0

Tm − T0

)m
]
, (6.1)

where σJC is the flow stress, εp is the equivalent plastic strain, Tm is the melting temper-
ature of the material, T0 and ε̇0 are respectively the reference temperature and equivalent
plastic strain-rate. The material parameter A represents the initial yield stress at 0.2 %,
while B and n capture the isotropic strain hardening evolution. In addition, C captures
the material’s strain-rate dependency and m the temperature one. Let us note that the
Johnson-Cook model is a multiplicative decoupled model [Hor et al., 2013], indeed there
is no coupling between the hardening, the strain-rate dependency and the temperature
sensitivity. Such a model generally has a low number of parameters to identify (in this
case 5). However, this comes at the price of a strong assumption: the initial yield stress
and the hardening modulus have the same strain-rate and temperature dependency, which
is not the case for the XES steel used in this work. To address this issue, several exten-
sions of the model have been proposed introducing all sort of coupling [Khan and Liang,
1999,Kang and Huh, 2000,Bäker, 2006]. However, the models remain multiplicative.

For the present case, the thermal part of the expression is ignored since the temperature
was not captured during these experiments. Nevertheless, A B and n can be identified
on the quasi-static data using a curve fitting method. Then, using the whole data set
from εp = 0.01 to 0.25, parameter C can be identified. The parameters are summarized
in Tab. 6.2. In Figure 6.2 the reference data are compared to the model when using
the parameters identified, for each average strain-rates. This figure clearly demonstrates
that the Johnson-Cook model is unable to account for the whole material’s strain-rate
dependency.
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A (MPa) B (MPa) n C ε̇0 (s−1)
186 511 0.626 0.0374 0.0056

Table 6.2: Johnson-Cook parameters identified using the reference data provided by ON-
ERA.

(a) ε̇p = 0.006 s−1, (b) ε̇p = 0.7 s−1,

(c) ε̇p = 70 s−1,

Figure 6.2: Comparison between the reference data, and the Johnson-Cook model previ-
sions optimized for the data set.

6.2.2.2 Modified Krupkowsky model

The inability of the classically used Johnson-Cook constitutive equation to model accu-
rately the mild-steel of this study has led researchers to use another model. It is a modified
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Krupkowsky model [Priadi et al., 1991]. This model is written as:

σKR = KXa
(
ε0X

b + εp

)nXc

,

X = ε̇p

ε̇0
,

(6.2)

where K, a, b, c, n, ε0 and ε̇0 are the model parameters to be identified. Let us remark that
when X = 1, which is generally the case when performing tensile tests on homogeneous
samples, the classical Krupkowsky model is retrieved. In addition, this model allows for a
coupling between the hardening and the strain-rate dependency. However, this formulation
does not allow the consideration of the temperature sensitivity.

The model parameters identified by the authors who performed the characterization
campaign are summarized in Tab. 6.3. Using these parameters, the model can be con-
fronted to the experimental data. To this effect, Fig. 6.3 depicts the comparison between
the experimental data and the model, for each cross-head speed. This figure demonstrates
the modified Krupkowsky model’s ability to account for the strain-rate dependency. In-
deed, the model curves match quite well the experimental ones. To assess the robustness
of the inverse identification of the constitutive parameters, a series of slightly different ex-
perimental strain range has been used to perform identification using Matlab non-linear
inverse identification functions. Table 6.3 shows for example the identification performed
when data with strains below 1 % are discarded. Variations of up to 90 % are observed, in
particular for exponents a and c. Nevertheless, the relative error between the stresses pre-
dicted using these parameters and the measured stresses from the reference data remains
below 5 % as depicted by Fig. 6.4 where the relative error between model estimations and
the reference database is calculated for the 3 strain-rates investigated. This observation
further justifies the will to directly identify the material response rather than constitutive
parameters. Indeed, due to the parameters interdependence, two different sets of parame-
ters can be used to describe the same response. Furthermore, the parameters identification
has been found to be very sensitive to the range of data considered, which can be partly
explained by the influence of the oscillations captured for the data at 70 s−1.

Parameters K (MPa) ε0 n ε̇0 (s−1) a b c
[Markiewicz et al., 2016] 526.6 0.024 0.221 0.085 0.002 0.385 0.002

Identified 544.5 0.032 0.259 0.06 0.0002 0.328 0.0002
Relative variation (%) −3.4 % −33.3 % −17.2 % 29.41 % 90 % 14.8 % 90 %

Table 6.3: Parameters for the modified Krupkowsky model from [Markiewicz et al., 2016],
and identified parameters.

As a summary, the mild-steel XES used in this study exhibits a complex strain-rate
dependency that the classical multiplicative Johnson-Cook model [Johnson and Cook,
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(a) ε̇p = 0.006 s−1, (b) ε̇p = 0.7 s−1,

(c) ε̇p = 70 s−1,

Figure 6.3: Comparison between the reference data, and the modified Krupkowsky model
previsions using the parameters from [Markiewicz et al., 2016].

1983] is not able to describe. In particular, this model fails to describe the uncoupled
dependencies of the initial yield stress and the hardening modulus. As a result, the use
of a more complex model (the modified Krupkowsky model here) is needed. In the next
chapter, both models will be confronted to experimental data obtained during heteroge-
neous 2D experiments. In addition, the stress flow estimation will be compared to the
Data-Driven Identification results to investigate the ability of the modified Krupkoswky
model to capture the material response when one deviates from homogeneous and uni-
axial loading conditions in Chapter 8. Nevertheless, even if the modified Krupkowsky
model clearly better captures the material response, we will use the Johnson-Cook model
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Figure 6.4: Relative errors between the reference data and the fit using the identified
parameters.

for the sample geometry design and uncertainty quantification in this Chapter as it is
implemented by default in FE solvers. It will not affect any of the conclusions.

6.3 Sample’s geometry design

Thanks to the recent development in imaging technology, it is now possible to perform
full-field measurements at high frame rates. Furthermore, recent identification techniques
(FEMU, VFM or Data-Driven Identification for instance) now take advantage of the full-
field measurements methods to identify the material behaviour using the external forces
or the acceleration. These developments allow for the use of complex sample geometries
which will no longer lead to homogeneous fields and will cover large spectra of strain
and strain-rates. The question of their design is extremely vast. In the following, some
potential design from recent studies will be presented briefly.

Bouda et al. [Bouda et al., 2019] proposed a methodology to optimize sample ge-
ometries for visco-plasticity identification at high strain-rates. For a given test procedure
(in this case the Image-Based Inertial Impact (IBII) tests), while assuming the mate-
rial constitutive model, the authors investigated several geometries (based on heuristics)
and the induced strain and strain-rate spectra through the use of Finite Element simula-
tions. Moreover, by taking into account their camera’s specifications (fps, number of pixel,
noise...) they ensured the measurability of the kinematic fields and also investigated the
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ability to correctly identify constitutive model parameters. Using the geometries presented
in Fig. 6.5, the authors were able to design an experiment in which the sample undergoes
strains in the range of [0 – 10−1] and [1 s−1 – 104 s−1] for strain-rates during an inertial
impact test with a projectile velocity of 70 m/s. Similarly, Jones et al. [Jones et al., 2018]

Figure 6.5: Reconstructed σxx cartographies obtained in [Bouda et al., 2019] for different
considered geometries.

published a study in which they designed an original D-shaped specimen geometry (see
Fig. 6.6). This geometry was optimized for tensile tests, in order to satisfy several criteria,
among which the stress heterogeneity and the strain-rate spectra. By simulating a tensile
test with a cross-head speed of 2.5 mm s−1 per grip, the specimen undergoes strains in the
range of [0 – 0.4] and [10−5 s−1 – 10−1 s−1] for strain-rates. Furthermore, while the stress
states obtained are mainly tension along the tensile test direction, some amount of bi-axial
and shear stress near the dominant tensile stress are observed. The main limitation of this
D-shaped geometry is that since it is not symmetrical, bias in the load measurement may
appear. It is important to note that in these studies, the specimen shape is constrained a

Figure 6.6: Sample geometry considered in [Jones et al., 2018].

priori, and thus only a few topological parameters are optimized. Another possibility is to
rely on Topology Optimization and iterative procedure in order to optimize the specimen
shape [Barroqueiro et al., 2020,Chamoin et al., 2020] with respect to chosen criteria (e.g.
the covariance matrix of identified parameters with FEMU due to image noise [Roux and
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Hild, 2020]). Using this strategy, a specimen shape is obtained without any a priori con-
ditions on its shape. To this effect, in their work in 2020, Chamoin et al. [Chamoin et al.,
2020] designed a specimen in order to identify the shear modulus G12 for an orthotropic
linear elastic material during a pure tensile test. The original shape designed (see Fig. 6.7)
has then been used to identify the shear modulus of fir wood. Using a similar strategy,
Barroqueiro and his collaborators [Barroqueiro et al., 2020] obtained an optimized sym-
metrical shape and used it to characterize a Ti6Al4V titanium alloy with an elasto-plastic
material model, during a tensile test at a strain-rate of 0.1 mm s−1. Using such a specimen
geometry, the sample undergoes strains up to 0.165, and is submitted to heterogeneous
stress states (tension, compression and shear, see Fig. 6.8). While the sample’s geometry
induces different stress states, it is important to note that since the test is a uniaxial
tension one, the majority of the sample undergoes a tensile stress state. Nevertheless, the
main disadvantages of such strategies are the computational costs of such algorithms, and
above all the manufacturability of the obtained shapes.

Figure 6.7: Example of an optimized sample geometry manufactured in fir wood with a
black and white paint speckle pattern, figure from [Chamoin et al., 2020].

Figure 6.8: Example of an optimized sample geometry with the boundary conditions
applied for a FE simulation, figure from [Barroqueiro et al., 2020]. The colour map denotes
the stress states: grey is for tension, red for shear and green for compression.

The use of Topological Optimization, though interesting, is beyond of the scope of
the proposed work. As a result, in this work, similarly to what is done in [Jones et al.,
2018,Bouda et al., 2019], several geometries (derived from an initial one) leading to het-
erogeneous fields are investigated. Hence, the limitations on the possible geometries and
the criteria used to choose a relevant geometry will be presented. Then, the simulation
results for some geometries will be presented and discussed.
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6.3.1 Criteria and limitations

As explained previously, the goal is to choose a sample geometry that will lead to data
as rich as possible. In this work, the richness of the data will be evaluated by looking at
the stress heterogeneity: the stress states reached by the material during the experiment
should span a large range of in-plane multi-axiality states. In addition, the spectra of the
strain, strain-rate and temperature reached by the material will also be considered.

For practical reasons, some limitations are introduced on the geometries that can be
considered in this work. Indeed, the XES steel investigated in this work is available in
0.8 mm-thick sheet. Hence, this will limit the geometry to a planar one. Furthermore,
since the test will be conducted using a dynamic tensile test device (more information
on the experimental setup are available in Section 7.1.2), the specimen length and width
are also limited. As a result, the geometries that will be considered are based on the
geometry classically used when using this device (see Appendix B). In addition, since
the Data-Driven Identification method relies on the load recorded by the load cell (see
Chapter 8), the sample needs to be symmetrical in the tensile test direction in order to
avoid the introduction of any bias in the load measurement (e.g. transverse loading). At
last, due to the limited frame rate of the infrared camera (≤ 100 kfps), the experiment has
to be designed so that several thermal images can be acquired during the test. In addition,
due to duration of the flashes used to provide the light necessary for the ultra high-speed
camera, the experiment can not last too long either. Hence, the optimal duration of the
experiment is estimated at around 1 ms.

With these limitations in mind, the geometries investigated are derived from the one
depicted in Figure 6.9. Notches and a hole were introduced in the sample in order to create
heterogeneous and multi-axial states (strain, strain-rates and stresses). The hole is in the
centre of the sample. The radius of the notches and the hole as well as the vertical distance
between the hole and the notches are geometrical parameters that will be investigated.

6.3.2 Simulation parameters

In order to study the impact of the geometrical parameters on the results, FE simulations
were conducted using Abaqus, with the implicit solver (see Table 6.5 for the simulation
parameters). The choice was made to perform the simulations using this solver since for
the experiment considered (dynamic tensile test), inertia will have little to no effect. This
assumption will be checked later in Appendix A.

The constitutive model used for these simulations is the Johnson-Cook model which is
already implemented in the software. As previously mentioned this model fails to correctly
capture the strain-rate dependency of the material, especially when calibrated with data
covering strain-rates from quasi-statics to dynamics. Nevertheless, its strain-rate depen-
dency saturates for values beyond 102 s−1. Hence, as the sample’s geometry is expected
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(a) Example of one of the geometries
investigated, sample heads are not

modelled,
(b) Photography of an experimental

sample,

Figure 6.9: Example of one of the geometries investigated, its principal features are two
symmetrical notches and a central hole. The red square represent the region of interest
(ROI) that will be used later. A photography of an experimental sample is also depicted,
the simulations do not take into account sample heads and the gripping systems.

to lead to localization bands between the notches and the hole, it is expected that in
these regions the strain-rate will reach values higher than 70 s−1 during the experiment.
As a result, by using material parameters identified on high strain-rate reference data
only, the simulations will still lead to representative strain and strain-rate spectra as well
as stress heterogeneity in these regions, despite giving an overestimation of the stresses
for low strain-rates. To this effect, the Johnson-Cook parameters are identified using the
high strain-rate (70 s−1) reference data only (see Section. 6.2.2.1). The Johnson-Cook
parameters found are summarized in Table. 6.4.

A (MPa) B (MPa) n C ε̇0 (s−1)
394 146 0.471 0.0259 69.86

Table 6.4: Johnson-Cook parameters identified from the reference data provided by ON-
ERA at 69.9 s−1.

For these simulations, the upper border of the sample is considered clamped, and an
axial displacement is imposed on the lower border. The loading condition applied is thus a
uniaxial tension at a loading rate of 1 m/s. This has been made considering the following
points:

• The model has been calibrated from reference data obtained at this loading rate,

• The test duration, up to crack initiation (≈ 30 %), must be in the order of 1 ms, in
order to have a decent number of IR images during the loading history as well as a
decent spatial sampling.
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• However, the test duration cannot exceed 1 ms since it is the optimal light duration
that our flashes can provide.

The output data from the simulation are exported at a rate of 100 kfps for a total of
80 data snapshot, in order to replicate the data that a Cordin-580 would acquire for such
an experiment. For the same reasons, a region of interest (ROI) centred on the central
hole is chosen. Hence, in what follows all the data will represent what is observed in this
ROI depicted by the red square in Figure 6.9.

Software Abaqus
Solver Implicit
Mesh size between 0.25 mm and 1.5 mm
Constitutive model Johnson-Cook
Export frame rate 100 kfps
Number of snapshots 80
Element type CPS3T

Table 6.5: Finite Element simulation parameters used to investigate the different geome-
tries.

6.3.3 Simulation results

In this section the results obtained when using different geometrical parameters will be
presented. Two parameters were investigated: the radius of the notches and the hole and
the vertical distance between their centres. The radius tested were 2 mm, 3.5 mm and
5 mm, while the vertical distances were 4 mm, 7 mm and 10 mm.

6.3.3.1 Influence of the geometrical parameters

In Figure 6.10, the equivalent plastic strain cartographies obtained for the different con-
figurations are depicted for the 40th snapshot (hence at mid-recording, t = 400 µs). Let
us first remark that all the geometries lead to similar cartographies. Indeed, for each one
of them, a strain concentration is evidenced between the notches and the central hole. As
expected, the strain are higher near the hole and notches. In addition, secondary bands
are evidenced. These bands go from the central hole to the edge of the sample with an
angle of approximately 45◦. For each geometry, the maximum plastic strain is reached in
the central hole vicinity. As one can expect, the plastic strain decreases when the notches
and hole radius increases. Furthermore, it can be observed that when the radius increases,
the secondary bands tend to vanish. This is especially true for the biggest radius investi-
gated. However, the vertical distance does not seem to have a significant impact on the
plastic strain.

For this material, heuristically, the fracture strain is considered to be between 0.26 and
0.3 [Cherouat et al., 2018]. As a result, for the geometries using a radius of 2 mm, fracture
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has already happened or will very shortly happen at mid experiment. While obtaining
data during fracture is valuable, this work is more focused on obtaining data prior to such
an event. Hence, the geometries allowing to have about 60 snapshots before the fracture
will be preferred, keeping the strain-rate as high as possible.

(a) R = 2 mm, D = 4 mm, (b) R = 2 mm, D = 7 mm, (c) R = 2 mm, D = 10 mm,

(d) R = 3.5 mm, D = 4 mm, (e) R = 3.5 mm, D = 7 mm, (f) R = 3.5 mm, D = 10 mm,

(g) R = 5 mm, D = 4 mm, (h) R = 5 mm, D = 7 mm, (i) R = 5 mm, D = 10 mm,

Figure 6.10: Plastic deformation cartographies obtained at the 40th snapshot for the dif-
ferent geometries considered.

In addition, plastic strain and plastic strain-rate ranges experienced by the sample
during the test is investigated. To this effect, Figure 6.11 depicts the plastic strain ver-
sus plastic strain-rate occurrences that are observed through the chosen ROI during the
whole test. White areas represent states that the sample never reached. Since the material
considered has a plastic strain of fracture between 0.26 and 0.3 [Cherouat et al., 2018], the
x-axis is limited to a plastic strain of 0.35. This figure shows that most of the sample dur-
ing the experiment undergoes small plastic strain as well as small plastic strain-rates. This
is consistent with Fig 6.10. Furthermore, this figure shows that the plastic strain reaches
0.3 (so the material rupture) for all geometries, while the plastic strain-rate goes beyond
500 s−1. Figure 6.11 shows that increasing the distance between the hole and the notches
decreases the overall plastic strain-rate seen by the sample during the test, and also the
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occurrences for high plastic strain at high plastic strain-rates. Furthermore, increasing
the radius seems to have the same influence. These observations are consistent with the
fact that small holes will create stronger localization phenomena, which in turn lead to
greater plastic strain and strain-rates, that may additionally interact between themselves
if they are sufficiently close.

(a) R = 2 mm, D = 4 mm, (b) R = 2 mm, D = 7 mm, (c) R = 2 mm, D = 10 mm,

(d) R = 3.5 mm, D = 4 mm, (e) R = 3.5 mm, D = 7 mm, (f) R = 3.5 mm, D = 10 mm,

(g) R = 5 mm, D = 4 mm, (h) R = 5 mm, D = 7 mm, (i) R = 5 mm, D = 10 mm,

Figure 6.11: Plastic strain versus plastic strain-rate histograms. The colour corresponds
to a 2D histogram plot. The count per bin is normalized by the number of element in the
ROI multiplied by the number of time steps. The states that were never experienced by
the sample remain white.

At last but not least, the heterogeneity of the stress obtained is investigated. To this
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effect, Figure 6.12 depicts the stress states occurrences that is observed through the chosen
ROI during the whole test, in the stress invariant space (I1(σ), ||σ||V M). White areas
represent stress states that the sample never reached in the ROI and during the whole
test. In addition, classical stress states such as uniaxial tension, pure shear or equibiaxial
compression are represented in the figure by black dashed lines. This figure shows that the
sample mostly undergoes uniaxial tension for all the considered geometries. Nevertheless,
some shear states are reached as depicted by the red zones in the distributions. In addition,
compression states are also reached, although very sporadically. Regarding the geometrical
parameters the global trend is as follows:

• Increasing the distance between the hole and the notches restrains the stress states
around the uniaxial tension state (e.g. the amount of shear states reduces). However,
compression states are more frequents.

• Increasing the radius allows the sample to undergo more shear states and states
between uniaxial and equibiaxial tension.

As a result, in order to have the best stress states distribution possible, a trade-off has
to be made between the distance D and the radius R. Moreover, it is interesting to note
that the limitation of the possible stress states induced by the increase of D seems to be
compensated by a certain extent when the radius also increases. Hence, the geometries
with R ∈ [3.5 mm 5 mm] and D ∈ [7 mm 10 mm] can be considered as good compromises.

Considering these figures, a compromise has to be made between the plastic strain and
plastic strain-rate ranges (maximum for small R and D) and the stress states distribution
(maximum for high values of R and D). In addition, in order to avoid “loss” of pixel of
the camera, the hole and notches sizes have to be as small as possible. In fine, the radius
chosen is 3.5 mm combined with a vertical distance of 8.75 mm. The blueprints for this
sample geometry can be found in Appendix C.

6.3.3.2 Focus on the chosen geometry

This paragraph focuses on the chosen geometry. In Figure 6.13, the in-plane stress dis-
tribution in the space (I1(σ), ||σ||V M), the plastic strain vs the temperature increase
distribution as well as the plastic strain vs plastic strain-rate distribution are depicted
for the elements in the ROI and for the whole experiment. The stress distribution is,
as expected, a compromise between Fig. 6.12e and 6.12f. Similarly, to plastic strain vs
plastic strain-rate distribution shows that sample will undergo failure since the plastic
strain reaches values higher than 0.3. In addition, the plastic strain-rates reach several
hundreds of s−1 during the experiment. At last, the plastic strain versus the temperature
increase distribution is plotted as well. The relevant information that can be extracted is
that the sample in these test conditions will have an increase of temperature of 40 ◦C at
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(a) R = 2 mm, D = 4 mm, (b) R = 2 mm, D = 7 mm, (c) R = 2 mm, D = 10 mm,

(d) R = 3.5 mm, D = 4 mm, (e) R = 3.5 mm, D = 7 mm, (f) R = 3.5 mm, D = 10 mm,

(g) R = 5 mm, D = 4 mm, (h) R = 5 mm, D = 7 mm, (i) R = 5 mm, D = 10 mm,

Figure 6.12: In-plane stress distributions obtained for the different geometries considered.
The colour corresponds to a 2D histogram plot. The count per bin is normalized by the
number of element in the ROI multiplied by the number of time steps. The stress states
that were never experienced by the sample remain white.

most. The collinearity between the plastic strain and the temperature indicates that, in
this experiment, the temperature increase is only induced by plastic dissipation and that
the experiment is adiabatic. This will be further discussed in Chapter 8 and in particular
the issues raised by this collinearity. Moreover, this moderate increase of temperature —
that could only be increased by a massive increase in global strain-rate or by using an
external heat source —will have an impact on the flow stress. This impact is expected
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to remain very low, about 3 % according to Johnson-Cook parameters, which, as we will
see in Chapter 8, is below the stress estimation uncertainty. However, these variations
potentially allow to characterize the dissipative behaviour of the material, this will be
discussed later on.

To go one step further, 5 different areas of the sample are studied (see Fig. 6.13f). Each
region corresponds to a marker and a colour which are superimposed to the distribution
figures. The stress distribution figure shows that, while the elements in the bands are
under nearly uniaxial stress states with some shear, the elements located in the upper
and lower part of the central hole are under compression. In addition, the plastic strain
vs plastic strain-rate distribution highlights that the elements undergoing plasticity are
mainly in the bands and their plastic strain-rate depends on their closeness to the notches
or hole.

One notable shortcoming of this kind of experiment can already be pointed out.
Fig. 6.13b clearly shows that part of the strain, strain-rate space will not be mapped.
Indeed, with the designed experiment, a high plastic strain is never reached at a small
plastic strain rate. Nevertheless, the chosen geometry creates important spectra of strain
and strain-rates. Moreover, despite the stresses within the sample mainly being uniaxial
tension, some shear and compression states are reached.
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(a) In-plane stress distribution
in (I1(σ), ||σ||V M ),

(b) Plastic strain vs plastic
strain-rate distribution,

(c) Plastic strain vs
temperature distribution,

(d) In-plane stress
distribution in (I1(σ),

||σ||V M ) with different loading
paths superimposed,

(e) Plastic strain vs plastic
strain-rate distribution with

different loading paths
superimposed,

(f) Sample geometry zoomed
on the ROI, the markers

represent different elements
observed,

Figure 6.13: In-plane stress distribution, plastic strain vs plastic strain-rate distribution
and plastic strain vs temperature increase distribution. The different markers represent the
loading path of different elements considered which are represented on the FE simulation
mesh.

6.4 Virtual image deformation

The Virtual Image Deformation (VID) process consists in making a numerical twin of
an experiment. The use of such a numerical twin allows to have access to a realistic
estimation of the data that will be measured during the real experiment. Furthermore,
it allows to qualify an experiment in terms of measurability of the fields of interest, and
their uncertainties. It can also validate an identification procedure and its robustness with
respect to realistic experimental conditions. In order for this procedure to be relevant, VID
must take into account, as much as possible and as accurately as possible, experimental
errors and uncertainties such as:

• The spatial resolution of the imaging system and the DIC sampling, which affects
the ability to capture strain gradients,
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• The temporal resolution of the imaging system, which affects the temporal deriva-
tives (speed, acceleration),

• In our particular case, when using the Cordin, the bias induced by the camera’s
distortions which lead to low but still non-negligible displacement uncertainties (see
Chapter 3)

• Sensor noise, which affects the optical flow conservation in DIC and thus displace-
ment uncertainties as well as time derivatives.

Obviously such procedure is never perfect, for instance, it is difficult to take into account
strong speckle transformation or even degradation in highly deformed regions during large
strains [Witz et al., 2017a], light variation, out-of-plane motions... For these reasons, the
use of VID is becoming more and more systematic in the validation of an experimental
procedure and of inverse identification procedure [Rossi et al., 2015,Badaloni et al., 2015,
Rossi et al., 2016,Jones et al., 2018,Bouda et al., 2019,Seghir and Pierron, 2018,Fletcher
and Pierron, 2018,Pierron and Fletcher, 2019].

In particular, in their work, both Bouda [Bouda et al., 2019] and Jones [Jones et al.,
2018] used the results from their FE simulation to virtually create and deform synthetic
images. Then, using these images and the VFM, they identified model parameters and
compared them to the reference parameters. Bouda also introduced experimental-like bias
(e.g. camera noise, fill factor) and investigated the impact of the camera’s spatio-temporal
resolution on the parameters identified.

In this section a similar work is proposed. Using the chosen sample geometry from
the previous section, the FE simulation results are used to deform virtual images. These
images are then used to extract kinematic fields using the methodology presented in
Chapter 3, which are then compared to the FE simulations. Hence, the methodology
developed to create virtual deformed images is first presented. Then the kinematic fields
extracted from these images are presented and compared to the reference ones.

6.4.1 Methodology

In order to be able to perform DIC on the synthetic images, a texture needs to be ap-
plied. However, the synthetic pattern used in Chapters 3 and 5 cannot be used for this
experiment. Indeed, in the considered experiment the sample is approximately three time
smaller than the PMMA sample considered in Chapter 5. Since the beam size of the laser-
engraving machine is 200 µm, the speckle pattern cannot be scaled down. Hence, for this
study a classical black and white paints speckle pattern is considered. The undistorted
reference image is thus created using a high resolution camera to record a speckle pat-
tern made with black and white paints. This reference image is then binned down to the
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Cordin image size. Then, using the mesh from the FE simulations, this image is cropped
resulting in the image in Figure 6.14a. Note that not the entire mesh was considered, but
only the camera FOV during real experiment (depicted by the red square in 6.9a). The
field of view (3 cm x 4 cm, see Table 6.6) matches the aspect ratio of the camera for a
pixel size of 12 µm (i.e. a magnification of 0.45).

(a) Reference image created synthetically, (b) Deformed and distorted image,

Figure 6.14: Example of the reference image and a deformed and distorted image created
synthetically.

Once the reference image created, using the cropped mesh and the displacement fields
from the simulations, the image is deformed (see Fig. 6.14b for an example). This is done
by performing a loop on the elements of the deformed mesh. For each element, the pixels
contained in it are known. Using shape functions and inverse mapping, their position in
the undeformed picture is obtained. Their associated grey values can then be retrieved by
performing a spatial bi-cubic spline interpolation of the grey value of the reference image.
This process is summarized in Figure 6.15.

Figure 6.15: Schematic of the deformation procedure of a synthetic image for one triangu-
lar element. The black squares depict the pixels positions in the deformed configuration,
while the grey squares depict the pixels positions in the reference one. The red crosses
denote the pixels from the deformed configuration projected by an inverse mapping in the
reference one. The deformed image for the element is obtained by interpolating the grey
levels from the grey squares onto the crosses.

Furthermore, in order to be as representative of a real experiment as possible, mea-
surement bias introduced by the distortion variability from one shot to another has to
be taken into account. For simplicity purpose, two sets of distortion parameters obtained
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experimentally are used. The first one (obtained for a specific calibration shot) is used
to deform the images and the second one (which is from the statistical distortion model
associated to the first set of parameters) is used to perform DIC. As a result, this allows
to introduce the right order of magnitude of uncertainty in displacement measurement in-
herent to the method presented in Chapter 3. Using the composition relationship between
the effective displacement usimu and the first distortion field ud, the imposed displacement
uvirtual used to deform the images is computed as follows:

uvirtual(X) = usimu(X) + ud(X + usimu(X)). (6.3)

Finally, the DIC procedure proposed in this thesis is then applied to the virtual de-
formed images created. To enable an easy comparison, the same mesh as from the FE
simulation is used. With a pixel size of 12 µm resulting from the FOV choice, the mesh
size is approximately 21 pixels in the most refined zones.

DIC Software Ufreckles [Réthoré, 2018]
Image size 2472 x 3296 pixels
Field of view 3 cm x 4 cm
Cordin pixel size 5.5 µm
Image scale 1 pixel = 12 µm (Magnification of 0.45)
Mesh size ≈ 21 pixels
Data Processing U : Tikhonov regularization over 4 elements

Table 6.6: Virtual DIC parameters.

Finally, a realistic noise is added to the deformed and distorted synthetic images. The
estimation of grey level noise, meaning apparent grey level variation of one material points
from one image to another over time, has been estimated as follows:

• Images of a static reference shot of the sample (see Chapter 3) are deformed back to
the undistorted configuration using identified distortion parameters. At that stage,
each pixel sees the same material point over time.

• The grey level standard deviation over time of every pixel is computed and its
normalized value (by the pixel’s grey level) plotted as a function of the mean grey
level value of the considered pixel. The plot is presented in Figure 6.16. This database
can be fit with a polynomial P to get the trend of the apparent noise of the camera
over its dynamic. The polynomial used is depicted in the figure by the black line.

• This result is used to add random noise to images proportional to pixel grey levels
following this equation:

noise(F, p) = F (p) · P (F (p)) · randn(p), (6.4)
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where noise(F, p) is the noise that will be added to the pixel p of image F , P (F (p))
is the noise value fit by the polynomial for the grey value F (p) and randn is a
normally distributed random numbers matrix of the size of F .

At the first order, the polynomial fit shows that the apparent noise converges toward
5 % in the whites, reaches 10 % at about 12 bits (4000) then ramps up to 30 % in the
blacks. Notice that, in practice, data presented in Figure 6.16 is not strictly speaking a
noise. Indeed, pixel time variations are in our case not only due to CCD dark noise but
to the offset and gain mismatch from one sensor to another, the focus mismatch, as well
as the uncertainty on distortion estimation which does not allow for perfectly stabilizing
images (± 0.1 pixel see Chapter 3). This is why we name it apparent noise. In addition, it
explains why values are very high compared to mono-sensor ultra-high speed camera (e.g.
in the order of 1 % of 16 bits for the Shimadzu HPV-X). Nevertheless, apparent noise will
affects the optical flow conservation in a similar way to real noise and will have a strong
impact on time derivatives.

Figure 6.16: Normalized apparent camera noise (in %) versus the mean grey level. The
colour denotes the counts (in %), while the black line denotes the polynomials used to
model the camera noise.

As a summary, at this stage we are able to produce, from FE simulation, images that
mimic the response of our imaging system. Applying the DIC procedure presented in
Chapter 3 allows for capturing realistic displacement fields.

6.4.2 Analysis of the influence of the filtering of the displace-
ment fields

In practice, these fields are pointwise convolved with a temporal Savitzky-Golay filtering
kernel of order 2 to obtain smooth temporal derivatives. The influence of the windows size
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is investigated in this section. To this effect, the smoothed axial and transverse velocities
are averaged over a horizontal band of 4 elements near the bottom boundary. Theses
averaged values are then compared to their simulation counterparts for each time step in
a least-square sense. Hence, two indicators (one in the axial direction and the other one in
the transverse direction) are obtained for each window size investigated. Figure 6.17 shows
the evolution of both indicators with the Savitzky-Golay windows size. The indicator in
the axial direction highlights the existence of a minimum for a windows size of 23. The
one for the transverse direction shows no such behaviour, this is to be expected since the
transverse fields hold less information than the axial one in the virtual test performed. As
a result, the windows size of the filter is set to 23 in what follows.

Figure 6.17: Influence of the windows size of a Savitzky-Golay filter.

6.4.3 Results and comparison to the simulation results

Once the DIC performed on the deformed images, the kinematic fields (displacement,
strain and strain-rates) are available. Since the mesh used for DIC is the same as the one
from the simulation, these fields can be directly compared without any interpolations.
In Figure 6.18, the displacement field in the axial direction (Fig. 6.18a) and the error
committed (Fig. 6.18b) are depicted at the 80th time step. In addition, this figure depicts
the random error (i.e. its standard deviation) on the axial displacement field versus the
maximum displacement obtained at each time steps (Fig. 6.18c). While the random error
increases with the imposed displacement, it remains below 0.26 pixels, which is in good
accordance with the values found in the metrological analysis (see Chapter 3). Further-
more, Figure 6.18b shows that the displacement fields can be retrieved with a systematic
error of about 1 pixel, even when the displacement reaches about 60 pixels (that is to say
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2 % of displacement error locally). It also highlights the fact that the error is heteroge-
neous, especially in localization bands. These heterogeneous errors on the displacement
fields lead to errors in the strain fields. The axial strain field obtained at the last time
step is depicted in Fig 6.18d, and the strain errors induced by the displacement errors
are depicted in Fig 6.18f. These errors are simply computed from analytical derivation of
FE DIC shape functions applied to the displacement errors. As expected, the errors in
strain fields are mainly localized in the bands appearing between the notches and the cen-
tral hole: i.e. where there are significant gradients in displacement fields. These absolute
strain errors can reach up to 3 % near the notches and the hole, where the strain fields can
reach 50 % in the simulations (so 6 % of relative strain error locally). Nevertheless, except
for these regions, the errors remain in line with the values obtained in the metrological
analysis of this work (see Chapter 3). Similarly to what is done for the displacements,
Fig. 6.18f depicts the random error of the axial strain versus the maximal value of the
axial strain. This figure shows that the uncertainty, despite being higher than the one
obtained in the metrological analysis of the Cordin, remains below 6 mm/m. In addition,
let us note that values this high will never be reached experimentally since fracture will
occur before (around 30 %). Hence, the values given in this paragraph are upper bounds of
the errors that will actually be reached during the real experiment. As a result, it can be
concluded that in a real experiment, the uncertainties will globally be in line with those
found in Chapter 3, but reasonably higher in localization bands. This emphasizes the fact
that rigid body motion tests are not enough to get a real insight into uncertainties during
complex experiments.

Similarly to what is done in Section 6.3, the Von-Mises norm of the total strain vs
the Von-Mises norm of the total strain-rate distribution can be investigated for both the
simulation and the DIC. To this effect, Figure 6.19 depicts these distributions obtained
respectively for the FE simulations or with DIC. This figure highlights the fact that the
DIC will not be able to capture both high strain and high strain-rate states. However, it
is able to accurately capture the strain and strain-rates in the range of respectively [0 –
0.3] (until rupture) and [0 s−1 – 500 s−1], which is the range of strain and strain-rates that
most of the sample is submitted to.
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(a) Plastic strain vs plastic strain-rates
distribution using FE simulations,

(b) Plastic strain vs plastic strain-rates
distribution using DIC,

Figure 6.19: Comparison of the plastic strain vs plastic strain-rates distribution obtained
through the FE simulations or DIC. The colour corresponds to a 2D histogram plot.
The count per bin is normalized by the number of element in the ROI multiplied by the
number of time steps. The strain and strain-rates states that were never experienced by
the sample remain white.
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6.5 Conclusion

In this chapter, the material that will be characterized was presented as well as the clas-
sical constitutive equations used to model this material. Finite Element simulations were
then performed in order to investigate different specimen geometries. Once a geometry
leading to wide spectra of strain and strain-rates as well as heterogeneous stress states in
the sample chosen, synthetic images were virtually deformed. Using DIC, the kinematic
fields retrieved from these images were then compared to the simulation ones. The main
conclusions are as follows:

• Contrary to the modified Krupkowsky model, the Johnson-Cook model is not able
to account for the whole material strain-rate dependency.

• The introduction of notches and a central hole in the sample geometry induces
heterogeneous stress states within it. Furthermore, in one experiment, large spectra
of strain and strain-rates can be obtained using this geometry.

• Nevertheless, the use of a single actuator, even with a complex geometry, does
not allow to characterize a wide spectrum of stress triaxiality. Indeed, the material
will remain mainly under uniaxial tension and the density of points that will be
submitted to different stress states is relatively low.

• Using virtual image deformation, the ability to retrieve these rich and complex kine-
matic fields is proven. Indeed, with the use of DIC, the displacement uncertainties
remains below 0.3 pixels. Moreover, the maximal error on the strain fields is about
3 % in the hole and notches vicinity when the strain reaches 50 %.
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7.1 Experimental application

In Part I the methodologies enabling the extraction of kinematic fields from images
recorded using both a multi-sensor rotating mirror camera and an infrared camera were
presented. Furthermore, in the previous Chapter, simulations were performed in order to
choose a sample geometry respecting given criteria. It was also ensured that the fields
could be retrieved using our cameras through the use of virtually deformed synthetic im-
ages. These methodologies will now be applied to an experimental test. It consists in a
dynamic tensile test performed on a metal sheet using the geometry defined in Chapter 6.
The experimental setup and the test results will be presented in this Chapter.

7.1.1 Specimen material and geometry

For this experiment, the material used is an XES steel presented in Chapter 6, known
to be strain-rate dependent up to 102 s−1. The geometry used was also presented in the
previous Chapter. Its main features are two notches and a central hole which will act as
strain concentrators and thus induce heterogeneous and multi-axial fields. The samples
for the experiment were cut from a 0.8 mm-thick metal sheet. The samples were cut in
the rolling direction.

In order to be able to perform DIC a speckle pattern needs to be applied on the sample.
For these experiments a speckle pattern was spray painted on one face using black and
white paints. Furthermore, for the infrared camera, black paint was also applied on the
other side of the sample to ensure its high emissivity.
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7.1.2 Experimental and imaging setup

The tests conducted in this work are dynamic tensile tests. They are conducted using
a hydraulic tensile test machine (MTS-819, 20 kN). On this machine, the upper grip is
mounted on a modified Hopkinson bar, similarly to the device from [LeBlanc and Lassila,
1996]. This bar is made of steel (42CD4 rectified) and is instrumented with strain gauges
in order to act like a load cell (see Figure 7.1b). In addition, the lower grip is mounted on
a sliding bar. The sliding bar is in an enclosing case linked to the actuator. The sliding
bar, through the control of the “free fall” length, allows the actuator to reach the imposed
displacement speed before loading the sample. The maximum actuator velocity allowing
an accurate load measurement, i.e. 5 m s−1, is used for this experiment.

For this work, the actuators only allowed for an imposed displacement speed of about
4 m s−1 to 5 m s−1. The “free fall” distance was accordingly set to 25 mm.

The experiment is recorded using the Cordin-580 equipped with a 90 mm Tamron
objective, at 68 kfps with a CCD gain of 15 % and a CDS gain of -3 dB. This low frame
rate has been chosen in accordance with the limited frame rate of the IR camera: it is a
compromise that allows for recording both IR and visible images with a decent temporal
sampling. At such speed, the film duration is about 1.18 ms. In order to provide enough
light, two Pro-10 (2400 J each at 10-stops) Xenon flashes from Profoto are used. They
are set in normal mode, at 10 f-stops. In that configuration, the illumination typically
lasts 2.4 ms with a stable and optimal plateau of 1.1 ms. The flashes and the camera
are triggered separately in this experiment. The flashes are triggered using an infrared
light-gate system (SPX1189 series Honeywell). It is placed in such manner that it is
obscured by the enclosing case. The optical gate will then send a 5 V TTL signal when
the enclosing case is at a given distance to the contact with the sliding bar. This distance
has to take into account the speed of the actuator as well as the rising time of the flashes
(150 µs). It has been empirically determined and set at 3.7 mm from the contact point.
The Cordin-580 is triggered using the load cell. When the load reaches a chosen threshold
(in this study 6231.5 N, ≈ half of the plastic yield), a trigger is sent to the camera. Upon
receiving the trigger, the camera will record the following images, as well as the ones taken
up to 100 µs before (this is named post-triggering). These parameters were determined
empirically through preliminary tests. The working distance between this camera and the
sample is about 31 cm.

This dynamic tensile test is also recorded using the Telops M3K, equipped with a Janos
Technology (ASIOS SERIES 50 mm F/2.3 MWIR) objective. Similarly to the previous
experiment conducted, the IR camera recorded the other face of the sample. In order to
reduce the influence of the experimental setup, a black aluminium foil is placed between
the camera and the sample, with a small opening allowing the sample to be observed
(Fig. 7.1a). The influence of the experimental setup, in particular the one of the flashes,
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will be further discussed in Section 7.2.2. The experiment is recorded at 35 kfps, with an
integration time of 6.24 µs and a windows size of 44 × 64 pixels2. This acquisition speed
is chosen in order to have approximately 1 infrared image every 2 visible-light images.
In order to optimize the spatial sampling of the IR camera, the symmetry of the sample
will be taken into account and only one half of the sample will be observed (see Fig. 7.1c
to have an example of the different POV during an experiment). During the preliminary
tests, it was observed that the crack always initiated on the same side of the sample, hence
the IR camera observed this side. Some explanations of this phenomenon are proposed
in Section 7.4. In addition, the Telops started to record the events before the experiment
as the quantity of data recorded is not an issue. To enable the synchronization with the
kinematic data, a trigger is sent to this camera at the same time as for the Cordin-580,
creating a time stamp in the data recorded by the IR camera.

Additionally, in order to guarantee that the sample is in the focal plane of the Cordin-
580, the same optical device that is described in Chapter 5 was used. This setup using
a laser was used prior to each test in order to verify the sample’s alignment after it was
fixed.

7.1.3 Experimental reproducibility

In Figure 7.2 the loads recorded during the three dynamic tensile tests are plotted. These
three curves match quite well, demonstrating the high reproducibility of the experiments.
During the experiment the load ramps up until about 8000 N, where it remains constant
for the rest of the experiment. The load spike observed around t = 980 µs is explained by
the fact that the load cell is a 2.5 m long instrumented bar inspired from Hopkinson bar
strategy to delay wave reflections. Indeed, by considering a wave speed of about 5 km s−1

in the bar, the initial wave — induced by the shock between the enclosing case and the
sliding bar — will have bounced back and reached the sample in about 1 ms. This is
therefore an artefact and the analysis of the experiment must be stopped before.

Due to the high reproducibility of the experiment, in what follows only one of the
test will be investigated further. However, more elements of comparison can be found in
Appendixes D and E.

7.1.4 Calibration of the different cameras

In order to be able to use the DIC methodology proposed in this work, a reference image is
needed. Since for this application a speckle pattern is painted on each sample, a reference
image is needed for each sample. To this effect, samples images were recorded using a
high definition camera (50M pix, Prosilica GT from Stemmer) combined with the same
objective lens as the one used with the Cordin-580, prior to the test. Furthermore, 12
calibration shots were taken with the Cordin camera when the first sample was mounted,
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(a) Experimental setup for a dynamic
tensile test,

(b) Photo of the dynamic tensile machine
setup,

(c) Sample geometry and the associated
POV for the two cameras,

Figure 7.1: Experimental setup for a dynamic tensile test, recorded using a visible-light
camera and an infrared one.

prior to the test. These calibration shots are used in order to create a representative
model of the distortions induced by the camera in experimental conditions (lens, working
distance, magnification, frame rate). Then, in order to correct the eventual rigid body
motion between one experiment and the other, a single calibration shot is performed
before each of the other experiments.

In addition, a calibration campaign was also performed for the Telops using a black-
body. The blackbody was placed at the sample’s place (see Fig. 7.4a). The calibration
was conducted using the same IT, fps and windows size than for the experiment and for
temperatures from 20 ◦C to 150 ◦C. Besides, before each experiment a fullframe image
was taken with the infrared camera. This fullframe image is used in order to perform

131



Part II, Chapter 7 – Dynamic tensile test for the characterization of an XES steel

Figure 7.2: Loads evolution obtained for three different tests.

Lagrangian thermography, especially to find the rigid body transformation that allows to
pass from the Cordin-580 reference configuration to the Telops one.

7.1.5 Mesh and DIC parameters

Contrary to the preliminary test presented in Chapter 5, we use here a continuous mesh,
that is to say without twin nodes along the crack paths. This choice will be motivated
later when the stress identification approach (DDI) will be presented. However, since it
is known that strain localization appears in 2 principal bands, the mesh is refined along
these bands and in the vicinity of the notches and the hole as well. The element size is 32
pixels on average, but finer along the crack (about 26 pix). A Tikhonov regularization of
the DIC problem of 4 elements is used to filter-out spatial noise. Finally, the pixel size,
obtained by recording an image of a ruler prior to the test, is 14.5 µm. This leads to a
field of view of 35.8 mm x 47.8 mm (see Tab. 7.1).

The same procedure as in Chapter 5 is used to compute time derivatives, it is recalled
quickly here. The displacements are firstly pointwise convolved with a rolling temporal
Savitzky-Golay filtering window of second order with a window size equal to 23 frames.
The size of the kernel is chosen based on the analysis conducted in Section 6.4. Then
strain-rates are obtained from strains using a simple 1st order finite difference scheme.
Such data filtering marginally affects strain, but significantly decreases the amount of
noise on strain-rates.
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Camera Cordin-580
Image resolution 2472 pixels × 3296 pixels
Dynamic Range, Detector 12 bits
Dynamic Range, Image 16 bits
Acquisition Rate 68 kfps
Lens Tamron SP 90 mm Di Macro
Aperture f/2.8
Field of view 35.8 mm × 47.8 mm
Image scale 1 pixel = 14.49 µm
Stand-off distance 31 cm
Patterning Technique Black and White paint

Table 7.1: DIC hardware parameters.

DIC Software Ufreckles [Réthoré, 2018]
Shape Function linear FE triangle elements
Matching Criterion element-wise ZNSSD
Image Filtering sensor flattening (vignetting)
Data Processing U : Tikhonov regularization

over 4 elements
Data Post-Processing ε̇ : temporal Savitzky–Golay filter of order 2

applied onto U (win = 23 fr)
Experimental systematic U : 0.5 pix ± 0.2 pix
and random error 3 ε: 100 µε ± 2.0 mε

ε̇: 0.5 s−1 ± 50 s−1

Table 7.2: DIC analysis parameters.

Camera Telops M3K
Image resolution 44 pixels × 64 pixels
Acquisition Rate 35 kfps
Lens ASIOS SERIES 50 mm
Aperture f/2.3
Field of view 20.8 mm × 30.3 mm
Image scale 1 pixel = 472.97 µm
Stand-off distance ≈ 1 m

Table 7.3: IR hardware parameters.
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7.2 Technical issues and solutions

Due to the complexity of the experiments conducted, some technical issues have to be
tackled. This is the aim of this section.

7.2.1 Load measurement

The load is captured by the load cell during the experiment. However, it has to be adjusted
time-wise: indeed, the load is measured by strain gauges while the information is needed
on the mesh boundary, in particular for the DDI (see Chap. 8). Hence, due to the distance
between the mesh boundary and the strain gauges, a delay has to be taken into account.
Figure 7.3 recalls the experimental apparatus, with in particular the distances of interest:
the distance between the strain gage and the grip (120 mm using the constructor’s data)
as well as the distance between the grip and the ROI (≈ 35 mm measured manually).
Then, using the modified bar’s properties (E = 205 GPa and ρ = 7850 kg/m3), the delay
is computed as follows: τ =

√
ρ√
E

, which yields a delay of 30 µs. This is in the order of
magnitude of two Cordin interframes for this experiment. Furthermore, note that even an
error of 1 cm in the distance between the grip and the ROI leads to an error of 2 µs for τ ,
which is negligible regarding our time resolutions.

Figure 7.3: Photo of the dynamic tensile machine setup, with a focus on the distances
between the strain gage, the grip and the ROI.

7.2.2 Influence of the flashes

The requirements for ultra-high speed DIC imaging and infrared measurements around
room temperature are antagonistic. Indeed, a large amount of light is required for the UHS
imaging, which usually covers a large spectrum of wavelength, while the IR measurements
require no disturbances within its wavelength bandwidth of recording.
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First, tests were conducted in order to investigate the flashes influence on the tem-
perature measurement. To this effect, a blackbody was placed at the sample’s location
and was set at 25 ◦C (see Figure 7.4a) while the other experimental conditions remained
the same (IT, fps, windows size and the aluminium foil was also used) in order to be
as representative as possible. Then, the flashes were activated manually and the thermal
scene was recorded. This procedure has been performed twice, the results are represented
in Fig. 7.4b. The temperatures are obtained using the embedded calibration from the
camera. This figure highlights the reproducibility of the phenomenon. The shape of the
temperature rise can be explained by the light intensity delivered by the flashes. Indeed,
in Fig. 7.4c the normalized light intensity delivered by the flashes in the experimental
conditions is captured through the use of a high speed luxmeter (Sekonic L-858). We can
retrieve the fact that there is a spike of the light intensity after approximately 1.1 ms and
that the flashes duration is about 2.4 ms. Furthermore, since the IR camera is recording the
centre of a blackbody at room temperature, the increase of temperature is non-physical.
Hence, it leads to the conclusion that the flashes, due to their light being emitted partially
in the infrared range recorded by the IR camera (see Fig. 7.4d), induce an apparent rise
of temperature captured by the camera. During the recording of the experiment, denoted
by the black dashed lines, this apparent rise of temperature reaches about 1 ◦C ± 0.25 ◦C.
Additionally, this apparent raise of temperature is spatially homogeneous as showed in
Fig 7.4e. Since this phenomenon is very reproducible, a correction can be applied to the
experimental temperatures in order to retrieve the effective sample’s temperature. The
systematic and random errors obtained after the correction are 0 ◦C ± 0.230 ◦C. These
values are obtained when applying the correction to the data from Fig. 7.4b. This remains
in the order of magnitude of the uncertainties evaluated in “perfect” conditions without
any flash (see Chapter 4).

7.2.3 Pre-stressed sample

The experimental setup is hyper-static, and as a result, the sample when fixed is already
pre-constrained. Indeed, the griping device relies on two metallic rods on each side of
the sample to maintain it. However, due to its use, the rods are deformed. As a result
the sample may be already slightly deformed when placed, before the experiment. This
can be evidenced by looking at the displacement fields obtained for the shot taken when
the sample is in place and static. A rigid-body motion identified on the first image is
subtracted to these fields in order to account for a possible small rotation between the
reference image (taken with another camera in a different set-up) and the Cordin images.
Figure 7.5 depicts the averaged over time of the axial and transverse displacement fields
with the rigid-body motion subtracted as well as the averaged over time Von-Mises norm
of the total strain. This figure shows that the sample is under vertical tension on the
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(a) Blackbody placed at the
sample’s location to

investigate the flashes
influence,

(b) Temperature raise
induced by the flashes,

(c) Light intensity delivered
by the flashes in

experimental conditions,

(d) Emission spectrum of Xenon
flashes [Products, nd],

(e) Example of the temperature fields
obtained at the end of experiment

recording (°C),

Figure 7.4: Experimental setup for the investigation of the flashes influence on the thermal
scene.

right-hand side, as well as horizontal tension on the bottom. Nevertheless, the amplitude
of these tensions are about ± 1 pixels. Furthermore, the averaged over time Von-Mises
norm of the total strain clearly shows that the sample is slightly deformed (less than
3 mm m−1), which is in the same order of magnitude as the strain measurement uncer-
tainty. Hence, the sample may be pre-constrained by the experimental setup, nevertheless
this phenomenon is not significant.
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(a) Ux averaged over time (pix) (1 pixel =
14.5 µm),

(b) Uy averaged over time(pix) (1 pixel =
14.5 µm),

(c) ||εt||V M averaged over time (mm m−1),

Figure 7.5: Averaged over time displacement fields and Von-Mises norm of the total strain
when the sample is placed in the gripping device and static.
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7.3 Evolution of macroscopic quantities during the
test

The deconvolution between the distortions and the effective displacements is made using
the camera model built using the 12 calibration shots. In addition, using the reference
shot taken prior to the test, the changes of the extrinsic parameters can be taken into
account. Finally, the correct pairing between the sensors and the mirror faces is identi-
fied using optical considerations (Chapter 3). This allows the displacement, strain and
strain-rate fields to be extracted. In a similar manner, using the calibration campaign of
the IR camera performed in the same experimental conditions as the experiments, the
temperatures can be extracted from the raw data capture by the Telops. Furthermore,
using the displacement fields obtained with the Cordin-580 and following the Lagrangian
Thermography procedure (see Chapter 4), the temperatures are obtained in the refer-
ence configuration. In addition, the apparent rise of temperature induced by the flashes
is deducted in order to retrieve the sample’s temperature. Finally, similarly to what is
done to the kinematic fields, the Lagrangian temperatures are pointwise convolved with a
temporal Savitzky-Golay filtering kernel of order 2 with a window size equal to 23 frames
(after interpolation on the Cordin timeline).

Figure 7.6 depicts the evolution of different quantities of interest during the experi-
ment.

First, let us look at the temporal evolution of the averaged axial displacement and
velocity obtained in the whole sample (depicted by the simple lines) and of the nodes
located at the bottom of the mesh (depicted by the lines with markers), i.e. close to the
sample head where the loading is applied. Figure 7.6a shows displacement in blue and
velocity in red. The three vertical dashed lines are the time steps for which associated
fields will be discussed later-on. Note that the zero in the timeline correspond to the
time when the Cordin-580 is triggered by the load cell, hence the negative times for
the first images. The loading of the specimen induces immediately on the loaded edge a
displacement ramp, reaching about 2.8 mm before the initiation of the crack. The averaged
axial displacement in the whole sample has a similar behaviour, with a lower slope, and
reaches about 2 mm. The velocities in the whole sample or for the nodes at the bottom
of the mesh have the same trend. The velocities evidence two stages: from the beginning
to approximately t = 370 µs the velocities increase in the tension direction, then from
t = 370 µs to t = 620 µs they decrease. The second stage can be explained by considering
the possibility that the contact between the sliding bar and its enclosing case is not
permanent. Indeed, if the sample goes faster than the actuator, then when there is no
more contact its speed will naturally decrease until there is contact again. One way to
verify this hypothesis would have been to record accurately the speed of the actuator
(using DIC with a high speed camera for instance). However, this was not done for these
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(a) Average Uy and Vy, (b) Average total strain and strain-rates,

(c) Average temperature raise as well as
the load, the black line shows the average

temperature increase over the sample
before correction,

Figure 7.6: Evolution of different quantities of interest during an heterogeneous test. A
simple line denotes the evolution of the considered quantity averaged in the whole sample,
while a line with marker denotes its evolution in a particular zone (either the bottom of
the mesh or the localization band).

experiments. During the experiment, the maximum speed reached on the loaded edge is
about 4.8 m s−1 in about 476 µs which represent an acceleration on the order of 104 m s−2;
while the maximum speed experienced by the whole sample is about 3.5 m s−1.

Figure 7.6b plots the evolution of the Von-Mises norm of both the total strain (in blue)
and total strain-rates (in red) either in the whole sample (depicted by the simple lines)
or in a localization band during the experiment (depicted by the lines with markers).
This figure shows that during the first 100 µs of the experiment, the sample is mainly
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in an elastic regime (||εt||V M ≤ 0.005). Furthermore, the total strain in the localization
band goes past 0.01 after about 150 µs, after which it increases following a ramp until
about 0.22 before the crack initiation. On the other hand, the global total strain reaches
only 0.05 before the crack initiation, which shows that deformation mainly occurs in the
localization bands. In the considered band, two stages of the normalized total strain-rate
can be observed. First, it ramps up to 375 s−1 in about 300 µs. Then, the normalized total
strain-rate reaches a plateau and oscillates between 350 s−1 and 400 s−1. Similarly to the
total strain, the total strain-rate in the whole sample is lower than the one observed in
the bands as it reaches only 100 s−1.

At last, Figure 7.6c shows the evolution of the load during the experiment (in blue). It
also depicts the average temperature increase (in red) either in the whole sample (depicted
by the simple line) or in the considered band (depicted by the line with markers). In
addition, the black line depicts the average temperature raise in the whole sample prior
to the flashes correction. Two stages can be evidenced for the load. During the first
150 µs the load ramps up until 8 kN. Then it reaches a plateau and oscillates around
8.5 kN. Considering an initial cross section S0 equal to 1.68 × 10−5 m2 (subtracting the
holes), the engineering stress can be estimated at 500 MPa. This value is in line with
the ones obtained in [Haugou et al., 2006]. The comparison between the uncorrected
temperature (black line) and the corrected temperature (red line) shows that most of
the apparent temperature increase induced by the flashed is removed. Nevertheless, a
slight increase of about 0.3 ◦C remains while the sample should slightly cool down by
the same amount due to thermoelasticity. This reveals that the calibration procedure,
while allowing to remove most of the bias, is not reproducible enough to entirely get
ride of small variations, and thus does not allow to capture thermoelasticity. However,
note that thermoelasticity would have been almost impossible to capture anyway when
considering the measurement uncertainty obtained in Chapter 4 (as a reminder: 300 mK),
which is already in the same order of magnitude as thermoelastic effects. Nevertheless,
after 100 µs, the temperature increases follow the same trend as the normalized total
strains, as expected. The sample temperature increase reaches 15 ◦C on average in the
localization band before crack initiation with a rate on the order of 25 K/ms, which is in
line with the values obtained with FE simulations. On the other hand, the temperature
increase in the whole sample reaches about 4 ◦C before crack initiation.

7.4 Displacement and temperature fields

Figure 7.7 shows sample images, displacement fields in both directions, the axial strain
fields as well as the temperatures for the three time steps introduced previously. The dis-
placement fields obtained are consistent with a tensile test. The first two images underline
the fact that the tensile test is not perfectly axial. Indeed, the axial displacements are
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higher on the left-hand side of the sample. This phenomenon was observed for all the
experiments performed as well as on the preliminary tests. In turn, crack initiation sys-
tematically begins on the left-hand side of the sample before the right-hand side. No clear
explanations have been found for this observation. It may partly due to the fact that the
sample is already pre-constrained, and a non-planar contact between the sliding bar and
its enclosing case may also come into play. However, no clear evidences have been found to
confirm these hypotheses. The strain fields at 246.79 µs further confirm the fact that the
load imposed on the sample is not symmetrical since strains are higher in the left band.
The sample geometry induces localization bands as predicted by the FE simulations with
little strain everywhere else. Regarding the temperatures, Figures 7.7m, 7.7n and 7.7o
show that the sample’s temperature rises mainly in the strain localization bands. During
the first 782 µs (i.e. before the crack initiation), the temperature increase reaches up to
35 ◦C near the hole and the notches, with an average of about 15 ◦C in the bands. These
values are in line with the temperature elevation obtained for the simulation predictions
(see Fig 6.13c).

In the same spirit as in the previous Chapter, the normalized total strain vs total
strain-rate distribution is presented in Figure 7.8. Let us first note that before cracking,
only a few points reach a total strain higher than 0.25. Nevertheless, the results are quite
in agreement with the prediction made in Section 6.4. The strain and strain-rates in the
range of respectively [0 – 0.25] and [0 s−1 – 500 s−1] predicted by the numerical twin are
recovered quite nicely. In addition, Figure 7.9 depicts the temperature vs Von-Mises norm
of the total strain distribution for elements in the bands up to crack initiation. This figure
highlights the fact that the temperature is mainly proportional to the Von-Mises norm of
the total strain as predicted by simulations.
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(a) Undistorted image, (b) Undistorted image, (c) Undistorted image,

(d) Ux (pix), t = 246.79 µs, (e) Ux (pix), t = 468.22 µs, (f) Ux (pix), t = 615.83 µs,

(g) Uy (pix), t = 246.79 µs, (h) Uy (pix), t = 468.22 µs, (i) Uy (pix), t = 615.83 µs,

(j) Axial strain (m/m), t =
246.79 µs,

(k) Axial strain (m/m), t =
468.22 µs,

(l) Axial strain (m/m), t =
615.83 µs,

(m) T-To (◦C), t = 246.79 µs, (n) T-To (◦C), t = 468.22 µs, (o) T-To (◦C), t = 615.83 µs,

Figure 7.7: Undistorted images, displacement fields, strain fields as well as temperature
fieldsobtained during a dynamic tensile test, for different time steps.
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Figure 7.8: Von-Mises norm of the strain vs Von-Mises norm of the strain-rates distribution
obtained during the experiment, prior to crack initiation. The colour corresponds to a 2D
histogram plot. The count per bin is normalized by the number of element in the ROI
multiplied by the number of time steps. The stress states that were never experienced by
the sample remain white.

Figure 7.9: Temperature vs Von-Mises norm of the total strain distribution for elements
in the main localization band before crack initiation.

7.5 Conclusion

In this chapter, a dynamic tensile test on an XES steel using a sample geometry defined in
the previous chapter is presented. This experiment was instrumented with an ultra-high
speed rotating mirror camera: a Cordin-580, as well as with a high speed infrared camera:
a Telops M3k. The main conclusions are as follows:
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• Quantitative kinematic and thermal full-field data from a dynamic tensile test per-
formed on an XES steel have been acquired at a rate of 68,000 fps and 35,000 fps
respectively.

• The apparent rise of temperature induced by the flashes is reproducible within less
than 1 ◦C variation. Thus, a correction is applied to the thermal data obtained
experimentally. The temperature measurement is found to be relevant once strains
are beyond the elastic limit.

• During the experiment, the loading velocity reaches up to 4.8 m s−1, but is not
constant. In addition, in the strain localization bands, the total strain reaches 0.22
and the strain-rates 500 s−1. Moreover, despite being unable to capture the material’s
thermoelastic response, the raise of temperature induced by plastic work is captured.
In the band, the temperature increases up to 35 ◦C close to the concentrators, but
only 15 ◦C on average in the bands.
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8.1 Introduction

Recently, several strategies have been adopted to estimate stress fields in non-standard
experiments without using a constitutive law. These strategies all rely on full-field mea-
surements and a regularization of the ill-posed mechanical problem, but differ on the
chosen regularization.

In 2014, Pierron and his co-authors [Pierron et al., 2014] devised a strategy to esti-
mate mean stress fields in dynamics without using a constitutive law. To this effect, the
strategy relies on the use of a statically determined configuration (an inertial impact test
for instance). Under the assumptions of plane stress, and a homogeneous and constant
density of the material, the authors are able to estimate the mean stress field profile in
the specimen. For this strategy, the acceleration acquired experimentally acts as a load
cell, which requires recording kinematic fields at ultra-high speed (≥ 1M fps). This work
opened the way to the so called Image-Based Inertial Impact Tests (IBII). Among other,
it allowed the authors to identify the elastic modulus and tensile strength of tungsten
carbide cermets [Fletcher and Pierron, 2018] and a composite [Fletcher et al., 2019] at
high strain-rate. More recently, the strategy was also applied in a new experimental con-
figuration: the Image-Based Inertial Release (IBIR) test [Fletcher and Pierron, 2020]. This
new configuration allowed the identification of both quasi-static and high strain-rate elas-
tic modulus and Poisson’s ratio for PMMA. In these examples, the boundary conditions
(purely inertial test) regularize the problem. If the test is not uniaxial any more, the
authors proposed an elegant solution in the case of elastic orthotropic material [Pierron
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and Fletcher, 2019].

Even more recently, in 2021, Liu et al. [Liu, 2021] and Cameron and his co-author [Cameron
and Tasan, 2021] devised another strategy to estimate stress fields without postulating
a constitutive equation. Assuming that the material is isotropic, the methods developed
by these authors rely on the alignment of the principal directions of stress with strain or
strain-rate. This assumption then allows obtaining a mathematically closed problem, and
thus the analytical estimation of stresses. These methods have been tested on numerical
example and experimentally in [Liu, 2021]. In [Cameron and Tasan, 2021], the authors
discuss the range of validity of such an assumption: mainly in isotropic elasticity, plasticity
with associative flow rules and for associative flow rules with an isotropic yield function.
Furthermore, this method cannot address the problem of elasto-plastic transition where
stresses are not aligned with strains anymore and not aligned with plastic strain-rates yet.

The recent developments in computer science and in particular in the data science
field, has led to the emergence of a third kind of strategy relying on data in the past
4 years: the so called Data-Driven approaches. These methods can be used to either
solve the direct problem [Kirchdoerfer and Ortiz, 2016] or the inverse mechanical prob-
lem [Leygue et al., 2018]. The so called Data-Driven methods were first introduced in the
context of computational mechanics by Kirchdoerfer and Ortiz [Kirchdoerfer and Ortiz,
2016, Kirchdoerfer and Ortiz, 2017]. In their work, the authors replaced the constitutive
equation by a minimization process and a material database. A solution is found by mini-
mizing a distance (which they defined) between computed mechanical states (strains and
stresses) and a set of admissible material states. The authors then extended their methods
to dynamics [Kirchdoerfer and Ortiz, 2018]. These methods called Data-Driven Compu-
tational Mechanics are used to solve the direct problem: find the response of structure
(strains and stresses) using a set of admissible material states, which have to be found
experimentally. These works were then derived in order to formulate inverse Data-Driven
approaches. Hence, in their work Leygue and his co-authors [Leygue et al., 2018,Leygue
et al., 2019] formulated the inverse problem associated to the Data-Driven Computational
Mechanics. This new problem aims to estimate stress fields from heterogeneous experi-
ments without having to explicit any constitutive equation. Using synthetic data, the
authors demonstrated the ability of their algorithm to estimate admissible stresses in a
structure for various loading cases (quasi-static and dynamic problems) as well as differ-
ent material behaviours (hyperelasticity, elasto-plastiticy). This Data-Driven method was
then applied to experimental data by Dalémat et al. in [Dalémat et al., 2019]. In this
study, perforated hyperelastic membranes are submitted to uniaxial tensile tests. In addi-
tion, in a recent paper [Dalémat et al., 2021] extensively discuss the proper way to handle
imperfect experimental data. The authors especially discuss the boundary conditions for
imperfectly defined edges and the way to tackle the issue of missing data. More recently,
the Data-Driven strategy was applied by Langlois and his co-authors to experiments on
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history dependent materials [Langlois et al., 2022]. The use of this method enabled them
to estimate stress fields for an elasto-platic material that is subjected to the formation of
Piobert-Lüders bands. In these strategies, the regularization comes from the assumption
that the material response lies on a manifold in a constitutive space which remains to be
determined. The underlying hypothesis of this method will be presented later-on in this
Chapter. Furthermore, one could imagine combining this method with the IBII method in
order to estimate heterogeneous 2D stress fields in dynamics without needing load mea-
surements.

These emergent strategies can potentially help to assess, without making any assump-
tions, the validity of material constitutive equations outside their validity domain (e.g.
heterogeneous tests, with multi-axiality, couplings...). In that context, the Data-Driven
Identification formulation and resolution strategy for visco-elasto-plastic materials will
first be recalled. Then, a numerical test case is built to investigate the ability of such a
method to estimate stress fields, and especially its accuracy.

8.2 Data-Driven Identification

8.2.1 Problem formulation and resolution

Data-Driven Identification relies on rich databases of displacement fields (obtained for
example with DIC) combined with the imposed forces (usually obtained with a load cell)
in order to reconstruct the stress states without using an explicit parametric constitutive
relation. In the following, the mechanical problem introduced in [Leygue et al., 2018,
Leygue et al., 2019] extended by Eggersmann and his co-authors [Eggersmann et al.,
2019] for history dependent materials is used. Furthermore, the modified strategy proposed
in [Leygue et al., 2019] is adopted. The formulations and notations that will be recalled and
used in this work are the one introduced by Langlois and his co-authors in [Langlois et al.,
2022]. The problem is formulated here in small strain, however it has been implemented
and used in finite strain in [Dalémat et al., 2019,Platzer et al., 2021].

In the Data-Driven Identification (DDI) strategy used in this work, a 2D structure
made of deformable material is considered. This structure is discretized using a Finite
Element mesh with Ne elements and Nn nodes. Furthermore, the data obtained experi-
mentally, available at each time step j ∈ [1, Nt] are the following:

• uj
k: the displacement measured at every node k of the mesh

• Bek: the classical FEM gradient operator, calculated from the geometry and mesh
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connectivity allowing to compute the strain tensor at every integration point e:

εj
e =

Nn∑
k=1

Bek · uj
k, (8.1)

• F j: the net force of the nodal forces on a boundary ∂F

F j = h
∑

k

f j
k ∀k ∈ ∂F, (8.2)

with h the thickness of the structure, supposed to be constant and f j
k the nodal

forces at each node along the boundary ∂F .

The definition of a scalar distance between strain and stress tensors in a constitutive
space requires to introduce a norm, built from a symmetric positive definite fourth-order
tensor Co. Following [Kirchdoerfer and Ortiz, 2016,Leygue et al., 2019], the ∥∥Co norm is
introduced as follows:

∥(A,B)∥2
Co

= (A : Co : A+B : C−1
o : B), (8.3)

with A and B two second-order tensors.

In addition, following Eggersman et al. recommendations [Eggersmann et al., 2019],
the history and time-dependent behaviour of the material will be described using strain,
stress and their first order time derivatives. To this effect, similarly to what is done
in [Langlois et al., 2022], an incremental approach will be used, which means that the
stress reconstructed at time step j will depend on the strain at j as well as the strain
and stress at j − 1. As a result, the constitutive space that will be considered in this
work is (εj, εj−1,σj,σj−1). The reconstruction of stress field is an ill posed problem.
Traditionally, the use of constitutive equations allows to bypass this difficulty. In the Data-
Driven Identification method, this issue is tackled by introducing a set of N∗ unknown
states (ε∗, ε∗∗,σ∗,σ∗∗), where •∗ are related to the current state and •∗∗ to the former
state. These N∗ states are, in practice, centroid or barycentre of mechanical states clusters.
These clusters regroup the set of strains and searched stresses (εj

e, ε
j−1
e ,σj

e,σ
j−1
e )e,j∈[2,Nt]

that are close in the ∥∥Co norm sense. The set (ε∗, ε∗∗,σ∗,σ∗∗) is called material states,
it can be interpreted as a sampling of the strain-stress manifold.

Leygue et al. [Leygue et al., 2019] proposed to initialize the method with σ̄e, obtained
from a FE simulation under prescribed loads. Hence, the DDI method consists eventually
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in finding a self-balanced correction dσe, i.e. whose net force over the boundary is null:

Ne∑
e=1

weBek
T · dσj

e = f j
k ∀j, k,

with f j
k = 0 in the volume, and

∑
k∈∂F

f j
k = 0,

(8.4)

where we is the integration weight for element e. This can be rewritten as:

Ne∑
e=1

weBek
T · dσj

e = 0 ∀j, ∀k in the volume,

Ne∑
e=1

we

 ∑
k∈∂F

Bek
T

 · dσj
e = 0 ∀j.

(8.5)

This set of N̂ = Nn − card(∂F ) + 1 equations naturally leads to the definition of the
operator B̂el

T that simplifies the previous equilibrium equations into a single one:

Ne∑
e=1

weB̂ek
T · dσj

e = 0 ∀j, ∀k ∈ [1, N̂ ]. (8.6)

In practice, this operator is obtained from (Bek
T ) by performing the linear combination

that appears in Eq. 8.5. As a result, the problem is written as a global minimization
problem:

min
dσ,ε∗,ε∗∗,
σ∗,σ∗∗,S

Ψ(dσ, ε, ε∗, ε∗∗,σ∗,σ∗∗,S),

with Ψ =
Nt∑

j=2

Ne∑
e=1

pe∥εj
e − Sj

eε∗, σ̄j
e + dσj

e − Sj
eσ∗∥2

Co

+ pe∥εj−1
e − Sj

eε∗∗, σ̄j−1
e + dσj−1

e − Sj
eσ∗∗∥2

Co
,

(8.7)

under the constraint that the equilibrium (Eq. 8.6) is respected. This equilibrium is en-
forced during the resolution using Lagrange multipliers (λj

k)j,k. pe is the weight of the
integration point e for the considered cost function Ψ, Sj is a selection matrix that maps
the material states to the mechanical states at time j, Sj

e is its line e.

The choice of pe has been investigated in the work of Langlois [Langlois et al., 2022].
The authors showed that the choice of this parameter does not change significantly the
convergence and the solution with respect to a given norm. Furthermore, choosing pe equal
to 1 led to a better temporal stability of the stress correction element wise (i.e. a smaller
standard deviation in time of the stress correction for each element). This choice implies
that each element will have the same weight in the functional to minimize, regardless of
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its localization and its size. This leads to the following problem:

δ

 Nt∑
j=2

Ne∑
e=1

∥εj
e − Sj

eε∗, σ̄j
e + dσj

e − Sj
eσ∗∥2

Co

+
Nt∑

j=2

Ne∑
e=1

∥εj−1
e − Sj

eε∗∗, σ̄j−1
e + dσj−1

e − Sj
eσ∗∗∥2

Co

+
Nt∑

j=1

Ne∑
e=1

N̂∑
k=1

(weB̂ek
T · dσj

e) · λj
k

 = 0.

(8.8)

Taking all possible variations yields the following set of equations:

δε∗
i ⇒

Nt∑
j=2

∑
e/Sj

eε∗=ε∗
i

Co : (εj
e − Sj

eε∗) = 0 ∀i, (8.9)

δε∗∗
i ⇒

Nt∑
j=2

∑
e/Sj

eε∗∗=ε∗∗
i

Co : (εj−1
e − Sj

eε∗∗) = 0 ∀i, (8.10)

δσ∗
i ⇒

Nt∑
j=2

∑
e/Sj

eσ∗=σ∗
i

C−1
o : (σ̄j

e + dσj
e − Sj

eσ∗) = 0 ∀i, (8.11)

δσ∗∗
i ⇒

Nt∑
j=2

∑
e/Sj

eσ∗∗=σ∗∗
i

C−1
o : (σ̄j−1

e + dσj−1
e − Sj

eσ∗∗) = 0 ∀i, (8.12)

δλj
k ⇒

Ne∑
e=1

weB̂ek
T · dσj

e = 0 ∀j, ∀k, (8.13)

and δdσj
e ⇒



2
(
C−1

o : (σ̄j
e + dσj

e − Sj+1
e σ∗∗)

)
+

∑
k

weB̂ek · λj
k = 0, if j = 1[

2
(
C−1

o :
(
(σ̄j

e + dσj
e − Sj

eσ∗) + (σ̄j
e + dσj

e − Sj+1
e σ∗∗)

))
+

∑
k

weB̂ek · λj
k

]
= 0, ∀j ∈ [2, Nt − 1],

2
(
C−1

o : (σ̄j
e + dσj

e − Sj
eσ∗)

)
+

∑
k

weB̂ek · λj
k = 0, if j = Nt.

(8.14)

Let us note, for clarification purposes, that the summation ∑Nt
j=2

∑
e/Sj

eε∗=ε∗
i

simply de-
notes the summation over the spatio-temporal elements that are regrouped in the ith

material cluster. The resolution of such a problem is extensively discussed in [Leygue
et al., 2019, Stainier et al., 2019]. It relies on a staggered algorithm that computes al-
ternatively the correction of the stress field and the lagrangian multipliers for a given
material state set and selection matrices (this will be called the mechanical problem), and
then the update of the material states set and selection matrices for given stresses and
lagrangian multipliers (this will be called the material problem). These two steps will be
further discussed later on.
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8.2.1.1 Data normalization

The computation of the selection matrices for given stresses and lagrangian multipliers
relies on clustering algorithm such as k-means – this procedure will be discussed later
on. However, since the material and constitutive space considered combine strains and
stresses, which differ from several orders of magnitude, a normalization of the data is
introduced in this paragraph. The changes induced by this normalization on the equations
will be also presented.

To normalize the data we introduce the following quantities:

ε =
√
Co : ε,

σ =
√
Co

−1 : σ,
(8.15)

where Co is the fourth-order tensor introduced earlier. Using these new quantities, the
norm ∥(A,B)∥2

r can be defined as:

∥(A,B)∥2
r = (A : A+B : B), (8.16)

with A and B two normalized second-order tensors. It follows that the new constitutive
space considered is (εj

e, ε
j−1
e ,σj

e,σ
j−1
e )e,j∈[2,Nt], and the set of material states becomes

(ε∗, ε∗∗,σ∗,σ∗∗). Hence the minimization problem from Eq. 8.7 is rewritten:

min
dσ,ε∗,ε∗∗,
σ∗,σ∗∗,S

Ψ(dσ, ε, ε∗, ε∗∗,σ∗,σ∗∗,S),

with Ψ =
Nt∑

j=2

Ne∑
e=1

∥εj
e − Sj

eε∗, σ̄j
e + dσj

e − Sj
eσ∗∥2

r

+ ∥εj−1
e − Sj

eε∗∗, σ̄j−1
e + dσj−1

e − Sj
eσ∗∗∥2

r,

(8.17)

under the constraint that

Ne∑
e=1

weB̂ek

T · dσj
e = 0 ∀j, k,

with B̂ek

T = B̂ek
T :

√
Co.

(8.18)

Since the new norm verifies ∥(A,B)∥2
r = ∥(A,B)∥2

Co
, the following relation is also verified:

Ψ(dσ, ε, ε∗, ε∗∗,σ∗,σ∗∗,S) = Ψ(dσ, ε, ε∗, ε∗∗,σ∗,σ∗∗,S). Hence, the solutions of the re-
formulated minimization problem remain solutions of the previous one, once the strains
and stresses are renormalized correctly. Furthermore, the stationarity of this global min-
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imization problem leads to the following new set of equations:

δε∗
i ⇒

Nt∑
j=2

∑
e/Sj

eε∗=ε∗
i

εj
e − Sj

eε∗ = 0 ∀i, (8.19)

δε∗∗
i ⇒

Nt∑
j=2

∑
e/Sj

eε∗∗=ε∗∗
i

εj−1
e − Sj

eε∗∗ = 0 ∀i, (8.20)

δσ∗
i ⇒

Nt∑
j=2

∑
e/Sj

eσ∗=σ∗
i

σ̄j
e + dσj

e − Sj
eσ∗ = 0 ∀i, (8.21)

δσ∗∗
i ⇒

Nt∑
j=2

∑
e/Sj

eσ∗∗=σ∗∗
i

σ̄j−1
e + dσj−1

e − Sj
eσ∗∗ = 0 ∀i, (8.22)

δλj
k ⇒

Ne∑
e=1

weB̂ek

T · dσj
e = 0 ∀j, ∀k, (8.23)

and δdσj
e ⇒



2
(
σ̄j

e + dσj
e − Sj+1

e σ∗∗
)

+
∑

k

weB̂ek · λj
k = 0, if j = 1[

2
(
σ̄j

e + dσj
e − Sj

eσ∗ + σ̄j
e + dσj

e − Sj+1
e σ∗∗

)
+

∑
k

weB̂ek · λj
k

]
= 0, ∀j ∈ [2, Nt − 1],

2
(
σ̄j

e + dσj
e − Sj

eσ∗
)

+
∑

k

weB̂ek · λj
k = 0, if j = Nt.

(8.24)

In the rest of this Chapter, the data is considered normalized and thus the reformulated
global minimization problem will be tackled.

8.2.1.2 Resolution of the mechanical problem

As mentioned previously, the resolution of the global minimization problem relies on
the use of staggered algorithm. In this paragraph, the computation of (dσj

e)e,j and (λj
k)k,j

will be presented. Let us consider a given set (ε∗, ε∗∗,σ∗,σ∗∗) and given selection matrices
(Sj)j. The computation of desired quantities relies on Eq. 8.23-8.24. First, the lagrangian
multipliers are computed by multiplying Eq. 8.24 by weB̂el

T and then by performing a sum
over all the elements. Using, Eq. 8.23, this leads to the following set of linear equations
in the lagrangian multipliers:
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∀l, j ⇒



∑
e

2weB̂el

T · (σ̄j
e − Sj+1

e σ∗∗) +
∑

e

∑
k

we
2B̂el

T : B̂ek · λj
k = 0, if j = 1

∑
e

2weB̂el

T ·
(
σ̄j

e − Sj
eσ∗ + σ̄j

e − Sj+1
e σ∗∗

)
+

∑
e

∑
k

we
2B̂el

T : B̂ek · λj
k = 0, ∀j ∈ [2, Nt − 1],

∑
e

2weB̂el

T · (σ̄j
e − Sj

eσ∗) +
∑

e

∑
k

we
2B̂el

T : B̂ek · λj
k = 0, if j = Nt.

(8.25)

This set of equation describes Nt linear systems of equations that can be written in
the form ([M ][λ]j = [F]j)j, where [M ] is a square matrix of N̂ by N̂ , [λ]j is the vector
containing the lagrangian multipliers at j and [F]j is a vector containing internal force
mismatch between the mechanical states and their material states at j. [M ] and [F] follow
the relations:

∀k, l, [M ]k,l =
∑

e

we
2B̂el

T : B̂ek, (8.26)

∀l [F]jl =



−
∑

e

2weB̂el

T · (σ̄j
e − Sj+1

e σ∗∗), if j = 1,

−
∑

e

2weB̂el

T ·
(
σ̄j

e − Sj
eσ∗ + σ̄j

e − Sj+1
e σ∗∗

)
, ∀j ∈ [2, Nt − 1],

−
∑

e

2weB̂el

T · (σ̄j
e − Sj

eσ∗), if j = Nt.

(8.27)

These Nt linear systems are solved using a Cholesky decomposition of [M ] computed
once. Once the lagrangian multipliers obtained, the stresses can be updated using directly
Eq. 8.24.

8.2.1.3 Resolution of the material problem

In this paragraph, the update of the material states set and selection matrices for given
stresses will be presented. First, the selection matrices (Sj)j are obtained by solving
the minimization problem from Eq. 8.17, for given stress fields and the actual set of
material states. Once these matrices obtained, the set of material states (ε∗, ε∗∗,σ∗,σ∗∗)
is actualized using Eq. 8.19-8.22. These equations simply state that the material states
are the barycentres of the mechanical states associated, i.e.:

∀i, ε∗
i = 1

ni

Nt∑
j=2

∑
e/Sj

eε∗=ε∗
i

εj
e (8.28)

∀i, ε∗∗
i = 1

ni

Nt∑
j=2

∑
e/Sj

eε∗∗=ε∗∗
i

εj−1
e , (8.29)
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∀i, σ∗
i = 1

ni

Nt∑
j=2

∑
e/Sj

eσ∗=σ∗
i

σ̄j
e + dσj

e, (8.30)

∀i, σ∗∗
i = 1

ni

Nt∑
j=2

∑
e/Sj

eσ∗∗=σ∗∗
i

σ̄j−1
e + dσj−1

e , (8.31)

(8.32)

where ni denotes the size of the ith material state.

8.2.1.4 Resolution of the global minimization problem

To solve the global minimization problem considered, i.e. to compute (ε∗
i , ε

∗∗
i ,σ

∗
i ,σ

∗∗
i )i,

(dσj
e)j,e and (Sj)j, the following algorithm is followed [Langlois et al., 2022]:

1. initialize (σj
e)j,e using an FE simulation,

2. initialize (ε∗
i , ε

∗∗
i ,σ

∗
i ,σ

∗∗
i )i and (Sj)j by a k-means algorithm [MacQueen et al., 1967]

on (εj
e, ε

j−1
e , σ̄j

e, σ̄
j−1
e )e,j,

3. solve the mechanical problem as explained in Paragraph. 8.2.1.2,

4. solve the material problem as explained in Paragraph. 8.2.1.3,

5. iterate step 4 until convergence of (Sj)j. It usually takes less than 3 iterations to
converge,

6. iterate steps 3 through 5 until convergence of (Sj)j and (dσj
e)j,e. One iteration from

step 3 to 5 will be called a cycle.

8.2.2 Parameters of the method

In the proposed methodology, two parameters can be adjusted by the user. The first one
is the number of material states N∗, i.e. the cardinal of the set (ε∗, ε∗∗,σ∗,σ∗∗). The
second one lies in the choice of the fourth-order tensor Co. In their work, Dalémat and
her co-authors [Dalémat et al., 2021] investigated the impact of these parameters on the
result of the Data-Driven Identification. They compared the stresses of FE simulations,
considered as the reference, to the one obtained using the DDI with different parameter
values. They concluded that a small number of material states leads to an insufficient
sampling of the strain-stress manifolds, and thus, to significant error. A high number of
material states also leads to significant error, since it will give more weight to outliers and
increase the sensitivity to noise (similarly to the overfitting phenomenon for regressions).
In their work, the authors recommend a number of material states so that 20 ≤ (Nt−1)·Ne

N∗ ≤
100. In addition, the influence of the choice of the magnitude of Co is straightforward.
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Indeed, Eq. 8.15 shows that by choosing a tensor with high values, the mapping between
mechanical states and material states will emphasizes the strain values rather than the
stresses values. This is relevant since the strains are obtained experimentally, while the
stresses are unknowns and change during the method. In the present work, the fourth-order
tensor that will be used is a Hooke tensor for an isotropic material, hence its definition
will only be dependent of the choice of a pseudo-Young modulus Eo and a pseudo-Poisson
ratio νo. Let us note that, while the influence of the magnitude of Co is straightforward,
the influence of the symmetry class of the tensor remains unknown. Intuitively, one would
assume that the use of a pseudo isotropic elastic tensor would not lead to a satisfying
clustering of anisotropic plastic mechanical states. However, this question of the influence
of the symmetry class of Co has yet to be investigated. In the following section, the
influence of the parameters will be further discussed using numerical applications.

Moreover, two convergence criteria are needed for the proposed resolution algorithm:
one for the convergence of (Sj)j and one for the convergence of (dσj

e)j,e. In this work,
they are defined as follows:

• For the selection matrices criterion, we consider for each iteration i the convergence
rate of the data-driven distance Ψ. That is to say: |Ψi−Ψi−1|

Ψ0
, where Ψ0 is its initial

value.

• For the stress corrections criterion, we consider for each iteration i its convergence

rate. That is to say:

√∑
e

∑
j

|dσj
ei

−dσj
ei−1|2√∑

e

∑
j

|σ̄j
e|2

.

8.2.3 Outputs of the method

The proposed Data-Driven algorithm yields four major outputs.

• A set of mechanical states (εj
e, ε

j−1
e ,σj

e,σ
j−1
e )e,j∈[2,Nt]. This data set corresponds to

spatio-temporal strain and equilibrated stress fields during the experiment.

• A set of material states (ε∗, ε∗∗,σ∗,σ∗∗). These points can be interpreted as a sam-
pling of the material’s response in the constitutive space considered – here: (εj,
εj−1, σj, σj−1). They do not verify the mechanical equilibrium. In practice, these
material states are barycentres of clusters that regroup mechanical states that are
close in the ∥∥Co norm sense.

• Selection matrices that map each mechanical state to a material state.

• The norm ∥∥Co . This norm can be used to retrieve the distance of each mechanical
state to its corresponding material state.
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The set of mechanical states, the set of material states as well as the norm ∥∥Co will be
used to analyse and discuss the results from the numerical test case presented in Sec-
tion 8.3 and then the experimental results (Section 9).

Table 8.1 summarizes the inputs, outputs, parameters and assumptions needed for the
proposed Data-Driven Identification method.

Inputs Outputs Parameters Formulation assumptions
(εj

e)j,e from DIC (Sj)j Co Plane stress
(σ̄j

e)j,e from FE (dσj
e)j,e N∗ Small strain

Mesh and connectivity Material states Convergence criteria Constitutive space
Ψ Boundary conditions

C already identified

Table 8.1: Summary of the inputs, outputs, parameters and the assumptions needed for
the Data-Driven Identification method proposed in this work. In this table, C is the
material’s elasticity tensor, supposed already identified.

8.3 Numerical test case

In order to investigate the Data-Driven Identification method presented earlier, a numer-
ical test case is conducted and presented in this Section.

Note that, contrary to classical 1D tests cases, the presented work relies on data
existing in a 13 dimension space (3 for ε, 3 for ε̇, 3 for σ, 3 for σ̇), or 14 if we consider the
temperature T . Such high dimensionality requires developing new ways to display results.
Nevertheless, such developments go beyond the scope of this work. Hence, for the sake of
simplicity the majority of the results will be presented in reduced spaces using invariant
based norms (e.g. I1, Von-Mises). Note that this is not a requirement but just a graphic
choice. Any other mechanical norms could have been chosen.

In addition, in all the sections that follow, the DDI will be applied using coarse meshes
(about 3000 to 4000 elements) in order to limit the computing time.

8.3.1 Methodology

To investigate the sensitivity to the method parameters, several FE simulations will be
performed using the experimental sample’s geometry. To this effect, these simulations are
conducted using Abaqus with the implicit solver using CPS3T elements. Furthermore, in
all the FE simulations the Johnson-Cook model will be used.

Creation of a reference solution (U ref , σref) In order to create a reference solution
that will be used to investigate the DDI algorithm, a first FE simulation is conducted using
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the model parameters identified in Part II, they are recalled in Tab. 8.2 (Model A). The
simulation is performed under imposed displacements on the upper and lower boundaries.
The displacements prescribed for this simulation are obtained by linearly interpolating
the experimental displacement fields (see Chapter 7) onto the coarser mesh used here.
The outputs of this simulation – namely the displacement fields U ref , the stress fields σref

and the vertical net force on the upper boundary F ref
y – will be used as references for

what follows. In this numerical test case, these outputs (except the stress fields) represent
the experimental data that will be used when applying the DDI strategy for the real
experiment.

Creation of a statically admissible initial solution using a “wrong” model The
creation of an initial guess for the stress field that will be used as an input for the
DDI algorithm requires two consecutive Finite-Element simulations. To validate the DDI
procedure, an initialization reasonably far from the solution is chosen. To this effect, the
same model as the reference one is chosen but the constitutive parameters are significantly
modified. Hence, the initial yield is decreased, whereas the hardening modulus is increased.
In addition, to investigate the ability of the DDI to accurately retrieve the strain-rate
dependency, the strain-rate dependency is set close to zero. The exact parameters are
given in Tab. 8.2 (Model B).

• The first simulation is conducted under imposed displacements, using U ref . The load
profile on the upper boundary is extracted from this simulation. This profile is then
rescaled in such a manner that, in the end, the net force on the upper boundary is
equal to the measured net force F ref

y . The role of this first simulation is to get a nice
estimation of the load distribution at the upper bound of the sample.

• The second simulation is then performed under mixed boundary conditions: imposed
displacements on the lower boundary, imposed displacements in the X direction and
imposed rescaled vertical distribution of forces on the upper bound. This simulation
allows to obtain statically admissible stresses σfalse.

The whole procedure is summarized in Figure 8.1. In the end, the DDI will be given
the total strains εref

t (computed from U ref) and σfalse as inputs. In addition, for comparison
purposes, the plastic strains εDDI

p associated to the stresses σDDI are computed from the
total strains εDDI

t using Hooke law, the plastic incompressibility and the small strain
assumption: εDDI

p = εDDI
t − C−1 : σDDI . This section will investigate the ability of the

proposed identification method to retrieve the stress fields sought σref .

8.3.2 Parameters Influence

In what follows the influence of the two parameters of the DDI method is investigated.
To this effect, two indicators will be used: the average and the standard deviation of the
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Figure 8.1: Schematic of the numerical test case procedure. In red are the inputs of the
DDI algorithm.

A (MPa) B (MPa) n C ε̇0 (s−1) m To (K) Tmelt (K)
Model A 394 MPa 136 MPa 0.471 0.0259 69.86 s−1 1.11 300 1350
Model B 315 MPa 272 MPa 0.6123 2.56 × 10−4 69.86 s−1 1.11 300 1350

Table 8.2: Parameters of the two Johnson-Cook model used for the FE simulations to
investigate the DDI algorithm.

Von-Mises norm of the error between the DDI solution and the reference one: (∥σ̄j
e +

dσj
e − σj,ref

e ∥V M)j,e.

8.3.2.1 Influence of the pseudo-elastic fourth-order tensor Co

First, the influence of the choice of Co will be investigated, the other parameters being
fixed. The ratio between the number of mechanical states and material states is fixed to
80 and both convergence criteria set to 5 × 10−3. The pseudo-Young modulus Eo tested
ranges from 1 to 1000 GPa, while νo is fixed at 0.29. Figure 8.2a depicts the evolution of
the systematic error (or bias) as a function of the evolution of Eo, while Fig. 8.2b depicts
the evolution of the random error (or uncertainty). This figure shows that increasing the
value of Eo will decrease both systematic and random errors, until the Young modulus
of the considered steel is reached. In addition, it shows that both errors reach a plateau
at 34 MPa ± 25 MPa, and increasing the pseudo-modulus beyond the material Young
modulus does not lead to a significant decrease of the errors. This is consistent with what
was explained in Section 8.2.2 and with what was found by Dalémat and her co-authors.
Hence, in the rest of this work, Eo is fixed to 210 GPa.
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(a) Stress systematic error versus Eo, (b) Stress random error versus Eo,

Figure 8.2: Stress errors evolution according to the value of Eo.

8.3.2.2 Influence of the ratio of the number of mechanical states and material
states

Now, Eo is fixed to 210 GPa. The influence of the ratio r∗ between the number of mechan-
ical states (Ne · (Nt − 1)) and the number of material states (N∗) is investigated. To this
effect, the ratio tested ranges from 30 to 500, which leads to N∗ between 205 and 3416.
Figure 8.3a depicts the evolution of the systematic error with the evolution of N∗, while
Fig. 8.3b depicts the evolution of the random error. This figure shows that increasing
the value of N∗ will decrease both systematic and random errors. This is consistent with
what was explained in Section 8.2.2 and with what was found by Dalémat et al. [Dalémat
et al., 2021]. Another consideration to take into account to select the value of r∗ is the
computation time. Indeed, increasing the number of material states severely increases the
computation time, in particular for the K-means algorithm used for the initialization.
This is highlighted by Fig. 8.3c where a nearly linear relationship between N∗ and the
computation time is evidenced. As a result, a ratio of 50 (i.e. 2050 material states for this
case) is considered as a good trade-off. Indeed, it allows to have stress errors of 31 MPa
± 23 MPa for a computation time of about one hour. Moreover, further increasing the
number of material states does not lead to a significant reduction of these errors, while
the computation time increases at the same rate. Hence, in the rest of this work, r∗ is
fixed to 50. Notice that 2050 material states means, in practice, that out of 105,490 data
points (number of elements × time steps) 2050 barycentres will be used to sample the
material manifold in the 13 dimensions of the considered constitutive space.
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(a) Stress systematic error
versus N∗,

(b) Stress random error versus
N∗,

(c) Computation time of the
algorithm versus N∗,

Figure 8.3: Stress errors and computation time evolution according to the number of
material states N∗.

8.3.2.3 Influence of the convergence criteria

Once the ratio r∗ fixed to 50 and the pseudo-Young modulus Eo fixed to 210 GPa, the
influence of the two convergence criteria are investigated. In the implementation of the
proposed DDI algorithm, both criteria have to be met. Furthermore, they both evaluate
a convergence speed. As a result, the values of both criteria can be set at the same value,
which will range from 10−3 to 10−1. Figure 8.4a depicts the evolution of the systematic
error with the evolution of the criterion value, while Fig. 8.4b depicts the evolution of
the random error. Additionally, Fig. 8.4c depicts the computation time evolution. These
figures highlight the need to choose a criterion below 5 × 10−2. Indeed, for higher values,
the systematic and random errors are higher than 50 MPa and 40 MPa. This is explained
by the fact that for these values, the criterion is reached after a very small number of
cycles (less than 10). Furthermore, the errors seem to stabilize for values below 5 × 10−3

(this value included). However, the computation time significantly increases for criterion
values below 5 × 10−3. Thus, in the rest of this work, the criterion is fixed to 5 × 10−3

which is considered as a good trade-off between computation time and accuracy.

8.3.3 Analysis of the DDI results using the identified method’s
parameters

Once the parameters for the DDI algorithm fixed, its outputs can be further analysed and
compared to the inputs. Hence, the DDI was applied to the simulations for 50 time steps.
Its results will be presented and discussed.
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(a) Stress systematic error
versus the criterion,

(b) Stress random error versus
the criterion,

(c) Computation time of the
algorithm versus the criterion,

Figure 8.4: Stress errors and computation time evolution according to the criterion.

8.3.3.1 Outliers selection

As previously said two main outputs of the DDI can be analysed: the mechanical states
which are in equilibrium and distributed (as close as possible in the least square sense)
around a manifold in the constitutive space, and the material states which are not equili-
brated, but they sample this manifold. Two pathological behaviours can be observed from
both quantities:

• A material state clustering very few mechanical states. In that case, the material
state has converged toward an epiphenomenon (spatially and/or temporarily) and
its associated stress state may be unrealistic. This state can be seen as an outlier.

• Some mechanical states remain very far (with respect to ∥∥Co) from their material
states. In that case, it has been impossible, within the convergence criteria, to con-
verge toward an equilibrated solution packed around the manifold. Such states can
also be considered as outliers.

The following part proposes a methodology to discard such mechanical and material
outliers. The following must be seen as a first attempt to clean up the results from this
complex inverse problem. A more elegant and less user dependent solution is still to be
found (see Outstandings 9.4).

Let us first consider the stresses obtained with the DDI and compare them to the
reference ones. For this purpose, Figure 8.5 depicts these stresses in a sub space of the
constitutive space built using the Von-Mises norm: (∥εp∥V M , ∥ε̇p∥V M , ∥σ∥V M) as well
as one projection in the space (∥εp∥V M , ∥σ∥V M). The reference solution is depicted by
the red crosses, while the solution from the DDI is represented by the coloured dots. The
colour and the size of the dots are related to the size of the associated material state
cluster. First, one can observe that the biggest clusters (depicted by the big yellow dots)
are associated to mechanical states under elasticity. This is expected considering the fact
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that plasticity mainly occurs in the bands presented in Chapter 7, and after a certain
loading step. Hence, most of the sample is under elasticity or very small plastic strains
during most of the experiment time. Furthermore, the fit between the DDI solution and
the reference seems to be acceptable for strains up to 0.3. Beyond, the error reaches up
to 80 MPa. This can be explained by the fact that higher values of strain are reached
by only a few elements toward the end of the experiment. As a result, these mechanical
states are regrouped in material state clusters that have a relatively small size (less than 10
mechanical states while 50 time steps are considered). Due to their small size, these clusters
are less constrained and thus their material states (i.e. their barycentres) may not capture
the material behaviour as well as for bigger clusters. Furthermore, other small clusters
can be observed for different strain and strain-rates values. These very small clusters can
be considered as outliers, since it is very likely that they are not representative of the
material behaviour but rather capture epiphenomena that may occur near the free edges
or near the holes for example. In addition, it is important to note that these epiphenomena
are independent of the Data-Driven Identification algorithm, but can be explained by the
difficulty to have accurate measurements near the free edges and the holes, and also the
mesh used for both DIC and the FE simulations for instance. As a result, since these
epiphenomena will always be captured by the DDI algorithm and small clusters will
always exist, it is of interest to define a criterion to discard these clusters.

(a) ∥σ∥V M evolution versus (∥εp∥V M ,
∥ε̇p∥V M ),

(b) ∥σ∥V M evolution versus ∥εp∥V M ,

Figure 8.5: Comparison of the DDI output versus the reference solution (in red) in the
constitutive space (∥εp∥V M , ∥ε̇p∥V M , ∥σ∥V M), and in one projection. The marker size and
colour for the DDI output are related to the size of the cluster containing the mechanical
state.

Figure 8.6a depicts the evolution of the cumulative sum of the mechanical states versus
the size of the clusters. This figure highlights the fact that all the clusters with a size
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smaller than 20 amounts for less than 10 % of the total mechanical states. Heuristically,
the cluster size criterion is chosen as 20. This represents 40 % of the average cluster size
r∗. Using this criterion, 42 % of the material states are disregarded which only represents
9 % of the mechanical states. Figure 8.6b shows the spatial cartography of the elements
that will be kept and the colour denotes the ratios at which they are used (e.g. 50 %
means that the element is selected for half of the time steps). This figure shows that the
small clusters are mainly related to epiphenomena that are occurring near the notches
and holes. In addition, it also shows that elements in the bands are sometime disregarded.
As explained earlier this is due to the fact that near the end of the experiment, only a
few elements reach their values of strain and strain-rates.

(a) Histogram of the cumulative sum of
the mechanical states versus the cluster

size,

(b) Cartography of the selected elements
and their selection ratios,

Figure 8.6: Investigation of a selection criterion based on the cluster size.

Aside from the clusters’ size, another key information resides in the distance between
the mechanical states and their corresponding material states, which is given by the DDI
norm. Figure 8.7 depicts the spatial cartographies of the temporal average and standard
deviation of the DDI norm ∥∥r. This shows that the distance is higher in the bands and
especially near the hole and notches, which is consistent with the previous observations. In
short, close to notches and the hole, and within the band (when approaching the end of the
test) mechanical states tend to deviate from the manifold. As a result, since a mechanical
state can be associated to a material state with a proper size, but still be distant of this
material state, a selection criterion using the norm is searched. For this purpose, Figure 8.8
displays the histogram of the DDI norm computed between the selected clusters and their
associated mechanical states. It can be observed that 20 % of the mechanical states are at
a distance of approximately 200 (in term of the DDI distance) from their material states.
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The black vertical dashed line is located at one standard deviation from the peak observed.
This black line has been empirically chosen as the norm criterion to discard mechanical
states outliers. Adding this criterion leads to disregarding 26 % of the total mechanical
states. Similarly to the previous figure, Fig. 8.8b shows the cartography of the selected
elements and their ratios. This figure shows that this criterion mainly discriminates the
elements in the bands when approaching the end of the test, which again is to be expected
since they reach strain and strain-rate values that are not often reached.

(a) Cartography of the DDI norm average, (b) Cartography of the standard deviation
of the DDI norm,

Figure 8.7: Temporal average and standard deviation of each element of the mesh.

(a) Histogram of the DDI norm for the
already selected elements,

(b) Cartography of the selected elements
and their selection ratios,

Figure 8.8: Investigation of a selection criterion based on the ∥∥r norm for the already
selected clusters and associated elements.

Finally, Figure 8.9 depicts the same data as the Fig. 8.5, but only for the selected
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mechanical states using both criteria. As expected, the spread between the DDI solution
and the reference one is reduced. However, this is done at the cost of a reduction of
the strain and strain-rate range spectra which went from respectively [0 – 0.75], [0 s−1 –
1350 s−1], down to [0 – 0.18], [0 s−1 – 650 s−1]. In the rest of this work, the data will always
only concern the selected clusters and the selected mechanical states.

(a) ∥σ∥V M evolution versus (∥εp∥V M ,
∥ε̇p∥V M ),

(b) ∥σ∥V M evolution versus ∥εp∥V M ,

Figure 8.9: Comparison of the DDI output versus the reference solution (in red) in the
constitutive space (∥εp∥V M , ∥ε̇p∥V M , ∥σ∥V M), and in one projection. The marker size and
colour for the DDI output are related to the size of the cluster containing the mechanical
state. Only the mechanical states contained in the selected clusters are represented.

8.3.3.2 Analysis of the mechanical states

Now the results of the Data-Driven Identification algorithm will be presented and dis-
cussed. Figure 8.10 depicts both the temporal systematic and random errors for each
element of the geometry, for the initial stress fields (obtained when using model B) as
well as the ones obtained after the DDI. The first two cartographies show that the initial
error is mainly located near the mesh boundaries, as well as where the sample is not sub-
mitted to high plastic strains. The initial error is also important near the central hole and
notches, where the strain-rate reaches high values. On the other hand, the improvement
of the solution by the DDI algorithm is clearly highlighted when one considers the error
cartographies of the DDI solutions. Indeed, the errors are lower in most of the elements.
The remaining errors are located on the edges of the sample: where the mesh is coarser.
Hence, it is expected that the use of a finer mesh may help to improve the results. Fur-
thermore, it is important to note that the error also remain important just below the
central holes: where the plastic strain remain low. Incidentally it is also where the sample
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is in compression.

(a) Cartography of the initialization
systematic error,

(b) Cartography of the initialization
random error,

(c) Cartography of the DDI systematic
error,

(d) Cartography of the DDI random error,

Figure 8.10: Temporal systematic and random errors of each element of the mesh. The
errors are computed for both the initial stress fields and the ones obtained with the DDI.

In addition, Fig. 8.11 depicts the stress relative error for the selected mechanical states
as a function of the Von-Mises norm of the plastic strain. The red points represent the
mechanical states under a compressive state (I1 ≤ 0) while the blue ones are under a tensile
state (I1 ≥ 0). This figure shows that the DDI yields relative errors in the order of 5 %
when the material’s elasto-plastic transition is passed. This is particularly highlighted by
the quadratic fit for all the data with a plastic strain above 0.01 (the red line in the figure).
The grey area represents one standard deviation of the error made by the fit. Hence, aside
from the elastic behaviour of the material, the DDI has an accuracy of 5.4 % ± 3.7 %. In
addition, let us note that most of the mechanical states under compression remain below
a plastic strain of 0.005, i.e. in elasticity which explains why they are badly estimated by
the DDI. It is important to remind that these errors are obtained using noisefree data.
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The impact of the camera noise on the accuracy will be discussed in Section 8.4.

Figure 8.11: Relative error of the stress estimation for the selected mechanical states as
a function of the Von-Mises norm of the plastic strains. The red line is the quadratic
fit of the data presented for ∥|εp||V M ≥ 0.01 and the grey area represents one standard
deviation of the fit. The red points represent the mechanical states under compression (I1
≤ 0) and the blue points represent the states under tension (I1 ≥ 0).

To further discuss the impact of the proposed algorithm, one can also consider the
relative error distribution in the (∥ε∥V M , ∥ε̇∥V M) space. Thus, Figure 8.12 presents the
relative error cartographies of, respectively, the stresses obtained from FE simulations
using model B and the ones corrected by the DDI in the (∥ε∥V M , ∥ε̇∥V M) space. The
cartography of the initialization error (Fig. 8.12a) clearly highlights two main zones of
errors. The first one, for values of strain below 0.1 and values of strain-rate below 100 s−1,
is explained by the difference in both the initial yield stress and the hardening modulus
between model A and model B (Tab. 8.2) used in the FE simulations. Furthermore, the
second zone of errors where strain-rates are higher than 500 s−1 illustrates the fact that
the Johnson-Cook model used to get the initial stress fields has very little strain-rate
dependency. Indeed, for a given value of strain, the error increases with the strain-rate
which indicates that the two models have different strain-rate dependencies. Through
Fig. 8.12b, the impact of the algorithm can be clearly seen. Indeed, the overall relative
error decreased below 10 %. In addition, this figure shows that the proposed algorithm
was able to accurately capture the strain-rate dependency: the error does not increase
systematically with the strain-rate anymore. Moreover, the method also corrected the
error induced by the difference of initial yield stress since the error for low values of strain
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and strain-rates decreased. However, it can be noted that errors are still important for
very low values of strain (when the mechanical states are near an elastic state).

(a) Cartography of the relative
initialization error,

(b) Cartography of the relative DDI error,

Figure 8.12: Comparison of the relative error cartographies between the reference solution
and respectively, the initial solution or the DDI solution.

To further investigate the ability of the DDI method to capture the strain-rate de-
pendency, stress-strain curves can be plotted for different average strain-rates (see Fig-
ure. 8.13a). To plot such a figure, the average strain-rate over time for each element is
computed1. Then, using a clustering algorithm (here k-means), these average strain-rates
are regrouped in 10 clusters. The stress-strain curves are then obtained by averaging the
stresses and strains for each cluster. Figure. 8.13b then shows the relative stress errors at
||εp||V M = 0.002 and 0.05 for the 10 average strain-rates. The circles depict the FE solution
using model B, while the stars depict the DDI solution. First, Figure 8.13a evidences that
a strain-rate sensitivity naturally emerges from the DDI solution. The material hardens
more and more with the strain-rate. This is obtained when using the initial guess obtained
with model B — which has, as already said, almost no rate sensitivity — as input to the
DDI algorithm. This can be observed on Figure 8.13b. Indeed, in this figure we retrieve
the fact that model A (the reference) and model B have different strain-rate dependencies.
This is especially highlighted by the relative error at 5 % strain. Indeed, using model B,
the error increases up to a relative error of −11 % with the strain-rate, while the DDI
solution remains quasi-constant with an error around 1 %. In addition, the initial yield
stress, represented by the curves for 0.2 % strain, is also better captured by the DDI.
Indeed, the use of DDI allows to reduce the stress relative error lower than 5 %.

At last but not least, it is also of interest to consider the DDI relative error distribution

1. Note that this computation is performed only on the selected mechanical states, i.e. for a given
element this average is computed only for the temporal time steps at which it is selected.
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(a) Stress-strain curves for different
averaged strain-rates obtained in one

experiment,

(b) Relative stress error evolution with the
strain-rate, computed at different strains,

using the DDI solution or FE solution,

Figure 8.13: Assessment of the DDI impact on stress-strain curves for different averaged
strain-rates, using a numerical test case.

in the space of the stress tensor invariants. For this reason, Figure 8.14 depicts the DDI
error in the space I1 versus ∥σ∥V M . In addition, a few classical stress states are repre-
sented by lines on the figure. This figure shows that the error committed by the method
remains below 10 % for uniaxial tension states or in its vicinity as well as when the stress
is higher than 200 MPa, i.e. when a reasonable amount of material states map the space
considered and when plasticity occurs. When the sample undergoes compression, the error
reaches about 30 %. This can be explained by the sparsity of data for these states but also
the very small strain experienced by them, as illustrated by the figure with the material
states superimposed.

To summarize, the use of the proposed algorithm led to a significant reduction of
the systematic and random errors, both spatially and temporally compared to the FE
initialization using model B. Furthermore, the algorithm is able to retrieve the sought
material strain-rate dependency, despite the use of a very little rate-dependent material
for the stress initialization. These observations underline the relevance of the use of such
an algorithm for the behaviour characterization of a material. In addition, the impor-
tance of the heterogeneity of the test is highlighted: the material behaviour is properly
characterized for stress states well mapped by the experiment. Finally, the DDI stress
estimation accuracy is estimated to be about 5.4 % ± 3.7 % (relative error). Moreover,
when considering stress-strain curves for different averaged strain-rates, the DDI is able
to retrieve the initial yield stress and the hardening modulus with a relative error below
5 %.
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(a) Distribution of the DDI relative error in
the space of the stress tensor invariants.

(b) With the selected material states in
black,

Figure 8.14: Distribution of the DDI relative error (in %) in the space of the stress tensor
invariants with the selected material states in black.

8.3.3.3 Analysis of the material states

For the moment only the mechanical states have been presented and investigated. How-
ever, another output of the algorithm is also the set of material states. As explained in the
Section 8.2, these material states can be interpreted as a sampling of the strain-stress and
their first derivatives manifold. It results that the investigation of the manifold described
by these points is of interest when modelling is the main target and a raw probing of the
local stress response is not desired.

Similarly to what is done previously, Figure 8.15 depicts the comparison of the refer-
ence solution and the material states in two projections of the constitutive space (∥εp∥V M ,
∥ε̇p∥V M , ∥σ∥V M). The figure clearly shows that the set of material states samples the ref-
erence solution with a spread of about 25 MPa. In addition, Figure 8.16 depicts the relative
error cartography between the reference solution and the manifold described by the set
of material states obtained with the DDI. Indeed, using the selection matrices (Sj)j, the
reference solution and the material states can be compared directly for each element and
time step. Then, these sparse data are projected on a regular grid for visualization pur-
poses. This cartography also highlights the ability of the material states to accurately
represent the material behaviour (here given by the reference solution). Indeed, the aver-
age relative error is below 5 %. The error remains important (≥ 10 %) for low values of
strain and strain-rate as expected.

As a conclusion, the Data-Driven Identification method that is proposed yields two
main outputs which usages are different. The first output presented in this work is the
corrected stress fields. These fields are of interest to probe without any a priori knowledge
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Figure 8.15: Comparison of the DDI material states versus the reference solution (in red)
in one projection of the constitutive space (∥εp∥V M , ∥σ∥V M). The marker size and colour
for the DDI output are related to the size of the cluster. Only the selected clusters are
represented.

(a) Error cartography between the refer-
ence and the material states,

(b) The material states are superimposed
with black markers,

Figure 8.16: Error cartographies between the reference solution and the DDI material
states. The material states are superimposed with black markers on the second one. Only
the selected clusters are represented.

the local stress response of the material. These values are obviously more noisy but can
deviate locally from the global smooth manifold, potentially giving access to local material
heterogeneities. On the other hand, the DDI method also gives material states that can
be interpreted as a sampling of the manifold that is a discrete version of a potential
constitutive equation. As a consequence these points best represent the global response
of the material, however they do not comply to equilibrium. As a summary, Figure 8.17
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depicts several cartographies of the method’s error. These cartographies show where the
data lead to confident stress estimation in respectively, the specimen’s geometry, the strain
versus strain-rate space for both the mechanical and material states as well as in the stress
invariant space which denotes the stress state of the mechanical states.

Note that for the cartographies presented in this section, the data are sparse and then
projected on a regular grid for visualization purposes. Hence, some points may be missing
and some others are obtained after an interpolation. In addition, it is important to note
that since the cartographies are projections in different spaces, some data represented in
one figure may not appear clearly in the other one. For example, the stress errors higher
than 80 MPa in compression that can be observed in Fig. 8.17d are hardly represented
in Fig. 8.17b since they are related to points in the elastic domain, which is nearly not
depicted in the later cartography. At last but not least, the cartographies presented here
are not intrinsic to the method but are test case dependent. For instance, in the chosen
test case configuration, the constitutive space is sparsely sampled with a database sam-
pling more uniaxial tension, and some loadings closely related. In that context, the stress
identification perform well only in these regions.
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(a) Spatial cartography of the error, (b) Cartography of the relative error in
(∥εp∥V M ,∥ε̇p∥V M ) for mechanical states,

(c) Cartography of the relative error in
(∥εp∥V M ,∥ε̇p∥V M ) for material states,

(d) Cartography of the relative error in
(I1, ∥σ∥V M ) for the mechanical states,

Figure 8.17: Cartographies of the stress estimation error in respectively, the geometrical
space, the strain versus strain-rate space for mechanical and material states, and then in
the stess invariant space.

8.4 Uncertainty estimation using data with noise

In the previous section, the accuracy of the Data-Driven Identification method has been
assessed using a perfect numerical test case. In particular, the kinematic fields used are
not affected by the systematic and random errors that exist experimentally. Thus, the
accuracy previously obtained is a lower-bound of the experimental accuracy that can be
achieved with DDI.

In order to better take into account such sources of errors, the experimental displace-
ment fields and the experimental mesh are used to virtually deform images. Through the
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use of the VID procedure, kinematic fields are obtained on a coarser mesh. The same
procedure as for the numerical test case is then followed, where U imp becomes the VID
kinematic fields, and more importantly, U ref becomes also the VID kinematic fields, so
that the kinematic fields used in the DDI are affected by experimentally representative
systematic and random errors. Hence, this procedure will allow to assess the DDI stress
estimations accuracy when using experimental data.

Similarly to what is done in the previous section, Figure 8.18a shows the stress relative
error for the selected mechanical states as a function of the Von-Mises norm of the plastic
strain. The red line in the figure depicts the quadratic fit for all the data with a plastic
strain above 0.01, while the grey area represents one standard deviation of the error made
by the fit. This shows that, in fine the Cordin-based DDI is accurate to 12.6 % ± 13.3 %.
Moreover, Figure 8.18b shows the DDI relative error in the space I1 versus ∥σ∥V M . This
figure shows that the introduction of noise in the kinematic fields mainly affects the stress
estimations for low values of stress (≤ 200 MPa, i.e. for low values of strains) and for
compression states. Indeed, when the sample is under uniaxial tension and for stresses
above 200 MPa, the errors stay in the same level as the one estimated previously (≤ 10 %).

Moreover, in the same manner as in the previous section, Figure. 8.19a shows 10 stress-
strain curves obtained for different averaged strain-rates. Figure. 8.18b then shows the
relative stress errors at ||εp||V M = 0.002 and 0.05 for these strain-rates. The circles depict
the FE solution using model B, while the stars depict the DDI solution. In this figure, it
can be observed that the curves obtained for both the FE solution and the DDI solution
follow the same trends. The relative errors obtained for the DDI in this case are lower
than 10 %.

To summarize, by using kinematic fields from VID, one can assess the experimental
accuracy that can be obtained using the Data-Driven Identification method for our sam-
ple geometry, loading conditions and camera. The DDI leads to stress estimations with
a relative error of about 12.6 % ± 13.3 %. However, it is able to recover the initial yield
stresses and hardening modulus with an accuracy of 5 % for different strain-rates. Fur-
thermore, the inverse identification is most accurate for mechanical states under uniaxial
tension, which represent most of the mechanical states using the chosen geometry.
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(a) Relative error of the stress estimation
in function of ||εp||V M ,

(b) Cartography of the relative error in
(I1, ∥σ∥V M ),

Figure 8.18: Estimation of the DDI accuracy when using realistic kinematic data (with
noise). The relative error of the stress as a function of ||εp||V M is plotted, as well as its
cartography in the stress invariant space.

(a) Stress-strain curves for different
averaged strain-rates obtained in one

experiment,

(b) Relative stress error evolution with the
strain-rate, computed at different strains,

using the DDI solution or FE solution,

Figure 8.19: Assessment of the DDI impact on stress-strain curves for different averaged
strain-rates, using data with noise from VID.

8.5 Conclusion

In this chapter, the Data-Driven Identification algorithm problem formulation is pre-
sented. The resolution strategy implemented to solve this problem is also presented. To
assess the ability of the proposed method to retrieve stress fields accurately, a numerical
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test case is first investigated. The main conclusions are as follows:

• The parameters of the DDI method play an important role in the stress reconstruc-
tion. The analysis performed on the numerical test case leads to the selection of
these parameters.

• The numerical test case illustrates the ability of the proposed methodology to re-
trieve the material behaviour despite the use of a wrong set of constitutive param-
eters as initialization. It showed in particular that the algorithm is able to retrieve
the material’s strain-rate dependency accurately.

• The accuracy of the stress field estimations is 5.4 % ± 3.7 % (relative error). Note
that these values are lower bound since the kinematic fields used for the numeri-
cal test case are noisefree. Using the results from Virtual Image Deformation, the
impact of noise on the stress estimation can be assessed. An accuracy of 12.6 % ±
13.3 % is obtained on the stress estimation. At last, using the DDI Data to perform
identification leads to relative errors lower than 10 %.
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Chapter 9

EXPERIMENTAL APPLICATION TO THE

XES CHARACTERIZATION CAMPAIGN

The DDI algorithm has been presented and then applied to a numerical test case in the
previous Chapter. In addition, the level of uncertainty related to strain level, strain-rate
and loading scenario in the test sample have been estimated. Now the proposed method
will be applied to the data obtained during the XES characterization campaign that is
presented in Part II. The performance of the proposed methodology will be discussed as
well as the intrinsic limitations of the method, of the material as well as the geometry
chosen.

9.1 Methodology

The experimental procedure for the DDI is very similar to the one presented in Fig. 8.1.
In this case, the experimental data replace the ones obtained from the first simulation of
the numerical test case. Hence, the reference displacement will become the one obtained
through the use of DIC during the experiment. The load that will be used to rescale the
load profile is the one captured by the load cell during the dynamic tensile test adjusted
following the method presented in Section 7.2.

The DDI requires two FE simulations to be performed, the material model chosen
for the initialization is the Johnson-Cook model and the parameters used are the one
identified on the raw data from ONERA (i.e. the model A from the numerical test case).
The DDI parameters that will be used for this procedure are the one defined previously,
they are recalled in Tab. 9.1.

Criterion on (Sj)j 5 × 10−3

Criterion on (dσj
e)j,e 5 × 10−3

r∗ 50
Eo 210 GPa
νo 0.29
Number of images 50
Outliers criteria 40 % of r∗

± 1 std of ∥∥r

Table 9.1: Parameters of the DDI procedure for the experimental application.
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The choice of the selection criterion leads to the disregarding of 28.5 % of the mechan-
ical states and 26.5 % of the material states. Similarly to what is done in the previous
section, Figure 9.1 depicts the selected elements cartography with in colour their selection
frequency. Similarly to the numerical test case, the most disregarded elements are located
near the hole and notches. In addition, some elements in the bands are disregarded too
when approaching the end of the test. This can be explained by the same reasons as for
the numerical tests case: these elements are associated to small cluster near the end of the
experiment when they reach high strain and strain-rate values, and hence are disregarded
for these specific time steps.

Figure 9.1: Cartography of the selected elements and their frequency.

9.2 DDI results and discussions

Once the DDI algorithm applied, the mechanical and material states are available. From
these states the Von-Mises norm of the stresses can be obtained. Figure 9.2 depicts the
spatial cartographies of respectively the plastic strains, the Von-Mises stresses as well as
the Von-Mises norm of the stress correction performed by the method for the three dif-
ferent time steps. The plastic strains are obtained using Hooke’s law, plane stress, plastic
incompressibility and the small strain assumption. The elastic properties are identified
from the reference data for the XES steel. The cartography of the Von-Mises stresses of
the last image (Fig. 9.2f) shows that, as expected, the notches and the central hole create
stress concentration bands. In these bands the Von-Mises stresses reach about 500 MPa.
In addition, in the secondary bands, the stress is about 400 MPa. Furthermore, Fig. 9.2i
shows that the DDI deviates from the initial guess the most around the notches and the
holes, with substantial corrections since they reach up to 200 MPa. However, since these
corrections concern elements of the mesh near a hole, these number should be taken with
caution. Indeed, it stands for reason that the experimental kinematic fields are less accu-
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rate in these regions, which may in turn have an impact on the stress retrieved with the
DDI. In addition, it can be noted that the DDI also applies correction in the upper and
lower region of the central hole, similarly to the numerical test case, where the sample is
under compression.

(a) t = 192 µs, (b) t = 384 µs, (c) t = 635 µs,

(d) t = 192 µs, (e) t = 384 µs, (f) t = 635 µs,

(g) t = 192 µs, (h) t = 384 µs, (i) t = 635 µs,

Figure 9.2: Cartographies of the plastic strains, stresses and their corrections performed
by the DDI, for three different time steps.

Let us recall that the experiment was designed to provide different loading paths of the
material and wide spectra of strain and strain-rates during a single test. Hence, Figure 9.3
enables the verification of these specifications. Fig. 9.3a depicts the stress distribution in
the space (I1, ∥σ∥V M) for the selected mechanical states. It follows that this figure is an
indicator of the stress triaxiality that occurs during the experiment. This figure shows
that the sample is mainly under an uniaxial tensile state. However, some compression
and shear states are reached within the specimen. In addition, Fig. 9.3b shows that the
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strain and strain-rate spectra mainly seen by the specimen are [0 – 0.21] and [0 s−1 –
500 s−1]. Nevertheless, some regions of the sample reach higher strain and higher strain
rate values. Fig. 9.3a and Fig. 9.3b can be compared to the same figures obtained for
the simulation performed in Part. II. These figures are recalled in Fig. 9.3c and 9.3d.
The stress distribution obtained experimentally is consistent with the prevision of the
simulations: we retrieve the fact that the sample is mainly under uniaxial tension, with
some shear. However, the compressive and shear states predicted by the simulations are
less represented than predicted. An explanation can be that the data presented in these
figures are only from the selected elements. Hence, the selection criteria used may disre-
gard the elements that are undergoing shear or compression. Moreover, the comparison
with the strain and strain-rate distributions clearly highlights the fact that the criteria
lead to a truncation of the spectra investigated. Nevertheless, the strain and strain-rate
range obtained experimentally are consistent with the most occurring strains and strain-
rates predicted by the simulations. In order to associate these states to a region in the
sample, several elements located at different regions of interest of the sample are selected
(see Fig. 9.4c). The loading paths of these elements are depicted in the previous figures
considered1. As it can be expected, the region above and below the hole (and by extension
the notches) are under a compressive state. Moreover, as expected the elements in the
band are mainly in a uniaxial tensile state. Fig. 9.4b clearly highlights that the differ-
ent regions of the bands are under different but quasi-constant strain-rates. This further
justifies the specimen geometry since it clearly demonstrates that at least the results of
uniaxial tensile tests performed at different strain-rates can be retrieved.

In the previous section (Section 8.3.3.3), the relevance of the material states is demon-
strated. Indeed, these points best fit the behaviour of the material. Figure 9.5a depicts
projection of the material states. The black and red lines are the raw data from previ-
ous characterization of the XES steel performed at ONERA. These figures show that the
spreading of the material states is more important on the experimental data than on the
numerical test case (see Fig. 8.15). Let us also note that even after the selection of the
clusters, some material states with singular behaviours are remaining. However, most of
the material states remaining are still representative of the behaviour of the material. In-
deed, the behaviour of the material at 70 s−1 from previous characterization is for instance
well captured by the DDI method, in the same range of strain-rate (see the colour). This
also confirms the fact that the material considered in this study, known to be strain-rate
dependent, has a dependency which fades at about 100 s−1. Indeed, the stress response
variation from 100 s−1 to 500 s−1 is more packed than from 1 s−1 to 70 s−1. Moreover,
similarly to Fig. 8.19a, Figure 9.5b shows 10 stress-strain curves obtained for different av-
eraged strain-rates, and the reference data are depicted by the dashed lines. The grey area

1. Note that the dots depicting the loading paths of the considered spatial elements were not “filtered”:
i.e. some dots may represent mechanical states that are discarded using the two selection criteria.
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(a) Experimental stress distribution in (I1,
∥σ∥V M ),

(b) Experimental strain and strain-rate
distribution,

(c) FE stress distribution in (I1, ∥σ∥V M )
from Chapter 6,

(d) FE strain and strain-rate distribution
from Chapter 6,

Figure 9.3: Comparison between the stress distribution, strain and strain-rate distributions
during the experiment and the ones predicted in Chapter 6.

around the dashed line represent a relative uncertainty of ± 10 %. This figure shows that
the data obtained for an average strain-rate of 69 s−1 fit remarkably well the reference data
at 70 s−1. Nevertheless, when taking into account the uncertainty on the stress estimation
from Section 8.4, the data from 41 s−1 to 194 s−1 are also in line with the reference data.
In particular, the initial yield stresses as well as the hardening modulus obtained at these
strain-rates are in line with the reference data. The figure also allows to confirm the fact
that the strain-rate dependency fades off around 100 s−1, and also confirms a softening of
the material response for strains below 0.05 (see Fig. 9.6a). Furthermore, this figure can
be compared to the stress-strain curves obtained in the literature [Haugou et al., 2006],
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(a) Stress distribution with the loading
path of selected elements,

(b) Strain and strain-rate distribution
with the loading path of selected elements,

(c) DDI mesh and localization of the
selected elements,

Figure 9.4: Stress distribution, strain and strain-rate distributions during the experiment
for the selected mechanical states. The loading paths of a few selected elements are su-
perimposed on these distributions.

that are recalled in Figure 9.6. While the DDI stress estimations are in line with our ref-
erence data from [Markiewicz et al., 2016], they differ slightly from the ones in Fig. 9.6a.
Indeed, while we observe (using DDI) a saturation of the yield stress and hardening at
about 160 s−1 with a stress peak near 500 MPa, data obtained from [Haugou et al., 2006]
at 200 s−1, 360 s−1 and 440 s−1 show an increase of the peak stress up to 600 MPa followed
by a massive softening. Nevertheless, Fig. 9.6b highlights the difficulty to have consistent
results with different experimental apparatus at high strain-rates. Indeed, by using differ-
ent techniques, the stress obtained at a plastic strain of 0.1 at a strain-rate of 500 s−1 has
an uncertainty of about 50 MPa which represent a relative error of about 10 %. Regarding
Figure 9.6b, one sees that our DDI results are closer to data obtained on SHPB or using
the special apparatus designed by Haugou [Haugou et al., 2006]. While the question of
the reproducibility of the data using different experimental apparatus remains open, Fig-
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ure 9.5b shows that DDI and a dedicated sample geometry allows to accurately capture,
with a single apparatus, consistent elasto-plastic data from30 s−1 to about 300 s−1.

(a) Material states in (∥εp∥V M , ∥σ∥V M ).
The colour of the markers denote the
strain-rates, while the lines denote the

reference data from ONERA,

(b) Stress-strain curves for different
averaged strain-rates extracted from the

selected material states during one
experiment,

Figure 9.5: Material states in the space(∥εp∥V M , ∥σ∥V M) as well as stress-strain curves
for different averaged strain-rates obtained during one experiment.

(a) Stress-strain curves obtained for the
XES for different strain-rates
from [Haugou et al., 2006],

(b) Evolution of the stress at a plastic
strain of 0.1 in function of the strain-rate
using different techniques, from [Haugou

et al., 2006],

Figure 9.6: XES characterization data from [Haugou et al., 2006] and comparison of the
results obtained using different experimental techniques.

The material states obtained using this DDI method can also be compared to the
stresses predicted by the modified Krupkowsky model that better fits the non-linear
strain-rate dependency of the XES steel than the Johnson-Cook model. Since neither
the material states nor the direct estimation of Krupkowsky stress from experimental
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strains and strain-rates will verify the equilibrium, the comparison can be considered as
fair. Hence, Figure 9.7 displays three cartographies of the difference between the stresses
predicted by Krupkowsky and the material states: the first one is in the (∥εp∥V M , ∥ε̇p∥V M)
space with markers to denote the position of the material states. The second one depicts
the discrepancy but in the stress invariant space while the last one is the spatial car-
tography of the discrepancy. Since the modified Krupkowsky model describes the plastic
flow, it is not able to predict stresses in elasticity. Hence, the discrepancy cartography in
the stress invariant space only holds meaning in plasticity. This is why this cartography
is truncated for values of stresses higher than 200 MPa2. It can be observed on the first
cartography that the stress discrepancies are mainly higher than 10 % in two zones: for
low values of strain combined with high values of strain-rates and for a specific horizontal
band at a strain-rate of about 250 s−1. As it was shown earlier with Figure. 9.4, the first
zone is mainly experienced by the elements near the hole (e.g. the light blue points), and
thus the strain-rates and stress values have to be taken with precautions. In addition,
this zone is also associated with few clusters of data, which also explains the significant
discrepancy. Indeed, Fig. 9.7a clearly highlights the influence of the cluster distribution
on the discrepancy: the more data is available in a region, the lower the discrepancy is.
However, no clear explanations was found to explain the second zone of significant er-
ror located around 250 s−1. Indeed, this zone is described by several material points as
illustrated by Fig. 9.7a. Let us note that apart from the two regions described, the dis-
crepancies remain within the accuracy interval observed for states subjected to uniaxial
tension in Section 8.4 which further comforts the relevance of the DDI stress estimations.
Moreover, the spatial cartography shows that the discrepancies are mainly located near
the notches and the central hole: where the stresses are estimated less accurately using
the chosen geometry. At last, the cartography of the difference between the prediction
using the modified Krupkowsky model and the DDI results in the stress invariant space
is in quite good agreement with the one obtained in Section 8.4. Indeed, this figure shows
that the DDI method is able to match the predictions from the constitutive model when
the material is under uniaxial tension, within a relative discrepancy of about 10 %. All
these results comfort the fact that the modified Krupkowsky model, even calibrated over
3 uniaxial curves, is able to extrapolate well at higher strain-rates and when we slightly
deviate from its validity loading configuration domain.

Furthermore, the material states obtained with the DDI can be used in a more con-
ventional way to identify constitutive parameters. Parameters are identified using the
material states (without the outliers) obtained in this work. Since these states do not

2. Nota Bene: a criterion based on the plastic strain (e.g. a threshold at 0.005) would have been more
pertinent. However, in our case, some edge effects would remain and thus add non relevant information
in the figure.
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(a) Cartography of the relative error in
(∥εp∥V M , ∥ε̇p∥V M ), with the cluster

distribution superimposed,

(b) Cartography of the relative error in
the stress invariant space using material

states,

(c) Spatial cartography of the discrepancy
between the prediction and the material

states at the last image,

Figure 9.7: Comparison between the stress predictions using the modified Krupkowsky
model and the material states from the DDI.

contain quasi-static data, the quasi-static data from ONERA is also taken into account,
in order to ensure that the parameters identified characterize the material from quasi-
statics to high strain-rates. The identification is performed for strains higher than 0.01.
The parameters obtained are presented in Tab. 9.2, which also recall the parameters iden-
tified in Section 6.2.2.2. As in Section 6.2.2.2, strong variations are observed in particular
for exponent c. In addition, ε0, ε̇0 and b, which capture the strain-rate dependency, also
differ significantly from the reference parameters (≥ 40 %). Nevertheless, by checking the
discrepancies between reference data from ONERA and the modified Krupkowsky model
based on the updated parameters using DDI stresses (see Fig 9.8), one observes that the
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reference data are capture within 6–7 % of relative error for the quasi-static response and
the one at 70 s−1. In addition, the data are captured within 10 % for the intermediate re-
sponse (0.67 s−1). This indicates that the model has a weak sensitivity to its parameters,
and also that its 7 parameters can be recovered from only 2 tests: a quasi-static one, and
a heterogeneous and high strain-rates one.

Parameters K (MPa) ε0 n ε̇0 (s−1) a b c
Section 6.2.2.2 544.5 0.032 0.259 0.06 0.0002 0.328 0.0002

This work + QS data 532.0 0.0133 0.2373 0.1391 0.0002 0.4639 0.0038

Relative variation (%) 2.3 % 58.5 % 8.4 % −131.8 % 0 % −41.4 % −1800 %

Table 9.2: Comparison of the modified Krupkowsky model parameters identified using
data from ONERA or from this work combined with quasi-static data from ONERA.

Figure 9.8: Relative errors between the reference data and the fit using the identified
parameters.

To summarize, the DDI method has been applied to the experimental data obtained
in Part II. The stresses have been reconstructed. The stress distribution confirms that the
sample is mainly under uniaxial tension during the experiment, but some regions are under
compression and shear (the region above and below the hole and notches for instance). The
strain and strain-rate spectra that the sample is submitted to are [0 – 0.21] and [0 s−1

– 500 s−1]. Furthermore, the DDI algorithm is able to retrieve the behaviour identified
during previous characterization campaigns. In particular, using the material states and
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data from a simple quasi-static test, constitutive parameters can be identified for the
modified Krupkowsky model, which allow to retrieve the behaviour with a relative error
below 10 % for strain-rates from 0.01 s−1 to a few hundreds of s−1. At last but not least,
based on the accuracy assessment performed in the previous section and a comparison
with the predictions of the modified Krupkowsky model, this model’s stress predictions
can be considered with confidence even when extrapolated for higher strain-rates than
the ones used to calibrate it.

9.3 Towards energy balance

One way to study localization phenomena is through energy balance considerations. Fol-
lowing the seminal work of Taylor and Quinney [Taylor and Quinney, 1934], a lot of effort
has been put into the study of materials through energy considerations [Chrysochoos
et al., 1989, Oliferuk et al., 2004, Berthel, 2007, Seghir, 2012]. Nevertheless, the realiza-
tion of energy balances for localization phenomena such as adiabatic shear bands remains
a challenge. While the realization of full local energy balances falls out of the scope of
this PhD work, an estimation of the energy released and stored in the experiment will
be performed through the computation of the Taylor-Quinney ratio using experimental
data. This ratio was first introduced in [Taylor and Quinney, 1934], and was estimated
to be constant and about 90 % for metals. The determination of this ratio is important
to understand the thermomechanical behaviour of materials. Hence, efforts have been
put in the study of the Taylor-Quinney ratio. In particular, recent works demonstrated
that this ratio often considered as constant, for simplicity’s sake, varies with the plastic
strain [Rittel, 1999, Macdougall, 2000, Vazquez-Fernandez et al., 2019]. Furthermore, by
studying several metals, Knysh and his co-authors [Knysh and Korkolis, 2015] showed
that this ratio can vary from 0.3 to 0.8, which is lower than the traditionally used value
of 0.9. Moreover, in [Rittel et al., 2017] the dependency of this ratio to the loading mode
has been evidenced for several metals.

The principal difficulty of the cited works lies in obtaining stresses. In these works,
in order to easily retrieve the stresses, the tests conducted are statically determined.
In this work, with both the stress fields, the temperature fields and the plastic strains
available for heterogeneous tests, a local estimation of the Taylor-Quinney ratio at high
strain-rates can be obtained. Let us recall that the experiments realized in this work are
adiabatic (see Appendix A). In addition, neglecting thermoelastic effects, that could not
be retrieved experimentally anyway, the differential Taylor-Quinney ratio can be approxi-
mated by ρCṪ

||σDDI ||V M ||ε̇p||V M
[Vazquez-Fernandez et al., 2019]. In the present case, ||σDDI ||V M

is obtained by computing the Von-Mises norm of the mechanical stresses.
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9.3.1 Accuracy of the Taylor-Quinney ratio estimation

Similarly to what is done in Section 8.4, let us begin by assessing the accuracy of the
Taylor-Quinney ratio estimation using the data obtained in the mentioned section. In-
deed, since the data come from FE simulations, the searched ratio is known and equal
to 0.9. The DDI gives access to the stress fields and the plastic strains. In addition, the
temperatures from the reference FE simulation will be used. In order to introduce temper-
ature uncertainties similar to the one obtained experimentally, a random Gaussian noise
with a standard deviation of 300 mK (in line with the one found in Chapter 4) is added.
Then, exactly like for the experimental temperatures, a Savitzky-Golay filtering kernel of
order 2 with a window of 23 frames is used. Hence, the temperatures obtained can be
considered representative of the experimental ones.

Figures 9.9a and 9.9b depict respectively the cartographies of ρCṪ and ||σDDI ||V M ||ε̇p||V M

at t = 793 µs. These figures show that both quantities match quite well. Values range
from 0 in elastic regions up to 450 W/mm3 within localization bands. Considering that
the Taylor-Quinney coefficient cannot be estimated properly in near zero domains, the
elements which values are below 50 W/mm3 are not taken into account before computing
the coefficient. By doing so, a cartography of β can be obtained, it is shown in Fig. 9.9c.
In this figure, we retrieve the fact that the Taylor-Quinney coefficient can mainly be ac-
curately estimated in the localization bands. Furthermore, the values obtained in these
zones are quite homogeneous. Moreover, Figure 9.9d depicts an estimation of the average
differential Taylor-Quinney ratio within one of the main localization band versus ||εp||V M .
For strains below 0.005 (depicted by the red area), the coefficient is higher than 0.95. The
coefficient decreases until it reaches a minimum for strains at 0.05. Then it slightly in-
creases until it reaches a plateau. The average value of the identified ratio is 0.79 (depicted
by the red line). The systematic and random errors, defined respectively as the average
and the standard deviation of the difference between the computed values and 0.9, can
then be computed. Hence, it follows that the Taylor-Quinney ratio can be estimated for
strains higher than 0.005, with an accuracy of −0.11 ± 0.04. Despite the systematic error
being quite important, the uncertainty (or random error) is acceptable.

9.3.2 Experimental estimation of the Taylor-Quinney coefficient

After the accuracy investigation performed previously, the experimental data is used
to estimate the Taylor-Quinney coefficient. Similarly to what was done previously, Fig-
ures 9.10a and 9.10b depict respectively the cartographies of ρCṪ and ||σDDI ||V M ||ε̇p||V M

at t = 645.3 µs. As previously, these figures show that both quantities match quite well,
keeping in mind that they were both obtained independently. As previously, by using
a threshold at 50 W/mm3, the cartography of β at the last time step can be obtained
(see Fig. 9.10c). This figure shows that, experimentally, it is more difficult to estimate
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(a) Cartography of ρCṪ at t = 793 µs, (b) Cartography of ||σDDI||V M ||ε̇p||V M

at t = 793 µs,

(c) Cartography of β at t = 793 µs, (d) β versus ||εp||V M ,

Figure 9.9: Cartographies of the components of the Taylor-Quinney coefficient as well
as cartography of β at the last time step from FE data. The evolution of the average
coefficient in a localization band is then plotted versus ||εp||V M . These figures are obtained
using data from Section 8.4.

the coefficient in the secondary localization band. Furthermore, the values are less ho-
mogeneous than what was obtained previously. Figure 9.10d depicts an estimation of the
average differential Taylor-Quinney ratio within one of the main localization band versus
||εp||V M . The grey area denotes the random error estimated previously, while the red area
denotes the interval of strains between 0 and 0.005. In the last section, it was shown that
the coefficient is, in average, underestimated by 0.11 Furthermore, a maximum error of
0.15 is obtained for strains of about 0.03. Hence, based on this figure, the Taylor-Quinney
ratio should be close to 0.6 for high strains. This value is in line with values obtained
for Stable 316 steel [Vazquez-Fernandez et al., 2019]. In addition, it follows that the ratio
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increase for strains between 0.03 and 0.2 can be partly explained by the errors observed
in Fig. 9.9d. Nevertheless, this does not question the fact that the coefficient increases
with the plastic deformation since it is well above the estimated errors from Fig. 9.9d.
The evolution of the coefficient that is obtained here is similar to what can be found in
the literature [Oliferuk et al., 2004].

(a) Cartography of ρCṪ at t = 645.3 µs, (b) Cartography of ||σDDI||V M ||ε̇p||V M

at t = 645.3 µs,

(c) Cartography of β at t = 645.3 µs, (d) β versus ||εp||V M ,

Figure 9.10: Cartography of the Taylor-Quinney coefficient at the last time step from the
experiment. The evolution of the average coefficient in a localization band is then plotted
versus ||εp||V M .
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9.4 Outstanding issues

9.4.1 Experimental limitations

Specimen geometry and loading This work illustrates the difficulty to cover large
spectra of strain, strain-rate, temperature and stress state during a single experiment at
high strain-rate.

Indeed, in this work high strain-rate experiments were performed using a heterogeneous
geometry submitted to a dynamic tensile test. This kind of experiment allows the sample
to undergo wide spectra of strain and strain-rate. However, both quantities remain heavily
related: high strain-rates for low values of strains or high strains for low strain-rates are
not achievable. Moreover, the stress states that the sample undergoes is mainly uniaxial
tension. Furthermore, the temperature is proportional to the plastic strain. As a result,
only a small variety of the (strain, strain-rate, temperature, triaxiality) space is explored.
Notice that other configurations also suffer from limitations. During impact tests [Fletcher
and Pierron, 2018], transient phenomena occur. Hence, complex interactions occur dur-
ing these experiments which potentially lead to a large spectrum of triaxiality explored.
However, during these experiments the strains and temperatures remain low. In addition,
ultrasonic excitation of material [Seghir et al., 2019] allow to explore a large spectrum
of temperatures. Nevertheless, the approach remains 1D and the strain and strain-rate
spectra relatively limited.

Material The XES steel used in this study has a strong strain-rate dependency for
strain-rates up to 100 s−1. For strain-rates higher than this value, its dependency saturates.
As a result, since the experiment leads to strain-rates higher than the threshold, the
experiment mainly confirms observations made for lower strain-rates (at 70 s−1 for example
for reference data available at ONERA). It would have been very interesting to take
advantage of this dependency to investigate the ability of the DDI method to extrapolate
beyond lower strain-rate data.

9.4.2 Methodological limitations

Choice of pe As presented in Section 8.2, the weight pe that appears in DDI mini-
mization problem has been set to 1 for each element. This implies that each element has
the same weight in this problem, regardless of its localization and its size. However, it
has been shown in Section 8.3 that some spatio-temporal elements lead to higher stress
uncertainty than others. In this work, this has been tackled by disregarding such elements
during a post-treatment procedure. Hence, even though these elements are not taken into
account in the analysis, they still have an influence on results. Indeed, for example during
the resolution of the material problem (Section 8.2.1.3) these elements will tend to pull
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the barycentres (material states) away from low stress uncertainty elements.
A more elegant route that is under investigation would be to attribute a weight pe

varying continuously from 0 to 1 for each spatio-temporal element considering their stress
uncertainty obtained with a numerical test case. This strategy will thus naturally give
less weight to elements leading to high stress uncertainties in the DDI strategy. Thus,
the stress estimations obtained should be more robust and more accurate. In a way,
such an approach would be very similar to some VFM versions where virtual fields are
automatically selected to filter-out noise (optimized Virtual Fields). Here, the complexity
and non-linearity of the problem does not allow to have an analytical solution, but the
use of a numerical twin can produce such a filter.

Implementation of the boundary conditions In the presented study, the boundary
conditions were defined as follows:

• F j
mes = h

∑
k∈∂F f j

k on the upper edge of the considered mesh,

• f j
k = 0 in the volume,

• The other boundaries are considered as free edges, including the central hole.

In their work Dalémat and her co-authors [Dalémat et al., 2021] investigated the impact
of the choice of the boundary conditions on the DDI solution. They principally focused
on the choice of the condition to impose on holes located within the specimen geometry.
This is especially relevant when dealing with experimental results. Indeed, for the case
of DIC for example, the mesh may not be perfect around the hole and thus may not
be perfectly in accordance with the specimen’s geometry. Using FE simulations they
generated a reference solution and compared the results of the DDI on the mesh with
missing nodes near the hole, using different conditions:

• Considering that the nodes of the hole are on a free edge

• Imposing a zero net force on the nodes of the hole.

The authors demonstrated that the second condition lead to errors similar to the reference
one where there are no missing nodes (Fig. 9.11). Furthermore, by considering the Von-
Mises stresses, they showed that the stresses were overestimated when free edge conditions
were considered. Similar conclusions have been obtained on image-based inertial impact
test in [Lukić et al., 2020]. The finding from [Dalémat et al., 2021] is summarized in
Figure 9.12.

As a result, the use of these recommendations would likely enhance the experimental
results presented in Section 8.3.
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Figure 9.11: Figure from [Dalémat et al., 2021].

Figure 9.12: Figure from [Dalémat et al., 2021]. In this figure, r∗ stands for the ratio
between the number of mechanical states and the number of material states, while e
denotes the relative error between the stress fields identified by the DDI and the reference
one.

Addition of the temperature By lack of time, in the proposed algorithm the tem-
perature has not been included. However, the addition of the temperature fields in the
methodology would be transparent.

The temperature fields have to be normalized in order to be comparable to the other
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input data. This can be achieved by considering for instance (from heat equation):

T = ρCcal

To

T, (9.1)

where ρ is the material’s density, Ccal its specific heat and To a reference temperature.
Then, the DDI norm can be redefined in order to add an argument:

∥(A,B,C)∥2
r = (A : A+B : B + C : C). (9.2)

Then, as the constitutive space became (εj
e, ε

j−1
e ,σj

e,σ
j−1
e , T j

e)e,j∈[2,Nt] the cost function
becomes:

Ψ =
Nt∑

j=2

Ne∑
e=1

∥εj
e − Sj

eε∗, σ̄j
e + dσj

e − Sj
eσ∗, T j

e∥2
C

+ ∥εj−1
e − Sj

eε∗∗, σ̄j−1
e + dσj−1

e − Sj
eσ∗∗, T j

e∥2
C.

(9.3)

Since the equations used to compute the stress correction, the selection matrices and to
update the material states remain the same, the problem is solved in the exact same
manner as what is presented in Section 8.2.

Let us note however, that since in the experiment conducted in this work the tempera-
ture is proportional to the plastic strain in the sample, the addition of the temperature is
not expected to significantly improve the results of the method. It would add, in a sense,
a dimension collinear to the plastic strain. In order for the addition of temperature to be
relevant, the experiment has to create points which reach the same strain and strain-rates
with different temperatures. Thus, the temperature would be necessary to reconstruct
accurately the stresses. This could be obtained by adding a local heating source in the
experiment for instance or mixing different tests done at different external temperature
using an oven for example.

9.5 Conclusion

In this chapter, the DDI methodology is applied to the experimental data obtained in
Part. II. The main conclusions are as follows:
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• The application of the proposed method to the experimental data allows estimating
stress fields. The material behaviour captured by the material states are consistent
with the data obtained at ONERA during previous experimental campaigns. In the
presented study, the stress are retrieved with confidence for strains and strain-rates
in the range of [0.01 – 0.21] and [10 s−1 – 500 s−1].

- By combining the data from this work and data from a simple quasi-static test,
constitutive parameters can be identified. These parameters are able to correctly
retrieve the behaviour of the material over several strain-rates order of magnitude,
with a relative error that remains below 7 %.

• The comparison with the constitutive model classically used for this material shows
that discrepancies are mainly located in the hole and notches vicinity. It also high-
lights the necessity of having loading paths as rich as possible: the DDI is consistent
with the constitutive model for strain and strain-rate spectra where a lot of data is
available.

• At last but not least, all the thermomechanical quantities needed to estimate the
Taylor-Quinney coefficient are now available. The accuracy of this estimation is first
assessed using numerical data. It is found that for low strains, the estimation is not
reliable. Nevertheless, for strains higher than 0.005, the coefficient can be estimated
with an accuracy of −0.11 ± 0.04. The coefficient β can thus be estimated using the
experimental temperatures and strain-rates as well as the stresses from the DDI.
The evolution of this coefficient as well as its values are in line with what is can be
found for mild steels.
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Chapter 10

CONCLUSIONS

The recent development of Data-Driven Identification approaches applied to mechan-
ics [Leygue et al., 2018,Leygue et al., 2019] opened the way to the consideration of non-
parametric characterization of materials via heterogeneous fields’ observations. Besides,
the recent developments in both ultra-high speed imaging and high speed thermography
enable coupled measurements with high spatio-temporal resolutions during high strain-
rate experiments [Seidt et al., 2017]. As a result, this work focuses on the characterization
of metals during a “one-shot” high strain-rate experiment leading to heterogeneous fields.
By taking advantage of the high spatio-temporal resolution of the IR and visible light
cameras available, a database of thermomechanical points is constituted experimentally.
This database is then used to challenge an extension of the Data-Driven Identification to
time-dependent material developed in [Langlois et al., 2022].

The contributions of this work are the following:

• A dedicated calibration methodology for a multi-sensor rotating mirror ultra-high
speed camera is proposed. Using Zernike polynomials the complex distortions in-
duced by the optical apparatus of such a camera are modelled and corrected. The
proposed methodology achieves an accuracy of 0.5 ± 0.2 pixels for the displacements
and 100 µm/m ± 2 mm/m for the strains. In addition, a calibration procedure for a
high speed infrared camera is implemented. This procedure achieves an accuracy of
100 mK ± 300 mK for very low integration times (5 µs to 25 µs). These calibration
procedures and metrological assessments thus enable the measurement of kinematic
and temperature fields with high spatio-temporal sampling during an experiment.

• To produce high strains and high strain-rates as well as heterogeneous mechani-
cal fields, a central hole and two notches are introduced in the dynamic tensile test
specimen’s geometry. The influence of some geometrical parameters are investigated
through FE simulations. Then, using virtually deformed synthetic images, the mea-
surability of the induced mechanical fields is assessed. Finally, experimental dynamic
tensile test applied to notched specimens with holes of a XES steel are conducted.
Both temperature and kinematic fields are retrieved using a high speed IR camera
and an ultra-high speed camera.

• The DDI method for time-dependent materials proposed by [Langlois et al., 2022]
is challenged by two tests. The first test is a numerical test case where the reference
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solution is known. This test allowed to investigate the method’s parameters sensitiv-
ity. Furthermore, it demonstrates the ability of this non-parametric characterization
method to recover the reference solution, in particular the strain-rate dependency.
Then, the proposed non-parametric characterization method is applied to the ex-
perimental data acquired during a dynamic tensile test. It leads to estimation of
stress for strains and strain-rates in the range of [0.01 – 0.21] and [0 s−1 – 500 s−1].
Finally, the stress fields, temperature fields and plastic strain ones are used to get
an estimation of the Taylor-Quinney coefficient in a localization band deforming at
several hundreds of s−1.

The dedicated calibration methodology for a multi-sensor rotating mirror camera is,
to the author’s knowledge, the first one to properly tackle the deconvolution of the distor-
tions induced by such a camera. As such, this is but the first brick toward the lasting use
of such an imaging technology for displacement measurements. Moreover, the experimen-
tal application of the non-parametric characterization methods is a very recent research
subject and still under development. Thus, the work proposed is of seminal nature and is
to be considered as a convincing proof of concept. As a result, several prospects can be
considered:

• It would be interesting to continue the work initiated on the Cordin-580.

- In the short-term, it is primordial to correct the sensors’ sharpness. Since the
light reaches each sensor with different angles, the camera induces blurring de-
pending on their positions. However, as each sensor also has its own focusing
system, their sharpness can be optimized manually one by one. This improve-
ment could lead to the use of finer DIC meshes and thus better performances.

- For the moment the use of such a camera implies to run calibration shots before
the experiment. This possibly introduces significant costs, as for speeds higher
than 750 kfps helium is used. Furthermore, this also leads to long camera run
times at very high speed which reduces the mirror-bearing lifetime. Hence,
it would be interesting to be able to create a global model of the camera’s
distortions once and for all. This could reduce the number of calibration shot
to only one, in order to take into account the change of the scene. However, this
requires to properly model the influence of the mirror speed on the distortions,
as well as the addition of helium for ultra-high speed (> 1 Mfps).

• Concerning the Data-Driven Identification several prospects can be considered.

- First, in a very-short term, the addition of temperature has to be implemented.
Using numerical test cases it should be verified that its introduction does not
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significantly influence the final result in the actual configuration. Furthermore,
by adding a heat source locally in FE simulations, the interest of the introduc-
tion of the temperature could be assessed. Indeed, for metals, high temperature
often soften the material. As a result, the heat source could potentially lead
to the existence of points that share the same strain, strain-rate but different
temperatures and stresses. Hence, the introduction of temperature in the con-
stitutive space becomes essential for the DDI to correctly estimate the stresses.

- For the moment, the weight pe that appears in DDI minimization problem has
been set to 1 for each element. This implies that each element has the same
weight in this problem, regardless of its localization and its size, and more
importantly its sensitivity for the stress estimation. A more elegant route that is
under investigation would be to attribute a weight pe varying continuously from
0 to 1 for each spatio-temporal element considering their stress uncertainties
obtained with a numerical test case. This strategy will thus naturally give less
weight to elements leading to high stress uncertainties in the DDI strategy.

- At last but not least, the proposed method should be extended to dynam-
ics. This has already been proposed for Data-Driven Computational Mechan-
ics [Kirchdoerfer and Ortiz, 2018]: it simply consists in the addition of the ac-
celeration term in the equilibrium equation of the method. This addition would
broaden the application range of the Data-Driven Identification method.

• Finally, particular care should be given to experimental design. Indeed, when using
a single actuator at room temperature, obtaining wide spectra of strain and strain-
rate is possible. However, this comes at the cost of having a temperature that is
nearly proportional to the plastic strain as well as a sample that is mainly in an
uniaxial tension state. As a result, attention should be given to design experiments
that lead to wide spectra of strain and strain-rate, different and complex stress
states as well as a wide range of temperature that is not always proportional to
the plastic strain. These experiments would lead the scientific community one step
further toward “one-shot” experiments for material characterization.
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Appendix A

ABOUT THE ADIABATIC AND

QUASI-STATIC STATE OF THE

EXPERIMENTS

In this Appendix, the adiabatic and quasi-static state of the heterogeneous experiment
conducted in this PhD work will be discussed.

A.1 Quasi-static state of the experiment

Figure A.1 shows a cartography of the axial acceleration at t = 468.22 µs, it is obtained
by differentiating twice in time the filtered displacement using a simple centred difference
scheme. It shows that the acceleration is about 4000 m s−2 in most of the sample. Note that
this value may be underestimated due to the low temporal resolution used for this test (in
one interframe, ≈ 15 µs, the wave in the sample travels approximately the ROI observed,
≈ 48 cm). The acceleration reaches 10 000 m s−2 near the holes and the notches in absolute
value. This is two to three order of magnitude lower than the acceleration estimated in the
inertial impact test. Furthermore, the quasi-static state of the experiment can be further
justified by looking at the ratio between the kinematic density energy and the strain
density energy. This ratio can be written as ρv2

Eε2 , with ρ the density of the material, E
its Young modulus, v a particle velocity and ε strains. Hence, by considering v = 5 m s−1

and ε = 0.01 one get an upper bound of this ratio’s possible value during the experiment.
Using E = 210 GPa and ρ = 7405 kg m−3, the ratio obtained is in the order of magnitude
of 10−2. Hence, this demonstrates that the experiment can be considered as quasi-static
and validate the assumptions done in the simulation performed in Chapter 6.

A.2 Adiabatic state of the experiment

The temperature can be used to demonstrate that the experiment conducted in this work
can be considered as adiabatic. As a rule of thumb, isothermal to adiabatic transition can
be found by looking at Fourier’s ratio λτ

ρCL2 where λ is the thermal conductivity, ρ is the
density, C the specific heat, τ and L respectively a characteristic time and length. This
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A.2. Adiabatic state of the experiment

Figure A.1: Cartography of the axial acceleration at t = 468.22 µs (in m s−2).

simplified relationship is obtained from heat equation in adiabatic conditions, without
any heat sources and when neglecting thermoelastic effects. Since the Cordin’s frame
rate is 68 kfps, τ is given the value 1

68000 s. In the present case, the bands are about 7
elements wide, that is to say about 2 mm wide. As a result, using λ = 50 W m−1 K−1, ρ
= 7405 kg m−3, C = 500 J K−1 kg−1 and L = 2 mm, one finds a ratio of approximately
5 × 10−5. Hence, there is a difference of several orders of magnitude between the heat
production from the term ρCṪ and the conduction term λ∂2T

∂2x
. Furthermore, even when

considering L = 290 µm (which is the size of an element in the bands), the Fourier ratio
obtained is of approximately 2×10−3. Thus, the experiment can be considered as adiabatic.
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Appendix B

STANDARD SAMPLE GEOMETRY

Figure B.1: Design of the standard sample geometry used with the MTS-819.
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Appendix C

DESIGN OF THE SAMPLE GEOMETRY

USED IN THIS PHD THESIS
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Figure C.1: Design of the sample geometry used to characterize a XES steel.
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Appendix D

DATA FROM AN ADDITIONAL TEST ON

THE XES STEEL – 1

In this Appendix, the different fields obtained during a test, not presented in Chapters 7
and 8, are given.

D.1 Kinematic and temperature fields

220



D.1. Kinematic and temperature fields

(a) Undistorted image, (b) Undistorted image, (c) Undistorted image,

(d) Ux (pix), t = 258.9 µs, (e) Ux (pix), t = 465.4 µs, (f) Ux (pix), t = 583.4 µs,

(g) Uy (pix), t = 258.9 µs, (h) Uy (pix), t = 465.4 µs, (i) Uy (pix), t = 583.4 µs,

(j) Axial strain (m/m), t =
258.9 µs,

(k) Axial strain (m/m), t =
465.4 µs,

(l) Axial strain (m/m), t =
583.4 µs,

(m) T-To (◦C) at t
=258.9 µs, (n) T-To (◦C) at t =465.4 µs, (o) T-To (◦C) at t =583.4 µs,

Figure D.1: Undistorted images, displacement fields and strain fields obtained during a
dynamic tensile test, for different time steps.221



Part III, Chapter D – Data from an additional test on the XES steel – 1

Figure D.2: Von-Mises norm of the strain vs Von-Mises norm of the strain-rates distribu-
tion obtained during the experiment, prior to crack initiation. The colour corresponds to a
2D histogram plot. The count per bin is normalized by the number of element in the ROI
multiplied by the number of time steps. The stress states that were never experienced by
the sample remain white.

Figure D.3: Temperature vs Von-Mises norm of the total strain distribution for elements
in the main localization band before crack initiation.
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D.2. DDI Results

D.2 DDI Results

(a) t = 37.7 µs, (b) t = 347.4 µs, (c) t = 642.4 µs,

Figure D.4: Cartographies of the stresses, for three different time steps.

(a) Stress distribution with
the loading path of selected

elements,

(b) Strain and strain-rate
distribution with the loading

path of selected elements,

(c) DDI mesh and localization
of the selected elements,

Figure D.5: Stress distribution, strain and strain-rate distributions during the experiment.
The loading paths of a few selected elements are superimposed on these distributions.
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Part III, Chapter D – Data from an additional test on the XES steel – 1

(a) Material states in (∥εp∥V M , ∥σ∥V M ).
The colour of the markers denote the
strain-rates, while the lines denote the

reference data from ONERA,

(b) Stress-strain curves for different
averaged strain-rates extracted from the

selected mechanical states during one
experiment,

Figure D.6: Material states in the space(∥εp∥V M , ∥σ∥V M) as well as stress-strain curves
for different averaged strain-rates obtained during one experiment.
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D.2. DDI Results

(a) Cartography of ρCṪ , (b) Cartography of ||σDDI||V M ||ε̇p||V M ,

(c) Cartography of β, (d) β versus ||εp||V M ,

Figure D.7: Cartography of the Taylor-Quinney coefficient at the last time step. The
evolution of the average coefficient in a localization band is then plotted versus ||εp||V M .
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Appendix E

DATA FROM AN ADDITIONAL TEST ON

THE XES STEEL – 2

In this Appendix, the different fields obtained during a test, not presented in Chapters 7
and 8, are given.

E.1 Kinematic and temperature fields
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E.1. Kinematic and temperature fields

(a) Undistorted image, (b) Undistorted image, (c) Undistorted image,

(d) Ux (pix), t = 291.3 µs, (e) Ux (pix), t = 511.7 µs, (f) Ux (pix), t = 629.2 µs,

(g) Uy (pix), t = 291.3 µs, (h) Uy (pix), t = 511.7 µs, (i) Uy (pix), t = 629.2 µs,

(j) Axial strain (m/m), t =
291.3 µs,

(k) Axial strain (m/m), t =
511.7 µs,

(l) Axial strain (m/m), t =
629.2 µs,

(m) T-To (◦C) at t
=291.3 µs, (n) T-To (◦C) at t =511.7 µs, (o) T-To (◦C) at t =629.2 µs,

Figure E.1: Undistorted images, displacement fields and strain fields obtained during a
dynamic tensile test, for different time steps.227



Part III, Chapter E – Data from an additional test on the XES steel – 2

Figure E.2: Von-Mises norm of the strain vs Von-Mises norm of the strain-rates distribu-
tion obtained during the experiment, prior to crack initiation. The colour corresponds to a
2D histogram plot. The count per bin is normalized by the number of element in the ROI
multiplied by the number of time steps. The stress states that were never experienced by
the sample remain white.

Figure E.3: Temperature vs Von-Mises norm of the total strain distribution for elements
in the main localization band before crack initiation.
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E.2. DDI Results

E.2 DDI Results

(a) t = 85.5 µs, (b) t = 394.1 µs, (c) t = 688.0 µs,

Figure E.4: Cartographies of the stresses, for three different time steps.

(a) Stress distribution with
the loading path of selected

elements,

(b) Strain and strain-rate
distribution with the loading

path of selected elements,

(c) DDI mesh and localization
of the selected elements,

Figure E.5: Stress distribution, strain and strain-rate distributions during the experiment.
The loading paths of a few selected elements are superimposed on these distributions.
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Part III, Chapter E – Data from an additional test on the XES steel – 2

(a) Material states in (∥εp∥V M , ∥σ∥V M ).
The colour of the markers denote the
strain-rates, while the lines denote the

reference data from ONERA,

(b) Stress-strain curves for different
averaged strain-rates extracted from the

selected mechanical states during one
experiment,

Figure E.6: Material states in the space(∥εp∥V M , ∥σ∥V M) as well as stress-strain curves
for different averaged strain-rates obtained during one experiment.
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E.2. DDI Results

(a) Cartography of ρCṪ , (b) Cartography of ||σDDI||V M ||ε̇p||V M ,

(c) Cartography of β, (d) β versus ||εp||V M ,

Figure E.7: Cartography of the Taylor-Quinney coefficient at the last time step. The
evolution of the average coefficient in a localization band is then plotted versus ||εp||V M .
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Titre : Caractérisation thermomécanique du comportement dynamique des métaux via mesures de
champs ultra-rapides

Mot clés : Imagerie ultra-rapide ; Corrélation d’Images Numériques ; Thermographie Lagrangienne ;
Grandes vitesses de déformation ; Méthodes Data-Driven

Résumé : À ce jour, les moyens experimentaux
et d’analyses permettant de caractériser le com-
portement visco-thermo-mécanique de matériaux
soumis à des chargements extrêmes et complexes
sont limités. Dans ce contexte, cette thèse pro-
pose de développer une stratégie originale alliant
essais hétérogènes, mesure de champs ultra-rapide
et reconstruction non-paramétrique de champs de
contrainte.

Les travaux de cette thèse reposent sur l’utilisa-
tion conjointe d’une caméra ultra-rapide (Cordin-
580) et d’une caméra rapide infrarouge (Telops
M3K), qui présentent à ce jour les meilleurs réso-
lutions spatio-temporelles sur le marché, pour cap-
turer les champs thermomécaniques au cours d’es-
sais hétérogènes. Pour ce faire, des méthodes spé-
cifiques sont développées afin d’évaluer avec une
grande résolution spatiale les déformations (incer-
titude de 2 mε) et les températures (incertitude de

0.3 ◦C) pour de grandes vitesses d’aquisition. Une
campagne experimentale permettant de couvrir de
larges gammes de déformation, vitesse de déforma-
tion, température ainsi que triaxialité en un seul
essai, tout en s’assurant de leur mesurabilité est
ensuite dimensionnée.

Au final, l’essai proposé est analysé avec une
méthode originale de reconstruction des champs de
contrainte qui permet de caractériser en un seul
essai la réponse visco-plastique d’un acier sur une
plage de vitesse allant de 10 s−1 à 500 s−1 avec des
incertitudes de 10 %, tout en offrant des régimes
de chargements qui sondent en partie la réponse
au cisaillement et à la compression. L’évaluation
conjointe de la température et des contraintes per-
met in fine l’évaluation locale de l’énergie qui per-
mettra, à terme, d’établir en une poignée d’essai
des modèles thermomecaniquement fondés.

Title: Characterization of the thermomechanical behaviour of metals for high strain-rates, using ultra-
high speed imaging cameras

Keywords: Ultra-High Speed imaging; Digital Image Correlation; Lagrangian Thermography; High
strain-rates; Data-Driven methods

Abstract: To this date, the experimental and ana-
lytical strategies allowing to characterize the visco-
thermomechanical behaviour of materials sub-
jected to extreme and complex loadings are limited.
In this context, this thesis proposes to develop an
innovative strategy combining heterogeneous tests,
full-field measurements at ultra-high speed and a
non-parametric stress field reconstruction method.

The work of this thesis relies on the joint use
of an ultra-high speed camera (Cordin-580) and a
high speed infrared camera (Telops M3K), which
present to date the best spatio-temporal resolu-
tions of the market, to capture the thermomechan-
ical fields during a heterogeneous test. To do so,
dedicated methods allowing to measure with a high
spatial sampling strains (uncertainty of 2 mε) and
temperatures (uncertainty of 0.3 ◦C) for high ac-

quisition speeds are developed. An experimental
campaign allowing to cover large ranges of strain,
strain-rate, temperature and triaxiality in a single
test, while ensuring their measurability is then de-
signed.

Finally, the proposed test is analysed with an
original method of stress field reconstruction which
allows to characterize in a single test the visco-
plastic response of a steel over a range of strain-rate
from 10 s−1 to 500 s−1 with uncertainties of 10 %,
while providing loading paths that partially cover
the shear and compression response. The combined
evaluation of temperature and stress fields allow
the local evaluation of energy, which will likely al-
low in the near future thermodynamically based
models to be established using a reduced number
of tests.
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