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Résumé : La consommation de combustibles fos-
siles est un facteur principal des émissions de gaz
à effet de serre. Face à une crise climatique plané-
taire, des solutions énergétiques alternatives s’im-
posent. L’énergie nucléaire présente l’avantage de
la production de masse, mais expose les matériaux
de structure à un environnement extrême dont les
dommages doivent être étudiés. Les expériences
traditionnelles utilisant des faisceaux de neutrons
sont souvent coûteuses avec des échantillons dif-
ficiles à manipuler. Une meilleure alternative est
l’irradiation aux ions.

Une quantité importante mesurée lors de l’irra-
diation aux ions est le pouvoir d’arrêt, dont la réfé-
rence la plus standard est le SRIM. Cette méthode
empirique de calculs est ajustée sur une base de
données expérimentales très complète. Mais pour
les irradiations peu documentées, la fiabilité du
SRIM n’est pas garantie et les calculs ab initio
peuvent servir de références supplémentaires. Im-
plémentée au sein du code MOLGW, notre mé-
thode de simulation s’appuie sur la théorie de la
fonctionnelle de la densité dépendante du temps
(TDDFT). L’utilisation de fonctions de base loca-
lisées du type gaussienne permet de décrire tous les
électrons. L’objectif de cette thèse est d’introduire
des fonctions de bases localisées suivant le projec-
tile pour prendre en compte de ses électrons.

Puisque la base du projectile se déplace, les
équations de Schrödinger dépendantes du temps
doivent être modifiées. On constate notamment
l’apparition d’un opérateur D̂ indispensable à la
conservation d’orthonormalité de fonction d’onde.
Cet opérateur contribue à une énergie E−iD dont
la précision numérique dépend fortement de la qua-
lité de base. Le propagateur de Crank-Nicolson est
choisi à la place du propagateur de Magnus du se-
cond ordre, en raison du fait que ce premier néces-
site moins d’approximations dans une base nonor-
thogonale. Une stratégie de prédiction-correction
est appliquée à la propagation.

La mise à jour de matrices de grande taille de-
mande beaucoup d’efforts de calcul pendant la pro-
pagation. Afin de réduire le coût, seuls les termes
croisés entre la cible et le projectile sont sélection-
nés pour le recalcul. L’implémentation a été va-
lidée par des tests de collisions atomiques avant
d’être appliquée aux cibles solides. Notre approche
traite les systèmes finis et les structures cristallines
sont décrits par les agrégats. Deux groupes de pa-
ramètres de modélisation sont vérifiés par rapport
à la convergence : la géométrie de l’agrégat et la
qualité de base. On conseille un agrégat de forme
cylindrique fin et long pour assurer la stationnarité
du transfert d’énergie. Quant à la base, les séries
cc-pCVXZ de Dunning sont les plus adaptées pour
les atomes de cible ainsi que pour les projectiles
possédant d’électrons de coeur. Pour les projectiles
plus légers, les séries standard cc-pVXZ suffisent.
Les pouvoirs d’arrêt canalisés le long des directions
cristallines (channeling en anglais) d’hydrogène et
d’hélium sont étudiés dans un agrégat d’aluminium
fcc [001]. Les résultats du channeling convergent
plus rapidement quand l’agrégat est centré sur le
canal.

Les pouvoirs d’arrêt moyennés (random en an-
glais) d’hydrogène et d’hélium dans le lithium et
l’aluminium sont analysés, ainsi que celui d’alumi-
nium dans l’aluminium. Malgré un léger manque
de convergence, nos résultats sont qualitativement
corrects et en bon accord avec le SRIM, les don-
nées expérimentales et les résultats obtenu en base
d’ondes planes par un autre groupe. Enfin une
étude en parallèle de pouvoirs d’arrêt de proton
et d’antiproton dans le LiF calculés sans la base
de projectile sont montrés. Nos simulations dé-
crivent correctement les comportements du pou-
voir d’arrêt de proton observés par les expériences.
En outre, on prédit un effet de Barkas négatif sans
précédent à très basse vitesse. On explique cet ef-
fet par la déstabilisation d’une orbitale 2p d’ion F-

par un antiproton proche.
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Abstract : The burning of fossil fuels is the major
culprit of greenhouse gases emission contributing
to the global climate crisis. Among many alter-
native energy solutions, the nuclear power stands
out for its capacity in massive production. Howe-
ver, the intense nuclear reactions create a detri-
mental environment for reactor materials. To un-
derstand the material damages caused by radia-
tions, experiments traditionally use neutron beams.
These experimental settings are often expensive
with samples difficult to manipulate. These disad-
vantages are the reasons why the use of ion beams
becomes a popular alternative.

One key parameter for the ion irradiation is the
electronic stopping power, whose value is usually
obtained from the SRIM code. This empirical me-
thod is based on a very complete database. Ho-
wever, it may lose its reliability when the irradia-
ted systems have hardly any experimental records
in the database. Calculations from first-principles
thus provide supplementary references to experi-
ments. Implemented inside the MOLGW code, our
simulation method for the electronic stopping po-
wer is based on the time-dependent density func-
tional theory (TDDFT). Using localized Gaussian-
type orbital basis functions, our code can describe
all the electrons, core and valence. The main goal
of this thesis is to incorporate basis functions follo-
wing the movement of the projectile and simulate
the irradiation of ions containing electrons.

Modifications to the time-dependent equa-
tions, notably the appearance of an operator D̂,
are necessary due to the movement of projectile
basis. This extra operator enforces the conser-
vation of the wave-function orthonormality and
has an energy contribution E−iD whose numerical
precision depends on the basis set completeness.
The Crank-Nicolson propagator is chosen over the
second-order Magnus propagator due to less ap-
proximations required in the non-orthogonal basis.
A predictor-corrector scheme is applied to evaluate
the propagated states.

In order to reduce the computational costs of
large matrix updates during the propagation, only
the cross target-projectile elements are selected for
recalculations. The sanity of our implementations
is verified by tests in atomic systems before ap-
plying the code to solid targets. Since our approach
works with finite systems, the infinite crystal struc-
ture is represented by a cluster. Two main groups
of modeling parameters vital to the convergence
are studied : the cluster geometry and the basis
set quality. We advocate for the use of a long and
thin cylindrical shape for the clusters to guarantee
the stabilization of the energy transfer between the
projectile and the target. High quality cc-pCVXZ
Dunning basis are needed for target atoms and pro-
jectiles with core electrons. For lighter projectiles
the standard cc-pVDZ basis is sufficient. The chan-
neling stopping powers of hydrogen and helium are
studied in fcc [001] aluminum target and converge
faster when the cluster is centered on its channel
rather than on its central column of atoms.

The random electronic stopping powers of hy-
drogen and helium in lithium and aluminum are
presented, as well as the results for aluminum
ion in aluminum. Our calculations, although not
fully converged, provide accurate qualitative in-
sights of the stopping power behaviors in good
general agreement with the SRIM prediction, the
experimental data and the results obtained with
plane-wave basis method from another group. We
also report the random stopping powers of proton
and antiproton in LiF calculated without projectile
basis from a side project. Our results describe cor-
rectly the proton stopping power observed by expe-
riments like the threshold velocity and the Barkas
effect where the stopping power of antiproton is
inferior to that of proton. Additionally, we have
observed an unprecedented negative Barkas effect
at very low velocities due to the destabilization of
the 2p orbitals of F- ions in the presence of a close
antiproton.
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Résumé en français

La consommation de combustibles fossiles est un facteur principal des émissions de

gaz à effet de serre. Face à une crise climatique planétaire, des solutions énergétiques

alternatives s’imposent. L’énergie nucléaire avec sa capacité de production de masse

est souvent considérée comme une solution de choix [1]. En même temps, les réactions

nucléaires au sein du réacteur créent un environnement extrême pour les matériaux de

structure dont les dommages doivent être vigoureusement étudiés. Étant l’acteur principale

d’endommagement nucléaire [2], les neutrons sont souvent utilisés dans les expériences

d’irradiation des matériaux. Cependant, les ions sont devenus une alternative populaire aux

neutrons grâce à la facilité de contrôle de conditions expérimentales, le coût avantageux

d’installation et la rapidité d’irradiation [3]. Le sujet de cette thèse est donc inspiré par

les études d’endommagement de matériaux sous irradiation ionique effectuées au sein du

Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA) à Saclay.

Une quantité importante mesurée lors de l’irradiation aux ions est le pouvoir d’arrêt,

qui est défini comme la perte de l’énergie cinétique du projectile divisée par la distance

qu’il traverse [4]

S(v) = −
dE

proj
kin (v)

dx
. (1)

Cette quantité dépend de la vitesse du projectile et peut être séparée en deux parties : le

pouvoir d’arrêt nucléaire et le pouvoir d’arrêt électronique [5]. D’un côté, la partie nucléaire

est régie par la mécanique classique, mais de l’autre la partie électronique ne peut qu’être

traitée en mécanique quantique. Puisque le pouvoir d’arrêt nucléaire devient négligeable

dans la gamme d’énergie cinétique qui nous intéresse, l’effort de cette thèse se concentre

uniquement sur la partie électronique qui résulte d’excitations et ionisations des électrons

dans le matériau cible.

Les mesures expérimentales de pouvoir d’arrêt sont souvent comparées aux références

numériques dont la plus standard est le code SRIM (the Stopping and Range of Ions in

Matter en anglais) [6]. Cette méthode de calculs empirique est ajustée sur une grande

base de données expérimentales avec des règles d’ajustement particulières [7]. Il y a

plusieurs limitations dans SRIM dont une est la grande barre d’erreur parmi les données

expérimentales. Un autre désavantage de SRIM est que si les irradiations du système étudié

sont peu documentées la fiabilité de la prédiction du SRIM n’est plus garantie. Pour ces
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raisons, les calculs ab initio sont demandés afin de servir de références supplémentaires.

Implémentée au sein du code MOLGW [8], notre méthode de simulation s’appuie sur la

théorie de la fonctionnelle de la densité (DFT) pour calculer les états stationnaires du

système initial et la DFT dépendante du temps (TDDFT) pour les états excités. Ce dernier

nous amène à résoudre l’équation de Schrödinger dépendante du temps

i
∂

∂t
Ψ(t) = Ĥ(t)Ψ(t). (2)

L’utilisation de fonctions de base localisées du type gaussienne permet de décrire tous

les électrons sans pseudo-potentiel. En pratique dans les simulations numériques, il est

courant de donner une vitesse constante au projectile et mesurer l’accroissement de l’énergie

totale du système au lieu de mesurer la perte d’énergie cinétique du projectile dans une

dynamique Newtonienne. Ces deux approches sont équivalentes mais la première est plus

simple à mettre en place [9].

Puisque le travail de cette thèse est une continuation de la thèse précédente d’Ivan

Maliyov [10] avec Fabien Bruneval et Jean-Paul Crocombette, la première partie du

manuscrit est dédiée à résumer les développements précédents de simulations de TDDFT

en temps réel (RT) de l’irradiation ionique avec des bases sur les atomes fixes. Un nouveau

cas d’application de ce développement est réalisé durant cette thèse où l’on a calculé les

pouvoirs d’arrêt du proton et de l’antiproton dans l’isolant LiF [11]. Une particularité

de pouvoir d’arrêt dans un isolant est que, à cause de la bande d’énergie interdite, le

pouvoir d’arrêt électronique d’un projectile est nul si l’énergie cinétique du projectile n’est

pas suffisante pour affranchir la bande interdite. Ce seuil d’énergie n’est pas présent si le

projectile traverse un métal. Comme démontré en Figure 1, nos simulations de RT-TDDFT

décrivent correctement, par rapport aux expériences, le seuil du pouvoir d’arrêt du proton

ainsi que l’effet de Barkas [12] où le pouvoir d’arrêt du proton devient plus grand que celui

de l’antiproton. En outre, on prédit une absence de seuil pour l’antiproton et un effet de

Barkas négatif à très basse énergie cinétique où le pouvoir d’arrêt de l’antiproton dépasse

celui du proton. On explique ce phénomène par la déstabilisation d’orbitales 2p d’ion F- en

présence d’un antiproton proche.
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Figure 1 – Le pouvoir d’arrêt (stopping power) du proton et de l’antiproton dans LiF
aux différentes vitesses (velocity). Les triangles bleus et rouges représentent les données
expérimentales [13, 14, 15] pour le proton et l’antiproton respectivement. La ligne verte
brisée trace les résultats de calculs du TDDFT en réponse linéaire (LR-TDDFT) qui est
une méthode insensible à la signe du charge de projectile. Nos résultats de calculs du
RT-TDDFT [11] sont représentés par les lignes avec diamants : la couleur violette est
utilisée pour les résultats du proton et la couleur orange pour l’antiproton.

Le nouveau développement au centre de cette thèse est l’introduction de fonctions

de bases qui suivent le projectile. La motivation derrière ce travail est l’inadaptation du

développement précédent dans les cas de projectiles possédant des électrons. Puisque

les fonctions de base du projectile se déplacent, la solution de l’équation de Schrödinger

dépendante du temps doit être modifiée. Notamment l’opérateur de la dérivée du temps

dans l’équation (2) se transforme en [16]

∂

∂t
⇒

d

dt
=

∂

∂t
+

N∑

A=1

∂RA

∂t
· ∇RA

. (3)

On constate en conséquence l’apparition d’un opérateur D̂ qui décrit la variation temporelle

de la base et est indispensable à la conservation d’orthonormalité de fonction d’onde [16, 17].



iv

En cas de la vitesse constante du projectile, l’opérateur D̂ devient

D̂ =
N∑

A=1

∂RA

∂t
· ∇RA

=
N∑

A=1

vA · ∇RA
(4)

où RA désigne la position de l’atome A du système et N le nombre total d’atomes. Cet

opérateur correspond à une énergie

E
−iD = −mqv

2 (5)

dont la précision numérique dépend fortement de la qualité de base et diminue lorsque la

vitesse du projectile s’élève, comme indiqué par Figure 2. Le propagateur de Crank-Nicolson

a été retenu. Une stratégie de prédiction-correction est appliquée à la propagation pour

améliorer l’évaluation de l’opérateur hamiltonien dépendant du temps [18].

Figure 2 – L’approximation de l’énergie E
−iD à la valeur théorique mqv

2 pour un atome
d’hélium allant vers un proton aux plusieures vitesses (projectile velocity). La qualité de
base (série de Dunning [19]) est la même pour tous les deux particules. La valeur absolue
de E

−iD est tracée par la ligne pleine en différentes couleurs pour les bases de qualités
différentes, de la plus basse cc-pVDZ à la plus haute cc-pV6Z. La ligne noire pointillée
représente la valeur théorique de mqv

2.

A cause de la dépendance en temps, les intégrales contenant les fonctions de bases qui

se déplacent doivent être mises à jour à chaque pas de temps, ce qui consomme beaucoup

d’efforts de calcul. Afin de réduire ce coût, seuls les termes croisés entre la cible et le
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projectile sont sélectionnés pour la mise à jour puisque les termes purement cible ou

projectile sont invariants dans le temps. La nouvelle implémentation avec les fonctions de

base mobiles a été validée par des tests de cibles atomiques avant d’être appliquée aux

cibles solides. Le plus instructif de ces tests est de vérifier que la gain d’énergie totale soit

le même quand on inverse les rôles de cible et projectile dans un système diatomique.

Avec les fonctions de base localisées, on travaille dans les systèmes finis et les structures

cristallines sont décrites par les agrégats. Deux groupes de paramètres de modélisation sont

inspectés par rapport à la convergence avec les fonctions de base mobiles : la géométrie de

l’agrégat et la qualité de base. On trouve qu’un agrégat de forme cylindrique fin et long

peut assurer la stationnarité du transfert d’énergie après la phase de transition entre les

calculs des états stationnaires et les calculs dépendants du temps. Quant à la qualité de

base, les séries de base de Dunning [19, 20, 21] sont étudiées. On observe que les séries

cc-pCVXZ sont les plus adaptées pour les atomes de cible ainsi que les projectiles possédant

d’électrons de cœur. Pour les projectiles plus légers, les séries standards cc-pVXZ suffisent.

Il y a une tendance générale que plus la qualité de base du cible est bonne, plus le pouvoir

d’arrêt est élevé. Cependant, cette conclusion n’est plus vraie pour la qualité de la base

sur le projectile. On constate qu’il faut améliorer en même temps la base du cible et du

projectile afin d’obtenir la convergence.

Le premier solide étudié est le métal lithium, choisi pour la simplicité de sa configuration

électronique. Le pouvoir d’arrêt de l’hydrogène dans lithium obtenu avec les fonctions de

base mobiles est en bon accord avec les données expérimentales ainsi qu’avec les résultats

de calculs à la base fixe. Le pouvoir d’arrêt de l’hélium est plus difficile à interpréter car

il n’existe qu’une seule donnée expérimentale et que les résultats de la base mobile se

comportent différemment à la fois de la prédiction de SRIM et des résultats de la base fixe.

Les effets de taille d’agrégat, de qualité de base et de discrétisation temporelle sont étudiés,

mais cet écart de comportements persiste et demanderait des études complémentaires.

Un autre solide étudié est le métal aluminium dans lequel les pouvoirs d’arrêt de

l’hydrogène et de l’hélium sont calculés. Ces résultats de la base mobile sont en accord

non seulement avec les expériences mais aussi avec les études en onde plane de Schleife

et ses collègues [22]. En même temps, les résultats de la base mobile ainsi que ceux de

Schleife ont tous sous-estimé les pouvoirs d’arrêt aux hautes énergies cinétiques. Cette

sous-estimation était déjà observée dans les simulations ab initio antérieures et des études
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précédentes [23, 24] ont tenté de corriger en améliorant la description d’électrons de coeur,

la qualité de base et en changeant les fonctionnelles d’échange et corrélation sans trouver

des solutions. On a également utilisé l’aluminium comme projectile dans le cible aluminium

afin de simuler un projectile possédant d’électrons de cœur. Les résultats de la base mobile

montrent un comportement en bon accord avec SRIM et les données expérimentales, malgré

une légère sous-estimation. Figure 3 résume pour les trois projectiles étudiés dans la cible

aluminium et on remarque de visibles améliorations qualitative et quantitative apportées

par la base mobile en comparaison avec les résultats de la base fixe.

Figure 3 – Les pouvoirs d’arrêt randoms (RESP) en échelle log de trois projectiles étudiés
dans l’aluminium aux différentes vitesses (velocity) : hydrogène (représenté par la couleur
bleu), hélium (orange) et aluminium (vert). Predictions du code SRIM [6] sont tracées
avec de lignes pleines. Les résultats calculés avec les functions de base sur le projectile
(MB) sont tracés avec de lignes brisées et les résultats obtenus sans les functions de base
de projectile (no MB) sont tracés avec de lignes pointillées.

En conclusion, une partie de cette thèse est consacrée à l’étude de pouvoirs d’arrêt du

proton et de l’antiproton dans LiF en appliquant l’ancien développement avec la base fixe.

Un effet de Barkas négatif sans précédent y est observé. La majorité de cette thèse porte

sur le nouveau développement avec la base mobile afin de décrire les électrons de projectile.

Des améliorations remarquables sont obtenues par rapport aux simulations avec la base

fixe. Notre code actuel est optimisé et le calcul d’une trajectoire dans le solide se termine

sous 24h avec moins de 300 cœurs sur les machines de calculs du Tier 1, tandis que d’autres

études similaires demandent presque 1 million de cœurs [25]. Afin de rendre les résultats
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de cette thèse plus robustes, il est indispensable d’améliorer la convergence en utilisant

des bases plus complètes et mieux adaptées. Il sera utile de collaborer avec les équipes

expérimentatrices dans les cas où les données expérimentales sont manquantes. Enfin, nous

ambitionnons de pouvoir appliquer le développement de cette thèse sur des projectiles plus

lourds dont les pouvoirs d’arrêt sont mal prédits par le SRIM, comme l’or dans SiC [26].
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Chapter 1

Introduction

The subject of this thesis, though very specific, is generally inspired by the ongoing

studies of nuclear safety and materials damages in CEA, the French Alternative Energies

and Atomic Energy Commission. In the course of this introduction, we will briefly talk

about how the role of nuclear energy has evolved and why the ion irradiation experiments

are important for the nuclear safety research. We will have a look at the experimental

setups of such experiments and discuss about their need of theoretical references. Some

other fields of study that involve the ion irradiation will also be mentioned. Then we will

focus on the definition of electronic stopping power (SP) which is a way to quantify the

electronic excitations caused by the ion irradiation of materials and some early analytical

models that attempt to evaluate this property. At the end of this chapter, we will introduce

the simulation program in which we implement our first-principles solutions to the electronic

SP calculations.

1.1 Research Inspirations

A neutron capture anomaly was discovered by Enrico Fermi in 1934 and was further

proved to be the nuclear fission reaction by Lise Meitner, Otta Frisch, Otto Hahn and Fritz

Strassmann in 1939 [1]. Ever since, massive attentions have been brought into the research

and development of this new energy source. Although most of the early efforts were poured

into weapon-related applications due to the second world war [2], in 1953 the US president

Dwight Eisenhower declared the shift of focus in nuclear research from military to peaceful

civilian use [3].

1
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Nowadays, nuclear power plants generate 16% of the electricity supply worldwide and

France alone produces 75% of its electricity with nuclear power [4]. Facing a worsening

global climate and an urgent need to curb greenhouse gases emission [5], alternative energy

sources are called upon to replace the traditional burning of fossil fuels. Nuclear energy,

with its capacity of mass production and delivery, becomes an important asset to meet the

tremendous energy demand of our modern technology-oriented society [6].

However, there are several downsides of nuclear energy generation, with safety being

a major concern. Nuclear plant accidents like those which happened in Three Mile

Island (1979), Chernobyl (1986) and Fukushima (2011) have been fatal for individuals and

catastrophic for societies [7]. Nuclear safety is therefore a crucial research topic to limit

the exposures to radiation, to reduce the probabilities of accidents and to mitigate the

eventual damages from such accidents [8]. The safety of a nuclear plant can be hindered

by the degradation of reactor materials which are under constant neutron irradiation. The

properties of irradiated materials are permanently changed by either crystal defects or

transmutation [9]. While many experiments of nuclear materials damages are carried out

using neutrons to mimic the radioactive environment inside nuclear reactors [10, 11, 12],

these are delicate to maneuver with the radiation protection equipment and are expensive

to install. Swift ion beam, on the other hand, is a popular substitution to the neutron

beam at relatively lower costs, and allows more flexible experimental controls during the

irradiation [13, 14, 15]. The Joint Accelerators for Nanosciences and Nuclear Simulation

(JANNuS) platforms, situated in both the Paris-Saclay University and the CEA site at

Saclay, are exemplary in using ion accelerators to emulate neutron-induced damages in

nuclear materials [16, 17].

In the following sections we will first introduce the facility in JANNuS as an example of

experimental setups for ion beam irradiation. We will then talk about the common practice

to benchmark the experimental data against the prediction from SRIM, the Stopping and

Range of Ions in Matter [18, 19] code, and the drawbacks of this approach. At last, a

few more research areas involving the ion radiations other than the nuclear safety will be

presented.



1.1. Research Inspirations 3

1.1.1 Experiments

Figure 1.1.1: Illustrated setup of the JANNuS facility in CEA Saclay [17]. The three
ion accelerators are named as Japet, Pandore and Epiméthée. The triple beam chamber
can host single, duel and triple beam irradiation. The other irradiation chamber linked to
the accelerator Epiméthée is in charge of single beam irradiation. The IBA chamber is
responsible for Ion Beam Analysis.

Ion accelerators are key ion sources in the experimental setups of ion beam irradiation

[14, 15], and the combination of multiple beam lines can produce radiations more similar

to that in the nuclear environment than using a single beam line [17]. More specifically,

proton and helium beams need to be combined in ion irradiation experiments to mimic the

transmutation effects on the micro-structure of reactor materials (cavities, dislocations,

secondary phases, etc.) [20]. The JANNuS facility in the CEA site in Saclay, as illustrated

in figure 1.1.1, is one of such multi-beam installations with three ion accelerators and three

irradiation and analysis chambers. This facility enables the implantation of a large variety

of ions of different masses in a vast range of solid materials [17].

One of the interesting properties resulted from the ion implantation is the depth profile

or the damage profile which describes the concentration of implanted ion as a function

of its implantation depth inside a material. Another important property that can be

derived from the depth profile is the stopping power which constitutes the core subject
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of this thesis and will be further explained in a later section. Studies of depth profiles

and stopping powers are abundant [21, 22, 23] and as a common practice they are often

benchmarked against the predictions from one particular empirical program SRIM [18, 19].

Based on the Lindhard linear-response formula, the local-density approximation and many

empirical rules, SRIM is capable of giving predictions by fitting mathematical models to

the experimental data in its database after some scaling and corrections [19]. While we

will briefly talk about the Lindhard model in a later section, we will not provide a detailed

explanation of the SRIM algorithms which is outside the scope of this work.

The important message that we get is that since SRIM is heavily dependent on the

collection of experimental data, its accuracy is put into doubt in cases where such data

are scarce [24] like helium ion in lithium, iron in nickel and nickel in nickel [18]. Many

authors have reported misleading stopping power information from SRIM for heavy ions

in light target materials [25, 26] and at velocities below the Bragg’s peak [24]. To resolve

this uncertainty towards the gold standard set by SRIM among the experimentalists,

first-principles approaches like ours need to be developed to serve as a second reference to

the experimental results.

1.1.2 Applications

There are many other fields of applications besides nuclear reactor materials that benefit

from the understanding of ion radiations. In medicine, particle radiotherapy using proton

or carbon ions is playing an increasingly important role in the treatment of cancer cells

thanks to its superior biological effectiveness (more precise and focused cellular damaging)

comparing to the traditional X-rays treatment [27, 28, 29]. In materials science, ion beam

processing and ion implantation are used to create specific functionalities to electronic

devices and enhance materials properties [30, 31, 32]. Heavily present in space, ion

irradiation is also frequently studied for the purpose of space radiation protection and the

chemical evolution of planetary environment [33, 34, 35].

In this section we have explained under the context of nuclear safety the importance of

ion irradiation studies on reactor materials. Theoretical first-principles research is necessary

to provide references for experimental measurements of ion-induced properties like the

stopping power. The next section will focus on the definition of stopping power and the

evolution of early analytical models to calculate the electronic part of this quantity.
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1.2 Electronic Stopping Power

As mentioned earlier, the stopping power of ions inside the irradiated materials is an

important property to be studied during the ion irradiation. The definition of the stopping

power and the distinction between the nuclear and electronic stopping power will be given

in the first part of this section. The second part of this section will present in a brief

manner the early evolution of analytical models that attempt to evaluate the electronic

stopping power.

1.2.1 Definition

An ion projectile with a finite velocity v possesses kinetic energy Eproj
kin (v). The loss of

its kinetic energy as it advances a depth of x inside the target materials is measured as the

stopping power [36]

S(v) = −dE
proj
kin (v)

dx
. (1.2.1)

The negative sign in equation (1.2.1) indicates thus the energy loss. The relation between

the stopping power and the general depth L of ion implantation is obtained based on the

Continuous Slowing Down Approximation (CSDA) [36]

L =

∫ E0

0

dEproj
kin (v)

S(v)
, (1.2.2)

where E0 stands for the initial value of projectile kinetic energy.

Several energy exchange processes can happen when the projectile ion encounters the

target atoms, notably the transfer of center-of-mass momentum and the electronic excitation

or ionization [36]. The first process involves classical mechanics and is responsible for

the nuclear stopping power Sn, while the second process involving quantum mechanics

attributes to the electronic stopping power Se. The total stopping power S(v) can therefore

be split into two parts [37]

S(v) = Sn(v) + Se(v). (1.2.3)

The work of this thesis, under the scope of quantum mechanics, focuses solely on the

electronic contribution Se to the stopping power. In the next part we will present a few

early analytical models as scientists aim to calculate the electronic stopping power.
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1.2.2 Early analytical models

Even though a quantum mechanical problem, the calculation of electronic stopping

power has already been attempted with classical approaches [38]. Back in 1911 Rutherford

[39] measured the deflection of α and β particles in a thin layer of gold foil. This can be

readily considered as an experimental setup for the stopping power. Soon later in 1930

Bethe [40] came up with a classical model where the interactions between a projectile

and the target electrons are treated as binary Coulomb collisions. The celebrated Bethe

formula writes

Se(v) =
4πn

mev2
Z2k2ee

4 log
(2mev

2

I

)

. (1.2.4)

Though having a limited lower bound of valid projectile velocity, this formula describes the

general characters of the electronic stopping power Se(v): 1) a direct relation to the electron

density n and the projectile charge Z; 2) a quadratic decrease with v2 at large velocities.

ke is the Coulomb’s constant and I contains the screening and quantum mechanical effects.

A complementary formula for the low velocity region was derived by Fermi and Teller in

1947 [41].

Se(v) = Z2 2v

3π
me

k2ee
4

~3
log(π~vFkee

2). (1.2.5)

This equation describes a linear relation with v below the Fermi velocity vF and is the first

to consider the degenerate electron gas.

In real materials the interpretation of these two formulas is often empirical due to the

ambiguous definition of n and Z. As theories advance towards first-principles methods,

Lindhard hit a major milestone in 1963 [42, 43] with his general linear response model

Se(v) = 2Z2 e
2

πv2

∫ ∞

0

dk

k

∫ kv

0

ωdωℑ
(

−1

ε(k, ω)

)

. (1.2.6)

The key element in this formula is the linear dielectric response ε inside the energy-loss

function ℑ(−ε(k, ω)−1). Described by frequency ω and wavenumber k, ε(k, ω) contains

all the information about the system such as excitation energies and many-body effects.

Originally Lindhard’s dielectric response ε(k, ω) is intended for jellium models only, but the

recent work of Shukri et al. [44] has improved this function to work with non-homogeneous

systems. However powerful the linear response approach is, it still fails to capture the

non-linear properties associated to negatively charged particles like the Barkas [45] and
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negative Barkas [46] effects since all information about the charge sign is erased by the

quadratic term Z2. Breakthroughs in non-linear ab initio methods were stalled until the

arrival of Density Functional Theory (DFT) and its time-dependent derivations that we

will discuss in more details in Chapter 2.

1.3 Simulation Program MOLGW

First developed by Bruneval et al. [47], the code MOLGW uses Gaussian-Type Orbitals

(GTO) basis to compute excited electronic states in finite systems. DFT is fully included in

MOLGW with a Self-Consistent Field (SCF) scheme to prepare the ground state, and Real-

Time (RT) Time-Dependent DFT (TDDFT) is implemented among many post-treatment

options. The current version of the code assigns basis functions only to target atoms

whose positions are fixed. Although providing good results for projectiles with no electrons

like proton, antiproton and α-particles [48, 49, 46], the lack of basis on the projectile is

inadequate to simulate interesting experimental cases where the projectile possesses a

finite number of electrons. In order to capture the dynamics of electrons that belong to

the projectile, we need to enable the code with moving basis functions localized on the

projectile. Not only is this a physical problem to solve, but also a technical problem as the

time and space complexities of the calculations increase.

In the following discussions we will first recall the fundamental theories behind this

work in Chapter 2, especially for situations without projectile basis functions. Chapter 3

goes on to present a side study of proton and antiproton stopping powers in LiF without

projectile basis. Then we will walk through the theoretical development involving the

moving projectile basis in Chapter 4. In Chapter 5 we will begin by explaining the numerical

techniques adopted to implement the time propagation and to optimize the run-time and

the memory occupation. We will next demonstrate in the same chapter the validation of

our code by several functionality tests using simple atomic systems. Finally in Chapter 6

we will discuss about the simulation parameters for the convergence of stopping powers of

light and heavier projectiles inside solid clusters before exhibiting some final results.
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Chapter 2

Fundamental Theories and Technical

Background

In this chapter we will briefly review some key concepts supporting the numerical

simulations of the stopping power from first-principles. We will begin with a short summary

of the Density Functional Theory (DFT) and its time-dependent variation TDDFT. Then

we will discuss about the choice of basis set in MOLGW, as well as the approximations

adopted to minimize the costs of the 4-center integral calculations. Matrix expressions in

orthogonal basis without projectile basis functions will be briefly recapitulated, and the

two main propagators used in MOLGW for the real-time propagation will be compared.

At last we will present the techniques used for obtaining the random electronic stopping

power (RESP) from single-trajectory stopping powers. Atomic units (e2 = ~ = m = 1) are

used from now on if no other units are specified.

2.1 From Stationary to Time-Dependent DFT

The physical mechanism of electronic stopping power is an ion-electron problem best

described by the full many-body Schrödinger equation [38]

ĤΨ(r1, . . . , rN) = EΨ(r1, . . . , rN), (2.1.1)

9
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where Ĥ denotes the full Hamiltonian for a system of N electrons and E is the total energy

of the system. The detailed description of Ĥ is as follows [50]

Ĥ = −1

2

N
∑

i=1

∇2
ri
+

N
∑

i=1

N
∑

j>i

w(|ri − rj|)−
N
∑

i=1

v(ri) = T̂ + Ŵ + V̂ . (2.1.2)

In the first part of equation (2.1.2), ri denotes the electron position. w(|ri − rj|) is the

potential for interactions between electrons and v(ri) the external potential acting upon

the electrons. In the second part we rewrite the three terms from the first part into three

operators. T̂ is the kinetic operator, Ŵ the electron-electron interaction operator and V̂

the external potential operator.

If there are only a few electrons, we can solve equation (2.1.1) analytically with the wave

functions Ψ being a function of 3N variables representing the three-dimensional positions

of the electrons. However, this analytical work is impossible for a larger systems and

some approximations are required. The DFT is one of the most popular approximation

methods thanks to the following two statements [51]. In 1964 Hohenberg and Kohn [52]

proposed that all physical properties of a ground-state system can be extracted from its

ground-state electron density ρ(r) since this quantity is in unique correspondence to the

external potential v(r) thus to the entire Hamiltonian. This means that instead of solving

the complex 3N -variable Ψ(r1, . . . , rN ) we can calculate ρ(r) that contains only 3 variables.

Soon later in 1965 Kohn and Sham [53] introduced the non-interacting kinetic energy

operator which broke the many-body equation (2.1.1) into a collection of single-body

equations. The ground-state many-body wave function Ψ can therefore be transformed

into a single Slater determinant ΨS

ΨS(r1, . . . , rN) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(r1) ψ2(r1) . . . ψN(r1)

ψ1(r2) ψ2(r2) . . . ψN(r2)
...

...
...

ψ1(rN) ψ2(rN) . . . ψN(rN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (2.1.3)

where the single-particle functions ψi(r) are orthonormal and satisfy the Kohn-Sham (KS)

equation with the KS Hamiltonian HKS(r)

(

− 1

2
∇2

r + vKS[ρ](r)
)

ψi(r) = HKS(r)ψi(r) = εiψi(r). (2.1.4)
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The KS potential in the above equation is defined as

vKS[ρ](r) = v(r) + vH [ρ](r) + vxc[ρ](r), (2.1.5)

where v(r) denotes the external potential, vH [ρ](r) the Hartree potential and vxc[ρ](r) the

exchange-correlation (xc) potential.

However, there is a catch to such simplifications. The details of many-body interactions

are now hidden in the exchange-correlation potential vxc that has no exact expression [51].

We have no choice but to use approximate functionals to estimate this term. Originally

Kohn and Sham [53] has proposed the Local-Density Approximation (LDA) functional

alongside their single-particle solutions. This functional integrates the xc energy of a

homogeneous reference system evaluated at its local density to give the global xc energy

of an inhomogeneous system. Although not the most accurate, LDA became a popular

method as it possesses many correct features like the sum rules and the scaling properties

[54]. Later improvements on LDA include the Generalized Gradient Approximation (GGA),

meta-GGA and hybrid functionals. It has been pointed out by many authors [49, 46, 55, 56]

that the calculations of electronic stopping power are weakly influenced by the choice of

vxc functionals. Therefore in the scope of our study the less expensive LDA is considered

as the best compromise between costs and accuracy.

The DFT plays an essential role as the starting point of our study and gives us the

ground state information of the target-projectile system. At the same time, the dynamical

nature of the electronic stopping power means that we have to simulate time-dependent

properties like the total energy E(t). This is where we use the time-dependent Schrödinger

equation (TDSE)

i
∂

∂t
Ψ(t) = Ĥ(t)Ψ(t). (2.1.6)

In order to construct the TDDFT, we need to show that the time-dependent density ρ(r, t)

has a unique one-to-one correspondence to the time-dependent potential v(r, t). The proof

of this was provided by Runge and Gross [57] in 1984. Furthermore, we would like to

have a practical formalism similar to that of Kohn and Sham to reduce the many-body

problem into a single-particle one. Thankfully in 1999 van Leeuwen [58] came up with

the confirmation that the electron density ρ(r, t) of an interacting system can indeed be

obtained from a non-interacting system. Combining these two new theorems we write the
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single-electron Time-Dependent Kohn-Sham (TDKS) equation

i
∂

∂t
ψi(r, t) = ĤKS(r, t)ψi(r, t) =

(

− 1

2
∇2

r + vKS[ρ](r, t)
)

ψi(r, t). (2.1.7)

This constitutes the backbone of our RT-TDDFT development where the real time evolution

of the system is discretized into tiny time steps for numerical simulations. From here on we

will drop the notation KS for the Kohn-Sham Hamiltonian unless mentioned otherwise.

2.2 Choice of Basis Sets

We have discussed in the previous section that in both DFT and TDDFT the many-

body wave functions Ψ can be reduced to Slater determinants constructed by a series of

orthonormal one-particle functions ψi. These single-body functions can then be represented

by linear combinations of basis functions φα with coefficients Cαi that are not necessarily

orthogonal [50]

ψi(r, t) =
∑

α

Cαi(t)φα(r). (2.2.1)

Together these basis functions form a basis set, and the quality or the completeness of

the basis set is determined by the parametrization of φα. Ideally, the more complete the

basis set the more accurate it describes the systems since it will have a better coverage

of the Hilbert space [59, 50]. Even though in reality the true basis completeness is only

an ideological concept, researchers have succeeded in developing very complex basis sets

to approach this goal. Many of those basis sets are available at the Basis Set Exchange

(BSE) library, first constructed by Schuchardt et al. [60] and later updated by Pritchard

and co-authors [61].

There exist several types of basis functions. Let us first comment on the plane-wave

basis functions which are independent of the ion positions RA(t)

ψi(r, t) =
∑

g

Cg(t)e
ig·r. (2.2.2)

Basis functions of this form allow direct calculations of forces exercised on the projectile ion

without treating the movement of basis centers that follow the advancement of the projectile

center [38]. Another advantage of plane-wave functions is their natural compatibility with
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periodic systems [38]. However, the downside of this choice is the huge computational

cost of the bulk model and the inability to simulate deep core electrons [38]. Calculation

programs such as Qbox/Qb@ll [62, 63] and GPAW [64, 65] are examples of plane-wave

basis approach.

In our program MOLGW [47] a second type of basis sets is applied. These basis functions

φα

(

r−RAα
(t)
)

are real and Gaussian-like and are localized on the ion centers. They are

dependent on the ion positions and require special treatments when the ions move. One

advantage of these Gaussian-Type Orbital (GTO) functions over the plane-wave basis is

to give a more natural representation of bounded electrons around the ion. At the same

time they can describe the excitation process through the use of polarization and diffuse

functions [38]. Moreover, calculations using localized basis sets can easily be done on

computers with small to medium memory size since all operators in equation (2.1.2) can

be stored as matrix coefficients [66].

In the previous version of the MOLGW code all basis functions are static and none are

localized on the projectile. The new development presented in this thesis aims to enable

some basis functions to move along with the projectile. The differentiation between the

two scenarios, with and without moving projectile basis, will be discussed at length in

Chapter 3. Some other programs using the localized moving basis sets include SIESTA

[66] and CP2K [67].

In the following parts of this section, we will first introduce a modeling technique

where mixed basis qualities are applied on target atoms to reduce computational costs.

Afterwards, we will demonstrate the matrix representation of some key DFT quantities

before explaining the approximations used to calculate the 4-center integrals resulted from

the Hartree potential vH in equation (2.1.5).

2.2.1 Mixed Dunning basis technique

Dunning and his coworkers [68, 69, 70] have defined the correlation-consistent polarized

Valence X-Zeta (cc-pVXZ) basis sets, where X = D, T,Q, 5, 6, . . . is the cardinal number

that describes the basis quality. The higher the value of X, the more complete is the basis.

From this point on, we will abbreviate the cc-pVXZ basis as XZ. Other variance of the

Dunning series includes the augmented or diffuse aug-cc-pVXZ (abbreviated as AXZ)

basis set, the core-valence cc-pCVXZ (CXZ) basis set and the augmented core-valence
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aug-cc-pCVXZ (ACXZ) basis set, all available in the Basis Set Exchange (BSE) library.

Using high-quality basis set all over the system is sometimes redundant and very

expensive for the computers. One way to economize on the basis set is to apply them with

mixed qualities in the system [48]. This means that the most expensive basis are only

used on target atoms with significant contribution to the stopping power which are usually

the closest to the projectile trajectory. Layers of atoms farther to the trajectory are then

described by less complete basis. Figure 2.2.1 illustrates how this technique is employed on

a lithium cluster with three different basis qualities from CQZ on the column of atoms

nearest to the projectile trajectory to the standard XZ on farther atoms then the least

costly DZ on the out-most layer. We also show in this figure how the RESP is insensitive to

the second layer basis quality. At v = 1.0 (25 keV) and 4.0 a.u. (400 keV) of the hydrogen

projectile, the RESP value is converged from X = T on. At v = 2.0 a.u. (100 keV) the

RESP is the same for X = D and T, with a small deviation of less than 2% at X = Q.

This insensitivity of RESP towards the basis quality on less impacted target atoms makes

the mixed basis technique a practical tool to reduce the computational expenses.

Figure 2.2.1: Mixed basis technique applied on a lithium cluster (94 atoms) and the
convergence of RESP of hydrogen at different v. On the left side we demonstrate the
technique. The proton projectile (TZ) and its trajectory are illustrated by a black sphere
and a black arrow. Three qualities of basis are used on the lithium target. Red spheres
indicate atoms with CQZ basis, blue spheres are for atoms with XZ basis (X = D, T, Q),
and grey spheres represent atoms with DZ basis. The plan-view of the clusters is provided
on the upper right of the image where each circle represents a layer of atoms selected for
a specific basis quality. On the right side we compare the RESP of hydrogen in lithium
obtained at three velocities v = 1.0, 2.0 and 4.0 a.u., with results from the CQZ/DZ/DZ
mixture as the reference for deviation.
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2.2.2 Matrix representations in localized basis sets

A major advantage of using localized basis sets is to facilitate calculations of physical

problems by transforming equations into matrix expressions [66]. We will now define a few

quantities in the GTO basis sets for the stationary systems. The most important quantity

in DFT is the one-particle electron density

ρ(r) =
N
∑

i=1

|ψi(r)|2, (2.2.3)

which is normalized to the total electron number

∫

ρ(r)dr = N. (2.2.4)

Depending on the basis set used, a system can have as many energy states as the number

of basis functions NBF . In practice, only the occupied states are needed to calculate the

electron density thus we can reformulate equation (2.2.3) into

ρ(r) =
occ
∑

i=1

fiψi(r)ψ
∗
i (r), (2.2.5)

with fi being the occupation number of state i. Let us now look at the density in its matrix

form. Recall equation (2.2.1) where we expand the one-body wave functions ψi in a basis

set. Inserting it into the above density expression gives us [50]

ρ(r) =
occ
∑

i=1

fi
∑

α

Cαiφα(r)
∑

β

C∗
βiφ

∗
β(r)

=
∑

αβ

[

occ
∑

i=1

fiCαiC
∗
βi

]

φα(r)φβ(r)

=
∑

αβ

Pαβφα(r)φβ(r).

(2.2.6)

Here we represent the general case where the coefficients Cαi can be either real or complex

and the basis functions φα(r) are always real. The density matrix Pαβ in the matrix form

is thus

P = CFCH , (2.2.7)
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with F being the occupation matrix that is diagonal and has real eigenvalues fi and

C the coefficient matrix whose columns correspond to the states i. As the occupation

number fi for unoccupied states is simply 0, we can reduce the dimension of F to match

with the number of occupied states NOCC and furthermore reduce the dimension of C to

NBF ×NOCC . P is easily proven to be Hermitian

PH =
(

CFCH
)H

=
(

CH
)H(

CF
)H

= CFCH = P. (2.2.8)

Another important quantity defined in the localized basis set is the overlap matrix

Sαβ = 〈φα|φβ〉 =
∫

drφα(r)φβ(r), (2.2.9)

which is a symmetric matrix with real values. If the basis set is orthonormal, the overlap

matrix simply becomes the identity matrix. Similarly we can write the Hamiltonian matrix

in the localized basis set

Hαβ =

∫

drφα(r)H(r)φβ(r). (2.2.10)

Projecting the stationary KS equation (2.1.4) onto the basis functions φβ leads to

∑

β

HβαCαi = εi
∑

β

SβαCαi, (2.2.11)

whose matrix form gives us the Roothaan-Hall equation

HC = SCE. (2.2.12)

The KS Hamiltonian matrix H can be further broken into

H = T + V + VH + Vxc, (2.2.13)

where T is the kinetic energy matrix, V the external potential matrix, VH the Hartree

potential matrix and Vxc the exchange-correlation potential matrix.

In equation (2.2.12) E is a diagonal matrix containing the state energies εi. Wave

functions ψi obtained as solutions of (2.2.12) are always orthonormal, meaning

〈ψi|ψj〉 = δij. (2.2.14)
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Again when expanded in a localized basis set this becomes

∑

αβ

〈φβ|C∗
βiCαj|ψα〉 =

∑

αβ

SβαC
∗
βiCαj = δij. (2.2.15)

Writing in matrix form we have a permutable series of orthonormalization conditions that

should be satisfied anytime throughout the numerical simulations

CHSC = SCCH = CCHS = I. (2.2.16)

2.2.3 4-center integrals approximations

The product of basis functions φα(r) associated with the Hartree potential vH [ρ](r) in

equation (2.1.5) involve 4-center integrals that are heavy to compute due to the number

of 4-center combinations. For easier reading inside the brackets we will replace φα by its

index α in this section. Using the chemists’ notation from reference [50] we can express

the Hartree integral as [47]

(α|vH |β) =
∑

γδ

Pγδ(αβ|γδ), (2.2.17)

where Pγδ is the density matrix defined in equation (2.2.6). The four-center integral is

therefore

(αβ|γδ) =
∫ ∫

drdr′φα(r)φβ(r)
1

|r− r′|φγ(r
′)φδ(r

′), (2.2.18)

One way to reduce the calculation costs is to approximate the 4-center integral by the

following expression [71]

(αβ|γδ) ≈
∑

KQ

(αβ|K)(K|Q)−1(Q|γδ). (2.2.19)

Under the chemists’ notation the 3-center integrals read

(αβ|K) =

∫

drdr′φα(r)φβ(r)
1

|r− r′|φK(r
′), (2.2.20)
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and the 2-center integrals are written as

(K|Q) =
∫

drdr′φK(r)
1

|r− r′|φQ(r
′). (2.2.21)

The helper functions noted with capital letters K and Q constitute the auxiliary basis set

which in analogue to the basis functions are real-valued and centered on the atoms. This

method is known as Resolution-of-the-Identity (RI) and the quality of this approximation

depends on the quality of the auxiliary basis set. Numerically we can evaluate (2.2.19)

in different ways. One approach is to split the positive definite 2-center term into square

roots and rewrite (2.2.19) as

(αβ|γδ) ≈
∑

K

MK
αβM

K
γδ, (2.2.22)

where

MK
αβ =

∑

Q

(αβ|Q)(Q|K)−1/2. (2.2.23)

We note that the computational time of matrix MK
αβ is proportional to (NBFNABF )

2

and can be gigantic as we get to thousands of basis functions (BF) and auxiliary basis

functions (ABF) in a hundred-atoms solid system. If all basis functions remain the same

during the simulations, we can calculate MK
αβ once at the beginning and then cache it

for later use. In case of basis functions that move with the ion centers, MK
αβ needs to

be updated frequently and will result in expensive computation. Moreover it is difficult

to track the correspondence between the matrix elements and the basis functions when

acquiring the square root (Q|K)−1/2, thus we cannot resolve to basis selection to optimize

the recalculations like we do for other matrices in Chapter 3.

A lighter alternative is to evaluate the inversion of the 2-center integral as it is and

reformulate the Hartree term in equation (2.2.17)

(α|vH |β) ≈
∑

γδ

Pγδ

∑

KQ

(αβ|K)(K|Q)−1(γδ|Q)

≈
∑

K

(αβ|K)ρK .

(2.2.24)
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Here we have defined a density ρK associated to the auxiliary basis function φK(r
′)

ρK =
∑

Q

(K|Q)−1
∑

γδ

Pγδ(γδ|Q), (2.2.25)

and we can consider the relation with the electron density

ρ(r′) =
∑

K

ρKφK(r
′). (2.2.26)

This comes from the definition of the Hartree potential

vH [ρ](r) =

∫

dr′
1

|r− r′|ρ(r
′), (2.2.27)

which when inserted into equation (2.2.17) gives

(α|vH |β) =
∫ ∫

drdr′φα(r)φβ(r)
1

|r− r′|ρ(r
′). (2.2.28)

Now if we replace ρ(r′) by the relation (2.2.26), we can get back to equation (2.2.24).

Inside ρK from expression (2.2.25), the inversion of the 2-center integral will take O(N3
ABF )

time to compute while the product of the density matrix and the 3-center integral takes

O(N2
BFNABF ) time. The multiplication of these two parts takes O(N2

ABF ) time. All of

these are significantly faster than the calculation of MK
αβ which takes O(N2

BFN
2
ABF ) and

advantageous when we need to update the 4-center integrals on the flight during the

real-time propagation.

2.3 Systems Without Projectile Basis

Here we will briefly recall how the matrix expressions can be simplified in an orthogonal

basis when no projectile basis is involved. At the same time we will review in a synthesized

manner the real-time propagation of wave functions and compare the second-order Magnus

(MAG2) propagator with the Crank-Nicolson (CN) propagator in situations without

projectile basis.
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2.3.1 Canonical orthogonalization

In cases where we do not use projectile basis, we can work in an orthogonal basis [72].

A great advantage of this technique, called canonical orthogonalization [73], is to stabilize

the Roothaan-Hall solutions by avoiding the use of the often ill-conditioned S matrix[74].

Let us rewrite equation (2.2.12)

S−1HC = CE. (2.3.1)

The transformation of matrix C between a non-orthogonal and an orthogonal basis can be

assured by a transformation matrix X [75]

C = XC ′. (2.3.2)

Considering the orthonormalization condition of C in equation (2.2.16) we have

CHSC = C ′HXHSXC ′ = I. (2.3.3)

In order to meet the above condition, matrix X needs to satisfy

XHSX = I. (2.3.4)

Under the canonical orthogonalization, matrix X can be defined as

X = Us−1/2, (2.3.5)

where U is a uniform matrix and s is the diagonal matrix containing the eigenvalues of

overlap matrix S

S = UsUH . (2.3.6)

With such a definition, X indeed satisfies the relation (2.3.4) and possesses a special

property

XXH = S−1. (2.3.7)
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Inserting expressions (2.3.2) and (2.3.7) into equation (2.3.1) we can further transform

matrix H into a Hermitian matrix

H ′ = XHHX. (2.3.8)

This finally leads to the standard eigenvalue problem in the orthogonal basis

H ′C ′ = C ′E. (2.3.9)

To solve the time-dependent DFT problem of impinging projectile we refer to the

TDKS equation (2.1.7). For a one-particle wave function expanded in a localized basis this

becomes

i
∂

∂t

(

∑

α

Cαi(t)φα(r)
)

= Ĥ(t)
∑

α

Cαi(t)φα(r). (2.3.10)

In cases where no basis functions are used on the projectile, all φα(r) are invariant in time

and are not affected by the time derivative. This allows us to develop the above equation

as

i
∑

α

∂

∂t
Cαi(t)φα(r) = Ĥ(t)

∑

α

Cαi(t)φα(r). (2.3.11)

Projecting onto basis functions φβ gives us

i
∂

∂t
C(t) = H(t)C(t). (2.3.12)

Similarly, if the wave functions were expanded in an orthogonal basis we would obtain

i
∂

∂t
C ′(t) = H ′(t)C ′(t). (2.3.13)

2.3.2 Real-time propagation

The formal solution of equation (2.1.6) from instant t0 to t can be written as [76]:

Ψ(t) = Û(t, t0)Ψ0 = T exp
{

− i

∫ t

t0

dτĤ(τ)
}

Ψ(t0), (2.3.14)
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where the time-ordered exponential T exp holds the exact expression for the propagator:

Û(t, t0) =
∞
∑

n=0

(−i)n
n!

∫ t

t0

dτ1

∫ t

t0

dτ2 · · ·
∫ t

t0

dτn × T {Ĥ(τ1)Ĥ(τ2) · · · Ĥ(τn)}. (2.3.15)

In the case of a time independent Hamiltonian, we can omit the time function T in (2.3.15)

and simplify the solution to be:

Ψ(t) = exp{−i(t− t0)Ĥ}Ψ(t0). (2.3.16)

Although this expression is not valid for the TDDFT, we can discretize the time range

[t0, t] into steps ∆t so tiny that the Hamiltonian is almost constant between t and t+∆t.

Now we have found a way to use the time independent propagator under the TDDFT,

there are many approximations we can adopt to evaluate the exponential term in equation

(2.3.16). No matter what techniques we choose, a reliable propagator should fulfill the

following three properties of the exact propagator in expression (2.3.15).

Decomposable. It can be easily proven from equation (2.3.14) that:

Û(t1, t3) = Û(t1, t2)Û(t2, t3). (2.3.17)

Under this property, the time discretization breaks the propagator into

Û(t, t0) =
N−1
∏

i=0

Û(ti +∆t, ti). (2.3.18)

Unitary. This property conserves the orthonormality of wave functions

〈ψi(t1)|ψj(t1)〉 = 〈ψi(t2)|ψj(t2)〉 = δij. (2.3.19)

Here we define

|ψi(t2)〉 = Û(t2, t1)|ψi(t1)〉, (2.3.20)

Plugging this as well as its transpose conjugate form into (2.3.19) leads to

〈ψi(t1)|ψj(t1)〉 = 〈ψi(t1)|ÛH(t2, t1)Û(t2, t1)|ψj(t1)〉, (2.3.21)
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which is only true if Û is unitary

ÛH(t2, t1)Û(t2, t1) = Î . (2.3.22)

Time-reversible. If we propagate a wave function forward from t1 to t2

Ψ(t2) = Û(t2, t1)Ψ(t1), (2.3.23)

then propagate it backwards from t2 to t1

Ψ(t1) = Û(t1, t2)Ψ(t2), (2.3.24)

we expect to obtain the same state Ψ(t1). Considering that Û is unitary, this can be

translated into

Û(t1, t2) = Û(t2, t1)
H = Û(t2, t1)

−1. (2.3.25)

The two main propagator in MOLGW are the second-order Magnus (MAG2) propagator

and the Crank-Nicolson (CN) propagator. Both propagators are numerically tested to

be quasi-decomposable when used with time steps less than a few attoseconds. In the

following sections we will see how both propagators are time-reversible and unitary without

projectile basis.

2.3.2.1 Magnus propagator

With M̂ being a general operator instead of the standard Hamiltonian Ĥ, we can express

the propagation of the coefficient matrix C(t) in a similar way as the propagation of wave

functions in equation (2.3.16)

C(t) = U(t, t0)C(t0) = exp{−i(t− t0)M̂}C(t0). (2.3.26)

By definition, the MAG2 propagator takes the second order (n = 1) of the equation (2.3.15)

and reads

ÛMAG2(t+∆t, t) = exp
{

− i∆tM̂(t+
∆t

2
)
}

. (2.3.27)

Here the exponential midpoint rule is applied [76] and the propagator is defined at the

middle of the interval [t + ∆t, t]. Since ∆t is usually tiny we can consider M̂ constant
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inside this interval. By such construction, the midpoint remains the same as we propagate

a state forward then backward in time and the time-reversibility is easily proven

ÛMAG2(t+∆t, t)ÛMAG2(t, t+∆t)

= exp
{

− i∆tM̂(t+
∆t

2
)
}

exp
{

i∆tM̂(t+
∆t

2
)
}

= Î .
(2.3.28)

As explained in section 2.3.1, when not using the projectile basis we can work in

an orthogonal basis. In this case, the operator inside the propagator is the standard

Hamiltonian H which then becomes H ′ in the orthogonal basis (see equation (2.3.8)). This

makes the propagator

ÛMAG2(t+∆t, t) = exp
{

− i∆tĤ ′(t+
∆t

2
)
}

. (2.3.29)

Since H ′ is Hermitian, we can quickly show that the MAG2 propagator is unitary

UH
MAG2UMAG2 = exp

{

i∆tH ′H
}

exp
{

− i∆tH ′
}

= I. (2.3.30)

Another advantage of operating in the orthogonal basis is the easy diagonalization of H ′

[72]

H ′ = A′EA′H . (2.3.31)

Introducing this expression into the propagator (2.3.29) simplifies the exponential term

into a diagonal matrix thanks to the eigenvalue matrix E

exp
{

− i∆tH ′
}

= A′ exp
{

− i∆tE
}

A′H . (2.3.32)

This gives us an exact evaluation of ÛMAG2 and is only two approximations away from

the general propagator in equation (2.3.15): the time discretization and the second-order

expansion.

2.3.2.2 Crank-Nicolson propagator

The CN method, also known as the implicit midpoint rule is defined as [76]

ÛCN(t+∆t, t) =
[

Î +
i

2
∆tM̂(t+

∆t

2
)
]−1[

Î − i

2
∆tM̂(t+

∆t

2
)
]

. (2.3.33)



2.3. Systems Without Projectile Basis 25

Similar to ÛMAG2 we can show that the CN propagator is time-reversible

ÛCN(t+∆t, t)ÛCN(t, t+∆t)

=
[

Î +
i

2
∆tM̂(t+

∆t

2
)
]−1[

Î − i

2
∆tM̂(t+

∆t

2
)
]

[

Î − i

2
∆tM̂(t+

∆t

2
)
]−1[

Î +
i

2
∆tM̂(t+

∆t

2
)
]

=
[

Î +
i

2
∆tM̂(t+

∆t

2
)
]−1[

Î +
i

2
∆tM̂(t+

∆t

2
)
]

= Î .

(2.3.34)

Recall our explanation concerning the unitarity of ÛMAG2, when the projectile basis

is absent it is more practical to work in the orthogonal basis. Since the operator Ĥ ′ is

Hermitian, ÛCN can be proven unitary as follows

UH
CNUCN = BH(AH)−1A−1B = BH(AAH)−1B = BHB = I. (2.3.35)

where

A = Î +
i

2
∆tĤ ′, B = Î − i

2
∆tĤ ′. (2.3.36)

What makes ÛCN less ideal than ÛMAG2 is the extra approximations taken to transform

the exponential term of equation (2.3.16) into expression (2.3.33). Let us start with the

propagation from t to t+∆t

C(t+∆t) ≈ exp{−i∆tM̂(t)}C(t)

≈ C(t)− i∆tM̂(t)C(t)− 1

2
∆t2M̂2(t)C(t).

(2.3.37)

Here we have developed the exponential until the second order, which makes us equal to

the number of approximations in ÛMAG2. Now using the time-reversibility we propagate

from t to t−∆t

C(t−∆t) ≈ exp{i∆tM̂(t)}C(t)

≈ C(t) + i∆tM̂(t)C(t)− 1

2
∆t2M̂2(t)C(t).

(2.3.38)

Subtracting equation (2.3.38) from equation (2.3.37) leads to an expression with three

instants

C(t+∆t) = C(t−∆t)− 2i∆tM̂(t)C(t). (2.3.39)
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In order to reduce the above equation to only two instants, we add another approximation

C(t) ≈ 1

2

(

C(t+∆t) + C(t−∆t)
)

. (2.3.40)

Inserting equation (2.3.40) back into equation (2.3.39) gives us the CN propagator as seen

in equation (2.3.33)

C(t+∆t) =
[

Î +
i

2
∆tM̂

]−1[

Î − i

2
∆tM̂

]

C(t) = ÛCN(t+∆t, t)C(t). (2.3.41)

To reach this point we have employed at least one more approximation than the MAG2

propagator if we do not count the truncated exponential expansion used in the backward

propagation. It has also been studied in reference [72] that the CN propagator is more

sensitive to the time step ∆t and more prone to produce numerical instability when ∆t

gets larger than 0.1 a.u. (2.4 as). Therefore for systems without projectile basis, ÛMAG2 is

preferred over ÛCN .

2.4 Random Electronic Stopping Power

Calculations

This section aims to explain a few simplifications and techniques applied to acquire the

random electronic stopping power (RESP). In a system of our interests composed of a

projectile ion and a target atom, molecule or solid cluster, the total energy can be detailed

as

Etotal = Ee + Eproj
kin + Etarg

kin . (2.4.1)

Here Ee is the electronic energy of the system, Eproj
kin the kinetic energy of the projectile

nucleus and Etarg
kin the kinetic energy of the target nuclei. In a closed system, Etotal stays

constant during the entire simulation, therefore we can derive (2.4.1) by the projectile

advancement x and write

0 =
dEe

dx
+
dEproj

kin

dx
+
dEtarg

kin

dx
. (2.4.2)
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Plugging this into (1.2.1) gives us

S(v) =
dEe

dx
+
dEtarg

kin

dx
. (2.4.3)

Now we can match these terms to those in (1.2.3) and get

Se(v) =
dEe

dx
, (2.4.4)

Sn(v) =
dEtarg

kin

dx
. (2.4.5)

We will now focus only on the electronic stopping power in equation (2.4.4) which is a

generic expression. In practice for a given trajectory we will average the instant energy

loss rate dEe/dx over the entire travelled length L of the projectile [38][72][77]

Se =
〈dEe

dx

〉

=
1

L

∫ L

0

dx
(dEe

dx

)

. (2.4.6)

An equivalent alternative to find the total stopping power is to average over time the

retarding force Fproj acting upon the projectile [65][56]

S = −
〈

Fproj(t) ·
vproj(t)

|vproj(t)|
〉

. (2.4.7)

with vproj being the projectile velocity. As mentioned earlier in section 2.2 about the basis

choice, this second approach is more convenient for plane-wave basis simulations and would

become extremely laborious using localized basis. Therefore only the first approach in

equation (2.4.6) is adopted in MOLGW to calculate the electronic stopping power.

2.4.1 Simplification of Ehrenfest dynamics

The most accurate calculations of the ion-matter interactions require the use of Ehrenfest

TDDFT dynamics. Due to the computational constrains, however, simplifications of these

dynamics rules are often adapted. One common practice is to freeze all target nuclei

positions so that Etarg
kin = 0 and Sn = 0 and equation (2.4.1) becomes [78]

Etotal = Ee + Eproj
kin . (2.4.8)
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The second step is to assign a constant velocity to the projectile such that it travels in a

straight line [79]. This means that Eproj
kin remains constant and when we derive Etotal with

respect to x we get
dEtotal

dx
=
dEe

dx
, (2.4.9)

and the electronic stopping power can now be expressed as

Se =
〈dEtotal(t)

dx

〉

=
1

vproj

〈dEtotal(t)

dt

〉

. (2.4.10)

We can see that the system is no longer isolated and thus loses the energy conservation.

However we have gained another conserved quantity which is the total amount of work

done by the velocity constrain [38]

W = Etotal(t)−
∫

dtFv
proj · vproj. (2.4.11)

The drag force Fv
proj compensates the retarding force Fproj on the projectile.

We would like to point out that these two simplifications on the target and the projectile

nuclear motions are justifiable under the condition that the thickness of the simulated

target is small enough so that the projectile velocity in a closed system would not vary

significantly [38, 78]. In our study the largest thickness of a solid model does not exceed 10

nm which is 100 times thinner than samples used in experiments [80, 81, 82] and therefore

more than safe to adopt the constraining measures on the nuclear motions.

Figure 2.4.1 demonstrates the energy evolution when hydrogen travels through a lithium

cluster at a given trajectory. We observe that the total energy of the system increases

overtime and peaks when the projectile encounters a target atom in close distance. If

we average the slope of the energy curve, we obtain the single-trajectory stopping power

Se(p) by its definition in equation (2.4.10). We represent each single trajectory by the

impact parameter p which is the projection of the target-projectile distance in the plane

perpendicular to the projectile trajectory.
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Figure 2.4.1: Energy profile of hydrogen (TZ) piercing through a cluster of 94 lithium
atoms (CQZ/TZ/DZ) at impact parameter p = 0.26 Å and v = 1.0 a.u. (25 keV). The
lower part illustrates the modeling system where the pink sphere represents the hydrogen
atom and the blue spheres represent the lithium atoms. The upper panel describes the
total energy variation with the blue solid line as a function of the projectile position.
The averaged slope of the energy curve, represented by the red broken line, gives the
single-trajectory stopping power Se(p).

2.4.2 Trajectory sampling and averaging

In real experiments the materials used are usually polycrystalline [83] and the projectile

ion beam impinges the target at various impact parameters p [72]. To better take into

account of the experimental randomness, we employ what we call the ensemble average

technique. First we sample multiple p inside the elementary impact surface A defined

according to the symmetry of the crystal. Then at a given velocity v we calculate the

single trajectory stopping power Se(v,p) for all sampled p. Finally we integrate Se(v,p)

over all p and average over the impact surface A to get the random electronic stopping

power (RESP) related to v

〈Se(v)〉 =
1

A

∫

dpSe(v,p). (2.4.12)

To avoid the sampling of a large number of random p, a sampling technique is suggested

by Maliyov et al. [48] to take advantage of the polar symmetry of A. Figure 2.4.2 illustrates

this method for the bcc aluminum at [001] orientation. It has also been intensively studied

in reference [72] that the lithium and aluminum targets are only sensitive to the absolute

value of impact parameters p. This allows us to reduce equation (2.4.12) into one dimension
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and write

〈Se(v)〉 =
1

A

∫ alat/2

0

dp p∆α(p)Se(v, p). (2.4.13)

In the expression above, the arc p∆α(p) is considered the geometric weight of the single-

trajectory Se(v, p) inside the impact surface and alat denotes the lattice constant. The

determination of the angle ∆α(p) depends on the shape of the elementary surface A. In

the case of bcc [001] lithium and fcc [001] aluminum we have an isosceles right triangle

impact surface and the angles ∆α(p) for the corresponding p are determined as

∆α(p) =











π/4, if 0 ≤ p ≤
√
2alat/4,

1/2 arcsin(a2lat/4p
2 − 1), if

√
2alat/4 < p ≤ alat/2.

(2.4.14)

Figure 2.4.2: Polar symmetry sampling of impact parameters in fcc [001] aluminum.
The left-side image shows the plane view of the target in perpendicular to the projectile
trajectory. Each blue sphere represents an Al atom. The impact surface A is represented
by the yellow isosceles right triangle and is zoomed in at the right side of the figure. The
red sphere in the zoomed image illustrates the atom from which we define A. The absolute
value p of the impact parameters as well as the matching angle ∆α(p) are highlighted with
red double-headed arrows.

In order to further reduce errors caused by the angular dependence, we have improved

the original sampling technique of Maliyov and coworkers [48]. The left part of figure 2.4.3

shows the angular error for two trajectories when rotating from the hypotenuse (0°) to one

of the legs (45°) of the triangular impact surface featured in figure 2.4.2. Closer to the two

base corners, less is the rotation range, thus the impact points that are most affected by

the angular dependence are near the incenter where pinc =
√
2
2
l. In the case of aluminum

the hypotenuse length is l = 1.43 Å and pinc = 1.01 Å. This means that p = 0.78 Å is

expected to be more sensitive to the angular change than p = 0.26 Å, which we can see in

the figure 2.4.3. When compared to the stopping powers (SP) obtained at 0°, the results
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increase with the rotation angle and at 45° the deviation is 0.5% for p = 0.26 Å and 4.5%

for p = 0.78 Å. This has inspired us to take sampling points on the angle bisectors of the

two base angles instead of along the hypotenuse. This new technique is demonstrated on

the right side of figure 2.4.3 where the red lines indicates the sampling locations.

Figure 2.4.3: Angle induced errors for helium (DZ) impacting fcc [001] aluminum
(CQZ/DZ/DZ) and the new sampling technique. On the left side, the deviations comparing
to SP calculated at 0° rotation are displayed for two impact parameters: blue dotted
line with markers represents errors for p = 0.26 Å and orange dotted line with markers
represents errors for p = 0.78 Å. The right side of the figure illustrates the new sampling
technique. The triangular impact surface takes its origin from the atom represented by a
dark red sphere. The red solid lines indicate the angle bisectors of the base angles with the
grey dotted lines indicating the rotation from the hypotenuse. To relate to the left-hand
image of the figure, the rotations of the two impact parameters are illustrated with blue
and orange dotted lines.

One special trajectory we would like to mention is the channeling condition. During

experiments, one can use mono-crystal target at a specific orientation so that the projectile

ends up traversing through a channel [84] without any head-on collisions into the target

atoms or change of directions [38]. In the case of the impact surface in figure 2.4.2, the

channeling point would be at the base corner opposite to the impacted atom. Typically this

kind of setups gives very weak stopping power and some studies [85, 86] suggest that it is

due to the relatively weak electron density inside the channels. Nevertheless the channeling

condition provides a valuable way to study the stopping power since the experimental

conditions are controlled and the simulations can be done with one single trajectory [38].

In this chapter we have reviewed some fundamental concepts about the DFT and TDDFT.
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Then we have discussed about the matrix representations of several key mathematical

terms inside a GTO basis set. When projectile basis is not used, matrix expressions become

simpler in the orthogonal basis, and the second-order Magnus propagator is chosen over

the Crank-Nicolson propagator. Some simplifications on the Ehrenfest dynamics and the

sampling techniques employed to calculate the RESP are also presented. The next chapter

reports a study carried out in parallel to this thesis. The stopping powers of proton and

antiproton in LiF, simulated without projectile basis, are analyzed with unusual findings

at low velocities.



Chapter 3

Electronic Stopping Power without

Projectile Basis in LiF

This chapter is dedicated to a project where we have applied the no MB calculations

previously developed by Maliyov et al. [48, 49, 72] to the proton and antiproton stopping

power calculations in lithium fluoride (LiF) [46]. LiF is an insulator with a large band-gap

of 13.6 eV [87]. Due to such an energy gap, when the projectile velocity is very low the

kinetic energy of the projectile would be too weak to excite the target electrons. This

leads to a threshold effect where the stopping power is zero until the projectile velocity

passes a certain threshold value [88, 89, 90]. Historically there have been many debates

over the existence of such a threshold effect in LiF. Although some groups of researchers

have voiced their doubts against this phenomenon [91, 90], modern-day experiments have

proven that a threshold indeed exists for proton stopping power in LiF [88, 92, 93].

It is worth mentioning that in metallic materials there is no threshold effects at low

velocities due to the absence of band gap, as we can see from the vast collections of

experimental and theoretical studies in references [94, 95]. In addition, at low velocities

the stopping powers in metals increase linearly [38] according to the formula developed in

reference [96] which is similar to the Fermi and Teller’s formula [41] in equation (1.2.5).

In the following discussions we will start by looking at the RESP of proton and antiproton

in LiF. Experimental data and several groups of simulated results are compared to highlight

the stopping power threshold of proton and the positive and negative Barkas effects.

Then we will move on to a couple of analysis that have identified the cause of the newly

reported negative Barkas effect. The influence of the projectile charge sign is analyzed

33
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through applying fractional charges between -1 and 1, and the projectile’s interactions with

individual Li+ and F- ions are investigated by isolated ions study.

3.1 Stopping Powers of Proton and Antiproton

in LiF

The crystal structure of LiF studied is the rocksalt. After some careful convergence

tests on the geometry similar to those presented in section 5.1, we have decided to use a

LiF cluster of 126 atoms that is 22 Å in length and 6 Å in diameter. The center of the

cluster is on the column of atoms closest to the projectile track and the cluster is oriented

at [111] direction. Different views of the LiF cluster is illustrated in figure 3.1.1, as well as

an example of the running stopping power [E(z + alat)− E(z)]/alat = ∆E/alat of proton

and antiproton for a single trajectory. With the entrance to the cluster placed at z = 0 Å,

the stable ∆E/alat after 15 Å inside the cluster proves the length to be sufficient.

Figure 3.1.1: Transversal and longitudinal views of LiF [111] (upper panel) and the
running stopping power ∆E/alat of proton in LiF (lower panel) [46]. The spheres in cyan,
pink, and white represent respectively the atoms of lithium, fluorine, and the projectile. In
the transversal view of LiF, the smaller spheres in red, green, orange, and blue represent
the four impact parameters p used in this study. Discussions about the number of impact
parameters can be found in the Supplementary Material of reference [46]. The running SP
at p = 0.45 Å is reported for both proton (green solid line) and antiproton (green dashed
line) projectiles as a function of projectile position at v = 0.4 a.u..
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The choice of the crystal orientation in a cubic structure such as the rocksalt has been

observed to be of little influence over the RESP by the work of Maliyov [72]. We support his

observation by comparing the proton and antiproton RESP in LiF calculated at both [111]

and [001] directions in figure 3.1.2. It is obvious to see that for each projectile the results

are almost identical between the two cluster orientations. Details of other convergence

tests concerning the radius, the number of impact parameters and the exchange-correlation

functions are reported in the Supplementary Material of reference [46].

Figure 3.1.2: Crystal orientation sensitivity of the RESP of proton and antiproton in LiF
[46]. The orange line with full circles plots the proton RESP with [111] cluster direction.
The red line with empty circles plots the proton RESP obtained at [001]. The dark blue
line with full diamonds plots the antiproton RESP at [111] and the light blue line with
empty diamonds plots the antiproton RESP at [001].

The target basis used is a mixture of ACQZ/DZ/DZ where the 48 atoms closest to

the projectile trajectory are described with the ACQZ basis set. This choice is made

independently of the target basis convergence test in section 5.1.3 and we have not verified

whether the ACQZ basis can be replaced by the lighter CQZ basis like in the case of

aluminum to save computational efforts. The main goal here is to use a basis set as

complete as possible within our resource limits.

Several sets of proton and antiproton RESP are presented in figure 3.1.3 including

the experimental data [92, 93, 90], the linear-response (LR) TDDFT results calculated

with ABINIT [97, 44] and our real-time (RT) TDDFT results from MOLGW [46]. Let
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us first focus on the proton. The rich number of experimental data at very low velocities

v ≤ 0.2 a.u. (1 keV) gives clear evidences of a threshold around v = 0.05 a.u. (60 eV).

Before this point the RESP of proton in LiF is zero. While this effect is well captured by

the LR calculations, the LR curve is completely off the track of the experimental data after

v = 0.2 a.u.. Our RT results on the other hand do not only describe correctly the threshold

effect but also follow closely the evolution of the experimental data at higher velocities.

Figure 3.1.3: RESP of proton and antiproton in LiF. The blue and red triangles reports
the collections of experimental findings [92, 93, 90] for proton and antiproton respectively.
The green broken line plots the results from the linear-response (LR) TDDFT calculations
which is insensitive to the charge sign of the projectile. Our real-time (RT) TDDFT results
[46] are represented by lines with diamonds: the purple line plots for proton and the orange
line for antiproton.

Now we switch our attention to the antiproton. At low velocities the experimental

records are scarce and we have only found data starting from v = 0.3 a.u. (2 keV).

According to the experiments the antiproton RESP is significantly lower than that of the

proton. This phenomenon where the stopping power of a negative pion is inferior to that

of a positive pion has been first confirmed by Barkas and co-workers [45] and is therefore

named the Barkas effect. The LR methods cannot capture this effect due to the quadratic

dependence on the projectile charge Z in equation (1.2.6) and gives very different results
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from the experiments. Corrections to the Lindhard LR formula then involve a polynomial

expansion into the cubic term Z3 [36]. The RT calculations go beyond this charge sign

limit of the LR approach and predict correctly the Barkas effect between the proton and

antiproton RESP for v ≥ 0.3 a.u.. In addition the accordance is very good between the RT

and the experimental data.

The surprising observations of the RT results take place below v = 0.3 a.u. where the

RESP of antiproton becomes superior to that of proton. Since this behavior is the opposite

of the common Barkas effect, we decide to call it the negative Barkas effect and refer to

the former as the positive Barkas effect. At the same time, apart from a narrow platform

between v = 0.1 (250 eV) and 0.3 a.u. the RT curve does not show any sign of threshold

for the antiproton stopping power at lower velocities, which is a major difference from the

proton RESP.

There are two other valuable references to compare our RT-TDDFT findings with.

Previously, the research teams of Pruneda [79] and Zeb [86] have conducted the RT-

TDDFT studies of proton and antiproton stopping power in LiF using SIESTA [98, 66, 99].

Instead of taking multiple random trajectories, their simulations are set in either a [110] or

[001] channel. While they have correctly captured the proton threshold and the positive

Barkas effect, they also report a threshold velocity for antiproton and have shown no signs

of negative Barkas effect. In figure 3.1.4 we present the channeling SP results from both

SIESTA and MOLGW.
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Figure 3.1.4: Channeling SP of proton and antiproton in LiF calculated by both SIESTA
[79, 86] and MOLGW [46]. Results from reference [86] concern only the proton and is
plotted by a purple line with squares. Results from reference [79] report for both the
proton and the antiproton and are plotted by a red line with squares then a pink line with
diamonds. Our MOLGW calculations use a blue line with diamonds for the proton and a
yellow line with diamonds for the antiproton.

For proton, results from reference [86] have higher values than our MOLGW findings

starting from v = 0.2 a.u., while results from reference [79] are almost identical to ours.

The agreement in the overall trend among these three sets of calculations is pretty good.

Although both references [79] and [86] use the same software SIESTA, the discrepancy in

their results is caused by the differences in their modeling parameters.

For antiproton, the overall trend of MOLGW calculations is in perfect agreement with

the results of Pruneda et al. [79], with only a small difference in the absolute values.

Comparing with the RESP of antiproton in figure 3.1.3, we can see the importance of

including random trajectories at low velocities to capture the negative Barkas effect.

In this section we have talked about the proven threshold of the proton stopping power

in LiF as well as the positive and negative Barkas effects between the proton and antiproton

stopping powers. With our MOLGW random-trajectory calculations we have captured all of

these phenomena. While other RT-TDDFT calculations from SIESTA [79, 86] also describe
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correctly the behaviors of the proton stopping power, their channeling approach might

have prevented them from observing the unusual trend of antiproton SP at low velocities.

To our knowledge, the negative Barkas effect that we have predicted is unprecedented and

in the following sections we will try to explain the origin of such a phenomenon.

3.2 Fractional charges analysis

The idea behind this analysis is to gradually change the projectile charge state Z

from 1 (proton) to -1 (antiproton) and observe how the RESP in LiF is affected. The

in-between charge states would therefore be fractional and the resulting stopping powers

are reported in figure 3.2.1 at three different velocities v = 0.2, 0.4 and 1.2 a.u.. Besides

the RT-TDDFT calculations, we have also run the LR-TDDFT simulations at the same

conditions. By construction, due to the Z2 dependency the linear-response results give

a symmetric parabolic trend as the charge Z goes towards the positive and the negative

ends. This is a good reference to compare with the RT studies to evaluate the asymmetry

in the charge behaviors.

Figure 3.2.1: Fractional charges analysis of RESP in LiF with the projectile charge Z
varying between -1 and 1 [46]. Three velocities are studied and their results marked with
different colours: v = 0.2 a.u. in orange, v = 0.4 a.u. in blue and v = 1.2 a.u. in red.
Results from the RT-TDDFT calculations are reported by solid lines with markers, whereas
results obtained by the LR-TDDFT methods are plotted by dashed lines.
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We can see from figure 3.2.1 that at a high enough velocity, v = 1.2 a.u., the RT curve

is almost identical to the LR curve. As the velocity decreases, the RT curve starts to lose

its symmetry. At v = 0.4 a.u., a positive Barkas effect can be observed where the RESP of

positive charges are greater than those of negative charges, especially when |Z| is close

to 1. Finally at v = 0.2 a.u., the RT curve is completely asymmetrical and the RESP of

positive charges all become inferior to those of the opposite sign. This is thus the negative

Barkas effect and is consistent with that observed between the proton and antiproton in

figure 3.1.3. We will now investigate further into the nature of this effect by studying the

influence of these two projectiles on the two ions composing LiF: Li+ and F-.

3.3 Isolated ions analysis

The first step of the investigation on isolated ions of LiF is to run the RT-TDDFT

stopping power simulations in diatomic systems built with a projectile and an isolated ion.

There are four pairs of particles to be considered: 1) proton + Li+; 2) antiproton + Li+; 3)

proton + F-; 4) antiproton + F-. The principle of these calculations are the same as that

used for the diatomic systems described in section 4.2, only without projectile basis. We

report in figure 3.3.1 the total energy variation ∆E before and after impacting the target

ion at slow velocities v ≤ 0.4 a.u. (4 keV). This specific velocity zone is chosen to focus

on the range where the negative Barkas effect happens. These results are calculated with

different impact parameters p to determine the dependency of the negative Barkas effect

on the trajectory.
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(a) Isolated Li+ ion (ACQZ) (b) Isolated F- ion (ACQZ)

Figure 3.3.1: Energy variation ∆E of proton and antiproton in isolated Li+ (left-side
image) and F- ions (right-side image). Three impact parameters p = 0.2, 0.6, 1.3 Å are
studied and marked with colors blue, orange and green respectively. Results for the proton
projectile are plotted with dashed lines whereas results for the antiproton with solid lines.

With ∆E shown at the same scale in both images in figure 3.3.1, it is obvious to see

that F- is more impacted by the two projectiles than Li+. Both target ions interact more

strongly with the antiproton than with the proton, but this difference between the two

projectiles diminishes as v and p rise in value. In the case of Li+, the interactions with

proton is too weak to be visible at the chosen scale in figure 3.3.1a. Focusing on the

antiproton results, we observe for F- a much more complex dependency of ∆E on the

velocity below v = 0.2 a.u. (1 keV) than for Li+. Not only does it have great magnitude, it

also possesses a peak around v = 0.1 a.u. (250 eV). Based on the above observations we

conclude that, between the two ions of LiF, F- is the major contributor to the negative

Barkas effect. The next step is therefore to analyze the electronic structure of F- to identify

the main factors that cause this effect.

For this analysis, we have turned to the linear-response TDDFT calculations in MOLGW

since it can give practical insights about the excitation energies and the contributions from

each orbital to the stopping power. As the target is an isolated ion instead of a material

with certain thickness, it makes more sense to measure the stopping cross section (SCS)

instead of the stopping power [36]

Scs = S/ρT , (3.3.1)

where Scs is the stopping cross section, S is the stopping power and ρT is the density of
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the target.

Figure 3.3.2: Stopping cross section (SCS) (bars) and the first excitation energy E1

(diamonds) in three systems of isolated F- ion (from left to right): 1) antiproton + F-; 2)
F- alone; 3) proton + F-. The left y-axis measures the SCS of the three systems and the
right y-axis measures the E1. The total SCS of each system is represented by a blue bar
and the contributions from the F- orbital pu by an orange bar. The E1 values of the three
systems are marked by red diamonds and linked together by a red line.

In figure 3.3.2 we present both the SCS and the first excitation energy E1 for three

systems: 1) antiproton + F-; 2) F- alone; 3) proton + F-. The velocity that we are

interested in is v = 0.2 a.u. at which the negative Barkas effect is well pronounced in figure

3.1.3. We have also chosen to work with the impact parameter p = 0.45 Å that is close

enough to the target according to figure 3.3.1 and has a good statistic probability inside

the impact zone (see the notion of geometric weight in section 2.3.2). For the SCS both

the total value and the major contribution from one specific F- orbital pu are reported.

Looking first at the total SCS, we can quickly notice it to be the highest in the presence

of antiproton and the lowest in the presence of proton. This is expected knowing the RESP

of antiproton to be higher than that of proton in figure 3.1.3 at this velocity. Moving on

to the first excitation energy we see that logically a lower total E1 is associated with a

higher SCS like in the case of the antiproton. Meanwhile in the presence of proton the

E1 value is extremely high, indicating a very stable system. Coming back to the orbital

details of SCS we notice that the major contribution comes from one particular pu orbital

of the F- ion, which is severely destabilized by the antiproton. The subscript u denotes the

unit vector that points from F- towards the the projectile. We believe that it is due to
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the destabilization of this orbital that the RESP of antiproton is unusually high at low

velocities. In contrast with the very stable system formed by F- and the proton, the easy

excitation of the F- ion by the antiproton finally leads to the negative Barkas effect.

Figure 3.3.3: Electron population change of the F- orbitals [46]. Since only 1s2s2p are
occupied in F-, virtual orbitals with higher quantum numbers are labeled without their
quantum numbers. Image (a) describes the orbital population change in the presence of
proton at v = 0.2 a.u. and image (b) describes the change in the presence of antiproton.
Images (c) and (d) report for systems at v = 0.8 a.u. (16 keV), with proton and antiproton
projectile respectively.

At last, to further prove the F- orbital destabilization as a unique feature in the presence

of antiproton at low velocities, we have mapped out the F- orbital population change

in figure 3.3.3 using RT-TDDFT methods for both proton and antiproton projectiles at

two different velocities. The impact parameters are chosen along the y-axis, whereas the

trajectories are along the z-axis. The population pi of a ground-state (t0) orbital i is

initially

pi(t0) =
∑

j

fj|〈ψi(t0)|ψj(t0)〉|2 = fi, (3.3.2)

due to the orthonormality of wave functions. Here fi and fj are the occupation numbers

of orbitals i and j. At a later instant t the population becomes

pi(t) =
∑

j

fj|〈ψi(t0)|ψj(t)〉|2, (3.3.3)
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The change in population of a single orbital i can thus be expressed as

∆pi = pi(t)− pi(t0) =
∑

j

fj|〈ψi(t0)|ψj(t)〉|2 − fi. (3.3.4)

At v = 0.2 a.u. there is almost no orbital excitations at the presence of proton, whereas

at the presence of antiproton the 2p orbitals as well as some higher level s and p orbitals

are noticeably excited. Since the projectiles move in the xz plane, orbitals px and pz are

far more affected than the orbital py which is perpendicular to the plane. This directional

difference of the excited p orbitals agrees with the LR study where the orbital pointing

from F- towards the projectile is observed to be destabilized. On the other hand, once the

velocity is high enough, as in the case of v = 0.8 a.u., the orbital excitations are no longer

unique to the system with antiproton projectile and the negative Barkas effect vanishes.

Summing up this chapter, we have first presented the RESP of proton and antiproton in

LiF where an unprecedented negative Barkas effect is observed thanks to our RT-TDDFT

calculations. Then we have found a plausible explanation of this phenomenon through

two major analysis. One is the study of fractional charges where we explore the evolution

of RESP as the projectile charge goes gradually from Z = −1 to 1. This confirms the

appearance of the negative Barkas effect at low velocities as Z approaches -1. The second

study looks at the isolated ions of LiF, notably F- who is the most affected by the presence

of antiproton due to the destabilization of its p orbitals. We believe that it is due to this

F- orbital destabilization which is unique to the antiproton projectile at low velocities that

the negative Barkas effect takes place in LiF.

Here we come to the end of simulations without projectile basis. The next chapter will

focus on the changes and adaptations in theoretical formulas and propagators due to the

moving projectile basis.



Chapter 4

Adapting Equations with Moving

Projectile Basis

This chapter is dedicated to the theoretical explanation of the difference between

modeling a bare projectile and a projectile with basis functions. We will start by

demonstrating how the addition of projectile basis introduces position dependency into the

time-dependent equations. The time-evolution of the basis set induces a time-dependent

Hilbert space, which translates in an extra operator D̂ that possesses a special matrix form

and important physical properties. Then some numerical findings are provided to better

illustrate these properties. The second half of this chapter discusses how the second-order

Magnus (MAG2) propagator and the Crank-Nicolson (CN) propagator are modified with

respect to the moving projectile basis. We will explain that while the former presents many

advantages in systems without projectile basis, the latter is more suitable when projectile

basis is applied.

4.1 Projectile Position Dependency

While adding basis on the projectile allows the latter to carry electrons, special treatments

are required to take into account of the projectile electron displacements when transitioning

from the ground state to the propagated states. At the ground state everything is static

so there is no need to define a reference frame for movements. However, to debut the

propagation where an ion is in continuous movement, it is instructive to establish the link

between the laboratory frame Fo and the frame Fv centered on the moving ion. In the

45
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following sections we will demonstrate through time-dependent equations that the change

of reference frame brings a phase factor to the wave functions. The addition of this phase

factor is avoidable by introducing a gradient operator D̂ in the time-dependent equations.

The properties and numerical studies of D̂ will be discussed afterwards. We temporarily

adopt the SI units in this section for a more insightful equation development.

4.1.1 Change of reference frames

The change between inertial reference frames entails Galilean transformations [100].

Fortunately, the TDSE is invariant under the space-time symmetry transformation for two

frames of reference Fo and Fv moving at constant velocity v relative to each other [100].

Since we use rectilinear trajectories for the projectile and that its velocity is defined along

a single axis, the x-axis for example, the following demonstrations will be one-dimensional.

Under this setting, the position and the time in both frames have the following relations

xo = xv + vtv,

to = tv.
(4.1.1)

In either frame the density probability should be the same,

|Ψo(xo, to)|2 = |Ψv(xv, tv)|2 (4.1.2)

and therefore the wave functions Ψo and Ψv differ only by a phase factor called the electron

translation factor (ETF)

Ψo(xo, to) = eif(xo,to)Ψv(xv, tv). (4.1.3)

We can obtain the expression for the function f(xo, to) by finding the relation between the

two frames. For a more generalized discussion, we will go back to the standard TDSE

which in the frame Fv has the form

i~
∂

∂tv
Ψv(xv, tv) =

[

− ~
2

2m

∂2

∂x2v
+Wv(xv)

]

Ψv(xv, tv), (4.1.4)
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Here we have grouped all potential operators from (2.1.2) into one single term W to simplify

the writing. The potential energy in both frames are equivalent [100][51],

Wv(xv) = Wo(xo), (4.1.5)

and the differential operators transform as

∂

∂xv
=

∂

∂xo
∂

∂tv
=

∂

∂to
+ v · ∂

∂xo
.

(4.1.6)

Substituting (4.1.3), (4.1.5) and (4.1.6) into (4.1.4) gives

− ~
2

2m

∂2

∂x2o
Ψo +Wo(xo)Ψo + i~

[

~

m

∂f

∂xo
− v

]

∂Ψo

∂xo

+

[

i~2

2m

∂2f

∂x2o
+

~
2

2m

(

∂f

∂xo

)2

− ~v · ∂f
∂xo

− ~
∂f

∂to

]

Ψo = i~
∂Ψo

∂to
.

(4.1.7)

Eventually we want to reduce this long equation into the usual TDSE in Fo

i~
∂

∂to
Ψo(xo, to) =

[

− ~
2

2m

∂2

∂x2o
+Wo(xo)

]

Ψo(xo, to). (4.1.8)

In order to eliminate all extra terms, the function f(xo, to) has to fulfill the following

conditions

~

m

∂f

∂xo
− v = 0, (4.1.9a)

∂2f

∂x2o
= 0, (4.1.9b)

~

2m

(

∂f

∂xo

)2

− v · ∂f
∂xo

− ∂f

∂to
= 0. (4.1.9c)

The second expression (4.1.9b) results from the spatial derivative of equation (4.1.9a).

Putting it back to equation (4.1.7) then gives us the condition (4.1.9c). Based on these

constraints, we can finally construct a real function

f(xo, to) =
m

~

(

v · xo −
1

2
v2to

)

. (4.1.10)
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Now we will prove how the application of ETF with the basis expansion leads to

equivalent expressions in both frames. Let us first rewrite (4.1.3)

∑

i

∑

α

Co
αi(to)φ

o
α(xo) = ei

m
~

(

v·xo− 1

2
v2to

)

∑

i

∑

α

Cv
αi(tv)φ

v
α(xv). (4.1.11)

The unicity of basis expansion implies an element-to-element equality [50] which allows us

to write

e−im
~
(v·ro− 1

2
v2to)Co

αi(to)φ
o
α(xo) = Cv

αi(tv)φ
v
α(xv). (4.1.12)

The standard TDSE in frame Fv expands as

i~
∂

∂tv

(

∑

α

Cv
αi(tv)φ

v
α(xv)

)

=
[

− ~
2

2m

∂2

∂x2v
+Wv(xv)

]

∑

α

Cv
αi(tv)φ

v
α(xv).

(4.1.13)

Switching into the laboratory frame Fo using relations (4.1.5), (4.1.6) and (4.1.12) gives us

i~
[ ∂

∂to
+ v · ∂

∂xo

](

e−im
~
(v·xo− 1

2
v2to)

∑

α

Co
αi(to)φ

o
α(xo)

)

=
[

− ~
2

2m

∂2

∂x2o
+Wo(xo)

]

e−im
~
(v·xo− 1

2
v2to)

∑

α

Co
αi(to)φ

o
α(xo).

(4.1.14)

The development of the left-hand side of this equation leads to

i~
[ ∂

∂to
+v · ∂

∂xo

](

e−if
∑

α

Co
αi(to)φ

o
α(xo)

)

= i~e−if
∑

α

[ ∂

∂to
Co

αi(to) + Co
αi(to)v ·

∂

∂xo

]

φo
α(xo)

+
mv2

2
e−if

∑

α

Co
αi(to)φ

o
α(xo).

(4.1.15)
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At the same time the right-hand side develops into

[

− ~
2

2m

∂2

∂x2o
+W (xo)

]

e−if
∑

α

Co
αi(to)φ

o
α(xo)

= e−if
∑

α

Co
αi(to)

[

− ~
2

2m
∇2

xo
+W (xo)

]

φo
α(xo)

+
mv2

2
e−if

∑

α

Co
αi(to)φ

o
α(xo)

+ i~e−if
∑

α

Co
αi(to)v ·

∂

∂xo
φo
α(xo).

(4.1.16)

Equalizing both sides gives us the final expression of TDSE expanded in a localized basis

in the laboratory frame Fo

i~
∂

∂to

(

∑

α

Co
αi(to)φ

o
α(xo)

)

=
[

− ~
2

2m

∂2

∂x2o
+Wo(xo)

]

∑

α

Co
αi(to)φ

o
α(xo).

(4.1.17)

This is exactly in the same form as that of equation (4.1.13). We can therefore see that

corrections by the ETF on the basis functions and their coefficients allow us to work

directly with the standard expression of TDSE and the standard Hamiltonian. However,

the complexity of this approach comes when calculating the 4-center integrals of the

Hamiltonian which have very complicated analytical forms and require huge computational

effort. While this is achievable in small atomic systems made of two to three atoms [101]

[102], the cost of computation will be enormous in our solid systems consisting of around a

hundred atoms. In order to overcome this difficulty, we resolve to derive the TDSE without

the ETF.

From this point on, we will stay in the laboratory frame and drop the index o for

simplicity. To take into account of the implicit time dependence of GTO basis functions

through the atom positions RA(t), the partial time derivative has to be replaced by the

total derivative [103]

∂

∂t
⇒ d

dt
=

∂

∂t
+

N
∑

A=1

∂RA

∂t
· ∇RA

=
∂

∂t
+

N
∑

A=1

vA · ∇RA
. (4.1.18)
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We define the product term of velocity and space gradient as operator D̂

N
∑

A=1

vA · ∇RA
= D̂. (4.1.19)

The left-hand side of (4.1.17) can now be derived as

i~
d

dt

(

∑

α

Cαi(t)φα

(

r−RAα

)

)

= i~
[ ∂

∂t
+ D̂

]

∑

α

Cαi(t)φα

(

r−RAα

)

= i~
∑

α

[ ∂

∂t
Cαi(t) + Cαi(t)D̂

]

φα

(

r−RAα

)

.

(4.1.20)

On the right-hand side of equation (4.1.17) the expression is not affected by the time-

dependence of the basis functions. Hence we come down to an expression slightly different

from the standard TDSE in equation (4.1.17)

i~
∑

α

[ ∂

∂t
Cαi(t)

]

φα

(

r−RAα

)

=
[

− ~
2

2m
∇2

r+W (r)−i~D̂
]

∑

α

Cαi(t)φα

(

r−RAα

)

. (4.1.21)

The addition of −i~D̂ is exactly what bridges the gap between the frames Fv and Fo. Here

we define the effective Hamiltonian operator whose similar expressions can also be found

in references [103, 104]

M̂ = Ĥ − i~D̂. (4.1.22)

Projecting
〈

φβ

(

r−RAβ

)∣

∣ onto (4.1.21) gives us

i~
∑

α

Sβα
∂

∂t
Cαi(t) =

[

Hβα − i~Dβα

]

∑

α

Cαi(t), (4.1.23)

which can be reduced to the matrix form

i~
∂

∂t
C = S−1(H − i~D)C. (4.1.24)

This also gives us the effective Hamiltonian in the matrix form

M = S−1(H − i~D). (4.1.25)
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4.1.2 Properties and roles of D̂

Now let us have a look at D̂ in its matrix form whose elements are expressed as

Dαβ =
〈

φα(r−RAα
)
∣

∣

∣
vA′

β
· ∇RA′

β

φβ(r−RA′

β
)
〉

. (4.1.26)

Since we are in the laboratory frame, only the projectile ion has non-zero velocity vproj.

This means that all elements in D that involves the target velocity are zero, thus giving D

an asymmetric shape

D =









































...
...

...
...

. . . . . . 0 . . . . . . . . . 〈φtarget|vproj · ∇Rproj
φproj〉 . . .

...
...

...
...

...
...

. . . . . . 0 . . . . . . . . . 〈φproj|vproj · ∇Rproj
φproj〉 . . .

...
...









































. (4.1.27)

This is a desired feature because in most cases the number of target basis functions is far

greater than that of the projectile, which means more than half of the matrix elements

do not require any calculations. The downside of this asymmetry is the loss of Hermitian

property which can give D complex eigenvalues.

However, when the projectile is still as far from the target ions that there is no overlap

between them, the block Dtarget,proj =
{

〈φtarget|vproj · ∇Rproj
φproj〉

}

is zero. In addition the

projectile-projectile block of D matrix is anti-Hermitian which we can prove from the fact

that the overlap between two basis functions centered on the same atom does not alter in

time

d

dt
SAA =

〈 d

dt
φα(r−RAα

)
∣

∣

∣φβ(r−RA′

β
)
〉

+
〈

φα(r−RAα
)
∣

∣

∣

d

dt
φβ(r−RA′

β
)
〉

= 0. (4.1.28)

The transpose-conjugate of an element in the block Dproj,proj reads

〈

φα(r−Rproj)
∣

∣

∣

d

dt
φβ(r−Rproj)

〉H

=
〈 d

dt
φβ(r−Rproj)

∣

∣

∣φα(r−Rproj)
〉

. (4.1.29)
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Combining with the relation (4.1.28) we show that

〈

φα(r−Rproj)
∣

∣

∣

d

dt
φβ(r−Rproj)

〉H

= −
〈

φβ(r−Rproj)
∣

∣

∣

d

dt
φα(r−Rproj)

〉

, (4.1.30)

thus

DH
proj,proj = −Dproj,proj. (4.1.31)

It is worth pointing out that the total overlap matrix S still varies in time due to the

crossed terms where the two basis functions are centered on different atoms, and in a

general form we can write
d

dt
S = DH +D. (4.1.32)

Since only the projectile-projectile block is non-zero at the beginning of the propagation,

the D matrix is anti-Hermitian, making the effective Hamiltonian M a Hermitian matrix.

The diagonalization of the Hermitian M produces real eigenvalues and stable eigenstates.

When the projectile is well separated from the target before their collision, the electron

density of the system is not yet perturbed. Since there is almost no overlap between the

two entities, the Hamiltonian H and the effective Hamiltonian M are both constant in

time. This results in constant total energy of the system.

After the collision, when there is no basis on the projectile, the total energy of the

Hamiltonian H will again become constant as the two entities part away from each other

and their interactions fade. The situation is different with the projectile basis present since

electrons are allowed to bond with the projectile and waves of electron density will continue

to oscillate around the projectile. As a consequence, the total energy of the Hamiltonian

H keeps oscillating after the collision. However, this extra dynamics is compensated by

the energy contribution from −i~D and the total energy of the effective Hamiltonian M

will eventually go back to a constant value as M regains its Hermitian status. The energy

represented by −i~D will be further discussed later in this section and the detailed example

of the energy compensation will be given in diatomic systems in Chapter 4.

Another important role of D is to conserve the orthonormality of wave functions:

d

dt
CHSC = 0. (4.1.33)

Let us now develop equation (4.1.33) with the help of relation (4.1.32) and replace all time
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derivatives of coefficient matrix C by expression (4.1.24). Keep in mind that matrices H

and S are both Hermitian thus invariant to the conjugate transpose operation.

d

dt
CHSC =

( ∂

∂t
CH
)

SC + CH
( d

dt
S
)

C + CHS
( ∂

∂t
C
)

= CH(
i

~
H −DH)S−1SC + CH(DH +D)C

+ CHS
[

− S−1(
i

~
H −D)

]

C

= CH(
i

~
H −DH)C + CH(DH +D)C − CH(

i

~
H −D)C

= 0.

(4.1.34)

Hereby we have proven the orthonormality of wave functions to be conserved during the

entire propagation. This would not be the case if we use the simple Hamiltonian H instead

of (H − i~D) due to the time dependency of the overlap matrix S.

One more thing worth discussing here is the homogeneity of −i~D̂ to an energy that we

can obtain from the trace of matrix product between the density matrix P and D

E−iD = −i~Tr{PD}

= −i~
∑

αβ

PαβDαβ

= −i~
∑

i

∑

αβ

fiCβiC
∗
αi〈φα|vA′

β
· ∇RA′

β

φβ〉.

(4.1.35)

Here fi is the occupation number for the electronic state i that can be either 1 (occupied)

or 0 (unoccupied). Let us recall the momentum operator to be

p̂ = −i~∇r. (4.1.36)

A relation exists between the two gradients [103]

∇rφα(r−RAα
) = −∇RAα

φα(r−RAα
)

≡ −
N
∑

A=1

∇RA
φα(r−RAα

).
(4.1.37)
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The expectation value of p̂ acting on the one-particle functions can be expressed as

〈ψi(r, t)|p̂|ψi(r, t)〉 =
∫

dr3
∑

αβ

C∗
αi(t)φα

(

r−RAα

)

(−i~∇r)Cβi(t)φβ

(

r−RA′

β

)

= i~
∑

αβ

C∗
αi(t)Cβi(t)

∫

dr3φα

(

r−RAα

)

∇RA′

β

φβ

(

r−RA′

β

)

= i~
∑

αβ

C∗
αi(t)Cβi(t)〈φα|∇RA′

β

φβ〉.

(4.1.38)

This gives another way to define E−iD

E−iD = −
∑

i

fi〈ψi|v · p̂|ψi〉 (4.1.39)

We now prove that the expectation value in (4.1.38) can also be obtained from writing

〈p̂〉 = m
d〈x̂〉
dt

. (4.1.40)

This relation is obtained thanks to Ehrenfest’s theorem [105] on the time derivation of

expectation values of quantum operators

d

dt
〈Â〉 ≡ d

dt
〈Ψ|Â|Ψ〉 = 〈dΨ

dt
|Â|Ψ〉+ 〈Ψ|dÂ

dt
|Ψ〉+ 〈Ψ|Â|dΨ

dt
〉

= − 1

i~
〈ĤΨ|Â|Ψ〉+ 1

i~
〈Ψ|Â|ĤΨ〉+ 〈Ψ|dÂ

dt
|Ψ〉

=
1

i~
〈Ψ|[Â, Ĥ]|Ψ〉+ 〈Ψ|dÂ

dt
|Ψ〉

≡ 1

i~

〈

[Â, Ĥ]
〉

+
〈dÂ

dt

〉

.

(4.1.41)

If we put the position operator x̂ at the place of Â we get

d

dt
〈x̂〉 = 1

i~

〈

[x̂, Ĥ]
〉

+
〈dx̂

dt

〉

=
1

i~

〈

[x̂,
p̂2

2m
+ V̂ ]

〉

=
1

2im~

〈

[x̂, p̂]p̂+ p̂[x̂, p̂]
〉

=
1

2im~

(

i~〈p̂〉+ 〈p̂〉i~
)

=
〈p̂〉
m
.

(4.1.42)
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This gives us exactly equation (4.1.40). Let us now integrate both sides in time

∫ t

t0

〈p̂〉dt = m

∫ t

t0

d〈x̂〉
dt

dt,

(t− t0)〈p̂〉 = m
(

〈x̂〉t − 〈x̂〉t0
)

.

(4.1.43)

For a system whose particles all move together at a constant velocity, we can further write

〈p̂〉 = m
〈x̂〉t − 〈x̂〉t0
t− t0

= mv. (4.1.44)

Here we introduce the Mulliken charge qi in electronic state i which can be a fractional

number in numerical simulations

qi =
∑

αβ

〈ψi|φα〉S−1
αβ 〈φβ|ψi〉. (4.1.45)

At last, when we plug (4.1.44) and (4.1.45) back into (4.1.39) we have

E−iD = −mv2
∑

i

fiqi = −mqv
2, (4.1.46)

where mq represents the mass of all moving electrons. This demonstrates that the

representative energy of the term −i~D̂ takes up twice the amount of kinetic energy

of the moving electrons. While we have not reached an analytical expression to prove the

relation (4.1.46) for systems with only one moving particle, numerical studies has confirmed

this relation as we shall see in the next section.

4.1.3 Numerical study of D̂

In the previous discussion we have explained how the operator D̂ in equation (4.1.19)

ensures the Gallilean invariance when transforming the ground-state wave functions obtained

in the projectile’s frame into the laboratory frame. Numerically this is achieved by finding

the Self-Consistent Field (SCF) solutions of the stationary Kohn-Sham equation using

the effective Hamiltonian M̂ in expression (4.1.22) instead of the standard Ĥ. This step

involves iterative cycles of calculations to reach convergence and can be considered as the

re-initialization of the ground-state wave functions Ψo.

Ideally at convergence, if we had a complete basis set, the eigen energy Ev of the effective
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Hamiltonian with the updated wave functions Ψv would be lower than Eo of the original

Hamiltonian with the original Ψo by exactly one unit of the electron kinetic energy. The

mathematical explanation for this energy shift can be established from equation (4.1.16)

which we simplify as

Ĥe−ifΨo = e−ifĤΨo +
mv2

2
e−ifΨo + e−if i~v · ∇rΨo. (4.1.47)

Using relations (4.1.3) and (4.1.37) we then get

ĤΨv = e−ifĤΨo +
mv2

2
Ψv − e−if i~D̂Ψo. (4.1.48)

The stationary Schrödinger equation in the laboratory frame being

ĤΨo = EoΨo, (4.1.49)

allowing us to replace the first term in equation (4.1.48)

ĤΨv = EoΨv +
mv2

2
Ψv − e−if i~D̂Ψo. (4.1.50)

Now we aim to rewrite the last term in equation (4.1.50) without the factor e−if starting

from

i~D̂Ψv = i~v · ∇RΨv (4.1.51)

Introducing relation (4.1.3) and deriving the above equation gives us:

i~D̂Ψv = mv2Ψv − e−if i~D̂Ψo. (4.1.52)

Inserting (4.1.52) back to (4.1.50) leads to:

ĤΨv = EoΨv +
mv2

2
Ψv + i~D̂Ψv −mv2Ψv, (4.1.53)

which after some reordering becomes

(Ĥ − i~D̂)Ψv = (Eo −
mv2

2
)Ψv. (4.1.54)
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Projecting the above equation onto Ψv eventually makes

Ev = Eo −
mqv

2

2
= Eo +

1

2
E−iD, (4.1.55)

where E−iD comes from equation (4.1.46).

However, since basis completeness is not achievable in the real world, we can only obtain

an approximation of the relation (4.1.3) using the converged eigenstates of the effective

Hamiltonian

ΨH−i~D ≈ Ψv = e−ifΨo. (4.1.56)

The accuracy of relation (4.1.55), which comes down to the accuracy of E−iD, depends

therefore largely on the quality of the ETF approximation in equation (4.1.56) which is

tightly bound to the basis set quality and has larger error at higher projectile velocity.

Figure 4.1.1: Energy approximation of mqv
2 with E−iD for a helium projectile traveling

towards a proton (same basis as helium). The left-side image traces the absolute value of
E−iD for the standard basis sets cc-pVXZ. The black dotted curve represents the theoretical
value of projectile charge kinetic energy mqv

2. The curves in solid lines each represents a
basis quality with a different color ranging from the lowest cardinal number X = D to the
highest X = 6. The right-side image compares the accuracy in percentage between the
standard basis and the augmented basis aug-cc-pVXZ at different velocities. Both basis
sets share the same color assignment.

Figure 4.1.1 demonstrates to which degree basis quality and projectile velocity influence

the estimation of E−iD for a diatomic system with helium projectile (possessing two

electrons) and proton target. On the left side the image shows the deviation of |E−iD|
from the theoretical value mqv

2 as the projectile velocity rises and the basis quality goes

from low (DZ) to high (6Z). v is reduced to one dimension for simplicity. On the right side,
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comparison between the standard basis cc-pVXZ and the augmented basis aug-cc-pVXZ is

realized. Tolerating a 5% deviation, we notice that the improvement on |E−iD| brought from

the augmented basis becomes more important at lower velocity and for smaller cardinal

number X. This means that we can use a high quality standard basis, cc-pV6Z for example,

instead of an augmented basis to economize on the simulation costs and still get good

energy precision.

Coming back to the SCF cycles, although it provides a fast way to reinitialize the wave

functions, it is only practical for atomic systems with a small number of atoms. For solid

systems like metals, the SCF convergence with the effective Hamiltonian is too difficult to

reach. We have attempted to help the convergence by applying energy corrections based on

the shifting of projectile-occupied energy levels as a consequence of electrons moving with

the projectile. With the most complete basis set available and at a large target-projectile

distance we expect a shifted value of v2/2 in atomic units where v stands for the projectile

velocity. For causes yet unknown, this does not agree with the numerical observations

which reports very little shifting. On the other hand if we position the projectile close

to or within the target we do observe the energy level shifting. At the same time the

hybridization of orbitals often take place and make it impossible to isolate states occupied

solely by the projectile for energy corrections. As an alternative solution, we consider it

more convenient in these cases to let the system start directly from the ground-state and

find its new equilibrium after some transition period.

4.2 Modifications in Propagators

Presented in Chapter 2, the second-order Magnus (MAG2) propagator and the Crank-

Nicolson (CN) propagator are the two main propagators used in MOLGW. Although the

MAG2 is shown to be more reliable than the CN for situations without projectile basis, it

is no longer the best option when projectile basis is applied. In the following discussions

we will explain the choice of propagator regarding the presence of projectile basis.

Second-order Magnus propagator. When simulating with projectile basis, the

operator matrix M in equation (2.3.27) cannot stay Hermitian due to the presence of D

(explained in section 4.1.2) and loses the quality to be diagonalized on the orthogonal basis.

The propagator ÛMAG2 is therefore no longer unitary. Moreover, to avoid diagonalizing M
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in the non-orthogonal basis we can use a truncated Taylor expansion of the exponential

term in (2.3.27)

ÛMAG2(t+∆t, t) ≈ Î − i∆tM̂(t+
∆t

2
)− 1

2
(∆t)2M̂2(t+

∆t

2
). (4.2.1)

Although we can mitigate the violation of unitarity by using tiny time steps and including

more expanded terms in (4.2.1) to increase precision, it is obvious that the truncated

version of ÛMAG2 is far less exact than its original form. We have thus lost all benefits

from this propagator as established for systems without projectile basis.

Crank-Nicolson propagator. Like MAG2, the CN propagator faces the same problem

of losing unitarity with the non Hermitian matrix M . However, compared to a truncated

MAG2 in equation (4.2.1), no compromises are needed for using the CN propagator in

this basis setting. This means that the CN propagator might have stabler performances

than the truncated MAG2 propagator. One way to validate this hypothesis is to verify

the orthonormality conservation of the wave functions ψi(t) as stated in equation (4.1.33),

which can be reflected as the conservation of total electron number N

d

dt

∑

i

〈ψi(t)|ψi(t)〉 =
dN

dt
= 0. (4.2.2)

Figure 4.2.1 shows the errors in total electron conservation for both the CN and the

second-order truncated MAG2 propagator in a diatomic system of helium projectile and

proton target. Although tiny in magnitude, we can still see that the truncated MAG2

propagator generates more error than the CN propagator throughout the entire simulation,

even for such a simple system. While it is possible to improve the truncated MAG2 by

including higher orders in expression (4.2.1), it also adds more matrix multiplications of M

which will make the code slower than using the CN propagator. This is already the case

for the second-order MAG2 propagator which requires one matrix inversion of dimension

NBF ×NBF and three matrix multiplications of dimension NBF ×NBF , which counts one

multiplication more than for the CN propagator. Hereby considering both the accuracy

and the efficiency, we prefer ÛCN for systems with projectile basis.
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Figure 4.2.1: Electron conservation errors with CN and truncated MAG2 propagators
for a system of He projectile (TZ) and proton target (TZ). The time step used is 0.05 a.u.
(1.2 as) and the errors are reported in log-scale of the difference between estimated electron
number N and the theoretical number of two electrons. Errors from the CN propagator is
traced with the blue line, and errors from the truncated MAG2 propagator is traced with
the orange line. The x-axis denotes the simulation time in atomic units.

To sum up this chapter, we have discussed about the need to change reference frames

when doing real-time simulations of ion irradiation. As we add basis functions to the

projectile, the time-dependent equations gains a new operator D̂ with specific properties.

In consequence, the propagators are modified and their reliability re-evaluated. In the next

chapter we will present some important aspects of numerical implementation and several

tests used to validate our code.



Chapter 5

Numerical Development and Validation

of Code

Detailed numerical development for the real-time TDDFT propagation will be presented

in this chapter as well as some optimization techniques. We then demonstrate the

energy treatment for simulations with atomic targets and validate our code with several

functionality tests in atomic systems.

5.1 Implementation and Optimisation

There are two main objectives for the implementation. We first need to make sure that

the center of projectile basis updates its position correctly as the projectile center moves.

Then we have to take into account of the projectile basis movement by implementing the

operator D̂ into the propagation process. The real-time updates of the projectile basis

require recalculations of multiple integrals and matrices and will in consequence increase

simulation costs. One key optimization is to reduce the number of items to be recalculated.

At the same time we should minimize the number of repetitions.

5.1.1 Tracking projectile basis

In order to differentiate from existing modules that execute without the projectile basis,

a new scenario is defined in the code to execute options designed for projectiles with basis.

The first thing to do is to update the center of projectile basis whenever the projectile

61
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moves. Then we need to feed that piece of information to all basis functions localized

on the projectile. Inside MOLGW, a basis set is programmed as an object class with

several attributes including the electron shells and the basis functions. These two attributes

mentioned are themselves defined as object classes with their own attributes such as the

index of corresponding atoms and the basis center positions. This is where we update

the basis function movement. It is also useful to add the velocity of moving centers as a

new attribute. Among all atoms in the system, only the projectile has non-zero velocity.

We can thus use this information to correctly identify projectile basis functions rather

than looking at the atom index. The same update process applies for the auxiliary basis.

Furthermore, since the target atoms do not require positional updates, we can split the

basis into a target part and a projectile part to optimize the updates. More discussions on

this will be brought up in the later section of partial matrix calculations.

Another crucial feature to implement is the analytical calculation of the gradient matrix

D. Observing its expression in equation (4.1.26) we can rewrite

Dαβ =
〈

φα(r−RAα
)
∣

∣

∣
∇RA′

β

φβ(r−RA′

β
)
〉

· vA′

β

=
〈

∇RA′

β

φβ(r−RA′

β
)
∣

∣

∣φα(r−RAα
)
〉H

· vA′

β
= LH

βα · vA′

β
.

(5.1.1)

Here we define matrix L as the left gradient of the overlap matrix S

Lαβ =
〈

∇RAα
φα(r−RAα

)
∣

∣

∣φβ(r−RA′

β
)
〉

. (5.1.2)

In matrix form equation (5.1.1) becomes

D = LH · vbasis, (5.1.3)

where vbasis denotes the velocity matrix of basis centers with dimension 3 × NBF and

matrix L has the dimension NBF × NBF × 3. The numerical calculation of D matrix is

thus straightforward as we first evaluate matrix L, then take its transpose-conjugate and

multiple by the velocity matrix vbasis. Being a time-dependent term, matrix D requires

updates at each time step. As we will see later, this recalculation process can be optimized.



5.1. Implementation and Optimisation 63

5.1.2 Predictor-corrector scheme

In chapter 2 we have talked about how to use the CN propagator (2.3.33) to evolve

wave functions from instant t to t + ∆t. We have also seen in expression (2.3.26) that

the propagation of wave functions can be realized by propagating the coefficient matrix

C(t). To construct the CN propagator, we need to evaluate the operator M in equation

(4.1.22) at the mid-point t+ ∆t
2

. The overlap matrix S and the gradient matrix D can both

be calculated analytically. The remaining term H(t + ∆t
2
) can be obtained through the

extrapolation of previous Hamiltonian matrices, but a more accurate estimation requires a

finer strategy [76]. Adapting the Predictor-Corrector (PC) scheme from Cheng [106] to

our CN propagator we build the following steps:

(1) (Predictor) Extrapolate H(t+ ∆t
4
) from a record of H(τ ≤ t) evaluated at every ∆t

2

step.

(2) Update the basis centers then calculate S(t+ ∆t
4
) and D(t+ ∆t

4
) to get M(t+ ∆t

4
).

(3) (Predictor) Propagate C(t) → C(t+ ∆t
2
) using M(t+ ∆t

4
) in the CN propagator.

(4) (Corrector) Update the basis and auxiliary basis centers then evaluate H(t+ ∆t
2
)

using C(t+ ∆t
2
).

(5) Update S and D to t+ ∆t
2

and evaluate M(t+ ∆t
2
).

(6) (Propagation) Propagate C(t) → C(t+∆t) with M(t+ ∆t
2
).

(7) Update the basis and auxiliary basis centers then evaluate H(t+∆t) with C(t+∆t).

(8) Update S and D to instant t+∆t.
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Figure 5.1.1: Predictor-corrector scheme with the CN propagator. The diagram is
composed of eight numerated steps to describe the propagation of coefficient matrix C
from instant t to t+∆t. Paths colored in blue represent the predictor steps (1) and (3)
and the corrector step (4) is represented by the red color. The propagation step (6) is
colored in green while the update steps (2), (5), (7) and (8) are colored in black.

The diagram in Figure 5.1.1 helps to illustrate these steps of propagation. We can divide

the scheme into different parts. Steps (1) and (3) are the predictors since the Hamiltonian

H(t + ∆t/4) comes from extrapolation instead of ab initio evaluation. Step (4) is the

corrector that gives an evaluated H(t+∆t/2) from the coefficient matrix C(t+∆t/2). Step

(6) propagates the system from t to t+∆t using the effective Hamiltonian M(t+∆t/2)

at midpoint. The rest of the steps (2), (5), (7) and (8) updates the system to the correct

time-point.

Using a predictor-corrector scheme such as described above not only gives better accuracy

than the simple extrapolation of the the midpoint Hamiltonian H(t+∆t/2), it also saves us

from evaluating H(t+∆t/2) in a more costly iterative manner [76, 106]. We also carefully

keep the time step ∆t under 0.05 a.u. (1.2 as) to ensure better precision.

5.1.3 Partial calculations of matrices

We can see from the above PC scheme that there are a lot of matrix updates happening

at each propagation time step. Apart from S and D, all terms inside H in equation (2.2.13)

need to be recalculated. The dimension of basis-related matrices such as S, D, T and V
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is NBF ×NBF , while the calculations of VH involves auxiliary-basis-related 2-center and

3-center integral matrices of the size NABF ×NABF and N2
BF ×NABF . Remember that we

have mentioned in Chapter 2, both NBF and NABF can get to the order of thousands in

solid systems, making it a laborious task to recalculate the entire matrices.

Actually it is unnecessary to do the full recalculations. Let us take matrix S for example

S =

















...
...

. . . STT . . . STP

...
...

. . . SPT . . . SPP

















(5.1.4)

Here we have divided the matrix into four sub-matrices according to the coupling between

basis centers. The notation T signifies the target basis functions and P the projectile basis

functions. Since the center positions stay relatively fixed between two target functions or

two projectile functions, we can skip the recalculations of STT and SPP , leaving us only

the crossover terms to reevaluate. In general the target functions outnumber the projectile

functions as there is only one projectile in the system. This means that we are saving

at least and usually far more than half of the computation by partially recalculating the

matrices. In the case of proton impinging aluminum, we could have only 5 basis functions

on the proton using the cc-pVDZ basis while 4400 on aluminum atoms using the cc-pCVQZ

basis. The extreme skewness of the resulting matrices allows us to save up to 99% of the

recalculations on S, D, T and V in solid targets which translates to up to 10 human hours

spared for a single-trajectory calculation. The same techniques are used on the 2-center

and 3-center integral matrices during the evaluation of the Hartree term VH in equation

(2.2.19).

Similar to the 2-center integrals, we can divide the 3-center integral matrices by blocks

of target (T) and projectile (P) basis combination and skip the homogeneous products

like (αTβT |KT ) and (αPβP |KP ). However, doing so still leave us with a large number of

elements to be recalculated. It turns out that we can further optimize this process by

improving the integral screening. Since two basis functions can have very small overlap

when their basis centers are far from each other, their contributions to the energy are nearly

negligible and the pair can be screened out before the integral calculations. The tolerance

for the minimum overlap can be adjusted flexibly in MOLGW. The smaller the tolerance,



66 5.2. Functionality Test

the less pairs are screened out and the higher the integral evaluation quality would be.

This screening is carried out only once and ahead of any Hamiltonian evaluations. As the

projectile moves, the overlap between projectile and target basis function would change

at each time step. It is thus more convenient to keep all mixed pairs between target and

projectile for recalculations. However, the screening is useful on the target-target block and

reduces significantly the memory allocation in large solid systems. As we use elongated

solid target in this work, the economy on CPU memory can reach 50% for an aluminum

cluster of 3.2 Å in radius and 24 Å in length.

We would like to point out that for the exchange-correlation term Vxc the calculations

are realized on a discretized grid which has to be updated at each time step with the basis

center displacement. There is currently no optimization done concerning its reevaluation

since it only takes a small portion of the total calculation time. Nonetheless it counts as

part of the potential improvements of the MOLGW code.

5.2 Functionality Test

Once all implementations are in place we seek to test our code. These tests need to be

quick to run, give qualitative insights and satisfy key conditions. Simple diatomic systems

are therefore the ideal candidates for these purposes. In this section we will first explain the

energy treatments needed for atomic systems before presenting three important validation

tests.

5.2.1 Energy treatments in atomic systems

We have previously seen in figure 2.4.1 how the energy varies when a projectile travels

through a solid target. This profile would look slightly different in a diatomic system since

the encounter only happens once. Figure 5.2.1 gives a clear explanation of how the energy

is treated when a helium atom travels by a proton at v = 1.0 a.u. (100 keV). A6Z basis set

is applied to both particles in order to demonstrate results with the best precision, as well

as in all other diatomic systems in this section. The target is placed at the origin of the

z-axis along which the projectile travels. We have already discussed in section 3.2.2 that

the energy of the standard Hamiltonian H (represented by the blue solid line) after the

collision is unstable due to the oscillation of the electronic charge around the projectile
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center. However, thanks to the compensation of E−iD (in orange line) the energy of the

effective Hamiltonian M = H− iD (in green line) returns to a constant value. We have also

established in equation (4.1.46) that E−iD equals to twice of the kinetic contribution of the

projectile charge q (in red line). Here we consider the Löwdin charge which is calculated as

[73]

q = Tr{S1/2PS1/2}. (5.2.1)

By adding qv2 back to EH−iD, we raise the total energy (in blue broken line with dots)

back to the same level as EH . The evolution of the projectile charge q is given at the right

side of the figure, and is constant 7 bohr (3.7 Å) away from the target center. About 0.5

electron is lost after the projectile-target impact. The fractional electron number does not

make any physical sense, but it gives a qualitative insight on the charge exchange between

the two particles.

Figure 5.2.1: Energy treatment of helium hitting proton at v = 1.0 a.u. (100 keV). The
proton target is place at z = 0 bohr on the projectile trajectory along the z-axis. On the
left panel we show the energy profile of the system. The energy of Hamiltonian EH is
traced with a blue solid line. The energy contribution of −iD is traced with an orange
line. The green line represents the energy of the effective Hamiltonian EH−iD and the red
line represents twice the kinetic contribution from the projectile charge q. Finally we have
the smoothed total energy Etotal in blue broken line with dots. On the right panel we show
the Löwdin charge q evolution of the projectile as it advances.

The greatest advantage of this energy treatment is to have flat energy curve before and

after the impact, thus facilitating the extraction of total energy variation ∆E = Efin−Einit.

In the rest of this chapter, all atomic systems are treated by this technique to obtain the

smoothed Etotal. We can use this total energy directly for comparison between cases in
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the absence and presence of the projectile basis. However, when we simulate different

projectiles with projectile basis, the projectile charges would be different and so are the

corresponding electron kinetic energies Eq
kin = qv2/2. This quantity does not contribute to

the target-projectile interactions and is merely a representation of the projectile charge.

It thus introduces a bias to the comparison and need to be subtracted from Etotal. The

utility of this processing is better demonstrated later at section 5.2.4. At last, we recall

that for solid systems the smoothing treatment is no longer interesting since we focus on

the averaged slope of the energy curve rather than the absolute difference between the

start and the end of the simulations (see figure 2.4.1).

5.2.2 Replace physical atoms by ghost sites

One basic requirement that the code should satisfy is to run the RT propagation correctly

at the absence of target atomic cores while keeping the target basis functions. We name

these atom-less sites “ghosts”. With this particular setup, we expect two quantities to be

conserved:

1) The total energy of the system is not supposed to vary (apart from numerical noises)

since no real interactions would happen between the projectile atom and the ghosts.

2) For the same reason, the total electron number of the system should be conserved.

There are two ways to calculate the electron number Ne inside our code. We can either

evaluate the trace of matrix product between the density matrix P and the overlap matrix

S, or integrate the electron density ρ(r) in a real-space grid

Ne = Tr{PS} =

∫

drρ(r). (5.2.2)

These two methods should lead to the same results or have infinitesimal difference.

Figure 5.2.2 compares the ghost sites against the real target for a system of He projectile

and H target at v = 0.5 a.u. (25 keV) and v = 1.0 a.u. (100 keV). On the energy side, we

see that in contrast to systems with a real target, the total energy barely varies in the

presence of the ghost, resulting in an almost null ∆E at both velocities. This confirms our

first expectation. We also notice that for the real target, the total energy changes less as

the impact parameter gets larger with an exception at v = 0.5 a.u. for impact parameter

p = 3.0 bohr. We do not have a full explanation for this particular data point, but it seems
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to reflect the projectile charge state as we shall see later in the next test. In terms of the

electron number we report that it is well conserved for all cases and find it more pertinent

to show the absolute difference between the two calculation methods mentioned in equation

(5.2.2). We see that the agreement is extremely good at both velocities which indicates the

healthy performance of the code in the presence of ghost sites.

Figure 5.2.2: Projectile He (A6Z) with target or ghost H (A6Z). The upper panels show
the total energy variation ∆E of the systems. Empty blues dots represent results using
a ghost and full blue circles represent results using a real target. The lower panels give
the difference at log-scale between the two ways of total electron number Ne calculation in
equation (5.2.2). Empty orange triangles show for system using a ghost and full orange
triangles show for system using a real target.

5.2.3 Compare projectile with and without basis

When the projectile is light and has no initial electrons, like the proton, the addition of

projectile basis is expected to give very similar energy results to that of a system without it.

At the same time, the presence of basis functions allows the projectile to capture and keep

electrons around it and might lead to some discrepancies between the two basis settings.

Figure 5.2.3 confirms these beliefs for proton in isolated helium atom at two different

velocities. In this figure, not only do we compare the energy variation ∆E but we also
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present the final Löwdin charge q on the projectile. This latter quantity is logically zero

when no basis is used on the projectile, which we can see from the Löwdin results at both

velocities.

Figure 5.2.3: Presence and absence of projectile basis for proton (A6Z) in He (A6Z). The
upper panels show the total energy variation ∆E of the systems. Full blues dots represent
results using moving projectile basis (MB) and empty blue dots represent results without
MB (no MB). The lower panels give the final Löwdin charge on the projectile. Full orange
triangles show for the MB system and empty orange triangles show for the no MB system.

At v = 0.5 a.u. (6.25 keV), ∆E experiences some large differences between the two

basis settings. Similar to the exception observed in figure 5.2.2 at v = 0.5 a.u. and p = 3.0

bohr, while we cannot pinpoint the reason for the energy behavior, we certainly notice its

similarity to the behavior of the final Löwdin charge on the projectile. Another way to

explain the energy discrepancy between the two basis settings at v = 0.5 a.u. is that since

the projectile is moving rather slowly, it has enough time to exchange with the target and

that their interactions are better described in the presence of projectile basis. The picture

changes at v = 1.0 a.u. (25 keV) and the agreement on ∆E is much stronger between the

two settings. In terms of the final Löwdin charge, we also notice that more is captured

by the projectile at higher velocity since the impact energy is greater and can produce

stronger interactions.
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The comparison between the two basis settings shows us the potential improvements that

projectile basis can bring to the stopping power simulations. By allowing the transfers of

electronic charge between the target and the projectile, we aim to capture their interactions

with better precision than the previous development of Maliyov et al. [48, 49] done without

the projectile basis.

5.2.4 System’s symmetry test

Another important requirement the code should fulfill is to properly handle the switching

of roles between the target and the projectile in a diatomic system. These two scenarios

are supposed to give the same ∆E. In figure 5.2.4 we demonstrate this feature for two

equivalent systems composed of a proton and a helium atom. The target is place at z = 0

with an impact parameter p = 1.1 bohr, and the total energy Etotal on the left-side image

is treated by the smoothing technique presented in figure 5.2.1. The two energy profiles

are completely different at this stage.

Figure 5.2.4: Role-switching test between H (A6Z) and He (A6Z). On the left side are
the total energy curves for the two systems H+ → He (in blue) and He → H+ (in orange).
The arrows with matching colors indicate the subtraction of kinetic energy of projectile
electrons from the corresponding energy curves. On the right side are the energy curves
after adjustments and the ∆E is indicated by the black double arrow.

We have mentioned in section 4.2.1 that for comparison between two different projectiles

using projectile basis, the kinetic contributions of the projectile charges should be taken out

from the total energy. Knowing the real-time Löwdin charge q(t) as calculated in equation
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(5.2.1), we can easily estimate the corresponding kinetic energy at each time step

Eq
kin(t) =

v2

2
q(t), (5.2.3)

where v is the projectile velocity. For the pair of role-switching systems, Eq
kin is obviously

different right from the beginning as the two projectiles initially possess different amount

of electrons. Subtracting Eq
kin from Etotal eventually superposes the two energy curves at

the initial and the final states and gives two identical ∆E. This signifies that the energy

transfer happens correctly within both systems.

Around z = 0, the two energy profiles are still remarkably different even after the

subtraction of Eq
kin. In this area where the two atoms encounter, the detailed description of

the complex dynamics requires the calculation of the force corrections as stated in the work

of Kunert and Schmidt [103] which is not available in MOLGW. However, this does not

affect the calculation of ∆E because the consequences of the target-projectile interactions

are in the final energy once the projectile leaves the impact zone. Therefore the conclusions

that we have drawn from figure 5.2.4 are still valid.

Passing all of the three tests mentioned above is a solid proof that our implementations

function soundly within MOLGW and that our code is ready to be applied to complex

systems like the solid clusters. In the next chapter we will analyse the results obtained

with moving projectile basis for different projectiles in both lithium and aluminum targets.



Chapter 6

Electronic Stopping Power with

Projectile Basis in Li and Al

In this chapter we focus on the simulations carried out in solid systems with light to

medium projectiles in the presence of projectile basis. The first section demonstrates the

convergence tests done with two major groups of parameters: the cluster geometry and the

basis quality. Cluster length and radius will be discussed under the topic of the geometry,

and the basis quality concerns both the target and the projectile. Afterwards we will first

study the random electron stopping power (RESP) of hydrogen and helium in lithium

which are relatively light systems for the computation. Then we will have a look at the

channeling SP of these two projectiles in aluminum before moving on to the RESP results

in aluminum. Finally, apart from the two light projectiles mentioned above, aluminum is

used as our first heavier projectile with core electrons and its RESP inside the aluminum

target will be examined.

6.1 Convergence Parameters

In numerical simulations many parameters are used to define the conditions under which

the systems exist and the phenomena take place. The outcomes of the calculations and the

convergence of results depend heavily on the quality of these parameters. The two main

sets of parameters in our study that require specific attention are the cluster geometry and

the basis quality. Given the crystal structure and orientation, length and radius are the

two major factors determining the cluster geometry. On the basis quality side, target and

73
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projectile basis each plays a role to converge the results.

We admit here that at the beginning of our work these parameters are chosen based on

less thorough convergence studies, and the more rigorous tests given in this section come at

a much later stage. Since most calculations are carried out with the less ideal parameters

and are very expensive to relaunch (at least 8 months of human time required), we decide

to be consistent and present all our stopping power results using the old parameters later

in this chapter. The conclusions drawn from the convergence tests in this section can

therefore be considered as recommendations for future endeavours.

Figure 6.1.1: Löwdin charge stabilization and the averaged SP of hydrogen (DZ basis)
in fcc [001] aluminum (ACQZ/DZ/DZ) at v = 3.0 a.u. and p = 0.78 Å. The system is
illustrated in the upper panel with hydrogen represented by an orange sphere and aluminum
by green spheres. The two black vertical dotted lines indicate the first and the last planes
of atoms closest to the projectile trajectory. In the middle panel we show the Löwdin
charge profile as the projectile enters into the cluster. The real-time evolution is traced by
a blue solid line and the running average value traced by a blue broken line. The lattice
constant alat = 4.05 Å is indicated by a double-headed arrow between two charge peaks. In
the bottom panel illustrates the averaging technique for the single-trajectory SP. The blue
solid line traces the running SP and the red horizontal broken line indicates the averaged
SP value within the sampling zone delimited by the two red vertical broken lines.

A technique was mentioned in section 4.1.3 which uses SCF cycles to accelerate the
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initial stabilization of moving projectile with the effective Hamiltonian M̂ = Ĥ − iD̂.

Unfortunately the same cannot be applied to the solid systems since the SCF cycles are

difficult to converge due to the energy shifting of orbitals and the orbital mixing between

the target atoms and the projectile. The system is thus left to find a new stationary state

while the projectile advances. To buffer this transition phase we are required to adopt very

lengthy clusters. Figure 6.1.1 demonstrates this early transition phase by showing how the

averaged Löwdin charge on the hydrogen projectile stabilizes inside an aluminum cluster

after progressing through a few Angstroms.

Like the energy profile in figure 2.4.1, the Löwdin charge also shows a peak periodically

whenever the projectile has a close encounter with a target atom. A simple running average

technique is applied to obtain the averaged Löwdin charge. First we divide the entire

distance z travelled by the projectile into a grid of steps dz, this gives us n = z/dz data

points. Since we have a periodic structure, it is more intuitive to sample the mean over the

lattice constant alat. The data size of the sampling window is thus k = alat/dz and the

mean inside such a window is

〈q〉k =
1

k

k
∑

i=1

qi. (6.1.1)

Next we “slide” the window by one data point and calculate the next mean

〈q〉k,next =
1

k

k+1
∑

i=2

qi. (6.1.2)

Repeating this procedure until the end of data produces the averaged trend in the middle

panel of figure 6.1.1.

One thing worth mentioning is that the stopping power does not seem to depend on

the initial charge state of the projectile, given that the target is sufficiently long for the

projectile to find a steady state [77, 107, 108]. Judging from the stable averaged charge in

figure 6.1.1, the clusters used in our study are long enough (above 20 Å) to neglect effects

caused by the initial charge state. It has also been reported by references [108] and [109]

that initially neutral projectiles reach charge stabilization faster than initially charged ions.

Therefore, all our calculations in solids presented in this chapter involve initially neutral

projectiles.

Usually the stabilization of the charge is a good indicator for the stabilization of the

stopping power. In practice we will first calculate the running SP which is the total energy
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difference between lattice constants normalized by the lattice constant [E(z + alat) −
E(z)]/alat = ∆E/alat. Once the steady state has been reached, the energy loss becomes

a periodic function of the crystalline structure and ∆E/alat becomes constant. Then we

obtain the definitive SP which is the averaged running SP over the distance travelled inside

the stabilization zone. An illustration of such sampling can be found in the lower panel of

figure 6.1.1.

There is one more comment on the stabilization. Unexpectedly, sometimes the stopping

power are observed to stabilize much slower than the Löwdin charge. In order to ensure

the convergence, the optimal length of the clusters need to be discussed. Meanwhile, to

mimic the electron density of the bulk and avoid passing the projectile too close to the

surface, we need to control the radius of the clusters.

6.1.1 Cluster geometry - length

Let us first focus on the length. Figure 6.1.2 give us detailed information about the SP

convergence of hydrogen in aluminum for three different lengths (24 Å, 36 Å and 53 Å)

under the channeling condition (p = 1.43 Å). Three velocities are studied namely 1.0 a.u.

(25 keV), 3.0 a.u. (225 keV) and 6.0 a.u. (900 keV), and the presence (MB) and the absence

(no MB) of the projectile basis are compared. We notice that the channeling SP is almost

converged at the length of 36 Å for all velocities, with or without projectile basis. There is

still a slight descending trend at v = 6.0 a.u. which corresponds to a tolerable difference of

5% between the 36 Å and 53 Å-long cluster.
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Figure 6.1.2: Channeling SP in relation to lengths for hydrogen (DZ) in fcc [001] aluminum
(ACQZ/DZ/DZ) at different velocities with (MB) and without (no MB) projectile basis.
Results from the three velocities 1.0, 3.0 and 6.0 a.u. are indicated by colors blue, orange
and green respectively. No MB simulations are marked by empty circles and MB simulations
by triangles.

Ideally we would set the length of aluminum cluster at 36 Å for future calculations.

However, the human time required for a single-trajectory simulation at a given velocity in

a cluster of 36 Å long is about 10 hours more than that in a cluster of 24 Å long which

takes in average 24 hours. This would scale up quickly for all the velocities and random

trajectories as well as the different systems to be studied. Since many of our calculations

in aluminum precede this convergence test and are carried out with the length of 24 Å,

we decide to be consistent and continue using this length for aluminum in the rest of this

thesis.

6.1.2 Cluster geometry - radius

Now we look at the influence of cluster radius on the channeling SP convergence in

figure 6.1.3 and the three radius studied are 3.2 Å, 4.3 Å and 5.2 Å. For simulations done

with projectile basis (MB), the convergence is reached much faster than the no MB setting

at all velocities, and the difference between the smallest and the largest radius does not

exceed 2.5%. For simulations done without projectile basis (no MB), while the ascending

trend at v ≤ 3.0 a.u. results in a 5% difference between the smallest and the largest radius,

this difference surpasses 10% at v = 6.0 a.u.. The slower radius convergence of the no MB
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calculations indicates by contrast an advantage in the MB setting where much thinner

clusters can be considered.

Figure 6.1.3: Channeling SP in relation to radius for hydrogen (DZ) in fcc [001] aluminum
(ACQZ/DZ/DZ) at different velocities under the channeling condition with (MB) and
without (no MB) projectile basis. Results from the three velocities 1.0, 3.0 and 6.0 a.u. are
indicated by colors blue, orange and green respectively. No MB simulations are marked by
circle and MB simulations by triangles.

Combining this observation with the conclusions from the length convergence test, an

ideal geometry of the aluminum cluster would be 36 Å in length and 3.2 Å in radius.

However, as explained previously, an aluminum cluster of 24 Å in length and 3.2 Å in

radius is use instead for the rest of this work due to the fact that most of our calculations

are conducted before the presented convergence tests.

6.1.3 Basis quality - target

We recall from chapter 2.2 that the quality of the Dunning basis sets are defined by both

the cardinal number X and the basis extension. Starting from the standard XZ basis, we

can augment to diffuse AXZ basis, core-valence CXZ basis and diffuse core-valance ACXZ

basis. For systems void of projectile basis, the work of Maliyov et al. [49] has demonstrated

systematic convergence when raising the target basis quality by both the extension level

and the cardinal number. This feature has eventually led to their basis set optimization

technique with the objective to converge on the stopping power. The complexity of the

SP convergence comes with the addition of projectile basis. We have observed that the
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quality of basis used on each part can influence the results in different ways, making the

convergence trend very hard to capture. Figure 6.1.4 and 6.1.6 resume this problem and

show how the stopping power is affected by either the target or the projectile basis quality.

Here we apply the mixed basis technique introduced in section 2.2 and vary the basis

quality only on the target atoms within the closest impact distance from the projectile.

The outer layers of target atoms all use the DZ basis sets.

To study the target basis convergence we have chosen the system of hydrogen in

aluminum under the channeling condition (p = 1.43 Å). The three velocities 1.0, 3.0 and 6.0

a.u. correspond to the hydrogen kinetic energies of 25, 225 and 900 keV. On the left-hand

side of figure 6.1.4 we report the stopping power values for different target basis and notice

immediately that C6Z gives the highest SP at all velocities. On the right-hand side of the

figure we show the deviation of SP values from results obtained with the C6Z basis.

Figure 6.1.4: Convergence of channeling SP of hydrogen in relation to target basis quality
in aluminum at different velocities. The circles mark for QZ, CQZ and ACQZ basis using
orange, blue and green colors respectively. The blue triangle and squares represent results
from C5Z and C6Z basis. On the left-hand side we show the channeling SP values for each
basis set, and on the right-hand side we compare these values to those of the C6Z basis set
in terms of percentage of deviation.

We can breakdown the analysis into two control groups. First let us compare the

effects of basis extension amongst QZ, CQZ and ACQZ. While it is obvious that QZ is

under-performing dramatically as velocity goes up, CQZ and ACQZ stay very close together

within an interval of 5%. This gives us a hint that the CXZ group might be the best basis

extension to use, with ACXZ being the second best at the cost of larger computational

efforts. Next we look at the cardinal number X within the group CXZ and observe a
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systematic increase as X goes up, which agrees with the findings in Maliyov’s work [49].

While at v = 1.0 a.u. the increase in SP tends to slow down from CQZ to C6Z, it is not

the case for v ≥ 3.0 a.u.. Combining both the basis extension and the cardinal number, we

believe that higher-order CXZ basis are needed to reach convergence, especially at higher

velocities. However, such heavy basis would require expensive calculations. For example,

the difference in computer time between the calculations using CQZ and C6Z target basis

is almost 3000 hours using 288 CPU cores on Irene Skylake [110]. Due to the limits in

computational resources and human time, we will be contented to use either the CQZ

or ACQZ target basis in most of the studies presented later in this chapter. The results

of our simulations are thus more qualitative than quantitative while providing a general

understanding of the SP and RESP behaviors.

6.1.4 Basis quality - projectile

Now we will look at the influence of projectile basis quality on the stopping powers.

It is more informative to divide the analysis into two cases depending on whether the

projectile possesses core electrons. For light projectiles like hydrogen and helium who only

have valence shells, no CXZ basis sets are constructed in the Basis Set Exchange database

[61, 60]. Therefore we focus on the comparisons within the standard basis group XZ.
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Figure 6.1.5: Running SP of hydrogen in fcc [001] aluminum (C6Z/DZ/DZ) with different
projectile basis XZ at v = 1.0, 3.0 and 6.0 a.u. under the channeling condition. Results
from the DZ basis are reported with a blue line, QZ with an orange line and 6Z with a
green line. The averaged values of the channeling SP for each basis are given in the legend
boxes.

Figure 6.1.5 shows the running stopping power [E(z + alat)−E(z)]/alat for hydrogen in

aluminum under channeling conditions at three velocities v = 1.0, 3.0 and 6.0 a.u.. Recall

that we have established in the target basis convergence study that high-order CXZ basis

are required for the targets. Hence we have used C6Z for the Al target in this study. We

then vary the basis cardinal number X on hydrogen and observe the following features.

First, the results given by both DZ and QZ are stable at all velocities, while the results

of 6Z are stable only at v = 1.0 a.u. and oscillate more and more as v becomes greater.

Second, there is no obvious convergence of the averaged SP, and it can be either increasing

or decreasing as we raise the cardinal number X. At last, combining the computational

costs with the stability of results, it is the most efficient for us to use the DZ basis set on

light projectiles.

For heavier projectiles like aluminum which possess both valence and core electrons, it

makes more sense to use the CXZ basis sets. Figure 6.1.6 gives both the channeling SP

and the RESP for aluminum in aluminum at v = 2.0 a.u. (2.7 MeV). The basis set used

on the central target atoms is CQZ in order to save computational efforts. What makes
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it interesting to examine the RESP convergence beside the channeling SP is that we can

factor in the geometric weights of single trajectories and understand the impact of their

individual errors.

Figure 6.1.6: Convergence of both channeling SP (left-hand image) and RESP (right-hand
image) of aluminum in fcc [001] aluminum (CQZ/DZ/DZ) as a function of the projectile
basis quality at v = 2.0 a.u.. The blue-colored circles mark the results from the standard
XZ basis and the orange ones represent results from the core-valence CXZ basis. The
left-hand side image shows the channeling SP values for different projectile basis, and the
right-hand side image compares the RESP values.

Starting with the standard XZ basis in figure 6.1.6. From DZ to TZ the channeling

SP value stays stable and then decreases about 14% with the QZ basis. A similar trend

is observed at the RESP where the drop in values is approximately 10% from TZ to

QZ. Before we compare the standard basis to the CXZ basis, let us examine the latter

separately. For the channeling simulations, the increase in the cardinal number X entails

a sharp increase in SP of roughly 20% at CTZ then a slight drop of 2% at CQZ. This

peak at CTZ persists for the RESP, where the value increases much more gently with 2%

from CDZ to CTZ and goes back down 2% from CTZ to CQZ. The difference between the

channeling SP and the RESP highlights the partiality of information given by the single

trajectories. At the same time the similarity in their trends proves that important insights

can be gained from single-trajectory studies.

We now compare between the two groups of basis sets. Looking at the channeling SP,

including core electron contribution with the CXZ basis introduces an initial drop of 7%

at X = D. The SP value of CTZ then surpasses TZ by 11% and the value of CQZ is 27%
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higher than that of the QZ basis. Moving on to the RESP, we notice that the two groups of

basis sets have completely different trends. While CDZ gives significantly lower value than

the DZ basis, the gap between the two groups reduces as X becomes larger. At X = Q

the value calculated with QZ is at the same level as that of the CQZ basis. This lead us

to believe that the convergence is reached for the RESP with the QZ and CQZ basis sets.

Taking into account of the smoother channeling SP evolution within the CXZ group than

the XZ group, CQZ seems to be the most suitable candidate for projectile basis.

All things equal, the extra human time required in calculations for raising one level of

cardinal number X on the projectile basis is at least 2 hours. About the same amount

of time is needed for passing from XZ to CXZ projectile basis at equal cardinal number.

Typically one single-trajectory calculation consumes 288 CPU cores on Irene Skylake [110]

and 17 hours with DZ projectile in a CQZ/DZ/DZ target. This counts for nearly 5000

computer hours and would add up quickly when multiplying the number of simulations.

Since the computational resources granted to us are limited, we have decided not to carry

out further analysis with higher orders of X, and will use the CDZ basis instead of the

CQZ basis on the projectile to save machine costs. With this decision, the results that we

obtain become more qualitative than quantitative and we encourage future studies to use

higher order CXZ basis on projectiles for better convergence.

There is one more case worth investigating before we end this section. In a particular

system where the projectile and the target are the same atoms, like aluminum in aluminum,

it might be sensible to apply the same basis on both parts. Figure 6.1.7 demonstrates

the results from this investigation. We have chosen the CXZ basis sets based on the

target basis convergence test where we have observed the importance of the core electron

expansion (C). While the channeling SP seems far from converged in figure 6.1.7, as the

distance between CTZ and CQZ gets larger than that between CDZ and CTZ, the RESP

shows a slow-down in the ascending trend as X rises. Constrains in time and machine

resources have discouraged us from examining higher X values during this work, but it

would be a subject worthy of future endeavours.
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Figure 6.1.7: Convergence of channeling SP (left image) and RESP (right image) in case
of identical CXZ basis settings on both the projectile and the target for aluminum in fcc
[001] aluminum. The value of X varies from double (D) to quadruple (Q).

In this section we have presented various convergence studies in order to assure the

stabilization of energy variation ∆E/alat which is crucial to the convergence of the stopping

power results. The two major groups of modeling parameters influencing the simulation

outcomes are the cluster geometry and the basis quality. Under the topic of cluster

geometry, the length and radius of the clusters are discussed and we have noticed the

difference in sensitivity between the MB and the no MB calculations. In terms of the basis

quality, both the target and projectile basis are considered with the latter depending also

on the electron configuration of the projectile. Apart from the convergence tests presented,

there are a few factors that we have not covered including the crystal orientation of the

cluster and the number of impact parameters sampled for the RESP averaging in equation

(2.4.13). Our decisions concerning these two factors are therefore based on the convergence

analysis in references [72, 46] for the no MB simulations which show little sensitivity. It

would probably be beneficial for the future studies to test these factors also on the MB

calculations.

Having concluded on the convergence studies, we now move on to the simulations of

channeling and random electron stopping powers for several pairs of projectile and target

in the following sections.
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6.2 Random Electron Stopping Power in

Lithium

Let us first study the random electronic stopping power (RESP) with the simplest metal

target on the periodic table, lithium. Thanks to the only three electrons that it possesses,

the size of its basis and the number of occupied states NOCC are relatively smaller than

those of aluminum. This grants us smaller matrices like H, C and S and the computational

advantage of employing larger clusters. At their most stable forms the lithium metal has

a body-centered cubic (bcc) structure and the aluminum metal is a face-centered cubic

(fcc) crystal. The geometry of the lithium cluster at direction [001] is therefore slightly

different from that of the aluminum due to the difference in crystal structure. On top of

that, the lithium crystal has a lattice constant of alat = 3.49 Å and the aluminum crystal

has alat = 4.05 Å, which causes more differences in their cluster dimensions.

Since the calculations in lithium have been completed before the more systematic

convergence tests conducted for aluminum in section 5.1, the geometry and basis parameters

used are not necessarily the optimal concerning the costs and accuracy, but are still chosen

in a way to ensure good basis completeness and energy stabilisation without excessive

computational efforts. The results shown in this section are obtained with a cluster of 35

Å in length and 10 Å in diameter which contains 134 lithium atoms in total. The basis

mixture on the target atoms is CQZ/DZ/DZ and the projectiles are described with the

TZ basis set. In the spirit of starting with simple systems, only light projectiles such as

hydrogen and helium are simulated inside lithium. One more detail to mention is that the

sampling scheme for the impact parameters p in lithium is carried out with the previous

polar symmetry method of Maliyov and coworkers [48] as illustrated in figure 2.4.2 instead

of the newly developed angled sampling technique in figure 2.4.3.

6.2.1 Hydrogen in lithium

The first projectile we analyse is hydrogen. Figure 6.2.1 reports the random electronic

stopping power of hydrogen in lithium for projectile velocities ranging from 0.25 a.u.

(1.6 keV) to 4.0 a.u. (400 keV). Apart from results obtained by our own calculations with

moving projectile basis (MB), we also cite in the same figure some other sets of results:
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simulations done under the same conditions as MB except without the projectile basis (no

MB), results from Maliyov et al. [48] obtained without projectile basis (no MB) using

the MOLGW program, empirical prediction from the SRIM online database [18] and a

collection of historical experimental data [111, 112].

Figure 6.2.1: RESP of hydrogen in bcc [001] lithium at different velocities. The
experimental data [111, 112] are marked by the brown crosses and the SRIM prediction is
given by the blue solid line. The results from our calculations using TZ as projectile basis
and CQZ/DZ/DZ as target basis are represented by the red solid line with round markers.
The no MB results calculated under the same parameters are drawn with the green solid
line and the no MB results from Maliyov’s work [48] using MOLGW are plotted with the
orange broken line.

We would like to point out the two major differences in setups between the two series of

no MB calculations. One is the cluster geometry. The lithium cluster used in Maliyov’s

work is shorter in length (7 Å) and larger in diameter (14 Å) and contains 62 atoms. More

detailed explanations of the choice of geometry parameters can be found in the thesis of

Maliyov [72], section 3.1.2. At the same time we recall from our own geometry convergence

analysis in figure 6.1.2 and 6.1.3 that simulations without projectile basis tend to converge

faster in length and slower in radius comparing to that of MB. It is thus not surprising

that such a thin and wide cluster shape is selected by Maliyov’s study. Apart from the

geometry, the target basis mixture is slightly different between Maliyov’s (ACQZ/TZ/DZ)

and our (CQZ/DZ/DZ) calculations. However, as discussed previously in the basis mixture

(figure 2.2.1) and the target basis (figure 6.1.4) convergence analysis, using the CXZ
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basis set rather than its more diffused version ACXZ and changing the second-layer basis

quality from TZ to DZ should not alter significantly the stopping powers. Nevertheless,

the multiple variations in the modeling parameters cause the disagreement between the

two sets of no MB results and make it less informative to compare our MB results to the

work of Maliyov and coworkers. Therefore from this point on we will only refer to the no

MB results obtained under the same modeling conditions as our MB calculations.

Coming back to figure 6.2.1, we would like to first comment on the consistency between

the experimental data [111, 112] and the SRIM prediction. These experiments are cited by

the SRIM program as data source for fitting and scaling [18, 19]. While information from

experiments is abundant for velocities above 1 a.u., there seems to be no experimental

records at lower velocities. This leads to a higher confidence level in the SRIM prediction

at higher velocity region where it fits accurately the experimental data, and much less

confidence in the lower velocity region due to the absence of experimental evidence.

Now let us move on to compare the no MB results from this work to that of the SRIM

prediction. With a similar trend to SRIM, the no MB curve peaks at a velocity slightly

below 1 a.u. before the SRIM peak. In terms of absolute values, the no MB curve from

this work gives higher values at low velocities before diving under the SRIM curve after

v = 1.0 a.u.. The size of the gaps between these two curves before and after the cross-over

point seem identical. This makes the difference between them look like a simple shift in

peak position.

On the other hand when comparing the MB results to SRIM, we notice that the peaks

are at the same velocity which is higher than that of the no MB peak. Like no MB, the MB

curve follows the same ascending trend above the SRIM curve before dropping below it.

The cross-over happens after v = 1.5 a.u. which is at a higher velocity than that between

the no MB curve and the SRIM curve. Finally from v = 3.0 a.u. onward the descend of the

MB curve slows down, leading the SP values to catch up with that of the SRIM prediction

at v = 4.0 a.u.. This strange behavior might be the consequence of less converged values at

higher velocities regarding the length of the cluster or the completeness of the basis sets.

Overall, the MB curve has a normal ascending then descending form and gives values

close to those of the experimental data. In addition, the peak position of the MB curve is

much more accurate than that of the no MB curve, which is a noticeable improvement.
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6.2.2 Helium in lithium

The second light projectile used in the lithium cluster is helium. Figure 6.2.2 gives

the results calculated both with (MB) and without (no MB) projectile basis for velocities

ranging from 0.5 a.u. (25 keV) to 5.0 a.u. (2.5 MeV). The benchmark data sets are the

experimental data [113] cited by the SRIM database and the prediction from the SRIM

method [18].

Figure 6.2.2: RESP of helium in lithium at different velocities. The experimental data
[113] is marked by the brown cross and the SRIM prediction is given by the blue solid
line. The results from our calculations using TZ as projectile basis and CQZ/DZ/DZ as
target basis are represented by the red solid line with round markers and the no MB results
calculated under the same parameters are traced by the green solid line.

One remarkable flaw in this figure is the poor collection of experimental data. In fact

only one data point [113] is cited by the SRIM database [18], and the method has still

managed to produce a complete curve for the whole range of velocities that we studied.

While amazed by the predictive capacity of the SRIM method, one cannot help to wonder

about the viability of this single experimental data and the reliability of the poorly based

prediction.

Nonetheless, accepting the SRIM results as reference, we now compare them to the

no MB calculations. Surprisingly those two curves are very similar in shapes. While the

SRIM data suggest a peak right after v = 1.0 a.u. (100 keV), the no MB curve peaks at
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a faster v = 1.5 a.u. (225 keV). In terms of the absolute values, the no MB results are

almost in superposition with those of SRIM before v = 1.0 a.u. and then surpass the latter

significantly by 70% at their largest difference.

The MB results show a completely different trend than both the no MB and the SRIM

results. Not only does the MB curve ascends and descends at rates slower than the other

two curves as a function of the velocity, it also produces a shoulder at v = 1.25 a.u.

(160 keV) next to the peak at v = 2.0 a.u. (400 keV). The absolute values of the MB

curve are considerably lower than the no MB curve until their cross-over at v = 3.5 a.u.

(1.2 MeV). At the same time when comparing to the SRIM curve, the MB curve is under it

before v = 1.75 a.u. (300 keV) then stays well above the former at higher velocities. We

have not yet understood these unusual behaviors of the MB results. While it could be

an interesting topic for the future studies, it would also be important for the purpose of

validation to acquire more experimental data of this particular system at lower velocities,

especially at which the shoulder appears.

Despite of the unexpected observations about the helium RESP where no experiments

can support the findings, we are well encouraged by the good results obtained with the

hydrogen projectile and have decided to move on to a heavier target which is aluminum.

The sections below will first talk about the channeling stopping powers of hydrogen and

helium before moving on to the random trajectories in aluminum.

6.3 Channeling Stopping Power in Aluminum

Our most intensive investigation of channeling SP has been realized during the study of

aluminum target. Therefore we will first look at the channeling condition in aluminum

in this section before diving into the random trajectories in aluminum. As mentioned in

Chapter 2, the channeling is a special experimental condition where the orientation of the

mono-crystal is controlled in a way that the impinging ion enters without colliding head-on

into the target atoms [38, 84]. Although in reality most materials are not mono-crystal

and that the projectile may travel randomly inside the target, the channeling study is still

a useful tool to gain insights on the velocity dependency of the stopping power.

In this section we study two projectiles, hydrogen and helium, impinging the fcc

aluminum target oriented at [001]. The cluster size conforms to the geometry convergence
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which is 24.3 Å in length and 6.4 = 2 × 3.2 Å in diameter. The target basis used is

ACQZ/DZ/DZ and the projectile has a DZ basis set. Again, this choice of basis quality

is established before the more systematic basis convergence tests in sections 5.1.3 and

5.1.4, thus it does not follow our recommendation about the projectile basis being CDZ.

Nevertheless the results that we have obtained give very good qualitative information as

we shall see in the following sections.

Figure 6.3.1: Center shifting of the fcc aluminum cluster oriented at [001]. The atom-
centered aluminum cluster with 82 atoms is named as Al(82) and the channel-centered
cluster with 78 atoms is named as Al(78). The spheres represent the aluminum atoms
projected onto the xy plane and the axial direction is given at the left corner of the figure.
Among these spheres, those with fully opaque coloration are within the cluster limited
by the orange circle, while those with more transparent coloration illustrate the potential
extension of the cluster. Atoms with the best basis quality is represented by the pink color,
the second best with grey color and the least good with green color. The black cross marks
the cluster center with the orange triangle being the sampling zone of impact parameters.

There is one modification in the target modeling of the aluminum cluster comparing to

that of the lithium cluster. While running the channeling calculations, we have observed

that a shift in the cluster center gives us stronger stopping powers at a large range of

velocities. Figure 6.3.1 demonstrates how this shift is made in a cluster of fcc aluminum at

direction [001]. Some of our early calculations are conducted in a cluster centered on the

central column of atoms. In the case of aluminum, this corresponds to a cluster composed

of 82 atoms. When the center is shifted to the channel of the cluster, the radius and the

length are both kept unchanged, leading finally to an aluminum cluster of 78 atoms.

In figure 6.3.2 we compare both the channeling SP and the RESP of hydrogen in

aluminum centered at the two positions mentioned above. Starting with the channeling

condition (left-hand image), the difference between the two curves is small at low velocities
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and becomes more remarkable at higher velocities. Centered at the central atoms the

cluster Al(82) gives a SP curve that peaks at v = 1.25 a.u. (40 keV), whereas the cluster

Al(78) centered at the channel gives a curve that peaks at v = 1.5 a.u. (60 keV). Before

v = 1.25 a.u. the results from Al(82) are slightly higher than those from Al(78). Then the

two curves cross over and the results of Al(82) become much lower than that of Al(78),

with the largest difference between them reaching 50%. As the velocities rises from v = 4.0

a.u. (400 keV) onward, the gap between the two SP curves reduces again.

(a) Channeling SP (b) RESP

Figure 6.3.2: Stopping powers of hydrogen (DZ) in fcc [001] aluminum (ACQZ/DZ/DZ)
with different cluster centers. The image on the left hand shows how the channeling SP
is altered by shifting the cluster center and the image on the right hand shows how the
RESP is affected by this shift. In both images the results from the atom-centered cluster
Al(82) are reported by either a blue line with round markers or only blue markers, and the
results from the channel-centered Al(78) are reported by a red line with round markers.

One possible cause to the changes in the channeling SP after shifting the cluster center

might be that the projectile passing through the channel of Al(78) is in a more symmetric

electron density environment than in the channel of Al(82). As we can see in figure 6.3.1,

the channel in Al(82) is quite close to the surface while in Al(78) it sits right in the center

of the bulk. In addition, since we apply a mixture of basis quality to the clusters, the

channel-centered cluster offers a more homogeneous basis surrounding to the projectile.

Of course we can create the same homogeneity in the atom-centered cluster by putting

the best basis on outer layers of atoms, but the price to pay is very high. Considering

the bulk electron density and the basis quality homogeneity, the channel-centered Al(78)

seems the most suitable for the channeling SP calculations. However when the projectile

is off-channel inside the impact zone (shown as orange triangles in figure 6.3.1), it might
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not feel the surface as much as it does when in the channel and the heterogeneity of the

basis surrounding would be averaged out over all the trajectories. This leads us to further

investigate the impacts of cluster center shifting on the RESP.

The right-side image of figure 6.3.2 shows how shifting the cluster center influence the

RESP. Since multiple trajectories need to be run before obtaining the RESP at a given

velocity, the computational cost is expensive for a full-scale velocity study. Therefore certain

representative points at v = 1.0, 1.5, 3.0, and 5.0 a.u. are selected for the calculations

in Al(82) in order to save machine efforts. Despite of the few data points, it is clear to

see that the shift in cluster center does not have a pronounced effect on the RESP values.

The largest difference between the results of Al(78) and Al(82) is 8% and their average

difference is only 2%.

Taking into account of both the more symmetric channeling environment and the barely

altered RESP, we have decided to continue our research in aluminum using the channel-

centered Al(78) cluster. Besides these two reasons, the 4 less atoms in the Al(78) cluster

comparing to the Al(82) cluster make our simulations slightly lighter.

Additionally, we notice in figure 6.3.2 that the channeling SP and RESP are very similar

in magnitude before v = 2.0 a.u.. At higher velocities the RESP becomes superior in

value and doubles the channeling SP at v = 5.0 a.u.. This observation can be explained

by the fact that off-channel trajectories usually give stronger stopping powers than that

of the channel. The difference between these two conditions has been studied in many

experiments by tilting the surface of single crystal targets normal to that of the incident

ion beam direction [114, 115, 116]. While we lack the experimental data for proton and

helium in aluminum to quantify the channeling stopping powers presented in this chapter,

it would be interesting in the future to benchmark against channeling experiments carried

out in other systems.

6.3.1 Hydrogen channeling

The first case we talk about is hydrogen in aluminum. Here we compare not only

between the absence (no MB) and the presence (MB) of the projectile basis, but also

benchmark against the RT-TDDFT calculations of Schleife et al. [77] done using the

plane-wave (PW) basis. Figure 6.3.3 reports the above-mentioned channeling stopping

power for velocities ranging from 0.5 (6 keV) to 5.0 a.u. (625 keV). Unless mentioned
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otherwise, the basis sets used in our simulations are DZ for hydrogen and ACQZ/DZ/DZ

for aluminum.

Figure 6.3.3: Channeling SP of hydrogen in aluminum at different velocities. Results
from the benchmark study using the plane-wave (PW) method [77] is reported by the pink
solid line. The green solid line shows results from simulations without projectile basis (no
MB) and the red solid line represents for simulations with projectile basis DZ (MB). The
target basis in those two cases are ACQZ/DZ/DZ. Blue dots gives the results calculated
by using DZ on the projectile and C6Z/DZ/DZ on the target.

Let us begin by comparing the results of no MB to that of PW calculations. Despite

of a lower magnitude in the absolute values, the no MB curve follows the same trend as

that of the PW curve. Discrepancy between these two sets of results is smaller and varies

between 5% and 15% before the peak at v = 1.25 a.u. (40 keV), and gets wider at higher

velocities with the largest gap reaching almost 40%.

We then look at the results from the MB calculations. Comparing to the PW curve, the

MB curve is higher in magnitude until v = 3.0 a.u. (225 keV) before going under for the

rest of the velocities. The disagreement between these two methods is within 15% before

the crossover and reaches 25% afterwards. Even though the MB curve becomes inferior

to the PW curve eventually, it stays above the no MB curve and tends to join the latter

at higher velocities. In terms of the general shape, comparing to the other two, the MB

curve peaks at a slightly higher velocity and has a steeper drop from the peak before the

decrease gets smoother from v = 3.0 a.u. on.
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Finally we have added a few results from using the C6Z/DZ/DZ basis mixture on

aluminum. It is obvious from the figure that despite of slightly higher absolute values

due to a more complete target basis set, especially at high velocities, the global trend

of the stopping power stays the same as that obtained with lower quality target basis

(CQZ/DZ/DZ). This justifies our choice of a more economic basis set for qualitative

analysis.

Regarding the discrepancy among the curves in figure 6.3.3, it is difficult to conclude

which one gives better results. Instead, we can observe a general coherence among them in

relation to the projectile velocity. Since the channeling condition is only one special case of

all the possible trajectories, we will be able to extract more information from the random

electron stopping power in a later section.

6.3.2 Helium channeling

Another light projectile we study for the channeling SP is helium. The aluminum target

used in this case is identical to that of the hydrogen channeling SP analysis presented

previously. Because we do not have a second reference to compare with the MB calculations,

we will compare between the MB and the no MB results to understand changes brought by

the projectile basis. Figure 6.3.4 shows at several velocities the channeling SP obtained

with these two basis settings.
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Figure 6.3.4: Channeling SP of helium in fcc [001] aluminum at different velocities. The
green line shows results from simulations without projectile basis (no MB) and the red line
represents for simulations with projectile basis DZ (MB). The target basis in those two
cases are ACQZ/DZ/DZ.

In terms of the general trend, the no MB curve peaks sharply at v = 1.5 a.u. (225

keV) before dropping off while the MB curve presents a much smoother peak at the same

velocity and has a more gradual descend at higher velocities. Looking at the absolute

values we see that, unlike the case with hydrogen projectile where the MB results exceed

the no MB results at all velocities studied, here the MB curve is far below the no MB curve

before crossing over at v = 3.5 a.u. (1.2 MeV). After this point, with different declining

rates, the two curves slightly diverge. The largest discrepancy in SP between these two

basis settings reaches almost 30% around the peaks. However large this disagreement is,

we cannot learn more from this internal comparison where the calculation method is the

same (remember the only difference between these two sets of values is the presence or

absence of the projectile basis). We will therefore move on to the RESP where we can

benchmark against the experimental data and the calculations done with other methods.
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6.4 Random Electronic Stopping Power in

Aluminum

In this section we will discuss about the random electronic stopping power (RESP) of

three projectiles in aluminum. The first two, hydrogen and helium, are light projectiles

without core electrons. The third one, aluminum, is a heavier projectile with 10 core

electrons in the 1s2s2p shells and 3 valence electrons in the 3s3p shells. The target

aluminum used is identical to that of the channeling calculations, which is a 78-atom fcc

cluster of [001] direction with a length of 24.3 Å and a diameter of 6.4 Å centered at the

channel. The only difference in the simulation setups of these three projectile studies is the

basis quality. For the two light projectiles, we have applied the ACQZ/DZ/DZ mixture

on the target. For the aluminum projectile, based on the conclusions drawn from the

target basis convergence test (see figure 6.1.4) we have decided to use the less expensive

CQZ/DZ/DZ mixture to compare with the most complete C6Z/DZ/DZ basis mixture. For

all of these three projectiles, we have run calculations with the DZ projectile basis. Finally

with the aluminum projectile, supplementary sets of calculations using the CDZ projectile

basis are carried out according to the decisions made from the projectile basis convergence

test in figure 6.1.6.

6.4.1 Hydrogen in aluminum

Let us start with the hydrogen projectile. Figure 6.4.1 reports many sets of results for

the RESP of hydrogen in aluminum form v = 0.5 a.u. (6 keV) until v = 5.0 a.u. (625 keV).

Apart from our MOLGW localized GTO basis simulations calculated both with (MB) and

without (no MB) projectile basis, we also cite some experimental data [117, 118, 119, 120],

the SRIM prediction from the online database [18], and results from the plane-wave (PW)

basis calculations of Schleife et al. [77]. In fact, the experimental data are so abundant

in the SRIM database for this system that we have selected only four sources to avoid a

messy figure. It is clear that in this case the SRIM prediction is well supported by the

experiments which makes the former a reliable reference.
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Figure 6.4.1: RESP of hydrogen in fcc [001] aluminum as a function of velocity. The
experimental data [117, 118, 119, 120] are marked by the brown crosses and the SRIM
prediction [18] is given by the blue solid line. The results from our calculations using DZ as
projectile basis (MB) and ACQZ/DZ/DZ as target basis are represented by the red solid
line with round markers. The no MB results calculated under the same parameters are
plotted by the green solid line. Finally the pink dotted broken line represents the results
from Schleife et al. [77] using the plane-wave (PW) basis.

First we compare the no MB results to the SRIM prediction. At low velocities, the no

MB curve is almost in superposition with the SRIM curve. These two curves separate when

the former peaks at v = 1.25 a.u (40 keV) and the latter peaks at v = 1.5 a.u. (60 keV).

The no MB results then drop significantly after the peak and continue to underestimate

the SRIM prediction as the velocity increases. At their largest difference, the no MB curve

is 50% away from the SRIM curve.

The MB results on the other hand overestimate the SRIM prediction up to 20% before

the crossing point at v = 2.5 a.u. (160 keV). Then the MB curve goes slightly under the

SRIM curve until approaching the latter again at v = 5.0 a.u.. At the same time the peak

positions of these two curves are identical at v = 1.5 a.u.. When compared to the no MB

results, the values of the MB curve are higher at the entire velocity range studied and

the peak velocity of the latter is slight higher than that of the former. This relationship

between the MB and the no MB curves is consistent with that observed for the channeling

SP in figure 6.3.3. What is different from the channeling case is that instead of closing the
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gap with the no MB curve at higher velocities, the MB curve in the RESP case keeps an

almost constant distance with the no MB curve.

At last we compare our MOLGW results to the PW study. The no MB curve resembles

a lot the PW curve in shape and these two share the same peak position. While the MB

curve has its peak at a slightly higher velocity, its shape is not significantly different from

that of the PW curve. In terms of the magnitude, despite of similar values before v = 1.0

a.u., the no MB results are much lower than the PW results after this point. The agreement

is much better between the MB results and the PW results. Outside the peak area, values

given by the MB calculations are only slightly higher than that of the PW calculations.

Around the peak, the difference between these two sets of results becomes more important

and reaches up to 13%. The relationship between the no MB, the MB and the PW curves

is similar to that observed for the channeling SP in figure 6.3.3, except that the MB results

stay above the PW results in the case of RESP instead of crossing it over. At the same

time when benchmarking the PW curve against the SRIM prediction and the experiments

there is a general good agreement. The PW results overestimate the latter two to some

small degree around v = 1.25 a.u. and start to underestimate them after v = 4.0 a.u..

To conclude on the RESP of hydrogen in aluminum, we see that the general trend of

the MB results is correct comparing to the SRIM prediction and the experiments. They

have peaks at the same velocity and good agreements in values after v = 2.5 a.u.. It is also

encouraging that the PW calculations give similar results to that of our MB calculations,

which adds more validity to our approach. When comparing the MB to the no MB results,

we notice a remarkable improvement of the peak position and of the RESP values at

v ≥ 1.0 a.u. by adding the moving projectile basis. Finally, the similarity between the

channeling SP and the RESP proves the qualitative nature of the channeling analysis while

their differences emphasis the importance of considering random trajectories.

6.4.2 Helium in aluminum

Now we look at the RESP of helium in aluminum. In figure 6.4.2 we quote some

experimental data [121, 122, 123] cited by the online SRIM database followed by the SRIM

prediction [18]. Like in the case of hydrogen in aluminum, there are numerous experiments

that support the SRIM prediction so only three sets of experimental data are displayed

here. At the same time the good coherence with the experiments makes SRIM a reliable
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reference. Apart from findings of our MOLGW localized GTO basis calculations with

(MB) and without (no MB) projectile basis, we also show in figure 6.4.2 results from the

plans-wave (PW) basis simulations carried out by Schleife et al. [77].

Figure 6.4.2: RESP of helium in fcc [001] aluminum as a function of velocity. The
experimental data [121, 122, 123] are marked by the brown crosses and the SRIM prediction
[18] is given by the blue solid line. The results from our calculations using DZ as projectile
basis (MB) and ACQZ/DZ/DZ as target basis are represented by the red solid line with
round markers. The no MB results calculated under the same parameters are plotted by
the green solid line. Finally the pink dotted broken line represents the results from Schleife
et al. [77] using the plane-wave (PW) basis.

Starting from the no MB results, we see that at low velocities before the peak at

v = 1.75 a.u. (310 keV), the no MB curve is very close to the SRIM prediction. The peak

of the SRIM curve on the other hand is near v = 2.25 a.u. (510 keV). These two curves

cross over soon after the no MB peak and from then on the distance between them stays

vast. The largest underestimation of the SRIM results by the no MB calculations reaches

almost 50%.

Moving on to the MB results, we notice that the shape of the MB curve is quite similar

to that of the SRIM curve. These two sets of values are nearly identical until v = 1.5 a.u.

(225 keV) where the MB curve separates away and starts to underestimate the SRIM curve.

It is worth noticing that the biggest difference between the MB and the SRIM curves is

20% which is less than half of the largest discrepancy between the no MB and the SRIM
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curves. The peak of the MB curve is at the same velocity as that of the no MB curve,

before which the former has lower values than the latter. The cross-over between these two

happens at v = 2.25 a.u. and the MB results stay above the no MB results afterwards. The

relationship between the MB and no MB RESP curves are partially in line with that of the

channeling SP in figure 6.3.4 except that the peak positions of these two curves are slightly

different and their cross-over happens much later in the channeling case. The disagreement

between the two basis settings at high velocities is also much more pronounced in RESP

than under the channeling condition.

Finally we compare our MOLGW results with that of the PW method. The PW curve

has the same peak position as that of both the MB and no MB curves and its shape

resembles a lot that of the MB curve. At low velocities before the peak, the PW results

are almost identical to that of the no MB calculations and slightly higher than that of the

MB calculations. Right after the peak the PW curve becomes higher in magnitude than

the no MB curve and continues to be above the MB curve until v = 3.0 a.u. (900 keV).

After this point the PW and the MB curves are joint together until signs of separation

at v = 5.0 a.u. (2.5 MeV). When compared with the SRIM prediction, the PW results

are in good agreement with the former before the peak at v = 1.75 a.u. and then drop

to underestimate it at higher velocities. This behavior is very similar both in trend and

values to that of the MB curve.

Summarizing from all the comparisons done above, we see that for the RESP of helium

in aluminum, the MB calculations give very good results at low velocities. Although they

underestimate the experimental data at velocities beyond v = 1.5 a.u., they are in strong

agreement with the PW simulations which is a significant improvement over the no MB

calculations. Comparing to the channeling SP where we have observed the MB results to

be smaller than the no MB results until v = 4.0 a.u., the inclusion of random trajectories

have shown us a much earlier cross-over and greater discrepancy at high velocities. Judging

from the good performance of the MB calculations for both the hydrogen and the helium

stopping powers, we have gained the confidence to proceed with a heavier projectile in

aluminum.
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6.4.3 Aluminum in aluminum

Having studied extensively the stopping power of two light projectiles (hydrogen and

helium) in both lithium and aluminum and obtained relatively good results, we have decided

to move on to a heavier projectile. Aluminum stands out as an ideal candidate since it

has core electrons in the s and p shells but does not possess occupied d orbitals. This is

thus a relatively light but reasonably complex electron configuration for the projectile. At

the same time we have chosen to continue working with aluminum as the target for the

same reason, with additional argument being that the stopping power experiments within

this material are well documented in the SRIM database [18]. The geometry parameters

used in this study are the same as in the case of light projectiles, although we do not rule

out the possibility that the convergence trend might be different with a heavier projectile.

This should be verified by further investigations.

The range of projectile velocities studied is carefully chosen. As demonstrated by the

stopping powers of different ions in various solid targets in figure 6.4.3, cited from the

historical review of reference [19], we observe a general trend where heavier projectiles have

their stopping power maximums at higher kinetic energies. Focusing on this behavior in

the aluminum target, we have plotted the SRIM-predicted stopping power in figure 6.4.4

for the three projectiles studied: hydrogen, helium and aluminum.

Figure 6.4.3: Cited image of stopping
powers of ions (from H to U) in various
solids (from C to U) from the historical
review of reference [19].

Figure 6.4.4: RESP of various ions
in aluminum target from the SRIM
online database [18] (hydrogen and
helium projectile) and the SRIM software
(aluminum projectile). The values are
reported in logscale.
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We notice in figure 6.4.4 that the magnitude of the RESP increases significantly as the

projectile becomes heavier. The maximum of aluminum RESP is about 25 times that of

the hydrogen RESP and 10 times that of the helium RESP. Looking at the peak positions

of these three projectiles, it is obvious that the heavier the projectile, the higher the peak

velocity. While hydrogen and helium SP reach their maximum at v = 1.5 and 2.25 a.u.,

the aluminum SP peaks at v = 6.0 a.u.. This is not favourable for our MB calculations as

we have seen in the left-hand image of figure 4.1.1, the precision of equation (4.1.55) is

quickly compromised at large velocities which requires enormous basis sets to overcome.

Constrained by time and resources, we will thus concentrate our efforts on the relatively

low projectile velocities v ≤ 5.0 a.u. in the study of aluminum in aluminum.

Based on the basis set convergence tests shown in figure 6.1.4 and 6.1.6, we have chosen

the lighter CQZ/DZ/DZ mixture in this study rather than the ACQZ/DZ/DZ mixture used

in the light projectiles cases. Ideally we should use C6Z/DZ/DZ for better convergence,

but the computational burden limits us to perform calculations with this basis mixture

only at a couple of velocities to compare with the CQZ/DZ/DZ mixture. For the projectile,

simulations with both the DZ and CDZ basis are conducted, taking into account of the

conclusions from figure 6.1.6 that the CXZ basis give more converged results than the

standard XZ basis.

In figure 6.4.5 we demonstrate the results of the random electronic stopping power

(RESP) of aluminum in aluminum obtained using MOLGW both with (MB) and without

(no MB) projectile basis. Some experimental data [80, 81] as well as the SRIM prediction

are cited for comparison. We would like to point out that the SRIM results in this case

is not cited directly from the online database [18] but rather calculated using the SRIM

software.
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Figure 6.4.5: RESP of aluminum in fcc [001] aluminum as a function of velocity. The
experimental data [80, 81] are marked by the brown crosses and the SRIM prediction [18]
is given by the blue line. The no MB results calculated using the CQZ/DZ/DZ target basis
are plotted by the green line. The MB results using DZ projectile basis and CQZ/DZ/DZ
target basis are represented by the red line with round markers, and the results using CDZ
projectile basis are plotted with the orange line with round markers. Finally purple squares
are used to mark results obtained with C6Z/DZ/DZ target basis and CDZ projectile basis.

Looking at the experimental data we notice that the experiments are scarce at projectile

velocities lower than 5.0 a.u. (17 MeV). The single data point passed by the SRIM curve

comes from a series of data [80] obtained at higher velocities outside the scope of this study.

The remaining experimental data [81] are all overestimated by the SRIM prediction by

almost 10% and the peak of SRIM is evidently beyond v = 5.0 a.u.

We will now bring our attention to the no MB results. This setup cannot represent the

initial neutral charge state of the projectile since without the projectile basis all electrons

from the projectile are considered as target electrons. Consequently if we consider a neutral

aluminum atom as projectile in the MB calculations, we would get a fully-striped aluminum

ion travelling in a negatively charged aluminum target in the no MB simulations. It would

make more sense to calculate the no MB scenario using an initially fully-striped projectile,

but we would still be in short of the corresponding MB results for comparison as the MB

simulations cannot produce a striped ion. Admitting that it would not be meaningful to

compare in depth the no MB results with the others, we will simply look at the apparent

differences between them. While the no MB curve passes through one experimental point
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little before v = 4.5 a.u. (14 MeV), it has largely missed all others. When comparing it to

the SRIM prediction, we see two distinctive shapes and that the no MB curve peaks at a

much lower velocity v = 2.5 a.u. (4.2 MeV).

Let us move on to the MB calculations. Three sets of results are reported here. Two of

them use the CQZ/DZ/DZ mixture on target atoms with different projectile basis: DZ and

CDZ. The third one keeps the CDZ projectile basis and increases the target basis quality to

C6Z/DZ/DZ. We will start comparing between the two different projectile basis with the

CQZ/DZ/DZ target basis. When using DZ on the projectile, the shape of the MB curve

resembles a lot that of the SRIM curve. Comparing to the experimental data, the values

from the DZ projectile basis simulations underestimate the former by roughly 20%. On

the other hand with the CDZ projectile basis, the MB curve is flatter and underestimates

even more the experimental data (almost 40% lower than the experiments). The difference

between the DZ and CDZ simulations is consistent with the projectile basis convergence

test shown in figure 6.1.6.

Having observed from the convergence test that raising the cardinal number X of the

CXZ basis on the projectile does not necessarily improve the stopping powers, we would

like to see if any progress can be made by using the more complete C6Z/DZ/DZ target basis.

Due to the huge computational efforts entailed, results are given at only two velocities

v = 3.0 and 5.0 a.u.. Significant improvements of 20% and 30% are observed at these

velocities comparing to the results obtained with CQZ/DZ/DZ target and CDZ projectile

basis. This is consistent with the target basis convergence and emphasises the need of better

target basis. At the same time results from the CDZ + C6Z/DZ/DZ combination are very

similar to those obtained with the DZ + CQZ/DZ/DZ combination. Whether the latter

with low quality basis is truly reliable to replace the more expensive basis combination is

still open to discussion.

In this section we have reviewed some firsthand RESP results of aluminum in aluminum.

There are only a few experimental data to refer to in the range of velocities that we have

studied, thus the SRIM prediction is not well supported. The no MB calculations can only

represent an extreme situation where the projectile is fully striped and produce results in

striking disagreement with the experiments. Our MB calculations, though underestimate

the experimental data by a non-negligible degree, improve largely the no MB results and

produce curves that correctly follow the evolution of the experimental data.
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There are a few directions that we can take in order to further improve our MB results.

First we have to double check the geometry convergence. The conclusions drawn from the

figures 6.1.2 and 6.1.3 are based on a very light projectile hydrogen and might no longer be

valid for the aluminum projectile. Then we can raise the basis quality on both the target

and the projectile. The CXZ basis sets with high cardinal numbers are a promising place

to start, yet there might be better basis to be tested. Once the precision at low velocities

is improved, it would be interesting to explore higher velocities near the RESP peak where

the SRIM prediction is in better agreement with the experimental data.

Meanwhile when experiments in a system are not numerous enough to support the

SRIM prediction, it is not wise to consider the latter as the standard answer and one can

expect the ab initio results to differ from the SRIM calculations. Take the study of Ullah

et al. [78] for example, where the stopping power of nickel in nickel is calculated with the

plane-wave (PW) basis using the QB@LL program [62, 63]. Despite of the existence of a

SRIM prediction, there is no experimental data cited by the online SRIM database [18] for

the velocity range studied. While the work of Ullah shows excellent improvement of results

aided by the inclusion of both target and projectile core electrons, it still differs from the

SRIM curve by at least 15%. Therefore even if we improve our results for aluminum in

aluminum, we might still be in relatively large discrepancy with the SRIM prediction which

is not fully backed by experiments.

Finally, to highlight the important contributions from the moving projectiles basis, we

compare in figure 6.4.6 the RESP of SRIM, MB and no MB calculations for the three

projectiles studied in aluminum. First we comment that the form of the MB curves are

always in good agreement with that of the SRIM prediction and better than that of the no

MB curves. This is especially true for aluminum in aluminum. In the second place, we

remark that the RESP values given by the MB calculations are much closer to the SRIM

data than the no MB calculations have achieved, especially at higher velocities. At last,

we notice that the peak positions of the MB curves are also more accurate than those

of the no MB curves. Those three points of improvement strongly suggest that the MB

calculations are a necessary upgrade of the no MB calculations in order to capture more

accurately the stopping power behaviors.
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Figure 6.4.6: RESP in logscale of three different projectiles in aluminum: hydrogen
(reported with color blue), helium (orange) and aluminum (green). Predictions from SRIM
[18] are plotted with solid lines. Results calculated with projectile basis (MB) are plotted
with broken lines and results obtained without projectile basis (no MB) are given with
dotted lines.



Chapter 7

Conclusion

The current global climate crisis makes an urgent call to reduce greenhouse gases

emissions and replace fossil fuels by alternative energy sources like the nuclear power.

With a history of destructive accidents, the safety of nuclear reactors is undeniably an

important research topic. Experimental studies traditionally use neutron beams to irradiate

materials and reproduce nuclear damages. These installations are not only expensive but

also difficult to operate. In recent years, ion beam irradiation become a popular alternative

to emulate neutron-induced damages thanks to its lower costs and less harmful exposures.

The JANNuS [16, 17] laboratory in CEA Saclay possesses a powerful ion beam facility with

three ion accelerators and is capable of implanting a large variety of ions inside multiple

types of materials.

The experimental measurements of ion irradiation, such as the electronic stopping

powers, are commonly benchmarked against the empirical predictions from the software

SRIM [18, 19]. The results from SRIM give excellent accuracy for systems whose records

of experimental data are rich, but become much less reliable when such data are scarce.

Calculations from first-principles like ours provide therefore supplementary references to

experimental studies. Implemented inside MOLGW [47], we combine the stationary DFT

and the real-time TDDFT to simulate the electronic stopping powers of ions in matter

using localized GTO basis. Comparing to the plane-wave basis used in Qbox/Qb@ll [62, 63]

and Octopus [124], the localized basis is advantageous in describing all electrons (core and

valence) and storing information in matrix forms. Although programs like SIESTA [66]

and CP2K [67] also use localized basis to solve the RT-TDDFT problems, our development

in MOLGW stands out with the addition of moving projectile basis.

107
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In this conclusive chapter, we will summarize some of the major milestones of this PhD

research and discuss about a few ideas that have the potential to further improve the

performance of our code and the confidence over our results.

7.1 Achievements

After a brief introduction of our research background and the concept of electronic

stopping power, we have reviewed in Chapter 2 some fundamental theories about the DFT

and the TDDFT and have discussed about several numerical techniques concerning the

application of localized GTO basis: the mixture of basis quality, the matrix representations

of key physical terms and the approximations used to evaluate the 4-center Hartree potential

integrals. For systems without projectile basis, we have simplified the matrix expressions

in an orthogonal basis and seen that the MAG2 propagator is more reliable than the CN

propagator. Then we have distinguished the single-trajectory stopping power from the

random electronic stopping power and proposed a new angled sampling strategy of the

impact parameters based on the polar symmetry sampling of Maliyov and coworkers [48].

We have reported in Chapter 3 the stopping powers of proton and antiproton in LiF

calculated without projectile basis [46]. Good agreements are achieved between our

calculations and the experimental data. Not only have we correctly described the velocity

threshold for the proton stopping power and the positive Barkas effect, but also we have

observed some unusual behaviors of the antiproton RESP and a negative Barkas effect at

very low velocities that is unrecorded in the literature. A plausible cause of the negative

Barkas effect is found after the fractional charge and isolated ion analysis. We conclude

that the presence of antiproton destabilizes the 2p orbitals of F- ion, which lowers the

excitation energy of the ion and eventually brings the RESP of antiproton higher than that

of proton in LiF at low velocities.

In Chapter 4 we have demonstrated the necessary modifications to the time-dependent

equations due to the addition of projectile basis and have studied the extra operator D̂

that describes the projectile basis movement. Some special properties of this operator are

presented, including its asymmetric matrix shape, its role in conserving the wave-function

orthonormality and its energy contribution E−iD. We have shown both the analytical and

numerical evaluations of E−iD and have concluded that the numerical precision depends
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imperatively on the completeness of the basis set and is more affected at large projectile

velocity. At the end of the chapter, the reliability of two major propagators used in

MOLGW are weighted up in the absence and presence of projectile basis. The MAG2

propagator, while having better performances in cases without projectile basis, becomes

less accurate than the CN propagator due to extra approximations in cases where the

projectile basis is present.

The first part of Chapter 5 focuses on the implementation of our theoretical development

in MOLGW and on the optimization of the code efficiency. The addition of projectile

basis requires the correct updates of the moving basis centers and the modification of

the propagation scheme to take into account of the operator D̂. In order to reduce the

computational costs of the step-by-step real-time updates of large matrices, we have selected

only the mixed target-projectile elements to be recalculated. The second part of the chapter

demonstrates how we validate our implementations with three functionality tests in simple

diatomic systems. We have first assured that the ghost sites (basis without atomic cores)

alter neither the total energy nor the total electron number. Then we have seen that despite

of some small discrepancy, the energy variations are almost identical in the absence and

the presence of projectile basis. At last we have switched the roles between the target and

the projectile to ensure that the energy variation of the system stays the same. Passing all

three tests has given us enough confidence over the healthy performance of our numerical

development.

At the beginning of Chapter 6 we have carefully studied the two main groups of modeling

parameters vital to the energy stabilization and the convergence of the stopping power

in solid targets. We have concluded on the use of long but thin clusters, higher quality

CXZ basis on the target, DZ basis for light projectiles and CDZ basis for projectiles with

core electrons. Channeling stopping powers of hydrogen and helium are studied in fcc

[001] aluminum target and are observed to be sensitive to the centering of the cluster.

Considering the electron density symmetry and the homogeneity of target basis quality felt

by the projectile, it is preferable to center the aluminum cluster on its channel rather than

on its central column of atoms.

The main part of Chapter 6 exhibits random electronic stopping powers from our

MOLGW simulations using projectile basis. Although admittedly not fully converged, these

results provide accurate qualitative insights. For hydrogen in lithium and aluminum, our
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calculations are in good general agreements with the SRIM prediction and the experimental

data, as well as with other calculation methods like the linear-response TDDFT [44] and the

plane-wave basis real-time TDDFT [77]. For helium in lithium, we lack the experimental

data to draw definitive conclusions. As for helium in aluminum, our calculations agree with

the SRIM prediction and the experimental data at low velocities and are almost identical

to results from the plane-wave basis method [77] at higher velocities. Finally, we report our

firsthand results for aluminum in aluminum. Although underestimating the experiments

and the SRIM calculations, our results obtained with the projectile basis correctly capture

the behaviors of the former two. In almost all cases, the addition of projectile basis brings

visible improvements on calculations done without projectile basis.

7.2 Perspectives

Despite all the achievements summarized above, there are several aspects of this work

that could be improved or further investigated. In Chapter 2 we have proved analytically

the expression (4.1.46) of E−iD for a system where all particles are considered moving. We

would like to obtain the same expression for systems with only one moving particle to

further support our numerical observations.

In Chapter 4 we have explained how to achieve the change of reference frame by

iterating through the SCF cycles with the effective Hamiltonian M = H − iD. However,

this technique currently only works for systems with atomic targets. For solid systems

we have to let the projectile propagate a certain distance to reach the steady state. If we

could overcome the convergence difficulty of the wave-function re-initialization in solid

targets, we might be able to use a shorter cluster.

Significant computational efforts are saved by the optimization techniques presented in

Chapter 5. While we have applied the selective recalculations on most of the matrix terms,

the Vxc matrix is still fully updated at each time step and can certainly be optimized. In

the same chapter, we have observed an ∆E anomaly during the ghosts test for helium in

real proton target at v = 0.5 a.u. and p = 3.0 bohr. While this is consistent with the

Löwdin charge profile of the system, it might be interesting to investigate deeper into the

origin of this anomaly.

During the convergence tests in Chapter 6, we have been limited by computer resources
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and human time to examine the effects of higher order XZ and CXZ basis on the projectile.

Continuing efforts on the projectile basis test could give us a clearer picture of the

convergence trend. Conclusions on the geometry convergence might also be different

when heavier projectiles are used. Additionally, the crystal orientation and the number

of impact parameters sampled for the RESP are two other convergence topics that worth

re-investigation with moving projectile basis.

While most of our RESP calculations with projectile basis have produced satisfying

results in solids, we have observed very unusual results for helium in lithium which requires

more experimental data for better understanding. Other systems that lack experimental

validation are hydrogen in lithium and aluminum in aluminum at low velocities. In the

hope of improving convergence and minimizing discrepancy with reference data, we would

need to run simulations with better target and projectile basis, notably in the CXZ

basis group. Longer cluster might also be necessary for better convergence. Apart from

these suggested RESP studies, it would be equally interesting to investigate more on the

channeling condition of other systems like boron in silicon [115] and nitrogen in silicon

[114] by benchmarking MB results against the experimental findings.
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