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Abstract

Satisfying the demand for large bandwidth in high-optical data communication is becoming
a challenge. In parallel, the maximum information rate that can be transmitted through
conventional optical communication systems, based on wavelength division multiplexing
(WDM) with an array of single-mode lasers, is almost reached. In modern high-capacity
optical data communication, an optical frequency comb is used to transmit information.
The use of an optical frequency comb requires a demultiplexing of each comb line leading
to the optical injection in laser diodes. In this work, we study the nonlinear dynamics of

laser diodes optically injected with frequency combs.

We first theoretically and experimentally analyze the nonlinear dynamics of edge-emitting
lasers (EELs) from an optical injection of frequency combs. The injection parameters
(injection strength and detuning frequency) and injected comb properties (comb spacing,
number of comb lines, and power per comb lines) are varied to unveil several locked
and unlocked dynamics. At low injection strength, the injected laser output achieves
the optical injection locking with selective amplification of the less detuned comb line.
We observe as many injection locking regions as the number of the injected comb lines.
At the boundary of the injection locking areas, the saddle node bifurcation leads to a
modulation resulting from nonlinear wave mixing involving the detuning frequency and
a new frequency that depends on the injected comb spacing. For large enough injection
strength and over a large detuning range, the injection locking bifurcates to a time-periodic
dynamics corresponding to an optical frequency comb that extends the injected comb
to a much broader optical spectrum. A bifurcation analysis reveals a cascade harmonic
frequency comb dynamics leading to a significant increase in the output comb lines. The
size of the time-periodic dynamics regions depends on the amplitude of the injected comb
lines. We have also used the injection parameters, comb properties, and injection current

to control the new comb properties.

We secondly analyze the nonlinear dynamics and polarization properties in vertical-cavity
surface-emitting lasers (VCSELSs) subject to orthogonal optical injection with frequency
combs experimentally. When varying the injection parameters, we enable several bifurca-
tions scenarios leading to polarization switching accompanied by optical injection locking
that bifurcates to polarized frequency comb generation. Most importantly, the VCSEL

shows two frequency combs with orthogonal polarization from a single device for some
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injection parameters. We also demonstrate the possibility to control the single or two po-
larizations comb repetition rate through harmonic frequency combs generation. Harmonic
frequency combs with repetition rates of hundreds of MHz are indeed demonstrated. The
polarization switching and the related bistability are also analyzed. We observe that the
power required to switch the VCSEL increases with the injected comb spacing, and there
is no linear dependence between the increase in the comb spacing and the increase in the

switching power.

We finally present experimentally and theoretically the VCSEL injection dynamics from
parallel optical frequency comb injection. We show that the two polarizations comb
performance is restricted to high current injection in the case of parallel optical injection.
For fixed bias current, the two polarization comb dynamics disappear when increasing the
injected comb spacing. In contrast, the orthogonal optical injection can induce the two
polarization comb whatever is the bias current and is not limited by the increase in the
injected comb spacing. In parallel optical injection, the decrease in the linear dichroism
eliminates the comb dynamics in the normally depressed polarization mode. In contrast,
in the orthogonal optical injection case, the size of the comb regions in both polarization

modes increases slightly when decreasing the linear dichroism.

This thesis therefore demonstrates besides its interest for nonlinear laser dynamics, optical

injection is a technique to harness the comb properties in laser diodes.
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Résumé

Satisfaire la demande de large bande passante dans les systéemes de communication optique
devient de plus en plus un défi énorme. Parallelement, la limite de bande passante
utilisable par les systémes de communication optique classique basé sur le multiplexage
par répartition en longueur d’onde (WDM) est presque atteinte. Dans les systemes de
communication optique moderne, un peigne de fréquences optiques est utilisé a la place
d’une série de lasers pour transmettre I'information. L’utilisation des peignes de fréquences
optiques nécessite un démultiplexage de chaque ligne du peigne conduisant a l’injection
optique dans une diode laser. Dans ce travail, nous étudions la dynamique non linéaire de

diode lasers injectés optiquement avec des peignes de fréquences optiques.

Nous analysons d’abord théoriquement et expérimentalement la dynamique non linéaire
de lasers émettant par la tranche (EELs) a partir d’une injection optique de peigne de
fréquences. Nous faisons varier les parametres d’injection (force d’injection et fréquence
de désaccord) et les propriétés des peignes injectés (espacement des fréquences du peigne,
nombre de lignes de peigne et puissance par ligne de peigne) pour dévoiler plusieurs
dynamiques verrouillées et déverrouillées. A faible force d’injection, la sortie du laser
injectée présente une dynamique de verrouillage d’injection optique avec une amplification
sélective de la ligne de peigne la moins désaccordée. Nous observons autant de régions
de verrouillage par injection que de lignes de peigne injectées. A la limite des zones de
verrouillage par injection, la bifurcation du Saddle Node conduit a une modulation résultant
du mélange d’ondes non linéaires impliquant la fréquence de désaccord et une nouvelle
fréquence qui dépend de l'espacement des peignes injectés. Pour une force d’injection
et un désaccord considérable, le verrouillage par injection bifurque vers une dynamique
temporelle-périodique correspondant a un peigne de fréquences optiques qui étend le
peigne injecté a un spectre optique beaucoup plus large. Une analyse de bifurcation
révele une dynamique de peigne de fréquence harmonique conduisant a une augmentation
significative des lignes de peigne a la sortie du laser. La taille des régions de dynamiques
périodiques dépend de 'amplitude des lignes de peigne injectées. Nous avons également
utilisé les parametres d’injection, les propriétés du peigne et le courant d’injection pour

controler les propriétés des nouvelles solutions de peigne.

Nous analysons ensuite la dynamique non linéaire et les propriétés de polarisation des lasers
émettant par la surface (VCSEL) soumis & une injection optique orthogonale avec des

peignes de fréquence de maniere expérimentale. En faisant varier les parametres d’injection,
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nous activons plusieurs scénarios de bifurcation menant a une commutation de polarisation
accompagnée d'un verrouillage d’injection optique qui bifurque vers la génération de
peignes de fréquences polarisés. De plus, pour certains parametres d’injection, le VCSEL
présente deux peignes de fréquence avec une polarisation orthogonale a partir d’'un seul
dispositif. Nous démontrons également la possibilité de controler le taux de répétition du
peigne a une ou deux polarisations par la génération de peignes de fréquences harmoniques.
Des peignes de fréquences harmoniques avec des taux de répétition de centaines de MHz
sont en effet démontrés. La commutation de polarisation et la bistabilité associée sont
également analysées. Nous avons observé que la puissance requise pour commuter le
VCSEL augmente avec I'espacement du peigne injecté, et qu’il n’y a pas de dépendance
linéaire entre 'augmentation de I’espacement du peigne et 'augmentation de la puissance

de commutation.

Nous présentons enfin expérimentalement et théoriquement la dynamique d’injection du
VCSEL a partir d'une injection optique parallele avec peigne de fréquences. Nous montrons
que les performances du peigne a deux polarisations sont limitées a une injection de courant
élevée dans le cas de l'injection optique parallele. Pour un courant d’alimentation fixe, la
dynamique du peigne a deux polarisations disparait lorsque 1’espacement du peigne injecté
augmente. En revanche, 'injection optique orthogonale peut induire le peigne a deux
polarisations quel que soit le courant de polarisation et n’est pas limitée par I’'augmentation
de I'espacement des peignes injectés. Dans l'injection optique parallele, la diminution
du dichroisme linéaire conduit a I’élimination de la dynamique du peigne dans le mode
de polarisation normalement déprimé. En revanche, dans le cas de I'injection optique
orthogonale, la taille des régions en peigne dans les deux modes de polarisation augmente

légerement lorsque l'on diminue le dichroisme linéaire.

Cette these démontre donc qu’outre son intérét pour la dynamique non linéaire des lasers,
I'injection optique est une technique permettant d’exploiter les propriétés des peignes dans

les diodes laser.
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(GENERAL INTRODUCTION

Whatever the mind can conceive and believe, it can achieve it. Our only limitations are

those we set up in our minds.

Napoleon Hill
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2 1. General introduction

Umanity is increasingly depending on the internet due to the advances in new tech-
nologies. The rapid growth of data traffic characterizes this internet dependence.
For example, more than two decades ago, in 1992, the global internet networks
traffic per day was approximately 100 Gb/day, but in 2017 (twenty-five years later), the
global internet traffic has exponentially grown from 100 Gb/day to 46600 Gb/s [1]. It is
worth noticing that the amount of global internet networks traffic data is expected to be
150700 Gb/s in 2022 because a large portion of humanity still does not have access to the
internet [1]. The number of users of connected objects such as computers, smartphones,
and TV is increasing in every country in the world. Figure 1.1 shows the global monthly
internet traffic measured (2017-2020) and expected (2021-2022). In four years, the traffic
data transmitted have almost doubled. As seen in Fig. 1.1, more than 100 exabytes (102
bytes) of global data are transmitted over the network communication systems. These
data are mainly used for several purposes, such as file sharing, gaming, and video. In
parallel, internet connectivity speeds have exponentially increased over the last decade.
For example, the mobile connectivity speed was 8.7 Mbps in 2017, while it is expected to
be more than triple, i.e., 28.5 Mbps by 2022 [1].
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Figure 1.1: Global internet traffic in exabytes. Measured (2017-2020)
and predicted (2021-2022) of data traffic per month for 5 main categories.
Adapted from [1].

That rapid growth in data consumption has been made possible due to the improvement

of optical communication systems.

Conventional fibre optic communication system

Conventional fibre optic communication systems are based on wavelength division mul-

tiplexing technology (WDM). Figure 1.2 shows the principle of WDM. As seen in Fig.



1.1. Conventional fibre optic communication system 3

1.2, in the WDM technology, the outputs of several lasers (N lasers) of slightly different
wavelengths are modulated in amplitude [2], in phase [3] or a combination of amplitude
and phase [4]. The output of each laser corresponds to one channel of transmission.
The channels are then combined into a single optical fiber using a multiplexer and then
transmitted. As the information is sent over several thousand kilometers, the transmission
process requires several steps of amplification. When the information arrives at the receiver
side, the optical fiber output is splitted into several individual channels with respect to the
initial lasers using a demultiplexer. Once the demultiplexing is completed, the data of each
channel is detected separately on a photodiode. The speed and amount of data transmitted
over the optical communication systems reach a fundamental limit in bandwidth known as
nonlinear Shannon limit [5]. However, the frequency jitter (instability in the frequency of
the lasers) in the output of each laser can lead to a strong overlap in the communication

system.
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Figure 1.2: Principle of copnventional optical fiber communication
using wavelength division multiplexing (WDM).

In order to suppress the overlaps, large guard bands are introduced in the WDM com-
munication system. Unfortunately, these guards bands occupy a large portion of the
transmission bandwidth. Hence, the nonlinear Shannon capacity limit is reached very
quickly [5]. Currently, new optical communication systems in which a frequency comb
replaces the lasers array is in development [6]. The benefice of the optical frequency comb
includes low-frequency jitter due to the stable comb spacing, phase coherence of the comb
lines leading to the phase noise reduction, improved spectral efficiency of transmission,
and reduction of energy consumption of the communication system. This new platform of

communication is very promising for high-capacity optical communication.



4 1. General introduction

Frequency comb for optical communication systems

e Frequency combs as multiple channel

An optical frequency comb can be used to replace the array of single-frequency lasers in
the WDM communication system. An optical frequency comb is a coherent spectrum
composed of a set of frequency lines that are regularly spaced and whose modes have a
well-defined phase relationship. In the conventional WDM communication system, the
heterodyne beat between two single-mode lasers with similar linewidth d f gives rise to a
beat note signal in the power spectrum with linewidth § fr = /26 f [7], which decreases the
transmission efficiency. Whereas, due to the correlation between the noise of the comb lines,
the same heterodyne beat between two comb lines will yield a beat note with linewidth
much lower than the one of the individual comb lines [7]. Figure 1.3 shows the simplified
schematic of the future wavelength division multiplexing (WDM) communication system.
As seen, the array of laser is replaced by an optical frequency comb. Each comb line is
used as one channel, i.e., each comb line takes the place of one single-mode laser. This
new configuration allows reducing the size of the WDM communication system and the
energy consumption. Interestingly, the narrow linewidth and the common phase relation
between the comb lines, together with the fixed comb spacing, lead to the reduction of
the size of the WDM communication systems through partial or total suppression of the

guard bands.
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Figure 1.3: Principle of wavelength division multiplexing (WDM)
optical fiber communication system using optical frequency comb.
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 Requirement to the frequency combs

The WDM-based optical comb imposes strict requirements for the optical frequency comb

concerning the linewidth, comb spacing, and power per comb line. Advanced modulation
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formats in the communication system are strongly affected by the phase noise. The
decrease in the linewidth decreases the phase noise variation from one channel to another.
Recently, it has been shown that the modulation performances decrease with the increase
in the optical linewidth [8]. Linewidths of 100 kHz are perfectly adequate for some
modulation systems. The optical communication system requires a stable comb spacing to
suppress the guard band used in the conventional WDM systems. In conventional WDM
systems, power per channel must be higher than 1 mW. In the WDM system-based optical
frequency comb, as each comb line is used as a channel, the power per comb line must be
higher than 1 mW.

As seen in Fig. 1.2 and Fig. 1.3, one of the key differences is that the WDM-based frequency

comb requires an extra demultiplexing method before modulation and transmission.

IR Optical demultiplexing using optical injection

Recent development in the WDM using an optical frequency comb has been accompanied
by extensive research on the demultiplexing method of the narrow-spaced optical frequency
comb. Figure 1.4 shows one of the main demultiplexing methods using the optical injection
technique. The optical injection consists of injecting the light from a laser called master
laser into the cavity of a laser called slave laser. When the two lasers are sufficiently close
in terms of frequency, the master laser forces the slave laser to emit at its frequency, giving
rise to the so-called optical injection locking. The next Chapter will provide more detail
on the optical injection. As seen in Fig. 1.4, the N comb lines are used as the master
laser, i.e., all the N comb lines are simultaneously injected into each slave laser. In the
demultiplexing experiments, the slave laser is usually a single-mode diode laser. When
fine-tuning the detuning frequency between the comb lines and the slave laser, the comb
line that shows the smallest detuning from the slave laser is selected as shown in the output
side in Fig. 1.4. In contrast to the optical amplifier (erbium-doped fiber amplifiers and
semiconductor optical amplifier), which add additional noise, the selective amplification
through the optical injection locking technique can amplify a comb line with a very high
signal to noise ratio. The injection locking and selective amplification of the desire comb
line can completely suppress the non-selected comb lines when varying the injected power
and the detuning. Although modern WDM uses as many lasers as conventional WDM,

the main advantage of modern WDM is the consistency of the comb lines, which leads



6 1. General introduction

10 -0
Output

Demultiplexer

Figure 1.4: Optical frequency comb demultiplexing circuit using optical
injection locking technique.

to a drastic reduction in phase noise. It has been shown that the comb lines keep their
coherence after demultiplexing. Also, it is known that injection locking is a technique to
stabilize the slave laser. Modern WDM technologies provide the transfer of coherence
and stability between the comb and the injected laser through the optical injection, thus
eliminating the guard band used in conventional WDMs leading to an increase in the total

transmission bandwidth.

PhD motivations

The optimization of the suppression ratio of the unlocked comb lines under injection locking
and selective amplification conditions has attracted much attention since the proposition
of optical frequency comb as a powerful tool to replace the array of single-mode lasers
[9-17] in the WDM communication systems. Optical injection locking using an optical
frequency comb has been extensively investigated during the last decade [9, 10]. More
specifically, experimental and theoretical studies of the injection locking properties have
shown a gradual increase in the suppression ratio of the unlocked comb lines when the
detuning frequency is varied toward zero value [13]. The influence of the injected comb
spacing on the optimization of the suppression ratio has been recently reported [10]. In
2014, Gavrielides confirmed analytically the experimental results reported in [13], where
the amplification seen by the unlocked comb lines is controlled with the injected power

and the detuning [12]. He also demonstrated that beyond the injection locking and
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selective amplification, the Hopf bifurcation can lead to the excitation of the relaxation
oscillation frequency. Some recent works have addressed the nonlinear dynamics of a
single mode-diode laser under modulated signal [18-20]. More specifically, they have
demonstrated several harmonics frequency locking dynamics close to the Hopf bifurcation
when injecting large comb spacing [18, 20]. These results suggest that the slave lasers
used in the demultiplexing circuit can be destabilized and then bifurcate to a wide variety
of nonlinear dynamics in the plane of the injection parameters. Yet to date, the nonlinear
dynamics of a single-mode laser diode optically injected with a frequency comb (as in the

demultiplexing circuit) is not fully addressed and is of significant interest.

The motivation for this thesis is to investigate the nonlinear dynamics of a single-mode
laser diode in such a demultiplexing circuit. The introduction shows that current WDM is
becoming limited in bandwidth due to the demand for higher bandwidths in the networks
communication system. By replacing the array of single-mode lasers with an optical
frequency comb, the amount of information transmitted can be increased by reducing
or suppressing guard bands and decreasing the phase noise due to the perfect phase
relationship between the comb lines. The laser being a nonlinear system, the injection
of a frequency comb into its cavity will destabilize its output depending on the injection

parameters (injected power and detuning frequency).

This thesis is mainly devoted to the external optical injection in semiconductor lasers. We
want to analyze the nonlinear dynamics of semiconductor lasers under a narrow optical
frequency comb injection when varying the injection parameters (injected power and
detuning frequency) and the comb properties (number of comb lines, comb spacing, and
amplitude of the comb lines). The motivation of this thesis is twofold. On the one hand,
based on the experiments and theoretical results [10, 13, 21], we use a simple model of
edge-emitting lasers (EELs) without noise contribution to describe the laser dynamics
under optical comb injection. Despite the simplicity of our model, we will see strong
agreement between experiment and numerical simulation as in [10, 13]. On the other hand,
due to the advantage of the vertical-cavity surface-emitting lasers (VCSELs) compared
to the edge-emitting lasers (EELs), we will investigate experimentally and numerically
their nonlinear dynamics and polarization properties when subjected to an optical comb
injection. Besides the selective amplification through injection locking, which is of interest
for WDM, this thesis shows also that optical injection can be used to greatly enhance the

performance of the injected optical comb, e.g., increase number of comb lines and tune



8 1. General introduction

the comb spacing, bandwidth, flatness and power per lines.

I Outline

Based on the motivation, the present work is organized as follows:

In Chapter 2, the fundamentals of semiconductor lasers are presented. We first present
the common principle giving rise to the emission of all lasers system. We briefly expose
the physical mechanism underlying the semiconductor laser’s operation. We begin first
with the edge-emitting lasers (ELLs) before moving to the polarization properties of the
vertical-cavity surface-emitting lasers (VCSELSs). In both cases, particular attention is
paid to their modeling based on their gain medium. We finally discuss some techniques to

induce nonlinear dynamics in a diode laser and the related applications.

Chapter 3 focuses on the optical frequency comb properties. We begin first with the
principle of the optical frequency comb generation. We review different physical systems
generating an optical frequency comb. We provide a broad view of the physical mechanism
underlying each comb generation system and the influence on the comb properties such as
bandwidth, comb spacing, and flatness. Finally, we discuss the application of the optical

frequency related to the physical system generating optical comb.

Chapter 4 is devoted to the theoretical and numerical analysis of a single-mode diode
laser with optical injection from frequency combs. We first model an EEL with optical
frequency comb injection. The rate equations are simulated using a Runge-Kutta fourth-
order numerical method. The nonlinear dynamics of the diode are then mapped in the
plane of the injection parameters when varying the number of injected comb lines and
the injected comb spacing. Furthermore, we observe as many injected comb lines as the
number of injection locking regions. More interestingly, we show that the injection locking
can bifurcate to an unlocked time-periodic dynamics corresponding to a broad optical
spectrum whose frequencies lines are perfectly spaced with the same repetition rate as
the injected comb lines. Their phase analysis has shown a common relationship between
them, suggesting that the unlocked time-periodic dynamics are indeed optical frequency
combs (new comb). The injection parameters (detuning frequency and injection ratio),
the comb properties (number of lines and comb spacing), and the laser parameters are

then used to control the new comb properties.



1.5. Outline 9

The theoretical results of Chapter 4 are confirmed experimentally in Chapter 5. The
experimental configuration imposed an asymmetric frequency comb injection, i.e., the
injected comb lines do not have the same amplitude. We categorize the nonlinear dynamics
of a single-mode laser diode under asymmetric optical comb injection for injected comb
spacing below or above the relaxation oscillation frequency of the laser diode in free-
running. This chapter includes some numerical simulations to highlight the impact of
the asymmetric comb injection on the laser diode dynamics. We find a strong agreement

between experiments and the numerical simulations when varying both the parameters.

As we will see in the following chapters, due to their cavity structure, vertical-cavity surface-
emitting lasers (VCSELSs) provide many advantages compared to the EEL. The motivation
of this thesis being based on the optical communication system, the polarization properties
in VCSELs are beneficial for high-capacity optical communication. Chapter 6 focuses
on the polarization dynamics in a single-mode VCSEL optically injected with frequency
combs. We first analyze the impact of the injected comb spacing on the polarization
switching and the related bistability in the plane of the injection parameters. Also, when
the polarization of the injected comb is tuned to be orthogonal to that of the VCSEL,
several bifurcation scenarios lead to a significantly extended output comb with the number
of lines up to 15 times that of the injected comb. When varying the injection parameters,
we analyze the possibility to control the comb spacing through harmonic frequency comb
generation. Harmonic frequency combs with repetition rates of hundreds of MHz are
indeed demonstrated. Most importantly, for some injection parameters, the VCSEL shows
two frequency combs with orthogonal polarization from a single device, which may be
very useful for polarization division multiplexing by suppressing several optical devices.
As stated above, a requirement imposed by the modern WDM to the frequency comb
to replace the array of lasers is to achieve sufficient power per comb line. We show that

the power of the individual output comb lines above the noise pedestal (Carrier to Noise
Ratio (CNR)) can be increased to as high as 60 dB.

Chapter 7 is mainly focused on the comparison between parallel and orthogonal optical
injections from a frequency comb. We show that the two polarization combs observed
in Chapter 6 can be induced in the same VCSEL when the polarization of the injected
comb is parallel to that of the VOSEL. We further show through bifurcation analysis
that for fixed SFM and optical injection parameters, the linear dichroism can be used

to suppress the comb lines in the nonlasing polarization mode of the VCSEL (normally
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depressed polarization mode). In contrast, the two polarizations comb in the orthogonal
injection case is not eliminated when varying the linear dichroism. We also show that
the two polarizations comb dynamics are limited by the increased in the injected comb
spacing in the case of parallel optical injection. We experimentally proved that this limit
can be overcome with the increase in the bias current of the VCSEL. In general, the two
polarizations comb generation using orthogonal optical injection is more efficient than the
parallel optical injection, but at very high bias current (around three times the threshold

current), orthogonal and parallel optical injection lead to comparable comb bandwidth.
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14 2. Fundamentals of semiconductor lasers and applications

is Chapter presents the fundamentals concept of lasers in general, and more
specifically of semiconductor lasers. The conditions for laser emission related
to the cavity structure are explained. We analyze both Edge-Emitting lasers
(EELs) and Vertical-Cavity Surface-Emitting Lasers (VCSELSs) geometrical’s designs. The
fundamental differences between the EELs and VCSELSs in their structures and output
emission properties are presented. We finally survey some nonlinear basics of lasers
dynamics, including periodic dynamics, chaotic dynamics, and the polarization properties

in VCSELs and their promising applications.

Principle of lasers

The end of the Second World War has focused much attention on developing new tech-
nologies, including powerful light sources. In 1960, powerful sources based on Light
Amplification by Stimulated Emission of Radiation (LASER) have been proposed [29]
using a ruby crystal. The mechanism of the stimulated emission is based on the prediction
of Albert Einstein in 1917 [30]. The laser operation results from a competition between 3
main processes: absorption, spontaneous emission, and stimulated emission. Although the
laser is not a two-level energy system, we use it in Fig. 2.1 describes the three mechanisms

of light-matter interaction.

« Absorption: This process is presented in Fig. 2.1 (a) where an electron in the lower
energy state, due to the absorption of a photon, moves to a higher energy state.
This process is possible only if the photon has enough energy (hv) for the electron

to reach the next excited state.

« Spontaneous emission [Fig. 2.1 (b)]: Being in the excited state, the electron
relaxes a photon randomly and moves down to a lower energy state. The relaxed
photon has an energy corresponding to the transition between the excited and the

lower energy state, hv = Fy — F4. The phase of the emitted photon is random.

« Stimulated emission [Fig. 2.1 (¢)]: A photon with energy hv = Fy — E; stimulates
an electron to move down to a lower energy state. The electron falls from the excited
energy level to the lower energy level, accompanied by the emission of another

photon with the same energy as the incoming one. The two photons created have
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Figure 2.1: Light-Matter interaction mechanism in 2-energy levels
system with Fq and Fs the energy of the ground state and excited state,
respectively. (a) an electron leaves the ground state to the excited state
after the absorption of a photon with energy hv = Es — E;. (b) the
electron in the excited level goes down accompanied by the emission of a
photon with energy hv = Ey — Fj. (c) stimulated emission, emission of
two photons with the same energy after interaction between an electron
in the excited state and a photon. (d) amplification based on stimulated
emission.

the same energy (same wavelength or frequency) as the incident one. They also

propagate in the same direction, i.e., exhibit the same phase.

« Amplification [Fig. 2.1 (d)]: The amplification is not a process of light-matter
interaction but a consequence of the stimulated emission. It is only possible if there is
enough electron in the excited state. The amplification by stimulated emission must
be dominant to observe the lasing effect, but the spontaneous emission decreases its

efficiency.

An external pump source (optical pump or electrical injection current) increases the
stimulated emission efficiency. When the pump rate is enough to reach the population
inversion, i.e., the electrons in the excited level are more numerous than the electrons in the
ground level, then a net rate of stimulated emission (stimulated emission minus absorption)
is achieved leading to a so-called optical gain. Although a population inversion can help

to increase the amplification through stimulated emission, most excited electrons emit
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Figure 2.2: Laser output as a function of the pump characteristic.
Before the threshold, the laser output is dominated by spontaneous
emission. In other words, the losses are higher than the gain. The gain
equalizes the losses at the threshold, and then the laser effect starts
thanks to the stimulated emission. Beyond the threshold, a coherent
and directional beam is created.

spontaneously and do not contribute to the lasing effect. An optical resonator formed by
two mirrors is usually used to confine the gain medium and create the so-called laser cavity.
The reflection of the photons inside the laser cavity helps for the stimulated emission.
However, several electromagnetic waves are created inside the optical resonator. Only
the electromagnetic waves that satisfy the boundary conditions of the optical resonator
will be selected. They are called longitudinal modes of the laser cavity. The difference in
frequency between two consecutive longitudinal modes is called free spectral range. The
free spectral range is fixed by the distance between the two mirrors L and the nonlinear

medium properties n,. It is given by:

c
2Ln,

WFSR = (21)

where ¢ = 299792458 m/s is the speed of the light and n, the group refractive index.

Furthermore, during the pumping, a competition between the losses and amplification
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occurs inside the cavity. The losses in the laser cavity are due to the photons that escape
from the mirrors and that are absorbed in the cavity medium. Figure 2.2 shows the
typical light pump characteristic. For a low pump rate, the laser output is governed by
spontaneous emission. An increase in the pump rate allows achieving that particular
well-known operation point called laser threshold as shown in Fig. 2.2, where the gain

overcomes the losses.

Beyond the threshold point, the dominant mechanism is the stimulated emission, and
then the laser starts emitting a coherent and directional beam. The operation conditions

can be summarized in three steps:

e a gain medium to provide spontaneous and stimulated emission at the desired

wavelength.
e an optical or electrical pump to achieve population inversion

 a cavity controls the losses and select frequencies.

Dynamical classification of lasers

The previous section has discussed the principle underlying the laser operation and reveal
stationary output power characteristics. Since the discovery of the laser, several types
of lasers have been proposed depending on their dynamical properties. The equations
that describe lasers dynamics have been obtained by analogy with Lorentz’s system [31].
Lasers can be categorized into different classes using a simple comparison between the
field decay rate x, the dipolar polarization relaxation rate v, and the carrier decay rate 7,
[31], since the relationship between these three time-scales determines the laser dynamical

properties.

2.2.1| Class A lasers

The class A lasers are characterized by a long photons lifetime, i.e., field decay rate « is

much less than the dipolar polarization relaxation rate v, and the carrier decay rate ..

Based on the difference between x, 74 and 7., an adiabatic elimination can be applied

to reduce the number of the equation. The laser system is then described with only one
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Figure 2.3: Route to chaos in a single-mode laser driven by external
modulation. (a), (b) and (c) are obtained for fixed parameters when
increasing only the amplitude of modulation. Taken from [32]

equation, the one of the field E. This type of laser includes atomic gas lasers (He-Ne (0.633
nm), Ar™, Krt) and the dye lasers [33]. It has been shown that Class A lasers can lead to
locking and regular pulsation under external fields perturbation. Most importantly, chaotic
dynamics may be observed when modulating the external field, the pump rate, or the
cavity losses [32, 34]. Figure 2.3 shows the bifurcation to the chaos through intermittency.
Figure 2.3 (a), (b), and (c) show that chaotic bursts that interrupt the periodic evolution

of the times series increase with the amplitude of modulation.

2.2.2| Class B lasers

In this type of laser, the field decay rate x and the carrier decay rate v, are much smaller
than the dipolar polarization relaxation rate 74. Adiabatical elimination allows describing
the system with two coupled nonlinear equations: the field and the inversion population.
The Class B lasers include the Ruby, Nd: YAG, C' Oy and semiconductor lasers. These
lasers are very stable in free-running. As we will see in the following section, they can

exhibit a wide variety of nonlinear behavior in the presence of external perturbation.
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2.2.3| Class C lasers

For this type of laser, the three equations from the analogy between Lorentz’s system
and the laser (see [31]) must be considered because the times constant, x, 74, and 7.
are in the same order. Among the class C laser we denote, H N3 laser [35, 36], He