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Introduction

Due to the rapid development of information technology, computers are widely used in all fields of
modern science and technology. Scientific computing has always been an important field of computer
application. With the increase in computer memory and the speed of calculation, the size of problems to
be solved is also increasing. In recent years, the rapid development of high-performance computers, also
known as supercomputers, has brought many new challenges. In February 2014, ten challenges were
identified to achieve the Exascale system by the Advanced Scientific Computing Advisory Committee,
one of which is resilience, also known as fault-tolerance [70].

Deploying scientific applications at a large scale requires fault-tolerance mechanisms, which can
mitigate the impact of errors and ensure a correct and uninterrupted execution of the application [19,
20]. But from a fault-tolerance standpoint, scale is the enemy. State-of-the-art supercomputers such
as Frontier, Fugaku, or LUMI (respectively ranked 1st, 2nd, and 3rd in the TOP500 ranking [104])
are now embedding millions of cores (with a peak at 10.6M for Sunway TaihuLight (6th)). These
large computing systems are frequently confronted with failures, also called fail-stop errors (such as
hardware failures or crashes). Even if each of their cores has a very low probability of failure, the
failure probability of the whole system is much higher. More precisely, assume that the Mean Time
Between Failure (MTBF) of each computing resource is around ten years, meaning that such a resource
should experience an error only every ten years on average, which explains why computing resources
are individually very reliable. When running a simulation code on 100,000 of these resources in parallel,
the MTBF is reduced to only 50 minutes [55]: one node of the computing platform crashes every 50
minutes on average. With one million such resources, the MTBF gets as small as five minutes, while
codes deployed on such extreme-scale platforms usually last for hours or days. As the demand for
computing power increases, failures cannot be ignored anymore, and fault-tolerance mechanisms must
be deployed.

The classical way of dealing with failures in the extreme-scale computing systems consists of Check-
point/Rollback mechanisms. A checkpoint of the application is taken periodically; that is, the state of
the application (usually the whole content of its memory) is written onto reliable storage. Whenever one
of the computing resources experiences a failure, the application pauses and restarts from the last valid
checkpoint. Several studies have focused on the crucial question of the optimal checkpointing period,
defined as the time between two consecutive checkpoints. On the one hand, if checkpoints are taken too
often, time is wasted in costly I/O operations. On the other hand, if checkpoints are too infrequent, time
will be wasted in recomputing large portions of the application after each failure. Interestingly, relia-
bility was already a question in the early days of computing: in the 70s, Young proposed a first-order
approximation of the optimal time between two checkpoints that minimizes the expected duration of the
whole computation [110]. Young’s approximation has then been refined by Daly thirty years later [29].
Young [110] and Daly [29] derived the well-known Young/Daly formula PYD =

√
2µfC for the optimal

checkpointing period, where µf is the platform MTBF, and C is the checkpointing duration. Assuming
unit speed, the time PYD elapsed between two checkpoints is also the amount of work executed during

v
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each period. The Young/Daly formula applies to applications where a checkpoint can be taken any-
time during the computation. Divisible-load applications [13, 85] are an example of such applications.
Also, the Young/Daly formula assumes that the time needed to take a checkpoint is constant (which
corresponds to a constant size of the data to save).

This thesis makes several contributions to this important field of resilience for scientific computa-
tions. As described below, some of these contributions concern iterative applications that consist of a
series of parallel tasks, while other contributions apply to batch schedulers which are vital modules of
high-performance computers.

In addition to divisible-load applications, many scientific applications exhibit a more complicated
behavior. In Chapter 2, we focus on iterative applications which we define as applications that are
decomposed into computational iterations, where one can checkpoint only at the end of an iteration.
Indeed, for iterative applications, checkpointing is efficient, let alone possible, only at the end of an it-
eration, because the volume of data to checkpoint is dramatically reduced at that point. A wide range of
applications fits in this framework. Iterative solvers for sparse linear algebra systems are a representative
example [83, 88]. Moreover, the time of each iteration depends upon several parameters (sparsity pattern
of some vectors, communication contention, system jitter) and can vary significantly from one iteration
to another. This phenomenon is amplified in randomized iterative methods [46] where random vectors
are generated as the application progresses. Another class of applications that are naturally decomposed
into iterations of variable length are Bulk Synchronous Parallel (BSP) applications [44, 57] where one
checkpoints at the end of each join operation. A typical example of a BSP sequence of fork-join op-
erations is the n-body computation [15]. Due to the simplicity of the programming model, many BSP
applications are deployed at scale [14].

Scientific workflows account for a large fraction of the complex applications that are deployed on
supercomputers, and they cover a wide range of domains, such as weather prediction, climate modeling,
astronomy, and bioinformatics [7, 103]. Such workflows allow scientists to easily compose existing
simulation codes into new applications to be run on large-scale computing platforms. Workflows are
often modeled as directed graphs where vertices represent computation tasks of the workflow and edges
represent their dependencies. These directed graphs are either acyclic for non-iterative applications or
may contain cycles representing iterations. Several management systems have been proposed to tackle
the increasing complexity of computational workflows [94]. In Chapter 3, we focus on iterative work-
flows whose directed graph is a linear chain of parallel tasks. In other words, the same set of tasks
is executed repeatedly until the execution completes. This general applicative framework includes all
restarted Krylov subspace methods [45] where the same sequence of tasks is executed until convergence.
It also addresses Uncertainty Quantification (UQ) workflows, which attempt to close a fundamental gap
between simulations and the practical physical systems they represent: simulations based on mathe-
matical modeling are deterministic by nature, while the real-life behavior of the system has natural
variability. UQ workflows roughly consist in performing many simulations with slightly different initial
conditions in order to properly estimate the uncertainty of the simulation prediction [76, 87]. The large
set of simulations to be performed is often organized into phases that are similar to iterations of an iter-
ative application. When designing checkpoint/restart strategies for task-based workflows, it is natural to
take checkpoint between the completion of some task and the beginning of its successor. This way, the
checkpoint mechanism can be provided by the workflow management system without having to modify
the code of each task. However, this restricts the time-steps at which checkpoints can be taken and
makes the optimization problem of selecting the best checkpoint times more difficult. Furthermore, the
data to checkpoint is now the output of the tasks and may have different sizes for different tasks of the
workflow.
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Batch schedulers, a.k.a Resource and Job Management Systems (RJMS), are a key component of
the supercomputing infrastructure. Users make a reservation for their parallel job that includes informa-
tion such as an upper-bound on the expected length (called the wall time), and the desired number of
resources needed for the execution. Sophisticated scheduling heuristics have been introduced to accom-
modate for the job submissions on the fly; these heuristics go well beyond the naive First Come First
Served (FCFS) policy and are designed for the batch scheduler to allocate these jobs on the computing
platform, with the end goal of optimizing some metric or combination of metrics. In the last decade,
batch schedulers have faced additional constraints: on state-of-the-art platforms, an increasing number
of users experience the crash of a node belonging to their reservation set during the execution of their
job. This is because platforms are composed of more and more nodes to accommodate an endless in-
crease in job demands. This scaling is the main reason for the increasing number of failures, as stated
above. In Chapter 4, we propose a novel approach to schedule the failed job in order to improve the
performance of the platform.

Traditional iterative methods for solving sparse linear systems can be divided into two categories:
stationary iterative methods, such as the Jacobi method [88], the Gauss-Seidel method [88], and the
Successive Overrelaxation (SOR) method [41, 108], or non-stationary iterative methods, such as Krylov
subspace methods including Conjugate Gradient (CG) method [56, 66], Generalized Minimal Residual
(GMRES) method [89], Generalized Conjugate Residual (GCR) method [37], etc. According to differ-
ent iterative methods, we abstract them into various iterative applications. In Chapter 2, we focus on
stochastic iterative applications for the stationary iterative method. The stochastic iterative applications
can be considered as a linear chain whose tasks do not have constant execution times but obey some
probability distributions. While in Chapter 3, we focus on deterministic iterative applications, such as
the one for the Krylov subspace method. Deterministic iterative applications can be considered as a
cyclic chain of tasks, the duration of each task of an iteration is the same among all iterations.

The rest of the thesis is organized as follows: In Chapter 1, we review the related work of this
thesis. In Chapter 2, we extend the results of Toueg and Babaoglu [105] to deal with linear chains whose
tasks do not have constant execution times but instead obey some probability distributions. After that,
in Chapter 3, we provide a general-purpose approach to deal with fail-stop errors in iterative applications.
Our optimal checkpointing strategy is agnostic of any specific property of the target iterative application.
Instead, it abstracts the iterative application as a chain of cyclic tasks and provides the optimal periodic
checkpoint pattern based only upon general information such as task durations and checkpoint costs.
Finally, we study a more practical problem in Chapter 4: if no free node of the platform is available at
the time of a failure, how to efficiently schedule the failed job, which should wait until enough resources
become available for its re-execution. The main contributions of each chapter are summarized below.

Chapter 1: Related work

This is a preliminary chapter in which we introduce related work. We introduce checkpointing, it-
erative applications, fault-tolerance methods for iterative applications, batch schedulers, and general
fault-tolerance mechanisms, respectively.

Chapter 2: Stochastic iterative applications [C1, R2]

As stated above, the Young/Daly formula for periodic checkpointing is known to hold for a divisible load
application where one can checkpoint at any time-step. In this chapter, we assess the accuracy of the
formula for applications decomposed into computational iterations where: (i) the duration of an iteration
is stochastic, i.e., obeys a probability distribution law D of mean µD ; and (ii) one can checkpoint only
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at the end of an iteration. We first consider static strategies where checkpoints are taken after a given
number of iterations k and provide a closed-form, asymptotically optimal formula for k, valid for any
distribution D. We then show that using the Young/Daly formula to compute k (as k · µD = PYD) is
a first-order approximation of this formula. We also consider dynamic strategies where one decides to
checkpoint at the end of an iteration only if the total amount of work since the last checkpoint exceeds a
thresholdWth , and otherwise proceed to the next iteration. Similarly, we provide a closed-form formula
for this threshold and show that PYD is a first-order approximation of Wth . Finally, we provide an
extensive set of simulations where D is either Uniform, Gamma, or truncated Normal, which shows the
global accuracy of the Young/Daly formula, even when the distributionD had a large standard deviation
(and when one cannot use a first-order approximation). Hence we establish that the relevance of the
formula goes well beyond its original framework.

Chapter 3: Deterministic iterative applications [J3, R1]

After studying the fault-tolerance methods for stochastic iterative applications in Chapter 2, in this fol-
lowing chapter, we provide an optimal checkpointing strategy to protect iterative applications from fail-
stop errors. We consider a general framework where the application repeats the same execution pattern
by executing consecutive iterations and where each iteration is composed of several tasks. These tasks
have different execution lengths and different checkpoint costs. The first naive strategy would check-
point after each task. The second naive strategy would checkpoint at the end of each iteration. The
third strategy inspired by the Young/Daly formula would work for

√
2µcave seconds, where µ is the

application MTBF and cave is the average checkpoint time, and checkpoint at the end of the current
task (and repeat). The fourth strategy is a periodic extension of Young/Daly approach: it chooses the
task of an iteration with minimum checkpoint size. Only the result of this task will (possibly) be check-
pointed. Then it uses the Young-Daly formula to compute how many iterations to include in between
two checkpoints. All these naive and Young/Daly strategies are suboptimal. Our main contribution is
to show that the optimal checkpoint strategy is globally periodic and to design a dynamic programming
algorithm that computes the optimal checkpointing pattern. This pattern may well checkpoint many
different tasks, and this across many different iterations. We show through simulations, both from syn-
thetic and real-life application scenarios, that the optimal strategy outperforms the naive and Young/Daly
strategies.

Chapter 4: Node stealing for failed jobs

After a machine failure, batch schedulers typically re-schedule the failed job with a high priority. It
is fair for the failed job but still requires that job to re-enter the submission queue and to wait for
enough resources to become available. The waiting time can be very long when the job is large and
the platform highly loaded, as is the case with typical HPC platforms. We propose another strategy:
when a job J fails, if no platform node is available, we steal one node from another job J ′, and use it
to continue the execution of J despite the failure. Thus, job J ′ is killed and resubmitted later, waiting
for enough available resources to re-execute. In this chapter, we give a detailed assessment of this node
stealing strategy using traces from the Mira supercomputer at Argonne National Laboratory. The main
conclusion is that node stealing improves the utilization of the platform and dramatically reduces the
flow of large jobs at the price of slightly increasing the flow of small jobs.



Résumé français

En raison du développement rapide des technologies de l’information, les ordinateurs sont largement
utilisés dans tous les domaines de la science et de la technologie modernes. Le calcul scientifique a
toujours été un domaine d’application informatique important. Avec l’augmentation de la mémoire
des ordinateurs et la vitesse de calcul, la taille des problèmes à résoudre augmente également. Ces
dernières années, le développement rapide des ordinateurs à hautes performances, également appelés
super-calculateurs, a apporté de nombreux nouveaux défis. En février 2014, dix défis ont été identifiés
pour réaliser le système Exascale par l’Advanced Scientific Computing Advisory Committee, dont l’un
est la tolérance aux pannes [70].

Le déploiement d’applications scientifiques à grande échelle nécessite des mécanismes de tolérance
aux pannes, qui peuvent atténuer l’impact des erreurs et assurer une exécution correcte et ininterrompue
de l’application [19, 20]. Mais du point de vue de la tolérance aux pannes, la difficulté vient du passage
à l’échelle. Des supercalculateurs comme Frontier, Fugaku ou LUMI (respectivement classés 1er, 2e
et 3e du classement TOP500 [104]) embarquent désormais des millions de cœurs (avec un pic à 10,6M
pour Sunway TaihuLight (6e)). Ces grands systèmes informatiques sont fréquemment confrontés à des
pannes, également appelées erreurs fatales (telles que des pannes matérielles). Même si chacun de leurs
cœurs a une très faible probabilité de défaillance, la probabilité de défaillance de l’ensemble du système
est beaucoup plus élevée. Plus précisément, supposons que le temps moyen entre chaque défaillance
(Mean Time Between Failure ou MTBF) de chaque ressource de calcul soit d’environ 10 ans, ce qui
signifie qu’une telle ressource ne devrait connaître une erreur que tous les dix ans en moyenne, et qui
explique pourquoi les ressources de calcul sont individuellement très fiables. Lors de l’exécution d’un
code de simulation sur 100 000 de ces ressources en parallèle, le MTBF est réduit à seulement 50
minutes [55]: en moyenne, un nœud de la plate-forme de calcul subit une panne toutes les 50 minutes.
Avec un million de ces ressources, le MTBF est réduit à cinq minutes, tandis que les codes déployés
sur ces plates-formes à grande échelle durent généralement des heures ou des jours. À mesure que la
demande de puissance de calcul augmente, les pannes ne peuvent plus être ignorées et des mécanismes
de tolérance aux pannes doivent être déployés.

La manière classique de gérer les défaillances dans les systèmes informatiques à grande échelle
consiste en des mécanismes de point de contrôle/retour en arrière. Un point de contrôle de l’application
est pris périodiquement, c’est-à-dire que l’état de l’application (généralement tout le contenu de sa
mémoire) est écrit sur un stockage fiable. Chaque fois que l’une des ressources informatiques rencontre
une panne, l’application s’interrompt et redémarre à partir du dernier point de contrôle valide. Plusieurs
études se sont penchées sur la question cruciale de la période de contrôle optimale, définie comme le
temps entre deux points de contrôle consécutifs. D’une part, si les points de contrôle sont pris trop
souvent, du temps est perdu dans des opérations d’E/S coûteuses. D’un autre côté, si les points de
contrôle sont trop peu fréquents, du temps sera perdu à recalculer de grandes parties de l’application
après chaque panne. Fait intéressant, la fiabilité était déjà une question au début de l’informatique: dans
les années 70, Young a proposé une approximation du premier ordre du temps optimal entre deux points
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de contrôle qui minimise l’espérance de la durée de l’ensemble du calcul [110]. L’approximation de
Young a ensuite été affinée par Daly trente ans plus tard [29]. Young [110] et Daly [29] ont ainsi obtenue
la formule bien connue de Young/Daly PYD =

√
2µfC pour la période de point de contrôle optimale,

où µf est le MTBF de la plate-forme et C est la durée du point de contrôle. En supposant une vitesse
unitaire, le temps PYD écoulé entre deux points de contrôle est également la quantité de travail exécuté
pendant chaque période. La formule Young/Daly s’applique aux applications où un point de contrôle
peut être pris à tout moment pendant le calcul. Les applications divisibles [13, 85] sont un exemple de
telles applications. Aussi, la formule Young/Daly suppose que le temps nécessaire pour prendre un point
de contrôle est constant (ce qui correspond à une taille constante des données à sauvegarder).

Cependant, de nombreuses applications scientifiques présentent un comportement plus compliqué.
Dans le chapitre 2, nous nous concentrons sur les applications itératives que nous définissons comme
des applications composées de nombreuses itérations de calcul, où l’on ne peut prendre un point de
contrôle qu’à la fin d’une itération. En effet, pour les applications itératives, le point de contrôle n’est
efficace (ou même possible) qu’à la fin d’une itération, car le volume de données à copier est consid-
érablement réduit à ce stade. Un large éventail d’applications s’inscrit dans ce cadre. Les solveurs
itératifs pour les systèmes d’algèbre linéaire creux en sont un exemple représentatif [83, 88]. De plus, le
temps de chaque itération dépend de plusieurs paramètres (modèle de parcimonie de certains vecteurs,
conflit de communication, performances du système) et peut varier considérablement d’une itération à
l’autre. Ce phénomène est amplifié dans les méthodes itératives randomisées [46] où des vecteurs aléa-
toires sont générés au fur et à mesure que l’application progresse. Une autre classe d’applications qui
se décompose naturellement en itérations de longueur variable sont les applications Bulk Synchronous
Parallel (BSP) [44, 57] où l’on effectue les points de contrôle à la fin de chaque opération de jointure.
Un exemple typique d’une séquence BSP d’opérations de fork-join est le calcul à n corps [15]. En
raison de la simplicité du modèle de programmation, de nombreuses applications BSP sont déployées à
grande échelle [14].

Les flux de travail scientifiques (ou workflows) représentent une grande partie des applications com-
plexes déployées sur les superordinateurs et couvrent un large éventail de domaines, tels que la prévi-
sion météorologique, la modélisation du climat, l’astronomie et la bioinformatique [7, 103]. Ces flux de
travail permettent aux scientifiques de composer facilement des codes de simulation existants en de nou-
velles applications à exécuter sur des plates-formes informatiques à grande échelle. Ces flux de travail
sont souvent modélisés sous forme de graphes orientés où les sommets représentent les tâches de calcul
et les arêtes représentent leurs dépendances. Ces graphes orientés sont soit acycliques pour les applica-
tions non itératives, soit peuvent contenir des cycles représentant des itérations. Plusieurs systèmes de
gestion ont été proposés pour faire face à la complexité croissante des workflows informatiques [94].

Dans le chapitre 3, nous nous concentrons sur les workflows itératifs dont le graphe orienté est une
chaîne linéaire de tâches parallèles. En d’autres termes, le même ensemble de tâches est exécuté à
plusieurs reprises jusqu’à la fin de l’exécution. Ce cadre applicatif général inclut toutes les méthodes
de sous-espace de Krylov redémarrées [45] où la même séquence de tâches est exécutée jusqu’à conver-
gence. Il aborde également les workflows de quantification de l’incertitude (UQ), qui tentent de combler
un fossé fondamental entre les simulations et les systèmes physiques pratiques qu’elles représentent: les
simulations basées sur la modélisation mathématique sont déterministes par nature, tandis que le com-
portement réel du système présente une variabilité naturelle. Les workflows UQ consistent en gros à
effectuer de nombreuses simulations avec des conditions initiales légèrement différentes afin d’estimer
correctement l’incertitude de la prédiction de la simulation [76, 87]. Le grand nombre de simulations à
effectuer est souvent organisé en phases qui s’apparentent aux itérations d’une application itérative.

Lors de la conception de stratégies de point de contrôle/redémarrage pour les flux de travail basés
sur des tâches, il est naturel de prendre un point de contrôle entre l’achèvement d’une tâche et le début
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de son successeur. De cette façon, le mécanisme de point de contrôle peut être fourni par le système de
gestion de workflow sans avoir à modifier le code de chaque tâche. Cependant, cela limite les pas de
temps auxquels les points de contrôle peuvent être pris et rend plus difficile le problème d’optimisation
de la sélection des meilleurs moments des points de contrôle. De plus, les données à contrôler sont
désormais la sortie des tâches et peuvent avoir des tailles différentes pour différentes tâches du flux de
travail.

Les planificateurs par lots, également appelés systèmes de gestion des ressources et des tâches
(RJMS), sont un élément clé de l’infrastructure de calcul intensif. Les utilisateurs effectuent une réser-
vation pour leur travail parallèle qui inclut des informations telles qu’une limite supérieure sur la durée
attendue (appelée le wall time) et le nombre souhaité de ressources nécessaires à l’exécution. Des heuris-
tiques de planification sophistiquées ont été introduites pour s’adapter aux soumissions de travaux à la
volée ; ces heuristiques vont bien au-delà de la politique naïve First Come First Served (FCFS) et sont
conçues pour que le planificateur de lots alloue ces tâches sur la plate-forme informatique, dans le but
final d’optimiser une métrique ou une combinaison de métriques.

Au cours de la dernière décennie, les ordonnanceurs par lots ont été confrontés à des contraintes
supplémentaires: sur les plates-formes de pointe, un nombre croissant d’utilisateurs subissent le crash
d’un nœud appartenant à leur ensemble de réservation lors de l’exécution de leur travail. En effet, les
plates-formes sont composées de plus en plus de nœuds pour répondre à une augmentation sans fin
des demandes de travail. Ce passage à l’échelle est la principale raison du nombre croissant d’échecs,
comme indiqué ci-dessus. Dans le chapitre 4, nous proposons une nouvelle approche pour planifier la
tâche ayant échoué afin d’améliorer les performances de la plateforme.

Le reste de la thèse est organisé comme suit: dans le chapitre 1, nous passons en revue la littérature
portant sur les thématiques de cette thèse. Dans le chapitre 2, nous étendons les résultats de [105] pour
traiter des chaînes linéaires dont les tâches n’ont pas de temps d’exécution constants mais obéissent à des
distributions de probabilité. Après cela, dans le chapitre 3, nous fournissons une approche générale pour
traiter les erreurs fatales dans les applications itératives. Notre stratégie de point de contrôle optimale
est indépendante de toute propriété spécifique de l’application itérative cible. Au lieu de cela, elle
abstrait l’application itérative en une chaîne de tâches cycliques et fournit le modèle de point de contrôle
périodique optimal basé uniquement sur des informations génériques telles que la durée des tâches et les
coûts des points de contrôle. Enfin, nous étudions un problème plus pratique dans le chapitre 4: si aucun
nœud libre de la plate-forme n’est disponible au moment d’une panne, comment planifier efficacement le
travail en échec qui doit attendre que suffisamment de ressources soient disponibles pour sa réexécution?
Les principales contributions de chaque chapitre sont résumées ci-dessous.

Chapitre 1: Etat de l’art

Il s’agit d’un chapitre préliminaire dans lequel nous introduisons les travaux connexes. Nous intro-
duisons respectivement les points de contrôle, les applications itératives, les méthodes de tolérance
aux pannes pour les applications itératives, les ordonnanceurs par lots et les mécanismes généraux de
tolérance aux pannes.

Chapitre 2: Applications itératives stochastiques [C1, R2]

Comme indiqué ci-dessus, la formule de Young/Daly pour les points de contrôle périodiques est connue
pour être valable pour une application de charge divisible où l’on peut effectuer un point de contrôle
à n’importe quel pas de temps. Dans ce chapitre, nous évaluons la précision de la formule pour des
applications décomposées en itérations de calcul où: (i) la durée d’une itération est stochastique, c’est-
à-dire obéit à une loi de distribution de probabilité D de moyenne µD; et (ii) on ne peut prendre un
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point de contrôle qu’à la fin d’une itération. Nous considérons d’abord des stratégies statiques où les
points de contrôle sont pris après un nombre donné d’itérations k et fournissons une formule close,
asymptotiquement optimale, pour k, valable pour toute distribution D. Nous montrons ensuite que
l’utilisation de la formule de Young/Daly pour calculer k (as k · µD = PYD) est une approximation au
premier ordre de cette formule. Nous considérons également des stratégies dynamiques où l’on décide
de ne prendre un point de contrôle à la fin d’une itération que si la quantité totale de travail depuis
le dernier point de contrôle dépasse un seuil Wth , et sinon de passer à l’itération suivante. De même,
nous fournissons une formule close pour ce seuil et montrons quePYD est une approximation au premier
ordre deWth . Enfin, nous fournissons un ensemble complet de simulations oùD suit soit une distribution
uniforme, gamma ou normale tronquée, ce qui montre la précision globale de la formule Young/Daly,
même lorsque la distributionD a un grand écart type (et quand on ne peut pas utiliser une approximation
du premier ordre). Nous constatons ainsi que la pertinence de la formule dépasse largement son cadre
d’origine.

Chapitre 3: Applications itératives déterministes [J3, R1]

Après avoir étudié les méthodes de tolérance aux pannes pour les applications itératives stochastiques
dans le chapitre 2, dans ce chapitre suivant, nous fournissons une stratégie de point de contrôle optimale
pour protéger les applications itératives des erreurs fatales. Nous considérons un cadre général, où
l’application répète le même modèle d’exécution en exécutant des itérations consécutives, et où chaque
itération est composée de plusieurs tâches. Ces tâches ont des durées d’exécution différentes et des coûts
de point de contrôle différents. Supposons qu’il y a n tâches et que cette tâche ai, où 0 ≤ i < n, a un
temps d’exécution ti et un coût de point de contrôle ci. Une stratégie naïve serait un point de contrôle
après chaque tâche. Une autre stratégie naïve serait un point de contrôle à la fin de chaque itération.
Une stratégie inspirée de la formule Young/Daly fonctionnerait pendant

√
2µcave secondes, où µ est le

MTBF de l’application et cave est le temps de point de contrôle moyen, et prendrait un point de contrôle
à la fin de la tâche en cours (et ainsi de suite). Une autre stratégie, également inspirée de la formule
Young/Daly, sélectionnerait la tâche amin avec le plus petit coût de point de contrôle cmin et ferait un
point de contrôle après chaque pth instance de cette tâche, conduisant à une période de point de contrôle
pT , où T =

∑n−1
i=0 ai est le temps par itération. On choisirait la période pour que pT ≈

√
2µcmin

obéisse à la formule de Young/Daly. Toutes ces stratégies naïves et/ou inspirées par Young/Daly sont
sous-optimales. Notre principale contribution montre que la stratégie de point de contrôle optimale
est globalement périodique propose un algorithme de programmation dynamique qui calcule le modèle
de point de contrôle optimal. Ce modèle prend des points de contrôle après des tâches potentiellement
différentes après des nombres d’itérations potentiellement différents. Nous montrons par des simulations
à partir de scénarios d’application synthétiques et réels que la stratégie optimale surpasse les stratégies
naïve et à la Young/Daly.

Chapitre 4: Vol de nœud pour les travaux ayant échoué

Après une panne de machine, les planificateurs de lots replanifient généralement le travail qui a échoué
avec une priorité élevée. Ceci est acceptable pour le travail ayant échoué, mais nécessite toujours que
ce travail réintègre la file d’attente de soumission et attende que suffisamment de ressources soient
disponibles. Le temps d’attente peut être très long lorsque le travail est volumineux et que la plate-forme
très chargée, comme c’est souvent le cas avec les plates-formes de calcul haute-performance. Nous pro-
posons une autre stratégie : lorsqu’un travail J échoue, si aucun nœud de plate-forme n’est disponible,
nous volons un nœud de calcul attribué à un autre travail J ′, et l’utilisons pour continuer l’exécution
de J malgré son échec. Dans ce chapitre, nous donnons une évaluation détaillée de cette stratégie de
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vol de nœuds en utilisant les traces du super-calculateur Mira du Laboratoire National d’Argonne aux
Etats-Unis. La principale conclusion est que le vol de nœud améliore l’utilisation de la plate-forme et
réduit considérablement le temps de calcul des gros travaux, au prix d’une légère augmentation du temps
de calcul des petits travaux.
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Chapter 1

Related work

We survey the previous work and the related work of this thesis in this section. At first, we overview
checkpointing in Section 1.1. Then we discuss iterative applications in Section 1.2, including stochastic
iterative applications in Section 1.2.1 and deterministic iterative applications in Section 1.2.2. Further-
more, we present fault-tolerance methods for iterative applications in Section 1.3. As for the work
in Chapter 4, we give a few pointers to related work on batch schedulers in Section 1.4. Finally, we end
with fault-tolerance mechanisms in Section 1.5.

1.1 Checkpointing

Checkpoint-restart is one of the most used strategies to deal with fail-stop errors, and several variants of
this policy have been studied, see [55] for an overview. The natural strategy is to checkpoint periodically,
and one must decide how often to checkpoint, i.e., derive the optimal checkpointing period. An optimal
strategy is defined as a strategy that minimizes the expectation of the execution time of the application.
For a divisible-load application, results were first obtained by Young [110] and Daly [29], who showed
how to derive the optimal checkpointing period. Given the checkpointing cost C and platform MTBF
µ, the classical formula due to Young [110] and Daly [29] states that the optimal checkpointing period
is PY D =

√
2µC. This periodic strategy has been extended to deal with a multi-level checkpointing

scheme [12, 31, 72], or by using SSD or NVRAM as secondary storage [20].
Going beyond divisible-load applications, some works target checkpointing strategies for workflows.

Workflows are expressed in terms of directed acyclic graphs (DAGs) where vertices represent the com-
putational tasks and edges represent dependences between tasks. Workflows are similar to iterative ap-
plications where checkpointing is only possible right after the completion of a task. In fact, the simplest
workflows are linear workflows, i.e., applications that can be expressed as a linear chain of (parallel)
tasks. If these tasks are parallel, we have an iterative application whose iterations have deterministic
execution times, namely the durations of the tasks. Checkpointing is only possible right after the com-
pletion of a task, and the problem is to determine which tasks should be checkpointed. The problem of
finding the optimal checkpoint strategy for a linear chain of tasks (determining which tasks to check-
point), in order to minimize the expected execution time, has been solved by Toueg and Babaoglu [105]
using a dynamic programming algorithm. We stress that this latter approach is not suited to iterative
applications. The main limitation of using results for computational workflows is the complexity. Solu-
tions such as that of Toueg and Babaoglu [105] use the whole description of the graph. Chapter 3 shows
that we do not need that much information by proving that we can focus on periodic solutions (as is the
case for divisible load applications) and that the size of the period can be bounded. Indeed, consider an
iterative application with a large number of iterations, say Niter = 10, 000 iterations, and assume that

1
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n = 10 (10 tasks per iteration). One solution to finding an optimal checkpointing strategy could be: (i)
unroll the loop and build a linear chain of n ×Niter = 100, 000 tasks; (ii) apply the algorithm of [105]
to this huge chain and return the optimal solution. However, the cost of this algorithm is quadratic in
the value of Niter . Worse, if we re-execute the same application for Niter = 20, 000 iterations, we have
to recompute the optimal solution from scratch. On the contrary, our approach in Chapter 3 provides a
generic and compact solution that does not depend upon the value of Niter .

For general workflows, finding an optimal solution is a #P-complete problem [50]. Recall that #P
is the class of counting problems that correspond to NP decision problems [106], and that #P-complete
problems are at least as hard as NP-complete problems. Several heuristics to decide which tasks to
checkpoint are proposed and evaluated in [51]. As pointed out above, for general workflows, deciding
which tasks to checkpoint has been shown #P-complete [50], but the results of [8] show that if the graph
is scheduled in a sequential manner (linearized), then one can derive an optimal checkpointing strategy.
In Chapter 3, we focus on pipelined linear workflows, i.e., on applications expressed as a linear chain of
tasks that repeats iteratively.

1.2 Iterative applications

1.2.1 Stochastic iterative applications

Iterative methods are popular for solving large sparse linear systems, which have a wide range of ap-
plications in several scientific and industrial problems. Iterative methods fall into two main categories:
stationary iterative methods and non-stationary iterative methods. Stationary iterative methods include
many classic iterative methods, like the Jacobi method [88], the Gauss-Seidel method [88] and the Suc-
cessive Overrelaxation (SOR) method [41, 108]. In recent years, randomized iterative methods have
been much more popular. For example, the randomized Kaczmraz method [99] and the greedy random-
ized Kaczmarz method [10] for solving the consistent linear system, the randomized coordinate descent
method [68, 71] and the greedy randomized coordinate descent method [9] for solving the least squares
problems. For these iterative methods, it is economical to set checkpoints at the end of the iterations
since the volume of data that needs to be stored is dramatically reduced at that point. Furthermore, in
all these methods, the time spent per iteration is not constant: for classic iterative methods, the amount
of flops is usually the same per iteration, but the communication volume and the amount of contention
vary from one iteration to another. The variation becomes more important for randomized applications,
where random vectors are generated as the application progresses and the amount of flops per iteration
changes according to the sparsity pattern [46].

Another class of iterative applications arises from the Bulk Synchronous Parallel (BSP) model,
which was originally suggested as a possible ‘bridging’ model to serve as a standard interface between
the architecture levels and language in parallel computations [44, 57]. The representative n-body com-
putations [15] have a number of important applications in fields such as molecular dynamics, fluid
dynamics, computer graphics, and even astrophysics [52]. A BSP computation consists of a sequence
of parallel super-steps composed of fork-join operations with independent threads executed in parallel.
It is economical to set up checkpoints at the end of the super-steps, which naturally fit the definition of
iterations. BSP applications that are deployed at scale [14] are composed of a large number of super-
steps whose lengths are data-dependent and can adequately be modeled as drawn from some probability
distribution.
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1.2.2 Deterministic iterative applications

As mentioned above, the other class for solving large sparse linear systems is non-stationary iter-
ative methods, also known as Krylov subspace methods, including Full Orthogonalization Method
(FOM) [88], Conjugate Gradient (CG) method [56, 66], Conjugate Residual (CR) method [40], Gen-
eralized Minimal Residual (GMRES) method [89], Minimum residual (MINRES) method [81], Bi-
conjugate Gradient (BiCG) method [66], Bi-conjugate Gradient Stabilized (BiCGSTAB) method [49],
Conjugate Gradient Squared (CGS) method [98], Quasi-minimal Residual (QMR) method [42], Gen-
eralized Conjugate Residual (GCR) method [37], together with their algorithm-based fault-tolerance
(ABFT) variants [4, 67, 111].

The common way to accelerate the convergence is to adopt a restart strategy [88, 95, 109], that is,
to fix a small value n (usually much less than the dimension of the sparse matrix). If the n-th iteration
does not lead to convergence, then the approximate solution of the last iteration is used as the initial
approximate solution of a new iteration, and the Krylov subspace method is restarted. The process is
repeated until a satisfactory approximate solution is found. Krylov subspace methods fit our model
perfectly in Chapter 3: the outer loop after each restart corresponds to a sequence of iterations, and the
inner loop as increasing Krylov subspace within each outer loop corresponds to a sequence of tasks.
Since the restarted Krylov subspace method fixes the subspace dimension, each iteration contains the
same sequence of tasks. In the Krylov subspace method, it is assumed that checkpoints can only be
inserted after each task. The goal of an optimal checkpoint strategy is to find out which tasks should
be checkpointed to minimize the expected execution time. See Algorithm 4 in Section 3.4.1 for an
illustration of GCR(n) method, with an inner loop of n tasks. We report experiments for the GCR(n)
method in Section 3.4.4.

The class of iterative applications goes well beyond sparse linear solvers. Uncertainty Quantification
(UQ) workflows explore a parameter space in an iterative fashion [76, 87]. This class also encompasses
many image and video processing software that operate a chain of computational kernels (each be-
ing a task) on a sequence of data sets (each corresponding to an iteration). Examples include image
analysis [93], video processing [47], motion detection [64], signal processing [27, 54], databases [24],
molecular biology [86], medical imaging [48], and various scientific data analyses, including particle
physics [30], earthquake [63], weather and environmental data analyses [86].

1.3 Fault-tolerance methods for iterative applications

The literature devoted to the study of fault-tolerance methods for iterative linear solvers can be divided
into two categories, depending upon whether the focus is on soft errors or on fail-stop errors.

There are some works dealing with soft errors. Soft errors are caused by minimum voltage, radiation
or thermal cycling, etc., which may not be immediately detected. The execution is not interrupted, but the
output is erroneous. Chen presented online-ABFT in [26], a technique that can detect soft errors in the
specific Krylov subspace iterative methods by leveraging the orthogonality relationship of two vectors
in the middle of the program execution. For general iterative methods, Tao et al. [102] presented a new
online-ABFT approach to detect and recover soft errors by combining a novel checksum-based encoding
scheme with a checkpoint/rollback scheme. According to the specific properties of GMRES algorithm,
Bridges et al. [17] and Elliott et al. [38] proposed the FT-GMRES algorithm using selective reliability.
Similarly, Sao and Vuduc [90] proposed the self-stabilizing CG method in view of the special properties
of CG algorithm: they check that orthogonality is preserved by recomputing scalar products that should
be zero and restarting whenever a threshold is exceeded. Agullo et al. [3] studied the sensitivity and
robust numerical detection for CG method. Ozturk et al. [77] proposed a decreasing energy norm based
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on the mathematical properties to detect soft errors leading to silent data corruption (SDC) for GMRES,
CG and CR methods. Jaulmes et al. [61, 62] exploited asynchrony from exact forward recovery for
Detected and Uncorrected Errors (DUE) in iterative solvers. In addition, Casas et al. [22] presented an
approach to improve the resilience of scientific applications with soft errors and applied it to Algebraic
Multi-Grid (AMG) algorithm.

There are some works dealing with fail-stop errors. Fail-stop errors are caused by a power loss or ox-
ide wearout, etc., which interrupt the execution immediately, and all contents in the memory are lost. To
reduce the fault tolerance overhead incurred by checkpointing, Chen [25] proposed a recovery method
for iterative methods without checkpointing based on the specific properties of iterative methods. Tao
et al. [101] improved the checkpointing performance for iterative methods under a novel lossy check-
pointing scheme. Langou et al. [67] presented a lossy approach which is a checkpoint-free fault tolerant
scheme for parallel iterative methods. The iterative method is restarted with a new vector which is a new
approximate solution recovered from a fail-stop error by using the data of the non-failed processors.
Agullo et al. [4, 111] extended this approach by computing a well-suited initial guess which is defined
by interpolating the lost entries of the current iterate vector available on surviving nodes, in order to
restart the Krylov method. Pachajoa et al. [78] compared the exact state reconstruction (ESR) approach
based on the method proposed by Chen [25] with the heuristic linear interpolation (LI) approach by
Langou et al. [67] and Agullo et al. [4, 111]. They later extended the ESR approach for protecting the
preconditioned CG method against multiple and simultaneous node failures [79, 80]. Agullo et al. stud-
ied the resilience in numerical algorithms [2], a parallel sparse hybrid (direct/iterative) linear solver [6]
and eigensolvers [5]. Benacchio et al. [11] investigated the fault tolerance iterative solvers and their
application in numerical weather and climate prediction. Altogether, fault-tolerance methods proposed
to mitigate the impact of fail-stop errors in iterative applications are application-specific and can only be
applied to a particular class of iterative algorithms. Moreover, their performance highly depends upon
the specific properties of the algorithms. For instance, it considerably varies from one Krylov method to
another.

Although there are some fault-tolerance methods proposed for iterative applications, most of them
are based on the algorithmic level, and the performance depends highly on the specific properties of the
algorithms. Our work in Chapter 2 firstly shows Young/Daly formula can be safely applied to stochastic
iteration applications and Chapter 3 is the first approach (to the best of our knowledge) that (i) is not
based on the specific properties of the iterative algorithms; (ii) can be applied to any Krylov subspace
methods; (iii) provides a polynomial-time algorithm to compute the optimal checkpoint strategy. As a
result, we propose a fault-tolerance method for iterative applications not based on the properties of the
Krylov subspace methods but abstracts it into an iterative application with cyclic tasks.

1.4 Job management on HPC platforms

Resource and Job Management Systems (RJMS), a.k.a. Batch schedulers, are intermediary software
layers generally managed by a system administrator (examples include Slurm [97], Moab/Maui [60],
OAR [18] etc.). This software is in charge of allocating the different jobs through a scheduling heuristic
while taking into account various constraints. The most important constraints that a batch scheduler has
to account for are the estimation by users of the resources needed for a job, both in a spatial dimension
(number of processing units) and in a temporal dimension (estimated processing time).

Natural developments in batch scheduling have included more dimensions to the scheduling heuris-
tic, such as heterogeneity of computing resources, fairness to deal with the disparity of job requirements
and usage, etc. The scheduling heuristics are typically implemented by the introduction of specific
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queues, where jobs with similar characteristics (size, reservation length, priority, . . . ) are grouped to-
gether into the same queue [100]. Each queue is configured with a specific scheduling heuristic.

There are several main scheduling heuristics used for batch scheduling. The default for most sched-
ulers is the First-Come-First-Served (FCFS) policy [60, 96]. This strategy is often tweaked by including
the time of arrival (i.e. “first-come" condition) into a more general priority-based, greedy heuristic that
includes a wide range of parameters [96]. Other common strategies exist, such as Smallest Job First [53],
known to be efficient with respect to the response time objective. The advantage of these greedy heuris-
tics is their low scheduling cost. Their drawback is that it is a less efficient solution with a lot of idle
time for the platform. To mitigate this limitation, these heuristics are coupled with a backfilling strategy.
Backfilling consists of scheduling small jobs in the gaps created by the scheduling solutions. The two
main flavors of backfilling are conservative (no job in the queue can be delayed by a backfilled job) and
EASY (the first job in the queue is never delayed by backfilled jobs) [73]. Chapter 4 focuses on using the
conservative approach, but we expect that using EASY or other approaches would lead to very similar
results and conclusions.

1.5 Fault-tolerance from a system perspective

To mitigate the impact of node crashes, several techniques are considered, such as replication and check-
pointing. In Chapter 4, we consider the de-facto standard approach for HPC, periodic checkpoint-
ing [55]. With this technique, users are invited to checkpoint their jobs periodically, with the idea that if
a node crashes during execution, then the job will be able to resume from the last checkpoint instead of
resuming from scratch. A key advantage of checkpointing is to decrease the amount of re-executed work
after a crash. One must decide how often to checkpoint, i.e., derive the optimal checkpointing period.
An optimal strategy is defined as a strategy that minimizes the expectation of the execution time of the
application. For a preemptible application, i.e., an application that can be checkpointed at any time-
step, the classical formula for computing the optimal checkpointing period is given by Young [110] and
Daly [29] as mentioned in Section 1.1.

However, there are several complications related to deciding when and on which resources the job
will be allowed to resume execution after experiencing the loss of one node. Several batch sched-
ulers [91] will reschedule a failed job with high priority, thereby enabling an immediate re-execution
if there is a free node available. The high priority allows the failed job to avoid a long wait in the job
submission queue. Without priority, the delay between the interruption of a job and the beginning of
its re-execution is called the resubmission time. Its value typically ranges from several hours to several
days if the platform is over-subscribed (up to 10 days for large jobs on the K-computer [107]).

Hori et al. [58] discussed how one can use spare nodes to restart an application that has experienced
a node failure. This technique could be applied to our case. In [58], spare nodes are reserved and used
only in the case of a failure, which enables the failed job to restart as fast as possible. Prabhakaran
et al. [84] discussed the limitations of the reservation of spare nodes, which creates a non-negligible
overhead. Instead, they study the case where jobs are moldable and/or malleable; when no idle node is
available for a failed job to restart, they propose several strategies such as executing the failed job on
fewer nodes or taking a node from a malleable job. In contrast, Chapter 4 applies to rigid nodes (neither
moldable nor malleable) and never changes the size of the jobs.

The optimization of fault-tolerance techniques often considers a short downtime (also called reju-
venation time) for the failed resources compared to the platform MTBF. This makes sense when one
simply needs to reboot the machine that failed. But in the case of a defective component to be replaced,
the downtime can last up to one day, because maintenance is operated at a fixed time every day, e.g.
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every morning for the K-computer [107]. Our experiments in Chapter 4 aimed at covering the whole
range of possible values for the downtime.



Chapter 2

Stochastic iterative applications

2.1 Introduction

In this chapter, we deal with the stochastic iterative applications. As already mentioned in Section 1.2.1,
many iterative or BSP applications exhibit iterations of variable length, typically because each iteration
is data-dependent. When considering an iterative application, we assume that the length of each iteration
is not known a priori, but instead is drawn randomly from some probability distribution D. Again, with
unit speed, the length of the iteration is the amount of work within the iteration. The distribution D is
usually acquired by sampling a few executions. In this chapter, we use several usual distributions, such
as Uniform, Gamma or Normal.

The main objective of this chapter is to explore whether the Young/Daly formula applies beyond
divisible-load applications. To what extent can we use the formula for iterative applications whose
length obey a probability distribution D? We first consider static strategies where checkpoints are taken
after a given number of iterations k, and we show that using the Young/Daly formula to compute k (as
k · µD = PYD) is asymptotically optimal among such strategies, and remains accurate even when the
distribution D had a large standard deviation. Then we consider dynamic strategies where one decides
to checkpoint at the end of an iteration only if the total amount of work since the last checkpoint exceeds
a threshold Wth , and otherwise proceed to the next iteration; we show that an approximation of the
optimal value of Wth is PYD . Finally, we provide an extensive set of simulations where D is either
Uniform, Gamma or Normal, which shows the global accuracy of the Young/Daly formula and establish
that its relevance goes well beyond its original framework.

The main contributions of this chapter are the following:
• For static solutions, we derive a closed-form formula to compute the optimal checkpointing pe-

riod, and we show that its first-order approximation corresponds to the Young/Daly formula. The
derivation is quite technical, and constitutes a major extension of the deterministic case.
• For dynamic solutions, we derive a closed-form formula to compute the threshold at which one

decides either to checkpoint or to execute more work, and we show that its first-order approx-
imation also corresponds to the Young/Daly formula. Again, the derivation is complicated and
required to use a simplified objective, using the ratio of expectations of actual time over useful
time, instead of the expectation of these ratios (see Section 2.4 for details).
• We conduct an extensive set of experiments with classic probability distributions (Uniform,

Gamma, Normal) and we conclude that the Young/Daly formula remains accurate and useful
in a stochastic setting.

The rest of the chapter is organized as follows. We formally state the model for iterative applications
in Section 2.2. Section 2.3 is the core of the chapter to state the static strategy. We state the dynamic

7
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strategy in Section 2.4. Section 2.5 is devoted to simulations. Finally, we conclude and give hints for
future work in Section 2.6.

2.2 Framework

We first introduce all model parameters in Section 2.2.1. Then we formally state the optimization prob-
lem, as well as the static and dynamic scheduling strategies in Section 2.2.2.

2.2.1 Model

Platform We consider a parallel platform subject to failures. We assume that the failure inter-arrival
times follow an Exponential distribution EXP(λ) of parameter λ, whose PDF (Probability Density Func-
tion) is f(x) = λe−λx for x ≥ 0. The MTBF is µf = 1

λ . When hit by a failure, the platform is
unavailable during a downtime D.

Application We consider an iterative application composed of n consecutive iterations. The execu-
tion time of each iteration is not known before execution but follows a probability distribution D. The
execution times of the iterations are thus modeled with random variables X1, . . . , Xn, where the Xi

are IID (independent and identically distributed) variables following D. Finally, we assume that the
iterations are deterministic: the second execution for a given iteration has the same duration as the first
one, that is to say, two executions of the same iteration take the same time. After each iteration, one can
checkpoint the state of the application at a cost of C units of time. In case of a failure, it takes R units
of time (after the downtime D) to recover from the last checkpoint.

Expected execution time of a given iteration Consider an iteration of length W ; we normal-
ize platform speed so that the application has unit speed; then W also represents the amount of work
performed within the iteration. We recall the following result [55, Proposition 1.1]: the expected exe-
cution time to perform a work of size W followed by a checkpoint of size C in the presence of failures
(Exponential distribution of parameter λ), with a restart cost R and a downtime D is:

Tλ(W,C,D,R) =
( 1
λ

+D

)
eλR

(
eλ(W+C) − 1

)
. (2.1)

In Equation 2.1, one assumes that failures can strike during checkpoint and recovery, but not during
downtime.

2.2.2 Objective function

Given an iterative application with n iterations, a solution is defined as a checkpointing strategy of the
form S = (δ1, . . . , δn = 1) where δi = 1 if and only if we perform a checkpoint after the i-th iteration of
lengthXi. We always checkpoint at the end of the last iteration to save the output data of the application.
A solution with m ≤ n checkpoints writes S = (δ1, . . . , δn), with 1 ≤ i1 < i2 < · · · < im = n and
δj = 1 ⇐⇒ j ∈ {i1, . . . , im}. We let i0 = 0 and let Wj =

∑ij
l=ij−1+1Xl denote the work between

the j-th checkpoint and the previous one (or the beginning of the execution if j = 1).
We are interested in minimizing the total execution time (makespan) of the application. This

makespan is given by random variable:

MS(S) =
m∑
j=1

Tλ(Wj , C,D,R).
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For given values of iteration lengths (theXi variables), the value of the makespanMS(S) is the expected
execution time over all failure scenarios, weighted with their probabilities to happen.

In this work, we present and analyze two different strategies to build a solution. In the static strategy,
we decide before the execution which iterations to checkpoint. In other words, a static solution does not
depend upon the value of the Xi variables, it is determined without knowing the iteration lengths. In
that case, the optimization objective is easy to express: it is the expectation E[MS(S)] of the variable
MS(S) over the range of the Xi variables which are IID and follow D. Formally:

E[MS(S)] = E

 m∑
j=1

Tλ(Wj , C,D,R)

 . (2.2)

In Section 2.3, we show how to design a solution that is asymptotically optimal (where the number of
iterations n tends to infinity) among all static solutions.

Contrarily to static strategies, dynamic strategies decide which iterations to checkpoint on the fly
during execution: at the end of each iteration, we add a checkpoint only if the total work since the
last checkpoint (or the beginning of the execution if there was no previous checkpoint) exceeds a given
threshold. Hence a dynamic solution may well insert different checkpoints for different values of the
iteration lengths. Providing a closed-form formula of the expected makespan of a dynamic solution is
complicated, because the values of the δi are now conditional to the values of the Xi. We circumvent
this difficulty by minimizing the slowdown of a solution, where the slowdown is defined as the ratio of
the actual execution time over the base time without any checkpoint nor failure. We refer to Section 2.4
for further details.

2.3 Static strategies

This section focuses on static strategies, where checkpoint decisions are made before the execution,
based upon application and platform parameters, and do not depend on the actual lengths of the itera-
tions. As stated in Equation 2.2, the objective is to minimize the expected makespan E[MS(S)].

Given an application with n iterations, static solutions decide which iterations to checkpoint. One
can choose a solution to be periodic with period k, i.e., checkpoints are taken every k iterations, namely
at the end of iterations number k, 2k,. . . until the last iteration (which is always checkpointed by hy-
pothesis, even if its number n is not a multiple of k). A priori, an optimal solution may well not be
periodic. However, we prove in Section 2.3.1 that the periodic solution with period kstatic given below is
asymptotically optimal when n is large, and we show in Section 2.3.3 that the first-order approximation
of the period length corresponds to the Young/Daly formula.

2.3.1 Asymptotic optimality

We first characterize the expected makespan of a static solution (possibly non-periodic):

Proposition 2.1. Given a solution S = (δ1, . . . , δn) and its associated m checkpoint indices i1 < i2 <
· · · < im = n, let kj = ij − ij−1 denote the number of iterations between the j − 1-th checkpoint (or
the beginning of the execution if j = 1) and the j-th checkpoint. Define

Cind(k) = eλCE[eλX ]k − 1
k

, (2.3)
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then the expected makespan is

E[MS(S)] = eλR
( 1
λ

+D

) m∑
j=1

kj · Cind(kj). (2.4)

Proof. Recall that Wj =
∑ij
l=ij−1+1Xl in Equation 2.1. We have

E [Tλ(Wj , C,D,R)]

=
∫
DWj

eλR
( 1
λ

+D

)(
eλ(w+C) − 1

)
fWj (w)dw

= eλR
( 1
λ

+D

)(∫
DWj

eλ(w+C)fWj (w)dw − 1
)

= eλR
( 1
λ

+D

)(
eλCE[eλWj ]− 1

)
(2.5)

= eλR
( 1
λ

+D

)eλC ij∏
i=ij−1+1

E[eλXi ]− 1

 (2.6)

= eλR
( 1
λ

+D

)(
eλCE[eλX ]ij−ij−1 − 1

)
. (2.7)

Equation 2.6 holds because the random variables Xi are independent, and Equation 2.7 holds because
they are identically distributed. Using the number of iterations kj = ij−ij−1 included inWj , we rewrite
the expected cost of S as:

E[MS(S)] = eλR
( 1
λ

+D

) m∑
j=1

(
eλCE[eλX ]kj − 1

)
.

Note that E[eλX ] is easy to compute for well-known distributions, and we give examples below.
Equation 2.4 provides a closed-form formula to compute the expected makespan of a static solution.
Recall that the principal Lambert functionW0 is defined for x ≥ −1

e byW0(x) = y if yey = x. The
asymptotically optimal solution is given by the following theorem;

Theorem 2.1. The periodic solution checkpointing every kstatic iterations is asymptotically optimal,
where

xstatic = W0(−e−λC−1) + 1
log (E[eλX ]) (2.8)

and kstatic is either max(1, bxstaticc) or dxstatice, whichever achieves the smaller value of Cind(k) (com-
puted by Equation 2.3).

Proof. We first show that the function Cind(x) reaches its minimum for x = xstatic:

Lemma 2.1. The function x 7→ Cind(x) is decreasing on [0, xstatic] and increasing on [xstatic,∞) where
xstatic is defined by Equation 2.8.

Proof. We differentiate and study the variations of C ′ind. We get

C ′ind(x) =
xeλC log

(
E[eλX ]

)
E[eλX ]x −

(
eλCE[eλX ]x − 1

)
x2 .
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Letting y = x log
(
E[eλX ]

)
− 1, we have ey = E[eλX ]xe−1 and we obtain

C ′ind(x) = eλCyE[eλX ]x + 1
x2

= eλC+1yey + 1
x2 .

We derive that C ′ind(x) ≤ 0 ⇔ yey ≤ −e−λC−1. The function yey is an increasing function of y (and
hence of x), and the equality is reached for y = W0(−e−λC−1) where W0 is the principal Lambert
function. Finally, when y =W0(−e−λC−1) , we have x = xstatic.

Therefore, the function C ′ind(x) has a unique zero xstatic, is negative on [0, xstatic] and is positive
on [xstatic,∞). This shows that the function Cind(k) for integer values of k reaches its minimum ei-
ther for max(1, bxstaticc) or dxstatice, and we retrieve the definition of kstatic. This concludes the proof
of Proposition 2.1.

We consider Equation 2.3 again and re-write it as

E[MS(S)] = eλR
( 1
λ

+D

) m∑
j=1

kj · Cind(k)

= eλR
( 1
λ

+D

) ∞∑
k=1

nk · k · Cind(k), (2.9)

where nk is the number of inter-checkpoint intervals with k iterations. We let nk = 0 if there is no
interval with k iterations, hence the infinite sum is well-defined.

We now introduce the periodic solution Sp that checkpoints every kstatic iterations until the end of
the execution, as long as there are at least kstatic iterations left, and then checkpoints every remaining
iterations. Formally, with an Euclidean division, letting ndiv = bn/kstaticc and nmod = n mod kstatic, we
have n = ndivkstatic + nmod and 0 ≤ nmod < kstatic. Hence the solution Sp has ndiv intervals of kstatic
iterations, and the few remaining nmod iterations, if any, are checkpointed individually. The expected
makespan of Sp is

E[MS(Sp)] = eλR
( 1
λ

+D

)
(ndivkstaticCind(kstatic) + nmodCind(nmod))

≤ eλR
( 1
λ

+D

)
(nCind(kstatic) + (kstatic − 1)Cind(nmod)) .

From Equation 2.9, and because Cind(kstatic) is minimum over all possible values of k, we get

E[MS(Sopt)] ≥ eλR
( 1
λ

+D

)
nCind(kstatic).

Hence we can bound the ratio as follows:
E[MS(Sp)]
E[MS(Sopt)]

≤ nCind(kstatic) + (kstatic − 1)Cind(nmod)
nCind(kstatic)

= 1 + kstatic − 1
n

Cind(nmod)
Cind(kstatic)

= 1 +O

( 1
n

)
.

This shows the asymptotic optimality of solution Sp and concludes the proof of Theorem 2.1.
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2.3.2 Instantiation for some distribution laws

We recall the definition of some well-known distributions laws that we use for D, and show how to
compute xstatic for each of them.

Uniform law Let X (the random variable for an iteration length) obey an Uniform distribution law
UNIFORM(a, b) on [a, b], where 0 < a < b. The PDF (Probability Density Function) is f(x) = 1

b−a for

x ∈ [a, b]. We have µD = a+b
2 and E[eλX ] = eλb−eλa

λ(b−a) , hence xstatic = W0(−e−λC−1)+1

log
(
eλb−eλa
λ(b−a)

) .

Gamma law Let X obey a Gamma law GAMMA(α, β), where α, β > 0. The PDF is f(x) =
βαxα−1e−βx

Γ(α) for x ≥ 0. We have µD = α
β and E[eλX ] =

(
β

β−λ

)α
, hence xstatic = W0(−e−λC−1)+1

α log
(

β
β−λ

) . Note

that a Gamma law GAMMA(1, β) is an Exponential law of parameter β.

Normal law Let X obey a Normal law NORMAL(µ, σ2), where µ, σ > 0. The PDF is f(x) =
1

σ
√

2πe
− 1

2 (x−µσ )2
. We have µD = µ and E[eλX ] = eλµ+λ2σ2

2 , hence xstatic = W0(−e−λC−1)+1
λµ+λ2σ2

2
.

Simulations In the experiments in Section 2.5, we randomly sampleD to compute the length of each
iteration. For Normal distributions NORMAL(µ, σ2), we take µ � 0 and sample the distribution until
we get a positive value.

2.3.3 First-order approximation

In this section, we show that the first-order approximation (i.e., when the failure rate is very low in
front of the distribution parameters) of kstatic leads to the Young/Daly formula. This result holds for all
distributions with finite expectation E[eλX ], hence for all classic distributions. More precisely, we have:

Proposition 2.2. The first-order approximation kFO of kstatic obeys the equation

kFO · µD =

√
2C
λ
.

Proposition 2.2 shows that (the first order approximation of) the average period length of the optimal
periodic solution, namely kFO iterations of expected length µD, is equal to the Young/Daly period.
Note that this result is not surprising but reassuring. Essentially it says that when the inter-arrival time
between failure is large in front of the distribution parameters (mean, variance), this distribution can be
approximated by a deterministic distribution of size µD to compute the optimal interval size.

Proof. We use Taylor expansions to solve the equation giving the zero of the function C ′ind(k), namely

eλC
(
k log

(
E[eλX ]

)
− 1

)
ek log(E[eλX ]) = −1. (2.10)

We successively derive that

E[eλX ] = 1 + E [X]λ+ 1
2E
[
X2
]
λ2 + o

(
λ2
)
, (2.11)
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logE
[
eλX

]
= λE [X] + λ2

2 E
[
X2
]
−

(
λE [X] + λ2

2 E
[
X2])2

2 + o
(
λ2
)

= E [X]λ+ 1
2
(
E
[
X2
]
− E[X]2

)
λ2 + o

(
λ2
)
, (2.12)

ek logE[eλX ] =
(
E[eλX ]

)k
=
(

1 + λE [X] + λ2

2 E
[
X2
])k

+ o
(
λ2
)

= 1 + kE [X]λ+ k

2
(
E
[
X2
]

+ (k − 1)E[X]2
)
λ2 + o

(
λ2
)
. (2.13)

By plugging Equations 2.12 and 2.13 in Equation 2.10, we have(
1+Cλ+ C2

2 λ
2
)(

kE [X]λ+ kE[X2]
2 λ2− kE[X]2

2 λ2−1
)(

1+kE [X]λ+ kE[X2]
2 λ2+ k(k−1)E[X]2

2 λ2
)

+o
(
λ2)=−1.

After simplification, we obtain
k2

2 E[X]2λ2 − Cλ = o (λ) ,

hence

kFOE [X] =

√
2C
λ
,

which corresponds to the Young/Daly formula.

Simulations In the experiments in Section 2.5, we use

kFO = max

1, round

 1
µD

√
2C
λ

 ,
where round(x) rounds x to the closest integer.

2.4 Dynamic strategies

In Section 2.3, we have studied static solutions where checkpoint locations are decided before the execu-
tion. These static decisions are made based upon the distribution D and the fault rate, but do not depend
on the actual length of the iterations in a specific instance of the problem. However, when executing the
application, we know on the fly whether some iteration has been much shorter, or much longer, than the
average iteration length, and we could take this information into account to decide whether to checkpoint
or not. In other words, we take dynamic decisions, at the end of each iteration, and these decisions are
based upon the actual work executed since the last checkpoint.

2.4.1 Asymptotic optimality

The dynamic strategy discussed in this section can be stated as follows:

• We fix a threshold Wth for the amount of work since the last checkpoint.
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• When iteration Xi finishes, if the amount of work since the last checkpoint is greater than Wth ,
then δi = 1 (we checkpoint) otherwise δi = 0 (we do not checkpoint).

The objective is to determine the value of Wth that minimizes the expected execution time of this
strategy. However, the expected execution time is much harder to write than for static strategies since
the δi are now conditional to the values of the Xi. Instead, we make dynamic decisions at the end of
each iteration based upon the overhead of the decision (to checkpoint or not). For applications with a
large number n of iterations, we minimize the overhead at each step by progressing this way, and always
checkpoint the last iteration. This enforces the asymptotic optimality of the strategy when n tends to
infinity.

The slowdown H is defined as the ratio

H = actual execution time
useful execution time

,

so that the slowdown is equal to 1 if there is no cost for fault-tolerance (checkpoints, and re-execution
after failures). When an iteration is completed, we compute two values:

• The expected slowdown Hckpt if a checkpoint is taken at the end of this iteration;

• The expected slowdown Hno if no checkpoint is taken at the end of this iteration.

The rationale is the following: If Hckpt < Hno, it is better to checkpoint now than waiting for the end of
the next iteration, and by induction, than waiting for the end of two or more following iterations. On the
contrary, if Hno < Hckpt, it is better not to checkpoint now, in which case we recompute the decision at
the end of the next iteration.

We now show how to compute Hckpt and Hno . We assume that we just finished an iteration, and
that the total amount of work since the last checkpoint (including the last iteration) is wdyn, and write
Hckpt(wdyn) and Hno(wdyn) for the two slowdowns:

Computing Hckpt Recall that Equation 2.1 gives Tλ(W,C,D,R), the expected execution time to
perform a work of size W followed by a checkpoint of size C, with downtime D and recovery R.
The expected time to compute wdyn was T (wdyn, 0, D,R), and the expected time to checkpoint now is
T (0, C,D,R + wdyn): this is because if a failure strikes during the checkpoint, we have to reexecute
wdyn. Finally, the useful execution time is wdyn, hence

Hckpt(wdyn) = T (wdyn, 0, D,R) + T (0, C,D,R+ wdyn)
wdyn

= eλR
( 1
λ

+D

) (eλwdyn − 1) + eλwdyn
(
eλC − 1

)
wdyn

= eλR
( 1
λ

+D

)
eλ(wdyn+C) − 1

wdyn
. (2.14)

Computing Hno If we do not checkpoint now but only at the end of the next iteration of length X =
w (drawn from distribution D), the actual execution time will be T (wdyn, 0, D,R) + T (w,C,D,R +
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wdyn) and the useful time will be wdyn +w. Hence we need to take the expectation of the ratio and obtain

Hno(wdyn) = E
(
T (wdyn, 0, D,R) + T (X,C,D,R+ wdyn)

wdyn +X

)

=
∫
D

T (wdyn, 0, D,R) + T (w,C,D,R+ wdyn)
wdyn + w

f(w)dw,

where f(x) is the PDF of D and D is its domain. Computing the expectation of this ratio is too difficult,
and we approximate it by taking the ratio of the expectations (actual time over useful time), so we
redefine Hno by

Hno(wdyn) = E
[
T (wdyn, 0, D,R) + T (X,C,D,R+ wdyn)

]
E
[
wdyn +X

]
= T (wdyn, 0, D,R) + E

[
T (X,C,D,R+ wdyn)

]
wdyn + E[X]

= eλR
( 1
λ

+D

) (eλwdyn − 1) + eλwdyn
(
eλCE[eλX ]− 1

)
wdyn + E[X]

= eλR
( 1
λ

+D

)
eλ(wdyn+C)E[eλX ]− 1

wdyn + E[X] . (2.15)

The last line of Equation 2.15 is obtained using Equation 2.5.

Computing Wth By defintion, Wth is the threshold value where

Hckpt(Wth) = Hno(Wth).

Using Equations 2.14 and 2.15, we obtain

Wth

(
eλ(Wth+C)E[eλX ]− 1

)
= (Wth + E[X])

(
eλ(Wth+C) − 1

)
. (2.16)

After simplification, we have((
E[eλX ]− 1

)
Wth − E[X]

)
eλ(Wth+C) = −E[X],

by multipling λ
E[eλX ]−1e

−λ
(
C+ E[X]

E[eλX ]−1

)
on both sides of the equation, we have

tet = − λE[X]
E[eλX ]− 1e

−λ
(
C+ E[X]

E[eλX ]−1

)
,

where t = λWth − λE[X]
E[eλX ]−1 . Finally, we derive the threshold value:

Wth = 1
λ
W0

(
− λE[X]
E[eλX ]− 1e

−λ
(
C+ E[X]

E[eλX ]−1

))
+ E[X]

E[eλX ]− 1 .
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2.4.2 First-order approximation

In this section, we show that the first-order approximation ofWth leads to the Young/Daly formula. This
result holds for all distributions with finite expectation E[eλX ], hence for all classic distributions. More
precisely, we have:

Proposition 2.3. The first-order approximation WFO of Wth obeys the equation

WFO =

√
2C
λ
. (2.17)

Equation 2.17 shows that the first order approximation of the threshold value Wth , namely WFO, is
equal to the Young/Daly period.

Proof. We use Taylor expansions to solve Equation 2.16. After simplification, we have

Wthe
λ(Wth+C)

(
E
[
eλX

]
− 1

)
= E [X]

(
eλ(Wth+C) − 1

)
, (2.18)

by plugging Equation 2.11 in Equation 2.18, we have

Wth

(
1 + λ (Wth + C) + λ2(Wth + C)2

2

)(
λE [X] + λ2E

[
X2]

2

)
= E [X]

(
λ (Wth + C) + λ2(Wth + C)2

2

)
.

After simplification, we obtain
λW 2

th
2 − Cλ = o (λ) ,

hence

WFO =

√
2C
λ
,

which corresponds to the Young/Daly formula.

Simulations In the experiments in Section 2.5, we use Equation 2.17.

2.5 Experiments

In this section, we describe the experiments conducted to assess the efficiency of static and dynamic
solutions, as well as the accuracy of the Young/Daly formula. Propositions 2.2 and 2.3 show that when
the number of failures is low, the Young/Daly formula is a good approximation. We aim at showing
experimentally that this remains the case with higher failure rates, when the first-order approximation is
no longer valid. In Section 2.5.1, we detail the experimental methodology with all simulation parameters.
Results are presented in Section 2.5.2.

2.5.1 Experimental methodology

For each experiment, the evaluations are performed on 10,000 randomly generated instances
{I1, . . . , I10000}. For all i, an instance Ii is a pair (Si,Fi), where Si (resp. Fi) is the application (resp.
failure) scenario associated with the instance.

The algorithms are implemented in MATLAB and R. The corresponding code is available at [34].
This simulator computes the makespan for our static strategy, the Young/Daly-static strategy, our dy-
namic strategy, and the Young/Daly-dynamic strategy.
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Application scenarios We consider an iterative application composed of n = 1, 000 consecu-
tive iterations. We assume that the execution time of each iteration follows a probability distribution
D, where D is either UNIFORM(a, b), GAMMA(α, β) or truncated NORMAL(µ, σ2, [0,∞)) (see Sec-
tion 2.3.2 for the corresponding PDFs). The default instantiations for these distributions are µD = 50
with UNIFORM[20, 80], GAMMA(25, 0.5) and NORMAL(50, 2.52) (recall that we sample the latter one
until a positive value is found). We also study the impact of the standard deviation σ.

Failure scenarios We consider different failure rates. To allow for consistent comparisons of results
across different iterative processes with different probability distributions, we fix the probability that
failure occurs during each iteration, which we denote at pfail, and then simulate the corresponding failure
rate. Formally, for a given pfail value, we compute the failure rate λ such that pfail = 1 − e−λ(µD+C),
where µD + C is the average length of an iteration followed by a checkpoint. We conduct experiments
for seven pfail values: 10−3, 10−2.5, 10−2, 10−1.5, 10−1, 10−0.5 and 10−0.1. For example, pfail = 10−2

means one failure may occur every 100 iterations.

Checkpointing costs Important factors that influence the performance of checkpointing strategies
are the checkpointing and recovery costs. We set checkpoint time asC = ηµD, where η is the proportion
of checkpoint time to the expectation of iteration time. And we set recovery time as R = C and fixed
downtime as D = 1. We conducted the experiments with η = 0.1.

Static strategies The algorithm used to simulate the static strategies is detailed in Algorithm 1.

Algorithm 1: Algorithm to choose optimal k (checkpoint after k iterations)
Input: Total number of iterations n, Execution time of each iteration Xi, Failure time Fm, Checkpoint time C,

Recovery time R, Downtime D.
Output: The makespan t

1 while i ≤ n do
2 if t+Xi + . . .+Xi+k−1 + C ≤ Fm then

/* success between ith iteration and i+ k − 1th iteration */
3 t← t+Xi + . . .+Xi+k−1 + C
4 i← i+ k

5 else
/* failure bewteen ith iteration and i+ k − 1th iteration */

6 if Fm +D +R ≤ Fm+1 then
/* no failure in recovery */

7 t← Fm +D +R
8 m← m+ 1
9 else

/* failure in recovery */
10 t← Fm+1
11 m← m+ 2
12 while t+D +R > Fm do

/* look for first successful recovery */
13 t← Fm
14 m← m+ 1
15 t← t+D +R

16 return t
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For an instance I, we define MSsim_sta(k)(I) to be the makespan when checkpointing every k
iterations. In addition, we define the average value

MSsim_sta(k) = 1
10000

10000∑
i=1

MSsim_sta(k)(Ii)

and the minimal average makespan over k

MSmin
sim_sta = min

k
MSsim_sta(k).

This minimum is reached for k = ksim.
We also compare the simulations with the theoretical model. We use E[MSD](k) = n ·

eλR
(

1
λ +D

)
Cind(k), where Cind depends on D, and n = 1, 000. We define MSOPT

the_sta =
E[MSD](kstatic). Finally, we define the Young/Daly static as MSYD_sta = MSsim_sta(kFO) and
MSYD_sta as its average value over all instances.

Dynamic strategies The algorithm used to simulate the dynamic strategies is detailed in Algo-
rithm 2.

Algorithm 2: Algorithm to choose optimal wdyn (checkpoint when the amount of work since
last checkpoint is greater than wdyn)

Input: Total number of iterations n, Execution time of each iteration Xi, Failure time Fm, Checkpoint time C,
Recovery time R, Downtime D, threshold wdyn.

Output: The running time t
1 while i ≤ n do
2 for k = 1, k ≤ n− i+ 1, k + + do
3 if Xi + . . .+Xi+k−1 ≥ wdyn then
4 kdyn ← k
5 break
6 if t+Xi + . . .+Xi+kdyn−1 + C ≤ Fm then

/* success between ith iteration and i+ kdyn − 1th iteration */
7 t← t+Xi + . . .+Xi+kdyn−1 + C

8 i← i+ kdyn

9 else
/* failure between ith iteration and i+ kdyn − 1th iteration */

10 if Fm +D +R ≤ Fm+1 then
/* no failure in recovery */

11 t← Fm +D +R
12 m← m+ 1
13 else

/* failure in recovery */
14 t← Fm+1
15 m← m+ 2
16 while t+D +R > Fm do

/* look for first successful recovery */
17 t← Fm
18 m← m+ 1
19 t← t+D +R

20 return t

We simulate the dynamic strategy with different threshold values W = γ · Wth with γ ∈
{0.1, 0.2, . . . , 2}. For an instance I, we define MSsim_dyn(W )(I) as the makespan with thresh-
old W , and MSsim_dyn(W ) as its average value over all instances. Then we let MSOPT

sim_dyn =
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minW MSsim_dyn(W ). It is reached for W = Wsim. Finally, we define the Young/Daly dynamic as
MSYD_dyn = MSsim_dyn(WFO) and MSYD_dyn as its average value over all instances.

2.5.2 Results
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Figure 2.1: Boxplots represent the performance of the static strategy that chooses k. Brown diamonds
plot E[MSD](k) (theoretical makespan). The blue (resp. red) line represents the makespan obtained by
the optimal dynamic strategy MSsim_dyn(Wth) (resp. the YD-dynamic strategy MSYD_dyn).

Table I: Simulation for static case.

pfail = 10−2 Gamma Normal Uniform
ksim 5 5 5
xstatic 4.6114 4.6122 4.6097
kstatic 5 5 5
1
µD

√
2C
λ 4.6787 4.6787 4.6787

kFO 5 5 5

Static strategies The results from the static case are reported in Figure 2.1. Specifically, the box
plots represent the evolution of the function I 7→ MSsim_sta(k)

MSYD_sta
(I) (for different values of k), and the black

lines correspond to its mean. The diamonds represent the average: 1
10000

∑10000
i=1

E[MSD](k)
MSYD_sta(Ii) .

The first important result from this plot is the experimental validation of our model. Indeed, the
blacklines and diamonds are almost identical for all k. The closer we get to the optimal value kstatic,
the closer the theoretical makespan gets to the simulation makespan. In particular, for k = 5, which
corresponds to kFO (and kstatic), the makespan obtained is exactly the same for MSsim_sta and MSYD_sta,
leading to a ratio of 1 in all cases: the boxplot contains a single value. This is in accordance with Table I.
From Table I, it can be observed that ksim = kstatic = kFO.

A consequence is that the solution kstatic (as well as Young/Daly’s solution) always provides the
optimal expected makespan, in coherence with the theoretical results. Because it is a stochastic process,
it can not always give the optimal makespan, but we see from these figures that it is always within 3%
of the makespan obtained by other strategies, which shows the robustness of this choice.
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As expected the ratio MSOPT
the_sta/MSYD_sta is equal to 1 since in those cases k = 5 for kstatic and kFO.

We have tried a large range of values to check if there are cases when they are not and have found that
they almost always are (see Figures 2.3 and 2.4 and comments).

In order to compare static strategies with dynamic strategies, we plot blue and red lines correspond-
ing to the ratios MSsim_dyn(Wth)/MSYD_sta, and MSYD_dyn/MSYD_sta, respectively. Both lines are
very close to 1, meaning that these two dynamic strategies have the same performance as the optimal
static strategy.

Overall the conclusions of this section is that the simple strategy based on the Young/Daly setting
remains a good and robust solution for stochastic applications, and can safely be used in this context.

Table II: Simulation for dynamic case.

pfail = 10−2 Gamma Normal Uniform
γ 1.0 1.0 1.0

Wsim 206.0492 206.8876 204.2743
MSOPT

sim_dyn 52267 52264 52267
Wth 206.0492 206.8876 204.2743

MSsim_dyn(Wth) 52267 52264 52267
WFO 233.9328 233.9328 233.9328

MSYD_dyn 52284 52271 52288

Dynamic strategies We compare our dynamic strategy with the threshold obtained with the Young/-
Daly formula. For each γ, we report the makespan of 10,000 random simulations using boxplots.
From Table II, it can be observed that Wsim = Wth. Of course, giving more precision to γ may give
slightly better performance, but the gain remains negligible. Contrarily to the static case, Wth and WFO
are different (up to 15%). However the performance obtained (Figure 2.2) are similar, and again the
Young/Daly formula seems a safe bet given its simplicity of use.
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Figure 2.2: Boxplots represent the performance of the dynamic strategy that chooses a threshold of
γ ·Wth. The orange (resp. purple) line represents the makespan obtained by the optimal static strategy
MSsim_sta(kstatic) (resp. the YD-static strategy MSYD_sta).
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We plot orange and purple lines corresponding to the ratios MSsim_sta(kstatic)/MSYD_dyn and
MSYD_sta/MSYD_dyn, respectively. As in Figure 2.1, these ratios are very close to 1, meaning that
the static and the dynamic strategies give similar results both when using optimal parameters or the one
approximated using the Young/Daly formulas.
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Figure 2.3: Simulation with varying failure probability

Both strategies for varying pfail In order to study the sensibility of our results to the fail-
ure probability, we compare in Figure 2.3 the makespan obtained by the static Young/Daly ap-
proximation (MSYD_sta) to the makespan obtained by the simulation when using the optimal kstatic
(MSsim_sta(kstatic)), and the one of the optimal dynamic strategy (MSsim_dyn(Wth)). We observe that
the first two makespans are always equal, because in all cases kFO = kstatic. The optimal dynamic strat-
egy is sometimes slightly better that the static ones, but with a gap smaller than 0.5% for all failure
probabilities.
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Figure 2.4: Simulation with varying standard deviation
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Both strategies for varying σ We vary the standard deviation σ of each distribution of execution
times in Figure 2.4. Again, there is no difference between kstatic and kFO in all tested cases, leading to a
ratio MSsim_sta(kstatic)/MSYD_sta constant and equal to 1. The optimal dynamic strategy is again very
close, with a gap smaller than 0.05% even for very large deviations.

Both strategies for varying η Finally, we vary the proportion η of checkpoint time to expected
iteration time for Gamma distributions in Figure 2.5. As expected, both the optimal k and W increase
together with checkpoint time. The optimal static and dynamic strategies are still very close, with a gap
larger or smaller than 0.05%, even for very large checkpoint times.
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Figure 2.5: Simulation with varying the proportion of checkpoint time η to the expected iteration time.

2.6 Conclusion

We have introduced and analyzed checkpointing strategies for iterative applications. The key novelty is
that this work does not assume deterministic iterations, but instead models execution times with prob-
abilistic distributions. Our first main contribution is to provide a closed-form formula, valid for any
distribution, to compute the optimal period at which one should checkpoint as a function of the failure
rate. Then, we provide efficient solutions for non periodic, online solutions, where one decides on the
fly whether to perform a checkpoint or to perform an additional iteration. In addition to these solutions,
we study the behavior of the Young/Daly solution. We then show the following: as a first-order ap-
proximation, both periodic and non periodic solutions converge to the Young/Daly formula. All these
derivations are quite technical, and constitute a major extension of the deterministic case.

In addition, we are able to show via extensive simulations that the Young/Daly formula is in general
an excellent solution for non-deterministic execution times. This is done in two steps: (i) we show
that our mathematical model is extremely accurate, since the mathematical formula fits almost perfectly
the evaluated execution time; and (ii) the performance of the Young/Daly formula is always within one
percent that of the optimal strategy that we obtained.

This study opens interesting problems in this area, such as extending this study to multi-level check-
pointing protocols, which correspond to state-of-the-art approaches but are already quite difficult to
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model and optimize analytically in a deterministic setting. Extending known results to a stochastic
framework is a challenging problem.



24 CHAPTER 2. STOCHASTIC ITERATIVE APPLICATIONS



Chapter 3

Deterministic iterative applications

3.1 Introduction

As mentioned in the introduction, we proceed to deterministic iterative applications in this chapter. We
focus on designing optimal checkpoint strategies for iterative workflows expressed as pipelined linear
workflows: we consider workflows made of a large number of iterations, each iteration being a lin-
ear chain of parallel tasks. The typical example is an application consisting of an outer loop “While
convergence is not met, do”, and where the loop body includes a sequence of large paral-
lel operations. The objective is to find which task outputs should be saved on stable storage in order
to minimize the expected duration of the whole computation. To the best of our knowledge, this is
an open problem, despite the practical importance and ubiquity of pipelined linear workflows in High-
Performance Computing (HPC). Indeed, the simple case of a unique linear chain of tasks (a pipelined
linear workflow with a single iteration) has been solved by Toueg et al. [105] using a dynamic pro-
gramming algorithm. On the contrary, the problem for workflows with general directed graphs has
been shown #P-complete1 [50]. The study for pipelined linear workflows (a linear chain with several
iterations) is challenging, and the main contribution of this chapter is to provide a complete answer:

• We prove that there exists an optimal checkpointing strategy which is periodic. It consists in a
pattern of task outputs to checkpoint, where this pattern spans over a set of iterations of bounded
size. This pattern is repeated over and over throughout the execution.

• We provide a dynamic programming algorithm which is polynomial in the number of operations
included in the outer loop to compute the optimal periodic checkpoint pattern. The complexity
of the algorithm does not depend on the number of iterations of the outer loop. This pattern may
well checkpoint many different tasks, and this across many different iterations.

• We conduct an extensive set of simulations to compare the optimal strategy to four natural com-
petitor strategies: the first checkpoints after each task, the second after each iteration, while the
last two are extensions of the Young/Daly formula for iterative applications. Our simulations
with both synthetic and real-life workflow instances demonstrate that our optimal strategy provide
improvement over the simpler competitors.

The rest of the chapter is organized as follows. Section 3.2 presents a detailed model for the prob-
lem and states the objective function. Section 3.3 outlines the optimal checkpoint strategy. Section 3.4

1#P-complete problems are counting problems that are at least as hard as NP-complete problems

25
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reports a comprehensive set of experimental results, based upon both synthetic workflows and on work-
flows arising from two real-life applications. Finally, Section 3.5 provides concluding remarks and
directions for future work.

3.2 Model

In this section, we detail the application and platform models. Then we define checkpoint strategies and
formally state the optimization objective. See Table I for a summary of main notations.

Application
n number of tasks per iteration
Niter number of iterations
ai task number i, 0 ≤ i < n, in each iteration
ti duration of task ai
ci, ri checkpoint and recovery time for task ai
T length of an iteration

Platform
D downtime
µ = 1/λ platform MTBF (λ is the parameter of the failure distribution)

Schedule S
mi task number mi is checkpoint number i in the schedule
CSi checkpoint cost at end of chunk number i
WSi length of chunk number i (including tasks number mi−1 + 1 to mi)
RSi−1 recovery cost when re-executing chunk number i
SD(S) slowdown of schedule S
P checkpoint path or pattern
`(P ) length of checkpoint path P
C(P ) expected execution time, or cost, of checkpoint path P
SD(P ) slowdown of a path P

wci Young/Daly period for checkpoint type ci, where wci =
√

2ci
λ

2nM? upper bound for length of optimal period, where M? = maxiwci + T

k? number of iterations dM?

T e taking place during time M?

Table I: Summary of main notations.

3.2.1 Application model

We consider an iterative application A. Each iteration of the application consists of n parallel tasks ai,
where 0 ≤ i < n, task ai has length ti and memory footprint Mi. We define the length of an iteration as
T =

∑n−1
i=0 ti.

The tasks are executed consecutively: let i[n] denote the remainder of the integer division of i by n
(modulo operation); then a task ai is always followed by a task ai+1[n]. We assume that the application
executes for a long time and consider an unbounded number of iterations (but we use 1, 000 iterations
in the experiments). For short we write A = (a0, . . . , an−1)∞. As stated before, we execute tasks one
after the other. The first executed task is a0, followed by a1, and so on. The nth task is an−1 and the
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(n+ 1)st task is a0 again. In general, the kth task is ak−1[n]. Note that we index tasks from 0 to use the
modulo operation, hence this shift when counting executed tasks.

We assume that the tasks of the application can be checkpointed at the end of their execution. We
consider a general model where the checkpoint time of task ai is ci and its recovery time is ri. We refer
to ci and ri as operations of type i. We do not assume that ci = ri; instead, we simply assume monotone
I/O costs:

for all i, j, ci ≥ cj =⇒ ri ≥ rj .

Essentially this assumption states that if a task is longer to checkpoint than another one, then restarting
from this checkpoint is also longer. This is coherent with the fact that checkpoint and recovery costs are
often closely related, and are a function of the volume of data to save. Furthermore, this assumption is
general enough to account for different read and write bandwidths.

We assume that all task parameters (execution time, checkpoint, recovery) are known. This is a
natural assumption for iterative applications which repeat each task a large number of times and can
determine their characteristics either through an analytical model or by repetitive sampling. However,
to assess the robustness of the approach, we also report experiments using stochastic execution times
derived from a Normal probability distribution.

3.2.2 Platform model

We consider a parallel platform whose nodes are subject to fail-stop errors, or failures. A failure, such as
a node crash, interrupts the execution of the node and provokes the loss of its whole memory. Consider
a parallel application running on several nodes: when one of these nodes is struck by a failure, the state
of the application is lost, and execution must restart from scratch, unless a fault-tolerance mechanism
has been deployed.

The classical technique to deal with failures consists of using a checkpoint-restart mechanism: the
state of the application is periodically checkpointed, which means that all participating nodes take a
checkpoint simultaneously: this is the standard coordinated checkpointing protocol which is routinely
used on large-scale platforms [23], where each node writes its share of application data to stable storage
(checkpoint of duration C). When a failure occurs, the platform is unavailable during a downtime D,
which is the time to enroll a spare processor which will replace the faulty processor [29, 55]. Then all
application nodes (including the spare) recover from the last valid checkpoint in a coordinated manner,
reading the checkpoint file from stable storage (recovery of duration R). Then the execution is resumed
from that point on, rather than starting again from scratch.

We assume that the iterative application experiences failures whose inter-arrival times follow an
Exponential distribution Exp(λ) of parameter λ > 0, whose PDF (Probability Density Function) is
f(x) = λe−λx for x ≥ 0. The MTBF is µ = 1

λ and corresponds to the MTBF of individual processors
divided by the total number of processors enrolled in the application [55]. As stated in the introduction,
even if each node has an MTBF of several years, large-scale parallel platforms are composed of so many
nodes that they will experience several failures per day [20, 39]. Hence, a parallel applications using a
significant fraction of the platform will typically experience a failure every few days.

The key for an efficient checkpointing policy is to decide how often to checkpoint. Young [110] and
Daly [29] derived the well-known Young/Daly formula PYD =

√
2µC for the optimal checkpointing

period, where µ is the application MTBF and C is the checkpoint duration, as defined above.
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3.2.3 Schedule

Informally, a schedule defines which tasks are checkpointed. A priori, there is no reason for a schedule
to enforce a regular pattern of checkpoints that repeats over time. In other words, a schedule can be
aperiodic. However, one major contribution of this work is to show that periodic schedules are optimal,
and to exhibit the optimal period as the output of a polynomial-time algorithm. We need a few definitions
before stating the objective function to be minimized by optimal schedules. First we identify a schedule
with the list of the tasks that it checkpoints:

Definition 3.1 (Schedule). A schedule S is an infinite increasing sequence S = (m1,m2, . . . ) which
represents the list of checkpointed tasks: the mth

i task (i.e., task number mi) is checkpointed, and the
tasks whose number does not belong to the list are not checkpointed.

In other words, checkpoint number i in the schedule takes place at the end of task number mi.
The cost to checkpoint that task mi is cmi−1[n] (because of the index shift noted above). Without loss
of generality, we assume that the schedule checkpoints infinitely many tasks, i.e., limi→∞mi = ∞.
Indeed, consider any task in the application: eventually there must be a checkpoint after that task,
otherwise the expected execution time from that task is not bounded, because the fault-rate λ is nonzero.

A schedule S can be viewed as a succession of task chunks between two consecutive checkpoints.
We use the following notations for the ith chunk between checkpoint number i− 1 (or the beginning of
the execution if i = 1) and checkpoint number i:
• The length of the tasks in the chunk is

WSi =
mi∑

j=mi−1+1
tj−1[n].

• The checkpoint cost at the end of the chunk is the cost of checkpoint number i, namely

CSi = cmi−1[n].

• The recovery cost when re-executing the chunk is the cost of recovering from checkpoint number
i− 1, namely

RSi−1 = rmi−1−1[n].

When i = 1 (first chunk), we let m0 = 0, and RS0 denotes the cost of reading input data.

Time

a0 a1 a2 a0

W S
1 = t0 + t1 + t2 + t0

CS1 = c0

a1 a2

failure

D

RS1 = r0

a1 a2

W S
2

CS2

a0 a1 · · ·

Figure 3.1: Notations drawn in a schedule for an application with n = 3 tasks.

3.2.4 Objective function

Intuitively, a good schedule will minimize the slowdown during the execution. This slowdown comes
from two sources of overhead: the checkpoints that are inserted, and the time lost due to failures. When a
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failure strikes during execution, the work executed since the last checkpoint is lost; there is a downtime,
followed by a recovery, and then the re-execution of the work that has been lost due to the failure.
Altogether, the overhead is not deterministic and varies from one execution to the other, hence we aim
at minimizing the slowdown in expectation.

Given a schedule S, we rely on a well-known formula to compute the expected execution time of
a chunk. Indeed, the expected execution time Eλ(w, c, r) to execute w consecutive seconds of work
followed by a checkpoint of size c with a recovery of size r is given by [55]

Eλ(w, c, r) =
( 1
λ

+D

)
eλr

(
eλ(w+c) − 1

)
.

The expected time to execute the chunk number i is thus Eλ(WSi , CSi , RSi−1). Hence the expected time
to execute the first i chunks is

∑i
j=1 Eλ(WSj , CSj , RSj−1). The slowdown incurred for the first i chunks

(i.e., up to checkpoint number i) is therefore

SDi(S) =
∑i
j=1 Eλ(WSj , CSj , RSj−1)∑mi

j=1 tj−1[n]
. (3.1)

In Equation 3.1, the numerator is the expected time to execute the first i chunks, while the denominator
is the duration of the tasks up to checkpoint number i, which corresponds to the resilience-free and
failure-free execution.

Unfortunately, there is no reason that limi→∞ SDi(S) would exist. However, we can use the upper
limit of SDi(S) to define the slowdown of schedule S:

Definition 3.2 (Slowdown). The slowdown SD of a schedule S is:

SD(S) = lim
i→∞

SDi(S).

We know that this upper limit is bounded for some schedules. Consider for instance the schedule S
that checkpoints all tasks: mi = i for all i ≥ 1. This schedule repeats the same pattern of checkpoints
every iteration, so that its slowdown is

SD(S) = SDn(S)
T

=
∑n−1
j=0

(
1
λ +D

)
eλrj−1[n]

(
eλ(tj+cj) − 1

)
T

.

Recall that T is the length of an iteration. We are now ready to define an optimal schedule:

Definition 3.3 (Optimal schedule). A schedule is optimal if its slowdown SD(S) is minimal over all
possible schedules.

Note that the definition does not assume that there exists a unique optimal schedule. A major con-
tribution of this chapter is to show that there exists an optimal schedule which is periodic, i.e., which
repeats the same pattern of checkpoints after some point (see below for the formal definition). This
important result will allow us to consider only a finite number of candidate schedules, and to design a
polynomial-time algorithm to find an optimal schedule.

3.2.5 Periodic schedules

Periodic schedules are natural schedules that can be expressed in a compact form. As already mentioned,
after some possible initialization phase, a periodic schedule repeats the same sequence of checkpoints
over and over. Here is the formal definition:
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Figure 3.2: A periodic schedule where the period is repeated over time.

Definition 3.4 (Periodic schedules). A schedule S = (m1,m2, . . . ) is periodic if there exists two indices
i0 and k0 such that for all i > i0, mi −mi−1 = mi+k0 −mi+k0−1.

An example of periodic schedule is given in Figure 3.2. Intuitively, the schedule enters its steady
state after checkpoint number i0 (with possibly i0 = 0): the period starts right after task number mi0 ,
and then repeats the same sequence of k0 checkpoints: the first checkpoint of the period is taken after
mi0+1 −mi0 tasks, the second one after mi0+2 −mi0+1 tasks, until the last checkpoint of the period,
that of task number mi0+k0 . Then the period repeats indefinitely.

For a periodic schedule, the limit limi→∞ SDi(S) always exists, and is given by the slowdown
incurrred during each (infinitely repeating) period. Specifically, given i0 and k0 in Definition 3.4, we
see from Equation 3.1 that this slowdown becomes:

∑i0+k0
i=i0+1 Eλ(WSi , CSi , RSi−1)∑mi0+k0

j=mi0+1 tj−1[n]
.

We prove this result formally below. The major results of this work are the following two theorems,
which we prove in Section 3.3 below.

Theorem 3.1. There exists a periodic schedule that is optimal.

Theorem 3.2. We can compute an optimal periodic schedule in polynomial time.

Proof sketch: The proof has several steps. First we prove that there exists an optimal periodic
schedule, i.e., a periodic schedule whose slowdown is minimal. Then we show how to bound the length
of the period of this schedule. Once this is done, we have a finite number of periods to look for, and
we exhibit a dynamic programming algorithm that determines the optimal period in polynomial time,
independently of the number of iterations.

3.3 Optimal checkpoint strategy

In this section, we present several theoretical results and prove Theorems 3.1 and 3.2. Specifically,
we start by showing that we can indeed focus on periodic algorithms (Theorem 3.1) in Section 3.3.3.
Then in Section 3.3.4, we show that we can compute an optimal periodic schedule in polynomial time
(Theorem 3.2).

Beforehand, we introduce the definition of a pattern which is at the heart of periodic algorithms
(Section 3.3.1), and we present several important properties of patterns in Section 3.3.2.
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3.3.1 Paths and patterns

Definition 3.5 (Checkpoint Paths). A Checkpoint Path P = (i0, [m1, . . . ,mkP ]) is a sequence of mkP

tasks b0, . . . , bmkP−1 such that:

1. for 0 ≤ i ≤ mkP − 1, bi = ai0+i[n];

2. for 1 ≤ j ≤ kP , bmj−1 is checkpointed.

Thus the path starts at task b0 = ai0 and includes mkP tasks, up to task bmkP−1 = ai0+mkP−1[n]. The
path includes kP checkpoints, including the checkpoint of its last task. The mth

i task of the pattern is
checkpointed, for 1 ≤ i ≤ kP . See Figure 3.3 for an illustration.

We use the following notations for a path P : for 1 ≤ i ≤ kP , we define WP
i =

∑mi−1
j=mi−1

ti0+j[n]
(with the special case m0 = 0), CPi = ci0+mi−1[n], RPi = ri0+mi−1[n] (with the special case: RP0 =
ri0−1[n]). We define the length ` of a checkpoint path `(P ) =

∑kP
i=1W

P
i and its expected execution time,

or cost C :

C(P ) =
kP∑
i=1

Eλ
(
WP
i , C

P
i , R

P
i−1

)

=
( 1
λ

+D

) kP∑
i=1

eλR
P
i−1
(
eλ(WP

i +CPi ) − 1
)
.

P = (i0, [m1, . . . ,mkP ])

ai0

b0

ai0+1

b1

...... ai0+m1−1[n]

bm1−1 CP1

...... ...... ai0+mkP−1[n]

bmkp−1 CPkP

WP
1 = ti0 + ti0+1 + · · ·+ ti0+m1−1[n] WP

kP

Figure 3.3: Sequence of operations of a checkpoint path P = (i0, [m1, . . . ,mkP ]). Its length is the sum
of its useful work (white boxes). Its cost corresponds to its expected execution time if a checkpoint was
taken right before its start.

Definition 3.6 (Patterns). A Checkpoint Pattern is a checkpoint path P = (i0, [m1, . . . ,mkP ]) such that
mkP = 0[n]. Note, for pattern P , its length is `(P ) = mkP

n T , where T =
∑n−1
i=0 ti.

Such patterns are basic blocks to define periodic schedules. We detail this relation below in Sec-
tion 3.3.3.

Definition 3.7 (Slowdown of a path (or pattern)). The slowdown of a path is defined as: SD(P ) = C(P )
`(P ) .

3.3.2 Pattern properties

Using these definitions, we show the following result:
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Figure 3.4: Partitioning the schedule into patterns around the checkpoints c2 (yellow).

Theorem 3.3. Given a schedule S of slowdown SD(S), there exists a pattern P such that SD(P) ≤
SD(S).

Following the proof: Theorem 3.3 aims at showing the existence of a pattern whose slowdown
is at most that of any algorithm (hence including optimal algorithms). To do so, we construct a
sequence of patterns whose slowdown converges to the requested slowdown (Lemma 3.1) based on
sequences taken from the algorithm S. In addition, we impose that this sequence satisfies a size
property, i.e. that each element of this sequence contains at most n checkpoints (Corollary 3.1).
This then helps to find a pattern whose slowdown is exactly that of S.

We start by proving a series of results.

Lemma 3.1. Given a schedule S, there exists a sequence of patterns Pr such that, for all r ∈ N,
SD(Pr) ≤ SD(S) + 1/r.

Proof. Consider a schedule S = (mi)i∈N of finite slowdown SD(S). There exists a checkpoint type i0
which is taken an infinite number of times. We denote by σi0 the function such that, for all i, σi0(i) is
the ith occurence of checkpoint ci0 in the schedule S (we set σi0(0) = 0).

In the following, we partition the schedule into paths:{
M1 = (0, [m1,m2, . . . ,mσi0 (1)]),
Mi = (i0 + 1[n], [(mσi0 (i−1)+1 −mσi0 (i−1)), (mσi0 (i−1)+2 −mσi0 (i−1)), . . . , (mσi0 (i) −mσi0 (i−1))]), ∀i > 1.

Intuitively, M1 is the beginning of the schedule until the first checkpoint of type i0. Then M2 is
the pattern starting right after and extending up to the second checkpoint of type i0, and so on. In
the definition of Mi, checkpoint indices are shifted to account for the location where the path starts.
See Figure 3.4 for an illustration. By construction, eachMi is indeed a pattern, except forM1, which
is only a path if i0 6= n− 1.

We now study the slowdown SDσi0 (i) up to the ith checkpoint of type i0, i.e., the slowdown of the
first i segments. We have

SD(S)σi0 (i) =
∑i
k=1

∑σi0 (k)
j=σi0 (k−1)+1 Tλ(WSj , CSj , RSj−1)∑i
k=1

∑mσi0 (k)

j=mσi0 (k−1)+1
tj−1[n]

=
∑i
k=1 C(Mk)∑i
k=1 `(Mk)

=
i∑

k=1
αi,kSD(Mk), (3.2)

where αi,k = `(Mk)∑i

j=1 `(Mj)
. Hence

∑i
k=1 αi,k = 1, and we have expressed SDσi0 (i) as a weighted

average of the path slowdowns SD(Mk).
By definition of lim we have:
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• limi→∞SDσi0 (i)(S) ≤ limi→∞SDi(S) = SD(S);

• For all r, there exists ir such that ∀i > ir,

SDσi0 (i)(S) ≤ lim
i→∞

SDσi0 (i)(S) + 1
r

≤ SD(S) + 1
r
.

Using Equation 3.2, we obtain:

i∑
k=1

αi,kSD(Mk) ≤ SD(S) + 1
r
.

Since this is a weighted average, it means that there exists kr, where 1 ≤ kr ≤ i such that SD(Mkr) ≤
SD(S) + 1

r . If kr 6= 1, or if kr = 1 and i0 = n − 1, we have found the desired pattern by letting
Pr = Mkr . Otherwise, we redo the same proof using the truncated schedule S̃ where we delete the
first i0 + 1 tasks. Then S̃ is a valid schedule for a rotation of the original application, namely for the
application Ã = (ai0+1[n], . . . , ai0)∞, and it has same slowdown as S. The path M̃i of S̃ is the same
as the pathMi+1 of S for all i, hence all the paths of S̃ are patterns. We then derive the result just as
above.

Lemma 3.2. For all pattern P , there exists a pattern P̃ such that:

1. SD(P̃) ≤ SD(P);

2. P̃ contains at most n checkpoints.

Proof. We show this result by induction on the number of checkpoints in P . Assume P =
(i0, [m1, . . . ,mk]), with k > n. Then there exists i1 < i2 such that: i0 + mi1 [n] = i0 + mi2 [n]
(i.e. the mth

i1 and mth
i2 tasks of the pattern are identical and equal to ai0+mi1−1[n]).

We now consider the two patterns:

P1 = (i0 +mi1 [n], [mi1+1 −mi1 ,mi1+2 −mi1 , . . . ,mi2 −mi1 ]);
P2 = (i0 +mi2 [n], [mi2+1 −mi2 ,mi2+2 −mi2 , . . . ,mk −mi2 ,

m1 + (mk −mi2),m2 + (mk −mi2), . . . ,mi1 + (mk −mi2)]).

Here, we have decomposed the original pattern into three paths, Pbegin (up to themth
i1 task), P1 (from

the next task up to the mth
i2 task) and Pend (from the next task up to the end of the pattern). Now, P2 is

simply the concatenation of Pend followed by Pbegin. See Figure 3.5 for an illustration.
We immediately have:

SD(P) = `(P1)
`(P1) + `(P2)SD(P1) + `(P2)

`(P1) + `(P2)SD(P2).

Because this is a weighted average, then min(SD(P1),SD(P2)) ≤ SD(P). Each of these patterns has
fewer checkpoints than the initial pattern, which concludes the proof.

Corollary 3.1. Given a schedule S, there exists a sequence of patterns P̃r for all r ≥ 1 such that:

1. For all r, P̃r contains at most n checkpoints;



34 CHAPTER 3. DETERMINISTIC ITERATIVE APPLICATIONS
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Figure 3.5: From a pattern P with two identical checkpoints, ci, to its decomposition into P1 and P2.

2. SD(P̃r) ≤ SD(S) + 1/r.

This corollary is a direct consequence of Lemma 3.1, for the existence of a sequence that satisfies
the slowdown constraint, and of Lemma 3.2, for transforming this sequence into a sequence of patterns
that include at most n checkpoints.

Following the proof: At this point, we have constructed a sequence of patterns, whose slow-
down converges towards SD(S). It remains to show the existence of a pattern that reaches the limit.
In order to do so, we show that if the number of checkpoints in a pattern is bounded, then the length
of the pattern has to be bounded too, otherwise its slowdown would diverge. This is the result shown
in Lemma 3.3.

Lemma 3.3. Given M and k, if P is a pattern with at most k checkpoints and SD(P) ≤M , then there
exists a constant WM,k such that `(P) ≤WM,k.

Proof. Given a pattern P with k checkpoints, and of length `(P) = W , we let WP1 ,W
P
2 , . . . ,W

P
k

denote the work between its checkpoints. By definition,
∑k
i=1W

P
i = `(P). Hence there exists i1 such

that WPi1 ≥
1
k `(P).

We are now interested in the slowdown of the pattern:

SD(P) =
∑k
i=1 Eλ(WPi , CPi , RPi−1)

`(P)

≥
Eλ(WPi1 , C

P
i1 , R

P
i1−1)

`(P)

≥
Eλ(WPi1 , 0, 0)

`(P)

=
( 1
λ

+D

)
e
λWPi1 − 1
`(P)

≥
( 1
λ

+D

)
e
λ
k
`(P) − 1
`(P) .

But e
λ
k
x−1
x tends to infinity when x tends to infinity; hence, because SD(P) ≤ M , we have that

`(P) is bounded by a function of M and k. Hence the result.
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Proof of Theorem 3.3. We now conclude the proof of Theorem 3.3. From Corollary 3.1, we have a
sequence of patterns P̃r with at most n checkpoints and of slowdown SD(P̃r) ≤ SD(S) + 1/r ≤
2SD(S).

From Lemma 3.3, there exists an upper bound such that, for all r, `(P̃r) ≤ W̃ . We show that there
is only a bounded number of patterns that satisfy this property:

• Since the length of a pattern is a multiple of T =
∑n−1
i=0 ti, there are at most K = bW̃T c possible

lengths.

• For a length kT , 1 ≤ k ≤ K, there are kn possible checkpoint locations and at most n check-
points, hence at most

(kn
n

)
patterns.

Hence in total, the number of possible patterns is upper bounded by K
(Kn
n

)
. The set {SD(P̃r)|r ≥ 1}

is finite and admits a minimum Smin. Let r0 be one index achieving the minimum: Smin = SD(P̃r0).
Finally, we show that Smin ≤ SD(S): indeed, otherwise there would exist r such that Smin >

SD(S) + 1
r and we would have SD(P̃r0) > SD(P̃r), thereby contradicting the minimality. Hence the

result.

3.3.3 Periodic schedules

Using the properties of patterns, we are ready to derive Theorem 3.1. We start by rewriting the definition
of periodic schedules using patterns. Indeed, the values i0 and k0 from Definition 3.4 allow us to define
a pattern that is repeated all throughout the execution. We then select the pattern of minimal length that
occurs as early as possible:

Definition 3.8 (Pattern of a periodic schedule). Given a periodic schedule S = (m1,m2, . . . ). Let
(k0, i0) be the smallest pair (for the lexicographic order) that satisfies: for all i > i0, mi − mi−1 =
mi+k0 −mi+k0−1, and mi0+k0 −mi0 = 0[n]. We say that

PS = (mi0 [n], [mi0+1 −mi0 ,mi0+2 −mi0 , . . . ,mi0+k0 −mi0 ])

is the pattern of the schedule.

The lexicographic order means that we select first a pattern of minimal length, and in case of a tie,
the pattern that starts as early as possible.

Theorem 3.4 (Slowdown of a periodic schedule). Given a periodic schedule S, its slowdown is equal
to the slowdown of its pattern.

Proof. Given a periodic schedule S, let

PS = (mi0 [n], [mi0+1 −mi0 ,mi0+2 −mi0 , . . . ,mi0+k0 −mi0 ])

be its pattern. We study the function SDi(S) by decomposing the schedule up to its ith checkpoint into
three parts: a first part, up to the beginning of the pattern, i.e. up to checkpoint number i0, then a number
k = b i−i0k0

c of repeating patterns, then a final part whose length is smaller than `(PS). The first and final
part become negligible as i tends to infinity, hence

SD(S) = lim
i→∞

SDi(S) = C(PS)
`(PS) = SD(PS).
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Proof of Theorem 3.1. Finally, putting everything together, we obtain the final result: Theorem 3.3 states
that there exists a pattern P whose slowdown is smaller or equal to that of an optimal schedule. In
addition, Theorem 3.4 states that a periodic schedule whose pattern is P has a slowdown equal to that
of P , hence it is optimal.

3.3.4 Finding the optimal pattern

In this section, we show how to compute the pattern of an optimal periodic algorithm. In the following,
we say that a pattern P = (i0, [m1,m2, . . . ,mk0 ]) is an optimal pattern, if it has minimal slowdown.

Bounding the length

Following the proof: In Lemma 3.3, we have shown that it was possible to bound the length of
an optimal pattern, which was helpful to prove the existence of an optimal pattern. In order to derive
an optimal solution, we want to use a dynamic program whose complexity depends on the number
of tasks in a pattern. Unfortunately, the previous bound may lead to a number of tasks in the pattern
which is not polynomially bounded. We now show how one can get a tighter bound (Theorem 3.5).
At the end of this section, we discuss the size of this bound as a function of the problem instance.

In this section we make intensive use of the following slowdown function:

f(w, c, r) = Eλ(w, c, r)
w

=
( 1
λ

+D

)
eλr

(
eλ(w+c) − 1

w

)
.

Note that we implicitly used the slowdown function when we defined the slowdown of a schedule. We
have the following properties:

Lemma 3.4. We have the following properties of the slowdown function:

1. w 7→ f(w, c, r) has a unique minimum wc , is decreasing in the interval [0, wc] and is increasing
in the interval [wc,∞).

2. c 7→ f(w, c, r) (resp. r 7→ f(w, c, r)) are increasing functions of c (resp. r).

Proof. 2) is obvious. 1) is the result of [16, Theorem 1]. Note that a first-order approximation of wc is
the well-known Young/Daly formula wc =

√
2c
λ [29, 110].

While one might want to use wc to minimize f , this is only possible for divisible applications. Here,
we can checkpoint only at the end of a task, and the amount of work w can only be the sum of some task
durations.

Consider a path starting after a checkpoint ci (hence with a recovery ri), and ending in a checkpoint
cj . The amount of computation w between these two checkpoints is necessarily of the form

Wi,j(k) = Wi,j + kT, for some k ∈ N,

where

1. T is the length of the iterations, T =
∑n−1
`=0 t`.
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2. Wi,j is the length between the end of task ai and the end of task aj (possibly of the next iteration),
i.e.: Wi,j =

∑j
`=i+1 t` (case j > i), or Wi,j = T −Wj,i (case j < i), or Wi,j = T (case j = i).

Additionally, k 7→ Wi,j(k) is an increasing function, hence for all pairs (ri, cj), there exists k?i,j that
minimizes the function k 7→ f(Wi,j(k), cj , ri). Let W ?

i,j = Wi,j(k?i,j). Because f(w, cj , ri) is decreas-
ing for w < wcj , we have W ?

i,j − T < wcj (otherwise W ?
i,j − T would be a better solution). Finally, we

denote
M? = max

i
wci + T.

Then, M? ≥ maxi,jW ?
i,j , and by construction, we have the following property for M?:

Lemma 3.5. For all i, j, k1, k2 such that Wi,j + k1T ≥Wi,j + k2T ≥M?,

f(Wi,j + k1T, cj , ri) > f(Wi,j + k2T, cj , ri).

Finally, we let
k? = bM?/T c (3.3)

denote the number of iterations that take place during time M?. We are ready to bound the length
between two successive checkpoints within an optimal pattern:

Lemma 3.6. Given an optimal pattern P = (i0, [m1,m2, . . . ,mk0 ]), then for all 1 ≤ i ≤ k0, the inter-
checkpoint time between the (i − 1)th and the ith checkpoint WPi =

∑mi
j=mi−1+1 tj−1[n] ≤ 2M? (using

m0 = 0).

Following the proof: In order to show this result, we show that if the length between two
consecutive checkpoints was larger than the bound, then we could add an intermediate checkpoint
and create a pattern of smaller slowdown.

Proof. We start by a preliminary property that we use in the following: we show that if the length
between two checkpoints is too high, then we can create a pattern of better slowdown by incorporating
a checkpoint in the oversized interval.

Given a pattern P = (i0, [m1,m2, . . . ,mk0 ]), and given a transformation of this pattern into a
pattern P ′ of equal length with an extra checkpoint of cost C (and recovery R) located between the
(i− 1)th and the ith checkpoint of P , after W units of work, one can verify that

SD(P)− SD(P ′) =
Eλ
(
WPi , C

P
i , R

P
i−1

)
− Eλ

(
W,C,RPi−1

)
− Eλ

(
WPi −W,CPi , R

)
`(P)

= WPi
`(P)f

(
WPi , C

P
i , R

P
i−1

)
− W

`(P)f
(
W,C,RPi−1

)
− WPi −W

`(P) f
(
WPi −W,CPi , R

)
(3.4)

Indeed, `(P) = `(P ′), and all inter-checkpoint intervals are identical (and have an equal cost) in P
and P ′, except for the interval inside which the extra checkpoint has been added.

We can now prove the result. We show the result by contradiction: assume there exists i ≤ k0 such
that WPi =

∑mi
j=mi−1+1 tj−1[n] > 2M?. We denote by i1 = i0 +mi−1 − 1[n] and i2 = i0 +mi − 1[n].

• Assume first that ci2 ≥ ci1 . By monotony, ri2 ≥ ri1 . We create the pattern P ′ such that we
add to P an additional checkpoint after the task of type i1 at the location mi−1 + k?n (which indeed
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corresponds to a task of type i1). Then, using the properties of the slowdown function f , and because
WPi > k?T , we know that:

f
(
k?T,CPi−1, R

P
i−1

)
≤ f

(
k?T,CPi , R

P
i−1

)
(growth)

< f
(
WPi , C

P
i , R

P
i−1

)
. (shape of f )

Similarly, WPi > WPi − k?T ≥M?, then we have:

f
(
WPi − k?T,CPi , RPi−1

)
≤ f

(
WPi , C

P
i , R

P
i−1

)
.

Finally, plugging back these values into Equation 3.4, we obtain that P ′ has a better slowdown than P ,
contradicting the optimality.
• Assume now that ci2 ≤ ci1 . By monotony, ri2 ≤ ri1 . With a similar demonstration, we show that

by including a checkpoint of size ci2 at location mi − k?n (which indeed corresponds to a task of type
i2), leads to the same result.

Theorem 3.5. There exists an optimal pattern P whose length satisfies `(P) ≤ 2nM?, and which
includes at most 2n2(k? + 1) tasks.

Proof. From Lemma 3.2, we know that there exists an optimal pattern with at most n checkpoints.
Using Lemma 3.6 which gives a bound on the inter-checkpoint time, we obtain the bound on the length.
Thanks to Equation 3.3, we know that a length of M? corresponds to at most k? + 1 iterations (of n
tasks each), which leads to the bound on the number of tasks.

We now need to check that k? is polynomial in the size of the input. The size of the input is
O(nmaxi log ti), or equivalently O(n log T ), because the n values ti are encoded in binary. Here we
make the natural assumption that ci = O(T ) and ri = O(T ) for 0 ≤ i < n, meaning that the largest

checkpoint/recovery is not longer than a whole iteration2. Recall that wci ≈
√

2ci
λ [29, 110], hence

M? = O(
√

maxi ci
λ + T ) and k? = O

(
1√
λT

+ 1
)

. We obtain a polynomial value k? = O(n log T ) as

soon as µ = 1
λ = O(T (n log T )2). This requires that the application MTBF is not too large in front of

the iteration length, which makes full sense because otherwise we would not checkpoint more than very
rarely, once every many iterations. In Section 3.3.4, we present a dynamic programming algorithm to
compute an optimal pattern, whose complexity is polynomial in n and k?. This complexity is indeed
polynomial in the size of the instance under the very natural assumptions that we made.

Computing an optimal pattern

In the previous section, we have shown the existence of an optimal pattern of polynomial length. Here,
we show how one can compute an optimal pattern through a dynamic programming algorithm. This
dynamic programming algorithm relies upon the previous results:

• We study patterns P of length at most 2nM? (thanks to Theorem 3.5), and we know that an
optimal pattern of this length contains a polynomial number of tasks;

• We consider different initial tasks in the pattern (i0 ∈ {0, . . . , n− 1});

• We use the fact that there can be at most n checkpoints in the optimal pattern (thanks
to Lemma 3.2).
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Cmin(i0, k, `, b)

ci0

task ai0+1[n]

........

task ai0+k[n]

........
ci0

k tasks
` tasks

No checkpoints ≤ b checkpoints

Figure 3.6: Illustration of the minimum expected execution time Cmin(i0, k, `, b) of a series of ` tasks as
characterized by Lemma 3.7.

The following lemma characterizes the minimal cost of a checkpoint path.

Lemma 3.7 (Minimum cost of a path). The minimal expected execution time (or cost) of a checkpoint
path (i) of ` tasks, (ii) whose first task is ai0+1[n], (iii) with at most b checkpoints, (iv) where the k − 1
first tasks are not checkpointed and (v) where the last task is checkpointed, is given by;

Cmin(i0, k, `, b) = min
{
Cmin(i0, k + 1, `, b);
Eλ(

∑k
i=1 ti0+i[n], ci0+k[n], ri0) + Cmin(i0 + k[n], 1, `− k, b− 1),

when ` > 0 and b > 0, and where we consider the following initialisation cases:

(a) Cmin(i0, `+ 1, `, b) =
{

0, if ` = 0,
∞, otherwise.

(b) Cmin(i0, k, ` > 0, 0) =∞.

Please refer to Figure 3.6 for a graphical representation of C(i0, k, `, b).

Proof. The result is proven recursively. We start with the initialisation cases. When no checkpoint is
allowed (b = 0, case (b)), it is not even possible to checkpoint the last task (as required by condition (v),
so the cost is infinite. For case (a), k = ` + 1 leads to ` tasks not being checkpointed (condition (iv)),
which contradicts the fact that the last task is checkpointed (condition (v)), except when the number of
tasks is zero: in this case, we assume that no task is performed in this path and no checkpoint is taken.

We now move to the general case. Considering a path that verifies the condition of the lemma, we
distinguish two cases:

(i) The kth task is not checkpointed, which leads to the first k tasks not being checkpointed, hence
the minimum cost is Cmin(i0, k + 1, `, b);

(ii) The kth task is checkpointed. The cost of the first part k − 1 tasks not checkpointed followed by
this kth task and its checkpoint is given by Eλ(

∑k
i=1 ti0+i[n], ci0+k[n], ri0). The cost of the rest of

the path is recursively expressed as the minimal cost of a path of length `− k that starts after task
ai0+k[n] with b− 1 checkpoints.

2Technically, we can relax the assumption to ci, ri = O(Tn) without increasing the problem size.
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We then select the case that leads to the minimal expected execution time.

Thanks to Lemma 3.6, we know that in an optimal pattern, there are at most 2n(k?+1) tasks between
two checkpoints. So we can safely restrict our search space to k = 1, 2, . . . 2n(k? + 1) and consider that
the cost for larger values of k is infinite. Hence, the previous recursive definition of the cost is applied
to the design of the dynamic programming algorithm (Algorithm 3).

Algorithm 3: Finding the minimum slowdown of a pattern of size at most 2n2(k? + 1)
1 Procedure PATTERN(k?, n):
2 maxK ← 2n(k? + 1)

/* Initialization of ProgDyn */
3 for i0 = 0 to n− 1 do
4 for ` = 0 to 2n2(k? + 1) do
5 for b = 1 to n do
6 if ` = 0 then
7 Cmin(i0, `+ 1, `, b)← 0
8 else
9 Cmin(i0,min(maxK , `+ 1), `, b)←∞

10 for k = 1 to min(maxK , `) do
11 Cmin(i0, k, `, 0)←∞

/* Precompute
∑k

i=1 wi0+i[n] */
12 for i0 = 0 to n− 1 do
13 W [i0, 1]← ti0+1[n]
14 for k = 2 to 2n2(k? + 1) do
15 W [i0, k]←W [i0, k − 1] + ti0+k[n]

/* Computing the ProgDyn */
16 for ` = 1 to 2n2(k? + 1) do
17 for i0 = 0 to n− 1 do
18 for k = min(maxK − 1, `) downto 1 do
19 for b = 1 to n do
20 Cmin(i0, k, `, b)←

min(Cmin(i0, k+1, `, b),Eλ(W [i0, k], Ci0+k[n], Ri0 )+Cmin(i0+k[n], 1, `−k, b−1))
/* Computing the minimal slowdown */

21 SD =∞
22 T =

∑n

i=1 ti
23 for i0 = 0 to n− 1 do
24 for m = 1 to 2n(k? + 1) do
25 SDtemp = Cmin(io, 1,mn, n)/mT
26 if SDtemp < SD then
27 SD ← SDtemp

28 return SD

Theorem 3.6. PATTERN(k?, n) (Algorithm 3) returns the slowdown of the pattern of an optimal periodic
schedule with time complexity O((k?)2n5).

Proof. We use the fact that there exists an optimal periodic schedule whose pattern includes a number
m × n of tasks with m ≤ 2n(k? + 1) and uses at most n checkpoints (see Theorem 3.5). Algorithm 3
computes the minimum cost of all patterns including at most this number of tasks, then computes the
minimum cost of a pattern whose number of tasks is a multiple of n. The slowdown that we look for
is indeed this cost. The complexity of the algorithm derives from the loop nest necessary to recursively
compute Cmin.
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3.4 Simulation Results

In this section, we describe the experiments conducted to compare the proposed optimal checkpointing
strategy with simpler heuristics. We perform simulations on three application scenarios: two from real-
life applications (neuroscience and sparse linear solver), and one using synthetic parameters.

The experimental methodology is presented in Section 3.4.1. The results for the neuroscience appli-
cation are detailed in Section 3.4.2 . The results for the synthetic application are detailed in Section 3.4.3.
The results for the sparse linear solver application are detailed in Section 3.4.4. Execution time of the
dynamic programming algorithm is presented in Section 3.4.5. Section 3.4.6 provides summary.

3.4.1 Experimental methodology

We detail here the applications, the algorithms used in the simulations and the various settings. All
algorithms have been implemented in MATLAB and R. The corresponding code is publicly available
at [33].

Neuroscience application

For the first application scenario, we extracted data from a representative neuroscience application,
Spatially Localized Atlas Network Tiles (SLANT) [59]. This is an iterative application composed of
N = 103 iterations, and each iteration has n = 7 tasks. These tasks are described in Table II, with
parameters taken from [43]. Table II reports the mean and standard deviation of the task execution
times, which obey a Normal probability distribution. The Pearson correlation of the different tasks
was studied in [43], which showed that the tasks are not correlated except for tasks a0 and a1 which are
proportional. For the first set of experiments in Section 3.4.2, we consider that the tasks are deterministic
(as assumed throughout this work) and use mean values as execution times (ti = µi). However, for the
second set of experiments in Section 3.4.2, we assess the robustness of our approach and independently
draw execution times from the Normal distributions for tasks a0, a2, a3, a4, a5, a6, while a1 is set to be
equal to 3.4× a0 due to its high correlation with a0. We use a downtime D = 5.

Task a0 a1 a2 a3 a4 a5 a6
Mean µi (sec) 255 871 588 459 3050 804 1130
Stdev σi (sec) 96.7 322 76.8 48.1 263 393 568

Checkpoint time ci (sec) 22.22 61.11 33.33 50 283.33 16.67 61.11
Recovery time ri (sec) 8.89 24.44 13.33 20 113.33 6.67 24.44

Table II: Tasks of the neuroscience application.

Synthetic application

The second application scenario is randomly generated. We consider an iterative application composed
of N = 103 iterations, each iteration has n = 10 or 20 cyclic tasks. We assume that the execution
time ti of each task ai follows a probability distribution D, where D is UNIFORM(a, b). The default
instantiation for this distribution is µD = 550 for UNIFORM(100, 1000).

For the first set of experiments in Section 3.4.3, we set checkpoint times as ci = ηti, where η is the
proportion of checkpoint time to the execution time of each task. We conduct experiments with η = 0.1.
However, for the second set of experiments in Section 3.4.3, we report results for another instantiation of



42 CHAPTER 3. DETERMINISTIC ITERATIVE APPLICATIONS

checkpoint times, which are then taken in UNIFORM(10, 100), independently of the task running times.
In both sets, we use r = c for the recovery time and a fixed downtime D = 5,

Sparse linear solver application

The third application scenario is GCR, a Krylov subspace method [37] solving them-dimensional sparse
linear system Ax = b. Each iteration of the method is divided into n sub-iterations, whose computa-
tional and memory requirements increase from one sub-iteration to the next. The common way to control
the number of iterative steps within an acceptable range is to adopt a restart strategy [88, 95, 109], that is,
to fix a small value n (usually much less than m, such as 10, 20, etc.). If the last n-th sub-iteration does
not lead to convergence, then the approximate solution xn is used as the initial value of a new iteration,
and the GCR method is restarted. The process is repeated until a satisfactory approximate solution is
found, as detailed in Algorithm 4.

Algorithm 4: GCR(n)
1 x0, r0 = Ax0 − b, p0 = P−1r0, q0 = Ap0

2 for k = 1, 2, . . . , until convergence do
3 for i = 0, 1, . . . , n− 1 do

4 β=(ri,qi)
(qi,qi) // 4m− 1

5 xi+1 = xi + βpi // 2m
6 ri+1 = ri + βqi // 2m
7 if

∥∥ri+1
∥∥ ≤ ε then

8 exit
9 e = P−1ri+1 // 3m− 1

10 ẽ = Ae // 2nz(A)− 1
11 for l = 0, 1, . . . , i do

12 αl = (ẽ,ql)
(ql,ql) // (i+ 1)(4m− 1)

13 pi+1 = e +
i∑
l=0

αlp
l // m+ (i+ 1)m

14 qi+1 = ẽ +
i∑
l=0

αlq
l // m+ (i+ 1)m

15 [x0, r0,p0, q0]← [xn, rn,pn, qn]

Task Floating point operations fi Vectors to checkpoint Mi Vectors to recover M ′i
a0 19m− 4 + 2nz(A) p1, q1, r1,x1 4m p0,p1, q0, q1, r1,x1 6m
a1 (6m− 1) + 19m− 4 + 2nz(A) p2, q2, r2,x2 4m p0,p1,p2, q0, q1, q2, r2,x2 8m
. . . . . . . . . . . . . . . . . .

an−2 (6m− 1)(n− 2) + 19m− 4 + 2nz(A) pn−1, qn−1, rn−1,xn−1 4m p0, . . . ,pn−1, q0, . . . , qn−1, rn−1,xn−1 (2n+ 2)m
an−1 (6m− 1)(n− 1) + 19m− 4 + 2nz(A) p0, q0, r0,x0 4m p0, q0, r0,x0 4m

Table III: Tasks composing the GCR application.

We consider an iterative application composed of N = 103 iterations, and each iteration (outer
loop k) has either n = 10 or n = 20 tasks. Each task corresponds to one sub-iteration of the loop
on i. The number of non-zero elements of sparse matrix A is denoted as nz(A). We assume that m =
100000, nz(A) = 27m, and the preconditioner matrix P is a diagonal matrix in the simulation. We pick
(somewhat arbitrarily) 27 because it is the size of a 3×3×3 cube for a neighborhood of interactions, so
the matrix has 27 diagonals (3D-stencil for Jacobi or Gauss-Seidel, typically). The number of floating-
point operations for task i is fi = (6m− 1)i+ 19m− 4 + 2nz(A), see Table III.
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We use incremental checkpointing [1, 74] for GCR(n). The vectors that need to be saved if we
checkpoint after task i and the corresponding size ci of the checkpoint are detailed in Table III. Similarly,
the vectors that need to be recovered if we experiment a failure task ai and the corresponding size ri of
the recovery are also detailed in Table III. We observe that ci remains constant and small for all i, owing
to the incremental checkpointing technique. Of course, the larger i, the more vectors to recover, and ri
is increasing.

We consider here that the computing platform has unit speed s = 1, so that ti = fi/s = fi.
In order to test different scenarios for the relative cost of checkpoint compared to computations, we
define the Communication-to-Computation Ratio (CCR) as ratio between the cost of communicating
one byte to the cost of computing one flop. With the choice s = 1, the CCR is exactly the inverse
of the bandwidth. Hence, from the size of the memory to checkpoint Mi, we compute the time for a
checkpoint: ci = Mi×CCR. Similarly, we let ri = M ′i×CCR, where the size of the memory to recover
is M ′i . We conducted experiments with CCR ∈ {0.1, 0.2, 1, 5, 10}, thereby covering a wide range of
scenarios (respectively low, balanced and high communication cost).

Failure scenarios

We consider a wide range of failure rates. To allow for consistent comparisons of results across different
iterative processes, we fix the probability that a failure occurs during each iteration, which we denote as
pfail, and then simulate the corresponding failure rate. Formally, for a given pfail value, we compute the
failure rate λ such that pfail = 1 − e−λT , where T is the execution time per iteration with n tasks. We
conduct experiments for five pfail values: 10−3, 10−2, 10−1, 10−0.5 and 10−0.1. For each application,
these different values of pfail allow us to quantify the risk faced during execution. For example, pfail =
10−2 means one failure will occur every 100 iterations on average. The risk is highest for pfail = 10−0.1

which corresponds to 1 failure per 1.26 iterations on average, while the risk is lowest for pfail = 10−3

which corresponds to 1 failure per 1, 000 iterations on average.
Table IV provides the correspondence between pfail and actual MTBF values for the neuroscience

application. The base time (without checkpoint nor failure) for one iteration of the neuroscience appli-
cation is 7, 157 seconds, or almost 2 hours. Thus 1, 000 iterations will last 83 days approximately. For
instance we observe that pfail = 10−1 corresponds to one failure every 19.9 hours, which is typical of
several large-scale HPC machines that experience around one failure per day. Smaller values of pfail
correspond to platforms with fewer failures, one per week or less. Larger values of pfail represent more
failure-prone platforms, with a failure every few hours. Altogether, varying the value of pfail enables to
explore a wide range of scenarios.

pfail 10−3 10−2 10−1 10−0.5 10−0.1

MTBF 82.8 days 8.3 days 19.9 hours 6.3 hours 2.5 hours

Table IV: MTBF for the neuroscience application.

For the synthetic application, task execution times are defined up to a constant factor: we can en-
vision an arbitrary unit of length, ranging from seconds to hours. Then the value of pfail is more repre-
sentative of the failure rate than the MTBF, whose calculation would need to fix the execution unit. On
the contrary, using pfail enables to directly quantify the risk faced by the application in terms of a failure
probability per iteration.

For each experiment, the simulations are performed on 100 randomly generated instances
{I1, . . . , I100}. For all i, an instance Ii is a pair (Si,Fi), where Si (resp. Fi) is the application (resp.
failure) scenario associated with the instance. For the neuro-science application, Si corresponds to the
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values presented in the previous tables, while for the synthetic application scenario, Si is randomly
generated as described above.

Reference strategies

We consider four reference strategies. The first two strategies are quite natural: (i) CKPTEACHITER

consists in checkpointing at the end of each iteration, that is, a checkpoint is taken after the last task
an−1 of each iteration; and (ii) CKPTEACHTASK consists in checkpointing after every task ai of every
iteration.

The other two strategies are extensions of the Young/Daly approach for divisible applications where
one can checkpoint at any time-step with constant cost c: then the optimal period is to checkpoint every
wc =

√
2c
λ seconds (see Lemma 3.4). For an iterative application, the corresponding approach is to

work for wc seconds and to checkpoint at the end of the current task (and repeat). The difficulty is that
c is not well-defined here, because the tasks have different checkpoint costs. With n tasks of checkpoint

costs ci, 0 ≤ i < n, we take the average cost cave =
∑

0≤i<n ci

n and denote the previous strategy
using c = cave as CKPTYDAVE3. Finally, the fourth strategy CKPTYDPER is a periodic extension of
Young/Daly approach: it chooses the task of an iteration with minimum checkpoint size cmin. Only the
result of this task will (possibly) be checkpointed. Then it uses the Young-Daly formula to compute how
many iterations to include in between two checkpoints, namely max

(
1, round

(
wcmin
T

))
. We remark

that since the checkpoint cost of each task is constant c for the GCR application, the CKPTYDPER

heuristic chooses the task with minimum recovery size rmin. Only the result of this task will (possibly)
be checkpointed. Then it also uses the Young-Daly formula to compute how many iterations to include
in between two checkpoints, namely max

(
1, round

(wc
T

))
.

3.4.2 Results for the neuroscience application

We report median values in all experiments, and in the scalability analysis we use boxplots. The color
chart is the following: red for CKPTEACHITER, green for CKPTEACHTASK, blue for CKPTYDAVE and
purple for CKPTYDPER.

Comparison of the strategies

In Figure 3.7, the makespan of each reference strategy is normalized by the optimal makespan (obtained
with Algorithm 3, hence the lower the better. This presentation allows us to directly quantify the per-
formance overhead incurred by each strategy with respect to the optimal approach. Checkpointing after
each task, as done by CKPTEACHTASK, gives worst performance when pfail is small (very few failures).
Its performance improves significantly when the number of failures increases. This behavior is expected
as it is a consequence of the very high number of checkpoints that are taken.

On the contrary, the Young-Daly inspired heuristics (CKPTYDPER and CKPTYDAVE) gives almost
optimal results when there are very few failures, and they get worse when the number of failures in-
creases. Again, this behavior is expected: with very few failures, if the frequency of checkpointing is of
the same order of magnitude as in the optimal solution, the fact that the checkpointing decision that is
taken is not optimal has little impact, because the checkpoint overhead is very low. With numerous fail-
ures, CKPTYDPER, which is limited to at most one checkpoint per iteration, does not checkpoint often

3We have also experimented with two variants using c = cmin = min0≤i<n ci, and c = cmax = max0≤i<n ci. Results
are quite similar.
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Figure 3.7: Normalized performance overhead with different failure probabilities (neuroscience).

enough, and the loss in work when there is a failure gets too expensive; but CKPTYDAVE can check-
point more frequently, and its performance degrades less severely, only because it happens to checkpoint
some tasks of high checkpoint cost.

Finally CKPTEACHITER is probably the less interesting strategy as its performance is always worse
than CKPTYDPER and CKPTYDAVE. As pfail increases, its performance first improves and then gets
worse: when pfail is very small, (i) it does not choose the task with smallest checkpoint size and (ii) it
checkpoints too often compared to CKPTYDPER and CKPTYDAVE which would allow to checkpoint
after several iterations and not just one; conversely, when pfail is very large, checkpointing once after
each iteration is not enough, thus the relative cost of the CKPTEACHITER strategy increases. It is still
interesting to see that the difference with CKPTYDPER remains always small, while the difference with
CKPTYDAVE gets large for frequent failures. It seems that finding the smallest checkpoint size is not
critical, while finding the best checkpoint frequency is more important.

For all strategies, when the frequency of failures reaches its maximal value pfail = 10−0.1 (approxi-
mately 4 failures every 5 iterations), then all greedy heuristics perform poorly, and the optimal solution
provides significant gains, even over CKPTYDAVE which is the best competitor overall.

Absolute overhead

In Figure 3.8, we provide absolute values for the overhead of the strategies of Figure 3.7, for five values
of pfail. The time spent for regular periodic checkpointing, or failure-free overhead, is represented in
green; it is highest for CKPTEACHTASK, as expected. The failure-induced overhead (downtime, recov-
ery and re-execution) is represented in red; it is higher for CKPTEACHITER and CKPTYDPER. The
details of the overheads are interesting: the optimal strategy is really able to trade-off checkpointing and
failures; it spends roughly three times less checkpointing than the second best strategy CKPTYDAVE,
for a similar failure-induced time. As observed in Figure 3.8, with pfail = 10−1, the cumulated overhead
(green and red) ranges from 3.37% to 8.25%, while for pfail = 10−0.5, it ranges from 8.64% to 18.73% .

Scalability

In Figure 3.9, we study the scalability of the approach by varying the number of iterations from 10 to
1, 000. We see that the variance is high at first but the performance of each strategy stabilizes from 100
iterations on.
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Figure 3.8: Bar plots for absolute overhead (neuroscience).



3.4. SIMULATION RESULTS 47

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1e+01 1e+1.5 1e+02 1e+2.5 1e+3

number of iterations Niter

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

Figure 3.9: Box plots for normalized performance overhead: varying the number of iterations (neuro-
science, pfail = 10−0.5).

Robustness

In Figure 3.10, we study the robustness of the approach in front of variations in task execution times,
which we draw from their Normal distributions as stated in Section 3.4.1. The results of CKPTEA-
CHITER, CKPTEACHTASK and CKPTYDPER are similar with those in Figure 3.7, with deterministic
execution times. However, the results of CKPTYDAVE, which decides on the fly when to checkpoint,
become better and close to the optimal strategy when pfail gets smaller.
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Figure 3.10: Normalized performance overhead with stochastic execution times (neuroscience).

3.4.3 Results for the synthetic application

Comparision of the strategies

Results for the synthetic application scenario are reported in Figures 3.11 and 3.12, with two values of
n. For the first set of experiments, we set checkpoint times as ci = ηti, where η = 0.1 (see Figure 3.11).
An important factor that influences the performance of checkpointing strategies, and more precisely of
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the checkpointing and recovery overheads, is the data-intensiveness of the application. For the synthetic
application, in order to test the impact of the correlation between checkpoint costs and task running times
on the strategies, we let the checkpoint time move from dependent to independent of the task running
time for the second set of experiments (see Figure 3.12).

When n increases from 10 to 20, CKPTEACHITER and CKPTYDPER are closer to the optimal
strategy when pfail is small (for 10−3 and 10−2), but further away when pfail is large (for 10−1, 10−0.5 and
10−0.1); on the contrary, CKPTYDAVE is closer to the optimal strategy for all pfail values. Altogether,
the results are quite similar to those obtained with the neuroscience application.
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(b) n=20

Figure 3.11: Normalized performance overhead with different failure probabilities (synthetic, ci =
0.1 · ti).
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Figure 3.12: Normalized performance overhead with different failure probabilities (synthetic, ci drawn
in UNIFORM(10, 100)).
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Absolute overhead

In Figure 3.13, we provide absolute values for the overhead of the strategies of Figures 3.11a and 3.12a,
for five values of pfail. The time spent for regular periodic checkpointing, or failure-free overhead, is
represented in green; it is highest for CKPTEACHTASK, as expected. The failure-induced overhead
(downtime, recovery and re-execution) is represented in red; it is higher for CKPTEACHITER and CKP-
TYDPER. The optimal strategy is really able to trade-off checkpointing and failures. Altogether, the
results are quite similar to those obtained with the neuroscience application.

Impact of the checkpoint time

In the above experiment, we set checkpoint times as ci = ηti or ci drawn in UNIFORM(100η, 1000η),
and we conducted experiments with fixed η = 0.1. Here, we vary the checkpointing cost of each task
in order to study its influence on the results. We have two settings for the checkpointing cost. First, we
consider that the checkpointing time is proportional to the task execution time, as assumed in the main
paper: ci = ηti. We have previously considered η = 0.1, and we conduct here experiments with η ∈
{0.01, 0.05, 0.10, 0.15, 0.20} thereby covering a wide range of scenarios (respectively low, balanced and
high checkpointing cost). Lower checkpoint costs can be achieved with state-of-the-art in-memory or
hierarchical checkpoint protocols [75], while larger checkpoint costs correspond to traditional protocols
that save application data on remote disks. Second, as stated above, we set checkpoint times taken
uniformly at random in some interval. We now set checkpoint times taken in UNIFORM[100η, 1000η]
to also cover wider range of scenarios (recall that the average task length is 550 seconds). Results for
varying the value of η are reported in Figure 3.14 to Figure 3.18 with the five pfail values and the two
checkpoint settings (proportional or uniform).

We first observe that the distribution of checkpoint times (proportional to the task execution time
or uniform) has very little impact of the results. However, the heuristics do behave very differently
when varying checkpoint time, and their behavior also depends on the failure probability. When pfail is
small (10−3 or 10−2), we note that the CKPTEACHITER heuristic (in red) performs worse and further
away from the optimal strategy when η gets larger; for larger values of pfail, its performance is slightly
improved when η gets larger. The performance of the CKPTEACHTASK (in green) heuristic becomes
worse and further away from the optimal strategy when η gets larger for all pfail values. When pfail is very
small (10−3), the performance CKPTYDAVE heuristic (in blue) is quite close with the optimal strategy
for all values of η; when pfail is small (10−2 or 10−1), it is improved when η gets smaller. Finally, when
pfail is large (10−0.5 or 10−0.1), the performance of CKPTYDAVE slightly varies with η, but it is almost
optimal for small values of η. The performance of the CKPTYDPER heuristic (in purple) is very close to
the optimal strategy when pfail is small (10−3 or 10−2). For larger failure probabilities, its performance
is improved when η gets larger. Overall, heuristics CKPTEACHTASK and CKPTYDAVE benefits from a
very small checkpoint time: when the overhead due to checkpointing is negligible, these heuristics reach
an optimal makespan.

3.4.4 Results for the GCR application

Comparison of the strategies

Results for the GCR application are reported in Figures 3.19 to 3.23, with two values of n and five values
of CCR.

When the CCR increases, CKPTEACHITER and CKPTYDPER are further away from the optimal
strategy when pfail is small (for 10−3 and 10−2), while both strategies are closer to the optimal strategy
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(a) Proportional checkpoint time: ci = 0.1 · ti
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(b) Uniform checkpoint time: ci ∈ UNIFORM(10, 100)

Figure 3.13: Bar plots for absolute overhead (synthetic, n = 10).
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Figure 3.14: Normalized performance overhead with different values of η (synthetic, n = 10 and pfail =
10−3).
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Figure 3.15: Normalized performance overhead with different values of η (synthetic, n = 10 and pfail =
10−2).
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Figure 3.16: Normalized performance overhead with different values of η (synthetic, n = 10 and pfail =
10−1).
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Figure 3.17: Normalized performance overhead with different values of η (synthetic, n = 10 and pfail =
10−0.5).
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Figure 3.18: Normalized performance overhead with different values of η (synthetic, n = 10 and pfail =
10−0.1).
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Figure 3.19: Normalized performance overhead with different failure probabilities. (GCR(n), CCR =
0.1).
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Figure 3.20: Normalized performance overhead with different failure probabilities. (GCR(n), CCR =
0.2).

1.0

1.2

1.4

1.6

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

(a) n=10

1.0

1.1

1.2

1.3

1.4

1.5

1e−03 1e−02 1e−01 1e−0.5 1e−0.1

Pfail

m
ak

es
pa

n 
no

rm
al

iz
ed

 b
y 

M
S

op
tim

al

strategy CKPTEACHITER CKPTEACHTASK CKPTYDAVE CKPTYDPER

(b) n=20

Figure 3.21: Normalized performance overhead with different failure probabilities. (GCR(n), CCR =
1).
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Figure 3.22: Normalized performance overhead with different failure probabilities. (GCR(n), CCR =
5).
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Figure 3.23: Normalized performance overhead with different failure probabilities. (GCR(n), CCR =
10).
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when pfail is large (for 10−1, 10−0.5 and 10−0.1); CKPTEACHTASK and CKPTYDAVE are further away
from the optimal strategy for all pfail values. In addition, when n increases from 10 to 20, CKPTEA-
CHITER, CKPTYDPER and CKPTYDAVE are closer to the optimal strategy, while CKPTEACHTASK

keeps a high overhead with a ratio up to 1.5 to the optimal.

Absolute overhead

In Figure 3.24, we provide absolute values for the overhead of the strategies of Figures 3.19a, 3.21a
and 3.23a, for five values of pfail. The time spent for regular periodic checkpointing, or failure-free
overhead, is represented in green; it is highest for CKPTEACHTASK, as expected. The failure-induced
overhead (downtime, recovery and re-execution) is represented in red; it is higher for CKPTEACHITER

and CKPTYDPER. The optimal strategy is really able to trade-off checkpointing and failures. Alto-
gether, the results are quite similar to those obtained with the neuroscience application and synthetic
application.
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Figure 3.24: Bar plots for absolute overhead (GCR(n), n = 10).
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3.4.5 Execution time of the dynamic programming algorithm

In Table V, we report the execution time of the dynamic programming algorithm for all application
scenarios. For the neuroscience application, the execution time is always below one minute. For the
synthetic application, the execution time sharply increases when n doubles from 10 to 20, and reaches
up to 10 minutes for pfail = 10−3. Table VI, explains why: the number of tasks in the optimal period,
estimated by the upper bound of Theorem 3.5, becomes huge, while the actual number of tasks actu-
ally occurring in the optimal pattern is much lower. The bound of Theorem 3.5 is overly pessimistic,
which increases the execution time of the dynamic programming algorithm. While 10 minutes for the
algorithm is negligible in front of the 83 days of the application base time, one could easily decide to
use CKPTYDPER, the best reference strategy, instead of the optimal approach. Indeed, for pfail ≤ 10−2,
their overheads are of the same order.

pfail 10−3 10−2 10−1 10−0.5 10−0.1

Neuroscience 5.46 0.88 0.21 0.21 0.22
Synthetic, n = 10 27.49 5.16 1.27 1.25 1.33
Synthetic, n = 20 550.89 95.49 46.75 43.37 46.07

Table V: Execution time (seconds) of the dynamic programming algorithm.

pfail 10−3 10−2 10−1 10−0.5 10−0.1

Neuroscience: Bound 980 392 196 196 196
Neuroscience: Optimal pattern 14 7 7 7 7
Synthetic, n = 10: Bound 1800 800 400 400 400
Synthetic, n = 10: Optimal pattern 150 50 50 20 10
Synthetic, n = 20: Bound 5600 2400 1600 1600 1600
Synthetic, n = 20: Optimal pattern 200 180 20 20 20

Table VI: Number of tasks from the bound of Theorem 3.5 and in the optimal pattern.

3.4.6 Summary

In summary, no reference heuristic is able to give close-to-optimal makespan for every value of pfail:
CKPTYDPER is better with very few failures, while CKPTEACHTASK and CKPTYDAVE are better
when there are many failures. For these extreme scenarios, using the ad-hoc greedy heuristic is a good
solution to trade-off the complexity of finding the solution with the gain in performance. However, in in-
termediary scenarios, the best reference heuristic can still increase the time to solution by 10% compared
to the optimal one, showing the importance of computing the correct solution! Finally, when checkpoint
costs can be kept very low, e.g., owing to checkpoint libraries such as VeloC [75], our experiments
show that it is safe to use any heuristic that checkpoints sufficiently often, such as CKPTEACHTASK or
CKPTYDAVE, because their performance gets close to the optimal solution. Altogether, the best com-
petitors are CKPTYDPER and CKPTYDAVE, but none of them is always superior to the other, while
our proposed optimal scheme enables us to carefully optimize the checkpoint pattern for all problem
instances.

As for the relevance to exascale HPC scenarios, consider for instance the synthetic application
(see Figure 3.13). When pfail is low (10−3 to 10−1), all methods are good, except CKPTEACHTASK
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whose checkpoint overhead is prohibitive. When pfail increases to 10−0.5, the overheads of CKPTEA-
CHITER and CKPTYDPER are twice larger than that of CKPTYDAVE, while CKPTEACHTASK achieves
intermediate results. Finally, for the highest value pfail = 10−0.1, the best competitor is CKPTEACH-
TASK, followed by CKPTYDAVE, but the difference with the optimal solution gets much larger for all
methods. How realistic is the latter value pfail = 10−0.1 for a future exascale HPC application running
on 1 million cores, each with individual MTBF of 10 years? the application will experience a crash
every 5 minutes; if an iteration lasts 4 minutes, this corresponds precisely to pfail = 10−0.1.

3.5 Conclusion

In this work, we have investigated checkpointing strategies for iterative applications. Each iteration
is composed of a chain of tasks, and these tasks have different lengths and different checkpoint costs.
Simple approaches would checkpoint either every task, or the last task at the end of each iteration. An
approach inspired by the Young/Daly formula works for PY D seconds, where PY D comes from the
Young/Daly formula with a checkpoint cost averaged over all tasks, and then checkpoints as soon as pos-
sible (and repeats). Another approach inspired by the Young/Daly formula selects the task with lowest
checkpoint cost and checkpoints every pth instance of that task, where p is computed so that the period
length approximately obeys the formula. But what is the optimal strategy? The main contributions of
this chapter are threefold: (i) we have shown that there exists a periodic strategy that is optimal; (ii) we
have provided a dynamic-programming algorithm that computes the optimal period; and (iii) we have
shown through a set of experiments that the gains over the other approaches are significant, and that the
optimal strategy is the only one achieving a robust solution for all problem instances cases. Given the
importance of iterative applications in HPC, we expect that these contributions will greatly improve the
deployment of resilient solutions at scale.

This study opens interesting problems in this area, such as dealing with iterative applications whose
iterations are composed of a Directed Acyclic Graph (DAG) of tasks, not just a linear chain. Such
applications are ubiquitous in real-time systems. However, the mere fact that several tasks may execute
concurrently on the platform raises very complicated challenges [50, 51], and most likely only heuristic
(suboptimal) algorithms will be obtained.



Chapter 4

Node stealing for failed jobs

4.1 Introduction

Instead of studying resilience for specific applications, such as iterative applications, in this chapter, we
study the problem on a larger scale for the whole system and target the batch scheduler. As mentioned in
the introduction, batch schedulers have faced additional constraints in the last decade: with reservation
sets becoming larger, the frequency of node crashes within the reservation of a job has become more
frequent.

When a job fails, the standard policy is to relaunch it as soon as possible (from its last valid check-
point): the job is put back in the submission queue, but with a high priority, so that it can be re-executed
rapidly (e.g., see the ‘job failover’ section in [91]). If there is a free node available at the time of the
failure, the failed job will be able to resume execution (almost) immediately: because it is given a high
priority, the failed job will be re-assigned all the surviving nodes of its reservation, plus the free node.
Of course it may well be the case that no free node is available at the time of a failure, say if the platform
is over-subscribed. In that case, the failed job will have to wait until enough resources become available
for its re-execution.

In this chapter, we propose a novel approach for High Performance Computing (HPC) platforms:
if there is no free node available when a failure strikes a job, we propose to create one! This means
to interrupt another job that is currently executing, and to steal one of its nodes and assign it as a new
resource to the failed job. This node stealing approach is inspired by similar ideas in cloud computing,
where users who have paid for spot instances [65, 69] can have their resources taken back without prior
notification. To the best of our knowledge, this work is the first work that studies node stealing in an
HPC framework. There are several decisions to explore:

• Which job to interrupt? Clearly, small jobs with one or few nodes are good candidates, because
they are easier to re-schedule. But interrupting a small job whose waiting time is already high
may not be fair to the owner of that job, so trade-offs between different optimization metrics must
be achieved.

• When to interrupt? Immediately after the failure is the simplest solution, but the interrupted
job will lose the work done since its last checkpoint. Another solution is to wait for a checkpoint
before the interruption, or immediately enforce a proactive checkpoint, depending upon what is
possible.

The main contributions of this chapter are the following:

• A thorough description of the problem, and how to measure its usefulness;

59
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• A focus on SFSJ (Steal From Small Jobs), a strategy which chooses the job to interrupt among
those with the smallest number of nodes and, if ties, with the shortest execution time so far;

• An evaluation of SFSJ in a simulated framework, based upon trace-based scenarios;

• A comparative assessment of several other node stealing strategies.

The rest of the chapter is organized as follows. Section 4.2 provides motivational examples. Sec-
tion 4.3 details the design of the SFSJ strategy. Sections 4.4 and 4.5 are devoted to a comprehensive
experimental comparison of SFSJ: Section 4.4 presents the methodology and the various potential ob-
jectives, while Section 4.5 presents the results and assesses the efficiency and limits of the approach.
Section 4.6 discusses several other node stealing strategies. Finally, Section 4.7 gives concluding re-
marks and hints for future work.

4.2 Motivation

This section provides a brief motivation for node stealing techniques in the presence of failures. Sec-
tion 4.2.1 shows that failures dramatically increase the flow of large jobs. Recall that the flow of a job
represents the time spent by the job in the system (see Section 4.4.3 for more details on job flows). Sec-
tion 4.2.2 presents a toy example that explains how the node stealing strategy can be used to decrease
these large flows.

4.2.1 Flows and failures

We have simulated an execution of the workload submitted to the Mira platform at Argonne National
Laboratory [28, 82, 92] in June 2017 (see details of the simulation in Section 4.4). Figure 4.1 shows
different job flows for this execution. The x-axis corresponds to the job size: jobs are classified in
categories depending on their requested number of nodes. Figure 4.1 (left) shows the maximum flow
as a function of a job size, i.e., the maximum flow observed for jobs of a given size. Figure 4.1 (right)
shows the mean flow as a function of a job size, i.e., the average flow observed for jobs of a given size.
The central value of the boxplot represents the median, while the box extends from the lower to the upper
quartiles. The upper whisker extends from the hinge to the largest value no further than 1.5 × IQR from
the hinge, where IQR is the inter-quartile range or distance between the first and third quartiles. The
lower whisker extends from the hinge to the smallest value at most 1.5× IQR of the hinge. Data beyond
the end of the whiskers are called "outlying" points and are plotted individually. Box plots provide flows
over five randomly generated failure scenarios.

On both subfigures, a red dot corresponds to the flow obtained in a failure-free environment. We can
observe that larger jobs have larger flows in a failure-free environment.

We have enriched the figure with the flows of the same jobs in presence of failures, assuming that the
MTBF of the platform is one hour (which is the typical MTBF expected for future scale systems [84]).
Given that Mira platform had 49152 nodes, this leads to an individual MTBF for each node of µind =
5.61 years. Failures are randomly generated following a Poisson process (parameter λ = 1/MTBF)
and several failure scenarios are considered. The results are reported in (black) box plots. Jobs are
checkpointed according to the optimal Young/Daly period PY D =

√
2µind

p C, where p is the job size
and C = 5 minutes is the (assumed) checkpoint length for all jobs. When a job experiences a failure,
it is re-scheduled using the baseline strategy: the job is put back into the queue with highest priority,
meaning that it will be re-executed as soon as enough nodes (the job size) are available. If there is a free
node available at the time of the failure, this free node can ‘replace’ the node struck by the failure, and
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Figure 4.1: Maximum flow and mean flow as a function of job size, without failures (red dots) and with
failures (box plots), using BASELINE (workload: Mira, June 2017 [82]). “Weighted” mean flow uses
job sizes as weights.

the failed job will be able to resume execution almost immediately. Of course this leads to re-scheduling
all the jobs in the execution queue that have not yet started their execution. This baseline strategy is the
one used in several batch schedulers such as IBM’s LSF [91].

Several observations from Figure 4.1 can be made:

1. the impact of failures is dramatically higher for jobs with more than 2048 nodes, whose flow has
increased much more than the flow of jobs with less than 512 nodes. This is because large jobs
are harder to re-schedule, due to their high resource demand.

2. the flow of short jobs may be reduced by failures. Indeed, when a large job fails, it has to wait
for the completion of another job to get a spare node. During this waiting time, many nodes are
left idle and can be used by small and short jobs using backfilling: short jobs are allowed in the
“holes” of the schedule; they may start earlier than some (longer) jobs submitted before them,
provided that they do not delay these jobs.

This observation that failures have a non-uniform impact on jobs of different sizes, is at the heart of
our approach: would it possible to steal nodes from small jobs when large jobs are struck by failures,
in order to mitigate the increase of large job flows? A key contribution of this work is to assess the effi-
ciency of node stealing in various execution scenarios. Intuitively, if the platform is not over-subscribed,
idle nodes will be available most of the time, and node stealing will be rarely (if at all) needed. But as
the subscription rate augments, we expect node stealing to become more frequent.

4.2.2 Toy example

This section uses a toy example to detail the various impacts of node stealing. It provides insight in the
decision made throughout this chapter. Consider a platform with 8 nodes. Five jobs are released at time
t = 0: see Table I and Figure 4.2 for details on these jobs. Since all five jobs are released simultaneously
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Figure 4.2: Toy example, job details in Table I. Subfigures (b) and (c) assume that a failure occurred at
t = 1 on P3.
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at time t = 0, we can assume that the scheduler has broken ties so that the jobs are scheduled in the
order J1, J2, . . . , up to J5.

At time t = 0, the scheduler starts J1 on P1, J2 on P2, and J3 on P3 to P8. It reserves P1 to P6
for J4 at t = 10. At time t = 5, it backfills J5 on P2 since it will not delay J4. Figure 4.2a depicts the
fault-free execution.

We consider now that the platform will experience failures. To simplify the example, jobs are not
checkpointed and can resume immediately after a failure if there are available nodes, meaning that we
neglect any recovery cost. Downtime (rejuvenation time) for each node is D = 5, meaning that a node
struck by a failure at time t is up again at time t + 5. Suppose then that a failure strikes P3 at t = 1.
Figure 4.2b depicts the standard scenario. J3 fails at t = 1 and is now the job with the highest priority
for re-scheduling. There are only five free nodes at t = 1, and this holds true until t = 5. Hence J3
is scheduled for execution at t = 5 on nodes P2 and P4 to P8 (since P3 is unavailable until t = 6
due to downtime). Now J3 completes at time 15 and J4 completes at time 25. Using backfilling, J5
is scheduled at t = 1 on one available node (P6 in the figure). In line with the observations made
in Section 4.2.1, we see that the smallest job has finished earlier in the presence of a failure than without
one, while the large jobs have suffered the most from the failure.

What happens instead if we steal a node when the failure strikes P3 at t = 1? We represent this
new scenario in Figure 4.2c. At t = 1, we steal P2 and thereby interrupt job J2. Job J3 can re-execute
immediately on nodes P2 (replacing P3) and P4 to P8. J3 now finishes at time 11. Then J2 has highest
priority and can re-execute on P3 when is up again at time 6. Now J2 completes at t = 11. Then J4 is
scheduled at time 11 and completes at time 21. Using backfilling, J5 executes on P1 when it becomes
available.

Table I: Job information for the toy example.

id Release
time

Job
size

Job
length

Flow without
node stealing

Flow with
node stealing

J1 0 1 8 8 8
J2 0 1 5 5 11
J3 0 6 10 15 11
J4 0 6 10 25 21
J5 0 1 2 3 10

Table I reports some statistics about the flows of the five jobs in the different scenarios without
or with node stealing. We see that the flows of the large jobs J3 and J4 have decreased, at the price
of increasing the flow of the small jobs J2 and J5. The maximum value of the flow has decreased
from 25 to 21. However its mean value has increased from 11.2 to 12.2. This is interesting as it
shows that the mean flow is highly influenced by small jobs, while these jobs are not the most critical
jobs on HPC platforms. Another widely used metric is the weighted mean flow, where the mean is
weighted by the number of nodes of each job. Here, the weighted mean flow without node stealing is
(1× 8 + 1× 5 + 6× 15 + 6× 25 + 1× 3)/(1 + 1 + 6 + 6 + 1) = 17, while the one with node stealing
is 14.733.

We also see that the total idle time of the 8 nodes has decreased. Altogether, node stealing seems
quite beneficial here! Beyond this toy example, a major contribution of this chapter is to assess the
usefulness of node stealing in various realistic execution scenarios.
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4.3 Node stealing

This section provides a high-level description of the classic conservative backfilling strategy used by
batch schedulers (Section 4.3.1) and details how to extend it to implement node stealing (Section 4.3.2).

4.3.1 Baseline strategy

First-Come First-Serve (FCFS) is a simple approach to submit jobs on parallel supercomputers. How-
ever, FCFS often leads to a waste of resources: when there are not enough free nodes for the next job,
these free nodes remain waiting until additional nodes become available. A widely-used solution is
to use non-FCFS polices, i.e., to allow for a (limited) reordering of the jobs in the queue. Backfilling
schedulers [73] have been proposed to allow small jobs further away in the queue of waiting jobs to be
processed whenever there are enough resources for them. Backfilling may lead to delay some previously
allocated jobs, hence it must be controlled so as to guarantee that large jobs will get processed eventu-
ally. This is why, in the conservative backfilling algorithm, short jobs are moved ahead only if they do
not delay any previous job already scheduled.

When a failure hits the system, the remaining part of the job that failed is put back into the scheduling
queue, with the highest priority. Depending upon the absence or presence of a resilience mechanism,
the remaining part of the job can represent either the whole job or the fraction of the job after the last
checkpoint. The schedule is then recomputed with all jobs that have not started yet. If there are multiple
jobs that have failed in the queue, they are sorted by non-decreasing arrival time. Throughout this
chapter, BASELINE will denote this conservative backfilling scheduling strategy.

4.3.2 Node stealing protocol

Node stealing should be seen as a feature that can be added on top of any batch scheduling strategy. In
this work, we add this feature on top of BASELINE scheduling. The core idea is the following: when a
failure hits a job (say job J1), and if there is no (free) node available at the time of a failure, then we
select another job (say job J2) which we interrupt. A node from job J2 is allocated to job J1, so that job
J1 can resume its execution immediately, either from its last checkpoint if any, or from scratch. Job J2
is then marked as failed, and it is restarted, again from its last checkpoint if any, otherwise from scratch.
The schedule is then recomputed with the following priorities: (high) job J1; (medium) job J2; (low)
other submitted jobs in the order of the underlying scheduling algorithm (here BASELINE).

In the following sections, we focus on a single node stealing strategy and select the job to interrupt
(called victim in the following) using the following procedure: among all running jobs that use the
fewest nodes, we select the one that has been submitted the latest. In other words, the selection criteria
are job size first, and job release time to break ties. If no victim job is found with fewer nodes than the
failed job, node stealing is not activated. Throughout this chapter, we let SFSJ (Steal From Small Jobs)
denote this particular node stealing strategy. Other node stealing strategies are discussed and evaluated
in Section 4.6, along with the possibility to take a proactive action, i.e., checkpoint the job chosen to be
interrupted before actually interrupting it.

We point out that BASELINE and SFSJ behave exactly the same when a free node is available when
a job is struck by a failure. Both strategies have the failed job re-submitted with high priority, and
therefore start re-execution immediately. However, when no free node is available when a job is struck
by a failure, the strategies differ: BASELINE lets the failed job wait until enough resources become
available, while SFSJ interrupts another job to be able to restart the failed job immediately.
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4.4 Evaluation methodology

In this section, we detail the evaluation setup. Our approach relies on the Batsim simulator [36], which
emulates a batch scheduler on a parallel platform (see Section 4.4.1). We have extended Batsim to
simulate a failure-prone environment. This extension uses a platform size and a job trace as input.
We emulate the Mira supercomputer at Argonne National Laboratory using public traces of this ma-
chine [82]. The details of the traces and how they are modified to incorporate resilience mechanisms are
presented in Section 4.4.2. Finally, we discuss key objectives used to evaluate the performance of batch
schedulers in Section 4.4.3.

4.4.1 Simulation environment

Our simulation environment relies on the existing BatSIM simulator and the Batsched scheduling al-
gorithm toolbox. BatSIM (Batch scheduler SIMulator) [36] is a modular RJMS simulator based on
SimGrid [21], which is a state-of-the-art distributed platform simulator. BatSIM is in charge of simu-
lating the behavior of the computational resources. Batsched is a C++ toolbox of scheduling algorithms
that take decisions on when and where (which nodes) to schedule a job, and possibly when to interrupt
a job. Batsched communicates with BatSIM to receive the information about released jobs and to send
scheduling decisions.

There already exists an event injection mechanism in BatSIM/Batsched that allows to make the
scheduler aware of external events on the platform. We use and adapt this mechanism in order to simulate
node failures and rejuvenation. Whenever Batsched receives the message that a given node has failed,
this node is removed from the set of machines available for computations, and thus cannot be used for
executing jobs. If a job was running on the node that just failed, Batsched notifies BatSIM that this job is
interrupted. Besides, the whole schedule predicted by Batsched has to be recomputed from the current
time (the failure time). In the new schedule, the remaining fraction of the job interrupted is given a
higher priority, as detailed in Section 4.3.2.

Similarly, when Batsched receives the message that a node that failed before has been rejuvenated, it
adds this node to the set of available machines, and the whole schedule is recomputed to take advantage
of this newly available resource. Note that in steady-state mode, not all nodes will be up: some have
been struck by failures and are rejuvenating. Hence, huge jobs are likely to wait for longer times before
execution, and some may fail and be re-submitted several times.

The code developed to run these simulations is publicly available [35], together with Python scripts
used to generate failures and R scripts used to handle workloads traces, analyze the results and produce
the final plots.

4.4.2 Supercomputer workloads

We use traces of the Mira and Intrepid supercomputers [82] to evaluate the performance of node stealing.
Specifically, Batsim uses the following data to compute its schedule: (i) release time; (ii) wall time
(predicted execution time of the jobs); (iii) length (actual execution time of the jobs, also called delay
by Batsim); (iv) number of nodes. We conduct the experiments on two months from the Mira trace:
June 2017 and March 2018. These months were selected because their stress1 on the platform are quite
reasonable (89.63% and 97.78% respectively), as well as sufficiently different to represent different
usage scenarios. Job sizes for both months are detailed in Table II. We also performed experiments on

1The stress is defined as the sum of the lengths of jobs submitted this month divided by the total platform availability time
in the month, including all nodes.
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the June 2013 month from the Intrepid trace. This month is selected as it does not contain any job with
less than 29 nodes, hence allowing to test our strategy on a quite different workload. Its stress on the
platform is 89.55%.

Table II: Number of jobs categorized by size (requested number of nodes).

Job size intervals 1 [21, 23) [23, 25) [25, 27) [27, 29) [29, 211) [211, 213) [213, 215) 215 49152 total
(Mira) June 2017 8 2 6 10 74 2103 809 269 22 8 3311

(Mira) March 2018 31 3 6 69 117 2481 923 350 31 13 4024
(Intrepid) June 2013 0 0 0 0 0 2001 574 362 31 2 2970

In order to evaluate the impact of failures, we had to transform the traces and control the fault-
tolerance mechanism. The full script that takes as input a trace and returns the modified trace is publicly
available [35]. The first step is related to the incorporation of failures. Given that Mira platform has
49152 nodes (resp. 40960 for Intrepid), and because we consider failure-intensive scenarios where one
or several resources can be down at any time, we reduce the size of the largest jobs from 49152 nodes
to 49000 nodes (resp. from 40960 to 40900 for Intrepid). This ensures that no job is rejected because it
requires more nodes than actually available on the platform. Finally, we assume that no job is interactive
in the traces, for the following two reasons: (i) we cannot distinguish interactive jobs from other jobs in
the traces; and (ii) the scheduler would typically exclude interactive jobs from the set of jobs that should
be considered in the node-stealing approach.

We can measure the utilization of the platform in a failure-free scenario for this new workload using
BASELINE. Unsurprisingly, the utilization is lower than the stress, and notably for March 2018, because
of scheduling constraints. We present this data along with statistics about job length in Table III.

Table III: Workload utilization and job lengths.

Failure-free Number job execution time
utilization of jobs min max mean median

(Mira) June 2017 88.51% 3311 55s 49.88h 2.64h 0.88h
(Mira) March 2018 92.88% 4024 26s 24.02h 2.79h 1.07h

(Intrepid) June 2013 89.90% 2970 26s 47.08h 2.55h 0.42h

The second step is to add fault-tolerance mechanisms to job submission data. Failures are randomly
generated following a Poisson process on each node with parameter λind. The Mean Time Between
Failure (MTBF) of each individual node is µind = 1

λind
. The MTBF of the whole platform is µ =

µind
N [55], where N is the total number of nodes of the platform. We assume that the system performs

periodic checkpointing using the Young/Daly formula [29, 110]. This means that each job performs a
checkpoint every PY D =

√
2µjobC units of time, where C is the time to perform a checkpoint (we use

C = 5 minutes for all jobs), and µjob is the MTBF for this job. Here µjob is job dependent as it relies
on the number of nodes p used by the job: we have µjob = µind/p [55]. Given a periodic checkpoint
strategy, the number of checkpoints to be taken linearly depends upon the length of the job. Hence we
increase the length of each job accordingly. Furthermore, from a platform perspective, it is only natural
to increase the wall time twalltime in a similar way. We compute the new job execution time tckptexec and
new wall time tckptwalltime:

tckptexec = texec +
⌊
texec
PY D

⌋
× C

tckptwalltime = twalltime +
⌊
twalltime
PY D

⌋
× C



4.4. EVALUATION METHODOLOGY 67

During execution, when a failure occurs, jobs are restarted from their last successful checkpoint.
Two key parameters to assess the performance of BASELINE and SFSJ are the downtime and the

platform MTBF. We conduct a detailed analysis of the impact of these parameters in Section 4.5.

4.4.3 Measuring performance

When considering the performance of a batch scheduler, there are several metrics to assess. As already
stated, from the user’s perspective, the most important metric is to minimize the flow, or response time,
of the job: “How fast can I get my results?”. The flow is defined as the time elapsed from the initial
submission of the job up to its completion, possibly after some unsuccessful attempts due to failures.
However, from the platform owner’s perspective, the most important metric is to maximize the utiliza-
tion: “How much work can be executed on the platform per time unit?”. The utilization is loosely
defined as the fraction of time where nodes are doing useful work, i.e., make actual progress in the
execution of some jobs. In the following, we provide more details on both metrics and detail how we
modified the trace to provide a fair evaluation.

Maximum and mean flow

The flow of a job represents the time spent by the job in the system. The flow is composed of two
elements that add up, the waiting time (time elapsed from its submission to the start of its execution)
and the execution time (time spent computing with the reserved nodes). If the job fails during execution,
it is resubmitted to the scheduler, which usually gives a high priority to re-execution. If the job is
checkpointed, only the remaining part of the job after the last checkpoint will be re-executed. Regardless,
the job flow accounts for all re-executions and is computed from submission until complete (successful)
execution.

Usually, the user makes a reservation with a duration (called wall time) and a node count; it is
their responsibility to ensure that the reservation has longer duration than the (expected) execution time.
This may lead to over-length reservations, in particular when the user is only billed for execution time,
not reservation time – a standard scenario on today’s platforms. However, longer reservations usually
experience a longer waiting time, which is an incentive for users to accurately estimate their reservation
length.

Maximum flow is the largest flow for any job running in the system. Mean flow is the average over
all jobs in the system. The weighted mean flow is the weighted average over all jobs, where each job is
weighted by its size (its number of nodes). This latter quantity gives a higher weight to jobs that use a
large number of nodes, which are typically the target jobs deployed onto supercomputers.

Utilization

The utilization is defined as the ratio of the core-hours occupied to progress a job over the core-hours
available during that period. One could expect an utilization close to 1 on a highly-subscribed platform.
However, the two main factors that decrease utilization are the following:

1. Idleness due to scheduling: even with sophisticated backfilling techniques, large jobs bring spe-
cific constraints to the scheduler; not all nodes can be used at every instant.

2. Failure mitigation: the time spent to checkpoint jobs, to recover from a failure, and to re-execute
fractions of jobs that have been lost (after the last checkpoint up to the failure) all decrease plat-
form utilization. In addition, the time spent to re-execute fractions of jobs that have been lost (after
the last checkpoint up to the failure) also decreases utilization. It is important to exclude failure



68 CHAPTER 4. NODE STEALING FOR FAILED JOBS

mitigation techniques (such as checkpointing) from the utilization of the platform. Otherwise, an
artificial way to increase the utilization would be checkpointing extremely often, hence reducing
the waste after each failure.

While idleness due to scheduling has been studied for decades, failure mitigation is a more recent con-
cern. Checkpointing jobs using the Young-Daly formula minimizes the overhead due to failure mitiga-
tion. However, resubmitting failed jobs induces an extra burden on the scheduler.

Pruning the traces

Since we simulate a given month of the traces of the Mira platform, the platform is not fully loaded at
the beginning of the simulation (first days of the month), and the values for utilization and flow of the
jobs that completes are not representative. Similarly, as job submissions stop at the end of the month,
the results (utilization and job completion times) are not meaningful after the last submission. Hence we
have to carefully select the data used to compute appropriate statistics.

To compute the utilization of the platform as well as the fraction of time spent in various operations
(computing, checkpointing, etc.), we define a time window, going from the 11th day of the month up to
the 30th of the month when all activities are registered.

When measuring job flow, we cannot use the same time window: by considering only jobs that
complete in a predetermined time window, we would not measure the performance of the same subset of
jobs for different heuristics. We thus select a slightly different set of data: we order jobs by submission
time and remove the first 20% of jobs (intuitively, the ones that are submitted before the platform is fully
utilized) as well as the last 20% of jobs (intuitively, the ones that completes later than the last submission
time) and compute the flows of all remaining jobs.

4.5 Results

In this section, we describe the experiments that compare node stealing with the baseline strategy (con-
servative backfilling). As already stated, we perform simulations on the Mira workloads in June 2017
and March 2018, and the Intrepid workloads in June 2013 [82]. In Section 4.5.1, we start by demon-
strating the usefulness of the node stealing approach in one specific scenario, for which both the MTBF
and the downtime are equal to one hour. This allows us to qualitatively discuss the impact of the strategy.
Then we move to a more thorough and quantitative evaluation with varying MTBF and downtime values
in Section 4.5.2. In Section 4.5.3, we perform simulations on the synthetic application scenario which
is randomly generated.

4.5.1 Baseline Scenario: MTBF=downtime=1 hour

We start this scenario by a remark on the checkpoint of small jobs. With a MTBF of 1h (i.e., µind = 5.61
years), and a checkpoint size of 5 minutes, the Young/Daly period for a job running on 128 nodes is√

2 · 5.61·365.25·24
128 · 5

60 = 8 hours. This means that any job running on (or on less than) 128 nodes, and
which lasts less than 8 hours never checkpoints. In practice, in the timeframe that we are studying, no
job of less than 128 nodes performs any checkpoint, and less than 5% of jobs with [128, 512) nodes
perform at least a checkpoint. For this scenario, we first discuss platform utilization and then flows.
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Table IV: Platform useful utilization for various workloads.

Heuristic (Mira) 06/2017 (Mira) 03/2018 (Intrepid) 06/2013
BASELINE 79.32% 77.39% 76.71%

SFSJ 80.69% 78.50% 77.26%

Utilization

The utilization is presented in Table IV. With SFSJ, it is 1.4 to 1.7% higher than with baseline schedul-
ing, which is a positive gain, yet limited. To better understand this observation, in Figure 4.3, we report
the fraction of total platform time spent into something else than “useful” computations: idle time, re-
silience mechanisms (checkpoints and restart), downtime, work wasted due to failures (un-checkpointed
work when a failure strikes), and any waste due to node stealing (un-checkpointed work interrupted by
node stealing and additional recovery time for applications killed).

2017June 2018March 2013June

Baseline SFSJ Baseline SFSJ Baseline SFSJ
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Figure 4.3: Decomposition of platform usage with BASELINE and SFSJ.

Utilization gain can only come from a reduction of the idle time. For BASELINE it corresponds to
5.2% of the platform usage for June 2017 in Mira, (5.8% for March 2018 in Mira and 7.3% for June 13
in Intrepid). Figure 4.3 corroborates the small utilization gains, however it shows that they correspond to
relatively important reduction of platform idle time (20% in Mira-March 2018, 40% in Mira-June 2017
and 10% in Intrepid-June 2013). This first item shows that SFSJ is quite impactful given its leeway,
especially when the workload contains small jobs.

We further observe that the additional overhead due to SFSJ (work wasted due to job interruption
and additional recovery times) is negligible (around 0.1% for all months, as shown by the thin black line
on Figure 4.3). This shows that additional resilience mechanisms that one could envision for node steal-
ing (such as proactive checkpoint before interruption) have little room for improvement (see Section 4.6
for a discussion of other node stealing variants).

How often node stealing is actually used? Node stealing is only used when there is no free node
available at the time of a failure. Table V provides some key statistics averaged over five randomly
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generated failure scenarios. Table Va reports the percentage of time at least one free node is available
right after a failure for both approaches. As shown in Table Vb, there is actually a free node available
right after a failure, for 84% of failures in June 2017 (Mira), 89% in March 2018 (Mira) and 90% in June
2013 (Intrepid). In this vast majority of cases, node stealing is not activated, and both BASELINE and
SFSJ will resubmit the failed job with high priority, hence start its re-execution (almost) immediately.
Finally, the different percentages for the reduction of idle time (Figure 4.3) can be explained by the
different percentage of situations where SFSJ has to interrupt a job.

Table V: Statistics for the June 2017 and March 2018 Mira workloads.

(a) Percentage of time at least one node is available right after a failure

Heuristic (Mira) 06/2017 (Mira) 03/2018 (Intrepid) 06/2013
BASELINE 92.09% 93.36% 93.83%

SFSJ 90.67% 92.48% 93.70%

(b) Number of times SFSJ interrupts a job or enrolls a free node
available right after a failure

node empty total
Trace stealing node failures

(Mira) June 2017 63.4 404.4 467.8
(Mira) March 2018 46.6 416.2 462.8

(Intrepid) June 2013 45.8 410.8 456.6

To conclude from a system performance perspective, there is only little room for improving utilization,
and this improvement is duly achieved by SFSJ.
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Figure 4.4: Maximum flow and mean flow as a function of job size, without failures and with failures,
using BASELINE. Results are for the Mira platform in March 2018.
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Figure 4.5: Maximum flow and mean flow as a function of job size, without failures and with failures,
using BASELINE. Results are for the INTREPID platform in June 2013.

Job flow

How does node stealing impact flows on the platform? First, on a supercomputer, job flows highly
depend on the job sizes (i.e., number of requested compute nodes) and on the requested wall times.
Indeed, even if the main scheduling algorithm is based on a First-Come-First-Served strategy: (i) back-
filling strategies allow to schedule faster “small” jobs that can fit in holes of the schedule; (ii) large jobs
are more frequently subject to failures. In Figure 4.4, we plot the response time as a function of the
number of requested nodes for BASELINE, without and with failures for March 2018 (Mira). Similar
results are shown for June 2017 (Mira) in Figure 4.1 and for June 2013 (Intrepid) in Figure 4.5. In the
figure, we report the flow of BASELINE without failure (red dot) and with failures (boxplot). These flows
are presented as a function of the node count of the jobs (x = [2n, 2m) means that this is the flow of jobs
whose number of nodes is in the interval [2n, 2m)), and also globally (‘all", “weighted" on the right of
the x axis).

In the failure-free scenario (red dots), we see the impact of backfilling on the flow of jobs: jobs
with less than 27 = 128 nodes typically have a much lower flow than larger jobs. The negative impact
of failures on the flows is shown by studying the difference between the failure free scenario, and the
one with failures: the relative difference is much more important for larger jobs. Interestingly, failures
improve the maximum flow of small jobs (jobs with less than 128 nodes). The explanation for this
unexpected behavior is that failures create more “gaps” in the schedule to backfill small jobs.

With this in mind, we now compare the various flows between BASELINE and SFSJ. Figures 4.6a
and 4.7 show the ratio SFSJ over BASELINE of the flows, hence the lower the better for SFSJ (see Fig-
ure 4.6b for the absolute values of these flows for the Mira platform). In these figures, we see that SFSJ
significantly improves the maximum flow of large jobs, up to 10% in some scenarios, at the cost of a
slight overhead in the flows of small size jobs. In the worst case, the maximum flow of small jobs is
increased by a factor 2 (March 2018, Mira), but this needs to be put in perspective: the maximum flow
of small jobs is several orders of magnitude lower than the flow of larger jobs. We observe that even
when there is no job with a very small number of processors, as with the Intrepid-June 2013 trace, SFSJ
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Figure 4.6: Maximum flow and mean flow as a function of job sizes for Mira. Absolute values are
reported in the left plot while ratios (SFSJ over BASELINE) are reported in the right plot. For better
visualization of the right plot, an outlier with x ∈ [1, 27), y = 7.99 for maximum flow, March 2018, has
been hidden.
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Figure 4.7: Maximum flow and mean flow ratios (SFSJ over BASELINE) as a function of job sizes for
Intrepid.
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is able to decrease the maximum flow of very large jobs, at the cost of a slight increase (larger than
20%) of the flow of medium size jobs, which is anyway at least twice smaller than that of large jobs. A
similar observation is that SFSJ may slightly increase the global mean flow of the platform. Again, this
is because this mean flow does not take the size of the jobs into account: if we consider the weighted
mean flow instead, where the importance of the job flows depends on the node count, we do observe a
decrease when using SFSJ.
Overall, SFSJ significantly improves the maximum flow of large jobs at the detriment of smaller jobs.
We argue that this is a good thing since their respective absolute differ by several orders of magnitude.

4.5.2 Quantitative evaluation when MTBF and downtime vary

In the previous section, we have shown the positive impact of SFSJ on a given scenario. We
now vary the key parameters, namely the platform MTBF and the duration of the downtime, to
fully assess the usefulness of SFSJ and present its limits. We conduct experiments with MTBF
µ ∈ {20min, 40min, 1h, 2h, 5h, 10h}, and downtime D ∈ {10min, 1h, 1day}.
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Figure 4.8: Normalized useful utilization as a function of MTBF with failures for Mira. The higher, the
better the performance of SFSJ.

Utilization

Figure 4.8 reports the ratio of the utilization of SFSJ over that of BASELINE as a function of the MTBF,
and for several downtime values. A value of 1.05 means that SFSJ improves the utilization by 5%, a
value of 0.95 that it decreases it by 5%. From a MTBF perspective, the smaller the MTBF (i.e., the
more frequent the failures are), the higher the utilization of SFSJ. Similarly, the smaller the downtime,
the higher its gain in utilization. With a brief downtime (10min), the improvement of SFSJ is between
2% and 4%, while with a large downtime (1 day), its gain is negligible. This is extremely promising for
future supercomputers, whose MTBF decreases linearly with size but whose downtime can (hopefully)
be kept at low values.
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There is one scenario where we observe a 1% loss in the utilization of SFSJ: June 2017, MTBF of
10h, downtime of 10min. This is a scenario where there are extremely few failures. When there is one,
its impact is extremely small (downtime of 10 min) compared to the order of magnitude of the restart
time (5 min). Hence in this scenario, killing a small job which does not expect to be killed hurts the
system.
To conclude, the more failures, and the smaller the downtime, the more positive impact SFSJ has on
platform utilization of the machine. There are some limit scenarios where it may be detrimental (essen-
tially when there are few failures with a small downtime).
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Figure 4.9: Maximum flow for largest jobs and weighted mean flow for all jobs when the MTBF and
downtime vary, for June 2017. Absolute values are reported in the left plot while ratios (SFSJ over
BASELINE) are reported in the right plot.

Job flow

In Figure 4.9a, we report the maximum flow of the largest jobs (jobs with more than 215 nodes), and
the weighted average flow (overall jobs) as a function of the MTBF for the different scenarios. In Fig-
ure 4.9b, we report the ratio of these values (flow of SFSJ over that of BASELINE), hence a value of
1.05 means in this figure indicates that SFSJ increases the flow by 5%, while a value of 0.95 decreases
it by 5%. Both figures are for June 2017 (see Figure 4.10 for March 2018).

SFSJ has positive impact on both the maximum flow of the largest jobs and the weighted mean flow
over all scenarios. With a small downtime (10 minutes) and a MTBF lower than 5h, the maximum flow
improves up to 10-20%. This improvement is not so consequent when the downtime increases, and close
to zero when the downtime is equal to 1 day.

4.5.3 Evaluation with synthetic workload

In this section we generate a synthetic workload which allows to create a different job mix. We consider
a platform of 128 nodes. We create a set of 1000 jobs with various node requirements between 1 and 64
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Figure 4.10: Maximum flow for largest jobs and weighted mean flow for all jobs when the MTBF and
downtime vary, for March 2018. Absolute values are reported in the left plot while ratios (SFSJ over
BASELINE) are reported in the right plot.

(see Table VI for details). For application Aj , j ∈ {1, · · · , 1000}, we compute its delay tjexec uniformly
at random between 1 minute and 119 minutes (hence an expected time of 60 minutes). Its walltime is
tjwalltime = αjt

j
exec, where αj is selected uniformly at random between 1 and 5.

Table VI: There are ni jobs with pi = 2i processors for i ∈ {0, 6} in the synthetic workload.

Number of jobs ni 504 198 108 65 55 42 28
Job size pi 1 2 4 8 16 32 64

Table VII: Utilization for synthetic trace.

Heuristic Synthetic
BASELINE 70%

SFSJ 72%

Jobs arrive in the system in a random order, with an inter-arrival time following an exponential
distribution of mean λ (Poisson process). The value of λ is set to 174s so that the stress of the system is
equal to 95%, i.e.:

1
λ
·
∑
i ni · 2i · 3600
128 · 1000 = 0.95.

Finally, we consider a platform MTBF of 30 minutes, a checkpoint and recovery time of 5 minutes
and a downtime of 10 minutes.

Results are presented in Table VII and Figure 4.12. They are similar to those observed in the previous
sections: we observe an improvement of 10-15% on the maxflow and meanflow of large jobs. As a trade-
off, the maximum flow of the smallest jobs increases by a large factor. However, the flow of small jobs
in absolute value is much lower than that of the largest jobs (see Figure 4.11).
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Figure 4.11: Maximum flow and mean flow for BASELINE for the synthetic workload as a function of
job size, without failures and with failures.
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Figure 4.12: Maximum flow and mean flow ratios (SFSJ over BASELINE) as a function of job sizes for
synthetic workload.



4.6. ADDITIONAL HEURISTICS 77

To conclude this experimental evaluation, SFSJ has positive impact on both the maximum flow of large
jobs and the platform utilization of the machine, as soon as failures are not too infrequent (the very
framework for which SFSJ is introduced). The impact is greater when the downtime is small.

4.6 Additional heuristics

In the previous section, we have focused on SFSJ, the node stealing heuristic which interrupts the job
with the fewest nodes, and which has been running for the smallest amount of time if there is a tie. In
this section, we have designed and implemented many other variants, and compared their performance
with SFSJ. In a nutshell, here are several design choices that we considered:

1. victim job: node stealing can interrupt either the (currently running) job with the smallest number
of nodes, or the one with the latest release time;

2. when to interrupt? we study three scenarios: (i) immediately after the failure; (ii) after a proactive
checkpoint is taken and completed, and (iii) after the next regular checkpoint;

3. when to steal a node? we decide to actually steal a node only if (i) the victim job Jvictim uses
strictly less nodes than the failed job, or (ii) the victim job was released more recently than the
failed job; or (iii) we compare the flow of the victim job and failed job in case we do interrupt the
victim job or not, and retain the scenario leading to the smallest maximum flow for these two jobs.

Altogether, we implemented 18 variants of node stealing. All details on the implementation, the com-
putation of the characteristics of the jobs for the re-execution of the failed and victim jobs, as well as
the results of the simulations are available in Sections 4.6.1 to 4.6.3. In Section 4.6.1, we present addi-
tional variant heuristics. In Section 4.6.2, we propose the details on the implementation of other variant
heuristics. In Section 4.6.3, we propose the results and discussion for the general heuristics. The global
conclusion is the following: no variant improves the performance of SFSJ, which is sufficient to de-
crease the flow of large jobs, at the cost of a limited increase in the flow of small jobs. This corroborates
the analysis of the utilization conducted in Section 4.5.1.

4.6.1 Design of node-stealing variants

The first question to deal with when studying node stealing is the choice of the victim job Jvictim , that
is, which job should be considered to be interrupted to free a node so that the failed job Jfailed can be
restarted. We consider here two possible choices:

V1 Select the currently running job with the smallest number of nodes as the victim job Jvictim . If
ties, choose the one whose release date is the latest (this is the solution chosen in Section 4.3.2
and evaluated in Section 4.4). The intuition for stopping small jobs is that they already have the
smallest flows, and they are easy to reschedule.

V2 Select the currently running job with the latest release time as the victim job Jvictim . If ties, choose
the one whose number of nodes is smallest. The idea here is to stop jobs whose waiting times are
among the smallest.

Once a victim is chosen, we need to decide when we will interrupt the victim job. We propose three
scenarios for this timing decision:
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T1 We immediately interrupt the victim job, and restart it from its previous checkpoint (this is the
solution chosen in Section 4.3.2 and evaluated in Section 4.4).

T2 We proactively start a checkpoint on job Jvictim , and stop this job right after the checkpoint. This
avoids wasting computation time on Jvictim , but induces some delay for the failed job Jfailed as it
can only be restarted after the checkpoint of Jvictim .

T3 We wait for the next regular checkpoint of Jvictim , and stop this job right after the checkpoint.
This has a minimal impact on Jvictim but induces a large waiting time for Jfailed .

Finally, we need a criterion to decide it is worth interrupting it, or if we should rather wait for job to
terminate to get a new node. We propose three criterion for this decision:

K1 If the victim job Jvictim uses strictly less nodes than the failed job Jfailed , we decide to interrupt
Jvictim (this is the decision taken in Section 4.3.2 and evaluated in Section 4.4).

K2 If the victim job Jvictim was released more recently than failed job Jfailed , we interrupt Jvictim .

K3 We compute the flow of both jobs Jvictim and Jfailed based on their walltime in both scenarios
(interrupting Jvictim or waiting for a job completion), and we select the scenario that leads to the
smallest maximum flow for these two jobs.

On the whole, we thus get 18 variants of node stealing, which are denoted by Hxyz, where x
corresponds to timing choice Tx, y corresponds to victim choice Vy and z corresponds to interrupting
choice Kz. For example SFSJ, the node stealing heuristic studied in Section 4.5, is denoted by H111.

4.6.2 Details on the implementation

In this section, we provide details on the implementation of the heuristics. We first give some insights on
the implementation of the simulations, then we detail how to compute the remaining part of the victim
job in the case of timing decision T2 and T3. We assume here that no new failure occurs until we have
completely handled the current one, that is, until a checkpoint is taken and the failed job can be restarted.
We finally explain how to handle the infrequent events of consecutive failures.

Simulation details

Algorithm 5 gives a precise statement of the various node stealing variants. Note that whenever a job
is struck by a failure, its re-execution is submitted with priority 3. When a job is selected as a victim
and interrupted, its re-execution is submitted with priority 2. Regular jobs have priority 1. In case of a
failure (with or without node stealing), or in case of the rejuvenation of a node, the whole schedule is
cleared and all jobs are rescheduled, by decreasing priority.

For timing variants T2 and T3 (proactive checkpointing and next checkpoint), the failed job is not
resubmitted immediately after its failure. To avoid small jobs taking advantage of the nodes left idle by
the failed jobs (that will be used for its re-execution), we submit a fictitious job to wait for the termination
of the checkpoint on the victim job. If the failed job originally enrolled n nodes and had a single failure,
this fictitious job uses n − 1 nodes. In case the failed job has no more remaining nodes (after one or
multiple failures), then we can not submit this fictitious job. Because this fictitious job is needed to
trigger the end of the proactive/future checkpoint on the victim job in our simulations, we cannot use
node stealing in this situation. We thus cancel node stealing for this failed job and simply resubmit it
from its last checkpoint. However, note that this concerns a very limited number of real scenarios.
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Algorithm 5: General framework for heuristic Hxyz. Note that regular jobs have priority 1.
Input: Failed job Jfailed , failure time t

1 if there is an available node P at time t then
/* No need for node stealing */

2 Submit the remaining part of Jfailed (from its previous checkpoint) with priority 3 and allocate it to the
previously allocated nodes that are still available and P

3 else
4 Choose the victim Jvictim according to victim choice V y
5 if No victim is found or the interrupting criterion Kz is negative then

/* Do not use node stealing */
6 Submit the remaining part of Jfailed (from its previous checkpoint) with priority 3
7 else

/* Use node stealing */
8 switch Timing choice Tx do
9 case T1 do

/* Interrupt victim right away */
10 Interrupt victim job Jvictim
11 Submit the remaining part of Jfailed with priority 3
12 Submit the remaining part of Jvictim with priority 2
13 case T2 do

/* Proactively checkpoint victim */
14 Suspend job Jvictim and initiate a checkpoint and wait for its completion
15 Interrupt Jvictim
16 Submit the remaining part of Jfailed with priority 3
17 Submit the remaining part of Jvictim with priority 2
18 case T3 do

/* Wait for next regular checkpoint */
19 Wait for the completion of the next checkpoint of Jvictim
20 Interrupt Jvictim
21 Submit the remaining part of Jfailed with priority 3
22 Submit the remaining part of Jvictim with priority 2
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Computing the remaining part of the victim job

In all heuristics, the failed job is restarted from its previous checkpoint. The computation of the remain-
ing part of the failed job has already been presented in Section 4.3.1. The job selected as the victim of the
node stealing either (i) can be interrupted right away, as defined by timing decision T1 (in this case, the
same formulas are used to compute the characteristics of its resubmission), or (ii) it can be interrupted
later for timing decisions T2 and T3: we either proactively trigger a checkpoint, or wait for the next
regular checkpoint. This requires to change the computation of the characteristics of the resubmitted
victim job. We now details these computations.

Proactive checkpoint (timing decision T2) We consider here a victim job with a checkpoint
period T , a checkpoint time C. In the proactive checkpoint, we may interrupt a job in the middle of
a regular period, for example after a time T1 < T after the beginning of the period. Hence, when
restarting the job, the first period may be different from the following ones, as it consists in completing
the remaining part of this period, of length T−T1. To deal with such cases, we denote by Tfirst = T−T1
the duration of the first period. Since the job may be a resubmission of a previously failed or stopped
job, we denote by Rfirst its initial recovery time. We have two cases:

• Rfirst = 0 in case of an initial submission,

• Rfirst = R in case of a resubmission.

We consider that the victim job has a length texec and was started at tstart . The failure (on the failed
job) happens at time tfail . To simplify, we denote that trun = tfail − tstart the length of the victim job
up to the failure and tfirst = Rfirst + Tfirst + C the length of its first period, as it may differ from the
following ones if the victim job is itself a resubmission of previously interrupted job. If the victim job is
an initial submission, we just let Tfirst = T and Rfirst = 0. In Figure 4.13, we illustrate these notations
on the execution of a job. We will use times t1, . . . , t5 as potential times for failures in the description
of the formulas below.

Time

Rfirst Tfirst C

tfirst = Rfirst + Tfirst + C

T C T C · · ·

tstart t1 t2 t3 t4 t5

Figure 4.13: Illustration of the notations for the victim job, with the five cases distinguished to compute
the proactive checkpoint strategy (T2).

We aim at computing when the victim job is interrupted and what are the characteristics of its
resubmission. More precisely, we will first compute the following two quantities:

• The time tuseful spent by the victim job doing useful work until we stop it. This includes execution
time and regular checkpoint time, but not the checkpoint that we introduce due to the proactive
checkpoint strategy.

• The time tcheckpoint need to complete the checkpoint introduced by the proactive checkpoint strat-
egy. This checkpoint will be completed at time tfail + tcheckpoint : at this time we will be able to
steal a node from the victim to restart the failed job.
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Then we will compute the characteristics of the resubmitted victim job: its length t
′
exec, its first period

length T
′
first and its recovery time R

′
first .

We distinguish five cases depending on which part of the job is struck by a failure.
The first case is when the failure occurs during the execution of the potential recovery Rfirst . This is

when the failure hits at time tfail = t1 in the Figure 4.13. This means that no progress was made in the
job (tuseful = 0), hence there is no need to start a proactive checkpoint and we can simply resubmit the
job without any modifications. Note that this case only happens if the victim job was a re-execution of
a job (as Rfirst > 0), so we have Rfirst = R, and R

′
first = R,

The second case is when the failure occurs during the execution of the first period Tfirst , which
corresponds to tfail = t2 in Figure 4.13. Then we start a proactive checkpoint at time tfail to save the
useful work executed in Tfirst . In this case, the saved useful work is tuseful = trun − Rfirst (since we
classify regular checkpoint into the useful work, and proactive checkpoint not into the useful work). In
the resubmission job, the first period will have to terminate the execution of the interrupted first period,
that is, it will run from t2 to Tfirst . Hence we will set T

′
first = Tfirst − (trun − Rfirst). The time needed

to complete the proactive checkpoint is tcheckpoint = C.
The third case is when the failure occurs during the checkpoint that follows the first period, as

illustrated by tfail = t3 in Figure 4.13. Then we do not need to start a proactive checkpoint, we simply
wait for the completion of the ongoing checkpoint to be completed. The time we have to wait for the
completion of the checkpoint is tcheckpoint = tstart + tfirst − tfail = tfirst − trun . In this case, the useful
work performed by the job is tuseful = Tfirst + C (containing the regular checkpoint into the useful
work). The resubmission of the victim job will start by a regular period, that is, T

′
first = T .

The fourth case happens when the failure occurs during a regular period T , which corresponds to
tfail = t4 in Figure 4.13. We then start a proactive checkpoint at time tfail to save the work already
performed in this period, hence the duration of this checkpoint is tcheckpoint = C. The amount of
successful work is thus tuseful = trun −Rfirst . The first period of the resubmitted job copy will perform
the missing work from tfail to the end of the regular period, computed as

T
′
first = T − (trun − tfirst −

⌊
trun − tfirst
T + C

⌋
× (T + C)).

The fifth case happens when the failure occurs during a regular checkpoint, for example for tfail = t5
in Figure 4.13. As in the third case, we do not start a proactive checkpoint but take advantage of the
ongoing one. In this case, the useful work starts at the beginning of Tfirst until the end of this regular
checkpoint, that is

tuseful = Tfirst + C +
⌈
trun − tfirst
T + C

⌉
× (T + C).

The time we have to wait until the end of the current checkpoint goes from tfail until the end of the
ongoing checkpoint, that is

tcheckpoint = T + C − (trun − tfirst −
⌊
trun − tfirst
T + C

⌋
× (T + C)).

In this case, the first period of the resubmitted victim job is a regular one, so that T
′
first = T .

In cases 2 to 5, we start proactive checkpoints, so that the recovery time for the resubmission of the
victim job is set to R

′
first = R.

Figure 4.14 summarizes how to compute the length of the resubmission of the victim job, as well as
the time tcheckpoint to wait until a node can be given to the failed job to restart it.
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tuseful =



0, if trun ≤ Rfirst ,

trun −Rfirst , if Rfirst < trun ≤ Rfirst + Tfirst ,

Tfirst + C, if Rfirst + Tfirst < trun ≤ tfirst ,

trun −Rfirst , if trun − tfirst −
⌊
trun−tfirst
T+C

⌋
× (T + C) ≤ T,

Tfirst + C +
⌈
trun−tfirst
T+C

⌉
× (T + C), otherwise.

T
′

first =



Tfirst , if trun ≤ Rfirst ,

Tfirst − (trun −Rfirst), if Rfirst < trun ≤ Rfirst + Tfirst ,

T, if Rfirst + Tfirst < trun ≤ tfirst ,

T − (trun − tfirst −
⌊
trun−tfirst
T+C

⌋
× (T + C)), if trun − tfirst −

⌊
trun−tfirst
T+C

⌋
× (T + C) ≤ T,

T, otherwise.

tcheckpoint =



0, if trun ≤ Rfirst ,

C, if Rfirst < trun ≤ Rfirst + Tfirst ,

tfirst − trun, if Rfirst + Tfirst < trun ≤ tfirst ,

C, if trun − tfirst −
⌊
trun−tfirst
T+C

⌋
× (T + C) ≤ T,

T + C − (trun − tfirst −
⌊
trun−tfirst
T+C

⌋
× (T + C)), otherwise.

R
′
first = R, t

′
exec = R

′
first + texec − tuseful , t

′
walltime = R

′
first + twalltime − tuseful .

Figure 4.14: Formulas used to compute the useful executed work of the victim job tuseful , the length
of the first period of the resubmitted victim job T

′
first , the time between the failure and the completion

of the proactive checkpoint tcheckpoint , the recovery time of the resubmitted victim job R
′
first , and the

length t
′
exec and wall time t

′
walltime of the resubmitted victim job.
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Time

Rfirst T C T C · · ·

tstart t1 t2 t3

Figure 4.15: Illustration of the notations for the victim job, with the five cases distinguished to compute
the future checkpoint strategy (T3).

Using next regular checkpoint (timing decision T3) We now detail how to compute the re-
maining time of the victim job as well as the time when a new node is available for the failed job in the
case of the future checkpoint heuristic (timing decision T3). We use the definition introduced above for
the proactive checkpoint heuristic. In the future checkpoint heuristic, all periods between checkpoints
have the same length, contrarily to the proactive checkpoint heuristic when the first period may be differ-
ent from the other. This means we always have Tfirst = T . This largely simplifies the analysis. We now
distinguish between two cases depending on the state of the victim when the failure happens, illustrated
on Figure 4.15.

The first case happens when the failure occurs during the execution of Rfirst by the victim job. This
is the case for example for tfail = t1 in Figure 4.15. Then, there is no reason to wait for the next regular
checkpoint, as no useful work has been performed by the victim job. We simply interrupt the victim and
submit it again later. We thus have tuseful = 0 and tcheckpoint = 0.

The second case happens when the failure occurs after Rfirst , either during a regular execution or
during a checkpoint, as illustrated by tfail = t2 or tfail = t3 on Figure 4.15. Then we need to wait until
the next regular checkpoint of the victim job. In this case, the time performing useful work starts at the
end of Rfirst and goes to the completion of the next checkpoint, that is, the one immediately following
tfail (we recall that regular checkpoints are counted as useful work). Hence we have

tuseful =
⌈
trun −Rfirst
T + C

⌉
× (T + C).

The time between the failure at tfail and the completion of the next checkpoint can be computed as:

tcheckpoint = Rfirst +
⌈
trun −Rfirst
T + C

⌉
× (T + C)− trun .

Again, the first case only happens when Rfirst > 0, that is Rfirst = R. Hence, in both cases, the
recovery time of the victim job copy is R

′
first = R.

To sum up, we compute the useful working time for the victim job as follows:

tuseful =

0, if trun ≤ Rfirst ,⌈
trun−Rfirst
T+C

⌉
× (T + C), otherwise.

The time that we need to wait between tfail and the completion of the next checkpoint of the victim
job (which is the delay of the failed node needs to wait before being restarted with a stolen node) is
computed as follows

tcheckpoint =

0, if trun ≤ Rfirst ,

Rfirst +
⌈
trun−Rfirst
T+C

⌉
× (T + C)− trun , otherwise.
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The length of the resubmission of the victim job is finally be computed as previously, as well as its
wall time:

t
′
exec = R

′
first + texec − tuseful ,

t
′
walltime = R

′
first + twalltime − tuseful .

Consecutive failures

In the previous discussion, we assumed that no failure hits either the victim job or the remaining node of
the failed job until the checkpoint is completed and the failed job may be restarted. However, such rare
cases can happen. We detail here how to handle them.

We assume that a job failed because of a failure at time tfirst
fail . A victim job was selected in order to

perform node stealing, that is, to relaunch the failed job with its remaining nodes plus one node of the
victim job. In timing decision T2, we trigger a proactive checkpoint on the victim job at time tfirst

fail as
shown in Figure 4.16. In timing decision T3, we wait until the next regular checkpoint of the victim job,
as shown in Figure 4.17. We now consider the event of a failure before the end of the checkpoint, on
the victim job or on the nodes of the failed job that were not hit by a failure at time tfirst

fail and remained
available.

Time

failed job

victim job checkpoint

remaining nodes

tfirst
fail

t1
fail

t4
fail

Figure 4.16: Notations of the special case for heuristic T2.

Time

failed job

victim job checkpoint

remaining nodes

tfirst
fail

t2
fail t3

fail

t5
fail

Figure 4.17: Notations of the special case for heuristic T3.

The first case is that old victim job or its proactive or regular checkpoint is hit by a new failure, as
shown by t1fail , t

2
fail and t3fail in Figures 4.16 and 4.17. When this happens, we cancel node stealing for

the originally failed job: both jobs are simply restarted from their previously successful checkpoints.
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The second case deals with a new failure striking the remaining nodes of the originally failed job, as
shown by t4fail and t5fail in Figures 4.16 and 4.17. In this case, there are two possibilites:

• The number of nodes of the victim job is smaller than the total number of failures that hit nodes of
the failed job, which means the number of nodes of the old victim job is not sufficient to resume
the old failed job. In this case, we also cancel node stealing and resubmit the failed job from
its previous successful checkpoint. Since node stealing is canceled, the victim job continues its
execution until its regular termination.

• The number of nodes of the victim job is larger than or equal to the number of failures occurred on
nodes of the failed job, which means the number of nodes of the victim job is enough to resume
the old failed job. In this case, we continue using node stealing for the failed job with the same
victim job.

Another special case may occur when using future checkpoint (timing decision T3): the victim job
may complete before its next checkpoint. In this case, we simply resubmit the failed job right after the
termination of the victim job.

4.6.3 Presentation of all results and discussion

In this section, we report the results of experiments comparing the different variants of node stealing
introduced above.

Utilization

We start by comparing the useful utilization of the platform by all heuristics, as presented in Table VIII
which generalizes Table IV. This table also present the percentage of time at least one spare node is
available (as previously in Table V). In this table (and below), we recall that variant xyz denotes the
algorithm obtained with timing choice Tx, victim choice Vy and interrupting choice Kz.

We first remark that no variant is able to really increase the utilization above what is achieved by the
initial node stealing heuristic (variant 111). Some of them even decrease the utilization below the one
achieved by the baseline heuristic by up to 5%. As previously, we relate the impact on utilization to the
percentage of time an idle node is available as a spare (and thus, node stealing is not useful). The table
clearly shows that the larger this percentage of time, the smaller the impact of node stealing.

We also measure the number of time node stealing is used in Table IX. We remark that only variant
311, (corresponding to waiting the completion of the next regular checkpoint of the victim to interrupt
it) is able to increase the usage of node stealing compared to our initial proposal. Using proactive
checkpointing (variants x ∗ ∗) can (slightly) increase or decrease the use of node stealing. The other
possibilities for y (choice of the victim) and z (interrupting criterion) always lead to a reduced usage of
node stealing.

Job flows

Note that in the following figures (Figures 4.18 to 4.20), a few outliers has been omitted for better
readability. There are described in Table X.

We first study the effect of changing the timing decision on the performance of node stealing. Fig-
ure 4.18 depicts the results when triggering proactive checkpoint, or when using the next regular check-
point, rather than interrupting the victim as soon as possible. We notice that no strategy is able to
clearly outperform the original node stealing heuristic. Waiting for the next checkpoint always increases
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Variant June 2017 March 2018
utilization idle perc. utilization idle perc.

baseline 79.32 % 92.09 % 77.39 % 93.36 %
111 80.69 % 90.67 % 78.50 % 92.48 %
112 80.15 % 91.95 % 78.12 % 92.00 %
113 80.49 % 91.85 % 77.64 % 92.65 %
121 80.48 % 91.67 % 77.47 % 92.61 %
122 79.40 % 91.50 % 76.95 % 92.63 %
123 79.20 % 91.76 % 77.15 % 92.77 %
211 80.52 % 90.87 % 78.09 % 92.01 %
212 80.30 % 90.81 % 78.11 % 92.53 %
213 80.50 % 90.35 % 77.91 % 92.18 %
221 80.50 % 91.16 % 78.14 % 92.45 %
222 79.60 % 91.22 % 77.94 % 92.46 %
223 80.17 % 91.06 % 78.31 % 92.42 %
311 76.18 % 85.87 % 75.17 % 88.90 %
312 77.50 % 89.48 % 76.41 % 90.57 %
313 78.35 % 90.32 % 76.87 % 91.38 %
321 78.82 % 89.87 % 76.88 % 92.05 %
322 78.57 % 89.03 % 75.92 % 90.09 %
323 78.57 % 89.68 % 77.28 % 92.15 %

Table VIII: Utilization and percentage of time at least one node is available (idle perc.) in all variants.
Results are for the Mira platform in June 2017 and March 2018.
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Figure 4.18: Maximum flow and mean flow relative to BASELINE for various timing decision (111:
immediately interrupting, 211: proactive checkpointing, 311: waiting next checkpoint) and for various
categories of job sizes. MTBF and downtime are both set to 1 hour.
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Variant June 2017 March 2018
node empty total node empty total

stealing node failures stealing node failures
111 63.4 404.4 467.8 46.6 416.2 462.8
112 33.6 433.4 467.0 44.6 415.6 460.2
113 48.0 423.6 471.6 44.6 420.0 464.6
121 32.4 440.4 472.8 29.8 432.6 462.4
122 46.8 422.4 469.2 49.8 414.4 464.2
123 48.0 418.2 466.2 48.2 414.2 462.4
211 60.8 413.2 474.0 53.2 411.2 464.4
212 34.6 431.6 466.2 43.8 417.2 461.0
213 47.6 424.2 471.8 41.0 419.8 460.8
221 33.2 432.2 465.4 27.4 432.4 459.8
222 49.8 410.4 460.2 48.0 413.2 461.2
223 51.4 417.6 469.0 49.4 411.8 461.2
311 76.4 362.6 439.0 60.2 383.6 443.8
312 39.8 413.4 453.2 43.6 408.4 452.0
313 17.2 437.4 454.6 14.8 441.2 456.0
321 32.8 427.4 460.2 26.2 430.4 456.6
322 55.8 395.8 451.6 57.0 394.0 451.0
323 30.6 429.4 460.0 24.0 435.4 459.4

Table IX: Number of time node stealing is used vs number of time an empty node is used for all node
stealing variants. Results are for the Mira platform in June 2017 and March 2018.
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the maximum and average flows. Using proactive checkpointing has comparable performance with the
original node stealing for large jobs, but sometimes largely increases the maximum flow of small jobs.
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Figure 4.19: Maximum flow and mean flow relative to BASELINE heuristic for the two victim choices
(111: fewest nodes, 121: latest release date) and for various categories of job sizes. MTBF and downtime
are both set to 1 hour.

We then study on Figure 4.19 the impact of the choice of the victim on the performance of node
stealing. In the original node stealing, we select the job with the smallest number of nodes. In the
proposed variant, we select the job with the latest release date. We see that the victim selection policy
has a limited impact for small jobs, but very little for large jobs. On the whole, it does not allow to
improve performance.

Finally, Figure 4.20 presents the results when changing the interrupting criterion. In the original
heuristic, we decide to interrupt a victim job and perform node stealing if the victim requires less nodes
than the failed job. We also proposed to use release date to take this decision, by interrupting a victim
only if it was release later than the failed job. The last criterion requires to compute an estimation of the
flow for both the failed and victim job: the victim is interrupted only if it leads to a smaller maximum
flow for both jobs. We notice in these results that changing the interrupting criterion has an impact only
on small jobs, and does not clearly improve the results.
On the whole, all proposed variants fail to clearly improve the performance of node stealing: the basic
node stealing heuristic is sufficient to improve the flow of large jobs, at the cost of a limited increase in
the flow of small jobs (which is originally much smaller than the one of large jobs).

4.7 Conclusion

Patel et al wrote in their SC’20 paper [82]: Users are now submitting medium-sized jobs because the
waits times for larger sizes tends to be longer. Indeed, we have shown that failures dramatically increase
the flow of large jobs. It is important to invent scheduling strategies that decrease the flow of large jobs
on large-scale machines.
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Figure 4.20: Maximum flow and mean flow relative to BASELINE for the various interrupting criterion
(111: less nodes, 112: later release date, 113: better estimated maximum flow) and for various categories
of job sizes. MTBF and downtime are both set to 1 hour.

Variant job size value type of figure
Figure 4.18 111 [1, 27) 7.99 Maxflow

311 [1, 27) 6.09 Maxflow
Figure 4.19 111 [1, 27) 7.99 Maxflow
Figure 4.20 111 [1, 27) 7.99 Maxflow

112 [1, 27) 5.47 Maxflow
113 [1, 27) 4.09 Maxflow
113 [1, 27) 4.84 Maxflow
112 [1, 27) 7.73 Maxflow
112 [1, 27) 3.58 Meanflow

Table X: Outliers removed from Figures 4.18 to 4.20 for the March 2018 dataset.



90 CHAPTER 4. NODE STEALING FOR FAILED JOBS

We have introduced node stealing as an efficient approach to decrease the flow of large jobs. For
example, in June 2017 on Mira, the maximum flow of large jobs ([32K, 64K) nodes) goes down from
7.20 to 3.72 days, while the maximum flow of small jobs ([1, 128) nodes) increases from 0.19 to 0.54
days. We argue that the sharp decrease of the flow of large jobs is well worth the small increase of the
flow of small jobs, given that large-scale platforms are primarily intended to execute large jobs. A side
advantage of node stealing is a slight increase in terms of platform utilization. We have designed several
variants of node stealing and report that they behave similarly.

This study opens interesting problems in this area, such as designing a node-stealing-aware batch
scheduler: when taking scheduling decisions at submission time, the goal would be to account for the
possibility of mitigating a failure by node stealing.

Currently node stealing is used very few times because there is often a node available when a failure
strikes a job. Hence the failed job could restart with this node instead of requiring to steal a node from
another running job. This opportunity would be drastically limited on architectures where topology
matters: even if a spare node is available, it may not be possible to use it because of topology constraints.
In such a framework, node-stealing would probably lead to a dramatic decrease in response time.



Conclusion

In this thesis, we have studied resilience techniques to deal with future Exascale platforms. More pre-
cisely, we designed new scheduling strategies to account for various objectives, such as minimizing
makespan, maximizing utilization of the platform, and minimizing job flows. Chapter 2 and Chapter 3
of this thesis focused on designing fault-tolerance algorithms for iterative applications, while Chapter 4
focused on introducing scheduling heuristics for batch schedulers.

Chapter 2 and Chapter 3 both dealt with iterative applications, but there are some differences in the
application model. In Chapter 2, we dealt with linear chains whose tasks do not have constant execution
times but obey some probability distributions, while in Chapter 3, we considered the iterative application
as a chain of cyclic tasks. The goal of both chapters is to minimize makespan for the iterative applica-
tions. The heuristics proposed in these two chapters are compared with the traditional Young/Daly
formula. Chapter 2 shows Young/Daly formula can be safely applied to stochastic iteration applications,
and Chapter 3 shows Young/Daly formula is suboptimal compared to our optimal algorithm proposed
for the deterministic iterative applications. In Chapter 4, we considered how to schedule a failed job
that was executing on an over-subscribed platform in order to maximize the utilization of the platform
and minimize the flows of the larger jobs. We proposed a novel approach called node stealing which
interrupts another currently executing job, steals one of its nodes, and assigns it as a new resource to the
failed job.

The main contributions are summarized in the following three paragraphs:

Stochastic iterative applications (Chapter 2)

In this chapter, we introduced and analyzed checkpointing strategies for stochastic iterative applications
whose execution times of iterations are modeled with probabilistic distributions. We first proposed the
static strategy where checkpoints are taken after a given number of iterations and provided a closed-form
formula to compute the optimal period for any distribution. Then we proposed the dynamic strategy
where checkpoints are taken only if the total amount of work since the last checkpoint exceeds a given
threshold which can be computed by a closed-form formula we provided. We showed that the first-
order approximations of both formulas correspond to the Young/Daly formula. Extensive simulations
showed our mathematical formula fits the evaluated execution time and the makespan obtained by the
Young/Daly formula is always within one percent of the makespan obtained by the optimal strategy.
Thus, the Young/Daly formula can be applied safely to the checkpoint strategy of stochastic iterative
applications.

Deterministic iterative applications (Chapter 3)

In this chapter, we investigated checkpointing strategies for deterministic iterative applications. Each
iteration is composed of a chain of tasks, and these tasks have different lengths and different checkpoint
costs. We showed that there exists an optimal periodic strategy that a dynamic-programming algorithm

91
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can compute. We conducted simulations with both synthetic and real-life workflows to compare our
optimal algorithm with four natural competitor heuristics: The first two checkpoints after each task or
each iteration, respectively. The last two are extensions of the Young/Daly formula to iterative appli-
cations. Simulation results showed that our optimal algorithm could reduce the makespan of iterative
applications for all problem instances.

Node stealing for failed jobs (Chapter 4)

In this chapter, we first showed that failures dramatically increase the flow of large jobs. It is important
to invent scheduling strategies that decrease the flow of large jobs on large-scale platforms. In order to
decrease the flow of large jobs, we introduced an efficient approach called node stealing which interrupts
another currently executing job, steals one of its nodes, and assigns it as a new resource to the failed
job. We first focused on SFSJ (Steal From Small Jobs), a strategy which chooses the job to interrupt
among those with the smallest number of nodes and, if ties, with the shortest execution time so far.
Simulations with both real-life and synthetic workflows showed that SFSJ could improve the utilization
of the platform and sharply decrease the flow of large jobs at the cost of slightly increasing the flow of
small jobs. Then we designed and implemented several variants of node stealing by considering which
job to interrupt, when to interrupt and when to steal a node. All variants behaved similarly and the
primary node stealing heuristic SFSJ is sufficient.

Perspectives

We intend to continue our research along the following short-term and long-term perspectives.

Short-term perspectives

In the short term, we plan to improve the limitations of our current work and extend our solution to more
general situations. We listed the following points:

• In the work of Chapter 2, we focused on single-level checkpointing. Extending our approach
to multi-level checkpointing protocols would be an interesting topic. Multi-level checkpointing
protocols are state-of-the-art approaches in which checkpoints are taken at different periods for
each level of fault. Intuitively, the fewer failures, the longer the checkpoint period. Even in
a deterministic setting, it is hard to model and optimize analytically. Such an extension to a
stochastic framework is quite challenging.

• In the study of Chapter 3, we were able to deal with iterative applications whose iterations are
composed of a linear chain. Perspectives will be devoted to dealing with iterative applications
whose iterations are composed of a Directed Acyclic Graph (DAG) of tasks. Such an extension
poses another major challenge that several tasks may execute concurrently on the platform. Thus,
we will likely only obtain suboptimal algorithms instead of optimal ones.

• In Chapter 4, we proposed a node stealing approach based on the classic conservative backfilling
strategy used by batch schedulers. One of the backfilling strategies is conservative backfilling,
which means a backfilled job can delay no job in the queue. Another flavor is EASY, which means
backfilled jobs never delay the first job in the queue. Perspectives will be devoted to exploring
other well-established batch scheduling strategies (such as EASY) and assessing the usefulness of
node stealing when coupled with these strategies.
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• It would also be practical to do simulations on a real machine to test the effectiveness of our
algorithms. Nevertheless, controlling the probability of failures to simulate different scenarios is
a challenging problem.

Long-term perspectives: ABFT for iterative applications

ABFT (Algorithm based on fault-tolerance) is proposed to detect soft errors based on the specific mathe-
matical properties of different iterative methods. If the Krylov subspace method is not restarted after too
many iterations, the subspace dimension and the number of basis vectors will become too large. Then the
basis vectors will lose orthogonality due to rounding error, which will lead to an inaccurate calculation
result. Thus, it usually checks if the subspace basis vectors satisfy the orthogonality relation. As stated
in Section 1.3, some traditional Krylov subspace methods such as CG and GMRES have already been
designed ABFT variants for their specific mathematical properties. Kaczmarz-type inner-iteration pre-
conditioned flexible GMRES method is the state-of-the-art Krylov subspace method [32]. This method
is an inner-outer iterative method, which uses the Flexible GMRES method as the outer iteration and the
randomized/greedy Kaczmarz method as the inner iteration. Since it uses the Flexible framework, we
can naturally apply the existing ABFT variant designed for GMRES to it, but will there be some new
results based on the different mathematical properties of the new method? In addition, the new iterative
application can be modeled as a chain of tasks, and each task of the linear chain has different lengths
and checkpoint costs. Can we design similar fault tolerance algorithms like Chapter 3?

Long-term perspectives: node-stealing-aware batch scheduler

In Chapter 4, we came up with the idea of node stealing and proposed variants considering different
design choices such as which job to choose as the victim job, when to interrupt the victim job and when
to steal a node. From the simulation results, it can be observed that the number of activating node-
stealing is only 10% of the number of total failures. Because of the topology of the architecture, it may
be impossible to steal a specific node even if it is idle. If the number of times that node-stealing activates
increases, the scheduling heuristic may be more effective. In addition, the node-stealing heuristic can
significantly decrease the flow of large jobs at the expense of increasing the flow of small jobs. Although
it might be acceptable because the magnitude of the increase or decrease is not the same, can we design a
node-stealing-aware batch scheduler to account for the possibility of mitigating a failure by node stealing
when taking scheduling decisions at submission time? It may result in a better balance between large
and small jobs to get a more significant overall benefit.
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