
HAL Id: tel-03956035
https://theses.hal.science/tel-03956035

Submitted on 25 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ensembles indépendants et au-delà, à travers le prisme
des systèmes distribués et des graphes colorés

Jonas Sénizergues

To cite this version:
Jonas Sénizergues. Ensembles indépendants et au-delà, à travers le prisme des systèmes distribués et
des graphes colorés. Distributed, Parallel, and Cluster Computing [cs.DC]. Université Paris-Saclay,
2022. English. �NNT : 2022UPASG091�. �tel-03956035�

https://theses.hal.science/tel-03956035
https://hal.archives-ouvertes.fr

THE
SE

DE
DO

CTO
RAT

NN
T:2

022
UPA

SG0
91

Independent sets and beyond, through
the prism of distributed systems and

colored graphs
Ensembles indépendants et au-delà, à travers le prismes

des systèmes distribués et des graphes colorés

Thèse de doctorat de l’université Paris-Saclay

École doctorale : n°580 : sciences et technologies de l’information et de
la communication (STIC)

Spécialité de doctorat: Informatique
Graduate School : Informatique et sciences du numérique, Référent :

Faculté des sciences d’Orsay

Thèse préparée dans l’unité de recherche Laboratoire Interdisciplinaire des
Sciences du Numérique (Université Paris-Saclay et CNRS), sous la direction de

Yannis MANOUSSAKIS, Professeur des universités, et de Johanne COHEN,
directrice de recherche.

Thèse soutenue à Paris-Saclay, le 12 Décembre 2022, par

Jonas SÉNIZERGUES

Composition du jury
Devan SOHIER Président
Professeur des universités, LI-PaRAD,
Université de Versailles Saint-Quentin-en-Yvelines
Jérémie CHALOPIN Rapporteur & Examinateur
Directeur de recherche, LIS,
Université d’Aix-Marseille et CNRS
Pierre FRAIGNIAUD Rapporteur & Examinateur
Directeur de recherche, IRIF,
Université Paris Cité et CNRS
Swan DUBOIS Examinateur
Maître de conférence, LIP6,
Sorbonne Université

Résumé étendu en français:

On peut faire remonter l’histoire de l’étude des
graphes jusqu’au 18ème siècle lorsque Euler pro-
posa le problème des Sept ponts de Königsberg :
“Est-il possible de trouver un chemin qui passe ex-
actement une fois par chacun des ponts de Königs-
berg ?”. Dans Königsberg, vue comme un graphe
dans le formalisme moderne, les ponts seraient les
arètes, et chaque rive ainsi que chaque île un som-
met. Si la réponse avait été “oui”, au vu de la
taille du graphe, la question aurait très bien pu
ne jamais être exprimée par Euler, et la théorie
des graphes pourrait avoir attendu quelques temps
encore pour apparaitre dans le paysage mathéma-
tique. Mais la réponse était “non”, et prouver que
quelque chose n’est pas possible est souvent plus
dur que prouver que quelque chose l’est. Euler
introduit donc le premier raisonnement que l’on
peut lier explicitement à la théorie des graphes,
ainsi que la notion éponyme de chemin Eulerien.
Depuis l’époque d’Euler, le monde est devenu de
plus en plus connecté. Et si les graphes étaient déjà
utiles pour modéliser des problèmes géographiques
en en son temps, ils sont devenus un outil de mod-
élisation majeur du monde moderne. Cependant,
lorsqu’on veut modéliser des choses complexes, il
est souvent nécessaire d’ajouter de l’information
à la modélisation, sur les sommets, les arètes, ou
les deux. Ainsi on peut s’intéresser aux graphes
auxquels on a ajouté des couleurs sur les arètes
ou les sommets, et aux problèmes qui émergent
de cet ajout. C’est l’une des facettes des graphes
abordées dans cette thèse. Les graphes apparais-
sent aussi très naturellement dans le contexte des
réseaux d’ordinateurs pour représenter le graphe
de communication entre les membres dudit réseau.
Le domaine d’étude sur les calculs qui peuvent
être faits sur de tels réseaux est appellé calcul dis-
tribué. En pratique dans un tel réseau, on ne peut
pas toujours garantir que tous les membres calcu-
lent et communiquent à la même vitesse, et les
proposition d’algorithme dans ce contexte doivent
prendre en compte cette nature asynchrone pour
capturer cette réalité. Dans certains cas, on ne
peut même pas garantir que toutes les machines
se comportent correctement : elles peuvent faire
des erreurs. Deux types sont généralement con-
sidérés. D’une part il y a les pannes transitoires
qui sont la conséquence d’une erreur ponctuelle,
possibilité capturée dans la notion d’algorithme

auto-stabilisant qui peut récupérer de n’importe
quelle erreur de ce type. De l’autre, les pannes
dites Byzantines sont le résultat d’un comporte-
ment malveillant et ne sont pas bornées dans le
temps. Le travail présenté par cette thèse peut
être divisé en deux parties, la première se concen-
trant sur l’autostabilisation dans des systèmes dis-
tribués, la seconde sur de l’algorithmique de graphe
colorés. La partie portant sur l’autostabilisation
s’intéresse aux pannes Byzantines pour des prob-
lèmes qui n’avaient pas d’algorithme connu sup-
portant celles-ci. L’un d’eux est ensuite utilisé
pour proposer un mécanisme produisant des al-
gorithme autostabilisants pour tout problème rac-
commodable dans des réseaux anonymes. La par-
tie d’algorithmique de graphes introduit un nou-
veau problème étendant des travaux antérieurs sur
les couplages colorés et donne un résultat de dif-
ficulté algorithmique ainsi qu’un algorithme FPT
pour un certain paramètre. Le chapitre 3 introduit
un algorithme qui supporte les pannes Byzantines
et résout le problème de l’indépendant maximal
dans les systèmes anonymes en O(n2) rounds avec
forte probabilité sous le démon distribué juste. Il
donne ensuite une version légèrement modifiée de
cet algorithme qui résout le même problème sous
le démon distribué antagoniste (sans supporter
de pannes Byzantines) en O(n2) opérations. Le
chapitre 5 introduit un algorithme qui supporte les
pannes Byzantines et résout le problème de parti-
tion minimales en cliques en O(∆n) rounds sous le
démon distribué juste dans des systèmes à identifi-
ants uniques. Le chapitre 4 introduit un algorithme
qui résout le problème du (k, k − 1)-ensemble
dirigeant dans les réseaux anonymes sous le démon
Gouda. La construction en parallèle de tels ensem-
bles dirigeants permet de trouver une coloration
à distance K, dont on utilise les couleurs comme
identifiants pour résoudre n’importe quel problème
raccommodable sur des réseaux anonymes. En-
fin, le chapitre 6 introduit un nouveau problème,
le problème du couplage maximum minimalement
coloré, qui étend des travaux antérieurs sur les cou-
plages colorés. Ce problème est ici démontré NP-
dur, et difficile à approximer sous un ratio loga-
rithmique de la taille du graphe. Il y est égale-
ment démontré qu’il W [2]-difficile en considérant
le paramètre “taille de la solution”, mais FPT en
considérant le paramètre “taille d’un couplage max-
imum”.

Title: Independent sets and beyond, through the prism of distributed systems and colored graphs.

Keywords: graphs, distributed, algorithms, self-stabilizing, complexity, approximation

Abstract: The work presented in this thesis can
be divided in two, the first part focusing on self-
stabilization in distributed systems, and the sec-
ond one on classical graph algorithms. The self-
stabilization part deals with Byzantine faults for
problems that had no prior algorithm handling
those. One of them is then used to propose a way
to produce self-stabilizing algorithms for mend-
able problems in anonymous networks. The clas-
sical graph algorithm part introduces a new prob-
lem that extends some previous work on colored
matchings and gives a hardness result as well as
an FPT algorithm for a specific parameter. Chap-
ter 3 introduces an algorithm that handles Byzan-
tine faults and solves the MIS problem in anony-
mous systems in O(n2) rounds with high proba-
bility under the fair distributed daemon. It then
gives a slightly modified version of this algorithm,
that solves the same problem under the adversar-
ial distributed daemon (without handling Byzan-
tine faults) in O(n2) moves. Chapter 5 introduces

an algorithm that handles Byzantine faults and
solves the Minimal Clique Decomposition problem
in O(∆n) rounds under the fair distributed dae-
mon in systems with unique identifiers. Chapter 4
introduces an algorithm that solves the (k, k− 1)-
ruling set problem in anonymous networks under
the Gouda daemon. The parallel construction of
multiple such ruling sets allows to find a distance-
K coloring in an anonymous network, whose colors
are used as identifiers to solve any mending prob-
lems on anonymous networks. Finally, Chapter 6
introduces a new problem, the Minimum Colored
Maximum Matching problem, that extends what
had already been done on colored matchings. The
problem is shown to be NP-hard and hard to ap-
proximate within a logarithmic ratio of the size of
the graph. It is also proven W [2]-hard with the pa-
rameter “size of the solution”, but fixed-parameter
tractable with the parameter “size of a maximum
matching”.

Titre: Ensembles indépendants et au-delà, à travers le prismes des systèmes distribués et des graphes
colorés.

Mots clés: graphes, distribué, algorithmes, autostabilisation, complexité, approximation

Résumé: Le travail présenté par cette thèse peut
être divisé en deux parties, la première se concen-
trant sur l’autostabilisation dans des systèmes dis-
tribués, la seconde sur de l’algorithmique de graphe
colorés. La partie portant sur l’autostabilisation
s’intéresse aux pannes Byzantines pour des prob-
lèmes qui n’avaient pas d’algorithme connu sup-
portant celles-ci. L’un d’eux est ensuite utilisé
pour proposer un mécanisme produisant des al-
gorithme autostabilisants pour tout problème rac-
commodable dans des réseaux anonymes. La par-
tie d’algorithmique de graphes introduit un nou-
veau problème étendant des travaux antérieurs sur
les couplages colorés et donne un résultat de dif-
ficulté algorithmique ainsi qu’un algorithme FPT
pour un certain paramètre. Le chapitre 3 introduit
un algorithme qui supporte les pannes Byzantines
et résout le problème de l’indépendant maximal
dans les systèmes anonymes en O(n2) rounds avec
forte probabilité sous le démon distribué juste. Il
donne ensuite une version légèrement modifiée de
cet algorithme qui résout le même problème sous
le démon distribué antagoniste (sans supporter

de pannes Byzantines) en O(n2) opérations. Le
chapitre 5 introduit un algorithme qui supporte les
pannes Byzantines et résout le problème de parti-
tion minimales en cliques en O(∆n) rounds sous le
démon distribué juste dans des systèmes à identifi-
ants uniques. Le chapitre 4 introduit un algorithme
qui résout le problème du (k, k − 1)-ensemble
dirigeant dans les réseaux anonymes sous le démon
Gouda. La construction en parallèle de tels ensem-
bles dirigeants permet de trouver une coloration
à distance K, dont on utilise les couleurs comme
identifiants pour résoudre n’importe quel problème
raccommodable sur des réseaux anonymes. En-
fin, le chapitre 6 introduit un nouveau problème,
le problème du couplage maximum minimalement
coloré, qui étend des travaux antérieurs sur les cou-
plages colorés. Ce problème est ici démontré NP-
dur, et difficile à approximer sous un ratio loga-
rithmique de la taille du graphe. Il y est égale-
ment démontré qu’il W [2]-difficile en considérant
le paramètre “taille de la solution”, mais FPT en
considérant le paramètre “taille d’un couplage max-
imum”.

3

Remerciements

Après quatre ans -un peu plus que prévu, oups-, voici venu le temps de clore
cette page de ma vie que constitue la thèse. Et avec ça, celui de remercier tous
ceux qui ont contribué de près ou de loin à rendre cette aventure envisageable,
possible, et agréable.

Ainsi, pour m’avoir formé jusqu’à un niveau menant au début de cette aventure,
tout en ayant affûté mon goût de la subtilité mathématique, je remercie mes
enseignants de CPGE, de l’ENS de Cachan, et encadrants de stage : Guillaume,
Laurent, Denis, Hubert, Michel, Enrico, et Reynald.

Pour m’avoir donné la possibilité de travailler avec eux pendant trois -oups,
quatre- ans alors que ma situation était un peu particulière suite à quelques acci-
dents de la vie, je remercie mes encadrants de thèse Yannis et Johanne.

Pour le temps passé autour d’un tableau blanc pendant des durées extensives
jusqu’à réussir à mettre des raisonnements bout-à-bout, je remercie mes coauteurs
Jérôme, Laurence, Mickael, François, et bien sûr Yannis et Johanne. Parmi ceux-
ci, certains ne pourront jamais lire ces lignes, car ils sont partis trop tôt, Jérôme
et Yannis. Et si pour partie les travaux correspondant n’ont pas pu trouver leur
place dans ce manuscrit, j’espère pouvoir finir les travaux que nous avions entamé
ensemble.

Pour les discussions scientifiques et beaucoup moins scientifiques, la boite à
chocolat, et les arts décoratifs sur tableau, je remercie ceux avec qui j’ai partagé
le bureau 35 pendant ces années : Justine, Hugo, Balthazar, et Daniel. Pour
seulement la partie discussions -on ne peut pas partager le chocolat avec tout le
monde-, je remercie également tous les membres de l’équipe GALaC du LISN.

Pour les expériences positives d’enseignement, je remercie les responsables de
cours et co-chargés de TD avec qui j’ai pu enseigner à l’Université Paris-Saclay :
Frédéric et Laurent, Pierre et Marie, et à l’ENSIIE : Julien, Dimitri, Christophe et
Kahina.

Pour s’être rendus disponibles pour participer au jury de thèse, et pour avoir pris
le temps de parcourir l’intégralité de mon manuscrit dans le cas des rapporteurs, je
remercie les membres du jury Pierre Fraigniaud, Jérémie Chalopin, Devan Sohier,
et Swan Dubois.

Et si la thèse est l’aboutissement d’un processus académique, pour rendre
vivable celui-ci le versant non-académique est essentiel. Je remercie tous mes
amis, dont je n’ose pas essayer faire la liste de peur d’en oublier. En particulier
: l’équipe des gros dej’ du dimanche qui m’a largement servi de cobaye pour des
expérimentations culinaires et pour avoir maintenu lien social régulier en période
difficile ; les membres de la guilde Evolution qui ont écouté mes jérémiades lorsque

4

j’avais besoin de lâcher de la pression, et m’ont accompagné me nouer le cerveau
lorsque j’avais besoin de changer d’air ; les membres des club anime et nanar pour
les projections à valeur culturelle variable mais toujours divertissantes.

Merci à ceux qui m’ont permis de profiter d’une accalmie pour la fin de la ré-
daction de ce manuscrit, lorsque la quiétude se faisait rare : Catherine et Christian,
ainsi que Chloé.

Merci enfin à ma famille pour m’avoir accompagné et soutenu, depuis le début,
et bien avant encore : Geneviève, Philipe, Rose-Claire, Irène, Géraud, Delphin et
Loup.

5

Contents

1 Introduction 11

2 Graphs and models 13

2.1 Sets . 13
2.2 Graph notions and notations . 14
2.3 Models of distributed systems . 15

2.3.1 Rules, transitions, and executions . 16
2.3.2 Daemons . 17
2.3.3 Algorithm and self-stabilization . 18
2.3.4 Byzantine faults . 18
2.3.5 Complexities . 19

3 Maximal Independent Set 21

3.1 State of the art . 21
3.2 With Byzantines Nodes under the Fair Daemon . 22

3.2.1 Specification . 23
3.2.2 An example . 23
3.2.3 The proof . 26

3.3 In an Anonymous System under the Adversary Daemon 34
3.3.1 An example . 34
3.3.2 The proof . 36

3.4 Conclusion . 44
4 Ruling Set 45

4.1 State of the art . 47
4.2 Self-Stabilizing Algorithm for Computing a (k, k-1)-Ruling Set 48

4.2.1 General Overview . 48
4.2.2 The Clock System . 51
4.2.3 Handling Initial and Perturbed Configurations . 52

4.3 Proof of the Algorithm . 52
7

4.3.1 Stability of Legitimate Configurations . 52
4.3.2 Reaching a Legitimate Configuration . 59

4.4 From Ruling Sets to Distance-K Colorings . 68
4.5 Solving Mendable Problems . 70

4.5.1 Definitions . 71
4.5.2 Solving Greedy and Mendable Problems . 72

4.6 Conclusion . 74
5 Minimal Clique Decomposition 75

5.1 State of the art . 76
5.2 Description of the algorithm . 77

5.2.1 Local variables . 79
5.2.2 About the Omega-closure . 79
5.2.3 How to merge two cliques . 79
5.2.4 How to handle errors . 80

5.3 Convergence . 82
5.3.1 Neighborhood stabilization . 83
5.3.2 Well-definedness . 83
5.3.3 Any merging process ends . 90
5.3.4 Merging happens and makes the solution progress 94
5.3.5 Convergence and time complexity . 101

5.4 Specification . 102
5.5 Correction . 103
5.6 Conclusion . 105

6 Minimally Colored Maximum Matching 107

6.1 Notations and definitions . 107
6.2 Introduction to the MCMM problem . 108
6.3 NP-hardness and W[2]-hardness of MCMM . 110
6.4 Hardness of approximating MCMM . 113
6.5 MCMM is FTP when parameterized by the maximum size of a matching in the input graph 118
6.6 APX-completeness on collections of P2 and P3 . 125
6.7 Conclusion . 127

8

7 Conclusion 129

9

1 - Introduction

Before graphs became the staple of modeling that they now are, their history
can be traced back to the 18th century, when Leonardo Euler proposed the Seven
bridges of Königsberg problem: “Is it possible to devise a path in Königsberg that
crosses each bridge exactly once?”. Bridges would be edges of the graph, while
each bank of the river and each island would be a vertex of the graph, in nowadays
formalism. Had the answer to this question been “yes”, given the size of the graph,
the question may not even have been asked by Euler, and graph theory could
have waited some decades more to appear in the mathematical landscape. But
the answer was “no”, and proving that something is not possible is often harder
than proving that something is. Thus Euler introduced the problem and the first
reasoning that we can link explicitly to graph theory, as well as the eponymous
notion of Eulerian path.

Since Leonardo Euler’s time, the world has become more and more intercon-
nected. If graphs were already useful to model geographical problems in his time,
they have become a widespread modeling tool in the contemporary world, justify-
ing the study of fundamental graph theory. However, when one wants to model a
complex thing, there is often the need to add some information to the modeling,
either on the vertices, the edges, or both. For example, with road networks, a
natural way to model them is to use edge-weighted graphs, where vertices repre-
sent locations, and edges roads, with the weights representing either the length
of the road, or its maximum traffic capacity, depending on the problem you are
dealing with. For some applications, we might want to use a qualitative -instead
of quantitative- way of adding information to the graph. For example, modeling a
social graph might benefit from adding colors to the edges, corresponding to the
type of relationship represented. For the study of the graph of webpages and its
patterns, it may be more useful to add colors to the vertices, corresponding to the
type of content of the page. This last kind of graph, namely vertex-colored graphs,
is considered in Chapter 6.

Graphs also appear very naturally in the context of computer networks as
the underlying communication graph between the said computers. The field of
study of calculations that can be made on such a network is called distributed
computing. In such a context, a “computer” is a calculation unit that is only
aware of its immediate neighborhood in the communication graph, and information
has to be communicated between units to reach a solution. Note that as many
such machines are supposed to work together in a network, one cannot always
guarantee that every one of them computes and communicates at the same speed,
and attempts at proposing algorithms for such a network should take into account

11

this asynchronous nature of the global computation to succeed. Sometimes, you
cannot even guarantee that every machine in the network is behaving perfectly well:
they can be subject to some faults. Two types of faults are generally considered.
On one hand, transient faults are the result of a one-time computation error, and
this is captured by the notion of self-stabilizing algorithms that are able to recover
from any such fault [24, 26]. On the other hand, Byzantine faults are the result
of malevolent behavior, and cannot be guaranteed to stop at any time [48]. In
Chapters 3,4 and 5 we consider self-stabilizing algorithms, and in Chapters 3 and 5
we include considerations about Byzantine faults.

In Chapter 2, notions used throughout the thesis about mathematics, graph
theory, and distributed systems are introduced.

In Chapter 3, in collaboration with Johanne Cohen, Laurence Pilard, and
François Pirot, we present two algorithms to compute a maximal independent
set in an anonymous network. The first one, working under the fair distributed
daemon, is robust to Byzantine faults. The second one works under the adversarial
distributed daemon.

In Chapter 4, in collaboration with Johanne Cohen and Mikaël Rabie, we in-
troduce an algorithm to compute a ruling set in an anonymous network under
the Gouda daemon. We then use it to introduce a general process to solve any
mendable problem (a generalization of locally greedy problems).

In Chapter 5, in collaboration with Johanne Cohen and Laurence Pilard, we give
an algorithm that tackles the Clique Decomposition problem in a (non-anonymous)
network while handling Byzantine faults.

In Chapter 6, in collaboration with Johanne Cohen and Yannis Manoussakis, we
study the hardness to find a maximum matching that uses the minimum number of
colors in a vertex-colored graph. On one hand, we show that it is W [2]-hard using
the number of colors of the solution as a parameter, and hard to approximate.
On the other hand, we show that it is fixed-parameter tractable with the size of a
maximum matching as a parameter.

12

2 - Graphs and models

In this chapter, we introduce many notions and notations that we will use in the
remainder of this thesis. Some of them may be already well-known to the reader,
but we want to remain reasonably exhaustive for the sake of the accessibility of
this document.

2.1 . Sets

As we use multiple types of sets in this thesis, we introduce them here before-
hand. Recall that the notion of set captures the idea of a collection of objects
called elements without order or repetition. If e is an element of a set A we write
e ∈ A for “e is a member of A”. We use multiple methods to introduce and
manipulate sets:

• The enumeration notation : S = {a, b, c} is the set containing exactly the
elements a, b and c.

• The semantic description : “S is the set containing the letters in the word
notation” stands for S = {‘n’, ‘o’, ‘t’, ‘a’, ‘i’, ‘n’}.

• The set-builder notation : S = {e ∈ S′ | P(e)} is the set containing all
elements e of the set S′, such that the predicate P is true on e. When S′ is
obvious from context, the part ∈ S′ can be omitted. More generally, e may
be replaced by any function of e.

• And of course, we use operations on pre-defined sets to define new sets,
including the basic operations written as follows when A and B are two
sets:

– The union A ∪B is {e | e ∈ A ∨ e ∈ B}.
– The intersection A ∩B is {e | e ∈ A ∧ e ∈ B}.
– The set difference A \B is {e | e ∈ A ∧ e ̸∈ B}.
– The cartesian product A×B is {(a, b) | a ∈ A ∧ b ∈ B}.

Note that {f(e), g(e) | P(e)} is an alias for {f(e) | P(e)} ∪ {g(e) | P(e)}.

The cardinal of a set S, also called its size, is denoted by |S|.

We use the standard notations for real numbers intervals. When (x, y) ∈ R:

• [x, y] is {r ∈ R | x ≤ r ≤ y},

•]x, y] is {r ∈ R | x < r ≤ y},

13

• [x, y[is {r ∈ R | x ≤ r < y},
•]x, y[is {r ∈ R | x < r < y}.

We also use the standard notation for integer segments. When (x, y) ∈ Z,
Jx, yK is the set {r ∈ Z | x ≤ r ≤ y}.

Recall the canonical order on sets: the inclusion. A set A is included in a set
B if every element of A is also in B. It is written A ⊆ B. A ⊊ B is an alias for
A ⊆ B ∧A ̸= B.

Definition 2.1.1 (Partition). A partition of a set A is a set A of parts of A (i.e.
elements of A are subsets of A) such that:

• The union of all elements of A is A,
• The elements ofA are pairwise disjoints (i.e. their intersection is empty).

2.2 . Graph notions and notations

In this thesis, we only consider simple undirected graphs, which we call, for the
sake of simplicity, “graphs”.

A graph G is a couple (V,E), where V is called the set of vertices, and E

called the set of edges is a set of (unordered) pairs of elements of V . The set
of vertices (resp. edges) of G may also be denoted by V (G) (resp. E(G)). By
convention, we write n = |V | and m = |E|.

When u and v are vertices of the graph, and {u, v} = {v, u} ∈ E is an edge,
we write that edge uv. u and v are called the endpoints of the edge uv.

Two vertices u and v are said adjacent when uv ∈ E. We also say that u and
v are neighbors. Two edges are said adjacent when they share an endpoint.

When u is a vertex, N(u) is the set of vertices that are neighbors of u, it is
called the neighborhood of u. The closed neighborhood N [u] is then N(u)∪{u}.
The degree of a node u is |N(u)|, written deg(u). The maximum degree in the
graph is denoted by ∆.

A graph G′ = (v′, E′) is said to be a subgraph of G = (V,E) when V ′ ⊆ V

and E′ ⊆ E. Moreover, G′ is said to be an induced subgraph when it is a subgraph
and E′ contains every edge of E whose both endpoints are in V ′. In such a case,
we say that G′ is the subgraph of G induced by V ′.

Definition 2.2.1 (Path). A path of length k, or Pk, is a graph with k+1 distinct
vertices on which there exists a total order relation such that, when you write
the vertices in that order, the edges are exactly the pairs of successive vertices.

By extension, a finite sequence of distinct vertices x0, x1, ..., xk of a graph G is
a path of G when G′ = ({x0, x1, ..., xk} , {x0x1, x1x2, ..., xk−1xk}) is a subgraph

14

of G. We denote by dist(u, v) the distance between two vertices u and v i.e. the
minimal length of a path from u to v in the graph. When S is a subset of V ,
dist(u, S) is the minimum among all the distances from u to an element in S.

Definition 2.2.2 (Cycle). A cycle of length k ≥ 3, orPk, is a graphwith k distinctvertices on which there exists a total order relation such that, when you write
the vertices in that order, the edges are exactly the pairs of successive vertices
plus an edge between the smallest and the biggest vertices.

By extension, a finite sequence of distinct vertices x0, x1, ..., xk of a graph G
is a cycle of G when G′ = ({x0, x1, ..., xk} , {x0x1, x1x2, ..., xk−1xk, xkx0}) is a
subgraph of G.

Definition 2.2.3 (Tree). A tree is a graph that has no cycle.
Definition 2.2.4 (Clique). A clique of size k, is a graph with k distinct vertices
where every vertex is adjacent to every other one.

By extension, in a graph G, we say that C = {x0, x1, ..., xk} is a clique of G
(with x0, x1, ..., xk distinct vertices of G) when the subgraph of G induced by C
is a clique.

2.3 . Models of distributed systems

In Chapters 3, 4 and 5 we deal with problems in distributed systems, to which
we give solutions that are robust to transient faults. In this part, we introduce the
model we use here, some related notions, and some useful notations.

A distributed system consists of a set of processes where two adjacent processes
can communicate with each other. The communication relation is modeled by a
graph G = (V,E) where V is the set of the processes (we call node an element
of V in such context) and E represents the neighborhood relation between them,
i.e. uv ∈ E when u and v are adjacent nodes.

In the context of distributed systems, many different assumptions can be made
about the way nodes are able to interact with their neighbors. In Chapters 3 and 4
we assume the system to be anonymous, which means that the nodes do not have
unique identifiers to distinguish themselves. They can, however, point toward a
node in their neighborhood, and can tell if a given neighbor is pointing toward
them or not. Conversely, in Chapter 5 we suppose that every node has a unique
identifier

Regarding communication and local information, we use what is called the
state model. Every node has a set of local variables which make up the local state
of the node. A node can read its local variables and all the local variables of its
neighbors, but can only rewrite its own local variables.

15

2.3.1 . Rules, transitions, and executions

Now that we know what the system looks like, it remains to define what is a
computation in it. First of all, we have to define what corresponds to a picture of
the system at a given time. A configuration is the value of the local states of all
nodes in the system. When u is a node and x a local variable, the x-value of u in
configuration γ is the value xγu.

Then, to define how such a system can evolve, we introduce the notion of rule,
which may be executed by a given node of the system. A rule is anything of the
shape ⟨guard⟩ → ⟨command⟩, parametrized by a node, where:

• The guard is a predicate over the variables of the said node and its neighbors.

• The command is a sequence of actions that may change the values of the
node’s variables (but not those of its neighbors).

Notice how the notion of guard implements the fact that nodes can read the local
variables of their neighbors.

A rule is enabled on a node u in a configuration γ if the guard of the rule
holds on u in γ. A node is activable on a configuration γ if at least one rule is
enabled on u. We say that a configuration is stable if no node is activable in that
configuration.

We call move any couple (u, r) where u is a node and r is a rule. A move is
said valid in a given configuration γ if r is enabled on u in γ.

The execution of a rule by a node may only change the value of variables of
that specific node, but multiple moves may be performed at the same time, as
long as they act on different nodes. To capture this, we say that a set of moves
t is valid in a configuration γ when it is non-empty, contains only valid moves of
γ, and does not contain two moves with the same node as first element. Then, a
transition is a triplet (γ, t, γ′) such that:

• t is a valid set of moves of γ,

• γ′ is a possible configuration after every node u appearing in t performed
simultaneously the command of the associated rule, beginning in configura-
tion γ.

Note that here we implicitly implement rule atomicity, which means that evaluating
the validity of the guard and executing the command (which possibly contains
multiple actions) is made as a single action. We write such a triplet as γ t−→ γ′.
We also write γ → γ′ when there exists a transition from γ to γ′. V (t) denotes
the set of nodes that appear as first member of a couple in t.

We say that a rule r is executed on a node u in a transition γ
t−→ γ′ (or

equivalently that the move (u, r) is executed in γ
t−→ γ′) when the node u has

16

performed the rule r in this transition, that is when (u, r) ∈ t. In this case, we say
that u has been activated in that transition. Then, an execution is an alternate
sequence of configurations and move sets γ0, t1, γ1 · · · ti, γi, · · · where:

• The sequence is either infinite or ends by a configuration,

• For all i ∈ N such that it is defined, (γi, ti+1, γi+1) is a transition.

We write such an execution as γ0
t1−→ γ1 · · ·

ti−→ γi · · · When the execution is
finite, the last element of the sequence is the last configuration of the execution.
An execution is maximal if it is infinite, or it is finite and no node is activable in
the last configuration. It is called partial otherwise. We say that a configuration
γ′ is reachable from a configuration γ if there exists an execution starting in
configuration γ that leads to configuration γ′.

2.3.2 . Daemons

In a distributed system, the idea is that you can give instructions to individual
nodes, but cannot, in general, ensure synchronization (neither the time synchro-
nization nor the synchronization of the choices) of the executions of rules between
different parts of the system. An algorithm in such a distributed system is then a
set of rules, that are local rules as defined earlier.

Then, you have to introduce a notion to formalize that uncertainty about what
the nodes do. This is done by introducing an adversary, called daemon, that
chooses from a given configuration which moves to execute in the next transition.
Depending on the powers we give to that adversary, it will result in different con-
straints on the algorithm we build to be able to solve a given problem. A daemon is
formally a predicate on the executions, only allowing a certain subset of executions.

The most general daemon has no constraint at all, it is formally the predi-
cate true. It is often called the adversarial distributed daemon, a naming that
corresponds to two natural ways to classify daemons:

• A fair daemon is a daemon that only allows executions with fairness property:
every node that is continuously activable must eventually be activated. An
adversarial daemon is on the contrary a daemon that does not have such a
constraint.

• A synchronized daemon is a daemon that only allows executions where every
activable node is activated in every transition, leaving only the choice of the
rule. A distributed daemon is on the contrary a daemon that does not have
such a constraint.

In the first part of Chapter 3 and in Chapter 5 we work under the adversarial
distributed daemon. In the second part of Chapter 3 we use the fair distributed

17

daemon. As we only consider distributed daemons in this thesis, we write the fair
daemon (resp. the adversarial daemon) when dealing with the distributed fair
daemon (resp. the distributed adversarial daemon).

In Chapter 4 we use a rather unconventional daemon called the Gouda daemon,
which only allows executions such that a continuously reachable configuration must
eventually be reached.

Definition 2.3.1. [29, 37] We say that an execution E = γ0
t1−→ γ1 · · ·

ti−→ γi · · ·is under the Gouda deamon if for any configurations γ and γ′ such that γ →
γ′ can be executed, if γ appears infinitely often in E , then γ′ also appears
infinitely often in E .

See [29] for a more complete taxonomy of daemons.

2.3.3 . Algorithm and self-stabilization

An algorithm is a set of rules, where each rule is of the form ⟨guard⟩ →
⟨command⟩ and is parametrized by the node where it would be applied. The
guard is a predicate over the variables of the said node and its neighbors. The
command is a sequence of actions that may change the values of the variables of
the node (but not those of its neighbors).

The notion of self-stabilization is then to have algorithms that can recover from
any transient fault. This is captured by the fact that in this context we require
algorithms to be able to converge toward a correct solution from any starting
configuration.

Given a specification of a problem and L the associated set of legitimate
configuration, i.e., the set of the configurations that verify the specification, an
algorithm is self-stabilizing when the following properties are true:

• Correctness: every configuration of an execution starting by a configuration
of L is in L,

• Convergence: from any configuration, whatever the strategy of the dae-
mon, the resulting execution eventually reaches a configuration in L with
probability 1.

When the rules are deterministic, the convergence condition may often (de-
pending on the daemon) be replaced by the same but without the “with probabil-
ity 1” part.

2.3.4 . Byzantine faults

On top of transient faults, in distributed systems is often considered the pos-
sibility to have nodes that are secretly non-cooperative with the common goal of

18

the system and make intentional errors in the computation. We call this kind of
node Byzantine nodes, and this kind of errors Byzantine errors or faults. Formally
Byzantine nodes are modeled by special nodes that are always activable, and may
change their state arbitrarily when activated.

In the presence of such Byzantine faults, it is often not possible to maintain
the specification of a given problem. The goal becomes in such a case to contain
the Byzantine node influence by finding a “solution” on a subgraph that avoids
Byzantine nodes.

Note that with Byzantine nodes, you cannot hope for any algorithm that works
under the adversarial distributed daemon, as the daemon may choose to always
activate a Byzantine node and nothing else. It is then necessary to consider algo-
rithms that work under a more constrained daemon. We give algorithms that work
under the fair distributed daemon in the first part of Chapter 3 and in Chapter 5
for this reason.

2.3.5 . Complexities

The time complexity of a distributed algorithm may be evaluated by various
metrics. Most of the time, in the context of distributed systems, the local compu-
tation time is not considered, and what is accounted for is communication. Here,
in the state model, the communication lies in the reading of neighbors’ variables
when a node is activated, hence we want to count these events.

The most straightforward way to do this is to count the number of moves
performed in one execution, this is what we do when we consider algorithms under
the adversarial distributed daemon in the second part of Chapter 3.

However, in distributed systems, you may be interested in the speed of the
“slowest” node, as events happen in parallel. This is especially true in the context
of a fair daemon, as you can be sure that no node may be left aside by the daemon.
This is captured by the notion of round. This concept was introduced by Dolev et
al. [27], and reworded by Cournier et al. [18] to take into account activable nodes.
We quote the two following definitions from Cournier et al. [18]: “

Definition 2.3.2. We consider that a node u executes a disabling action in the
transition γ1 → γ2 when:

• u is activable in γ1,
• u does not execute any rule in γ1 → γ2,
• u is not activable in γ2.
The disabling action represents the situation where at least one neighbor of u

changes its local state in γ1 → γ2, and this change effectively makes the guard of
all rules on u false in γ2. The time complexity is then computed by capturing the
speed of the slowest node in any execution through the round definition [27].

19

Definition 2.3.3. Given an execution E , the first round of E (let us call itR1) isthe minimal prefix of E containing the execution of one action (the execution
of a rule or a disabling action) of every activable node from the initial configu-
ration. Let E ′ be the suffix of E such that E = R1E ′. The second round of E is
the first round of E ′, and so on.

Observe that Definition 2.3.3 is equivalent to Definition 2.3.4, which is simpler
in the sense that it does not refer back to the set of activable nodes from the initial
configuration of the round.

Definition 2.3.4. Let E be an execution. A round is a sequence of consecu-
tive transitions in E . The first round begins at the beginning of E ; successive
rounds begin immediately after the previous round has ended. The current
round ends once every node u ∈ V satisfies at least one of the following two
properties:

• u has been activated in at least one transition during the current round,
• u has been non-activable in at least one configuration during the cur-
rent round.

This is the notion of complexity that we use in the first part of Chapter 3 and
in Chapter 5.

20

3 - Maximal Independent Set

An independent set I in a graph is a set of vertices such that no two of them
form an edge in the graph. It is called maximal when it is maximal inclusion-
wise (in which case it is also a minimal dominating set). Maximal independent
sets have received a lot of attention in different areas. For instance, in wireless
networks, the maximum independent sets can be used as a black box to perform
communication (to collect or to broadcast information) (see [50, 32], for exam-
ple). In self-stabilizing distributed algorithms, they are also a fundamental tool to
transform an algorithm from one model to another [38, 64].

In Section 3.2 we give a self-stabilizing randomized algorithm with Byzantine
nodes under the fair daemon, which converges in O(∆n) rounds.

Then, in Section 3.3, we give a self-stabilizing randomized algorithm that finds
a maximal independent set in an anonymous network, under the assumption of
a distributed adversarial daemon (without Byzantine nodes). We show that our
algorithm converges in O(n2) moves with high probability.

3.1 . State of the art

The maximal independent set (MIS) problem has been extensively studied in
parallel and distributed settings, following the seminal works of [1, 49, 52]. Their
idea is based on the fact that a node joins the “MIS under construction” S according
to the neighbors: node v joins the set S if it has no neighbor in S, and it leaves
the set S if at least one of its neighbors is in S. Most algorithms in the literature,
including ours, are based on this approach.

The MIS problem has been extensively studied in the Local model, [33, 57,
14] for instance (a synchronous, message-passing model of distributed comput-
ing in which messages can be arbitrarily large) and in the Congest model [56]
(synchronous model where messages are O(log n) bits long). In the Local model,
Barenboim et al. [8] focus on identified system and give a self-stabilizing algo-
rithm producing a MIS within O(∆ + log∗ n) rounds. Balliu et al [6] prove that
the previous algorithm [8] is optimal for a wide range of parameters in the Lo-
cal model. In the Congest model, Ghaffari et al. [34] prove that there exists
a randomized distributed algorithm that computes a maximal independent set in
O(log∆ · log logn+ log6 log n) rounds with high probability.

Self-stabilizing algorithms for maximal independent set have been designed in
various models (anonymous network [59, 64, 63] or not [36, 42]). Up to our knowl-
edge, Shukla et al. [59] present the first algorithm designed for finding a MIS in a

21

graph using self-stabilization paradigm for anonymous networks. Some other self-
stabilizing works deal with this problem assuming identifiers: with a synchronous
daemon [36] or distributed one [42]. These two works require O(n2) moves to
converge. Turau [62] improves these results to O(n) moves under the distributed
daemon. Recently, some works improved the results in the synchronous model. For
non-anonymous networks, Hedetniemi [40] designed a self-stabilization algorithm
for solving the problem related to dominating sets in graphs in particular for a
maximal independent set that stabilizes in O(n) synchronous rounds. Moreover,
for anonymous networks, Turau [63] designs some Randomized self-stabilizing algo-
rithms for maximal independent set w.h.p. in O(log n) rounds. See the survey [39]
for more details on MIS self-stabilizing algorithms.

Some variants of the maximal independent set problem have been investigated,
for example the 1-maximal independent set problem [61, 58] or Maximal Distance-k
Independent Set [10, 45]. Tanaka et al [61] designed a silent self-stabilizing 1-MIS
algorithm under the weakly-fair distributed daemon for any identified network in
O(nD) rounds (where D is a diameter of the graph).

3.2 . With Byzantines Nodes under the Fair Daemon

In this section, we focus on the construction of a MIS handling both transient
and Byzantine faults. On one side, transient faults can appear in the whole sys-
tem, possibly impacting all nodes. However, these faults are not permanent, thus
they stop at some point in the execution. Self-stabilization [23] is the classical
paradigm to handle transient faults. Starting from any arbitrary configuration, a
self-stabilizing algorithm eventually resumes a correct behavior without any exter-
nal intervention. On the other side, (permanent) Byzantine faults [48] are located
on some faulty nodes and so the faults only occur from them. However, these
faults can be permanent, i.e., they could never stop during the whole execution.

The algorithm presented in this section builds a maximal independent set rep-
resented by a local variable s. The approach of the state of the art is the following:
when two nodes are candidates to be in the independent set, then a local elec-
tion decides who will remain in the independent set. To perform a local election,
the standard technique is to compare the identifiers of nodes. Unfortunately, this
mechanism is not robust to the presence of Byzantine nodes.

Keeping with the approach outlined above, when a node u observes that its
neighbors are not in (or trying to be in) the independent set , the non-Byzantine
node decides to join it with a certain probability. Randomization helps to reduce
the impact of Byzantine nodes. The choice of probability should reduce the impact
of Byzantine nodes while maintaining the efficiency of the algorithm.

Algorithm 3.2.1. Any node u has two local variables su ∈ {⊥,⊤} and xu ∈ N

22

and may make a move according to one of the following rules:
(Refresh) xu ̸= |N(u)| → xu := |N(u)| (= deg(u))

(Candidacy?) (xu = |N(u)|) ∧ (su = ⊥) ∧ (∀v ∈ N(u), sv = ⊥) →
if Rand(1

1+max({xv |v∈N [u]})) = 1 then su := ⊤
(Withdrawal) (xu = |N(u)|) ∧ (su = ⊤) ∧ (∃v ∈ N(u), sv = ⊤) → su := ⊥

Observe since we assume an anonymous setting, the only way to break symme-
try is randomization. The value of the probabilities for changing the local variable
s must carefully be chosen in order to reduce the impact of the Byzantine node.

A node joins the MIS with a probability 1
1+max({xv |v∈N [u]}) . The idea to ask

the neighbors about their own number of neighbors (through the use of the x
variable) to choose the probability of a candidacy comes from the mathematical
property ∀k ∈ N, (1− 1

k+1)
k > e−1, which will allow to have a good lower bound

for the probability of the event “some node made a successful candidacy, but none
of its neighbors did”.

3.2.1 . Specification

Since Byzantine nodes are not bound to follow the rules, we cannot hope for a
correct solution in the entire graph. What we wish to do is to find a solution that
works when we are far enough from the Byzantine nodes. One could think about
a fixed containment radius around Byzantine nodes, but as we can see later this is
not as simple, and it does not work with our approach.

Let us define on any configuration γ the following set of nodes, that represents
the already built independent set:

Iγ = {u ∈ V1|(sγu = ⊤) ∧ ∀v ∈ N(u), sγv = ⊥}

Definition 3.2.2. We say that a node is locally alone if it is candidate to be in
the independent set (i.e. its s-value is ⊤) while none of its neighbors are.

In configuration γ, Iγ is the set of all locally alone nodes of V1.

Definition 3.2.3. A configuration γ is said legitimate when Iγ is a maximal
independent set of V2 ∪ Iγ .

3.2.2 . An example

Figure 3.1 gives an example of an execution of Algorithm 3.2.1. Figure 3.1a
depicts a network in a given configuration. The symbol drawn above the node
represents the local variable s. Every non-Byzantine node, represented by circles,
is supposed to have already its degree as x-value. The only Byzantine node in the
exemple is represented by a square.

23

In the initial configuration, nodes v1 and v2 are in the independent set, and
Withdrawal is enabled on them. In the first step, the daemon activates v1
(Withdrawal) and v2 (Withdrawal) leading to configuration γ1 (Fig. 3.1b). In
the second step, the daemon activates v1 (Candidacy?). Node v1 randomly de-
cides whether to set sv1 := ⊤ leading to configuration γ2 (Fig. 3.1c), or sv1 := ⊥
leading to configuration γ1 (Fig. 3.1b). Assume that v1 chooses sv1 := ⊤. At
this moment, node v1 is “locally alone” in the independent set. In the third step,
the daemon activates b and b makes a Byzantine move setting sb := ⊤, leading to
configuration γ3 (Fig. 3.1d).

In the fourth step, the daemon activates v1 (Withdrawal) and b that sets
sb := ⊥. The configuration is now the same as configuration γ1 (Fig. 3.1b).
The daemon is assumed to be fair, thus v2 and v3 need to be activated before
the execution can be called an infinite loop. These activations will prevent v1 to
alternate forever between in and out of the independent set, while the rest of the
system remains out of it. In the fifth step, the daemon activates v1 (Candidacy?),
v2 (Candidacy?) and v3 (Candidacy?). They randomly decide to change their
local variable s. Assume that v1, v2 and v3 choose sv1 := ⊤, sv2 := ⊥, and
sv3 := ⊤, leading to configuration γ5 (Fig. 3.1e). At this moment, node v3 is
“locally alone” in the independent set. As v3 is far enough from the Byzantine
node it will remain in the independent set whatever b does.

b v1 v2 v3

⊥ ⊤ ⊤ ⊥
b v1 v2 v3

⊥ ⊥ ⊥ ⊥
b v1 v2 v3

⊥ ⊤ ⊥ ⊥

(a) Config. γ0 (b) Config. γ1 (c) Config. γ2

b v1 v2 v3

⊤ ⊤ ⊥ ⊥
b v1 v2 v3

⊥ ⊥ ⊥ ⊥

b v1 v2 v3

⊥ ⊤ ⊥ ⊤

(d) Config. γ3 (e) Config. γ4 (f) Config. γ5
Figure 3.1: An example of execution. The square node is a Byzantinenode, the double bordered nodes are those activated in the next tran-sition.

About the specification

Our goal is to design an algorithm that builds a maximal independent set of the
subgraph induced by a set of nodes where nodes “too close” to Byzantine nodes
have been removed. The question now is to define what does “too close” mean.
One could think about a fixed containment radius only excluding nodes at distance

24

at most 1 from Byzantine nodes. This set of nodes has been previously defined
as V1. Indeed, in Figure 3.2.2.(a), v1 and v2 belongs to V1 and their local view of
the system is correct, then they have no reason to change their states. Moreover,
Byzantine nodes are too far away to change that: whatever the value of the state
of v0, the view of v1 remains correct. Thus a containment radius of 1 could seem
correct. However, in Figure 3.2.2.(b), if the Byzantine node does not make any
move, then v0 remains in the MIS while v1 remains out of it. Thus, in this example,
if we only consider nodes in V1, the ⊤-valued nodes of V1 are not a MIS of V1. If
V1 is not always a good choice, neither is V2. See Figure 3.2.2.(c), as one can see
that all nodes in V1 will never change their local state. The same can be said for
Vk for any k, see example Figure 3.2.2.(d) for V3. The solution is then to consider
a set of nodes defined from a fixed containment radius to which we add locally
alone neighboring nodes. The smallest containment radius that works with this
approach is 3 (which corresponds to set V2). Note that it depends on the current
configuration and not only on the underlying graph.

b v0 v1 v2

⊥ ⊥ ⊤
b v0 v1 v2 v3 v4

⊥ ⊤ ⊥ ⊥ ⊤

(a) V1 might be correct... (c) V2 is not always correct either
b v0 v1

⊥ ⊤ ⊥
b v0 v1 v2 v3 v4 v5

⊤ ⊥ ⊤ ⊥ ⊥ ⊤

(b) ... but not always (d) not even V3

Figure 3.2: What is the good containment radius?

About the choice of probability to join the MIS

We could have gone with the same probability for every node, but that comes with
the cost of making the algorithm very sensitive to the connectivity of the underlying
graph. As we rely for convergence on the event where a node is candidate alone
(i.e. switch to ⊤ without other node doing the same in its neighborhood), the
probability of progress in a given number of rounds would then be exponentially
decreasing with the degrees of the nodes.

We could have gone with something depending only on the degree of the node
where the rule is applied. While it could have been an overall improvement over
the uniform version above, the minoration of the probability of progress that can
be made with a local scope is no better. We cannot exclude that a finer analysis
would lead to a better overall improvement, but it would require to deal with
far more complex math. On a smaller scale, we can also note that this choice

25

would introduce a bias toward small degree nodes, while we might not want that
(depending on the application).

Then, we have chosen the version where nodes take into account their degree
and what they know of the degree of their neighbors. On one hand, the first
concern you could rise here would be the potential sabotage by Byzantine nodes.
Here is the intuition of why this cannot be a problem here. If a node u is at
distance at least 2 from any Byzantine node and if u is “locally alone” in the
independent set, then whatever the Byzantine nodes do, u will forever remain
in the independent set. To maximize the harm done, the Byzantine nodes have
to prevent indirectly such a node to join the independent set. To do so it has
to maximize the probability of its neighbors to be candidate to the independent
set. But Byzantine nodes cannot lie efficiently in that direction, as the probability
is upper-bounded by the degree values of both the node and its non-Byzantine
neighbors. On the other hand, this choice allows us to address the problem that
we had with the previous solution. Here, we can indeed frame the probability to be
candidate alone between two constant bounds with a simple local analysis. Thus,
we can ensure that the convergence speed does not depend on the connectivity of
the underlying graph. Again, on a smaller scale, we also greatly reduce the bias
toward small degree nodes compared to the previous option.

3.2.3 . The proof

To prove the convergence, and the speed at which Algorithm 3.2.1 converges,
we first observe that the variable x quickly (in at most one round) reaches its
final value for every non-Byzantine node. We use this observation to restrict our
further considerations to configurations where it has already happened. Then, we
prove that whenever a rule is enabled on a node that has no Byzantine neighbor,
some event happens after at most one round. After that, we use the fact that
those events happen to prove that the computed independent set probabilistically
grows as long as it’s not maximal on the subgraph where we expect the algorithm to
converge. Finally, as we can iterate this probabilistic growth, we use a concentration
inequality to bound the time it takes for the algorithm to converge.

Degree-stabilization

Definition 3.2.4. We say that in a configuration γ, a node u is degree-stabilized
if rule Refresh is not enabled on it. A configuration is then said to be degree-
stabilized if every non-Byzantine node is degree-stabilized.

Observe the two following facts about the degree-stabilization of a configura-
tion:

Lemma 3.2.5. Any reachable configuration from a degree-stabilized configura-
tion is degree-stabilized.

26

Proof. No rule can change the x value of a degree-stabilized non-Byzantine
node.
Lemma 3.2.6. From any configuration γ, the configuration γ′ after one round is
degree-stabilized.

Proof. Let u be a non-Byzantine node.
If xγu = deg(u), no activation of rule can change that thus xγ′u = deg(u).
If xγu ̸= deg(u), then u is activable in γ and remains so until it is activated.

Rule Refresh is then executed on u in the first round, and since no rule can
change the value of xu afterward we have xγ′u = deg(u).

All locally alone nodes in V1 (i.e. nodes of Iγ) remain locally alone during the
whole execution.

Lemma 3.2.7. If γ → γ′, Iγ ⊆ Iγ′ .

Proof. Let’s consider u ∈ Iγ . The only rules that may be enabled on u in γ
is Refresh since Candidacy? can’t be executed on u because sγu = ⊤, and
Withdrawal can’t be executed on u because ∀v ∈ N(u), sγu = ⊥. We have
then sγ′u = ⊤.

Now let’s consider v ∈ N(u). By definition of Iγ , sγv = ⊥, and v has u as a
neighbor that has value ⊤ in γ. Then the only rule that may be enabled on v
in γ is Refresh, and we have sγ′v = ⊥.

Thus, u ∈ Iγ′ .

When a rule is enabled, something will happen

We now focus on properties on the local evolution around a node on which a
rune is enabled after one round. These properties will be later of use to prove
the progression of the algorithm. We start with the Withdrawal rule. When the
Withdrawal rule is enabled on a node u ∈ V1, it is a conflict between u and its
neighbor about who should be in the independent set. It is solved by either making
u locally alone or setting su = ⊥.

Lemma 3.2.8. If γ is a degree-stabilized configuration and if Withdrawal is en-
abled on u ∈ V1 then after one round eitherWithdrawal has been executed on u
or in the resulting configuration γ′ we have u ∈ Iγ′ .

Proof. Since γ is degree-stabilized, no Refreshmove can be executed in any
future transition. Then, since sγu = ⊤, onlyWithdrawal can be executed on u
or any of its non-Byzantine neighbors until u has been activated. Since u ∈ V1,it is in fact true for every neighbor of u.

27

Since u is activable in γ, we have two cases. If u has performed a With-
drawal move in the next round there is nothing left to prove. If it is not the
case, umust have been unactivated by fairness hypothesis, whichmeans that
each neighbor v ∈ N(u) that had s-value ⊤ in γ has been activated. By the
above, they must have performed aWithdrawalmove that changed their s-
value to ⊥. Also, u is supposed not to have performed any rule, so it keeps
s-value ⊤ in the whole round: its neighbors -that are non-Byzantine since
u ∈ V1- cannot perform any Candidacymove. As such, in the configuration γ′
at the end of the round, every neighbor of u has s-value ⊥, and u has s-value
⊤. Since u ∈ V1 that means that u ∈ Iγ′ .

When Candidacy? rule is enabled on a node u ∈ V1, then Candidacy? is
executed on v ∈ N [u] within one round.

Lemma 3.2.9. Suppose that in γ degree-stabilized Candidacy? is enabled on
u ∈ V1 (i.e., sγu = ⊥ and ∀v ∈ N(u), sγv = ⊥).

After one round Candidacy? have either been executed on u, or on at least
one neighbor of u.

Proof. Since γ is degree-stabilized, no Refreshmove can be executed in any
future transition. Then, until u or one of its neighbors has been activated,
only Candidacy? can be executed on them since it’s the only rule that can be
activated on a node with s-value ⊥.

Since u is activable in γ, by fairness, we have two cases:
• If u is activated before the end of the round, the only rule that it could
have performed for its first activation is the Candidacy? rule since its
s-value in γ is ⊥ and the configuration is supposed degree-stabilized.

• If not, it has been unactivated, which means that at least one neighbor
v ∈ N(u) has been activated. As u ∈ V1, v cannot be Byzantine. Theonly rule that it could have performed for its first activation is the Can-
didacy? rule since its s-value in γ is⊥ and the configuration is supposed
degree-stabilized.

Probability of creating a new locally alone node

If node u ∈ V1 executes Candidacy? rule, then u becomes a locally alone node
with a certain probability in the next configuration. So it implies that set I grows.

Fact 3.2.9.1. ∀k ∈ N, (1− 1
k+1)

k > e−1

28

Proof. For k = 0 it is true ((1 − 1
0+1)

0 = 1 > 1
e). Suppose now that k ≥ 1. A

basic inequality about ln is that ∀x ∈ R+∗, ln(x) ≥ 1 − x, with equality only
when x = 1. For x = k

k+1 , it gives us ln
(

k
k+1

)
≥ 1 − k+1

k = − 1
k , with equality

only when k
k+1 = 1. But since k

k+1 cannot have value 1 for any value of k, we
have then ln

(
k
k+1

)
> − 1

k .
Then, by multiplying by k on each side, we have k ln(k

k+1

)
> −1, and

thus, taking the exponential:(
1− 1

k + 1

)k
= ek ln(

k
k+1) > e−1

Lemma 3.2.10. If γ is a degree-stabilized configuration, and in the next transition
rule Candidacy? is executed on a node u ∈ V1

Proof. For any node y, we write φ(y) = 1
1+max({deg(v)|v∈N [y]}) .

SinceCandidacy? can be executed onu in γ, we know that ∀v ∈ N [u], sγv =

⊥. Since γ is degree-stabilized and no neighbor of u can be Byzantine by def-
inition of V1, we have ∀v ∈ N [u], xγv = deg(v). The probability of sγ′u = ⊤
knowing that the rule has been executed is then φ(u).

Then, for a given v ∈ N(u), node v is not Byzantine since u ∈ V1, andthe probability that sγ′v = ⊤ is either 0 (if Candidacy? has not been ex-
ecuted on v in the transition) or 1

1+max({xγw|w∈N [v]}) . Since deg(u) = xu ≤

max({xγw|w ∈ N [v]}), that probability is then at most 1
1+deg(u) .

Thus (since those events are independent), the probability for u to be can-
didate in γ′ without candidate neighbor is at least:

p = φ(u)
∏

v∈N(u)

(
1− 1

1 + deg(u)

)
≥ 1

∆ + 1

(
1− 1

1 + deg(u)

)deg(u)
Then, as ∀k ∈ N, (1 − 1

k+1)
k > e−1 (see Fact 3.2.9.1), p > 1

∆+1 × 1
e and the

lemma holds.

Lemma 3.2.11. If γ is a degree-stabilized configuration such that Iγ is not a max-
imal independent set of V2 ∪ Iγ , then after at most one round one of the following
events happens:

1. Rule Candidacy? is executed on a node of V1

2. A configuration γ′ such that Iγ ⊊ Iγ′ is reached.

29

3. A configuration γ′ such that rule Candidacy? is enabled on a node of V2 in
γ′ is reached.

Proof. Consider γ a degree-stabilized configuration such that Iγ ∪ V2 is not amaximal independent set of V2. As γ is supposed degree-stabilized, we will
only consider the possibility of moves that are not Refreshmoves.

• If Candidacy? is enabled on a node of V2 in γ, Condition 3 holds.
• If it is not the case, then there exists u ∈ V2 that has at least one neigh-bor v ∈ V1 such that sγu = sγv = ⊤ (otherwise Iγ would be a maximal
independent set of V2 ∪ Iγ).

In the first case, there is nothing left to prove. In the second case,Withdrawal
is enabled on u ∈ V2 in γ and from Lemma 3.2.8, we have two possible cases:

• If γ′ is the configuration after one round, u ∈ Iγ′ and Condition 2 holds.
• u performs aWithdrawalmove before the end of the round.
In the first case, there is nothing left to prove. Suppose now that we are

in the second case and that u is activated only once before the end of the
round, without loss of generality since Condition 1 would hold otherwise as
its second activation would be a Candidacy? move and u ∈ V1. Then:

• If within a round a configuration γ′ is reached where a node w ∈ N [u]

is such that sγ′w = ⊤ and w is not activable we have: w ̸∈ Iγ (as u is
⊤-valued in γ) which gives Iγ ⊊ Iγ ∪ {w} ⊆ Iγ′ by Lemma 3.2.7, thus
Condition 2 holds.

• If we suppose then that no such event happens until the end of the
round in configuration γ′, we are in either of those cases: (i) Every neigh-
bor of u has value ⊥ in γ′ and sγ′u = ⊥ (as we would be in the previous
case if it was⊤), thus Candidacy? is enabled on u in γ′ and Condition 3

holds. (ii) A Candidacy? has been performed within the round on a
neighbor of u and Condition 1 holds.

Thus, in every possible case, one of the three conditions holds.
Every 2 rounds, the set of locally alone nodes strictly grows with some proba-

bility.

Lemma3.2.12. If γ is degree-stabilized, with Iγ not being amaximal independent
set of V2 ∪ Iγ , then after two rounds the probability for the new configuration γ′
to be such that Iγ ⊊ Iγ′ is at least 1

(∆+1)e .

30

Proof. From Lemma 3.2.11, we have three possibilities after one round.
• If we are in Case 1 of Lemma 3.2.11, let us denote by γ′′ the resulting
configuration after the transition where the said Candidacy? move has
been executed on u ∈ V1. Then using Lemma 3.2.10, we have u ∈ Iγ′′with probability at least 1

(∆+1)e . Since we have u ̸∈ Iγ (if u was in Iγ ,
Candidacy? could not have been executed on u after configuration γ)
and by Lemma 3.2.7, we have then Iγ ⊊ Iγ′ with probability at least

1
(∆+1)e .

• If we are in Case 2 of Lemma 3.2.11, there is nothing left to prove.
• If we are in Case 3 of Lemma 3.2.11, let us denote by γ′′ the first con-
figuration where Candidacy? is enabled on some u ∈ V2. Then using
Lemma 3.2.9 after at most one more round Candidacy? will be exe-
cuted on v ∈ N [u]. Let us denote by γ′′ the resulting configuration after
the transition where the said Candidacy? move has been executed on
v. Since u ∈ V2 we have v ∈ V1 and using Lemma 3.2.10 v ∈ Iγ′′′ withprobability at least 1

(∆+1)e and v ̸∈ Iγ by the same argument as above.
Thus, since Iγ′′′ ⊆ Iγ′ , the probability that Iγ ⊊ Iγ′ is at least 1

(∆+1)e .
In every case, the property is true, thus the lemma holds.

Bounding the iterations with high probability

We will use the notation α = 1
(∆+1)e to simplify the formulas in the remainder of

the chapter.

We know that after one round I gets a chance to grow with probability at
least α. Then, if I is still not an independent set V2 ∪ I, we can repeat the
same argument, and so on. We will use a concentration inequality (Azuma’s
inequality) to give a probabilistic bound on the number of rounds it takes to reach
a configuration where I is still not an independent set V2 ∪ I.

Lemma 3.2.13. From any degree-stabilized configuration γ, the algorithm is self-
stabilizing for a configuration γ′ where Iγ′ is amaximal independent set of V2∪Iγ′ .

The time for this to happen is less thanmax
(
−α−2 ln p,

√
2√

2−1
n
α

)
rounds with

probability at least 1− p, for any value of p ∈ [0, 1[.

Proof. Consider a degree-stabilized configuration γ0, andΩ the set of all com-
plete executions of the algorithm starting in configuration γ0. The probabil-ity measure P is the one induced by the daemon strategy (as we bound the
probability without knowledge of the daemon strategy, it is valid whatever the
strategy of the daemon).

31

As we know that every round we get a minimal chance to increase I from
Lemma 3.2.12 as long as it is not a maximal independent set, we want to apply
a concentration inequality to bound the length of the whole execution. Here,
we will use Azuma’s inequality, and to do so we need to introducemartingales
that depict the progression of I .

Consider for i ∈ N the random variableXi that denotes the configurationafter the i-th round has ended (X0 is the constant random variable of value
γ0).

Consider (Fi)i∈N the natural filtration associated withXi

To make the reading easier we introduce the function f : γ 7→ |Iγ |.
Yi = 1f(Xi)−f(Xi−1)>0 is the random variable with value 1 if the size of I

increased in the i-th round, else 0. (1means that I grows in the i-th round, 0
that it does not.)

Consider the stopping time τ (random variable describing the number of
rounds the algorithm takes to stabilize on V1) defined by:

τ(ω) = inf {n ∈ N|I does not change after round n in execution ω}
As Yi has values in {0; 1}, we have P(Yi = 1|Fi−1) = E[Yi|Fi−1]. Also, fromLemma 3.2.12 we get P(Yi = 1|Fi−1) ≥ α · 1τ≥i−1. Thus combining the two

relations we get:
E[Yi|Fi−1] ≥ α · 1τ≥i−1 (3.1)

Consider Si =
i∑

k=1

Yk the random variable representing the number of
rounds where there has been an increment. Since this cannot happen more
times than there are nodes, we get:

Si ≤ n (3.2)
Consider Ai =

i∑
k=1

E[Yk|Fk−1] the random variable representing the sum
of the expected values of the increments at each step.

When τ > i, every for very value of k ∈ J1, iK we have 1τ≥k−1 = 1. Then
using (3.1) we get:

τ > i⇒ Ai ≥ iα (3.3)
Consider then the random variableMi =

∑i
k=1 Yk − E[Yk|Fk−1] (do note

32

that it is the same as the difference Si −Ai).
E [Mi+1|Fi] = E

[
i+1∑
k=1

Yk − E[Yk|Fk−1]

∣∣∣∣∣Fi
]

= E [Mi + Yi+1 − E[Yi+1|Fi]|Fi]
= E [Mi|Fi] + E [Yi+1|Fi]− E [E[Yi+1|Fi]|Fi]
=Mi + E [Yi+1|Fi]− E [Yi+1|Fi]
=Mi

Thus (Mi)i∈N is a martingale with respect to the filtration (Fi)i∈N.
We also have:

|Mi+1 −Mi| = |Yi+1 − E[Yi+1|Fi]| ≤ max(Yi+1,E[Yi+1|Fi]) ≤ 1

Thus, by Azuma’s inequality:
∀β ≤ 0,P(Mi ≤ β) ≤ e−

2β2

i (3.4)
Then using (3.2) and (3.3) we get τ > i ⇒ Si − Ai ≤ n − iα, i.e. τ > i ⇒

Mi ≤ n− iα

Thus we have P(τ > i) ≤ P(Mi ≤ n− iα) and for i ≥ n
α we can apply (3.4)

to get :
P(τ > i) ≤ e−

2(n−iα)2

i

For i ≥ √
2√

2−1
n
α (it implies that i ≥ n

α) we have 1
2(iα)

2 ≤ (n − iα)2, which
give for such i :

P(τ > i) ≤ e−iα
2

For i ≥ −α−2 ln p, we have e−iα2 ≤ p

Mixing the two above inequalities, when i ≥ max
(
−α−2 ln p,

√
2√

2−1
n
α

), we
get:

P(τ > i) ≤ p

Which concludes the proof.
Theorem 3.2.14. For any p ∈ [0, 1[. From any configuration γ, the algorithm is
self-stabilizing for a configuration γ′ where Iγ′ is a maximal independent set of
V2 ∪ Iγ′ , and reach such a configuration in 1 +max

(
−α−2 ln p,

√
2√

2−1
n
α

)
rounds

or less with probability 1− p.

Proof. From Lemma 3.2.6 we reach a degree-stabilized configuration after at
most one round. Then from that configuration, we apply Lemma 3.2.13.

33

3.3 . In an Anonymous System under the Adversary Daemon

In this section, we remove the possibility of Byzantine faults, but at the same
time remove the constraint of fairness on the daemon. We could have used the
previous algorithm as fairness was only needed to contain Byzantine influence
regarding convergence. But the complexity in number of moves would have been
something proportional to ∆n2, and as we will prove, we can do better than that.

As in Algorithm 3.2.1, this new algorithm builds a maximal independent set
represented by a local variable s. We keep the idea of having nodes making
candidacy and then withdrawing if the candidate’s situation is not correct. We still
do not have identifiers, and so we do need a probabilistic tie-break. But contrary
to the byzantine case, we move the probabilities to the Withdrawal ? rule: a non-
candidate node with no candidate neighbor will always become a candidate when
activated, but a candidate node with a candidate neighbor will only withdraw with
probability 1

2 when activated. As the probability does not depend on the degree of
the nodes, there is no need for the variable representing the degree we used in the
previous section.

Algorithm 3.3.1. Any node u has a single local variable su ∈ {⊥,⊤} and may
make a move according to one of the following rules:
(Candidacy) (su = ⊥) ∧ (∀v ∈ N(u), sv = ⊥) → su := ⊤
(Withdrawal?) (su = ⊤)∧(∃v ∈ N(u), sv = ⊤) → ifRand(12) = 1 then su := ⊥

Given a configuration γ, we define:

β(γ) = {u ∈ V | su=⊤ ∧ ∀v ∈ N(u), sv=⊥}

Note that β(γ) is always an independent set since two distinct members cannot
be neighbors (as they have both s-value ⊤).

3.3.1 . An example

The aim of the algorithm is to build an independent set represented by β(γ).
The approach of the algorithm is the following: when a node is in the set indepen-
dent it remains so throughout the execution.

Below is an execution of the algorithm under the adversarial distributed dae-
mon. Figure 3.3.1a shows the initial configuration γ0 of the execution. Node
identifiers are indicated inside the circles. The symbols ⊥ and ⊤ show the content
of the local variable s. Double bordered nodes are those activated by the daemon
in the next transition.

Consider the initial configuration γ0 (Figure 3.3.1a) in which all local variables
are equal to ⊥. In this configuration the Candidacy rule is enabled on all nodes.

34

a b

c d

⊥ ⊥

⊥ ⊥

a b

c d

⊤ ⊤

⊤ ⊤

a b

c d

⊤ ⊤

⊥ ⊤

(a) Config. γ0 (b) Config. γ1 (c) Config. γ2
a b

c d

⊥ ⊥

⊥ ⊤

a b

c d

⊤ ⊤

⊥ ⊤

a b

c d

⊥ ⊤

⊥ ⊤

(d) Config. γ3 (e) Config. γ4 (f) Config. γ5
During the first transition γ0 → γ1, the demon activates all the nodes. The
resulting configuration γ1 where every node has s-value ⊤ is drawn in Figure 3.3.1b.

In γ1, Whithdrawal is enabled on all nodes. In the second transition, the
daemon activates a,b and c. Those three nodes change independently their s-
value with probability 1

2 , which results in confuguration γ2 where a and b did not
change their s-value but c did (see Figure 3.3.1c). Observe that node d is an
element of β(γ2). It will remain in β until the end of the execution as its only
neighbor whose s-value is ⊥ cannot execute any rule while having a neighbor with
s-value ⊤.

In γ2, only a and b are enabled for rule Withdrawal?. In the next transition,
both are activated by the daemon. Both change their s-value with probability
1
2 , resulting in configuration γ3 where both get their s-value changed to ⊥ (see
Figure 3.3.1d).

In γ3, only a and b are enabled for rule Candidacy. In the next transition,
both are activated by the daemon, and both change their s-value to ⊤, resulting
in configuration γ3 (see Figure 3.3.1e).

Note that γ4 = γ2. In next transition a and b are again activated by the
daemon and execute Withdrawal?. This time, the random change in s-value
results in configuration γ5, where a get its s-value changed to ⊥ but not b (see
Figure 3.3.1f).

The γ5 configuration is stable since no node is enabled. β(γ5) = {b, d} is a
maximal independent set of the underlying graph.

3.3.2 . The proof

35

The following lemma guarantees the correction of the algorithm.

Lemma 3.3.2. A configuration γ is stable if and only if β(γ) is a maximal inde-
pendent set of G.

Proof. Suppose γ is not stable.
• If Withdrawal? is enabled on a node u, it means that u ̸∈ β(γ) as u
has a neighbor with s-value⊤. But as u has s-value⊤ it also means that
none of its neighbors is in β(γ), thus β(γ) ∪ {u} is an independent set
greater than β(γ).

• Else, Candidacy is enabled on a node u. It means that u ̸∈ β(γ) as
su = ⊥. It also means that none of its neighbors is in β(γ) since they
have all s-value ⊥, thus β(γ) ∪ {u} is an independent set greater than
β(γ).

Thus, by contraposition, if β(γ) is a maximal independent set of G, then γ is
stable.

Suppose now that γ is stable. AsWithdrawal? cannot be enabled on any
node, any node with s-value⊤ is in β(γ). But then asWithdrawal? cannot be
enabled on any node, every node has a node with s-value⊤, and thus a node
of β(γ) in its closed neighborhood. β(γ) is then a maximal independent set
of G.

Now that we have correction, we want to prove the convergence of our algo-
rithm. We begin by proving that β is non-decreasing, thus is remains to prove that
it does grow at some point. Then, we prove that any execution is equivalent to
another execution that follows some restrictions, which allow us to work under the
assumption that these restrictions are verified in our further considerations. After
that, we focus on connected components with β-value ⊤. We prove that every
time such a connected component “disappear”, it makes β grow with probability
2
3 , and then observe how they appear, shrink and disappear in any execution. We
use those facts to prove that any execution ends with probability 1. As it implies
that every of those vanishing happens in finite time with probability 1. It finally
allows us to use the repetition of those vanishings with a concentration inequality
to bound the length of the execution.

β is non-decreasing

Looking at the guards of the rules of Algorithm 3.3.1, we observe the following
fact:

36

Fact 3.3.2.1. In a configuration γ, whenWithdrawal? is enabled on a node, Can-
didacy is not enabled on any of its neighbors.

Lemma 3.3.3. If γ → γ′, then β(γ) ⊆ β(γ′).

Proof. For every u ∈ β(γ), we have by definition:
1. sγu = ⊤,
2. for every neighbor u of v, sγu = ⊥.

Point 1 implies that Candidacy is not enabled on any vertex of N [u], and
Point 2 implies thatWithdrawal? is not enabled on any vertex of N [u].

For every vertex v ∈ N [u], since no rule is enabled on v, we have sγv = sγ
′
v .Thus, u ∈ β(γ′).

Simplifying the execution

Now that we know that β cannot shrink, it remains to prove that it does grow, and
within a reasonable amount of time. We are introducing the following concepts to
this end:

Definition 3.3.4. A set of nodes X ⊆ V is said to be a candidate set of a
configuration γ if ∀u ∈ X , (sγu = ⊤)∧∀v ∈ N(u), sγv = ⊤ ⇒ v ∈ X . We will say
that it is a connected candidate set when X is a connected component of G.

First, we transform all executions into executions having suitable properties,
using the two following lemmas for the simplicity of the proof.

Lemma 3.3.5. Consider γ1 a configuration and t a valid set of moves in γ1. Let us
write tw ⊂ t (resp. tc ⊂ t) the set ofWithdrawal? moves (resp Candidacymoves)
of t.

Then making two successive transitions using the set of moves tw and then tc
is equivalent to make a transition with the set of moves t (in the sense that the
distribution of probability on the values of nodes variables is the same).

Proof. Consider γ2 the random variable describing the state of the configura-
tion attained from γ1 by executing the set of moves t.

Let W (resp. C) be the set of the nodes that appear in a Withdrawal?
(resp. Candidacy) move of t.

There is only one possible γ′ such that γ1 tc−→ γ′ since the rule Candidacy
is deterministic, consider this configuration γ′.

37

Due to Fact 3.3.2.1, no node inW has a node ofC as neighbor. Thus, nodes
inW and their neighbors did not change their local variable in the transition
γ1

tc−→ γ′. Then,Withdrawal? is enabled on every node ofW in γ′ and tw is a
valid set of moves in γ′.

Consider then the random variable γ′2 such that γ′ tw−→ γ′2.
• For u ∈ C , the transitions are deterministic and we have sγ′2u = ⊤ = sγ2u .
• For u ∈ W , note that as long as Withdrawal? is executed, its results
always follow the same probability law. Thus, as nodes that execute
Withdrawal ? are the same in γ′ tw−→ γ′2 and γ1 t−→ γ2, the probabilitydistribution of su is the same in γ2 and γ′2.

• For nodes that are neither in C , nor inW , they did not execute any rule
in the considered transitions and thus they have the same s-value in
every configuration we considered.

Thus, γ2 has the same probability distribution as γ′2, and hence the result.

Lemma 3.3.6. Let γ1 be a configuration, t a valid set of moves in γ1 containing
only Withdrawal? moves, and A a candidate set of γ1. Let also tA ⊂ t the set of
moves on node of A in t.

Then making two successive transitions using the set of moves tA and then
t \ tA is equivalent to make a transition with the set of moves t (in the sense that
the distribution of probability on the values of nodes variables is the same).

i.e. we may replace γ1
t−→ γ2 with γ1

tA−→ γ′
t\tA−−→ γ2.

Proof. The proof follows the same pattern as the one of Lemma 3.3.6. It relies
on the fact that a rule -here Withdrawal ?- applied on a node u induces the
same distribution of probability on the s-value of u independently of context.

The only thing left to prove is that t \ tA is a valid set of moves in any γ′
such that γ1 tA−→ γ′.

Let’s denote by B the set of the nodes that appear in moves of t \ tA.
Consider u ∈ B. As Withdrawal? is enabled on u in γ1 we know that

sγ1u = ⊤. Then, by definition of a candidate set, u cannot be a neighbor of
a node in A, and as a result no node of N [u] is activated in the transition
γ1

tA−→ γ′. The closed neighborhood of u having the same s-values in γ1 and
γ′,Withdrawal? must be enabled on u in γ′.

It is then the case for every node ofB, and thus t\tA is a valid set ofmoves
in γ′.

38

Using those lemmas, we will now only consider executions satisfying the two
following properties:

• Each transition is composed of only one move type,

• For each transition γi−1
ti−→ γi containing Withdrawal? moves, only nodes

of the same connected candidate set in γi−1 execute a move.

Using Lemmas 3.3.5 and 3.3.6, all executions can be transformed into execu-
tions satisfying the two last property without increasing the number of moves.

From now, all the executions we consider satisfy the two previous properties.

Candidate sets

Let E be an execution γ0
t1−→ γ1 · · · γi−1

ti−→ γi · · · .

Definition 3.3.7. We say that a candidate set X of γ is alive in γ if With-
drawal? is enabled on at least a node ofX . Note that for connected candidate
sets it is equivalent to having cardinality at least 2.
Definition 3.3.8. In a transition γ t−→ γ′, we say that an alive candidate set X
of γ vanishes if ∀u ∈ X , sγ′u = ⊥ or u ∈ βγ′ .
Lemma 3.3.9. Suppose thatX is an alive connected candidate set of γ, and that t
is a valid set of moves in γ that involve nodes ofX (recall that we transformed our
execution to make withdrawal transitions only act on a given connected candidate
set).

Then, if γ′ is the random variable describing the state of the system after per-
forming the set of moves t from γ, the probability that β(γ′) \ β(γ) ̸= ∅ knowing
that X vanishes is at least 2

3 .

Proof. If there is one node u in X that is not activated in the transition, we
know that sγ′u = sγu = ⊤. As X is supposed to vanish in the transition, it
implies that u ∈ β(γ′).

Else, every node of X has performedWithdrawal ? in the transition.
Consider the distribution of the s-values after performing the set ofmoves

t in configuration γ (without the condition on the candidate set vanishing).
Let’s write k = |X |. As every node of X flips a coin independently, every
outcome has the same probability (12)k. In particular,

• The event where all nodes of X change their s-value to ⊥ in the transi-
tion.

39

• Each of the k events where all the nodes of X change their s-value to⊥
in the transition except exactly one.

Those events are compatible with the constraint of the candidate set van-
ishing. Every other event is either incompatible with the constraint, or a situ-
ation where at least two nodes of X are in β(γ′), as at least two nodes have
s-value ⊤ in γ′, and X is supposed to vanish in the transition.

Thus, if we denote by λ the sum of the probability of the events that are
compatible with the constraint of the candidate set vanishing, we can say that
λ ≥ (k + 1)

(
1
2

)k, and thus the probability to have β(γj∗) \ β(γj∗−1) ̸= ∅ with
the condition is 1− (1

2)
k

λ ≥ 1− (1
2)

k

(k+1)(1
2)

k = 1− 1
k+1 = k

k+1 .
Moreover, X is not empty by hypothesis. Consider u ∈ X , it has at least a

neighbor v such that sγv = ⊤ as otherwise we would have u ∈ β(γ). But then
we have v ∈ X , as X is a candidate set. Thus k ≥ 2.

Thus the wanted probability is at least 2
3 .

Now that we know that every time that an alive connected candidate set
vanishes β progresses with good probability, it remains to guarantee that it ever
happens. To do so, we will need the following lemmas about life and death of
candidate sets.

Lemma 3.3.10. If γ t−→ γ′ is a transition with t containing only Candidacymoves,
either β(γ) ⊊ β(γ′) or ∃X an alive connected candidate set of γ′ such that ∀u ∈
X , sγu = ⊥.

Proof. As a transition must contain at least one move, there is at least one
node u appearing in t.

If no neighbor of u appear in t, we know that no neighbor of u changes
its s-value in the transition. But since Candidacy is enabled on u in γ we
know that their s-value in γ is ⊥. Thus, sγ′u = ⊤ (since u executed Candidacy
in the transition), and every neighbor of u has s-value ⊥ in γ′, which is the
definition for u ∈ β(γ′). And since Candidacy is enabled on u in γ, sγu = ⊥,
thus u ̸∈ β(γ′). Thus β(γ) ⊊ β(γ′) (recall that, from Lemma 3.3.3, β cannot
loose nodes in a transition).

Suppose now that at least a neighbor of u appears in t. Then consider the
set X of the nodes that are accessible from u in the subgraph induced by the
nodes appearing in t. Every node v ∈ X executes Candidacy in the transition,
thus sγv = ⊥ and sγ′v = ⊤. Moreover, for every neighbor of a node of X not
in X , the condition of Candidacy implies that they have s-value ⊥ in γ, and
thus in γ′ too since they did not perform a rule in the transition. Thus X is a

40

candidate set of γ′, connected by construction, and of cardinality at least 2 by
hypothesis thus alive.
Lemma 3.3.11. If γ t−→ γ′ is a transition and X is an alive connected candidate
set of γ, one of those is true:

• X vanishes in the transition,

• ∃X ′ an alive connected candidate set of γ′ such that X ′ ⊆ X .

Proof. If t is a set of Candidacymoves, or a set of Withdrawal? moves on a
connected candidate set different from X , then the transition does not affect
neither nodes ofX nor their neighbors. ThusX ⊆ X is still an alive connected
candidate set of γ′.

Else, t is a set of Withdrawal? moves on nodes of X . Suppose X does
not vanish in the transition. By definition of vanishing, it means that it exists
a node u ∈ X such that sγ′u = ⊤ and u ̸∈ β(γ′). It implies that there exists
v ∈ N(u) such that sγ′v = ⊤. But then, as t contains onlyWithdrawal? moves,
sγv = ⊤. By definition of a candidate set, we must have v ∈ X . Now consider
X ′ the set of nodes in the connected component of u in the subgraph of G
induced by the nodes with s-value ⊤ in γ′. As onlyWithdrawal? moves have
been executed in the transition, this implies that X ′ is a subset of the set of
nodes in the connected component of u in the subgraph of G induced by the
nodeswith s-value⊤ in γ, which is exactlyX . Moreover, ifw ̸∈ X ′ is a neighbor
of a node in X ′, by definition of X ′ it is such that sγ′w = ⊥ (it would be part of
X ′ otherwise). Hence, cX ′ is a connected candidate set of γ′, alive since of
cardinality at least 2.

The execution ends

There cannot be more alive candidates sets than there is space in the underlying
graph.

Lemma 3.3.12. A configuration γ contains at most n2 − |β(γ)| distinct alive con-
nected candidate sets.

Proof. An alive candidate set must have at least two nodes. Two candidate
sets that share a node must be the same candidate set as the definition of a
candidate set prevents from having s-value ⊤ in the neighborhood of a can-
didate set.

This property allows us to guarantee that some candidate sets do vanish in the
execution, and subsequently that the execution ends.

41

Lemma 3.3.13. Any execution ends with probability 1.

Proof. Every transition is either a transition with only Withdrawal ? moves,
or only Candidacymoves.

Note that from Lemma 3.3.11 the number of alive connected components
cannot shrink without one vanishing, and shrinks by exactly one when it hap-
pens.

Every transition withWithdrawal ? moves that do not make an alive con-
nected candidate set vanish makes an alive connected candidate set shrink
with probability at least 1

2 . Moreover when a transition makes one of those
disappear the size of β increases with probability at least 2

3 .
Every transition with Candidacy moves either makes a new alive candi-

date set appear, or increases the size of β. But as there can not be more than
n
2 − |β| candidate sets alive, there cannot be a transition that makes a new
alive candidate set appear while the number of alive candidate sets is maxi-
mal, and thus one must vanish before it becomes possible again (which will
increase the size of β with probability at least 2

3).
By induction on the number of alive connected candidate sets and their

size, as long as Candidacy or Withdrawal ? is enabled, β will grow within
a finite time. As its size cannot be greater than the number of nodes, the
execution must end.

Convergence speed

Now, as we know that the execution ends with probability 1, we may suppose that
every alive candidate set vanishes in finite time. We can then use Lemma 3.3.9
with a concentration inequality (as in Lemma 3.2.13) to bound the number of
vanishings in an execution.

Lemma 3.3.14. For p ∈]0, 1], any execution has at mostmax
(
−9

4 ln p,
√
2√

2−1
3n
2

)
transitions in which a connected candidate set vanishes with probability at least
1− p.

Proof. It is the same as the proof of Lemma 3.2.13, but the event we track
is the vanishing of connected candidate set (which happens in finite time
with probability 1 from Lemma 3.3.13), the lower bound on the probability
of the interesting event to happen when such a vanishing happens is 2

3 fromLemma 3.3.9.
It only remains to count the number of moves associated with such an execution

to prove our theorem.

42

Theorem 3.3.15. Consider p ∈]0, 1]. From any configuration, the algorithm is
self-stabilizing for a configuration γ in which β(γ) is a maximal independent set,
with at most O(n2)moves with probability at least 1− p.

Proof. Consider p′ ∈]0, 1], p′ = p
2 , and λ = max

(
−9

4 ln p
′,

√
2√

2−1
3n
2

). We de-
note by x the number of vanishing of connected candidate sets in the exe-
cution. Using Lemma 3.3.14, we know that x > λ with probability at most
p′.

First, we count the number of Candidacy moves. For each transition in
which a connected candidate set vanishes, those nodes have had their s-value
set to⊤ by the last transition containing Candidacymoves on the said candi-
date set when it exists. When it does not, they had s-value⊤ in the initial state.
This makes for at most n Candidacymove for every connected candidate set
that vanishes, thus xn in total.

To count for Withdrawal? moves, we will first count the number of suc-
cessful ones,i.e. those that actually succeed in changing the s-value of the
node that executes it. For every connected candidate set that vanishes, as
they may only shrink from the time they appear due to Lemma 3.3.11, it takes
at most n successful Withdrawal? moves to make it disappear. Note that
anyWithdrawal? move acts on an alive connected candidate set, thus every
Withdrawal? participates to the shrinking of an alive connected candidate
set. Then, in total, we need at most xn successful successful Withdrawal?
moves to have x vanishings of connected candidate sets.

Each Withdrawal? move has probability 1
2 to be successful, a probabil-

ity which does not depend on anything but the fact that ruleWithdrawal? is
applied, and are thus the outcome of different Withdrawal? moves are in-
dependent. The number of successfulWithdrawal? is then connected to the
total number ofWithdrawal? by a binomial law of parameter λ and 1

2 , where
λ is the number ofWithdrawal? moves. Using the standard bound obtained
by Hoeffding inequality for the binomial law, the probability to have λn − 1

or less successful Withdrawal? after 2(λn +
√
−λn log p′ − 1) Withdrawal?

moves is at most p. This means that the probability to not have finished the
execution after 2(xn+

√
−xn log p′ − 1)Withdrawal? moves is at most p′.

Then, using the union bound, the probability for x to be such that x > λ

or the number of Withdrawal? moves in the execution to be greater than
2(λn+

√
−λn log p′ − 1) is at most 2p′ = p.

Thus, the probability to converge in less than 2(λn+√
−λn log p′−1)+λn =

O(n2)moves in total is at least 1− p, which concludes the proof.

3.4 . Conclusion

43

In this chapter, we presented two algorithms to find a MIS. The first one
acting under the (distributed) fair daemon with Byzantine nodes finds a MIS of
an induced subgraph containing at least every node without Byzantine neighbor in
O(∆n) rounds. The second one acting under the adversarial daemon finds a MIS
of the whole graph in O(n2) moves.

A notion that generalizes the notion of maximal independent set is the notion
of (k, k − 1)-ruling set. We study the problem of finding such a ruling set in a
distributed system in the next chapter, under the Gouda daemon.

44

4 - Ruling Set

The greedy approach is often considered to solve a problem: is it possible to
build up a solution step by step by completing a partial solution? For example, in
graph theory, one can consider the MIS problem where you want to select a set
of nodes such that no two selected nodes are adjacent and any unselected node is
a neighbor of a selected one. To produce a MIS, a simple algorithm is to select
a node, reject all its neighbors, and then repeat this operation until there is no
node left. Another classical greedy algorithm is the one that produces a (∆ + 1)-
coloring of a graph, where ∆ is the maximum degree in the graph. Each time a
node is considered, as it has at most ∆ different colors in its neighborhood, we
can always choose a different color for it to extend the current partial solution.
Observe that most of the graphs admit a ∆-coloring, which cannot be found with
this kind of greedy heuristic. We can also notice that the size of a MIS can be
arbitrarily smaller than the size of a maximum independent set. Greedy problems
are problems that can be solved using greedy algorithms.

Mendable problems have recently been introduced in [5] as a generalization
of greedy problems. In these problems, a solution can be found sequentially, by
producing the output of each node one after another as it is the case in greedy
problems. However, here, for each chosen node, it is possible to change the output
of its neighborhood, but only up to some distance. The set of mendable problems
is larger than the set of greedy ones. For instance, the 4-coloring of the grid is
a mendable problem, but it cannot be solved greedily, as its maximal degree ∆ is
equal to 4.

A more generalized way to consider MIS is ruling sets. Given a graph G =

(V,E), a (a, b)-ruling set is a subset S ⊂ V such that the distance between any
two nodes in S is at least a, and any node in V is at distance at most b from
some node in S. In what follows, the concept of ball will play an important role.
Formally, the ball of radius i and center s, B(s, i), is the set of nodes that are at
distance at most i from s. Observe that a ball of radius a− 1 centered in a node
of the ruling set S contains only one node in S.

In particular, a (2, 1)-ruling set is an MIS of G. A (k, k − 1)-ruling set S is a
maximal independent set at distance k: all the elements of S are at distance at
least k from each other, every other node is at distance at most k − 1 from S,
and thus cannot be added. Note that it is an MIS of Gk−1 (the graph with the
same vertices as G, and with edges between two vertices if there are at distance
k − 1 or less from each other in G), and this problem can be greedily solved. A
(k, k − 1)-ruling set can also be seen as a maximal distance-k independent set
where a distance-k independent set is a subset of nodes at distance at least k from

45

each other.

A distance-K coloring of a graph G = (V,E) is a mapping C : V → N such
that ∀u ̸= v ∈ V 2, dist(u, v) ≤ K ⇒ C(u) ̸= C(v). A way to produce a distance-
K coloring is to partition V into sets of nodes at distance at least k > K from
each other, i.e. distance-k independent sets, each one representing a color. One
can construct such a partition sequentially by constructing a partition into ℓ ≥ ∆k

distance-k independent sets {S(i)}i≤ℓ, where S(i) is a distance-k independent set
of G maximal under the constraint that every node of the independent must be
in V \

⋃
j<i S

(j). These distance-k independent sets can be computed in a very
similar way as (k, k − 1)-ruling sets. Distance-K coloring is a way to simulate
Local algorithms: the colors can be used as constant size identifiers, as long as the
simulated algorithm does run in less than K rounds on this range of identifiers.

Our Contribution and structure of the chapter

In this chapter, we provide the self-stabilizing algorithm that computes a (k, k−
1)-ruling set in an anonymous network under the Gouda daemon (Section 4.2). The
algorithm detects when a leader can be added or two leaders are too close. To that
end, each node computes its distance to the leaders. If a node and its neighbors
are at distance at least k − 1 from the leaders, that node can try to add itself to
the ruling set. If two leaders are too close, thanks to a clock system that consists
of a mosaic of local synchronizers beta from [2], a node in the middle of the path
will eventually detect the problem and initiate the removal of the leaders from the
set. Thanks to the Gouda daemon, we ensure that not too many nodes will try
to add themselves simultaneously and that the clock system will eventually detect
collisions. On the other hand, we prove that a stable configuration can always be
reached, and the Gouda daemon ensures that it eventually happens (Section 4.3).

In Section 4.4, by combining this algorithm ∆k times, we partition the graph
into distance-k independent sets, which correspond to a distance-K coloring for
any K < k. This coloring allows us to consider nodes of each set sequentially to
compute a solution to some greedy problem. In Section 4.5, we present a solution
allowing us to solve any T -mendable problem, where T is a constant corresponding
to the radius up to which we are allowed to change the output of a node. To that
end, we use the fact that a Local algorithm runs in r rounds, for some constant r,
when a distance-(2T + 1) coloring is given. To do that, we compute a distance-
(2T + 1) and a distance-(2r + 1) coloring. That way, each node will be able to
have access to its neighborhood at the right distance and compute the output the
Local algorithm would have given in that situation.

46

4.1 . State of the art

The notion of checking locally and its relationship with the notion of solv-
ing locally have been introduced by Naor and Stockmeyer in [54]. This work,
along with Cole and Vishkin’s algorithm that efficiently computes a 3-coloring of a
ring [17], leads to the notion of Locally Checkable Labelling problems (Lcl) and the
Local model. Locally checkable problems are problems such that when the output
is locally correct for each node, the global output is guaranteed to be correct too.
Coloring and MIS belong to that field. Ruling Set problems are also Lcl problems:
to check locally that the solution is right, the distance to the set must be given
in the output. The Local model (see [60] for a survey) is a synchronous model
that requires unique identifiers but does not impose any restriction on communi-
cation bandwidth or computation complexity. The goal is to find sublinear time
algorithms. An adaptation of the Local model, the Slocal model [35] considers
algorithms that are executed on nodes one after another, only one time each, but
are allowed to see the state of every node up to some distance when they do. In
particular, locally greedy problems are solved with constant distance of sight in this
model.

Bitton et al. [11] designed a self-stabilizing transformer for Local problems.
Their probabilistic transformer converts a given fault-free synchronous algorithm
for Lcl problems into a self-stabilizing synchronous algorithm for the same problem
in anonymous networks. The overheads of this transformation in terms of message
complexity and average time complexity are upper bounded: the produced algo-
rithms stabilize in time proportional to log(α+∆) in expectation, where α is the
number of faulty nodes.

Awerbuch et al. [3] introduced the ruling set as a tool for decomposing the
graph into small-diameter connected components. As for the seminal work, the
Ruling Set problems have been used as a sub-routine function in order to solve
some other distributed problems (network decompositions [3, 9], colorings [55],
shortest paths [41]).

The MIS problem has been extensively studied in the Local model, [33, 57, 14]
for instance and in the Congest model [56] (synchronous model where messages
are O(log n) bits long). In the Local model, Barenboim et al. [8] focus on systems
with unique identifiers and gave a self-stabilizing algorithm producing an MIS within
O(∆ + log∗ n) rounds. Balliu et al. [7] prove that the previous algorithm [8] is
optimal for a wide range of parameters in the Local model. In the Congest model,
Ghaffari et al. [34] prove that there exists a randomized distributed algorithm that
computes a maximal independent set in O(log∆ · log log n + log6 log n) rounds
with high probability. Considering the problem (α, β)-ruling set in a more general
way, Balliu et al. [4] give some lower bound for computing a (2, β)-ruling set in
the Local model: any deterministic algorithm requires Ω

(
min

{
log∆

β log log∆ , log n
})

47

rounds.

Up to our knowledge, no self-stabilizing algorithm has been designed for com-
puting (k, k−1)-ruling sets where k > 2 under the Gouda daemon. Self-stabilizing
algorithms for maximal independent set have been designed in various models
(anonymous network [59, 64, 63] or not [36, 42, 62]). Shukla et al. [59] present
the first self-stabilization algorithm designed for finding an MIS for anonymous
networks. Turau [62] gives the best known result with O(n) moves under the dis-
tributed daemon. Recently, some works improved the results in the synchronous
model. For non-anonymous networks, Hedetniemi [40] designed a self-stabilization
algorithm that stabilizes in O(n) synchronous rounds. Moreover, for anonymous
networks, Turau [63] designs some randomized self-stabilizing algorithms for max-
imal independent set that stabilizes in O(log n) rounds with high probability. See
the survey [39] for more details on MIS self-stabilizing algorithms.

4.2 . Self-Stabilizing Algorithm for Computing a (k, k−1)-Ruling
Set

4.2.1 . General Overview

As we want to compute a (k, k−1)-ruling set, a node needs to detect when it is
currently “too far” from the nodes pretending to be in the ruling set. When k = 2,
a (2, 1)-ruling set is a MIS, and some self-stabilization algorithms are designed for
finding a MIS [59, 64, 63]. For the remaining of the document, we assume k > 2.

To this aim, the local variable d represents the distance at which the node
thinks it is from the ruling set. In particular, a d-value of 0 indicates that a node is
(or thinks it is) in the ruling set, and we denote by S(γ) the set of those nodes in a
given configuration γ. Any other value of du is meant to represent the distance to
S(γ) (actually, the minimum between k − 1 and the said distance). This will not
be true in every configuration as the information needs to spread, which is enforced
by the rule Update distance, which has the highest priority. When a node u has
its local variable du equal to k − 1 and is surrounded by nodes of d-value k − 1,
it “knows” that it is far enough from S(γ) to be added to it. Node u can then
execute Become Leader to do so. Update of d-values will then spread from the
new member of S(γ) through the execution of Update distance.

The way to insert new nodes into S(γ) cannot avoid the fact that two new
members of S(γ) may be too close. A way to detect those problems is needed to
guarantee that we will not let those nodes in S(γ).

If they are close enough (distance 2 or less), it can be directly detected by a
node (either a common neighbor if they are at distance 2, or one of them if they
are at distance 1). The rule Two Heads is here to detect this.

When problematic nodes are too far away, no node can detect locally this

48

————– Attributes of the nodes
du ∈ J0, k − 1K
erru ∈ {0, 1}For every i ∈ J1, ⌊k

2 ⌋ − 1K : ci,u ∈ Z/4Z and bi,u ∈ {↑, ↓}
————– Predicates
well_defined(u) ≡ erru = 0 ∧ ∀v ∈ N(u), |du − dv| ≤ 1 ∧ (du > 0 ⇒ (∃v ∈ N(u), dv = du − 1))leader_down(u) ≡ du = 0 ⇒ ∀i ∈ J1, ⌊k

2 ⌋ − 1K, bi,u =↓branch_coherence_up(u, i) ≡
∀v ∈ N(u), dv = du − 1 ⇒ (bi,u, bi,v, ci,v) ∈ {(↑, ↑, ci,u), (↑, ↓, ci,u), (↑, ↓, ci,u + 1), (↓, ↓, ci,u)}branch_coherence_down(u, i) ≡
∀v ∈ N(u), dv = du + 1 ⇒ (bi,u, bi,v, ci,v) ∈ {(↑, ↑, ci,u), (↓, ↑, ci,u), (↓, ↑, ci,u − 1), (↓, ↓, ci,u)}branch_coherence(u) ≡ du ≥ ⌊k

2 ⌋ ∨
(
branch_coherence_up(u, du) ∧

∀i ∈ Jdu + 1, ⌊k
2 ⌋ − 1K, branch_coherence_up(u, i) ∧ branch_coherence_down(u, i))

————– Rules
Incr Leader:: (priority 2)
if well_defined(u) ∧ (du = 0) ∧ (∃i ∈ J1, ⌊k

2 ⌋ − 1K,∀v ∈ N(u), dv = 1 ∧ ci,u − ci,v = 0)
then For all such i, ci,u := ci,u + 1

Sync 1 down:: (priority 2)
if well_defined(u) ∧ ∃!v ∈ N(u),∃i ∈ J1, ⌊k

2 ⌋ − 1K, du = 1 ∧ dv = 0 ∧ ci,u = ci,v − 1 ∧ bi,u =↑)
then For all such i, ci,u := ci,v ; bi,u :=↓

Sync 2+ down:: (priority 2)
if well_defined(u) ∧ 1 < du < ⌊k

2 ⌋
∧(∃i ∈ Jdu, ⌊k

2 ⌋ − 1K, bi,u =↑ ∧∀v ∈ N(u), dv = du − 1 ⇒ (ci,u = ci,v − 1 ∧ bi,v =↓))
then For all such i, ci,u := ci,v ; bi,u :=↓

Sync 1+ up:: (priority 2)
if well_defined(u) ∧ 0 < du < ⌊k

2 ⌋
∧(∃i ∈ Jdu + 1, ⌊k

2 ⌋ − 1K, bi,u =↓ ∧∀v ∈ N(u), dv = du + 1 ⇒ (ci,u = ci,v ∧ bi,v =↑))
then For all such i, bi,u :=↑

Sync end-of-chain:: (priority 2)
if well_defined(u) ∧ 0 < du < ⌊k

2 ⌋ ∧ ∀v ∈ N(u), dv = du − 1 ⇒ (cdu,u = cdu,v − 1 ∧ bi,v =↓))
then bdu,u :=↑ ; cdu,u := ci,v

Update distance :: (priority 0)
if (du ̸= 0) ∧ du ̸= min(min {dv|v ∈ N(u)}+ 1, k − 1)
then du := min(min {dv|v ∈ N(u)}+ 1, k − 1)If du < ⌊k

2 ⌋ : Let v := choose({w ∈ N(u)|dw = du − 1})For each i ∈ Jdu, ⌊k
2 ⌋ − 1K, ci,u := ci,v ; bi,u := bi,v

Become Leader :: (priority 2)
if erru = 0 ∧ (du = k − 1) ∧ ∀v ∈ N(u), dv = k − 1
then du := 0, For each i ∈ J1, ⌊k

2 ⌋ − 1K, ci,u := 0, bi,u :=↓

Leader down :: (priority 1)
if well_defined(u) ∧ du = 0 ∧ ∃i ∈ J1, ⌊k

2 ⌋ − 1K, bi,u =↑
then For each i ∈ J1, ⌊k

2 ⌋ − 1K, bi,u :=↓

49

Two Heads:: (priority 1)
if erru = 0 ∧ ∃v, v′ ∈ (N(u) ∪ {u})2, v ̸= v′ ∧ dv = dv′ = 0)

then erru := 1

Branch incoherence:: (priority 1)
if erru = 0 ∧ ¬branch_coherence(u)

then erru := 1

Error Spread :: (priority 2)
if erru = 0 ∧ (du ≤ ⌊k

2 ⌋ − 1) ∧ (∃v ∈ N(u), errv = 1 ∧ du < dv)
then erru := 1

Reset Error :: (priority 2)
if (erru = 1) ∧ ([du > ⌊k

2 ⌋] ∨ [∀v ∈ N(u), dv ≥ du ∨ errv = 1])
then erru := 0, If du = 0, du := 1, For each i, ci,u := 0, bi,u :=↑

Figure 4.1: Algorithm for the (k, k − 1)-Ruling Set
problem. To remedy this, each node maintains a synchronized clock system around
each node of S(γ) by executing the stationary rules. For this reason, we split the
set of rules into two groups:

• The stationary rules are the rules Incr Leader, Sync 1 down, Sync 2+
down, Sync 1+ up, and Sync end-of-chain;

• The convergence rules are the rules Remote Collision, Two Heads,
Branch Incoherence, Update Distance, Become Leader, Error Spread,
Reset Error, and Leader down.

We say that a node in S(γ) is the leader of the nodes under its influence,
corresponding to the nodes closest to it than to any other node of S(γ). Assuming
d-value has already been spread, the clock of index i of nodes that gave the same
leader will always be either equal or out-of-sync by 1. Thus, a node detects that
two nodes in S(γ) are too close when it sees in its neighborhood two nodes with
clocks out-of-sync by 2. It will raise an error when activated by executing Remote
Collision. The error is then propagated toward the problematic members of S(γ)
by the rule Error Spread.

In both previous cases, the problematic nodes of S(γ) end up having err-value
1, which makes them leave S(γ) by executing Reset Error. Afterward, the rule
Update distance will, over time, update the d-values of the nodes at distance up
to k to that node.

The approach of our algorithm makes sure that when a node is inserted in S(γ)
and no node gets added at distance at most k−1 away, it remains in S(γ) forever.
Note that when it is executed, the rule Update distance setup the clock values
and arrows (variables c and b) so that the newly updated node is synchronized to

50

its “parent” (the node it takes as a reference to update its d-value).

The target configuration is not a stable configuration, and from it, all the nodes
can only execute stationary rules. In this configuration, S(γ) is guaranteed to be a
(k, k−1)-ruling set of the underlying graph. Note that the predicate well_defined
appears in the guard of every stationary rule. The predicate guarantees that the
considered node neither is in error-detection mode nor has some incorrect d-values
in its neighborhood before executing any clock-related rule.

4.2.2 . The Clock System

Now, we describe the clock system used to detect that two leader nodes in
S(γ) are at a distance less than k. The leaders are the nodes that update the
clock value ci and propagate it to its “children” and so on. For a given clock index
i, when every neighbor of a leader s has the same clock ci and their corresponding
arrow bi pointed up, node s increments its clock value by 1 by executing rule Incr
Leader.

After that, the clock value is propagated downward (toward nodes of greater
d-value) by the rules Sync 1 down and Sync 2+ down. Note that it’s performed
locally by layers: one node of a given d-value cannot update its clock value and
arrow before every neighbor with a smaller d-value does so. This is necessary to
guarantee the global synchronization of the clock.

There are two ways for the propagation to reach the limit of the area it should
spread in: either it has reached nodes with d-value i, or there is no node having a
greater d-value to spread the clock further.

• In the first case, the rule Sync end-of-chain flips the arrow bi.

• In the second case, the nodes execute rule Sync 1+ up to flip bi.

In both cases, it allows the rule Sync 1+ up to propagate upward (toward smaller
d-values) with the bi-value switching to ↑ from the nodes to their parents. Note
that it is done locally by layers: one node of a given d-value may not update its
clock value and arrow before every neighbor with a greater d-value has done so.

When the propagation reaches the neighbors of s, node s “detects” that its
current clock value has been successfully propagated. It can then again execute
Incr Leader to increase it.

The point of this clock system is that two nodes under the same leader cannot
have clock values out-of-sync by 2, but two nodes that have different leaders may.
It allows to detect a “collision” (i.e. two nodes of S(γ) too close from each other)
when the d-values of two such nodes are too small (smaller than ⌊k2⌋). Observe
that the clock of index i is only reliable for detecting collision between nodes of
S(γ) that are at distance 2i or 2i+1 from each other. For smaller distances, this
clock may be forcefully synchronized between two nodes of S(γ) by the layer-by-

51

ci, ↓ ℓ− 1

c, ↓ ℓ

c-1, ↑ c, ↓ c, ↑ ℓ+ 1

c, ↓ c, ↑ c+1, ↓ ℓ− 1

c, ↑ ℓ

c, ↑ ℓ+ 1

Figure 4.2: Branch coherence condition. The couples (c, ↓) or (c, ↑)represent the local variables (ci, bi) of the nodes. The value on theright of the nodes represents their distance to the leader node (i.e.their d-value). The central node in both figures is the reference, andthe other nodes represent the possible couples for its neighbors withdifferent d-value.

layer updating, and for greater distances, no node may detect an out-of-sync from
it. Thus, we have ⌊k2⌋−1 parallel clock systems to capture every possible distance
of collision.

The Gouda daemon ensures that, if two nodes of S(γ) are too close from each
other, this will not be the case forever. Indeed, the clock system will eventually
detect it and propagate an error.

4.2.3 . Handling Initial and Perturbed Configurations

The rules Leader Down and Branch Incoherence are only executed to solve
problems coming from the initial configuration, or after a perturbation has oc-
curred. The rule Leader Down is executed when a leader has some of its arrows
bi in the wrong direction. The rule Branch Incoherence is executed when some
“impossible” patterns are produced in the clock systems due to wrong clock values
and arrows in the initial state. Normal patterns are shown in Figure 4.2, any other
pattern will make an activated node execute Branch Incoherence.

4.3 . Proof of the Algorithm

4.3.1 . Stability of Legitimate Configurations

The ruling set algorithm presented in this section uses the state model. It
constructs the set of vertices whose d-value is 0. We will prove that this set
is a ruling set in legitimate configurations. Formally, we require the following

52

specification for the legitimate configurations:

Definition 4.3.1. Let S(γ) be the set of nodes s such that ds = 0 in a given
configuration γ. Configuration γ is said to be legitimate if:

1. All the nodes u are such that well_defined(u), leader_down(u) and
branch_coherence(u) hold;

2. For any two u and v distinct nodes of S(γ), we have dist(u, v) ≥ k.
Theorem 4.3.2. From any legitimate configuration γ, every reachable configura-
tion is legitimate, and in such a configuration every node has the same d-values
as in γ.

Thanks to Theorem 4.3.2, we know that, from a legitimate configuration, we
keep the same set of leaders S(γ), which forms a (k, k−1)-ruling set. Hence, under
the Gouda daemon, the set of leaders will eventually be a stable (k, k − 1)-ruling
set.

The goal of the following lemmas will be to prove Theorem 4.3.2. Lemma 4.3.3
ensures that S(γ) forms a ruling set when the values of all the local variables are
correct.

Lemma 4.3.3. Let γ be a legitimate configuration.

• For any node u, du = dist(u, S(γ)),

• S(γ) is a (k, k − 1)-ruling set of the underlying graph.

Proof. By definition of the predicate well_defined(u), if du > 0, there exists
some v ∈ N(v) such that dv = du − 1. Let’s prove by induction on i < k that
“For any node u, du ≤ i⇔ dist(u, S(γ)) = du”:

• If du = 0, we have u ∈ S(γ), and dist(u, S(γ)) = dist(u, u) = 0. Con-
versely, if dist(u, S(γ)) = 0, then u ∈ S(γ) and du = 0 by definition of
S(γ).

• Let’s assume that it is true for i < k − 1. Let u be a node such that
du = i + 1. Since predicate well_defined(u) is satisfied in γ, there ex-
ists a node v ∈ N(u) such that dv = du − 1 = i. Using induction hy-
pothesis, dist(v, S(γ)) = i, i.e. there exists node s in S(γ) such that
dist(s, v) = i. Hence, dist(s, u) ≤ i + 1. Using induction hypothesis,
dist(u, S(γ)) ≤ i would imply du = dist(u, S(γ)) ≤ i, thus by contrapo-
sition dist(u, S(γ)) > i. Hence dist(u, S(c)) = i+ 1.
Conversely, let’s assume that dist(u, S(γ)) = i + 1. By using a
shortest path from u to S(γ), we can get a node v ∈ N(u) such that

53

s

c, ↓

ds = 0

s1

c, ↓

sa

c, ↓

sa+1

c′, ↑

sdu−1

c′, ↑

u

du

Figure 4.3: Node spropagates its clock value along a shortest path from
s to u where c′ ∈ {c, c− 1}.

dist(v, S(γ)) = i. Hence, by induction, dv = i. As well_defined(u)
is true, we have |du − dv| ≤ 1 and hence i − 1 ≤ du ≤ i + 1. As
dist(u, S(γ)) = i + 1 ̸∈ J0, iK, by induction hypothesis we get du > i.
Hence du = i+ 1.

By induction, we proved the first item of the lemma.
Let’s prove now that S(γ) is a (k, k− 1)-ruling set. Since every node u has

the value of local variable du less than k−1, the first item of this lemma states
that dist(u, S(γ)) ≤ k − 1. Hence, we only need that for any pair (u, v) ∈
S(γ)2 of distinct nodes, dist(u, v) ≥ k. This is true by definition of a legitimate
configuration. Thus, the lemma holds.

Now we focus on the clock system. We prove the following property on the
ruling set to run the clock system.

Lemma 4.3.4. Let γ be a legitimate configuration and s be a node in S(γ). For
every node u, dist(u, s) ≤ ⌊k2⌋ implies that du = dist(u, s).

Proof. Suppose node u is such that dist(u, s) ≤ ⌊k2⌋.
Let’s take s′ ∈ S(γ) such that d(u, S(γ)) = d(u, s′). We have dist(u, s) ≤

dist(u, s′). Then by triangular inequality we have dist(s, s′) ≤ dist(s, u) +

dist(u, s′) ≤ 2 dist(s, u) ≤ 2⌊k2⌋ ≤ k − 1. As S(γ) is a (k, k − 1)-ruling set
from Lemma 4.3.3, this means that s = s′.

This property allows us to deduce that a node u such that dist(u, s) ≤ ⌊k2⌋
has only one node s of S(γ) in its ball at distance ⌊k2⌋. Thus, all the nodes
in B(s, ⌊k2⌋ − 1) must be synchronized with s. Now we explain how the values
representing the clock of the local variable of nodes with d-value smaller than ⌊k2⌋
are spread from their leader. Figure 4.3 illustrates how the pairs (ci, bi) go from
nodes in S(γ).

Lemma 4.3.5. Let γ be a legitimate configuration and s a node in S(γ). For every
node u such that dist(u, s) ≤ ⌊k2⌋ − 1, every shortest path (s0, s1, · · · , sdu) from

54

s to u satisfies the following property in γ:
For every clock index i ∈ Jdu + 1, ⌊k2⌋ − 1K, there exists some integer a ∈ J0, duK
such that:

1. ∀ℓ ∈ J0, aK, (bi,sℓ , ci,sℓ) = (↓, ci,s),

2. ∃c′ ∈ {ci,s − 1, ci,s} , ∀ℓ ∈ Ja+ 1, duK, (bi,sℓ , ci,sℓ) = (↑, c′).

Proof. For a given integer α ∈ J0, ⌊k2⌋− 1K we denote byH(α) the property of
the lemma for every node whose distance to s is α.

For α = 0, the only path to consider only contains s itself. Consider any
clock index i ∈ J1, ⌊k2⌋ − 1K. The only possible value for a is 0.

1. By definition of the legitimate configuration, bi,s =↓. Thus (bi,s, ci,s) =

(↓, ci,s), and Point 1 of propertyH(0) holds.
2. Point 2 of propertyH(0) holds trivially, since a+ 1 > du = 0.

ThusH(0) holds.
We now suppose H(α) true for any α < δ for some δ ≤ ⌊k2⌋ − 1. Let

then P = (s = s0, s1, · · · , sδ = u) be a shortest path from node s to some
node u such that dist(s, u) = δ. Since γ is legitimate, d(u, S(γ)) = d(u, s) by
Lemma 4.3.4 since δ ≤ ⌊k2⌋. Lemma 4.3.3 gives then du = dist(s, u) = δ.

By definition of a shortest path, sδ−1 is at distance dist(s, u) − 1 = δ − 1

from s. By the same argument as for u, Lemma 4.3.3 gives dsδ−1
= δ − 1,

thus dsδ−1
< δ. Let also i be an integer in Jdu + 1, ⌊k2⌋ − 1K be a clock index.

Since dist(s, sδ−1) < δ, we apply the induction hypothesis: the shortest path
(s0, s1, · · · , sδ−1) from s to sδ−1 satisfies that there exists some a ∈ [0, δ − 1]

such that:
1. ∀ℓ ∈ J0, aK, (bi,sℓ , ci,sℓ) = (↓, ci,s);
2. ∃c′ ∈ {ci,s − 1, ci,s} , ∀ℓ ∈ Ja+ 1, δ − 1K, (bi,sℓ , ci,sℓ) = (↑, c′).
We treat the cases a = δ − 1 and a < δ − 1 separately, using the same

argument that predicate branch_coherence_down(sδ−1, i) is true (as δ − 1 <

δ ≤ i < k
2 , and γ is legitimate).

Suppose that a < δ − 1. We have (bi,sδ−1
, ci,sδ−1

) = (↑, c′) for some c′ ∈
{ci,s − 1, ci,s}. Since branch_coherence_down(sδ−1, i) is true, bi,sδ−1

=↑ implies
that (bi,sδ , ci,sδ) = (↑, c′). Thus, P = (s0, s1, · · · , sδ) respects the property ofthe lemma.

Suppose that a = δ−1. It implies that ∀ℓ ∈ J0, δ−1K, (bi,sℓ , ci,sℓ) = (↓, ci,s).Since branch_coherence_down(sδ−1, i) is true, we have three possibilities:
55

• If (bi,u, ci,u) = (↓, ci,sδ−1
), we have (bi,u, ci,u) = (↓, ci,s). Then P =

(s0, s1, · · · , sδ) respects the wanted property for a = δ. Note that the
second part of the property is trivially true with this value of a for any
value c′, for the “for all” quantifier acts on the empty set.

• If (bi,u, ci,u) = (↑, ci,sδ−1
), we have (bi,u, ci,u) = (↑, ci,s). Then, P =

(s0, s1, · · · , sδ) respects the wanted property for a = δ − 1, taking c′ =
ci,s for the second part.

• Else, we must have (bi,u, ci,u) = (↑, ci,sδ−1
− 1), and we have (bi,u, ci,u) =

(↑, ci,s). Then, P = (s0, s1, · · · , sδ) respects the wanted property for
a = δ − 1, taking c′ = ci,s − 1 for the second part.

Thus, every shortest path (s0, s1, · · · , sδ) from s to every such node u sat-
isfies the property for every possible clock index i ∈ Jdu + 1, ⌊k2⌋ − 1K, and
H(δ) holds.

Thus, by induction, the lemma holds.

Lemma 4.3.6 proves that only rules to update clocks can be executed from
legitimate configurations:

Lemma 4.3.6. Let γ be a legitimate configuration. Let u be a node. Node u only
executes stationary rules from γ.

Proof. Let γ be a legitimate configuration. Since every node satisfies pred-
icates well_defined, branch_coherence and leader_down, none has its err-
value equals to 1, and rules Leader Down, Error Spread, Reset Error and
Branch incoherence cannot be executed.

From Lemma 4.3.3, S(γ) is a (k, k − 1)-ruling set of the underlying graph:
each element in S(γ) is at distance at least k from another. Thus, there are
no two neighboring nodes that have their local variables d equal to 0 and rule
Two Heads cannot be executed in γ.

Let u be a node. We have du = min {dist(u, s) | s ∈ S(γ)} by the first point
of Lemma 4.3.3. Observe that, by definition of local variable du, we have 0 ≤
du ≤ k − 1.

From predicate well_defined, we know that if du > 0, u has a neighbor v
such that dv = du − 1, and that any neighbor w of u are such that du − 1 ≤
dw ≤ du+1. Hence, du = min(min {dv | v ∈ N(u)}+1, k−1). We deduce that
rule Update distance cannot be executed in γ.

Observe that, if du = k − 1, u has at least a neighbor v is such that dv =

du − 1 = k − 2. This implies that no node can activate rule Become Leader.
56

Let u be a node that executes rule Remote Collision. We have du ≤ k−1
2 ,

the existence of two nodes v and v′ in N(u) ∪ {u} with dv = dv′ , and |cdv ,v −
cdv ,v′ | = 2 (as local variable cdv is defined, we have dv = dv′ ≤ ⌊k2⌋ − 1). It
means that there exist two nodes s, s′ in S(γ) such that dist(v, s) = dv and
dist(u, s′) = du ≤ k−1

2 . As v is in the closed neighborhood of u, we have:
dist(s, s′) ≤ dist(s, v)+1+dist(u, s′) ≤ dv+1+du ≤ (⌊k

2
⌋−1)+1+

k − 1

2
< 2

k

2

As S(γ) is a (k, k−1)-ruling set, we get that s = s′. By the same reasoning,
we get that v′ is also at distance dv′ to s.

By applying Lemma 4.3.5 for both v and v′, we get that cdv ,v, cdv′ ,v′ are in
{cdv ,s − 1, cdv ,s}. Thus it implies that |cdv ,v − cdv ,v′ | ≤ 1, which contradicts the
execution of rule Remote Collision.

This concludes the proof.

Once the execution reaches a legitimate configuration γ, we have proved that
only stationary rules can be executed. The goal is to use that result and the
previous lemmas to prove that only legitimate configurations can be reached from
γ. This result will lead to the proof of Theorem 4.3.2.

Proof. of Theorem4.3.2. Let γ and γ′ be two configurations such that γ is legit-
imate and γ → γ′. By enumerating cases, we prove that γ′ is also legitimate.

Based on the stationary rules, if du = 0, for any i < ⌊k2⌋, we always have
bi,u =↓, and if ci,u changes it is to be incremented by 1. If 0 < du < ⌊k2⌋, for any
i ≥ du, if bi,u =↓, the only state change can be that bi,u becomes ↑. If bi,u =↑,
the only state change can be that bi,u becomes ↓ and ci,u gets incremented by
1. Thus, we can consider the only possibility for a state change of a given pair
(bi,u, ci,u). We exhaustively look at all the possible transitions inN(u)∪{u} to
check that we still have branch_coherence(u) and well_defined(u).

• Since we can only apply stationary rules from γ (Lemma 4.3.3), all the
local variables du remain constant: ∀u, dγu = dγ

′
u . Hence, for all nodes u,predicate well_defined(u) is true in γ′, and S(γ) = S(γ′).

• Let u be a node. We need to prove that in γ′, branch_coherence(u) is
true. As we will consider separately the different clock indexes in our
reasoning, when a given clock index i is considered in the context, and x
is a node, we will call (bi,x, ci,x) the state of x. It will make the discussion
smoother in the remainder of the proof.

– If du ≥ ⌊k2⌋, branch_coherence(u) is always true in γ′, as dγ′u = dγu.
57

– If du = 0, let i ≥ 0. We need to prove branch_coherence_down(u, i)
in γ′. We know, by the fact that du = 0 and leader_down, that
bi,u =↓. Let v ∈ N(v). Since predicate well_defined(u) is true, we
have dv = 1. By branch_coherence_down(u, i), we have (bi,v, ci,v) ∈
{(↑, ci,u), (↑, ci,u − 1), (↓, ci,u)} in γ.
If cγ′i,u = cγi,u + 1, rule Incr Leader has been activated. It means
that ∀v ∈ N(u), bγi,v =↑ and cγi,v = ci,v. Rule Sync 1 Down could
not have been activated on v for i as they had the same ci,u. Hence
bγ

′

i,v = bγi,v =↑, and cγ′i,v = cγi,v = cγi,u = cγ
′

i,u−1. Predicate branch_coherence_down(u, i)
is true in γ′.
If cγ′i,u = cγi,u, let us enumerate what can have happened to the
neighbor v depending on their values of the couple (bi,v, ci,v) in γ:
* (bi,v, ci,v) = (↑, ci,u): the states do not change after in the tran-sition, as u’s value of local variable ci,u should have been onemore.
* (bi,v, ci,v) = (↑, ci,u − 1): either v is not activated and the
state has not changed, either v was activated, and Rule Sync 1
down was applied. In that case, the new state in γ′ is (↓, ci,u).

* (bi,v, ci,v) = (↓, ci,u): if the state of v has changed, it means
that Rule Sync 1+ up has been applied. In that case, the new
state of v in γ′ is (↑, ci,u).

In every case, the possibilities in γ′ for v are compatible with the
state of u.

– If 0 < du ≤ k/2, let i ≥ du. We have four possibilities, depending
on if bi,u is ↑ or ↓, and if u changes its state or not:
* bi,u =↑, and u does not change its state.
Let v ∈ N(u) be a node such that dv = du − 1. It can only
be in states in {(↑, ci,u), (↓, ci,u), (↓, ci,u + 1)}. In the two first
possibilities, if v changes its state, it is still compatible with
the state of u. In the third case, v could not change its state
because the state of u is not allowing it.
Let v ∈ N(u) be a node such that dv = du + 1. It can only be
in state (↑, ci,u). It cannot change its state, because the stateof u is not allowing it.

* bi,u =↑, and u changes its state to (↓, ci,u + 1).
Let v ∈ N(u) be a node such that dv = du − 1. It can only be
in state (↓, ci,u + 1), as otherwise u could not have changed.
In that situation, the state of u prevents v from changing its
own.
Let v ∈ N(u) be a node such that dv = du + 1. It can only be

58

in state (↑, ci,u). It cannot change its state, because the stateof u is not allowing it.
* bi,u =↓, and u does not change its state.
Let v ∈ N(u) be a node such that dv = du − 1. It can only be
in states (↓, ci,u). It cannot change its state, because the stateof u is not allowing it.
Let v ∈ N(u) be a node such that dv = du + 1. It can only
be in states in {(↑, ci,u − 1), (↓, ci,u), (↑, ci,u)}. In the two first
possibilities, if v changes its state, it is still compatible with
the state of u. In the third case, v could not change its state
because the state of u is not allowing it.

* bi,u =↓, and u changes its state.
Let v ∈ N(u) be a node such that dv = du − 1. It can only be
in state (↓, ci,u). It cannot change its state, because the stateof u is not allowing it.
Let v ∈ N(u) be a node such that dv = du + 1. It can only
be in state (↑, ci,u), as otherwise u could not have changed. Inthat situation, the state of u prevents v from changing its own
state.

4.3.2 . Reaching a Legitimate Configuration

The goal of the following lemmas is to prove that, from any configuration γ,
we can reach a configuration γ′ that is legitimate. The Gouda daemon’s property
concludes that a legitimate configuration will always eventually be reached. Indeed,
let γ be a configuration that is infinitely often reached during an execution. Under
the Gouda daemon, as a legitimate configuration γ′ is reachable from configuration
γ, γ′ will also be reached infinitely often.

To that end, we introduce the notion of locally legitimate node for leaders sat-
isfying conditions close to the legitimate ones in their ball of radius k−1. We prove
that if a node s is locally legitimate then it will remain so forever (Lemma 4.3.10).

We explain how to make locally legitimate a node that does not have any leader
at distance smaller than k to it in Lemmas 4.3.12 and 4.3.15. We explain how,
when some leaders are too close from each other, we can reach a configuration
where none of the remaining ones are at distance smaller than k from another
(Lemma 4.3.15).

From here, we can conclude with the proof of the following theorem:

Theorem 4.3.7. Under the Gouda daemon, any execution eventually reaches a
legitimate configuration.

59

We first introduce the notion we will use in this section for nodes in S(γ):

Definition 4.3.8. Let γ be a configuration. A node s in S(γ) is locally legitimate
when:

1. ∀u ∈ B(s, ⌊k2⌋), du = dist(u, s), and well_defined(u), leader_down(u)
and branch_coherence(u) are true;

2. ∀u ∈ B(s, k − 1) \ B(s, ⌊k2⌋), k − dist(u, s) ≤ du ≤ dist(u, s).
We denote LL(γ) the set of those nodes in γ.

Let s be a locally legitimate node. The first property means that in its neigh-
borhood at distance at most ⌊k2⌋, nodes behave like in a legitimate configuration.
Therefore, they cannot detect errors. The second property implies that all nodes
in B(s, k − 1) have coherent d-values according to s and to potential leaders that
are at distance at least k from s. A direct observation is the following:

Lemma 4.3.9. Let s ∈ LL(γ). We have B(s, k − 1) ∩ S(γ) = {s}.

Proof. From the definition of local legitimacy, every node in B(s, k − 1) \ {s}
has positive d-value.

Combining Lemma 4.3.9 and the first property of the legitimated node, we can
deduce that once a node is legitimate, it remains legitimate during the rest of the
execution.

Lemma 4.3.10. Let γ, γ′ be two configurations such that γ → γ′, LL(γ) ⊂
LL(γ′).

Proof. Suppose that node s is locally legitimate in γ, let’s prove that if γ → γ′

then s is also locally legitimate in γ′.
• Since s is locally legitimate in γ, the configuration obtained by restricting
γ to nodes B(s, ⌊k2⌋) is a legitimate configuration. By Lemma 4.3.6, only
stationary rules can be applied to those nodes in that restricted config-
uration. Since nodes in B(s, ⌊k2⌋−1) can only see nodes in B(s, ⌊k2⌋), therules enabled for those nodes are the same in the restricted configura-
tion and in γ, thus only stationary rules can be enabled on B(s, ⌊k2⌋− 1)

in γ.
• For nodes at distance ⌊k2⌋ from s, since their d-value is exactly ⌊k2⌋, theycannot execute any of the rules Error Spread, Become Leader, Two
Heads, Branch incoherence nor any stationary rule. They also have
at least one neighbor at distance ⌊k2⌋ − 1 from s with d-value ⌊k2⌋ − 1.
Moreover, we have these two following points:

60

1. The neighbors of those nodes in B(s, ⌊k2⌋) have d-value equal totheir distance to s, i.e. ⌊k2⌋ or ⌊k2⌋ − 1;
2. The neighbors of those nodes in B(s, k − 1) \ B(s, ⌊k2⌋) have dis-tance to s at least ⌊k2⌋ + 1 and from local legitimacy their d-value

is at least k − (⌊k2⌋ + 1) which is ⌊k2⌋ − 1 when k is even, and ⌊k2⌋when k is odd.
From these facts:

– Rule Update distance is not enabled on those nodes;
– For rule Remote Collision, the only possibility for it to be enabled
would be the first case in the guard when k is odd. Suppose then
k is odd and u is a node at distance ⌊k2⌋ from s, with two distinct
neighbors v, v′ such that dv = dv′ = du − 1 = ⌊k2⌋ − 1. As k is odd,
neighbors ofu inB(s, k−1)\B(s, ⌊k2⌋)have d-value at least ⌊k2⌋ (seePoint 2 above). Hence, nodes v, v′ should be in B(s, ⌊k2⌋). But locallegitimacy guarantees predicate branch_coherence on every node
inB(s, ⌊k2⌋−1)which guarantees that the clock c⌊ k

2
⌋−1,· of two suchnodes could not be out of sync by 2. Thus, Remote Collision is not

enabled on u.
And finally, since those nodes are supposed well-defined, Reset error
is not enabled on them. Those nodes are then not activable.

• For nodes in B(s, k − 1) \ B(s, ⌊k2⌋), the condition on their d-value pre-vents them from executing any stationary rule, on any of the rules Re-
moteCollision, TwoHeads,Branch incoherence, andBecome leader.
The only potentially enabled rules are Update distance, Error Spread,
and Reset Error.

Then, we focus on properties in configuration γ′.
• As it was done before to analyze the enabled rules in B(s, ⌊k2⌋ − 1), we
consider the legitimate configuration obtained by restricting γ to nodes
B(s, ⌊k2⌋). By Theorem 4.3.2, any transition from the restricted config-
uration would still be legitimate. Since nodes in B(s, ⌊k2⌋ − 1) can only
see nodes in B(s, ⌊k2⌋), and since nodes of B(s, ⌊k2⌋)\B(s, ⌊k2⌋−1)were
not activated in the transition, the nodes changed state in the tran-
sition from γ to γ′ as they would have from the restricted configura-
tion. Thus the restriction of γ′ to B(s, ⌊k2⌋) is a legitimate configuration,
and well_defined(.) and branch_coherence(.) are still true on nodes of
B(s, ⌊k2⌋) in γ′.

61

• Consider u ∈ B(s, k − 1) \ B(s, ⌊k2⌋). If u has not changed its d-value
in the transition, there is nothing to prove. If the d-value of u changed
in γ → γ′, it must have performed rules Update distance or Become
Leader (Reset Error may only change d-value of nodes that have an
original d-value of 0).
Rule Become Leader could not have been applied, as u has a neighbor
v closer to s by 1, which implies that dv ≤ dist(v, s) < k − 1.
Let’s prove that rule Update distance could not have been applied ei-
ther. Every v ∈ B(s, k − 1) \ B(s, ⌊k2⌋) is such that k − dist(u, s) ≤
dv ≤ dist(v, s) in γ from local legitimacy (see Definition 4.3.8), and the
same can be true for the nodes exactly at distance ⌊k2⌋. Then, as neigh-bors of u are at distance at least dist(u, s) − 1 at most dist(u, s) + 1

from s, the minimum d-value in the neighborhood of u in γ is in Jk −
(dist(u, s)+ 1), dist(u, s)− 1K. Then if u has executed Update distance
in the transition, its new d-value must be at least k − (dist(u, s) + 1) +

1 = k − dist(u, s), and at most dist(u, s) − 1 + 1 = dist(u, s), thus
⌊k2⌋ < du ≤ dist(u, s) in γ′.

We focus now on how to create locally legitimate nodes. First of all, we can
make sure that the d-values of all the nodes are coherent with regards to their
distance to S(γ):

Lemma 4.3.11. For any configuration γ, we can reach a configuration γ′ such
that S(γ) = S(γ′), and du = min(dist(u, S(γ′)), k − 1) for every node u, and
there is no node with err-value 1 among nodes with d-value greater than ⌊k2⌋.

Proof. Let’s prove the following property by induction on i < k − 1:
From any configuration γ, we can reach a configuration γ′ where S(γ) =

S(γ′), and, for all nodes u ∈ V we have dist(u, S(γ′)) ≤ i ⇐⇒ du ≤ i ⇐⇒
du = dist(u, S(γ′)).

• For the case i = 0, this is true by definition of S(γ′).
• Let’s assume that the property is true for some i ≤ k − 3.
Let u be a node such that dist(u, S(γ′)) = i + 1. In its neighborhood,
there is a node v such that dist(v, S(γ′)) = i. By the induction hypothe-
sis, dv = dist(v, S(γ′)). Moreover, by the induction hypothesis, no node
w inN(u) is such that dw < dv. If it was the case, uwould be at distanceat most dw + 1 from S(γ′), but dw + 1 < dv + 1 = dist(u, S(γ′)).
Hence, if du ̸= dist(u, S(γ′)), by activating u, rule Update distance can
be executed, and du would become dv + 1 as dv < k − 1.

62

Let u be a node such that du = i + 1 and dist(u, S(γ′)) > i + 1. Since
all of its neighbors are at distance greater than i to S(γ′), the induc-
tion hypothesis implies that their d-value is at least i + 1. Thus if u
gets activated, it will execute ruleUpdate distance. After that, we have
du > i+ 1.
From the current configuration γ, by activating all the nodes u at dis-
tance i + 1 to S(γ) such that du ̸= i + 1 and all the nodes at distance
greater than i+1 such that du = i+1, we reach a configuration γ′ where
the induction property is true for i+ 1.
Note that we never activate any node u such that du = k− 1 and for all
v ∈ N(u), dv = k − 1. Hence, S(γ′) = S(γ).

The induction being verified, we can reach a configuration γ′ where, for
all nodes, du < k − 1 ⇐⇒ du = dist(u, S(γ′)). Hence, in this configuration,
all nodes at distance at least k − 1 have du = k − 1.

Let s be a node at distance at least k from S(γ). We explain how to make
that node locally legitimate:

Lemma 4.3.12. Let γ be a configuration where there exists a node s such that
dist(s, S(γ)) ≥ k then a configuration γ′ can be reached from γ such that s ∈
LL(γ′).

Proof. By applying Lemma 4.3.11, we can reach a configuration γ′′ where, for
each node u ∈ V , du = min(dist(u, S(γ′′)), k − 1). In particular, it means that
ds = k − 1, and it is also the case for its neighbors.

Observe that all nodes u in B(s, ⌊k2⌋) have its local value du greater that
⌊k2⌋. Then, in γ′′, if one of these nodes has err-value equal to 1, it can execute
rule Reset Errorwhich does not change its d-value. We can reach a configura-
tion with the same property as γ′′ on d-values, without a node having erru = 1

in B(s, ⌊k2⌋). Now, we can apply rule Become Leader to s.
For any integer i from 1 to k − 2, we do a transition where we activate

nodes at distance i from s, to reach some configuration γ′.
For the first ⌊k2⌋ steps, the nodes activated have their d-value inferior to

⌊k2⌋ before their activation (otherwise, we would have ds < k − 1). For those
nodes, rule Update distance is executed. We get, for each node u activated
at step i, du = i = dist(u, s) after the transition corresponding to step i. For
each j ∈ Jdu, k2 − 1K, cj,u := 0 ; bi,u :=↓. For all i ≤ ⌊k2⌋ − 1, Property 1 of
Definition 4.3.8 is satisfied.

Let u be a node at distance ⌊k2⌋ from s. Let v be a neighbor of u such that
dv = ⌊k2⌋ − 1. Note that u is at distance dv from s (otherwise, s would have

63

been at distance< k froma node inS(γ)\{s}). Hence u also satisfies Property
1 of Definition 4.3.8.

Let u ∈ B(s, k − 1) \ B(s, ⌊k2⌋). By direct induction, we can see that after
step dist(u, s) − 1, u has a neighbor v closer to s such that dv ≤ dist(v, s) =

dist(u, s) − 1. After applying rule Update distance in step dist(u, s), we get
that du ≤ dv + 1 ≤ dist(u, s). Moreover, we need to prove that du ≥ k −
dist(u, s). In γ′′, as each node is such that its d equals its distance to S(γ′′),
no node v in B(s, k − 1) \ B(s, ⌊k2⌋) is such that dv < k − dist(v, s), otherwise
dist(s, S(γ)) would be smaller than k, which contradicts the premise of the
lemma.

Let i ≤ k − 2 be the first step where a node u updates its distance such
that du < k−dist(u, s). It wouldmean that it has a node v in its neighborhood
such that dv < k − dist(u, s) − 1 in the previous step. We have dist(v, s) ≤
dist(u, s) + 1. Moreover, v cannot be at a closer distance to s, otherwise i
would not be minimal. Hence, v was not updated in the steps from 1 to i− 1,
meaning that dv = dist(v, S(γ′′)). As dist(v, s) ≥ ⌊k2⌋, there exists some s′ ∈
S(γ′′) different from s such that dist(v, s′) = dv. We obtain that dist(s, s′) ≤
dist(v, s)+dist(v, s′) < dist(u, s)+1+k−dist(u, s)−1 < k, which contradicts
the premise of the lemma.

This concludes that s is locally legitimate in the last configuration after the
k − 1 steps.

Now, we need to deal with leaders that are too close from each other. To do
this, we introduce the function that measures the number of nodes in this situation
in a configuration, and Lemma 4.3.14 shows how to decrease it.

Definition 4.3.13. When γ is a configuration, we define ϕ(γ) as the set of
leaders in γ having a conflict with another one due to being at distance less
than k to each other, i.e. ϕ(γ) = {u ∈ S(γ) | ∃v ∈ S(γ) \ {u} , dist(u, v) < k}.
Lemma 4.3.14. Let γ be a configuration such that ϕ(γ) ̸= ∅. There exists a node
u in ϕ(γ) and a configuration γ′ such that we can reach γ′ from γ with S(γ′) =

S(γ) \ {u}.

Proof. Using Lemma 4.3.11, we can reach a configuration γ∗ from γ where for
each node u ∈ V , du = min(dist(u, S(γ∗)), k−1). From now, we suppose that
each node u ∈ V is such that du = min(dist(u, S(γ)), k − 1) in γ.

Let u be a node in ϕ(γ). The definition of ϕ(γ) states that a node v in
S(γ) \ {u} is at distance at most k from u. Thus, v is also in ϕ(γ), and ϕ(γ)
have at least two elements.

64

Let u, v ∈ ϕ(γ) such that dist(u, v) is minimum among the pairs of distinct
nodes of ϕ(γ), and let us denote δ = dist(u, v). From definition of function ϕ,
dist(u, v) = δ < k, and we have ⌈ δ2⌉ ≤ ⌊k2⌋ with equality when δ = k − 1.

Since v is the closest leader to u in ϕ(γ), every node in B(u, ⌈ δ2⌉) has itsdistance to u as d-value. Symmetrically, we can apply the same argument for
nodes in B(v, ⌈ δ2⌉) relatively to v.

If a node w in B(u, ⌈ δ2⌉) is such that errw = 1, then all its neighbors with a
smaller d-value can execute rule Error Spread. By following a shortest path
from w to u, we can reach a configuration where erru = 1. When we reach
a configuration where erru = 1, u can execute rule Reset Error, and after
its execution, we can reach a configuration γ′ where du = 1, thus S(γ′) =

S(γ) \ {u}.
Symmetrically, using the same argument as previously, if a node w in

B(v, ⌈ δ2⌉) is such that errw = 1, we can reach a configuration γ′ such that
S(γ′) = S(γ) \ {v}.

Let us then suppose that there is no node inB(u, ⌈ δ2⌉)∪B(v, ⌈
δ
2⌉) such thatit err-value is equal to 1.

Consider a shortest path P from u to v. We consider two cases according
to the parity of its length.

• When δ = 2iwith i ∈ N, P = (u = u0, u1, .., ui = vi, .., v1, v0 = v). Nodes
in B(u, i)\B(u, i−1) have d-value i and have err-value 0 by hypothesis.
Thus, executing stationary rules, we can make the clock with index i go
to 0 for every node of B(u, i − 1). Symmetrically, executing stationary
rules, we can make the clock with index i − 1 go to 2 for every node of
B(v, i− 1).

• When δ = 2i+1with i ∈ N, P = (u = u0, u1, .., ui, vi, .., v1, v0 = v). Note
that nodes in B(u, i+1) \ B(u, i) have either their d-value equal to i+1

or i, since it would otherwise imply that another node of S(γ) is closer
to u than v, they also have err-value 0 by hypothesis. Then, executing
stationary rules, we can make the clock with index in i go to 0 for every
node of B(u, i). Symmetrically, executing stationary rules, we canmake
the clock with index in i go to 2 for every node of B(v, i).

In both cases, nodes ui can execute rule Remote Collision and then we
can make the error propagate toward u executing rule Error Spread and
reach a configuration γ′ where S(γ′) = S(γ) \ {u}.

Thanks to this result, we prove that we can reach a configuration γ such that
the set of conflicting nodes is empty:

65

Lemma 4.3.15. From any configuration γ, we can reach a configuration γ′ such
that ϕ(γ′) = 0.

Proof. Lemma 4.3.14 states that, from any configuration γ, we can reach a
configuration γ′ where |ϕ(γ′)| < |ϕ(γ)|. This lemma can be proved by applying
Lemma 4.3.14 at most |ϕ(γ)| times.

Now we focus on how to make leaders locally legitimate if they do not have
any other leaders at distance smaller than k from them.

Lemma 4.3.16. Let γ and s be a configuration and a node such that B(s, k−1)∩
S(γ) = {s}. We can reach a configuration γ′ such that s ∈ LL(γ′).

Proof. First, let’s apply Lemma 4.3.11, to ensure that all nodes have their dis-
tance to S(γ) up to date.

We can assume that s ̸∈ LL(γ), as otherwise we take γ′ = γ. The goal
in the following proof is, in each considered case, to reach a configuration γ′′
such that s /∈ S(γ′′) (and S(γ) = S(γ′′)∪{s}). Then, by applying Lemma 4.3.12
on γ′′, we can reach a configuration in which node s is locally legitimate. This
actually means that we need to reach a configuration where ds > 0, while no
other node u changes its du.

As s ̸∈ LL(γ), by definition of LL, we have three possible scenarios:
• There exists a node u in B(s, ⌊k2⌋) such that ¬well_defined(u). As all thedistances to S(γ) are correct, it means that erru = 1. Let’s choose such
a node u that minimizes its distance to s.
If u = s, we can apply rule Reset Error, which removes directly s from
S(γ).
Otherwise, there is a path (u = u0, u1, . . . udu = s) from u to s. By
activating ui for i from 1 to du, rule Error Spread will be applied each
time, putting all those nodes in an error state. After that, we activate
again s, which will remove it from S(γ).

• There exists a node u in B(s, ⌊k2⌋) such that ¬branch_coherence(u). We
activate that node, which will make an error appear with rule Branch
incoherence, and we go back to the previous case.

• There exists a node u inB(s, k−1)\B(s, ⌊k2⌋) such that du < k−dist(u, s)
or du > dist(u, s). We prove that it cannot actually happen, as we have
du = dist(u, S(γ)) and B(s, k) ∩ S(γ) = {s}. We cannot have du >

dist(u, s), as du = dist(u, S(γ)) ≤ dist(u, s) ≤ k − 1. Suppose that we
have k − dist(u, s) > du. It implies, as dist(u, s) > ⌊k2⌋, that du ≤ ⌊k2⌋ <

66

dist(u, s), which means that there exists some s′ ̸= s in S(γ) such that
dist(u, s′) = du. We have
dist(s, s′) ≤ dist(u, s) + dist(u, s′) < dist(u, s) + k − dist(u, s) < k.

Thus dist(s, s′) ≤ k−1, which is a direct contradiction with B(s, k−1)∩
S(γ) = {s}.

Hence, in the previous scenarios, we managed to reach a configuration γ′
such that S(γ′′) = S(γ) \ {s}. From this configuration, using Lemma 4.3.12,
we can reach a configuration γ′ such that s ∈ LL(γ′).

We proved that we can always reach a configuration where s joins LL(γ).

Now, we can prove that the number of legitimate nodes increases during the
execution until we converge to a legitimate configuration:

Lemma 4.3.17. Let γ be a configuration. From γ, we can reach a configuration
γ′ such that either LL(γ) ⊊ LL(γ′), or γ′ is legitimate.

Proof. Using Lemma 4.3.15, from γ, we can reach a configuration γ′′′ such
that ϕ(γ′′′) = 0. Then, using Lemma 4.3.11 on γ′′′, we can reach γ′′ such that
S(γ′′) = S(γ′′′) (hence ϕ(γ′′) = ϕ(γ′′′) = ∅), and every node satisfies du =

min(dist(u, S(γ′′)), k − 1). If LL(γ′′) is a (k, k − 1)-ruling set, we can reach a
legitimate configuration γ′ using Lemma 4.3.11. Let’s then suppose it’s not the
case.

• IfS(γ′′)\LL(γ′′) ̸= ∅, let us consideru ∈ S(γ′′)\LL(γ′′). Sinceϕ(γ′′) = ∅,
we know that B(u, k − 1) ∩ S(γ′′) = {u}. Using Lemma 4.3.16 we can
reach a configuration γ′ such that u ∈ LL(γ′).

• Else, as the nodes of S(γ′′) = LL(γ′′) do not form a (k, k−1)-ruling set,
there exists a node u ̸∈ S(γ′′) such that dist(u, S(γ′′)) ≥ k. We can then
apply Lemma 4.3.12 to reach a configuration γ′ where u ∈ LL(γ′).

In both cases, since u ̸∈ LL(γ′′), we know that u ̸∈ LL(γ) as local legitimacy
cannot be lost from Lemma 4.3.10. Thus LL(γ) ⊊ LL(γ′).

This last lemma allows us to conclude with the proof of Theorem 4.3.7.

Proof. of Theorem 4.3.7. Let γ be a configuration that is reached infinitely
often under the Gouda daemon. We prove that γ is legitimate.

Indeed, by applying Lemma 4.3.17, either γ is legitimate, or we can reach a
configuration γ′ such that LL(γ) ⊊ LL(γ′). In the second case, by the Gouda

67

daemon, γ′ is reached infinitely often. By Lemma 4.3.10, LL(γ′) can only in-
crease from γ′. Hence, we will no longer be able to reach γ, which means that
γ is not reached infinitely often.

Hence, γ is legitimate.

4.4 . From Ruling Sets to Distance-K Colorings

In this section, we focus on the distance-K coloring problem. A distance-
K coloring is a coloring such that any pair of nodes cannot share a color unless
they are at distance greater than K. If the nodes having the same color form a
(K + 1,K)-ruling set, then those nodes respect the coloring constraint.

Let choose k > K for our (k, k− 1)-ruling sets. We split the set of nodes into
pairwise disjoint sets such that each set corresponds to nodes of the same color.
We partition the nodes into sets S(i) we build one after another. Each of these
sets is a distance-k independent set of the graph, which is maximal among the
nodes of V \

⋃
j<i S

(j)(γ). These sets will be built by composing an adaptation of
our (k, k − 1)-ruling set algorithm. Since the maximum degree of the graph is ∆,
any ball of radius k− 1 contains at most ∆k−1+1 nodes. Hence we can partition
the nodes into ∆k ruling sets (we use this upper bound to simplify the reading of
the following proofs).

For this reason, the distance K-coloring algorithm is composed of ∆k parallel
algorithms, each one of them computing an adapted (k, k − 1)-ruling set. For
Algorithm i and configuration γ, we note S(i)(γ) (or S(i) if there is no ambiguity)
the corresponding set S(γ). Each time a node u is activated, it applies a rule (if
it can) for each ruling set algorithm.

It is necessary to manage that a node must belong to only one ruling set.
To perform this, we number the ruling set algorithms: we denote by d(j)u the local
variable du of u of the j-th algorithm. By convention, we assume that u belongs to
the j-th ruling set (or it has color j) if j = min

{
1 ≤ p ≤ ∆k | d(p)u = 0

}
. To form

a partition with the sets, we need to reach a configuration where, for each node
u, |

{
i ≤ ∆k | d(i)u = 0

}
| = 1. To achieve this, we modify rule Become Leader

and add a rule to detect if a node is a leader in different layers (for Algorithm j).

Become Leader(j) :: (priority 1)
if err(j)u = 0 ∧ (d

(j)
u = k − 1) ∧ ∀v ∈ N(u), d

(j)
v = k − 1 ∧ ∀p < j : d

(p)
u > 0

then d(j)u := 0

∀i ∈ J1, ⌊k2⌋ − 1K, c(j)i,u := 0, b
(j)
i,u :=↓

Belong To Two ruling sets(j) :: (priority 0)
if d(j)u = 0 ∧ ∃p < j : d

(p)
u = 0

68

then d(j)u := 1

We also modify the predicate well_defined (for Algorithm j) as follows,
which impacts the definition of legitimate configuration. In particular, now, a node
u such that d(j)u = k − 1 is allowed not to have a neighbor closer to a leader if
there exists some i < j such that d(i)u = 0.

well_defined(j)(u) ≡ err
(j)
u = 0 ∧ ∀v ∈ N(u), |d(j)u − d

(j)
v | ≤ 1∧

((∀p ≤ j, d
(p)
u > 0) ∨ d(j)u < k − 1 ⇒ (∃v ∈ N(u), d

(j)
v = d

(j)
u − 1))∧

(d
(j)
u = 0 ⇒ ∀p < j, d

(p)
u > 0)

We give a new definition of legitimate configuration:

Definition 4.4.1. Let j ≤ ∆k. A configuration γ is said to be legitimate for
Algorithm j if, for all i ≤ j:

1. all the nodes u are such that well_defined(i)(u), leader_down(i)(u) and
branch_coherence(i)(u) hold;

2. for any u ̸= v in S(i)(γ)2, we have dist(u, v) ≥ k.
From this, we get the following adaptation of Lemma 4.3.3. The proof remains

slightly the same, with the exception that in the case of d(j)u = k − 1, only nodes
that do not have a variable d(i)u = 0 for some i < j are considered.

Lemma 4.4.2. Let γ be a legitimate configuration for Algorithm j.

• For any node u, if for all i < j, d(i)u > 0, we have d(j)u = dist(u, S(j)(γ));

• S(j)(γ) is a (k, k − 1)-ruling set of V \
⋃
i<j S

(i)(γ).

With these modifications, we have the following adaptation of Theorem 4.3.2:

Theorem 4.4.3. For all j ≤ ∆k, the set of legitimate configurations for Algo-
rithm j is closed. Moreover, from a legitimate configuration γ for Algorithm j, all
the d(j)-value do not change.

Proof. Weprove this theoremby induction on j. The base case j = 1 is proved
by Theorem 4.3.2. Suppose that the property is true for some j < ∆k, and we
have a legitimate configuration γ for the first j + 1 algorithms. By induction,
we know that the configurations we can reach from γ do not change the d(i)-
values for i ≤ j, and they are legitimate for Algorithm i.

69

The rule Belong To Two ruling sets(i) cannot be applied for i ≤ j + 1,
as we have well_defined(i). The only change that can happen is about rule
Become Leader(i), which can only happen less often.

The difference from the proofs of the previous section is that we have
nodes with a d(j+1)-value that is k − 1 without a k − 2 in their neighborhood.
We use the fact that this happens only if their d(i)-value is equal to 0 for some
i ≤ j. As this value cannot change, by the induction, d(j)will not change either.

Hence, the set of legitimate configurations for Algorithm j + 1 is closed,
concluding the proof.

The proof to reach a legitimate configuration for Algorithm ∆k works in the
same way as the proof of Theorem 4.3.7. We need to do it one algorithm after
another, from 1 to ∆k. The main difference is that we only consider nodes that are
not a leader in a smaller algorithm when we increase the set of locally legitimate
nodes. This leads to the result:

Theorem 4.4.4. Under the Gouda daemon, any execution eventually reaches a
legitimate configuration in Algorithm∆k.

These two theorems lead to the main result of distance-K coloring:

Theorem 4.4.5. Let k andK be two integers such that k > K. Under the Gouda
daemon, any execution eventually reaches a configuration γ such that

• S(i)(γ) =
{
u | d(i)u = 0

}
forms a distance-k maximal independent set of

V \
⋃
j<i S

(j)(γ) in G.

• The sets S(1)(γ), . . . S(∆k)(γ) form a distance-K coloring.

• Every configuration in any execution starting in γ verifies the two above
properties with the same sets as γ.

4.5 . Solving Mendable Problems

In this section, we want to solve a generalization of Greedy Problems: O(1)-
Mendable Problems, introduced in [5]. Greedy problems, such as ∆ + 1-coloring
and Maximal Independent Set, have the property that, if some of the nodes have
chosen an output that is locally valid (no pair of neighbors sharing a color, no
adjacent nodes selected in the set), then any single node can choose an output
that will keep the global solution locally valid. In a distributed setting, we cannot
do this process sequentially one node after another, but we can do it in parallel:

70

if a set of nodes that are far enough from each other choose their output at each
step, the solution can be completed. If we repeat this process until all nodes have
chosen an output, the global solution is valid.

To that end, we first introduce some definitions.

4.5.1 . Definitions

We call a Locally Checkable Problem (Lcl) Π a problem where each node can
check locally that its output is compatible with its neighbors. Let O be the set
of outputs. The output Γ : V → O is good if and only if, for all u ∈ V , Γ(u)
is compatible with the multiset {Γ(v) | v ∈ N(u)}. For example, in the case of
Maximal Independent Set, with O = {0, 1}, 1 is compatible with

{
0k | k ≤ ∆

}
,

and 0 is compatible with {11x0y | x+ y < ∆}. Note that we can consider radius-r
neighborhood for the compatibility in the general case, which we will not do here
out of simplicity. Our results can be adapted to the general version.

Let O be the set of outputs, and Γ∗ : V → O ∪ {⊥}. We say that Γ∗ is a
partial solution if, for any u ∈ V such that Γ∗(u) ̸= ⊥, we can complete the labels
of the neighbors v of u (i.e. give an output to the nodes v such that Γ∗(v) = ⊥)
to make u compatible with it neighbors.

A problem is T -mendable if, from any partial solution Γ∗ and any u ∈ V such
that Γ∗(v) = ⊥, there exists a partial solution Γ′ such that:

• Γ′(v) ̸= ⊥

• ∀u ̸= v, Γ′(v) = ⊥ ⇔ Γ∗(v) = ⊥

• ∀u ∈ V , dist(u, v) > T ⇒ Γ′(u) = Γ∗(u)

Intuitively, we can change the output of nodes at distance at most T from a
node v when we select the output of v.

The Local model is a synchronous model where each node is given a unique
identifier. As there is no limit on the size of the messages for communication, after
r rounds, each node knows the topology of its neighborhood at distance r.

We use Theorem 6.2 from [5], that states:

Theorem4.5.1. LetΠ be aT -mendable Lcl problem. Π can be solved inO(T∆2T)

rounds in the Localmodel if we are given a distance-(2T + 1) coloring.

An important fact in the Local model to solve an Lcl problem is that unique
identifiers are not necessary, as long as nodes do not see twice the same identifier
during their run. If we know that an algorithm runs on a graph of size at most
n in r(n) = o(log n) rounds, then we can have it run on any graph of size at
least n with a distance-r(n) coloring, using those colors as the new identifiers.

71

The algorithm will not notice that the identifiers are not unique, producing correct
output. This technique has been used, for example, in [5, 12].

Hence, for a constant T , we can produce a distance-r(T) coloring to then use
the algorithm of Theorem 4.5.1.

4.5.2 . Solving Greedy and Mendable Problems

The goal now is to use distance-k colorings to solve other problems. Let us
say that we want to solve Π on some out-value. To that end, we will have to
couple a self-stabilizing version of that algorithm on a distance-k coloring (for
some well-chosen k) to the algorithm computing the distance-k coloring described
in Section 4.4. To ensure that the coloring is solved before we start solving Π,
when a node u executes a rule of the ruling set algorithms, outu is reset to ⊥. If
a node realizes that its out-value is not compatible with its neighbors, it returns
its out-value to ⊥.

As a first example to show how the technique works, we show how to produce,
a (∆+1)-coloring and a MIS from a distance-k coloring for k ≥ 2. The idea is to
go through each color class one after another:

Proposition 4.5.2. Let γ be a configuration where each node u has a color cu
corresponding to a distance-k coloring for k ≥ 2 and outputs outu = ⊥. From this
configuration, under the Gouda daemon, we will reach a configuration γ′ where
each node outputs a color≤ ∆+1. Moreover, the nodes of color 1 form aMaximal
Independent Set.

Proof. The algorithm only uses the following rule:
Select Color ::
if outu = ⊥ ∧ ∀v ∈ N(u), (cv > cu ∨ outv ̸= ⊥)
then outu := min(N∗ \ {cv | v ∈ N(u)})

Each node only needs to change its state following rule Select Color. We
are sure that no pair of neighbors will select their color simultaneously, as one
of them has a color greater than the other. Moreover, as each node selects
the smallest available color, we are sure that each node selects color 1 or has
color 1 in its neighborhood.

Finally, only nodes with minimal color among their neighbors that did not
output yet can be activated. Once activated, they produce their output, and
rule Select Color will no longer be applied to them. Hence, under the Gouda
daemon, local minima will eventually be activated. The only configurations
where no node can be activated are those where they all have produced an
output.

72

To simulate r rounds in the Local model, we need, to compute the topology of
the graph at distance r for each node. If we have beforehand a distance-(2r + 1)

coloring, each node has at most one node of some given color in its neighborhood
at distance r. Hence, each node can know its neighborhood at distance r. In the
beginning, each node knows its neighborhood at distance 0. If all the neighbors
of a node u know their mapping at distance i, u can deduce its own topology up
to distance i + 1. Note that we consider only cases where r does not depend on
the number of nodes in the graph. Hence, for a fixed ∆, there is a finite number
of balls of radius r using ∆2r+1 colors.

Lemma 4.5.3. Let γ be a configuration where each node u has a color cu cor-
responding to a distance-(2r + 1) coloring and outputs outu = ⊥. From this
configuration, under the Gouda daemon, we will reach a configuration γ′ where
each node outputs a mapping of their neighborhood at distance r.

Proof. The algorithm uses the two following rules:
Init ::
if outu = ⊥
then outu := (0, G0(cu)) where G0(x) is a graph of a single node colored x

Merge Neighbors ::
if outu = (i, Gu) with i < r ∧ ∀v ∈ N(v), ∃j ≥ i, outv = (j,Gv)
then outu := (i+ 1,mergei+1({Gv | v ∈ N(u) ∪ {u}}))

Where the process mergei+1({Gv | v ∈ N(u) ∪ {u}}) consists in merging the
mappings at distance i of u and the ones of its neighbors to produce the
mapping at distance i+ 1. This can be done unambiguously as the distance-
(2r + 1) coloring ensures that if several mappings have a node of color c, it
corresponds to a single node of V .

Under the Gouda daemon, we can make sure that, for any i ≤ r, we can
reach a configuration where all nodes have computed their mapping at dis-
tance i.

With this lemma and Theorem 4.5.1, we can conclude the end result of this
section:

Theorem 4.5.4. Let Π be an Lcl problem with mending radius k, that can be
solved in r = O(k∆2k) rounds in the Localmodel. Let γ be a configuration where
each node u has a color cu corresponding to a distance-(2k+ 1) coloring, a color
c′u corresponding to a distance-(2r+1) coloring, and outputs outu = ⊥. From this
configuration, under the Gouda daemon, we will reach a configuration γ′ where
each node outputs a solution to Π.

73

4.6 . Conclusion

This chapter provides a self-stabilizing algorithm to compute a (k, k−1)-ruling
set under the Gouda daemon. This construction generalizes well to probabilistic
daemons if stationary rules and rule Become Leader have some probability smaller
than 1 to be activated. The question holds on whether it is possible to produce
this kind of algorithm with even more restrictive daemons. This algorithm permits
building up distance-k colorings, which helps solve greedy and mendable problems
by simulating the Local model. As we know now that it is possible to solve these
problems, the question of complexity might arise.

74

5 - Minimal Clique Decomposition

The (Vertex) Clique cover problem is a well-known NP-complete problem
among Karp’s 21 in its minimization version [46]. It has, among other things,
been used to approximate Vertex Cover [21].

Definition 5.0.1 (Clique cover). Consider a graphG = (V,E), a clique cover X
= X1,X2, . . .Xℓ of G is such that:
- clique: Xi is a clique of G (see 2.2.4),
- cover:

⋃
i∈J1,ℓK Xi = V .

In centralized computing, it is equivalent to the problem of Clique Decom-
position where you expect the cover to be also a partition of V . Any clique
decomposition is a clique cover, and to find a clique decomposition it is enough
to remove duplicate nodes from one clique until there is no such duplicate left.
However, it is not the case in distributed computing, as choosing which duplicate
to remove needs coordination. In this chapter, we will study the Minimal Clique
Decomposition problem, specified as follows.

Definition 5.0.2 (MCD Specification). Consider a graphG = (V,E), aminimal
clique decomposition X = {X1,X2, . . .Xℓ} of G is such that:
- clique: Xi is a clique of G (see 2.2.4),
- partition: X is a partition of V (see 2.1.1),
-minimal: For any i, j distinct in J1, ℓK, Xi ∪ Xj is not a clique of G.

It is equivalent to the Coloring problem as it is enough to replace the edge set
by its complement to go from one problem to the other. Or so is the case when
you consider centralized computing. In distributed systems where you search for
the solution of a graph problem on the underlying graph of the said system, the
connectivity directly affects the computations. Here, we deal with the problem of
finding a minimal clique decomposition of the graph of communications under the
state model, with the possible presence of Byzantine nodes.

75

5.1 . State of the art

Searching for cliques already has a long history in distributed systems: building
upon the work in parallel computing [20], Jennings and al. [44] give a distributed
algorithm to find all maximal cliques in a graph, in the context of a message-passing
model with message of size O(log n). It has been followed by many other works
improving the performance of such a search (see [51, 65] for example).

Closer to Clique Decomposition, Ishii and Kakugawa [43] give in a self-stabilizing
algorithm that operates in the state model under the unfair centralized daemon to
compute multiple cliques of “maximal size” for each node under some constraints.
In this work, there are agreement constraints between nodes, as if a node computes
a given clique, every member of that clique must compute the same clique (among
other cliques they may have computed), it is thus closer to the problem of finding
a clique decomposition.

The first attempt to our knowledge to tackle the Minimal Clique Decomposi-
tion problem in a distributed self-stabilizing setting has been made by Delbot and
al. [22]. Their algorithm operates under a fair distributed daemon in O(n) rounds
provided a spanning tree has been computed beforehand.

In this chapter, we follow these footsteps by proposing the first algorithm that
tackles the Minimal Clique Decomposition problem while handling Byzantine faults.

76

5.2 . Description of the algorithm

Algorithm 1Minimal Clique Decomposition Algorithm (MCD)
Variables:
Ωv ⊆ V : the set of nodes supposed to be the clique v belongs to
Nv ⊆ V : the (closed) neighborhood made apparent for the neighbors to read
βv ∈ N(v) ∪ {⊥}: the current merge target for the clique leader v
Funtions:

min(A) ≡
{ the smallest value of a set A if A ̸= ∅

⊥ otherwise
leader(v) ≡ min(Ωv)
merge_candidate(v) ≡{
u ∈ N(v)|merge_ready(u) ∧ Ωu ∩ Ωv = ∅ ∧

(
Ωv ∪ Ωu ⊆

⋂
x∈Ωv∪Ωu

Nx

)}

choose(A) is an element of the non-empty set A taken uniformly at random.
Ω0(v) ≡ {v}
Ωk+1(v) ≡

⋃
x∈Ωk(v) Ωx

Ω∗(v) ≡
⋃

i≥0 Ω
i(v): the Ω-closure of node v

Predicates:

merge_ready(v) ≡ (leader(v) = v) ∧ Stab(v) ∧ coherent_clique(v)
Stab(v) ≡ ∀x ∈ Ωv,Ωx = Ωv

coherent_local(v) ≡ Nv = N(v) ∪ {v} ∧ {v} ⊂ Ωv ⊂ Nv ∧ βv ∈ {⊥} ∪ Nv \ Ωv

coherent_clique(v) ≡
Ω∗(v) ⊆ Nv ∧ |{x ∈ Ω∗(v)|βx ̸= ⊥}| ≤ 1

∧∀x ∈ Ω∗(v),



Ω∗(v) ⊆ Nx

{x} ⊆ Ωx ⊆ Ωleader(x) = Ω∗(x)

∀y ∈ Ωx,Ωy ⊆ Ωx ∨ Ωy = Ω∗(x)

βx ̸= ⊥ ⇒ (Stab(x) ∧ leader(x) = x ∧ βx ∈ Nx \ Ωx)

minΩ∗(v) ∈
{
leader(leader(x)), βleader(x)

}
well_defined(v) ≡ coherent_local(v) ∧ coherent_clique(v)

77

Abandonment ▷ priority 5
if (βv = u ̸= ⊥) ∧ (βu ̸∈ {⊥, v} ∨ u ̸∈ merge_candidate(v)) then

βv = ⊥
end if

Mariage ▷ priority 4
if leader(v) = v∧Stab(v)∧(βv = ⊥)∧(∃u ∈ merge_candidate(v), βu =
v) then

βv := choose({u ∈ merge_candidate(v)|βu = v})
end if

Seduction ▷ priority 4
if leader(v) = v∧Stab(v)∧(βv = ⊥)∧(∀u ∈ merge_candidate(v), βu ̸=
v) ∧ (∃u ∈ merge_candidate(v), βu = ⊥) then

βv := choose({u ∈ merge_candidate(v)|βu = ⊥})
end if

Merge lead ▷ priority 4
if leader(v) = v ∧ Stab(v) ∧ βv = u ̸= ⊥ ∧ u ∈ merge_candidate(v) ∧
βu = v ∧ v < u then

Ωv := Ωv ∪ Ωu

βv := ⊥
end if

Merge follow ▷ priority 4
if leader(v) = v ∧ Stab(v) ∧ βv = u ̸= ⊥ ∧ leader(u) = u ∧ v ∈
Ωu ∧ Ω∗(u) ⊆ Nv ∧ coherent_clique(u) then

Ωv := Ωu

βv := ⊥
end if

Update ▷ priority 2
if leader(v) = u ∧ Ωv ⊊ Ωu then

Ωv := Ωu

end if

Reset ▷ priority 1
if ¬well_defined(v) then

Ωv := {v}
Nv := N(v) ∪ {v}
βv := ⊥

end if

78

5.2.1 . Local variables

Each node v has three variables Nv, Ωv and βv:

• Nv represents its neighborhood,

• Ωv corresponding to the clique it belongs to,

• βv represents its current target for merging cliques if there is one. Else it
has value ⊥.

5.2.2 . About the Ω-closure, Ω∗

The Ω-closure of a node v, Ω∗(v), is the clique that v will have in its variable
Ωv when the potential merging process currently going is finished. Note that a
locally coherent node v (such that coherent_local(v) is true) can always see -and
thus read variables of- every node of its Ω-closure, as if it was not the case Ω∗(v)

would not be a clique containing v. From the local coherence Nv = N(v) ∪ {v}
the node v can read the variables of the nodes of Ωv. Then v can check whether
the nodes of Ω2(v) (which we can compute since v can read variables of Ωv) have
their Ω-values included in Nv. Then v can do the same for Ω3(v) and so on. Until
Ω∗(v) ⊆ Nv is proven false or v stops seeing new nodes, in which case we do have
that Ω∗

v ⊆ Nv.

5.2.3 . How to merge two cliques

Each clique has a distinguished node called the leader corresponding to the one
with the smallest identifier. Only the clique leader can decide with which clique
it will merge. The leader v of a clique starts looking for a merge target as soon
as all nodes in its clique have the same view: the predicate Stab(v) is satisfied
(∀x ∈ Ωv,Ωx = Ωv). When it is the case, v seeks a suitable clique leader u to
merge clique with. In order for v to merge with u, the local variables of all nodes
in Ωu must have the following properties:

• All nodes of this clique have the same view of this clique: the predicate
Stab(u) is satisfied (i.e. ∀x ∈ Ωu,Ωx = Ωu).

• All nodes of this clique and the clique of v form a clique in the graph:
Ωv ∪ Ωu ⊆

⋂
x∈Ωv∪Ωu

Nx.

• The clique is not merging with another clique : βu = ⊥.

If all these properties are satisfied, v can propose clique merging. To do so, it
changes the value of βv to u, the leader of one of the cliques suitable for merging
with, chosen at random. Then, u answers or does not respond positively to this
proposal. Of course, it checks that the first two conditions above are verified

79

too. Note that it is basically applying locally the algorithm proposed by Kunne and
al. [47] on the well-formed nodes, hence the borrowed names for the rules dedicated
to this: Seduction, Marriage and Abandonment. Once the two leaders agree
to merge (βv = u and βu = v) the merging process begins. The one among u and
v with the smallest identifier changes its variable Ω value to the union of the two
cliques, and sets its variable β to ⊥ by executing rule Merge lead. Then the other
one updates its two local variables by executing rule Merge follow. All the other
nodes refresh their variables by executing rule Update to complete the merging
process.

5.2.4 . How to handle errors

Now we describe how the algorithm handles errors in the local variables and
avoids creating new ones when cliques merge. This part of the explanation of the
algorithm is the most technical.

Each time a node v is activated, it checks whether it detects any inconsistencies
in its local variables (for example the local variable Nv must correspond to its closed
neighborhood.) or those of its current clique nodes (for example the clique must
be included in the displayed neighborhood N of every node of the clique). If it
detects any inconsistency that way, it executes the rule Reset.

The predicate coherent_local allows a node v to detect that its local variables
are well initialized : Nv = N(v) ∪ {v} and {v} ⊆ Ωv ⊆ Nv. Since variable βv
designates the clique’s leader with whom the clique Ωv must merge, βv must not
be in Ωv. Note that coherent_local(v) can only be computed by v itself since it
needs to know N(v).

The predicate coherent_clique allows a node to check that the state of
the (future) clique of a node v is coherent (assuming local coherence for all
the nodes involved). Note that a locally coherent node u may only evaluate
coherent_clique(v) when Ω∗(v) ⊆ Nu. As we have said above, it is always
the case when u = v. It will otherwise only be evaluated when u considers v as
a potential target to merge their cliques. In such a case, we will have checked
that Ω∗(v) ⊆ Nu beforehand, and there will be no problem. We structure the
explanation of coherent_clique(v) by following the structure of the predicate for
better intelligibility:

• Ω∗(v) ⊆ Nv: As Ω∗(v) is supposed to be either the future clique of v (or
current if there is no merging in progress), this condition is necessary for
Ω∗(v) to be a clique containing v.

• |{x ∈ Ω∗(v)|βx ̸= ⊥}| ≤ 1: If multiple β-values were non-⊥ in Ω∗(v), it
would mean that multiple merging processes are taking place at the same
time. As the algorithm waits for a clique to have finished merging before
making it merge again, we do not want that.

80

• Then v checks all nodes x of its Ω-closure for potential inconsistencies:

– ∀x ∈ Ω∗(v),Ω∗(v) ⊆ Nx: Ω∗(v) is supposed to be a clique, thus
every node of Ω∗(v) must have every other node of Ω∗(v) in its neigh-
borhood.

– ∀x ∈ Ω∗(v), {x} ⊆ Ωx ⊆ Ωleader(x) = Ω∗(x): As leaders are those
that move first when merging, we have Ωx ⊆ Ωleader(x). {x} ⊆ Ωx is
just a part of the local coherence of x that happens to be checkable
by neighbors. As x ∈ Ω∗(v), we have Ω∗(x) ⊆ Ω∗(v), and thus if a
node can see every node of Ω∗(v), it can see every node of Ω∗(x).
Observe that Ω∗(x) may be different from Ω∗(v) in the case of an x
that is part of a clique whose leader has yet to execute Merge follow.
Finally, there are two cases for the leader of x:

* It has already the final value as Ω-value (it has already executed
Merge lead or Merge follow) and in this case Ω∗(x) = Ω∗(v).

* It is waiting to execute Merge follow and thus still has its old
clique value.

In both cases Ωleader(x) = Ω∗(x).

– ∀x ∈ Ω∗(v),∀y ∈ Ωx,Ωy ⊆ Ωx ∨ Ωy = Ω∗(x): When a clique
merging begins, every node in one of the old cliques have only two
possible values: the old, and the new one. The old being included in
the new one. Note that either Ω∗(x) = Ω∗(v), or we are in a case
where the leader of x is waiting to execute Merge follow.

– ∀x ∈ Ω∗(v), βx ̸= ⊥ ⇒ (Stab(x) ∧ leader(x) = x ∧ βx ∈ Nx \ Ωx):
Only a leader may have a non-⊥ β-value, and it should be in a valid
shape to have such a value. It means that x should be its own leader,
having every node in its clique having the same Ω-value, and having
a merge target βx that is not already in its clique. βx ̸= ⊥ can either
happen for x = minΩ∗(v) if the clique of v is ready to merge, or
to another node that would be the leader of the clique minΩ∗(v) is
merging with (which has yet to execute Merge follow).

– ∀x ∈ Ω∗(v),minΩ∗(v) ∈
{
leader(leader(x)), βleader(x)

}
: minΩ∗(v)

will be the leader of the future clique of v, Ω∗(v), when every node in
it has updated its Ω-value. The case minΩ∗(v) = leader(leader(x))

corresponds to two types of situations. The first one is when either
x has been part of the clique that started the merging process with
Merge lead (it was already true before the merging in this case). The
second is when x has been part of the the other clique involved in the
merging and the leader of that second clique has already performed
Merge follow. The case minΩ∗(v) = βleader(x) corresponds to situ-
ations where leader(x) is the leader of that other clique, but has yet

81

to perform Merge follow. If minΩ∗(v) is equal to neither of those
two options, it means that the clique x belongs to is not really aware
that it should be merging. It may happen as a result of errors in the
starting configuration.

The predicate coherent_clique will be used to check for local coherence in the
predicate well_defined, and also to avoid merging with nodes that can be de-
tected as not well defined (because coherent_clique is false on them).

5.3 . Convergence

To prove the convergence of our algorithm, we present our reasoning in five
steps.

First, in Subsection 5.3.1, we observe that after at most 1 round the vari-
able N of non-Byzantine nodes contains the closed neighborhood of the node
(Lemma 5.3.2), and it cannot change afterward (Lemma 5.3.3). As such we can,
without loss of generality, only consider N -stabilized configurations in the remain-
ing of the proof.

In Subsection 5.3.2, we discuss the properties of well-definedness (correspond-
ing to the well_defined predicate). We use this to define V ′′

1 (Definition 5.3.5)
a superset of V1 (recall that V1 is the set of the nodes that have no Byzantine
neighbors) on which well-definedness is guaranteed (Lemma 5.3.6). We prove the
convergence of our algorithm on V ′′

1 , as it would not be possible on V1. on which
we can hope to define a convergence property for our algorithm.

In Subsection 5.3.3, we focus on the merging of two cliques. We prove that
when a merging between two nodes of V ′′

1 has been started, they do not interact
with nodes outside their cliques while the process is not finished (Lemma 5.3.10),
and it ends after a few rounds (Lemmas 5.3.12 and 5.3.14). It allows us to focus
on the events that lead nodes to begin such a merging.

In Subsection 5.3.4, we focus on the progression of the algorithm. To do so we
define a notion corresponding to the “current” state of the clique decomposition
(Definition 5.3.16). Using this, we then prove a succession of lemmas that draw
a pattern by which the decomposition progresses probabilistically (summarized in
Figure 5.1).

Finally, in Subsection 5.3.5 using a concentration inequality, we deduce that
our algorithm converges, and ends within O(∆n) rounds with high probability
(Theorem 5.3.27).

82

5.3.1 . Neighborhood stabilization

Definition 5.3.1. We say that a configuration isN -stabilized when every non-
Byzantine node has its N -value equal to its actual closed neighborhood (i.e
∀x ∈ V0,Nx = N(x) ∪ {x}).

It is a condition needed for the rules to behave as intended, and as such we
need to know when we can ensure that the condition is met.

Lemma 5.3.2. Let γ be a configuration. The configuration γ′ reached after one
round from γ is N -stabilized.

Proof. Reset is the highest priority rule, and it is enabled on any node that
does not have its closed neighborhood asN -value. After it has been executed
on a non-Byzantine node, this node will have its closed neighborhood as N -
value, and it is the only rule that may change a N -value.

Then, after atmost one round, every node that didn’t have its closedneigh-
borhood as N -value has then been activated and performed Reset. As no
node having its closed neighborhood asN -values may change that property,
it follows that γ′ is N -stabilized.

Then, it is easy to see that a N -stabilized configuration will stay N -stabilized
across a transition.

Lemma 5.3.3. Let γ be aN -stabilized configuration, and γ → γ′ be a transition.
Then γ′ is N -stabilized.

Proof. No rule may change theN -value of a node that has itsN -value match
its actual closed neighborhood.

From any configuration, after one round a N -stabilized configuration is reached,
and after that, in the execution, every transition will be N -stabilized. Using this
fact, in most of the lemmas, we will suppose that we start directly in a N -stabilized
configuration without loss of generality.

5.3.2 . Well-definedness

The well_defined predicate expresses a bunch of “good” properties that we
would like to be true, in the sense that it would be always true if we started from
a clean starting configuration without Byzantine nodes and where every node u
would be such that Ωu = {u}, Nu = N(u) ∪ {u} and βu = ⊥. As it is not the
case, we cannot hope for it to be true everywhere and every time. But we can try
to understand when it’s the case.

First, we note that the well_defined property is inherited by nodes that are
in the Ω-closure of a well_defined node.

83

Lemma 5.3.4. Let γ be aN -stabilized configuration and u, v two nodes such that
u ∈ Ω∗(v). In γ, if v is well-defined, u is well-defined too.

Proof. Let u and v be two nodes such that u ∈ Ω∗(v) and suppose that v
is well-defined. Since v is supposed well-defined, we have either Ω∗(u) =

Ω∗(v) or βleader(u) = leader(v). Since γ is supposed N -stabilized we have
Nu = N(u)∪ {u}, and coherent_clique(v) implies that {u} ⊆ Nu ⊆ Ω∗(u) and
Ω∗(v) ⊆ Nu. Thus {u} ⊆ Ωu ⊆ Nu. It also implies that βu ∈ Nu \ Ωu. Thus,
coherent_local(u) is true.

Let’s then prove coherent_clique(u):
• Suppose Ω∗(u) = Ω∗(v). As coherent_clique(v) is true, it only remains
to prove Ω∗(u) ⊆ Nu, Ωleader(u) = Ω∗(u) and |{x ∈ Ω∗(u)|βx ̸= ⊥}| ≤ 1.
Using the hypothesis Ω∗(u) = Ω∗(v) and the fact that u ∈ Ω∗(v), they
are direct consequences of coherent_clique(v).

• Suppose now that Ω∗(u) ̸= Ω∗(v). It implies Ω∗(u) ⊊ Ω∗(v). Then, using
the well-definedness of v we get:

– Ω∗(u) ⊊ Ω∗(v) ⊆ Nu;
– Since β(u) ̸= ⊥, from the fact that |{x ∈ Ω∗(v)|βx ̸= ⊥}| ≤ 1, u
is the only node in Ω∗(v) to have a non-⊥ value of β. Thus, as
Ω∗(u) ⊊ Ω∗(v), we get |{x ∈ Ω∗(u)|βx ̸= ⊥}| = 1 ≤ 1;

– The first four properties stated in the quantified part does not
depend on v, thus they are still true for every node of Ω∗(u) ⊊
Ω∗(v). The fifth one comes from the fact that as β(u) ̸= ⊥, we
have Stab(u) and leader(u) = u, thus leader(leader(.)) has value
u = minΩ∗(u) for every node of Ω∗(u) = Ωu.

Thus, coherent_clique(u) is true.
Thus, in every case, u is well-defined.
To contain the influence of Byzantine nodes, we must identify on which space

we want our algorithm to converge. V0 is out of the picture as a node neighbor to
two Byzantine nodes could be fooled by those pretending to be neighbors of each
other. The next set to naturally consider is V1, but as nodes of V1 may legitimately
have some nodes of V0 in their Ω-value it is not possible to take exactly V1. We
have to widen a bit V1 in order to include those legitimately included V0 nodes.
As we just proved that well_defined(v) implies that all the nodes of Ω∗(v) are
well-defined as well, we might want to consider V ′

1 = Ω∗(V1).

As it is easier for us to handle well-defined nodes, we define the following:

Definition 5.3.5. V ′′
1 = Ω∗({u ∈ V1|well_defined(u)}).

84

We will later on prove that after some time it must contain V1. Do note that
contrary to V1, V ′′

1 depends on the variables’ values of a configuration. We write
V ′′
1 (γ) for “V ′′

1 in configuration γ” when there could be some ambiguity.

As we constructed it with this in mind, let’s prove that every node of V ′′
1 is

indeed well-defined.

Lemma 5.3.6. Let γ be a N -stabilized configuration. Every node of V ′′
1 is well-

defined.

Proof. Let u be a node of V ′′
1 . By definition, it must be in Ω∗(v) for some well-

defined v ∈ V1. Then by Lemma 5.3.4, as v is well-defined, u must also be
well-defined.

To be a concept of use to express the convergence of an algorithm, we need
V ′′
1 to be non-decreasing.

Lemma 5.3.7. Let γ be a N -stabilized configuration, and γ t−→ γ′ a transition.
Consider u ∈ V , well-defined in γ, such that leader(u) = u and Ωu does not
contain Byzantine nodes.

1. If ¬Stab(u), u is well-defined in γ′;

2. Else, if u does not perform a move in the transition, u is well-defined in γ′;

3. Else, if βu = ⊥, u is well-defined in γ′;

4. Else, if u performs Abandonment in the transition, u is well-defined in γ′;

5. Else, if Ωβu does not contain Byzantine nodes, u is well-defined in γ′.

Proof. Let γ be aN -stabilized configuration, and γ t−→ γ′ a transition. Consider
u ∈ V such that u is well-defined in γ, leader(u) = u and Ωu does not containByzantine nodes. Let us first prove Point 1.
Proof of Point 1. Suppose ¬Stab(u). With the well-definedness of u, it implies
that none of Mariage, Seduction, Abandonment orMerge lead is enabled
on any node of Ω∗(u) = Ωu in γ (recall that no node of Ωγu is Byzantine by
hypothesis).

Using one of these rules, the Ω-value of a node may only grow by setting
it to the value of its current leader (or to the target of themerge in progress in
the case of the only potential node being enabled for the ruleMerge follow)
which is already a subset of Ω∗(u) in γ. As the value of Ωu does not change inthe transition since u is its own leader, the value of Ω∗(u) does not change in
the transition.

85

Then, let’s prove what is needed for coherent_clique to be true in γ′ (we
cut the proof according to the structure of the predicate to make the reading
easier):

• As Ω∗(u) does not change in the transition Ω∗(u) ⊆ Nu is still true in γ′.
• As |{x ∈ Ω∗(v)|βx ̸= ⊥}| ≤ 1 and no rule that may give a non-⊥ value
of β is activable on any node of Ω∗(u) in γ, the same can be said in γ′.

• Let x ∈ Ω∗(u),
– Neither Ω∗(u) nor Nx may change in the transition, thus as it was
true in γ from well-definedness, Ω∗(u) ⊆ Nx is still true in γ′.

– As the Ω-value of a well-defined node may only change by taking
the current Ω-value of its leader, {x} ⊆ Ωx ⊆ Ωleader(x) = Ω∗(x) in
γ implies the same in γ′.

– Let y be a node of Ωγx, we have in γ that Ωy ⊆ Ωx ∨ Ωy = Ω∗(x)

in γ by well-definedness. If none of x and y are activated in the
transition, or if x = y, there is nothing to prove, suppose then that
they are distinct and at least one of them is activated.
* Suppose Ωy ⊆ Ωx in γ. If only x was activated this remains
true in γ′, and there is nothing to prove. We then suppose y
is activated in the transition.
· If Ω∗(x) = Ω∗(y) in γ, y must have performed Update
in the transition (as Ωy ⊊ Ωx implies ¬Stab(y)). As well-
definedness implies that Ωx = Ω∗(x) and Ωleader(y) =

Ω∗(x) = Ωx in γ, we have Ωγ
′
y = Ωγx ⊆ Ωγ

′
x .

· Else, we have Ω∗(y) ⊊ Ω∗(x) ⊆ Ω∗(v). Well-definedness
implies min(Ω∗(v)) ∈

{
leader(leader(y)), βleader(y)

} in γ.
The previous inequality implies that leader(leader(y)) ̸=
min(Ω∗(v)) in γ, thuswehave βleader(y) = min(Ω∗(v)) in γ.
Well-definedness implies Stab(leader(y)), and thus since
we supposed that y is activated in the transition we must
have y = leader(y), and y performedMerge follow in the
transition. We can also deduce that Ω∗(x) = Ω∗(v) from
the fact that it would otherwise imply that leader(x) ̸=
y has a non-⊥ value of β which would contradict well-
definedness. Thus, in γ′, Ωy = Ωx = Ω∗(v).

* Else, we have Ωy = Ω∗(x). If Ω∗(x) = Ω∗(v), there is noth-
ing to prove as Ω-values may only grow in the transition and
Ω∗(v) does not change. Suppose then that Ω∗(x) ̸= Ω∗(v),
i.e. Ω∗(x) ⊊ Ω∗(v). This implies by well-definedness that

86

βleader(x) = min(Ω∗(v)), and Stab(leader(x)). Then, only
leader(x) is activable (for the Merge follow rule) among the
nodes ofΩleader(x). As x and y are inΩleader(x) = Ω∗(x), one of
themmust be leader(x), and the other one is not activated in
the transition. Then, if y performsMerge follow in the tran-
sition, we have Ωy = Ω∗(v) = Ω∗(x) in γ′. Else, x performs
Merge follow in the transition, and Ωy ⊆ Ω∗(v) = Ωx =

Ω∗(x) in γ′.
– We have βx ̸= ⊥ ⇒ (Stab(x)∧ leader(x) = x∧ βx ∈ Nx \Ωx) in γ.If βγ′x = ⊥ there is nothing to prove. Let’s then focus on the other
case: βx ̸= ⊥ in γ′. In this case we have βx ̸= ⊥ in γ too as no rule
that could give a non-⊥ β-value is enabled on Ω∗(v) in γ. Thus, by
well-definedness, Stab(x) and leader(x) = x in γ and only x may
be activable among nodes ofΩx in γ, for the ruleMerge follow. As
βx ̸= ⊥, it executes Merge follow in the transition, and no node
of Ωx was activated. Thus Stab(x) and leader(x) = x are still true
in γ′, and as no variable of x changes value, βx ∈ Nx \Ωx in γ′ too.

– By well-definedness, min(Ω∗(v)) ∈
{
leader(leader(x)), βleader(x)

}
in γ. As Ω∗(v) does not change in the transition, so does its min-
imum min(Ω∗(v)). As Ω-values may only grow in the transition,
if leader(leader(x)) = min(Ω∗(v)) in γ, the same is also true in
γ′. Suppose now that leader(leader(x)) ̸= min(Ω∗(v)) in γ, which
means that βleader(x) = min(Ω∗(v)) in γ. Using well-definedness
we have Stab(leader(x)) and leader(leader(x)) = leader(x) ̸=
min(Ω∗(v)). If leader(x) is not activated in the transition there is
nothing to prove. Else, it performs Merge follow and we have
Ωγ

′

leader(x) = Ωγmin(Ω∗(v)) = Ω∗(v). Thus, in γ′, leader(leader(x)) =

min(Ω∗(v)).
Thus, when ¬Stab(u) in γ, u is well-defined in γ′, which proves Point 1.

Now suppose Stab(u) in γ. As u is well-defined and there is no Byzantine
node in Ωu by hypothesis, no rule is enabled on Ωu \ {u}.
Proof of Point 2. If u does not execute any rule in the transition, no node of
Ωu = Ω∗(u) does, and u is well-defined in γ′ which proves Point 2.

Suppose then that u executes a rule in the transition.
Proof of Point 3. Suppose βγu = ⊥. As u is well-defined, the only rules it can
perform in the transition are Seduction and Mariage. From the guards of

87

those rules βγ′leader(u) is a node inmerge_candidate(leader(u)) in γ, which en-
sures that βγ′leader(u) ̸∈ Ωγleader(u) = Ωγ

′

leader(u). The guards of both rules imply
that Stab(u) is true in γ. This gives by well-definedness that no node of Ωγuhad β-value non-⊥ in γ, and that in Ωγu only u is activable in γ. As no Ω-value
in Ωγu changes in the transition, we have that u is well-defined in γ′.

Suppose now that βγu ̸= ⊥, umust have performed either Abandonment,
Merge lead, orMerge follow.
Proof of Point 4. Suppose u performed Abandonment in the transition. As
only u was activable in γ among nodes of Ωγu, it’s easy to see that u is still
well-defined in γ′ which proves Point 4.

Suppose now that u did not perform Abandonment in the transition. It
means that eitherMerge follow orMerge lead has been executed by u.
Proof of Point 5. Let’s write v = βγu , and suppose Ωv does not contain Byzan-
tine nodes. Then v is well-defined in γ, as v ∈ merge_candidate(u) (from the
guard of both possible rules) and γ is N -stabilized (by hypothesis).

• Suppose Merge follow was executed by u in the transition. Then we
may apply Point 1 of the Lemma to v. Hence v is well-defined in γ′.
From the guard of Merge follow we have u ∈ Ωγv , thus u ∈ Ωγ

′
v as v

does not execute Reset in the transition. Then, applying Lemma 5.3.4,
we get that u is well-defined.

• Suppose Merge lead was executed by u in the transition. We know
from the guard of the rule that v = βγu is in merge_candidate(u) in γ,
which implies leader(v) = v, Stab(v), and coherent_neighborhood(v).
Since the configuration is supposedN -stabilized, v is then well-defined
in γ. By hypothesis on u that there is no Byzantine node in Ωγv . Since
Stab(v) is true, no node of Ωγv \ {v} is activable in γ. Moreover, the
guard ofMerge lead also implies that leader(u) < v and βγv = u, which
implies that v is not activable in γ. Thus u is the only node ofΩγleader(u)∪
Ωγv that has been activated in the transition, and no other node of thatset had the values of its variables changed. As Ωγ

′
u = Ωγu ∪ Ωγv from

Merge lead command, we get Ω∗(u)γ
′
= Ωγ

′
u = Ωγu ∪ Ωγv . Let’s checkthat coherent_clique(u) is true in γ′ (again we cut the proof according

to the structure of the predicate to make the reading easier):
– As only uwas executed in the transition, we have Ω∗(u)γ

′
= Ωγ

′
u =

Ωγu ∪ Ωγv . From the guard of Merge lead, v ∈ merge_candidate(u)
in γ, hence Ω∗(u)γ

′
= Ωγu ∪ Ωγv ⊆ Nu

88

– As βu = v and βv = u in γ from the guard of Merge lead. By
hypothesis u and v are well-defined in γ, thus u and v are the only
nodes in Ωγu ∪ Ωγv to have non-⊥ β-value. Hence we have, in γ′,
{x ∈ Ω∗(u)|βx ̸= ⊥} = {v}, of size 1.

– Let x ∈ Ω∗(u)γ
′ ,

* Ω∗(u) ⊆ Nx in γ′ is a consequence of v ∈ merge_candidate(u)
in γ.

* As Stab(u) and Stab(v) in γ, we know that leader(x)γ is either
u or v. If x = u there is nothing to prove. Else x was not
activated in the transition, and thus {x} ⊆ Ωx ⊆ Ωleader(x) asthe Ω-value of its leader may only have grown. Moreover, we
still have Ωγ

′
v = Ω∗(v)γ

′ as no node of Ωγ′v is activated in the
transition, and we’ve already seen that Ωγ′u = Ω∗(u)γ

′ , thus
Ωleader(x) = Ω∗(x).

* Let y be a node of Ωγ′x . If x ∈ Ωγu, either y = u, and then
Ωγ

′
y = Ω∗(u)γ

′
= Ω∗(x)γ

′ , or Ωγ′y = Ωγu ⊆ Ωγ
′
x . Else, x ∈ Ωγv ,andΩγ

′
x = Ωγ

′
y as neither node was activated in the transition.

* If x ̸= v, βγ′x = ⊥ and there is nothing to prove. Else, x = v,
and as no node ofΩγv is activated in the transitionwe still have
Stab(v), leader(v) = v and βγv ∈ Nv \ Ωv in γ′ .

* If x ∈ Ωγu, we have leader(x)γ′ = u, thus leader(leader(x)) =
leader(u) = u in γ′. Else, x ∈ Ωγv , and then leader(x)γ′ = v

and thus βleader(x) = βv = u in γ′.
Thus coherent_clique(v) is true in γ′, and hence v is well-defined. Which

proves Point 5.
All five points have been proved, hence the result.

Lemma 5.3.8. Let γ be a N -stabilized configuration, and γ t−→ γ′ a transition.
Then u ∈ V ′′

1 (γ) ⇒ u ∈ V ′′
1 (γ

′).

Proof. As u ∈ V ′′
1 (γ), u is well-defined in γ from Lemma 5.3.6. By definition of

V ′′
1 , there is x ∈ V1 well-defined in γ such that u ∈ Ω∗(x).
Let’s write u′ = leader(leader(u)). As u′ = leader(leader(u)) ∈ Ωleader(u)and leader(u) ∈ Ωu, we have u′ ∈ Ω∗(x). Thus by definition of V ′′

1 , u′ ∈
V ′′
1 (γ) and u′ is well-defined in γ from Lemma 5.3.6. As Ωleader(u) = Ω∗(u)γ

from well-definedness, we get u′ = leader(leader(u)) = minΩ∗(u)γ , and thus
leader(u′) = u′ in γ.

If ¬Stab(u′), u′ does not perform amove in the transition, β = ⊥, or u′ ex-
ecutes Abandonment, we can apply Lemma 5.3.7 and thus u′ is well-defined
in γ′.

89

Suppose now thatStab(u), βγu′ ̸= ⊥, and u performs a non-Abandonment
move in the transition. By well-definedness we know that Ωγu′ = Ω∗(u′)γ

Let’s write v = βγu′ . Given the conditions, the rule executed by u′ in the
transition is eitherMerge lead orMerge follow.

• Suppose it isMerge follow. As u′ ∈ Ωγv from the guard ofMerge follow,
x ∈ Ω∗(v)γ by definition of Ω∗. Since we have coherent_clique(v) and
leader(v) = v in γ, we get Ωγv = Ω∗(v)γ . Thus, using again the fact that
coherent_clique(v) is true in γ, we get Ωγv = Ω∗(v)γ ⊆ Nx.

• Suppose now that it is Merge lead. The guard of the rule implies v ∈
merge_candidate(u′), which leads to Ωv ⊆ Nx.

In both cases, we have Ωv ⊆ Nx. As x ∈ V1 and the configuration is supposed
N -stabilized, it impliesΩγv ⊆ V0 i.e. does not contain Byzantine nodes. We can
then apply Lemma 5.3.7 and thus u′ is well-defined in γ′.

Well-definedness of u′ in γ gives x ∈ Ω∗(u′)γ . As every node of Ω∗(x)γ is
well-defined by Lemma 5.3.6, no such node may have executed Reset in the
transition, thus their Ω-value can only grow in the transition. Thus we have
x ∈ Ω∗(u′)γ

′ which implies that x is well-defined in γ′ from Lemma 5.3.4, and
u ∈ Ω∗(x) which then gives u ∈ V ′′

1 (γ
′).

There is still to prove that our V ′′
1 will contain V1 at some point in the execution,

as we advertised that the algorithm would converge on “at least” V1.

Lemma 5.3.9. Let γ be a N -stabilized configuration. Every node of V1 is well-
defined in the configuration γ′ reached after one round from γ.

Proof. Suppose there are some nodes of V1 that are not well-defined in γ.
Reset is activable on themuntil they becomewell-definedor executeReset, in
which case they are well-defined in the configuration following this execution.
By definition of a round one of them must happen before the round ends.
Then from Lemma 5.3.8, those may not stop being well-defined, thus they
are well-defined in γ′.

5.3.3 . Any merging process ends

On N -stabilized configurations, the algorithm behaves on a large time scale as
if the only existing nodes were the ones that are currently their own leaders with
their neighborhood modified to be the intersection of the neighborhood of every
node under their rule. Once such a node has performed a move to merge with
another leader (using the Merge lead rule), their subjects simply follow. Here, we
prove that when a merging has begun, a leader must wait for its followers before

90

doing anything more, and that followers end up synchronized with their leader at
some point.

To do this, we first prove that in the clique of such a leader node, the only
rules that can be enabled are those that are designed to synchronize a follower to
its leader, either Update (for those that were already followers before), or Merge
follow (for the leader that is to become a follower after the merging is completed).

Lemma 5.3.10. Let γ be a N -stabilized configuration. If u ∈ V ′′
1 , leader(u) = u,

and ¬Stab(u), only rules Update andMerge followmay be enabled on nodes of
Ω∗(u) in γ.

Proof. From Lemma 5.3.4 every node of Ω∗(u) is also well-defined. Consider
then v ∈ Ω∗

u.
• If ¬Stab(v), only Update can be enabled on v.
• Else, we have Stab(v). If leader(v) ̸= v, v is not activable, and there is
nothing to prove. Else, fromwell-definedness of u, we getmin(Ω∗(u)) =

u ∈
{
leader(leader(v)), βleader(v)

}. As leader(leader(v)) = v by hypoth-
esis, we must have βv = u, and then the only rule that can be enabled
on v isMerge follow.

When the said Update or Merge follow are executed, we can observe that it
leads to synchronization with the leader.

Lemma 5.3.11. Let γ be aN -stabilized configuration. Consider u ∈ V ′′
1 such that

leader(u) = u and ¬Stab(u) in γ, and a transition γ t−→ γ′. We have:

• Ω∗(u)γ = Ω∗(u)γ
′ ;

• If v ∈ Ω∗(u)γ appears in a move of t, βγ
′
v = ⊥ and Ωγ

′
v = Ω∗(u)γ .

Proof. Let’s prove separately the two points of the lemma:
• Lemma 5.3.10 only allows Update andMerge follow to be enabled on
nodes of Ω∗(u)γ in γ. By well-definedness Ω∗(u)γ = Ωγu, and βγu = ⊥
thus no rule is enabled on u. Then Update andMerge followmay only
change the Ω-value of nodes in Ωγu to values that are included in Ωγu inthe transition. Thus Ω∗(u)γ

′
= Ωγu = Ω∗(u)γ .

• If v ∈ Ω∗(u)γ appears in a move t, it means that it executed either
Update and Merge follow in the transition. In both cases, the well-
definedness of u implies that the new Ω-value of v must be Ω∗(u)γ .

91

To bound the time it takes for every node to synchronize with the new leader,
we begin by removing Merge follow from the equation, which takes at most one
round.

Lemma 5.3.12. Let γ be aN -stabilized configuration. Consider u ∈ V ′′
1 such that

leader(u) = u, and ¬Stab(u) in γ. Then after at most one round a configuration
γ′ is reached such that Ω∗(u)γ

′
= Ω∗(u)γ and ∀x ∈ Ω∗(u)γ

′
, βγ

′
x = ⊥.

Proof. Using well-definedness, we know that at most one node of Ω∗(u) with
β-value non-⊥ in γ. Remember that from Lemma 5.3.8 u will be well-defined
in every future configuration.

If there is no such node, then γ already verifies the condition, and there is
nothing to prove.

Suppose then such a node v exists, well-definedness gives that βγv = u

and guarantees thatMerge follow is enabled on it until this β-value changes.
Thus, after at most one round, Merge follow is executed by this node. Con-
sider the first transition when it happens γ′′ → γ′.

By hypothesis v does not executeMerge follow in any transition in γ →∗

γ′′. Thus βv = u in every configuration between γ and γ′′.
By immediate induction using our Lemma 5.3.11 and the fact that βv = u,

every configuration in γ →∗ γ′′ is such that leader(u) = u and ¬Stab(u). We
then have Ω∗(u)γ

′′
= Ω∗(u)γ , and v is the only node of Ω∗(γ′′) with β-value

non-⊥.
Then using Lemma 5.3.11 we get in γ′ that Ω∗(u)γ

′
= Ω∗(u)γ

′′ and since v
is activated in the transition we have βγ′v = ⊥. As the other nodes of Ω∗(u)γ

′

had already β-value⊥ and no rule may have changed that in the transition by
Lemma 5.3.10, we have ∀x ∈ Ω∗(u)γ

′
, βγ

′
x = ⊥.

Lemma 5.3.13. Let γ be aN -stabilized configuration. Consider u ∈ V ′′
1 such that

leader(u) = u and ¬Stab(u) and ∀x ∈ Ω∗(u), βx = ⊥ in γ.
Then ∀x ∈ Ω∗(u) either Ωx = Ω∗(u) or Update is enabled on x in γ.

Proof. From Lemma 5.3.10 only Update and Merge follow. As the guard of
Merge follow requires a non-⊥ β-value it cannot be enabled.

Consider v ∈ Ω∗(u)γ . The well-definedness of u gives min(Ω∗(u)) ∈{
leader(leader(v)), βleader(v)

}. As u = min(Ω∗(v)) and with the constraints
on β-values, we get that leader(leader(v)) = u, thus Ω∗(v) = Ω∗(u). Well-
definedness gives also Ωleader(v) = Ω∗(u).

Then, either Ωv = Ωleader(v) = Ω∗(u) (and Update is not enabled on v), or
Ωv ̸= Ωleader(v) and Update is enabled on v.

92

Then, we prove that if only Update is enabled on the followers of a leader,
after at most one round, a configuration where every follower is synchronized with
the leader is reached.

Lemma 5.3.14. Let γ be a N -stabilized configuration. Consider u ∈ V ′′
1 such

that leader(u) = u, ¬Stab(u), and ∀x ∈ Ω∗(u)γ , βγx = ⊥.Then after at most one
round a configuration γ′ is reached such that Ω∗(u)γ

′
= Ω∗(u)γ , Stab(u) is true

and βu = ⊥ in γ′.

Proof. Consider such a configuration γ and such a node u. Let v be a node
such that Ωv ̸= Ω∗(u).

Let’s prove by induction that in every configuration until v executes Up-
date, Ω∗(u) does not change, and ¬Stab(u) is true. It is enough for that pur-
pose to see that Ωv ̸= Ω∗(u) prevents Stab(u) to be true, thus the induction
works using Lemma 5.3.11.

Consider then S = {x ∈ Ω∗(u)γ |Ωγv ̸= Ω∗(u)γ}. As every node in S will be
activable until it has executed Update, after at most one round every one of
them will have done this. Consider then the configuration just after the last
of them is activated for the first time since γ, γ′.

By the above argument, every configuration in γ →∗ γ′ before γ′ is such
that ¬Stab(u) and Ω∗(u) is the same as in γ, and then using Lemma 5.3.11
for the last transition we have Ω∗(u)γ

′
= Ω∗(u)γ . Then as Ω-value may only

grow on well-defined nodes, in γ′, we must have Stab(u). Morever as in every
configuration in γ →∗ γ′ before γ′ we have ¬Stab(u), no rule may have been
executed to change a β-value in Ω∗(u), thus βγ′u = ⊥.

As a summary, it takes at most 2 rounds for every follower to synchronize with
the leader.

Lemma 5.3.15. Let γ be aN -stabilized configuration. Consider u ∈ V ′′
1 such that

¬Stab(u) in γ. Then after at most two rounds a configuration γ′ is reached such
that Ω∗(u)γ

′
= Ω∗(u)γ and Stab(u) in γ′.

Proof. Using Lemma 5.3.12, from γ, after at most 1 round, a configuration γ′′
is reached and is such that Ω∗(u)γ

′′
= Ω∗(u)γ and ∀x ∈ Ω∗(u), βγ

′′
x = ⊥.

Using Lemma 5.3.8 we know that u is still well-defined in γ′′, which gives
us that Ωγ′′u = Ω∗(u)γ

′′
= Ω∗(u)γ = Ωγu. Thus leader(u)γ′′ = leader(u)γ = u.

If Stab(u)γ′′ , we can take γ′ = γ′′, and there is nothing left to prove. Sup-
pose now that ¬Stab(u)γ′′ . Then, using Lemma 5.3.14, from γ′′, after at most
1 round, a configuration γ′ is reached and is such that Ω∗(u)γ

′
= Ω∗(u)γ

′′ and
Stab(u) is true in γ′. Which concludes the proof, as Ω∗(u)γ

′′
= Ω∗(u)γ .

93

5.3.4 . Merging happens and makes the solution progress

Now that we know that once a merging has begun it ends in a small number
of rounds, we want to be sure that some merging happens.

Definition 5.3.16. Consider a configuration γ, andK = {Ωx|x ∈ V ′′
1 (γ)}) theset of all Ω-values in V ′′

1 (γ).
We define: C(γ) = {ω ∈ K|ω is maximal for inclusion inK}

To begin with, we prove that it is indeed a clique decomposition.

Lemma 5.3.17. Let γ be a N -stabilized configuration, then C(γ) is a clique de-
composition of V ′′

1 .

Proof. Being a clique decomposition of V ′′
1 is to be a set of cliques, to cover

the entire set, and to have pairwise disjoint members:
• Since every node of V ′′

1 is well-defined by Lemma 5.3.6, and since γ is
N -stabilized, every Ω-value of nodes in V ′′

1 is a clique of G.
• From well-definedness we have that every node is contained in its Ω-
value thus C(γ) is a cover of V ′′

1 .
• Suppose by contradiction that c and c′ distinct elements of C(γ) are such
that c ∩ c′ ̸= ∅. Consider then u ∈ c ∩ c′.
Consider v and v′ in V ′′

1 such that Ωv = c and Ωv′ = c′ which exist by
definition of C(γ). They are distinct since Ωv = c ̸= c′ = Ωv′ . If v = u

then by well-definedness we have c ⊆ c′, which is a contradiction to c
being a member of C(γ). Symmetrically the same can be said if v′ = u.
Suppose then that neither v nor v′ is equal to u. Well-definedness of
v and v′ implies that they are both in {leader(leader(u)), βu}. If βu =

⊥, this is impossible as min(c) and min(c′) are distinct. Else βu ̸= ⊥,
and well-definedness of u implies that leader(leader(u)) = u, which is
impossible as u, v and v′ are supposed distinct. Thus, by contradiction,
we have that c ∩ c′ = ∅.

Thus C(γ) is a clique decomposition of V ′′
1 .

The next lemma is about some well-formed property of the cliques of C(γ):
every such clique must have a leader, and every node in a clique must have an
Ω-value included in the clique. It is what we expect from the way the algorithm
forms new cliques by merging.

Lemma 5.3.18. Let γ be aN -stabilized configuration, and consider c ∈ C(γ). We
have ∀x ∈ c,Ωx ⊆ c. Moreover, ∃!u ∈ V ′′

1 , leader(u) = u ∧ Ωu = c.

94

Proof. Consider x ∈ c. Consider also v ∈ V ′′
1 such that Ωv = c, which exists by

definition of C(γ). By well-definedness of v we have that Ωx ⊆ Ωv = c.
Consider thenu = min(c). Wehavebydefinition of leader that leader(v) =

u, and then by well-definedness c ⊆ Ωu. As u ∈ c, we also have Ωu ⊆ c, thus
Ωu = c.

Unicity comes from that the leader of such a node must have min(c) as a
leader.
Definition 5.3.19 (Representative). Since we know the existence and unicity
in every clique of C(γ) of a node that is its own leader and has the clique asΩ-
value, we callmin(c) the representative of the clique c ∈ C(γ) in configuration
γ.

To progress toward our goal, we need to prove that C makes progress in some
sense. To this aim, we prove a heredity property as well as a non-regression property
across transitions for C.

Lemma 5.3.20. Let γ be a N -stabilized configuration and γ → γ′ a transition.
We have:

• (Non-regression) ∀c ∈ C(γ), ∃c′ ∈ C(γ′), c ⊆ c′.

• (Heredity) ∀c′ ∈ C(γ′), ∃c ∈ C(γ), c ⊆ c′.

Proof. Let’s first prove the first point of the lemma. Consider c ∈ C(γ), and
consider u the representative of c in γ (see Lemma 5.3.18). Consider also c′ ∈
C(γ′) such that u ∈ c′ (which exists by Lemma5.3.17), with v the representative
of c′ in γ′ (see Lemma 5.3.18).

As u ∈ Ωγ
′
v , by well-definedness Ωγ′u ⊆ Ωγ

′
v . But since u ∈ V ′′

1 (γ), we alsohave Ωγu ⊆ Ωγ
′
u (only Resetmay make the Ω-value shrink). Thus Ωγu ⊆ Ωγ

′
v i.e.

c ⊆ c′. Hence the first point of the Lemma.
Let’s then prove the second point of the lemma. Consider c′ ∈ C(γ′) with

v the representative of c in γ (see Lemma 5.3.18). If c′ ∈ C(γ), there is nothing
to prove, suppose then w.l.o.g. that it’s not the case.

As theΩ-value of vmust have changed in the transition, it executed either
Merge lead,Merge follow, or Update.

• In fact, Update is not a valid option as it is not enabled on u in γ. It
would otherwise imply the existence of u ∈ V ′′

1 (γ) such that Ωu = c′.
Then there would be c ∈ C(γ) such that Ωu ⊆ c by definition of C. Then
with the first point of the Lemma plus the fact that C(γ′) is a clique de-
composition by Lemma 5.3.17 we get c′ ⊆ c ⊆ c′ i.e. c = c′ which is false
by hypothesis.

95

• If v performedMerge lead in the transition, let’s write u = βγv . We have
also from the guard of Merge lead that βγu = v, Ωγu ∩ Ωγv = ∅, Stab(v)γ ,
and u is not enabled in γ. By the definition of V ′′

1 (γ
′) and the fact that

Stab(v) is true, Ωγ′v must contain a node of V1. Then, as Ωγ′v = Ωγu ∪ Ωγv ,either Ωγu or Ωγv .
– Suppose Ωγu contains a node of V1, we have u ∈ V ′′

1 . Suppose bycontradiction that Ωγu ̸∈ C(γ). There must exist u′ ∈ V ′′
1 (γ) suchthat Ωγu ⊆ Ωγu′ . u′ ̸∈ Ω∗(v)γ from the fact that Ωγu ∩ Ωγv = ∅. But

then βu = v is a contradiction to the well-definedness of u′. Thus,
by contradiction we have Ωγu ∈ C(γ), we then write c = Ωγu. Afterthe transition we have Ωγ

′
v = Ωγu ∪ Ωγv , thus c ⊆ c′.

– Suppose now Ωγv contains a node of V1. By the same reasoning
as the previous case, we have that Ωγv ∈ C(γ), and then by taking
c = Ωγv we have c ⊆ c′.

• Else, v must have performed Merge follow in the transition, and let’s
write u = βγv . The guard of the rule also gives us Stab(v)γ , Ωγu = c′.
Observe that as we supposed that c′ ̸∈ C(γ) this implies that u ̸∈ V ′′

1 ,and that v ∈ V ′′
1 (γ). By the same reasoning than for the Merge lead

case we get Ωγv ∈ C(γ), and then by taking c = Ωγv we have c ⊆ c′.

Remark. Lemma 5.3.20 implies that in such a transition |C(γ′)| ≤ |C(γ)|.

When C changes, it makes progress. But we have to ensure that it does change
sometimes. The next four lemmas are a toolbox that will be used to prove that.

Before proving that C makes progress, we prove a lemma about what happens
when a node of V0 \ V ′′

1 is merged with one from V ′′
1 .

Lemma 5.3.21. Let γ be N -stabilized configuration and v a node of V ′′
1 (γ). If v

executes rule Merge lead or Merge follow in the transition γ → γ′, then βγv ∈
V ′′
1 (γ

′).

Proof. Suppose v executes Merge lead in the transition γ → γ′, it means
that Merge lead was enabled on v in γ. Then, as βv ∈ merge_candidate(v)
in γ, we have leader(βv) = βv in γ, and thus βv ∈ Ωβv in γ. Thus, we have
βγv ∈ Ωγ

′
v = Ωγv ∪ Ωγβv .

Suppose now that v executes Merge follow in the transition γ → γ′, it
means thatMerge followwas enabled on v in γ. Then, as coherent_clique(βv)in γ, we have βv ∈ Ωβv in γ. Thus, we have βγv ∈ Ωγ

′
v = Ωγβv .

In both cases, βγv ∈ Ωγ
′
v . But as u ∈ V ′′

1 (γ), from Lemma 5.3.8 we have
u ∈ V ′′

1 (γ
′). Thus βγv ∈ V ′′

1 (γ
′).

96

Starting in a N -stabilized configuration, either we directly get what we want
(Case 4 of Lemma 5.3.22), or we reach one of two types of configurations (Cases 1,2
and 3 of Lemma 5.3.22) that will be dealt with in other lemmas.

Lemma 5.3.22. Let γ be a N -stabilized configuration. Suppose C(γ) is not a
minimal clique decomposition of V ′′

1 (γ) .
Then, after at most two rounds, a configuration γ′ is reached where one of

those is true:

1. Seduction orMariage is enabled on at least one node of V ′′
1 (γ

′).

2. ∃u ∈ V ′′
1 , ∃v ∈ V0 such that βu = v andMariage is enabled on v.

3. ∃u ∈ V ′′
1 , ∃v ∈ V0 such thatMerge Lead is enabled on u or v.

4. |C(γ′)| < |C(γ)| or V ′′
1 (γ) ⊊ V ′′

1 (γ
′)

Proof. Suppose there exists c, c′ ∈ C(γ) such that c ∪ c′ is a clique (they exist
by hypothesis, as C(γ) would be a minimal clique decomposition of V ′′

1 (γ)otherwise).
Consider then u (resp. u′) the representative of c (resp. c′) in γ. If Seduc-

tion or Mariage is enabled on u there is nothing to prove. The same can be
said if βu ̸= ⊥ andMerge Lead is enabled on either u or βu. The same can be
said for u′.

Let’s then suppose it’s not the case in γ. We are in either of those cases :
• Stab(u), βγu ̸= ⊥, andMerge follow is enabled on u. We have βγu ̸∈ V ′′

1as if it was not the case, u would not be a representative. Then the
guard of Merge follow guarantees that Stab(βu) in γ and that this willnot change untilMerge follow is executed by u. Thus after at most one
round, u executesMerge follow, and in the resulting configuration βγuis in V ′′

1 from Lemma 5.3.21 and we have V ′′
1 (γ) ⊊ V ′′

1 (γ
′) (Case 4 of the

lemma).
• Stab(u), βγu ̸= ⊥, andMerge follow is not enabled on u. By hypothesis,
Merge lead is not enabled on u either.

– If Abandonment is not enabled on u we have βv ∈ {⊥, u} and
v ∈ merge_candidate(u). If βv = ⊥,Mariage is then enabled on v
(Case 2 of the lemma), else βv = u andMerge lead is enabled on
u or v (Case 3 of the lemma)

– If Abandonment is enabled on u, it remains so until either it exe-
cutesAbandonment, orAbandonment is not activable anymore,
and one of those must happen in at least one round. In the first

97

case in the configuration just after the transitionwhere it executes
Abandonment we have βu = ⊥, and Stab(u). In the second case,
as in the previous point, we are in either Case 2 or 3 of the lemma.

• ¬Stab(u) in γ, in which case by Lemma 5.3.15 a configuration where
Stab(u) is true and βu = ⊥ is reached after at most two rounds.

Thus, after at most two rounds, either a configuration that satisfies one of the
conditions of the lemma has been reached, or a configuration where Stab(u)
and βu = ⊥ has been reached. Note that when this is the case, the only
rules that may be enabled on u are Seduction or Mariage, so we may as-
sume w.l.o.g. that in the configuration when exactly two rounds have passed
Stab(u) and βu = ⊥ (otherwise we reached a configuration corresponding to
Case 1 of the lemma before that).

By symmetry, the exact same argument applies to u′.
Then, after two rounds, we are in a configuration where Stab(u), βu = ⊥,

Stab(u′) and βu′ = ⊥. Then, as c ∪ c′ is supposed to be a clique, Seduction is
enabled on u and u′, which concludes the proof.

Then, starting in a configuration corresponding to Case 1 of Lemma 5.3.22,
we reach with probability at least 1

∆ a configuration having the same properties as
the one of Case 3 of Lemma 5.3.22, i.e. a configuration where a clique merging is
about to begin.

Lemma 5.3.23. Let γ be aN -stabilized configuration and suppose Seduction or
Mariage is enabled on at least one node of V ′′

1 . Then, there is a probability at
least 1

∆ that after at most two rounds a configuration γ′ is reached where: ∃u ∈
V ′′
1 ,∃v ∈ V0 such thatMerge Lead is enabled on u or v.

Proof. Consider a node u ∈ V ′′
1 (γ) such that Mariage is enabled on it. Any

node w ∈ V0 such that βγw = u and w ∈ merge_candidate(u) cannot execute
any rule whileMariage is enabled on u. There is at least one such node since
Mariage is enabled on u. Thus after at most one round, u executesMariage,
and in the resulting configuration we have βu = v ∈ V0, βu = v, and βv =

u, with v ∈ merge_candidate(u). Thus, in this configuration, Merge Lead is
enabled onmin(u, v).

Suppose now that Mariage is not enabled on any node of V ′′
1 . Consider

u ∈ V ′′
1 γ such that Seduction is enabled on it. Seduction will remain en-

abled on u until either it is executed, or one member of merge_candidate(u)
executes Seduction.

• Suppose that in the first transition where one of those events happens
u executes Seduction (after at most one round), and γ′ the resulting

98

configuration. If v = βγ
′
u did not execute any rule in the transition, then

we have v ∈ merge_candidate(u)γ′ , βγ′v = ⊥, and thus Mariage is en-
abled on it. It will remain enabled until v executes Mariage (after at
most one round), and in the resulting configuration with probability at
least 1

∆ in the resulting configuration γ′′ we have βγ′′v = u, and Merge
lead is enabled onmin(u, v) in γ′′.

• Suppose now that in the first transition where one of those events hap-
pens (after at most one round) u does not execute Seduction and at
least one node w ∈ merge_candidate(u) executes Seduction. In the re-
sulting configuration γ′ we have then Stab(u), βγ′u = ⊥. Moreover, with
probability at least 1

∆ , βw = u. Thus in γ′ Mariage is now enabled on u
until it is executed on u as no rule will be enabled on v until then. When
this happens (after at most one round), in the resulting configuration
γ′′, v = βγu is such that βu = v, βv = u, v ∈ merge_candidate(u) and
u ∈ merge_candidate(v). Thus, Merge lead is enabled on min(u, v) in
γ′′.

From a configuration of the type of Case 2 of Lemma 5.3.22 we will reach a
configuration of the type of Case 4 of Lemma 5.3.22 with probability at least 1

∆ .

Lemma5.3.24. Let γ be aN -stabilized configuration such that ∃u ∈ V ′′
1 , ∃v ∈ V0

such that βu = v andMariage is enabled on v.
Then, there is a probability at least 1

∆ that after at most one round a config-
uration γ′ is reached where: ∃u ∈ V ′′

1 ,∃v ∈ V0 such that Merge Lead is enabled
on u or v.

Proof. As Mariage is enabled on v in γ, we have that v is well-defined and
v ∈ merge_candidate(u), thus Ωv does not have Byzantine nodes. Mariage
will then remain enabled on v until it is executed as no node of Ωu and Ωvexcept is activable while Mariage is enabled on βu = v. When the first time
v executes Mariage starting in γ (which happens after at most one round),
in the resulting configuration γ′, there is a probability at least 1

∆ (∆ being the
maximum size of merge_candidate(v)) that βv = u. If this is the case, as no
other node than v in Ωu and Ωv

Observe that, as no other node than v in Ωu and Ωv was activable be-
fore v executed Mariage, we still have v ∈ merge_candidate(u) and u ∈
merge_candidate(v) in γ′. Then, if βγ′v = u,Merge lead is enabled on either u
or v in γ′.

Thus, with probability at least 1
∆ , Merge lead is enabled on either u or v

in γ′.
99

And then from a configuration of the type of Case 3 of Lemma 5.3.22 we will
reach a configuration of the type of Case 4 of Lemma 5.3.22.

Lemma 5.3.25. Let γ be a N -stabilized configuration such that ∃u ∈ V ′′
1 , ∃v ∈

{x ∈ V0|well_defined(x)} such thatMerge Lead is enabled on u or v. Then after
2 rounds a configuration γ′ is reached where βu = βv = ⊥, and either is true:

• |C(γ′)| < |C(γ)|,

• |C(γ′)| ≤ |C(γ)| and V ′′
1 (γ) ⊊ V ′′

1 (γ
′).

Proof. As u ∈ V ′′
1 (γ), by definition of V ′′

1 there is w ∈ V1 well-defined in
γ such that u ∈ Ω∗(w)γ . As w is well-defined in γ, we have minΩ∗(w)γ ∈
{leader(leader(u)), βu} i.e. minΩ∗(w)γ ∈ {u, v}. IfminΩ∗(w)γ was v, it would
contradictw well-definedness since we would have βγv ∈ Ω∗(w)γ , thus by con-
tradictionminΩ∗(w)γ = u.

Moreover well-definedness of w also implies that w ∈ minΩ∗(w)γ , thus
w ∈ Ωu. From the guard of Merge lead, either u ∈ merge_candidate(v) or
v ∈ merge_candidate(u). In both cases it implies that every node of Ωv isneighbor of w ∈ V1, thus Ωv ⊆ V0.

Let us write x = min(u, v) and y = max(u, v)

Given the constraints on the configuration, we know that:
• Merge lead (and only this rule) is enabled on x in γ,
• No node in Ωγx \ {x} or Ωγy \ {y} is activable as we supposed Stab(x),
Stab(y), and that x and y are well-defined,

• No rule is activable on y, as βx = y.
Those facts will remain true after any transition where x is not activated

(as it means that no node in Ωγx or Ωγy made a move, and thus the hypothesis
on x and y stay true in the resulting configuration).

Thus, in the first transition where a node of Ωγx ∪ Ωγy is activated, Merge
lead is executed by x and no other node of Ωγx ∪ Ωγy is activated. It happensafter at most 1 round sinceMerge lead is continuously enabled on x until so.
Consider the configuration γ′ just after the transition where it happens.

Lemma 5.3.7 allow us to say that both x and y are still well-defined in γ′,
as neither Ωγx nor Ωγy contain Byzantine nodes.

We still have Stab(y) and leader(y) = y in γ′ since no node of Ωy wasactivated. Moreover we also still have leader(x) = x in γ′ as x < y = minΩγy ,and we have Ωγ
′
y = Ωγy ⊆ Ωγx ∪ Ωγy = Ωγ

′
x . Moreover, as x is well-defined in γ′,

coherent_clique(x) is true in γ′.
100

ThusMerge follow is enabled on y. Observe that no other node of Ωy isactivable, and that it won’t change until y executes a rule. Node x cannotmake
any move until Stab(x) becomes true again, thus not before Merge follow
is executed by y. It happens after at most 1 round since Merge follow is
continuously enabled on y until so. Consider the configuration γ′′ just after
the transition where it happens.

Again using Lemma 5.3.7, x and y are still well-defined in γ′′. From the
command of Merge follow we have βγ′′y = ⊥. Moreover, from the guard of
Merge lead, βγ′y = ⊥, and since x did not get activated afterward βγ′′x = ⊥.

Then, as v ∈ Ωγ
′′
u and u ∈ V ′′

1 (γ
′′), we have v ∈ V ′′

1 (γ
′′).

• If u and v where both in V ′′
1 (γ), we have Ωγu ∈ C(γ) and Ωγv ∈ C(γ)

with Ωγu ̸= Ωγv . Moreover, we have Ωγu ∪ Ωγv = Ωγ
′′
u ∈ C(γ′′). Using

Lemma 5.3.20 we can then say |C(γ′′)| < |C(γ)|.
• Else, v was not in V ′′

1 (γ). Thus, as we have v ∈ V ′′
1 (γ

′′), V ′′
1 (γ) ⊊ V ′′

1 (γ
′′).

Lemma 5.3.20 also implies |C(γ′′)| ≤ |C(γ)|.

5.3.5 . Convergence and time complexity

Then, as we visually represent in Figure 5.1, we have a probabilistic pattern
that makes cliques grow that will repeat as long as C is not a minimal clique
decomposition of V ′′

1 . Trivially, it implies that the algorithm ends with probability
1, but we will try to be more precise than that.

To do this, we use a concentration inequality (Azuma’s inequality) to give a
probabilistic bound on the number of rounds it takes to reach a configuration where
C is a minimal clique decomposition of V ′′

1 .

Lemma 5.3.26. Let γ be a N -stabilized configuration. With probability at least
p, after 4max(−∆2 ln p,

√
2√

2−1
∆n)+6n rounds a configuration γ′ such that C(γ′)

is a minimal clique decomposition of V ′′
1 is reached.

Proof. The size of C may only decrease from Lemma 5.3.20, and V ′′
1 may only

increase from Lemma 5.3.8.
Suppose that C(γ) is not a minimal clique decomposition of V ′′

1 .
Starting in configuration γ, using Lemmas 5.3.22, 5.3.23 and 5.3.24 there

is a probability at least 1
∆ to reach a configuration corresponding to the pre-

conditions of Lemma 5.3.25 in at most 4 rounds.
If it is successful, from Lemma 5.3.25, starting in the resulting configu-

ration γ′, after at most two rounds, a configuration γ′′ is reached such that
|C(γ′′)| < |C(γ)|, or |C(γ′′)| ≤ |C(γ)| and V ′′

1 (γ) ⊊ V ′′
1 (γ

′′).
101

1

≥ 1
∆

≤ 1− 1
∆

1

Lemma 5.3.22
Lemma 5.3.23 and 5.3.24

Lemma 5.3.25

Any N -stabilized configuration

(1)/(2)

(3)

(4)

Figure 5.1: (1), (2), (3), and (4) refer to configurations having propertiesnumbered in Lemma 5.3.22. Values on arrows are probabilities givenby the lemmas.
In both cases (successful or not), either in the resulting configuration C is

a clique decomposition of V ′′
1 (and there is nothing left to prove), or we may

again apply the same set of lemmas.
Then, by Azuma’s inequality, with probability at least p, in at most

max(−∆2 ln p,
√
2√

2−1
∆n) iterations, we get a configuration where C(γ′) is a

minimal clique decomposition of V ′′
1 .

Successful iterations take at most 6 rounds, unsuccessful ones 4. Since
there can be at most n successful iterations, we get to that configuration after
at most 4max(−∆2 ln p,

√
2√

2−1
∆n) + 6n rounds.

Follows the theorem as a direct corollary of Lemma 5.3.26 and 5.3.2

Theorem 5.3.27. From any configuration γ, with probability at least p, after
4max(−∆2 ln p,

√
2√

2−1
∆n) + 6n + 1 rounds a configuration γ′ such that C(γ′)

is a minimal clique decomposition of V ′′
1 (and V1 ⊆ V ′′

1) is reached .

5.4 . Specification

As we introduced the notions C and V ′′
1 we can now express the specification

of our algorithm: the legitimate configurations are configurations γ such that
V1 ⊆ V ′′

1 (γ) and C(γ) is a minimal clique decomposition of V ′′
1 (γ).

We cannot guarantee that when such a configuration is reached C and V ′′
1 will

not change again. It’s because nodes that neighbor Byzantine nodes, and were

102

previously entangled in dummy cliques staged by those Byzantine nodes, may at
any time execute Reset after a move from a Byzantine node. If one of them
merges with a clique of V ′′

1 after that, it makes V ′′
1 grow, and this can happen

arbitrarily far in the execution. But what we can guarantee as a stability property
is that when such a configuration is reached the property C is a minimal clique
decomposition of V ′′

1 will be conserved, even if the values of C and V ′′
1 change. And

recall that those may only change by “growing” in some sense (see Lemmas 5.3.20
and 5.3.8 respectively).

Lemma 5.4.1. Let γ be a N -stabilized configuration such that C(γ) is a minimal
clique decomposition of V ′′

1 (γ). Suppose γ → γ′.
Then C(γ′) is a minimal clique decomposition of V ′′

1 (γ
′).

Proof. Suppose by contradiction that C(γ′) is not a minimal clique decompo-
sition of V ′′

1 (γ
′).

As γ′ is N -stabilized by Lemma 5.3.3, Lemma 5.3.20 tells us that C(γ′) is
a clique decomposition of V ′′

1 . Then C(γ′) not being a minimal clique decom-
position of V ′′

1 (γ
′)means that there exist c and c′ in C(γ′) such that c ∪ c′ is a

clique of V ′′
1 (γ

′).
But then, using Lemma 5.3.20, consider k, k′ in C(γ) such that k ⊆ c and

k′ ⊆ c′. Since c∪ c′ is a clique, it means that k ∪ k′ ⊆ c∪ c′ is also a clique. It is
then a clique of V ′′

1 (γ), which contradicts the fact that C(γ) is a minimal clique
decomposition of V ′′

1 (γ).

5.5 . Correction

Moreover, we want a correction property for our algorithm. A natural thing
would be to be in a legitimate configuration when no node is activable in V ′′

1 .
However, it’s not the case, as a node of V ′′

1 might not be activable, but waiting
for a node in V0 \ V ′′

1 to execute Merge lead before being able to execute Merge
follow. We will then restrict our correction property, expressed in Lemma 5.5.3 to
configurations where β-values of every node in V ′′

1 is ⊥. To prove this lemma, we
will prove two preliminary lemmas.

First, a lemma that states some properties that are weaker than being a legit-
imate configuration but which are true whenever no node is activable in V ′′

1 .

Lemma 5.5.1. Let γ be a configuration with no node activable in V ′′
1 . For v ∈ V ′′

1

we have in γ:

1. Nv = N(v),

2. Ωv = Ωleader(v),

103

3. Stab(v),
4. Ωv is a clique of G.

Proof. 1. If we had Nv = N(v), Reset would be activable on v.
2. Suppose Ωv ̸= Ωleader(v). Then either v is not well-defined and Reset isenabled on v, or Update is enabled on v.
3. Suppose ¬Stab(v). There would be w ∈ Ωv (= Ωleader(v) ⊆ V ′′

1) suchthat Ωw ⊊ Ωleader(v). Then either w is not well-defined, or Update is
enabled on w, which contradicts the non-activable hypothesis.

4. Suppose that Ωv is not a clique of G, i.e. ∃s, t ∈ Ωv distinct such that s
and t are not neighbors. By definition, s and t are in V ′

1 . From previous
points, we have Stab(v), thus Ωv = Ωs = Ωt. Then t ̸∈ N(s) implies
either that t ̸∈ Ns or N(s) ̸= Ns, and in both cases Reset is enabled on
s which contradicts the hypothesis that no node is activable in V ′′

1 .

Then we prove that in a configuration where no node is activable in V ′′
1 , if two

cliques of V ′′
1 are not already waiting to merge with some node in V0 \ V ′′

1 , then
their union is not a clique.

Lemma 5.5.2. Let γ be a configuration with no activable nodes in V ′′
1 , and u, v

two distinct nodes of V ′′
1 such that Ωu ̸= Ωv and βu = βv = ⊥ in γ. The set

Ωu ∪ Ωv does not form a clique in G.

Proof. Suppose by contradiction thatΩu∪Ωv forms a clique inGwithΩu ̸= Ωv.
By hypothesis, we have the properties from Lemma 5.5.1.
Thus Stab(u) and Stab(v), andwemay supposew.l.o.g. that leader(u) = u

and leader(v) = v.
The fact thatΩu∪Ωv is a clique ofGmeans thatΩu∪Ωv ⊆

⋂
x∈Ωu∪Ωv

N(x)∪

{x}, but by well-definedness we have ∀x ∈ Ωu ∪ Ωv,Nx = N(x) ∪ {x}.
Moreover, Ωu ∪ Ωv = ∅, since it would imply that Ωu = Ωv using Stab(v)and Stab(u).
Then, since leader(v) = v and Stab(v), v ∈ merge_candidate(u). Then,

since we have βu = βv = ⊥, either there exists w ∈ merge_candidate(u) such
that βw = u andMariage is activable on u, or Seduction is activable on u.

Our correction property follows immediately from Lemmas 5.5.1 and 5.5.2.

Lemma 5.5.3. Let γ be a configuration with no node activable in V ′′
1 and where

every node of γ has β-value ⊥, C(γ) is a minimal clique decomposition of V ′′
1 (γ).

104

5.6 . Conclusion

We have proved that Minimal Clique Decomposition can be solved in O(∆n)

rounds with high probability in the presence of Byzantine faults under the fair
daemon.

The same algorithm could be used to do the same in a context without Byzan-
tine nodes but under the adversarial daemon. However, as we used probabilistic
rules to prevent the Byzantine nodes to be able to reliably trap us, we could prob-
ably remove randomness in this context, by saying choose(A) = min(A) instead
of drawing an element uniformly.

105

6 - Minimally Colored Maximum Matching

As we already said, graphs are a powerful modelization tool, whose uses are
widespread. But when dealing with complex systems, we often want to use addi-
tional information along with the structure they offer. There are many works that
deal with labeled graphs, such as edge-weighted graphs, that add a such new layer
of information on the edges of the graph.

Another natural path, the one we will focus on, is to add information on the
vertices. Here, we study graphs where the additional layer of information is given
by a coloration on those. This formalism can be used, for example, to model the
Web, where we complete the underlying graph with a coloration on each vertex to
capture the type of content it holds [13]. By choosing constraints on colors, many
new interesting objects and problems emerge.

Before going a bit more technical, we need some formalism about vertex-colored
graphs.

6.1 . Notations and definitions

Throughout the chapter, G = (V,E) denotes a simple undirected graph. The
vertex and edge-sets vertex and edge-sets of G may also be denoted by V (G) and
E(G) respectively. The edge between the vertices x and y (if any) is denoted by
xy. The neighborhood N(u) is the set containing all vertices adjacent to u in G.
The closed neighborhood of u ∈ V , is defined by N [u] = N(u)∪{u}. Given a set
of colors C, Gc = (V,E, c) denotes a vertex-colored graph whose vertices are (not
necessarily properly) colored by one of the colors in C by the function c : V → C.
The color of a vertex x ∈ V is then denoted by c(x).

For any subgraph G′ of G, we denote by c(G′) = {c(x) | x ∈ V (G′)} the
set of colors (in Gc) of the vertices of G′. Whenever H is a subset of E, then
V (H) denotes the vertex set of the subgraph of G induced by H. In that case, for
simplicity, we write c(H) instead of c(V (H)). A subgraph H of G is said to be
tropical (with the coloration c) when c(H) = c(Gc). A matching M is a subset
of E without adjacent edges. A matching is maximal if no proper superset of M
is also a matching whereas a maximum matching is a maximal matching with the
highest cardinality among all possible maximal matchings. A perfect matching is
a matching of size |V |

2 .

Following the definitions above, a matching M of Gc is said to be tropical if
and only if c(M) = c(Gc). A tropical maximum matching (when it exists) is a
tropical matching with size the size of a maximum matching.

107

6.2 . Introduction to the MCMM problem

The present work on colored matchings follows a previous study on another
variation of that problem where the maximum matching was said to be tropi-
cal [16] (each color has at least one representative in the subgraph), a notion first
introduced in [19].

The problem of finding a maximum matching is known to be polynomial [30],
but what happens when we add some constraint on the colors to the problem? For
example, one could think about the tropical version of the problem:

Tropical Maximum Matching
Input: A vertex-colored graph Gc
Output: A tropical maximum matchingM of Gc, if any

Observe that a perfect matching is always tropical. As a consequence, the
above question is only interesting for maximum (not perfect) matchings. In [16],
the authors handle efficiently this case by giving a polynomial-time algorithm. Using
their Theorem 2.2, an immediate corollary is that we still have a polynomial-time
algorithm when we replace tropical with maximum colored :

Maximum (vertex-)colored Maximum Matching
Input: A vertex-colored graph Gc
Output: A maximum matchingM in Gc with maximum number of colors

Another natural variation is to consider the minimization of the number of
colors instead of maximizing it.

Minimum (vertex-)colored Maximum Matching (MCMM)
Input: A vertex-colored graph Gc
Output: A maximum matchingM in Gc with minimum number of colors

To introduce the problem, we present the following complexity results on very
simple graph families: on both complete graphs and complete bipartite graphs the
problem can be solved in linear time.

Proposition 6.2.1. MCMM is linear in complete graphs.

Proof. If the number of vertices is even, every vertex will be matched and
there is no choice to make (every matching will be equivalent).

If the number of vertices is odd, there is one choice to make: which vertex
is going to be out of the matching. It is enough to choose a vertex (if any)
whose color is unique in the graph. Otherwise, choose any arbitrary vertex.

108

Then it is enough to greedily construct a maximummatching on the com-
plete graph -minus the chosen vertex if the number of verticeswas odd-which
takes linear time.
Proposition 6.2.2. MCMM is linear in complete bipartite graphs.

Proof. Consider a bipartite graph (X,Y,E)with a coloration on vertices. Sup-
pose |X| ≤ |Y |. It is easy to see that any MCMM matches all the vertices of
X . Then it is enough to do the following:

• Take vertices inY that use colors already used inX until there is enough
of them to create a maximummatching with the vertices ofX or there
are none left.

• If the latter, complete by taking vertices of the most represented color
that has vertices left until enough vertices are taken.

Any choice of pairing between vertices of X and vertices of the constructed
set gives a MCMM.

However, as we prove in this chapter, the minimum colored version in its
general case is not as easy to solve as the previous tropical and maximum colored
variations. In fact, we prove (among other things) that the corresponding decision
problem is NP-hard.

The chapter is organized as follows.

• In Section 6.3 we build a linear reduction of the Dominating Set problem
parametrized by the size of the solution (a subset S ⊆ V is a dominating
set of a graph G = (V,E) if every vertex either belongs to S or has a
neighbor in S) to MCMM parametrized by the number of colors of the
solution. As the Dominating Set problem is known to be W[2]-complete
since the introduction of the W -hierarchy (in [28]), thus we get the W [2]-
hardness of MCMM. The reduction used to do so also allows us to prove
the NP-hardness of MCMM along the way.

• In Section 6.4, we deal with approximation issues. Since finding a classical
(not colored) maximum matching is easy, one could spontaneously consider
using the number of colors of such maximum matching as a measure to
evaluate its quality. However, in Theorem 3.1 we show that Minimum colored
Maximum Matching, using the number of colors of a solution as parameter,
is as hard to approximate as the Minimum Set Cover problem. We do so by
using a reduction that is quite similar to the one of Section 6.3.

• In Section 6.5, using another parameter -the size of a maximum matching-
we show that the problem becomes fixed-parameter tractable (FPT).

109

6.3 . NP-hardness and W[2]-hardness of MCMM

In this section, we prove the following hardness result.

Theorem 6.3.1. Minimum colored Maximum Matching (MCMM) isW [2]-hard on
trees considering the total number of colors of the input as parameter.

This section is devoted to prove this theorem.

Recall that a dominating set of a graph G = (V,E) is a subset of vertices
S ⊆ V such that every vertex of the graph is either in S or has at least a neighbor
in S. The classical optimization problem is then to minimize the size of such a
subset.

Minimum Dominating Set
Input: A graph G
Output: A dominating set S of minimum size

The natural corresponding parameterized problem, where the parameter is the
size of a solution, is known to be W [2]-complete [28]. The proof of the theorem
is then based on a linear reduction from the Dominating Set problem and uses the
construction and lemmas below. In particular, it will be an immediate consequence
of Lemma 6.3.8.

We will now introduce a construction of an instance of MCMM from an instance
of Dominating Set:

Given a connected simple non-colored graph G = (V,E), let us define from G

a vertex-colored tree T c as follows :

• V (T) = {xu | u ∈ V } ∪ {xu,v | u ∈ V, v ∈ N [u]} ∪ {x′0, x0},

• E(T) = {x0xu | u ∈ V } ∪ {xuxu,v | u ∈ V, v ∈ N [u]} ∪ {x′0x0}.

Then, we color the vertices of T using V ⊎ {0} as set of colors:

• c(x′0) = c(x0) = 0,

• For every u ∈ V , c(xu) = 0,

• For each (u, v) ∈ V ×N [u], c(xu,v) = v.

Notice that |V (T)| = 2|V |+2|E|+2, and |E(T)| = 2|V |+2|E|+1, and that
we can build T c from G in polynomial time. Notice also that there are |V | + 1

internal vertices.

To make discussions easier, we let R denote the function that given G as input
returns T c. The following series of lemmas explores the properties of R.

110

a

b c

d

0x′
0

0x0

0

xa

a b c d

0

xb

a b c

0

xc

a b c

0

xd

a d
G

R(G)

Figure 6.1: A graph G, its transformed versionR(G) (colors depicted inthe nodes).
Lemma 6.3.2. {x′0x0} ∪ {xuxu,u | u ∈ V } is a maximum matching ofR(G).

Proof. One can easily see that {x′0x0}∪{xuxu,u | u ∈ V } is amatching and that
there is no augmenting path since all paths between an unmatched vertex to
another one are of length 4. Thus, this matching is a maximum one.

An immediate consequence of the previous lemma is that the size of any max-
imum matching of R(G) is |V |+ 1.

Lemma 6.3.3. IfM is a matching of R(G) andM ∩ {x0xu | u ∈ V } ≠ ∅, then
M is not a maximum one.

Proof. LetM be a matching ofR(G).
Assume that x0xu ∈M for some u ∈ V . Then sinceM is a matching, x′0x0and xuxu,u are not in M , so x′0, x0, xu, xu,u is an augmenting path and M is

not maximum.
Lemma 6.3.4. Let u be a vertex in G. Any maximum matching of R(G) uses
exactly one edge in {xuxu,v | v ∈ N [u]} and contains the edge x′0x0.

Proof. Assume that amatchingM ofR(G) has no edge in {xuxu,v | u ∈ N [u]}.
Since x0xu ̸∈ M by Lemma 6.3.3, xu is unmatched inM . ThenM ∪ {xuxu,u}is a matching greater thanM , andM is not maximum. Thus any maximum
matchingmust contain at least one edge in {xuxu,v | u ∈ N [u]}, and thus con-
tains exactly one as they all have xu as an end.

By the same argument, x′0x0 must be in any maximum matching, which
concludes the proof.

Let M be a maximum matching of R(G). We then define a function g by
g(M) = {v | ∃u ∈ V, xuxu,v ∈M}.

111

Lemma 6.3.5. IfM is a maximummatching ofR(G), then g(M) is a dominating
set of G.

Proof. Let u be a vertex of G. As M is a maximum matching of R(G), by
Lemma 6.3.4,M has one edge in {xuxu,u, xuxu,v : vu ∈ E}, say xuxu,v.

By the definition of g(M), v ∈ g(M), which ensures that u is dominated
by v and also by g(M).
Lemma 6.3.6. IfM is maximummatching ofR(G) with k+1 colors, then g(M)

is a dominating set of G of size k.

Proof. LetM be a maximum matching ofR(G) with k + 1 colors.
By Lemma 6.3.4, x0 of color 0 is covered byM . ThusM has k other colors

in V . If c(M) contains the color v ∈ V , then by construction of R(G), there
is some u such that xuxu,v ∈ M . The definition of the function g implies that
v ∈ g(M). Thus |g(M)| ≥ k.

Conversely, ifM does not contain a color v ∈ V , by construction ofR(G),
there is no vertex u such that xuxu,v ∈ M . Moreover, by definition of g, v ̸∈
g(M). Thus, |g(M)| ≤ k.

We conclude that |g(M)| = k, and since g(M) is a dominating set of G by
Lemma 6.3.5, g(M) is then a dominating set of G of size k.
Lemma 6.3.7. Graph G admits a dominating set of size k if and only if R(G)

admits a maximum matching with k + 1 colors.

Proof. By Lemma 6.3.6, ifR(G) admits amaximummatchingwith k+1 colors,
G admits a dominating set of size k.

Conversely, assume that S is a dominating set of size k in G.
Let α be an arbitrary injective valuation on V . For each u ∈ V we define a

function φ by

φ(u) =

{
u, if u ∈ NG[u] ∩ S
minα(NG[u] ∩ S), otherwise

Since S is a dominating set of G, for each u ∈ V,NG[u] ∩ S is not empty,
and φ is then well-defined.

Then we define M = {x′0x0} ∪ {xuxu,v | v = φ(u)}. M is a matching by
construction, and is maximum since it is of size |V | + 1. Furthermore, any
vertex covered by M is of color either 0 or u ∈ S, and each of those k + 1

colors appears at least once (if u ∈ S then by construction xuxu,u ∈ M , and
xu,u has u as a color). Consequently,M is k + 1-colored, which concludes the
proof.

112

To prove W [2]-hardness with our reduction R, we need to show that it is in
fact a FPT reduction, that is:

1. R is a reduction from Dominating Set to MCMM.

2. R is computable with a FPT algorithm.

3. A computable function g must exist such that the parameter of MCMM (the
number of colors of the optimal maximum matching) in R(G) is less than
g applied to the parameter (the size of an optimal solution) of Dominating
Set in G.

Lemma 6.3.8. R is a FPT-reduction from the Dominating Set problem with pa-
rameter size of the optimal solution to theMCMMproblemon treeswith parameter
number of colors of the optimal solution.

Proof. Point 1 and Point 3 are proven in Lemma 6.3.7.
The computation ofR is polynomial in the size ofG (see the construction).

It is as such also FPT, and we have Point 2.
Thus,R is a FPT-reduction.

Proof of Theorem 6.3.1. It is an immediate consequence of Lemma 6.3.8 using
the fact that the Dominating Set problem is known to beW [2]-complete [28].

Theorem 6.3.9. Minimum colored maximum matching is NP-complete on trees.

Proof. It is enough to see thatR is also a polynomial reduction from the Dom-
inating Set problem to the MCMM problem on trees.

6.4 . Hardness of approximating MCMM

We consider as candidate for approximating MCMM any maximum matching,
with the weight function being the number of colors used. For that definition, we
prove the following inapproximability result.

Theorem 6.4.1. MCMM cannot be approximated on trees with an approximation
ratio better than log(N − 1)(1− ε) (with 0 < ε < 1), where N is the number of
internal vertices (vertices with degree at least 2) of G, unless P=NP.

The proof of those theorems is based on a reduction from the Set Cover
problem, which is known not to be approximable beyond a certain logarithmic
ratio [25].

Minimum Set Cover
113

Input: A finite set U , and F ⊂ P(U) such that U =
⋃
F∈F

F

Output: Ξ ⊂ F such that U =
⋃
F∈Ξ

F with minimum cardinality

As it is more convenient for us, we will use the equivalent following form of
the problem :

Minimum Set Cover (bipartite graph)
Input: A bipartite graph G = (U, V,E) such that no u ∈ U is isolated

and no two v, v′ distinct vertices of V have the same neighborhood
Output: Ξ ⊂ V such that U =

⋃
v∈Ξ

N(v) with minimum cardinality

The proof of Theorem 6.4.1 uses the following construction and lemmas below.
Note that the construction, and hence the following lemmas and proofs, are very
close to what was done in the previous part. It should not be very surprising, given
the proximity between the Dominating Set and the Set Cover problems.

Construction

Given an instance of Set Cover G = (U, V,E), we define a vertex-colored tree
T c defined as follows:

• V (T) = {x′0, x0} ∪ {xu | u ∈ U} ∪ {xu,v | u ∈ U, uv ∈ E},

• E(T) = {xuxu,v | u ∈ U, uv ∈ E} ∪ {xux0 | u ∈ U} ∪ {x′0x0}.

Then we color the vertices of T with n+ 1 colors so that :

• c(x′0) = 0, c(x0) = 0, and for each u ∈ U , c(xu) = 0,

• For each uv ∈ E, c(xu,v) = v.

a

b c

d

0x′
0

0x0

0

xa

c d

0

xb

c

0

xc

a b

0

xd

a

G
Q(G)

Figure 6.2: A bipartite graph G, and its transformed version Q(G) (col-ors depicted in the nodes).
114

Note that |V (T)| = |U |+ |E|+ 2, |E(T)| = |U |+ |E|+ 1, and that we can
obtain T c in polynomial time from G. Note also that there are |U | + 1 internal
vertices.

We use Q to denote the function that given G as input returns T c. The
following lemmas explore the properties of Q to prove that it is indeed a reduction
of Set Cover to MCMM on trees.

Lemma 6.4.2. {x′0x0}∪{xuxu,v | u ∈ U, uv ∈ E} is a maximummatching ofG.

Proof. One can easily see that there is no augmenting path since all paths that
go from an unmatched vertex to another are of length 4.

Moreover, no maximum matching can use an edge that does not cover a leaf
since this would create an augmenting path.

Lemma 6.4.3. IfM is a matching of Q(G) andM ∩ {x0xu | u ∈ U} ≠ ∅, then
M is not a maximum matching.

Proof. LetM be a matching of Q(G).
Let’s suppose that x0xu ∈ M for some u ∈ U . Since there is no isolated

vertex in G, there exists v ∈ V such that uv ∈ E. Then sinceM is a matching,
x′0x0 and xuxu,v are not inM , so x′0x0xuxu,v is an augmenting path andM is
not maximal therefore not maximum.
Lemma 6.4.4. Consider u ∈ U . Any maximum matching of Q(G) uses exactly
one edge in {xuxu,v | v ∈ N(u)}, and contains the edge x′0x0.

Proof. Let M be a matching of Q(G). Suppose that there exists u ∈ U such
that M ∩ {xuxu,v | v ∈ N(u)} = ∅. Since x0xu ̸∈ M by Lemma 6.4.3, xu isunmatched in M . Then M ∪ {xuxu,v} would be a matching of greater size,
thusM cannot be maximum. Thus, any maximum matching must contain at
least one edge in {xuxu,v | v ∈ N(u)}, and thus contains exactly one as they
all have xu as an end.

By the same argument, anymaximummatchingmust contain x′0x0, whichconcludes the proof.
Given a maximum matching M of Q(G), we then define g by g(M) =

{v ∈ V | ∃u, xuxu,v ∈M}.

Lemma 6.4.5. IfM is a maximum matching ofQ(G), then g(M) ∪ {0} = c(M)

and g(M) = c(M) \ {0}.

115

Proof. LetM be a maximum matching of Q(G).
For v ∈ g(M), by definition of g(M), there is u ∈ U such that xuxu,v ∈M ,

thus v ∈ c(M). Since we have by Lemma 6.4.4, x′0x0 ∈ M , we have also
0 ∈ c(M), thus g(M) ∪ {0} ⊂ c(M).

Conversely, for v ∈ c(M) \{0}, there must be u ∈ U such that xuxu,v ∈M

as only vertices xu,v have color v. By definition of g(M), v ∈ g(M). Thus,
c(M) ⊂ g(M) ∪ {0}.

Therefore, we have g(M) ∪ {0} = c(M), and the second equality follows
immediately, as 0 /∈ g(M) by definition.
Lemma 6.4.6. IfM is a maximum matching of Q(G), then g(M) is a set cover
of G (i.e. a subset of U whose union of neighborhoods gives V).

Proof. LetM be a maximum matching of Q(G) and u be a vertex from U . As
M is a maximum matching of Q(G), by Lemma 6.4.4 there exists v such that
xuxu,v is inM , which ensures that u is covered by g(M).
Lemma 6.4.7. IfM is a k + 1-colored maximum matching of Q(G), then g(M)

is a set cover of G of size k.

Proof. LetM be a maximum matching of Q(G).
By Lemma 6.4.6, g(M) = c(M) \ {0}, so we have |g(M)| = |c(M)| − 1 = k

(since 0 ∈ c(M) by direct corollary of Lemma 6.4.4). By Lemma 6.4.6, g(M) is
also a set cover, which concludes the proof.
Lemma 6.4.8. A bipartite graphG admits aminimal set cover of size k if and only
if Q(G) admits a minimally colored maximum matching (i.e., a matching whose
set of colors is minimal but could not be minimum) with k + 1 colors.

Proof. Let α be a choice function on V (i.e. a function which, for any non-
empty subset of V , gives an element of the said subset).

By Lemma 6.4.7, if Q(G) admits a minimally-colored maximum matching
M with k + 1 colors, then G admits a set cover g(M) of size k. Assume that
g(M) was not minimal, i.e. that there exists v0 ∈ g(M) such that g(M) \ {v0}is a set cover of size k − 1. For u ∈ U , let us write:

φ(u) = α({v | uv ∈ E, v ∈ g(M) \ {v0}})

which is well-defined since g(M)\{v0} is a set cover ofG. We can then define
M ′ =

{
xuxu,φ(u) | u ∈ U

}
∪ {x0x′0}. Notice thatM ′ is a maximum matching

since it is a matching of size |U | + 1. By construction, its color set is included
in (g(M)∪ {0}) \ {v0}, which contradicts the minimality of the color set ofM .

116

Conversely, let S be a minimal set cover of G of size k. For u ∈ U , let us
denote ψ(u) = α({v | uv ∈ E, v ∈ S}) (which is well-defined since S is a set
cover ofG). Then we defineM = {x′0x0}∪

{
xuxu,ψ(u) | u ∈ U

}. This matching
M is of the same size as the one presented in Lemma 6.4.2. Thus it is a maxi-
mum matching with at most k + 1 colors since all colors used are in S ∪ {0}.
It remains to prove thatM has k + 1 colors and is minimally colored. If it is
false, that would mean either that it is not minimally colored, or thatM has
not k + 1 colors.

• IfM was not minimally-colored, there would be a maximum matching
M ′ of Q(G) such that c(M ′) ⊊ c(M) ⊂ S ∪ {0}.

• IfM had not k + 1 colors, then we would have c(M) ⊊ S ∪ {0}.
In both case, there exists a matchingM◦ such that c(M◦) ⊊ S ∪ {0} which is
equivalent to g(M◦) ⊊ S. But g(M◦) is a set cover of G of size at most k − 1

(by Lemma 6.4.8), which contradicts the minimality of S.

Proof of Theorem 6.4.1

From every not minimal set cover, one can extract in polynomial time a minimal
set cover that is smaller than the previous one. Then, without loss of generality,
we only consider minimal set covers as approximation candidates for the Minimum
Set Cover problem.

Let’s suppose that MCMM is approximable with a ratio f(N) where N is the
number of internal vertices (vertices of degree at least 2) of the MCMM instance.

Given an instance G of the Set Cover problem (U, V,E) with universe U of size
k, we use Q to compute in polynomial time an instance of MCMM (of polynomial-
size in |U | and |V |), with k+1 internal vertices. By the above hypothesis, we can
compute a f(k+1)-approximation of that instance of MCMM. Then we can use g
to build in polynomial time a set cover which is, by Lemma 6.4.8, of the same size
as the approximate solution to MCMM, that is, at most a f(k+1)-approximation
of the solution of the Minimum Set Cover on G.

Then, if f(N) was asymptotically smaller than log(N − 1)(1− ε), the corre-
sponding approximation ratio for Set Cover would be better than log(k)(1 − ε),
contradiction unless P=NP [25].

Thus, Theorem 6.4.1 holds.

6.5 . MCMM is FTP when parameterized by the maximum size

117

of a matching in the input graph

This section is devoted to prove the following result:

Theorem 6.5.1. MCMM is FPT with the size of a maximum matching in the input
as parameter.

To show this, we construct an exploration tree in a similar way as in [31].

Let Gc = (V,E, c) be a vertex-colored graph with maximum matching size k.

We consider an arbitrary maximum matching M0 of G (which can be built in
polynomial time). It will be used as reference to decompose other matchings.

Notation. I0 = V (G) \ V (M0), and G[M0] be the subgraph induced by V (M0)

in G.

If we consider a maximum matching M∗, each edge of M∗ has at least one
shared vertex extremity with M0 (otherwise M0 would not be a maximum match-
ing). Thus we can split the edges of M∗ into two parts, the one included in G[M0]

and the remaining ones. We use that property to decompose the search for an
optimal solution.

In a similar way, we use other “natural” splits to decompose the configuration
space we want to explore (i.e the set of every possible maximum matching). For
the first splits, we remain exhaustive (as, for those, it does not cost much). Then
we make choices that break exhaustivity, we will have to prove afterward that if
we miss some optimal solutions with those, we cannot miss them all.

Formally, we do so by building a rooted exploration tree, where each node
represents the subset of matchings that are compatible with the choices made
along the path from the root to the node. As such, every descendant of a node
will represent a subset of matchings of those of its ancestors. The construction is
performed as follows:

We create the root ω0 which represents all possible maximum matchings, since
no choice has been made so far. Every other vertex of the exploration tree will be
given a label that contains the choices made at that level.

Then from the root we branch, for every possible selection (M,S) where M ⊂
E(G[M0]) is a matching, S ⊂ V (G[M0]) \ V (M), and |M |+ |S| = k, by adding
a child ωM,S labeled (M,S).

The exploration tree vertex ωM,S represents the set of all maximum matchings
that are compatible with the choice of the sets M and S: each of those matchings
contains M , and every other edge of those matchings has one end in S (and the
other in I0) (see Figure 6.3).

Note that the condition |M |+ |S| = k comes from the fact that we search for
a matching of size k, with all edges of M , and with an edge for each vertex in S. In

118

V (M0) I0M∗

S

M

Figure 6.3: Decomposition of amatchingM∗ according to the structureofM0.
this branch, and for every future branching under it, we will write C = c(M)∪c(S)
for the sake of readability.

ω0 ωM,S

Figure 6.4: The exploration tree after the addition of the first layer ofvertices.
Do note that since we branched for every possible choice, the sets of matchings

represented by the children of the root form a partition of the set of all possible
matchings.

Observation: At that point, we have created at most Tk
(
2k
k

)
new leaves where

Ti is the i-th telephone number (the number of possible matchings in a clique
of size i).
This enumeration can be done in time O(k×Tk22k) (O(k) by distinct choice).

Then, we want to consider the partition of S according to the color of the
matching vertex in I0 (see Figure 6.5).

To capture every potential such partition, for every leaf ωM,S labeled (M,S)

we branch for every partition Σ of S by adding a child ωΣ labeled (Σ).

The set of matchings represented by ωΣ is a subset of the one of its father
ωM,S . It only keeps from its father the matchings that have Σ as a partition of S
when you partition it with respect to the color elements of S are associated with
on the I0 side by the matching. Here again, as we branched for every possible
choice of Σ, the sets represented by the children of ωM,S form a partition of the
set represented by their father.

119

S

Nodes of color c1

Nodes of color c2

Nodes of color c3
I0

s1

s2

s3

Figure 6.5: The partition Σ = {s1, s2, s3} of S by matching color on the“exterior side” (I0). Red edges are the edges of a matching compatiblewith the partition Σ.
ω0 ωM,S ωΣ

Figure 6.6: The exploration tree after the addition of the second layerof vertices.
Observation : For each leaf of the exploration tree at the previous step
(leaves in Figure 6.4), we have created the B|S| ≤ Bk possible partitions of
S, where Bi is the i-th Bell number (the number of possible partitions of a
set with i elements).
They can be enumerated in time O(kBk) (O(k) by distinct partition).

Now, we have to assign a different color to every part of Σ. It will either be a
color already in C, or a new color.

To cover the possible combination of those two options, for every leaf ωΣ

son of ωM,S , we branch for every possible choice of partial injective coloration of
nonempty parts of Σ by colors of C, Ξ, by adding a child ωΞ labeled Ξ. Parts of Σ
that are attributed the value 0 will be attributed a new color (i.e. not in C) later
on in the construction of the exploration tree.

We formally define Ξ as a function Ξ : Σ → C ⊎ {0} injective on Σ \ Ξ−1(0).

The set of matchings represented by ωΞ is a subset of the one of its father
ωM,S . It only keeps the matchings that have, for every s ∈ Σ, the vertices of s
matched with vertices of I0 of color Ξ(s) if Ξ(s) ̸= 0, and matched with vertices
of the same color not in C otherwise.

120

ω0 ωM,S ωΣ ωΞ

Figure 6.7: The exploration tree after the addition of the third layer ofvertices.
Observation : For each leaf of the exploration tree at the previous step
(leaves in Figure 6.6), we have created at most

min(|C|,|Σ|)∑
i=0

i!

(
|C|
i

)
≤ min(|C|, |Σ|)!× 2|C| ≤ k!× 2k

possible partial injective colorations of Σ (and that many new leaves), which
can be enumerated in time O(k × k!× 2k) (O(k) by distinct coloration).

Now we want to build partial matchings for every s of Σ, between s and I0,
where every vertex on the I0 side has the same color. Ξ(s) if Ξ(s) ̸= 0, any color
not in C otherwise. The goal being to be able to choose one partial matching for
every part of the partition, with distinct colors, to compute a maximum matching.
Note that if no partial matching exists for some s ∈ Σ, it means that the choices
already made above in the tree do not lead to the construction of a valid maximum
matching.

Formally, for every leaf ωΞ produced at the previous step, we compute match-
ings for every part of the partition s ∈ Σ (the values of M,S and Σ are those that
appear in the branch from the root to the said leaf):

• If Ξ(s) ̸= 0, we compute, if any, µ a matching between s and vertices of
I0 of color Ξ(s), and we write Γ(s) = {µ}. If no such matching exists,
Γ(s) = ∅.

• If Ξ(s) = 0 then for every color c0 ∈ c(V), we compute, if any, µ a matching
between s and vertices of I0 of color c0, and denote by Γ(s) the set of those
matchings truncated at k + 1 (we stop the computation when we already
have k + 1 such matchings).

Then we add exactly one child ωΓ labeled Γ to ωΞ.

The set of matchings represented by ωΓ is a subset of the one of its father. It
only keeps the matchings whose restriction to the edges that have an end in s ∈ Σ

is in Γ(s) for every s ∈ Σ. Do note that here we do not keep the exhaustivity, as
we may have lost some matchings in the process.

121

ω0 ωM,S ωΣ ωΞ ωΓ

Figure 6.8: The exploration tree after the addition of the fourth layerof vertices.
Observation : For each leaf of the exploration tree at the previous step (leaves
in Figure 6.7), for every color, we compute at most a maximum matching,
each one being computed in O(k5/2) [15].

Now that we have those partial matchings, we can build the bipartite graph
with the elements of Σ on the left side, and colors on the right side. With an edge
between s ∈ Σ and a color c if there is a partial matching with color s on the
I0 side in Γ(s). To compute a maximum matching that observes the constraints
already chosen, it is enough to find a maximum matching of the graph we have
just built, then take the union of the partial matchings corresponding to the edges
of the maximum matching (see Figure 6.9).

s1

s2

s3

....

c1

c2

c3

...
Figure 6.9: A matching in the bipartite graph with parts Σ to the leftand colors of available partial matching to the right.

Formally, for each leaf ωΓ, we compute a maximum matching γ on the bipartite
graph

(Σ, c

 ⋃
(s,µ)∈Σ×Γ(s)

V (µ) ∩ I0

 , {sC(µ) | s ∈ Σ, µ ∈ Γ(s)}),

where C(µ) denotes the only color in c(V (µ) ∩ I0). (The values of M,S,Σ, and
Ξ are those that appear in the branch from the root to the said leaf.)

Then we add a child ω∞ to the said leaf. If |γ| = |Σ|, we define M∞ =⋃
sC(µ)∈γ µ, and we label the child with M∞. Else it means that we failed to

construct a maximum matching with the set of constraints we have, and we label
it ⊥.

122

ω0 ωM,S ωΣ ωΞ ωΓ ω∞

Figure 6.10: The completed exploration tree.
Here, the new leaf represents either exactly 1 maximum matching, or the empty

set.

Observation : For each leaf of the exploration tree at the previous step
(leaves in Figure 6.8), the computation of the auxiliary matching can be done
in O(k5/2) [15], the following computation of a matching of G takes O(k2),
and finally the computation of its number of colors |c(M∞)| in O(k). It is
then a O(k5/2).

Lemma 6.5.2. The exploration tree described above can be computed in time
O(k4TkBkk!2

3k|V |) from a given maximum matching on G.

Proof. From the analysis boxed between steps of the tree construction, we
have that the tree can be computed in

O(k1/222kTk × (k +Bk(k + k!× 2k(k + k × |c(G)| × k5/2 + k5/2))

Which is then O(k4TkBkk!2
k|V |), (by taking |c(G)| = O(|V |)).

Remark. To better visualize that complexity, one can note that for any ε > 0, the
above is a O((ke)

(3/2+ε)k|V |).

Lemma 6.5.3. There exists a leaf in the exploration tree which is labeled by a
maximum matching whose number of colors is minimal.

Proof. Let Mopt be a minimum colored maximum matching. Let us decom-
pose it relatively toM0 intoMopt =Min ⊎Mout where :

• Min =Mopt ∩ E(G[V (M0)])

• Mout =Mopt \Min

Note that every edge inMout must have an end in V (M0), since it would oth-erwise contradict the maximality ofM0.
We define Sout = V (Mout) ∩ V (M0). Note that Sout ∪ V (Min) = V (M0).We then go in the exploration tree to the vertex ωMin,Sout labeled (Min, Sout)which exists since we branched exhaustively on the possible values ofM and

S.
123

We compute the following partition of Sout :
Σ = {{u ∈ Sout | uv ∈Mout, c(v) = c0} | c0 ∈ c(G)} \ {∅}

and search among the children of ωMin,Sout for the child labeled Σ, ωΣ, whichexists since we branched on all the possible partitions of Sout.
ThenwedefineΞ(s) as the only color in c({v | u ∈ s, uv ∈Mout})∩(c(Min∪

c(Sout)) if it is nonempty (there cannot be more than one color in that set
from the construction of Σ), and as 0 otherwise. From the construction of
Σ, Ξ is injective on Σ \ Ξ−1(0). We search for ωΞ the child of ωΣ labeled Ξ,
which exists since we branched on all possible partial permutations of already
chosen colors on the parts of the partition. By construction ωΣ have one child
ωΓ. Let’s consider the maximum matching computed in the fifth step of the
creation of the exploration tree between the parts of the partition Σ and the
colors. Recall that formally it is a matching in the following bipartite graph:

Ω = (Σ, c(
⋃

(s,µ)∈Σ×Γ(s)

V (µ) ∩ I0), {sC(µ) | s ∈ Σ, µ ∈ Γ(s)}),

where C(µ) denotes the only color in c(V (µ) ∩ I0)

We know that the computed maximum matching is of size |Σ|, since we
can construct the following matching :

• For all s ∈ Σ that have k or less edges in Ω, we take the edge corre-
sponding to the color attributed to s inMOPT (that is the only color in
c({u | uv ∈MOPT , v ∈ s})). That color appears in Ω since we exhaus-
tively enumerated possible colors for s ∈ Σ that had less than k possi-
ble color to match with. Let us denote by nmatched the number of s ∈ Σ

in this situation.
• Then, there are at most k − nmatched parts of Σ that still needs to be
matched. For every one of those s, Γ(s) contains k + 1 matchings of
different colors on the I0 side, that is for every one of those s, it has
edges to k + 1 colors in Ω, at least k + 1 − |nmatched| > k − |nmatched|of them not being already matched. We can then choose greedily a
different color to match every remaining s ∈ Σ.

The described matching is of size |Σ|, so the maximum matching com-
puted when constructing the exploration tree must have size |Σ|. Then, by
construction of the exploration tree, the only child of ωΓ cannot be labeled
⊥, and is labeled with a maximum matchingM∞. In that matching, the parts
of Σ that are matched to colors already inMin or in Sout are the same as in
MOPT (since there is only one edge from those in Ω). Every other part of Σ
is matched in M∞ to a different new color (a color not appearing in Min or

124

Sout) as it is the case inMOPT by construction of Σ. ThusM∞ has the same
number of colors asMOPT , which concludes the proof.

Proof of Theorem 6.5.1

Since we supposed that G admits a maximum matching of size k, we search for
a such matching M0 in time O(|E|

√
|V |) [53]. We construct the exploration tree

described above and then search for a leaf not labeled ⊥ with minimum number of
colors in the matching of its label in time O(k4TkBkk!2

k|V |) (from Lemma 6.5.2).
From Lemma 6.5.3, such a matching is a minimum-colored maximum one of Gc.
Thus the algorithm above runs in time O(|E|

√
|V |) + O(k4TkBkk!2

k|V |). Thus
Theorem 6.5.1 holds.

6.6 . APX-completeness on collections of P2 and P3

In this section, we prove that MCMM restricted to collections of P2 and P3

(paths of length 2 and 3 respectively) is APX-complete.

First, as APX-completeness is defined under approximation-preserving reduc-
tions (AP-reductions). In the case of minimization optimization problems, linear
reductions (L-reductions) happens to be also AP-reduction. As they are easier
to handle, we will work here with linear reductions. Let us then define linear
reductions.

For an optimization problem A, we denote by cA its cost function, and when
x is an instance of problem A, OPTA(x) is the minimum cost of a solution of
problem A on x.

Then if A and B are optimization problems, and we have α > 0 and β > 0

two constants, a linear reduction of ratios (α, β) from A to B is a pair of functions
(f, g) such that:

1. f and g are computable in polynomial time,

2. If is an instance of A, then f(x) is an instance of B,

3. If y is a solution to problem B on f(x), g(y) is a solution to problem A on
x,

4. OPTB(f(x)) ≤ αOPTA(x),

5. |OPTA(x)− cA(g(y))| ≤ β|OPTB(f(x))− cB(y)|.

Here, we will in fact only consider linear reductions of ratios (1, 1).

As there is a natural reduction from this problem to MCMM restricted to
collections of P2 and P3 to this problem, we introduce a variation of Minimum
Vertex Cover: Minimum Vertex Cover with mandatory vertices.

125

Minimum Vertex Cover with mandatory vertices
Input: A graph G = (V,E), and V0 ⊂ V

Output: A minimal vertex cover C of G such that V0 ⊂ C with minimum
cardinality

This problem is in fact equivalent to the regular Minimum Vertex Cover problem
under linear reductions, as we will show.

One direction of this equivalence is trivial as one is a restricted version of the
other, the following lemma proves the other direction.

Lemma 6.6.1. There is a linear reduction from Minimum Vertex Cover with
mandatory vertices to Minimum Vertex Cover.

Proof. Let G = (V,E), V0 ⊂ V , be an instance of Minimum Vertex Cover
with mandatory vertices. We construct an instance of Minimum Vertex Cover
G′ = (V ′, E′) by taking V ′ = V ⊎ V0 where we will denote v̄ the new copy
of v ∈ V0 added in V ′, and E′ = E ∪ {vv̄ | v ∈ V0}. It is trivial to observe
that any minimal vertex cover S of G′ either uses all vertices of V0 or can be
modified into a vertex cover of same size or less that does not use the new
vertices by replacing all the v̄ ∈ S by their corresponding v. Moreover, for any
such minimal vertex cover, it is of exact same size, and we have then a linear
reduction (with ratios 1 / 1).

Then we can use the existence of those reductions to prove that Minimum
Vertex Cover with mandatory vertices is APX-complete.

Lemma 6.6.2. Minimum Vertex Cover with mandatory vertices is APX-complete.

Proof. By Lemma-6.6.1 we have a linear reduction in one sense, and there
is a trivial linear reduction from Minimum Vertex Cover to Minimum Vertex
Cover with mandatory vertices: we take the same graph, and take V0 = ∅.
MinimumVertex Cover being APX-complete, so is MinimumVertex Cover with
mandatory vertices.
Proposition 6.6.3. MCMM on collections of P1 and P2 is APX-complete.

Proof. On one hand, there is a linear reduction from Minimum Vertex Cover
to MCMM on collections of P1 and P2. For an instance of Minimum Vertex
Cover G = (V,E) , we construct G′ = (V ′, E′) colored with c by taking:

• V ′ = {xu,uv, xuv, xv,uv | uv ∈ V },
• E′ = {xu,uvxuv, xuvxv,uv | uv ∈ V },

126

• c(xu,uv) = u, c(xuv) = 0, for every u and v in V such that those nodes
exist (c(G) = V ⊎ {0}).

IfM is a maximum matching of G′c, S = {u ∈ V | ∃v ∈ V, xu,uvxuv ∈M}
is a vertex cover of G. If it was not, there would be uv ∈ E not covered by S,
which would mean that neither xu,uvxuv nor xv,uvxuv are in M , and thus M
would not be a maximum matching. Thus any maximum matchingM of G′c

correspond to a vertex cover S of G such that |c(M)| = |S|. We have then a
linear reduction (with ratios 1 / 1).

We construct an instance of Vertex Cover with mandatory Vertices G′ =

(V ′, E′) with
• V ′ = c(V),
• E′ = {c(xi,1)c(xi,3) | i ∈ J1, kK},
• Themandatory setV0 = {c(xi,2) | i ∈ J1, kK}∪{c(yi,1), c(yi,2) | i ∈ J1, ℓK}.
Then, if S is a minimal (not necessarily minimum) solution of Vertex Cover

with mandatory vertices on G′ with mandatory vertex set V0, let’s define ϕ(i)as 1 if c(xi,1) ∈ S, and 3 otherwise. Observe that when ϕ(i) = 3, as S is a
vertex cover and c(xi,1)c(xi,3) ∈ E′, we must have c(xi,3) ∈ S. We can then
defineM =

{
xi,ϕ(i)xi,2

}
∪ {yi,1yi,2 | i ∈ J1, ℓK}, and it is a maximummatching

since it is of cardinality k + ℓ. We have c(M) = S, as if it was not the case it
would imply that S is not minimal. Thus we have a linear reduction (with ratio
1 / 1).

6.7 . Conclusion

In this chapter, we have shown that MCMM is NP-hard, W[2]-hard with the
number of colors of the optimal solution as parameter, FPT with the size of a
maximum matching as parameter, and that it is hard to approximate.

Several questions are directly raised by those results. The size of a maximum
matching is indeed a “big” parameter, and thus it is not very surprising that MCMM
is FPT with respect to it, but the classical “small” parameter treewidth is not of
any help here, as MCMM is hard even on trees. Is there a sensible parameter,
smaller in general than the size of a maximum matching, for which MCMM is
FPT? Additionally, we have given an inapproximability result that gives a lower
bound for achievable approximation ratios, but no approximation algorithm that
would set an upper bound on the best approximation achievable.

Both questions may lead to further study around the MCMM problem.

127

7 - Conclusion

The work presented in this thesis can be divided in two, the first part focusing
on self-stabilization in distributed systems, and the second one on classical graph
algorithms. In the self-stabilization part, we deal with Byzantine faults for problems
that had no prior algorithm handling those. We also use one of them to propose
a way to produce self-stabilizing algorithms for mendable problems in anonymous
networks. In the classical graph algorithm part, we study a new problem that
extends some previous work on colored matchings and give a hardness result as
well as an FPT algorithm in a specific case.

Chapter 3 introduces an algorithm that handles Byzantine faults and solves
the MIS problem in anonymous systems in O(n2) rounds with high probability
under the fair distributed daemon. We then give a slightly modified version of this
algorithm, that solves the same problem under the adversarial distributed daemon
(without handling Byzantine faults) in O(n2) moves. Chapter 5 introduces an
algorithm that handles Byzantine faults and solves the Minimal Clique Decompo-
sition problem in O(∆n) rounds under the fair distributed daemon in systems with
unique identifiers. As in the chapter about the MIS problem, it should be possible
to adapt this algorithm to the non-Byzantine case with the adversarial distributed
daemon. Moreover, getting rid of the randomness should be doable in such an
adaptation, as randomness was only necessary to confine Byzantine influence.

As it is necessary to handle Byzantine faults to work with some fairness prop-
erty in the daemon to guarantee the convergence of algorithms, complexities are
classically expressed in rounds. However, we may be interested in quantifying the
amount of work done by “non-compromised” nodes by expressing the complexi-
ties in terms of moves of those nodes. Excluding Byzantine nodes is obviously
not enough: Byzantine influence may, depending on the algorithm, make non-
Byzantine nodes do an unbounded number of moves before anything else happens.
However, we often rely on choosing a containment radius and then relaxing the
constraint by considering “well-defined” nodes in a sense that we can be sure that
such a node cannot fall back under Byzantine influence. Thus, we could express a
move complexity that would count every move made by nodes outside the initial
containment radius, plus the move of such additional nodes.

In Chapter 4 we introduce an algorithm that solves the (k, k−1)-ruling set prob-
lem in anonymous networks under the Gouda daemon. The parallel construction
of multiple such ruling sets allows to find a distance-K coloring in an anonymous
network. Then we explain how to use this distance-K coloring as identifiers to
solve any mending problems on anonymous networks. We do not give any com-
plexity in our work as focused on proving it was possible. Now that we know it

129

is, it would be interesting to question the complexities of mending problems in
anonymous systems.

Finally, in Chapter 6, we introduce a new problem, the Minimum Colored Max-
imum Matching problem, that extends what had already been done on colored
matchings. We show the problem to be NP-hard and hard to approximate within
a logarithmic ratio of the size of the graph. However, we do not give an approx-
imation algorithm that would have given an upper bound for the approximation.
Searching for such an algorithm would be a natural way to extend this work. We
also prove this problem to be W [2]-hard with the parameter “size of the solution”,
but fixed-parameter tractable with the parameter “size of a maximum matching”.
As this second parameter would be considered a “big” parameter, another natural
extension would be to search for a smaller parameter for which MCMM would be
FPT.

130

Bibliography

[1] Noga Alon, László Babai, and Alon Itai. “A fast and simple ran-domizedparallel algorithm for themaximal independent set prob-lem”. In: Journal of Algorithms 7.4 (1986), pp. 567–583.
[2] Baruch Awerbuch. “Complexity of Network Synchronization”. In:

J. ACM 32.4 (1985), pp. 804–823.
[3] Baruch Awerbuch et al. “Network decomposition and locality indistributed computation”. In: FOCS. Vol. 30. Citeseer. 1989, pp. 364–369.
[4] Alkida Balliu, Sebastian Brandt, and Dennis Olivetti. “Distributedlower bounds for ruling sets”. In: SIAM Journal on Computing 51.1(2022), pp. 70–115.
[5] AlkidaBalliu et al. “Localmending”. In: arXiv preprint arXiv:2102.08703(2021).
[6] Alkida Balliu et al. “Lower Bounds for Maximal Matchings andMaximal Independent Sets”. In: 2019 IEEE 60th Annual Symposium

on Foundations of Computer Science (FOCS). 2019, pp. 481–497.
[7] Alkida Balliu et al. “Lower bounds for maximal matchings andmaximal independent sets”. In: Journal of the ACM (JACM) 68.5(2021), pp. 1–30.
[8] Leonid Barenboim, Michael Elkin, and Uri Goldenberg. In: 2018,pp. 437–446.
[9] Leonid Barenboim et al. “The locality of distributed symmetrybreaking”. In: Journal of the ACM (JACM) 63.3 (2016), pp. 1–45.
[10] Badreddine Benreguia et al. “Self-stabilizing Algorithm for Maxi-mal Distance-2 Independent Set”. In: CoRR abs/2101.11126 (2021).
[11] Shimon Bitton et al. “Fully Adaptive Self-Stabilizing Transformerfor LCL Problems”. In: arXiv preprint arXiv:2105.09756 (2021).
[12] Sebastian Brandt et al. “LCL problems on grids”. In: Proceedings

of the ACM Symposium on Principles of Distributed Computing. 2017,pp. 101–110.
[13] Sharon Bruckner et al. “Evaluation of ILP-Based Approaches forPartitioning into Colorful Components”. In: Experimental Algorithms.Ed. by VincenzoBonifaci, Camil Demetrescu, andAlbertoMarchetti-Spaccamela. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,pp. 176–187.

131

[14] Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman.“Derandomizing Local Distributed Algorithms under BandwidthRestrictions”. In: Distrib. Comput. 33.3–4 (2020), pp. 349–366.
[15] Bala G. Chandran and Dorit S. Hochbaum. “Practical and theoret-ical improvements for bipartite matching using the pseudoflowalgorithm”. In: CoRR abs/1105.1569 (2011).
[16] J. Cohen et al. “Tropical matchings in vertex-colored graphs”. In:

Electronic Notes in Discrete Mathematics 62 (2017), pp. 219–224.
[17] Richard Cole and Uzi Vishkin. “Deterministic coin tossing withapplications to optimal parallel list ranking”. In: Information and

Control 70.1 (1986), pp. 32–53.
[18] Alain Cournier, Stephane Devismes, and Vincent Villain. “Snap-Stabilizing PIF and Useless Computations”. In: Proceedings of the

12th International Conference on Parallel and Distributed Systems -
Volume 1. ICPADS ’06. USA: IEEE Computer Society, 2006, pp. 39–48.

[19] J.-A. Anglès d’Auriac et al. “Tropical dominating sets in vertex-coloured graphs”. In: Journal of Discrete Algorithms 48 (2018), pp. 27–41.
[20] Elias Dahlhaus and Marek Karpinski. “A fast parallel algorithmfor computing all maximal cliques in a graph and the relatedproblems”. In: SWAT 88. Ed. by Rolf Karlsson and Andrzej Lingas.Springer Berlin Heidelberg, 1988, pp. 139–144.
[21] François Delbot, Christian Laforest, and Raksmey Phan. “New ap-proximation algorithms for the vertex cover problem”. In: Inter-

national Workshop on Combinatorial Algorithms. Springer. 2013,pp. 438–442.
[22] FrançoisDelbot, Christian Laforest, and StephaneRovedakis. “Self-stabilizing Algorithms for Connected Vertex Cover and CliqueDe-composition Problems”. In: Principles of Distributed Systems. Ed.by Marcos K. Aguilera, Leonardo Querzoni, and Marc Shapiro.Springer International Publishing, 2014, pp. 307–322.
[23] EdsgerW.Dijkstra. “Self-Stabilizing Systems in Spite ofDistributedControl”. In: Commun. ACM 17.11 (1974), pp. 643–644.
[24] EdsgerW. Dijkstra. “Self-stabilizing systems in spite of distributedcontrol”. In: Communications of the ACM 17.11 (1974), pp. 643–644.issn: 0001-0782.

132

[25] Irit Dinur andDavid Steurer. “Analytical Approach to Parallel Rep-etition”. In: Proceedings of the Forty-sixth Annual ACM Symposium
on Theory of Computing. STOC ’14. New York, New York: ACM, 2014,pp. 624–633.

[26] Shlomi Dolev. Self-stabilization. MIT press, 2000.
[27] ShlomiDolev, Amos Israeli, and ShlomoMoran. “Uniformdynamicself-stabilizing leader election”. In: Distributed Algorithms. Ed. bySam Toueg, Paul G. Spirakis, and Lefteris Kirousis. Berlin, Heidel-berg: Springer Berlin Heidelberg, 1992, pp. 167–180.
[28] RodG.Downey andMichael R. Fellows. “Fixed-Parameter Tractabil-ity and Completeness I: Basic Results”. In: SIAM Journal on Com-

puting 24.4 (1995), pp. 873–921.
[29] Swan Dubois and Sébastien Tixeuil. “A taxonomy of daemons inself-stabilization”. In: arXiv preprint arXiv:1110.0334 (2011).
[30] Jack Edmonds. “Paths, Trees, and Flowers”. In: Canadian Journal

of Mathematics 17 (1965), pp. 449–467.
[31] Michael R. Fellows, Jiong Guo, and Iyad Kanj. “The parameterizedcomplexity of someminimum label problems”. In: Journal of Com-

puter and System Sciences 76.8 (2010), pp. 727–740.
[32] Xiaofeng Gao et al. “A Novel Approximation for Multi-Hop Con-nected Clustering Problem in Wireless Networks”. In: IEEE/ACM

Trans. Netw. 25.4 (2017), pp. 2223–2234.
[33] Mohsen Ghaffari. “An Improved Distributed Algorithm for Max-imal Independent Set”. In: Proceedings of the Twenty-Seventh An-

nual ACM-SIAM Symposium on Discrete Algorithms. SODA ’16. Ar-lington, Virginia: Society for Industrial and Applied Mathematics,2016, pp. 270–277.
[34] MohsenGhaffari, ChristophGrunau, andVáclav Rozhoň. “ImprovedDeterministicNetworkDecomposition”. In: Proceedings of the Thirty-

Second Annual ACM-SIAM Symposium on Discrete Algorithms. SODA’21. Virtual Event, Virginia: Society for Industrial andAppliedMath-ematics, 2021, pp. 2904–2923.
[35] Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. “On the com-plexity of local distributed graph problems”. In: Proceedings of the

49th Annual ACM SIGACT Symposium on Theory of Computing. 2017,pp. 784–797.
[36] WayneGoddard et al. “Self-Stabilizing Protocols forMaximalMatch-ing andMaximal Independent Sets for AdHocNetworks”. In: 2003.

133

[37] Mohamed G Gouda. “The theory of weak stabilization”. In: In-
ternational Workshop on Self-Stabilizing Systems. Springer. 2001,pp. 114–123.

[38] Maria Gradinariu and Sebastien Tixeuil. “Conflict Managers forSelf-stabilization without Fairness Assumption”. In: 27th Interna-
tional Conference onDistributed Computing Systems (ICDCS ’07). 2007,pp. 46–46.

[39] Nabil Guellati and Hamamache Kheddouci. “A Survey on Self-Stabilizing Algorithms for Independence, Domination, Coloring,andMatching in Graphs”. In: J. Parallel Distrib. Comput. 70.4 (2010),pp. 406–415.
[40] StephenHedetniemi. “Self-StabilizingDominationAlgorithms”. In:2021, pp. 485–520.
[41] MonikaHenzinger, Sebastian Krinninger, andDanuponNanongkai.“A deterministic almost-tight distributed algorithm for approx-imating single-source shortest paths”. In: SIAM Journal on Com-

puting 50.3 (2019), STOC16–98.
[42] Michiyo Ikeda, Sayaka Kamei, andHirotsuguKakugawa. “A Space-Optimal Self-Stabilizing Algorithm for the Maximal IndependentSet Problem”. In: (2002).
[43] H. Ishii and H. Kakugawa. “A self-stabilizing algorithm for findingcliques in distributed systems”. In: 21st IEEE Symposium on Reliable

Distributed Systems, 2002. Proceedings. 2002, pp. 390–395.
[44] Esther Jennings and Lenka Motyčková. “A distributed algorithmfor finding all maximal cliques in a network graph”. In: LATIN ’92.Ed. by Imre Simon. Berlin, Heidelberg: Springer Berlin Heidel-berg, 1992, pp. 281–293.
[45] Colette Johnen and Mohammed Haddad. Efficient self-stabilizing

construction of disjoint MDSs in distance-2 model. Research Report.Inria Paris, Sorbonne Université ; LaBRI, CNRS UMR 5800 ; LIRISUMR CNRS 5205, 2021.
[46] Richard M. Karp. “Reducibility among Combinatorial Problems”.In: Complexity of Computer Computations: Proceedings of a sym-

posium on the Complexity of Computer Computations, held March
20–22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, and sponsored by the Office of Naval Research,
Mathematics Program, IBM World Trade Corporation, and the IBM
Research Mathematical Sciences Department. Ed. by Raymond E.Miller, James W. Thatcher, and Jean D. Bohlinger. Springer US,1972, pp. 85–103.

134

[47] StephanKunne, JohanneCohen, and Laurence Pilard. “Self-stabilizationand Byzantine Tolerance for Maximal Matching”. In: Stabilization,
Safety, and Security of Distributed Systems. Ed. by Taisuke IzumiandPetr Kuznetsov. Cham: Springer International Publishing, 2018,pp. 80–95.

[48] Leslie Lamport, Robert Shostak, andMarshall Pease. “The Byzan-tine Generals Problem”. In: ACM Trans. Program. Lang. Syst. 4.3(1982), pp. 382–401.
[49] Nathan Linial. “Distributive graph algorithmsGlobal solutions fromlocal data”. In: 28th Annual Symposiumon Foundations of Computer

Science (sfcs 1987). 1987, pp. 331–335.
[50] Tao Liu, Xiaodong Wang, and Le Zheng. “A Cooperative SWIPTScheme for Wirelessly Powered Sensor Networks”. In: IEEE Trans-

actions on Communications PP (2017), pp. 1–1.
[51] Li Lu, Yunhong Gu, and Robert Grossman. “dMaximalCliques: ADistributed Algorithm for Enumerating All Maximal Cliques andMaximal Clique Distribution”. In: 2010 IEEE International Confer-

ence on Data Mining Workshops. 2010, pp. 1320–1327.
[52] M Luby. “A Simple Parallel Algorithm for the Maximal Indepen-dent Set Problem”. In: Proceedings of the Seventeenth Annual ACM

Symposium on Theory of Computing. STOC ’85. Providence, RhodeIsland, USA: Association for ComputingMachinery, 1985, pp. 1–10.
[53] S. Micali and V. V. Vazirani. “An O(

√
|V ||E|) algorithm for find-ingmaximummatching in general graphs”. In: 21st Annual Sympo-

sium on Foundations of Computer Science (sfcs 1980). 1980, pp. 17–27.
[54] Moni Naor and Larry Stockmeyer. “What can be computed lo-cally?” In: SIAM Journal on Computing 24.6 (1995), pp. 1259–1277.
[55] Alessandro Panconesi and Aravind Srinivasan. “The local natureof∆-coloring and its algorithmic applications”. In: Combinatorica15.2 (1995), pp. 255–280.
[56] David Peleg. Distributed Computing: A Locality-Sensitive Approach.USA: Society for Industrial and Applied Mathematics, 2000.
[57] Václav Rozhoň and Mohsen Ghaffari. “Polylogarithmic-Time De-terministic Network Decomposition and Distributed Derandom-ization”. In: Proceedings of the 52nd Annual ACM SIGACT Symposium

on Theory of Computing. New York, NY, USA: Association for Com-puting Machinery, 2020, pp. 350–363.

135

[58] Zhengnan Shi, Wayne Goddard, and Stephen T. Hedetniemi. “Ananonymous self-stabilizing algorithm for 1-maximal independentset in trees”. In: Information Processing Letters 91.2 (2004), pp. 77–83.
[59] Sandeep Shukla, Daniel Rosenkrantz, and S. Ravi. “Observationson self-stabilizing graph algorithms for anonymous networks”.In: Proceedings of the Second Workshop on Self-Stabilizing Systems(1995).
[60] Jukka Suomela. “Survey of local algorithms”. In: ACM Computing

Surveys (CSUR) 45.2 (2013), pp. 1–40.
[61] Hideyuki Tanaka et al. “A Self-stabilizing 1-maximal IndependentSet Algorithm”. In: Journal of Information Processing 29 (2021), pp. 247–255.
[62] Volker Turau. “Linear Self-Stabilizing Algorithms for the Indepen-dent and Dominating Set Problems Using an Unfair DistributedScheduler”. In: Inf. Process. Lett. 103.3 (2007), pp. 88–93.
[63] Volker Turau. “Making Randomized Algorithms Self-stabilizing”.In: 2019, pp. 309–324.
[64] Volker Turau and Christoph Weyer. “Randomized Self-StabilizingAlgorithms for Wireless Sensor Networks”. In: Proceedings of the

First International Conference, and Proceedings of the Third Interna-
tional Conference on New Trends in Network Architectures and Ser-
vices Conference on Self-Organising Systems. IWSOS’06/EuroNGI’06.Passau, Germany: Springer-Verlag, 2006, pp. 74–89.

[65] Yanyan Xu et al. “Distributed Maximal Clique Computation”. In:
2014 IEEE International Congress on Big Data. 2014, pp. 160–167.

136

	Introduction
	Graphs and models
	Sets
	Graph notions and notations
	Models of distributed systems
	Rules, transitions, and executions
	Daemons
	Algorithm and self-stabilization
	Byzantine faults
	Complexities

	Maximal Independent Set
	State of the art
	With Byzantines Nodes under the Fair Daemon
	Specification
	An example
	The proof

	In an Anonymous System under the Adversary Daemon
	An example
	The proof

	Conclusion

	Ruling Set
	State of the art
	Self-Stabilizing Algorithm for Computing a (k, k-1)-Ruling Set
	General Overview
	The Clock System
	Handling Initial and Perturbed Configurations

	Proof of the Algorithm
	Stability of Legitimate Configurations
	Reaching a Legitimate Configuration

	From Ruling Sets to Distance-K Colorings
	Solving Mendable Problems
	Definitions
	Solving Greedy and Mendable Problems

	Conclusion

	Minimal Clique Decomposition
	State of the art
	Description of the algorithm
	Local variables
	About the Omega-closure
	How to merge two cliques
	How to handle errors

	Convergence
	Neighborhood stabilization
	Well-definedness
	Any merging process ends
	Merging happens and makes the solution progress
	Convergence and time complexity

	Specification
	Correction
	Conclusion

	Minimally Colored Maximum Matching
	Notations and definitions
	Introduction to the MCMM problem
	NP-hardness and W[2]-hardness of MCMM
	Hardness of approximating MCMM
	MCMM is FTP when parameterized by the maximum size of a matching in the input graph
	APX-completeness on collections of P2 and P3
	Conclusion

	Conclusion

