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Théorie et applications d'une nouvelle formulation de l'espace des couleurs perçues Résumé : Cette thèse porte sur une nouvelle approche mathématique de la perception des couleurs et ses premières applications au traitement d'images. Alors que la littérature existante suggère à la fois la nature hyperbolique des espaces couleurs et l'importance du mécanisme d'opposition de Hering dans le processus de la vision, il n'existe aucun modèle mathématique intégrant naturellement ces caractéristiques. L'approche présentée dans cette thèse, partant de l'axiomatisation de Newton, Grassmann, Helmholtz, Schrödinger et Resniko, conduit à une structure algébrique qui est le pendant réel de celle utilisée en mécanique quantique, qui présente des caractéristiques hyperboliques et encode l'opposition de Hering dans les matrices de Pauli réelles. Ces similitudes avec les théories modernes de la physique peuvent être expliquées à un niveau intuitif par le fait que la perception des couleurs est un processus basé sur la dualité entre le contexte de mesure et l'appareil d'observation, dans la mesure où cela n'a aucun sens de parler d'une couleur perçue sans spécier les conditions dans lesquelles elle a été mesurée. Les couleurs perçues ne sont en eet pas absolues, mais relatives aux conditions d'observation. Ce manuscrit donne une vue d'ensemble de cette nouvelle théorie en mettant l'accent sur ses aspects relativistes. De plus, des dénitions rigoureuses des attributs colorimétriques classiques (dont la teinte, la saturation, la luminosité...) sont fournies dans ce cadre. D'autre part, cette thèse comprend également des applications de ce nouveau formalisme, à travers des algorithmes de traitement d'images en couleur. Ces derniers sont destinés à faire en sorte que l'appareil photo numérique imite le comportement du système visuel humain. Deux premières applications sont présentées : un boost de Lorentz normalisé utilisé comme transformée d'adaptation chromatique pour la balance des blancs, c'est-à-dire l'algorithme qui émule l'adaptation aux conditions d'illumination, et quelques premières applications de constructions classiques provenant de la géométrie hyperbolique au tone mapping.
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Introduction et aperçu de la thèse

La perception des couleurs est un sujet placé au carrefour de nombreux domaines scientiques. Les questions relatives à la couleur ont occupé nombre de grands penseurs de l'histoire, dont Platon lui-même, et interpellent encore aujourd'hui n'importe lequel d'entre nous, comme le prouve le récent débat à propos de he hress * . L'étude de ces questions relève à la fois de la philosophie (dans la tradition de Goethe, Schopenhauer, Russell ou Wittgenstein), de la neurophysiologie de la vision (dans la tradition de Hubel ou de Valois), ou encore de la physique mathématique (dans la tradition de Newton, Maxwell, von Helmholtz, Schrödinger, Yilmaz ou Resniko).

Dans cette thèse, nous abordons le problème de la perception des couleurs d'un point de vue mathématique.

Les couleurs physiques, c'est-à-dire les lumières rééchies ou émises qui pénètrent dans les yeux à partir d'un environnement visuel, sont converties en couleurs perçues par l'homme grâce à des mécanismes neurophysiologiques. Mathématiquement, une couleur physique est un spectre, c'est-à-dire une fonction dénie sur l'intervalle des longueurs d'onde visibles, donc un élément d'un espace de dimension innie, alors qu'il est connu que pour modéliser les couleurs perçues, il faut un espace de dimension 3. Malgré sa plus petite dimension, l'espace des couleurs perçues est beaucoup moins compris et beaucoup plus controversé pour être modélisé mathématiquement.

Cela tient à la complexité des processus neurophysiologiques conduisant à notre perception des couleurs. En eet, cette dernière fait intervenir dans un premier temps trois types de photorécepteurs, les cônes LMS, chacun d'entre eux étant plus sensible à une partie diérente du spectre du visible. Les lettres L, M et S sont utilisées pour représenter les longueurs d'onde vong, widdle et hort correspondant aux diérents pics de sensibilité des cônes. Dans un second temps, le mécanisme dit d'opposition des champs réceptifs de la rétine se met en place. Ce dernier est induit par l'entrelacement des connexions entre cônes et cellules ganglionnaires.

Il existe essentiellement deux façons de modéliser l'espace des couleurs perçues : la première inspirée par la présence de trois types de cônes ayant des sensibilités diérentes (approche dite trichromatique), et la seconde inspirée par le mechanisme d'opposition (proposé initialement par Hering à la n du XIX siècle et analysé empiriquement par Hurvich et Jameson seulement vers la moitié du XX siècle). Ce dernier est basé sur le fait que certaines couleurs sont opposées, c'est-à-dire qu'elles ne peuvent pas être mélangées sans obtenir une couleur dite achromatique. Le rouge et le vert (également le jaune et le bleu) sont opposés car nous ne pouvons pas percevoir un vert rougeâtre ou un rouge verdâtre. Dans un système construit de cette manière, une couleur perçue est caractérisée par deux degrés d'opposition (rouge-vert et jaune-bleu) et une valeur achromatique (un niveau de gris entre le noir et le blanc). Bien que cette seconde approche soit plus dèle à la façon dont les humains distinguent et représentent les couleurs, les espaces colorimétriques les plus utilisés dans la littérature pour la reproduction des couleurs ont été construits selon la première approche trichromatique. Cependant, ces modèles sont plus orientés vers l'informatique et ne fournissent pas un formalisme mathématique capable CONTENTS visuelle (jaunâtre dans la première image de la Figure 1) en voyant la scène comme si elle était éclairée par une lumière blanche. Elle se compose de deux étapes : la première consiste en la détection de l'information sur la chromaticité de l'illuminant contenue dans un vecteur L, et la seconde est la correction de l'image à l'aide d'une CAT paramétrée par L. La Figure 1 montre, respectivement, une image d'entrée non corrigée, la même image corrigée avec un algorithme de correction classique (CAT de von Kries), et la même image corrigée à l'aide de la CAT que nous proposons.

Figure 1: quhe : image d'entrée. gentre : image de sortie après la balance des blancs en utilisant la CAT de von Kries. hroite : image de sortie après balance des blancs eectuée en utilisant la CAT que l'on propose. Les images de sortie ont été obtenues en utilisant la même estimation de l'illuminant.
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Dans le Chapitre 1 nous fournissons un bref aperçu de la colorimétrie classique. L'idée est de motiver la présence de notre approche dictée par certaines nécessités et indices présents dans la littérature. En particulier, nous commençons par décrire brièvement la physiologie de la vision des couleurs en nous concentrant sur le mécanisme d'opposition de Hering, puis nous présentons la construction mathématique des espaces de couleurs basés sur la trichromie, en soulignant le fait que l'opposition de Hering n'est pas intégrée dans les espaces obtenus de cette manière. Nous donnons un aperçu de l'utilisation des structures hyperboliques dans la littérature sur la couleur et une brève description de la phénoménologie de la perception des couleurs, en mentionnant notamment les eets perceptuels, les phénomènes de color constancy et lightness constancy, dans le but de souligner les dicultés de modélisation de la perception des couleurs.

Le Chapitre 2 porte sur le modèle relativiste de perception des couleurs de Yilmaz. En 1962, Yilmaz [START_REF] Yilmaz | On color perception[END_REF][START_REF] Yilmaz | Color vision and a new approach to general perception[END_REF] a été le premier à souligner les analogies formelles entre la théorie de la relativité restreinte et la perception des couleurs. Partant de trois résultats provenant d'expériences, il a déduit que le changement de condition d'adaptation à un illuminant peut être modélisé à l'aide des transformations classiques de la théorie de la relativité restreinte : les boosts de Lorentz. Comme dans [124], nous fournissons dans ce chapitre une interprétation et une analyse de la faisabilité de ses expériences et, en supposant que les résultats expérimentaux soient vrais, nous refondons dans un cadre plus rigoureux la procédure mathématique qui a conduit à l'obtention des boosts de Lorentz pour modéliser l'adaptation chromatique.

Dans le Chapitre 3 nous commençons par décrire l'approche mathématique de Resniko [START_REF] Resniko | Dierential geometry and color perception[END_REF] à la perception des couleurs. En particulier, il a complété la formulation algébrique de ses prédécesseurs (initiée par Grassmann et axiomatisée par Schrödinger). Nous présentons ensuite une vue d'ensemble et les dénitions de base d'une nouvelle approche mathématique basée sur la réinterprétation quantique des travaux de Resniko [START_REF] Berthier | When geometry meets psycho-physics and quantum mechanics: Modern perspectives on the space of perceived colors[END_REF][START_REF] Provenzi | Geometry of color perception. Part 1: Structures and metrics of a homogeneous color space[END_REF][START_REF] Berthier | Geometry of color perception. Part 2: perceived colors from real quantum states and Hering's rebit[END_REF][START_REF] Berthier | From Riemannian trichromacy to quantum color opponency via hyperbolicity[END_REF][START_REF] Berthier | The quantum nature of color perception: Uncertainty relations for chromatic opposition[END_REF]. Ce nouveau cadre mathématique réconcilie la trichromie et l'opposition des couleurs mentionnées dans le Chapitre 1 et permettra, dans le chapitre suivant, de justier, sur une base purement théorique, les spéculations de Yilmaz sur les aspects relativistes de la perception des couleurs, en surmontant les problèmes soulignés dans le Chapitre 2.

Dans le Chapitre 4, comme dans l'article [13], nous fournissons une preuve théorique des résultats expérimentaux de Yilmaz dans le cadre du cadre de type quantique introduit dans le chapitre précédent. De nouvelles dénitions sont introduites an d'incorporer également les phénomènes relativistes. En particulier, le concept de vecteur chromatique est d'une importance fondamentale, puisque les expériences de Yilmaz peuvent être expliquées en termes de loi d'addition d'Einstein-Poincaré entre les vecteurs chromatiques. De plus, ces résultats théoriques s'avèrent cohérents avec des données expérimentales existantes. Dans ce chapitre, nous présentons la métrique hyperbolique de Hilbert fondée sur la théorie, dont la pertinence est due au fait qu'elle exprime une propriété de constance chromatique par rapport aux changements d'observateurs.

Dans le Chapitre 5 nous étendons la théorie présentée dans le Chapitre 3 en introduisant certains concepts issus de la théorie de l'information quantique, parmi lesquels : les eets quantiques, les états généralisés post-mesure, les opérations de Lüders et l'entropie relative. Dans ce contexte, une couleur n'est plus décrite par un ensemble de trois coordonnées, mais elle est conçue comme le résultat d'un acte de mesure : il s'agit en fait de l'état généralisé post-mesure obtenu par l'interaction d'un eet et d'un état généralisé. Les concepts introduits ici sont utilisés au Chapitre 6 pour établir les dénitions des attributs de colorimétriques dans le cadre du modèle quantique.
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Dans le Chapitre 6, comme dans [14], les concepts d'information quantique introduits dans le chapitre précédent sont utilisés pour élaborer des dénitions mathématiques des attributs colorimétriques (brightness, luminosité, colorfulness, chroma, saturation et teinte). La compréhension de l'expression mathématique de ces attributs est une question fondamentale, notamment parce qu'ils sont impliqués dans les phénomènes d'apparence de la couleur et en raison de leur impact important sur les applications. Nous soulignons que les problèmes de recherche des coordonnées à associer aux attributs colorimétriques ainsi que la description mathématique des phénomènes d'apparence de la couleur sont encore des sujets non résolus et débattus dans la littérature. Pour illustrer le potentiel de ce nouveau système de dénitions, nous présentons une justication rigoureuse du phénomène de lightness constancy, introduit dans le Chapitre 1.

Le Chapitre 7 porte sur une première application du modèle théorique au problème de la balance des blancs en traitement d'images. Plus précisément, nous montrons dans quelles conditions particulières il est possible d'utiliser un boost de Lorentz normalisé, correspondant à l'action d'une opération de Lüders représentée comme agissant sur C(R ⊕ R 2 ), comme transformée d'adaptation chromatique. Les premiers tests ont été eectués dans le domaine conique HCV de l'état de l'art, mais les évaluations qualitatives ont montré que le rendu des teintes rouges n'était pas optimal, en particulier qu'elles devenaient rosées. Nous proposons donc deux modications simples de HCV, intégrant de manière heuristique l'opposition de Hering dans le cercle des teintes. Ces modications produisent qualitativement des meilleurs résultats. Nous procédons ensuite à une première évaluation quantitative de l'algorithme dans l'espace HCV et de ses modications en comparaison avec à la CAT classique de von Kries. Le Chapitre 8 est consacré aux applications au problème du tone mapping, c'est-à-dire la compression d'une image high dynamic range. Dans une première partie, comme dans [START_REF] Prencipe | Embedding naka-rushton's equation in the geometric setting of möbius transformations[END_REF], nous traitons un opérateur classique de tone mapping, l'équation dite de Naka-Rushton, en l'analysant d'un point de vue géométrique en utilisant les transformations de Möbius. Dans une seconde partie, nous proposons un opérateur de tone mapping en cours de développement, KTMO, inspiré de la construction du disque de Klein.

Dans le Chapitre 9, nous concluons le manuscrit en mentionnant des perspectives de recherche futures. Wittgenstein, Remarks on colour.

Color is placed at the crossroads of many scientic paths. Questions about color kept occupied many of the history great thinkers, including Plato himself, and arrive to interpell anyone of us, as proven by the recent debate on he hress . Color is involved in issues related to philosophy (in the tradition of Goethe, Schopenhauer, Russell or Wittgenstein), to the neurophysiology of vision (in the tradition of Hubel or de Valois), or to models of mathematical physics (in the tradition of Newton, Maxwell, von Helmholtz, Schrödinger, Yilmaz or Resniko).

In this thesis we deal with the problem of treating color perception from a mathematical point of view.

Physical colors, i.e. reected or emitted lights entering the eyes from a visual environment, are converted into perceived colors sensed by humans through neurophysiological mechanisms. Mathematically, a physical color is a spectrum, i.e. a function dened on the interval of visible wavelengths, thus an element of a space of innite dimension, while it is known that to model perceived colors one needs a space of dimension 3. Despite of the smaller dimension, the space of perceived colors is far way less understood and much more controversial to be modeled mathematically.

This is due to the complexity of the neurophysiological processes leading to color perception. Indeed, color perception involves at rst three types of photoreceptors, the LMS cones, each one of them is more sensible to a dierent part of the visible spectrum, in fact the letters L, M, S are used to represent the vong, widdle and hort wavelengths corresponding to the dierent sensitivity peaks of the cones. Then, in a second moment, the so-called mechanism of opponency of the receptive elds of the retina, induced by the intertwining of connections between cones and ganglion cells, takes place.

There are basically two ways of modeling the space of perceived colors: the rst inspired by the presence of three types of cones having dierent sensitivities, and the second inspired by opponent process or opponency (initially proposed by Hering at the end of the 19 th century and experimentally analyzed by Hurvich and Jameson only towards the half of the 20 th century). The latter is based on the fact that some colors are opponent, i.e. they cannot be mixed without obtaining a color called achromatic. Red and green (also yellow and blue) are opponent because we can not perceive a reddish green or a greenish red. In a system built in this way, a perceived color is characterized by two opponency degrees (red-green and yellow-blue) and an achromatic value (a gray level between black and white). Despite the fact that this second approach is more faithful to the way humans distinguish and represent colors, the most commonly used color spaces in literature for color reproduction were built following the rst trichromatic See https://en.wikipedia.org/wiki/The_dress. CONTENTS approach. However, these models are more computer-science oriented and do not provide a mathematical formalism able to describe known perceptual eects, which led to many works consisting of adjustments of parameters a posteriori, to ll the gaps of these models. This underlines the need for a more advanced mathematical model, which would be better able to describe the complexity of our color vision.

The idea is to establish a set of axioms that the space of perceived colors C must satisfy, in order to discern the mathematical structures that are compatible with these axioms. Historically, the rst one to establish an system of axioms for the space of perceived colors was Schrödinger in 1920 [START_REF] Schrödinger | Grundlinien einer theorie der farbenmetrik im tagessehen (Outline of a theory of colour measurement for daylight vision)[END_REF]. He resumed and completed the properties of perceived colors identied by his predecessors Newton, Grassmann and von Helmholtz, obtaining that C must be a convex, regular cone of dimension 3. In 1974 Resniko, in [START_REF] Resniko | Dierential geometry and color perception[END_REF], completed the work of Schrödinger adding a further axiom of homogeneity (i.e. the existence of a group of transformations acting transitively on C).

A theorem by Koecher and Vinberg describes the algebraic origin of the cones satisfying all the axioms described up to now and a further axiom of self-duality, added by Berthier in [START_REF] Berthier | Geometry of color perception. Part 2: perceived colors from real quantum states and Hering's rebit[END_REF]. In particular it states that C can be identied with the cone of positive elements of a formally real Jordan algebra A (FRJA) of dimension 3. From the classication of FRJAs by Jordan, von Neumann, and Wigner there are only two possible (non isomorphic as FRJAs) choices for A. Let us call them A 1 and A 2 .

The rst case is

A 1 = R ⊕ R ⊕ R, whose positive cone is C 1 = R + × R + × R + .
The second one has two representations, isomorphic as FRJAs, A 2 = R ⊕ R 2 ∼ = H(2, R), the rst representation is called spin ftor, while the second one is the set of the real symmetric matrices 2 × 2. The cone of their positive elements is C 2 = R + × H, where H is a hyperbolic space of dimension 2. In the spin-factor representation C 2 corresponds to the future light-cone of special relativity theory in three dimensions, while in the representation, using symmetric matrices, C 2 = H + (2, R) is the set of real positive denite symmetric matrices 2 × 2.

It is remarkable that this axiomatic approach leads to two models, C 1 and C 2 , that correspond exactly to the two approaches (trichromacy and opponency) described above. In fact classic color spaces, built following the trichromacy approach, like RGB, XYZ etc., can be assimilated to the model C 1 , because they are constructed starting from a set of three primaries. We focus on the study of the second model C 2 , because it has a mathematically more interesting and novel structure compared to the state of the art. More precisely, its structure is representable by adapting the qubit of quantum mechanics (complex case) to the real case, see [START_REF] Berthier | Geometry of color perception. Part 2: perceived colors from real quantum states and Hering's rebit[END_REF], and also corresponds to the future light cone in special relativity theory, see [13,[START_REF] Yilmaz | Color vision and a new approach to general perception[END_REF]. We must stress that this second model contains Hering's opponency mechanism naturally encoded in the two real Pauli matrices. In the algebraic formulation of quantum mechanics the property of self-duality of the cone of positive elements of the FRJA is of fundamental importance, because it permits to intrinsically represent the duality state-observable.

Lüders operations, as it will be detailed in Chapter 5, were introduced in modern quantum information theory to model the quntum stte hnge fter mesurement proedure. In particular they are parametrized by elements of the dual of C 2 , which coincides with C 2 by self-duality, and are stable on C 2 .

A rst application of this novel approach, as it will be detailed in Chapter 7, is the use normalized Lorentz boosts, related to Lüders operations as explained in Chapter 5, as Chromatic Adaptation Transforms (CATs) to perform white balance of a digital images. White balance is an algorithm that emulates the ability of the human visual system to adapt to a colored illumination in a visual scene (yellowish in the rst picture in Figure 2) by seeing the scene as if it was illuminated by white light. It is composed of two steps: the rst consist of the detection CONTENTS of a vector L encoding the illuminant's chromaticity, and the second is the correction of the image using a CAT parametrized by L. Figure 2 shows, respectively, a non-white balanced image, the same image corrected with a classical correction algorithm (von Kries CAT), and the same image corrected using the CAT that we propose.

Figure 2: veft: input image. genter : output image after white balance using the von Kries CAT. ight: output image after white balance using the CAT that we propose. The white balanced images have been obtained using the same illuminant estimation.

The structure of C 2 is particularly rich thanks to the concepts that can be adapted from their analogues in quantum mechanics. In particular, within this framework, a color is not described anymore in terms of coordinates, but it is the outcome of a measurement procedure that can be described mathematically, see Chapters 5 and 6. This allowed us to provide rigorous denitions of the color attributes known in literature. The presence of a set of good denitions in essential e.g. to model known phenomena directly inuencing the way we perceive colors (e.g. Hunt's eect or the lightness onstny phenomenon detailed in Chapter 6). We must stress that there is currently no rigorous justication of these phenomena that can allow, for example, to integrate them into color image processing algorithms.

Furthermore the model suggests some theoretically-based distances like the Hilbert-Klein metric, invariant under chromatic adaptation, or the symmetrized relative entropy, increasing with chromatic adaptation, that could be used to measure color dierences, very useful in applications, e.g. as loss functions for Machine Learning.

The present manuscript is organized in the following way: after a rst chapter about state-of-the art colorimetry, chapters 2,3,4,5,6 provide a description of several aspects of the theoretical model, while chapters 7 and 8 are meant to show the potentiality of this novel approach through applications to color image processing. The thesis outline is detailed below.

In Chapter 1 we provide a short overview of standard colorimetry. The idea is to motivate the presence of our approach dictated by certain necessities and hints present in the literature. In particular we start by briey describing the physiology of color vision with a focus on Hering's opponent mechanism, then we present the mathematical construction of trichromacybased color solids, underlining the fact that Hering's opponent mechanism is not integrated in CONTENTS color solids obtained in this way. We provide an overview of the use of hyperbolic structures in the color science literature and a brief description of the phenomenology of color perception, in particular mentioning perceptual eects, lightness constancy and color constancy, with the aim of stressing the diculties of modeling color perception.

Chapter 2 is about Yilmaz's relativistic model of color perception. In 1962 Yilmaz [START_REF] Yilmaz | On color perception[END_REF][START_REF] Yilmaz | Color vision and a new approach to general perception[END_REF] was the rst to underline the formal analogies between special relativity theory and color perception. Starting from three results that he claimed to be coming from experiments, he deduced that the change of adaptation condition to an illuminant can be modeled using the classic transformations of special relativity theory: Lorentz boosts. As in [124], in this chapter we provide an interpretation and analysis of the feasibility of his experiments and, assuming the experimental outcome to be true, we recast in a more rigorous framework the mathematical procedure that lead to obtain Lorentz boosts to model chromatic adaptation.

In Chapter 3 we start by describing Resniko's [START_REF] Resniko | Dierential geometry and color perception[END_REF] mathematical approach to color perception. In particular he completed the algebraic formulation of his predecessors (started by Grassmann and axiomatized by Schrödinger). Then an overview and the basic denitions of a novel mathematical approach based on the quantum reinterpretation of Resniko's work [START_REF] Berthier | When geometry meets psycho-physics and quantum mechanics: Modern perspectives on the space of perceived colors[END_REF][START_REF] Provenzi | Geometry of color perception. Part 1: Structures and metrics of a homogeneous color space[END_REF][START_REF] Berthier | Geometry of color perception. Part 2: perceived colors from real quantum states and Hering's rebit[END_REF][START_REF] Berthier | From Riemannian trichromacy to quantum color opponency via hyperbolicity[END_REF][START_REF] Berthier | The quantum nature of color perception: Uncertainty relations for chromatic opposition[END_REF] is presented. This new mathematical framework reconciles trichromacy and color opponency mentioned in Chapter 1 and will permit, in the following chapter, to justify on a purely theoretical basis Yilmaz's speculations about the relativistic aspects of color perception, overcoming the issues underlined in Chapter 2.

In Chapter 4, as in [13], we provide a theoretical proof of the experimental outcomes claimed by Yilmaz in the setting of the quantum-like framework introduced in the previous chapter. Novel denitions are introduced in order to incorporate also relativistic phenomena. In particular the concept of chromatic vector is of fundamental importance, since Yilmaz's experiments can be explained in terms of Einstein-Poincaré's addition law between chromatic vectors. Moreover these theoretical results are shown to be coherent with existing experimental data. In this chapter we introduce the theoretically-based Hilbert hyperbolic metric, whose relevance is due to the fact that it expresses a chromatic constancy property with respect to observer changes.

In Chapter 5 we extend the theory presented in Chapter 3 introducing some concepts coming from quantum information theory, among them: quantum eects, post-measurement generalized states, Lüders operations and relative quantum entropy. In this setting a color is not described anymore by a set of three coordinates, but it intended as the outcome of a measurement procedure: in fact it is the post-measurement generalized state obtained from the interaction of an eect and a generalized state. The concepts introduced here are used in Chapter 6 to establish denitions of color attributes within the quantum-like model.

In Chapter 6, as in [14], the quantum-information concepts introduced in the previous chapter are used to elaborate mathematical denitions of color appearance attributes (brightness, lightness, colorfulness, chroma, saturation and hue). Understanding the mathematical expression of color attributes is a fundamental question also because they are involved in the so called color appearance phenomena and because of their high impact on applications. We stress that both problems of nding coordinates to associate to color appearance attributes and a mathematical description of color appearance phenomena are still unsolved and debated topics in the literature. To illustrate the potential of these new system of denitions, a rigorous derivation of the lightness constancy phenomenon, introduced in 1, is provided.
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Chapter 7 is about a rst application of the theoretical model to the problem of white balance in image processing. More specically we show under which particular conditions it is possible to use a normalized Lorentz boost, corresponding to the action of a Lüders operation represented as acting on C(R ⊕ R 2 ), as a chromatic adaptation transform. The rst tests were performed in the conic-shaped state-of-the art HCV color domain, but qualitative evaluations showed that the rendering of red hues was not optimal, in particular they were turning pinkish. Hence we propose two simple modications of the HCV color domain, heuristically integrating Hering's opponency in the hue circle, that give better results. Finally a rst quantitative evaluation of the algorithm in HCV and its modications is provided and compared with respect to the classic von Kries CAT.

Chapter 8 is dedicated to applications to the problem of tone mapping, i.e. the compression of a high dynamic range image. In a rst part, as in [START_REF] Prencipe | Embedding naka-rushton's equation in the geometric setting of möbius transformations[END_REF], we treat a classic tone mapping operator, the so-called Naka-Rushton equation, analyzing it from a geometrical point of view using Möbius transformations. In a second part we propose a work-in-progress tone mapping operator, KTMO, inspired by Klein's disk construction.

In Chapter 9 we conclude the manuscript mentioning some possible future research directions.
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Contributions

This thesis is based upon the following publications, listed chronologically: Journals Chapter 1 About standard colorimetry and related issues Wittgenstein's 182 nd remark on colors states that, when we talk about perceived colors, `we re not onerned with the fts of physis here exept insofr s they determine the lws governing how things pper ', see [START_REF] Wittgenstein | emrks on olour[END_REF]. In [START_REF] Neumann | he omputer nd the rin[END_REF] von Neumann, comparing a computer with the human brain, mentions color as an example of omplex informtion that the brain elaborates.

Colorimetry and color appearance models deal with the issues of measuring, representing and predicting color informtion, in other words they are about understanding the lws governing how colors pper.

The aim of this chapter is to provide a brief introduction to standard colorimetry, color appearance models, color attributes and perceptual phenomena. The idea is to point out the problematic aspects of modeling color perception and, in particular, to focus on the mathematical ideas behind trichromacy-based colorimetry in order to motivate our novel mathematical approach to color, that will be treated in the following chapters. Giving an exhaustive description of the state of the art is out of the purposes of this chapter. Several books treat the mentioned topics in detail, among them [START_REF] Koenderink | erspetives on olour spe[END_REF][START_REF] Koenderink | golor for the ienes[END_REF][START_REF] Fairchild | golor pperne models[END_REF][START_REF] Schanda | golorimetryX understnding the gsi system[END_REF][START_REF] Wyszecky | golor sieneX gonepts nd methodsD quntittive dt nd formulsF tohn iley 8 ons[END_REF][START_REF] Gonzalez | Digital image processing[END_REF][START_REF] Oleari | wisurre il oloreX spettrofotometriD fotometri e olorimetriX (siologi e perezione[END_REF].

In particular we will conclude that our work essentially arises from the necessity of a well-founded mathematical color appearance model based on Hering's opponent mechanism.

An overview of trichromacy-based colorimetry

Physical and perceived colors

Color perception in humans is originated by reected or emitted light spectra, which are superpositions of nite-energy electromagnetic waves with wavelengths in the visual spectrum, usually taken to be the interval Λ = [380, 780], measured in nanometers, and their mathematical representation is given by positive-valued elements of L 2 (Λ), let us call this set L 2 + (Λ) from now on. Thus the space of physical colors is a space of functions corresponding to light spectra having nite energy, represented by their L 2 -norm. Functions with a Dirac-like behavior around a single wavelength are called nrrowEnd light spectra or monochromatic lights.

The fact that light spectra, also called color stimuli, and color senstions are two very distinct concepts has been known since the nineteenth century. Indeed in 1801 Young exposed to the Royal Society his theory about the existence of three portions of cells sensitive to dierent light wavelength in the retina. He formulated this hypothesis on the basis of the work of painters, who could reproduce a huge number of color sensations using only three `priE mry pigments'. More than fty years later, Maxwell formalized the color matching technique which extended the previous result from pigments to light spectra (see later for more details).

An overview of trichromacy-based colorimetry

Maxwell's experimental results were extremely convincing and were a source of inspiration for Helmholtz, who rescued Young's ideas from oblivion and gave them a mathematical formalization. The resulting theory is nowadays called Young-Helmholtz trichromatic model of color perception. It is also important to notice that color matching was also used by Grassmann as an operative way to apply and test his newly discovered equations of what nowadays is called linear algebra.

In mathematical terms, while the space of physical light spectra is an innite dimensional space, that of perceived colors is generally conned in a convex region with nite volume, called olor solid, inside a three-dimensional vector space. About the denition of color solids, in [START_REF] Koenderink | erspetives on olour spe[END_REF], Koenderink and van Doorn make the following considerations: `ht there exist so mny olour solids is lrgely the result of humn fnyF he one feture tht is ommon to @lmostA ll olour solids tht hve een proposed is tht they re onvexD (nite odies with pronouned singulrities t the white nd lk polesF his fetureD t lestD hs (rm roots in olorimetry'.

Nowadays, thanks to physiological evidences, that conrmed Young's hypothesis, we know that the biological reason underlying this huge dimensional reduction is that the variability of our photoreceptors is limited to the three LMS cones (where the letters L,M,S are used to represent the vong, widdle and hort wavelengths corresponding to the three sensitivity peaks of the cone photoreceptors) and that innitely dierent light spectra produce the same LMS outputs, thus igniting the same chain of events that leads to a color sensation. This phenomenon is synthetically referred to as metmerism. As Hardin underlines in [START_REF] Hardin | A new look at color[END_REF] `the eye is very imperfet nlyzer of wvelengths'. It is important to stress that the post-cones visual chain includes the interlacing of LMS signals, mainly performed by ganglion cells, which gives rise to the achromatic plus color opponent encoding that is sent to the visual cortex and which provides the biological explanation of Hering's theory and also its compatibility with trichromacy.

Opponent color theory was introduced by E. Hering in [START_REF] Hering | ur vehre vom vihtsinneX sehs wittheilungen n die uiserlF ekdemie der issenshften in ien[END_REF], in [START_REF] Krantz | Color measurement and color theory: Ii. opponent-colors theory[END_REF] Krantz describes it as follows: `iF rering noted tht olors n e lssi(ed s reddish or greenish or neitherD ut tht redness nd greenness re not simultneously ttriutes of olorF sf we dd inresing mounts of green light to reddish lightD the redness of the mixture deresesD disppersD nd gives wy to greennessF et the point where redness is gone nd greenness is not yet presentD the olor my e yellowishD luishD or hromtiF e spek of prtil hromti equiliriumD with respet to redGgreenF F F imilrlyD yellow nd lue re identi(ed s opponent huesF F F '.

In the following we are going to briey mention the physiological mechanism of opponent neural coding, as summarized in Section 7.1 of [START_REF] Berthier | Geometry of color perception. Part 2: perceived colors from real quantum states and Hering's rebit[END_REF], for further details see [START_REF] Reinhard | golor imgingX fundmentls nd pplitions[END_REF][START_REF] Valois | Neural coding of color[END_REF][START_REF] Dacey | Functional architecture of cone signal pathways. golor visionX prom genes to pereption[END_REF][START_REF] Dacey | The'blue-on'opponent pathway in primate retina originates from a distinct bistratied ganglion cell type[END_REF].

As stated before the vision pipeline starts with the signals obtained by the LMS cone photoreceptors, the physiological basis of trichromacy, while the opponent process takes place later on in the chain, at the level of ganglion cells. These cells receive the input signal from the so-called bipolar and amacrine cells and transmit it to the lateral geniculate nucleus through ganglion axons. Ganglion cells function in the following way: they are activated in case light falls in the center of their receptive elds, while they are inhibited when light falls in the surround of the receptive eld. They are referred to as on-center and o-surround. O-center and on-surround ganglion cells exist as well, and they work in the opposite way.

There are two types of spectral opponent interactions: the rst one produces the L-M and M-L spectral opposition and is obtained by the activity rate of midget ganglion cells of the fovea, while the second one produces the S-(L+M) and (L+M)-S spectral opposition and is given by the activity rate of bistratied ganglion cells. It exists as well another type of spectral non-opponent signal obtained by the activity rate of the parasol ganglion cells, which encodes the L+M and -(L+M) information.

About standard colorimetry and related issues

To underline the fundamental role of opposition in creating the sensation of color, we quote this sentence taken from [START_REF] Valois | Neural coding of color[END_REF]: `st is very misleding to onsider the ones s olor reeptors or give them olor nmes [. . . ] he spei( informtion out olor omes from lterl neurl intertions whih in every se involve omprison of tivity in di'erent reeptors [. . . ] lthough this ft is hidden y tenious old theories nd the ontinued use of olor nmes for reeptor types'.

Hering's opponent process theory for color vision has been conrmed by both physiological and psychophysical evidences. However still a lot of aspects about it remain unclear, e.g. the exact hues involved in the opposition, or how to properly integrate it in the construction of color solids. The latter problematic will be better discussed later on in this chapter.

By colorimetry we mean the science of measuring perceived colors. The snterntionl gommission on sllumintion (CIE, for the french gommission snterntionle de l9Élirge) is the international authority on colorimetry. Its main purpose is to provide standards for light, illumination, color, and color spaces, in order to allow universal color representation and reproducibility for scientic or industrial purposes. Evaluating color perception is an extremely complex task, that can be accomplished only under a very controlled experimental context. Indeed it is impossible to measure colors in an absolute way, many factors come to play, to mention just some: background, illumination, total or partial adaptation to the illumination, the nature of the color stimulus (additive or subtractive) etc. Even xing the viewing conditions it is still challenging to quantify a color stimulus. However evaluating color dierences, under xed viewing conditions, turns out to be a much easier and robust task to accomplish for the human visual system (HVS from now on). This led to the development of the so-called olor mthing experiments. in which a human tester is positioned in a dark room in front of a bipartite eld as in Figure 1.1. The left part contains the light of a reference stimulus, called test, from a projector equipped with a lter (nowadays, most often stimuli come from a computer monitor). On the right, the stimulus comes from the superposition of three lights that the observer can modulate in intensity until the edge between the two parts of the eld vanishes. When this condition is reached the stimuli are said to mth. It has been proven that for some stimuli, color matching is not possible in this conguration. In these particular cases, only two lights are superposed on the right side, and the third one is superposed on the test stimulus. The three lights allowing color match 1.1. An overview of trichromacy-based colorimetry turn out to have the property of being independent, i.e. none of them can be matched by mixing the other two. Any three lights satisfying this feature are called primries.

Wright and Guild in 1928-29 and 1931, respectively, independently carried out two sets of observations (on 10 and 7 observers, respectively) that conrmed and extended Maxwell's experimental ndings: for any test stimulus, three independent lights are necessary and sucient to obtain the match. Either the superposition of three independent lights matches the test stimulus, or the superposition of this stimulus and one of the three lights matches the two remaining lights.

A thorough description of olor solids is beyond the scope of this chapter, in the following we will limit ourselves to describe the mathematical procedure behind trichromatic colorimetry.

Trichromatic colorimetry

In this paragraph we are going to briey recall the widely used CIE construction to perform the dimensional reduction from the space of light stimuli L 2 + (Λ) to a color solid equipped with a coordinate system.

This procedure has been embedded in a rigorous mathematical framework by Krantz in [START_REF] Krantz | Color measurement and color theory: I. representation theorem for grassmann structures[END_REF] and by Dubois in [START_REF] Dubois | The structure and properties of color spaces and the representation of color images[END_REF]. In particular, they used Grassmann's laws [START_REF] Grassmann | Zur Theorie der Farbenmischung[END_REF][START_REF] Wyszecky | golor sieneX gonepts nd methodsD quntittive dt nd formulsF tohn iley 8 ons[END_REF] to give a mathematical structure to the space of light spectra and related it to a cone embedded in a three-dimensional vector space, which they proved to be unique up to a change of basis. Each basis is related to a dierent way of coding metamerism. In [START_REF] Krantz | Color measurement and color theory: I. representation theorem for grassmann structures[END_REF], Krantz denes what he calls code in the following way: fy olor ode @or olor mehnism in the sense of tilesD IWTUA we men some response or funtion tht suserves olor disrimintion9. In other words he calls olor ode, or just ode each coordinate system in a three-dimensional vector space induced by three linearly independent functions of L 2 + (Λ).

Let us describe the CIE procedure properly. Let C ∈ L 2 + (Λ) be a color stimulus and S i , i = L,M,S, be the spectral sensitivity functions of the LMS cones. The one tivtion oe0ients related to C are

α i (C) = Λ C(λ)S i (λ)dλ, i = L,M,S (1.1.1)
and the set of triplets (α i (C)) i=L,M,S , as C varies in the space of color stimuli, is called the LMS space. CIE switched the interest away from the LMS space by xing three primaries P k and by dening the tristimulus vlues of C associated to them, denoted with T k (C), as the three scalar coecients that permit to combine the primaries P k in order to color match C, i.e. those satisfying the following equation

α i (C) = 3 k=1 T k (C) Λ P k (λ)S i (λ)dλ = 3 k=1 T k (C)α i (P k ), (1.1.2) 
where i = L, M, S and α i (P k ) are the cone activation coecients related to the primaries P k , with k = 1, 2, 3, obtained as in Equation (1.1.1). CIE dened the so-called olor mthing funtions, T k : Λ → R as those satisfying 

T k (C) = Λ C(λ)T k (λ)dλ, k = 1, 2, 3. ( 1 

About standard colorimetry and related issues

As we are going to see, the possibility to modify the basis of functions accordingly to dierent needs has been exploited in several occasions. In the following we are going to start mentioning two relevant classic examples of curves proposed by the CIE, that led to the RGB and XYZ color spaces.

In 1931, CIE dened the `standard observer' by xing the so-called Wright primaries, see e.g. [START_REF] Wyszecky | golor sieneX gonepts nd methodsD quntittive dt nd formulsF tohn iley 8 ons[END_REF], or, equivalently, a set of three specic color matching functions denoted with r, ḡ, b, see Figure 1.1 (a). The associated tristimulus values are the elements of the famous CIE RGB space, used e.g. in [START_REF] Koenderink | Opponent color coding: A mechanistic model and a new metric for color space[END_REF]. It is important to stress that this basis is obtained from three physical primaries which has no perceptual meaning, in the sense that there is no dierentiation between the three coordinates, all of them are of the same kind.

Not pleased with the negative lobe of r, CIE modied the primaries and dened other, completely positive, color matching functions, denoted with x, ȳ, z, depicted in Figure 1.1 (b), giving rise to the equally famous CIE XYZ space, in which Y plays the role of `luminance', an attribute roughly associated with the intensity of a color stimulus, which can then be seen as an achromatic component. Indeed the color matching function ȳ is more or less the normalized S M . However there is no such perceptual interpretation of the two other tristimulus values X,Z. This is due to the fact that this basis is obtained from the selection of three virtual primaries, and it does not allow to describe perceptual features. Nevertheless, CIE XYZ is widely used, see e.g. [START_REF] Judd | Ideal color space[END_REF][START_REF] Silberstein | Investigations on the intrinsic properties of the color domain[END_REF][START_REF] Schelling | Concept of distance in ane geometry and its applications in theories of vision[END_REF]. Most of the state of the art color solids, as e.g. HSL, HSV, HSI, LCh(ab), LCh(uv) and so on, do actually rely on the dimension reduction performed with respect to these two examples of color matching functions, and are then obtained by, not always perceptually justied, manipulations of the RGB or XYZ coordinates. It is really important to stress that with this setting the starting point is a color space that is trichromacy-based, in the sense that it is built from three information that are all of the same kind. Integrating Hering's opponent mechanism a posteriori (like in the CIELab color space), on a space which is intrinsically trichromatic is extremely complicated.

The choice of a basis, with respect to which one performs the dimension reduction, is arbitrary and is obtained in dierent ways in literature.

1.1. An overview of trichromacy-based colorimetry Lenz et al. in [99,[START_REF] Lenz | The hyperbolic geometry of illumination-induced chromaticity changes[END_REF] and as well Buchsbaum et al. in [START_REF] Buchsbaum | Trichromacy, opponent colours coding and optimum colour information transmission in the retina[END_REF] make use of a principal component analysis (PCA) on a database of light spectra to obtain the basis with respect to which perform the reduction. Clearly the PCA procedure depends on the adopted dataset. It is interesting that in both cases the curves obtained with this technique seem to go in the direction of representing two degrees of opponency and an achromatic information.

There are some other interesting choices of basis functions in literature, made with the intent of translating Hering's opponent mechanism in the coordinates system of the color solid and thus to dierentiate what is perceptually considered as achromatic from what is chromatic. Drösler in [START_REF] Drösler | Color similarity represented as a metric of color space[END_REF] denes a color solid using as basis the Gaussian, which minimizes the uncertainty principle, and its two rst moments, for more details see [START_REF] Papoulis | he pourier integrl nd its pplitions[END_REF]. Yilmaz also makes the same choice in Section 4 of [START_REF] Yilmaz | Color vision and a new approach to general perception[END_REF]. He remarks that `his three sensitivity funtions eome the (rst three eigenfuntions of liner hrmoni osilltor '. He calls ᾱ, β the rst two moments of the linear harmonic oscillator, representing the theoretical opponent sensitivity functions (redgreen and yellow-blue respectively). The brightness sensitivity function γ, representing the theoretical achromatic information, is a Gaussian, with maximum around the green part of the visual spectrum at 552 nm, vanishing at 400 nm and 800 nm. An explicit expression of the sensitivity curves proposed by Drösler and Yilmaz, plotted in Figure 1.3, is the following:

ᾱ(λ) = - √ 2u(λ)e -u(λ) 2 2 , β(λ) = - 1 √ 2 (2u(λ) 2 -1)e -u(λ) 2 2 , γ(λ) = e -u(λ) 2 2 , (1.1.4)
where u(λ) = 7500( 1 λ -1 552 ). In [START_REF] Yilmaz | Color vision and a new approach to general perception[END_REF] Yilmaz underlines the similarity of the proposed theoretical curves with experimental curves of Hering's opponent theory. A remarkable experimental work with the objective of quantifying Hering's opponent mechanism was realized in the 50 s by the couple of scientists Jameson and Hurvich in a series of articles [START_REF] Hurvich | Some quantitative aspects of an opponent-colors theory. i. chromatic responses and spectral saturation[END_REF][START_REF] Hurvich | Some quantitative aspects of an opponent-colors theory. ii. brightness, saturation, and hue in normal and dichromatic vision[END_REF][START_REF] Hurvich | Some quantitative aspects of an opponent-colors theory. iii. changes in brightness, saturation, and hue with chromatic adaptation[END_REF][START_REF] Hurvich | Some quantitative aspects of an opponent-colors theory. iv. a psychological color specication system[END_REF] entitled ome quntittive spets of n opponentEolors theory. In particular, in [START_REF] Hurvich | Some quantitative aspects of an opponent-colors theory. ii. brightness, saturation, and hue in normal and dichromatic vision[END_REF], they proposed experimentally based reE sponse urves for color opponency obtained via hue cancellation experiments. They propose two sensitivity functions corresponding to the red-green and yellow-blue chromatic response, respectively. Let us call them rg, yb. They are given as linear combinations of the color matching functions x, ȳ, z as follows:

rg(λ) = 1.0065x(λ) -1.0006ȳ(λ) -0.0051z(λ) yb(λ) = -0.0039x(λ) + 0.3998ȳ(λ) -0.3999z(λ)
.

(1.1.5)

1. About standard colorimetry and related issues Coherently with what Yilmaz stated in [START_REF] Yilmaz | Color vision and a new approach to general perception[END_REF], the sensitivity curves ᾱ, β, γ, actually qualitatively look like e.g. the functions rg, yb, ȳ, where ȳ comes from the CIE color matching functions x, ȳ, z, see Figures 1.3, 1.4 and 1.1 (b). In Chapter 9 we will talk about the idea of using the functions rg, yb, ȳ to dene an opponent color solid.

As Jameson and Hurvich stress in [START_REF] Hurvich | Some quantitative aspects of an opponent-colors theory. iii. changes in brightness, saturation, and hue with chromatic adaptation[END_REF], this kind of curves are obtained under xed adaptation condition to neutral illuminant. Hence they might change under adaptation to dierent illumination conditions. It is important to stress that all the color solids in literature have this feature: they were built under xed conditions, thus it is not correct to use them to describe colors perceived under other viewing conditions. As Fairchild states in [START_REF] Fairchild | golor pperne models[END_REF], citing note 6 on the CIELAB space from CIE publication 15.2: `hese spes re intended to pply to omprisons of di'erenes etween ojets olours of the sme size nd shpeD viewed in identil white or middleEgrey surroundingsD y n oserver photopilly dpted to (eld of hromtiity not too di'erent from tht of verge dylight'. This is the main reason that led to the development of color appearance models, which will be briey discussed in Section 1.3.

Chromaticity diagrams

The color solid is not a useful or intuitive representation to identify perceived colors, this is the reason that led to the introduction of the concept of hromtiity digrm. As stated by its name, a chromaticity diagram, is a two-dimensional area which contains the chromatic features of a perceived color, which are supposed to be perceptually easier to identify. This identication should be performed through attributes that are `perceptually friendly', like Munsell's ones: hue and chroma or hue and saturation, see Section 1.3 about color attributes.

The concept of chromaticity diagram was rstly introduced by Maxwell in his Cambridge years (1850-1856). Dening a chromaticity diagram in a three-dimensional space of perceived colors means, implicitly, stating that the chromatic part of a perceived color has dimension 2, thus that there exists a mono-dimensional achromatic color coordinate. The chromatic part of a perceived color is isolated by discarding in some sense the achromatic part. Given a certain 1.1. An overview of trichromacy-based colorimetry color solid the construction of the chromaticity diagram is as arbitrary as the choice of the basis of functions, mentioned in at the end of the previous section, to construct the color solid. It is essentially an operation of dimensional reduction from 3 to 2 and there is not an unique way to perform it. The most common way used in literature is through a normalization of the coordinates. The choice of the normalizing factor as well as the two coordinates to normalize, however, still remains arbitrary.

A typical example is how the CIE dened the chromaticity coordinates in the XYZ space as x = X/(X + Y + Z), y = Y /(X + Y + Z), z = Z/(X + Y + Z) and dened the color space xyY as the set of all chromaticity coordinates (x, y) together with the luminance Y of all color stimuli. The choice of the plane (x, y) is arbitrary, we could have chosen analogously the coordinates (x, z) for instance. Other classic CIE chromaticity diagrams were obtained applying Möbius transformations to the xy coordinates, such as CIE 1960 UCS (Uniform Color Space) whose coordinates are called uv and CIE 1976 UCS with u v coordinates. Figure 1.5 shows CIE xy, uv and u v chromaticity diagrams. The idea of these successive deformations of the xy chromaticity diagram was one hand to transform MacAdam ellipses into circles all of the same size, on the other hand to have a radial and angular coordinate more similar to perceived saturation and hue. Both problems will be treated in the following sections. Notice that in none of these chromaticity diagrams Hering's opponency is present. Drösler in [START_REF] Drösler | Color similarity represented as a metric of color space[END_REF] was the rst one to interpret this standard procedure of normalization in terms of projetive geometry. Indeed those kind of normalizations can be seen as dierent choices of ane charts of a projective space of dimension 2. In his paper Drösler justies his choice of a particular chromaticity diagram stating that it is not restrictive, since dierent planes are mathematically equivalent. Indeed, given two projective planes, it always exists a projective transformation, i.e. cross-ratio preserving (as we will see in Chapter 3, this implies that it preserves the Klein metric), that maps one into the other.

Constructing a proper perceptual chromaticity diagram is problematic. Indeed, to do that, we need to postulate the existence of an achromatic information, expressed in the coordinates of the color solid * , to nd a privileged normalization. Thence we can correctly isolate the chromatic part of a perceived color or, equivalently, eliminate its achromatic part, through a division by this achromatic coordinate. Lenz, in [START_REF] Lenz | The hyperbolic geometry of illumination-induced chromaticity changes[END_REF], constructs his chromaticity diagram in this way. Nevertheless many of the chromaticity diagrams adopted in literature lack of 1. About standard colorimetry and related issues perceptual pertinence, i.e. they are not constructed by discarding what they do identify as achromatic information.

The concept of perceptual pertinence of a chromaticity diagram is controversial, not just because of the dicult procedure of identifying and discarding the achromatic coordinate, but also the chromatic coordinates are problematic. Ideally, the radial and angular coordinate should correspond to perceived saturation (or chroma, in some cases) and hue. However, as we will see in the following sections, there is no clear correspondence between these perceptual attributes and existing chromaticity coordinates, and the interdependence phenomena between these two perceptual attributes are not fully understood.

Evidences of hyperbolic structures in color science

Several works in literature suggest the underlying intrinsic hyperbolic nature of color spaces. Most of them, based on the intuition that Euclidean geometry is not suitable to describe color dissimilarity , propose new hyperbolic color metrics dened on existing color solids or chromaticity diagrams. This subsection is about the state of the art on the use of hyperbolic structures in color science, as presented in Section 1.1 of [13].

There are two main experimental facts that suggest the hyperbolic nature of color: MacAdam ellipses and the hue super importne phenomenon pointed out by Judd.

The rst phenomenon was discovered in 1942 by MacAdam: in [START_REF] Macadam | Visual sensitivities to colour dierences in daylight[END_REF] he showed that the justEnotiele di'erene, JND from now on, contours in the CIE xy chromaticity diagram are not circles, as one would expect if the perceptual distance were Euclidean, but are much better approximated by ellipses, see Figure 1.6. In other words the colors inside an ellipse are indistinguishable to an average observer. This work had an immediate inuence on Silberstein, who, in his 1943 paper [START_REF] Silberstein | Investigations on the intrinsic properties of the color domain[END_REF], dened a perceptual hyperbolic metric, i.e. a perceptual line element, from the MacAdam ellipses i.e. he searched for a metric dened on the CIE 1931 xy chromaticity diagram, with respect to which MacAdam ellipses are circles of the same radius.

MacAdam's work also impacted von Schelling: in the 1956 paper [START_REF] Schelling | Concept of distance in ane geometry and its applications in theories of vision[END_REF] he proposed the rst, up to our knowledge, explicit hyperbolic metric, with the aim of approximating the MacAdam ellipses. CIELab itself was a color space built with the purpose of deforming XYZ in such a way to transform MacAdam ellipses into circles, and as well the CIE uv and u v chromaticity diagrams.

A further evidence in favor of the non-Euclidean nature of a perceptual color metric was provided by Judd in 1970 [START_REF] Judd | Ideal color space[END_REF]: an experimental setup to implement von Helmholtz's line element theory showed that the JND of chroma is larger than the JND of hue, i.e. that humns re more sensitive to hnges in hue thn in hrom. To describe this phenomenon, Judd coined the term superEimportne of hue di'erenes, also known as hue superEimportne. This work inspired Farup and Nölle et al. Farup,[START_REF] Farup | Hyperbolic geometry for colour metrics[END_REF], proposed to equip the a * b * chromaticity diagram of the CIELab space with the Poincaré metric, showing that this is coherent with both MacAdam's and Judd's results. Nölle et al.,[START_REF] Nölle | H2si-a new perceptual colour space[END_REF] dened a new space that takes into account perceptual attributes in the choice of the coordinates and the hue super-importance. Their color solid is a three-dimensional complex manifold embedded in a four-dimensional complex vector space. The Euclidean metric of the four-dimensional complex space turns to be hyperbolic if expressed in the coordinates parametrizing the three-dimensional manifold.

Up to our knowledge, all the evidences lead to hyperbolic geometry and not to other non-Euclidean geometries.

The term JND, as dened e.g. in Chapter 1 of [START_REF] Provenzi | gomputtionl golor ieneX ritionl etinexElike wethods[END_REF], generally refers to `the least perceptible intensity change' of a stimulus. Some authors [START_REF] Schelling | Concept of distance in ane geometry and its applications in theories of vision[END_REF][START_REF] Yilmaz | On color perception[END_REF][START_REF] Koenderink | Opponent color coding: A mechanistic model and a new metric for color space[END_REF] dened the hyperbolic metric on the whole three-dimensional color solid, but the great majority of them, especially the most recent ones, focus on the problem of dening a metric on the chromaticity diagram that they have constructed. While the CIExy chromaticity diagram is sometimes tacitly assumed to inherit the Euclidean metric, several hyperbolic proposals have been done in literature, introduced with dierent justications.

Evidences of hyperbolic structures in color science

Two main dierent approaches can be identied: a rst one more conceptually-based on Weber-Fechner's law, a second one more empirical.

Silberstein, in 1938, pursuing the line element method initiated by von Helmholtz in [START_REF] Helmholtz | Kürzeste Linien im Farbensystem (shortest lines in the color system). itzungserihte der reussishen ekdemie der issenshften zu ferlin[END_REF], theorized in [START_REF] Silberstein | Investigations on the intrinsic properties of the color domain[END_REF] that a perceptual metric on an abstract projective chromaticity diagram should not be Euclidean if one assumes Weber-Fechner's law to hold, i.e.

∆S = k ∆I I , (1.2.1)
where ∆S is the JND in brightness sensation provoked by the modication of light intensity ∆I w.r.t. a xed background intensity I, k being a positive real constant. Notice that Weber-Fechner's law says that the line element must be invariant w.r.t. homothetic transformations. Starting from this statement, Drösler in [START_REF] Drösler | Color similarity represented as a metric of color space[END_REF][START_REF] Drösler | The invariances of weber's and other laws as determinants of psychophysical structures. qeometri representtions of pereptul phenomen[END_REF] got the intuition that the space of perceived colors is projective. In particular he stated that Weber-Fechner's law in dimension 1 represents a projective line element that can be generalized to the whole three-dimensional space in [START_REF] Drösler | The invariances of weber's and other laws as determinants of psychophysical structures. qeometri representtions of pereptul phenomen[END_REF] and to the chromaticity diagram in [START_REF] Drösler | Color similarity represented as a metric of color space[END_REF]. On this last, because of its projective nature, the metric turns out to be the Klein metric. Indeed, as we will see in Chapter 3, Klein's metric can be expressed as function of the cross-ratio, i.e. the only projective invariant, hence this metric is preserved under projective transformations and it is a natural metric for a projective structure.

Koenderink and his collaborators in [START_REF] Koenderink | Opponent color coding: A mechanistic model and a new metric for color space[END_REF] implement Weber-Fechner's law in the RGB color coordinates and come up to a Klein-like metric as Drösler. This means that implementing 1. About standard colorimetry and related issues Weber-Fechner's law is equivalent to have a projective model and metric. Koenderink and his collaborators [START_REF] Koenderink | Opponent color coding: A mechanistic model and a new metric for color space[END_REF] have actually an hybrid approach (both conceptual and empirical), because some parameters in the metric that they propose are set to t with the Bezold-Brüke eect, i.e. the perceptual change in hue when the intensity of a color stimulus is modied, see also Chapter 10 of Koenderink's book [START_REF] Koenderink | golor for the ienes[END_REF] and Section 1.3. Without proposing a metric as such, Ennis and Zaidi have also shown in [START_REF] Ennis | Geometrical structure of perceptual color space: mental representations and adaptation invariance[END_REF] that experiments on perceptual barycenters in several state-of-the art color spaces lead to the consideration that their results do not t with Euclidean geometry and suggest the use of a hyperbolic one.

To conclude, many authors, in dierent ways, came up to the conclusion that a hyperbolic metric is a pertinent distance to measure perceptual dissimilarity. However nowadays the Euclidean distance is still widely used in many applications, mostly for reasons of computational convenience more than perceptual pertinence.

Phenomenology of color perception

In Section 1.1, talking about color solid and chromaticity diagrams, we started describing colors in terms of coordinates, the tristimulus values like RGB, XYZ, and attributes, hue, saturation etc. In this section we are going to introduce the state-of-the art glossary of color perceptual attributes and briey underline the problems caused by the attempt of turning them into coordinates of practical color solids. Most of these problems are due to two main reasons: the fact that it is not clear whether it is possible to associate a perceptual attribute to a color solid's coordinate and the interdependence between perceptual color attributes. Interdependence phenomena, known in literature as perceptual eects, fall in the category of the so-called color appearance phenomena. We are going to mention some of the most wellknown color appearance phenomena, focusing in particular on the ones that will be described in the framework of our model in the following chapters. The conclusion that color solids are not enough to describe color appearance phenomena led to the development of color appearance models. An excellent reference for the topics mentioned in this section is Fairchild's book [START_REF] Fairchild | golor pperne models[END_REF].

Color appearance attributes

The following list provides the ocial denitions, that we quote vertim, of color perceptual attributes, see e.g. Chapter 6 (page 487) of [START_REF] Wyszecky | golor sieneX gonepts nd methodsD quntittive dt nd formulsF tohn iley 8 ons[END_REF], Chapter 4 of [START_REF] Fairchild | golor pperne models[END_REF], or the ocial website https://cie.co.at/e-ilv.

golor : is that aspect of visual perception by which an observer may distinguish dierences between two structure-free elds of view of the same size and shape, such as may be caused by dierences in the spectral composition of the radiant energy concerned in the observation. elted olor : it is a color perceived to belong to an area or object seen in reltion to other olors. nrelted olor : it is a color perceived to belong to an area or object seen in isoltion from other olors. rue: is the attribute of a color perception denoted by blue, green, yellow, red, purple and so on. nique hues are hues that cannot be further described by the use of the hue names other than its own. There are four unique hues: red, green, yellow and blue. The hueness of a color stimulus can be described as combinations of two unique hues; for 1.3. Phenomenology of color perception example, orange is yellowish-red or reddish-yellow. Nonunique hues are also referred to as inry hues.

ghromti olor : it is a color perceived possessing hue. ehromti olor : it is a color perceived devoid of hue.

frightness: attribute of a visual sensation according to which an area appears to be more or less intense; or, according to which the area in which the visual stimulus is present appears to emit more or less light. Variations in brightness range from right to dim.

vightness: attribute of a visual sensation according to which the area in which the visual stimulus is presented appears to emit more or less light in proportion to that emitted by a similarly illuminated area perceived as a white stimulus. In a sense, lightness may be referred to as reltive rightness. Variations in lightness range from light to drk. golorfulness: attribute of a visual sensation according to which the perceived color of an area appears to be more or less chromatic.

ghrom: attribute of a visual sensation which permits a judgment to be made of the degree to which a chromatic stimulus diers from an achromatic stimulus of the same brightness. In a sense, chroma is reltive olorfulness. turtion: attribute of a visual sensation which permits a judgment to be made of the degree to which a chromatic stimulus diers from an achromatic stimulus regardless of their brightness.

In [START_REF] Fairchild | golor pperne models[END_REF], the relationship between some of the attributes dened above is resumed in the following intuitive equations:

Lightness = Brightness Brightness(White) , (1.3.1) 
where `White' refers of course to a surface that is perceived as white.

Chroma = Colorfulness Brightness(White) , (1.3.2) Saturation = Colorfulness Brightness . ( 1 

.3.3)

There exist analytical formulae to express attributes as hue, saturation, chroma and so on both in the classical CIE spaces and in the color appearance ones, see e.g. [START_REF] Wyszecky | golor sieneX gonepts nd methodsD quntittive dt nd formulsF tohn iley 8 ons[END_REF][START_REF] Gonzalez | Digital image processing[END_REF], which gave rise to a plethora of color spaces, as e.g. HSL, HSV, HSI, LCh(ab), LCh(uv) and so on. All of them were built in the attempt of associating a coordinate in a color solid to a perceptual attribute. An example is given by the dierent achromatic coordinates used in literature, see e.g. [START_REF] Smith | Color gamut transform pairs. egw iggrph gomputer qrphis[END_REF], usually obtained as arbitrary combinations of the XYZ or RGB tristimulus values.

They are examples of achromatic coordinates which are supposed to represent a perceived achromatic attribute, but indeed it is even not clear whether they are representing perceived brightness or lightness.

One of the main problems about currently used color spaces is the fact that color attributes (or coordinates) interdependence is not fully understood. We must stress that there is a difference between interdependence of perceptual color attributes and interdependence of color coordinates. While the rst type of interdependence is a perceptual phenomenon, the second 1. About standard colorimetry and related issues one is aected by the (arbitrary) way a certain color coordinate of a color solid (e.g. H in HSV) was associated to a perceptual color attribute (e.g. perceived hue as in the glossary above). Of course the rst type inuences the second one, and both of them aect applications. Talking about intrinsic interdependence of the perceptual attributes, means describing perceptual eects, see the next subsection.

As regards the interdependence of color coordinates in current color solids, in [START_REF] Ottosson | e pereptul olor spe for imge proessingF eville t httpsXGG ottossonFgithuFioG postsG oklG[END_REF], Ottosson provides several concrete examples similar to the ones depicted in Figure 1. [START_REF] Ottosson | e pereptul olor spe for imge proessingF eville t httpsXGG ottossonFgithuFioG postsG oklG[END_REF], some state-of-the art color spaces, having coordinates representing hue, saturation (or chroma) and an achromatic coordinate, are considered. The depicted color gradients have been obtained xing the hue to blue (the blue of RGB coordinates (0, 0, 255) represented in each color space) and letting vary the other two coordinates. One can clearly see that, although the hue coordinate was xed to blue, in some cases clear hue-shifts towards purple appear. Figure 1.8: Let us consider again some state-of-the art color spaces where one can identify the hue coordinate. One can create hue gradients as follows: xing all the other coordinates and letting vary the hue uniformly. Notice that even if the hue was varying uniformly in some cases clearly the perceived hue is not varying uniformly, e.g. in the case of HSV there is some kind of `acceleration' around the zones of yellow, cyan and magenta. One might say as well that e.g. even if the other coordinates (achromatic and saturation or chroma) were xed, the perceived saturation or lightness is not the same for every part of the gradient.

These kind of phenomena have a high impact on color image processing algorithms, e.g. for color enhancement purposes, if the aim is to desaturate an oversaturated image, we do not want to have hue shifts in doing so, as in the example of Figure 1.7.

Color appearance phenomena

Perceptual eects

Perceptual eects are due to interdependence relations between perceived color appearance attributes. In some cases they are caused as well by mismatches with their physical counterparts (e.g. dominant wavelength or luminance of a light stimulus). Here we are going to briey mention some ot them.

The Bezold-Brüke eect proves that the common assumption for which the hue of a perceived color can be described by the dominant wavelength of the visual stimulus is wrong. In fact, the so-called Bezold-Brüke hue shift shows that when a monochromatic stimulus is observed while changing its luminance, the hue perception does not remain constant.

Phenomenology of color perception

The Abney eect establishes that mixing a monochromatic light with an achromatic one, in order to decrease its physical colorimetric purity, leads to a modication of the perceived hue.

As observed in chapter 6 of [START_REF] Fairchild | golor pperne models[END_REF], the Helmholtz-Kohlrausch eect, HK eect from now on, is another demonstration of the inadequacy of standard colorimetry to t color appearance phenomena. In fact, the Y coordinate of the XYZ space agrees with the luminance of a stimulus and it is erroneously assumed to be a direct estimate of perceived brightness. However, the HK eect shows that, even when two light stimuli have the same luminance, some appear brighter than others, see Figure 1.9. In particular, colored lights tend to appear brighter to human observers than achromatic light. The HK eect is particularly visible at high luminance levels. The Hunt eect states that colorfulness increases with brightness. In [START_REF] Berthier | Hunt's colorimetric eect from a quantum measurement viewpoint[END_REF][START_REF] Berthier | Quantum measurement and colour perception: theory and applications[END_REF] Berthier and Provenzi provided a mathematical explanation of the Hunt eect, using the tools that will be introduced in Chapters 3 and 5.

Lightness constancy

We are going to describe a bit more in detail the lightness constancy phenomenon, as in [14], since in Chapter 6 we will provide an explanation of this phenomenon within our novel framework.

In order to x the ideas, we wish to quote the following description of lightness constancy oered by [START_REF] Krantz | Interactive sensation laboratory exercises (isle)[END_REF]: `vightness onstny refers to the oservtion tht we ontinue to see n ojet in terms of the proportion of light it re)ets rther thn the totl mount of light it re)etsF ht isD gry ojet will e seen s gry ross wide hnges in illumintionF e white ojet remins white in dim roomD while lk ojet remins lk in wellElit roomF sn this senseD lightness onstny serves similr funtion s olor onstny in tht it llows us to see properties of ojets s eing the sme under di'erent onditions of lightingF gonsider n ojet tht re)ets PS7 of the light tht hits its surfeF his ojet will e seen s rther drk gryF sf we leve it in dim room tht reeives only IHH units of lightD it will re)et PS7 units of lightF roweverD if we ple it in room tht is etter litD it will still re)et the sme PS7F sf there re now IDHHH units of lightD it will re)et PSH units of lightF fut we still see it s pproximtely the sme gryD despite the ft tht the ojet is re)eting muh more lightF imilrlyD n ojet tht re)ets US7 of mient light will e seen s light gry in the dim roomD even though it re)ets less totl light thn it does in the right roomF husD lightness onstny is the priniple tht we respond to the proportion of light re)eted y n ojet rther thn the totl light re)eted y n ojet'.

To visually illustrate the dierence between lightness and brightness judgment, let us consider the scene depicted in Figure 1.10: the horizontal stripes of the building on the left and on the right of the yellow entrance are built with the same material, thus they have the 1. About standard colorimetry and related issues same reectance, however, some parts are exposed to sunlight and some other are not, due to the shadow projected by the tree.

If we had to make a rightness judgment, we would describe them as brighter and dimmer, respectively. Instead, if we had to express a lightness judgment, we would state that all of them are `white', implicitly meaning that the parts directly hit by sunlight and those covered by the tree shadow would pper identil if they were lit in the sme wy. This is an instance of the lightness constancy property of the human visual system.

The same analysis can be repeated for the parts of the yellow entrance covered or not by the tree shadow. So, thanks to lightness constancy, an observer would exclude the possibility that the part of horizontal stripes or the entrance in shadow are painted with a darker shade of gray or yellow, respectively, but that the perceptual dierence is merely due to a dierent intensity in the lighting condition. The psycho-physiological reasons underling lightness constancy are still debated; we refer the reader to e.g. [START_REF] Ebner | Color constancy[END_REF] for further information.

Color constancy

The chromatic counterpart of lightness constancy is called olor onstny, i.e. the (imperfect) robustness of the human visual system to describe perceived colors with the same chromatic attributes in spite of changes in the spectral composition of the illuminant. It is due to the phenomenon of chromatic adaptation to the illumination conditions. The famous `Mondrian experiments' discussed in [START_REF] Land | Lightness and Retinex theory[END_REF] provide a proof of this property: two patches with identical reectance and same surround, placed in dierent parts of a Mondrian-like tableau are lit in very dierent ways with the declared purpose of inducing two dierent color sensations to an observer. However, in spite of that, the two patches are still reported to be perceived with the same color. We quote a clear example of chromatic adaptation, provided by Fairchild in [START_REF] Fairchild | golor pperne models[END_REF]: `onsider piee of white pper illuminted y dylightF hen suh piee of pper is moved to room with inndesent lightD it still ppers white despite the ft tht the energy re)eted from the pper hs hnged from predominntly lue to predominntly yellow '.

In the following chapters we will come back discussing about this phenomenon, in particular in Chapter 7 we will talk about computational color constancy and chromatic adaptation transforms.

1.4. Conclusion: the need of a mathematical model for color opponency

Conclusion: the need of a mathematical model for color opponency

Tristimulus-based colorimetry works well for color matching under xed and very restrained viewing conditions, but fails at predicting color appearance, and does not deal well with a correct description of perceptual attributes and their related phenomena. The term olor pperne model was introduced by CIE referring to any model that tries to overcome these limitations, taking into account viewing conditions and color appearance phenomena. Existing color appearance models aim at enriching color solids structures, e.g. adding parameters specifying the vision conditions, rather than questioning the way they were built, see Chapter 10 of [START_REF] Fairchild | golor pperne models[END_REF].

In [START_REF] Koenderink | The structure of colorimetry[END_REF], Koenderink and van Doorn describe the current state of the art on colorimetry as follows: `es the (eld is presented in the stndrd texts it is somewht of hmer of horrorsX olorimetry proper is hrdly distinguished from lrge numer of elortions @involving the notion of luminne9 nd of solute olor judgments for instneA nd tretments re domiE nted y virtully d ho de(nitions @full of mgil numers nd ritrrily (tted funtionsAF e know of no text where the essentil struture is presented in len fshionF erhps the est textook to otin notion of olorimetry is still foum9s of the lte IWRH9s'.

In the previous sections we have seen that ritrry hoies are present at many dierent levels in classic trichomacy-based colorimetry: from the choice of the basis of functions with respect to which perform the reduction, to the construction of chromaticity diagrams, to the association of color coordinates to perceptual attributes.

Another fundamental aspect is the way Hering opponent mechanism is (not) taken into account. In current color solids and chromaticity diagrams Hering opponent mechanism is most of the times absent, and, when present, it is added a posteriori, often in an arbitrary way, and it is not part of the mathematical construction of the color solid or of the chromaticity diagram, which is still trichromacy-based. Indeed all the current color solids are based on a reduction procedure with respect to three primaries which are all of the same kind, the split between chromaticity diagram and achromatic information, when present, is always added a posteriori.

The construction of chromaticity diagrams itself is controversial. As we have seen in Section 1.1 one needs to postulate the existence of a perceptual achromatic attribute and then associate it to a color coordinate to be discarded via a normalization procedure. In [START_REF] Koenderink | erspetives on olour spe[END_REF] Koenderink and Van Doorn question even the need of a perceptual achromatic attribute. Indeed, they describe luminance as ` purely forml entity', moreover they say that `it doesn9t hve ny mening in terms of the pereptul ttriutes of pthesF sn this hpter we will ignore the topi of luminne ltogetherY in our opinion @nd in full greement with hrödinger9s elegnt tretment IQVAD it doesn9t elong to olorimetry proper '.

Concerning hyperbolicity, in Section 1.2 we have seen that hyperbolic structures proposed in literature are, as Hering's mechanism, added a posteriori on trichromacy-based color solid, and often only justied by the aim of tting MacAdam or Judd's data. We will see, in Chapter 3, that, in our formulation, the Hibert-Klein hyperbolic metric arises from the theoretical model.

To resume: the mathematical construction behind tristimulus-based colorimetry does not naturally contain Hering's opponent mechanism, nor has hyperbolic features. Our work aims at proposing a mathematical framework coherently integrating all this aspects.

About standard colorimetry and related issues

The main paradigm shift that we propose lies in the fact that the measurement procedure is fundamental in the search for color information, thus we should not model colors in terms of coordinates, but interpreting color information as the result of a measurement procedure by the HVS. Motivations of our approach will be explained in detail in Chapter 3, here we limit ourselves to quote the words of B. Russell [START_REF] Russell | he prolems of philosophy[END_REF] and P.A.M. Dirac [START_REF] Dirac | he riniples of untum wehnis[END_REF].

Russell's: `henD in ordinry lifeD we spek of the olour of the tleD we only men the sort of olour whih it will seem to hve to norml spettor from n ordinry point of view under usul onditions of lightF fut the other olours whih pper under other onditions hve just s good right to e onsidered relY nd thereforeD to void fvoritismD we re ompelled to deny thtD in itselfD the tle hs ny one prtiulr olour '.

Dirac's: iene is onerned only with oservle things nd tht we n oserve n ojet only y letting it intert with some outside in)ueneF en t of oservtion is thus neessry ompnied y some disturne of the ojet oserved4, and also: uestions out wht deides the photon9s diretion of polriztion when it does go through nnot e investigted y experiment nd should e regrded s outside the domin of siene9.

Citing Hardin [START_REF] Hardin | A new look at color[END_REF] again: `st is time for new look t olorD tken from the perspetive of the opponent proess theory'. Yilmaz's relativistic model Yilmaz's papers [START_REF] Yilmaz | Color vision and a new approach to general perception[END_REF][START_REF] Yilmaz | On color perception[END_REF] belong to a surprisingly rich list of contributions to color theory by theoretical physicists. One of the founding fathers of quantum mechanics, E. Schrödinger is among the most famous, with his benchmark axiomatic work on color perception [START_REF] Schrödinger | Grundlinien einer theorie der farbenmetrik im tagessehen (Outline of a theory of colour measurement for daylight vision)[END_REF]. In more recent years, also S. Weinberg [START_REF] Weinberg | The geometry of colors[END_REF] and A. Ashtekar and collaborators [START_REF] Ashtekar | Geometry in color perception[END_REF], to quote but two, wrote papers about color. They share the common interest in understanding the geometrical structure of the space of perceived colors.

In the previous chapter we already mentioned Yilmaz's work, in Section 1.1, concerning the choice of the basis ᾱ, β, γ with respect to which performing the dimension reduction, in order to obtain a color solid representing the space of perceived colors, let us call it C for the rest of this chapter. The originality of Yilmaz contribution lies in the identication of the striking structural similarity between C and the future light cone of special relativity theory. This intuition allowed him to determine, on the base of three results that he claimed coming from experiments, a law for the perceptual eect on color perception induced by a change of illuminant. This law turns out to be the direct analogous of Lorentz transformations.

In this chapter we are going to provide a mathematical formalization of Yilmaz's argument about the relationship between Lorentz transformations and the perceptual eect of illuminant changes. In the conclusions we will focus on the problematic aspects of his approach due to its not clear experimental basis. However in this chapter we will proceed assuming the experimental results claimed by Yilmaz to be true. In Chapter 4 we will see how it is possible to avoid them and obtain the same result from a completely theoretical approach.

Concerning the notation in this chapter we are going to use the one adopted by Yilmaz, while we will need to change it in Chapter 4, to recast his results in the framework of the quantum model described in Chapter 3. The main adopted references here will be Yilmaz's originals papers [START_REF] Yilmaz | On color perception[END_REF][START_REF] Yilmaz | Color vision and a new approach to general perception[END_REF] and our rst publication [124].

Yilmaz's experiments

We are going to introduce the experiments on which Yilmaz based his model. For the sake of clarity, we rst introduce the notation and nomenclature used in this chapter.

Coordinates of Yilmaz's model

To develop his model, Yilmaz considered trichromatic observers and the color space C embedded in the closed upper half-space in the Euclidean three-dimensional space, i.e. H := 2.1. Yilmaz's experiments {(α, β, γ)|(α, β) ∈ R 2 , γ ≥ 0}. The coordinates (α, β, γ) are the components of a color F ∈ C described with respect to a basis (α, β, γ) of R 3 .

The coordinates on the vector space are obtained from the dimension reduction with respect to a basis of functions ᾱ, β, γ. In a rst moment, when he talks about n idelized model, Yilmaz makes a simple choice for these three functions * , while in the paragraph `e more relisti model ' he chooses them to be the rst three eigenfunctions of the harmonic oscillator, as we have detailed in Section 1.1. The question about how the coordinates are obtained is somehow separate with respect to the discussion about C and its transformations. In this chapter we will focus on the latter problematic.

The coordinates (α, β) are called chromaticity coordinates and γ is the achromatic one, called lightness in [START_REF] Yilmaz | Color vision and a new approach to general perception[END_REF]. The polar coordinates in the so-called hue-chroma plane are (φ, ρ), where α = ρ cos φ and β = ρ sin φ, φ being associated to the hue and ρ to the hrom of F ∈ C . It is customary to identify the hue corresponding to particular values of φ with the following standard hues: φ = 0 is red R, φ = π/2 is yellow Y , φ = π is green G and φ = 3π/2 is blue B. Coherently with this identication, from now on, as shown in Figure 2.1.1 (a), the α axis will be identied with the R -G direction and the β axis with the Y -B direction.

Following the standard colorimetric denition, Yilmaz relates color sturtion σ with ρ and γ via σ = ρ/γ. On the plane dened by γ = 1, ρ and σ can be identied and they represent the radial distance from the γ axis. The half-line dened by γ ≥ 0, ρ = 0, is called hromti xis, the maximum perceivable value for γ is denoted with γ max . For all the values γ > γ max cone receptors are saturated due to glre. For the sake of simplicity let us normalize γ max to 1. The origin O corresponds to the sensation of black.

It is a known fact gathered by psychophysical experiments that the saturation of spectral colors, i.e. narrow-band lights, is maximal. Yilmaz denoted with Σ φ the maximal saturation sensation induced by a narrow-band light perceived with a hue φ.

The existence of a maximal saturation Σ φ implies that the value 1/σ has a lower bound given by 1/Σ φ . More precisely we can see 1/σ as the slope of a straight half-line passing by the origin in the upper-half plane dened xing the hue φ. It is not hard to see that this saturation constraint implies that the eective available space for perceived colors, in Yilmaz's setting, is the volume contained in the one shown in Figure 2.1.1 (b), denoted by C ⊂ H and described by the equation: 2. Yilmaz's relativistic model

C = {F = (φ, ρ, γ) ∈ H | ρ ≤ Σ φ γ}. ( 2 

Yilmaz's three experiments

The generic apparatus for the experiments described by Yilmaz in [START_REF] Yilmaz | On color perception[END_REF] is shown in Figure 2.2, where we can see two identical rooms R 1 and R 2 , separated by a common wall with a thin hole and illuminated by the sources of light S 1 and S 2 . Both rooms are painted with a non-selective Lambertian white paint. A piece of white paper is divided in two parts and each one is placed in one of the rooms, so that an observer can perceive them simultaneously. The key point is that one piece is seen directly and the other through the hole. Brill, whom we would like to thank for sharing this reference with us for [13].

The illumination S 1 of room R 1 will always be provided by near-daylight broadband illuminants. Instead, the illumination of room R 2 will be provided by a light source S 2 that can also be narrow-band. The perceived colors are compared with the help of a set of Munsell chips enlighted by the same illuminant under which the observer is adapted. For some details about adaptation to an illuminant we refer to Subsection 1.3.2 of the previous chapter.

The rst experiment

In this rst experiment, the sources S 1 and S 2 are chosen to be two dierent broadband illuminants of near-daylight chromaticity, I and I , respectively. An observer placed in R i will adapt to S i and the piece of paper placed in R i will be perceived as white, i = 1, 2. However, Yilmaz noticed that, if an observer, placed in one of the two rooms, looks at the piece of paper in the adjacent room through the thin hole, then it will appear with a certain hue φ and saturation σ. By switching the rooms, the piece of paper in the adjacent room will be matched with a Munsell chip of opposite hue, i.e. π + φ, but with approximately the same saturation σ . To x the ideas we choose the hues φ and π + φ to be red and green, respectively. This experiment is extremely interesting because the thin hole in the wall is a trick that permits to show how an observer's reference for white changes when the illumination varies. The immediate consequence is that olor pereption is reltive phenomenon, which depends on the illuminant to which the observer is adapted.

It is worth underlining that this experiment must be performed in such a way that lol retinl dpttion is prevented in the area covered by the thin hole. This can be done, for example, by allowing only a limited time aperture of the thin hole with the help of a suitable time-dependent shutter.

In the original description of this experiment, Yilmaz made a little abuse of notation using the symbol -σ, in spite of the fact that saturation is a non-negative quantity. He explained it in the following way: `the minus sign indicating that the hue is complementary to the former hue'.

Recasting Yilmaz's model in a mathematical framework

The second experiment

In the second experiment Yilmaz chooses S 2 to be a narrow-band source with a spike in the red region of the visual spectrum. Yilmaz reported that, if an observer in R 1 is adapted to the broadband near-daylight illuminant I and looks at the piece of paper in R 2 , he/she will perceive it as having same hue φ = 0 and with maximal saturation Σ R . If we change the illuminant I with the illuminant I used in the rst experiment and we wait for the adaptation of the observer in R 1 to the new illuminant, then the piece of paper in R 2 , seen through the hole, will still be perceived as having same hue φ = 0 and maximal saturation Σ R .

Yilmaz justies experimentally this claim by saying that, in both cases, the perceived saturation is reported to be too high to be replicated by any of the Munsell chips, i.e., the observer is able to identify the perceived hue as red, but all of the Munsell chips have saturation strictly smaller than the perceived one. From the rst experiment, we know that the change of perceived hue caused by the transformation from I to I acts on the red-green axis.

The particular choice of the red-green axis seems to be the only one really tested by Yilmaz, however, theoretically, nothing prevents to choose any other direction on the chromatic plane.

The third experiment

This nal experiment is similar to the second one, but with an important dierence. Here S 2 is chosen to be a narrow-band source of light with spike in the yellow part of the spectrum, i.e., whose hue direction is orthogonal with respect to the R -G axis, see Figure 2.1.1 (a). The observer is always placed in R 1 . When S 1 is equal to I he/she perceives S 2 through the hole with yellow hue, i.e, φ = π/2, and with a saturation which is, again, too high to be found among the set of Munsell chips and then it is set to Σ Y . When the illuminant S 1 changes from I to I , no variation in saturation is reported, it is still maximal and equal to Σ Y , but the hue perception of the piece of paper in R 2 seen from the hole changes by an amount ϕ such that sin ϕ σ/Σ Y .

(2.1.2)

At page 12 of [START_REF] Yilmaz | On color perception[END_REF], Yilmaz writes: `[. . .] these onlusions sed on experiment re [. . .] only pproximte [. . .]', from this we understand that experiments have in fact been performed and data have been gathered. However, it is also clear that such a precise formula as Equation (2.1.2) to determine the hue shift ϕ is, at least, doubtful. We will turn back on this issue in Section 2.5. The aim of this chapter is to mathematically analyze Yilmaz's model and its consequences, for this reason, in spite of this debated issue, we in the following section we will consider this data as rigorous, while we will discuss the issues related to the feasibility of these experiments in Section 2.5. However, it is clear that further psychophysical experiments would be extremely valuable to conrm or confute Equation (2.1.2) and Yilmaz model in general.

Recasting Yilmaz's model in a mathematical framework

In section IV `rnsformtion formule' of his paper [START_REF] Yilmaz | On color perception[END_REF], Yilmaz's looked for trnsE formtion from the oordintes of olor desried y n oserver dpted to rodnd illuminnt I to those of n oserver dpted to di'erent rodnd illuminnt I . He deduced, from the three experiments previously discussed, what he claimed to be a linear approximation of this transformation. Clearly such a transformation leaves the black point O xed.

Unfortunately, Yilmaz's exposition about how to obtain Lorentz boosts as illuminant transformations from the results of the three experiments, is too concise and lacks of rigor. As we 2. Yilmaz's relativistic model did in [124], our contribution in this Section is to introduce a suitable notation in order to provide a more clean mathematical description of Yilmaz's procedure.

We start with the denition of visual stimuli and by xing some notations.

We call visul stimulus in Yilmaz's experiment the spectrum of visible light reected by either a piece of white paper, or a Munsell chip illuminated by a visible light representing an illuminant entering the eye of an observer;

F, F will denote a visual stimulus provided by the visible light reected by an object enlighted by the illuminant I or I , respectively. The object surface can be either the piece of white paper, and in that case we will write W, W , or a Munsell chip;

R, Ỹ will indicate the visual stimulus provided by the piece of white paper illuminated by the narrow-band illuminants with spike in the red or yellow region, respectively.

Yilmaz assumed that an observer adapted to a broadband illuminant, I or I , analyzing colors by the comparison with a set of Munsell chips enlighted by the sme illuminant, denes a vector basis of R 3 , B = {α, β, γ} or B = {α , β , γ }, respectively. Thus, the use of B and B will be always implicitly correlated with a triple given by an illuminant, an observer adapted to it and a set of Munsell chips used for color comparison. Notice that while in the rst experiment the observer is able to pick a Munsell chip in accordance with the stimulus that he/she perceives, it is not the case for the second and third experiment.

Thus we will assume that color sensations obtained via a matching with a Munsell chip will correspond to elements of the interior of the cone C , dened by Equation (2.1.1). On the other hand, since it is impossible for an observer to replicate with a Munsell chip the maximal saturation Σ φ of a narrow band visual stimulus, we consider the color sensation produced by such a visible light as a point belonging to the surface ∂C = {F = (φ, ρ, γ) ∈ H | ρ = Σ φ γ} of the cone C . Furthermore we assume Σ φ to be the same for all observers adapted to any illuminant.

The symbols B and B will be used as a subscript for the visual stimuli to indicate the illuminant to which the observer is adapted : B for I and B for I . Note that the basis subscript is extremely important because it underlines the central role of the observer, i.e., the basis with respect to which the coordinates are written. Without an observer a pereived olor is just a stimulus, in the same way as a point of a vector space is just an abstract (coordinate-free) concept without a basis which describes it in terms of coordinates.

Yilmaz considers the change of basis from B to B to be the linear approximation of the illuminant transformation from I to I , indeed he supposes that a more precise description of the transformation should involve other nonlinear terms. He denotes the associated matrix as ¶ Ω ≡ Ω II ∈ GL(3, R). Ω is naturally required to be invertible because we can reverse the transformation by switching the two illuminants, i.e. Ω -1 = Ω -1 II = Ω I I . In order to determine the coecients of Ω, Yilmaz considered the following equations:

ΩW B = W B Ω -1 W B = W B and Ω RB = RB Ω ỸB = ỸB .
More precisely, the piece of white paper will be illuminated by both broadband and narrow-band illuminants, while the Munsell chips will only be illuminated by broadband illuminants.

As a consequence they will refer as well to the illuminant enlightening the set of Munsell chips with respect to which the observer makes his/her comparisons.

¶ We recall that GL(n, R) indicates the so-called general linear group of degree n over R, which is the set of all the invertible matrices n × n with entries in R.

Recasting Yilmaz's model in a mathematical framework

These equations are the translation of the three Yilmaz experiments in our notation.

If we denote with (α, β, γ) t or (α , β , γ ) t the coordinates of a color perceived by an observer adapted to I or I , respectively, then

  α β γ   =   Ω 11 Ω 12 Ω 13 Ω 21 Ω 22 Ω 23 Ω 31 Ω 32 Ω 33     α β γ   .
(2.2.1)

At page 14 of [START_REF] Yilmaz | On color perception[END_REF], Yilmaz analyzes, among all possible illuminant changes, the situation in which the couple I and I produces a color coordinate transformation only along the α-axis, i.e. the R -G direction, being stable on the (α, γ)-plane and leaving the β-axis unaected. This hypothesis implies that the coecients of Ω must fulll the following conditions: Ω 21 = Ω 23 = Ω 12 = Ω 32 = 0 and Ω 22 = 1. So, the matrix Ω has the following form:

Ω =   Ω 11 0 Ω 13 0 1 0 Ω 31 0 Ω 33   . (2.2.2)
The remaining coecients, i.e. Ω ij , i, j = 1, 3, will be determined by translating into formulae the three Yilmaz's experiments. 

Yilmaz's relativistic model

Our aim is to write the coordinates of the four points W B , W B , W B and W B to determine constraints among the coecients Ω ij .

An observer adapted to I or I , respectively, perceives the piece of white paper enlightened by the same illuminant to which he/she is adapted to be of the same placed under the same illuminant as the same white. In terms of coordinates, this means that

W B = W B .
According to what said in Subsection 2.1.1, since the white is achromatic, it must belong to the γ-axis, so its α and β coordinates are null. The third coordinate remains free and we can normalize its value to 1, and associate it to the intensity of white, hence W B = W B = (0, 0, 1) t .

Let us now look for the coordinates of W B = (α , β , γ ) and W B = (α, β, γ). As indicated by the notation, W B represents the color sensation of an observer adapted to I when he/she looks at the piece of white paper illuminated by I and compares it with the Munsell chips illuminated by I . The description of W B is analogous, with I and I switched. As reported in Section 2.1.2, W B is perceived as greenish, i.e. with hue π and saturation σ, while W B is perceived as reddish, i.e. with hue equals to 0 and saturation σ. In all Yilmaz's three experiments color sensations are described in terms of only two coordinates: hue and saturation, we will come back to this point in Chapter 4. In particular the γ-coordinates W B and W B are not reported by Yilmaz, thus we are led to introduce two unknown parameters Γ, Γ ∈ R + such that γ = Γ and γ = Γ. [START_REF] Burnham | Prediction of color appearance with dierent adaptation illuminations[END_REF], imply that the two parameters Γ and Γ are actually dierent from 1. The test results reported in [START_REF] Burnham | Prediction of color appearance with dierent adaptation illuminations[END_REF] led to the determination of matrices that permit, once the XYZ coordinates of a light patch (i.e. a source of light directly emitting a spectrum) perceived by an observer adapted to I are known, to predict the XYZ coordinates of a dierent light patch having the same appearance for an observer adapted to I . In particular, experimental data showed that a patch perceived with the same appearance of white by an observer adapted to the CIE standard illuminants C and A, i.e. W B = W B , has dierent colorimetric specications, thus γ W B = γ W B . Hence, if we normalize γ W B to 1, the value of γ W B = Γ (and vice versa

The psycho-visual color matching experiments performed by Burnham et al. in the paper

γ W B = Γ) must be dierent than 1.
Since the perceived hue of W B is greenish, it must lie on the α -axis, i.e. β = 0, thence ρ = α 2 + β 2 = |α |. By denition, σ = ρ /γ = |α |/Γ, but, as reported by Yilmaz, σ = σ, which gives |α | = σΓ. Finally, since greenish hues lies in the negative part of the α -axis, the value of α is given by α = -σΓ. So, W B = (-σΓ, 0, Γ) t . Analogously, we obtain W B = (σ Γ, 0, Γ) t , where the positive sign of σ Γ is due to the fact that, this time, W B is perceived as reddish.

We can now write explicitly the systems ΩW B = W B and Ω -1 W B = W B , by obtaining, respectively:

  Ω 11 0 Ω 13 0 1 0 Ω 31 0 Ω 33     0 0 1   =   -σΓ 0 Γ   ⇐⇒ Ω 13 = -σΩ 33 Ω 33 = Γ , (2.2.3)   Ω 11 0 -σΩ 33 0 1 0 Ω 31 0 Ω 33     σ Γ 0 Γ   =   0 0 1   ⇐⇒ Ω 11 = Ω 33 Ω 31 = 1 σ 1 Γ -Ω 33 . ( 2 

.2.4)

Γ, Γ ∈ R + are just auxiliary parameters that merely appear in these intermediate computations and not in the nal form of the matrix coecients of Ω.

Recasting Yilmaz's model in a mathematical framework

The only relevant information to retain from the previous equations, in order to determine Ω, is given by the formulae Ω 11 = Ω 33 = Γ, Ω 13 = -σΩ 11 , which allow us to write Ω as follows:

Ω =   Ω 11 0 -σΩ 11 0 1 0 Ω 31 0 Ω 11   . (2.2.5)
To determine the remaining parameters we will use the results of the second and the third experiment.

Coecients from the second experiment: the red point transformation

Our aim here is to determine the coordinates of RB and RB . Let us denote with R B and R B the maximally saturated Munsell chips with a hue matching that of RB and RB , respectively. The perceived saturation of R B and R B is strictly inferior than Σ R , see the depiction in Figure 2.4. In our mathematical framework, a perceived color is a sensation that can be described in terms of coordinates which come from a match with a set of Munsell chips. The coordinates of RB and RB will surely depend on Σ R , which cannot be quantied in the Yilmaz's setting, thus RB and RB do not belong to the interior of C , but to its boundary ∂C .

The reason why we consider RB and RB on the boundary of C and not inside C is that we can imagine RB and RB as resulting from a limit procedure in which a sequence of Munsell chips with increasing saturation approaches their saturation.

The β-coordinate of both RB and RB is surely 0 because they lie on the α axis. Moreover, their α and γ-coordinates will be Σ R γ and γ, for R B , and Σ R γ and γ , with R B , γ, γ ∈ R + . The unknown parameters γ and γ are introduced exactly for the same reason as Γ and Γ, i.e. we do not know their lightness. As a consequence, RB = (Σ R γ, 0, γ) t and RB = (Σ R γ , 0, γ ) t .

The equation Ω RB = RB can be written explicitly as follows:

  Ω 11 0 -σΩ 11 0 1 0 Ω 31 0 Ω 11     Σ R γ 0 γ   =   Σ R γ 0 γ   ⇐⇒ Ω 31 = - σ Σ 2 R Ω 11 , (2.2.6) 
2. Yilmaz's relativistic model which implies

Ω =    Ω 11 0 -σΩ 11 0 1 0 -σ Σ 2 R Ω 11 0 Ω 11    . (2.2.7)
The explicit form of Ω 11 will be obtained thanks to the data gathered from the third experiment.

Coecients from the third experiment: the yellow point transformation

When interpreting the third experiment, we will use the same approach as for the second one. We will denote with Y B the maximally saturated Munsell chip with a hue matching that of ỸB . Dierently than the second experiment, here, when an observer changes the adaptation state from I to I , the perceived hue of the narrow band stimulus changes from yellow to a greenish yellow, see Figure 2.5. For this reason, we denote with G B the maximally saturated Munsell chip that best approximates ỸB . By using the same arguments of the previous subsections, we write the coordinates of ỸB as follows: ỸB = (0, Σ Y γ, γ) t , γ ∈ R + . Since the hue of ỸB increased by an angle ϕ which satises (2.1.2), the coordinates of

Ỹ B are ỸB = (-sin ϕΣ Y γ , cos ϕΣ Y γ , γ ) t , γ ∈ R +
, where the presence of -sin ϕ and cos ϕ comes from the expression of the hue change in Cartesian coordinates. The equation Ω ỸB = ỸB can be then written explicitly as follows:

   Ω 11 0 -σΩ 11 0 1 0 -σ Σ 2 R Ω 11 0 Ω 11      0 Σ Y γ γ   =   -sin ϕΣ Y γ cos ϕΣ Y γ γ   . (2.2.8)
By direct computation one obtains the following system of equations:

     -σΩ 11 γ = -sin ϕΣ Y γ γ = cos ϕγ Ω 11 γ = γ ⇐⇒ -σΩ 11 = -sin ϕΣ Y Ω 11 Ω 11 = 1 cos ϕ = γ γ .
(2.2.9)

Similarities and dierences between Yilmaz's model and special relativity

Notice that the rst equation in the latter system, since Ω 11 = Γ = 0, becomes σ = sin ϕΣ Y , i.e. we have obtained Yilmaz's hypothesis stated by Equation (2.1.2). We will come back to this point in Section 2.5.

On the other hand the second equation allows us to determine the last parameter

Γ = Ω 11 = 1 cos ϕ = 1 1 -σ Σ Y 2 , (2.2.10) 
in order to nally obtain the following explicit expression of

Ω Ω =    Γ 0 -σΓ 0 1 0 -σ Σ 2 R Γ 0 Γ    , (2.2.11) 
with Γ as in Equation (2.2.10). The variation of the yellow hue eect is said to be `similr to the errtion e'et in speil reltivity', by Yilmaz in [START_REF] Yilmaz | On color perception[END_REF] at page 132. We will discuss this aspect in Section 2.4. In Section 2.3, we will point out the analogy between Ω and the matrix that represents Lorentz's transformations in Einstein's theory of special relativity. For more details about special relativity theory and Lorentz boosts see Appendix A.

Similarities and dierences between Yilmaz's model and special relativity

Table 2.1 provides the list of analogies between Yilmaz's model and the standard mathematical framework of special relativity.

Special relativity Yilmaz's color perception model

Observer in an inertial frame Observer adapted to a broadband illuminant Event e = (t, x) ∈ R 4 Perceived color

F = (φ, ρ, γ) ∈ C Time coordinate t ∈ R Lightness coordinate γ ∈ R + Spatial coordinates (x 1 , x 2 , x 3 ) ∈ R 3 Chromatic coordinates (ρ, φ) ∈ R + × [0, 2π)
Speed of light in vacuum c Maximal perceived saturation Σ Lorentz transformations (A.0.7)

Yilmaz transformations (2.2.11) Table 2.1: Analogies between special relativity and Yilmaz's model.

Among the similarities listed above, some evident dierences between special relativity and Yilmaz's model of color perception can be remarked.

1. The Helson-Judd eect, see e.g. [START_REF] Fairchild | golor pperne models[END_REF], shows that human color perception experiences an inomplete dpttion to narrow-band illuminants. However in Yilmaz model the case of incomplete adaptation is not taken into account, thus, in the previous table, the analogy between inertial frames and observers occurs only in case of complete adaptation to broadband illuminants.

2. While time t can be extended to the whole R with the identication of negative values of t as the `past', a negative lightness is meaningless. So, only the upper part of the cone C makes sense in color perception. Moreover, and most importantly, this cone is not innite: in fact, it is bounded from above by the glare limit dened by γ max and from 2. Yilmaz's relativistic model below for two reasons: the rst is the Purkinje eect [START_REF] Wyszecky | golor sieneX gonepts nd methodsD quntittive dt nd formulsF tohn iley 8 ons[END_REF] when we pass from photopic to scotopic vision via the mesopic range ** , and the second is the intensity threshold of the retinal rods. Thus, C is a trunted one at height γ max . In Chapter 5 we will see that the concept of quantum e'ets will provide a better way to bound the color solid.

3. While events in the Minkowski spacetime have four components, perceived colors have only three.

Relativistic aberration and Yilmaz's third experiment

In this section, we want to discuss Yilmaz's most ambiguous assumption, represented by the result of the third experiment, in a relativistic framework and show that it is the translation, in the colorimetric context, of the relativistic aberration eect. This phenomenon expresses how the angle of incidence of a ray of light changes with the inertial frame of reference and it is a direct application of Lorentz transformations. For more details about the basic concepts and notation of special relativity see Appendix A.

Let R and R be two inertial reference frames, with R moving with respect to R with constant speed v along the x-direction. Without loss of generality we can consider a photon moving towards the origin of the frame and whose spatial trajectory is a straight line contained in the plane z = 0. Clearly, in both R and R , the speed of the photon will be c.

We suppose that its trajectory forms the angle α (resp. α ) in R (resp. R ), with the xdirection shared by both R and R . Our aim is to show how α and α are related to each other. In R the photon's world-line is given by (t, x, y, z) = (t, -tc cos α, -tc sin α, 0), to obtain it with respect to R we need to apply the so-called Lorentz boost as follows:

           t = Γ(t -v c 2 x) x = Γ(x -vt) y = y z = z , (2.4.1) with Γ = 1 √ 1-v 2 /c 2 .
In particular, since the world line of the photon in R is analogously given by (t , x , y , z ) = (t , -t c cos α , -t c sin α , 0), we obtain that x = Γ(-vt -ct cos α) = -ct cos α and y = y = -ct sin α = -ct sin α . Hence

tan α = y x = c sin α Γ(c cos α + v) = sin α 1 -v 2 /c 2 cos α + v c . (2.4.2)
By a straightforward computation we obtain

cos 2 α = 1 1 + tan 2 α = (cos α + v c ) 2 (1 + v c cos α) 2 , (2.4.3) thus cos α = cos α + v c 1 + v c cos α , (2.4.4) 
** In the photopic range the three retinal cones are activated, in the scotopic range only the retinal rods are, while in the mesopic both photoreceptors function simultaneously.

Critical aspects in Yilmaz's model

where only the positive determination of the square root is compatible with the fact that, if v = 0, then we must have cos α = cos α. Moreover

cos α -cos α = v c sin 2 α 1 + v c cos α > 0, (2.4.5) 
indeed 0 < v < c, so cos α > cos α and α < α.

We have now all the information to discuss Yilmaz's third experiment: taking into account the analogies underlined in Section 2.3 together with Equation (2.4.4), we have that

cos φ = Σ cos φ + σ Σ + σ cos φ . (2.4.6)
For the spectral yellow, we have that φ = π/2, so Equation (2.4) becomes cos φ = σ Σ , but since ϕ = φ -φ , we get

sin ϕ = sin π 2 -φ = cos φ = σ Σ (2.4.7)
which corresponds to the Equation (2.1.2) reported by Yilmaz, concerning the hue variation of the spectral yellow.

Critical aspects in Yilmaz's model

In Section 2.2 our aim was to recast Yilmaz's model in a rigorous framework, with respect to both its colorimetric interpretation and its mathematical development, remaining as close as possible to what Yilmaz reported. In particular, concerning the notation, we decided to keep Yilmaz's one, enriching it in order to better structure our proof. In Chapter 4 we will need to translate Yilmaz's result in the notation of Chapter 3. In fact, while this section is about pointing out some critical issues about Yilmaz's model, in 4 we will see how the quantum model allows us to overcome these issues.

The st problematic aspect is the use of Munsell chips in its experiments. The mentioned piece of white paper is used as a sort of ideal non-selective Lambertian reector for the illuminant. A clear problem arises from the fact that it is not possible to compare for match a Munsell chip with a narrow band illuminant reected by the piece of white paper. While the set of Munsell chips was an obvious choice in 1962, the year of publishing of Yilmaz's paper, nowadays we can replace it without eort with an emitting display that will also allow us performing comparisons with narrow-band lights. With such a modern experimental apparatus, the color sensations RB , RB , ỸB and ỸB will be eectively measurable.

In a footnote at page 15 of [START_REF] Yilmaz | On color perception[END_REF], Yilmaz mentions the fact that `there is no neessity for Σ to e the sme for ll diretions'. For this reason in Sections 2.1 and 2.2 we decided to keep the dependence of Σ on the hue φ, using the symbols Σ φ , Σ R , Σ Y . As underlined in Appendix A the speed of light is the same for all the directions, so the question becomes whether this is true as well for Σ. The saturation of a color sensation is dened as a percentage: 100% representing the absence of a washed-out sensation, as it happens for a narrow-band light, and 0% corresponding to the totally washed-out sensation of achromatic stimuli. These measurements are made with xed hue φ, and it is not clear whether changing the hue would lead to a re-scaling of the interval of the possible saturation values. In other words it seems to be problematic understanding how to compare the saturation scales of colors with dierent hues. It seems more correct to remain faithful to the original denition of saturation and 2. Yilmaz's relativistic model consider it to be normlized in the same way for all the hues . Thus, Equations (2.2.10) and (2.2.11), called by Yilmaz `more generl formule', will become:

Ω =   Γ 0 -σΓ 0 1 0 -σ Σ 2 Γ 0 Γ   with Γ = 1 1 -σ Σ 2 .
(2.5.1)

In Section 2.2 we proceeded assuming the experimental results claimed by the author to be true, however it still remains unclear if the results claimed by Yilmaz have been obtained after actual observations or if they are the results of a gednkenexperiment, i.e. a thought experiment. In the rst case, Yilmaz does not report any experimental data and they do not seem to be found anywhere else, this, of course, raises more than a doubt about their validity.

In the second case, it is clear that Yilmaz pushed the gedankenexperiment technique way too far: a thought experiment is used to check what known results of a given theory would predict in an experimental conguration that is not possible to test with the current available technology. No known colorimetric result can be used to predict the outcomes of the three experiments, in particular, we notice that the hue shift in the third experiment represented by Equation (2.1.2) is unlikely to have been obtained via psychophysical experiments, seems to be somehow forced to have the desired analytical expressions that permitted him to determine the matrix Ω. However, as one can see in Equation 2.2.9, Yilmaz's experimental hypothesis corresponds to the rst equation of the second system, hence, in the proof that we provided in Section 2.2, it seems that it does not need to be imposed as an hypothesis.

In spite of the critical issues just underlined, Yilmaz's paper has the great merit of highlighting the theoretical importance of the assumption that the maximal saturation Σ of the color perceived from spectral lights is invariant w.r.t. changes of illuminants.

Finally, it is important to stress that not every aspect of special relativity theory was translated by Yilmaz in a colorimetric context. He only talked about the aspects mentioned in Table 2.1. The crucial point is that he justies their presence in color theory from a questionable experimental viewpoint. We do believe that he probably got this intuition from the formal similarity of the two theories. In Chapters 4 and 5 we will see how to properly justify the presence of relativistic concepts thanks to the framework that will be provided in Chapter 3.

In Chapter 4 we will see that Σ will be normalized to 1.

Chapter 3

Resniko's approach and its quantum interpretation Yilmaz's speculations, described in the previous chapter, had a strong impact on H.L. Resniko who, in the paper [START_REF] Resniko | Dierential geometry and color perception[END_REF] published twelve years later, acknowledged him for his intuition. Resniko's work on color is particularly remarkable, because it completes the algebraic analysis of color perception started by Grassman and axiomatized by Schrödinger. In this chapter we will provide an overview and the basic concepts of a recent novel mathematical theory of color perception, based on the quantum reinterpretation of Resniko's approach, see [START_REF] Berthier | Geometry of color perception. Part 2: perceived colors from real quantum states and Hering's rebit[END_REF], which reconciles the concepts of trichromacy and color opponency, already mentioned in Chapter 1. The main references for this chapter will be the several recent contributions of Berthier and Provenzi [START_REF] Berthier | When geometry meets psycho-physics and quantum mechanics: Modern perspectives on the space of perceived colors[END_REF][START_REF] Provenzi | Geometry of color perception. Part 1: Structures and metrics of a homogeneous color space[END_REF][START_REF] Berthier | Geometry of color perception. Part 2: perceived colors from real quantum states and Hering's rebit[END_REF][START_REF] Berthier | From Riemannian trichromacy to quantum color opponency via hyperbolicity[END_REF][START_REF] Berthier | The quantum nature of color perception: Uncertainty relations for chromatic opposition[END_REF], which treat dierent aspects of this novel theory in detail.

As we will see in Chapter 4, the framework introduced in this chapter will permit to justify on a purely theoretical basis the relativistic color perception phenomena argued by Yilmaz, overcoming the issues underlined in Chapter 2. Note that further denitions, more related to quantum information theory, will be introduced in Chapter 5 enriching the framework presented in this chapter.

The trichromacy axiom

The classical, and well established, colorimetric experiences of Newton [START_REF] Newton | Opticks, or, a treatise of the reections, refractions, inections & colours of light[END_REF][START_REF] Newton | A new theory about light and colors[END_REF], Grassmann [START_REF] Grassmann | Zur Theorie der Farbenmischung[END_REF], Helmholtz [START_REF] Helmholtz | retise on physiologil optisF gourier gorportion[END_REF] and Maxwell [START_REF] Maxwell | Experiments on colour as perceived by the eye, with remarks on colourblindness[END_REF] have been resumed by Schrödinger [START_REF] Schrödinger | Grundlinien einer theorie der farbenmetrik im tagessehen (Outline of a theory of colour measurement for daylight vision)[END_REF] in a set of axioms that describe the structure of a space designed to represent the set of colors from the trichromatic properties of color perception. These axioms stipulate that this space, denoted C from now on, is a regulr onvex one of rel dimension Q. In particular:

C is a one if it is stable w.r.t. multiplications by positive scalars, i.e. for all c ∈ C and all k ∈ R + , then kc ∈ C; C is onvex if, for all c 1 , c 2 ∈ C and for all α ∈ [0, 1], we have that

αc 1 + (1 -α)c 2 ∈ C; C is regulr if, for any c ∈ C, c = 0, then c ∈ C such that c + c = 0.
In [START_REF] Resniko | Dierential geometry and color perception[END_REF], Resniko completed the work of Schrödinger and showed that to fully exploit this mathematical structure one needs to add a supplementary axiom, namely the fact that C is homogeneous, which means that there exists a transitive group action on C, see [START_REF] Provenzi | Geometry of color perception. Part 1: Structures and metrics of a homogeneous color space[END_REF] for an extended analysis of the homogeneity axiom. If we add one more property, the selfEdulity 3.1. The trichromacy axiom of C, introduced by Berthier in [START_REF] Berthier | Geometry of color perception. Part 2: perceived colors from real quantum states and Hering's rebit[END_REF], then C becomes a symmetri one [START_REF] Faraut | enlysis on ymmetri gones[END_REF]. Let us call C, fullling all these axioms, the trihromy one.

According to the Koecher-Vinberg theorem [START_REF] Baez | Division algebras and quantum theory[END_REF], the trichromacy cone C can then be seen as the domain of positivity of a formally real Jordan algebra A. This motivates the following: Axiom (Trichromacy axiom [START_REF] Berthier | Geometry of color perception. Part 2: perceived colors from real quantum states and Hering's rebit[END_REF]). he trihromy one C is the domin of positivity of formlly rel tordn lger of rel dimension QF The use of Koecher-Vinberg theorem is of crucial importance since it justies the use of Jordan algebras and, as we will see, quantum theories in the context of modeling color perception. The idea to recast the study of color perception in the Jordan algebra framework appears already in Resniko's contribution [START_REF] Resniko | Dierential geometry and color perception[END_REF]. However, Resniko was interested in using this concept to understand brightness and he did not mention a possible quantum interpretation of Schrödinger axioms. In the following we are going to mention just some essential denitions about Jordan algebras, for more detailed information on this subject the reader can consult e.g. [START_REF] Baez | Division algebras and quantum theory[END_REF], [START_REF] Faraut | enlysis on ymmetri gones[END_REF], [START_REF] Koecher | Jordan algebras and dierential geometry[END_REF], [START_REF] Mccrimmon | Jordan algebras and their applications[END_REF], [START_REF] Mccrimmon | e tste of tordn elgers[END_REF]. Since it is sucient for our purposes, in the following we are going to consider only nite-dimensional Jordan algebras. Denition 3.1.1 (Jordan algebra). A Jordan algebra A is a real vector space equipped with a commutative bilinear product, called tordn produt, A × A → A, (a, b) → a • b, satisfying the following so-called tordn identity:

(a 2 • b) • a = a 2 • (b • a), (3.1.1) 
where a 2 := a • a.

The Jordan identity ensures that the power of any element a of A is well-dened. To prove this we observe that

a 3 := a • a • a = (a • a) • a = a 2 • a = a • a 2 = a • (a • a)
, so there is no ambiguity in dening a 3 ; now observe that, by taking b = a in the Jordan identity, we have a 4 := a 3 • a = a 2 • a 2 , which eliminates the possible ambiguity and thus also a 4 is well-dened. By induction we have that all powers of a ∈ A are well-dened. This implies that A is always power-associative, in the sense that the sub-algebra generated by any of its elements is associative and a m • a n = a m+n , for all m, n ∈ N.

Denition 3.1.2 (FRJA). A pormlly rel tordn lger (FRJA) is a Jordan algebra A such that, for any nite set a 1 , a 2 , . . . , a n ∈ A, it holds true that FRJAs of nite dimension are classied and decomposed as direct sums of simple Jordan algebras, see [START_REF] Jordan | On an algebraic generalization of the quantum mechanical formalism[END_REF]. The most surprising consequences of the trichromacy axiom are provided by the classication theorem of Jordan-von Neumann-Wigner, see for instance [START_REF] Baez | Division algebras and quantum theory[END_REF]. According to this theorem there are only two possible choices for A, which are not isomorphic as FRJAs:

a 2 1 + a 2 2 + • • • + a 2 n = 0 =⇒ a 1 = a 2 = • • • = a n = 0, ( 3 
1. R ⊕ R ⊕ R, an ssoitive Jordan algebra, endowed with the following Jordan product:

(t 1 + t 2 + t 3 ) • (s 1 + s 2 + s 3 ) = (t 1 s 1 + t 2 s 2 + t 3 s 3 ), t i , s i ∈ R, i = 1, 2, 3, whose domain of positivity is R + × R + × R + .
3. Resniko's approach and its quantum interpretation

2. H(2, R) ∼ = R ⊕ R 2 ,
two isomorphic not ssoitive Jordan algebras, i.e., respectively, the algebra of 2 × 2 real symmetric matrices and the so-called spin ftor. Their Jordan products are respectively: the symmetrized matrix product for H(2, R), i.e. A • B := 1 2 (AB + BA), with A, B ∈ H(2, R), and the following product for the spin factor:

(α 1 , v 1 ) • (α 2 , v 2 ) = (α 1 α 2 + v 1 , v 2 , α 1 v 2 + α 2 v 1 ), (3.1.3) 
where 

α i ∈ R, v i ∈ R 2 , i = 1,
C(R ⊕ R 2 ) := L + = {(α, v) t ∈ R ⊕ R 2 , α ≥ 0, α 2 -v 2 ≥ 0}
which is the closure of the future lightone, being the Euclidean norm.

When R ⊕ R ⊕ R is endowed with the so-called Helmholtz-Stiles metric:

ds 2 = 3 i=1 a i (dξ i /ξ i ) 2 , (3.1.4)
a i , ξ i ∈ R + , it represents the metric space used in the standard colorimetry, see e.g. [START_REF] Wyszecky | golor sieneX gonepts nd methodsD quntittive dt nd formulsF tohn iley 8 ons[END_REF].

Since this space has been extensively studied, in the sequel we will concentrate only on the second possibility which, as we will see, contains the quantum structure that we are looking for.

Notice that as a vector space, R ⊕ R 2 can be identied with the 3-dimensional Minkowski space R 1,2 , that explains the use of the terminology future lightone for its domain of positivity.

As underlined before, the second type of FRJA has two dierent, isomorphic expressions. The natural isomorphism between H(2, R) and R ⊕ R 2 is given by:

χ : H(2, R) ∼ -→ R ⊕ R 2 α + v 1 v 2 v 2 α -v 1 -→ (α, (v 1 , v 2 ) t ). (3.1.5)
It is easy to prove that χ is an isomorphism of Jordan algebras, so, in particular, given A, B ∈ H(2, R) it respects their respective Jordan products, i.e.

χ(A • B) = χ(A) • χ(B).
Furthermore χ induces as well an isomorphism between their domains of positivity, hence

C(H(2, R)) ∼ = C(R ⊕ R 2 ).
An important property of FRJAs is that C(A) is always self-dual, i.e.

C(A) ∼ = C * (A) := {ω ∈ A * : ∀b ∈ C(A), ω(b) ≥ 0}, (3.1.6) 
where A * denotes the dual vector space of A. As we will see later on, self-duality will play an important role, e.g. in Chapter 5.

The duality state-observable

Non-associative Jordan algebras have been proven to provide a perfectly valid framework to develop quantum theories in the pioneering paper [START_REF] Jordan | On an algebraic generalization of the quantum mechanical formalism[END_REF], in the sense that their algebraic description of states and observables is equivalent to the density matrix formalism that can be constructed starting from the ordinary Hilbert space formulation, see e.g. [START_REF] Townsend | The jordan formulation of quantum mechanics: A review[END_REF][START_REF] Emch | elgeri methods in sttistil mehnis nd quntum (eld theory[END_REF]. Noncommutativity of Hermitian operators on a Hilbert space is replaced by non-associativity in the Jordan framework, this is essential to preserve the core of quantum theories, i.e. the 3.2. The duality state-observable existence of uncertainty relations, which cannot appear if the Jordan algebra of observables is both commutative and associative.

Color perception shares at least two features with quantum theories: rst, it makes no sense to talk about color in absolute terms, a color exists only when it is observed in well-specied observational conditions, see e.g. [START_REF] Wittgenstein | emrks on olour[END_REF][START_REF] Russell | he prolems of philosophy[END_REF]; second, repeated color matching experiments on identically prepared visual scenes do not lead to a sharp selection of a color that matches the test, but to a distribution of selections picked around the most probable one, which is clearly reminiscent of the probabilistic interpretation of quantum mechanics.

The quantum trichromacy axiom implies a radical change of paradigm with respect to classical colorimetry: we no more deal with color in terms of three coordinates belonging to a at color space, but with a theory of olor sttes nd oservles in dulity with eh other in which, as we will point out in Chapter 5, pereived olors re inextrily ssoited with mesurements, mathematically expressed by the so-called e'ets.

A perceptual observable of a visual scene, or simply an oservle a, is a sensation that can be measured leading to the registration of an outcome belonging to a certain set that depends on the observable. The algebra of observables A of our quantum-like theory of color perception is H(2, R) ∼ = R ⊕ R 2 and perceptual colors are particular observables that belong to their domain of positivity.

A perceptual state, or simply a stte s, coincides, in practice, with the preparation of a visual scene for the measurements of its observables. Two examples of states are the following: a) a olor stte from light stimulus is prepared by allowing a naturally or articially emitted visible radiation to be perceived by an observer; b) a olor stte from n illuminted surfe is prepared by illuminating a colored patch so that it can be perceived by an observer.

Observables characterize a state through their measurements and, vice-versa, the preparation of a particular state characterizes the experimental outcomes that will be obtained. It is common to resume this consideration as the duality state-observable. From a mathematical point of view, the duality state-observable is formalized by the Riesz-Markov representation theorem, see e.g. [START_REF] Reed | wethods of modern mthemtil physis[END_REF].

It seems natural, at this point, to make an analogy between the notions dening a physical system and color perceptual systems. Denition 3.2.1 (Nomenclature of physical systems). The following denitions are conventionally assumed in physics, see the classical references [START_REF] Emch | elgeri methods in sttistil mehnis nd quntum (eld theory[END_REF][START_REF] Strocchi | en introdution to the mthemtil struture of quntum mehnisX short ourse for mthemtiins[END_REF][START_REF] Moretti | petrl theory nd quntum mehnisX mthemtil foundtions of qunE tum theoriesD symmetries nd introdution to the lgeri formultion[END_REF].

A physical system S is described as a setting where one can perform physical measures giving rise to quantitative results in conditions that are as isolated as possible from external inuences.

Observables in S are the objects of measurements. If they form an associative and commutative algebraic structure, then the physical theory is called classical.

States of S are associated with the ways S is prepared for the measurement of its observables.

The expectation value of an observable in a given state of S is the average result of multiple measures of the observable conducted in the physical system S prepared in the same state.

Resniko's approach and its quantum interpretation

Regarding this last denition, we notice that this is the standard experimental way of associating a value to an observable both in classical and in quantum physics for two dierent reasons: in the former we assume that nature is deterministic and observables have precise values, however, we need to introduce the concept of expectation value because all measurements are aected by errors; in the latter we assume that nature is intrinsically probabilistic and the expectation value is needed to associate to every observable the probability that it will take a given value from a set of admissible outcomes.

When we deal with a visual perceptual system, as an illuminated piece of paper, or a light stimulus in a vision box, the denitions above remain valid, with two major dierences: rst, the instruments used to measure the observables are not physical devices, but the sensory system of a human being; second, the results may vary from person to person, thus the average procedure needed to experimentally dene the expectation value of an observable in a given state is, in general, observer-dependent. The response of an idel stndrd oserver can be obtained through a further statistical average on the observer-dependent expectation values of an observable in a given state.

If we specialize this idea to the case of color perception, we may give the following colorimetric denitions.

Denition 3.2.2 (Nomenclature of color perceptual systems).

A perceptual chromatic state is represented by the preparation of a visual scene for psycho-visual experiments in controlled and reproducible conditions.

A perceptual color is the perceptual observable identied with a psycho-visual measurement performed in a given perceptual chromatic state.

A perceived color is the expectation value assumed by a perceptual color after psychovisual measurements.

We underline that the denition of a perceptual color as an observable associated to a psycho-visual measurement in a given perceptual chromatic state is very dierent than the physical meaning of the term `color stimulus', i.e. the spectral distribution of a light signal across the visual interval. In fact, such a color stimulus, presented to an observer in dierent conditions, e.g. isolated or in context, can be sensed as very dierent perceived colors. Thus, as we have seen in Chapter 1, it is very ill-posed to identify a perceptual color with a color stimulus, as also mentioned in [START_REF] Wyszecky | golor sieneX gonepts nd methodsD quntittive dt nd formulsF tohn iley 8 ons[END_REF].

Chromatic states and von Neumann entropy

In the algebraic formulation of quantum mechanics states are described by density mtries, i.e. unit-trace positive semi-denite matrices. In the quantum-like theory of color perception, the hromti stte vetors v s = (s 1 , s 2 ) t belonging to the unit disk D parameterize each density matrix ρ s , in fact the perceptual chromatic state space can be identied with:

S(H(2, R)) = ρ s ≡ 1 2 1 + s 1 s 2 s 2 1 -s 1 , v s ≤ 1 , (3.3.1)
or, as a consequence of (3.1.5),

S(R ⊕ R 2 ) := χ(S(H(2, R))) = χ(ρ s ) = 1 2 1 v s , v s ≤ 1 . (3.3.2)

Chromatic states and von Neumann entropy

This is the state space of a reit, the R-version of a qubit, see e.g. [START_REF] Wootters | The rebit three-tangle and its relation to two-qubit entanglement[END_REF], and it happens to be the easiest known quantum system. In this Chapter and in the following ones, to simplify the notation, we will identify a state s with the unique associated density matrix ρ s ∈ H(2, R) and vector

χ(ρ s ) ∈ R ⊕ R 2 .
The expettion vlue of an observable a ∈ H(2, R) on the state s is the average outcome of repeated and independent measurements of a performed when the system is identically prepared in the state s. It is given by:

a s = Tr(ρ s a). (3.3.3)
Notice that this is the classical quantum interpretation of the inner product induced on the Jordan product on the FRJA. In particular it is easy to prove that, for A = H(2, R), Tr(ρ s • a) = Tr(ρ s a). Indeed it is sucient to recall that ρ s • a = 1 2 (ρ s a + aρ s ) and that Tr(ρ s a) = Tr(aρ s ). Polar coordinates are the most natural ones in D and they provide this alternative parameterization of the generic density matrix:

ρ s (r, ϑ) = 1 2 1 + r cos ϑ r sin ϑ r sin ϑ 1 -r cos ϑ , r ∈ [0, 1], ϑ ∈ [0, 2π). (3.3.4)
States can be either mixed or pure, accordingly to the fact that they can be written as a convex combination of other states or not, respectively.

A commonly used descriptor of mixedness of a quantum state is the so-called von xeuE mnn entropy. It represents the expettion of informtion gin on a quantum system after a measurement, thus when it is miniml, then no information gain can be achieved after a measurement, i.e. we possess all the possible knowledge about the system; while, when it is mximl, then the expectation of information gain after a measurement on the system is maximal, which means that we have at disposal the least possible information on the system itself. Denition 3.3.1 (Von Neumann entropy). Let s be a mixed state and ρ s be the density matrix associated to it. The von Neumann entropy S(ρ s ) of ρ s is given by 

S(ρ s ) = -Tr(ρ s log 2 ρ s ) = -log 2 ρ s s . ( 3 
S(ρ s ) = - k λ k log 2 λ k . (3.3.6)
here λ k D k = 1, 2D re the eigenvlues of ρ s F roofF Let the density matrix ρ s have the following expression:

ρ s = 1 2 1 + r cos ϑ r sin ϑ r sin ϑ 1 -r cos ϑ . (3.3.7)
We want to prove that Tr(ρ

s log 2 ρ s ) = λ 1 log 2 λ 1 + λ 2 log 2 λ 2 , this is equivalent to proving that Tr(ρ s log ρ s ) = λ 1 log λ 1 + λ 2 log λ 2 .
The main issue is understanding the expression 3. Resniko's approach and its quantum interpretation log ρ s . From [START_REF] Culver | On the existence and uniqueness of the real logarithm of a matrix. roE eedings of the emerin wthemtil oiety[END_REF] a real matrix having positive eigenvalues, such as ρ s since we assumed s to be a mixed state, admits an unique real logarithm matrix. The issue now becomes obtaining an explicit expression for log ρ s . Let us start by diagonalizing ρ s to facilitate this task. Via straightforward computations it is easy to obtain that P -1 ϑ ρ s P ϑ = diag(λ 1 , λ 2 ), with

P ϑ = -sin ϑ 1 + cos ϑ 1 + cos ϑ sin ϑ , (3.3.8) 
and

λ 1 = (1 -r)/2, λ 2 = (1 + r)/2.
Given a diagonal matrix D = diag(a, b), with a, b > 0, it is easy to prove that its logarithm is given by:

log D = diag(log a, log b) (3.3.9)
An easy example is given by Id 2 , indeed, as we might expect, log Id 2 = O 2 . Let us consider the density matrix 1 2 Id 2 (it will be needed in the next steps of this proof). Its logarithm is given by

log 1 2 Id 2 = diag(-log 2, -log 2) = -(log 2)Id 2 . (3.3.10)
By Theorem 2.8 of [START_REF] Hall | vie groupsD vie lgersD nd representtionsX n elementry introdution[END_REF], for all the matrix A such that ||A-Id|| 2 < 1 the following function

log A = +∞ k=1 (-1) k+1 (A -Id) k k , (3.3.11)
is well dened and it is such that e log A = A. In our case, let us call rR ϑ = 2ρ s -Id 2 . It is easy to prove that ||rR ϑ || 2 < 1, since 0 < r < 1 and

||R ϑ || 2 = 1. Thus log(2ρ s ) = +∞ k=1 (-1) k+1 (rR ϑ ) k k . (3.3.12)
Another property of the matrix logarithm states that if A, B are two commuting positivedenite real matrices, then log(AB) = log A + log B. This is to say that log ρ s = log(2ρ s ) + log 1 2 Id 2 . Thus, recalling Equation (3.3.10):

log ρ s = log(2ρ s ) -(log 2)Id 2 . (3.3.13)
Using Equation (3.3.12) the previous equation becomes:

log ρ s = +∞ k=1 (-1) k+1 (rR ϑ ) k k -(log 2)Id 2 . (3.3.14)
It is easy to show that P ϑ diagonalizes as well R ϑ , thus P -1 ϑ R ϑ P ϑ = diag(-1, 1). Let us now

Chromatic states and von Neumann entropy

show that P ϑ diagonalizes also log ρ s :

P -1 ϑ log ρ s P ϑ =P -1 ϑ +∞ k=1 (-1) k+1 (rR ϑ ) k k -(log 2)Id 2 P ϑ = +∞ k=1 (-1) k+1 (rP -1 ϑ R ϑ P ϑ ) k k -(log 2)Id 2 = +∞ k=1 (-1) k+1 (r diag(-1, 1)) k k -(log 2)Id 2 = diag +∞ k=1 (-1) 2k+1 r k k , +∞ k=1 (-1) k+1 r k k -(log 2)Id 2 = diag - +∞ k=1 r k k , +∞ k=1 (-1) k+1 r k k -(log 2)Id 2 = diag(log(1 -r), log(1 + r)) -(log 2)Id 2 = diag log 1 -r 2 , log 1 + r 2 = diag(log λ 1 , log λ 2 ), (3.3.15)
where the second equality holds because of the continuity of the conjugation by P ϑ .

The above computation shows that ρ s and log ρ s are simultaneously diagonalized by P ϑ . Let us nally calculate S(ρ s ). Using the fact that the trace is invariant under change of basis, we can perform the following computations and obtain the thesis:

Tr(ρ s log ρ s ) = Tr(P -1 ϑ ρ s log ρ s P ϑ ) = Tr(P -1 ϑ ρ s P ϑ P -1 ϑ log ρ s P ϑ ) = Tr(diag(λ 1 , λ 2 ) diag(log λ 1 , log λ 2 )) = λ 1 log λ 1 + λ 2 log λ 2 . (3.3.16)
Notice that actually we have dened the von Neumann entropy for mixed states only. Indeed the density matrix of a pure state is a rank-1 projector, hence it is not invertible, so it does not fulll the hypotheses of Theorem 1 in [START_REF] Culver | On the existence and uniqueness of the real logarithm of a matrix. roE eedings of the emerin wthemtil oiety[END_REF], that assures the existence of the logarithm matrix. Even if the log of the density matrix corresponding to a pure state is not dened, it is possible to dene its von Neumann entropy as a limit procedure. In fact, by Proposition 3.3.2, for all r ∈ [0, 1) we have that:

S(ρ s ) = S(r) = - 1 -r 2 log 2 1 -r 2 - 1 + r 2 log 2 1 + r 2 . (3.3.17)
Pure states correspond to the value r = 1, where S(r) is not dened. However we can dene S at 1, as the limit S(1) := lim r→1 -S(r) = 0. Thus the von Neumann entropy has the following expression:

S(r) = -1-r 2 log 2 1-r 2 -1+r 2 log 2 1+r 2 r ∈ [0, 1) 0 r = 1 , (3.3.18)
Notice that, after straightforward computations, S(r) can be rewritten as follows:

S(r) = 1 -1 2 log 2 (1 -r 2 ) + r 2 log 2 1+r 1-r r ∈ [0, 1) 0 r = 1 . (3.3.19)
As proven in [START_REF] Heinosaari | he mthemtil lnguge of quntum theoryX from unertinty to entnglement[END_REF] or [START_REF] Petz | untum informtion theory nd quntum sttistis[END_REF], the von Neumann entropy is invariant under orthogonal conjugation, which implies that it is a rdil funtion, moreover, it is onve and, importantly, it provides a characterization of pure states and of the maximally mixed state, denoted with ρ 0 : ρ s is a pure state if and only if S(ρ s ) = 0;

ρ 0 = argmax ρs S(ρ s ).
From Equation (3.3.18) we have that ρ 0 = Id 2 /2, where Id 2 is the 2 × 2 identity matrix, or equivalently, χ(ρ 0 ) = 1 2 (1, 0) t , which means that the maximally mixed state is parameterized by the null vector, the center of D, where S(0) = 1. Since the highest degree of entropy is equivalent to the minimal amount of chromatic information, ρ 0 is identied with the hromti stte, denoted with s a . Instead, pure states are parameterized by the points of the border of D and are identied with the hues of perceived colors:

PS(H(2, R)) = ρ s = 1 2 1 + s 1 s 2 s 2 1 -s 1 , v s = 1 = ρ s = 1 2 1 + cos ϑ sin ϑ sin ϑ 1 -cos ϑ , ϑ ∈ [0, 2π) , (3.3.20) 
or, equivalently,

PS(R ⊕ R 2 ) := χ(PS(H(2, R))) = χ(ρ s ) = 1 2 1 v s , v s = 1 . (3.3.21)
In Chapter 6, Section 6.3.3 we will give an argument in favor of the interpretation of pure states as hues.

Recalling the intuitive denition of saturation quoted in Chapter 1, Subsection 1.3.1, it is quite natural to dene the saturation Σ of the chromatic state ρ s (r, ϑ) as done in [START_REF] Berthier | The quantum nature of color perception: Uncertainty relations for chromatic opposition[END_REF][START_REF] Berthier | Quantum measurement and colour perception: theory and applications[END_REF], using the von Neumann entropy, expressed as in Equation (3.3.19), as follows:

Σ(r) := 1 -S(r) = 1 2 log 2 (1 -r 2 ) + r 2 log 2 1+r 1-r r ∈ [0, 1) 1 r = 1 , (3.3.22)
3.4. Chromatic opponency: Hering's rebit

In this way we have Σ(0) = 0 and Σ(1) = 1. We must stress that in Chapter 6 we will come back on the problem of dening the saturation of a perceived color via the von Neumann entropy, in particular we will relate it to the concept of reltive entropy that will be introduced in Chapter 5.

Chromatic opponency: Hering's rebit

The next fundamental information to recall is how Hering's chromatic opponency naturally appears in the quantum-like formalism. The following presentation is explicitly based on the canonical decomposition of density matrices known as floh representtion. Given (e i ) 2 i=0 , the canonical basis of R ⊕ R 2 , if we dene σ i := χ -1 (e i ), then we get

σ 0 ≡ Id 2 , σ 1 = 1 0 0 -1 , σ 2 = 0 1 1 0 , (3.4.1)
where σ 1 and σ 2 can be recognized to be the two rel uli mtries. The generic density matrix of S(H(2, R)) can be decomposed in terms of the real Pauli matrices as follows:

ρ s (s 1 , s 2 ) = ρ 0 + 1 2 (s 1 σ 1 + s 2 σ 2 ) = ρ 0 + 1 2 v s • σ, (3.4.2) 
where v s = (s 1 , s 2 ) is called the floh vetor associated to s and

v s • σ := s 1 σ 1 + s 2 σ 2 . The set {σ 0 , σ 1 , σ 2 } is an orthogonal basis for H(2, R) with respect to the Hilbert-Schmidt inner product, i.e. σ i , σ j HS := Tr(σ i σ j ) = 2δ ij , i, j = 0, 1, 2, (3.4.3) 
so the components of the Bloch vector are the expectation values of the real Pauli matrices on the state s, in fact:

v s = (s 1 , s 2 ) = (Tr(ρ s σ 1 ), Tr(ρ s σ 2 )) = ( σ 1 s , σ 2 s ). (3.4.4)
As a consequence, Equation (3.4.2) can be re-written as follows:

ρ s = ρ 0 + 1 2 σ 1 s σ 2 s σ 2 s -σ 1 s , (3.4.5) 
and its polar expression is:

ρ s (r, ϑ) = ρ 0 + 1 2 [r cos ϑ σ 1 + r sin ϑ σ 2 ] , (3.4.6) 
with r ∈ [0, 1] and ϑ ∈ [0, 2π).

Given two generic angles ϑ 1 , ϑ 1 ∈ [0, 2π), the pure states ρ s k (1, ϑ k ), k = 1, 2, are rank-1 projectors that can be represented as follows:

ρ s k (1, ϑ k ) = 1 2 (Id 2 + cos ϑ k σ 1 + sin ϑ k σ 2 ) ≡ ρ 0 + 1 2 v s k • σ, (3.4.7) with v s k = (cos ϑ k , sin ϑ k ), k = 1, 2.
Rank-1 projectors are characterized by the following condition:

ρ s (1, ϑ) • ρ s (1, ϑ) = ρ s (1, ϑ).
Notice that the projector ρ s k (1, ϑ k ) is a projection operator along the direction given by the unit vector u k = (cos(ϑ k /2), sin(ϑ k /2)). Indeed by straightforward computations we can see that

ρ s k (1, ϑ k ) = 1 2 1 + cos ϑ k sin ϑ k sin ϑ k 1 -cos ϑ k = u k u t k . (3.4.8)
3. Resniko's approach and its quantum interpretation

To better understand the following it is important to stress that, given a pure state s k , its Bloch vector representation v s k does not correspond to the direction of projection u k of ρ s k (1, ϑ k ).

In quantum theories, orthogonality with respect to the Hilbert-Schmidt inner product is used to measure inomptiility etween sttes, and ρ s 1 (1, ϑ 1 ), ρ s 2 (1, ϑ 2 ) project on two orthogonal rays in R 2 if and only if their Bloch vectors v s 1 , v s 2 are antipodal. Indeed, recalling the fact that Tr(σ 1 ) = Tr(σ 2 ) = Tr(σ 1 σ 2 ) = Tr(σ 2 σ 1 ) = 0 and that σ 2 1 = σ 2 2 = Id 2 , we obtain:

ρ s 1 (1, ϑ 1 ), ρ s 2 (1, ϑ 2 ) HS = Tr(ρ s 1 (1, ϑ 1 )ρ s 2 (1, ϑ 2 )) = 1 4 Tr((Id 2 + v 1 • σ)(Id 2 + v 2 • σ)) = 1 4 Tr(Id 2 + v 1 • σ + v 2 • σ + (v 1 • σ)(v 2 • σ)) = 1 4 Tr(Id 2 + (cos ϑ 1 σ 1 + sin ϑ 1 σ 2 )(cos ϑ 2 σ 1 + sin ϑ 2 σ 2 )) = 1 4 Tr((1 + cos ϑ 1 cos ϑ 2 + sin ϑ 1 sin ϑ 2 )Id 2 ) = 1 2 (1 + cos(ϑ 1 -ϑ 2 )).
(3.4.9)

The latter expression is equal to 0 if and only if |ϑ 1 -ϑ 2 | = π, i.e. the corresponding Bloch vectors v 1 and v 2 are diametrically opposed. This condition of incompatibility is usually interpreted as the fact that the two states have 0 probability of being simultaneously measured. In other words antipodality of vectors in the Bloch representation correspond to orthogonality with respect to the Hilbert-Shmidt product. For further details see e.g. [START_REF] Heinosaari | he mthemtil lnguge of quntum theoryX from unertinty to entnglement[END_REF]. In Hering's theory of color perception, see [START_REF] Hering | ur vehre vom vihtsinneX sehs wittheilungen n die uiserlF ekdemie der issenshften in ien[END_REF], incompatibility between color sensations is called opposition, for this reason two pure states ρ s 1 (1, ϑ 1 ) and ρ s 2 (1, ϑ 2 ) are said to be hromtilly opponent if incompatible, hence when |ϑ 1 -ϑ 2 | = π. The concept of opposition will play a fundamental role in Chapter 6.

Let us immediately use opponency to corroborate our interpretation of ρ 0 as the achromatic state: it is easy to prove that the following formula holds

ρ 0 = 1 4 ρ s (1, 0) + 1 4 ρ s (1, π) + 1 4 ρ s 1, π 2 + 1 4 ρ s 1, 3π 2 , (3.4.10) 
this shows that ρ 0 is the mixed state obtained as a convex combination, with exactly the same coecients, of the balance between two couples of pure opponent chromatic states. Notice also that the real Pauli matrices can be expressed as follows:

σ 1 = ρ s (1, 0) -ρ s (1, π), σ 2 = ρ s 1, π 2 -ρ s 1, 3π 2 , (3.4.11) 
thus Equation (3.4.6) implies the following, fundamental, formula: 

ρ s (r, ϑ) = ρ 0 + 1 2 r cos ϑ [ρ s (1, 0) -ρ s (1, π)] + r sin ϑ ρ s 1, π 2 -ρ s 1, 3π 2 

Chromatic opponency: Hering's rebit

We must stress that given a density matrix ρ s , one can evaluate the contribution of the red/green opposition degree given by σ 1 by computing σ 1 s = Tr(ρ(r, θ) • σ 1 ) = r cos θ, and the same for σ 2 . It is quite remarkable that the Bloch disk gives a quantum analogue of the rering disk that describes the color opponency mechanism resulting from the activity of certain retinal neurons [START_REF] Shevell | Color opponency: tutorial[END_REF]. The matrix σ 1 encodes the opposition red/green, while the matrix σ 2 encodes the opposition yellow/blue. We underline that this quntum justi(tion of the olor opponeny derives only from the trihromy xiom when onsidering the lger H(2, R).

A fundamental remark on color perception made by Hering is that, for unrelated colors, while the hromti informtion is intrinsi, the hromti prt n e determined only y mens of omprisons with other olors, see e.g. [START_REF] Hubel | iyeD frinD nd ision[END_REF]. An observer can measure the degree of opposition red vs. green and yellow vs. blue of an unrelated color, see e.g. [START_REF] Hurvich | Some quantitative aspects of an opponent-colors theory. i. chromatic responses and spectral saturation[END_REF], but, due to adaptation mechanisms of the human visual system, he or she cannot establish how bright or dim a perceived unrelated color is (apart from extreme situations close to the visible threshold or the glare limit, that we do not consider here). This ambiguity is represented in Equation (3.4.12) by the fact that ρ 0 appears as a sort of `oset state', independent of the state s.

For clear reasons, we call rering9s reit the quantum-like system that we have just described. This latter can be thought as a mathematical formalization of Newton's chromatic disk, as depicted in Fig. 3.2. In other words we propose, as a theoretically well-founded model for a chromaticity diagram, the Bloch disk representation of Hering's rebit. In the following Chapter we will see that Hering's rebit has a structure of gyrovector space, and the behavior of its elements, the chromatic vectors, allows us to justify Yilmaz's results, already mentioned in Chapter 2.

59 Chapter 4 Relativity within the quantum model In this chapter, based on [13], we overcome the problems about Yilmaz's approach presented in Chapter 2 by providing a completely theoretical proof of the experimental outcomes claimed by Yilmaz in the setting of the quantum-like framework for color perception introduced in Chapter 3. In particular we will extend the theory of the previous chapter to incorporate also relativistic phenomena, providing new denitions and adopting the notation of Chapter 3 to describe Yilmaz's model in the terms of the quantum-like one (instead of the one adopted for Chapter 2, more faithful to Yilmaz's original paper).

More specically the concept of chromatic vector will be of fundamental importance, since Yilmaz's experiments can be explained in terms of Einstein-Poincaré's addition law between chromatic vectors. We have obtained this result by following the hint given by Mermin's alternative reconstruction of the special theory of relativity from Einstein-Poincaré addition law for velocity vectors. Moreover these theoretical results are shown to be coherent with existing experimental data, see Section 4.3.1.

In Chapter 1 we mentioned the presence of hyperbolic metrics in the color literature. In this Chapter we will introduce the Hilbert hyperbolic metric stressing out that, di'erently to ll the other works tht we hve onsultedD in our model this hyperoli metri emerges nturlly from the mthemtil formlism, see as well [START_REF] Berthier | Geometry of color perception. Part 2: perceived colors from real quantum states and Hering's rebit[END_REF], nd it is not superimposed to (t experimentl dt or pereptul e'ets. As we will better specify in Section 4.3, the relevance of this metric is due to the fact that it expresses a chromatic constancy property with respect to observer changes.

Yilmaz relativity of color perception

We must stress that the description of Yilmaz's model, and in particular of the procedure through which he obtained Lorentz transformations in the color context, provided in this chapter, in Subsection 4.1.4, diers from the one of Chapter 2, Section 2.2, in the fact that it is more faithful to Yilmaz's original one. The reason is that we want to focus on the data concerning solely the information about hue and saturation of the color stimuli, in order to better relate it to the algebraic structure of the disk of chromatic vectors that will provide a theoretical justication of Yilmaz's results in Section 4.2.

Yilmaz's work [START_REF] Yilmaz | On color perception[END_REF][START_REF] Yilmaz | Color vision and a new approach to general perception[END_REF] is, to the best of our knowledge, the rst contribution that investigates the geometry of color perception from the viewpoint of special relativity. The main Yilmaz goal is to obtain olorimetri vorentz trnsformtions by interpreting mathematically the outcomes of three basic experiments, see Subsection 2.1.2. As we have detailed in Section 2.5, these experiments are quite controversial and this fact gives an even stronger motivation to recast Yilmaz in a mathematical setting where these experiments can be completely bypassed. In this subsection we are going to introduce a notation more in accordance to the one of Chapter 3, for the concepts already presented in Subsection 2.1.1. In order to analyze the results of olor mthing experiments, Yilmaz considers a conical color space that, in our notation, can be written as follows:

C = {(α, x, y) ∈ R 3 , Σ 2 -v 2 ≥ 0, α ≥ 0} , (4.1.1)
where Σ is a non-negative real constant and, when α > 0, v = (v 1 , v 2 ) = (x/α, y/α), otherwise, if α = 0, then also v is null. Notice that C is a reparametrization of C of Chapter 2. A color c of C can be viewed both as a point of R 3 with coordinates (α, x, y) and as a couple (α, v), where α is a positive real number and v is a vector of R 2 with Euclidean norm given by v = v less or equal to Σ.

In Yilmaz's context, the norm v = v 2 1 + v 2 2 =
x 2 + y 2 /α represents the sturtion of the color c and satises v ≤ Σ, hence Σ is interpreted as the maximal perceivable saturation. Moreover, the angle dened by φ = arctan(y/x) = arctan(v 2 /v 1 ) represents the hue of c and the non-negative real α is associated to its lightness. The denitions of hue, saturation and lightness of classical colorimetry can be consulted for instance in Chapter 1.

We use the notation C instead of the trichromacy cone C introduced in Chapter 3, because the latter is intrinsically equipped with the rich algebraic structure described in the previous chapter, that is not part of Yilmaz's model.

The existence of a positive real Σ, which plays the role of a limiting sturtion `reached by spectral colors', is one of the fundamental assumptions of Yilmaz. The mathematical formula for saturation given above is the analogue of speed (the magnitude of the velocity vector) in mechanics, thus it seems clear that, from Yilmaz's viewpoint, the limiting saturation Σ should be interpreted as an analogue of the speed of light.

We recall that the purpose of the three experiments described in [START_REF] Yilmaz | On color perception[END_REF] is to show that: 1. color perception is a relativistic phenomenon; 2. the limiting saturation is constant under `illuminant changes'; 3. there exists a colorimetric aberration eect which is the analogue of the relativistic one.

It is worth mentioning that Yilmaz does not use any information related to a hypothetical invariant quadratic form. In physics, the introduction of an invariant metric on the Minkowski spacetime is motivated by the experimental evidence about the constancy of the speed of light in vacuum measured by inertial observers, however an analogous result is not, or at least not yet, available in the colorimetric setting. It is arguable that this is the reason why Yilmaz wanted to bypass the introduction of an invariant metric by introducing the results of the third experimentm, and talking just after obtaining the Lorentz boosts about the Minkowski quadratic form.

Our description and subsequent analysis of Yilmaz's experimental results will be greatly simplied if we set up a novel nomenclature adapted from special relativity.

The nomenclature of the relativity of color perception

Without any further specication, we consider a color c as an abstract oordinteEfree element of the space C. This interpretation is the exact analogue to what we do in Galilean mechanics when we consider the position as an abstract element of the space R 3 without coordinates. For color sensations induced by non-self luminous stimuli, a coordinate system can be introduced in C by considering an illuminant which allows us to identify c and to perform measurements on it. For this reason, here we propose the following denition. It is well-known, see e.g. [START_REF] Fairchild | golor pperne models[END_REF][START_REF] Gilchrist | An anchoring theory of lightness perception[END_REF], that when a person is embedded for a sucient time in a visual scene illuminated by I, he/she will perceive the surface of an object having non-selective reectance properties without a color saturation. In this case, we call that person dpted to I. This consideration naturally leads to the following denition. Given the analogy between the saturation of a color and the speed of a velocity vector for a mechanical system, we can say that an observer o = (c, I) is characterized by the fact that the color c appears `at rest' in the reference frame I. Carrying on the analogy with mechanics, we propose the following nal denition. Denition 4.1.3 (Inertial observers). We call o 1 = (c 1 , I 1 ) and o 2 = (c 2 , I 2 ) two inertial observers and we denote by (α 1 , x 1 , y 1 ) = (α 1 , v 1 ) and (α 2 , x 2 , y 2 ) = (α 2 , v 2 ) the coordinates of a generic color in the reference frame I 1 and I 2 , respectively.

By denition of observer, we have that c i i = (α i , 0, 0) = (α i , 0), i = 1, 2. However, given i, j = 1, 2, i = j, c j will be described by o i with a color c i j represented by

c i j = (α, v ij ), (4.1.2) 
where α ≥ 0 is a suitable non-negative scalar and

v ij = v c i j veries v ij = v ij ≤ Σ.

Yilmaz experiments revisited

Thanks to the nomenclature just introduced, we are now able to give a concise description of Yilmaz experiments, for the original description see [START_REF] Yilmaz | On color perception[END_REF]124] or Subsection 2.1.2. In all three experiments, Yilmaz considers only the case of two inertial observes o 1 = (c 1 , I 1 )

and o 2 = (c 2 , I 2 ) such that only the rst component of the vector v 12 is non-zero, i.e.

v c 1 2 = v 12 = (v 12 , 0).
The rst experiment is intrinsic in the system given by the two inertial observes: each one describes the color that is perceived at rest by the other. The outcome claimed by Yilmaz is the following:

v c 2 1 = -v c 1 2 . (4.1.3)
If we assume this result to be correct, then it follows that olor pereption is reltivisti phenomenon and so an absolute description of the sensation of color is meaningless.

The second and the third experiment involve the two inertial observers dened above in the act of observing a particular color c ∈ C which is described by o 1 as having maximal saturation, i.e. v c 1 = Σ, thanks to the contribution of only one component of the vector v c 1 , the other being zero. The position of the non-null component distinguishes the second from the third experiment. Specically, the outcome of the second experiment can be summarized as follows:

v c 1 = (Σ, 0) =⇒ v c 2 = (Σ, 0) , (4.1.4) 
i.e., if c ∈ C is described by o 1 has having maximal saturation thanks to the sole contribution of the rst component of v c 1 , then the description of c ∈ C performed by o 2 is identical. Instead, the outcome of the third experiment is the following:

v c 1 = (0, Σ) =⇒ v c 2 = (-Σ sin ϕ, Σ cos ϕ) , (4.1.5) 
4.1. Yilmaz relativity of color perception with sin ϕ = v 12 /Σ, so, if c ∈ C is described by o 1 has having maximal saturation thanks to the sole contribution of the second component of v c 1 , then c will be still described by o 2 as having maximal saturation since v c 2 = Σ 2 (sin 2 ϕ + cos 2 ϕ) 1/2 = Σ, but the hue description will be dierent. As already mentioned in Section 2.4, the third experiment is meant to mimic the relativistic aberration eect. We are going to see that this experiment is crucial for the derivation of the colorimetric Lorentz transformations performed by Yilmaz.

Finally, we underline that, if Yilmaz outcomes are assumed to be true, then olors with limiting sturtion re pereived s suh y ll inertil oservers, which is in clear analogy of the fact that the speed of light is measured as constant by all inertial observers.

Yilmaz derivation of colorimetric Lorentz transformations

We explain now how to obtain the colorimetric Lorentz transformations from Equations (4.1.3), (4.1.4) and (4.1.5). In [START_REF] Yilmaz | On color perception[END_REF] the coordinate change between o 1 and o 2 is supposed to be linear. When we take into account the specic choices made by Yilmaz, the coordinate change is given by:  Since sin ϕ = v 12 /Σ, this implies:

 α 2 x 2 y 2   =   a 11 a 12 0 a 21 a 22 0 0 0 1     α 1 x 1 y 1   . ( 4 
  α 2 x 2 y 2   =     1 √ 1-(v 12 /Σ) 2 -v 12 /Σ 2 √ 1-(v 12 /Σ) 2 0 -v 12 √ 1-(v 12 /Σ) 2 1 √ 1-(v 12 /Σ) 2 0 0 0 1       α 1 x 1 y 1   . ( 4 
a 22 = 1 1 -(v 12 /Σ) 2 . ( 4 
.1.12)

Relativity within the quantum model

It is worth noticing that the derivation of these colorimetric Lorentz transformations proposed by Yilmaz relies only on information given by the v-component of colors, the only one appearing in Equations (4.1.3), (4.1.4) and (4.1.5). As we will see, in the quantum framework these v-components correspond to the perceptual chromatic vectors that will be introduced in Subsection 4.2.1.

Issues about Yilmaz approach

Without calling into question the great originality of Yilmaz's ideas and the relevance of his results, we deem necessary to underline some issues about the approach that we have reported above. As mentioned before, the derivation of the colorimetric Lorentz transformations is essentially based on the following assumptions: the space of pereived olors is the cone C, and, in particular, there exists a limiting saturation Σ; the coordinate changes between inertial observers are linear transformations; the results obtained from the three experiments are considered as valid.

However, as we have underlined in Section 2.5, no experimental result, nor apparatus description is available in [START_REF] Yilmaz | On color perception[END_REF] and this naturally raises doubts about the actual implementation of the three experiments. Furthermore, while the results of the rst two experiments are plausible, the outcome of the third seems completely illusory. In fact, Yilmaz denes the limiting saturation of a color c = (α, x, y) ∈ C as a value Σ of v that cannot be perceptually matched with that of any Munsell chip, thus, while this denition permits to identify the limiting saturation of a color, it does not allow its mesurement. As a consequence, Equation (4.1.5), with its precise analytical form, seems to be an ad-hoc formula used to single out the colorimetric Lorentz transformations (4.1.7), more than the real outcome of a psycho-physical experiment.

It may be tempting to adopt a more conventional approach to obtain the desired transformations starting, for instance, from the fact that there exists a limiting saturation invariant under observer changes and that the color space is isotropic and homogeneous. However, to go further, it is necessary to introduce an analogue of the Minkowski metric, which Yilmaz circumvents. One may choose to follow the standard path used in special relativity, see e.g. [START_REF] Landau | he lssil theory of (elds[END_REF][START_REF] Lechner | glssil iletrodynmis[END_REF], to justify the existence of such a metric. However, while the assumptions that go along with this approach rely on a solid experimental basis for what concerns the Minkowski spacetime, they are far from being either obvious or simple to be tested for the space of perceived colors.

For this reason, we consider a better solution to follow less conventional, but fully equivalent, approaches to special relativity as, e.g., that of the remarkable Mermin's paper [START_REF] Mermin | Relativity without light[END_REF], whose main focus is the Einstein-Poincaré velocity addition law and not Lorentz transformations. This alternative approach seems more suitable because the colorimetric eects reported by Yilmaz involve the sole v-components (or, equivalently, the sole perceptual chromatic vectors that will be dened in Subsection 4.2.1). The appropriateness of Mermin's approach is also justied by the fact that, as already declared by the emblematic title `Relativity without light', he deals with relativity without specically considering the physics of electromagnetic waves, thus providing a more general approach that can also be used in our case.

We will show how to recover Yilmaz's results from a purely theoretical point of view, thus avoiding the issues discussed in this Subsection, thanks to the quantum framework of color perception presented in Chapter 3.

4.2. Einstein-Poincaré's addition law for chromatic vectors

Einstein-Poincaré's addition law for chromatic vectors

In this section we show that the outcomes of the rst two experiments quoted by Yilmaz in his model can be rigorously derived from the fact that the so-called perceptual chromatic vectors, that will be introduced in Subsection 4.2.1, satisfy the Einstein-Poincaré addition law.

As we have done in Subsection 4.1.2, in order to show in the clearest way how to obtain the results stated above, we rst need to introduce several notions in Subsection 4.2.1. The notions introduced in Chapter 3 will be needed as well.

The nomenclature perceptual color attributes in the quantum colorimetric framework

We recall that a pereptul olor c is an element of the trichromacy cone C, i.e. explicitly c = (α, v) with α 2 -v 2 ≥ 0 and α ≥ 0. Denition 4.2.1 (Magnitude of a perceptual color). Let c = (α, v) ∈ C be a perceptual color.

The positive real α is called the mgnitude of c.

Recalling that ρ 0 = Id 2 the magnitude can be equivalently dened as the evaluation of c on the state of maximal entropy, as follows

α := c ρ 0 = Tr(c • ρ 0 ). (4.2.1) 
In this chapter we prefer to use the term magnitude, instead of the term lightness, adopted by Yilmaz because of possible confusion. A more thoughtful discussion about this issue is the object of Chapter 6.

Since the cone C is self-dual, c can also be considered as an element of the dual cone C * . The case when c has magnitude α = 1/2 is special, in fact, as previously seen, thanks to the isomorphism dened in Equation (3.1.5), c can naturally be associated to a density matrix representing its state. This justies the following denition. Denition 4.2.2 (Perceptual color state). If the perceptual color c = (α, v) has magnitude α = 1/2, then c is called a pereptul olor stte and denoted with c s . Thus, every perceptual color state has the following expression:

c s := (1/2, v), with v ≤ 1/2. (4.2.2)
If we want to associate a perceptual color c with magnitude α ≥ 0, α = 1/2, to a density matrix, we must proceed in two steps: the rst consists in dividing c by twice the magnitude, i.e. c/2α = (1/2, v/2α), which belongs to

D 1/2 = {c ∈ C, α = 1/2} ∼ = {u ∈ R 2 : u ≤ 1/2}.
In this way, the new magnitude is correctly set to 1/2, coherently with Equation (3.3.1), but we need a second steps to restore the variability of the vector part inside the unit disk, which is easily accomplished by considering

2v c ∈ D 1 ∼ = {u ∈ R 2 : u ≤ 1}.
The simple procedure just described leads to the following two denitions.

Denition 4.2.3 (Perceptual chromatic vector)

. Let c = (α, v) ∈ C, then v c := v/2α ∈ D 1/2
is called the perceptual chromatic vector of c.

The reason for the name that we have chosen is that v c carries only information about the chromatic attributes of c and not about its magnitude. Notice that this procedure of descarding the achromatic component α via division is reminiscent of the construction of the chromaticity diagrams mentioned in Section 1.1. 

ρ(2v c ) = 1 2 1 + 2v c,1 2v c,2 2v c,2 1 -2v c,1 . (4.2.3) is called perceptual chromatic state of c.
The dierence between a perceptual olor state and a perceptual hromti state is represented by the fact that, in the rst case, the density matrix associated to a color c with magnitude 1/2 contains all the information about the state of c, magnitude included, which is not the case for a chromatic state, where the magnitude α of c does not play any role.

Two noticeable conditions about perceptual chromatic states can be singled out, as formalized in the following denition. If that is the case, then c is said to be an achromatic perceptual color.

Geometrically, pure perceptual colors are in one-to-one correspondence with the points of the boundary of the disk D 1/2 , while the center of the disk D 1/2 represents achromatic perceptual colors. Notice that D 1/2 , or analogously D 1 , can be considered the quantum-like version of Newton's disk and of the concept of chromaticity. As we will see, their geometry is not Euclidean because they can be naturally endowed with the Klein hyperbolic metric.

We now introduce the hromtiity desriptors, that we will call purities and quantities. For a closer coherence with Yilmaz rst two experiments, see Subsection 4.1.3, we will consider only colors c whose perceptual chromatic vectors are of the form Given a color c, its chromatic vector v c divides the segment connecting v -and v + (extremes excluded) in two parts, whose lengths are denoted by p -(c) and p + (c), where: The sum of theand + purity of c is 1, so v c can be written as the convex combination of the pure opponent chromatic vectors v -and v + with weights given by p -and p + , respectively, i.e.

v c = (v c , 0) with -1/2 ≤ v c ≤ 1/2.
p -(c) = 1 2 -v c = 1 -2v c 2 ∈ [0, 1], p + (c) = v c -- 1 2 = 1 + 2v c 2 ∈ [0, 1]. ( 4 
v c = p -(c)v -+ p + (c)v + .
(4.2.5) Figure 4.1 provides a depiction of the ± purities dened above. The term `purity' is particularly appropriate, not only because it involves the pure opponent chromatic vectors, but also because it is reminiscent of the same term appearing in classical CIE colorimetry. Indeed, also the denition of `excitation purity' p e of a color c carries the information about its position on a straight line, precisely the one joining the equienergy 4.2. Einstein-Poincaré's addition law for chromatic vectors 

r(c) = p -(c) p + (c) = 1 -2v c 1 + 2v c , (4.2.6) 
is called the purity rtio of the color c.

It is easy to see that:

v c = 1 2 p + (c) -p -(c) p + (c) + p -(c) . (4.2.7)
It is obvious that, given two colors c and d, we have:

v c = v d ⇐⇒ p + (c) = p + (d) ⇐⇒ p -(c) = p -(d), (4.2.8) 
so, two colors with the same purity may dier only by their magnitude. For this reason, it is useful to dene a color attribute analogue to purity but which takes into account also the magnitude information that has been lost after the projection on D 1/2 . This is done as follows.

Denition 4.2.9 (± quantity of a perceptual color). Let c = (α, v) be a perceptual color. We dene thequntity q -(c) and the + quntity q + (c) of c by the following two non-negative real numbers:

q -(c) = 2αp -(c) = α(1 -2v c ), q + (c) = 2αp + (c) = α(1 + 2v c ). ( 4 

.2.9)

Clearly perceptual colors with magnitude equal to 1/2, i.e. perceptual color states, are characterized by the fact that their purities and quantities coincide.

Einstein-Poincaré addition law and Yilmaz experiments

Now we discuss our main issue: is there rigorous wy to ompre two given olors c nd d in C? The answer to this question that seems more natural and coherent with the concepts previously dened is to compare q -(c) with q -(d) and q + (c) with q + (d), that is to compare theirand + quntities. For this, we have to introduce the following concept. Denition 4.2.10 (Quantity ratios). Given two perceptual colors c and d, such that |v d | = 1/2, the ± quantity ratios are dened as:

s + (c, d) = q + (c) q + (d) and s -(c, d) = q -(c) q -(d) . ( 4 

.2.10)

Let us consider two arbitrary perceptual colors c and d whose magnitudes and perceptual chromatic vectors are, respectively, α c and α d , and v c and v d , with v c > v d . We have:

s + (c, d) = α c p + (c) α d p + (d) and s -(c, d) = α c p -(c) α d p -(d) . ( 4 

.2.11)

Now we arrive to a key denition.

4. Relativity within the quantum model Denition 4.2.11 (Relative perceptual chromatic vector). Let c, d ∈ C be two perceptual colors, then, the relative perceptual chromatic vector is given by v d c = (v d c , 0), where

v d c := 1 2 s + (c, d) -s -(c, d) s + (c, d) + s -(c, d) . (4.2.
12)

The denition of v d c is clearly inspired from Equation (4.2.7), but here quantity ratios play the role of purities. We also remark that the second coordinate of the relative perceptual chromatic vector is 0 because of our choice to consider only perceptual chromatic vectors of the type v c = (v c , 0), as Yilmaz did in his rst two experiments. Proposition 4.2.12. ith the nottion introdued eforeD it holds tht

v d c = v c -v d 1 -4v c v d , (4.2.13) 
orD equivlentlyD 

v c = v d c + v d 1 + 4v d c v d . ( 4 
v d c = 1 2 q + (c)q -(d) -q -(c)q + (d) q + (c)q -(d) + q -(c)q + (d) , (4.2.15) 
and, since the ratio cancels out the proportionality between quantities and purities, we obtain:

v d c = 1 2 p + (c)p -(d) -p -(c)p + (d) p + (c)p -(d) + p -(c)p + (d) . (4.2.16) 
We now notice that:

v c -v d 1 -4v c v d = 1 2 p + (c)-p -(c) p + (c)+p -(c) -1 2 p + (d)-p -(d) p + (d)+p -(d) 1 -p + (c)-p -(c) p + (c)+p -(c) • p + (d)-p -(d) p + (d)+p -(d) , (4.2.17) 
straightforward manipulations lead to

v c -v d 1 -4v c v d = 1 2 p + (c)p -(d) -p -(c)p + (d) p + (c)p -(d) + p -(c)p + (d) = v d c , (4.2.18) 
and, consequently, to Equation (4.2.14).

In special relativity, the Einstein-Poincaré addition law between two collinear velocity vectors with speed u 1 and u 2 can be written as follows: . Thus, if we want to nd a correlation, we must rst operate suitable identications among the three vectors appearing in the two situations. The correct identications are the following:

u 1 ⊕ u 2 = u 1 + u 2 1 + u 1 u 2 c 2 , ( 4 
v d c = -v c d , (4.2 
     v c 1 ≡ v c v c 2 ≡ v d c v c 1 2 ≡ v d , (4.2.21) 
in fact, if, for the reasons explained above, we replace Σ with 1/2 and we introduce v c = 1/2 in Equation (4.2.13), we nd that v d c = 1/2 independently of v d . This is the precise way in which the second outcome claimed by Yilmaz must be interpreted within the formalism of perceptual chromatic vectors.

The case of the third Yilmaz's experiment is more complex, since related to the relativistic aberration eect already underlined in Section 2.4, but it is possible to obtain it using the general formula of the Einstein-Poincaré addition law for non collinear vectors. We must stress that the presence of the general relativistic addition law between chromatic vectors will be fully justied in Section 5.2 of the next chapter.

Recalling Equation (4.1.5), we know that v c 1 = (0, Σ) and v c 1 2 = (v 12 , 0). According to Yilmaz's third experiment this implies that v c 2 = (-Σ sin ϕ, Σ cos ϕ), with sin ϕ = v 12 /Σ. As we did for the second experiment let us replace Σ with 1/2 and do the same associations as in (4.2.21). Thus the description of the third experiment becomes:

v c = v c 1 = (0, 1/2) =⇒ v d c = v c 2 = (-sin ϕ/2, cos ϕ/2) , (4.2.22) 
with sin ϕ = 2v 12 . Notice that v d = v c 1 2 = (v 12 , 0). Let us start by assuming the statement of Proposition 4.2.12 to be true also for the general expression of the relativistic addition law, see Section 5.3 of the next chapter, thus, in particular, that the general equivalent of Equations (4.2.14) and (4.2.13) will be v

c = v d c ⊕ v d and v d c = v c v d , respectively.
To obtain the outcome of Yilmaz's third experiment we will use the latter equation. Explicit formulas for the two components of the vector v d c are the following:

(v c v d ) x = (v c ) x -v 12 1 -4v 12 (v c ) x , (v c v d ) y = 1 -4v 2 12 (v c ) y 1 -4v 12 (v c ) x , (4.2.23) 
see e.g. [START_REF] Ungar | enlyti hyperoli geometry nd elert iinstein9s speil theory of reltivE ity[END_REF]. Notice that ⊕ is commutative for the collinear case, while it is not commutative in the general conguration. Using the fact that v c = (0, 1/2) and the formulas provided in 4. Relativity within the quantum model Equation (4.2.23), one obtains the following expression for the vector v d c : 

v d c = v c v d = 1 2 -2v

The Hilbert metric

In this section we prove that, quite remarkably, the Einstein-Poincaré additivity law satised by perceptual chromatic vectors permits to coherently equip the space of such vectors with the so-called Hilbert metric. In Subsection 4.3.1, we show that this metric is compatible with the results of well-established psycho-visual experiments.

Let us start by recalling that, given four collinear points a, p, q, and b of R 2 , with a = p and q = b, the ross rtio [a, p, q, b] is dened by [START_REF] Colbois | Les géométries de Hilbert sont à géométrie locale bornée[END_REF]:

[a, p, q, b] = q -a p -a • p -b q -b , (4.3.1) 
where • denotes the Euclidean norm. Given two points p and q of the closed disk D 1/2 such that the points (-1/2, 0) = a -, p, q, and (1/2, 0) = a + are collinear with the segment [p, q] contained in the segment [a -, a + ], the D 1/2 -Hilbert distance d H (p, q) is given by [START_REF] Colbois | Les géométries de Hilbert sont à géométrie locale bornée[END_REF]:

d H (p, q) = 1 2 ln [a -, p, q, a + ] , (4.3.2) 
where the choice of the points involved in the cross ratio above guarantees that the argument of ln is strictly positive.

We consider now three chromatic vectors v c , v d and v d c of D 1/2 with v c = (v c , 0), v d = (v d , 0) and v d c = (v d c , 0). We have the following result (see for instance [START_REF] Fock | he theory of speD time nd grvittion[END_REF] for related topics).

Proposition 4.3.1. ith the nottions introdued oveD it holds thtX

d H ((0, 0), (v d c , 0)) = d H ((v d , 0), (v c , 0)) ⇐⇒ v c = v d c + v d 1 + 4v d c v d . (4.3.3)
roofF By denition, the equality d H ((0, 0),

(v d c , 0)) = d H ((v c , 0), (v d , 0)) holds if and only if a -, (0, 0), (v d c , 0), a + = [a -, (v d , 0), (v c , 0), a + ]. Equivalently: d H ((0, 0), (v d c , 0)) = d H ((v c , 0), (v d , 0)) ⇐⇒ 1/2 -v c 1/2 + v c = 1/2 -v d c 1/2 + v d c • 1/2 -v d 1/2 + v d . (4.3.4)
By a straightforward computation, it can be checked that the right-hand side of (4.3.4) is equivalent to that of (4.3.3). By using the vector notation, (4.3.3) can be re-written as follows 

d H (0, v d c ) = d H (v d , v c ) ⇐⇒ v c = v d c + v d 1 + 4v d c v d , ( 4 

The Hilbert metric

The colorimetric interpretation is the following: since the relativistic sum (4.2.14) has been previously proven to hold true, this result implies that our hypothesis that v d c contains information about the perceptual dissimilarity between the colors c and d is veried if and only if we consider the chromatic vectors as elements of the metric space (D 1/2 , d H ), thus promoting the Hilbert distance to a mathematically coherent candidate for a perceptual metric of chromatic attributes.

Remarkably, see e.g. [START_REF] Beardon | The klein, hilbert and poincaré metrics of a domain[END_REF], the Hilbert metric on D 1/2 coincides precisely with the ulein hyperoli metri dened by:

ds 2 D 1/2 = (1/4 -v 2 2 )dv 2 1 + 2v 1 v 2 dv 1 dv 2 + (1/4 -v 2 1 )dv 2 2 (1/4 -v 2 ) 2 . (4.3.6)
The geodesics with respect to this metric are straight chords of D 1/2 . A geometric representation of this result is provided by the so-called Chasles theorem on cross ratios of cocyclic points, see Figure 4.2, which provides a graphical method to construct the relativistic sum of two vectors in one dimension. An alternative interpretation of formula 

     v d ≡ v 12 v c ≡ v 1F v d c ≡ v 2F
, then formula (4.3.5) implies the equality

d H (v 22 , v 2F ) = d H (v 12 , v 1F ), (4.3.7) 
notice that the arguments of the Hilbert distance in the left-hand side are relative to the color description performed by o 2 and those in the right-hand side are relative to o 1 . Since v 22 = 0, we can also write

d H (0, v 2F ) = d H (v 12 , v 1F ). (4.3.8)
The interpretation of formula (4.3.8) gives a rigorous meaning to the sentence in the introduction to this chapter about the fact that the Hilbert distance provides a `hromti onstny property with respet to oserver hnges'. In fact, if we interpret the Hilbert distance as a perceptual metric, Equation (4.3.8) says that the perceptual chromatic dierence between F and an achromatic color sensed by o 2 is the same as the one that o 1 experiences between F and the chromatic vector v 12 representing the saturation shift due to the observer change from

o 1 to o 2 .
We stress that we have implicitly assumed the illuminants I 1 and I 2 to be broadband, so the previous interpretation is valid as long as the quantity v d = v 12 is relatively small.

Compatibility of the Hilbert metric with psycho-visual experimental data

Now we address the important issue of the compatibility between the Hilbert metric on D 1/2 and psychovisual measurements. This is not an easy task because of two reasons: rstly, experimental data on color perception are very scarce, secondly, psychovisual measurements are always aected by subjective variations which imply the use of averaging procedures that inevitably reduce the measure accuracy. Some useful psychovisual results consistent with our framework are those reported in [START_REF] Burnham | Prediction of color appearance with dierent adaptation illuminations[END_REF] and [START_REF] Crocetti | [END_REF].The authors conducted their tests with the help of the standard CIE illuminants C (near-daylight, (x C , y C ) = (0.3125, 0.3343)) and A (tungsten, (x A , y A ) = (0.4475, 0.4084)) and added a third one, denoted with G (greenish, (x G , y G ) = (0.3446, 0.4672)). The values (x, y) represent the CIE xyY chromaticity coordinates of C, A and G, respectively, the rst is composed by three contours surrounding C that correspond to color stimuli with xed Munsell value, dierent hue but with the same perceived Munsell chroma in {2, 4, 8}. By normalizing these data between 0 and 0.5 we obtain {0.1, 0.2, 0.4}, which are the norms of the chromatic vectors v 1c of the colors associated to the corresponding stimuli observed by o 1 ; the second and the third are given by two contours surrounding A, resp. G, that correspond to colors c with varying hues and whose Munsell chroma belong to the set {2, 4}. The chromatic vectors v 2c , resp. v 3c , of these colors observed from o 2 , resp. o 3 , have norms belonging to the set {0.1, 0.2}. As discussed above, the psychovisual data reported in [START_REF] Burnham | Prediction of color appearance with dierent adaptation illuminations[END_REF] and [START_REF] Crocetti | [END_REF] are only averaged, thus, the only kind of information that we have from Figure 4.3 is, for example, that the xyY coordinates of standard illuminant A are between the curves of chroma 4 and 8 of the observer o 1 . Thus, the norm of the chromatic vectors is not possible to be achieved with accuracy. An approximation is given by v 1a 6.76/20 = 0.338. In 

The Hilbert metric

d H (v 1F , v 1c ) = d H (v 2F , v 2a ) = d H (v 1F , v 1a ) . (4.3.9)
The same reasoning applied to the situation depicted in Figure 4.5(a), where the points F 2 and F 2 belong to another iso-chroma contour, leads to: Finally, we consider the quite more complicated situation depicted in Figure 4.6(a). It is precised in [START_REF] Burnham | Prediction of color appearance with dierent adaptation illuminations[END_REF] that `e hnge from lue @CA dpttion to yellow @AA dpttion shows vetors running in lueEyellow diretionD hnge from lue @CA dpttion to green These discussions show clearly that the Hilbert metric is compatible with the reported psychovisual data. Here we have reported only three cases, but other three congurations related to Figure 4.3 can be studied and our computations showed that they give rise to the same conclusions. We have only treated the case when colors, e.g. F and F , have chromatic vectors collinear to the new observer chromatic vector, e.g. v 1F and v 1F are collinear to v 1a in this rst situation. Dealing with arbitrary colors needs the use ot Einstein-Poincaré addition law for non-collinear vectors. We prefer to postpone the study of the general case for future 

d H (v 1F 2 , v 1c ) = d H (v 2F 2 , v 2a ) = d H (v 1F 2 , v 1a ) ,
d H (v 1H , v 1c ) = d H (v 3H , v 3g ) = d H (v 1H , v 1g ) , ( 4 

Quantum eects for color measurement

In this chapter we will introduce some concepts coming from quantum information theory, that will enrich the framework described in Chapter 3. The crucial one is the concept of e'et. Indeed it encodes the probabilistic nature of quantum measurements and lies at the very core of modern quantum theories, see e.g. the classical books [START_REF] Kraus | States, eects, and operations: fundamental notions of quantum theory[END_REF][START_REF] Busch | ypertionl quntum physis[END_REF][START_REF] Heinosaari | he mthemtil lnguge of quntum theoryX from unertinty to entnglement[END_REF] for an overview on this topic. We will dene as well post-measurement generalized states, Lüders operations and relative quantum entropy. In particular, in Section 5.2, we will see that the action of Lüders operations on the disk of chromatic vectors corresponds to Einstein-Poincaré addition law. We recall that the general case of the relativistic addition law was needed to prove Yilmaz's third result, as announced in Subsection 4.2.3. For more details the main reference will be [START_REF] Berthier | Quantum measurement and colour perception: theory and applications[END_REF] for a thoughtful discussion, or Section 3.3 of [14] for a quick overview. As we will see in Chapter 6, the concepts introduced here will be fundamental to establish denitions of color attributes within the quantum-like model.

Eect space of the rebit

The quantum trichromacy axiom, see Section 3.1, refers to an idel normal trichromatic observer, capable of a non-trivial response to light stimuli of any intensity, no matter how dim or intense. However, the visible threshold and glare limits, see e.g. [START_REF] Koenderink | erspetives on olour spe[END_REF][START_REF] Provenzi | A dierential geometry model for the perceived colors space[END_REF][START_REF] Provenzi | Geometry of color perception. Part 1: Structures and metrics of a homogeneous color space[END_REF], imply that the space of perceived colors perceived by a rel normal trichromatic observer is actually a nite convex subset, called olor solid, see as well Chapter 1, of the innite cone C(A), where

A = H(2, R) or R ⊕ R 2 .
A naïve way to obtain a bounded volume could be, as in Chapter 2, to `cut' C(A) at height corresponding to the glare limit, however in the following we are going to introduce a more profound and meaningful construction, relying on the concept of quantum-eects and on the self-duality of C(A), that leads to a bounded volume.

As rst argued in [START_REF] Berthier | Geometry of color perception. Part 2: perceived colors from real quantum states and Hering's rebit[END_REF], a nite-volume color solid can be obtained in a natural way in the quantum-like framework by rst re-writing C(A) to make states appear explicitly as follows, let us call it the state cone

C(H(2, R)) = 2αρ s = α(1 + s 1 ) αs 2 αs 2 α(1 -s 1 ) , α ≥ 0, v s = (s 1 , s 2 ) ∈ D (5.1.1)
and In quantum information, the concept of e'et refers to a measurement apparatus that produces an outcome. The duality between states and eects means essentially that when a state and an eect are specied, one can compute a probability distribution which is the only meaningful information that we can obtain about the experiment. Let us now understand how to represent eects and their action on S(A).

C(R ⊕ R 2 ) = 2αχ(ρ s ) = α αv s , α ≥ 0, v s ∈ D , ( 5 
We identify an eect with an element η e of C(H(2, R)) bounded between the null and the identity 2 × 2 matrix (with respect to the ordering of positive semi-denite matrices) or, equivalently,

χ(η e ) ∈ C(R ⊕ R 2 ).
It is useful to adopt a general symbol to denote an eect e when it is not important to know if it is realized as the matrix η e or the vector of the spin-factor χ(η e ). We will use the following notation:

e := (e 0 , v e ),

where e 0 and v e , called e'et mgnitude and e'et hromti vetor, respectively, play the role of α and v s in Equation (5.1.1), respectively. It is convenient to dene the eect vector as follows: Whenever v e = 0, we will write e = e a and we will call it an hromti e'et. It is clear that η ea = e 0 σ 0 . We recall that, from (3.4.1), σ 0 = Id 2 .

v e := e 1 e 0 , e 2 e 0 t , (5.1.4) 
The matrix η e denes an eect if and only if 0 ≤ η e ≤ σ 0 , this double inequality is equivalent to the request that the determinant and the trace of both η e and σ 0 -η e are nonnegative. From det(η e ) ≥ 0 we obtain v e ∈ D and, by considering all the other constraints, we nd that the eect space, or perceived color space, can be geometrically characterized in an explicit way as follows:

E = (e 0 , e 1 , e 2 ) ∈ R 3 , e 0 ∈ [0, 1], e 2 1 + e 2 2 ≤ min e 0 ∈[0,1]
(1 -e 0 ) 2 , e 2 0 .

(5.1.7)

E is a losed onvex doule one with a circular basis of radius 1/2 located height e 0 = 1/2 and vertices in (0, 0, 0) and (1, 0, 0), associated to the null nd the unit e'et, respectively. Notice that with this expression for E we do not have to specify whether we are using the matrix representation η e or the spin-factor one χ(η e ). In case we need to specify it we will use the notation E(S(A)) with A = H(2, R) or R ⊕ R 2 , as in [START_REF] Berthier | Quantum measurement and colour perception: theory and applications[END_REF]. The geometry of E, depicted in Figure 5.1, happens to be in agreement with that of the perceived color spaces advocated by Ostwald and De Valois, see e.g. [START_REF] Valois | eeing[END_REF].

By self duality of C(A) it is possible to see eects as ane maps acting on chromatic states, see [START_REF] Berthier | Quantum measurement and colour perception: theory and applications[END_REF] for more details: e(s) is interpreted as the probability to register the outcome (e 0 , e 1 , e 2 ) after a color measurement on the visual scene prepared in the state s, i.e. e(s) coincides with the expectation value e s , which can be written as follows:

e s = Tr(ρ s η e ) = e 0 + e 1 s 1 + e 2 s 2 = e 0 (1 + v e • v s ) = 2χ(ρ s ) • χ(η e ). (5.1.9) 
The so-called hromti e'et is e a := e 0 (1, 0), with e 0 ∈ [0, 1], it is characterized by a null eect vector v ea = 0, so that η ea = e 0 σ 0 .

(5.1.10)

If we consider the achromatic state s a , with v sa = 0, and we compute the expectation value of an arbitrary eect e on it we obtain: e sa = e 0 , (5. 1.11) which shows that the (rst omponent e 0 of e represents its hromti ttriute, or mgnitude.

Lüders operations and post-measurement generalized states

Eects parameterize a fundamental class of state transformations called vüders operE tions, which are onvexEliner positive funtions ψ e dened on the state space S(H(2, R)) and satisfying the constraint: 0 ≤ Tr(ψ e (ρ s )) ≤ 1, for all ρ s ∈ S(H(2, R)).

( 

ψ e (s 0 s) = s 0 ψ e (s), ∀s 0 ∈ [0, 1]. (5.2.7)
By linearity of the trace this implies that:

e s 0 s = Tr(ψ e (s 0 s)) = Tr(s 0 ψ e (s)) = s 0 e s = e 0 s 0 (1 + v e • v s ), (5.2.8) 
so ϕ e (s 0 s) = ψ e (s 0 s) e s 0 s = s 0 ψ e (s) s 0 e s = ϕ e (s), (5.2.9) thus the post-measurement chromatic state depends solely on s and not on s 0 . This implies a formula that will be often used in this chapter and in the following one:

ψ e (s 0 s) = e 0 s 0 (1 + v e • v s
) ϕ e (s).

(5.2.10)

This formula shows explicitly how the chromatic information about the state s and the expectation value of the eect e on s are fused together in the post-measurement generalized state ψ e (s 0 s).

In the case of an achromatic eect e a , for which v ea = 0, the previous formula gives this means that the post-measurement state induced by the action of an achromatic eect coincides with the original state.

ψ ea (s 0 s) = e 0 s 0 ϕ ea (s), ( 5 
In [START_REF] Berthier | Quantum measurement and colour perception: theory and applications[END_REF], it has been shown that the stte hnge s → ψ e (s) indued y the t of oserving olor is implemented through a 3-dimensional normalized Lorentz boost in the direction of v e . This formally justies the presence of Lorentz boosts, already mentioned in Chapters 2 5. Quantum eects for color measurement and 4, within the quantum model. Here we refer only to the result @iiA of Corollary 4.1, that will be needed in Chapter 7 for an application to automatic white balance, for a proof and further details see [START_REF] Berthier | Quantum measurement and colour perception: theory and applications[END_REF].

Let e be an eect whose chromatic vector is such that ||v e || < 1, then the expression of the Lüders operation relative to e within the state cone of the spin-factor, of Equation (5.2.21), can be re-written in the following way:

χ(ψ e (s)) = e 0 γ ve B(v e ) 1 2 
1 v s ≡ B N (e) 1 2 1 v s , (5.2.14)
where B(v e ) is the Lorentz boost associated to the chromatic vector v e , whose associated matrix is:

[B(v e )] = γ ve γ ve v t e γ ve v e σ 0 + γ 2 ve 1+γv e v e v t e , (5.2 

.15)

γ ve is the Lorentz factor dened by

γ ve := 1 1 -v e 2 , ( 5 

.2.16)

and where we dene the normalized Lorentz boost associated to e as follows:

B N (e) ≡ e 0 γ ve B(v e ).
(5.2.17)

Clearly Equation (5.2.14) holds as well for generalized states

χ(ψ e (s 0 s)) = s 0 e 0 γ ve B(v e ) 1 2 
1 v s = B N (e) s 0 2 1 v s , (5.2.18) 
In Chapter 7 we will use this latter equation to propose a novel chromatic adaptation transform (CAT).

In the same way as Hamilton's quaternions are used to reproduce rotations in R 3 , it is possible to use the so-called split quternions, see e.g. [START_REF] Gogberashvili | Split quaternions and particles in (2+1)-space[END_REF][START_REF] Jafari | Matrix theory over the split quaternions[END_REF] to reproduce the action of (normalized) Lorentz boosts, i.e. hyperbolic rotations. There are both theoretical and applied implications of this fact. Indeed, on the theoretical side, this means that R ⊕ R 2 and H(2, R) are isomorphic as Jordan algebras to a certain sub-algebra of the split quaternions. From an applied point of view, a faster version of the CAT proposed in Chapter 7 can be obtained using this dierent formalism.

As also proven in [START_REF] Berthier | Quantum measurement and colour perception: theory and applications[END_REF], the post-measurement chromatic state vector is the Einstein-Poincaré relativistic sum of v e and v s , i.e.

v ϕe(s) = v e ⊕ v s , (5.2.19)
or,

χ(ϕ e (s)) = 1 2 1 v e ⊕ v s ∈ S(R ⊕ R 2 ), (5.2.20)
and so

χ(ψ e (s)) = e 0 (1 + v e • v s ) 1 2 1 v e ⊕ v s ∈ S(R ⊕ R 2 ), (5.2.21)
where the relativistic sum v e ⊕ v s is dened as follows: if v e < 1, then Apart from the case of collinear vectors, the composition of Lüders operations is neither associative nor commutative due to the action of the so-called homs gyrtion opertor, see [START_REF] Ungar | enlyti hyperoli geometry nd elert iinstein9s speil theory of reltivE ity[END_REF] for more details. This is particularly important to keep in mind when we write the expression of a post-measurement generalized state issued by a sequential Lüders operation as the following:

v e ⊕ v s := 1 1 + v e • v s v e + 1 γ ve v s + γ ve 1 + γ ve (v e • v s )v e , ( 5 
χ(ψ e 2 (ψ e 1 (s 0 s))) = e 1 0 e 2 0 s 0 (1 + v e 1 • v s )(1 + v e 2 • (v e 1 ⊕ v s )) 1 2 1 v e 2 ⊕ (v e 1 ⊕ v s ) . (5.2.24)
We recall as well the fundamental chromatic matching equation, that will be applied in Section 6.4 of the next chapter to obtain the characterization of lightness constancy. From [START_REF] Berthier | Quantum measurement and colour perception: theory and applications[END_REF] we have the following result: given two couples of chromatic states-eects (s 1 , e 1 ) and (s 2 , e 2 ), the equation

ϕ e 1 (s 1 ) = ϕ e 2 (s 2 ), (5.2.25) 
or, equivalently,

v e 1 ⊕ v s 1 = v e 2 ⊕ v s 2 , (5.2.26) 
represents the hromti mthing eqution between (s 1 , e 1 ) and (s 2 , e 2 ) that establishes the perception of the same chromatic information.

Relativistic sum and the Hilbert-Klein metric

Fock, Mermin and Ungar [START_REF] Fock | he theory of speD time nd grvittion[END_REF][START_REF] Mermin | Relativity without light[END_REF][START_REF] Ungar | enlyti hyperoli geometry nd elert iinstein9s speil theory of reltivE ity[END_REF] studied deeply the relationship with the Einstein-Poincaré addition law and the structures of hyperbolic geometry. Ungar, in particular, introduced the so called gyroEstrutures to describe the algebraic properties of the Bloch disk. In particular (D, ⊕, ⊗), is said to be a gyro-vector space where D is endowed with the Einstein-Poincaré addition law ⊕ as sum, dened in Equation (5.2.22), and the so-called Einstein scalar multiplication ⊗ is dened [START_REF] Chen | The bloch gyrovector[END_REF] as follows:

r ⊗ v = (1 + ||v||) r -(1 -||v||) r (1 + ||v||) r + (1 -||v||) r v ||v|| = tanh(r tanh -1 ||v||)v, r ∈ R, v ∈ D. (5.3.1)
The notation v is used to mean v = -v and so u v = u ⊕ (-v), with u, v ∈ D. Unlike vector spaces, the sum is not commutative nor associative and it is not bilinear with respect to the scalar multiplication, see [START_REF] Chen | The bloch gyrovector[END_REF][START_REF] Ungar | Einstein's special relativity: Unleashing the power of its hyperbolic geometry[END_REF][START_REF] Ungar | enlyti hyperoli geometry nd elert iinstein9s speil theory of reltivE ity[END_REF].

In Proposition 4.3.3 of Chapter 4, we have mentioned the use of the Hilbert-Klein metric as a metric expressing the perceptual distance invariant under changes of observers for the case of collinear chromatic vectors.

It will be needed in Section 6.4 to check that the proposed derivation also applies for the case of two illuminants which are not achromatic.

Relative entropy

Clearly Equation (5.3.10) implies Equation (5.3.11), thanks to Proposition 5.3.1. Most importantly, Proposition 5.3.2 shows that if two colors, i.e. generalized post-measurement states, are in chromatic matching, this means that the Hilbert-Klein dissimilarity between the chromaticity vectors associated to the states s 1 and s 2 is the same as the one between the chromatic vectors associated to the eects e 1 and e 2 .

Relative entropy

In quantum information theory the notion of reltive entropy is used as a measure of distinguishability between states. We introduce this concept here, because it will be of fundamental importance to provide the denitions of quantum-like color attributes in Chapter 6. In particular the attributes of hue, saturation, chroma and colorfulness will be dened using relative entropy.

Denition 5.4.1 (Relative entropy). Let s, t be two quantum states and ρ s , ρ t be their associated density matrices. The relative entropy between ρ s and ρ t is given by

R(ρ s ||ρ t ) := Tr[ρ s log 2 ρ s -ρ s log 2 ρ t ] (5.4.1)
Actually, the so-called ulein inequlity, establishes a sort of `denite positivity' for R in the following sense: R(ρ s ||ρ t ) ≥ 0 for all ρ s and ρ t and R(ρ

s ||ρ t ) = 0 if and only if ρ s = ρ t .
Notice that R is not symmetric, hence it does not constitute a metric on Hering's rebit, see Chapter 9.

One of the most important reasons why we will consider the relative entropy so inherently natural in the analysis of chromatic attributes in the quantum-like framework of the next chapter is that it can also be dened on generalized state density matrices. In fact, for all λ > 0, R satises the following property: R(λρ s ||λρ t ) = λR(ρ s ||ρ t ).

(5.4.2)

Unlike the von Neumann entropy, relative entropy `behaves well' with respect to scalar multiplication, it is thanks to this feature that, in Chapter 6, we will be able to build a coherent system of linearly related denitions of saturation, chroma and colorfulness, which are the same quantity up to a scalar factor, as shown by the Equations (1.3.2) and (1.3.3) in Subsection 1.3.1.

To obtain an explicit expression for R, let us consider two density matrices ρ s and ρ t with chromatic state vectors v s = (s 1 , s 2 ) and v t = (t 1 , t 2 ), respectively, i.e.

ρ s = 1 2 1 + s 1 s 2 s 2 1 -s 1 , ρ t = 1 2 1 + t 1 t 2 t 2 1 -t 1 . (5.4.3)
Let us also denote r s := v s , r t := v t , and cos ϑ s,t := v s • v t /r s r t . Technical computations lead to the following explicit expression:

R(ρ s ||ρ t ) = 1 2 log 2 (1 -r 2 s ) + r s 2 log 2 1 + r s 1 -r s - 1 2 log 2 (1 -r 2 t ) - r s cos ϑ s,t 2 log 2 1 + r t 1 -r t .
(5.4.4)

Quantum eects for color measurement

As a particularly important case of Equation (5.4.4), if t = s a , i.e. ρ t = ρ 0 , the achromatic state, then r t = 0 and: Notice that the relative entropy between ρ s and the achromatic state agrees with the denition of saturation based on the von Neumann proposed in Section 3.3, as well as in [START_REF] Berthier | The quantum nature of color perception: Uncertainty relations for chromatic opposition[END_REF][START_REF] Berthier | Quantum measurement and colour perception: theory and applications[END_REF]. We will come back to the problem of dening the saturation in Section 6.3.2 of the next chapter, where we will use the notion of relative entropy.

R(ρ s ||ρ 0 ) = 1 2 log 2 (1 -r 2 s ) + r s 2 log 2 1 + r s 1 -r s = Σ(r s ), ( 5 
Chapter 6

A quantum information-based vocabulary for color attributes

In Subsection 1.3.1 of Chapter 1 we have presented the state-of-the art color appearance attributes and treated the issue of expressing them into coordinates of a color solid. Understanding the mathematical expression of color appearance attributes is a fundamental question also because they are involved in the so called color appearance phenomena, mentioned in Subsection 1.3.2, and, of course, because of their high impact on applications. We must stress that both problems of nding coordinates to associate to color appearance attributes and a mathematical description of color appearance phenomena are still unsolved and debated topics in the literature.

In Chapter 5 we have seen a paradigm shift according to which a perceived color is not described in terms of coordinates, but it is intended as a generalized post-measurement state, i.e. the outcome of a measurement procedure involving the interaction of an eect and a generalized state. The aim of this chapter, whose content is based on [14], is to provide denitions of color perception attributes using the tools from quantum information theory introduced in the previous one, such as generalized quantum states, Lüders transformations and eects. We will see that these new denitions are in accordance with the ones provided in Subsection 1.3.1. An illustration of the potential of these new system of denitions is provided by the rigorous derivation of the so-called lightness onstny phenomenon, already introduced in Subsection 1.3.2 of Chapter 1.

6.1 The basic denitions: observer, illuminant, perceptual patch and perceived color from emitted and reected light

In this section we provide the formalization of the most basic entities of our color perception theory. We must stress that the denition given in this section are coherent with the ones given in Subsection 4.1.2 of Chapter 4, but they are enriched and expressed using the tools provided in Chapter 5, new concepts will be introduced as well. The modeling rules that we will follow are listed below: any quantity whose chromatic features manifest themselves multiplied by a scalar factor in [0, 1] will be described through a generlized stte; any act of (physical or perceptual) color measurement and the (physical or perceptual) medium used to perform it will be associated to an e'et; the measurement outcome will be identied with the postEmesurement generlized stte induced by the action of the eect via Lüders transformations.

6.1. The basic denitions: observer, illuminant, perceptual patch and perceived color from emitted and reected light

Our formalization starts with this very simple remark: pereived olor is the result of the mesurement of physil olor stimulus performed y the visul system of humn oserver. This means that a human observer is the medium through which a perceptual color measurement takes place, for this reason we model it as an eect. Denition 6.1.1 (Observer). en oserver o mesuring olor stimulus is identi(ed with n

e'et o = (o 0 , v o ) ∈ ED o 0 ∈ [0, 1] nd v o ∈ DF
The color stimulus hitting the eyes of o can be either a light emitted by a source of radiation or a light re)eted from the patch of a surface lit by an illuminant. Let us rst formalize the former situation. 

stte ψ o ( 0 ) ∈ S(H(2, R))F
Notice that this denition is coherent with the three-dimensional nature of perceived colors, in fact Equations (5.2.10) and (5.2.6) imply: which means that the chromatic state of the color perceived by o a from the light source = 0 is exactly its intrinsic chromatic state . Formula (6.1.1) shows explicitly the role played by the eect magnitude o 0 and by the eect chromatic vector v o : o 0 describes how the oserver pereives the intensity of the color stimulus, while v o describes the dpttion stte of the oserver. Let us now turn our attention to color stimuli from non-emitting surfaces. While the perceptual measurement of an emitted light stimulus consists simply in the act of observing it, a nonemitting surface needs an additional step: before being observed, it must be illuminated. For this reason, the formalization of the concept of perceived color from a reected light requires the preliminary denition of illuminant. Being the medium that permits to perform a measurement process, an illuminant is identied with an eect * . Denition 6.1.5 (Illuminant and achromatic illuminant). en illuminnt ι needed to light up nonEemitting surfe in order to mesure its olor is identi(ed with n e'et ι = (ι 0 , v ι )D ι 0 ∈ [0, 1]D v ι ∈ DF he rel quntity ι 0 represents the illuminnt intensityD while v ι rries the hromti feturesF sf v ι = 0D ι is lled n hromti illuminntF 6. A quantum information-based vocabulary for color attributes Now let us pass to the denition of patch (or re) of a non-emitting surface. Without being illuminated, a surface patch is characterized only by its intrinsic properties that establish how much light the surface reects and how it interacts with the dierent spectral components of the incoming radiation. These features are fused together, which motivates the next denition. Denition 6.1.6 (Patch). he pth p of nonEemitting surfe is identi(ed with generE lized stte p 0 pD p 0 ∈ [0, 1] nd p ∈ S(H(2, R))F he rel quntity p 0 represents the overll proportion of the illuminnt intensity tht p is le to re)et nd p rries the intrinsi hroE mti properties of pF Denition 6.1.7 (Achromatic and white patch). A patch p = p 0 p with p = s a is called achromatic. In particular, if p 0 = 1, then we call it white patch and we write p W = s a .

ψ o ( 0 ) = o 0 0 (1 + v o • v ) ϕ o ( ) = o 0 ϕ o ( ), ( 6 
When a patch is lit by an illuminant ι it can be observed, becoming a perceptual patch, as dened below. Denition 6.1.8 (Perceptual patch). e pereptul pth r is postEmesurement generlized

stte r 0 rD r 0 ∈ [0, 1]D r ∈ S(H(2, R))D given y physil pth p lit y n illuminnt ιD iFeF r 0 r = ψ ι (p 0 p)F
This denition is the pereptul counterpart of the well-known physil formula

I p (λ, x) = L(λ)R p (λ, x), (6.1.3) 
typically used in image formation models, see e.g. [START_REF] Gevers | golor in gomputer isionD pundmentls nd epplitions[END_REF][START_REF] Provenzi | gomputtionl golor ieneX ritionl etinexElike wethods[END_REF]. I p (λ, x) is the image information about the physical patch p that has been acquired by a spectrophotometer at the wavelength λ and at the spatial position x, L(λ) is the luminance of the radiation used to light up the material (supposed to be spatially uniform, which explains the absence of the variable x) and R p (λ, x) is the patch reectance at the wavelength λ and at the point x. When I p (λ, x) is acquired, the data about L and R are fused together.

We are now ready to give the denition of perceived color of a patch. Denition 6.1.9 (Perceived color from an illuminated patch). qiven n oserver oD surfe pth p nd n illuminnt ιD iFeF the triple (o, ι, p 0 p)D the olor pereived y o from the perE eptul pth r = ψ ι (p 0 p) is the postEmesurement generlized stte

ψ o (r) = ψ o (ψ ι (p 0 p)) ∈ S(H(2, R))F
We can interpret the sequential operation ψ o • ψ ι obtained via the combined action of the (physical) eect ι and the (perceptual) eect o as a Lüders operation associated to a single (perceptual) eect õ dened either by the equation

ψ õ(p 0 p) := (ψ o • ψ ι )(p 0 p) = ψ o (r), (6.1.4)
or, thanks to Equation (5.2.24), by the more explicit formula The letter r reminds the fact that the generalized state r0r is issued by the light reected by p.

χ(ψ õ(p 0 p)) = o 0 ι 0 p 0 (1 + v ι • v p )(1 + v o • (v ι ⊕ v p )) 1 2 1 v o ⊕ (v ι ⊕ v p ) . ( 6 
6.2. Denition of the achromatic attributes: brightness and lightness thus, suh n oserver pereives the hromti stte of physil pth lit y n hromti illuminnt s it is.

We must stress that the concepts of color perceived by an observer from an emitted light stimulus, see Denition 6.1.4, and from an illuminated surface patch, see Equation (6.1.4), in spite of having dierent interpretations, can be characterized by the sme mthemtil ojet: a post-measurement generalized state. For this reason, hereinafter, when it is not meaningful to distinguish between the two cases, we will deal with a perceived color by using the abstract and unifying notation represented by ψ e (s 0 s).

Notice that in [START_REF] Berthier | Quantum measurement and colour perception: theory and applications[END_REF] a perceived color has been dened as a an eect, while in the present section we have identied it with a post-measurement generalized state induced by an eect. These two apparently dierent denitions are actually linked. In fact, if e := (e 0 , v e ) is an eect, then one can associate to e the perceived color ψ e (s a ) = e 0 ϕ e (s a ), this correspondence being clearly one-to-one and onto.

Denition of the achromatic attributes: brightness and lightness

Dening a meaningful terminology to describe the achromatic component of a perceived color is a delicate issue. The title of [START_REF] Kingdom | Lightness, brightness and transparency: A quarter century of new ideas, captivating demonstrations and unrelenting controversy[END_REF] emblematically refers to it as an unrelenting ontroE versy. This confusion is particularly evident when one reads names as lightness, brightness, luminance, luma, value or intensity used as synonyms to describe the achromatic attribute in image processing. For the denitions of brightness and lightness as color appearance attributes check Subsection 1.3.1 of Chapter 1. Notice that the denitions provided in this section will be sucient to formalize the lightness constancy phenomenon in Section 6. [START_REF] Astm | 224407 e1, standard practice for calculation of color tolerances and color dierences from instrumentally measured color coordinates, american society for testing and materials. emerin oiety for esting nd wterilsD est gonshohokenD e[END_REF].

In this section we will provide a mathematically rigorous proposal for the denitions of brightness and lightness. To motivate our proposals, we start by reporting the following two descriptions that refer to the case of light reected by a physical patch lit by an illuminant.

Quoting [START_REF] Gilchrist | Lightness and brightness[END_REF]: `the physil ounterprt of lightness is the permnent property of surfe tht determines wht perentge of light the surfe re)etsF urfes tht pper white re)et out 90% of the light striking themF flk surfes re)et out 3%F sn shortD lightness is pereived re)etne'.

Quoting [START_REF] Kingdom | Lightness, brightness and transparency: A quarter century of new ideas, captivating demonstrations and unrelenting controversy[END_REF] : `the physil ounterprt of rightness is lled luminneD tht isD the E solute intensity of light re)eted in the diretion of the oserver9s eye y surfe @or t lest oming from ertin prt of the visul (eldAF sn shortD if lightness is pereived re)etneD rightness is pereived luminneF he re)etne of n ojet is reltively permnent propE ertyD wheres its luminne is trnsient'.

The basic information brought by the references quoted above is that in order to extract lightness from the perceived color ψ e (s 0 s), we must be able to meaningfully extract a percentage out of it which has to verify suitable perceptual robustness properties. On the other hand brightness should represent the perceived absolute intensity of light. As we have seen in Chapter 5, the most immediate information that one can extract from a perceived color ψ e (s 0 s) is the evaluation e s 0 s , see Equation (5.2.8), thus it seems natural to dene brightness as follows. Denition 6.2.1 (Brightness of a perceived color from an emitted light). qiven n oserver oD o = (o 0 , v o )D the rightness of the olor ψ o ( 0 ) pereived y o from n emitted light stimulus

0 is given y B(ψ o ( 0 )) := Tr(ψ o ( 0 )) = o 0 0 (1 + v o • v ). (6.2.1)
The following result is immediate, we state it for white light because we need it to dene 

B(ψ o (ψ ι (p 0 p)) = o 0 ι 0 p 0 (1 + v ι • v p )(1 + v o • (v ι ⊕ v p )). (6.2.
3)

The equivalent of Proposition 6.2.2 in the case of reected light is the following result, which can be extended to achromatic patches lit by achromatic lights by replacing o 0 ι 0 with o 0 ι 0 p 0 . Proposition 6.2.4 (Robustness of white patch brightness under achromatic illuminant).

qiven ouple oserverEilluminnt (o, ι)D o = (o 0 , v o )D ι = (ι 0 , v ι )D the rightness pereived y o from the white pth p W lit y ι isX B(ψ o (ψ ι (p W )) = o 0 ι 0 (1 + v o • v ι ), (6.2.4) 
heneD the rightness of the white pth does not depend on the e'et vetor of o if nd only if ι is n hromti illuminnt ι a D in whih se we hveX

B(ψ o (ψ ιa (p W )) = o 0 ι 0 . ( 6 

.2.5)

Let us now pass to the denition of lightness. The following reasoning will give a more substantiated basis to the intuitive equation proposed in [START_REF] Fairchild | golor pperne models[END_REF], recalled in Chapter 1, Equation (1.3.1).

An observer cannot distinguish an isolated chromatic patch lit by an achromatic illuminant from an achromatic one lit by a chromatic illuminant. The physical counterpart of this statement is the impossibility of recovering the reectance R p (λ, x) from the sole knowledge of I p (λ, x) in formula (6.1.3): it is clear that, without any further hypothesis on R p (λ, x), or on the luminance L(λ), this problem is ill-posed. This is the reason why several hypotheses, e.g. white patch, gray world, gray edge and so on, have been formulated in order to solve this problem, see e.g. [START_REF] Gevers | golor in gomputer isionD pundmentls nd epplitions[END_REF][START_REF] Provenzi | gomputtionl golor ieneX ritionl etinexElike wethods[END_REF] for an overview. Among them, the only hypothesis that can be meaningfully applied to unrelated colors is the white patch (because unrelated colors, by denition, do not have a surround), i.e. the physical assumption that there exists a patch p W , among those observed under the same illuminant, that has perfect reectance, i.e. such that R p W (λ, x) ≡ 1.

If this hypothesis is satised, then formula (6.1.3) gives I p W (λ, x) = L(λ), i.e. the image information acquired from the white patch p W agrees with the luminance of the illuminant, hence we can retrieve the reectance of each patch p from the image information I p (λ, x) simply dividing it by I p W (λ, x), i.e.

R p (λ, x) = I p (λ, x) I p W (λ, x) . ( 6 

.2.6)

As before, we distinguish our denition of lightness for emitted and reected light, starting by the former case.

6.2. Denition of the achromatic attributes: brightness and lightness Denition 6.2.5 (Lightness of a perceived color from an emitted light). qiven n oserver oD o = (o 0 , v o )D the lightness of the olor ψ o ( 0 ) pereived y o from n emitted light stimulus 0 is given y the rtio etween its rightnessD iqution (6.2.1)D nd the rightness of the white lightD iqution (6.2.2)D iFeF

L(ψ o ( 0 )) := B(ψ o ( 0 )) B(ψ o ( W )) = 0 (1 + v o • v ). (6.2.7)
The lightness perceived from an achromatic emitted light coincides with its intensity 0 independently of the observer:

L(ψ o ( 0 s a )) = 0 , ∀o. (6.2.8)
In particular, the lightness of the white light is equal to 1.

When v o = 0, the lightness of any color perceived from an emitted light coincides with the light intensity independently of the chromatic state of the emitted light:

L(ψ oa ( 0 )) = 0 , ∀ .
(6.2.9) Denition 6.2.6 (Lightness of a perceived color from a reected light). qiven ouple

oserverEilluminnt (o, ι)D o = (o 0 , v o )D ι = (ι 0 , v ι )D the lightness of the olor ψ o (ψ ι (p 0 p))
pereived y o from the pth p 0 p lit y ι is given y the rtio etween its rightnessD iqution (6.2.3)D nd the rightness of the white pth lit y the sme illuminnt ιD iqution (6.2.4)D iFeF

L(ψ o (ψ ι (p 0 p)) := B(ψ o (ψ ι (p 0 p)) B(ψ o (ψ ι (p W )) = p 0 (1 + v ι • v p )(1 + v o • (v ι ⊕ v p )) 1 + v o • v ι . (6.2.10) 
Notice that the lightness of an achromatic patch coincides with p 0 , the overall percentage of illuminant intensity that the patch is able to reect, regardless of the chromaticity of the illuminant ι and the eect vector of the observer o:

L(ψ o (ψ ι (p 0 s a )) = p 0 , ∀(o, ι). (6.2.11) 
In particular, the lightness of the white patch is normalized to 1. Dierently from the case of emitted light, the lightness of a surface color perceived by an observer with v o = 0 is not simply p 0 but

L(ψ oa (ψ ι (p 0 p)) = p 0 (1 + v ι • v p ), (6.2.12) 
this quantity reduces to p 0 when ι is an achromatic illuminant:

L(ψ oa (ψ ιa (p 0 p)) = p 0 . (6.2.13)
As a nal remark, we notice that the fact that brightness and lightness dier by the multiplicative constant represented by the brightness of the perceived white area is coherent with the Weber-Fechner's law, mentioned in Equation (1.2.1) Section 1.2, see as well [START_REF] Goldstein | enstion nd ereptionD Wth idition[END_REF]. This might justify the choice of ds/s, which is invariant under scalar multiplication of s, as metric for the achromatic component of a color. In other words lightness is invariant under linear rescalings of brightness.

6. A quantum information-based vocabulary for color attributes 6.3 Denition of perceptual chromatic attributes: colorfulness, saturation, chroma and hue

In this section we discuss two possible ways of dening the chromatic attributes of colorfulness, chroma and saturation. We recall that the intuitive denitions of these color appearance attributes are reported in Subsection of Chapter 1. We must stress that the role of chromatic opponency, introduced in Chapter 3 is fundamental to characterize chromatic attributes.

As we will see, there are dierent ways to provide denitions of the chromatic attributes using color opponency: in Subsection 6.3.1 we will provide the most simple one using the Euclidean distance, while in Subsections 6.3.2 and 6.3.3 we will employ the concept of relative quantum entropy, introduced in Section 5.4 of Chapter 5.

Chromatic opponency and Euclidean denition of colorfulness, saturation and chroma of a perceived color

As already mentioned in Section 3.4, the expectation values of the real Pauli matrices σ 1 , σ 2 on a chromatic state, and analogously on a generalized state, provide its degrees of opponency. Our aim here is to dene the chromatic attributes of olorfulness, hrom and sturtion using only the information about chromatic opponency.

Moreover, we want to translate into rigorous equations the intuitive formulae ( 

Since in the previous section we have already dened the concept of brightness, what remains to be dened is just the colorfulness. In fact, given the perceived color ψ e (s 0 s), if we know how to dene its colorfulness Col(ψ e (s 0 s)), then its saturation `Sat' and chroma `Chr' are, respectively, Sat(ψ e (s 0 s)) = Col(ψ e (s 0 s)) B(ψ e (s 0 s)) and Chr(ψ e (s 0 s)) = Col(ψ e (s 0 s)) B(ψ e (s a )) . (

Alternatively, if we knew how to dene saturation, we could dene colorfulness and chroma as follows:

Col(ψ e (s 0 s)) = β Sat(ψ e (s 0 s)) and Chr(ψ e (s 0 s)) = λ Sat(ψ e (s 0 s)), (

where

β := B(ψ e (s 0 s)) λ := L(ψ e (s 0 s)) = B(ψ e (s 0 s))/B(ψ e (s a )) . (6.3.4) 
We will exploit this remark in the next subsection.

Let us start with a preliminary denition. Denition 6.3.1 (i-th degrees of opponency of a perceived color). Let ψ e (s 0 s) be a perceived color. Then, for i = 1, 2, its:

iEth degree of olorfulness opponeny is

Col i (ψ e (s 0 s)) := σ i ψe(s 0 s) ; (6.3.5) 
iEth degree of sturtion opponeny is Sat i (ψ e (s 0 s)) := σ i ψe(s 0 s) Tr(ψ e (s 0 s)) ; (6.3.6) 6.3. Denition of perceptual chromatic attributes: colorfulness, saturation, chroma and hue iEth degree of hrom opponeny is Chr i (ψ e (s 0 s)) := σ i ψe(s 0 s) Tr(ψ e (s a )) . (

Now we have to face the problem of suitably combine the i-th degree of opposition of these chromatic attributes in order to obtain a positive real number that denes the attribute itself. If we had to follow the Euclidean choice of classical colorimetry we would give the following denitions. Denition 6.3.2 (Euclidean denitions of colorfulness, saturation and chroma of a perceived color). Given the perceived color ψ e (s 0 s), its:

colorfulness is Col(ψ e (s 0 s)) = [Col 1 (ψ e (s 0 s))] 2 + [Col 2 (ψ e (s 0 s))] 2 ; (6.3.8) saturation is Sat(ψ e (s 0 s)) = [Sat 1 (ψ e (s 0 s))] 2 + [Sat 2 (ψ e (s 0 s))] 2 ; (6.3.9) chroma is Chr(ψ e (s 0 s)) = [Chr 1 (ψ e (s 0 s))] 2 + [Chr 2 (ψ e (s 0 s))] 2 . (6.3.10) 
With such denitions the linear relations of Equation (6.3.2) are satised. We now pass to the discussion of a second possible way to dene chromatic attributes that we deem more coherent with the quantum-like theory of color perception that lies at the basis of our work.

Denition of colorfulness, saturation and chroma of a perceived color via relative quantum entropy

Here we propose an alternative description of the perceptual chromatic attributes based on the notion of relative (quantum) entropy, for more information about this concept we refer to Chapter 5 or [START_REF] Cortese | Relative entropy and single qubit Holevo-Schumacher-Westmoreland channel capacity[END_REF][START_REF] Auletta | untum wehnis[END_REF] and also to [START_REF] Ohya | untum entropy nd its use[END_REF] or [START_REF] Audenaert | Continuity bounds on the quantum relative entropyii[END_REF] for the proofs of its properties that we shall quote here. Now, in order to dene the saturation of the perceived color ψ e (s 0 s) we simply consider the chromatic state ϕ e (s 0 s) = ϕ e (s) associated to it and we compute the relative entropy between its density matrix and ρ 0 , see as well Equation (5.4.5), as formalized in the following denition. Denition 6.3.3 (Saturation of a perceived color). Given the perceived color ψ e (s 0 s), its saturation is

Sat(ψ e (s 0 s)) = R(ρ ϕe(s) ||ρ 0 ) = 1 -S(ρ ϕe(s) ) = Σ(r ϕe(s) ) = 1 2 log 2 (1 -r 2 ϕe(s) ) + r ϕe(s) 2 log 2 1 + r ϕe(s) 1 -r ϕe(s) , (6.3.11) 
with r ϕe(s) = v ϕe(s) , where v ϕe(s) = ( σ 1 ϕe(s) , σ 2 ϕe(s) ) is the chromatic state vector of ϕ e (s) which contains the intrinsic information about its degrees of chromatic opposition.

A quantum information-based vocabulary for color attributes

Hence, Sat(ψ e (s 0 s)) depends only on the chromatic vector of the eect e that permits the observation of the color and on its chromatic features, embedded in r ϕe(s) , but not on s 0 , nor on e 0 . emrk 6.3.4F We must stress that with this second approach the chromatic attribute of saturation refers no more to a particular, arbitrarily chosen, coordinate on the chromaticity disk, since it is obtained by the computation of a trace, it is independent on the coordinate system. This denition, via the relative entropy aims at measuring the distinguishability of the state with the achromatic state. In this sense, the saturation characterizes some information that it is not related to a special coordinate. In other words saturation is not a coordinate, in a xed coordinate system, but an intrinsic attribute, independent on the choice of the coordinate system. Now that we have provided a denition of saturation, it is easy to dene colorfulness and chroma following Equations (6.3.3). Note that both of them depend on the coecient s 0 . Denition 6.3.5 (Colorfulness of a perceived color). Given the perceived color ψ e (s 0 s) with brightness β = B(ψ e (s 0 s)) = Tr(ψ e (s 0 s)), its olorfulness is Col(ψ e (s 0 s)) = R(βρ ϕe(s 0 s) ||βρ sa ) = β Sat(ψ e (s 0 s)).

(6.3.12) Denition 6.3.6 (Chroma of a perceived color). Let ψ e (s 0 s) be a perceived color with lightness given by λ = L(ψ e (s 0 s)) = Tr(ψ e (s 0 s))/ Tr(ψ e (s a )), then its hrom is

Chr(ψ e (s 0 s)) = R(λρ ϕe(s 0 s) ||λρ sa ) = λ Sat(ψ e (s 0 s)). (6.3.13) 
We must stress that both denitions above rely on the property of the relative entropy stated by Equation (5.4.2) in Chapter 5.

Denition of hue of a perceived color via relative quantum entropy

As lightness and brightness, perceptual hue has a physical counterpart: the concept of dominnt wvelength of a color stimulus. As presented in [START_REF] Wyszecky | golor sieneX gonepts nd methodsD quntittive dt nd formulsF tohn iley 8 ons[END_REF], the dominant wavelength of a color stimulus is `the wvelength of monohromti stimulus thtD when mixed with some speE i(ed hromti stimulusD mthes the given stimulus in olor'. In other words, the dominant wavelength characterizes any light mixture in terms of the monochromatic spectral light that elicits the same perception of hue. In the CIE chromaticity diagram, see e.g. Figure 1.5, the dominant wavelength is the point of its border determined by the intersection with the straight line that passes through the white point and the one associated to the given color.

In order to express this concept within the quantum-like perceptual framework, motivated by the results of the previous subsection, we replace the concept of nearest Euclidean distance to the border of the CIE chromaticity diagram with that of minimal relative entropy between a given chromatic state and a pure state parameterized by a point of the border of D.

These considerations lead naturally to the following denition of hue. Denition 6.3.7 (Hue of a perceived color). Given ψ e (s 0 s), a non-achromatic perceived color, its hue is the pure chromatic state ϕ * e (s) dened by

ϕ * e (s) := arg min ρ∈PS(H(2,R))
R(ρ||ρ ϕe(s) ). (

Notice that the hue of ψ e (s 0 s) does not depend on s 0 because of the property ϕ e (s 0 s) = ϕ e (s) for all s 0 ∈ [0, 1]. For an explicit expression of PS(H(2, R)) see Equation (3.3.20).

Denition of perceptual chromatic attributes: colorfulness, saturation, chroma and hue

Of course, we must verify that the denition is well-posed, i.e. that the solution to the minimization problem dened by Equation (6.3.14) exists and it is unique. Thanks to the Klein inequality, see Section 5.4, the relative entropy is null if and only if ρ = ϕ e (s), so let us avoid this trivial case and also the achromatic condition (since achromatic colors lack of hue by denition) by supposing that 0 < r ϕe(s) < 1.

Let us notice that, thanks to Denition 5.4.1, Equations (5.4.4) and (3.3.19) we get:

R(ρ s ||ρ t ) = 1 -S(ρ s ) - 1 2 log 2 (1 -r 2 t ) - r s cos ϑ s,t 2 log 2 1 + r t 1 -r t . (6.3.15) 
Now we must replace the generic density matrix ρ s with one, ρ, associated to a pure state, so that S(ρ s ) = 0 and r s = 1, and t with ϕ e (s), thus obtaining:

R(ρ||ρ ϕe(s) ) = 1 - 1 2 log 2 (1 -r 2 ϕe(s) ) - cos ϑ ρ,ϕe(s) 2 log 2 1 + r ϕe(s) 1 -r ϕe(s) . (6.3.16) Since 0 < r ϕe(s) < 1, -1 2 log 2 (1-r 2 ϕe(s) ) > 0 and log 2 1+r ϕe(s) 1-r ϕe(s)
> 0. Given that R(ρ||ρ ϕe(s) ) > 0 and that r ϕe(s) is xed, the computation of the arg min in Equation (6.3.14) is equivalent to the maximization of cos ϑ ρ,ϕe(s) , i.e. we n reformulte the de(nition of hue of ψ e (s 0 s) s follows:

ϕ * e (s) := arg max

ρ∈PS(H(2,R)) cos ϑ ρ,ϕe (s) . (6.3.17) 
Recalling that ϑ ρ,ϕe(s) is the angle between the chromatic vectors v ρ of the pure state associated to ρ (so that r ρ = v ρ = 1) and v ϕe(s) , which is xed, we get:

cos ϑ ρ,ϕe(s) = v ρ • v ϕe(s) r ϕe(s) , (6.3.18) 
which is maximized when v ρ is parallel to v ϕe(s) . Hence, given the state ϕ e (s) corresponding to the perceived color ψ e (s 0 s) associated to the density matrix

ρ ϕe(s) = 1 2
1 + r ϕe(s) cos ϑ ϕe(s) r ϕe(s) sin ϑ ϕe(s) r ϕe(s) sin ϑ ϕe(s)

1 -r ϕe(s) cos ϑ ϕe(s) , (

its hue is the pure state ϕ * e (s) dened by the density matrix:

ρ ϕ * e (s) = 1 2 1 + cos ϑ ϕe(s) sin ϑ ϕe(s) sin ϑ ϕe(s) 1 -cos ϑ ϕe(s) . (6.3.20) 
What just proven not only shows that our denition of hue is well-posed, but it is also in perfect agreement with the interpretation of pure states as hues already discussed in Section 3.3 of Chapter 3. We emphasize the fact that the two denitions of saturation and hue by means of relative quantum entropy are much more signicant from the perception viewpoint than those involving d ho coordinates of classical colorimetric spaces. The relative entropy between two states is a measure of their distinguishility. This precisely means that the saturation of a perceived color is a measure of how it can be distinguished from the achromatic state. In the same way, the hue of a perceived color is the closest, from the distinguishability point of view, pure chromatic state to the given perceived color. We also insist on the fact that the above computations make use of the Bloch parameters of the state space of the rebit which are not the coordinates of the color appearance models of the CIE.

A quantum information-based vocabulary for color attributes

As a consequence, the novel denitions of perceptual attributes that we propose constitute not only a meaningful formalization of the CIE denitions given in Subsection 1.3.1, but they are also mathematically operative in the quantum-like framework presented in Chapters 3, 5. They provide a rigorous explanation of the intuitive representation that one may have of the perceived color solid. In the next section, we illustrate the potential of this novel system of denitions on the specic example of the lightness constancy phenomenon. We do believe these new denitions to be a good starting point to understand and model also other color appearance phenomena, as the ones mentioned in Subsection 1.3.2.

Characterization of lightness constancy in the quantum-like framework

In this section we analyze the important property of lightness constancy, introduced in Subsection 1.3.2 from the point of view of the quantum-like framework and we characterize it through a matching equation involving generalized states. In particular we will use the novel denitions of brightness and lightness given in Section 6.2 of the present chapter.

The two perceptual patches of interest are given by the two generalized states p 1 = p 1 0 p 1 and p 2 = p 2 0 p 2 , where p 1 0 , p 2 0 ∈ [0, 1] and p 1 , p 2 are two chromatic states. We rst consider the case where the two (physical) eects corresponding to the two illuminants are achromatic, i.e. represented by ι 1 = (ι 1 0 , 0) and ι 2 = (ι 2 0 , 0). In classical colorimetry, this amounts to considering a D65 illuminant, see e.g. [START_REF] Wyszecky | golor sieneX gonepts nd methodsD quntittive dt nd formulsF tohn iley 8 ons[END_REF].

The two reected lights of interest are thus given by the two generalized states

r 1 = ψ ι 1 (p 1 0 p 1 ) = ι 1 0 p 1 0 p 1 , r 2 = ψ ι 2 (p 2 0 p 2 ) = ι 2 0 p 2 0 p 2 . (6.4.1) 
We consider now an observer o associated to a (perceptual) achromatic eect (o 0 , 0). As explained before, see Equation (6.1.7), this observer perceives the chromatic information of the two reected lights `as they are', which means that there is no variation between the chromatic features of the reected lights and the chromatic features of the perceived colors.

More precisely, we have

ψ o (r 1 ) = o 0 ι 1 0 p 1 0 p 1 , ψ o (r 2 ) = o 0 ι 2 0 p 2 0 p 2 . ( 6.4.2) 
Recalling Equation (6.2.13), the lightness of the perceived colors ψ o (r 1 ) and

ψ o (r 2 ) is L(ψ o (r 1 )) = p 1 0 , L(ψ o (r 2 )) = p 2 0 . (6.4.3) 
It makes sense to consider the phenomenon of lightness constancy only when two perceived colors share the same chromatic information. In the present case, the chromatic matching Equation (5.2.25) leads trivially to p 1 = p 2 =: p. As a consequence,

r 1 = ι 1 0 p 1 0 p, r 2 = ι 2 0 p 2 0 p, (6.4.4) 
and

ψ o (r 1 ) = o 0 ι 1 0 p 1 0 p, ψ o (r 2 ) = o 0 ι 2 0 p 2 0 p. (6.4.5) 
The two reected lights r 1 and r 2 come from the two dierent illuminants ι 1 and ι 2 , and the observer has to compensate the dierence between these two illuminants in order to compare the initial perceptual patches p 1 and p 2 , i.e. to compare the lightnesses p 1 0 and p 2 0 . This means that the observer must nd a way to recover the reected lights as if they where lit by the same illuminant.

Characterization of lightness constancy in the quantum-like framework

Let the observer o change his/her (perceptual) eect from (o 0 , 0) to (o 1 0 , 0) to dene a new observer o 1 perceiving the reected light r 1 . In the same way, let the observer o change his/her (perceptual) eect from (o 0 , 0) to (o 2 0 , 0) to dene a new observer o 2 perceiving the reected light r 2 . We have

ψ o 1 (r 1 ) = o 1 0 ι 1 0 p 1 0 p, ψ o 2 (r 2 ) = o 2 0 ι 2 0 p 2 0 p. (6.4.6) 
These two perceived colors are those obtained from a measurement of only one oserver ssoE ited to n hromti e'et from the reected lights produced by the two perceptual patches p 1 and p 2 lit with the sme hromti illuminnt if and only if

o 1 0 ι 1 0 = o 2 0 ι 2 0 . If, for instance, o 1 = (ι 2 0 , 0) and o 2 = (ι 1 0 , 0), then ψ o 1 (r 1 ) = ι 2 0 ι 1 0 p 1 0 p, ψ o 2 (r 2 ) = ι 1 0 ι 2 0 p 2 0 p (6.4.7) 
are the perceived colors measured by the observer o = (1, 0) from the reected lights r 1 = ι 1 0 ι 2 0 p 1 0 p and r 2 = ι 1 0 ι 2 0 p 1 0 p obtained by illuminating the perceptual patches p 1 and p 2 with the same achromatic illuminant (ι 1 0 ι 2 0 , 0). Using the equation o 1 0 ι 1 0 = o 2 0 ι 2 0 , it appears clearly that the two perceived colors ψ o 1 (r 1 ) and ψ o 2 (r 2 ) are equal if and only if the two lightnesses p 1 0 and p 2 0 are equal. The above analysis of lightness constancy requires two measurements performed by the observers o 1 and o 2 , with the condition o 1 0 /o 2 0 = ι 2 0 /ι 1 0 , in order to make some comparison. This means that the lightness constancy phenomenon requires that the observer is able to evaluate the ratio ι 2 0 /ι 1 0 between the two magnitudes of the illuminants ι 2 and ι 1 .

It is easy to check that the proposed derivation also applies when the two illuminants are no more achromatic but still share the same chromatic features expressed by their eect vector. In fact let ι 1 = (ι 1 0 , v ι ) and ι 2 = (ι 2 0 , v ι ) be the two illuminants, with o i , p i as before, i = 1, 2, then we obtain the following perceived colors

ψ o 1 (r 1 ) = o 1 0 ι 1 0 p 1 0 (1 + v ι • v p )(v ι ⊕ v p ), ψ o 2 (r 2 ) = o 2 0 ι 2 0 p 2 0 (1 + v ι • v p )(v ι ⊕ v p ). (6.4.8)
Notice that, from Denition 6.2.6 their lightness is given by

L(ψ o (r 1 )) = p 1 0 (1 + v ι • v p ), L(ψ o (r 2 )) = p 2 0 (1 + v ι • v p ). (6.4.9) 
The perceived colors in Equation (6.4.8) are those obtained from a measurement of only one observer associated to an achromatic eect from the reected lights produced by the two perceptual patches p 1 and p 2 lit with the same illuminant of chromaticity v ι if and only if

o 1 0 ι 1 0 = o 2 0 ι 2 0 .
Thus the following perceived colors

ψ o 1 (r 1 ) = ι 2 0 ι 1 0 p 1 0 (1 + v ι • v p )(v ι ⊕ v p ), ψ o 2 (r 2 ) = ι 1 0 ι 2 0 p 2 0 (1 + v ι • v p )(v ι ⊕ v p ), (6.4.10) 
can be seen as the perceived colors measured by o = (1, 0) from the reected lights

r 1 = ι 1 0 ι 2 0 p 1 0 (1 + v ι • v p )(v ι ⊕ v p ) and r 2 = ι 1 0 ι 2 0 p 2 0 p(1 + v ι • v p )(v ι ⊕ v p )
obtained by illuminating the patches p 1 and p 2 with the same illuminant (ι 1 0 ι 2 0 , v ι ). It is clear that the two perceived colors ψ o 1 (r 1 ) and ψ o 2 (r 2 ) are perceived as equal if and only if their lightnesses in Equation (6.4.9) are equal. 97 Chapter 7 Related applications: a CAT for AWB This chapter is about the very rst application to color image processing of the new model described in the previous chapters. In Chapter 2 we have seen Yilmaz's original association between chromatic adaptation and Lorentz boosts, in Chapters 4 and 5 we formally motivated the presence of relativistic concepts within the quantum-like framework, nally, in the present chapter, we will see how to use a normalized Lorentz boost as a chromatic adaptation transform.

As references for the content of the present chapter one might look at [68] for a detailed exposition of the rst version of the algorithm, and at Subsection 3.3.3 of [14] for an overview of the most recent one, where the links with the concepts exposed in Chapter 5, in particular Lüders operations and eects, are stressed out. Details about the last version of the algorithm and a rst quantitative evaluation of its performance are presented here for the rst time. Future projects involving this algorithm will be mentioned in Chapter 9.

Color constancy and white balance

Many aspects in color image processing are inspired by features of the HVS * . In Chapter 1 we have seen that trichromacy-based color spaces are inspired by the presence of three types of cone photoreceptors, while in Chapter 8 we will see that tone mapping algorithms are made to imitate visual adaptation. In the same spirit, white balance algorithms are meant to emulate the capability of the HVS to adapt to non-neutral illumination conditions. This phenomenon, known as hromti dpttion, occurs at the level of both retinal cells and higher brain mechanisms, see [START_REF] Fairchild | golor pperne models[END_REF] for further details about the physiological aspects of chromatic adaptation.

Chromatic adaptation is usually explained in terms of independent variations of the cone sensitivity functions, however, as underlined in [START_REF] Fairchild | golor pperne models[END_REF], it is restrictive to consider it an early-level process, in fact also higher levels of the vision pipeline are involved, in particular the opponent level, see e.g. [START_REF] Hurvich | Some quantitative aspects of an opponent-colors theory. iii. changes in brightness, saturation, and hue with chromatic adaptation[END_REF], and even the object recognition level.

Chromatic adaptation is the reason behind the so-called olor onstny phenomenon, already mentioned in Subsection 1.3.2, i.e. the robustness of the HVS to describe perceived colors with the same chromatic attributes in spite of illuminant changes. Roughly speaking, from an evolutionary point of view, it is convenient for the HVS to perceive an object with a stable color under dierent illumination conditions, in order to better recognize and track it. Automatic White Balance, AWB from now on, refers to the process of automatic detection and removal of an unwanted color cast on a digital image generated by the presence of a * Acronym for Human Visual System. 7.1. Color constancy and white balance non-neutral illuminant in the scene that is represented in the picture. The term utomti refers to the fact that the illuminant estimation is performed automatically. The aim of AWB algorithms is to recover an image representing the scene as it was enlightened by a neutral illuminant, or as if the scene was seen by an observer fully adapted to the non-neutral illuminant. More precisely AWB consists of two steps: an illuminant estimation algorithm, that identies the illuminant(s) in the scene associating to it (each of them) a 3-dimensional vector L; a Chromatic Adaptation Transform (CAT), parametrized by L that eliminates the presence of the illuminant returning an image as if the scene was lit by a neutral illuminant.

Modeling chromatic adaptation is a complex issue for several reasons: rst of all the psychophysical phenomenon itself is very elaborate involving dierent levels of the visual chain, then, as we will see in following, the detection of the illuminant(s) to discard is an ill-posed problem, moreover the objective, as already underlined for the case of the lightness constancy, is to recover the pereived reectance of the scene, and not the physical one. By perceived reectance we mean, ideally, taking into account not just the cone response functions, but as well the opponent mechanism and other levels of the visual chain that are involved. Of course, the task becomes even more complex if one considers the case of incomplete adaptation to the illuminant.

In the following we are going to present the classic image formation model widely used in literature, underlining the assumptions on which it is based upon.

Image formation model

Let us start by xing the notations. We call I ⊂ R 2 is the 2-dimensional support of a RGB digital image I = (I R , I G , I B ), where I c is the RGB color channel of I, with c ∈ {R, G, B}. The position of a generic pixel belonging to I will be denoted by x = (x 1 , x 2 ) and the image intensity I c (x) is supposed to be normalized in [0, 1].

We must stress that this is essentially a physically-based model that aims at reconstructing the physical reectance of the objects, in which the only perceptually-inspired element is the presence of the three camera sensitivity functions.

In the dichromatic reection model [START_REF] Shafer | Using color to separate reection components[END_REF][START_REF] Gijsenij | Computational color constancy: Survey and experiments[END_REF][START_REF] Provenzi | gomputtionl golor ieneX ritionl etinexElike wethods[END_REF], the scene elements are supposed to have both a specular and a diused reectance. A specular reection is only visible if the normal vector of a shiny object is oriented precisely halfway between the direction of incoming light and the direction of the camera sensor. The diused reectance is due to the scattering between the light and the surface particles of an object, which produces an isotropic reection of light. We denote by m s (x) and m d (x) the scale factors that weight the relative amount of specular and diused reectance, respectively, contributing to the overall light reected at the location x. Let Λ be the visible spectrum, let S c (λ), with c ∈ R, G, B and λ ∈ Λ, be the spectral sensitivity functions of the camera, and let ρ = ρ(x, λ), with x ∈ I , λ ∈ Λ, being the reectance. Let E(λ) be the illuminant spectrum, then the intensity of the pixel x is given by:

I c (x) = m d (x) Λ ρ(x, λ)S c (λ)E(λ)dλ + m s (x)L c , ∀c ∈ {R, G, B}, (7.1.1) 
where L c = Λ S c (λ)E(λ)dλ. If we point the camera towards the light source, we obtain the light vector L = (L R , L G , L B ) associated to the illuminant. In the Lambertian reection 7. Related applications: a CAT for AWB models, the specular reection term is ignored, so that m d (x) ≡ 1 and m s (x) ≡ 0, and the resulting image formation model reduces to:

I c (x) = Λ ρ(x, λ)S c (λ)E(λ)dλ, ∀c ∈ {R, G, B}, (7.1.2) 
The Lambert image formation model used in literature about AWB of single-illuminant digital images is based on the following assumption:

I c (x) = ρ c (x)L c , ∀c ∈ {R, G, B}, (7.1.3) 
where ρ c is the c-component of the reectance of the point in the scene represented by the pixel x and L c is c-component of the illuminant present in the scene. It is very important to stress that, in spite of the appealing simplicity of this formula, Equation (7.1.3) is far from being an accurate description of the real image formation process. In fact, to pass from the more accurate dichromatic model of Equation (7.1.1) to Equation (7.1.3), one needs to state the following three hypotheses:

1. there is no specular reection in the scene;

2. the supports of the camera spectral sensitivity functions S c are mutually disjoint;

3. the reectance ρ(x, λ) is constant for every λ ∈ supp(S c ), in such a way that ρ(x, λ) becomes separated into ρ R (x), ρ G (x), ρ B (x).

Notice that we are excluding the particular case in which ρ(x, λ) = ρ(x) for all λ ∈ Λ, in that case there is no need for the camera spectral sensitivity functions to have mutually disjoint supports. We are not considering as well the case in which the camera spectral sensitivity functions are dirac-like functions, in that case there is no need for the third hypothesis. Both of the above cases are however unlikely to happen: the rst one because too restrictive on the reectance, the second one because it is not realistic in conventional digital photography.

Most of the AWB algorithms based on the image formation model represented by Equation (7.1.3) work in the same way: starting from the knowledge of I c (x) they want to estimate L c in order to eliminate its presence, and so the unwanted color cast, by simple division. Of course, the illuminant estimation problem is ill-posed because in Equation (7.1.3) there is only one known quantity, i.e. I c (x), versus two unknown quantities, i.e. ρ c (x) and L c .

We must stress that the perceptual aspect of the model described above is only the presence of the camera spectral sensitivity functions, in particular Hering opponent mechanism is not taken into account.

The scope of this chapter is to propose a new prototype of CAT arising from the theoretical model described in the previous chapters. In the following paragraphs we are going to provide a brief overview of existing illuminant estimation methods and CATs.

Illuminant estimation

To solve the ill-posed problem of Equation (7.1.3) various solutions have been proposed in the literature, see [START_REF] Gijsenij | Computational color constancy: Survey and experiments[END_REF][START_REF] Provenzi | gomputtionl golor ieneX ritionl etinexElike wethods[END_REF]. Here we just consider the two most simple widely used, which are based on the white-patch (WP) and the gray-world (GW) hypotheses.

The rst assumes that there is at least one patch with perfect reectance in the visual scene, i.e. it exists xc ∈ I such that ρ c (x c ) = 1, so that I c (x c ) = L c for all c ∈ {R, G, B}. Let us call L W P c = I c (x c ) for all c ∈ {R, G, B} the illuminant estimation obtained with the WP method.

Color constancy and white balance

The latter hypothesis assumes that the spatial average reectance in a visual scene is achromatic [START_REF] Buchsbaum | A spatial processor model for object colour perception[END_REF]. If we denote with Īc the spatial average of the image in the xed chromatic channel c, then, it can be proven, see e.g. [START_REF] Provenzi | gomputtionl golor ieneX ritionl etinexElike wethods[END_REF] that, the estimated illuminant is given by L GW c = Īc /k for all c ∈ {R, G, B}, with k ∈ [0, 1]. We stress that real-world images do not satisfy these hypothesis all the time: a simple example is given by a close-up image, which will typically show uniform areas that violate the assumptions above.

Clearly more advanced methods for global and local the illuminant estimation exist, see [START_REF] Gijsenij | Computational color constancy: Survey and experiments[END_REF] for a good overview, the most recent ones are obtained using Machine Learning techniques. Notice that, for the case of multiple sources of illumination the illuminant vector depends on the pixel, thus L = L(x).

Chromatic adaptation transforms

A CAT is meant to mimic the adaptation process, more precisely it takes as input an estimated illuminant vector L, and the input image I(x), with x ∈ I representing a scene enlightened by the estimated illuminant, and returns as output an image I (x) representing how the scene would appear to an observer fully adapted to the illuminant.

The output image should represent the perceived reectance of the scene, i.e. I c (x) = ρ c (x) for all c ∈ {R, G, B}, x ∈ I . In other words I (x) represents the scene as it was lit by a neutral illuminant. Equation (7.1.3), suggests that, given I(x) and knowing L, then for all x ∈ I I (x) is obtained via the pointwise multiplication

  I R (x) I G (x) I B (x)   =   1/L R 0 0 0 1/L G 0 0 0 1/L B     I R (x) I G (x) I B (x)   . (7.1.4) 
Notice that this is equivalent to linearly rescale the spectral sensitivity functions S c (λ), c ∈ {R, G, B} obtaining the new sensitivity functions S c (λ) of an observer adapted to L are given by S c (λ) = S c (λ)/L c , c ∈ {R, G, B}, λ ∈ Λ. Furthermore, notice that the RGB illuminant vector L is mapped into (1, 1, 1) t which is the white in RGB.

The diagonal correction method of Equation (7.1.4) is generally known as von uries CAT [START_REF] Kries | Chromatic adaptation. pestshrift der elrehtEvudwigsEniversität[END_REF]. This method is widely used in literature and applications, because of its simplicity and low computational cost. Usually, in the image processing pipeline, the CAT is applied on linear RGB images after demosaicing.

As underlined in Chapter 9 of [START_REF] Fairchild | golor pperne models[END_REF], it is more correct to apply the von Kries CAT in the LMS domain, i.e. the estimated illuminant L, the input image I(x) and the corrected one I (x) should be represented using LMS coordinates, in particular this means using the LMS spectral sentitivity functions S c (λ) with c ∈ {L, M, S} in Equation (7.1.2), instead of the camera sensitivity functions S c (λ) with c ∈ {R, G, B}.

For computational convenience the von Kries CAT is usually applied in the linear RGB domain. As stated in [START_REF] Gijsenij | Computational color constancy: Survey and experiments[END_REF] about the von Kries CAT in RGB: `elthough this model is merely n pproximtion of illuminnt hnge nd might not urtely e le to model photometri hngesD it is widely epted s olor orretion model [START_REF] West | Necessary and sucient conditions for von kries chromatic adaptation to give color constancy[END_REF][START_REF] Finlayson | Color constancy: generalized diagonal transforms suce[END_REF][START_REF] Funt | Diagonal versus ane transformations for color correction[END_REF][START_REF] Worthey | Heuristic analysis of von kries color constancy[END_REF][START_REF] Brill | Minimal von kries illuminant invariance. golor eserh 8 epplitionX indorsed y snterEoiety golor gounilD he golour qroup @qret fritinAD gnE din oiety for golorD golor iene essoition of tpnD huth oiety for the tudy of golorD he wedish golour gentre poundtionD golour oiety of eustrliD gentre prnçis de l gouleur[END_REF] nd it underpins mny olor onstny lgorithms'. In both cases of LMS and linear RGB, the idea is that, since chromatic adaptation is approximately an early-level process in the vision pipeline, the CAT should be applied in a color domain describing the the early stage of vision, hence LMS, For the case of multi illuminant estimation it works in the same way, taking as input L(x).

7. Related applications: a CAT for AWB or, by analogy, at the early stage of the image processing pipeline, thus in the linear RGB domain.

With the aim of providing a more accurate computational model for chromatic adaptation, several alternative CATs are present in literature, most of them are linear in the RGB or LMS domain. Often they are proposed as modications of the von Kries CAT, e.g. [START_REF] Bianco | Two new von kries based chromatic adaptation transforms found by numerical optimization. golor eserh 8 epplitionX indorsed y snterE oiety golor gounilD he golour qroup @qret fritinAD gndin oiety for golorD golor iene essoition of tpnD huth oiety for the tudy of golorD he wedish golour gentre poundtionD golour oiety of eustrliD gentre prnçis de l gouleur[END_REF]. For further details several CATs are described by Fairchild in Chapter 9 of [START_REF] Fairchild | golor pperne models[END_REF], and a good survey about the state of the art chromatic adaptation transforms, methods and datasets was provided by the CIE in 2004 [START_REF] Cie | A review of chromatic adaptation transforms[END_REF].

The normalized boost CAT in HCV 7.2.1 Preliminary assumptions and link with the theoretical model

The idea here is to use a normalized Lorentz boost, as dened in Chapter 5, as a CAT, to do so we are going to start by recalling some concepts mentioned in Chapter 5 to better contextualize the algorithm that we propose.

As we have seen in Chapter 5, Lüders operations act on generalized states. More precisely let us recall Equation (5.2.18), expressing the link between Lüders operations and normalized Lorentz boosts. Let e = (e 0 , e 1 , e 2 ) ∈ E be an eect, let v e ∈ D be its chromatic vector such that ||v e || < 1. Let s 0 s be a generalized state, then the Lüders operation parametrized by e, acting on s 0 s, can be expressed as a linear operation on the state cone of the spin factor C(R ⊕ R 2 ) as follows:

χ(ψ e (s 0 s)) = s 0 e 0 γ ve B(v e ) 1 2 
1 v s = B N (e) s 0 2 1 v s , (7.2.1) 
with We recall that in Yilmaz's model, see Chapter 2 or [START_REF] Yilmaz | On color perception[END_REF][START_REF] Yilmaz | Color vision and a new approach to general perception[END_REF], he proposed a simple boost to model chromatic adaptation. Brill and West [START_REF] Brill | Group theory of chromatic adaptation[END_REF] underlined the necessity of a normalizing factor, we justify its presence through the theoretical model, in particular by Equation (7.2.1).

γ ve := 1 1 -v e 2 . ( 7 
Let us now understand how to use B N (e) as a CAT. Notice that B N (e) : C(R ⊕ R 2 ) → C(R ⊕ R 2 ) acts linearly on the state cone of the spin factor C(R ⊕ R 2 ). If one considers B N (e) as acting on R ⊕ R 2 , then it is stable on C(R ⊕ R 2 ). Let us recall Equation (5.1.2), expressing the parametrization of C(R ⊕ R 2 ): Let us underline one last property of the theoretical model, that will be used in the following. Let us consider the eect e, by self-duality we can associate to it a generalized state e 0 s e , where s e is a state whose chromatic vector is v e . Let us consider the representation of e 0 s e as an element of C(R ⊕ R 2 ), then it is not hard to prove, via straightforward computations using Equation (7.2.6), that

C(R ⊕ R 2 ) = α αv s , α ≥ 0, v s ∈ D . ( 7 
B N (e) -1 e 0 e 0 v e = 1 0 . (7.2.7)
In other words the generlized stte e 0 s e is mpped into the hromti stte of mximl entropy s a . Now we are ready to relate the concepts and properties recalled above to the problem of dening a CAT. As in Section 7.1, let I(x) = (I R (x), I G (x), I B (x)) t be the input image, not white balanced, represented in the RGB domain, with x ∈ I on which we want to apply the CAT. Let L = (L R , L G , L B ) t be the estimated illuminant vector . Let I (x) = (I R (x), I G (x), I B (x)) t be the output image after the application of the CAT.

For all x ∈ I we want to perform the following associations: I(x) and I (x) to elements of C(R ⊕ R 2 );

L to e, or equivalently, by self-duality, to the generalized state e 0 s e described before.

As we have seen for the von Kries CAT in RGB, the main idea underlying a CAT is that it should map the illuminant vector L to the white. Suppose we are able to perform the associations above, then B N (e) -1 is a good candidate for a CAT, because, by Equation (7.2.7), it maps the vector (e 0 , e 0 v e ) t , associated to the illuminant vector L, into (1, 0) t corresponding to the state of maximal entropy s a , representing white in C(R ⊕ R 2 ).

It is important to stress that C(R ⊕ R 2 ) is not a color space in the sense of the stateof-the art trichromacy based color solids, see Section 1.1 of Chapter 1, but it provides the basic mathematical framework on which the theoretical model detailed in Chapters 3, 4 and 5 is built. Nevertheless, the association between elements of C(R ⊕ R 2 ) and coordinates of trichromacy-based color solids (or their modications) is fundamental to start implementing concrete applications to color image processing. Clearly, it is a non trivial aspect with a great margin of improvement. On the long term we do believe that the support of psychovisual data and ML techniques will be necessary to fully accomplish this task. Some rst simple steps in this direction can be found in Section 7.3, or in Chapter 9. As we will see in the rest of this chapter, even tests of the model performed in an approximated color domain give satisfactory rst results.

RGB is not a suitable color domain to perform easy associations with elements of C(R⊕R 2 ). Hence we need to change color domain to represent I(x), I (x) and L. An adequate choice We recall that the multi-illuminant case is analogous, with L = L(x).

7. Related applications: a CAT for AWB should be a conic-shaped color solid with circular section, as e.g. the one depicted in Figure 2. 1.1 (b). Clearly several options are available in literature, however most of the recently developed color spaces do not have circular section. The simplest choice, furlling these properties, is given by the classic HCV (Hue Chroma Value) color space. We will discuss about the absence of Hering's opponency in HCV and some simple solutions to this issue in Section 7.3. Moreover, another candidate for a new color solid in which it would be possible to test the CAT proposed in this chapter will be mentioned among the future projects in Chapter 9.

We consider now I(x), I (x) represented in the HCV color space, for all x ∈ I , thus I c (x), I c (x), with c ∈ {H, C, V }. In the following we will omit the dependence on the pixel x and use the notation

H = I H , C = I C , V = I V , H = I H , C = I C , V = I V .
We are ready now to perform associations between C(R ⊕ R 2 ) and the HCV color space. Let us recall that in HCV the value V represents the achromatic coordinate, moreover the HCV color space is converted in the HSV where S is the saturation obtained from C and V via S = C/V .

Let us consider an element of C(R ⊕ R 2 ), (s 0 , s 0 v s ) t with s 0 ≥ 0 and v s ∈ D. Let r s , ϑ s be the polar coordinates of the vector v s . We perform the following associations:

           ϑ s ≡ H s 0 r s ≡ C s 0 ≡ V r s ≡ S . (7.2.8) 
The same holds for the primed variables. Thanks to the associations above, we are now able to identify the input and output images (H(x), C(x), V (x)) t and (H (x), C (x), V (x)) t , for x ∈ I , with elements of C(R ⊕ R 2 ).

Analogously, let us consider the illuminant vector L, represented in the HSV domain, hence L c , with c ∈ {H, S, V }. In the following we will use the notation L H = φ, L S = σ, L V = ε. We can perform analogous identications between L and e as follows

     ϑ e ≡ φ e 0 ≡ ε r e ≡ σ , (7.2.9) 
r e , ϑ e being the polar coordinates of v e . Doing the same for the Lorentz factor we obtain

γ ve ≡ Γ, with Γ = 1 √ 1 -σ 2 . (7.2.10)
In the same way we can associate to [B N (e) -1 ] a matrix, let us call it Ω. B N (e) -1 is parametrized by e, and, in the same way Ω will be parametrized by the HSV coordinates of L, i.e. φ, σ, ε. Before writing the explicit expression for Ω we must make two remarks: the rst one is that B N (e) -1 is applied on the Cartesian components of the vector s 0 v s . Let us call α(x), β(x) and α (x), β (x) the Cartesian coordinates of H(x), C(x) and H (x), C (x), respectively, for all x ∈ I . Then (α , β , V ) t = Ω(α, β, V ) t . The second remark is that in the parametrization of C(R ⊕ R 2 ) the magnitude of the generalized state is in the rst position, while in α, β, V the achromatic is placed in the last one. Using the identications of Equations (7.2.11) and (7.2.10), it is possible, after some computations, to obtain the following explicit expression for Ω:

Ω = Γ ε   Γ cos 2 φ + sin 2 φ (Γ -1) cos φ sin φ -σΓ cos φ (Γ -1) cos φ sin φ Γ sin 2 φ + cos 2 φ -σΓ sin φ -σΓ cos φ -σΓ sin φ Γ   , (7.2.12) 
where Γ is as in Equation (7.2.10). Notice that Ω is fully determined by the HSV coordinates of the illuminant vector φ, σ, ε.

The normalized Lorentz boost CAT

In the previous subsection we have underlined the motivations and conditions under which the theoretical model lead to a CAT. This subsection is dedicated to a succinct exposition of the steps needed to implement it and some qualitative considerations about the outputs.

Let I(x) = (R(x), G(x), B(x)), with x ∈ I be the input RGB image, let L = (L R , L G , L B ) be the estimated illuminant vector . Let I (x) = (R (x), G (x), B (x)), with x ∈ I , be the corrected output image. We will use unprimed coordinates to represent the image before applying the CAT Ω and primed coordinates to represent the image after applying Ω.

In the sequel we will need to use conversion formulas from RGB to HSV or HCV and viceversa. These transformations are customary in literature and implemented in several open source Python packages. Here we mention just the map from RGB to HCV, for its inverse function and further details see e.g. Appendix B in [START_REF] Zamir | Vision models for wide color gamut imaging in cinema. siii rnstions on ttern enlysis nd whine sntelligene[END_REF], or [START_REF] Smith | Color gamut transform pairs. egw iggrph gomputer qrphis[END_REF]

. Let R, G, B ∈ [0, 1] 3 and H ∈ [0, 2π), C, V ∈ [0, 1] 2 then:                          C := max(R, G, B) -min(R, G, B) V := max(R, G, B) H := π 3                0 if C = 0 G-B C if V = R B-R C + 2 if V = G R-G C + 4 if V = B . ( 7 

.2.13)

Let us now show the steps to obtain the corrected RGB image I (x), given an input RGB image I(x) and the estimated illuminant L.

1. We start by calculating the HSV coordinates of the RGB illuminant vector:

L =   L R L G L B   -→   L H L S L V   =:   φ σ ε   (7.2.

14)

L(x) with x ∈ I for the multi-illuminant case.

7. Related applications: a CAT for AWB 2. Using the parameters φ, σ, ε we can write the CAT matrix:

Ω = Γ ε   Γ cos 2 φ + sin 2 φ (Γ -1) cos φ sin φ -σΓ cos φ (Γ -1) cos φ sin φ Γ sin 2 φ + cos 2 φ -σΓ sin φ -σΓ cos φ -σΓ sin φ Γ   , Γ = 1 √ 1 -σ 2 .
(7.2.15)

3. Then we convert the input RGB image in HCV coordinates:

I(x) =   R(x) G(x) B(x)   -→   H(x) C(x) V (x)   . (7.2.16)
4. We convert the polar coordinates HC into Cartesian coordinates that we call α, β:

  H(x) C(x) V (x)   -→   α(x) β(x) V (x)   :=   C(x) cos H(x) C(x) sin H(x) V (x)   .
(7.2.17)

5. We apply the matrix Ω calculated in point 2. to the input image represented in αβV coordinates, obtaining the corrected image I (x) represented in the αβV domain:

  α(x) β(x) V (x)   -→   α (x) β (x) V (x)   := Ω   α(x) β(x) V (x)   . (7.2.18)
6. We come back from the αβV domain to RGB, rstly converting α β into polar coordinates H C , and then applying the conversion function from HCV to RGB:

  α (x) β (x) V (x)   -→   H (x) C (x) V (x)   =   arctan (β (x)/α (x)) α 2 (x) + β 2 (x) V (x)   -→   R (x) G (x) B (x)   , (7.2.19) 
The only dierence between the single illuminant, and the multi-illuminant case is that the CAT matrix depends as well on the pixel Ω = Ω(x).

To summarize, the chain of operations performed, omitting the dependence on x, is

  R G B   -→   H C V   -→   α β V   -→   α β V   = Ω   α β V   -→   H C V   -→   R G B   . (7.2.20) 
Figure 7.1 shows some examples of outputs of the algorithm described above, together with the non corrected inputs, and outputs of the classical von Kries CAT for visual comparison.

One common problem of CATs is that, depending on the illuminant estimation, clipping can occur. This supplementary clipping process leads to false colors and artifacts. This is the case as well for the von Kries CAT. We have noticed that in the normalized boost is less aected by this issue than the simple boost that we proposed in [68], and also with respect to the von Kries CAT.

Using the normalized boost CAT the clipped pixels are less numerous than the von Kries CAT and generally placed at e.g. the highlights on highly reective objects objects or some white parts of the depicted toys. These artifacts are hence not due to a problem in the CAT, but to the fact that there is a single-illuminant vector through which the image is corrected. In other words e.g. the highlights in the image are clipped because they are brighter and whiter than what it was estimated to be the white (in this case the white patch of the color checker). We performed as well tests on images with multi illuminant ground truth maps L(x), i.e. a dierent illuminant vector for each pixel, [START_REF] Kim | Large scale multi-illuminant (lsmi) dataset for developing white balance algorithm under mixed illumination[END_REF] and this problem does not occur.

There are two common solutions to the clipping issue: For the pictures showed in this chapter we preferred to use the rst option, because it gives brighter images, while for the quantitative tests presented in Section 7.4, or in general for image processing applications, is customary to choose the second one. One technical reason is that AWB is generally applied at the early stages of the image processing pipeline, in the RGB RAW linear domain just after demosaicing. In general images in the linear domain are darker, because they will be brightened by applying tone mapping, thus passing to a non-linear domain, later in the chain. [START_REF] Gehler | Bayesian color constancy revisited[END_REF][START_REF] Shi | Re-processed version of the gehler color constancy dataset of 568 images[END_REF], while the others belong to the NUS Indoor Dataset [START_REF] Cheng | Beyond white: Ground truth colors for color constancy correction[END_REF].

From a rst visual comparisons the CAT that we propose seems to be better at rendering 7. Related applications: a CAT for AWB details in the scene, it is theoretically based and, as underlined before, it is less aected by artifacts, which are only due to the non-globality of the illuminant estimation. Computational time is slightly longer with respect to the von Kries CAT, because color space conversions are needed.

We do believe that this aspect can be improved, e.g. using the linear color domain proposed among the future projects in Chapter 9.

The color rendering seems visually good or comparable with the von Kries CAT. Nevertheless if we pay attention to the red hues, we can see that some of them tend to turn a bit pinkish, this might be better seen in the last picture in Figure 7.1 on the white-red box with a ower depicted on it, whose red looks too turned towards the magenta in the normalized boost CAT output w.r.t. the von Kries one, or the input. In the following section we will see that this issue is related to the use of the HCV color domain, hence we will propose simple alternative color domains that solve this problem, as depicted in Figure 7.2.

A modied HCV space encoding Hering's opponency

One of the reasons why the HCV color domain is not a good choice to mimic the state cone C(R ⊕ R 2 ) is that it lacks of one of the most important properties of the theoretical model: Hering's opponent mechanism.

Indeed, as depicted in Figure 7.3 (a), the HCV color space, or analogously HSV, inherits the hue positioning on the circle from RGB, thus the red, green and blue hues are equidistant on the circle, while the yellow is placed halfway between the red and the green as follows:

H(R) = 0, H(Y ) = π 3 , H(G) = 2π 3 , H(B) = 4π 3 . (7.3.1)
Thus yellow and blue are diametrically opposed, while red and green are separated by an angle of 60 • , so in HCV the opponent hue to red is cyan. It has to be noted that in Hering's opponent theory it is not clear exactly which shades of the four unique hues are opponent, nor if the two opponent axes have to be orthogonal.

With the aim of correcting the problem of red objects slightly shifting to magenta underlined at the end of the previous section, we tried to propose an alternative color domain to HCV in which implement the normalized boost CAT. This new color solid was obtained from the HCV color solid ¶ , by modifying only the hue coordinate H. The objective was to obtain a color domain like HCV, but endowed with Hering's opponent mechanism.

To do so we tried several functions, using simple interpolation techniques in 1-dimension, to modify the hue conguration on the circle. The objective was to approximately recover the, not necessarily orthogonal, Hering's opponent axes. We selected the two best performing functions f 1 , f 2 on the images. Let us call H 1 CV and H 2 CV the two color solids obtained from HCV using f 1 and f 2 . As one can see in Figure 7.2 the normalized boost CAT implemented in H 1 CV or H 2 CV does not have anymore the of the slight shift towards magenta of the red objects that occurred in HCV, see in particular the white-red box with a ower depicted on it.

A modied HCV space encoding Hering's opponency

Let us explain a but more in detail how f 1 and f 2 have been obtained. Both f 1 , f 2 : [0, 2π] → [0, 2π] are 2π-periodic and invertible, their plots are illustrated in Figure 7.4. The coordinates H i to change color space are obtained from the H coordinate of HCV by H i = f -1 i (H), i = 1, 2. In particular 1. f 1 is obtained requiring the red to stay be the same, and the green to be diametrically opposed to the red, hence it is obtained by quadratic interpolation of the points (0, 0), (2π/3, π), (2π, 2π). It can be explicitly written as a parabola f 1 (x) = 1 4 7x -3 2π x 2 . As depicted in Figure 7.3 (b), red and green are now opponent, but the blue is diametrically opposed to an orangish yellow. Furthermore these opponent axes are not orthogonal, but are separated by an angle of 30 • .

2. f 2 is obtained by xing again the red and moving the green to be diametrically opposed to it, then moving the yellow and the blue in order to have an angle of 60 • between the two opponent axes, as in Figure 7.3 (c). f 2 was obtained via quadratic piece-wise interpolation of the points (0, 0), (π/3, 2π/3), (2π/3, π), (4π/3, 5π/3), (2π, 2π). We have remarked that the normalized boost CAT gives visually slightly better results in H 1 CV than in H 2 CV . The quantitative evaluations presented in the following section are coherent with this fact. Visually the outputs in H 2 CV appear to be a little desaturated w.r.t. the ones in HCV or in H 1 CV . This might seem strange, because the only thing that was modied is the hue coordinate, however this is just a case correlation among the coordinates of the state-of-the art color solids, as the ones mentioned in Section 1.3 of Chapter 1.

7. Related applications: a CAT for AWB 

A rst quantitative evaluation

Generally datasets like the mentioned ones in Figure 7.1, are used with the purpose of performing quantitative tests on single-illuminant estimation algorithms. In this section we are going to talk about a rst quantitative evaluation of the normalized Lorentz boost CAT, in particular we want to measure the rendering of the color checker in images corrected using the von Kries CAT, the normalized boost CAT in HCV, and in its modications H 1 CV and H 2 CV presented in the previous section, to compare their performances.

We chose to use the NUS Indoor Dataset (Canon 1Ds Mark III, 105 images) [START_REF] Cheng | Beyond white: Ground truth colors for color constancy correction[END_REF]. The procedure that we adopted to obtain the quantitative evaluations of the color checker rendering is schematized in Figure 7.5. We started by generating linear png images applying linear demosaicing on the RAW Available at https://cvil.eecs.yorku.ca/projects/public_html/beyond/beyond.html.

A rst quantitative evaluation

images provided with the dataset. We automatically detected the color checker present in each image and extracted the nineteenth patch (the white one) as ground truth illuminant vector. The automatic detection of the color checker was done using the Checker Detection functions available in the open-source Python package golour ** . Using the extracted ground truths we corrected the mentioned png images using four dierent CATs: von Kries, normalized boost in HCV, normalized boost in H 1 CV and normalized boost in H 2 CV . Clipping cases were managed by dividing the image by its maximum. Then we detected all the color checkers in the output images, still using the Checker Detection functions.

We chose to use some color metrics, more precisely CIE ∆E 1994 [START_REF] Lindbloom | Delta e (cie[END_REF], DIN99 [START_REF] Astm | 224407 e1, standard practice for calculation of color tolerances and color dierences from instrumentally measured color coordinates, american society for testing and materials. emerin oiety for esting nd wterilsD est gonshohokenD e[END_REF], CIE ∆E 2000 [START_REF] Lindbloom | Delta e (cie[END_REF][START_REF] Melgosa | Cie / iso new standard: Ciede[END_REF], ∆E CIECAM02 [START_REF] Luo | Uniform colour spaces based on ciecam02 colour appearance model. golor eserh 8 epplitionX indorsed y snterEoiety golor gounilD he golour qroup @qret fritinAD gndin oiety for golorD golor iene essoition of tpnD huth oiety for the tudy of golorD he wedish golour gentre poundtionD golour oiety of eustrliD gentre prnçis de l gouleur[END_REF] and ∆E CIECAM16 [START_REF] Li | Comprehensive color solutions: Cam16, cat16, and cam16-ucs[END_REF], as they are implemented in the package golour.

For each CAT we considered the set of detected color checkers and we calculated the distance between each of them and the standard benchmark color checker enlightened by D65 illuminant. This distance was obtained by calculating, for each patch, its distance from the corresponding one in the benchmark color checker and then averaging over the 24 patches. For each CAT we averaged the distances of the color checkers over the 105 images of the dataset, obtaining the values reported by Table 7 Lower values in the previous table mean that the color checker rendering of a certain CAT is closer to the benchmark color checker. We can see that, as predicted qualitatively in the previous section, H 1 CV is better performing than H 2 CV . Furthermore, according to this evaluation, it a bit is better to use the implementation in H 1 CV than in HCV , and both of them have better results than the von Kries CAT. However it must be noted that the value dierences between the columns are sometimes of the order of decimals. It is known that ∆E values lower than 2 are not noticeable by the human eye. One might see that, however, e.g. the yellow patch of the color checker in the images depicted in Figure 7.1 and 7.2 looks dierent when corrected with dierent CATs. This is probably due to the fact that the distance is averaged over all the paches of the color checker.

We want to stress that this is a rst simple quantitative evaluation, among the future projects in Chapter 9 we are going to mention the idea of testing the normalized boost CAT, using specic datasets created for CATs: the so-called orresponding olors. 

Related applications: Tone Mapping

In this chapter we will start by briey introducing the problem of tone mapping of high dynamic range (HDR) images and the classic tone mapping operator known as xkEushton eqution. Then, in Section 8.2 we will provide a geometric interpretation of this equation analyzing it as a Möbius transformation. This is related to the model presented in Chapters 3 and 5, because Möbius transformations can be characterized as cross-ratio preserving maps, and, moreover, they are related to the construction of the classic models of hyperbolic geometry, see e.g. [START_REF] Ratclie | poundtions of hyperoli mnifolds[END_REF]. This part of the chapter will be essentially based on [START_REF] Prencipe | Embedding naka-rushton's equation in the geometric setting of möbius transformations[END_REF]. In Section 8.3 we will propose a work-in-progress tone mapping operator inspired by Klein's disk construction, related to the structure of S(A), mentioned in Chapter 3.

The Naka-Rushton equation and its use for tone mapping

High Dynamic Range (HDR) images provide a way to store real-world radiance values, e.g. by combining multiple photos of a scene taken with dierent time exposures following the classical work of Debevec and Malik [START_REF] Debevec | Recovering high dynamic range radiance maps from photographs[END_REF]. However, since the real-world radiance can span up to 10 orders of magnitude and ordinary displays can only span up to two orders of magnitude, a further `compression step', called `Tone Mapping' (TM) is required to properly visualize the information stored in the HDR images.

Following Ward et al. [START_REF] Ward | A visibility matching tone reproduction operator for high dynamic range scenes[END_REF], the large majority of tone mapping operators are devised to reproduce detail visibility and emulating as much as possible contrast and color sensation of the real-world scene. Ideally, a perfect model of the Human Visual System (HVS) would satisfy these requests, however the knowledge about human vision is still too vague to permit the construction of such a model, so that simplied and partial HVS descriptions are needed.

In this sense, it is quite remarkable that the sole use of the visual adaptation step already provides a remarkably good tone mapping. The visual adaptation phase, as we will see in the following, occurs when photoreceptors (cones and rods) strongly compress the light range around an average (adaptation) value. This process can be described by the Naka-Rushton equation [START_REF] Naka | S-potentials from luminosity units in the retina of sh (cyprinidae)[END_REF] which has been widely used as a global TM operator, for a thorough review see e.g. [START_REF] Reinhard | righ hynmi nge smgingD equisitionD hisplyD end smgeEfsed vighting[END_REF][START_REF] Ferradans | An analysis of visual adaptation and contrast perception for tone mapping. siii rnstions on ttern enlysis nd whine sntelligene[END_REF][START_REF] Ferradans | Generation of hdr images in non-static conditions based on gradient fusion[END_REF][START_REF] Ferradans | An algorithmic analysis of variational models for perceptual local contrast enhancement[END_REF][START_REF] Provenzi | gomputtionl golor ieneX ritionl etinexElike wethods[END_REF][START_REF] Banic | Flash and storm: Fast and highly practical tone mapping based on naka-rushton equation[END_REF].

Let us recall how the retina responds to light stimuli. The range of radiances over which the HVS can operate is very large: from 10 -6 cd/m 2 (scotopic limit) to 10 6 cd/m 2 (glare limit) [START_REF] Wyszecky | golor sieneX gonepts nd methodsD quntittive dt nd formulsF tohn iley 8 ons[END_REF]. The automatic process that allows the HVS to operate over such a huge range is called visul dpttion [START_REF] Shapley | isul dpttion nd retinl gin ontrols[END_REF].

8.1. The Naka-Rushton equation and its use for tone mapping However, the HVS cannot operate over this entire range simultaneously. Rather, it adapts to an average intensity and handles a smaller magnitude interval. There is no complete agreement in the literature about the precise value of this range, which can vary from two ( [START_REF] Shapley | isul dpttion nd retinl gin ontrols[END_REF] page 326) up to four orders of magnitude ([81] page 670).

Empirical experiments have shown that visual adaptation occurs mainly in the retina. The experiments to measure this behavior were performed using very simple, non-natural images: brief pulses of light with intensity I superimposed on a uniform background. When a photoreceptor absorbs I, the electric potential of its membrane changes accordingly to the empirical law known in vision research literature as Naka-Rushton's equation [START_REF] Naka | S-potentials from luminosity units in the retina of sh (cyprinidae)[END_REF][START_REF] Shapley | isul dpttion nd retinl gin ontrols[END_REF][START_REF] Lee | sntrodution to golor smging iene[END_REF]:

r(I) = I I + I s , (8.1.1) 
where r(I) is the normalized response of the retina to I and I s is the light level at which the photoreceptor response is half maximal, called semisturtion level and which is usually associated with the level of adaptation. Some authors report the formula writing the γ power of I and I s , in this case the equation is called Michaelis-Menten's formula ( [START_REF] Lee | sntrodution to golor smging iene[END_REF] page 301). The reason why this formula has received so much attention from the tone mapping community is because it permits to compress any given range of the light stimuli into the interval [0, 1] (since I and I s are light intensity levels, hence they are both positive) in such a way that the details in dark areas are enhanced and the ones in the higher areas are compressed, see Figure 8.2, which is coherent with the well-known Weber-Fechner's law [START_REF] Wyszecky | golor sieneX gonepts nd methodsD quntittive dt nd formulsF tohn iley 8 ons[END_REF].

Let us now see how Naka-Rushton's equation is used in the context of HDR imaging. We denote with I ⊂ R 2 the spatial domain of an RGB high dynamic range image I : I → (0, +∞) 3 , I

x → (I R (x), I G (x), I B (x)), I c being the scalar chromatic component of I, c ∈ {R, G, B}, where x = (x 1 , x 2 ) ∈ I is the spatial position of an arbitrary pixel in the image. Generally, tone mapping algorithms operate on either the three RGB channels separately, or on the luminance value of I, calculated in one of the many possible ways available in literature [START_REF] Reinhard | righ hynmi nge smgingD equisitionD hisplyD end smgeEfsed vighting[END_REF], e.g. the V = max(R, G, B) in HSV, or the arithmetic average of the three RGB channels. In some cylindrical or conic shaped color spaces the compression of only the achromatic coordinate often leads to oversaturated images. Thus, in general, the compression of the achromatic coordinate comes together with a correction, often a smaller compression, of the saturation or chroma. To mention a few examples: in [START_REF] Vazquez-Corral | A fast image dehazing method that does not introduce color artifacts[END_REF] after applying a TMO on the V, in the HSV color space, S is scaled according to the compression of the V channel, in [START_REF] Mantiuk | Color correction for tone mapping. gomputer qrphis porum @roF iyqersgA[END_REF] a TMO is applied on the L channel in the CIELAB space, while the chroma in the a * b * plane is rescaled, something similar is done in [START_REF] Artusi | Automatic saturation correction for dynamic range management algorithms[END_REF] in the IPT color space.

In any case, it is clear that only a scalar-valued function is considered, let us denote it simply with λ : I → (0, +∞).

Since the HDR image represents the radiance map of a scene, it is natural to associate λ with I and to identify the semisaturation level I S with the average value of λ, denoted by µ. In the literature there is no agreement about how µ has to be computed, i.e. via arithmetic average µ a , geometric average µ g , median µ med , or combinations of them [START_REF] Reinhard | righ hynmi nge smgingD equisitionD hisplyD end smgeEfsed vighting[END_REF][START_REF] Ferradans | An analysis of visual adaptation and contrast perception for tone mapping. siii rnstions on ttern enlysis nd whine sntelligene[END_REF]. For these reasons, we will leave the formal expression of µ unspecied. In Section 8.2 we will see that the parameter µ has a particular geometrical meaning in the decomposition of r as a Möbius transformation.

With the notation just introduced, the expression of the Naka-Rushton equation for tone mapping of HDR images is the following:

r(λ(x)) = λ(x) λ(x) + µ , ∀x ∈ I . (8.1.2)
8. Related applications: Tone Mapping

In the so-called lol tone mapping algorithms, both the pixel position x and the value of λ(x) inuence the tone mapping operation, however, for the sake of simplicity, in this chapter we will only deal with a global tone mapping, in which two generic pixels x, y ∈ I such that λ(x) = λ(y) will be tone-mapped in exactly the same value. Thanks to this assumption, Equation (8.1.2) can be simplied as follows:

r(λ) = λ λ + µ , ∀λ ∈ [λ min , λ max ] ⊂ (0, +∞), (8.1.3) 
with obvious meaning of the symbols λ min and λ max and r(µ) = 1/2. The plot of r(λ) is depicted in Figure 8.2. The non-linearity of r(λ) is essential, in fact, due to the vast dynamic range of HDR images, a linear tone mapping performed via the formula: The non-linearity of the Naka-Rushton transformation and the possibility to quite easily control the global brightness of the resulting image by modifying the value of µ are the two most important features of Naka-Rushton based tone mapping that established its successful and widespread use.

λ → λ -λ min λ max -λ min ∈ [0, 1], ( 8 
Alongside the analytical formula (8.1.3) and the graphical depiction of Figure 8.2, it is possible to analyze the Naka-Rushton transformation from a geometric point of view that happens to give ner information about its behavior. In fact, as we are going to prove in this section, Equation (8.1.3) can be interpreted as the composition of a non-linear map followed by an ane one. In order to prove this, we must rst introduce the concepts of reection, inversion and Möbius transformation.

Möbius transformations

The main reference for this section is Ratclie's book [START_REF] Ratclie | poundtions of hyperoli mnifolds[END_REF]. One common way to dene the group of Möbius transformations on R n , denoted by M(R n ) is as the subgroup of Aut(R n ) = {f : R n → R n , f bijective} generated by reections w.r.t. hyperplanes and inversions w.r.t. hyperspheres.

The concepts of hyperplne and hypersphere are the generalizations to dimension n of the concepts of plane and sphere in dimension 3 or straight line and circle in dimension 2. It is important to stress that both hyperplanes and hyperspheres are submanifolds of dimension n -1 embedded in a space of dimension n. Denition 8.2.1 (Hyperplane in R n ). Given a ∈ R n , a = 1, and t ≥ 0, the hyperplne in R n associated to a and t is the set P a,t := {x ∈ R n , x, a = t}.

(8.2.1)

Note that a is the norml vetor to P a,t , and t is the distne between P a,t and 0. We denoted with •, • the Euclidean scalar product. Denition 8.2.2. A re)etion in R n w.r.t. the hyperplane P a,t is the ane function:

ρ a,t : R n -→ R n x → ρ a,t (x) := x + 2(t -x, a )a. (8.2.2)
Geometrically, the reection ρ a,t takes any point x ∈ R n at a distance d from P a,t to a point ρ a,t (x) which lies specularly on the other side of P a,t at the same distance d. Proposition 8.2.3. ivery re)etion ρ a,t stis(es the following properties for ll 

x, y ∈ R n X IF ρ a,t (x) = x if nd only if x ∈ P a,t Y PF ρ 2 a,t (x) = xD iFeF ρ a,t is n involutionD nd so ρ 2 a,t = id R n D iFeF ρ a,t is ijetion with ρ a,t -1 = ρ a,t Y QF ρ a,t is iuliden isometryX ρ a,t (x) -ρ a,t ( 

Related applications: Tone Mapping

The main dierence between reections and inversions is that the hypersurface w.r.t. the inversion is performed is not a hyperplane, but a hypersphere. While a hyperplane extends towards the innite, a sphere is bounded, this fact implies that it is impossible to continuously ll the whole outer space to the spherical surface simply by reecting its interior points w.r.t. the tangent hyperplane to the sphere at a point, a dierent, non-linear, geometrical operation is needed.

This operation consists in mapping any point x inside the sphere to the unique point σ(x) outside the sphere characterized by the following two properties: rstly, σ(x) lies on the same line joining x with the center of the sphere; secondly, the norm of σ(x) is inverted w.r.t. that of x. More precisely we have the following denition: Denition 8.2.5. Let c ∈ R n and d > 0, then the inversion in R n w.r.t. the hypersphere S c,d is the non-linear function Möbius transformations arise from the combinations of inversions and reections of R n , one of the main interest in combining them is that, when they are fused together, they form a group. Notice that this is not a trivial statement because neither the set of reections nor the set inversions form a group: we do not have a identity element or any stability. 

σ c,d : R n \ {c} -→ R n \ {c} x → σ c,d (x) := c + d 2 x-c 2 (x -c). ( 8 
IF σ c,d (x) = x if nd only if x ∈ S c,d Y PF σ 2 c,d (x) = xD iFeF σ c,d is n involutionD nd so σ c,d is invertile with σ c,d -1 = σ c,d Y QF σ c,d (x) -σ c,d (y) 
( R n ) = φ = µ 1 • • • • • µ m : m ∈ N, µ i reections or inversions of R n , i ∈ {1, . . . , m} .

Analysis of Naka-Rushton's formula as a Möbius transformation

Another equivalent characterization of Möbius transformations is based on the concept of cross-ratio, already mentioned in Section 4.3 of Chapter 4. Let us dene it for the case of points belonging to R n . Denition 8.2.9. Let u, v, x, y ∈ R n such that u = y, v = x. The rossErtio of (u, v, x, y) is given by:

[u, v, x, y] = (u -x)(v -y) (u -y)(v -x) . (8.2.6) 
M( R n ) can be characterized as the set of all the transformations preserving the crossratio, i.e. φ ∈ M( R n ) if and only if for all u, v, x, y ∈ R n we have that The intensity levels of a HDR image belong to Λ, i.e. λ(I ) ⊂ Λ, where I is the spatial support of the image. We want to use a parsimonious combination of simple Möbius transformations, i.e. inversions and reections, to obtain a non-linear compression of the interval Λ, hence at least one inversion is needed. We will see that the search of the simplest monodimensional Möbius transformation r such that:

[u, v, x, y] = [φ(u), φ(v), φ(x), φ(y)]. Theorem 8.2.10. vet φ ∈ M( R n )F henX IF φ(∞) = ∞ if nd only if φ is similrity of R n Y PF if φ(∞) = ∞D thenD
1. r is non-linear; 2. r is compressive * on Λ; 3. r is monotonically increasing on Λ; leads naturally to Naka-Rushton's transformation.

In the following we are going to use elements of M(R), hence n = 1. Since the intensity is always positive, we can consider their restriction to (0, +∞). Notice that when n = 1 a hyperplane is just a point a ∈ R, while a hypersphere is the set of two points having the same distance d from the center c, S c,d = {c -d, c + d}.

In dimension 1 reections and inversions have the following easier expressions:

ρ a (λ) = 2a -λ and σ c,d (λ) = c + d 2 λ -c , (8.2.7) 
with a, c ∈ R and d > 0.

Recalling Theorem 8.2.10 a generic r ∈ M(R) is either a similarity or not, and it can be decomposed as r = ψ • σ, where ψ is an isometry of R and σ is a (unique) circular inversion. Since we are looking for a non-linear transformation and similarities act linearly, we can exclude the rst option.

Related applications: Tone Mapping

We want r to be compressive on Λ. Since the component ψ is an isometry , σ must be compressive on Λ.

Let us consider the simplest case of a circular inversion w.r.t. a sphere centered in 0 of radius 1, S 0,1 = {-1, 1}. The circular inversion w.r.t. this sphere is given by σ 0,1 (λ) = 1 λ . Notice that, as an inversion, σ 0,1 maps the inner part of S 0,1 into the external part and viceversa, i.e. σ 0,1 ((0, 1)) = (1, +∞) and σ 0,1 ((1, +∞)) = (0, 1). Since σ 0,1 (1) = 1 we can also say that σ 0,1 ([1, +∞)) = (0, 1]. In other words, this last equality means that the innite half line (1, +∞) is mapped into the bounded segment (0, 1). This means that, if the interval Λ, which can have arbitrarily large length l = λ max -λ min , is contained in the half line [1, +∞), then σ 0,1 (Λ) will be compressed, not linearly, in a segment contained in (0, 1]. To ensure that Λ ⊂ [1, +∞) we preliminary apply the translation τ

1 (λ) = λ + 1, hence τ 1 (Λ) = [λ min + 1, λ max + 1].
Up to now, we are applying on Λ the transformation σ 0,1 • τ 1 (λ) = 1 λ+1 , see Figure 8.3. Although this function is non-linear and compressive on Λ, it does not respect the order on Λ, i.e. it is not monotonically increasing. To recover the correct order on the compressed interval we need to apply the reection w.r.t. the point 1 2 , i.e. ρ 1/2 (λ) = 1 -λ. Note that, in particular, ρ 1/2 reverses the segment [0, 1], swapping the segment's extremes: ρ 1/2 (0) = 1 and ρ 1/2 (1) = 0. As a reection ρ 1/2 is an isometry thanks to Proposition 8.2.3. Let us call r = ρ 1/2 • σ 0,1 and r = r • τ 1 . In this case, without taking into account the preliminary translation τ 1 , i.e. considering r instead of r, r is decomposed as stated in Theorem 8.2.10, i.e. r = ψ • σ, with ψ = ρ 1/2 and σ = σ 0,1 . Moreover r has the following explicit expression:

r(λ) = ρ 1/2 • σ 0,1 • τ 1 (λ) = ρ 1/2 1 λ + 1 = λ λ + 1 . ( 8 

.2.8)

Notice that this simple reasoning leads us to a Naka-Rushton transformation with µ = 1.

Let us follow the same reasoning, but starting from a more generic circular inversion σ 0,µ w.r.t. a sphere centered in 0 of radius µ, S 0,µ = {-µ, µ}.

To ensure that Λ is placed outside the sphere S 0,µ , i.e. Λ ⊂ [µ, +∞), before the inversion σ 0,µ , we preliminary apply the translation τ µ (λ) = λ + µ.

Up to now, we are considering the transformation σ 0,µ • τ µ . We know that σ 0,µ (λ) = µ 2 λ |λ| 2 , but, since we are in dimension 1, σ 0,µ (λ) = µ 2 λ . Hence σ 0,µ • τ µ (λ) = µ 2 λ+µ . Now σ 0,µ • τ µ (Λ) is contained in the segment [0, µ]. To recover the correct order of the intensity levels we need to For all λ1, λ2 ∈ Λ we have that |ψ(λ1) -ψ(λ2)| = |λ1 -λ2|. 

r(λ) = δ 1/µ • ρ µ/2 • σ 0,µ • τ µ (λ) = λ λ + µ .
The Möbius transformation r that we have obtained is a Naka-Rushton function and the parameter µ represents the radius of the sphere w.r.t. which we are performing a circular inversion.

Let us call r = ρ µ/2 • σ 0,µ , hence r = δ 1/µ • r • τ µ . If we do not consider the preliminary translation τ µ and the dilation δ 1/µ that we apply a posteriori to recover the range [0, 1], i.e. we consider r instead of r, then r agrees with the minimal decomposition stated in Theorem 8.2.10 as r = ψ • σ, with ψ = ρ µ/2 and σ = σ 0,µ .

One might also think to decompose r(λ) = λ λ+µ according to Theorem 8.2.10. After straightforward computations it is easy to obtain that r = ψ•σ with ψ

(λ) = ρ 1-µ 2 (λ) = 1-µ-λ and σ(λ) = σ -µ, √ µ (λ) = -µ + µ λ+µ .
Notice that also in this decomposition the parameter µ is related to the radius of the sphere w.r.t. which we are performing an inversion.

Some considerations about Möbius transformations and color

We have identied the non-linear inversion and the ane reection that make up Naka-Rushton's map as a Möbius transformation. An inversion encodes the non-linear part of the mapping, mapping very dark and bright values of λ in the range 0-255 with the reversed order between them. For this reason, the composition with a reection is needed to re-establish the correct intensity order.

The fact that reections are isometries is particularly important for this step, in fact they do not modify the image relative intensities obtained as output of the inversion step, which is wise because the range has been correctly shrunk and we want to preserve it like it is.

We consider that pointing out this geometric information about tone mapping operator based on Naka-Rushton's formula may give interesting information for future developments of this kind of techniques. In particular, considering the prominent role of Möbius transformations in hyperbolic geometry and the importance played by hyperbolic structures in the model described in Chapters 3, 4, 5 and 6.

Möbius transformations encode many desirable colorimetric properties, e.g. they are conformal maps, i.e. they preserve angles, but they can also be identied with the transformations that preserve the cross-ratio, see e.g. [START_REF] Ratclie | poundtions of hyperoli mnifolds[END_REF].

In this section we treated only 1-dimensional Möbius transformations that can either be applied on the luminance channel of an RGB image, or to each separate chromatic channel. It would be interesting to study also the application of 3-dimensional Möbius transformations, i.e. elements of M(R 3 ), on the whole image content. Some signs in literature that go in this direction are present e.g. in [START_REF] Finlayson | Color homography: theory and applications. siii trnstions on pttern nlysis nd mhine intelligene[END_REF], were color holographies, projective maps i.e. crossratio preserving, are used for some applications, or the work of Drösler, already mentioned in Chapter 1, which relates cross-ratio to Weber's ratio starting from the mono-dimensional case and treating as well the three dimensional one [START_REF] Drösler | Color similarity represented as a metric of color space[END_REF][START_REF] Drösler | The invariances of weber's and other laws as determinants of psychophysical structures. qeometri representtions of pereptul phenomen[END_REF].

As already mentioned in Section 8.1, the interaction between the intensity shrinking and the chromatic components is a non-trivial aspect that aects the color rendering of images after TM. One reason are the correlations phenomena described in Section 1.3. In particular the 8. Related applications: Tone Mapping chromatic and achromatic part might be correlated because of the attributes representation in a particular color solid, but as well because of perceptual eects like Hunt's one, [START_REF] Artusi | Automatic saturation correction for dynamic range management algorithms[END_REF].

KTMO: a Klein inspired Tone Mapping Operator

In this section we are going to describe a work-in-progress proposal of tone mapping operator inspired from the construction of a classic model of hyperbolic geometry: Klein's disk. We already mentioned in Chapters 4 and 5 the Hilbert-Klein metric on the unit disk D or on the disk of radius 1/2, D 1/2 .

As we will see in the following, the Klein disk is constructed via projection from the origin , that maps the hyperboloid leaf, tangent to the center of the disk, onto the disk. The hyperboloid is another classic model of 2-dimensional hyperbolic geometry. It can be proven that, endowing the hyperboloid with the metric given by the arc length computed on its surface and D with the Hilbert-Klein metric then this projection is an isometry, for more details see [START_REF] Ratclie | poundtions of hyperoli mnifolds[END_REF].

Roughly speaking the Klein projection transforms a hyperboloid leaf, which is an innite surface into a disk which is bounded. Imagining to represent an HDR image as a set of points belonging to a innite cone, the idea is to use this transformation as a TMO to non-linearly compress an HDR image in a truncated cone.

Similarly to what we did in the previous chapter for AWB, here we choose a conic-shaped color space, like HCV to be able to apply these techniques on an image. For further details about the issues of relating the theoretical model to applications, see Subsection 7.2.1 in Chapter 7.

Leaves and Klein disks in HCV

Let us start by considering the state-of the art conic-shaped color space HCV. It is a cone of slope 1, truncated at height 1. In this space saturation S is dened as S = C/V . On the other hand the HSV color space has a cylindric shape. Let us call ϕ the coordinate change from HSV to HCV, then ϕ(H, S, V ) = (H, SV, V ) and ϕ -1 (H, C, V ) = (H, C/V, V ).

Let us now provide a parametrization of the conic volume of the HCV color space without taking into account the constraint of being bounded at height 1. Let us call C this innite conic volume, then C is dened as the set of all points:

C = {(H, C, V ) ∈ [0, 2π) × R + × R + | V 2 -C 2 ≥ 0}. (8.3.1)
Using the HSV coordinates to reparametrize the same set of points C one obtains: See as well [START_REF] Berthier | From Riemannian trichromacy to quantum color opponency via hyperbolicity[END_REF] for the role played by the Klein's disk projection in the theoretical model. Roughly speaking applying Klein's projection on the whole state cone, one obtains a representation of the state space. 

C = {(H, S, V ) ∈ [0, 2π) × R + × R + | V 2 (1 -S 2 ) ≥ 0}. ( 8 
κ k : L k -→ D k (H, C, V ) t -→ (H, kC/V, k) t ,
Since for all x = (H, C, V ) ∈ L k we have that k = √ V 2 -C 2 , we can dene a function κ acting on the whole C and such that κ |L k = κ k , for all k ∈ R + , as follows:

κ : C -→ C (H, C, V ) t -→ H, C √ V 2 -C 2 V , √ V 2 -C 2 t .
Note that κ is invertible on C and transforms each leaf in a disk. For a visual representation of the action of κ in HCV see 

KTMO

Let us consider an HDR image expressed in HSV coordinates, with S and V not necessarily in [0, 1], but belonging to [0, R], where R is a positive constant determined by the dynamic range of the input image. Let us call I the spatial domain of the image, every pixel x ∈ I is represented by a point of coordinates H(x), S(x), V (x) contained in C.

We recall that the aim of a TMO is to perform a non linear compression of the pixel's coordinates to make the image displayable on a screen. κ is a non-linear, compressive function. One might think about dening a TMO in the HSV domain, that is the composition of κ with a linear re-normalization, e.g. division by the maximum of the image or the maximum V . However this operation is not suciently compressive and the results are almost all dark.

To solve this issue we propose a TMO, that we call Klein TMO (KTMO from now on) that is the composition of κ with a simple Naka-Rushton applied on the coordinate V . From Equation (8.1) we recall that the Naka-Rushton has the following expression:

x -→ N R(x) = x x +

x . (8.3.4)

Related applications: Tone Mapping

Clearly there is the problem of setting the parameter x. In this section we follow the choice made in [START_REF] Ko²£evi¢ | Hd-race: Spray-based local tone mapping operator[END_REF]. Let x 1 , . . . , x n be the values taken by the variable x, then parameter x is chosen to be the weighted average between the arithmetic mean A = A(x 1 , . . . , x n ) and the geometric mean G = G(x 1 , . . . , x n ), i.e. x = A p G 1-p , with p to be set in [0, 1]. Figure 8.5 (Left) shows some examples of outputs of Naka-Rushton applied on the V channel in HSV color space, with p = 0.

The KTMO performs the following sequence of operations:

1. starts from an HDR input image expressed in RGB coordinates; 2. passes from RGB to HSV coordinates; 3. applies κ to the HSV coordinates, obtaining three coordinates that we will call H S V ; 4. applies a NR on V , with parameter x = A p G 1-p , p is a parameter to be set in [0, 1].

Let us call Ṽ = N R(V );

5. applies a linear normalizaton (division by the maximum Ṽ ) to Ṽ , to have the output value in [0, 1];

6. converts the image back to RGB.

References about the coordinate changes from RGB to HSV and viceversa can be found e.g. in [START_REF] Zamir | Vision models for wide color gamut imaging in cinema. siii rnstions on ttern enlysis nd whine sntelligene[END_REF][START_REF] Smith | Color gamut transform pairs. egw iggrph gomputer qrphis[END_REF], moreover these functions are already implemented in several Python packages for color image processing. 

Fréchet means

The choice of the parameter x appearing in Naka-Rushton's equation is a known non-trivial problem in literature. In order to investigate about alternative choices for x for the NR in the KTMO, we introduce here the concept of Fréchet means.

A Fréchet mean is the generalization of the concept of centroid for a generic metric, for further details see e.g. [START_REF] Lou | Dierentiating through the fréchet mean[END_REF]. Denition 8.3.2 (Fréchet variance). Let (M, d) be a complete metric space. Let x 1 , . . . , x n ∈ M . For every x ∈ M the Fréchet variance is given by: If there exists a point m ∈ M that globally minimizes ψ(x), it is called the préhet men of the points x 1 , . . . , x n .

ψ(x) =
In the following we are going to show that known means are actually particular instances of Fréchet means, with dierent choices for the metric. x i , we obtain that ψ (x) = 0 if and only if x = x, ψ (x) > 0 for all x > x and ψ (x) < 0 for all x < x.

It can be proven that the previous example holds true also for M = R In this way f is an isometry between the metric spaces (M, d f ) and (N, d E ). Then the f -mean of x 1 , . . . , x n ∈ M is given by

A f (x 1 , . . . , x n ) = f -1 (A(f (x 1 ), . . . , f (x n ))) . (8.3.9) 
Let us verify that it is a good denition. In a rst proposition of the Klein TMO, x is chosen to be the weighted product between the arithmetic mean A and the geometric mean G of the values V (x) with x ∈ I , i.e. x = A p G 1-p , with p ∈ [0, 1], as in [START_REF] Ko²£evi¢ | Hd-race: Spray-based local tone mapping operator[END_REF].

Since in the KTMO we apply a Naka-Rushton transformation on the achromatic coordinate, it seems appropriate to set this parameter as a Fréchet mean obtained from a metric that appears naturally in color perception to measure the dierences in intensity of a mono-dimensional stimulus. As reported e.g. in [START_REF] Drösler | The invariances of weber's and other laws as determinants of psychophysical structures. qeometri representtions of pereptul phenomen[END_REF][START_REF] Goldstein | enstion nd ereptionD Wth idition[END_REF] variations in intensity of a mono-dimensional stimulus follow Weber-Fechner's law and are well described by the metric ds/s, see as well Subsection 1. with p = 0.5. ight: KTMO with x as the geometric mean. The HDR inputs used to obtain these images belong to `wrk pirhild9s rh hotogrphi urvey' [START_REF] Fairchild | The hdr photographic survey[END_REF], available at http://markfairchild.org/HDR.html.

As we can see in Figure 8.5, KTMO seems to be slightly better performing at color rendering than Naka-Rushton's equation applied on the V channel of HSV, e.g. in the red owers in the bottom left corner of the image in the second line. There is no big dierence between the second and the third column, but the use of the geometric mean as parameter of the Naka-Rushton applied within KTMO is better motivated theoretically being related to Weber-Fechner's law as explained before.

On the other hand the results of the KTMO look over-saturated. This happens because, while chroma is modied by the KTMO, saturation stays unchanged, so the saturation of the low dynamic image is the same as one of the HDR image.

There are dierent possible ways in literature to integrate a desaturation step in the KTMO, e.g. [START_REF] Vazquez-Corral | A fast image dehazing method that does not introduce color artifacts[END_REF]. We tried as well to desaturate the image using Einstein's scalar multiplication, see Equation (5.3.1) in Chapter 5, but the results were not satisfactory. Similarly to what done in [START_REF] Artusi | Automatic saturation correction for dynamic range management algorithms[END_REF], as a future project we would like to propose a desaturation step that takes into account Hunt's eect as quantied in Section 5 of [START_REF] Berthier | Quantum measurement and colour perception: theory and applications[END_REF]. [START_REF] Prencipe | Embedding naka-rushton's equation in the geometric setting of möbius transformations[END_REF] Chapter 9

Conclusion and future perspectives

We have seen how the novel quantum-like approach that has been described in this thesis has both theoretical and applied implications. Citing Bengtsson and Zyczkowski [START_REF] Bengtsson | qeometry of untum ttesD n introdution to qunE tum entnglement[END_REF]: `here re mny lessons from olour theory tht re of interest in quntum mehnis'. We might say that the inverse holds as well: there are many lessons from quantum mechanics that are of interest in color theory.

We want to conclude mentioning a few open questions that will constitute the object of further investigations for future works.

About the existence of four unique hues

Recalling the denition of hue mentioned in Subsection 1.3.1, there are only four unique hues (red, yellow, green and blue), and any other hue can be expressed as a combination of two of them. One might ask whether there is a mathematical explanation of the presence of extly four unique hues, e.g. Purves and collaborators, in [START_REF] Purves | Color vision and the four-color-map problem[END_REF], relate it to the four-color-map problem [START_REF] Cayley | On the colouring of maps[END_REF]. In Chapter 3 we have seen that the existence of two couples of opponent hues in opposition is part of the algebraic formulation, encoded in the real Pauli matrices σ 1 and σ 2 . In Chapter 5 we showed how Lüders operations act on the disk of chromatic states, in particular they stabilize and do not deform it. It exists a more general set of transformations, of which Lüders operations represent a particular instance, known in quantum information theory as quntum hnnels. In particular the action of a quantum channel can deform the disk of chromatic states in a generic convex set of dimension 2. This means that one can generalize the ideal model described in Chapter 5 to a more realistic one, where a perceived color is obtained as the outcome of a measurement procedure consisting in the action of a quantum channel on a generalized state. Furthermore this process deforms the states space of the observer. Since, in this new setting, the set of chromatic states of a trichromatic observer is a generic convex, then an idea is to explore its link with four-vertex theorem, applied on its border, see [START_REF] Carmo | hi'erentil geometry of urves nd surfes[END_REF]. This might provide a mathematical explanation of the existence of four unique hues, corresponding to the local extremas of the border's curvature function.

Perceptual eects and chromatic adaptation

A way to validate the model is to check whether it is coherent with the phenomenology of color perception. In particular, as done in [START_REF] Berthier | Hunt's colorimetric eect from a quantum measurement viewpoint[END_REF][START_REF] Berthier | Quantum measurement and colour perception: theory and applications[END_REF] for the Hunt eect, it is important to understand whether it is possible explain via the formalism of the model other known perceptual eects, e.g. Helmholtz-Kohlrausch, Bezold-Brüke, Abney etc., see Subsection 1.3.2.

It is possible that some eects involving a hue-shift, as Bezold-Brüke's one, could be modeled using the angle variation formula obtained in Appendix B, Equation (B.0.13). We think that the task of modeling perceptual eects is made more dicult by the fact that chromatic adaptation might aect them. Therefore understanding and modeling the perceptual eects means, as well, understanding which is the role of chromatic adaptation in these phenomena.

As the viral phenomenon of he hress proved in 2015 on social media, what exactly chromatic adaptation is, how to correctly model it (taking into account all the involved steps in the vision chain) and how it inuences color appearance phenomena is still unclear.

An interesting point of view is given in [START_REF] Yang | A statistical explanation of visual space[END_REF], where a probabilistic interpretation of space perception is used to explain several space perception phenomena. Roughly speaking, among all the possible physical congurations that could lead to the same bi-dimensional visual image, the most prole one is chosen by the HVS. It is possible that something similar happens as well for color perception phenomena, e.g. while estimating the chromaticity of a light source (as happened for he hress phenomenon). In fact, some of the scientic explanations [START_REF] Lafer-Sousa | Striking individual dierences in color perception uncovered by `the dress' photograph[END_REF][START_REF] Aston | What# thedress reveals about the role of illumination priors in color perception and color constancy[END_REF] of the fact that people were perceiving the dress dierently (either black and blue or white and gold) involved chromatic adaptation. Indeed the phenomenon was explained in terms of inter-observers dierences in the estimation of the illuminant in the scene, in particular a black/blue dress is seen when the discarded illuminant is yellowish, while a white/yellow one is seen when the observer adapts to a bluish illuminant. As detailed in Chapter 7 illuminant estimation is an ill-posed problem, hence it seems reasonable that, given a visual stimulus, the HVS looks for the most prole, in some sense, illuminant to discard.

In the following paragraph we describe a possible way of obtaining a mathematical explanation of why chromatic adaptation happens.

Chromatic adaptation to increase color distinguishability

In Chapter 5 we have mentioned the concept of relative entropy and used it in Chapter 6 to provide denitions of colorimetric attributes within the quantum-like model. In quantum information theory, relative entropy is known to be a measure of disernility between states. Another interesting research direction consists at giving a formal explanation of why chromatic adaptation occurs. In particular, we would like do dene a measure of distinguishability between colors, given by the relative entropy, or its symmetrized version, between the associated states. Then we would like to provide a simple proof * of the fact that this quantity increases after chromatic adaptation, formalized as in Chapter 5. Roughly speaking this would provide a mathematical explanation of chromatic adaptation: the HVS adapts itself to the specic features of a visual scene in order to better distinguish its colors. Some details and a proof of the collinear case for the symmetrized relative entropy, are presented in the Appendix C. It would be interesting to investigate if psychovisual data can support this hypothesis.

Dening a Jameson-Hurvich-like color solid JHY

In Chapter 1 we mentioned the chromatic response curves proposed by Jameson and Hurvich within their series of articles about quantifying Hering's opponent process, in particular [START_REF] Hurvich | Some quantitative aspects of an opponent-colors theory. ii. brightness, saturation, and hue in normal and dichromatic vision[END_REF][START_REF] Hurvich | Some quantitative aspects of an opponent-colors theory. iii. changes in brightness, saturation, and hue with chromatic adaptation[END_REF]. The idea here is to use a basis of functions made up by them and a choice for the brightness sensitivity function, let us pick ȳ for simplicity, to dene a color solid.

Let C ∈ L 2 + (Λ) be a color stimulus, then its tristimulus values obtained performing the reduction with respect to the basis rg, yb, ȳ, as in Equation (1.1.3), are given by: It seems interesting to dene a color model in this way, since it would be a new way of including Hering's opponent mechanism in a color space. Moreover Jameson and Hurvich's curves have been used as well in [START_REF] Nayatani | A colorimetric explanation of the helmholtzkohlrausch eect. golor eserh 8 epplitionX indorsed y snterEoiety golor gounilD he golour qroup @qret fritinAD gndin oiety for golorD golor iene essoition of tpnD huth oiety for the tudy of golorD he wedish golour gentre poundtionD golour oiety of eustrliD gentre prnçis de l gouleur[END_REF] to give a colorimetric explanation and quantication of the Helmholtz-Kohlrausch eect. This seems promising in the perspective of dening a color model that takes into account and predicts this kind of eects. Furthermore this Jameson-Hurvich-like color solid could be a good color domain candidate to test the CAT proposed in Chapter 7 or the KTMO of Chapter 8.

About the normalized boost CAT

In 2004 the CIE reunited a technical commission, TC 1-52, testing 13 CATs with the purpose of recommending a best performing one, see [START_REF] Cie | A review of chromatic adaptation transforms[END_REF]. As reported in [START_REF] Bianco | Two new von kries based chromatic adaptation transforms found by numerical optimization. golor eserh 8 epplitionX indorsed y snterE oiety golor gounilD he golour qroup @qret fritinAD gndin oiety for golorD golor iene essoition of tpnD huth oiety for the tudy of golorD he wedish golour gentre poundtionD golour oiety of eustrliD gentre prnçis de l gouleur[END_REF], `he memers of the gsi g IESP were unle to gree on single ge s some of them required tht the dopted trnsform must e theoretilly sed '. For this reason we are interested in keeping ameliorating our proposal of a theoretically based CAT, presented in Chapter 7.

There are two main aspects on which we do believe that there is margin of improvement. The rst one consists at nding a better color domain for the implementation. One possible solution is either studying more in detail further modications of HCV or other state-of-the art color solids, either using the Jameson-Hurvich-like color solid described in the previous paragraph.

The second, very important, aspect is to provide quantitative evaluations of its performance. The state-of-the art benchmark to test CATs are the so-called orresponding olors datasets. These experimental data are obtained through dierent techniques, among them haploscopic matching as the Burnham experiments [START_REF] Burnham | Prediction of color appearance with dierent adaptation illuminations[END_REF] mentioned in Chapter 4. For a thoughtful description of the available datasets and existing CATs see the CIE report [START_REF] Cie | A review of chromatic adaptation transforms[END_REF], Chapter 9 of [START_REF] Fairchild | golor pperne models[END_REF] or [START_REF] Bianco | Two new von kries based chromatic adaptation transforms found by numerical optimization. golor eserh 8 epplitionX indorsed y snterE oiety golor gounilD he golour qroup @qret fritinAD gndin oiety for golorD golor iene essoition of tpnD huth oiety for the tudy of golorD he wedish golour gentre poundtionD golour oiety of eustrliD gentre prnçis de l gouleur[END_REF]. A couple of corresponding colors consists of two points, represented in a certain chromaticity diagram, which represent the same perceived color under two dierent adaptation conditions. CATs are meant to predict the corresponding colors couples, some data-based state-of-the art CATs have been created tting the available corresponding colors datasets. Concerning our model we performed some rst tests on e.g. Breneman's data [START_REF] Breneman | Corresponding chromaticities for dierent states of adaptation to complex visual elds[END_REF], implementing Einstein-Poincaré's addition law (which corresponds to the action of B N (e) -1 on the chromaticity diagram) in the u v chromaticity diagram, depicted in Figure 1.5, but the results were not satisfactory. The reason is that the u v chromaticity diagram is not a good approximation of the theoretical one. Hence we would like to perform other tests, on Breneman's or other corresponding colors datasets, representing the points in a dierent chromaticity diagram, e.g. H 1 S in the the solid H 1 SV dened in Section 7.3, or the chromaticity diagram JH of the Jameson-Hurvich-like color solid described in the previous paragraph.

The set of all these matrices forms a group, called the vorentz group classically denoted by the symbols L ≡ O(1, 3) = {Λ ∈ GL(4, R) : Λ t ηΛ = η}.

Thus, postulates 1 and 3 imply that the coordinates used to describe the same event in two generic inertial reference frames are related by either non-homogeneous linear transformations of the type x = Λx + a, Λ ∈ O(1, 3), a ∈ R 4 , called oinré trnsformtions, or, in the special case when a = 0, by linear transformations Angle variation in Einstein-Poincaré's addition law

In Chapter 5 we have underlined the importance of the relativistic addition law between an eect vector and a state vector in describing the process of color measurement and in modeling chromatic adaptation.

Let us consider two vectors v, u ∈ D, with r, ϑ and s, ϕ being their polar coordinates. Let us call R, Θ the polar coordinates of the vector u ⊕ v. In Proposition 5.3.1 we provided an explicit expression for R. The aim of this appendix is to nd an explicit expression for Θ as a function of the polar coordinates of the two involved vectors, i.e. Θ = Θ(r, s, ϑ, ϕ). As mentioned in Chapter 9, the interest of doing so is to use this formula as a possible way to model hue-depending perceptual eects, like Bezold-Brüke's or Abney's one. Furthermore this formula will be used in Appendix C to prove the monotonicity of the symmetrized relative entropy, in the case of collinear vectors.

To nd an explicit formula for the angle Θ, our strategy will be to use the relation between relativistic addition law and Lorentz boosts, as we have seen in Chapter 5, in particular in Equations (5.2.18) and (5.2.20). Since we are looking for an angular coordinate, possible normalized versions of the boost, like B N (e) in Chapter 5, will not aect the result.

A Lorentz boost B(v), parametrized by a generic velocity v, can be decomposed as the product of a boost along the x-direction B r := B((r, 0)) conjugated with a spatial rotation of angle ϑ, as follows:

B(v) = R ϑ B r R t ϑ , (B.0.1)
where

R ϑ =   1 0 0 0 cos ϑ -sin ϑ 0 sin ϑ cos ϑ   , B r =   γ v γ v r 0 γ v r γ v 0 0 0 1   , γ v = 1 √ 1 -r 2 . (B.0.2)
In fact the set of Lorentz boosts is not a group, because, in particular, the composition of two Lorentz boosts is not a Lorentz boost. Moreover B(v)B(u) = B(v + u) and also B(v)B(u) = B(v ⊕ u). Nevertheless given two Lorentz boosts B(v 1 ) and B(v 2 ), it is true that B(v 1 ) = R φ B(v 2 )R t φ , where φ is the angle between v 1 and v 2 .

Given a space-time event (t, x, y) t , let us call (t , x , y ) t its image after the action of a Lorentz boost, thus  We recall that the polar coordinates of the vectors v, u, u are (r, ϑ), (s, ϕ), (R, Θ), respectively. We are looking for an explicit expression for Θ, more precisely:

Θ(r, s, ϑ, ϕ) = arctg u y u x = arctg y x (B.0.6)

In the end we will see that actually Θ(r, s, ϑ, ϕ) = Θ(r, s, ϑ -ϕ).

Let us start from Equation (B.0. (B.0.12)

The explicit formula for the angle Θ, that we were looking for, is the following: roof of the olliner seF Let us start by calling s and t the states whose chromatic vectors are v e ⊕v s and v e ⊕v t , respectively. Let (s, ϑ), (t, ψ), (r, ϑ), (s , ϕ ), (t , ψ ) be the polar coordinates of the vectors v s , v t , v e , v e ⊕ v s , v e ⊕ v t , respectively. Using Equation (C.0.3), the thesis is equivalent to prove that the following expression The inequality that we want to prove, R S (s , t ) ≤ R S (s, t), in this particular case, has the following expression:

Θ(r
R S (
(1 -r 2 )(s -t) 4(1 + rs) ( 
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 7 and thesis outlineIn any serious question uncertainty extends to the very roots of the problem.

Figure 1 . 1 :

 11 Figure 1.1: Color matching experimental apparatus: test stimulus on the left side of the bipartite champ, on the right side 3 primaries P 1 , P 2 , P 3 , whose intensities can be set by the observer in order to obtain the match with the test stimulus.

  (a) CIE 1931 r, ḡ, b color matching functions. (b) CIE 1931 x, ȳ, z color matching functions.

Figure 1 . 2 :

 12 Figure 1.2: Two classic examples of color matching functions.

Figure 1 . 3 :

 13 Figure 1.3: An illustration of the sensitivity curves ᾱ, β, γ proposed by Drösler and Yilmaz: eigenfunctions of the harmonic oscillator.

Figure 1 .

 1 Figure 1.4 illustrates both the original Jameson and Hurvich's plot of the curves rg and yb, and a plot obtained via linear operations of Equation (1.1.5) on the color matching functions x, ȳ, z in Figure 1.1 (b).

Figure 1 .

 1 Figure 1.4: veft: Jameson and Hurvich sensitivity curves to color opponency under adaptation to neutral illuminant, as reported in[START_REF] Hurvich | Some quantitative aspects of an opponent-colors theory. ii. brightness, saturation, and hue in normal and dichromatic vision[END_REF]. ight: plot of the same sensitivity functions obtained from x, ȳ, z, using Equation (1.1.5).

Figure 1 . 5 :

 15 Figure 1.5: veft: CIE 1931 xy chromaticity diagram. genter : CIE 1960 UCS uv chromaticity diagram. ight: CIE 1976 UCS u v chromaticity diagram. These gures have been created using the open-source Python package golour, see https://colour.readthedocs.io/en/develop/.
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 16 Figure 1.6: MacAdam ellipses for one of MacAdam's test participants, plotted ten times their actual size on the CIE 1931 xy chromaticity diagram. This gure has been created using the open-source Python package golour.
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 17 Figure 1.7: In this gure, similar to the test provided by Ottosson in[START_REF] Ottosson | e pereptul olor spe for imge proessingF eville t httpsXGG ottossonFgithuFioG postsG oklG[END_REF], some state-of-the art color spaces, having coordinates representing hue, saturation (or chroma) and an achromatic coordinate, are considered. The depicted color gradients have been obtained xing the hue to blue (the blue of RGB coordinates (0, 0, 255) represented in each color space) and letting vary the other two coordinates. One can clearly see that, although the hue coordinate was xed to blue, in some cases clear hue-shifts towards purple appear.
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 19 Figure 1.9: An illustration of the Helmholtz-Kohlrausch eect: all the patches in the rst row have the same luminance level, as shown in the second row, but clearly they have dierent brightness (perceived luminance).

Figure 1 .

 1 Figure 1.10: A visual scene used to illustrate the lightness constancy phenomenon.
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 4 Conclusion: the need of a mathematical model for color opponency Chapter 2

  .1.1) (a) The (α, β)-plane, γ = 1. (b) Depiction of the cone C .

Figure 2 . 1 :

 21 Figure 2.1: Visual representations of the color solid considered by Yilmaz. * He considers the following functions: ᾱ(λ) = 1 √ π sin(φ(λ)), 1 √ π , β(λ) = cos(φ(λ)), γ(λ) = 1 √ 2π , where φ(λ) is a suitable function mapping the interval of visible wavelengths Λ into [0, 2π].

Figure 2 .

 2 Figure 2.2: veft: The experimental apparatus considered by Yilmaz. ight: This image is from Inter-Society Color Council News, Issue 419, Jan/Feb 2006, by kind concession of M. H.Brill, whom we would like to thank for sharing this reference with us for[13].
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 21 Coecients from the rst experiment: the white point transformation Yilmaz's rst experiment contains information about the coordinate change associated to the stimuli W and W , i.e. ΩW B = W B and ΩW B = W B , as depicted in Figure 2.3.
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 23 Figure 2.3: Illustration of Yilmaz's rst experiment with the notation established in Section 2.2.

Figure 2 . 4 :

 24 Figure 2.4: Depiction of Yilmaz's second experiment with the notation established in Section 2.2.

Figure 2 . 5 :

 25 Figure 2.5: Depiction of Yilmaz's third experiment with the notation established in Section 2.2.

  .1.2) just as if the elements a 1 , a 2 , . . . , a n were real, which explains the name. FRJAs are naturally endowed with a partial ordering: given a FRJA A and two elements a, b ∈ A, a ≤ b if and only if b -a is equal to a sum of squares. This means that the squares of A are positive. A FRJA can be endowed with the structure of Hilbert space by dening an inner product induced by the Jordan product as follows: a, b := Tr(L a•b ), for all a, b ∈ A and with L a•b being the endomorphism L a•b : A → A, c → (a • b) • c, for all c ∈ A.

  Figure 3.3 provides a 2D and a 3D plot of the normalized von Neumann entropy. (a) Plot of S(r), xing ϑ. (b) Plot of S(ρs) = S(r, ϑ).
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 31 Figure 3.1: Plots of the normalized von Neumann entropy.
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 3412 Equation(3.4.12) is the exact quantum analogue of Hering's representation of color sensations: the generic chromatic state s identied by the density matrix ρ s (r, ϑ) can be interpreted as the ontriution of the hromti stte ρ 0 nd the lne etween two ouples of opponent hromti sttes, encoded by the real Pauli matrices σ 1 , σ 2 .
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 32 Figure 3.2: Hering's rebit as a quantum-like formalization of Newton's chromatic disk.
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 1 Yilmaz relativity of color perception 4.1.1 Yilmaz colorimetric setting
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 4 Relativity within the quantum model Denition 4.1.1 (Illuminant). An illuminant is referene frme I of the spe C.

Denition 4 . 1 . 2 (

 412 Observer). We call any couple o = (c, I), such that the color c ∈ C has zero saturation in the reference frame I, an observer adapted to the illuminant I, or simply an observer.

.1. 6 )

 6 Proposition 4.1.4. ith the nottions introdued eforeD the olor oordinte trnsformtion orresponding to n illuminnt hnge is the vorentz oost long the xEdiretion desried y the following equtionX

4 .

 4 Relativity within the quantum model Denition 4.2.4 (Perceptual chromatic state). For every perceptual color c = (α, v) ∈ C, the density matrix ρ(2v c )

Denition 4 . 2 . 5 (

 425 Pure and achromatic perceptual states and colors). Let c = (α, v) ∈ C be a perceptual color: the density matrix ρ(2v c ) describes a pure perceptual chromatic state if v c = 1/2. If that is the case, then c is called a pure perceptual color; the density matrix ρ(2v c ) describes the state of maximal von Neumann entropy if v c = 0.

Denition 4 . 2 . 6 (

 426 Pure opponent chromatic vectors). The two chromatic vectors v + = (1/2, 0) and v -= (-1/2, 0) are called pure opponent chromatic vectors.

.2. 4 )

 4 Denition 4.2.7 (± purity of a perceptual color). p -(c) and p + (c) will be called thepurity and the + purity of a perceptual color c, respectively.
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 41 Figure 4.1: Purities.
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 201 which is nothing but an alternative way of writing Equation (4.1.3), i.e. the rst experimental outcome claimed by Yilmaz. The theoretical proof of the second experimental outcome claimed by Yilmaz, i.e. (4.1.4), is a bit trickier. First of all, we must recall that the second Yilmaz experiment involves two inertial observers o 1 = (c 1 , I 1 ) and o 2 = (c 2 , I 2 ) perceiving a maximally saturated color, which gives rise to the two vectors v c 1 = (Σ, 0) and v c 2 = (Σ, 0), together with the vector v c , which encodes how o 1 describes the color c 2 . Instead, in this section, we deal with two perceptual colors c, d ∈ C, which are associated to the perceptual chromatic vectors v c , v d ∈ D 1/2 , respectively, together with the relative perceptual chromatic vector v d c ∈ D 1/2

  .3.5) i.e. the relative perceptual chromatic vector v d c appears in the relativistic sum expressed by (4.2.14) together with the perceptual chromatic vectors v c and v d if and only if the rilert length d H (0, v d c ) of v d c is equal to the Hilbert distance between v c and v d .
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 42 Figure 4.2: Illustration of the result of Proposition 4.3.1 by Chasles theorem on the cross ratios of cocyclic points. v c , v d and v d c satisfy Equation (4.3.5).
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 435 is possible by recasting it in the context of the inertial observers framework introduced in Section 4.1. To remain coherent with the assumption of Section 4.2.1, we will consider only chromatic vectors of the type v c = (v c , 0). Considering again the notation of Section 4.1.2, let o 1 = (c 1 , I 1 ) and o 2 = (c 2 , I 2 ) be two inertial observers * , then, by denition, v 11 = (0, 0) and v 22 = (0, 0). However, using the notation introduced in Equation (4.1.2), the inertial observer o 1 perceives c 2 with a non-zero saturation, i.e. v 12 = (v 12 , 0), with v 12 = 0, and, thanks to Equation (4.2.20), v 21 = (-v 12 , 0). Furthermore, xed F ∈ C, let v 1F = (v 1F , 0) and v 2F = (v 2F , 0) be the chromatic vectors corresponding to the description of F performed by the inertial observers o 1 and o 2 , respectively. Coherently with the analysis made in Section 4.2.3, we perform the following identications between the chromatic vector components of the colors c and d appearing in formula (4.3.5) 4. Relativity within the quantum model and those of c 1 , c 2 and F :

Figure 4 .

 4 3 shows their position in the chromaticity diagram. In what follows, observers adapted to the illuminants C, A and G, respectively, will be denoted by o 1 = (c, C), o 2 = (a, A) and o 3 = (g, G). A haploscope is used to compare the color perception of one eye always adapted to the illuminant C and the other eye adapted to C, A and G.

Figure 4 .

 4 [START_REF] Ashtekar | Geometry in color perception[END_REF] shows, in the xyY diagram, three families of curves obtained by the tests performed in[START_REF] Crocetti | [END_REF]:

Figure 4 . 3 :

 43 Figure 4.3: The iso Munsell chroma contours found by [33] in the xyY diagram.

  Figure 4.4(a), we denote by F and F the xyY coordinates of the points in the xyY diagram obtained by the intersection between the line connecting A and C with the iso-chroma contours for o 1 and o 2 , respectively. The color F is perceived by o 1 as having a chromatic vector v 1F with norm v 1F = 0.2. By construction, we determine F , the color perceived by o 2 with chromatic vector v 2F such that v 2F = v 1F . The norm of the chromatic vector v 1F corresponding to the color F perceived by o 1 , is approximated by v 1F 3.76/20 = 0.188. Fig. 4.4(b) shows all the chromatic vectors in the disk D 1/2 . One can easily check, as illustrated by Chasles theorem, that:

( 4 .

 4 3.10) see Fig.4.5(b).

4 .

 4 Relativity within the quantum model (a) The illuminants C and A and the colors F and F in the xy chromaticity diagram. (b) Illustration of the equalities of Equation (4.3.9) in the disk D 1/2 .
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 44 Figure 4.4: Invariance of the Hilbert distance under observer changes: illuminants C and A, and colors F and F .
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 45 Figure 4.5: Invariance of the Hilbert distance under observer changes: illuminants C and A, and colors F , F , F 2 , and F 2 .

4. 3 .

 3 The Hilbert metric (a) The three illuminants C, A and G, and the colors F and F , F2 and F 2 , and H and H in the xyY diagram. (b) Illustration of the equalities of Equation (4.3.11) in the disk D 1/2 .
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 46 Figure 4.6: Invariance of the Hilbert distance under observer changes: illuminants C and G, and colors H and H , compared with illuminants C and A, and colors F and F .
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 251 Eect space of the rebitLet us call them stte ones C(A) = C(S(A)) with A = H(2, R) or R ⊕ R 2 , as they are the domains of positivity of their respective FRJAs re-parametrized using the states of D. By D we mean the unit disk, called D 1 in the previous chapter.
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 121 R, because then the matrix η e can be written in this way η e = e 0

Figure 5 . 1 :

 51 Figure 5.1: The double cone of eects E(S(R ⊕ R 2 )).

  .4.5) where, as in Equation (3.3.22) of Section 3.3, Σ(r s ) = 1 -S(ρ s ), S(ρ s ) being the von Neumann entropy of the state s.
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 612 Emitted light stimulus). en emitted light stimulus is identi(ed with the generlized stte 0 D 0 ∈ [0, 1] nd ∈ S(H(2, R))F he rel quntity 0 is the normlized light intensity nd rries the intrinsi hromti feturesF Denition 6.1.3 (Achromatic and white light). en hromti light is n emitted light stimE ulus with 0 ∈ [0, 1] nd = s a F sfD in prtiulrD 0 = 1D then we ll it white light nd we write W = s a F The act of measuring an emitted light stimulus by an observer o produces a perceived color through the Lüders operation associated to the eect o. Denition 6.1.4 (Perceived color from a light stimulus). qiven n oserver o nd n emitted light stimulus D iFeF the ouple (o, 0 )D the olor pereived y o from is the postEmesurement generlized

.1. 1 )

 1 with o 0 ∈ [0, 1] and ϕ o ( ) ∈ S(H(2, R)).Thanks to Equation (5.2.13), we know that if an observer o a is associated to an achromatic eect o a , then ϕ oa ( ) = , (6.1.2)

.1. 5 )

 5 Thanks to Equations (5.2.11) and (5.2.13), if ι is an achromatic illuminant ι a = (ι 0 , 0) we have r a := ψ ιa (p 0 p) = ι 0 p 0 ϕ ιa (p) = ι 0 p 0 p, (6.1.6)If, moreover, the observer o is represented by an achromatic eect o a , then ϕ oa (r a ) = ϕ oa (ψ ιa (p 0 p)) = ϕ oa (ι 0 p 0 p) = p, (6.1.7)

6 .

 6 A quantum information-based vocabulary for color attributes lightness, but it can be extended to an arbitrary achromatic emitted light 0 s a , obtaining 0 o 0 , 0 ∈ [0, 1], instead of o 0 in the following proposition. Proposition 6.2.2 (Robustness of the white light brightness). qiven ny oserver o = (o 0 , v o )D the rightness pereived y o from the white light W isX B(ψ o ( W )) = o 0 , (6.2.2) so the rightness of the white light does not depend on the e'et vetor of oF Now we treat the case of reected light. Denition 6.2.3 (Brightness of a perceived color from a reected light). qiven ouple oserverEilluminnt (o, ι)D o = (o 0 , v o )D ι = (ι 0 , v ι )D the rightness of the olor ψ o (ψ ι (p 0 p)) pereived y o from pth p o p lit y ι isX

  3.2) of Subsection 1.3.1, that we recall here:

7. 2 .

 2 The normalized boost CAT in HCV Writing [B N (e) -1 ] as the achromatic coordinate occupied the last position would lead to the following matrix, that we want to identify with Ω:

7. 2 .

 2 The normalized boost CAT in HCV clipping the aected pixels, hence putting equal to 1 the RGB values of the output image which are greater than 1; dividing the image by its maximum, i.e. I (x)/M , with M = max c∈{R,G,B} x∈I I c (x).

Figure 7 . 1 :

 71 Figure 7.1: veft: input image.genter : output image after white balance using the von Kries CAT. ight: output image after white balance using the normalized Lorentz boost CAT. The white balanced images have been obtained using the same illuminant estimation, performed manually on the white patch of the color checker present in each image. The image of the rst row belongs to the ColorChecker Dataset[START_REF] Gehler | Bayesian color constancy revisited[END_REF][START_REF] Shi | Re-processed version of the gehler color constancy dataset of 568 images[END_REF], while the others belong to the NUS Indoor Dataset[START_REF] Cheng | Beyond white: Ground truth colors for color constancy correction[END_REF].

Figure 7 . 2 :

 72 Figure 7.2: veft: output of the normalized boost CAT implemented in HCV. genter : output of the normalized boost CAT implemented in H 1 CV . ight: output of the normalized boost CAT implemented in H 2 CV . These images have been obtained from the NUS Indoor Dataset [30].
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 73 Figure 7.3: Red, yellow, green and blue hue positions in the hue-chroma planes of the HCV, H 1 CV and H 2 CV color spaces.
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 74 Figure 7.4: Plots of the two functions used to recover Hering's opponent mechanism in the HCV color space. veft: plot of f 1 . ight: plot of f 2 .
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 75 Figure 7.5: Schematic representation of the quantitative evaluation of the color checker rendering of dierent CATs.

  .1.4) eventually multiplied by 255 to restore the usual 8 bit dynamic range, would set to black all pixels in the image whose λ value is two orders of magnitude smaller than λ max , as clearly shown in Figure8.1.

Figure 8 . 1 :

 81 Figure 8.1: Graph of r(λ), with λ min = 0.1, λ max = 10 3 and µ = 100.

Figure 8 . 2 :

 82 Figure 8.2: veft: one image of the famous Memorial church sequence. ight: result of the linear tone mapping of Equation (8.1.4), where almost all the pixels are set to black apart from those belonging to the brightest areas of the image.

  y) = x -y F Denition 8.2.4 (Hypersphere in R n ). Given c ∈ R n and d > 0, the hypersphere, of dimension n -1, in R n centered in c of radius d is the set of all the points having distance d from the center c: S c,d := {x ∈ R n : x -c = d}. (8.2.3)

= d 2 x

 2 -c y-c x -y F Every circular inversion σ c,d maps the exterior part of the hypersphere B c c,d = {x ∈ R n : x -c > d} into the inner part B c,d = {x ∈ R n : x -c < d} and viceversa, i.e. σ(B c c,d ) = B c,d and σ(B c,d ) = B c c,d , while the points of S c,d stay xed, i.e. σ(S c,d ) = S c,d .Both reections w.r.t. hyperplanes and inversions w.r.t. hyperspheres are, essentially, oneEdimensionl opertions, in the sense that all the points belonging to the same straight line orthogonal to the hyperplane involved in a reection are left on this straight line; in the same way, all the points belonging to the straight line passing through the origin of the sphere involved in an inversion are left on that line.It is possible to extend reections and inversions to R n := R n ∪ {∞}. It is sucient to dene the image of ∞. Denition 8.2.7. Let ρ a,t be a reection and σ c,d an inversion in R n . The extension of ρ a,t in ∞ and of σ c,d in ∞ and c are dened as follows: ρ a,t (∞) := ∞ and σ c,d (∞) := c σ c,d (c) := ∞ . (8.2.5)

  there existX unique hypersphere Σ in R n on whih φ ts s iuliden isometryD iFeF for ll x, y ∈ ΣD φ(x) -φ(y) = x -y Y unique inversion σ wFrFtF Σ nd unique iuliden isometry ψ suh tht φ n e deomposed s follows φ = ψ • σF 8.2.2 Naka-Rushton's formula as a Möbius transformation Let us consider the real interval Λ := [λ min , λ max ].

Figure 8 . 3 :

 83 Figure 8.3: Depiction of the action of the transformation ρ 1/2 • σ 0,1 on the interval Λ. Notice that it is more compressive on high intensity levels than on the lower ones.

8. 2 .

 2 Analysis of Naka-Rushton's formula as a Möbius transformation apply the reection ρ µ/2 (λ) = µ -λ, which reverses the segment[0, µ]. At this point the image of Λ is contained in the segment [0, µ], we need to rescale it applying a dilation of factor 1 µ , δ 1/µ (λ) = 1 µ λ, which maps [0, µ] into [0, 1]. In this way the image of Λ is contained in [0, 1]. Let us call r the composition of all the Möbius transformations introduced up to now:

.3. 2 )Denition 8 . 3 . 1 (

 2831 Leaf). Let k ∈ R + , an hyperoloid lef L k ⊂ C is dened as the following set of points:L k = {(H, C, V ) ∈ C | V 2 -C 2 = k}. (8.3.3)Using HSV coordinates a leaf is given byL k = {(H, S, V ) ∈ C|V √ 1 -S 2 = k}. Notice that L 0 = ∂C.For every point x ∈ C it exists an unique L k such that x ∈ L k . The cone C is said to be folited in the set of leaves {L k } k∈R + , i.e. C = k∈R + L k , see Figure 8.4.

Figure 8 . 4 :

 84 Figure 8.4: Depiction of the leaves and disks in a chroma-value plane in HCV.

Figure 8 . 4 .

 84 Let us call κ the function κ acting on the HSV domain, thus κ = ϕ -1 κϕ. Straightforward computations lead to the following explicit expression:

Figure 8 . 5 (

 85 Center) shows some visual examples of KTMO outputs with p = 0.5.

3 (

 3 Karcher and Fréchet mean). A point m ∈ M that locally minimizes ψ is called urher men of the points x 1 , . . . , x n m(x 1 , . . . , x n ) = arg min x∈M

8. 3 .|x -x i | 2 . ( 8 . 3 . 7 )

 32837 KTMO: a Klein inspired Tone Mapping Operator ixmple 8.3.4 (Arithmetic mean)F Let M ⊆ R open, the arithmetic mean of x 1 , . . . , x n ∈ M is the Fréchet mean with d being the Euclidean metric d E : A(x 1 , . . . , x n ) It can be easily veried that ψ(x) = n i=0 |x -x i | 2 is globally minimal in x = 1

  m . Denition 8.3.5 (f -mean). Let M, N ⊆ R open and f : M -→ N an invertible function.Let us consider N as a metric space with the Euclidean distance d E . Then we can use f to dene a metric on M as follows:d f (x, y) := |f (x) -f (y)|,∀x, y ∈ M.(8.3.8) 

A f (x 1 i=1 d 2 f√ x 1 •x

 121 , . . . , x n ) = arg min x∈M n (x, x i ) = arg min x∈M n i=1 |f (x) -f (x i )| 2 . (8.3.10)We have to verify that the last arg min in the previous equation exists and it is unique.For all x ∈ M the functionn i=1 |f (x) -f (x i )| 2 is minimized if and only if x is such that f (x) = arg min y∈N n i=1 |y -f (x i )| 2 .From Example 8.3.4 we know that it exists an uniqueȳ ∈ N that minimizes n i=1 |y -f (x i )| 2 and ȳ = 1 n n i=1 f (x i ), so, since f is invertible it exists an unique point x = f -1 (ȳ) that minimizes n i=1 |f (x) -f (x i )| 2 .ixmple 8.3.6 (Arithmetic mean)F The arithmetic mean is a trivial example of f -mean, with f = id R . ixmple 8.3.7 (Geometric mean)F Let x 1 , . . . x n ∈ R + , their geometric mean G(x 1 , . . . x n ) = n ... • x n is an f -mean with f = log : R + -→ R, i.e. the Fréchet mean obtained choosing the metric d(x, y) = | log(x) -log(y)|. Indeed using Equation (8.3.9) we can perform the following computations: exp (A(log(x 1 ), . . . , log(x n ))i = G(x 1 , . . . , x n ).

( 8 . 3 . 11 ) 8 .

 83118 Related applications: Tone Mapping 8.3.4 KTMO and Fréchet means

  2 of Chapter 1. Given a, b ∈ R + , their distance is given by d(a, b) = b a ds s = | log(a) -log(b)|. Hence the Fréchet mean associated to this metric is the geometric mean, see Example 8.3.7.

Figure 8 . 5 (

 85 Right) shows the Klein TMO with x as the geometric mean.

Figure 8 . 5 :

 85 Figure 8.5: veft: NR applied on V in HSV, x = G. genter : KTMO with x = A p G 1-pwith p = 0.5. ight: KTMO with x as the geometric mean. The HDR inputs used to obtain these images belong to `wrk pirhild9s rh hotogrphi urvey'[START_REF] Fairchild | The hdr photographic survey[END_REF], available at http://markfairchild.org/HDR.html.

( 9 .0. 1 )

 91 From Equation(1.1.5), by linearity of the integral we obtain that the rst two equalities in Equation (9.0.1), can be rewritten as:J = 1.0065 Λ C(λ)x(λ)dλ -1.0006 Λ C(λ)ȳ(λ)dλ -0.0051 Λ C(λ)z(λ)dλ, H = -0.0039 Λ C(λ)x(λ)dλ + 0.3998 Λ C(λ)ȳ(λ)dλ -0.3999 Λ C(λ)z(λ)dλ.

( 9 .0. 2 )

 92 Recalling that the XYZ coordinates associated to C(λ) are obtained, as in Equation (1.1.3), byX = Λ C(λ)x(λ)dλ,

( 9 .0. 3 )

 93 We obtain that the tristimulus values XYZ are linearly related to the JHY coordinates as follows:

3 ) 4 )

 34 Let us call u the velocity vector of (t, x, y) t , obtained as follows:It can be proven that the velocity vector of (t , x , y) t is actually v ⊕ u. Let us call u := v ⊕ u, then v ⊕ u = u = (v ⊕ u) x (v ⊕ u)

9 )

 9 ϑ + y sin ϑ -x sin ϑ + y cos ϑ   . (B.0.7) Let us call X := x cos ϑ + y sin ϑ and Y := -x sin ϑ + y cos ϑ. Thus we obtainWe are looking for Θ = arctg (y /x ). Since it holds that x y = cos ϑ -sin ϑ cos ϑ sin ϑ perform the following computations:Θ(r, s, ϑ, ϕ) = ϑ + arctg Y γ v (rt + X) = ϑ + arctg -x sin ϑ + y cos ϑ γ v (rt + x cos ϑ + y sin ϑ) = ϑ + arctg -u x sin ϑ + u y cos ϑ γ v (r + u x cos ϑ + u y sin ϑ) = ϑ + arctg -s cos ϕ sin ϑ + s sin ϕ cos ϑ γ v (r + s cos ϕ cos ϑ + s sin ϕ sin ϑ) = ϑ + arctg 1 γ vs sin(ϕ -ϑ) r + s cos(ϕ -ϑ) .

  , s, ϕ -ϑ) = ϑ + arctg 1 γ v s sin(ϕ -ϑ) r + s cos(ϕ -ϑ) . (B.0.13)

  2, and , denotes the Euclidean scalar product on R 2 . Their domains of positivity are, respectively, C(H(2, R)) := H + (2, R) which is the set of positive semi-denite 2 × 2 matrices, i.e. symmetric matrices with non-negative trace and determinant, and

  This shows that: a 11 = a 22 and a 21 = -v 12 a 22 .The result of the second experiment, Equation (4.1.4), is equivalent to:

							.1.7)
	roofF Using Equation (4.1.6) and by calculating its inverse, after straightforward computa-
	tions, we obtain:					
	x 2 α 2 =					
	a 21 a 11	= -v 12 ,	-a 21 a 22	= v 12 .	(4.1.9)
		Σ =	a 21 + a 22 Σ a 11 + a 12 Σ	,	(4.1.10)
	which gives: a 12 = -(v 12 a 22 )/Σ 2 .					
	From the third experiment, Equation (4.1.5), we have:
	-tan ϕ =	a 21 α 1 + a 22 x 1 y 1	=	a 21 Σ	.	(4.1.11)

a 21 α 1 + a 22 x 1 a 11 α 1 + a 12 x 1 , x 1 α 1 = -a 21 α 2 + a 11 x 2 a 22 α 2 -a 12 x 2 . (4.1.8)

As it can be checked in more detail in

[124] 

or Section 2.2, the fact that v 12 = (v 12 , 0) and Equation (4.1.3) are equivalent to:

  .2.[START_REF] Berthier | Quantum measurement and colour perception: theory and applications[END_REF] where ⊕ is the symbol used to denote the relativistic sum and c is the speed of light. As we have already remarked in section 4.1, in Yilmaz's model the analogous of c is the limiting saturation Σ that, in the context of perceptual chromatic vectors, is equal to 1/2. .2. Einstein-Poincaré's addition law for chromatic vectors4.2.3 A theoretical proof of Yilmaz experimentsThanks to Equations (4.2.13) and (4.2.14), we can prove the rst two outcomes of Yilmaz's experiments in a purely theoretical manner. The proof of the rst one is extremely simple, in fact, by exchanging c and d in Equation (4.2.13) we immediately nd that

This explains the presence of the factor 4 in Equations (4.2.13) and (4.2.14), which are the exact analogue of the Einstein-Poincaré addition law for perceptual chromatic vectors written with our nomenclature. In particular, Equation (4.2.14) establishes that, given any two perceptual colors c and d, the relativistic sum of v d with the relative perceptual chromatic vector v d c leads to v c .

[START_REF] Astm | 224407 e1, standard practice for calculation of color tolerances and color dierences from instrumentally measured color coordinates, american society for testing and materials. emerin oiety for esting nd wterilsD est gonshohokenD e[END_REF]

  is called urus opertor associated to e and it is the square root of η e , i.e. the only symmetric and positive semi-denite matrix such that η = η e . Thanks to the cyclic property of the trace we have that:Tr(ψ e (s)) = Tr(ρ s η e ) = e s = e 0 (1 + v e • v s ), By convex-linearity, Lüders operations can be naturally extended to generalized states, thus elements of the state cone C(S(A)), as follows:

		5.2. Lüders operations and post-measurement generalized states
	so			
		Tr(ψ e (s)) ∈ [0, 1].	(5.2.3)
	The analytical expression of the post-measurement generalized state ψ e (s), see e.g. [27] page
	37, is:		
		ψ e (s) = η e ρ s η 1/2	1/2 e ,	(5.2.4)
	η	1/2 e		
				1/2 e η	1/2 e
					(5.2.5)
	so	ϕ e (s) :=	ψ e (s) e s	(5.2.6)
	is a density matrix corresponding to a state belonging to S(H(2, R)).
					.2.1)
	This implies that, since S(H(2, R)) ⊂ ψ e (S(H(2, R)) =: S(H(2, R)), i.e. ρ s will lose the
	property of having unit trace * after a Lüders operation, becoming a so-called generlized
	density mtrix representing a postEmesurement generlized stte. From the identication
	between states and density matrices it follows that	
		ψ (5.2.2)

e (s) ≡ ψ e (ρ s ) ∈ S(H(2, R)),

  .2.22) 5.3. Relativistic sum and the Hilbert-Klein metric where γ ve is dened as in Equation (5.2.16) and, if v e = 1,v e ⊕ v s := v e .(5.2.23)Comparing Equations (5.2.18) and (5.2.20) we may notice that a the action of B N (e) on the state cone corresponds to performing a left-relativistic addition law with v e on the space of chromatic vectors. This shows the link between Lorentz boosts and Einstein-Poincaré addition law.

  .2.2) B(v e ) is the Lorentz boost parametrized by v e , and B N (e) is the normalized boost parametrized by e. Let us recall as well that the explicit expression B N (e), as in Equations (5.2.

									15) and
	(5.2.17), is given by								
	[B N (e)] =	e 0 γ ve	[B(v e )] =	e 0 γ ve	γ ve γ ve v e σ 0 +	γ ve v t e γ 2 ve 1+γv e	e v e v t	,	(7.2.3)

  .2.4) 7.2. The normalized boost CAT in HCV Furthermore, since ||v e || < 1, the matrix B(v e ) is invertible and it is easy to prove that B(v e ) -1 = B(-v e ), hence B N (e) -1 =

				γ ve e 0	B(-v e ).		(7.2.5)
	Since γ ve = γ -ve , an explicit expression for B N (e) -1 is given by		
	[B N (e) -1 ] =	γ ve e 0	[B(-v e )] =	γ ve e 0	γ ve -γ ve v e σ 0 + -γ ve v t e γ 2 ve 1+γv e v e v t e	.	(7.2.6)

Table 7 .

 7 

		.1.
	metrics CIE 1994 DIN99 CIEDE 2000 CAM02 UCS CAM02 LCD CAM16 UCS CAM16 LCD	von Kries L in HCV L in H 1 CV L in H 2 CV 25.66 25.01 24.86 24.85 26.25 25.48 25.28 25.39 22.53 22.10 22.44 22.41 25.99 25.31 25.31 25.34 33.87 32.99 32.84 32.93 26.01 25.28 25.31 25.35 33.87 32.99 32.84 32.94

1: Average distances from the stan, von Kries CAT, normalized Lorentz boost in HCV, normalized Lorentz boost in H 1 CV , normalized Lorentz boost in H 2 CV .

  .2.4) σ c,d (x) is said to be the inverse of x w.r.t. to the sphere S c,d . Proposition 8.2.6. ivery inversion σ c,d wFrFtF hypersphere S c,d stis(es the following properties for ll x, y ∈ R n \ {c}X

  Denition 8.2.8. A wöius trnsformtion φ : R n → R n is a nite composition of reections w.r.t. a hyperplane and inversions w.r.t. a sphere in R n . The group of Möbius transformations is: M

  We are considering only the case of collinear vectors, hence ϕ = ψ = ϑ. Since cos(ϕ -ψ) = 1, Equation (C.0.5) has the following expression: By formula (B.0.13) also ϕ = ψ = ϑ, so cos(ϕ -ψ ) = 1. Moreover s = r+s 1+rs and t = r+t 1+rt , thus Equation (C.0.6) can be simplied as follows:

	s, t) =	1 2	s -t cos(ϕ -ψ) 2	log 2	1 + s 1 -s	+	t -s cos(ϕ -ψ) 2	log 2	1 + t 1 -t	,	(C.0.5)
	is greater or equal to the following one		
	R S (s , t ) =	1 2	s -t cos(ϕ -ψ ) 2	log 2	1 + s 1 -s	+	t -s cos(ϕ -ψ ) 2	log 2	1 + t 1 -t	.	(C.0.6)
			R S (s, t) =	s -t 4	log 2	(1 + s)(1 -t) (1 -s)(1 + t)	.	(C.0.7)
												(C.0.9)
	Furthermore		s -t =	s + r 1 + rs	-	t + r 1 + rt	=	1 -r 2 (1 + rs)(1 + rt)	(s -t).	(C.0.10)
	Hence Equation (C.0.8) becomes							
			R S (s , t ) = (s -t)	1 -r 2 4(1 + rs)(1 + rt)	log 2	(1 + s)(1 -t) (1 -s)(1 + t)	.	(C.0.11)

R S (s , t ) = s -t 4 log 2 (1 + s )(1 -t ) (1 -s )(1 + t ) . (C.0.8)

Notice that

(1 + s )(1 -t ) (1 -s )(1 + t ) = 1 + r+s 1+rs 1 -r+s 1+rs 1 -r+t 1+rt 1 + r+t 1+rt = (1 + r)(1 + s) (1 -r)(1 -s) (1 -r)(1 -t) (1 + r)(1 + t) = (1 + s)(1 -t) (1 -s)(1 + t) .

La structure de C 2 est particulièrement riche grâce aux concepts qui peuvent être adaptés de leurs analogues en mécanique quantique. En particulier, dans ce cadre, une couleur n'est plus décrite en termes de coordonnées, mais elle est le résultat d'une procédure de mesure qui peut être décrite mathématiquement, voir les Chapitres 5 et 6. Cela nous a permis de fournir des dénitions rigoureuses des attributs colorimétriques connus dans la littérature. La présence d'un ensemble de bonnes dénitions est essentielle, par exemple pour modéliser des phénomènes connus qui inuencent directement la façon dont nous percevons les couleurs (par exemple l'eet de Hunt ou la lightness onstny, détaillé dans le Chapitre 6). Il faut souligner qu'il n'existe actuellement aucune justication rigoureuse de ces phénomènes qui puisse permettre, par exemple, de les intégrer dans des algorithmes de traitement d'images en couleur.En outre, le modèle suggère certaines distances basées sur la théorie, comme la métrique de Hilbert-Klein, invariante sous l'adaptation chromatique, ou l'entropie relative symétrisée, augmentant avec l'adaptation chromatique, qui pourraient être utilisées pour mesurer les différences de couleur, très utiles dans les applications, par exemple comme fonctions de perte en Machine Learning.Le présent manuscrit est organisé de la manière suivante : après un premier chapitre consacré à l'état de l'art en colorimétrie, les chapitres 2, 3, 4, 5 et 6 fournissent une description de plusieurs aspects du modèle théorique, tandis que les chapitres 7 et 8 sont destinés à montrer la potentialité de cette nouvelle approche à travers des applications au traitement d'images en couleur. Le plan de la thèse est détaillé ci-dessous.

* In[START_REF] Smith | Color gamut transform pairs. egw iggrph gomputer qrphis[END_REF] there are several classic choices for the achromatic coordinates used in literature such asR+G+B 3 , or the Y coordinate from the XYZ color space, or the so-called value V = max{R, G, B}.

2.5. Critical aspects in Yilmaz's model

* We recall that, for all ρs ∈ S(H(2, R)), Tr(ρs) = 1, see Equation (3.3.1) in Section 3.3.

* An observer o can be thought as a perceptual eect, an illuminant o can be interpreted as a physical eect.

¶ The same modication should be done as well for the HSV color space, since needed at the step 1. of the algorithm described in Subsection 7.2.2. Since only the hue is involved, the transformation is the same as the one applied to HCV.

* For all λ1, λ2 ∈ Λ we have that |r(λ1) -r(λ2)| < |λ1 -λ2|.

* Notice that this result is known for the case of quantum mechanics, see e.g.[START_REF] Vedral | The role of relative entropy in quantum information theory[END_REF] for a proof.
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We recall that in Chapter 4 the Hilbert-Klein metric on D 1/2 was expressed either using the cross-ratio as in Equation (4.3.2), or, equivalently, as the line element in Equation (4.3.6). Another equivalent expression for the Hilbert-Klein distance on D, see [START_REF] Ratclie | poundtions of hyperoli mnifolds[END_REF], is the following:

, x, y ∈ D.

(5.3.2)

Here we generalize the result of Proposition 4.3.3 to the case of not necessarily collinear vectors. Let us start by showing how the Hilbert-Klein distance is related to Einstein-Poincaré addition law. The statement of the following proposition is mentioned in Equation (5.12) of [START_REF] Berthier | Quantum measurement and colour perception: theory and applications[END_REF], here we provide a short proof. Proposition 5.3.1. vet u, v ∈ DD then their ulein distne is relted to their iinsteinE oinré ddition lw in the following wyX

(5. 3.3) roofF Let us start by the following formula [START_REF] Chen | The bloch gyrovector[END_REF] involving relativistic correction factors:

By denition of relativistic correction factor we have that

Inverting the previous formula we obtain:

We use now the denition of the Hilbert-Klein metric d K given by Equation (5.3.2) obtaining:

then we can conclude that:

More technical proofs of this result can be found in [START_REF] Fock | he theory of speD time nd grvittion[END_REF] page 39, or [START_REF] Ungar | enlyti hyperoli geometry nd elert iinstein9s speil theory of reltivE ity[END_REF] page 239. Notice that formula (5.3.6) 

(5. 3.11) Appendix A

Elements of special relativity theory

Here we will briey recap only the basic concepts of special relativity because inherent to Yilmaz's model treated in Chapters 2 and 4. The discussion that follows will be faithful to the standard special relativity formulation, see e.g. [START_REF] Landau | he lssil theory of (elds[END_REF][START_REF] Lechner | glssil iletrodynmis[END_REF]. Special relativity is known to be an extension of Galilean relativity, which is based on the following two postulates:

1. space is homogeneous and isotropic and time is homogeneous * ; 2. laws of physics have the same form in all inertial (i.e. not accelerated) reference frames, i.e. no inertial reference frame is privileged.

In special relativity, Einstein considered, along with the motion of objects with mass, also the peculiar behavior of electromagnetic signals by adding the following postulate:

3. the speed of light in vacuum has a constant value c ∈ R + when measured in all inertial reference frames.

In special relativity, we call event e a point in R 4 = R × R 3 with coordinates written as

x µ = (ct, x), where t ∈ R and x = (x i ), i = 1, 2, 3, are, respectively, the time instant and the spatial position of the event as measured by an inertial observer with respect to her/his inertial reference frame R. Let us consider, in particular, the following two events: the rst, e 1 = (ct 1 , x i 1 ), consists in a light signal emanating at the time t 1 from the spatial position (x i 1 ); the second, e 2 = (ct 2 , x i 2 ), consists in the same light signal arriving at the time t 2 in the spatial position (x i 2 ). Since the signal propagates with constant speed c, the square distance that is traveled is c 2 (t 2 -t 1 ) 2 . If we equip R 3 with the Euclidean metric, this same square distance is equal to

2 , so the coordinates of the events e 1 and e 2 in the xed inertial frame R are related by the equation:

• being the Euclidean norm in R 3 . Of course, Equation (A.0.1) remains valid for all spacetime dierences, also innitesimal ones, thus we can write the dierential version of Equation (A.0.1) * In this context, isotropy means invariance under rotations, while homogeneity means invariance with respect to translations.

In Galileian relativity, the laws of physics refer only to the mechanics of objects with mass. Using ct instead of t is customary in special relativity: physically, this amounts at replacing the time t with the corresponding space ct traveled by a ray of light during t. as c 2 dt 2 -dx 2 = 0. In special relativity, the quantity

is called spetime intervl. From Equation (A.0.1) it follows that the spacetime interval between two events connected by a signal traveling at the speed of light is null. Since the speed of light is an upper limit for velocity, this amounts at promoting it as a reference and at normalizing to 0 the spacetime distance between any two events, no matter how far in space or time, connected by a light-speed signal.

Postulates 1 and 3 imply that the spacetime interval ds 2 between two events described in the inertial reference frame R and the spacetime interval ds 2 between the same couple of events described in any other inertial reference frame R is exactly the same: ds 2 = ds 2 , see e.g. [START_REF] Lechner | glssil iletrodynmis[END_REF], page 7 or [START_REF] Landau | he lssil theory of (elds[END_REF], page 117, for a rigorous proof.

If we write the innitesimal dierence between any two events as the vector dx = (dx µ ), then the spacetime interval can be written as the (non positive-denite) quadratic form ds 2 = dx µ η µν dx ν = dx t ηdx, where η = (η µν ) is the matrix η = diag (1, -1, -1, -1). The metric space M = (R 4 , η) is called winkowski spetime and η is the matrix associated to the Minkowski quadratic form. The associated pseudo-norm, i.e.

A worldEline in M is any connected path composed by events between an initial and a nal one. Straight lines in M correspond to world-lines of inertial movements.

The last information that we must recall is how to relate the coordinates of two inertial frames. First of all, it is simple to deduce from postulate 1 that the coordinate transformation ω : R 4 → R 4 , x µ → x µ = ω(x µ ) from R to R of an event must be liner (under the reasonable hypothesis to be dierentiable). In fact, by postulate 1, there are no special instants and positions in R 4 , so, the distance between two events remains the same when these are translated by a xed vector b ∈ R 4 . This is true independently on the coordinate system used to write the events in two arbitrary inertial reference frames R and R . Let x = x µ and y = y µ be the coordinates of the two events in R and ω µ (x) and ω µ (y) the coordinates of the same events in R . Since

If we derive the two sides of the last equation with respect to x ν , ν = 0, 1, 2, 3, we obtain

, for all b ∈ R 4 , since y does not depend on x. Thanks to the fact that b is arbitrary, x + b represents any vector in R 4 , so the function ∂ω µ ∂x ν is constant, which implies that ∂ω µ ∂x ν (x) = Λ µ ν ∈ R for all x ∈ R 4 , µ, ν = 0, 1, 2, 3, i.e.

The invariance of the spacetime interval imposes a strong constraint on the form of the matrix Λ: to see this, let us write the dierence vector dx µ in the inertial reference frame R by using Equation (A.0.3):

. Thus, on one side,

and, on the other side, ds 2 = dx α η αβ dy β , (A.0.5) so, the equality ds 2 = ds 2 implies:

Here we use of the standard Einstein's convention which implicitly assumes a sum over repeated indices above and below, e.g. if i = 1, . . . , n, then a i bi := n i=1 aibi.

B. Angle variation in Einstein-Poincaré's addition law

Simple cases

We conclude some simple cases of the explicit formula for Θ, which are more used in special relativity theory than the general case of Equation (B.0.13). In particular the case where ϕ = ϑ will be used in Appendix C.

The rst easy situation is when ϑ = 0. In this case B(v) = B r and we obtain

When ϕ = ϑ, then u and v are collinear, hence we expect v ⊕ u to be collinear as well,

In the case r = 1 we obtain

which is related to the property (5.2.23) of the relativistic addition law.

When ϑ = π 2 , the expression for Θ is given by: Indeed we can perform the following computations: Monotonicity of the symmetrized relative entropy

In Chapter 5 we have introduced the concept of relative entropy, which played an important role in the denitions of chromatic attributes in Chapter 6. Relative entropy between two states, see Denition 5.4 in Chapter 5, is clearly not symmetric. If symmetry is needed, e.g. to use it as a metric for color discernability as mentioned in Chapter 9, it is natural to dene its symmetrized version.

Denition C.0.1 (Symmetrized relative entropy). Let s, t be two quantum states and ρ s , ρ t be their associated density matrices. Their symmetrized relative entropy is given by

In the following we will make a small abuse of notation using symbols of the corresponding state symbols s, t or the chromatic vector ones v s , v t instead of ρ s , ρ t , i.e. R S (v s , v t ) = R S (ρ s , ρ t ). Let ρ s , ρ t have the following expressions: