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Théorie et applications d'une nouvelle formulation

de l'espace des couleurs perçues

Résumé : Cette thèse porte sur une nouvelle approche mathématique de la perception des
couleurs et ses premières applications au traitement d'images. Alors que la littérature existante
suggère à la fois la nature hyperbolique des espaces couleurs et l'importance du mécanisme
d'opposition de Hering dans le processus de la vision, il n'existe aucun modèle mathématique
intégrant naturellement ces caractéristiques.
L'approche présentée dans cette thèse, partant de l'axiomatisation de Newton, Grassmann,
Helmholtz, Schrödinger et Resniko�, conduit à une structure algébrique qui est le pendant
réel de celle utilisée en mécanique quantique, qui présente des caractéristiques hyperboliques
et encode l'opposition de Hering dans les matrices de Pauli réelles.
Ces similitudes avec les théories modernes de la physique peuvent être expliquées à un niveau
intuitif par le fait que la perception des couleurs est un processus basé sur la dualité entre
le contexte de mesure et l'appareil d'observation, dans la mesure où cela n'a aucun sens de
parler d'une couleur perçue sans spéci�er les conditions dans lesquelles elle a été mesurée. Les
couleurs perçues ne sont en e�et pas absolues, mais relatives aux conditions d'observation.
Ce manuscrit donne une vue d'ensemble de cette nouvelle théorie en mettant l'accent sur ses
aspects relativistes. De plus, des dé�nitions rigoureuses des attributs colorimétriques classiques
(dont la teinte, la saturation, la luminosité...) sont fournies dans ce cadre.
D'autre part, cette thèse comprend également des applications de ce nouveau formalisme, à
travers des algorithmes de traitement d'images en couleur. Ces derniers sont destinés à faire
en sorte que l'appareil photo numérique imite le comportement du système visuel humain.
Deux premières applications sont présentées : un boost de Lorentz normalisé utilisé comme
transformée d'adaptation chromatique pour la balance des blancs, c'est-à-dire l'algorithme
qui émule l'adaptation aux conditions d'illumination, et quelques premières applications de
constructions classiques provenant de la géométrie hyperbolique au tone mapping.

Mots-clés : Perception de la couleur, Géométrie de l'espace des couleurs, Relativité spéciale,
Information quantique.

Unité de Recherche: Université de Bordeaux, CNRS, Bordeaux INP, Institut de Mathé-
matiques de Bordeaux (IMB), UMR 5251, 351 Cours de la Libération, 33405 Talence, France.
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Theory and applications of a novel formulation of the

space of perceived colors

Abstract: This thesis is about a novel mathematical approach to color perception and its
�rst applications to color image processing. While the literature suggests both the hyperbolic
nature of color spaces and the importance of Hering's opponent mechanism in the vision
pipeline, no mathematical model exists naturally incorporating these features.
This new approach, starting by the axiomatization of Newton, Grassmann, Helmholtz, Schrö-
dinger, and Resniko�, leads to an algebraic structure that is the real case of the one used in
quantum mechanics, which has hyperbolic features and encodes Hering's opponent mechanism
in the real Pauli matrices.
Color perception is a process based on the duality between context of measure and observing
apparatus. This recalls the duality in quantum mechanics, in the sense that it makes no
sense to talk about a perceived color without specifying the conditions in which it has been
measured. Perceived colors are indeed not absolute, but relative to the viewing conditions.
The previous considerations show, at an intuitive level, that the mathematical tools developed
for modern theories in physics are suitable to model color perception.
The present manuscript provides an overview of this novel theory with a particular focus on
its relativistic aspects. Furthermore rigorous de�nitions of the classic color attributes (hue,
saturation, brightness...) are provided within the formalism of this framework. On the other
hand this thesis includes as well some �rst applications of this new formalism to color image
processing algorithms. These latter are meant to make the digital camera mimic the human
visual system's behavior. Two �rst applications are shown: a normalized Lorentz boost used
as a chromatic adaptation transform for white balance, i.e. the algorithm that emulates
adaptation to the illumination condition, and some �rst applications of classic constructions
of hyperbolic geometry to tone mapping.

Keywords: Color perception, Geometry of color spaces, Special relativity, Quantum infor-
mation
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Introduction et aperçu de la thèse

La perception des couleurs est un sujet placé au carrefour de nombreux domaines scien-
ti�ques. Les questions relatives à la couleur ont occupé nombre de grands penseurs de l'histoire,
dont Platon lui-même, et interpellent encore aujourd'hui n'importe lequel d'entre nous, comme
le prouve le récent débat à propos de The Dress*. L'étude de ces questions relève à la fois
de la philosophie (dans la tradition de Goethe, Schopenhauer, Russell ou Wittgenstein), de
la neurophysiologie de la vision (dans la tradition de Hubel ou de Valois), ou encore de la
physique mathématique (dans la tradition de Newton, Maxwell, von Helmholtz, Schrödinger,
Yilmaz ou Resniko�).

Dans cette thèse, nous abordons le problème de la perception des couleurs d'un point de
vue mathématique.

Les couleurs physiques, c'est-à-dire les lumières ré�échies ou émises qui pénètrent dans
les yeux à partir d'un environnement visuel, sont converties en couleurs perçues par l'homme
grâce à des mécanismes neurophysiologiques. Mathématiquement, une couleur physique est un
spectre, c'est-à-dire une fonction dé�nie sur l'intervalle des longueurs d'onde visibles, donc un
élément d'un espace de dimension in�nie, alors qu'il est connu que pour modéliser les couleurs
perçues, il faut un espace de dimension 3. Malgré sa plus petite dimension, l'espace des
couleurs perçues est beaucoup moins compris et beaucoup plus controversé pour être modélisé
mathématiquement.

Cela tient à la complexité des processus neurophysiologiques conduisant à notre perception
des couleurs. En e�et, cette dernière fait intervenir dans un premier temps trois types de
photorécepteurs, les cônes LMS, chacun d'entre eux étant plus sensible à une partie di�érente
du spectre du visible. Les lettres L, M et S sont utilisées pour représenter les longueurs d'onde
Long, Middle et Short correspondant aux di�érents pics de sensibilité des cônes. Dans un
second temps, le mécanisme dit d'opposition des champs réceptifs de la rétine se met en place.
Ce dernier est induit par l'entrelacement des connexions entre cônes et cellules ganglionnaires.

Il existe essentiellement deux façons de modéliser l'espace des couleurs perçues : la première
inspirée par la présence de trois types de cônes ayant des sensibilités di�érentes (approche dite
trichromatique), et la seconde inspirée par le mechanisme d'opposition (proposé initialement
par Hering à la �n du XIX siècle et analysé empiriquement par Hurvich et Jameson seulement
vers la moitié du XX siècle). Ce dernier est basé sur le fait que certaines couleurs sont opposées,
c'est-à-dire qu'elles ne peuvent pas être mélangées sans obtenir une couleur dite achromatique.
Le rouge et le vert (également le jaune et le bleu) sont opposés car nous ne pouvons pas
percevoir un vert rougeâtre ou un rouge verdâtre. Dans un système construit de cette manière,
une couleur perçue est caractérisée par deux degrés d'opposition (rouge-vert et jaune-bleu) et
une valeur achromatique (un niveau de gris entre le noir et le blanc). Bien que cette seconde
approche soit plus �dèle à la façon dont les humains distinguent et représentent les couleurs,
les espaces colorimétriques les plus utilisés dans la littérature pour la reproduction des couleurs
ont été construits selon la première approche trichromatique. Cependant, ces modèles sont
plus orientés vers l'informatique et ne fournissent pas un formalisme mathématique capable

*Voir https://en.wikipedia.org/wiki/The_dress.

https://en.wikipedia.org/wiki/The_dress


CONTENTS

de décrire les e�ets perceptuels connus, ce qui a conduit à de nombreux travaux consistant
en des ajustements de paramètres a posteriori, pour combler les lacunes de ces modèles. Ceci
souligne le besoin d'un modèle mathématique plus avancé, qui serait plus à même de décrire
la complexité de notre vision des couleurs.

L'idée c'est de établir un ensemble d'axiomes que l'espace des couleurs perçues C doit
satisfaire, a�n de discerner les structures mathématiques qui sont compatibles avec ces axiomes.

Historiquement, le premier à établir un système d'axiomes pour l'espace des couleurs
perçues fut Schrödinger en 1920 [138]. Il reprend et complète les propriétés des couleurs
perçues identi�ées par ses prédécesseurs Newton, Grassmann et von Helmholtz, obtenant que
C doit être un cône convexe et régulier de dimension 3. En 1974 Resniko�, dans [135], complète
les travaux de Schrödinger en ajoutant un axiome supplémentaire d'homogénéité (c'est-à-dire
l'existence d'un groupe de transformations agissant transitivement sur C).

Un théorème de Koecher et Vinberg décrit l'origine algébrique des cônes satisfaisant tous
les axiomes décrits jusqu'ici et un axiome supplémentaire d'auto-dualité, ajouté par Berthier
dans [12]. En particulier, il stipule que C peut être identi�é avec le cône des éléments positifs
d'une algèbre de Jordan formellement réelle (FRJA) A de dimension 3.
D'après la classi�cation des FRJA de Jordan, von Neumann et Wigner, il n'existe que deux
choix possibles (non isomorphes en tant que FRJA) pour A. Appelons-les A1 et A2.

La première FRJA admissible est A1 = R ⊕ R ⊕ R, dont le cône positif est C1 = R+ ×
R+ × R+. La seconde possède deux représentations, isomorphes en tant que FRJA, A2 =
R ⊕ R2 ∼= H(2,R). La première représentation est appelée spin factor, tandis que la seconde
est l'ensemble des matrices symétriques réelles 2 × 2. Le cône de leurs éléments positifs est
C2 = R+ × H, où H est un espace hyperbolique de dimension 2. Dans la représentation du
spin factor, C2 correspond au cône de lumière du futur de la théorie de la relativité restreinte
en trois dimensions, tandis que dans la représentation utilisant des matrices symétriques,
C2 = H+(2,R) est l'ensemble des matrices symétriques réelles dé�nies positives 2× 2.

Il est remarquable que cette approche axiomatique conduise à deux modèles, C1 et C2, qui
correspondent exactement aux deux approches (trichromie et opposition) décrites ci-dessus. En
fait, les espaces couleurs classiques, construits selon l'approche de la trichromatique, comme
RGB, XYZ etc., peuvent être assimilés au modèle C1, car ils sont construits à partir d'un
ensemble de trois primaires. Nous nous concentrons sur l'étude du second modèle C2, car il
possède une structure mathématique plus riche et nouvelle par rapport à l'état de l'art. Plus
précisément, sa structure est représentable en adaptant le qubit de la mécanique quantique (cas
complexe) au cas réel, voir [12], et correspond également au cône de lumière du futur dans la
théorie de la relativité restreinte, voir [13, 165]. Il faut souligner que ce second modèle contient
le mécanisme d'opposition de Hering naturellement encodé dans les deux matrices de Pauli
réelles. Dans la formulation algébrique de la mécanique quantique la propriété d'auto-dualité
du cône des éléments positifs de la FRJA est d'importance fondamentale, car elle permet de
représenter intrinsèquement la dualité état-observable.

Comme il sera détaillé dans le Chapitre 5, les opérations de Lüders ont été introduites dans
la théorie moderne de l'information quantique pour modéliser le changement d'état quantique
après une procédure de mesure. En particulier, elles sont paramétrées par des éléments du dual
de C2, qui coïncide avec C2 par auto-dualité, et sont stables sur C2.

Une première application de ce point de vue, qui sera détaillée dans le Chapitre 7, est
l'utilisation des boost de Lorentz normalisés, liés aux opération de Lüders comme expliqué
dans le Chapitre 5, comme transformations d'adaptation chromatique (CATs) pour e�ectuer
la balance des blancs d'images numériques. La balance des blancs est un algorithme qui émule
la capacité du système visuel humain à s'adapter à une illumination colorée dans une scène
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visuelle (jaunâtre dans la première image de la Figure 1) en voyant la scène comme si elle
était éclairée par une lumière blanche. Elle se compose de deux étapes : la première consiste
en la détection de l'information sur la chromaticité de l'illuminant contenue dans un vecteur
~L, et la seconde est la correction de l'image à l'aide d'une CAT paramétrée par ~L. La Figure
1 montre, respectivement, une image d'entrée non corrigée, la même image corrigée avec un
algorithme de correction classique (CAT de von Kries), et la même image corrigée à l'aide de
la CAT que nous proposons.

Figure 1: Gauche : image d'entrée. Centre : image de sortie après la balance des blancs en
utilisant la CAT de von Kries. Droite : image de sortie après balance des blancs e�ectuée en
utilisant la CAT que l'on propose. Les images de sortie ont été obtenues en utilisant la même
estimation de l'illuminant.

La structure de C2 est particulièrement riche grâce aux concepts qui peuvent être adaptés
de leurs analogues en mécanique quantique. En particulier, dans ce cadre, une couleur n'est
plus décrite en termes de coordonnées, mais elle est le résultat d'une procédure de mesure qui
peut être décrite mathématiquement, voir les Chapitres 5 et 6.
Cela nous a permis de fournir des dé�nitions rigoureuses des attributs colorimétriques connus
dans la littérature. La présence d'un ensemble de bonnes dé�nitions est essentielle, par ex-
emple pour modéliser des phénomènes connus qui in�uencent directement la façon dont nous
percevons les couleurs (par exemple l'e�et de Hunt ou la lightness constancy, détaillé dans
le Chapitre 6). Il faut souligner qu'il n'existe actuellement aucune justi�cation rigoureuse de
ces phénomènes qui puisse permettre, par exemple, de les intégrer dans des algorithmes de
traitement d'images en couleur.

En outre, le modèle suggère certaines distances basées sur la théorie, comme la métrique
de Hilbert-Klein, invariante sous l'adaptation chromatique, ou l'entropie relative symétrisée,
augmentant avec l'adaptation chromatique, qui pourraient être utilisées pour mesurer les dif-
férences de couleur, très utiles dans les applications, par exemple comme fonctions de perte
en Machine Learning.

Le présent manuscrit est organisé de la manière suivante : après un premier chapitre
consacré à l'état de l'art en colorimétrie, les chapitres 2, 3, 4, 5 et 6 fournissent une description
de plusieurs aspects du modèle théorique, tandis que les chapitres 7 et 8 sont destinés à montrer
la potentialité de cette nouvelle approche à travers des applications au traitement d'images en
couleur. Le plan de la thèse est détaillé ci-dessous.

3
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Dans le Chapitre 1 nous fournissons un bref aperçu de la colorimétrie classique. L'idée
est de motiver la présence de notre approche dictée par certaines nécessités et indices présents
dans la littérature. En particulier, nous commençons par décrire brièvement la physiologie de
la vision des couleurs en nous concentrant sur le mécanisme d'opposition de Hering, puis nous
présentons la construction mathématique des espaces de couleurs basés sur la trichromie, en
soulignant le fait que l'opposition de Hering n'est pas intégrée dans les espaces obtenus de
cette manière. Nous donnons un aperçu de l'utilisation des structures hyperboliques dans la
littérature sur la couleur et une brève description de la phénoménologie de la perception des
couleurs, en mentionnant notamment les e�ets perceptuels, les phénomènes de color constancy
et lightness constancy, dans le but de souligner les di�cultés de modélisation de la perception
des couleurs.

Le Chapitre 2 porte sur le modèle relativiste de perception des couleurs de Yilmaz. En
1962, Yilmaz [166, 165] a été le premier à souligner les analogies formelles entre la théorie
de la relativité restreinte et la perception des couleurs. Partant de trois résultats provenant
d'expériences, il a déduit que le changement de condition d'adaptation à un illuminant peut
être modélisé à l'aide des transformations classiques de la théorie de la relativité restreinte : les
boosts de Lorentz. Comme dans [124], nous fournissons dans ce chapitre une interprétation et
une analyse de la faisabilité de ses expériences et, en supposant que les résultats expérimentaux
soient vrais, nous refondons dans un cadre plus rigoureux la procédure mathématique qui a
conduit à l'obtention des boosts de Lorentz pour modéliser l'adaptation chromatique.

Dans le Chapitre 3 nous commençons par décrire l'approche mathématique de Resniko�
[135] à la perception des couleurs. En particulier, il a complété la formulation algébrique de
ses prédécesseurs (initiée par Grassmann et axiomatisée par Schrödinger). Nous présentons
ensuite une vue d'ensemble et les dé�nitions de base d'une nouvelle approche mathématique
basée sur la réinterprétation quantique des travaux de Resniko� [15, 129, 12, 16, 18]. Ce
nouveau cadre mathématique réconcilie la trichromie et l'opposition des couleurs mentionnées
dans le Chapitre 1 et permettra, dans le chapitre suivant, de justi�er, sur une base purement
théorique, les spéculations de Yilmaz sur les aspects relativistes de la perception des couleurs,
en surmontant les problèmes soulignés dans le Chapitre 2.

Dans le Chapitre 4, comme dans l'article [13], nous fournissons une preuve théorique des
résultats expérimentaux de Yilmaz dans le cadre du cadre de type quantique introduit dans
le chapitre précédent. De nouvelles dé�nitions sont introduites a�n d'incorporer également
les phénomènes relativistes. En particulier, le concept de vecteur chromatique est d'une im-
portance fondamentale, puisque les expériences de Yilmaz peuvent être expliquées en termes
de loi d'addition d'Einstein-Poincaré entre les vecteurs chromatiques. De plus, ces résultats
théoriques s'avèrent cohérents avec des données expérimentales existantes. Dans ce chapitre,
nous présentons la métrique hyperbolique de Hilbert fondée sur la théorie, dont la perti-
nence est due au fait qu'elle exprime une propriété de constance chromatique par rapport aux
changements d'observateurs.

Dans le Chapitre 5 nous étendons la théorie présentée dans le Chapitre 3 en introduisant
certains concepts issus de la théorie de l'information quantique, parmi lesquels : les e�ets
quantiques, les états généralisés post-mesure, les opérations de Lüders et l'entropie relative.
Dans ce contexte, une couleur n'est plus décrite par un ensemble de trois coordonnées, mais
elle est conçue comme le résultat d'un acte de mesure : il s'agit en fait de l'état généralisé
post-mesure obtenu par l'interaction d'un e�et et d'un état généralisé. Les concepts introduits
ici sont utilisés au Chapitre 6 pour établir les dé�nitions des attributs de colorimétriques dans
le cadre du modèle quantique.
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Dans le Chapitre 6, comme dans [14], les concepts d'information quantique introduits
dans le chapitre précédent sont utilisés pour élaborer des dé�nitions mathématiques des at-
tributs colorimétriques (brightness, luminosité, colorfulness, chroma, saturation et teinte). La
compréhension de l'expression mathématique de ces attributs est une question fondamentale,
notamment parce qu'ils sont impliqués dans les phénomènes d'apparence de la couleur et en
raison de leur impact important sur les applications. Nous soulignons que les problèmes de
recherche des coordonnées à associer aux attributs colorimétriques ainsi que la description
mathématique des phénomènes d'apparence de la couleur sont encore des sujets non résolus et
débattus dans la littérature. Pour illustrer le potentiel de ce nouveau système de dé�nitions,
nous présentons une justi�cation rigoureuse du phénomène de lightness constancy, introduit
dans le Chapitre 1.

Le Chapitre 7 porte sur une première application du modèle théorique au problème de
la balance des blancs en traitement d'images. Plus précisément, nous montrons dans quelles
conditions particulières il est possible d'utiliser un boost de Lorentz normalisé, correspondant
à l'action d'une opération de Lüders représentée comme agissant sur C(R⊕R2), comme trans-
formée d'adaptation chromatique. Les premiers tests ont été e�ectués dans le domaine conique
HCV de l'état de l'art, mais les évaluations qualitatives ont montré que le rendu des teintes
rouges n'était pas optimal, en particulier qu'elles devenaient rosées. Nous proposons donc deux
modi�cations simples de HCV, intégrant de manière heuristique l'opposition de Hering dans le
cercle des teintes. Ces modi�cations produisent qualitativement des meilleurs résultats. Nous
procédons ensuite à une première évaluation quantitative de l'algorithme dans l'espace HCV
et de ses modi�cations en comparaison avec à la CAT classique de von Kries.

Le Chapitre 8 est consacré aux applications au problème du tone mapping, c'est-à-dire la
compression d'une image high dynamic range. Dans une première partie, comme dans [125],
nous traitons un opérateur classique de tone mapping, l'équation dite de Naka-Rushton, en
l'analysant d'un point de vue géométrique en utilisant les transformations de Möbius. Dans
une seconde partie, nous proposons un opérateur de tone mapping en cours de développement,
KTMO, inspiré de la construction du disque de Klein.

Dans le Chapitre 9, nous concluons le manuscrit en mentionnant des perspectives de
recherche futures.

5



CONTENTS

6



7

Introduction and thesis outline

In any serious question uncertainty

extends to the very roots of the problem.

� Wittgenstein, Remarks on colour.

Color is placed at the crossroads of many scienti�c paths. Questions about color kept
occupied many of the history great thinkers, including Plato himself, and arrive to interpell
anyone of us, as proven by the recent debate on The Dress�. Color is involved in issues re-
lated to philosophy (in the tradition of Goethe, Schopenhauer, Russell or Wittgenstein), to
the neurophysiology of vision (in the tradition of Hubel or de Valois), or to models of mathe-
matical physics (in the tradition of Newton, Maxwell, von Helmholtz, Schrödinger, Yilmaz or
Resniko�).

In this thesis we deal with the problem of treating color perception from a mathematical
point of view.

Physical colors, i.e. re�ected or emitted lights entering the eyes from a visual environment,
are converted into perceived colors sensed by humans through neurophysiological mechanisms.
Mathematically, a physical color is a spectrum, i.e. a function de�ned on the interval of visible
wavelengths, thus an element of a space of in�nite dimension, while it is known that to model
perceived colors one needs a space of dimension 3. Despite of the smaller dimension, the space
of perceived colors is far way less understood and much more controversial to be modeled
mathematically.

This is due to the complexity of the neurophysiological processes leading to color percep-
tion. Indeed, color perception involves at �rst three types of photoreceptors, the LMS cones,
each one of them is more sensible to a di�erent part of the visible spectrum, in fact the letters
L, M, S are used to represent the Long, Middle and Short wavelengths corresponding to the
di�erent sensitivity peaks of the cones. Then, in a second moment, the so-called mechanism
of opponency of the receptive �elds of the retina, induced by the intertwining of connections
between cones and ganglion cells, takes place.

There are basically two ways of modeling the space of perceived colors: the �rst inspired by
the presence of three types of cones having di�erent sensitivities, and the second inspired by
opponent process or opponency (initially proposed by Hering at the end of the 19th century and
experimentally analyzed by Hurvich and Jameson only towards the half of the 20th century).
The latter is based on the fact that some colors are opponent, i.e. they cannot be mixed without
obtaining a color called achromatic. Red and green (also yellow and blue) are opponent because
we can not perceive a reddish green or a greenish red. In a system built in this way, a perceived
color is characterized by two opponency degrees (red-green and yellow-blue) and an achromatic
value (a gray level between black and white). Despite the fact that this second approach is
more faithful to the way humans distinguish and represent colors, the most commonly used
color spaces in literature for color reproduction were built following the �rst trichromatic

�See https://en.wikipedia.org/wiki/The_dress.
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approach. However, these models are more computer-science oriented and do not provide a
mathematical formalism able to describe known perceptual e�ects, which led to many works
consisting of adjustments of parameters a posteriori, to �ll the gaps of these models. This
underlines the need for a more advanced mathematical model, which would be better able to
describe the complexity of our color vision.

The idea is to establish a set of axioms that the space of perceived colors C must sat-
isfy, in order to discern the mathematical structures that are compatible with these axioms.
Historically, the �rst one to establish an system of axioms for the space of perceived colors
was Schrödinger in 1920 [138]. He resumed and completed the properties of perceived col-
ors identi�ed by his predecessors Newton, Grassmann and von Helmholtz, obtaining that C
must be a convex, regular cone of dimension 3. In 1974 Resniko�, in [135], completed the
work of Schrödinger adding a further axiom of homogeneity (i.e. the existence of a group of
transformations acting transitively on C).

A theorem by Koecher and Vinberg describes the algebraic origin of the cones satisfying
all the axioms described up to now and a further axiom of self-duality, added by Berthier in
[12]. In particular it states that C can be identi�ed with the cone of positive elements of a
formally real Jordan algebra A (FRJA) of dimension 3.
From the classi�cation of FRJAs by Jordan, von Neumann, and Wigner there are only two
possible (non isomorphic as FRJAs) choices for A. Let us call them A1 and A2.

The �rst case is A1 = R ⊕ R ⊕ R, whose positive cone is C1 = R+ × R+ × R+. The
second one has two representations, isomorphic as FRJAs, A2 = R ⊕ R2 ∼= H(2,R), the �rst
representation is called spin factor, while the second one is the set of the real symmetric
matrices 2 × 2. The cone of their positive elements is C2 = R+ × H, where H is a hyperbolic
space of dimension 2. In the spin-factor representation C2 corresponds to the future light-cone
of special relativity theory in three dimensions, while in the representation, using symmetric
matrices, C2 = H+(2,R) is the set of real positive de�nite symmetric matrices 2× 2.

It is remarkable that this axiomatic approach leads to two models, C1 and C2, that corre-
spond exactly to the two approaches (trichromacy and opponency) described above. In fact
classic color spaces, built following the trichromacy approach, like RGB, XYZ etc., can be
assimilated to the model C1, because they are constructed starting from a set of three pri-
maries. We focus on the study of the second model C2, because it has a mathematically more
interesting and novel structure compared to the state of the art. More precisely, its structure is
representable by adapting the qubit of quantum mechanics (complex case) to the real case, see
[12], and also corresponds to the future light cone in special relativity theory, see [13, 165]. We
must stress that this second model contains Hering's opponency mechanism naturally encoded
in the two real Pauli matrices. In the algebraic formulation of quantum mechanics the prop-
erty of self-duality of the cone of positive elements of the FRJA is of fundamental importance,
because it permits to intrinsically represent the duality state-observable.

Lüders operations, as it will be detailed in Chapter 5, were introduced in modern quantum
information theory to model the quantum state change after a measurement procedure. In
particular they are parametrized by elements of the dual of C2, which coincides with C2 by
self-duality, and are stable on C2.

A �rst application of this novel approach, as it will be detailed in Chapter 7, is the use nor-
malized Lorentz boosts, related to Lüders operations as explained in Chapter 5, as Chromatic
Adaptation Transforms (CATs) to perform white balance of a digital images. White balance
is an algorithm that emulates the ability of the human visual system to adapt to a colored
illumination in a visual scene (yellowish in the �rst picture in Figure 2) by seeing the scene as if
it was illuminated by white light. It is composed of two steps: the �rst consist of the detection
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of a vector ~L encoding the illuminant's chromaticity, and the second is the correction of the
image using a CAT parametrized by ~L. Figure 2 shows, respectively, a non-white balanced
image, the same image corrected with a classical correction algorithm (von Kries CAT), and
the same image corrected using the CAT that we propose.

Figure 2: Left : input image. Center : output image after white balance using the von Kries
CAT. Right : output image after white balance using the CAT that we propose. The white
balanced images have been obtained using the same illuminant estimation.

The structure of C2 is particularly rich thanks to the concepts that can be adapted from
their analogues in quantum mechanics. In particular, within this framework, a color is not
described anymore in terms of coordinates, but it is the outcome of a measurement procedure
that can be described mathematically, see Chapters 5 and 6.

This allowed us to provide rigorous de�nitions of the color attributes known in literature. The
presence of a set of good de�nitions in essential e.g. to model known phenomena directly in�u-
encing the way we perceive colors (e.g. Hunt's e�ect or the lightness constancy phenomenon
detailed in Chapter 6). We must stress that there is currently no rigorous justi�cation of
these phenomena that can allow, for example, to integrate them into color image processing
algorithms.

Furthermore the model suggests some theoretically-based distances like the Hilbert-Klein
metric, invariant under chromatic adaptation, or the symmetrized relative entropy, increasing
with chromatic adaptation, that could be used to measure color di�erences, very useful in
applications, e.g. as loss functions for Machine Learning.

The present manuscript is organized in the following way: after a �rst chapter about
state-of-the art colorimetry, chapters 2,3,4,5,6 provide a description of several aspects of the
theoretical model, while chapters 7 and 8 are meant to show the potentiality of this novel
approach through applications to color image processing. The thesis outline is detailed below.

In Chapter 1 we provide a short overview of standard colorimetry. The idea is to motivate
the presence of our approach dictated by certain necessities and hints present in the literature.
In particular we start by brie�y describing the physiology of color vision with a focus on
Hering's opponent mechanism, then we present the mathematical construction of trichromacy-
based color solids, underlining the fact that Hering's opponent mechanism is not integrated in
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color solids obtained in this way. We provide an overview of the use of hyperbolic structures in
the color science literature and a brief description of the phenomenology of color perception,
in particular mentioning perceptual e�ects, lightness constancy and color constancy, with the
aim of stressing the di�culties of modeling color perception.

Chapter 2 is about Yilmaz's relativistic model of color perception. In 1962 Yilmaz [166,
165] was the �rst to underline the formal analogies between special relativity theory and color
perception. Starting from three results that he claimed to be coming from experiments, he
deduced that the change of adaptation condition to an illuminant can be modeled using the
classic transformations of special relativity theory: Lorentz boosts. As in [124], in this chapter
we provide an interpretation and analysis of the feasibility of his experiments and, assuming
the experimental outcome to be true, we recast in a more rigorous framework the mathematical
procedure that lead to obtain Lorentz boosts to model chromatic adaptation.

In Chapter 3 we start by describing Resniko�'s [135] mathematical approach to color
perception. In particular he completed the algebraic formulation of his predecessors (started
by Grassmann and axiomatized by Schrödinger). Then an overview and the basic de�nitions
of a novel mathematical approach based on the quantum reinterpretation of Resniko�'s work
[15, 129, 12, 16, 18] is presented. This new mathematical framework reconciles trichromacy
and color opponency mentioned in Chapter 1 and will permit, in the following chapter, to
justify on a purely theoretical basis Yilmaz's speculations about the relativistic aspects of
color perception, overcoming the issues underlined in Chapter 2.

In Chapter 4, as in [13], we provide a theoretical proof of the experimental outcomes
claimed by Yilmaz in the setting of the quantum-like framework introduced in the previous
chapter. Novel de�nitions are introduced in order to incorporate also relativistic phenomena.
In particular the concept of chromatic vector is of fundamental importance, since Yilmaz's
experiments can be explained in terms of Einstein-Poincaré's addition law between chromatic
vectors. Moreover these theoretical results are shown to be coherent with existing experimental
data. In this chapter we introduce the theoretically-based Hilbert hyperbolic metric, whose
relevance is due to the fact that it expresses a chromatic constancy property with respect to
observer changes.

In Chapter 5 we extend the theory presented in Chapter 3 introducing some concepts
coming from quantum information theory, among them: quantum e�ects, post-measurement
generalized states, Lüders operations and relative quantum entropy. In this setting a color
is not described anymore by a set of three coordinates, but it intended as the outcome of a
measurement procedure: in fact it is the post-measurement generalized state obtained from
the interaction of an e�ect and a generalized state. The concepts introduced here are used in
Chapter 6 to establish de�nitions of color attributes within the quantum-like model.

In Chapter 6, as in [14], the quantum-information concepts introduced in the previous
chapter are used to elaborate mathematical de�nitions of color appearance attributes (bright-
ness, lightness, colorfulness, chroma, saturation and hue). Understanding the mathematical
expression of color attributes is a fundamental question also because they are involved in the
so called color appearance phenomena and because of their high impact on applications. We
stress that both problems of �nding coordinates to associate to color appearance attributes
and a mathematical description of color appearance phenomena are still unsolved and debated
topics in the literature. To illustrate the potential of these new system of de�nitions, a rigorous
derivation of the lightness constancy phenomenon, introduced in 1, is provided.
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Chapter 7 is about a �rst application of the theoretical model to the problem of white
balance in image processing. More speci�cally we show under which particular conditions it is
possible to use a normalized Lorentz boost, corresponding to the action of a Lüders operation
represented as acting on C(R⊕R2), as a chromatic adaptation transform. The �rst tests were
performed in the conic-shaped state-of-the art HCV color domain, but qualitative evaluations
showed that the rendering of red hues was not optimal, in particular they were turning pinkish.
Hence we propose two simple modi�cations of the HCV color domain, heuristically integrating
Hering's opponency in the hue circle, that give better results. Finally a �rst quantitative
evaluation of the algorithm in HCV and its modi�cations is provided and compared with
respect to the classic von Kries CAT.

Chapter 8 is dedicated to applications to the problem of tone mapping, i.e. the compres-
sion of a high dynamic range image. In a �rst part, as in [125], we treat a classic tone mapping
operator, the so-called Naka-Rushton equation, analyzing it from a geometrical point of view
using Möbius transformations. In a second part we propose a work-in-progress tone mapping
operator, KTMO, inspired by Klein's disk construction.

In Chapter 9 we conclude the manuscript mentioning some possible future research di-
rections.
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Chapter 1

About standard colorimetry and

related issues

Wittgenstein's 182nd remark on colors states that, when we talk about perceived colors,
`we are not concerned with the facts of physics here except insofar as they determine the laws
governing how things appear ', see [160]. In [155] von Neumann, comparing a computer with the
human brain, mentions color as an example of complex information that the brain elaborates.

Colorimetry and color appearance models deal with the issues of measuring, represent-
ing and predicting color information, in other words they are about understanding the laws
governing how colors appear.

The aim of this chapter is to provide a brief introduction to standard colorimetry, color
appearance models, color attributes and perceptual phenomena. The idea is to point out the
problematic aspects of modeling color perception and, in particular, to focus on the mathemat-
ical ideas behind trichromacy-based colorimetry in order to motivate our novel mathematical
approach to color, that will be treated in the following chapters. Giving an exhaustive de-
scription of the state of the art is out of the purposes of this chapter. Several books treat the
mentioned topics in detail, among them [88, 85, 49, 137, 163, 66, 120].

In particular we will conclude that our work essentially arises from the necessity of a
well-founded mathematical color appearance model based on Hering's opponent mechanism.

1.1 An overview of trichromacy-based colorimetry

Physical and perceived colors

Color perception in humans is originated by re�ected or emitted light spectra, which are
superpositions of �nite-energy electromagnetic waves with wavelengths in the visual spectrum,
usually taken to be the interval Λ = [380, 780], measured in nanometers, and their mathemati-
cal representation is given by positive-valued elements of L2(Λ), let us call this set L2

+(Λ) from
now on. Thus the space of physical colors is a space of functions corresponding to light spec-
tra having �nite energy, represented by their L2-norm. Functions with a Dirac-like behavior
around a single wavelength are called narrow-band light spectra or monochromatic lights.

The fact that light spectra, also called color stimuli, and color sensations are two very
distinct concepts has been known since the nineteenth century. Indeed in 1801 Young ex-
posed to the Royal Society his theory about the existence of three portions of cells sensitive
to di�erent light wavelength in the retina. He formulated this hypothesis on the basis of the
work of painters, who could reproduce a huge number of color sensations using only three `pri-
mary pigments'. More than �fty years later, Maxwell formalized the color matching technique
which extended the previous result from pigments to light spectra (see later for more details).



1.1. An overview of trichromacy-based colorimetry

Maxwell's experimental results were extremely convincing and were a source of inspiration for
Helmholtz, who rescued Young's ideas from oblivion and gave them a mathematical formal-
ization. The resulting theory is nowadays called Young-Helmholtz trichromatic model of color
perception. It is also important to notice that color matching was also used by Grassmann as
an operative way to apply and test his newly discovered equations of what nowadays is called
linear algebra.

In mathematical terms, while the space of physical light spectra is an in�nite dimensional
space, that of perceived colors is generally con�ned in a convex region with �nite volume,
called color solid, inside a three-dimensional vector space. About the de�nition of color solids,
in [88], Koenderink and van Doorn make the following considerations: `That there exist so
many colour solids is largely the result of human fancy. The one feature that is common to
(almost) all colour solids that have been proposed is that they are convex, �nite bodies with
pronounced singularities at the white and black poles. This feature, at least, has �rm roots in
colorimetry '.

Nowadays, thanks to physiological evidences, that con�rmed Young's hypothesis, we know
that the biological reason underlying this huge dimensional reduction is that the variability
of our photoreceptors is limited to the three LMS cones (where the letters L,M,S are used
to represent the Long, Middle and Short wavelengths corresponding to the three sensitivity
peaks of the cone photoreceptors) and that in�nitely di�erent light spectra produce the same
LMS outputs, thus igniting the same chain of events that leads to a color sensation. This
phenomenon is synthetically referred to as metamerism. As Hardin underlines in [70] `the
eye is a very imperfect analyzer of wavelengths'. It is important to stress that the post-cones
visual chain includes the interlacing of LMS signals, mainly performed by ganglion cells, which
gives rise to the achromatic plus color opponent encoding that is sent to the visual cortex and
which provides the biological explanation of Hering's theory and also its compatibility with
trichromacy.

Opponent color theory was introduced by E. Hering in [72], in [91] Krantz describes it as
follows: `E. Hering noted that colors can be classi�ed as reddish or greenish or neither, but
that redness and greenness are not simultaneously attributes of a color. If we add increasing
amounts of a green light to a reddish light, the redness of the mixture decreases, disappears, and
gives way to greenness. At the point where redness is gone and greenness is not yet present,
the color may be yellowish, bluish, or achromatic. We speak of a partial chromatic equilibrium,
with respect to red/green. . . Similarly, yellow and blue are identi�ed as opponent hues. . . '.

In the following we are going to brie�y mention the physiological mechanism of opponent
neural coding, as summarized in Section 7.1 of [12], for further details see [133, 38, 36, 35].

As stated before the vision pipeline starts with the signals obtained by the LMS cone
photoreceptors, the physiological basis of trichromacy, while the opponent process takes place
later on in the chain, at the level of ganglion cells. These cells receive the input signal from the
so-called bipolar and amacrine cells and transmit it to the lateral geniculate nucleus through
ganglion axons. Ganglion cells function in the following way: they are activated in case light
falls in the center of their receptive �elds, while they are inhibited when light falls in the
surround of the receptive �eld. They are referred to as on-center and o�-surround. O�-center
and on-surround ganglion cells exist as well, and they work in the opposite way.

There are two types of spectral opponent interactions: the �rst one produces the L-M and
M-L spectral opposition and is obtained by the activity rate of midget ganglion cells of the
fovea, while the second one produces the S-(L+M) and (L+M)-S spectral opposition and is
given by the activity rate of bistrati�ed ganglion cells. It exists as well another type of spectral
non-opponent signal obtained by the activity rate of the parasol ganglion cells, which encodes
the L+M and -(L+M) information.
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1. About standard colorimetry and related issues

To underline the fundamental role of opposition in creating the sensation of color, we quote
this sentence taken from [38]: `It is very misleading to consider the cones as color receptors
or give them color names [. . . ] The speci�c information about color comes from lateral neural
interactions which in every case involve a comparison of activity in di�erent receptors [. . . ]
although this fact is hidden by tenacious old theories and the continued use of color names for
receptor types'.

Hering's opponent process theory for color vision has been con�rmed by both physiological
and psychophysical evidences. However still a lot of aspects about it remain unclear, e.g. the
exact hues involved in the opposition, or how to properly integrate it in the construction of
color solids. The latter problematic will be better discussed later on in this chapter.

By colorimetry we mean the science of measuring perceived colors. The International
Commission on Illumination (CIE, for the french Commission Internationale de l'Éclairage)
is the international authority on colorimetry. Its main purpose is to provide standards for
light, illumination, color, and color spaces, in order to allow universal color representation and
reproducibility for scienti�c or industrial purposes.
Evaluating color perception is an extremely complex task, that can be accomplished only
under a very controlled experimental context. Indeed it is impossible to measure colors in
an absolute way, many factors come to play, to mention just some: background, illumination,
total or partial adaptation to the illumination, the nature of the color stimulus (additive or
subtractive) etc. Even �xing the viewing conditions it is still challenging to quantify a color
stimulus. However evaluating color di�erences, under �xed viewing conditions, turns out to be
a much easier and robust task to accomplish for the human visual system (HVS from now on).
This led to the development of the so-called color matching experiments. in which a human
tester is positioned in a dark room in front of a bipartite �eld as in Figure 1.1. The left part

Figure 1.1: Color matching experimental apparatus: test stimulus on the left side of the
bipartite champ, on the right side 3 primaries P1, P2, P3, whose intensities can be set by the
observer in order to obtain the match with the test stimulus.

contains the light of a reference stimulus, called test, from a projector equipped with a �lter
(nowadays, most often stimuli come from a computer monitor). On the right, the stimulus
comes from the superposition of three lights that the observer can modulate in intensity until
the edge between the two parts of the �eld vanishes. When this condition is reached the stimuli
are said to match. It has been proven that for some stimuli, color matching is not possible in
this con�guration. In these particular cases, only two lights are superposed on the right side,
and the third one is superposed on the test stimulus. The three lights allowing color match
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1.1. An overview of trichromacy-based colorimetry

turn out to have the property of being independent, i.e. none of them can be matched by
mixing the other two. Any three lights satisfying this feature are called primaries.

Wright and Guild in 1928-29 and 1931, respectively, independently carried out two sets
of observations (on 10 and 7 observers, respectively) that con�rmed and extended Maxwell's
experimental �ndings: for any test stimulus, three independent lights are necessary and su�-
cient to obtain the match. Either the superposition of three independent lights matches the
test stimulus, or the superposition of this stimulus and one of the three lights matches the two
remaining lights.

A thorough description of color solids is beyond the scope of this chapter, in the following
we will limit ourselves to describe the mathematical procedure behind trichromatic colorimetry.

Trichromatic colorimetry

In this paragraph we are going to brie�y recall the widely used CIE construction to perform
the dimensional reduction from the space of light stimuli L2

+(Λ) to a color solid equipped with
a coordinate system.

This procedure has been embedded in a rigorous mathematical framework by Krantz in
[90] and by Dubois in [44]. In particular, they used Grassmann's laws [67, 163] to give a
mathematical structure to the space of light spectra and related it to a cone embedded in
a three-dimensional vector space, which they proved to be unique up to a change of basis.
Each basis is related to a di�erent way of coding metamerism. In [90], Krantz de�nes what he
calls code in the following way: `By a color code (or color mechanism in the sense of Stiles,
1967) we mean some response or function that subserves color discrimination'. In other words
he calls color code, or just code each coordinate system in a three-dimensional vector space
induced by three linearly independent functions of L2

+(Λ).

Let us describe the CIE procedure properly. Let C ∈ L2
+(Λ) be a color stimulus and Si, i =

L,M,S, be the spectral sensitivity functions of the LMS cones. The cone activation coe�cients
related to C are

αi(C) =

∫
Λ
C(λ)Si(λ)dλ, i = L,M,S (1.1.1)

and the set of triplets (αi(C))i=L,M,S, as C varies in the space of color stimuli, is called the
LMS space. CIE switched the interest away from the LMS space by �xing three primaries Pk
and by de�ning the tristimulus values of C associated to them, denoted with Tk(C), as the
three scalar coe�cients that permit to combine the primaries Pk in order to color match C,
i.e. those satisfying the following equation

αi(C) =

3∑
k=1

Tk(C)

∫
Λ
Pk(λ)Si(λ)dλ =

3∑
k=1

Tk(C)αi(Pk), (1.1.2)

where i = L,M,S and αi(Pk) are the cone activation coe�cients related to the primaries Pk,
with k = 1, 2, 3, obtained as in Equation (1.1.1).

CIE de�ned the so-called color matching functions, Tk : Λ→ R as those satisfying

Tk(C) =

∫
Λ
C(λ)Tk(λ)dλ, k = 1, 2, 3. (1.1.3)

If we compare Equations (1.1.1) and (1.1.3) we see that color matching functions are to tris-
timulus values what cone sensitivity functions are to cone activation values, but, while the
latter functions are �xed, color matching functions can vary by selecting di�erent primaries.
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1. About standard colorimetry and related issues

As we are going to see, the possibility to modify the basis of functions accordingly to
di�erent needs has been exploited in several occasions. In the following we are going to start
mentioning two relevant classic examples of curves proposed by the CIE, that led to the RGB
and XYZ color spaces.

� In 1931, CIE de�ned the `standard observer' by �xing the so-called Wright primaries,
see e.g. [163], or, equivalently, a set of three speci�c color matching functions denoted
with r̄, ḡ, b̄, see Figure 1.1 (a). The associated tristimulus values are the elements of the
famous CIE RGB space, used e.g. in [86]. It is important to stress that this basis is
obtained from three physical primaries which has no perceptual meaning, in the sense
that there is no di�erentiation between the three coordinates, all of them are of the same
kind.

� Not pleased with the negative lobe of r̄, CIE modi�ed the primaries and de�ned other,
completely positive, color matching functions, denoted with x̄, ȳ, z̄, depicted in Figure
1.1 (b), giving rise to the equally famous CIE XYZ space, in which Y plays the role of
`luminance', an attribute roughly associated with the intensity of a color stimulus, which
can then be seen as an achromatic component. Indeed the color matching function ȳ is
more or less the normalized SM . However there is no such perceptual interpretation of
the two other tristimulus values X,Z. This is due to the fact that this basis is obtained
from the selection of three virtual primaries, and it does not allow to describe perceptual
features. Nevertheless, CIE XYZ is widely used, see e.g. [80, 144, 156].

(a) CIE 1931 r̄, ḡ, b̄ color matching functions. (b) CIE 1931 x̄, ȳ, z̄ color matching functions.

Figure 1.2: Two classic examples of color matching functions.

Most of the state of the art color solids, as e.g. HSL, HSV, HSI, LCh(ab), LCh(uv)
and so on, do actually rely on the dimension reduction performed with respect to these two
examples of color matching functions, and are then obtained by, not always perceptually
justi�ed, manipulations of the RGB or XYZ coordinates. It is really important to stress that
with this setting the starting point is a color space that is trichromacy-based, in the sense that
it is built from three information that are all of the same kind. Integrating Hering's opponent
mechanism a posteriori (like in the CIELab color space), on a space which is intrinsically
trichromatic is extremely complicated.

The choice of a basis, with respect to which one performs the dimension reduction, is
arbitrary and is obtained in di�erent ways in literature.
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1.1. An overview of trichromacy-based colorimetry

Lenz et al. in [99, 100] and as well Buchsbaum et al. in [25] make use of a principal
component analysis (PCA) on a database of light spectra to obtain the basis with respect to
which perform the reduction. Clearly the PCA procedure depends on the adopted dataset.
It is interesting that in both cases the curves obtained with this technique seem to go in the
direction of representing two degrees of opponency and an achromatic information.

There are some other interesting choices of basis functions in literature, made with the
intent of translating Hering's opponent mechanism in the coordinates system of the color solid
and thus to di�erentiate what is perceptually considered as achromatic from what is chromatic.
Drösler in [42] de�nes a color solid using as basis the Gaussian, which minimizes the uncertainty
principle, and its two �rst moments, for more details see [122]. Yilmaz also makes the same
choice in Section 4 of [165]. He remarks that `his three sensitivity functions become the �rst
three eigenfunctions of linear harmonic oscillator '. He calls ᾱ, β̄ the �rst two moments of the
linear harmonic oscillator, representing the theoretical opponent sensitivity functions (red-
green and yellow-blue respectively). The brightness sensitivity function γ̄, representing the
theoretical achromatic information, is a Gaussian, with maximum around the green part of
the visual spectrum at 552 nm, vanishing at 400 nm and 800 nm. An explicit expression of
the sensitivity curves proposed by Drösler and Yilmaz, plotted in Figure 1.3, is the following:

ᾱ(λ) = −
√

2u(λ)e−
u(λ)2

2 , β̄(λ) = − 1√
2

(2u(λ)2 − 1)e−
u(λ)2

2 , γ̄(λ) = e−
u(λ)2

2 , (1.1.4)

where u(λ) = 7500( 1
λ −

1
552).

Figure 1.3: An illustration of the sensitivity curves ᾱ, β̄, γ̄ proposed by Drösler and Yilmaz:
eigenfunctions of the harmonic oscillator.

In [165] Yilmaz underlines the similarity of the proposed theoretical curves with experimen-
tal curves of Hering's opponent theory. A remarkable experimental work with the objective of
quantifying Hering's opponent mechanism was realized in the 50′s by the couple of scientists
Jameson and Hurvich in a series of articles [74, 75, 76, 77] entitled Some quantitative aspects
of an opponent-colors theory. In particular, in [75], they proposed experimentally based re-
sponse curves for color opponency obtained via hue cancellation experiments. They propose
two sensitivity functions corresponding to the red-green and yellow-blue chromatic response,
respectively. Let us call them rg, yb. They are given as linear combinations of the color
matching functions x̄, ȳ, z̄ as follows:{

rg(λ) = 1.0065x̄(λ)− 1.0006ȳ(λ)− 0.0051z̄(λ)

yb(λ) = −0.0039x̄(λ) + 0.3998ȳ(λ)− 0.3999z̄(λ)
. (1.1.5)
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1. About standard colorimetry and related issues

Figure 1.4 illustrates both the original Jameson and Hurvich's plot of the curves rg and yb,
and a plot obtained via linear operations of Equation (1.1.5) on the color matching functions
x̄, ȳ, z̄ in Figure 1.1 (b).

Figure 1.4: Left : Jameson and Hurvich sensitivity curves to color opponency under adaptation
to neutral illuminant, as reported in [75]. Right : plot of the same sensitivity functions obtained
from x̄, ȳ, z̄, using Equation (1.1.5).

Coherently with what Yilmaz stated in [165], the sensitivity curves ᾱ, β̄, γ̄, actually quali-
tatively look like e.g. the functions rg, yb, ȳ, where ȳ comes from the CIE color matching
functions x̄, ȳ, z̄, see Figures 1.3, 1.4 and 1.1 (b). In Chapter 9 we will talk about the idea of
using the functions rg, yb, ȳ to de�ne an opponent color solid.

As Jameson and Hurvich stress in [76], this kind of curves are obtained under �xed adap-
tation condition to neutral illuminant. Hence they might change under adaptation to di�erent
illumination conditions. It is important to stress that all the color solids in literature have
this feature: they were built under �xed conditions, thus it is not correct to use them to
describe colors perceived under other viewing conditions. As Fairchild states in [49], citing
note 6 on the CIELAB space from CIE publication 15.2: `These spaces are intended to apply
to comparisons of di�erences between objects colours of the same size and shape, viewed in
identical white or middle-grey surroundings, by an observer photopically adapted to a �eld of
chromaticity not too di�erent from that of average daylight '. This is the main reason that led
to the development of color appearance models, which will be brie�y discussed in Section 1.3.

Chromaticity diagrams

The color solid is not a useful or intuitive representation to identify perceived colors, this
is the reason that led to the introduction of the concept of chromaticity diagram. As stated
by its name, a chromaticity diagram, is a two-dimensional area which contains the chromatic
features of a perceived color, which are supposed to be perceptually easier to identify. This
identi�cation should be performed through attributes that are `perceptually friendly', like
Munsell's ones: hue and chroma or hue and saturation, see Section 1.3 about color attributes.

The concept of chromaticity diagram was �rstly introduced by Maxwell in his Cambridge
years (1850-1856). De�ning a chromaticity diagram in a three-dimensional space of perceived
colors means, implicitly, stating that the chromatic part of a perceived color has dimension 2,
thus that there exists a mono-dimensional achromatic color coordinate. The chromatic part of
a perceived color is isolated by discarding in some sense the achromatic part. Given a certain
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1.1. An overview of trichromacy-based colorimetry

color solid the construction of the chromaticity diagram is as arbitrary as the choice of the
basis of functions, mentioned in at the end of the previous section, to construct the color solid.
It is essentially an operation of dimensional reduction from 3 to 2 and there is not an unique
way to perform it. The most common way used in literature is through a normalization of the
coordinates. The choice of the normalizing factor as well as the two coordinates to normalize,
however, still remains arbitrary.

A typical example is how the CIE de�ned the chromaticity coordinates in the XYZ space
as x = X/(X + Y + Z), y = Y/(X + Y + Z), z = Z/(X + Y + Z) and de�ned the color
space xyY as the set of all chromaticity coordinates (x, y) together with the luminance Y of
all color stimuli. The choice of the plane (x, y) is arbitrary, we could have chosen analogously
the coordinates (x, z) for instance. Other classic CIE chromaticity diagrams were obtained
applying Möbius transformations to the xy coordinates, such as CIE 1960 UCS (Uniform Color
Space) whose coordinates are called uv and CIE 1976 UCS with u′v′ coordinates. Figure 1.5
shows CIE xy, uv and u′v′ chromaticity diagrams. The idea of these successive deformations
of the xy chromaticity diagram was one hand to transform MacAdam ellipses into circles all
of the same size, on the other hand to have a radial and angular coordinate more similar to
perceived saturation and hue. Both problems will be treated in the following sections. Notice
that in none of these chromaticity diagrams Hering's opponency is present.

Figure 1.5: Left : CIE 1931 xy chromaticity diagram. Center : CIE 1960 UCS uv chromaticity
diagram. Right : CIE 1976 UCS u′v′ chromaticity diagram. These �gures have been created
using the open-source Python package Colour, see https://colour.readthedocs.io/en/develop/.

Drösler in [42] was the �rst one to interpret this standard procedure of normalization in
terms of projective geometry. Indeed those kind of normalizations can be seen as di�erent
choices of a�ne charts of a projective space of dimension 2. In his paper Drösler justi�es his
choice of a particular chromaticity diagram stating that it is not restrictive, since di�erent
planes are mathematically equivalent. Indeed, given two projective planes, it always exists a
projective transformation, i.e. cross-ratio preserving (as we will see in Chapter 3, this implies
that it preserves the Klein metric), that maps one into the other.

Constructing a proper perceptual chromaticity diagram is problematic. Indeed, to do that,
we need to postulate the existence of an achromatic information, expressed in the coordinates
of the color solid*, to �nd a privileged normalization. Thence we can correctly isolate the
chromatic part of a perceived color or, equivalently, eliminate its achromatic part, through a
division by this achromatic coordinate. Lenz, in [100], constructs his chromaticity diagram
in this way. Nevertheless many of the chromaticity diagrams adopted in literature lack of

*In [145] there are several classic choices for the achromatic coordinates used in literature such as R+G+B
3

,
or the Y coordinate from the XYZ color space, or the so-called value V = max{R,G,B}.
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1. About standard colorimetry and related issues

perceptual pertinence, i.e. they are not constructed by discarding what they do identify as
achromatic information.

The concept of perceptual pertinence of a chromaticity diagram is controversial, not just
because of the di�cult procedure of identifying and discarding the achromatic coordinate, but
also the chromatic coordinates are problematic. Ideally, the radial and angular coordinate
should correspond to perceived saturation (or chroma, in some cases) and hue. However, as
we will see in the following sections, there is no clear correspondence between these perceptual
attributes and existing chromaticity coordinates, and the interdependence phenomena between
these two perceptual attributes are not fully understood.

1.2 Evidences of hyperbolic structures in color science

Several works in literature suggest the underlying intrinsic hyperbolic nature of color
spaces. Most of them, based on the intuition that Euclidean geometry is not suitable to
describe color dissimilarity�, propose new hyperbolic color metrics de�ned on existing color
solids or chromaticity diagrams. This subsection is about the state of the art on the use of
hyperbolic structures in color science, as presented in Section 1.1 of [13].

There are two main experimental facts that suggest the hyperbolic nature of color: MacAdam
ellipses and the hue super importance phenomenon pointed out by Judd.

The �rst phenomenon was discovered in 1942 by MacAdam: in [106] he showed that the
just-noticeable di�erence, JND from now on,� contours in the CIE xy chromaticity diagram
are not circles, as one would expect if the perceptual distance were Euclidean, but are much
better approximated by ellipses, see Figure 1.6. In other words the colors inside an ellipse are
indistinguishable to an average observer. This work had an immediate in�uence on Silberstein,
who, in his 1943 paper [144], de�ned a perceptual hyperbolic metric, i.e. a perceptual line
element, from the MacAdam ellipses i.e. he searched for a metric de�ned on the CIE 1931 xy
chromaticity diagram, with respect to which MacAdam ellipses are circles of the same radius.

MacAdam's work also impacted von Schelling: in the 1956 paper [156] he proposed the �rst,
up to our knowledge, explicit hyperbolic metric, with the aim of approximating the MacAdam
ellipses. CIELab itself was a color space built with the purpose of deforming XYZ in such a
way to transform MacAdam ellipses into circles, and as well the CIE uv and u′v′ chromaticity
diagrams.

A further evidence in favor of the non-Euclidean nature of a perceptual color metric was
provided by Judd in 1970 [80]: an experimental setup to implement von Helmholtz's line
element theory showed that the JND of chroma is larger than the JND of hue, i.e. that humans
are more sensitive to changes in hue than in chroma. To describe this phenomenon, Judd
coined the term super-importance of hue di�erences, also known as hue super-importance. This
work inspired Farup and Nölle et al. Farup, in [51], proposed to equip the a∗b∗ chromaticity
diagram of the CIELab space with the Poincaré metric, showing that this is coherent with
both MacAdam's and Judd's results. Nölle et al., in [118] de�ned a new space that takes into
account perceptual attributes in the choice of the coordinates and the hue super-importance.
Their color solid is a three-dimensional complex manifold embedded in a four-dimensional
complex vector space. The Euclidean metric of the four-dimensional complex space turns to
be hyperbolic if expressed in the coordinates parametrizing the three-dimensional manifold.

�Up to our knowledge, all the evidences lead to hyperbolic geometry and not to other non-Euclidean
geometries.

�The term JND, as de�ned e.g. in Chapter 1 of [128], generally refers to `the least perceptible intensity

change' of a stimulus.
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Figure 1.6: MacAdam ellipses for one of MacAdam's test participants, plotted ten times their
actual size on the CIE 1931 xy chromaticity diagram. This �gure has been created using the
open-source Python package Colour.

Finally, Lentz et al., in [99, 100], showed the compatibility of data concerning the path of
a point in an image under smooth changes of the illuminant with the geodesics of the Poincaré
hyperbolic metric on the chromaticity diagram.

Some authors [156, 166, 86] de�ned the hyperbolic metric on the whole three-dimensional
color solid, but the great majority of them, especially the most recent ones, focus on the prob-
lem of de�ning a metric on the chromaticity diagram that they have constructed. While the
CIExy chromaticity diagram is sometimes tacitly assumed to inherit the Euclidean metric,
several hyperbolic proposals have been done in literature, introduced with di�erent justi�ca-
tions.

Two main di�erent approaches can be identi�ed: a �rst one more conceptually-based on
Weber-Fechner's law, a second one more empirical.

Silberstein, in 1938, pursuing the line element method initiated by von Helmholtz in [152],
theorized in [143] that a perceptual metric on an abstract projective chromaticity diagram
should not be Euclidean if one assumes Weber-Fechner's law to hold, i.e.

∆S = k
∆I

I
, (1.2.1)

where ∆S is the JND in brightness sensation provoked by the modi�cation of light intensity
∆I w.r.t. a �xed background intensity I, k being a positive real constant.

Notice that Weber-Fechner's law says that the line element must be invariant w.r.t. ho-
mothetic transformations. Starting from this statement, Drösler in [42, 43] got the intuition
that the space of perceived colors is projective. In particular he stated that Weber-Fechner's
law in dimension 1 represents a projective line element that can be generalized to the whole
three-dimensional space in [43] and to the chromaticity diagram in [42]. On this last, because
of its projective nature, the metric turns out to be the Klein metric. Indeed, as we will see
in Chapter 3, Klein's metric can be expressed as function of the cross-ratio, i.e. the only
projective invariant, hence this metric is preserved under projective transformations and it is
a natural metric for a projective structure.

Koenderink and his collaborators in [86] implement Weber-Fechner's law in the RGB color
coordinates and come up to a Klein-like metric as Drösler. This means that implementing
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Weber-Fechner's law is equivalent to have a projective model and metric. Koenderink and his
collaborators [86] have actually an hybrid approach (both conceptual and empirical), because
some parameters in the metric that they propose are set to �t with the Bezold-Brüke e�ect,
i.e. the perceptual change in hue when the intensity of a color stimulus is modi�ed, see
also Chapter 10 of Koenderink's book [85] and Section 1.3. Without proposing a metric as
such, Ennis and Zaidi have also shown in [47] that experiments on perceptual barycenters in
several state-of-the art color spaces lead to the consideration that their results do not �t with
Euclidean geometry and suggest the use of a hyperbolic one.

To conclude, many authors, in di�erent ways, came up to the conclusion that a hyperbolic
metric is a pertinent distance to measure perceptual dissimilarity. However nowadays the Eu-
clidean distance is still widely used in many applications, mostly for reasons of computational
convenience more than perceptual pertinence.

1.3 Phenomenology of color perception

In Section 1.1, talking about color solid and chromaticity diagrams, we started describing
colors in terms of coordinates, the tristimulus values like RGB, XYZ, and attributes, hue,
saturation etc. In this section we are going to introduce the state-of-the art glossary of color
perceptual attributes and brie�y underline the problems caused by the attempt of turning
them into coordinates of practical color solids. Most of these problems are due to two main
reasons: the fact that it is not clear whether it is possible to associate a perceptual attribute
to a color solid's coordinate and the interdependence between perceptual color attributes.
Interdependence phenomena, known in literature as perceptual e�ects, fall in the category of
the so-called color appearance phenomena. We are going to mention some of the most well-
known color appearance phenomena, focusing in particular on the ones that will be described in
the framework of our model in the following chapters. The conclusion that color solids are not
enough to describe color appearance phenomena led to the development of color appearance
models. An excellent reference for the topics mentioned in this section is Fairchild's book [49].

1.3.1 Color appearance attributes

The following list provides the o�cial de�nitions, that we quote verbatim, of color percep-
tual attributes, see e.g. Chapter 6 (page 487) of [163], Chapter 4 of [49], or the o�cial website
https://cie.co.at/e-ilv.

� Color : is that aspect of visual perception by which an observer may distinguish di�er-
ences between two structure-free �elds of view of the same size and shape, such as may
be caused by di�erences in the spectral composition of the radiant energy concerned in
the observation.

� Related color : it is a color perceived to belong to an area or object seen in relation to
other colors.

� Unrelated color : it is a color perceived to belong to an area or object seen in isolation
from other colors.

� Hue: is the attribute of a color perception denoted by blue, green, yellow, red, purple
and so on. Unique hues are hues that cannot be further described by the use of the hue
names other than its own. There are four unique hues: red, green, yellow and blue. The
hueness of a color stimulus can be described as combinations of two unique hues; for
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example, orange is yellowish-red or reddish-yellow. Nonunique hues are also referred to
as binary hues.

� Chromatic color : it is a color perceived possessing hue.

� Achromatic color : it is a color perceived devoid of hue.

� Brightness: attribute of a visual sensation according to which an area appears to be
more or less intense; or, according to which the area in which the visual stimulus is
present appears to emit more or less light. Variations in brightness range from bright to
dim.

� Lightness: attribute of a visual sensation according to which the area in which the visual
stimulus is presented appears to emit more or less light in proportion to that emitted by
a similarly illuminated area perceived as a white stimulus. In a sense, lightness may be
referred to as relative brightness. Variations in lightness range from light to dark.

� Colorfulness: attribute of a visual sensation according to which the perceived color of
an area appears to be more or less chromatic.

� Chroma: attribute of a visual sensation which permits a judgment to be made of the
degree to which a chromatic stimulus di�ers from an achromatic stimulus of the same
brightness. In a sense, chroma is relative colorfulness.

� Saturation: attribute of a visual sensation which permits a judgment to be made of the
degree to which a chromatic stimulus di�ers from an achromatic stimulus regardless of
their brightness.

In [49], the relationship between some of the attributes de�ned above is resumed in the fol-
lowing intuitive equations:

Lightness =
Brightness

Brightness(White)
, (1.3.1)

where `White' refers of course to a surface that is perceived as white.

Chroma =
Colorfulness

Brightness(White)
, (1.3.2)

Saturation =
Colorfulness

Brightness
. (1.3.3)

There exist analytical formulae to express attributes as hue, saturation, chroma and so on
both in the classical CIE spaces and in the color appearance ones, see e.g. [163, 66], which gave
rise to a plethora of color spaces, as e.g. HSL, HSV, HSI, LCh(ab), LCh(uv) and so on. All
of them were built in the attempt of associating a coordinate in a color solid to a perceptual
attribute. An example is given by the di�erent achromatic coordinates used in literature, see
e.g. [145], usually obtained as arbitrary combinations of the XYZ or RGB tristimulus values.
They are examples of achromatic coordinates which are supposed to represent a perceived
achromatic attribute, but indeed it is even not clear whether they are representing perceived
brightness or lightness.

One of the main problems about currently used color spaces is the fact that color attributes
(or coordinates) interdependence is not fully understood. We must stress that there is a dif-
ference between interdependence of perceptual color attributes and interdependence of color
coordinates. While the �rst type of interdependence is a perceptual phenomenon, the second
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one is a�ected by the (arbitrary) way a certain color coordinate of a color solid (e.g. H in
HSV) was associated to a perceptual color attribute (e.g. perceived hue as in the glossary
above). Of course the �rst type in�uences the second one, and both of them a�ect applica-
tions. Talking about intrinsic interdependence of the perceptual attributes, means describing
perceptual e�ects, see the next subsection.

As regards the interdependence of color coordinates in current color solids, in [121], Ottos-
son provides several concrete examples similar to the ones depicted in Figure 1.7 and Figure
1.8.

Figure 1.7: In this �gure, similar to the test provided by Ottosson in [121], some state-of-the art
color spaces, having coordinates representing hue, saturation (or chroma) and an achromatic
coordinate, are considered. The depicted color gradients have been obtained �xing the hue to
blue (the blue of RGB coordinates (0, 0, 255) represented in each color space) and letting vary
the other two coordinates. One can clearly see that, although the hue coordinate was �xed to
blue, in some cases clear hue-shifts towards purple appear.

Figure 1.8: Let us consider again some state-of-the art color spaces where one can identify
the hue coordinate. One can create hue gradients as follows: �xing all the other coordinates
and letting vary the hue uniformly. Notice that even if the hue was varying uniformly in some
cases clearly the perceived hue is not varying uniformly, e.g. in the case of HSV there is some
kind of `acceleration' around the zones of yellow, cyan and magenta. One might say as well
that e.g. even if the other coordinates (achromatic and saturation or chroma) were �xed, the
perceived saturation or lightness is not the same for every part of the gradient.

These kind of phenomena have a high impact on color image processing algorithms, e.g.
for color enhancement purposes, if the aim is to desaturate an oversaturated image, we do not
want to have hue shifts in doing so, as in the example of Figure 1.7.

1.3.2 Color appearance phenomena

Perceptual e�ects

Perceptual e�ects are due to interdependence relations between perceived color appearance
attributes. In some cases they are caused as well by mismatches with their physical counter-
parts (e.g. dominant wavelength or luminance of a light stimulus). Here we are going to brie�y
mention some ot them.

� The Bezold-Brüke e�ect proves that the common assumption for which the hue of a
perceived color can be described by the dominant wavelength of the visual stimulus is
wrong. In fact, the so-called Bezold-Brüke hue shift shows that when a monochromatic
stimulus is observed while changing its luminance, the hue perception does not remain
constant.
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1.3. Phenomenology of color perception

� The Abney e�ect establishes that mixing a monochromatic light with an achromatic
one, in order to decrease its physical colorimetric purity, leads to a modi�cation of the
perceived hue.

� As observed in chapter 6 of [49], the Helmholtz-Kohlrausch e�ect, HK e�ect from now
on, is another demonstration of the inadequacy of standard colorimetry to �t color
appearance phenomena. In fact, the Y coordinate of the XYZ space agrees with the
luminance of a stimulus and it is erroneously assumed to be a direct estimate of perceived
brightness. However, the HK e�ect shows that, even when two light stimuli have the
same luminance, some appear brighter than others, see Figure 1.9. In particular, colored
lights tend to appear brighter to human observers than achromatic light. The HK e�ect
is particularly visible at high luminance levels.

Figure 1.9: An illustration of the Helmholtz-Kohlrausch e�ect: all the patches in the �rst row
have the same luminance level, as shown in the second row, but clearly they have di�erent
brightness (perceived luminance).

� The Hunt e�ect states that colorfulness increases with brightness. In [17, 19] Berthier
and Provenzi provided a mathematical explanation of the Hunt e�ect, using the tools
that will be introduced in Chapters 3 and 5.

Lightness constancy

We are going to describe a bit more in detail the lightness constancy phenomenon, as in
[14], since in Chapter 6 we will provide an explanation of this phenomenon within our novel
framework.

In order to �x the ideas, we wish to quote the following description of lightness constancy
o�ered by [92]: `Lightness constancy refers to the observation that we continue to see an object
in terms of the proportion of light it re�ects rather than the total amount of light it re�ects.
That is, a gray object will be seen as gray across wide changes in illumination. A white object
remains white in a dim room, while a black object remains black in a well-lit room. In this
sense, lightness constancy serves a similar function as color constancy in that it allows us to
see properties of objects as being the same under di�erent conditions of lighting. Consider an
object that re�ects 25% of the light that hits its surface. This object will be seen as a rather
dark gray. If we leave it in a dim room that receives only 100 units of light, it will re�ect 25%
units of light. However, if we place it in a room that is better lit, it will still re�ect the same
25%. If there are now 1,000 units of light, it will re�ect 250 units of light. But we still see it
as approximately the same gray, despite the fact that the object is re�ecting much more light.
Similarly, an object that re�ects 75% of ambient light will be seen as a light gray in the dim
room, even though it re�ects less total light than it does in the bright room. Thus, lightness
constancy is the principle that we respond to the proportion of light re�ected by an object rather
than the total light re�ected by an object '.

To visually illustrate the di�erence between lightness and brightness judgment, let us
consider the scene depicted in Figure 1.10: the horizontal stripes of the building on the left
and on the right of the yellow entrance are built with the same material, thus they have the
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1. About standard colorimetry and related issues

same re�ectance, however, some parts are exposed to sunlight and some other are not, due to
the shadow projected by the tree.

If we had to make a brightness judgment, we would describe them as brighter and dimmer,
respectively. Instead, if we had to express a lightness judgment, we would state that all of
them are `white', implicitly meaning that the parts directly hit by sunlight and those covered
by the tree shadow would appear identical if they were lit in the same way. This is an instance
of the lightness constancy property of the human visual system.

The same analysis can be repeated for the parts of the yellow entrance covered or not by
the tree shadow. So, thanks to lightness constancy, an observer would exclude the possibility
that the part of horizontal stripes or the entrance in shadow are painted with a darker shade
of gray or yellow, respectively, but that the perceptual di�erence is merely due to a di�erent
intensity in the lighting condition.

Figure 1.10: A visual scene used to illustrate the lightness constancy phenomenon.

The psycho-physiological reasons underling lightness constancy are still debated; we refer
the reader to e.g. [45] for further information.

Color constancy

The chromatic counterpart of lightness constancy is called color constancy, i.e. the (im-
perfect) robustness of the human visual system to describe perceived colors with the same
chromatic attributes in spite of changes in the spectral composition of the illuminant. It is
due to the phenomenon of chromatic adaptation to the illumination conditions. The famous
`Mondrian experiments' discussed in [95] provide a proof of this property: two patches with
identical re�ectance and same surround, placed in di�erent parts of a Mondrian-like tableau
are lit in very di�erent ways with the declared purpose of inducing two di�erent color sen-
sations to an observer. However, in spite of that, the two patches are still reported to be
perceived with the same color. We quote a clear example of chromatic adaptation, provided
by Fairchild in [49]: `consider a piece of white paper illuminated by daylight. When such a
piece of paper is moved to a room with incandescent light, it still appears white despite the fact
that the energy re�ected from the paper has changed from predominantly blue to predominantly
yellow '.

In the following chapters we will come back discussing about this phenomenon, in particular
in Chapter 7 we will talk about computational color constancy and chromatic adaptation
transforms.
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1.4 Conclusion: the need of a mathematical model for color

opponency

Tristimulus-based colorimetry works well for color matching under �xed and very restrained
viewing conditions, but fails at predicting color appearance, and does not deal well with a
correct description of perceptual attributes and their related phenomena. The term color
appearance model was introduced by CIE referring to any model that tries to overcome these
limitations, taking into account viewing conditions and color appearance phenomena. Existing
color appearance models aim at enriching color solids structures, e.g. adding parameters
specifying the vision conditions, rather than questioning the way they were built, see Chapter
10 of [49].

In [87], Koenderink and van Doorn describe the current state of the art on colorimetry as
follows: `As the �eld is presented in the standard texts it is somewhat of a chamber of horrors:
colorimetry proper is hardly distinguished from a large number of elaborations (involving the
notion of `luminance' and of absolute color judgments for instance) and treatments are domi-
nated by virtually ad hoc de�nitions (full of magical numbers and arbitrarily �tted functions).
We know of no text where the essential structure is presented in a clean fashion. Perhaps the
best textbook to obtain a notion of colorimetry is still Bouma's of the late 1940's'.

In the previous sections we have seen that arbitrary choices are present at many di�erent
levels in classic trichomacy-based colorimetry: from the choice of the basis of functions with
respect to which perform the reduction, to the construction of chromaticity diagrams, to the
association of color coordinates to perceptual attributes.

Another fundamental aspect is the way Hering opponent mechanism is (not) taken into
account. In current color solids and chromaticity diagrams Hering opponent mechanism is
most of the times absent, and, when present, it is added a posteriori, often in an arbitrary
way, and it is not part of the mathematical construction of the color solid or of the chromaticity
diagram, which is still trichromacy-based. Indeed all the current color solids are based on a
reduction procedure with respect to three primaries which are all of the same kind, the split
between chromaticity diagram and achromatic information, when present, is always added a
posteriori.

The construction of chromaticity diagrams itself is controversial. As we have seen in Section
1.1 one needs to postulate the existence of a perceptual achromatic attribute and then associate
it to a color coordinate to be discarded via a normalization procedure. In [88] Koenderink
and Van Doorn question even the need of a perceptual achromatic attribute. Indeed, they
describe luminance as `a purely formal entity ', moreover they say that `it doesn't have any
meaning in terms of the perceptual attributes of patches. In this chapter we will ignore the
topic of luminance altogether; in our opinion (and in full agreement with Schrödinger's elegant
treatment [138]), it doesn't belong to colorimetry proper '.

Concerning hyperbolicity, in Section 1.2 we have seen that hyperbolic structures proposed
in literature are, as Hering's mechanism, added a posteriori on trichromacy-based color solid,
and often only justi�ed by the aim of �tting MacAdam or Judd's data. We will see, in Chapter
3, that, in our formulation, the Hibert-Klein hyperbolic metric arises from the theoretical
model.

To resume: the mathematical construction behind tristimulus-based colorimetry does not
naturally contain Hering's opponent mechanism, nor has hyperbolic features. Our work aims
at proposing a mathematical framework coherently integrating all this aspects.
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The main paradigm shift that we propose lies in the fact that the measurement procedure
is fundamental in the search for color information, thus we should not model colors in terms
of coordinates, but interpreting color information as the result of a measurement procedure by
the HVS. Motivations of our approach will be explained in detail in Chapter 3, here we limit
ourselves to quote the words of B. Russell [136] and P.A.M. Dirac [40].

Russell's: `When, in ordinary life, we speak of the colour of the table, we only mean the sort
of colour which it will seem to have to a normal spectator from an ordinary point of view under
usual conditions of light. But the other colours which appear under other conditions have just
as good a right to be considered real; and therefore, to avoid favoritism, we are compelled to
deny that, in itself, the table has any one particular colour '.

Dirac's: `Science is concerned only with observable things and that we can observe an object
only by letting it interact with some outside in�uence. An act of observation is thus necessary
accompanied by some disturbance of the object observed", and also: �Questions about what
decides the photon's direction of polarization when it does go through cannot be investigated by
experiment and should be regarded as outside the domain of science'.

Citing Hardin [70] again: `It is time for a new look at color, taken from the perspective of
the opponent process theory '.
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Chapter 2

Yilmaz's relativistic model

Yilmaz's papers [165, 166] belong to a surprisingly rich list of contributions to color theory
by theoretical physicists. One of the founding fathers of quantum mechanics, E. Schrödinger
is among the most famous, with his benchmark axiomatic work on color perception [138]. In
more recent years, also S. Weinberg [158] and A. Ashtekar and collaborators [3], to quote
but two, wrote papers about color. They share the common interest in understanding the
geometrical structure of the space of perceived colors.

In the previous chapter we already mentioned Yilmaz's work, in Section 1.1, concerning
the choice of the basis ᾱ, β̄, γ̄ with respect to which performing the dimension reduction, in
order to obtain a color solid representing the space of perceived colors, let us call it C for
the rest of this chapter. The originality of Yilmaz contribution lies in the identi�cation of the
striking structural similarity between C and the future light cone of special relativity theory.
This intuition allowed him to determine, on the base of three results that he claimed coming
from experiments, a law for the perceptual e�ect on color perception induced by a change of
illuminant. This law turns out to be the direct analogous of Lorentz transformations.

In this chapter we are going to provide a mathematical formalization of Yilmaz's argument
about the relationship between Lorentz transformations and the perceptual e�ect of illuminant
changes. In the conclusions we will focus on the problematic aspects of his approach due
to its not clear experimental basis. However in this chapter we will proceed assuming the
experimental results claimed by Yilmaz to be true. In Chapter 4 we will see how it is possible
to avoid them and obtain the same result from a completely theoretical approach.

Concerning the notation in this chapter we are going to use the one adopted by Yilmaz,
while we will need to change it in Chapter 4, to recast his results in the framework of the
quantum model described in Chapter 3. The main adopted references here will be Yilmaz's
originals papers [166, 165] and our �rst publication [124].

2.1 Yilmaz's experiments

We are going to introduce the experiments on which Yilmaz based his model. For the sake
of clarity, we �rst introduce the notation and nomenclature used in this chapter.

2.1.1 Coordinates of Yilmaz's model

To develop his model, Yilmaz considered trichromatic observers and the color space C
embedded in the closed upper half-space in the Euclidean three-dimensional space, i.e. H :=



2.1. Yilmaz's experiments

{(α, β, γ)|(α, β) ∈ R2, γ ≥ 0}. The coordinates (α, β, γ) are the components of a color F ∈ C
described with respect to a basis (α̂, β̂, γ̂) of R3.

The coordinates on the vector space are obtained from the dimension reduction with respect
to a basis of functions ᾱ, β̄, γ̄. In a �rst moment, when he talks about an idealized model,
Yilmaz makes a simple choice for these three functions*, while in the paragraph `A more
realistic model ' he chooses them to be the �rst three eigenfunctions of the harmonic oscillator,
as we have detailed in Section 1.1. The question about how the coordinates are obtained is
somehow separate with respect to the discussion about C and its transformations. In this
chapter we will focus on the latter problematic.

The coordinates (α, β) are called chromaticity coordinates and γ is the achromatic one,
called lightness in [165]. The polar coordinates in the so-called hue-chroma plane are (φ, ρ),
where α = ρ cosφ and β = ρ sinφ, φ being associated to the hue and ρ to the chroma of
F ∈ C . It is customary to identify the hue corresponding to particular values of φ with the
following standard hues: φ = 0 is red R, φ = π/2 is yellow Y , φ = π is green G and φ = 3π/2
is blue B. Coherently with this identi�cation, from now on, as shown in Figure 2.1.1 (a), the
α̂ axis will be identi�ed with the R−G direction and the β̂ axis with the Y −B direction.

Following the standard colorimetric de�nition, Yilmaz relates color saturation σ with ρ
and γ via σ = ρ/γ.
On the plane de�ned by γ = 1, ρ and σ can be identi�ed and they represent the radial distance
from the γ axis. The half-line de�ned by γ ≥ 0, ρ = 0, is called achromatic axis, the maximum
perceivable value for γ is denoted with γmax. For all the values γ > γmax cone receptors are
saturated due to glare. For the sake of simplicity let us normalize γmax to 1. The origin O
corresponds to the sensation of black.

It is a known fact gathered by psychophysical experiments that the saturation of spectral
colors, i.e. narrow-band lights, is maximal. Yilmaz denoted with Σφ the maximal saturation
sensation induced by a narrow-band light perceived with a hue φ.

The existence of a maximal saturation Σφ implies that the value 1/σ has a lower bound
given by 1/Σφ. More precisely we can see 1/σ as the slope of a straight half-line passing by
the origin in the upper-half plane de�ned �xing the hue φ.
It is not hard to see that this saturation constraint implies that the e�ective available space
for perceived colors, in Yilmaz's setting, is the volume contained in the cone shown in Figure
2.1.1 (b), denoted by C ⊂H and described by the equation:

C = {F = (φ, ρ, γ) ∈H | ρ ≤ Σφγ}. (2.1.1)

(a) The (α, β)-plane, γ = 1. (b) Depiction of the cone C .

Figure 2.1: Visual representations of the color solid considered by Yilmaz.

*He considers the following functions: ᾱ(λ) = 1√
π

sin(φ(λ)), 1√
π
, β̄(λ) = cos(φ(λ)), γ̄(λ) = 1√

2π
, where φ(λ)

is a suitable function mapping the interval of visible wavelengths Λ into [0, 2π].
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2. Yilmaz's relativistic model

2.1.2 Yilmaz's three experiments

The generic apparatus for the experiments described by Yilmaz in [166] is shown in Figure
2.2, where we can see two identical rooms R1 and R2, separated by a common wall with a
thin hole and illuminated by the sources of light S1 and S2. Both rooms are painted with a
non-selective Lambertian white paint. A piece of white paper is divided in two parts and each
one is placed in one of the rooms, so that an observer can perceive them simultaneously. The
key point is that one piece is seen directly and the other through the hole.

Figure 2.2: Left : The experimental apparatus considered by Yilmaz. Right : This image is
from Inter-Society Color Council News, Issue 419, Jan/Feb 2006, by kind concession of M. H.
Brill, whom we would like to thank for sharing this reference with us for [13].

The illumination S1 of room R1 will always be provided by near-daylight broadband illu-
minants. Instead, the illumination of room R2 will be provided by a light source S2 that can
also be narrow-band. The perceived colors are compared with the help of a set of Munsell
chips enlighted by the same illuminant under which the observer is adapted. For some details
about adaptation to an illuminant we refer to Subsection 1.3.2 of the previous chapter.

The �rst experiment

In this �rst experiment, the sources S1 and S2 are chosen to be two di�erent broadband
illuminants of near-daylight chromaticity, I and I ′, respectively. An observer placed in Ri will
adapt to Si and the piece of paper placed in Ri will be perceived as white, i = 1, 2. However,
Yilmaz noticed that, if an observer, placed in one of the two rooms, looks at the piece of
paper in the adjacent room through the thin hole, then it will appear with a certain hue φ and
saturation σ. By switching the rooms, the piece of paper in the adjacent room will be matched
with a Munsell chip of opposite hue, i.e. π + φ, but with approximately the same saturation
σ �. To �x the ideas we choose the hues φ and π + φ to be red and green, respectively.

This experiment is extremely interesting because the thin hole in the wall is a trick that
permits to show how an observer's reference for white changes when the illumination varies.
The immediate consequence is that color perception is a relative phenomenon, which depends
on the illuminant to which the observer is adapted.

It is worth underlining that this experiment must be performed in such a way that local
retinal adaptation is prevented in the area covered by the thin hole. This can be done, for
example, by allowing only a limited time aperture of the thin hole with the help of a suitable
time-dependent shutter.

�In the original description of this experiment, Yilmaz made a little abuse of notation using the symbol
−σ, in spite of the fact that saturation is a non-negative quantity. He explained it in the following way: `the
minus sign indicating that the hue is complementary to the former hue'.
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The second experiment

In the second experiment Yilmaz chooses S2 to be a narrow-band source with a spike in
the red region of the visual spectrum. Yilmaz reported that, if an observer in R1 is adapted
to the broadband near-daylight illuminant I and looks at the piece of paper in R2, he/she
will perceive it as having same hue φ = 0 and with maximal saturation ΣR. If we change the
illuminant I with the illuminant I ′ used in the �rst experiment and we wait for the adaptation
of the observer in R1 to the new illuminant, then the piece of paper in R2, seen through the
hole, will still be perceived as having same hue φ = 0 and maximal saturation ΣR.

Yilmaz justi�es experimentally this claim by saying that, in both cases, the perceived
saturation is reported to be too high to be replicated by any of the Munsell chips, i.e., the
observer is able to identify the perceived hue as red, but all of the Munsell chips have saturation
strictly smaller than the perceived one. From the �rst experiment, we know that the change
of perceived hue caused by the transformation from I to I ′ acts on the red-green axis.

The particular choice of the red-green axis seems to be the only one really tested by Yilmaz,
however, theoretically, nothing prevents to choose any other direction on the chromatic plane.

The third experiment

This �nal experiment is similar to the second one, but with an important di�erence. Here
S2 is chosen to be a narrow-band source of light with spike in the yellow part of the spectrum,
i.e., whose hue direction is orthogonal with respect to the R − G axis, see Figure 2.1.1 (a).
The observer is always placed in R1. When S1 is equal to I he/she perceives S2 through the
hole with yellow hue, i.e, φ = π/2, and with a saturation which is, again, too high to be found
among the set of Munsell chips and then it is set to ΣY . When the illuminant S1 changes from
I to I ′, no variation in saturation is reported, it is still maximal and equal to ΣY , but the hue
perception of the piece of paper in R2 seen from the hole changes by an amount ϕ such that

sinϕ ' σ/ΣY . (2.1.2)

At page 12 of [166], Yilmaz writes: `[. . .] these conclusions based on experiment are [. . .] only
approximate [. . .]', from this we understand that experiments have in fact been performed and
data have been gathered. However, it is also clear that such a precise formula as Equation
(2.1.2) to determine the hue shift ϕ is, at least, doubtful. We will turn back on this issue in
Section 2.5.

The aim of this chapter is to mathematically analyze Yilmaz's model and its consequences,
for this reason, in spite of this debated issue, we in the following section we will consider this
data as rigorous, while we will discuss the issues related to the feasibility of these experiments
in Section 2.5. However, it is clear that further psychophysical experiments would be extremely
valuable to con�rm or confute Equation (2.1.2) and Yilmaz model in general.

2.2 Recasting Yilmaz's model in a mathematical framework

In section IV `Transformation formulae' of his paper [166], Yilmaz's looked for a trans-
formation from the coordinates of a color described by an observer adapted to a broadband
illuminant I to those of an observer adapted to di�erent broadband illuminant I ′. He deduced,
from the three experiments previously discussed, what he claimed to be a linear approximation
of this transformation. Clearly such a transformation leaves the black point O �xed.

Unfortunately, Yilmaz's exposition about how to obtain Lorentz boosts as illuminant trans-
formations from the results of the three experiments, is too concise and lacks of rigor. As we
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did in [124], our contribution in this Section is to introduce a suitable notation in order to
provide a more clean mathematical description of Yilmaz's procedure.

We start with the de�nition of visual stimuli and by �xing some notations.

� We call visual stimulus in Yilmaz's experiment the spectrum of visible light re�ected by
either a piece of white paper, or a Munsell chip illuminated by a visible light representing
an illuminant� entering the eye of an observer;

� F, F ′ will denote a visual stimulus provided by the visible light re�ected by an object
enlighted by the illuminant I or I ′, respectively. The object surface can be either the
piece of white paper, and in that case we will write W,W ′, or a Munsell chip;

� R̃, Ỹ will indicate the visual stimulus provided by the piece of white paper illuminated
by the narrow-band illuminants with spike in the red or yellow region, respectively.

Yilmaz assumed that an observer adapted to a broadband illuminant, I or I ′, analyzing
colors by the comparison with a set of Munsell chips enlighted by the same illuminant, de�nes
a vector basis of R3, B = {α̂, β̂, γ̂} or B′ = {α̂′, β̂′, γ̂′}, respectively. Thus, the use of B
and B′ will be always implicitly correlated with a triple given by an illuminant, an observer
adapted to it and a set of Munsell chips used for color comparison. Notice that while in the
�rst experiment the observer is able to pick a Munsell chip in accordance with the stimulus
that he/she perceives, it is not the case for the second and third experiment.

Thus we will assume that color sensations obtained via a matching with a Munsell chip
will correspond to elements of the interior of the cone C , de�ned by Equation (2.1.1).

On the other hand, since it is impossible for an observer to replicate with a Munsell chip
the maximal saturation Σφ of a narrow band visual stimulus, we consider the color sensation
produced by such a visible light as a point belonging to the surface ∂C = {F = (φ, ρ, γ) ∈
H | ρ = Σφγ} of the cone C . Furthermore we assume Σφ to be the same for all observers
adapted to any illuminant.

The symbols B and B′ will be used as a subscript for the visual stimuli to indicate the
illuminant to which the observer is adapted�: B for I and B′ for I ′. Note that the basis
subscript is extremely important because it underlines the central role of the observer, i.e.,
the basis with respect to which the coordinates are written. Without an observer a perceived
color is just a stimulus, in the same way as a point of a vector space is just an abstract
(coordinate-free) concept without a basis which describes it in terms of coordinates.

Yilmaz considers the change of basis from B to B′ to be the linear approximation of the
illuminant transformation from I to I ′, indeed he supposes that a more precise description of
the transformation should involve other nonlinear terms. He denotes the associated matrix
as¶ Ω ≡ ΩII′ ∈ GL(3,R). Ω is naturally required to be invertible because we can reverse the
transformation by switching the two illuminants, i.e. Ω−1 = Ω−1

II′ = ΩI′I .

In order to determine the coe�cients of Ω, Yilmaz considered the following equations:{
ΩWB = WB′

Ω−1W ′B′ = W ′B
and

{
ΩR̃B = R̃B′

ΩỸB = ỸB′ .

�More precisely, the piece of white paper will be illuminated by both broadband and narrow-band illumi-
nants, while the Munsell chips will only be illuminated by broadband illuminants.

�As a consequence they will refer as well to the illuminant enlightening the set of Munsell chips with respect
to which the observer makes his/her comparisons.

¶We recall that GL(n,R) indicates the so-called general linear group of degree n over R, which is the set
of all the invertible matrices n× n with entries in R.
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These equations are the translation of the three Yilmaz experiments in our notation.

If we denote with (α, β, γ)t or (α′, β′, γ′)t the coordinates of a color perceived by an observer
adapted to I or I ′, respectively, thenα′β′

γ′

 =

Ω11 Ω12 Ω13

Ω21 Ω22 Ω23

Ω31 Ω32 Ω33

αβ
γ

 . (2.2.1)

At page 14 of [166], Yilmaz analyzes, among all possible illuminant changes, the situation
in which the couple I and I ′ produces a color coordinate transformation only along the α-axis,
i.e. the R − G direction, being stable on the (α, γ)-plane and leaving the β-axis una�ected.
This hypothesis implies that the coe�cients of Ω must ful�ll the following conditions: Ω21 =
Ω23 = Ω12 = Ω32 = 0 and Ω22 = 1. So, the matrix Ω has the following form:

Ω =

Ω11 0 Ω13

0 1 0
Ω31 0 Ω33

 . (2.2.2)

The remaining coe�cients, i.e. Ωij , i, j = 1, 3, will be determined by translating into formulae
the three Yilmaz's experiments.

2.2.1 Coe�cients from the �rst experiment: the white point transforma-

tion

Yilmaz's �rst experiment contains information about the coordinate change associated to
the stimuli W and W ′, i.e. ΩWB = WB′ and ΩW ′B = W ′B′ , as depicted in Figure 2.3.

Figure 2.3: Illustration of Yilmaz's �rst experiment with the notation established in Section
2.2.
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2. Yilmaz's relativistic model

Our aim is to write the coordinates of the four pointsWB,WB′ ,W
′
B andW ′B′ to determine

constraints among the coe�cients Ωij .

An observer adapted to I or I ′, respectively, perceives the piece of white paper enlightened
by the same illuminant to which he/she is adapted to be of the same placed under the same
illuminant as the same white. In terms of coordinates, this means that WB = W ′B′ .

According to what said in Subsection 2.1.1, since the white is achromatic, it must belong to
the γ-axis, so its α and β coordinates are null. The third coordinate remains free and we can
normalize its value to 1, and associate it to the intensity of white, henceWB = W ′B′ = (0, 0, 1)t.

Let us now look for the coordinates of WB′ = (α′, β′, γ′) and W ′B = (α, β, γ). As indicated
by the notation, WB′ represents the color sensation of an observer adapted to I ′ when he/she
looks at the piece of white paper illuminated by I and compares it with the Munsell chips
illuminated by I ′. The description of W ′B is analogous, with I and I ′ switched. As reported
in Section 2.1.2, WB′ is perceived as greenish, i.e. with hue π and saturation σ, while W ′B is
perceived as reddish, i.e. with hue equals to 0 and saturation σ. In all Yilmaz's three exper-
iments color sensations are described in terms of only two coordinates: hue and saturation,
we will come back to this point in Chapter 4. In particular the γ-coordinates WB′ and W

′
B

are not reported by Yilmaz, thus we are led to introduce two unknown parameters� Γ, Γ̃ ∈ R+

such that γ′ = Γ and γ = Γ̃.

The psycho-visual color matching experiments performed by Burnham et al. in the paper
[26], imply that the two parameters Γ and Γ̃ are actually di�erent from 1. The test results
reported in [26] led to the determination of matrices that permit, once the XYZ coordinates
of a light patch (i.e. a source of light directly emitting a spectrum) perceived by an observer
adapted to I are known, to predict the XYZ coordinates of a di�erent light patch having
the same appearance for an observer adapted to I ′. In particular, experimental data showed
that a patch perceived with the same appearance of white by an observer adapted to the
CIE standard illuminants C and A, i.e. WB = W ′B′ , has di�erent colorimetric speci�cations,
thus γWB

6= γW ′B . Hence, if we normalize γWB
to 1, the value of γW ′B = Γ (and vice versa

γWB′ = Γ̃) must be di�erent than 1.

Since the perceived hue of WB′ is greenish, it must lie on the α′-axis, i.e. β′ = 0, thence
ρ′ =

√
α′2 + β′2 = |α′|. By de�nition, σ′ = ρ′/γ′ = |α′|/Γ, but, as reported by Yilmaz,

σ′ = σ, which gives |α′| = σΓ. Finally, since greenish hues lies in the negative part of the
α′-axis, the value of α′ is given by α′ = −σΓ. So, WB′ = (−σΓ, 0,Γ)t. Analogously, we obtain
W ′B = (σΓ̃, 0, Γ̃)t, where the positive sign of σΓ̃ is due to the fact that, this time, W ′B is
perceived as reddish.

We can now write explicitly the systems ΩWB = WB′ and Ω−1W ′B′ = W ′B, by obtaining,
respectively: Ω11 0 Ω13

0 1 0
Ω31 0 Ω33

0
0
1

 =

−σΓ
0
Γ

 ⇐⇒

{
Ω13 = −σΩ33

Ω33 = Γ
, (2.2.3)

Ω11 0 −σΩ33

0 1 0
Ω31 0 Ω33

σΓ̃
0

Γ̃

 =

0
0
1

 ⇐⇒

{
Ω11 = Ω33

Ω31 = 1
σ

(
1
Γ̃
− Ω33

) . (2.2.4)

�Γ, Γ̃ ∈ R+ are just auxiliary parameters that merely appear in these intermediate computations and not
in the �nal form of the matrix coe�cients of Ω.
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2.2. Recasting Yilmaz's model in a mathematical framework

The only relevant information to retain from the previous equations, in order to determine
Ω, is given by the formulae Ω11 = Ω33 = Γ, Ω13 = −σΩ11, which allow us to write Ω as follows:

Ω =

Ω11 0 −σΩ11

0 1 0
Ω31 0 Ω11

 . (2.2.5)

To determine the remaining parameters we will use the results of the second and the third
experiment.

2.2.2 Coe�cients from the second experiment: the red point transforma-

tion

Our aim here is to determine the coordinates of R̃B and R̃B′ . Let us denote with RB

and R′B′ the maximally saturated Munsell chips with a hue matching that of R̃B and R̃B′ ,
respectively. The perceived saturation of RB and R′B′ is strictly inferior than ΣR, see the
depiction in Figure 2.4.

Figure 2.4: Depiction of Yilmaz's second experiment with the notation established in Section
2.2.

In our mathematical framework, a perceived color is a sensation that can be described in
terms of coordinates which come from a match with a set of Munsell chips. The coordinates
of R̃B and R̃B′ will surely depend on ΣR, which cannot be quanti�ed in the Yilmaz's setting,
thus R̃B and R̃B′ do not belong to the interior of C , but to its boundary ∂C .

The reason why we consider R̃B and R̃B′ on the boundary of C and not inside C is that we
can imagine R̃B and R̃B′ as resulting from a limit procedure in which a sequence of Munsell
chips with increasing saturation approaches their saturation.

The β-coordinate of both R̃B and R̃B′ is surely 0 because they lie on the α axis. Moreover,
their α and γ-coordinates will be ΣRγ and γ, for RB, and ΣRγ

′ and γ′, with RB, γ, γ
′ ∈ R+.

The unknown parameters γ and γ′ are introduced exactly for the same reason as Γ and Γ̃, i.e.
we do not know their lightness. As a consequence, R̃B = (ΣRγ, 0, γ)t and R̃B′ = (ΣRγ

′, 0, γ′)t.
The equation ΩR̃B = R̃B′ can be written explicitly as follows:Ω11 0 −σΩ11

0 1 0
Ω31 0 Ω11

ΣRγ
0
γ

 =

ΣRγ
′

0
γ′

 ⇐⇒ Ω31 = − σ

Σ2
R

Ω11, (2.2.6)
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2. Yilmaz's relativistic model

which implies

Ω =

 Ω11 0 −σΩ11

0 1 0
− σ

Σ2
R

Ω11 0 Ω11

 . (2.2.7)

The explicit form of Ω11 will be obtained thanks to the data gathered from the third
experiment.

2.2.3 Coe�cients from the third experiment: the yellow point transforma-

tion

When interpreting the third experiment, we will use the same approach as for the second
one. We will denote with YB the maximally saturated Munsell chip with a hue matching that
of ỸB. Di�erently than the second experiment, here, when an observer changes the adaptation
state from I to I ′, the perceived hue of the narrow band stimulus changes from yellow to a
greenish yellow, see Figure 2.5. For this reason, we denote with G′B′ the maximally saturated
Munsell chip that best approximates ỸB′ .

Figure 2.5: Depiction of Yilmaz's third experiment with the notation established in Section
2.2.

By using the same arguments of the previous subsections, we write the coordinates of ỸB

as follows: ỸB = (0,ΣY γ̃, γ̃)t, γ̃ ∈ R+. Since the hue of ỸB′ increased by an angle ϕ which
satis�es (2.1.2), the coordinates of Ỹ ′B′ are ỸB′ = (− sinϕΣY γ̃

′, cosϕΣY γ̃
′, γ̃′)t, γ̃′ ∈ R+, where

the presence of − sinϕ and cosϕ comes from the expression of the hue change in Cartesian
coordinates. The equation ΩỸB = ỸB′ can be then written explicitly as follows: Ω11 0 −σΩ11

0 1 0
− σ

Σ2
R

Ω11 0 Ω11


 0

ΣY γ̃
γ̃

 =

− sinϕΣY γ̃
′

cosϕΣY γ̃
′

γ̃′

 . (2.2.8)

By direct computation one obtains the following system of equations:
−σΩ11γ̃ = − sinϕΣY γ̃

′

γ̃ = cosϕγ̃′

Ω11γ̃ = γ̃′
⇐⇒

{
−σΩ11 = − sinϕΣY Ω11

Ω11 = 1
cosϕ = γ̃′

γ̃

. (2.2.9)
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2.3. Similarities and di�erences between Yilmaz's model and special relativity

Notice that the �rst equation in the latter system, since Ω11 = Γ 6= 0, becomes σ = sinϕΣY ,
i.e. we have obtained Yilmaz's hypothesis stated by Equation (2.1.2). We will come back to
this point in Section 2.5.

On the other hand the second equation allows us to determine the last parameter

Γ = Ω11 =
1

cosϕ
=

1√
1−

(
σ

ΣY

)2
, (2.2.10)

in order to �nally obtain the following explicit expression of Ω

Ω =

 Γ 0 −σΓ
0 1 0

− σ
Σ2
R

Γ 0 Γ

 , (2.2.11)

with Γ as in Equation (2.2.10).
The variation of the yellow hue e�ect is said to be `similar to the aberration e�ect in

special relativity ', by Yilmaz in [166] at page 132. We will discuss this aspect in Section
2.4. In Section 2.3, we will point out the analogy between Ω and the matrix that represents
Lorentz's transformations in Einstein's theory of special relativity. For more details about
special relativity theory and Lorentz boosts see Appendix A.

2.3 Similarities and di�erences between Yilmaz's model and

special relativity

Table 2.1 provides the list of analogies between Yilmaz's model and the standard mathe-
matical framework of special relativity.

Special relativity Yilmaz's color perception model

Observer in an inertial frame Observer adapted to a broadband illuminant

Event e = (t,x) ∈ R4 Perceived color F = (φ, ρ, γ) ∈ C
Time coordinate t ∈ R Lightness coordinate γ ∈ R+

Spatial coordinates (x1, x2, x3) ∈ R3 Chromatic coordinates (ρ, φ) ∈ R+ × [0, 2π)

Speed of light in vacuum c Maximal perceived saturation Σ

Lorentz transformations (A.0.7) Yilmaz transformations (2.2.11)

Table 2.1: Analogies between special relativity and Yilmaz's model.

Among the similarities listed above, some evident di�erences between special relativity and
Yilmaz's model of color perception can be remarked.

1. The Helson-Judd e�ect, see e.g. [49], shows that human color perception experiences
an incomplete adaptation to narrow-band illuminants. However in Yilmaz model the
case of incomplete adaptation is not taken into account, thus, in the previous table, the
analogy between inertial frames and observers occurs only in case of complete adaptation
to broadband illuminants.

2. While time t can be extended to the whole R with the identi�cation of negative values
of t as the `past', a negative lightness is meaningless. So, only the upper part of the cone
C makes sense in color perception. Moreover, and most importantly, this cone is not
in�nite: in fact, it is bounded from above by the glare limit de�ned by γmax and from
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2. Yilmaz's relativistic model

below for two reasons: the �rst is the Purkinje e�ect [163] when we pass from photopic
to scotopic vision via the mesopic range**, and the second is the intensity threshold of
the retinal rods. Thus, C is a truncated cone at height γmax. In Chapter 5 we will see
that the concept of quantum e�ects will provide a better way to bound the color solid.

3. While events in the Minkowski spacetime have four components, perceived colors have
only three.

2.4 Relativistic aberration and Yilmaz's third experiment

In this section, we want to discuss Yilmaz's most ambiguous assumption, represented by the
result of the third experiment, in a relativistic framework and show that it is the translation,
in the colorimetric context, of the relativistic aberration e�ect. This phenomenon expresses
how the angle of incidence of a ray of light changes with the inertial frame of reference and it
is a direct application of Lorentz transformations. For more details about the basic concepts
and notation of special relativity see Appendix A.

Let R and R′ be two inertial reference frames, with R′ moving with respect to R with
constant speed v along the x-direction. Without loss of generality we can consider a photon
moving towards the origin of the frame and whose spatial trajectory is a straight line contained
in the plane z = 0. Clearly, in both R and R′, the speed of the photon will be c.

We suppose that its trajectory forms the angle α (resp. α′) in R (resp. R′), with the x-
direction shared by both R and R′. Our aim is to show how α and α′ are related to each other.
In R the photon's world-line is given by (t, x, y, z) = (t,−tc cosα,−tc sinα, 0), to obtain it
with respect to R′ we need to apply the so-called Lorentz boost as follows:

t′ = Γ(t− v
c2
x)

x′ = Γ(x− vt)
y′ = y

z′ = z

, (2.4.1)

with Γ = 1√
1−v2/c2

.

In particular, since the world line of the photon in R′ is analogously given by (t′, x′, y′, z′) =
(t′,−t′c cosα′,−t′c sinα′, 0), we obtain that x′ = Γ(−vt− ct cosα) = −ct′ cosα′ and y′ = y =
−ct sinα = −ct′ sinα′. Hence

tanα′ =
y′

x′
=

c sinα

Γ(c cosα+ v)
=

sinα
√

1− v2/c2

cosα+ v
c

. (2.4.2)

By a straightforward computation we obtain

cos2 α′ =
1

1 + tan2 α′
=

(cosα+ v
c )2

(1 + v
c cosα)2

, (2.4.3)

thus

cosα′ =
cosα+ v

c

1 + v
c cosα

, (2.4.4)

**In the photopic range the three retinal cones are activated, in the scotopic range only the retinal rods are,
while in the mesopic both photoreceptors function simultaneously.
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2.5. Critical aspects in Yilmaz's model

where only the positive determination of the square root is compatible with the fact that, if
v = 0, then we must have cosα′ = cosα. Moreover

cosα′ − cosα =
v
c sin2 α

1 + v
c cosα

> 0, (2.4.5)

indeed 0 < v < c, so cosα′ > cosα and α′ < α.
We have now all the information to discuss Yilmaz's third experiment: taking into account

the analogies underlined in Section 2.3 together with Equation (2.4.4), we have that

cosφ′ =
Σ cosφ+ σ

Σ + σ cosφ
. (2.4.6)

For the spectral yellow, we have that φ = π/2, so Equation (2.4) becomes cosφ′ = σ
Σ , but

since ϕ = φ− φ′, we get
sinϕ = sin

(π
2
− φ′

)
= cosφ′ =

σ

Σ
(2.4.7)

which corresponds to the Equation (2.1.2) reported by Yilmaz, concerning the hue variation
of the spectral yellow.

2.5 Critical aspects in Yilmaz's model

In Section 2.2 our aim was to recast Yilmaz's model in a rigorous framework, with respect
to both its colorimetric interpretation and its mathematical development, remaining as close
as possible to what Yilmaz reported. In particular, concerning the notation, we decided to
keep Yilmaz's one, enriching it in order to better structure our proof. In Chapter 4 we will
need to translate Yilmaz's result in the notation of Chapter 3. In fact, while this section is
about pointing out some critical issues about Yilmaz's model, in 4 we will see how the quantum
model allows us to overcome these issues.

The �st problematic aspect is the use of Munsell chips in its experiments. The mentioned
piece of white paper is used as a sort of ideal non-selective Lambertian re�ector for the illu-
minant. A clear problem arises from the fact that it is not possible to compare for match a
Munsell chip with a narrow band illuminant re�ected by the piece of white paper.
While the set of Munsell chips was an obvious choice in 1962, the year of publishing of Yilmaz's
paper, nowadays we can replace it without e�ort with an emitting display that will also
allow us performing comparisons with narrow-band lights. With such a modern experimental
apparatus, the color sensations R̃B, R̃B′ , ỸB and ỸB′ will be e�ectively measurable.

In a footnote at page 15 of [166], Yilmaz mentions the fact that `there is no necessity for
Σ to be the same for all directions'. For this reason in Sections 2.1 and 2.2 we decided to keep
the dependence of Σ on the hue φ, using the symbols Σφ,ΣR,ΣY . As underlined in Appendix
A the speed of light is the same for all the directions, so the question becomes whether
this is true as well for Σ. The saturation of a color sensation is de�ned as a percentage:
100% representing the absence of a washed-out sensation, as it happens for a narrow-band
light, and 0% corresponding to the totally washed-out sensation of achromatic stimuli. These
measurements are made with �xed hue φ, and it is not clear whether changing the hue would
lead to a re-scaling of the interval of the possible saturation values. In other words it seems
to be problematic understanding how to compare the saturation scales of colors with di�erent
hues. It seems more correct to remain faithful to the original de�nition of saturation and
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2. Yilmaz's relativistic model

consider it to be normalized in the same way for all the hues��. Thus, Equations (2.2.10) and
(2.2.11), called by Yilmaz `more general formulae', will become:

Ω =

 Γ 0 −σΓ
0 1 0

− σ
Σ2 Γ 0 Γ

 with Γ =
1√

1−
(
σ
Σ

)2 . (2.5.1)

In Section 2.2 we proceeded assuming the experimental results claimed by the author to
be true, however it still remains unclear if the results claimed by Yilmaz have been obtained
after actual observations or if they are the results of a gedankenexperiment, i.e. a thought
experiment. In the �rst case, Yilmaz does not report any experimental data and they do not
seem to be found anywhere else, this, of course, raises more than a doubt about their validity.

In the second case, it is clear that Yilmaz pushed the gedankenexperiment technique way
too far: a thought experiment is used to check what known results of a given theory would
predict in an experimental con�guration that is not possible to test with the current available
technology. No known colorimetric result can be used to predict the outcomes of the three
experiments, in particular, we notice that the hue shift in the third experiment represented by
Equation (2.1.2) is unlikely to have been obtained via psychophysical experiments, seems to
be somehow forced to have the desired analytical expressions that permitted him to determine
the matrix Ω. However, as one can see in Equation 2.2.9, Yilmaz's experimental hypothesis
corresponds to the �rst equation of the second system, hence, in the proof that we provided
in Section 2.2, it seems that it does not need to be imposed as an hypothesis.

In spite of the critical issues just underlined, Yilmaz's paper has the great merit of high-
lighting the theoretical importance of the assumption that the maximal saturation Σ of the
color perceived from spectral lights is invariant w.r.t. changes of illuminants.

Finally, it is important to stress that not every aspect of special relativity theory was
translated by Yilmaz in a colorimetric context. He only talked about the aspects mentioned
in Table 2.1. The crucial point is that he justi�es their presence in color theory from a
questionable experimental viewpoint. We do believe that he probably got this intuition from
the formal similarity of the two theories. In Chapters 4 and 5 we will see how to properly
justify the presence of relativistic concepts thanks to the framework that will be provided in
Chapter 3.

��In Chapter 4 we will see that Σ will be normalized to 1.
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Chapter 3

Resniko�'s approach and its quantum

interpretation

Yilmaz's speculations, described in the previous chapter, had a strong impact on H.L.
Resniko� who, in the paper [135] published twelve years later, acknowledged him for his intu-
ition. Resniko�'s work on color is particularly remarkable, because it completes the algebraic
analysis of color perception started by Grassman and axiomatized by Schrödinger.

In this chapter we will provide an overview and the basic concepts of a recent novel math-
ematical theory of color perception, based on the quantum reinterpretation of Resniko�'s
approach, see [12], which reconciles the concepts of trichromacy and color opponency, already
mentioned in Chapter 1. The main references for this chapter will be the several recent con-
tributions of Berthier and Provenzi [15, 129, 12, 16, 18], which treat di�erent aspects of this
novel theory in detail.

As we will see in Chapter 4, the framework introduced in this chapter will permit to justify
on a purely theoretical basis the relativistic color perception phenomena argued by Yilmaz,
overcoming the issues underlined in Chapter 2. Note that further de�nitions, more related
to quantum information theory, will be introduced in Chapter 5 enriching the framework
presented in this chapter.

3.1 The trichromacy axiom

The classical, and well established, colorimetric experiences of Newton [116, 117], Grass-
mann [67], Helmholtz [153] and Maxwell [108] have been resumed by Schrödinger [138] in a
set of axioms that describe the structure of a space designed to represent the set of colors
from the trichromatic properties of color perception. These axioms stipulate that this space,
denoted C from now on, is a regular convex cone of real dimension 3. In particular:

� C is a cone if it is stable w.r.t. multiplications by positive scalars, i.e. for all c ∈ C and
all k ∈ R+, then kc ∈ C;

� C is convex if, for all c1, c2 ∈ C and for all α ∈ [0, 1], we have that αc1 + (1− α)c2 ∈ C;

� C is regular if, for any c ∈ C, c 6= 0, then @ c̃ ∈ C such that c+ c̃ = 0.

In [135], Resniko� completed the work of Schrödinger and showed that to fully exploit this
mathematical structure one needs to add a supplementary axiom, namely the fact that C is
homogeneous, which means that there exists a transitive group action on C, see [129] for an
extended analysis of the homogeneity axiom. If we add one more property, the self-duality
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of C, introduced by Berthier in [12], then C becomes a symmetric cone [50]. Let us call C,
ful�lling all these axioms, the trichromacy cone.

According to the Koecher-Vinberg theorem [8], the trichromacy cone C can then be seen
as the domain of positivity of a formally real Jordan algebra A. This motivates the following:

Axiom (Trichromacy axiom [12]). The trichromacy cone C is the domain of positivity of a
formally real Jordan algebra of real dimension 3.

The use of Koecher-Vinberg theorem is of crucial importance since it justi�es the use of
Jordan algebras and, as we will see, quantum theories in the context of modeling color percep-
tion. The idea to recast the study of color perception in the Jordan algebra framework appears
already in Resniko�'s contribution [135]. However, Resniko� was interested in using this con-
cept to understand brightness and he did not mention a possible quantum interpretation of
Schrödinger axioms. In the following we are going to mention just some essential de�nitions
about Jordan algebras, for more detailed information on this subject the reader can consult
e.g. [8], [50], [84], [109], [110]. Since it is su�cient for our purposes, in the following we are
going to consider only �nite-dimensional Jordan algebras.

De�nition 3.1.1 (Jordan algebra). A Jordan algebra A is a real vector space equipped with
a commutative bilinear product, called Jordan product, A×A → A, (a, b) 7→ a ◦ b, satisfying
the following so-called Jordan identity :

(a2 ◦ b) ◦ a = a2 ◦ (b ◦ a), (3.1.1)

where a2 := a ◦ a.

The Jordan identity ensures that the power of any element a of A is well-de�ned. To prove
this we observe that a3 := a ◦ a ◦ a = (a ◦ a) ◦ a = a2 ◦ a = a ◦ a2 = a ◦ (a ◦ a), so there
is no ambiguity in de�ning a3; now observe that, by taking b = a in the Jordan identity,
we have a4 := a3 ◦ a = a2 ◦ a2, which eliminates the possible ambiguity and thus also a4 is
well-de�ned. By induction we have that all powers of a ∈ A are well-de�ned. This implies
that A is always power-associative, in the sense that the sub-algebra generated by any of its
elements is associative and am ◦ an = am+n, for all m,n ∈ N.

De�nition 3.1.2 (FRJA). A Formally real Jordan algebra (FRJA) is a Jordan algebra A
such that, for any �nite set a1, a2, . . . , an ∈ A, it holds true that

a2
1 + a2

2 + · · ·+ a2
n = 0 =⇒ a1 = a2 = · · · = an = 0, (3.1.2)

just as if the elements a1, a2, . . . , an were real, which explains the name. FRJAs are naturally
endowed with a partial ordering: given a FRJA A and two elements a, b ∈ A, a ≤ b if and only
if b− a is equal to a sum of squares. This means that the squares of A are positive. A FRJA
can be endowed with the structure of Hilbert space by de�ning an inner product induced by
the Jordan product as follows: 〈a, b〉 := Tr(La◦b), for all a, b ∈ A and with La◦b being the
endomorphism La◦b : A → A, c 7→ (a ◦ b) ◦ c, for all c ∈ A.

FRJAs of �nite dimension are classi�ed and decomposed as direct sums of simple Jordan
algebras, see [79]. The most surprising consequences of the trichromacy axiom are provided
by the classi�cation theorem of Jordan-von Neumann-Wigner, see for instance [8]. According
to this theorem there are only two possible choices for A, which are not isomorphic as FRJAs:

1. R⊕ R⊕ R, an associative Jordan algebra, endowed with the following Jordan product:

(t1 + t2 + t3) ◦ (s1 + s2 + s3) = (t1s1 + t2s2 + t3s3), ti, si ∈ R, i = 1, 2, 3,

whose domain of positivity is R+ × R+ × R+.
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3. Resniko�'s approach and its quantum interpretation

2. H(2,R) ∼= R⊕R2, two isomorphic not associative Jordan algebras, i.e., respectively, the
algebra of 2 × 2 real symmetric matrices and the so-called spin factor. Their Jordan
products are respectively: the symmetrized matrix product for H(2,R), i.e. A ◦ B :=
1
2(AB +BA), with A,B ∈ H(2,R), and the following product for the spin factor:

(α1,v1) ◦ (α2,v2) = (α1α2 + 〈v1,v2〉, α1v2 + α2v1), (3.1.3)

where αi ∈ R, vi ∈ R2, i = 1, 2, and 〈 , 〉 denotes the Euclidean scalar product on R2.
Their domains of positivity are, respectively, C(H(2,R)) := H+(2,R) which is the set
of positive semi-de�nite 2× 2 matrices, i.e. symmetric matrices with non-negative trace
and determinant, and C(R ⊕ R2) := L+ = {(α,v)t ∈ R ⊕ R2, α ≥ 0, α2 − ‖v‖2 ≥ 0}
which is the closure of the future lightcone, ‖ ‖ being the Euclidean norm.

When R⊕ R⊕ R is endowed with the so-called Helmholtz-Stiles metric:

ds2 =
3∑
i=1

ai (dξi/ξi)
2 , (3.1.4)

ai, ξi ∈ R+, it represents the metric space used in the standard colorimetry, see e.g. [163].
Since this space has been extensively studied, in the sequel we will concentrate only on the
second possibility which, as we will see, contains the quantum structure that we are looking
for.

Notice that as a vector space, R⊕ R2 can be identi�ed with the 3-dimensional Minkowski
space R1,2, that explains the use of the terminology future lightcone for its domain of positivity.

As underlined before, the second type of FRJA has two di�erent, isomorphic expressions.
The natural isomorphism between H(2,R) and R⊕ R2 is given by:

χ : H(2,R)
∼−→ R⊕ R2(

α+ v1 v2

v2 α− v1

)
7−→ (α, (v1, v2)t).

(3.1.5)

It is easy to prove that χ is an isomorphism of Jordan algebras, so, in particular, given
A,B ∈ H(2,R) it respects their respective Jordan products, i.e. χ(A ◦ B) = χ(A) ◦ χ(B).
Furthermore χ induces as well an isomorphism between their domains of positivity, hence
C(H(2,R)) ∼= C(R⊕ R2).

An important property of FRJAs is that C(A) is always self-dual, i.e.

C(A) ∼= C∗(A) := {ω ∈ A∗ : ∀b ∈ C(A), ω(b) ≥ 0}, (3.1.6)

where A∗ denotes the dual vector space of A. As we will see later on, self-duality will play an
important role, e.g. in Chapter 5.

3.2 The duality state-observable

Non-associative Jordan algebras have been proven to provide a perfectly valid framework
to develop quantum theories in the pioneering paper [79], in the sense that their algebraic
description of states and observables is equivalent to the density matrix formalism that can
be constructed starting from the ordinary Hilbert space formulation, see e.g. [147, 46]. Non-
commutativity of Hermitian operators on a Hilbert space is replaced by non-associativity in
the Jordan framework, this is essential to preserve the core of quantum theories, i.e. the
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3.2. The duality state-observable

existence of uncertainty relations, which cannot appear if the Jordan algebra of observables is
both commutative and associative.

Color perception shares at least two features with quantum theories: �rst, it makes no sense
to talk about color in absolute terms, a color exists only when it is observed in well-speci�ed
observational conditions, see e.g. [160, 136]; second, repeated color matching experiments on
identically prepared visual scenes do not lead to a sharp selection of a color that matches the
test, but to a distribution of selections picked around the most probable one, which is clearly
reminiscent of the probabilistic interpretation of quantum mechanics.

The quantum trichromacy axiom implies a radical change of paradigm with respect to
classical colorimetry: we no more deal with color in terms of three coordinates belonging to
a �at color space, but with a theory of color states and observables in duality with each other
in which, as we will point out in Chapter 5, perceived colors are inextricably associated with
measurements, mathematically expressed by the so-called e�ects.

A perceptual observable of a visual scene, or simply an observable a, is a sensation that
can be measured leading to the registration of an outcome belonging to a certain set that
depends on the observable. The algebra of observables A of our quantum-like theory of color
perception is H(2,R) ∼= R⊕ R2 and perceptual colors are particular observables that belong
to their domain of positivity.

A perceptual state, or simply a state s, coincides, in practice, with the preparation of a
visual scene for the measurements of its observables. Two examples of states are the following:

a) a color state from a light stimulus is prepared by allowing a naturally or arti�cially
emitted visible radiation to be perceived by an observer;

b) a color state from an illuminated surface is prepared by illuminating a colored patch so
that it can be perceived by an observer.

Observables characterize a state through their measurements and, vice-versa, the preparation
of a particular state characterizes the experimental outcomes that will be obtained. It is
common to resume this consideration as the duality state-observable. From a mathematical
point of view, the duality state-observable is formalized by the Riesz-Markov representation
theorem, see e.g. [132].

It seems natural, at this point, to make an analogy between the notions de�ning a physical
system and color perceptual systems.

De�nition 3.2.1 (Nomenclature of physical systems). The following de�nitions are conven-
tionally assumed in physics, see the classical references [46, 146, 113].

� A physical system S is described as a setting where one can perform physical measures
giving rise to quantitative results in conditions that are as isolated as possible from
external in�uences.

� Observables in S are the objects of measurements. If they form an associative and
commutative algebraic structure, then the physical theory is called classical.

� States of S are associated with the ways S is prepared for the measurement of its ob-
servables.

� The expectation value of an observable in a given state of S is the average result of
multiple measures of the observable conducted in the physical system S prepared in the
same state.

50



3. Resniko�'s approach and its quantum interpretation

Regarding this last de�nition, we notice that this is the standard experimental way of
associating a value to an observable both in classical and in quantum physics for two di�erent
reasons: in the former we assume that nature is deterministic and observables have precise
values, however, we need to introduce the concept of expectation value because all measure-
ments are a�ected by errors; in the latter we assume that nature is intrinsically probabilistic
and the expectation value is needed to associate to every observable the probability that it
will take a given value from a set of admissible outcomes.

When we deal with a visual perceptual system, as an illuminated piece of paper, or a
light stimulus in a vision box, the de�nitions above remain valid, with two major di�erences:
�rst, the instruments used to measure the observables are not physical devices, but the sensory
system of a human being; second, the results may vary from person to person, thus the average
procedure needed to experimentally de�ne the expectation value of an observable in a given
state is, in general, observer-dependent. The response of an ideal standard observer can be
obtained through a further statistical average on the observer-dependent expectation values
of an observable in a given state.

If we specialize this idea to the case of color perception, we may give the following colori-
metric de�nitions.

De�nition 3.2.2 (Nomenclature of color perceptual systems).

� A perceptual chromatic state is represented by the preparation of a visual scene for
psycho-visual experiments in controlled and reproducible conditions.

� A perceptual color is the perceptual observable identi�ed with a psycho-visual measure-
ment performed in a given perceptual chromatic state.

� A perceived color is the expectation value assumed by a perceptual color after psycho-
visual measurements.

We underline that the de�nition of a perceptual color as an observable associated to a
psycho-visual measurement in a given perceptual chromatic state is very di�erent than the
physical meaning of the term `color stimulus', i.e. the spectral distribution of a light signal
across the visual interval. In fact, such a color stimulus, presented to an observer in di�erent
conditions, e.g. isolated or in context, can be sensed as very di�erent perceived colors. Thus,
as we have seen in Chapter 1, it is very ill-posed to identify a perceptual color with a color
stimulus, as also mentioned in [163].

3.3 Chromatic states and von Neumann entropy

In the algebraic formulation of quantum mechanics states are described by density matrices,
i.e. unit-trace positive semi-de�nite matrices. In the quantum-like theory of color perception,
the chromatic state vectors vs = (s1, s2)t belonging to the unit disk D parameterize each
density matrix ρs, in fact the perceptual chromatic state space can be identi�ed with:

S(H(2,R)) =

{
ρs ≡

1

2

(
1 + s1 s2

s2 1− s1

)
, ‖vs‖ ≤ 1

}
, (3.3.1)

or, as a consequence of (3.1.5),

S(R⊕ R2) := χ(S(H(2,R))) =

{
χ(ρs) =

1

2

(
1
vs

)
, ‖vs‖ ≤ 1

}
. (3.3.2)
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This is the state space of a rebit, the R-version of a qubit, see e.g. [161], and it happens to be
the easiest known quantum system.

In this Chapter and in the following ones, to simplify the notation, we will identify a state
s with the unique associated density matrix ρs ∈ H(2,R) and vector χ(ρs) ∈ R⊕ R2.

The expectation value of an observable a ∈ H(2,R) on the state s is the average outcome
of repeated and independent measurements of a performed when the system is identically
prepared in the state s. It is given by:

〈a〉s = Tr(ρs a). (3.3.3)

Notice that this is the classical quantum interpretation of the inner product induced on
the Jordan product on the FRJA. In particular it is easy to prove that, for A = H(2,R),
Tr(ρs ◦ a) = Tr(ρsa). Indeed it is su�cient to recall that ρs ◦ a = 1

2(ρsa + aρs) and that
Tr(ρsa) = Tr(aρs).
Polar coordinates are the most natural ones in D and they provide this alternative parame-
terization of the generic density matrix:

ρs(r, ϑ) =
1

2

(
1 + r cosϑ r sinϑ
r sinϑ 1− r cosϑ

)
, r ∈ [0, 1], ϑ ∈ [0, 2π). (3.3.4)

States can be either mixed or pure, accordingly to the fact that they can be written as a convex
combination of other states or not, respectively.

A commonly used descriptor of mixedness of a quantum state is the so-called von Neu-
mann entropy. It represents the expectation of information gain on a quantum system after
a measurement, thus when it is minimal, then no information gain can be achieved after a
measurement, i.e. we possess all the possible knowledge about the system; while, when it
is maximal, then the expectation of information gain after a measurement on the system is
maximal, which means that we have at disposal the least possible information on the system
itself.

De�nition 3.3.1 (Von Neumann entropy). Let s be a mixed state and ρs be the density
matrix associated to it. The von Neumann entropy S(ρs) of ρs is given by

S(ρs) = −Tr(ρs log2 ρs) = −〈log2 ρs〉s. (3.3.5)

This de�nition actually represents the normalized von Neumann entropy, indeed the non-
normalized von Neumann entropy is de�ned by replacing log2 with log, in that case the maxi-
mal value that it reaches is not 1, but log 2. The following proposition provides an equivalent
de�nition for the (normalized) von Neumann entropy.

Proposition 3.3.2. Let s be a quantum state and ρs be its density matrix, then

S(ρs) = −
∑
k

λk log2 λk. (3.3.6)

Where λk, k = 1, 2, are the eigenvalues of ρs.

Proof. Let the density matrix ρs have the following expression:

ρs =
1

2

(
1 + r cosϑ r sinϑ
r sinϑ 1− r cosϑ

)
. (3.3.7)

We want to prove that Tr(ρs log2 ρs) = λ1 log2 λ1 + λ2 log2 λ2, this is equivalent to proving
that Tr(ρs log ρs) = λ1 log λ1 + λ2 log λ2. The main issue is understanding the expression
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3. Resniko�'s approach and its quantum interpretation

log ρs. From [34] a real matrix having positive eigenvalues, such as ρs since we assumed s to
be a mixed state, admits an unique real logarithm matrix. The issue now becomes obtaining
an explicit expression for log ρs. Let us start by diagonalizing ρs to facilitate this task. Via
straightforward computations it is easy to obtain that P−1

ϑ ρsPϑ = diag(λ1, λ2), with

Pϑ =

(
− sinϑ 1 + cosϑ

1 + cosϑ sinϑ

)
, (3.3.8)

and λ1 = (1− r)/2, λ2 = (1 + r)/2.

Given a diagonal matrix D = diag(a, b), with a, b > 0, it is easy to prove that its logarithm
is given by:

logD = diag(log a, log b) (3.3.9)

An easy example is given by Id2, indeed, as we might expect, log Id2 = O2. Let us consider
the density matrix 1

2Id2 (it will be needed in the next steps of this proof). Its logarithm is
given by

log

(
1

2
Id2

)
= diag(− log 2,− log 2) = −(log 2)Id2. (3.3.10)

By Theorem 2.8 of [69], for all the matrix A such that ||A−Id||2 < 1 the following function

logA =

+∞∑
k=1

(−1)k+1 (A− Id)k

k
, (3.3.11)

is well de�ned and it is such that elogA = A. In our case, let us call rRϑ = 2ρs − Id2. It is
easy to prove that ||rRϑ||2 < 1, since 0 < r < 1 and ||Rϑ||2 = 1. Thus

log(2ρs) =
+∞∑
k=1

(−1)k+1 (rRϑ)k

k
. (3.3.12)

Another property of the matrix logarithm states that if A,B are two commuting positive-
de�nite real matrices, then log(AB) = logA + logB. This is to say that log ρs = log(2ρs) +
log
(

1
2Id2

)
. Thus, recalling Equation (3.3.10):

log ρs = log(2ρs)− (log 2)Id2. (3.3.13)

Using Equation (3.3.12) the previous equation becomes:

log ρs =

+∞∑
k=1

(−1)k+1 (rRϑ)k

k
− (log 2)Id2. (3.3.14)

It is easy to show that Pϑ diagonalizes as well Rϑ, thus P
−1
ϑ RϑPϑ = diag(−1, 1). Let us now
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3.3. Chromatic states and von Neumann entropy

show that Pϑ diagonalizes also log ρs:

P−1
ϑ log ρsPϑ =P−1

ϑ

(
+∞∑
k=1

(−1)k+1 (rRϑ)k

k
− (log 2)Id2

)
Pϑ

=

+∞∑
k=1

(−1)k+1 (rP−1
ϑ RϑPϑ)k

k
− (log 2)Id2

=
+∞∑
k=1

(−1)k+1 (r diag(−1, 1))k

k
− (log 2)Id2

= diag

(
+∞∑
k=1

(−1)2k+1 r
k

k
,

+∞∑
k=1

(−1)k+1 r
k

k

)
− (log 2)Id2

= diag

(
−

+∞∑
k=1

rk

k
,

+∞∑
k=1

(−1)k+1 r
k

k

)
− (log 2)Id2

= diag(log(1− r), log(1 + r))− (log 2)Id2

= diag

(
log

(
1− r

2

)
, log

(
1 + r

2

))
= diag(log λ1, log λ2),

(3.3.15)

where the second equality holds because of the continuity of the conjugation by Pϑ.
The above computation shows that ρs and log ρs are simultaneously diagonalized by Pϑ.

Let us �nally calculate S(ρs). Using the fact that the trace is invariant under change of basis,
we can perform the following computations and obtain the thesis:

Tr(ρs log ρs) = Tr(P−1
ϑ ρs log ρsPϑ) = Tr(P−1

ϑ ρsPϑP
−1
ϑ log ρsPϑ)

= Tr(diag(λ1, λ2) diag(log λ1, log λ2))

= λ1 log λ1 + λ2 log λ2.

(3.3.16)

Notice that actually we have de�ned the von Neumann entropy for mixed states only.
Indeed the density matrix of a pure state is a rank-1 projector, hence it is not invertible, so it
does not ful�ll the hypotheses of Theorem 1 in [34], that assures the existence of the logarithm
matrix. Even if the log of the density matrix corresponding to a pure state is not de�ned, it
is possible to de�ne its von Neumann entropy as a limit procedure. In fact, by Proposition
3.3.2, for all r ∈ [0, 1) we have that:

S(ρs) = S(r) = −1− r
2

log2

(
1− r

2

)
− 1 + r

2
log2

(
1 + r

2

)
. (3.3.17)

Pure states correspond to the value r = 1, where S(r) is not de�ned. However we can de�ne
S at 1, as the limit S(1) := lim

r→1−
S(r) = 0. Thus the von Neumann entropy has the following

expression:

S(r) =

{
−1−r

2 log2

(
1−r

2

)
− 1+r

2 log2

(
1+r

2

)
r ∈ [0, 1)

0 r = 1
, (3.3.18)

Notice that, after straightforward computations, S(r) can be rewritten as follows:

S(r) =

{
1−

[
1
2 log2(1− r2) + r

2 log2

(
1+r
1−r

)]
r ∈ [0, 1)

0 r = 1
. (3.3.19)
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3. Resniko�'s approach and its quantum interpretation

As proven in [71] or [123], the von Neumann entropy is invariant under orthogonal conju-
gation, which implies that it is a radial function, moreover, it is concave and, importantly, it
provides a characterization of pure states and of the maximally mixed state, denoted with ρ0:

� ρs is a pure state if and only if S(ρs) = 0;

� ρ0 = argmaxρs S(ρs).

From Equation (3.3.18) we have that ρ0 = Id2/2, where Id2 is the 2 × 2 identity matrix, or
equivalently, χ(ρ0) = 1

2(1,0)t, which means that the maximally mixed state is parameterized
by the null vector, the center of D, where S(0) = 1. Figure 3.3 provides a 2D and a 3D plot
of the normalized von Neumann entropy.

(a) Plot of S(r), �xing ϑ. (b) Plot of S(ρs) = S(r, ϑ).

Figure 3.1: Plots of the normalized von Neumann entropy.

Since the highest degree of entropy is equivalent to the minimal amount of chromatic
information, ρ0 is identi�ed with the achromatic state, denoted with sa. Instead, pure states
are parameterized by the points of the border of D and are identi�ed with the hues of perceived
colors:

PS(H(2,R)) =

{
ρs =

1

2

(
1 + s1 s2

s2 1− s1

)
, ‖vs‖ = 1

}
=

{
ρs =

1

2

(
1 + cosϑ sinϑ

sinϑ 1− cosϑ

)
, ϑ ∈ [0, 2π)

}
,

(3.3.20)

or, equivalently,

PS(R⊕ R2) := χ(PS(H(2,R))) =

{
χ(ρs) =

1

2

(
1
vs

)
, ‖vs‖ = 1

}
. (3.3.21)

In Chapter 6, Section 6.3.3 we will give an argument in favor of the interpretation of pure
states as hues.

Recalling the intuitive de�nition of saturation quoted in Chapter 1, Subsection 1.3.1, it
is quite natural to de�ne the saturation Σ of the chromatic state ρs(r, ϑ) as done in [18, 19],
using the von Neumann entropy, expressed as in Equation (3.3.19), as follows:

Σ(r) := 1− S(r) =

{
1
2 log2(1− r2) + r

2 log2

(
1+r
1−r

)
r ∈ [0, 1)

1 r = 1
, (3.3.22)
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In this way we have Σ(0) = 0 and Σ(1) = 1. We must stress that in Chapter 6 we will
come back on the problem of de�ning the saturation of a perceived color via the von Neumann
entropy, in particular we will relate it to the concept of relative entropy that will be introduced
in Chapter 5.

3.4 Chromatic opponency: Hering's rebit

The next fundamental information to recall is how Hering's chromatic opponency naturally
appears in the quantum-like formalism. The following presentation is explicitly based on the
canonical decomposition of density matrices known as Bloch representation. Given (ei)

2
i=0, the

canonical basis of R⊕ R2, if we de�ne σi := χ−1(ei), then we get

σ0 ≡ Id2, σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, (3.4.1)

where σ1 and σ2 can be recognized to be the two real Pauli matrices. The generic density
matrix of S(H(2,R)) can be decomposed in terms of the real Pauli matrices as follows:

ρs(s1, s2) = ρ0 +
1

2
(s1σ1 + s2σ2) = ρ0 +

1

2
vs · ~σ, (3.4.2)

where vs = (s1, s2) is called the Bloch vector associated to s and vs · ~σ := s1σ1 + s2σ2. The
set {σ0, σ1, σ2} is an orthogonal basis for H(2,R) with respect to the Hilbert-Schmidt inner
product, i.e.

〈σi, σj〉HS := Tr(σiσj) = 2δij , i, j = 0, 1, 2, (3.4.3)

so the components of the Bloch vector are the expectation values of the real Pauli matrices
on the state s, in fact:

vs = (s1, s2) = (Tr(ρs σ1),Tr(ρs σ2)) = (〈σ1〉s, 〈σ2〉s). (3.4.4)

As a consequence, Equation (3.4.2) can be re-written as follows:

ρs = ρ0 +
1

2

(
〈σ1〉s 〈σ2〉s
〈σ2〉s −〈σ1〉s

)
, (3.4.5)

and its polar expression is:

ρs(r, ϑ) = ρ0 +
1

2
[r cosϑσ1 + r sinϑσ2] , (3.4.6)

with r ∈ [0, 1] and ϑ ∈ [0, 2π).
Given two generic angles ϑ1, ϑ1 ∈ [0, 2π), the pure states ρsk(1, ϑk), k = 1, 2, are rank-1

projectors that can be represented as follows:

ρsk(1, ϑk) =
1

2
(Id2 + cosϑkσ1 + sinϑkσ2) ≡ ρ0 +

1

2
vsk · ~σ, (3.4.7)

with vsk = (cosϑk, sinϑk), k = 1, 2.
Rank-1 projectors are characterized by the following condition: ρs(1, ϑ) ◦ ρs(1, ϑ) = ρs(1, ϑ).

Notice that the projector ρsk(1, ϑk) is a projection operator along the direction given by
the unit vector uk = (cos(ϑk/2), sin(ϑk/2)). Indeed by straightforward computations we can
see that

ρsk(1, ϑk) =
1

2

(
1 + cosϑk sinϑk

sinϑk 1− cosϑk

)
= uku

t
k. (3.4.8)
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3. Resniko�'s approach and its quantum interpretation

To better understand the following it is important to stress that, given a pure state sk,
its Bloch vector representation vsk does not correspond to the direction of projection uk of
ρsk(1, ϑk).

In quantum theories, orthogonality with respect to the Hilbert-Schmidt inner product
is used to measure incompatibility between states, and ρs1(1, ϑ1), ρs2(1, ϑ2) project on two
orthogonal rays in R2 if and only if their Bloch vectors vs1 ,vs2 are antipodal. Indeed, recalling
the fact that Tr(σ1) = Tr(σ2) = Tr(σ1σ2) = Tr(σ2σ1) = 0 and that σ2

1 = σ2
2 = Id2, we obtain:

〈ρs1(1, ϑ1), ρs2(1, ϑ2)〉HS = Tr(ρs1(1, ϑ1)ρs2(1, ϑ2))

=
1

4
Tr((Id2 + v1 · ~σ)(Id2 + v2 · ~σ))

=
1

4
Tr(Id2 + v1 · ~σ + v2 · ~σ + (v1 · ~σ)(v2 · ~σ))

=
1

4
Tr(Id2 + (cosϑ1σ1 + sinϑ1σ2)(cosϑ2σ1 + sinϑ2σ2))

=
1

4
Tr((1 + cosϑ1 cosϑ2 + sinϑ1 sinϑ2)Id2)

=
1

2
(1 + cos(ϑ1 − ϑ2)).

(3.4.9)

The latter expression is equal to 0 if and only if |ϑ1 − ϑ2| = π, i.e. the corresponding Bloch
vectors v1 and v2 are diametrically opposed.

This condition of incompatibility is usually interpreted as the fact that the two states have
0 probability of being simultaneously measured. In other words antipodality of vectors in the
Bloch representation correspond to orthogonality with respect to the Hilbert-Shmidt product.
For further details see e.g. [71].

In Hering's theory of color perception, see [72], incompatibility between color sensations
is called opposition, for this reason two pure states ρs1(1, ϑ1) and ρs2(1, ϑ2) are said to be
chromatically opponent if incompatible, hence when |ϑ1 − ϑ2| = π. The concept of opposition
will play a fundamental role in Chapter 6.

Let us immediately use opponency to corroborate our interpretation of ρ0 as the achromatic
state: it is easy to prove that the following formula holds

ρ0 =
1

4
ρs(1, 0) +

1

4
ρs(1, π) +

1

4
ρs

(
1,
π

2

)
+

1

4
ρs

(
1,

3π

2

)
, (3.4.10)

this shows that ρ0 is the mixed state obtained as a convex combination, with exactly the same
coe�cients, of the balance between two couples of pure opponent chromatic states.

Notice also that the real Pauli matrices can be expressed as follows:

σ1 = ρs(1, 0)− ρs(1, π), σ2 = ρs

(
1,
π

2

)
− ρs

(
1,

3π

2

)
, (3.4.11)

thus Equation (3.4.6) implies the following, fundamental, formula:

ρs(r, ϑ) = ρ0 +
1

2

{
r cosϑ [ρs(1, 0)− ρs(1, π)] + r sinϑ

[
ρs

(
1,
π

2

)
− ρs

(
1,

3π

2

)]}
. (3.4.12)

Equation (3.4.12) is the exact quantum analogue of Hering's representation of color sensations:
the generic chromatic state s identi�ed by the density matrix ρs(r, ϑ) can be interpreted as
the contribution of the achromatic state ρ0 and the balance between two couples of opponent
chromatic states, encoded by the real Pauli matrices σ1, σ2.
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3.4. Chromatic opponency: Hering's rebit

We must stress that given a density matrix ρs, one can evaluate the contribution of the
red/green opposition degree given by σ1 by computing 〈σ1〉s = Tr(ρ(r, θ) ◦ σ1) = r cos θ, and
the same for σ2. It is quite remarkable that the Bloch disk gives a quantum analogue of
the Hering disk that describes the color opponency mechanism resulting from the activity
of certain retinal neurons [141]. The matrix σ1 encodes the opposition red/green, while the
matrix σ2 encodes the opposition yellow/blue. We underline that this quantum justi�cation
of the color opponency derives only from the trichromacy axiom when considering the algebra
H(2,R).

A fundamental remark on color perception made by Hering is that, for unrelated colors,
while the chromatic information is intrinsic, the achromatic part can be determined only by
means of comparisons with other colors, see e.g. [73]. An observer can measure the degree of
opposition red vs. green and yellow vs. blue of an unrelated color, see e.g. [74], but, due to
adaptation mechanisms of the human visual system, he or she cannot establish how bright or
dim a perceived unrelated color is (apart from extreme situations close to the visible threshold
or the glare limit, that we do not consider here). This ambiguity is represented in Equation
(3.4.12) by the fact that ρ0 appears as a sort of `o�set state', independent of the state s.

For clear reasons, we call Hering's rebit the quantum-like system that we have just de-
scribed. This latter can be thought as a mathematical formalization of Newton's chromatic
disk, as depicted in Fig. 3.2.

Figure 3.2: Hering's rebit as a quantum-like formalization of Newton's chromatic disk.

In other words we propose, as a theoretically well-founded model for a chromaticity dia-
gram, the Bloch disk representation of Hering's rebit. In the following Chapter we will see
that Hering's rebit has a structure of gyrovector space, and the behavior of its elements, the
chromatic vectors, allows us to justify Yilmaz's results, already mentioned in Chapter 2.
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Chapter 4

Relativity within the quantum model

In this chapter, based on [13], we overcome the problems about Yilmaz's approach pre-
sented in Chapter 2 by providing a completely theoretical proof of the experimental outcomes
claimed by Yilmaz in the setting of the quantum-like framework for color perception introduced
in Chapter 3. In particular we will extend the theory of the previous chapter to incorporate
also relativistic phenomena, providing new de�nitions and adopting the notation of Chapter 3
to describe Yilmaz's model in the terms of the quantum-like one (instead of the one adopted
for Chapter 2, more faithful to Yilmaz's original paper).

More speci�cally the concept of chromatic vector will be of fundamental importance, since
Yilmaz's experiments can be explained in terms of Einstein-Poincaré's addition law between
chromatic vectors. We have obtained this result by following the hint given by Mermin's
alternative reconstruction of the special theory of relativity from Einstein-Poincaré addition
law for velocity vectors. Moreover these theoretical results are shown to be coherent with
existing experimental data, see Section 4.3.1.

In Chapter 1 we mentioned the presence of hyperbolic metrics in the color literature. In
this Chapter we will introduce the Hilbert hyperbolic metric stressing out that, di�erently
to all the other works that we have consulted, in our model this hyperbolic metric emerges
naturally from the mathematical formalism, see as well [12], and it is not superimposed to �t
experimental data or perceptual e�ects. As we will better specify in Section 4.3, the relevance
of this metric is due to the fact that it expresses a chromatic constancy property with respect
to observer changes.

4.1 Yilmaz relativity of color perception

We must stress that the description of Yilmaz's model, and in particular of the procedure
through which he obtained Lorentz transformations in the color context, provided in this
chapter, in Subsection 4.1.4, di�ers from the one of Chapter 2, Section 2.2, in the fact that
it is more faithful to Yilmaz's original one. The reason is that we want to focus on the data
concerning solely the information about hue and saturation of the color stimuli, in order to
better relate it to the algebraic structure of the disk of chromatic vectors that will provide a
theoretical justi�cation of Yilmaz's results in Section 4.2.

Yilmaz's work [166, 165] is, to the best of our knowledge, the �rst contribution that in-
vestigates the geometry of color perception from the viewpoint of special relativity. The main
Yilmaz goal is to obtain colorimetric Lorentz transformations by interpreting mathematically
the outcomes of three basic experiments, see Subsection 2.1.2. As we have detailed in Section
2.5, these experiments are quite controversial and this fact gives an even stronger motivation to
recast Yilmaz in a mathematical setting where these experiments can be completely bypassed.
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4.1.1 Yilmaz colorimetric setting

In this subsection we are going to introduce a notation more in accordance to the one of
Chapter 3, for the concepts already presented in Subsection 2.1.1.
In order to analyze the results of color matching experiments, Yilmaz considers a conical color
space that, in our notation, can be written as follows:

C̃ = {(α, x, y) ∈ R3, Σ2 − ‖v‖2 ≥ 0, α ≥ 0} , (4.1.1)

where Σ is a non-negative real constant and, when α > 0, v = (v1, v2) = (x/α, y/α), otherwise,
if α = 0, then also v is null. Notice that C̃ is a reparametrization of C of Chapter 2. A color
c of C̃ can be viewed both as a point of R3 with coordinates (α, x, y) and as a couple (α,v),
where α is a positive real number and v is a vector of R2 with Euclidean norm given by
v = ‖v‖ less or equal to Σ.

In Yilmaz's context, the norm v =
√
v2

1 + v2
2 =

√
x2 + y2/α represents the saturation of

the color c and satis�es v ≤ Σ, hence Σ is interpreted as the maximal perceivable saturation.
Moreover, the angle de�ned by φ = arctan(y/x) = arctan(v2/v1) represents the hue of c and
the non-negative real α is associated to its lightness. The de�nitions of hue, saturation and
lightness of classical colorimetry can be consulted for instance in Chapter 1.

We use the notation C̃ instead of the trichromacy cone C introduced in Chapter 3, because
the latter is intrinsically equipped with the rich algebraic structure described in the previous
chapter, that is not part of Yilmaz's model.

The existence of a positive real Σ, which plays the role of a limiting saturation `reached by
spectral colors', is one of the fundamental assumptions of Yilmaz. The mathematical formula
for saturation given above is the analogue of speed (the magnitude of the velocity vector) in
mechanics, thus it seems clear that, from Yilmaz's viewpoint, the limiting saturation Σ should
be interpreted as an analogue of the speed of light.

We recall that the purpose of the three experiments described in [166] is to show that:
1. color perception is a relativistic phenomenon;
2. the limiting saturation is constant under `illuminant changes';
3. there exists a colorimetric aberration e�ect which is the analogue of the relativistic one.

It is worth mentioning that Yilmaz does not use any information related to a hypothetical
invariant quadratic form. In physics, the introduction of an invariant metric on the Minkowski
spacetime is motivated by the experimental evidence about the constancy of the speed of light
in vacuum measured by inertial observers, however an analogous result is not, or at least not
yet, available in the colorimetric setting. It is arguable that this is the reason why Yilmaz
wanted to bypass the introduction of an invariant metric by introducing the results of the
third experimentm, and talking just after obtaining the Lorentz boosts about the Minkowski
quadratic form.

Our description and subsequent analysis of Yilmaz's experimental results will be greatly
simpli�ed if we set up a novel nomenclature adapted from special relativity.

4.1.2 The nomenclature of the relativity of color perception

Without any further speci�cation, we consider a color c as an abstract coordinate-free
element of the space C̃. This interpretation is the exact analogue to what we do in Galilean
mechanics when we consider the position as an abstract element of the space R3 without
coordinates. For color sensations induced by non-self luminous stimuli, a coordinate system
can be introduced in C̃ by considering an illuminant which allows us to identify c and to
perform measurements on it. For this reason, here we propose the following de�nition.
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4. Relativity within the quantum model

De�nition 4.1.1 (Illuminant). An illuminant is a reference frame I of the space C̃.

It is well-known, see e.g. [49, 63], that when a person is embedded for a su�cient time in a
visual scene illuminated by I, he/she will perceive the surface of an object having non-selective
re�ectance properties without a color saturation. In this case, we call that person adapted to
I. This consideration naturally leads to the following de�nition.

De�nition 4.1.2 (Observer). We call any couple o = (c, I), such that the color c ∈ C̃ has
zero saturation in the reference frame I, an observer adapted to the illuminant I, or simply
an observer.

Given the analogy between the saturation of a color and the speed of a velocity vector for
a mechanical system, we can say that an observer o = (c, I) is characterized by the fact that
the color c appears `at rest' in the reference frame I. Carrying on the analogy with mechanics,
we propose the following �nal de�nition.

De�nition 4.1.3 (Inertial observers). We call o1 = (c1, I1) and o2 = (c2, I2) two inertial
observers and we denote by (α1, x1, y1) = (α1, v1) and (α2, x2, y2) = (α2, v2) the coordinates
of a generic color in the reference frame I1 and I2, respectively.

By de�nition of observer, we have that cii = (αi, 0, 0) = (αi,0), i = 1, 2. However, given
i, j = 1, 2, i 6= j, cj will be described by oi with a color cij represented by

cij = (α,vij), (4.1.2)

where α ≥ 0 is a suitable non-negative scalar and vij = vcij
veri�es vij = ‖vij‖ ≤ Σ.

4.1.3 Yilmaz experiments revisited

Thanks to the nomenclature just introduced, we are now able to give a concise description
of Yilmaz experiments, for the original description see [166, 124] or Subsection 2.1.2.

In all three experiments, Yilmaz considers only the case of two inertial observes o1 = (c1, I1)
and o2 = (c2, I2) such that only the �rst component of the vector v12 is non-zero, i.e. vc12 =

v12 = (v12, 0).

The �rst experiment is intrinsic in the system given by the two inertial observes: each one
describes the color that is perceived at rest by the other. The outcome claimed by Yilmaz is
the following:

vc21 = −vc12 . (4.1.3)

If we assume this result to be correct, then it follows that color perception is a relativistic
phenomenon and so an absolute description of the sensation of color is meaningless.

The second and the third experiment involve the two inertial observers de�ned above in the
act of observing a particular color c ∈ C̃ which is described by o1 as having maximal saturation,
i.e. ‖vc1‖ = Σ, thanks to the contribution of only one component of the vector vc1 , the other
being zero. The position of the non-null component distinguishes the second from the third
experiment. Speci�cally, the outcome of the second experiment can be summarized as follows:

vc1 = (Σ, 0) =⇒ vc2 = (Σ, 0) , (4.1.4)

i.e., if c ∈ C̃ is described by o1 has having maximal saturation thanks to the sole contribution
of the �rst component of vc1 , then the description of c ∈ C̃ performed by o2 is identical.

Instead, the outcome of the third experiment is the following:

vc1 = (0,Σ) =⇒ vc2 = (−Σ sinϕ,Σ cosϕ) , (4.1.5)
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4.1. Yilmaz relativity of color perception

with sinϕ = v12/Σ, so, if c ∈ C̃ is described by o1 has having maximal saturation thanks to the
sole contribution of the second component of vc1 , then c will be still described by o2 as having

maximal saturation since ‖vc2‖ =
(
Σ2(sin2 ϕ+ cos2 ϕ)

)1/2
= Σ, but the hue description will

be di�erent.
As already mentioned in Section 2.4, the third experiment is meant to mimic the relativistic

aberration e�ect. We are going to see that this experiment is crucial for the derivation of the
colorimetric Lorentz transformations performed by Yilmaz.

Finally, we underline that, if Yilmaz outcomes are assumed to be true, then colors with
limiting saturation are perceived as such by all inertial observers, which is in clear analogy of
the fact that the speed of light is measured as constant by all inertial observers.

4.1.4 Yilmaz derivation of colorimetric Lorentz transformations

We explain now how to obtain the colorimetric Lorentz transformations from Equations
(4.1.3), (4.1.4) and (4.1.5). In [166] the coordinate change between o1 and o2 is supposed to
be linear. When we take into account the speci�c choices made by Yilmaz, the coordinate
change is given by:  α2

x2

y2

 =

 a11 a12 0
a21 a22 0
0 0 1

 α1

x1

y1

 . (4.1.6)

Proposition 4.1.4. With the notations introduced before, the color coordinate transformation
corresponding to an illuminant change is the Lorentz boost along the x-direction described by
the following equation: α2

x2

y2

 =


1√

1−(v12/Σ)2
−v12/Σ2√
1−(v12/Σ)2

0

−v12√
1−(v12/Σ)2

1√
1−(v12/Σ)2

0

0 0 1


 α1

x1

y1

 . (4.1.7)

Proof. Using Equation (4.1.6) and by calculating its inverse, after straightforward computa-
tions, we obtain:

x2

α2
=
a21α

1 + a22x
1

a11α1 + a12x1
,

x1

α1
=
−a21α

2 + a11x
2

a22α2 − a12x2
. (4.1.8)

As it can be checked in more detail in [124] or Section 2.2, the fact that v12 = (v12, 0) and
Equation (4.1.3) are equivalent to:

a21

a11
= −v12,

−a21

a22
= v12 . (4.1.9)

This shows that: a11 = a22 and a21 = −v12a22.
The result of the second experiment, Equation (4.1.4), is equivalent to:

Σ =
a21 + a22Σ

a11 + a12Σ
, (4.1.10)

which gives: a12 = −(v12a22)/Σ2.
From the third experiment, Equation (4.1.5), we have:

− tanϕ =
a21α

1 + a22x
1

y1
=
a21

Σ
. (4.1.11)

Since sinϕ = v12/Σ, this implies:

a22 =
1√

1− (v12/Σ)2
. (4.1.12)
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4. Relativity within the quantum model

It is worth noticing that the derivation of these colorimetric Lorentz transformations pro-
posed by Yilmaz relies only on information given by the v-component of colors, the only one
appearing in Equations (4.1.3), (4.1.4) and (4.1.5). As we will see, in the quantum framework
these v-components correspond to the perceptual chromatic vectors that will be introduced in
Subsection 4.2.1.

4.1.5 Issues about Yilmaz approach

Without calling into question the great originality of Yilmaz's ideas and the relevance of his
results, we deem necessary to underline some issues about the approach that we have reported
above. As mentioned before, the derivation of the colorimetric Lorentz transformations is
essentially based on the following assumptions:

� the space of perceived colors is the cone C̃, and, in particular, there exists a limiting
saturation Σ;

� the coordinate changes between inertial observers are linear transformations;

� the results obtained from the three experiments are considered as valid.

However, as we have underlined in Section 2.5, no experimental result, nor apparatus descrip-
tion is available in [166] and this naturally raises doubts about the actual implementation of
the three experiments. Furthermore, while the results of the �rst two experiments are plausi-
ble, the outcome of the third seems completely illusory. In fact, Yilmaz de�nes the limiting
saturation of a color c = (α, x, y) ∈ C̃ as a value Σ of ‖v‖ that cannot be perceptually matched
with that of any Munsell chip, thus, while this de�nition permits to identify the limiting satu-
ration of a color, it does not allow its measurement. As a consequence, Equation (4.1.5), with
its precise analytical form, seems to be an ad-hoc formula used to single out the colorimetric
Lorentz transformations (4.1.7), more than the real outcome of a psycho-physical experiment.

It may be tempting to adopt a more conventional approach to obtain the desired transfor-
mations starting, for instance, from the fact that there exists a limiting saturation invariant
under observer changes and that the color space is isotropic and homogeneous. However, to
go further, it is necessary to introduce an analogue of the Minkowski metric, which Yilmaz
circumvents. One may choose to follow the standard path used in special relativity, see e.g.
[96, 97], to justify the existence of such a metric. However, while the assumptions that go along
with this approach rely on a solid experimental basis for what concerns the Minkowski space-
time, they are far from being either obvious or simple to be tested for the space of perceived
colors.

For this reason, we consider a better solution to follow less conventional, but fully equiv-
alent, approaches to special relativity as, e.g., that of the remarkable Mermin's paper [112],
whose main focus is the Einstein-Poincaré velocity addition law and not Lorentz transforma-
tions. This alternative approach seems more suitable because the colorimetric e�ects reported
by Yilmaz involve the sole v-components (or, equivalently, the sole perceptual chromatic vec-
tors that will be de�ned in Subsection 4.2.1). The appropriateness of Mermin's approach is
also justi�ed by the fact that, as already declared by the emblematic title `Relativity without
light', he deals with relativity without speci�cally considering the physics of electromagnetic
waves, thus providing a more general approach that can also be used in our case.

We will show how to recover Yilmaz's results from a purely theoretical point of view, thus
avoiding the issues discussed in this Subsection, thanks to the quantum framework of color
perception presented in Chapter 3.
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4.2. Einstein-Poincaré's addition law for chromatic vectors

4.2 Einstein-Poincaré's addition law for chromatic vectors

In this section we show that the outcomes of the �rst two experiments quoted by Yilmaz
in his model can be rigorously derived from the fact that the so-called perceptual chromatic
vectors, that will be introduced in Subsection 4.2.1, satisfy the Einstein-Poincaré addition law.

As we have done in Subsection 4.1.2, in order to show in the clearest way how to obtain
the results stated above, we �rst need to introduce several notions in Subsection 4.2.1. The
notions introduced in Chapter 3 will be needed as well.

4.2.1 The nomenclature perceptual color attributes in the quantum colori-

metric framework

We recall that a perceptual color c is an element of the trichromacy cone C, i.e. explicitly
c = (α,v) with α2 − ‖v‖2 ≥ 0 and α ≥ 0.

De�nition 4.2.1 (Magnitude of a perceptual color). Let c = (α,v) ∈ C be a perceptual color.
The positive real α is called the magnitude of c.

Recalling that ρ0 = Id2 the magnitude can be equivalently de�ned as the evaluation of c
on the state of maximal entropy, as follows

α := 〈c〉ρ0 = Tr(c ◦ ρ0). (4.2.1)

In this chapter we prefer to use the term magnitude, instead of the term lightness, adopted
by Yilmaz because of possible confusion. A more thoughtful discussion about this issue is the
object of Chapter 6.

Since the cone C is self-dual, c can also be considered as an element of the dual cone C∗.
The case when c has magnitude α = 1/2 is special, in fact, as previously seen, thanks to the
isomorphism de�ned in Equation (3.1.5), c can naturally be associated to a density matrix
representing its state. This justi�es the following de�nition.

De�nition 4.2.2 (Perceptual color state). If the perceptual color c = (α,v) has magnitude
α = 1/2, then c is called a perceptual color state and denoted with cs. Thus, every perceptual
color state has the following expression:

cs := (1/2,v), with ‖v‖ ≤ 1/2. (4.2.2)

If we want to associate a perceptual color c with magnitude α ≥ 0, α 6= 1/2, to a density
matrix, we must proceed in two steps: the �rst consists in dividing c by twice the magnitude,
i.e. c/2α = (1/2,v/2α), which belongs to D1/2 = {c ∈ C, α = 1/2} ∼= {u ∈ R2 : ‖u‖ ≤ 1/2}.
In this way, the new magnitude is correctly set to 1/2, coherently with Equation (3.3.1), but
we need a second steps to restore the variability of the vector part inside the unit disk, which
is easily accomplished by considering 2vc ∈ D1

∼= {u ∈ R2 : ‖u‖ ≤ 1}.
The simple procedure just described leads to the following two de�nitions.

De�nition 4.2.3 (Perceptual chromatic vector). Let c = (α,v) ∈ C, then vc := v/2α ∈ D1/2

is called the perceptual chromatic vector of c.

The reason for the name that we have chosen is that vc carries only information about
the chromatic attributes of c and not about its magnitude. Notice that this procedure of
descarding the achromatic component α via division is reminiscent of the construction of the
chromaticity diagrams mentioned in Section 1.1.
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4. Relativity within the quantum model

De�nition 4.2.4 (Perceptual chromatic state). For every perceptual color c = (α,v) ∈ C,
the density matrix ρ(2vc)

ρ(2vc) =
1

2

(
1 + 2vc,1 2vc,2

2vc,2 1− 2vc,1

)
. (4.2.3)

is called perceptual chromatic state of c.

The di�erence between a perceptual color state and a perceptual chromatic state is rep-
resented by the fact that, in the �rst case, the density matrix associated to a color c with
magnitude 1/2 contains all the information about the state of c, magnitude included, which
is not the case for a chromatic state, where the magnitude α of c does not play any role.

Two noticeable conditions about perceptual chromatic states can be singled out, as for-
malized in the following de�nition.

De�nition 4.2.5 (Pure and achromatic perceptual states and colors). Let c = (α,v) ∈ C be
a perceptual color:

� the density matrix ρ(2vc) describes a pure perceptual chromatic state if ‖vc‖ = 1/2. If
that is the case, then c is called a pure perceptual color;

� the density matrix ρ(2vc) describes the state of maximal von Neumann entropy if vc = 0.
If that is the case, then c is said to be an achromatic perceptual color.

Geometrically, pure perceptual colors are in one-to-one correspondence with the points
of the boundary of the disk D1/2, while the center of the disk D1/2 represents achromatic
perceptual colors. Notice that D1/2, or analogously D1, can be considered the quantum-like
version of Newton's disk and of the concept of chromaticity. As we will see, their geometry is
not Euclidean because they can be naturally endowed with the Klein hyperbolic metric.

We now introduce the chromaticity descriptors, that we will call purities and quantities. For
a closer coherence with Yilmaz �rst two experiments, see Subsection 4.1.3, we will consider only
colors c whose perceptual chromatic vectors are of the form vc = (vc, 0) with −1/2 ≤ vc ≤ 1/2.

De�nition 4.2.6 (Pure opponent chromatic vectors). The two chromatic vectors v+ =
(1/2, 0) and v− = (−1/2, 0) are called pure opponent chromatic vectors.

Given a color c, its chromatic vector vc divides the segment connecting v− and v+ (ex-
tremes excluded) in two parts, whose lengths are denoted by p−(c) and p+(c), where:

p−(c) =
1

2
− vc =

1− 2vc
2

∈ [0, 1], p+(c) = vc −
(
−1

2

)
=

1 + 2vc
2

∈ [0, 1]. (4.2.4)

De�nition 4.2.7 (± purity of a perceptual color). p−(c) and p+(c) will be called the − purity
and the + purity of a perceptual color c, respectively.

The sum of the − and + purity of c is 1, so vc can be written as the convex combination of
the pure opponent chromatic vectors v− and v+ with weights given by p− and p+, respectively,
i.e.

vc = p−(c)v− + p+(c)v+. (4.2.5)

Figure 4.1 provides a depiction of the ± purities de�ned above.
The term `purity' is particularly appropriate, not only because it involves the pure opponent

chromatic vectors, but also because it is reminiscent of the same term appearing in classical
CIE colorimetry. Indeed, also the de�nition of `excitation purity' pe of a color c carries the
information about its position on a straight line, precisely the one joining the equienergy
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Figure 4.1: Purities.

point w (achromatic color) of the CIE 1931 chromaticity diagram with the so-called dominant
wavelength of c (represented by a point belonging to the border of the chromaticity diagram).
See [163] for more details.

De�nition 4.2.8 (Purity ratio). Given a perceptual color c ∈ C, such that |vc| 6= 1/2, the
non-negative real number

r(c) =
p−(c)

p+(c)
=

1− 2vc
1 + 2vc

, (4.2.6)

is called the purity ratio of the color c.

It is easy to see that:

vc =
1

2

(
p+(c)− p−(c)

p+(c) + p−(c)

)
. (4.2.7)

It is obvious that, given two colors c and d, we have:

vc = vd ⇐⇒ p+(c) = p+(d) ⇐⇒ p−(c) = p−(d), (4.2.8)

so, two colors with the same purity may di�er only by their magnitude. For this reason, it
is useful to de�ne a color attribute analogue to purity but which takes into account also the
magnitude information that has been lost after the projection on D1/2. This is done as follows.

De�nition 4.2.9 (± quantity of a perceptual color). Let c = (α,v) be a perceptual color. We
de�ne the − quantity q−(c) and the + quantity q+(c) of c by the following two non-negative
real numbers:

q−(c) = 2αp−(c) = α(1− 2vc), q+(c) = 2αp+(c) = α(1 + 2vc). (4.2.9)

Clearly perceptual colors with magnitude equal to 1/2, i.e. perceptual color states, are
characterized by the fact that their purities and quantities coincide.

4.2.2 Einstein-Poincaré addition law and Yilmaz experiments

Now we discuss our main issue: is there a rigorous way to compare two given colors c and
d in C? The answer to this question that seems more natural and coherent with the concepts
previously de�ned is to compare q−(c) with q−(d) and q+(c) with q+(d), that is to compare
their − and + quantities. For this, we have to introduce the following concept.

De�nition 4.2.10 (Quantity ratios). Given two perceptual colors c and d, such that |vd| 6=
1/2, the ± quantity ratios are de�ned as:

s+(c, d) =
q+(c)

q+(d)
and s−(c, d) =

q−(c)

q−(d)
. (4.2.10)

Let us consider two arbitrary perceptual colors c and d whose magnitudes and perceptual
chromatic vectors are, respectively, αc and αd, and vc and vd, with vc > vd. We have:

s+(c, d) =
αcp

+(c)

αdp+(d)
and s−(c, d) =

αcp
−(c)

αdp−(d)
. (4.2.11)

Now we arrive to a key de�nition.
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De�nition 4.2.11 (Relative perceptual chromatic vector). Let c, d ∈ C be two perceptual
colors, then, the relative perceptual chromatic vector is given by vdc = (vdc , 0), where

vdc :=
1

2

(
s+(c, d)− s−(c, d)

s+(c, d) + s−(c, d)

)
. (4.2.12)

The de�nition of vdc is clearly inspired from Equation (4.2.7), but here quantity ratios play
the role of purities. We also remark that the second coordinate of the relative perceptual
chromatic vector is 0 because of our choice to consider only perceptual chromatic vectors of
the type vc = (vc, 0), as Yilmaz did in his �rst two experiments.

Proposition 4.2.12. With the notation introduced before, it holds that

vdc =
vc − vd

1− 4vcvd
, (4.2.13)

or, equivalently,

vc =
vdc + vd

1 + 4vdcvd
. (4.2.14)

Proof. Thanks to Equation (4.2.11) we obtain:

vdc =
1

2

(
q+(c)q−(d)− q−(c)q+(d)

q+(c)q−(d) + q−(c)q+(d)

)
, (4.2.15)

and, since the ratio cancels out the proportionality between quantities and purities, we obtain:

vdc =
1

2

(
p+(c)p−(d)− p−(c)p+(d)

p+(c)p−(d) + p−(c)p+(d)

)
. (4.2.16)

We now notice that:

vc − vd
1− 4vcvd

=

1
2

(
p+(c)−p−(c)
p+(c)+p−(c)

)
− 1

2

(
p+(d)−p−(d)
p+(d)+p−(d)

)
1− p+(c)−p−(c)

p+(c)+p−(c)
· p

+(d)−p−(d)
p+(d)+p−(d)

, (4.2.17)

straightforward manipulations lead to

vc − vd
1− 4vcvd

=
1

2

(
p+(c)p−(d)− p−(c)p+(d)

p+(c)p−(d) + p−(c)p+(d)

)
= vdc , (4.2.18)

and, consequently, to Equation (4.2.14).
In special relativity, the Einstein-Poincaré addition law between two collinear velocity

vectors with speed u1 and u2 can be written as follows:

u1 ⊕ u2 =
u1 + u2

1 + u1u2
c2

, (4.2.19)

where ⊕ is the symbol used to denote the relativistic sum and c is the speed of light. As
we have already remarked in section 4.1, in Yilmaz's model the analogous of c is the limiting
saturation Σ that, in the context of perceptual chromatic vectors, is equal to 1/2. This
explains the presence of the factor 4 in Equations (4.2.13) and (4.2.14), which are the exact
analogue of the Einstein-Poincaré addition law for perceptual chromatic vectors written with
our nomenclature. In particular, Equation (4.2.14) establishes that, given any two perceptual
colors c and d, the relativistic sum of vd with the relative perceptual chromatic vector vdc leads
to vc.
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4.2.3 A theoretical proof of Yilmaz experiments

Thanks to Equations (4.2.13) and (4.2.14), we can prove the �rst two outcomes of Yilmaz's
experiments in a purely theoretical manner. The proof of the �rst one is extremely simple, in
fact, by exchanging c and d in Equation (4.2.13) we immediately �nd that

vdc = −vcd, (4.2.20)

which is nothing but an alternative way of writing Equation (4.1.3), i.e. the �rst experimen-
tal outcome claimed by Yilmaz. The theoretical proof of the second experimental outcome
claimed by Yilmaz, i.e. (4.1.4), is a bit trickier. First of all, we must recall that the second
Yilmaz experiment involves two inertial observers o1 = (c1, I1) and o2 = (c2, I2) perceiving a
maximally saturated color, which gives rise to the two vectors vc1 = (Σ, 0) and vc2 = (Σ, 0),
together with the vector vc12 , which encodes how o1 describes the color c2. Instead, in this
section, we deal with two perceptual colors c, d ∈ C, which are associated to the perceptual
chromatic vectors vc,vd ∈ D1/2, respectively, together with the relative perceptual chromatic

vector vdc ∈ D1/2. Thus, if we want to �nd a correlation, we must �rst operate suitable identi-
�cations among the three vectors appearing in the two situations. The correct identi�cations
are the following: 

vc1 ≡ vc

vc2 ≡ vdc

vc12
≡ vd

, (4.2.21)

in fact, if, for the reasons explained above, we replace Σ with 1/2 and we introduce vc = 1/2
in Equation (4.2.13), we �nd that vdc = 1/2 independently of vd. This is the precise way in
which the second outcome claimed by Yilmaz must be interpreted within the formalism of
perceptual chromatic vectors.

The case of the third Yilmaz's experiment is more complex, since related to the relativistic
aberration e�ect already underlined in Section 2.4, but it is possible to obtain it using the
general formula of the Einstein-Poincaré addition law for non collinear vectors. We must
stress that the presence of the general relativistic addition law between chromatic vectors will
be fully justi�ed in Section 5.2 of the next chapter.

Recalling Equation (4.1.5), we know that vc1 = (0,Σ) and vc12
= (v12, 0). According to

Yilmaz's third experiment this implies that vc2 = (−Σ sinϕ,Σ cosϕ), with sinϕ = v12/Σ.
As we did for the second experiment let us replace Σ with 1/2 and do the same associations
as in (4.2.21). Thus the description of the third experiment becomes:

vc = vc1 = (0, 1/2) =⇒ vdc = vc2 = (− sinϕ/2, cosϕ/2) , (4.2.22)

with sinϕ = 2v12. Notice that vd = vc12
= (v12, 0).

Let us start by assuming the statement of Proposition 4.2.12 to be true also for the gen-
eral expression of the relativistic addition law, see Section 5.3 of the next chapter, thus, in
particular, that the general equivalent of Equations (4.2.14) and (4.2.13) will be vc = vdc ⊕ vd
and vdc = vc 	 vd, respectively. To obtain the outcome of Yilmaz's third experiment we will
use the latter equation. Explicit formulas for the two components of the vector vdc are the
following:

(vc 	 vd)x =
(vc)x − v12

1− 4v12(vc)x
, (vc 	 vd)y =

√
1− 4v2

12(vc)y
1− 4v12(vc)x

, (4.2.23)

see e.g. [149]. Notice that ⊕ is commutative for the collinear case, while it is not commutative
in the general con�guration. Using the fact that vc = (0, 1/2) and the formulas provided in
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Equation (4.2.23), one obtains the following expression for the vector vdc :

vdc = vc 	 vd =
1

2

(
−2v12,

√
1− 4v2

12

)
. (4.2.24)

From the expression above it is easy to check that ||vdc || = 1/2. Moreover comparing it with
the expression of vdc of Equation (4.2.22), one can easily conclude that sinϕ = 2v12.

4.3 The Hilbert metric

In this section we prove that, quite remarkably, the Einstein-Poincaré additivity law sat-
is�ed by perceptual chromatic vectors permits to coherently equip the space of such vectors
with the so-called Hilbert metric. In Subsection 4.3.1, we show that this metric is compatible
with the results of well-established psycho-visual experiments.

Let us start by recalling that, given four collinear points a, p, q, and b of R2, with a 6= p
and q 6= b, the cross ratio [a, p, q, b] is de�ned by [31]:

[a, p, q, b] =
‖q − a‖
‖p− a‖

· ‖p− b‖
‖q − b‖

, (4.3.1)

where ‖ · ‖ denotes the Euclidean norm. Given two points p and q of the closed disk D1/2 such
that the points (−1/2, 0) = a−, p, q, and (1/2, 0) = a+ are collinear with the segment [p, q]
contained in the segment [a−, a+], the D1/2-Hilbert distance dH(p, q) is given by [31]:

dH(p, q) =
1

2
ln [a−, p, q, a+] , (4.3.2)

where the choice of the points involved in the cross ratio above guarantees that the argument
of ln is strictly positive.

We consider now three chromatic vectors vc, vd and vdc of D1/2 with vc = (vc, 0), vd =

(vd, 0) and vdc = (vdc , 0). We have the following result (see for instance [57] for related topics).

Proposition 4.3.1. With the notations introduced above, it holds that:

dH((0, 0), (vdc , 0)) = dH((vd, 0), (vc, 0)) ⇐⇒ vc =
vdc + vd

1 + 4vdcvd
. (4.3.3)

Proof. By de�nition, the equality dH((0, 0), (vdc , 0)) = dH((vc, 0), (vd, 0)) holds if and only if[
a−, (0, 0), (vdc , 0), a+

]
= [a−, (vd, 0), (vc, 0), a+]. Equivalently:

dH((0, 0), (vdc , 0)) = dH((vc, 0), (vd, 0)) ⇐⇒ 1/2− vc
1/2 + vc

=
1/2− vdc
1/2 + vdc

· 1/2− vd
1/2 + vd

. (4.3.4)

By a straightforward computation, it can be checked that the right-hand side of (4.3.4) is
equivalent to that of (4.3.3).

By using the vector notation, (4.3.3) can be re-written as follows

dH(0,vdc ) = dH(vd,vc) ⇐⇒ vc =
vdc + vd

1 + 4vdcvd
, (4.3.5)

i.e. the relative perceptual chromatic vector vdc appears in the relativistic sum expressed by
(4.2.14) together with the perceptual chromatic vectors vc and vd if and only if the Hilbert
length dH(0,vdc ) of v

d
c is equal to the Hilbert distance between vc and vd.
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4.3. The Hilbert metric

The colorimetric interpretation is the following: since the relativistic sum (4.2.14) has
been previously proven to hold true, this result implies that our hypothesis that vdc contains
information about the perceptual dissimilarity between the colors c and d is veri�ed if and
only if we consider the chromatic vectors as elements of the metric space (D1/2, dH), thus
promoting the Hilbert distance to a mathematically coherent candidate for a perceptual metric
of chromatic attributes.

Remarkably, see e.g. [10], the Hilbert metric on D1/2 coincides precisely with the Klein
hyperbolic metric de�ned by:

ds2
D1/2

=
(1/4− v2

2)dv2
1 + 2v1v2dv1dv2 + (1/4− v2

1)dv2
2

(1/4− ‖v‖2)2
. (4.3.6)

The geodesics with respect to this metric are straight chords of D1/2.

A geometric representation of this result is provided by the so-called Chasles theorem on
cross ratios of cocyclic points, see Figure 4.2, which provides a graphical method to construct
the relativistic sum of two vectors in one dimension. An alternative interpretation of formula

Figure 4.2: Illustration of the result of Proposition 4.3.1 by Chasles theorem on the cross ratios
of cocyclic points. vc, vd and v

d
c satisfy Equation (4.3.5).

(4.3.5) is possible by recasting it in the context of the inertial observers framework introduced
in Section 4.1. To remain coherent with the assumption of Section 4.2.1, we will consider only
chromatic vectors of the type vc = (vc, 0).

Considering again the notation of Section 4.1.2, let o1 = (c1, I1) and o2 = (c2, I2) be two
inertial observers*, then, by de�nition, v11 = (0, 0) and v22 = (0, 0). However, using the
notation introduced in Equation (4.1.2), the inertial observer o1 perceives c2 with a non-zero
saturation, i.e. v12 = (v12, 0), with v12 6= 0, and, thanks to Equation (4.2.20), v21 = (−v12, 0).

Furthermore, �xed F ∈ C, let v1F = (v1F , 0) and v2F = (v2F , 0) be the chromatic vec-
tors corresponding to the description of F performed by the inertial observers o1 and o2,
respectively.

Coherently with the analysis made in Section 4.2.3, we perform the following identi�cations
between the chromatic vector components of the colors c and d appearing in formula (4.3.5)

*We recall that, for the sake of a simpler phrasing, we implicitly assume that the inertial observer oi is
adapted to the illuminant Ii, i = 1, 2, without explicitly specifying it.
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4. Relativity within the quantum model

and those of c1, c2 and F : 
vd ≡ v12

vc ≡ v1F

vdc ≡ v2F

,

then formula (4.3.5) implies the equality

dH(v22,v2F ) = dH(v12,v1F ), (4.3.7)

notice that the arguments of the Hilbert distance in the left-hand side are relative to the color
description performed by o2 and those in the right-hand side are relative to o1. Since v22 = 0,
we can also write

dH(0,v2F ) = dH(v12,v1F ). (4.3.8)

The interpretation of formula (4.3.8) gives a rigorous meaning to the sentence in the intro-
duction to this chapter about the fact that the Hilbert distance provides a `chromatic constancy
property with respect to observer changes'. In fact, if we interpret the Hilbert distance as a
perceptual metric, Equation (4.3.8) says that the perceptual chromatic di�erence between F
and an achromatic color sensed by o2 is the same as the one that o1 experiences between F
and the chromatic vector v12 representing the saturation shift due to the observer change from
o1 to o2.

We stress that we have implicitly assumed the illuminants I1 and I2 to be broadband, so
the previous interpretation is valid as long as the quantity vd = v12 is relatively small.

4.3.1 Compatibility of the Hilbert metric with psycho-visual experimental

data

Now we address the important issue of the compatibility between the Hilbert metric on
D1/2 and psychovisual measurements. This is not an easy task because of two reasons: �rstly,
experimental data on color perception are very scarce, secondly, psychovisual measurements
are always a�ected by subjective variations which imply the use of averaging procedures that
inevitably reduce the measure accuracy. Some useful psychovisual results consistent with our
framework are those reported in [26] and [33].The authors conducted their tests with the help of
the standard CIE illuminants C (near-daylight, (xC , yC) = (0.3125, 0.3343)) and A (tungsten,
(xA, yA) = (0.4475, 0.4084)) and added a third one, denoted with G (greenish, (xG, yG) =
(0.3446, 0.4672)). The values (x, y) represent the CIE xyY chromaticity coordinates of C, A
and G, respectively, Figure 4.3 shows their position in the chromaticity diagram. In what
follows, observers adapted to the illuminants C, A and G, respectively, will be denoted by
o1 = (c, C), o2 = (a,A) and o3 = (g,G). A haploscope is used to compare the color perception
of one eye always adapted to the illuminant C and the other eye adapted to C, A and G.

Figure 4.3 shows, in the xyY diagram, three families of curves obtained by the tests
performed in [33]:

� the �rst is composed by three contours surrounding C that correspond to color stimuli
with �xed Munsell value, di�erent hue but with the same perceived Munsell chroma in
{2, 4, 8}. By normalizing these data between 0 and 0.5 we obtain {0.1, 0.2, 0.4}, which
are the norms of the chromatic vectors v1c of the colors associated to the corresponding
stimuli observed by o1;

� the second and the third are given by two contours surrounding A, resp. G, that corre-
spond to colors c with varying hues and whose Munsell chroma belong to the set {2, 4}.
The chromatic vectors v2c, resp. v3c, of these colors observed from o2, resp. o3, have
norms belonging to the set {0.1, 0.2}.
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4.3. The Hilbert metric

Figure 4.3: The iso Munsell chroma contours found by [33] in the xyY diagram.

As discussed above, the psychovisual data reported in [26] and [33] are only averaged,
thus, the only kind of information that we have from Figure 4.3 is, for example, that the xyY
coordinates of standard illuminant A are between the curves of chroma 4 and 8 of the observer
o1. Thus, the norm of the chromatic vectors is not possible to be achieved with accuracy. An
approximation is given by ‖v1a‖ ' 6.76/20 = 0.338.

In Figure 4.4(a), we denote by F and F ′ the xyY coordinates of the points in the xyY
diagram obtained by the intersection between the line connecting A and C with the iso-chroma
contours for o1 and o2, respectively. The color F is perceived by o1 as having a chromatic
vector v1F with norm ‖v1F ‖ = 0.2. By construction, we determine F ′, the color perceived by
o2 with chromatic vector v2F ′ such that v2F ′ = v1F . The norm of the chromatic vector v1F ′

corresponding to the color F ′ perceived by o1, is approximated by ‖v1F ′‖ ' 3.76/20 = 0.188.
Fig. 4.4(b) shows all the chromatic vectors in the disk D1/2. One can easily check, as illustrated
by Chasles theorem, that:

dH(v1F ,v1c) = dH(v2F ′ ,v2a) = dH(v1F ′ ,v1a) . (4.3.9)

The same reasoning applied to the situation depicted in Figure 4.5(a), where the points F2

and F ′2 belong to another iso-chroma contour, leads to:

dH(v1F2 ,v1c) = dH(v2F ′2
,v2a) = dH(v1F ′2

,v1a) , (4.3.10)

see Fig. 4.5(b).
Finally, we consider the quite more complicated situation depicted in Figure 4.6(a). It is

precised in [26] that `A change from a blue (C) adaptation to a yellow (A) adaptation shows
vectors running in a blue-yellow direction, a change from a blue (C) adaptation to a green
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4. Relativity within the quantum model

(a) The illuminants C and A and the colors
F and F ′ in the xy chromaticity diagram.

(b) Illustration of the equalities of
Equation (4.3.9) in the disk D1/2.

Figure 4.4: Invariance of the Hilbert distance under observer changes: illuminants C and A,
and colors F and F ′.

(a) The illuminants C and A and the colors
F and F ′, and F2 and F ′2 in the CIE xy
chromaticity diagram.

(b) Illustration of the equalities of
Equation (4.3.10) in the disk D1/2.

Figure 4.5: Invariance of the Hilbert distance under observer changes: illuminants C and A,
and colors F , F ′, F2, and F

′
2.

(G) adaptation shows vectors running in a blue-green direction.' This means that the angle
between v1a and v1g is equal to π/4. From Figure 4.6(a) we can approximate the norm of the
chromatic vector v1g: ‖v1g‖ ' 0.32. The chromatic vectors v1H and v3H′′ of the two colors H
and H ′′ marked on Fig. 4.6(a) are equal. Once again, one can easily check that:

dH(v1H ,v1c) = dH(v3H′′ ,v3g) = dH(v1H′′ ,v1g) , (4.3.11)

see Fig. 4.6(b).
These discussions show clearly that the Hilbert metric is compatible with the reported

psychovisual data. Here we have reported only three cases, but other three con�gurations
related to Figure 4.3 can be studied and our computations showed that they give rise to the
same conclusions. We have only treated the case when colors, e.g. F and F ′, have chromatic
vectors collinear to the new observer chromatic vector, e.g. v1F and v1F ′ are collinear to v1a in
this �rst situation. Dealing with arbitrary colors needs the use ot Einstein-Poincaré addition
law for non-collinear vectors. We prefer to postpone the study of the general case for future
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(a) The three illuminants C, A and G, and
the colors F and F ′, F2 and F ′2, and H and
H ′′ in the xyY diagram.

(b) Illustration of the equalities of
Equation (4.3.11) in the disk D1/2.

Figure 4.6: Invariance of the Hilbert distance under observer changes: illuminants C and G,
and colors H and H ′′, compared with illuminants C and A, and colors F and F ′.

research, since the formulas are more complicated and more accurate psychovisual date would
be needed.
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Chapter 5

Quantum e�ects for color

measurement

In this chapter we will introduce some concepts coming from quantum information theory,
that will enrich the framework described in Chapter 3. The crucial one is the concept of e�ect.
Indeed it encodes the probabilistic nature of quantum measurements and lies at the very core
of modern quantum theories, see e.g. the classical books [93, 27, 71] for an overview on this
topic. We will de�ne as well post-measurement generalized states, Lüders operations and
relative quantum entropy. In particular, in Section 5.2, we will see that the action of Lüders
operations on the disk of chromatic vectors corresponds to Einstein-Poincaré addition law. We
recall that the general case of the relativistic addition law was needed to prove Yilmaz's third
result, as announced in Subsection 4.2.3. For more details the main reference will be [19] for
a thoughtful discussion, or Section 3.3 of [14] for a quick overview. As we will see in Chapter
6, the concepts introduced here will be fundamental to establish de�nitions of color attributes
within the quantum-like model.

5.1 E�ect space of the rebit

The quantum trichromacy axiom, see Section 3.1, refers to an ideal normal trichromatic
observer, capable of a non-trivial response to light stimuli of any intensity, no matter how dim
or intense. However, the visible threshold and glare limits, see e.g. [88, 127, 129], imply that
the space of perceived colors perceived by a real normal trichromatic observer is actually a
�nite convex subset, called color solid, see as well Chapter 1, of the in�nite cone C(A), where
A = H(2,R) or R⊕ R2.

A naïve way to obtain a bounded volume could be, as in Chapter 2, to `cut' C(A) at height
corresponding to the glare limit, however in the following we are going to introduce a more
profound and meaningful construction, relying on the concept of quantum-e�ects and on the
self-duality of C(A), that leads to a bounded volume.

As �rst argued in [12], a �nite-volume color solid can be obtained in a natural way in the
quantum-like framework by �rst re-writing C(A) to make states appear explicitly as follows,
let us call it the state cone

C(H(2,R)) =

{
2αρs =

(
α(1 + s1) αs2

αs2 α(1− s1)

)
, α ≥ 0, vs = (s1, s2) ∈ D

}
(5.1.1)

and

C(R⊕ R2) =

{
2αχ(ρs) =

(
α
αvs

)
, α ≥ 0, vs ∈ D

}
, (5.1.2)
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Let us call them state cones C(A) = C(S(A)) with A = H(2,R) or R ⊕ R2, as they are the
domains of positivity of their respective FRJAs re-parametrized using the states of D. By D
we mean the unit disk, called D1 in the previous chapter.

In quantum information, the concept of e�ect refers to a measurement apparatus that
produces an outcome. The duality between states and e�ects means essentially that when a
state and an e�ect are speci�ed, one can compute a probability distribution which is the only
meaningful information that we can obtain about the experiment. Let us now understand how
to represent e�ects and their action on S(A).

We identify an e�ect with an element ηe of C(H(2,R)) bounded between the null and
the identity 2 × 2 matrix (with respect to the ordering of positive semi-de�nite matrices) or,
equivalently, χ(ηe) ∈ C(R⊕ R2).

It is useful to adopt a general symbol to denote an e�ect e when it is not important to
know if it is realized as the matrix ηe or the vector of the spin-factor χ(ηe). We will use the
following notation:

e := (e0,ve), (5.1.3)

where e0 and ve, called e�ect magnitude and e�ect chromatic vector, respectively, play the
role of α and vs in Equation (5.1.1), respectively. It is convenient to de�ne the e�ect vector
as follows:

ve :=

(
e1

e0
,
e2

e0

)t
, (5.1.4)

e0, e1, e2 ∈ R, because then the matrix ηe can be written in this way

ηe =

(
e0 + e1 e2

e2 e0 − e1

)
, (5.1.5)

and

χ(ηe) := e0

(
1
ve

)
. (5.1.6)

Whenever ve = 0, we will write e = ea and we will call it an achromatic e�ect. It is clear
that ηea = e0σ0. We recall that, from (3.4.1), σ0 = Id2.

The matrix ηe de�nes an e�ect if and only if 0 ≤ ηe ≤ σ0, this double inequality is
equivalent to the request that the determinant and the trace of both ηe and σ0 − ηe are non-
negative. From det(ηe) ≥ 0 we obtain ve ∈ D and, by considering all the other constraints,
we �nd that the e�ect space, or perceived color space, can be geometrically characterized in
an explicit way as follows:

E =

{
(e0, e1, e2) ∈ R3, e0 ∈ [0, 1], e2

1 + e2
2 ≤ min

e0∈[0,1]

{
(1− e0)2, e2

0

}}
. (5.1.7)

E is a closed convex double cone with a circular basis of radius 1/2 located height e0 = 1/2
and vertices in (0, 0, 0) and (1, 0, 0), associated to the null and the unit e�ect, respectively.
Notice that with this expression for E we do not have to specify whether we are using the
matrix representation ηe or the spin-factor one χ(ηe). In case we need to specify it we will use
the notation E(S(A)) with A = H(2,R) or R⊕ R2, as in [19].

The geometry of E , depicted in Figure 5.1, happens to be in agreement with that of the
perceived color spaces advocated by Ostwald and De Valois, see e.g. [37].

By self duality of C(A) it is possible to see e�ects as a�ne maps acting on chromatic states,
see [19] for more details:

E ∼= {e : S(A)→ [0, 1], e(s) = e0 + e1s1 + e2s2} , (5.1.8)
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5. Quantum e�ects for color measurement

Figure 5.1: The double cone of e�ects E(S(R⊕ R2)).

e(s) is interpreted as the probability to register the outcome (e0, e1, e2) after a color measure-
ment on the visual scene prepared in the state s, i.e. e(s) coincides with the expectation value
〈e〉s, which can be written as follows:

〈e〉s = Tr(ρs ηe) = e0 + e1s1 + e2s2 = e0(1 + ve · vs) = 2χ(ρs) · χ(ηe). (5.1.9)

The so-called achromatic e�ect is ea := e0(1,0), with e0 ∈ [0, 1], it is characterized by a null
e�ect vector vea = 0, so that

ηea = e0σ0. (5.1.10)

If we consider the achromatic state sa, with vsa = 0, and we compute the expectation
value of an arbitrary e�ect e on it we obtain:

〈e〉sa = e0, (5.1.11)

which shows that the �rst component e0 of e represents its achromatic attribute, or magnitude.

5.2 Lüders operations and post-measurement generalized states

E�ects parameterize a fundamental class of state transformations called Lüders opera-
tions, which are convex-linear positive functions ψe de�ned on the state space S(H(2,R)) and
satisfying the constraint:

0 ≤ Tr(ψe(ρs)) ≤ 1, for all ρs ∈ S(H(2,R)). (5.2.1)

This implies that, since S(H(2,R)) ⊂ ψe(S(H(2,R)) =: S̃(H(2,R)), i.e. ρs will lose the
property of having unit trace* after a Lüders operation, becoming a so-called generalized
density matrix representing a post-measurement generalized state. From the identi�cation
between states and density matrices it follows that

ψe(s) ≡ ψe(ρs) ∈ S̃(H(2,R)), (5.2.2)

*We recall that, for all ρs ∈ S(H(2,R)), Tr(ρs) = 1, see Equation (3.3.1) in Section 3.3.
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5.2. Lüders operations and post-measurement generalized states

so
Tr(ψe(s)) ∈ [0, 1]. (5.2.3)

The analytical expression of the post-measurement generalized state ψe(s), see e.g. [27] page
37, is:

ψe(s) = η
1/2
e ρsη

1/2
e , (5.2.4)

η
1/2
e is called Kraus operator associated to e and it is the square root of ηe, i.e. the only

symmetric and positive semi-de�nite matrix such that η
1/2
e η

1/2
e = ηe. Thanks to the cyclic

property of the trace we have that:
Tr(ψe(s)) = Tr(ρs ηe) = 〈e〉s = e0(1 + ve · vs), (5.2.5)

so

ϕe(s) :=
ψe(s)

〈e〉s
(5.2.6)

is a density matrix corresponding to a state belonging to S(H(2,R)).
By convex-linearity, Lüders operations can be naturally extended to generalized states,

thus elements of the state cone C(S(A)), as follows:

ψe(s0s) = s0ψe(s), ∀s0 ∈ [0, 1]. (5.2.7)

By linearity of the trace this implies that:

〈e〉s0s = Tr(ψe(s0s)) = Tr(s0ψe(s)) = s0〈e〉s = e0s0(1 + ve · vs), (5.2.8)

so

ϕe(s0s) =
ψe(s0s)

〈e〉s0s
=
s0ψe(s)

s0〈e〉s
= ϕe(s), (5.2.9)

thus the post-measurement chromatic state depends solely on s and not on s0. This implies a
formula that will be often used in this chapter and in the following one:

ψe(s0s) = e0s0(1 + ve · vs)ϕe(s). (5.2.10)

This formula shows explicitly how the chromatic information about the state s and the expec-
tation value of the e�ect e on s are fused together in the post-measurement generalized state
ψe(s0s).

In the case of an achromatic e�ect ea, for which vea = 0, the previous formula gives

ψea(s0s) = e0s0 ϕea(s), (5.2.11)

but η
1/2
ea =

√
e0σ0 so, by Equation (5.2.4),

ψea(s0s) = e0s0ρs, (5.2.12)

hence ϕea(s) = ρs, or, by identifying ρs with the chromatic state s,

ϕea(s) = s, (5.2.13)

this means that the post-measurement state induced by the action of an achromatic e�ect
coincides with the original state.

In [19], it has been shown that the state change s 7→ ψe(s) induced by the act of observing
a color is implemented through a 3-dimensional normalized Lorentz boost in the direction of
ve. This formally justi�es the presence of Lorentz boosts, already mentioned in Chapters 2
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5. Quantum e�ects for color measurement

and 4, within the quantum model. Here we refer only to the result (ii) of Corollary 4.1, that
will be needed in Chapter 7 for an application to automatic white balance, for a proof and
further details see [19].

Let e be an e�ect whose chromatic vector is such that ||ve|| < 1, then the expression of the
Lüders operation relative to e within the state cone of the spin-factor, of Equation (5.2.21),
can be re-written in the following way:

χ(ψe(s)) =
e0

γve

B(ve)
1

2

(
1
vs

)
≡ BN (e)

1

2

(
1
vs

)
, (5.2.14)

where B(ve) is the Lorentz boost associated to the chromatic vector ve, whose associated
matrix is:

[B(ve)] =

(
γve γvev

t
e

γveve σ0 +
γ2ve

1+γve
vev

t
e

)
, (5.2.15)

γve is the Lorentz factor de�ned by

γve :=
1√

1− ‖ve‖2
, (5.2.16)

and where we de�ne the normalized Lorentz boost associated to e as follows:

BN (e) ≡ e0

γve

B(ve). (5.2.17)

Clearly Equation (5.2.14) holds as well for generalized states

χ(ψe(s0s)) =
s0e0

γve

B(ve)
1

2

(
1
vs

)
= BN (e)

s0

2

(
1
vs

)
, (5.2.18)

In Chapter 7 we will use this latter equation to propose a novel chromatic adaptation transform
(CAT).

In the same way as Hamilton's quaternions are used to reproduce rotations in R3, it is
possible to use the so-called split quaternions, see e.g. [64, 78] to reproduce the action of
(normalized) Lorentz boosts, i.e. hyperbolic rotations. There are both theoretical and applied
implications of this fact. Indeed, on the theoretical side, this means that R⊕R2 and H(2,R)
are isomorphic as Jordan algebras to a certain sub-algebra of the split quaternions. From an
applied point of view, a faster version of the CAT proposed in Chapter 7 can be obtained
using this di�erent formalism.

As also proven in [19], the post-measurement chromatic state vector is the Einstein-
Poincaré relativistic sum of ve and vs, i.e.

vϕe(s) = ve ⊕ vs, (5.2.19)

or,

χ(ϕe(s)) =
1

2

(
1

ve ⊕ vs

)
∈ S(R⊕ R2), (5.2.20)

and so

χ(ψe(s)) = e0(1 + ve · vs)
1

2

(
1

ve ⊕ vs

)
∈ S̃(R⊕ R2), (5.2.21)

where the relativistic sum ve ⊕ vs is de�ned as follows: if ‖ve‖ < 1, then

ve ⊕ vs :=
1

1 + ve · vs

{
ve +

1

γve

vs +
γve

1 + γve

(ve · vs)ve

}
, (5.2.22)
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where γve is de�ned as in Equation (5.2.16) and, if ‖ve‖ = 1,

ve ⊕ vs := ve. (5.2.23)

Comparing Equations (5.2.18) and (5.2.20) we may notice that a the action of BN (e) on the
state cone corresponds to performing a left-relativistic addition law with ve on the space of
chromatic vectors. This shows the link between Lorentz boosts and Einstein-Poincaré addition
law.

Apart from the case of collinear vectors, the composition of Lüders operations is neither
associative nor commutative due to the action of the so-called Thomas gyration operator, see
[149] for more details. This is particularly important to keep in mind� when we write the
expression of a post-measurement generalized state issued by a sequential Lüders operation as
the following:

χ(ψe2(ψe1(s0s))) = e1
0e

2
0s0(1 + ve1 · vs)(1 + ve2 · (ve1 ⊕ vs))

1

2

(
1

ve2 ⊕ (ve1 ⊕ vs)

)
. (5.2.24)

We recall as well the fundamental chromatic matching equation, that will be applied in
Section 6.4 of the next chapter to obtain the characterization of lightness constancy. From [19]
we have the following result: given two couples of chromatic states-e�ects (s1, e1) and (s2, e2),
the equation

ϕe1(s1) = ϕe2(s2), (5.2.25)

or, equivalently,

ve1 ⊕ vs1 = ve2 ⊕ vs2 , (5.2.26)

represents the chromatic matching equation between (s1, e1) and (s2, e2) that establishes the
perception of the same chromatic information.

5.3 Relativistic sum and the Hilbert-Klein metric

Fock, Mermin and Ungar [57, 112, 149] studied deeply the relationship with the Einstein-
Poincaré addition law and the structures of hyperbolic geometry. Ungar, in particular, intro-
duced the so called gyro-structures to describe the algebraic properties of the Bloch disk. In
particular (D,⊕,⊗), is said to be a gyro-vector space where D is endowed with the Einstein-
Poincaré addition law ⊕ as sum, de�ned in Equation (5.2.22), and the so-called Einstein scalar
multiplication ⊗ is de�ned [29] as follows:

r ⊗ v =
(1 + ||v||)r − (1− ||v||)r

(1 + ||v||)r + (1− ||v||)r
v

||v||
= tanh(r tanh−1 ||v||)v, r ∈ R,v ∈ D. (5.3.1)

The notation 	v is used to mean 	v = −v and so u	 v = u⊕ (−v), with u,v ∈ D. Unlike
vector spaces, the sum is not commutative nor associative and it is not bilinear with respect
to the scalar multiplication, see [29, 148, 149].

In Proposition 4.3.3 of Chapter 4, we have mentioned the use of the Hilbert-Klein metric
as a metric expressing the perceptual distance invariant under changes of observers for the
case of collinear chromatic vectors.

�It will be needed in Section 6.4 to check that the proposed derivation also applies for the case of two
illuminants which are not achromatic.
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5. Quantum e�ects for color measurement

We recall that in Chapter 4 the Hilbert-Klein metric on D1/2 was expressed either using
the cross-ratio as in Equation (4.3.2), or, equivalently, as the line element in Equation (4.3.6).
Another equivalent expression for the Hilbert-Klein distance on D, see [131], is the following:

cosh(dK(x, y)) =
1− x · y√

1− |x|2
√

1− |y|2
, x, y ∈ D. (5.3.2)

Here we generalize the result of Proposition 4.3.3 to the case of not necessarily collinear
vectors. Let us start by showing how the Hilbert-Klein distance is related to Einstein-Poincaré
addition law. The statement of the following proposition is mentioned in Equation (5.12) of
[19], here we provide a short proof.

Proposition 5.3.1. Let u,v ∈ D, then their Klein distance is related to their Einstein-
Poincaré addition law in the following way:

dK(u,v) = tanh−1 || − u⊕ v||. (5.3.3)

Proof. Let us start by the following formula [29] involving relativistic correction factors:

γu⊕v = γuγv(1 + u · v). (5.3.4)

By de�nition of relativistic correction factor we have that

γu⊕v =
1√

1− ||u⊕ v||2
. (5.3.5)

Inverting the previous formula we obtain:

||u⊕ v||2 = 1− 1

γ2
u⊕v

(5.3.4)
= 1− 1

γ2
uγ

2
v(1 + u · v)

= 1− (1− ||u||2)(1− ||v||2)

1 + u · v
. (5.3.6)

We use now the de�nition of the Hilbert-Klein metric dK given by Equation (5.3.2) obtaining:

||u⊕ v||2 = 1− (1− ||u||2)(1− ||v||2)

1 + u · v
= 1− 1

cosh2(dK(−u,v))
= tanh2(dK(−u,v)), (5.3.7)

then we can conclude that:
||u⊕ v|| = tanh(dK(−u,v)). (5.3.8)

More technical proofs of this result can be found in [57] page 39, or [149] page 239. Notice
that formula (5.3.6) implies as well that ||v⊕ u|| = ||u⊕ v|| and that || − u⊕ v|| = ||u	 v||,
for all u,v ∈ D.
An analogous version of this results for the angular coordinate of v ⊕ u, instead of the radial
one, is detailed in the Appendix B.

Now we can report Proposition 5.2 of [19], which is the generalization of Proposition 4.3.3.

Proposition 5.3.2 (Chromaticity constancy). Given (e1, s1) and (e2, s2), as in Equation
(5.2.26), so

ϕe1(s1) = ϕe2(s2) ⇐⇒ ve1 ⊕ vs1 = ve2 ⊕ vs2 , (5.3.9)

then
vs1 	 vs2 = −ve1 ⊕ ve2 (5.3.10)

and
dK(vs1 ,vs2) = dK(ve1 ,ve2). (5.3.11)
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Clearly Equation (5.3.10) implies Equation (5.3.11), thanks to Proposition 5.3.1.

Most importantly, Proposition 5.3.2 shows that if two colors, i.e. generalized post-measurement
states, are in chromatic matching, this means that the Hilbert-Klein dissimilarity between the
chromaticity vectors associated to the states s1 and s2 is the same as the one between the
chromatic vectors associated to the e�ects e1 and e2.

5.4 Relative entropy

In quantum information theory the notion of relative entropy is used as a measure of distin-
guishability between states. We introduce this concept here, because it will be of fundamental
importance to provide the de�nitions of quantum-like color attributes in Chapter 6. In par-
ticular the attributes of hue, saturation, chroma and colorfulness will be de�ned using relative
entropy.

De�nition 5.4.1 (Relative entropy). Let s, t be two quantum states and ρs, ρt be their
associated density matrices. The relative entropy between ρs and ρt is given by

R(ρs||ρt) := Tr[ρs log2 ρs − ρs log2 ρt] (5.4.1)

Actually, the so-called Klein inequality, establishes a sort of `de�nite positivity' for R in
the following sense: R(ρs||ρt) ≥ 0 for all ρs and ρt and R(ρs||ρt) = 0 if and only if ρs = ρt.

Notice that R is not symmetric, hence it does not constitute a metric on Hering's rebit,
see Chapter 9.

One of the most important reasons why we will consider the relative entropy so inherently
natural in the analysis of chromatic attributes in the quantum-like framework of the next
chapter is that it can also be de�ned on generalized state density matrices. In fact, for all
λ > 0, R satis�es the following property:

R(λρs||λρt) = λR(ρs||ρt). (5.4.2)

Unlike the von Neumann entropy, relative entropy `behaves well' with respect to scalar mul-
tiplication, it is thanks to this feature that, in Chapter 6, we will be able to build a coherent
system of linearly related de�nitions of saturation, chroma and colorfulness, which are the same
quantity up to a scalar factor, as shown by the Equations (1.3.2) and (1.3.3) in Subsection
1.3.1.

To obtain an explicit expression for R, let us consider two density matrices ρs and ρt with
chromatic state vectors vs = (s1, s2) and vt = (t1, t2), respectively, i.e.

ρs =
1

2

(
1 + s1 s2

s2 1− s1

)
, ρt =

1

2

(
1 + t1 t2
t2 1− t1

)
. (5.4.3)

Let us also denote rs := ‖vs‖, rt := ‖vt‖, and cosϑs,t := vs · vt/rsrt.

Technical computations lead to the following explicit expression:

R(ρs||ρt) =
1

2
log2(1− r2

s) +
rs
2

log2

(
1 + rs
1− rs

)
− 1

2
log2(1− r2

t)− rs cosϑs,t
2

log2

(
1 + rt
1− rt

)
.

(5.4.4)
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As a particularly important case of Equation (5.4.4), if t = sa, i.e. ρt = ρ0, the achromatic
state, then rt = 0 and:

R(ρs||ρ0) =
1

2
log2(1− r2

s) +
rs
2

log2

(
1 + rs
1− rs

)
= Σ(rs), (5.4.5)

where, as in Equation (3.3.22) of Section 3.3, Σ(rs) = 1−S(ρs), S(ρs) being the von Neumann
entropy of the state s.

Notice that the relative entropy between ρs and the achromatic state agrees with the
de�nition of saturation based on the von Neumann proposed in Section 3.3, as well as in
[18, 19]. We will come back to the problem of de�ning the saturation in Section 6.3.2 of the
next chapter, where we will use the notion of relative entropy.
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Chapter 6

A quantum information-based

vocabulary for color attributes

In Subsection 1.3.1 of Chapter 1 we have presented the state-of-the art color appearance
attributes and treated the issue of expressing them into coordinates of a color solid.
Understanding the mathematical expression of color appearance attributes is a fundamental
question also because they are involved in the so called color appearance phenomena, men-
tioned in Subsection 1.3.2, and, of course, because of their high impact on applications. We
must stress that both problems of �nding coordinates to associate to color appearance at-
tributes and a mathematical description of color appearance phenomena are still unsolved and
debated topics in the literature.

In Chapter 5 we have seen a paradigm shift according to which a perceived color is not
described in terms of coordinates, but it is intended as a generalized post-measurement state,
i.e. the outcome of a measurement procedure involving the interaction of an e�ect and a
generalized state. The aim of this chapter, whose content is based on [14], is to provide
de�nitions of color perception attributes using the tools from quantum information theory
introduced in the previous one, such as generalized quantum states, Lüders transformations
and e�ects. We will see that these new de�nitions are in accordance with the ones provided in
Subsection 1.3.1. An illustration of the potential of these new system of de�nitions is provided
by the rigorous derivation of the so-called lightness constancy phenomenon, already introduced
in Subsection 1.3.2 of Chapter 1.

6.1 The basic de�nitions: observer, illuminant, perceptual patch

and perceived color from emitted and re�ected light

In this section we provide the formalization of the most basic entities of our color perception
theory. We must stress that the de�nition given in this section are coherent with the ones
given in Subsection 4.1.2 of Chapter 4, but they are enriched and expressed using the tools
provided in Chapter 5, new concepts will be introduced as well.
The modeling rules that we will follow are listed below:

� any quantity whose chromatic features manifest themselves multiplied by a scalar factor
in [0, 1] will be described through a generalized state;

� any act of (physical or perceptual) color measurement and the (physical or perceptual)
medium used to perform it will be associated to an e�ect ;

� the measurement outcome will be identi�ed with the post-measurement generalized state
induced by the action of the e�ect via Lüders transformations.



6.1. The basic de�nitions: observer, illuminant, perceptual patch and perceived color from

emitted and re�ected light

Our formalization starts with this very simple remark: a perceived color is the result of the
measurement of a physical color stimulus performed by the visual system of a human observer.

This means that a human observer is the medium through which a perceptual color mea-
surement takes place, for this reason we model it as an e�ect.

De�nition 6.1.1 (Observer). An observer o measuring a color stimulus is identi�ed with an
e�ect o = (o0,vo) ∈ E, o0 ∈ [0, 1] and vo ∈ D.

The color stimulus hitting the eyes of o can be either a light emitted by a source of radiation
or a light re�ected from the patch of a surface lit by an illuminant. Let us �rst formalize the
former situation.

De�nition 6.1.2 (Emitted light stimulus). An emitted light stimulus ` is identi�ed with the
generalized state `0`, `0 ∈ [0, 1] and ` ∈ S(H(2,R)). The real quantity `0 is the normalized
light intensity and ` carries the intrinsic chromatic features.

De�nition 6.1.3 (Achromatic and white light). An achromatic light is an emitted light stim-
ulus with `0 ∈ [0, 1] and ` = sa. If, in particular, `0 = 1, then we call it a white light and we
write `W = sa.

The act of measuring an emitted light stimulus ` by an observer o produces a perceived
color through the Lüders operation associated to the e�ect o.

De�nition 6.1.4 (Perceived color from a light stimulus). Given an observer o and an emitted
light stimulus `, i.e. the couple (o, `0`), the color perceived by o from ` is the post-measurement
generalized state ψo(`0`) ∈ S̃(H(2,R)).

Notice that this de�nition is coherent with the three-dimensional nature of perceived colors,
in fact Equations (5.2.10) and (5.2.6) imply:

ψo(`0`) = o0`0(1 + vo · v`)ϕo(`) = 〈o〉`0` ϕo(`), (6.1.1)

with 〈o〉`0` ∈ [0, 1] and ϕo(`) ∈ S(H(2,R)).
Thanks to Equation (5.2.13), we know that if an observer oa is associated to an achromatic

e�ect oa, then
ϕoa(`) = `, (6.1.2)

which means that the chromatic state of the color perceived by oa from the light source ` = `0`
is exactly its intrinsic chromatic state `.

Formula (6.1.1) shows explicitly the role played by the e�ect magnitude o0 and by the
e�ect chromatic vector vo: o0 describes how the observer perceives the intensity of the color
stimulus, while vo describes the adaptation state of the observer.

Let us now turn our attention to color stimuli from non-emitting surfaces. While the perceptual
measurement of an emitted light stimulus consists simply in the act of observing it, a non-
emitting surface needs an additional step: before being observed, it must be illuminated.
For this reason, the formalization of the concept of perceived color from a re�ected light
requires the preliminary de�nition of illuminant. Being the medium that permits to perform
a measurement process, an illuminant is identi�ed with an e�ect*.

De�nition 6.1.5 (Illuminant and achromatic illuminant). An illuminant ι needed to light up
a non-emitting surface in order to measure its color is identi�ed with an e�ect ι = (ι0,vι),
ι0 ∈ [0, 1], vι ∈ D. The real quantity ι0 represents the illuminant intensity, while vι carries
the chromatic features. If vι = 0, ι is called an achromatic illuminant.

*An observer o can be thought as a perceptual e�ect, an illuminant o can be interpreted as a physical e�ect.
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Now let us pass to the de�nition of patch (or area) of a non-emitting surface. Without being
illuminated, a surface patch is characterized only by its intrinsic properties that establish how
much light the surface re�ects and how it interacts with the di�erent spectral components of
the incoming radiation. These features are fused together, which motivates the next de�nition.

De�nition 6.1.6 (Patch). The patch p of a non-emitting surface is identi�ed with a gener-
alized state p0p, p0 ∈ [0, 1] and p ∈ S(H(2,R)). The real quantity p0 represents the overall
proportion of the illuminant intensity that p is able to re�ect and p carries the intrinsic chro-
matic properties of p.

De�nition 6.1.7 (Achromatic and white patch). A patch p = p0p with p = sa is called
achromatic. In particular, if p0 = 1, then we call it white patch and we write pW = sa.

When a patch is lit by an illuminant ι it can be observed, becoming a perceptual patch,
as de�ned below.

De�nition 6.1.8 (Perceptual patch). A perceptual patch r is a post-measurement generalized
state� r0r, r0 ∈ [0, 1], r ∈ S(H(2,R)), given by a physical patch p lit by an illuminant ι, i.e.
r0r = ψι(p0p).

This de�nition is the perceptual counterpart of the well-known physical formula

Ip(λ, x) = L(λ)Rp(λ, x), (6.1.3)

typically used in image formation models, see e.g. [60, 128]. Ip(λ, x) is the image information
about the physical patch p that has been acquired by a spectrophotometer at the wavelength
λ and at the spatial position x, L(λ) is the luminance of the radiation used to light up the
material (supposed to be spatially uniform, which explains the absence of the variable x) and
Rp(λ, x) is the patch re�ectance at the wavelength λ and at the point x. When Ip(λ, x) is
acquired, the data about L and R are fused together.

We are now ready to give the de�nition of perceived color of a patch.

De�nition 6.1.9 (Perceived color from an illuminated patch). Given an observer o, a surface
patch p and an illuminant ι, i.e. the triple (o, ι, p0p), the color perceived by o from the per-
ceptual patch r = ψι(p0p) is the post-measurement generalized state ψo(r) = ψo(ψι(p0p)) ∈
S̃(H(2,R)).

We can interpret the sequential operation ψo ◦ψι obtained via the combined action of the
(physical) e�ect ι and the (perceptual) e�ect o as a Lüders operation associated to a single
(perceptual) e�ect õ de�ned either by the equation

ψõ(p0p) := (ψo ◦ ψι)(p0p) = ψo(r), (6.1.4)

or, thanks to Equation (5.2.24), by the more explicit formula

χ(ψõ(p0p)) = o0ι0p0(1 + vι · vp)(1 + vo · (vι ⊕ vp))
1

2

(
1

vo ⊕ (vι ⊕ vp)

)
. (6.1.5)

Thanks to Equations (5.2.11) and (5.2.13), if ι is an achromatic illuminant ιa = (ι0,0) we
have

ra := ψιa(p0p) = ι0p0ϕιa(p) = ι0p0p, (6.1.6)

If, moreover, the observer o is represented by an achromatic e�ect oa, then

ϕoa(ra) = ϕoa(ψιa(p0p)) = ϕoa(ι0p0p) = p, (6.1.7)

�The letter r reminds the fact that the generalized state r0r is issued by the light re�ected by p.
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thus, such an observer perceives the chromatic state of a physical patch lit by an achromatic
illuminant as it is.

We must stress that the concepts of color perceived by an observer from an emitted light
stimulus, see De�nition 6.1.4, and from an illuminated surface patch, see Equation (6.1.4), in
spite of having di�erent interpretations, can be characterized by the same mathematical object :
a post-measurement generalized state. For this reason, hereinafter, when it is not meaningful
to distinguish between the two cases, we will deal with a perceived color by using the abstract
and unifying notation represented by ψe(s0s).

Notice that in [19] a perceived color has been de�ned as a an e�ect, while in the present
section we have identi�ed it with a post-measurement generalized state induced by an e�ect.
These two apparently di�erent de�nitions are actually linked. In fact, if e := (e0,ve) is an
e�ect, then one can associate to e the perceived color ψe(sa) = e0ϕe(sa), this correspondence
being clearly one-to-one and onto.

6.2 De�nition of the achromatic attributes: brightness and light-

ness

De�ning a meaningful terminology to describe the achromatic component of a perceived
color is a delicate issue. The title of [83] emblematically refers to it as an unrelenting contro-
versy. This confusion is particularly evident when one reads names as lightness, brightness,
luminance, luma, value or intensity used as synonyms to describe the achromatic attribute in
image processing. For the de�nitions of brightness and lightness as color appearance attributes
check Subsection 1.3.1 of Chapter 1. Notice that the de�nitions provided in this section will
be su�cient to formalize the lightness constancy phenomenon in Section 6.4.

In this section we will provide a mathematically rigorous proposal for the de�nitions of
brightness and lightness. To motivate our proposals, we start by reporting the following two
descriptions that refer to the case of light re�ected by a physical patch lit by an illuminant.

Quoting [62]: `the physical counterpart of lightness is the permanent property of a surface
that determines what percentage of light the surface re�ects. Surfaces that appear white re�ect
about 90% of the light striking them. Black surfaces re�ect about 3%. In short, lightness is
perceived re�ectance'.

Quoting [83] : `the physical counterpart of brightness is called luminance, that is, the ab-
solute intensity of light re�ected in the direction of the observer's eye by a surface (or at least
coming from a certain part of the visual �eld). In short, if lightness is perceived re�ectance,
brightness is perceived luminance. The re�ectance of an object is a relatively permanent prop-
erty, whereas its luminance is transient '.

The basic information brought by the references quoted above is that in order to extract
lightness from the perceived color ψe(s0s), we must be able to meaningfully extract a per-
centage out of it which has to verify suitable perceptual robustness properties. On the other
hand brightness should represent the perceived absolute intensity of light. As we have seen
in Chapter 5, the most immediate information that one can extract from a perceived color
ψe(s0s) is the evaluation 〈e〉s0s, see Equation (5.2.8), thus it seems natural to de�ne brightness
as follows.

De�nition 6.2.1 (Brightness of a perceived color from an emitted light). Given an observer
o, o = (o0,vo), the brightness of the color ψo(`0`) perceived by o from an emitted light stimulus
`0` is given by

B(ψo(`0`)) := Tr(ψo(`0`)) = o0`0(1 + vo · v`). (6.2.1)

The following result is immediate, we state it for white light because we need it to de�ne
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lightness, but it can be extended to an arbitrary achromatic emitted light `0sa, obtaining `0o0,
`0 ∈ [0, 1], instead of o0 in the following proposition.

Proposition 6.2.2 (Robustness of the white light brightness). Given any observer o =
(o0,vo), the brightness perceived by o from the white light `W is:

B(ψo(`W )) = o0, (6.2.2)

so the brightness of the white light does not depend on the e�ect vector of o.

Now we treat the case of re�ected light.

De�nition 6.2.3 (Brightness of a perceived color from a re�ected light). Given a couple
observer-illuminant (o, ι), o = (o0,vo), ι = (ι0,vι), the brightness of the color ψo(ψι(p0p))
perceived by o from a patch pop lit by ι is:

B(ψo(ψι(p0p)) = o0ι0p0(1 + vι · vp)(1 + vo · (vι ⊕ vp)). (6.2.3)

The equivalent of Proposition 6.2.2 in the case of re�ected light is the following result,
which can be extended to achromatic patches lit by achromatic lights by replacing o0ι0 with
o0ι0p0.

Proposition 6.2.4 (Robustness of white patch brightness under achromatic illuminant).
Given a couple observer-illuminant (o, ι), o = (o0,vo), ι = (ι0,vι), the brightness perceived by
o from the white patch pW lit by ι is:

B(ψo(ψι(p
W )) = o0ι0(1 + vo · vι), (6.2.4)

hence, the brightness of the white patch does not depend on the e�ect vector of o if and only if
ι is an achromatic illuminant ιa, in which case we have:

B(ψo(ψιa(pW )) = o0ι0. (6.2.5)

Let us now pass to the de�nition of lightness. The following reasoning will give a more
substantiated basis to the intuitive equation proposed in [49], recalled in Chapter 1, Equation
(1.3.1).

An observer cannot distinguish an isolated chromatic patch lit by an achromatic illumi-
nant from an achromatic one lit by a chromatic illuminant. The physical counterpart of this
statement is the impossibility of recovering the re�ectance Rp(λ, x) from the sole knowledge
of Ip(λ, x) in formula (6.1.3): it is clear that, without any further hypothesis on Rp(λ, x), or
on the luminance L(λ), this problem is ill-posed.

This is the reason why several hypotheses, e.g. white patch, gray world, gray edge and so
on, have been formulated in order to solve this problem, see e.g. [60, 128] for an overview.
Among them, the only hypothesis that can be meaningfully applied to unrelated colors is the
white patch (because unrelated colors, by de�nition, do not have a surround), i.e. the physical
assumption that there exists a patch pW , among those observed under the same illuminant,
that has perfect re�ectance, i.e. such that RpW (λ, x) ≡ 1.

If this hypothesis is satis�ed, then formula (6.1.3) gives IpW (λ, x) = L(λ), i.e. the image

information acquired from the white patch pW agrees with the luminance of the illuminant,
hence we can retrieve the re�ectance of each patch p from the image information Ip(λ, x)
simply dividing it by IpW (λ, x), i.e.

Rp(λ, x) =
Ip(λ, x)

IpW (λ, x)
. (6.2.6)

As before, we distinguish our de�nition of lightness for emitted and re�ected light, starting by
the former case.
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De�nition 6.2.5 (Lightness of a perceived color from an emitted light). Given an observer o,
o = (o0,vo), the lightness of the color ψo(`0`) perceived by o from an emitted light stimulus `0`
is given by the ratio between its brightness, Equation (6.2.1), and the brightness of the white
light, Equation (6.2.2), i.e.

L(ψo(`0`)) :=
B(ψo(`0`))

B(ψo(`W ))
= `0(1 + vo · v`). (6.2.7)

The lightness perceived from an achromatic emitted light coincides with its intensity `0
independently of the observer:

L(ψo(`0sa)) = `0, ∀o. (6.2.8)

In particular, the lightness of the white light is equal to 1.

When vo = 0, the lightness of any color perceived from an emitted light coincides with
the light intensity independently of the chromatic state of the emitted light:

L(ψoa(`0`)) = `0, ∀`. (6.2.9)

De�nition 6.2.6 (Lightness of a perceived color from a re�ected light). Given a couple
observer-illuminant (o, ι), o = (o0,vo), ι = (ι0,vι), the lightness of the color ψo(ψι(p0p))
perceived by o from the patch p0p lit by ι is given by the ratio between its brightness, Equation
(6.2.3), and the brightness of the white patch lit by the same illuminant ι, Equation (6.2.4),
i.e.

L(ψo(ψι(p0p)) :=
B(ψo(ψι(p0p))

B(ψo(ψι(pW ))
= p0

(1 + vι · vp)(1 + vo · (vι ⊕ vp))

1 + vo · vι
. (6.2.10)

Notice that the lightness of an achromatic patch coincides with p0, the overall percentage
of illuminant intensity that the patch is able to re�ect, regardless of the chromaticity of the
illuminant ι and the e�ect vector of the observer o:

L(ψo(ψι(p0sa)) = p0, ∀(o, ι). (6.2.11)

In particular, the lightness of the white patch is normalized to 1.

Di�erently from the case of emitted light, the lightness of a surface color perceived by an
observer with vo = 0 is not simply p0 but

L(ψoa(ψι(p0p)) = p0(1 + vι · vp), (6.2.12)

this quantity reduces to p0 when ι is an achromatic illuminant:

L(ψoa(ψιa(p0p)) = p0. (6.2.13)

As a �nal remark, we notice that the fact that brightness and lightness di�er by the multi-
plicative constant represented by the brightness of the perceived white area is coherent with
the Weber-Fechner's law, mentioned in Equation (1.2.1) Section 1.2, see as well [65]. This
might justify the choice of ds/s, which is invariant under scalar multiplication of s, as metric
for the achromatic component of a color. In other words lightness is invariant under linear
rescalings of brightness.
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6.3 De�nition of perceptual chromatic attributes: colorfulness,

saturation, chroma and hue

In this section we discuss two possible ways of de�ning the chromatic attributes of colorful-
ness, chroma and saturation. We recall that the intuitive de�nitions of these color appearance
attributes are reported in Subsection of Chapter 1. We must stress that the role of chromatic
opponency, introduced in Chapter 3 is fundamental to characterize chromatic attributes.

As we will see, there are di�erent ways to provide de�nitions of the chromatic attributes
using color opponency: in Subsection 6.3.1 we will provide the most simple one using the
Euclidean distance, while in Subsections 6.3.2 and 6.3.3 we will employ the concept of relative
quantum entropy, introduced in Section 5.4 of Chapter 5.

6.3.1 Chromatic opponency and Euclidean de�nition of colorfulness, satu-

ration and chroma of a perceived color

As already mentioned in Section 3.4, the expectation values of the real Pauli matrices σ1, σ2

on a chromatic state, and analogously on a generalized state, provide its degrees of opponency.
Our aim here is to de�ne the chromatic attributes of colorfulness, chroma and saturation using
only the information about chromatic opponency.

Moreover, we want to translate into rigorous equations the intuitive formulae (1.3.3) and
(1.3.2) of Subsection 1.3.1, that we recall here:

Saturation =
Colorfulness

Brightness
and Chroma =

Colorfulness

Brightness(White)
. (6.3.1)

Since in the previous section we have already de�ned the concept of brightness, what remains
to be de�ned is just the colorfulness. In fact, given the perceived color ψe(s0s), if we know
how to de�ne its colorfulness Col(ψe(s0s)), then its saturation `Sat' and chroma `Chr' are,
respectively,

Sat(ψe(s0s)) =
Col(ψe(s0s))

B(ψe(s0s))
and Chr(ψe(s0s)) =

Col(ψe(s0s))

B(ψe(sa))
. (6.3.2)

Alternatively, if we knew how to de�ne saturation, we could de�ne colorfulness and chroma as
follows:

Col(ψe(s0s)) = β Sat(ψe(s0s)) and Chr(ψe(s0s)) = λ Sat(ψe(s0s)), (6.3.3)

where {
β := B(ψe(s0s))

λ := L(ψe(s0s)) = B(ψe(s0s))/B(ψe(sa))
. (6.3.4)

We will exploit this remark in the next subsection.
Let us start with a preliminary de�nition.

De�nition 6.3.1 (i-th degrees of opponency of a perceived color). Let ψe(s0s) be a perceived
color. Then, for i = 1, 2, its:

� i-th degree of colorfulness opponency is

Coli(ψe(s0s)) := 〈σi〉ψe(s0s) ; (6.3.5)

� i-th degree of saturation opponency is

Sati(ψe(s0s)) :=
〈σi〉ψe(s0s)

Tr(ψe(s0s))
; (6.3.6)
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� i-th degree of chroma opponency is

Chri(ψe(s0s)) :=
〈σi〉ψe(s0s)

Tr(ψe(sa))
. (6.3.7)

Now we have to face the problem of suitably combine the i-th degree of opposition of these
chromatic attributes in order to obtain a positive real number that de�nes the attribute itself.
If we had to follow the Euclidean choice of classical colorimetry we would give the following
de�nitions.

De�nition 6.3.2 (Euclidean de�nitions of colorfulness, saturation and chroma of a perceived
color). Given the perceived color ψe(s0s), its:

� colorfulness is

Col(ψe(s0s)) =

√
[Col1(ψe(s0s))]

2 + [Col2(ψe(s0s))]
2 ; (6.3.8)

� saturation is

Sat(ψe(s0s)) =

√
[Sat1(ψe(s0s))]

2 + [Sat2(ψe(s0s))]
2 ; (6.3.9)

� chroma is

Chr(ψe(s0s)) =

√
[Chr1(ψe(s0s))]

2 + [Chr2(ψe(s0s))]
2. (6.3.10)

With such de�nitions the linear relations of Equation (6.3.2) are satis�ed.

We now pass to the discussion of a second possible way to de�ne chromatic attributes that
we deem more coherent with the quantum-like theory of color perception that lies at the basis
of our work.

6.3.2 De�nition of colorfulness, saturation and chroma of a perceived color

via relative quantum entropy

Here we propose an alternative description of the perceptual chromatic attributes based
on the notion of relative (quantum) entropy, for more information about this concept we refer
to Chapter 5 or [32, 7] and also to [119] or [6] for the proofs of its properties that we shall
quote here.

Now, in order to de�ne the saturation of the perceived color ψe(s0s) we simply consider
the chromatic state ϕe(s0s) = ϕe(s) associated to it and we compute the relative entropy
between its density matrix and ρ0, see as well Equation (5.4.5), as formalized in the following
de�nition.

De�nition 6.3.3 (Saturation of a perceived color). Given the perceived color ψe(s0s), its
saturation is

Sat(ψe(s0s)) = R(ρϕe(s)||ρ0) = 1− S(ρϕe(s)) = Σ(rϕe(s))

=
1

2
log2(1− r2

ϕe(s)) +
rϕe(s)

2
log2

(
1 + rϕe(s)

1− rϕe(s)

)
,

(6.3.11)

with rϕe(s) = ‖vϕe(s)‖, where vϕe(s) = (〈σ1〉ϕe(s), 〈σ2〉ϕe(s)) is the chromatic state vector of
ϕe(s) which contains the intrinsic information about its degrees of chromatic opposition.
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Hence, Sat(ψe(s0s)) depends only on the chromatic vector of the e�ect e that permits the
observation of the color and on its chromatic features, embedded in rϕe(s), but not on s0, nor
on e0.

Remark 6.3.4. We must stress that with this second approach the chromatic attribute of
saturation refers no more to a particular, arbitrarily chosen, coordinate on the chromaticity
disk, since it is obtained by the computation of a trace, it is independent on the coordinate
system. This de�nition, via the relative entropy aims at measuring the distinguishability of the
state with the achromatic state. In this sense, the saturation characterizes some information
that it is not related to a special coordinate. In other words saturation is not a coordinate, in a
�xed coordinate system, but an intrinsic attribute, independent on the choice of the coordinate
system.

Now that we have provided a de�nition of saturation, it is easy to de�ne colorfulness and
chroma following Equations (6.3.3). Note that both of them depend on the coe�cient s0.

De�nition 6.3.5 (Colorfulness of a perceived color). Given the perceived color ψe(s0s) with
brightness β = B(ψe(s0s)) = Tr(ψe(s0s)), its colorfulness is

Col(ψe(s0s)) = R(βρϕe(s0s)||βρsa) = β Sat(ψe(s0s)). (6.3.12)

De�nition 6.3.6 (Chroma of a perceived color). Let ψe(s0s) be a perceived color with light-
ness given by λ = L(ψe(s0s)) = Tr(ψe(s0s))/Tr(ψe(sa)), then its chroma is

Chr(ψe(s0s)) = R(λρϕe(s0s)||λρsa) = λSat(ψe(s0s)). (6.3.13)

We must stress that both de�nitions above rely on the property of the relative entropy
stated by Equation (5.4.2) in Chapter 5.

6.3.3 De�nition of hue of a perceived color via relative quantum entropy

As lightness and brightness, perceptual hue has a physical counterpart: the concept of
dominant wavelength of a color stimulus. As presented in [163], the dominant wavelength of a
color stimulus is `the wavelength of monochromatic stimulus that, when mixed with some spec-
i�ed achromatic stimulus, matches the given stimulus in color'. In other words, the dominant
wavelength characterizes any light mixture in terms of the monochromatic spectral light that
elicits the same perception of hue. In the CIE chromaticity diagram, see e.g. Figure 1.5, the
dominant wavelength is the point of its border determined by the intersection with the straight
line that passes through the white point and the one associated to the given color.

In order to express this concept within the quantum-like perceptual framework, motivated
by the results of the previous subsection, we replace the concept of nearest Euclidean distance
to the border of the CIE chromaticity diagram with that of minimal relative entropy between
a given chromatic state and a pure state parameterized by a point of the border of D.

These considerations lead naturally to the following de�nition of hue.

De�nition 6.3.7 (Hue of a perceived color). Given ψe(s0s), a non-achromatic perceived color,
its hue is the pure chromatic state ϕ∗e(s) de�ned by

ϕ∗e(s) := arg min
ρ∈PS(H(2,R))

R(ρ||ρϕe(s)). (6.3.14)

Notice that the hue of ψe(s0s) does not depend on s0 because of the property ϕe(s0s) =
ϕe(s) for all s0 ∈ [0, 1]. For an explicit expression of PS(H(2,R)) see Equation (3.3.20).
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Of course, we must verify that the de�nition is well-posed, i.e. that the solution to the
minimization problem de�ned by Equation (6.3.14) exists and it is unique. Thanks to the
Klein inequality, see Section 5.4, the relative entropy is null if and only if ρ = ϕe(s), so let us
avoid this trivial case and also the achromatic condition (since achromatic colors lack of hue
by de�nition) by supposing that 0 < rϕe(s) < 1.

Let us notice that, thanks to De�nition 5.4.1, Equations (5.4.4) and (3.3.19) we get:

R(ρs||ρt) = 1− S(ρs)−
1

2
log2(1− r2

t)− rs cosϑs,t
2

log2

(
1 + rt
1− rt

)
. (6.3.15)

Now we must replace the generic density matrix ρs with one, ρ, associated to a pure state, so
that S(ρs) = 0 and rs = 1, and t with ϕe(s), thus obtaining:

R(ρ||ρϕe(s)) = 1− 1

2
log2(1− r2

ϕe(s))−
cosϑρ,ϕe(s)

2
log2

(
1 + rϕe(s)

1− rϕe(s)

)
. (6.3.16)

Since 0 < rϕe(s) < 1, −1
2 log2(1−r2

ϕe(s)) > 0 and log2

(
1+rϕe(s)
1−rϕe(s)

)
> 0. Given that R(ρ||ρϕe(s)) >

0 and that rϕe(s) is �xed, the computation of the arg min in Equation (6.3.14) is equivalent
to the maximization of cosϑρ,ϕe(s), i.e. we can reformulate the de�nition of hue of ψe(s0s) as
follows:

ϕ∗e(s) := arg max
ρ∈PS(H(2,R))

cosϑρ,ϕe(s). (6.3.17)

Recalling that ϑρ,ϕe(s) is the angle between the chromatic vectors vρ of the pure state associated
to ρ (so that rρ = ‖vρ‖ = 1) and vϕe(s), which is �xed, we get:

cosϑρ,ϕe(s) =
vρ · vϕe(s)

rϕe(s)
, (6.3.18)

which is maximized when vρ is parallel to vϕe(s).
Hence, given the state ϕe(s) corresponding to the perceived color ψe(s0s) associated to the

density matrix

ρϕe(s) =
1

2

(
1 + rϕe(s) cosϑϕe(s) rϕe(s) sinϑϕe(s)

rϕe(s) sinϑϕe(s) 1− rϕe(s) cosϑϕe(s)

)
, (6.3.19)

its hue is the pure state ϕ∗e(s) de�ned by the density matrix:

ρϕ∗e(s) =
1

2

(
1 + cosϑϕe(s) sinϑϕe(s)

sinϑϕe(s) 1− cosϑϕe(s)

)
. (6.3.20)

What just proven not only shows that our de�nition of hue is well-posed, but it is also in
perfect agreement with the interpretation of pure states as hues already discussed in Section
3.3 of Chapter 3.

We emphasize the fact that the two de�nitions of saturation and hue by means of relative
quantum entropy are much more signi�cant from the perception viewpoint than those involving
ad hoc coordinates of classical colorimetric spaces. The relative entropy between two states is
a measure of their distinguishability. This precisely means that the saturation of a perceived
color is a measure of how it can be distinguished from the achromatic state. In the same
way, the hue of a perceived color is the closest, from the distinguishability point of view,
pure chromatic state to the given perceived color. We also insist on the fact that the above
computations make use of the Bloch parameters of the state space of the rebit which are not
the coordinates of the color appearance models of the CIE.
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As a consequence, the novel de�nitions of perceptual attributes that we propose constitute
not only a meaningful formalization of the CIE de�nitions given in Subsection 1.3.1, but they
are also mathematically operative in the quantum-like framework presented in Chapters 3,
5. They provide a rigorous explanation of the intuitive representation that one may have of
the perceived color solid. In the next section, we illustrate the potential of this novel system
of de�nitions on the speci�c example of the lightness constancy phenomenon. We do believe
these new de�nitions to be a good starting point to understand and model also other color
appearance phenomena, as the ones mentioned in Subsection 1.3.2.

6.4 Characterization of lightness constancy in the quantum-like

framework

In this section we analyze the important property of lightness constancy, introduced in
Subsection 1.3.2 from the point of view of the quantum-like framework and we characterize it
through a matching equation involving generalized states. In particular we will use the novel
de�nitions of brightness and lightness given in Section 6.2 of the present chapter.

The two perceptual patches of interest are given by the two generalized states p1 = p1
0p

1

and p2 = p2
0p

2, where p1
0, p

2
0 ∈ [0, 1] and p1,p2 are two chromatic states. We �rst consider

the case where the two (physical) e�ects corresponding to the two illuminants are achromatic,
i.e. represented by ι1 = (ι10,0) and ι2 = (ι20,0). In classical colorimetry, this amounts to
considering a D65 illuminant, see e.g. [163].

The two re�ected lights of interest are thus given by the two generalized states

r1 = ψι1(p1
0p

1) = ι10p
1
0p

1, r2 = ψι2(p2
0p

2) = ι20p
2
0p

2. (6.4.1)

We consider now an observer o associated to a (perceptual) achromatic e�ect (o0,0). As
explained before, see Equation (6.1.7), this observer perceives the chromatic information of
the two re�ected lights `as they are', which means that there is no variation between the
chromatic features of the re�ected lights and the chromatic features of the perceived colors.
More precisely, we have

ψo(r1) = o0ι
1
0p

1
0p

1, ψo(r2) = o0ι
2
0p

2
0p

2. (6.4.2)

Recalling Equation (6.2.13), the lightness of the perceived colors ψo(r1) and ψo(r2) is

L(ψo(r1)) = p1
0, L(ψo(r2)) = p2

0. (6.4.3)

It makes sense to consider the phenomenon of lightness constancy only when two perceived
colors share the same chromatic information. In the present case, the chromatic matching
Equation (5.2.25) leads trivially to p1 = p2 =: p. As a consequence,

r1 = ι10p
1
0p, r2 = ι20p

2
0p, (6.4.4)

and
ψo(r1) = o0ι

1
0p

1
0p, ψo(r2) = o0ι

2
0p

2
0p. (6.4.5)

The two re�ected lights r1 and r2 come from the two di�erent illuminants ι1 and ι2, and the
observer has to compensate the di�erence between these two illuminants in order to compare
the initial perceptual patches p1 and p2, i.e. to compare the lightnesses p1

0 and p
2
0. This means

that the observer must �nd a way to recover the re�ected lights as if they where lit by the
same illuminant.
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Let the observer o change his/her (perceptual) e�ect from (o0,0) to (o1
0,0) to de�ne a new

observer o1 perceiving the re�ected light r1. In the same way, let the observer o change his/her
(perceptual) e�ect from (o0,0) to (o2

0,0) to de�ne a new observer o2 perceiving the re�ected
light r2. We have

ψo1(r1) = o1
0ι

1
0p

1
0p, ψo2(r2) = o2

0ι
2
0p

2
0p. (6.4.6)

These two perceived colors are those obtained from a measurement of only one observer asso-
ciated to an achromatic e�ect from the re�ected lights produced by the two perceptual patches
p1 and p2 lit with the same achromatic illuminant if and only if o1

0ι
1
0 = o2

0ι
2
0. If, for instance,

o1 = (ι20,0) and o2 = (ι10,0), then

ψo1(r1) = ι20ι
1
0p

1
0p, ψo2(r2) = ι10ι

2
0p

2
0p (6.4.7)

are the perceived colors measured by the observer o = (1,0) from the re�ected lights r̃1 =
ι10ι

2
0p

1
0p and r̃2 = ι10ι

2
0p

1
0p obtained by illuminating the perceptual patches p1 and p2 with the

same achromatic illuminant (ι10ι
2
0,0). Using the equation o1

0ι
1
0 = o2

0ι
2
0, it appears clearly that

the two perceived colors ψo1(r1) and ψo2(r2) are equal if and only if the two lightnesses p1
0

and p2
0 are equal.

The above analysis of lightness constancy requires two measurements performed by the
observers o1 and o2, with the condition o1

0/o
2
0 = ι20/ι

1
0, in order to make some comparison.

This means that the lightness constancy phenomenon requires that the observer is able to
evaluate the ratio ι20/ι

1
0 between the two magnitudes of the illuminants ι2 and ι1.

It is easy to check that the proposed derivation also applies when the two illuminants are
no more achromatic but still share the same chromatic features expressed by their e�ect vector.
In fact let ι1 = (ι10,vι) and ι

2 = (ι20,vι) be the two illuminants, with oi, pi as before, i = 1, 2,
then we obtain the following perceived colors

ψo1(r1) = o1
0ι

1
0p

1
0(1 + vι · vp)(vι ⊕ vp), ψo2(r2) = o2

0ι
2
0p

2
0(1 + vι · vp)(vι ⊕ vp). (6.4.8)

Notice that, from De�nition 6.2.6 their lightness is given by

L(ψo(r1)) = p1
0(1 + vι · vp), L(ψo(r2)) = p2

0(1 + vι · vp). (6.4.9)

The perceived colors in Equation (6.4.8) are those obtained from a measurement of only one
observer associated to an achromatic e�ect from the re�ected lights produced by the two
perceptual patches p1 and p2 lit with the same illuminant of chromaticity vι if and only if
o1

0ι
1
0 = o2

0ι
2
0. Thus the following perceived colors

ψo1(r1) = ι20ι
1
0p

1
0(1 + vι · vp)(vι ⊕ vp), ψo2(r2) = ι10ι

2
0p

2
0(1 + vι · vp)(vι ⊕ vp), (6.4.10)

can be seen as the perceived colors measured by o = (1,0) from the re�ected lights r̃1 =
ι10ι

2
0p

1
0(1 + vι · vp)(vι ⊕ vp) and r̃2 = ι10ι

2
0p

2
0p(1 + vι · vp)(vι ⊕ vp) obtained by illuminating

the patches p1 and p2 with the same illuminant (ι10ι
2
0,vι). It is clear that the two perceived

colors ψo1(r1) and ψo2(r2) are perceived as equal if and only if their lightnesses in Equation
(6.4.9) are equal.
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Chapter 7

Related applications: a CAT for AWB

This chapter is about the very �rst application to color image processing of the new model
described in the previous chapters. In Chapter 2 we have seen Yilmaz's original association
between chromatic adaptation and Lorentz boosts, in Chapters 4 and 5 we formally moti-
vated the presence of relativistic concepts within the quantum-like framework, �nally, in the
present chapter, we will see how to use a normalized Lorentz boost as a chromatic adaptation
transform.

As references for the content of the present chapter one might look at [68] for a detailed
exposition of the �rst version of the algorithm, and at Subsection 3.3.3 of [14] for an overview
of the most recent one, where the links with the concepts exposed in Chapter 5, in particular
Lüders operations and e�ects, are stressed out. Details about the last version of the algorithm
and a �rst quantitative evaluation of its performance are presented here for the �rst time.
Future projects involving this algorithm will be mentioned in Chapter 9.

7.1 Color constancy and white balance

Many aspects in color image processing are inspired by features of the HVS*. In Chapter
1 we have seen that trichromacy-based color spaces are inspired by the presence of three
types of cone photoreceptors, while in Chapter 8 we will see that tone mapping algorithms
are made to imitate visual adaptation. In the same spirit, white balance algorithms are
meant to emulate the capability of the HVS to adapt to non-neutral illumination conditions.
This phenomenon, known as chromatic adaptation, occurs at the level of both retinal cells
and higher brain mechanisms, see [49] for further details about the physiological aspects of
chromatic adaptation.

Chromatic adaptation is usually explained in terms of independent variations of the cone
sensitivity functions, however, as underlined in [49], it is restrictive to consider it an early-level
process, in fact also higher levels of the vision pipeline are involved, in particular the opponent
level, see e.g. [76], and even the object recognition level.

Chromatic adaptation is the reason behind the so-called color constancy phenomenon,
already mentioned in Subsection 1.3.2, i.e. the robustness of the HVS to describe perceived
colors with the same chromatic attributes in spite of illuminant changes. Roughly speaking,
from an evolutionary point of view, it is convenient for the HVS to perceive an object with a
stable color under di�erent illumination conditions, in order to better recognize and track it.

Automatic White Balance, AWB from now on, refers to the process of automatic detection
and removal of an unwanted color cast on a digital image generated by the presence of a

*Acronym for Human Visual System.
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non-neutral illuminant in the scene that is represented in the picture. The term automatic
refers to the fact that the illuminant estimation is performed automatically. The aim of
AWB algorithms is to recover an image representing the scene as it was enlightened by a
neutral illuminant, or as if the scene was seen by an observer fully adapted to the non-neutral
illuminant. More precisely AWB consists of two steps:

� an illuminant estimation algorithm, that identi�es the illuminant(s) in the scene associ-
ating to it (each of them) a 3-dimensional vector ~L;

� a Chromatic Adaptation Transform (CAT), parametrized by ~L that eliminates the pres-
ence of the illuminant returning an image as if the scene was lit by a neutral illuminant.

Modeling chromatic adaptation is a complex issue for several reasons: �rst of all the psy-
chophysical phenomenon itself is very elaborate involving di�erent levels of the visual chain,
then, as we will see in following, the detection of the illuminant(s) to discard is an ill-posed
problem, moreover the objective, as already underlined for the case of the lightness constancy,
is to recover the perceived re�ectance of the scene, and not the physical one. By perceived
re�ectance we mean, ideally, taking into account not just the cone response functions, but as
well the opponent mechanism and other levels of the visual chain that are involved. Of course,
the task becomes even more complex if one considers the case of incomplete adaptation to the
illuminant.

In the following we are going to present the classic image formation model widely used in
literature, underlining the assumptions on which it is based upon.

7.1.1 Image formation model

Let us start by �xing the notations. We call I ⊂ R2 is the 2-dimensional support of a RGB
digital image ~I = (IR, IG, IB), where Ic is the RGB color channel of ~I, with c ∈ {R,G,B}.
The position of a generic pixel belonging to I will be denoted by x = (x1, x2) and the image
intensity Ic(x) is supposed to be normalized in [0, 1].

We must stress that this is essentially a physically-based model that aims at reconstructing
the physical re�ectance of the objects, in which the only perceptually-inspired element is the
presence of the three camera sensitivity functions.

In the dichromatic re�ection model [139, 61, 128], the scene elements are supposed to
have both a specular and a di�used re�ectance. A specular re�ection is only visible if the
normal vector of a shiny object is oriented precisely halfway between the direction of incoming
light and the direction of the camera sensor. The di�used re�ectance is due to the scattering
between the light and the surface particles of an object, which produces an isotropic re�ection
of light. We denote by ms(x) and md(x) the scale factors that weight the relative amount
of specular and di�used re�ectance, respectively, contributing to the overall light re�ected at
the location x. Let Λ be the visible spectrum, let Sc(λ), with c ∈ R,G,B and λ ∈ Λ, be the
spectral sensitivity functions of the camera, and let ρ = ρ(x, λ), with x ∈ I , λ ∈ Λ, being the
re�ectance. Let E(λ) be the illuminant spectrum, then the intensity of the pixel x is given by:

Ic(x) = md(x)

∫
Λ
ρ(x, λ)Sc(λ)E(λ)dλ+ms(x)Lc, ∀c ∈ {R,G,B}, (7.1.1)

where Lc =
∫

Λ Sc(λ)E(λ)dλ. If we point the camera towards the light source, we obtain

the light vector ~L = (LR, LG, LB) associated to the illuminant. In the Lambertian re�ection
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models, the specular re�ection term is ignored, so that md(x) ≡ 1 and ms(x) ≡ 0, and the
resulting image formation model reduces to:

Ic(x) =

∫
Λ
ρ(x, λ)Sc(λ)E(λ)dλ, ∀c ∈ {R,G,B}, (7.1.2)

The Lambert image formation model used in literature about AWB of single-illuminant digital
images is based on the following assumption:

Ic(x) = ρc(x)Lc, ∀c ∈ {R,G,B}, (7.1.3)

where ρc is the c-component of the re�ectance of the point in the scene represented by the
pixel x and Lc is c-component of the illuminant present in the scene. It is very important to
stress that, in spite of the appealing simplicity of this formula, Equation (7.1.3) is far from
being an accurate description of the real image formation process. In fact, to pass from the
more accurate dichromatic model of Equation (7.1.1) to Equation (7.1.3), one needs to state
the following three hypotheses:

1. there is no specular re�ection in the scene;

2. the supports of the camera spectral sensitivity functions Sc are mutually disjoint;

3. the re�ectance ρ(x, λ) is constant for every λ ∈ supp(Sc), in such a way that ρ(x, λ)
becomes separated into ρR(x), ρG(x), ρB(x).

Notice that we are excluding the particular case in which ρ(x, λ) = ρ(x) for all λ ∈ Λ, in that
case there is no need for the camera spectral sensitivity functions to have mutually disjoint
supports. We are not considering as well the case in which the camera spectral sensitivity
functions are dirac-like functions, in that case there is no need for the third hypothesis.

Both of the above cases are however unlikely to happen: the �rst one because too restrictive
on the re�ectance, the second one because it is not realistic in conventional digital photography.

Most of the AWB algorithms based on the image formation model represented by Equation
(7.1.3) work in the same way: starting from the knowledge of Ic(x) they want to estimate Lc in
order to eliminate its presence, and so the unwanted color cast, by simple division. Of course,
the illuminant estimation problem is ill-posed because in Equation (7.1.3) there is only one
known quantity, i.e. Ic(x), versus two unknown quantities, i.e. ρc(x) and Lc.

We must stress that the perceptual aspect of the model described above is only the presence
of the camera spectral sensitivity functions, in particular Hering opponent mechanism is not
taken into account.

The scope of this chapter is to propose a new prototype of CAT arising from the theoretical
model described in the previous chapters. In the following paragraphs we are going to provide
a brief overview of existing illuminant estimation methods and CATs.

7.1.2 Illuminant estimation

To solve the ill-posed problem of Equation (7.1.3) various solutions have been proposed in
the literature, see [61, 128]. Here we just consider the two most simple widely used, which are
based on the white-patch (WP) and the gray-world (GW) hypotheses.

The �rst assumes that there is at least one patch with perfect re�ectance in the visual
scene, i.e. it exists x̄c ∈ I such that ρc(x̄c) = 1, so that Ic(x̄c) = Lc for all c ∈ {R,G,B}. Let
us call LWP

c = Ic(x̄c) for all c ∈ {R,G,B} the illuminant estimation obtained with the WP
method.
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The latter hypothesis assumes that the spatial average re�ectance in a visual scene is
achromatic [24]. If we denote with Īc the spatial average of the image in the �xed chromatic
channel c, then, it can be proven, see e.g. [128] that, the estimated illuminant is given by
LGWc = Īc/k for all c ∈ {R,G,B}, with k ∈ [0, 1]. We stress that real-world images do not
satisfy these hypothesis all the time: a simple example is given by a close-up image, which
will typically show uniform areas that violate the assumptions above.

Clearly more advanced methods for global and local the illuminant estimation exist, see
[61] for a good overview, the most recent ones are obtained using Machine Learning techniques.
Notice that, for the case of multiple sources of illumination the illuminant vector depends on
the pixel, thus ~L = ~L(x).

7.1.3 Chromatic adaptation transforms

A CAT is meant to mimic the adaptation process, more precisely it takes as input an
estimated illuminant vector� ~L, and the input image ~I(x), with x ∈ I representing a scene
enlightened by the estimated illuminant, and returns as output an image ~I ′(x) representing
how the scene would appear to an observer fully adapted to the illuminant.

The output image should represent the perceived re�ectance of the scene, i.e. I ′c(x) = ρc(x)
for all c ∈ {R,G,B}, x ∈ I . In other words ~I ′(x) represents the scene as it was lit by a neutral
illuminant. Equation (7.1.3), suggests that, given ~I(x) and knowing ~L, then for all x ∈ I
~I ′(x) is obtained via the pointwise multiplicationI ′R(x)

I ′G(x)
I ′B(x)

 =

1/LR 0 0
0 1/LG 0
0 0 1/LB

IR(x)
IG(x)
IB(x)

 . (7.1.4)

Notice that this is equivalent to linearly rescale the spectral sensitivity functions Sc(λ), c ∈
{R,G,B} obtaining the new sensitivity functions S′c(λ) of an observer adapted to ~L are given
by S′c(λ) = Sc(λ)/Lc, c ∈ {R,G,B}, λ ∈ Λ.

Furthermore, notice that the RGB illuminant vector ~L is mapped into (1, 1, 1)t which is
the white in RGB.

The diagonal correction method of Equation (7.1.4) is generally known as von Kries CAT
[154]. This method is widely used in literature and applications, because of its simplicity and
low computational cost. Usually, in the image processing pipeline, the CAT is applied on
linear RGB images after demosaicing.

As underlined in Chapter 9 of [49], it is more correct to apply the von Kries CAT in the
LMS domain, i.e. the estimated illuminant ~L, the input image ~I(x) and the corrected one
~I ′(x) should be represented using LMS coordinates, in particular this means using the LMS
spectral sentitivity functions Sc(λ) with c ∈ {L,M,S} in Equation (7.1.2), instead of the
camera sensitivity functions Sc(λ) with c ∈ {R,G,B}.

For computational convenience the von Kries CAT is usually applied in the linear RGB
domain. As stated in [61] about the von Kries CAT in RGB: `Although this model is merely
an approximation of illuminant change and might not accurately be able to model photometric
changes, it is widely accepted as color correction model [159, 56, 58, 162, 22] and it underpins
many color constancy algorithms'. In both cases of LMS and linear RGB, the idea is that,
since chromatic adaptation is approximately an early-level process in the vision pipeline, the
CAT should be applied in a color domain describing the the early stage of vision, hence LMS,

�For the case of multi illuminant estimation it works in the same way, taking as input ~L(x).
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or, by analogy, at the early stage of the image processing pipeline, thus in the linear RGB
domain.

With the aim of providing a more accurate computational model for chromatic adaptation,
several alternative CATs are present in literature, most of them are linear in the RGB or LMS
domain. Often they are proposed as modi�cations of the von Kries CAT, e.g. [20]. For further
details several CATs are described by Fairchild in Chapter 9 of [49], and a good survey about
the state of the art chromatic adaptation transforms, methods and datasets was provided by
the CIE in 2004 [1].

7.2 The normalized boost CAT in HCV

7.2.1 Preliminary assumptions and link with the theoretical model

The idea here is to use a normalized Lorentz boost, as de�ned in Chapter 5, as a CAT,
to do so we are going to start by recalling some concepts mentioned in Chapter 5 to better
contextualize the algorithm that we propose.

As we have seen in Chapter 5, Lüders operations act on generalized states. More precisely
let us recall Equation (5.2.18), expressing the link between Lüders operations and normalized
Lorentz boosts. Let e = (e0, e1, e2) ∈ E be an e�ect, let ve ∈ D be its chromatic vector such
that ||ve|| < 1. Let s0s be a generalized state, then the Lüders operation parametrized by
e, acting on s0s, can be expressed as a linear operation on the state cone of the spin factor
C(R⊕ R2) as follows:

χ(ψe(s0s)) =
s0e0

γve

B(ve)
1

2

(
1
vs

)
= BN (e)

s0

2

(
1
vs

)
, (7.2.1)

with

γve :=
1√

1− ‖ve‖2
. (7.2.2)

B(ve) is the Lorentz boost parametrized by ve, andBN (e) is the normalized boost parametrized
by e. Let us recall as well that the explicit expression BN (e), as in Equations (5.2.15) and
(5.2.17), is given by

[BN (e)] =
e0

γve

[B(ve)] =
e0

γve

(
γve γvev

t
e

γveve σ0 +
γ2ve

1+γve
vev

t
e

)
, (7.2.3)

We recall that in Yilmaz's model, see Chapter 2 or [166, 165], he proposed a simple boost
to model chromatic adaptation. Brill and West [23] underlined the necessity of a normalizing
factor, we justify its presence through the theoretical model, in particular by Equation (7.2.1).

Let us now understand how to use BN (e) as a CAT. Notice that BN (e) : C(R ⊕ R2) →
C(R⊕R2) acts linearly on the state cone of the spin factor C(R⊕R2). If one considers BN (e)
as acting on R⊕R2, then it is stable on C(R⊕R2). Let us recall Equation (5.1.2), expressing
the parametrization of C(R⊕ R2):

C(R⊕ R2) =

{(
α
αvs

)
, α ≥ 0, vs ∈ D

}
. (7.2.4)
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Furthermore, since ||ve|| < 1, the matrix B(ve) is invertible and it is easy to prove that
B(ve)−1 = B(−ve), hence

BN (e)−1 =
γve

e0
B(−ve). (7.2.5)

Since γve = γ−ve , an explicit expression for BN (e)−1 is given by

[BN (e)−1] =
γve

e0
[B(−ve)] =

γve

e0

(
γve −γvev

t
e

−γveve σ0 +
γ2ve

1+γve
vev

t
e

)
. (7.2.6)

Let us underline one last property of the theoretical model, that will be used in the follow-
ing. Let us consider the e�ect e, by self-duality we can associate to it a generalized state e0se,
where se is a state whose chromatic vector is ve. Let us consider the representation of e0se as
an element of C(R⊕R2), then it is not hard to prove, via straightforward computations using
Equation (7.2.6), that

BN (e)−1

(
e0

e0ve

)
=

(
1
0

)
. (7.2.7)

In other words the generalized state e0se is mapped into the achromatic state of maximal
entropy sa.

Now we are ready to relate the concepts and properties recalled above to the problem
of de�ning a CAT. As in Section 7.1, let ~I(x) = (IR(x), IG(x), IB(x))t be the input image,
not white balanced, represented in the RGB domain, with x ∈ I on which we want to
apply the CAT. Let ~L = (LR, LG, LB)t be the estimated illuminant vector�. Let ~I ′(x) =
(I ′R(x), I ′G(x), I ′B(x))t be the output image after the application of the CAT.

For all x ∈ I we want to perform the following associations:

�
~I(x) and ~I ′(x) to elements of C(R⊕ R2);

�
~L to e, or equivalently, by self-duality, to the generalized state e0se described before.

As we have seen for the von Kries CAT in RGB, the main idea underlying a CAT is that
it should map the illuminant vector ~L to the white. Suppose we are able to perform the
associations above, then BN (e)−1 is a good candidate for a CAT, because, by Equation (7.2.7),
it maps the vector (e0, e0ve)t, associated to the illuminant vector ~L, into (1,0)t corresponding
to the state of maximal entropy sa, representing white in C(R⊕ R2).

It is important to stress that C(R ⊕ R2) is not a color space in the sense of the state-
of-the art trichromacy based color solids, see Section 1.1 of Chapter 1, but it provides the
basic mathematical framework on which the theoretical model detailed in Chapters 3, 4 and
5 is built. Nevertheless, the association between elements of C(R ⊕ R2) and coordinates of
trichromacy-based color solids (or their modi�cations) is fundamental to start implementing
concrete applications to color image processing. Clearly, it is a non trivial aspect with a great
margin of improvement. On the long term we do believe that the support of psychovisual data
and ML techniques will be necessary to fully accomplish this task. Some �rst simple steps in
this direction can be found in Section 7.3, or in Chapter 9. As we will see in the rest of this
chapter, even tests of the model performed in an approximated color domain give satisfactory
�rst results.

RGB is not a suitable color domain to perform easy associations with elements of C(R⊕R2).
Hence we need to change color domain to represent ~I(x), ~I ′(x) and ~L. An adequate choice

�We recall that the multi-illuminant case is analogous, with ~L = ~L(x).
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should be a conic-shaped color solid with circular section, as e.g. the one depicted in Figure
2.1.1 (b). Clearly several options are available in literature, however most of the recently
developed color spaces do not have circular section. The simplest choice, fur�lling these
properties, is given by the classic HCV (Hue Chroma Value) color space. We will discuss
about the absence of Hering's opponency in HCV and some simple solutions to this issue in
Section 7.3. Moreover, another candidate for a new color solid in which it would be possible to
test the CAT proposed in this chapter will be mentioned among the future projects in Chapter
9.

We consider now ~I(x), ~I ′(x) represented in the HCV color space, for all x ∈ I , thus
Ic(x), I ′c(x), with c ∈ {H,C, V }. In the following we will omit the dependence on the pixel x
and use the notation H = IH , C = IC , V = IV , H

′ = I ′H , C
′ = I ′C , V

′ = I ′V .

We are ready now to perform associations between C(R ⊕ R2) and the HCV color space.
Let us recall that in HCV the value V represents the achromatic coordinate, moreover the
HCV color space is converted in the HSV where S is the saturation obtained from C and V
via S = C/V .

Let us consider an element of C(R⊕R2), (s0, s0vs)
t with s0 ≥ 0 and vs ∈ D. Let rs, ϑs be

the polar coordinates of the vector vs. We perform the following associations:
ϑs ≡ H
s0rs ≡ C
s0 ≡ V
rs ≡ S

. (7.2.8)

The same holds for the primed variables. Thanks to the associations above, we are now able
to identify the input and output images (H(x), C(x), V (x))t and (H ′(x), C ′(x), V ′(x))t, for
x ∈ I , with elements of C(R⊕ R2).

Analogously, let us consider the illuminant vector ~L, represented in the HSV domain, hence
Lc, with c ∈ {H,S, V }. In the following we will use the notation LH = φ, LS = σ, LV = ε.
We can perform analogous identi�cations between ~L and e as follows

ϑe ≡ φ
e0 ≡ ε
re ≡ σ

, (7.2.9)

re, ϑe being the polar coordinates of ve. Doing the same for the Lorentz factor we obtain

γve ≡ Γ, with Γ =
1√

1− σ2
. (7.2.10)

In the same way we can associate to [BN (e)−1] a matrix, let us call it Ω. BN (e)−1 is
parametrized by e, and, in the same way Ω will be parametrized by the HSV coordinates of
~L, i.e. φ, σ, ε. Before writing the explicit expression for Ω we must make two remarks: the
�rst one is that BN (e)−1 is applied on the Cartesian components of the vector s0vs. Let
us call α(x), β(x) and α′(x), β′(x) the Cartesian coordinates of H(x), C(x) and H ′(x), C ′(x),
respectively, for all x ∈ I . Then (α′, β′, V ′)t = Ω(α, β, V )t. The second remark is that in the
parametrization of C(R ⊕ R2) the magnitude of the generalized state is in the �rst position,
while in α, β, V the achromatic is placed in the last one.
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Writing [BN (e)−1] as the achromatic coordinate occupied the last position would lead to
the following matrix, that we want to identify with Ω:

γve

e0

(
σ0 +

γ2ve
1+γve

vev
t
e −γveve

−γvev
t
e γve

)
≡ Ω. (7.2.11)

Using the identi�cations of Equations (7.2.11) and (7.2.10), it is possible, after some compu-
tations, to obtain the following explicit expression for Ω:

Ω =
Γ

ε

 Γ cos2 φ+ sin2 φ (Γ− 1) cosφ sinφ −σΓ cosφ
(Γ− 1) cosφ sinφ Γ sin2 φ+ cos2 φ −σΓ sinφ
−σΓ cosφ −σΓ sinφ Γ

 , (7.2.12)

where Γ is as in Equation (7.2.10). Notice that Ω is fully determined by the HSV coordinates
of the illuminant vector φ, σ, ε.

7.2.2 The normalized Lorentz boost CAT

In the previous subsection we have underlined the motivations and conditions under which
the theoretical model lead to a CAT. This subsection is dedicated to a succinct exposition of
the steps needed to implement it and some qualitative considerations about the outputs.

Let ~I(x) = (R(x), G(x), B(x)), with x ∈ I be the input RGB image, let ~L = (LR, LG, LB)
be the estimated illuminant vector�. Let ~I ′(x) = (R′(x), G′(x), B′(x)), with x ∈ I , be the
corrected output image. We will use unprimed coordinates to represent the image before
applying the CAT Ω and primed coordinates to represent the image after applying Ω.

In the sequel we will need to use conversion formulas from RGB to HSV or HCV and
viceversa. These transformations are customary in literature and implemented in several open
source Python packages. Here we mention just the map from RGB to HCV, for its inverse
function and further details see e.g. Appendix B in [167], or [145]. Let R,G,B ∈ [0, 1]3 and
H ∈ [0, 2π), C, V ∈ [0, 1]2 then:

C := max(R,G,B)−min(R,G,B)

V := max(R,G,B)

H := π
3



0 if C = 0
G−B
C if V = R

B−R
C + 2 if V = G

R−G
C + 4 if V = B

. (7.2.13)

Let us now show the steps to obtain the corrected RGB image ~I ′(x), given an input RGB
image ~I(x) and the estimated illuminant ~L.

1. We start by calculating the HSV coordinates of the RGB illuminant vector:

~L =

LRLG
LB

 7−→
LHLS
LV

 =:

φσ
ε

 (7.2.14)

�~L(x) with x ∈ I for the multi-illuminant case.
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2. Using the parameters φ, σ, ε we can write the CAT matrix:

Ω =
Γ

ε

 Γ cos2 φ+ sin2 φ (Γ− 1) cosφ sinφ −σΓ cosφ
(Γ− 1) cosφ sinφ Γ sin2 φ+ cos2 φ −σΓ sinφ
−σΓ cosφ −σΓ sinφ Γ

 , Γ =
1√

1− σ2
. (7.2.15)

3. Then we convert the input RGB image in HCV coordinates:

~I(x) =

R(x)
G(x)
B(x)

 7−→
H(x)
C(x)
V (x)

 . (7.2.16)

4. We convert the polar coordinates HC into Cartesian coordinates that we call α, β:H(x)
C(x)
V (x)

 7−→
α(x)
β(x)
V (x)

 :=

C(x) cosH(x)
C(x) sinH(x)

V (x)

 . (7.2.17)

5. We apply the matrix Ω calculated in point 2. to the input image represented in αβV
coordinates, obtaining the corrected image ~I ′(x) represented in the αβV domain:α(x)

β(x)
V (x)

 7−→
α′(x)
β′(x)
V ′(x)

 := Ω

α(x)
β(x)
V (x)

 . (7.2.18)

6. We come back from the αβV domain to RGB, �rstly converting α′β′ into polar coordi-
nates H ′C ′, and then applying the conversion function from HCV to RGB:α′(x)

β′(x)
V ′(x)

 7−→
H ′(x)
C ′(x)
V ′(x)

 =

arctan (β′(x)/α′(x))√
α′2(x) + β′2(x)

V ′(x)

 7−→
R′(x)
G′(x)
B′(x)

 , (7.2.19)

The only di�erence between the single illuminant, and the multi-illuminant case is that
the CAT matrix depends as well on the pixel Ω = Ω(x).

To summarize, the chain of operations performed, omitting the dependence on x, isRG
B

 7−→
HC
V

 7−→
αβ
V

 7−→
α′β′
V ′

 = Ω

αβ
V

 7−→
H ′C ′
V ′

 7−→
R′G′
B′

 . (7.2.20)

Figure 7.1 shows some examples of outputs of the algorithm described above, together with
the non corrected inputs, and outputs of the classical von Kries CAT for visual comparison.

One common problem of CATs is that, depending on the illuminant estimation, clipping
can occur. This supplementary clipping process leads to false colors and artifacts. This is
the case as well for the von Kries CAT. We have noticed that in the normalized boost is less
a�ected by this issue than the simple boost that we proposed in [68], and also with respect to
the von Kries CAT.

Using the normalized boost CAT the clipped pixels are less numerous than the von Kries
CAT and generally placed at e.g. the highlights on highly re�ective objects objects or some
white parts of the depicted toys. These artifacts are hence not due to a problem in the CAT,
but to the fact that there is a single-illuminant vector through which the image is corrected. In
other words e.g. the highlights in the image are clipped because they are brighter and whiter
than what it was estimated to be the white (in this case the white patch of the color checker).
We performed as well tests on images with multi illuminant ground truth maps ~L(x), i.e. a
di�erent illuminant vector for each pixel, [82] and this problem does not occur.

There are two common solutions to the clipping issue:
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7.2. The normalized boost CAT in HCV

� clipping the a�ected pixels, hence putting equal to 1 the RGB values of the output image
which are greater than 1;

� dividing the image by its maximum, i.e. ~I ′(x)/M , with M = max
c∈{R,G,B}

x∈I

Ic(x).

For the pictures showed in this chapter we preferred to use the �rst option, because it gives
brighter images, while for the quantitative tests presented in Section 7.4, or in general for
image processing applications, is customary to choose the second one. One technical reason
is that AWB is generally applied at the early stages of the image processing pipeline, in the
RGB RAW linear domain just after demosaicing. In general images in the linear domain are
darker, because they will be brightened by applying tone mapping, thus passing to a non-linear
domain, later in the chain.

Figure 7.1: Left : input image. Center : output image after white balance using the von Kries
CAT. Right : output image after white balance using the normalized Lorentz boost CAT. The
white balanced images have been obtained using the same illuminant estimation, performed
manually on the white patch of the color checker present in each image. The image of the �rst
row belongs to the ColorChecker Dataset [59, 142], while the others belong to the NUS Indoor
Dataset [30].

From a �rst visual comparisons the CAT that we propose seems to be better at rendering
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details in the scene, it is theoretically based and, as underlined before, it is less a�ected by
artifacts, which are only due to the non-globality of the illuminant estimation. Computational
time is slightly longer with respect to the von Kries CAT, because color space conversions are
needed.

We do believe that this aspect can be improved, e.g. using the linear color domain proposed
among the future projects in Chapter 9.

The color rendering seems visually good or comparable with the von Kries CAT. Never-
theless if we pay attention to the red hues, we can see that some of them tend to turn a bit
pinkish, this might be better seen in the last picture in Figure 7.1 on the white-red box with
a �ower depicted on it, whose red looks too turned towards the magenta in the normalized
boost CAT output w.r.t. the von Kries one, or the input. In the following section we will see
that this issue is related to the use of the HCV color domain, hence we will propose simple
alternative color domains that solve this problem, as depicted in Figure 7.2.

7.3 A modi�ed HCV space encoding Hering's opponency

One of the reasons why the HCV color domain is not a good choice to mimic the state cone
C(R ⊕ R2) is that it lacks of one of the most important properties of the theoretical model:
Hering's opponent mechanism.

Indeed, as depicted in Figure 7.3 (a), the HCV color space, or analogously HSV, inherits
the hue positioning on the circle from RGB, thus the red, green and blue hues are equidistant
on the circle, while the yellow is placed halfway between the red and the green as follows:

H(R) = 0, H(Y ) =
π

3
, H(G) =

2π

3
, H(B) =

4π

3
. (7.3.1)

Thus yellow and blue are diametrically opposed, while red and green are separated by an
angle of 60◦, so in HCV the opponent hue to red is cyan. It has to be noted that in Hering's
opponent theory it is not clear exactly which shades of the four unique hues are opponent, nor
if the two opponent axes have to be orthogonal.

With the aim of correcting the problem of red objects slightly shifting to magenta under-
lined at the end of the previous section, we tried to propose an alternative color domain to
HCV in which implement the normalized boost CAT. This new color solid was obtained from
the HCV color solid¶, by modifying only the hue coordinate H. The objective was to obtain a
color domain like HCV, but endowed with Hering's opponent mechanism.

To do so we tried several functions, using simple interpolation techniques in 1-dimension,
to modify the hue con�guration on the circle. The objective was to approximately recover
the, not necessarily orthogonal, Hering's opponent axes. We selected the two best performing
functions f1, f2 on the images. Let us call H1CV and H2CV the two color solids obtained from
HCV using f1 and f2. As one can see in Figure 7.2 the normalized boost CAT implemented
in H1CV or H2CV does not have anymore the of the slight shift towards magenta of the red
objects that occurred in HCV, see in particular the white-red box with a �ower depicted on
it.

¶The same modi�cation should be done as well for the HSV color space, since needed at the step 1. of the
algorithm described in Subsection 7.2.2. Since only the hue is involved, the transformation is the same as the
one applied to HCV.
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Let us explain a but more in detail how f1 and f2 have been obtained. Both f1, f2 :
[0, 2π] → [0, 2π] are 2π-periodic and invertible, their plots are illustrated in Figure 7.4. The
coordinates Hi to change color space are obtained from the H coordinate of HCV by Hi =
f−1
i (H), i = 1, 2. In particular

1. f1 is obtained requiring the red to stay be the same, and the green to be diametri-
cally opposed to the red, hence it is obtained by quadratic interpolation of the points
(0, 0), (2π/3, π), (2π, 2π). It can be explicitly written as a parabola f1(x) = 1

4

(
7x− 3

2πx
2
)
.

As depicted in Figure 7.3 (b), red and green are now opponent, but the blue is dia-
metrically opposed to an orangish yellow. Furthermore these opponent axes are not
orthogonal, but are separated by an angle of 30◦.

2. f2 is obtained by �xing again the red and moving the green to be diametrically opposed
to it, then moving the yellow and the blue in order to have an angle of 60◦ between
the two opponent axes, as in Figure 7.3 (c). f2 was obtained via quadratic piece-wise
interpolation of the points (0, 0), (π/3, 2π/3), (2π/3, π), (4π/3, 5π/3), (2π, 2π).

Figure 7.2: Left : output of the normalized boost CAT implemented in HCV. Center : output
of the normalized boost CAT implemented in H1CV . Right : output of the normalized boost
CAT implemented in H2CV . These images have been obtained from the NUS Indoor Dataset
[30].

(a) HCV (b) H1CV (c) H2CV

Figure 7.3: Red, yellow, green and blue hue positions in the hue-chroma planes of the HCV,
H1CV and H2CV color spaces.

We have remarked that the normalized boost CAT gives visually slightly better results in
H1CV than in H2CV . The quantitative evaluations presented in the following section are
coherent with this fact. Visually the outputs in H2CV appear to be a little desaturated w.r.t.
the ones in HCV or in H1CV . This might seem strange, because the only thing that was
modi�ed is the hue coordinate, however this is just a case correlation among the coordinates
of the state-of-the art color solids, as the ones mentioned in Section 1.3 of Chapter 1.
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Figure 7.4: Plots of the two functions used to recover Hering's opponent mechanism in the
HCV color space. Left : plot of f1. Right : plot of f2.

7.4 A �rst quantitative evaluation

Generally datasets like the mentioned ones in Figure 7.1, are used with the purpose of
performing quantitative tests on single-illuminant estimation algorithms. In this section we
are going to talk about a �rst quantitative evaluation of the normalized Lorentz boost CAT,
in particular we want to measure the rendering of the color checker in images corrected using
the von Kries CAT, the normalized boost CAT in HCV, and in its modi�cations H1CV and
H2CV presented in the previous section, to compare their performances.

We chose to use the NUS Indoor Dataset� (Canon 1Ds Mark III, 105 images) [30]. The
procedure that we adopted to obtain the quantitative evaluations of the color checker rendering
is schematized in Figure 7.5.

Figure 7.5: Schematic representation of the quantitative evaluation of the color checker ren-
dering of di�erent CATs.

We started by generating linear png images applying linear demosaicing on the RAW

�Available at https://cvil.eecs.yorku.ca/projects/public_html/beyond/beyond.html.
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images provided with the dataset. We automatically detected the color checker present in
each image and extracted the nineteenth patch (the white one) as ground truth illuminant
vector. The automatic detection of the color checker was done using the Checker Detection
functions available in the open-source Python package Colour**. Using the extracted ground
truths we corrected the mentioned png images using four di�erent CATs: von Kries, normalized
boost in HCV, normalized boost in H1CV and normalized boost in H2CV . Clipping cases
were managed by dividing the image by its maximum. Then we detected all the color checkers
in the output images, still using the Checker Detection functions.

We chose to use some color metrics, more precisely CIE ∆E 1994 [103], DIN99 [4], CIE
∆E 2000 [102, 111], ∆E CIECAM02 [105] and ∆E CIECAM16 [101], as they are implemented
in the package Colour.

For each CAT we considered the set of detected color checkers and we calculated the
distance between each of them and the standard benchmark color checker enlightened by D65
illuminant. This distance was obtained by calculating, for each patch, its distance from the
corresponding one in the benchmark color checker and then averaging over the 24 patches. For
each CAT we averaged the distances of the color checkers over the 105 images of the dataset,
obtaining the values reported by Table 7.1.

metrics von Kries L in HCV L in H1CV L in H2CV

CIE 1994 25.66 25.01 24.86 24.85

DIN99 26.25 25.48 25.28 25.39
CIEDE 2000 22.53 22.10 22.44 22.41
CAM02 UCS 25.99 25.31 25.31 25.34
CAM02 LCD 33.87 32.99 32.84 32.93
CAM16 UCS 26.01 25.28 25.31 25.35
CAM16 LCD 33.87 32.99 32.84 32.94

Table 7.1: Average distances from the stan, von Kries CAT, normalized Lorentz boost in HCV,
normalized Lorentz boost in H1CV , normalized Lorentz boost in H2CV .

Lower values in the previous table mean that the color checker rendering of a certain CAT
is closer to the benchmark color checker. We can see that, as predicted qualitatively in the
previous section, H1CV is better performing than H2CV . Furthermore, according to this
evaluation, it a bit is better to use the implementation in H1CV than in HCV , and both of
them have better results than the von Kries CAT. However it must be noted that the value
di�erences between the columns are sometimes of the order of decimals. It is known that ∆E
values lower than 2 are not noticeable by the human eye. One might see that, however, e.g. the
yellow patch of the color checker in the images depicted in Figure 7.1 and 7.2 looks di�erent
when corrected with di�erent CATs. This is probably due to the fact that the distance is
averaged over all the paches of the color checker.

We want to stress that this is a �rst simple quantitative evaluation, among the future
projects in Chapter 9 we are going to mention the idea of testing the normalized boost CAT,
using speci�c datasets created for CATs: the so-called corresponding colors.

**See https://colour.readthedocs.io/en/develop/.
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Chapter 8

Related applications: Tone Mapping

In this chapter we will start by brie�y introducing the problem of tone mapping of high
dynamic range (HDR) images and the classic tone mapping operator known as Naka-Rushton
equation. Then, in Section 8.2 we will provide a geometric interpretation of this equation
analyzing it as a Möbius transformation. This is related to the model presented in Chapters
3 and 5, because Möbius transformations can be characterized as cross-ratio preserving maps,
and, moreover, they are related to the construction of the classic models of hyperbolic geometry,
see e.g. [131]. This part of the chapter will be essentially based on [125]. In Section 8.3 we
will propose a work-in-progress tone mapping operator inspired by Klein's disk construction,
related to the structure of S(A), mentioned in Chapter 3.

8.1 The Naka-Rushton equation and its use for tone mapping

High Dynamic Range (HDR) images provide a way to store real-world radiance values,
e.g. by combining multiple photos of a scene taken with di�erent time exposures following the
classical work of Debevec and Malik [39]. However, since the real-world radiance can span up
to 10 orders of magnitude and ordinary displays can only span up to two orders of magnitude,
a further `compression step', called `Tone Mapping' (TM) is required to properly visualize the
information stored in the HDR images.

Following Ward et al. [157], the large majority of tone mapping operators are devised
to reproduce detail visibility and emulating as much as possible contrast and color sensation
of the real-world scene. Ideally, a perfect model of the Human Visual System (HVS) would
satisfy these requests, however the knowledge about human vision is still too vague to permit
the construction of such a model, so that simpli�ed and partial HVS descriptions are needed.

In this sense, it is quite remarkable that the sole use of the visual adaptation step already
provides a remarkably good tone mapping. The visual adaptation phase, as we will see in
the following, occurs when photoreceptors (cones and rods) strongly compress the light range
around an average (adaptation) value. This process can be described by the Naka-Rushton
equation [114] which has been widely used as a global TM operator, for a thorough review see
e.g. [134, 52, 53, 54, 128, 9].

Let us recall how the retina responds to light stimuli. The range of radiances over which
the HVS can operate is very large: from 10−6cd/m2 (scotopic limit) to 106 cd/m2 (glare limit)
[163]. The automatic process that allows the HVS to operate over such a huge range is called
visual adaptation [140].
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However, the HVS cannot operate over this entire range simultaneously. Rather, it adapts
to an average intensity and handles a smaller magnitude interval. There is no complete agree-
ment in the literature about the precise value of this range, which can vary from two ([140]
page 326) up to four orders of magnitude ([81] page 670).

Empirical experiments have shown that visual adaptation occurs mainly in the retina.
The experiments to measure this behavior were performed using very simple, non-natural
images: brief pulses of light with intensity I superimposed on a uniform background. When
a photoreceptor absorbs I, the electric potential of its membrane changes accordingly to the
empirical law known in vision research literature as Naka-Rushton's equation [114, 140, 98]:

r(I) =
I

I + Is
, (8.1.1)

where r(I) is the normalized response of the retina to I and Is is the light level at which
the photoreceptor response is half maximal, called semisaturation level and which is usually
associated with the level of adaptation. Some authors report the formula writing the γ power
of I and Is, in this case the equation is called Michaelis-Menten's formula ([98] page 301).

The reason why this formula has received so much attention from the tone mapping com-
munity is because it permits to compress any given range of the light stimuli into the interval
[0, 1] (since I and Is are light intensity levels, hence they are both positive) in such a way
that the details in dark areas are enhanced and the ones in the higher areas are compressed,
see Figure 8.2, which is coherent with the well-known Weber-Fechner's law [163].

Let us now see how Naka-Rushton's equation is used in the context of HDR imaging. We
denote with I ⊂ R2 the spatial domain of an RGB high dynamic range image ~I : I →
(0,+∞)3, I 3 x 7→ (IR(x), IG(x), IB(x)), Ic being the scalar chromatic component of ~I,
c ∈ {R,G,B}, where x = (x1, x2) ∈ I is the spatial position of an arbitrary pixel in the image.
Generally, tone mapping algorithms operate on either the three RGB channels separately,
or on the luminance value of ~I, calculated in one of the many possible ways available in
literature [134], e.g. the V = max(R,G,B) in HSV, or the arithmetic average of the three
RGB channels. In some cylindrical or conic shaped color spaces the compression of only the
achromatic coordinate often leads to oversaturated images. Thus, in general, the compression
of the achromatic coordinate comes together with a correction, often a smaller compression,
of the saturation or chroma. To mention a few examples: in [150] after applying a TMO on
the V, in the HSV color space, S is scaled according to the compression of the V channel, in
[107] a TMO is applied on the L channel in the CIELAB space, while the chroma in the a∗b∗

plane is rescaled, something similar is done in [2] in the IPT color space.

In any case, it is clear that only a scalar-valued function is considered, let us denote it
simply with λ : I → (0,+∞).

Since the HDR image represents the radiance map of a scene, it is natural to associate λ
with I and to identify the semisaturation level IS with the average value of λ, denoted by µ.
In the literature there is no agreement about how µ has to be computed, i.e. via arithmetic
average µa, geometric average µg, median µmed, or combinations of them [134, 52]. For these
reasons, we will leave the formal expression of µ unspeci�ed. In Section 8.2 we will see that
the parameter µ has a particular geometrical meaning in the decomposition of r as a Möbius
transformation.

With the notation just introduced, the expression of the Naka-Rushton equation for tone
mapping of HDR images is the following:

r(λ(x)) =
λ(x)

λ(x) + µ
, ∀x ∈ I . (8.1.2)
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In the so-called local tone mapping algorithms, both the pixel position x and the value of λ(x)
in�uence the tone mapping operation, however, for the sake of simplicity, in this chapter we
will only deal with a global tone mapping, in which two generic pixels x, y ∈ I such that
λ(x) = λ(y) will be tone-mapped in exactly the same value. Thanks to this assumption,
Equation (8.1.2) can be simpli�ed as follows:

r(λ) =
λ

λ+ µ
, ∀λ ∈ [λmin, λmax] ⊂ (0,+∞), (8.1.3)

with obvious meaning of the symbols λmin and λmax and r(µ) = 1/2. The plot of r(λ) is
depicted in Figure 8.2. The non-linearity of r(λ) is essential, in fact, due to the vast dynamic
range of HDR images, a linear tone mapping performed via the formula:

λ 7→ λ− λmin

λmax − λmin
∈ [0, 1], (8.1.4)

eventually multiplied by 255 to restore the usual 8 bit dynamic range, would set to black all
pixels in the image whose λ value is two orders of magnitude smaller than λmax, as clearly
shown in Figure 8.1.

Figure 8.1: Graph of r(λ), with λmin = 0.1, λmax = 103 and µ = 100.

Figure 8.2: Left : one image of the famous Memorial church sequence. Right : result of the
linear tone mapping of Equation (8.1.4), where almost all the pixels are set to black apart
from those belonging to the brightest areas of the image.
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8.2 Analysis of Naka-Rushton's formula as a Möbius transfor-

mation

The non-linearity of the Naka-Rushton transformation and the possibility to quite easily
control the global brightness of the resulting image by modifying the value of µ are the two
most important features of Naka-Rushton based tone mapping that established its successful
and widespread use.

Alongside the analytical formula (8.1.3) and the graphical depiction of Figure 8.2, it is
possible to analyze the Naka-Rushton transformation from a geometric point of view that
happens to give �ner information about its behavior. In fact, as we are going to prove in this
section, Equation (8.1.3) can be interpreted as the composition of a non-linear map followed
by an a�ne one. In order to prove this, we must �rst introduce the concepts of re�ection,
inversion and Möbius transformation.

8.2.1 Möbius transformations

The main reference for this section is Ratcli�e's book [131]. One common way to de�ne the
group of Möbius transformations on Rn, denoted byM(Rn) is as the subgroup of Aut(Rn) =
{f : Rn → Rn, f bijective} generated by re�ections w.r.t. hyperplanes and inversions w.r.t.
hyperspheres.

The concepts of hyperplane and hypersphere are the generalizations to dimension n of the
concepts of plane and sphere in dimension 3 or straight line and circle in dimension 2. It is
important to stress that both hyperplanes and hyperspheres are submanifolds of dimension
n− 1 embedded in a space of dimension n.

De�nition 8.2.1 (Hyperplane in Rn). Given a ∈ Rn, ‖a‖ = 1, and t ≥ 0, the hyperplane in
Rn associated to a and t is the set

Pa,t := {x ∈ Rn, 〈x, a〉 = t}. (8.2.1)

Note that a is the normal vector to Pa,t, and t is the distance between Pa,t and 0. We
denoted with 〈·, ·〉 the Euclidean scalar product.

De�nition 8.2.2. A re�ection in Rn w.r.t. the hyperplane Pa,t is the a�ne function:

ρa,t : Rn −→ Rn
x 7→ ρa,t(x) := x+ 2(t− 〈x, a〉)a. (8.2.2)

Geometrically, the re�ection ρa,t takes any point x ∈ Rn at a distance d from Pa,t to a
point ρa,t(x) which lies specularly on the other side of Pa,t at the same distance d.

Proposition 8.2.3. Every re�ection ρa,t satis�es the following properties for all x, y ∈ Rn:

1. ρa,t(x) = x if and only if x ∈ Pa,t;

2. ρ2
a,t(x) = x, i.e. ρa,t is an involution, and so ρ2

a,t = idRn, i.e. ρa,t is a bijection with
ρa,t
−1 = ρa,t;

3. ρa,t is a Euclidean isometry: ‖ρa,t(x)− ρa,t(y)‖ = ‖x− y‖.

De�nition 8.2.4 (Hypersphere in Rn). Given c ∈ Rn and d > 0, the hypersphere, of dimension
n − 1, in Rn centered in c of radius d is the set of all the points having distance d from the
center c:

Sc,d := {x ∈ Rn : ‖x− c‖ = d}. (8.2.3)
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The main di�erence between re�ections and inversions is that the hypersurface w.r.t. the
inversion is performed is not a hyperplane, but a hypersphere. While a hyperplane extends
towards the in�nite, a sphere is bounded, this fact implies that it is impossible to continuously
�ll the whole outer space to the spherical surface simply by re�ecting its interior points w.r.t.
the tangent hyperplane to the sphere at a point, a di�erent, non-linear, geometrical operation
is needed.

This operation consists in mapping any point x inside the sphere to the unique point σ(x)
outside the sphere characterized by the following two properties: �rstly, σ(x) lies on the same
line joining x with the center of the sphere; secondly, the norm of σ(x) is inverted w.r.t. that
of x. More precisely we have the following de�nition:

De�nition 8.2.5. Let c ∈ Rn and d > 0, then the inversion in Rn w.r.t. the hypersphere Sc,d
is the non-linear function

σc,d : Rn \ {c} −→ Rn \ {c}
x 7→ σc,d(x) := c+ d2

‖x−c‖2 (x− c). (8.2.4)

σc,d(x) is said to be the inverse of x w.r.t. to the sphere Sc,d.

Proposition 8.2.6. Every inversion σc,d w.r.t. a hypersphere Sc,d satis�es the following
properties for all x, y ∈ Rn \ {c}:

1. σc,d(x) = x if and only if x ∈ Sc,d;

2. σ2
c,d(x) = x, i.e. σc,d is an involution, and so σc,d is invertible with σc,d−1 = σc,d;

3. ‖σc,d(x)− σc,d(y)‖ = d2

‖x−c‖‖y−c‖‖x− y‖.

Every circular inversion σc,d maps the exterior part of the hypersphere B
c
c,d = {x ∈ Rn :

‖x − c‖ > d} into the inner part Bc,d = {x ∈ Rn : ‖x − c‖ < d} and viceversa, i.e.
σ(B

c
c,d) = Bc,d and σ(Bc,d) = B

c
c,d, while the points of Sc,d stay �xed, i.e. σ(Sc,d) = Sc,d.

Both re�ections w.r.t. hyperplanes and inversions w.r.t. hyperspheres are, essentially,
one-dimensional operations, in the sense that all the points belonging to the same straight
line orthogonal to the hyperplane involved in a re�ection are left on this straight line; in the
same way, all the points belonging to the straight line passing through the origin of the sphere
involved in an inversion are left on that line.

It is possible to extend re�ections and inversions to R̂n := Rn ∪ {∞}. It is su�cient to
de�ne the image of ∞.

De�nition 8.2.7. Let ρa,t be a re�ection and σc,d an inversion in Rn. The extension of ρa,t
in ∞ and of σc,d in ∞ and c are de�ned as follows:

ρa,t(∞) :=∞ and

{
σc,d(∞) := c

σc,d(c) :=∞
. (8.2.5)

Möbius transformations arise from the combinations of inversions and re�ections of R̂n,
one of the main interest in combining them is that, when they are fused together, they form
a group. Notice that this is not a trivial statement because neither the set of re�ections nor
the set inversions form a group: we do not have a identity element or any stability.

De�nition 8.2.8. A Möbius transformation φ : R̂n → R̂n is a �nite composition of re�ections
w.r.t. a hyperplane and inversions w.r.t. a sphere in R̂n. The group of Möbius transformations
is: M(R̂n) =

{
φ = µ1 ◦ · · · ◦µm : m ∈ N, µi re�ections or inversions of R̂n, i ∈ {1, . . . ,m}

}
.
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Another equivalent characterization of Möbius transformations is based on the concept of
cross-ratio, already mentioned in Section 4.3 of Chapter 4. Let us de�ne it for the case of
points belonging to R̂n.

De�nition 8.2.9. Let u, v, x, y ∈ R̂n such that u 6= y, v 6= x. The cross-ratio of (u, v, x, y) is
given by:

[u, v, x, y] =
(u− x)(v − y)

(u− y)(v − x)
. (8.2.6)

M(R̂n) can be characterized as the set of all the transformations preserving the cross-
ratio, i.e. φ ∈ M(R̂n) if and only if for all u, v, x, y ∈ R̂n we have that [u, v, x, y] =
[φ(u), φ(v), φ(x), φ(y)].

Theorem 8.2.10. Let φ ∈M(R̂n). Then:

1. φ(∞) =∞ if and only if φ is a similarity of R̂n;

2. if φ(∞) 6=∞, then, there exist:

� a unique hypersphere Σ in Rn on which φ acts as a Euclidean isometry, i.e. for all
x, y ∈ Σ, ‖φ(x)− φ(y)‖ = ‖x− y‖;

� a unique inversion σ w.r.t. Σ and a unique Euclidean isometry ψ such that φ can
be decomposed as follows φ = ψ ◦ σ.

8.2.2 Naka-Rushton's formula as a Möbius transformation

Let us consider the real interval Λ := [λmin, λmax]. The intensity levels of a HDR image
belong to Λ, i.e. λ(I ) ⊂ Λ, where I is the spatial support of the image. We want to use a
parsimonious combination of simple Möbius transformations, i.e. inversions and re�ections, to
obtain a non-linear compression of the interval Λ, hence at least one inversion is needed. We
will see that the search of the simplest monodimensional Möbius transformation r such that:

1. r is non-linear;

2. r is compressive* on Λ;

3. r is monotonically increasing on Λ;

leads naturally to Naka-Rushton's transformation.

In the following we are going to use elements of M(R), hence n = 1. Since the intensity
is always positive, we can consider their restriction to (0,+∞). Notice that when n = 1 a
hyperplane is just a point a ∈ R, while a hypersphere is the set of two points having the same
distance d from the center c, Sc,d = {c− d, c+ d}.

In dimension 1 re�ections and inversions have the following easier expressions:

ρa(λ) = 2a− λ and σc,d(λ) = c+
d2

λ− c
, (8.2.7)

with a, c ∈ R and d > 0.

Recalling Theorem 8.2.10 a generic r ∈ M(R) is either a similarity or not, and it can be
decomposed as r = ψ ◦ σ, where ψ is an isometry of R and σ is a (unique) circular inversion.
Since we are looking for a non-linear transformation and similarities act linearly, we can exclude
the �rst option.

*For all λ1, λ2 ∈ Λ we have that |r(λ1)− r(λ2)| < |λ1 − λ2|.
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We want r to be compressive on Λ. Since the component ψ is an isometry�, σ must be
compressive on Λ.

Let us consider the simplest case of a circular inversion w.r.t. a sphere centered in 0 of
radius 1, S0,1 = {−1, 1}. The circular inversion w.r.t. this sphere is given by σ0,1(λ) = 1

λ .
Notice that, as an inversion, σ0,1 maps the inner part of S0,1 into the external part and

viceversa, i.e. σ0,1((0, 1)) = (1,+∞) and σ0,1((1,+∞)) = (0, 1). Since σ0,1(1) = 1 we can also
say that σ0,1([1,+∞)) = (0, 1]. In other words, this last equality means that the in�nite half
line (1,+∞) is mapped into the bounded segment (0, 1).

This means that, if the interval Λ, which can have arbitrarily large length l = λmax−λmin,
is contained in the half line [1,+∞), then σ0,1(Λ) will be compressed, not linearly, in a segment
contained in (0, 1]. To ensure that Λ ⊂ [1,+∞) we preliminary apply the translation τ1(λ) =
λ+ 1, hence τ1(Λ) = [λmin + 1, λmax + 1].

Up to now, we are applying on Λ the transformation σ0,1 ◦ τ1(λ) = 1
λ+1 , see Figure 8.3.

Although this function is non-linear and compressive on Λ, it does not respect the order on
Λ, i.e. it is not monotonically increasing. To recover the correct order on the compressed
interval we need to apply the re�ection w.r.t. the point 1

2 , i.e. ρ1/2(λ) = 1− λ. Note that, in
particular, ρ1/2 reverses the segment [0, 1], swapping the segment's extremes: ρ1/2(0) = 1 and
ρ1/2(1) = 0. As a re�ection ρ1/2 is an isometry thanks to Proposition 8.2.3.

Figure 8.3: Depiction of the action of the transformation ρ1/2 ◦ σ0,1 on the interval Λ. Notice
that it is more compressive on high intensity levels than on the lower ones.

Let us call r′ = ρ1/2 ◦ σ0,1 and r = r′ ◦ τ1. In this case, without taking into account
the preliminary translation τ1, i.e. considering r′ instead of r, r′ is decomposed as stated in
Theorem 8.2.10, i.e. r′ = ψ ◦ σ, with ψ = ρ1/2 and σ = σ0,1. Moreover r has the following
explicit expression:

r(λ) = ρ1/2 ◦ σ0,1 ◦ τ1(λ) = ρ1/2

(
1

λ+ 1

)
=

λ

λ+ 1
. (8.2.8)

Notice that this simple reasoning leads us to a Naka-Rushton transformation with µ = 1.
Let us follow the same reasoning, but starting from a more generic circular inversion σ0,µ

w.r.t. a sphere centered in 0 of radius µ, S0,µ = {−µ, µ}.
To ensure that Λ is placed outside the sphere S0,µ, i.e. Λ ⊂ [µ,+∞), before the inversion

σ0,µ, we preliminary apply the translation τµ(λ) = λ+ µ.

Up to now, we are considering the transformation σ0,µ ◦ τµ. We know that σ0,µ(λ) = µ2λ
|λ|2 ,

but, since we are in dimension 1, σ0,µ(λ) = µ2

λ . Hence σ0,µ ◦ τµ(λ) = µ2

λ+µ . Now σ0,µ ◦ τµ(Λ) is
contained in the segment [0, µ]. To recover the correct order of the intensity levels we need to

�For all λ1, λ2 ∈ Λ we have that |ψ(λ1)− ψ(λ2)| = |λ1 − λ2|.
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8.2. Analysis of Naka-Rushton's formula as a Möbius transformation

apply the re�ection ρµ/2(λ) = µ−λ, which reverses the segment[0, µ]. At this point the image

of Λ is contained in the segment [0, µ], we need to rescale it applying a dilation of factor 1
µ ,

δ1/µ(λ) = 1
µλ, which maps [0, µ] into [0, 1]. In this way the image of Λ is contained in [0, 1].

Let us call r the composition of all the Möbius transformations introduced up to now:

r(λ) = δ1/µ ◦ ρµ/2 ◦ σ0,µ ◦ τµ(λ) =
λ

λ+ µ
.

The Möbius transformation r that we have obtained is a Naka-Rushton function and the
parameter µ represents the radius of the sphere w.r.t. which we are performing a circular
inversion.

Let us call r′ = ρµ/2 ◦ σ0,µ, hence r = δ1/µ ◦ r′ ◦ τµ. If we do not consider the preliminary
translation τµ and the dilation δ1/µ that we apply a posteriori to recover the range [0, 1], i.e.
we consider r′ instead of r, then r′ agrees with the minimal decomposition stated in Theorem
8.2.10 as r′ = ψ ◦ σ, with ψ = ρµ/2 and σ = σ0,µ.

One might also think to decompose r(λ) = λ
λ+µ according to Theorem 8.2.10. After

straightforward computations it is easy to obtain that r = ψ◦σ with ψ(λ) = ρ 1−µ
2

(λ) = 1−µ−λ
and σ(λ) = σ−µ,√µ(λ) = −µ + µ

λ+µ . Notice that also in this decomposition the parameter µ
is related to the radius of the sphere w.r.t. which we are performing an inversion.

8.2.3 Some considerations about Möbius transformations and color

We have identi�ed the non-linear inversion and the a�ne re�ection that make up Naka-
Rushton's map as a Möbius transformation. An inversion encodes the non-linear part of the
mapping, mapping very dark and bright values of λ in the range 0−255 with the reversed order
between them. For this reason, the composition with a re�ection is needed to re-establish the
correct intensity order.

The fact that re�ections are isometries is particularly important for this step, in fact they
do not modify the image relative intensities obtained as output of the inversion step, which is
wise because the range has been correctly shrunk and we want to preserve it like it is.

We consider that pointing out this geometric information about tone mapping operator
based on Naka-Rushton's formula may give interesting information for future developments of
this kind of techniques. In particular, considering the prominent role of Möbius transforma-
tions in hyperbolic geometry and the importance played by hyperbolic structures in the model
described in Chapters 3, 4, 5 and 6.

Möbius transformations encode many desirable colorimetric properties, e.g. they are con-
formal maps, i.e. they preserve angles, but they can also be identi�ed with the transformations
that preserve the cross-ratio, see e.g. [131].

In this section we treated only 1-dimensional Möbius transformations that can either be
applied on the luminance channel of an RGB image, or to each separate chromatic channel. It
would be interesting to study also the application of 3-dimensional Möbius transformations,
i.e. elements of M(R3), on the whole image content. Some signs in literature that go in
this direction are present e.g. in [55], were color holographies, projective maps i.e. cross-
ratio preserving, are used for some applications, or the work of Drösler, already mentioned in
Chapter 1, which relates cross-ratio to Weber's ratio starting from the mono-dimensional case
and treating as well the three dimensional one [42, 43].

As already mentioned in Section 8.1, the interaction between the intensity shrinking and
the chromatic components is a non-trivial aspect that a�ects the color rendering of images after
TM. One reason are the correlations phenomena described in Section 1.3. In particular the
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chromatic and achromatic part might be correlated because of the attributes representation
in a particular color solid, but as well because of perceptual e�ects like Hunt's one, [2].

8.3 KTMO: a Klein inspired Tone Mapping Operator

In this section we are going to describe a work-in-progress proposal of tone mapping oper-
ator inspired from the construction of a classic model of hyperbolic geometry: Klein's disk.
We already mentioned in Chapters 4 and 5 the Hilbert-Klein metric on the unit disk D or on
the disk of radius 1/2, D1/2.

As we will see in the following, the Klein disk is constructed via projection from the
origin�, that maps the hyperboloid leaf, tangent to the center of the disk, onto the disk. The
hyperboloid is another classic model of 2-dimensional hyperbolic geometry. It can be proven
that, endowing the hyperboloid with the metric given by the arc length computed on its surface
and D with the Hilbert-Klein metric then this projection is an isometry, for more details see
[131].

Roughly speaking the Klein projection transforms a hyperboloid leaf, which is an in�nite
surface into a disk which is bounded. Imagining to represent an HDR image as a set of points
belonging to a in�nite cone, the idea is to use this transformation as a TMO to non-linearly
compress an HDR image in a truncated cone.
Similarly to what we did in the previous chapter for AWB, here we choose a conic-shaped color
space, like HCV to be able to apply these techniques on an image. For further details about
the issues of relating the theoretical model to applications, see Subsection 7.2.1 in Chapter 7.

8.3.1 Leaves and Klein disks in HCV

Let us start by considering the state-of the art conic-shaped color space HCV. It is a cone
of slope 1, truncated at height 1. In this space saturation S is de�ned as S = C/V . On the
other hand the HSV color space has a cylindric shape. Let us call ϕ the coordinate change
from HSV to HCV, then ϕ(H,S, V ) = (H,SV, V ) and ϕ−1(H,C, V ) = (H,C/V, V ).

Let us now provide a parametrization of the conic volume of the HCV color space without
taking into account the constraint of being bounded at height 1. Let us call C this in�nite
conic volume, then C is de�ned as the set of all points:

C = {(H,C, V ) ∈ [0, 2π)× R+ × R+ | V 2 − C2 ≥ 0}. (8.3.1)

Using the HSV coordinates to reparametrize the same set of points C one obtains:

C = {(H,S, V ) ∈ [0, 2π)× R+ × R+ | V 2(1− S2) ≥ 0}. (8.3.2)

De�nition 8.3.1 (Leaf). Let k ∈ R+, an hyperboloid leaf Lk ⊂ C is de�ned as the following
set of points:

Lk = {(H,C, V ) ∈ C |
√
V 2 − C2 = k}. (8.3.3)

Using HSV coordinates a leaf is given by Lk = {(H,S, V ) ∈ C|V
√

1− S2 = k}. Notice
that L0 = ∂C. For every point x ∈ C it exists an unique Lk such that x ∈ Lk. The cone C is
said to be foliated in the set of leaves {Lk}k∈R+ , i.e. C =

⊔
k∈R+

Lk, see Figure 8.4.

�See as well [16] for the role played by the Klein's disk projection in the theoretical model. Roughly
speaking applying Klein's projection on the whole state cone, one obtains a representation of the state space.
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Figure 8.4: Depiction of the leaves and disks in a chroma-value plane in HCV.

Let us consider the set of leaves in represented the HCV domain. Every leaf Lk intersects
the vertical axis V at height k. Let Dk be the disk of radius k, obtained as Dk := C ∩ πk,
where πk is the plane of equation V = k. Note that, as depicted in Figure 8.4, Lk is tangent
to Dk in (0, 0, k), for every k. We de�ne the k-Klein projection κk, as the function that maps
the hyperboloid leaf Lk into the disk Dk in the following way:

κk : Lk −→ Dk
(H,C, V )t 7−→ (H, kC/V, k)t ,

Since for all x = (H,C, V ) ∈ Lk we have that k =
√
V 2 − C2, we can de�ne a function κ

acting on the whole C and such that κ|Lk = κk, for all k ∈ R+, as follows:

κ : C −→ C
(H,C, V )t 7−→

(
H, C

√
V 2−C2

V ,
√
V 2 − C2

)t
.

Note that κ is invertible on C and transforms each leaf in a disk. For a visual representation
of the action of κ in HCV see Figure 8.4.

Let us call κ̃ the function κ acting on the HSV domain, thus κ̃ = ϕ−1κϕ. Straightforward
computations lead to the following explicit expression:

κ̃ : C −→ C
(H,S, V )t 7−→

(
H,S, V

√
1− S2

)t
.

8.3.2 KTMO

Let us consider an HDR image expressed in HSV coordinates, with S and V not necessarily
in [0, 1], but belonging to [0, R], where R is a positive constant determined by the dynamic
range of the input image. Let us call I the spatial domain of the image, every pixel x ∈ I
is represented by a point of coordinates H(x), S(x), V (x) contained in C.

We recall that the aim of a TMO is to perform a non linear compression of the pixel's
coordinates to make the image displayable on a screen. κ̃ is a non-linear, compressive function.
One might think about de�ning a TMO in the HSV domain, that is the composition of κ̃ with
a linear re-normalization, e.g. division by the maximum of the image or the maximum V .
However this operation is not su�ciently compressive and the results are almost all dark.

To solve this issue we propose a TMO, that we call Klein TMO (KTMO from now on)
that is the composition of κ̃ with a simple Naka-Rushton applied on the coordinate V . From
Equation (8.1) we recall that the Naka-Rushton has the following expression:

x 7−→ NR(x) =
x

x+ x̂
. (8.3.4)
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Clearly there is the problem of setting the parameter x̂. In this section we follow the choice
made in [89]. Let x1, . . . , xn be the values taken by the variable x, then parameter x̂ is chosen
to be the weighted average between the arithmetic mean A = A(x1, . . . , xn) and the geometric
mean G = G(x1, . . . , xn), i.e. x̂ = ApG1−p, with p to be set in [0, 1].

Figure 8.5 (Left) shows some examples of outputs of Naka-Rushton applied on the V
channel in HSV color space, with p = 0.

The KTMO performs the following sequence of operations:

1. starts from an HDR input image expressed in RGB coordinates;

2. passes from RGB to HSV coordinates;

3. applies κ̃ to the HSV coordinates, obtaining three coordinates that we will call H ′S′V ′;

4. applies a NR on V ′, with parameter x̂ = ApG1−p, p is a parameter to be set in [0, 1].
Let us call Ṽ = NR(V ′);

5. applies a linear normalizaton (division by the maximum Ṽ ) to Ṽ , to have the output
value in [0, 1];

6. converts the image back to RGB.

References about the coordinate changes from RGB to HSV and viceversa can be found e.g.
in [167, 145], moreover these functions are already implemented in several Python packages
for color image processing. Figure 8.5 (Center) shows some visual examples of KTMO outputs
with p = 0.5.

8.3.3 Fréchet means

The choice of the parameter x̂ appearing in Naka-Rushton's equation is a known non-trivial
problem in literature. In order to investigate about alternative choices for x̂ for the NR in the
KTMO, we introduce here the concept of Fréchet means.

A Fréchet mean is the generalization of the concept of centroid for a generic metric, for
further details see e.g. [104].

De�nition 8.3.2 (Fréchet variance). Let (M,d) be a complete metric space. Let x1, . . . , xn ∈
M . For every x ∈M the Fréchet variance is given by:

ψ(x) =
n∑
i=1

d2(x, xi). (8.3.5)

De�nition 8.3.3 (Karcher and Fréchet mean). A point m ∈ M that locally minimizes ψ is
called Karcher mean of the points x1, . . . , xn

m(x1, . . . , xn) = arg min
x∈M

ψ(x). (8.3.6)

If there exists a point m ∈ M that globally minimizes ψ(x), it is called the Fréchet mean of
the points x1, . . . , xn.

In the following we are going to show that known means are actually particular instances
of Fréchet means, with di�erent choices for the metric.
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Example 8.3.4 (Arithmetic mean). Let M ⊆ R open, the arithmetic mean of x1, . . . , xn ∈ M
is the Fréchet mean with d being the Euclidean metric dE :

A(x1, . . . , xn) =
1

n

n∑
i=0

xi = arg min
x∈R

n∑
i=0

|x− xi|2. (8.3.7)

It can be easily veri�ed that ψ(x) =
n∑
i=0
|x − xi|2 is globally minimal in x̄ = 1

n

n∑
i=0

xi. Indeed,

computing the derivative ψ′(x) = 2
n∑
i=0

(x − xi) = 2nx − 2
n∑
i=0

xi, we obtain that ψ′(x) = 0 if

and only if x = x̄, ψ′(x) > 0 for all x > x̄ and ψ′(x) < 0 for all x < x̄.

It can be proven that the previous example holds true also for M = Rm.

De�nition 8.3.5 (f -mean). Let M,N ⊆ R open and f : M −→ N an invertible function.
Let us consider N as a metric space with the Euclidean distance dE . Then we can use f to
de�ne a metric on M as follows:

df (x, y) := |f(x)− f(y)|, ∀x, y ∈M. (8.3.8)

In this way f is an isometry between the metric spaces (M,df ) and (N, dE). Then the f-mean

of x1, . . . , xn ∈M is given by

Af (x1, . . . , xn) = f−1 (A(f(x1), . . . , f(xn))) . (8.3.9)

Let us verify that it is a good de�nition.

Af (x1, . . . , xn) = arg min
x∈M

n∑
i=1

d2
f (x, xi) = arg min

x∈M

n∑
i=1

|f(x)− f(xi)|2. (8.3.10)

We have to verify that the last arg min in the previous equation exists and it is unique.

For all x ∈ M the function
n∑
i=1
|f(x) − f(xi)|2 is minimized if and only if x is such that

f(x) = arg miny∈N
n∑
i=1
|y − f(xi)|2. From Example 8.3.4 we know that it exists an unique

ȳ ∈ N that minimizes
n∑
i=1
|y − f(xi)|2 and ȳ = 1

n

n∑
i=1

f(xi), so, since f is invertible it exists an

unique point x̄ = f−1(ȳ) that minimizes
n∑
i=1
|f(x)− f(xi)|2.

Example 8.3.6 (Arithmetic mean). The arithmetic mean is a trivial example of f -mean, with
f = idR.

Example 8.3.7 (Geometric mean). Let x1, . . . xn ∈ R+, their geometric mean G(x1, . . . xn) =
n
√
x1 · ... · xn is an f -mean with f = log : R+ −→ R, i.e. the Fréchet mean obtained choosing

the metric d(x, y) = | log(x) − log(y)|. Indeed using Equation (8.3.9) we can perform the
following computations:

exp (A(log(x1), . . . , log(xn))) = exp

(
1

n

n∑
i=0

log(xi)

)
= exp

(
1

n
log

(
n∏
i=0

xi

))

= n

√√√√ n∏
i=0

xi = G(x1, . . . , xn).

(8.3.11)
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8.3.4 KTMO and Fréchet means

In a �rst proposition of the Klein TMO, x̂ is chosen to be the weighted product between the
arithmetic mean A and the geometric mean G of the values V (x) with x ∈ I , i.e. x̂ = ApG1−p,
with p ∈ [0, 1], as in [89].

Since in the KTMO we apply a Naka-Rushton transformation on the achromatic co-
ordinate, it seems appropriate to set this parameter as a Fréchet mean obtained from a
metric that appears naturally in color perception to measure the di�erences in intensity
of a mono-dimensional stimulus. As reported e.g. in [43, 65] variations in intensity of a
mono-dimensional stimulus follow Weber-Fechner's law and are well described by the metric
ds/s, see as well Subsection 1.2 of Chapter 1. Given a, b ∈ R+, their distance is given by

d(a, b) =
∣∣∣∫ ba ds

s

∣∣∣ = | log(a)− log(b)|. Hence the Fréchet mean associated to this metric is the

geometric mean, see Example 8.3.7. Figure 8.5 (Right) shows the Klein TMO with x̂ as the
geometric mean.

Figure 8.5: Left : NR applied on V in HSV, x̂ = G. Center : KTMO with x̂ = ApG1−p

with p = 0.5. Right : KTMO with x̂ as the geometric mean. The HDR inputs used to
obtain these images belong to `Mark Fairchild's HDR Photographic Survey ' [48], available at
http://markfairchild.org/HDR.html.

As we can see in Figure 8.5, KTMO seems to be slightly better performing at color rendering
than Naka-Rushton's equation applied on the V channel of HSV, e.g. in the red �owers in the
bottom left corner of the image in the second line. There is no big di�erence between the second
and the third column, but the use of the geometric mean as parameter of the Naka-Rushton
applied within KTMO is better motivated theoretically being related to Weber-Fechner's law
as explained before.

On the other hand the results of the KTMO look over-saturated. This happens because,
while chroma is modi�ed by the KTMO, saturation stays unchanged, so the saturation of the
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low dynamic image is the same as one of the HDR image.
There are di�erent possible ways in literature to integrate a desaturation step in the KTMO,

e.g. [150]. We tried as well to desaturate the image using Einstein's scalar multiplication, see
Equation (5.3.1) in Chapter 5, but the results were not satisfactory. Similarly to what done
in [2], as a future project we would like to propose a desaturation step that takes into account
Hunt's e�ect as quanti�ed in Section 5 of [19].
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Chapter 9

Conclusion and future perspectives

We have seen how the novel quantum-like approach that has been described in this thesis
has both theoretical and applied implications. Citing Bengtsson and Zyczkowski [11]: `There
are many lessons from colour theory that are of interest in quantum mechanics'. We might
say that the inverse holds as well: there are many lessons from quantum mechanics that are
of interest in color theory.

We want to conclude mentioning a few open questions that will constitute the object of
further investigations for future works.

About the existence of four unique hues

Recalling the de�nition of hue mentioned in Subsection 1.3.1, there are only four unique
hues (red, yellow, green and blue), and any other hue can be expressed as a combination of
two of them. One might ask whether there is a mathematical explanation of the presence of
exactly four unique hues, e.g. Purves and collaborators, in [130], relate it to the four-color-map
problem [28]. In Chapter 3 we have seen that the existence of two couples of opponent hues
in opposition is part of the algebraic formulation, encoded in the real Pauli matrices σ1 and
σ2. In Chapter 5 we showed how Lüders operations act on the disk of chromatic states, in
particular they stabilize and do not deform it. It exists a more general set of transformations,
of which Lüders operations represent a particular instance, known in quantum information
theory as quantum channels. In particular the action of a quantum channel can deform the
disk of chromatic states in a generic convex set of dimension 2. This means that one can
generalize the ideal model described in Chapter 5 to a more realistic one, where a perceived
color is obtained as the outcome of a measurement procedure consisting in the action of a
quantum channel on a generalized state. Furthermore this process deforms the states space of
the observer. Since, in this new setting, the set of chromatic states of a trichromatic observer
is a generic convex, then an idea is to explore its link with four-vertex theorem, applied on
its border, see [41]. This might provide a mathematical explanation of the existence of four
unique hues, corresponding to the local extremas of the border's curvature function.

Perceptual e�ects and chromatic adaptation

A way to validate the model is to check whether it is coherent with the phenomenology
of color perception. In particular, as done in [17, 19] for the Hunt e�ect, it is important
to understand whether it is possible explain via the formalism of the model other known
perceptual e�ects, e.g. Helmholtz-Kohlrausch, Bezold-Brüke, Abney etc., see Subsection 1.3.2.



It is possible that some e�ects involving a hue-shift, as Bezold-Brüke's one, could be modeled
using the angle variation formula obtained in Appendix B, Equation (B.0.13).
We think that the task of modeling perceptual e�ects is made more di�cult by the fact
that chromatic adaptation might a�ect them. Therefore understanding and modeling the
perceptual e�ects means, as well, understanding which is the role of chromatic adaptation in
these phenomena.

As the viral phenomenon of The Dress proved in 2015 on social media, what exactly
chromatic adaptation is, how to correctly model it (taking into account all the involved steps
in the vision chain) and how it in�uences color appearance phenomena is still unclear.

An interesting point of view is given in [164], where a probabilistic interpretation of space
perception is used to explain several space perception phenomena. Roughly speaking, among
all the possible physical con�gurations that could lead to the same bi-dimensional visual image,
the most probable one is chosen by the HVS. It is possible that something similar happens as
well for color perception phenomena, e.g. while estimating the chromaticity of a light source
(as happened for The Dress phenomenon). In fact, some of the scienti�c explanations [94, 5]
of the fact that people were perceiving the dress di�erently (either black and blue or white
and gold) involved chromatic adaptation. Indeed the phenomenon was explained in terms
of inter-observers di�erences in the estimation of the illuminant in the scene, in particular a
black/blue dress is seen when the discarded illuminant is yellowish, while a white/yellow one
is seen when the observer adapts to a bluish illuminant. As detailed in Chapter 7 illuminant
estimation is an ill-posed problem, hence it seems reasonable that, given a visual stimulus, the
HVS looks for the most probable, in some sense, illuminant to discard.

In the following paragraph we describe a possible way of obtaining a mathematical expla-
nation of why chromatic adaptation happens.

Chromatic adaptation to increase color distinguishability

In Chapter 5 we have mentioned the concept of relative entropy and used it in Chapter 6
to provide de�nitions of colorimetric attributes within the quantum-like model. In quantum
information theory, relative entropy is known to be a measure of discernability between states.
Another interesting research direction consists at giving a formal explanation of why chromatic
adaptation occurs. In particular, we would like do de�ne a measure of distinguishability be-
tween colors, given by the relative entropy, or its symmetrized version, between the associated
states. Then we would like to provide a simple proof* of the fact that this quantity increases
after chromatic adaptation, formalized as in Chapter 5. Roughly speaking this would provide
a mathematical explanation of chromatic adaptation: the HVS adapts itself to the speci�c
features of a visual scene in order to better distinguish its colors. Some details and a proof of
the collinear case for the symmetrized relative entropy, are presented in the Appendix C.
It would be interesting to investigate if psychovisual data can support this hypothesis.

De�ning a Jameson-Hurvich-like color solid JHY

In Chapter 1 we mentioned the chromatic response curves proposed by Jameson and Hur-
vich within their series of articles about quantifying Hering's opponent process, in particular
[75, 76]. The idea here is to use a basis of functions made up by them and a choice for the
brightness sensitivity function, let us pick ȳ for simplicity, to de�ne a color solid.

Let C ∈ L2
+(Λ) be a color stimulus, then its tristimulus values obtained performing the

reduction with respect to the basis rg, yb, ȳ, as in Equation (1.1.3), are given by:

*Notice that this result is known for the case of quantum mechanics, see e.g. [151] for a proof.
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J =

∫
Λ
C(λ)rg(λ)dλ,

H =

∫
Λ
C(λ)yb(λ)dλ,

Y =

∫
Λ
C(λ)ȳ(λ)dλ.

(9.0.1)

From Equation (1.1.5), by linearity of the integral we obtain that the �rst two equalities in
Equation (9.0.1), can be rewritten as:

J = 1.0065

∫
Λ
C(λ)x̄(λ)dλ− 1.0006

∫
Λ
C(λ)ȳ(λ)dλ− 0.0051

∫
Λ
C(λ)z̄(λ)dλ,

H = −0.0039

∫
Λ
C(λ)x̄(λ)dλ+ 0.3998

∫
Λ
C(λ)ȳ(λ)dλ− 0.3999

∫
Λ
C(λ)z̄(λ)dλ.

(9.0.2)

Recalling that the XYZ coordinates associated to C(λ) are obtained, as in Equation (1.1.3),
by

X =

∫
Λ
C(λ)x̄(λ)dλ,

Y =

∫
Λ
C(λ)ȳ(λ)dλ,

Z =

∫
Λ
C(λ)z̄(λ)dλ.

(9.0.3)

We obtain that the tristimulus values XYZ are linearly related to the JHY coordinates as
follows: JH

Y

 =

 1.0065 −1.0006 −0.0051
−0.0039 0.3998 −0.3999

0 1 0

XY
Z

 . (9.0.4)

It seems interesting to de�ne a color model in this way, since it would be a new way of
including Hering's opponent mechanism in a color space. Moreover Jameson and Hurvich's
curves have been used as well in [115] to give a colorimetric explanation and quanti�cation of
the Helmholtz-Kohlrausch e�ect. This seems promising in the perspective of de�ning a color
model that takes into account and predicts this kind of e�ects. Furthermore this Jameson-
Hurvich-like color solid could be a good color domain candidate to test the CAT proposed in
Chapter 7 or the KTMO of Chapter 8.

About the normalized boost CAT

In 2004 the CIE reunited a technical commission, TC 1-52, testing 13 CATs with the
purpose of recommending a best performing one, see [1]. As reported in [20], `The members
of the CIE TC 1-52 were unable to agree on a single CAT as some of them required that the
adopted transform must be theoretically based '. For this reason we are interested in keeping
ameliorating our proposal of a theoretically based CAT, presented in Chapter 7.

There are two main aspects on which we do believe that there is margin of improvement.
The �rst one consists at �nding a better color domain for the implementation. One possible
solution is either studying more in detail further modi�cations of HCV or other state-of-the
art color solids, either using the Jameson-Hurvich-like color solid described in the previous
paragraph.

127



The second, very important, aspect is to provide quantitative evaluations of its perfor-
mance. The state-of-the art benchmark to test CATs are the so-called corresponding colors
datasets. These experimental data are obtained through di�erent techniques, among them hap-
loscopic matching as the Burnham experiments [26] mentioned in Chapter 4. For a thoughtful
description of the available datasets and existing CATs see the CIE report [1], Chapter 9 of
[49] or [20]. A couple of corresponding colors consists of two points, represented in a certain
chromaticity diagram, which represent the same perceived color under two di�erent adapta-
tion conditions. CATs are meant to predict the corresponding colors couples, some data-based
state-of-the art CATs have been created �tting the available corresponding colors datasets.
Concerning our model we performed some �rst tests on e.g. Breneman's data [21], imple-
menting Einstein-Poincaré's addition law (which corresponds to the action of BN (e)−1 on the
chromaticity diagram) in the u′v′ chromaticity diagram, depicted in Figure 1.5, but the results
were not satisfactory. The reason is that the u′v′ chromaticity diagram is not a good approx-
imation of the theoretical one. Hence we would like to perform other tests, on Breneman's
or other corresponding colors datasets, representing the points in a di�erent chromaticity dia-
gram, e.g. H1S in the the solid H1SV de�ned in Section 7.3, or the chromaticity diagram JH
of the Jameson-Hurvich-like color solid described in the previous paragraph.
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Appendix A

Elements of special relativity theory

Here we will brie�y recap only the basic concepts of special relativity because inherent to
Yilmaz's model treated in Chapters 2 and 4. The discussion that follows will be faithful to
the standard special relativity formulation, see e.g. [96, 97].

Special relativity is known to be an extension of Galilean relativity, which is based on the
following two postulates:

1. space is homogeneous and isotropic and time is homogeneous*;

2. laws of physics� have the same form in all inertial (i.e. not accelerated) reference frames,
i.e. no inertial reference frame is privileged.

In special relativity, Einstein considered, along with the motion of objects with mass, also the
peculiar behavior of electromagnetic signals by adding the following postulate:

3. the speed of light in vacuum has a constant value c ∈ R+ when measured in all inertial
reference frames.

In special relativity, we call event e a point in R4 = R × R3 with coordinates written as�

xµ = (ct,x), where t ∈ R and x = (xi), i = 1, 2, 3, are, respectively, the time instant and
the spatial position of the event as measured by an inertial observer with respect to her/his
inertial reference frame R. Let us consider, in particular, the following two events: the �rst,
e1 = (ct1, x

i
1), consists in a light signal emanating at the time t1 from the spatial position (xi1);

the second, e2 = (ct2, x
i
2), consists in the same light signal arriving at the time t2 in the spatial

position (xi2). Since the signal propagates with constant speed c, the square distance that is
traveled is c2(t2 − t1)2. If we equip R3 with the Euclidean metric, this same square distance

is equal to
3∑
i=1

(xi2 − xi1)2, so the coordinates of the events e1 and e2 in the �xed inertial frame

R are related by the equation:

c2(t2 − t1)2 −
3∑
i=1

(xi2 − xi1)2 = 0 ⇐⇒ c2(t2 − t1)2 − ‖x2 − x1‖2 = 0, (A.0.1)

‖·‖ being the Euclidean norm in R3. Of course, Equation (A.0.1) remains valid for all spacetime
di�erences, also in�nitesimal ones, thus we can write the di�erential version of Equation (A.0.1)

*In this context, isotropy means invariance under rotations, while homogeneity means invariance with
respect to translations.

�In Galileian relativity, the laws of physics refer only to the mechanics of objects with mass.
�Using ct instead of t is customary in special relativity: physically, this amounts at replacing the time t

with the corresponding space ct traveled by a ray of light during t.



as c2dt2 − ‖dx‖2 = 0. In special relativity, the quantity

ds2 = c2dt2 − ‖dx‖2, (A.0.2)

is called spacetime interval. From Equation (A.0.1) it follows that the spacetime interval
between two events connected by a signal traveling at the speed of light is null. Since the
speed of light is an upper limit for velocity, this amounts at promoting it as a reference and at
normalizing to 0 the spacetime distance between any two events, no matter how far in space
or time, connected by a light-speed signal.

Postulates 1 and 3 imply that the spacetime interval ds2 between two events described
in the inertial reference frame R and the spacetime interval ds′2 between the same couple of
events described in any other inertial reference frame R′ is exactly the same: ds′2 = ds2, see
e.g. [97], page 7 or [96], page 117, for a rigorous proof.

If we write the in�nitesimal di�erence between any two events as the vector dx = (dxµ),
then the spacetime interval can be written� as the (non positive-de�nite) quadratic form ds2 =
dxµηµνdx

ν = dxtηdx, where η = (ηµν) is the matrix η = diag (1,−1,−1,−1). The metric space
M = (R4, η) is called Minkowski spacetime and η is the matrix associated to the Minkowski
quadratic form. The associated pseudo-norm, i.e. ‖u‖2M = (u0)2 − [(u1)2 + (u2)2 + (u3)2] is
called Minkowski norm of u ∈M.

A world-line in M is any connected path composed by events between an initial and a
�nal one. Straight lines inM correspond to world-lines of inertial movements.

The last information that we must recall is how to relate the coordinates of two inertial
frames. First of all, it is simple to deduce from postulate 1 that the coordinate transformation
ω : R4 → R4, xµ 7→ x′µ = ω(xµ) from R to R′ of an event must be linear (under the reasonable
hypothesis to be di�erentiable). In fact, by postulate 1, there are no special instants and
positions in R4, so, the distance between two events remains the same when these are translated
by a �xed vector b ∈ R4. This is true independently on the coordinate system used to write
the events in two arbitrary inertial reference frames R and R′. Let x = xµ and y = yµ be the
coordinates of the two events in R and ωµ(x) and ωµ(y) the coordinates of the same events in
R′. Since (xµ+bµ)−(yµ+bµ) = xµ−yµ, we must have ωµ(x+b)−ωµ(y+b) = ωµ(x)−ωµ(y).
If we derive the two sides of the last equation with respect to xν , ν = 0, 1, 2, 3, we obtain
∂ωµ

∂xν (x+ b) = ∂ωµ

∂xν (x), for all b ∈ R4, since y does not depend on x. Thanks to the fact that b

is arbitrary, x+ b represents any vector in R4, so the function ∂ωµ

∂xν is constant, which implies

that ∂ωµ

∂xν (x) = Λµν ∈ R for all x ∈ R4, µ, ν = 0, 1, 2, 3, i.e.

x′µ = ωµ(x) = Λµνx
ν + aµ. (A.0.3)

The invariance of the spacetime interval imposes a strong constraint on the form of the matrix
Λ: to see this, let us write the di�erence vector dxµ in the inertial reference frame R′ by using
Equation (A.0.3): dx′µ = y′µ − x′µ = Λµνyν + aµ − (Λµνxν + aµ) = Λµνdxν . Thus, on one side,

ds′2 = dx′µηµνdy
′ν = dxαΛµαηµνΛνβdy

β, (A.0.4)

and, on the other side,

ds2 = dxαηαβdy
β, (A.0.5)

so, the equality ds′2 = ds2 implies:

ΛµαηµνΛνβ = ηαβ ⇐⇒ ΛtηΛ = η. (A.0.6)

�Here we use of the standard Einstein's convention which implicitly assumes a sum over repeated indices

above and below, e.g. if i = 1, . . . , n, then aibi :=
n∑
i=1

aibi.
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A. Elements of special relativity theory

The set of all these matrices forms a group, called the Lorentz group classically denoted by
the symbols L ≡ O(1, 3) = {Λ ∈ GL(4,R) : ΛtηΛ = η}.

Thus, postulates 1 and 3 imply that the coordinates used to describe the same event in two
generic inertial reference frames are related by either non-homogeneous linear transformations
of the type x′ = Λx + a, Λ ∈ O(1, 3), a ∈ R4, called Poincaré transformations, or, in the
special case when a = 0, by linear transformations

x′ = Λx, (A.0.7)

called Lorentz transformations.
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Appendix B

Angle variation in Einstein-Poincaré's

addition law

In Chapter 5 we have underlined the importance of the relativistic addition law between an
e�ect vector and a state vector in describing the process of color measurement and in modeling
chromatic adaptation.

Let us consider two vectors v,u ∈ D, with r, ϑ and s, ϕ being their polar coordinates. Let
us call R,Θ the polar coordinates of the vector u ⊕ v. In Proposition 5.3.1 we provided an
explicit expression for R. The aim of this appendix is to �nd an explicit expression for Θ
as a function of the polar coordinates of the two involved vectors, i.e. Θ = Θ(r, s, ϑ, ϕ). As
mentioned in Chapter 9, the interest of doing so is to use this formula as a possible way to
model hue-depending perceptual e�ects, like Bezold-Brüke's or Abney's one. Furthermore this
formula will be used in Appendix C to prove the monotonicity of the symmetrized relative
entropy, in the case of collinear vectors.

To �nd an explicit formula for the angle Θ, our strategy will be to use the relation between
relativistic addition law and Lorentz boosts, as we have seen in Chapter 5, in particular in
Equations (5.2.18) and (5.2.20). Since we are looking for an angular coordinate, possible
normalized versions of the boost, like BN (e) in Chapter 5, will not a�ect the result.

A Lorentz boost B(v), parametrized by a generic velocity v, can be decomposed as the
product of a boost along the x-direction Br := B((r, 0)) conjugated with a spatial rotation of
angle ϑ, as follows:

B(v) = RϑBrR
t
ϑ, (B.0.1)

where

Rϑ =

1 0 0
0 cosϑ − sinϑ
0 sinϑ cosϑ

 , Br =

 γv γvr 0
γvr γv 0
0 0 1

 , γv =
1√

1− r2
. (B.0.2)

In fact the set of Lorentz boosts is not a group, because, in particular, the composition
of two Lorentz boosts is not a Lorentz boost. Moreover B(v)B(u) 6= B(v + u) and also
B(v)B(u) 6= B(v ⊕ u). Nevertheless given two Lorentz boosts B(v1) and B(v2), it is true
that B(v1) = RφB(v2)Rtφ, where φ is the angle between v1 and v2.

Given a space-time event (t, x, y)t, let us call (t′, x′, y′)t its image after the action of a Lorentz
boost, thus t′x′

y′

 = B(v)

tx
y

 = RϑBrR
t
ϑ

tx
y

 . (B.0.3)



Let us call u the velocity vector of (t, x, y)t, obtained as follows:

u =

(
ux
uy

)
=

(
s cosϕ
s sinϕ

)
=

1

t

(
x
y

)
=

(
x/t
y/t

)
. (B.0.4)

It can be proven that the velocity vector of (t′, x′, y′)t is actually v⊕u. Let us call u′ := v⊕u,
then

v ⊕ u = u′ =

(
(v ⊕ u)x
(v ⊕ u)y

)
=

(
u′x
u′y

)
=

1

t′

(
x′

y′

)
=

(
x′/t′

y′/t′

)
. (B.0.5)

We recall that the polar coordinates of the vectors v,u,u′ are (r, ϑ), (s, ϕ), (R,Θ), respectively.
We are looking for an explicit expression for Θ, more precisely:

Θ(r, s, ϑ, ϕ) = arctg

(
u′y
u′x

)
= arctg

(
y′

x′

)
(B.0.6)

In the end we will see that actually Θ(r, s, ϑ, ϕ) = Θ(r, s, ϑ− ϕ).

Let us start from Equation (B.0.3):t′x′
y′

 = RϑBrR
t
ϑ

tx
y

 = RϑBr

 t
x cosϑ+ y sinϑ
−x sinϑ+ y cosϑ

 . (B.0.7)

Let us call X := x cosϑ+ y sinϑ and Y := −x sinϑ+ y cosϑ. Thus we obtaint′x′
y′

 = RϑBr

 t
X
Y

 = Rϑ

γv(t+ rX)
γv(rt+X)

Y

 . (B.0.8)

Let us call  t̃x̃
ỹ

 :=

γv(t+ rX)
γv(rt+X)

Y

 . (B.0.9)

We are looking for Θ = arctg (y′/x′). Since it holds that(
x′

y′

)
=

(
cosϑ − sinϑ
cosϑ sinϑ

)(
x̃
ỹ

)
, (B.0.10)

it is true that

Θ = arctg

(
y′

x′

)
= ϑ+ arctg

(
ỹ

x̃

)
. (B.0.11)

We can now perform the following computations:

Θ(r, s, ϑ, ϕ) = ϑ+ arctg

(
Y

γv(rt+X)

)
= ϑ+ arctg

(
−x sinϑ+ y cosϑ

γv(rt+ x cosϑ+ y sinϑ)

)
= ϑ+ arctg

(
−ux sinϑ+ uy cosϑ

γv(r + ux cosϑ+ uy sinϑ)

)
= ϑ+ arctg

(
−s cosϕ sinϑ+ s sinϕ cosϑ

γv(r + s cosϕ cosϑ+ s sinϕ sinϑ)

)
= ϑ+ arctg

(
1

γv

s sin(ϕ− ϑ)

r + s cos(ϕ− ϑ)

)
.

(B.0.12)

The explicit formula for the angle Θ, that we were looking for, is the following:

Θ(r, s, ϕ− ϑ) = ϑ+ arctg

(
1

γv

s sin(ϕ− ϑ)

r + s cos(ϕ− ϑ)

)
. (B.0.13)
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B. Angle variation in Einstein-Poincaré's addition law

Simple cases

We conclude some simple cases of the explicit formula for Θ, which are more used in
special relativity theory than the general case of Equation (B.0.13). In particular the case
where ϕ = ϑ will be used in Appendix C.

� The �rst easy situation is when ϑ = 0. In this case B(v) = Br and we obtain

Θ = arctg

(
1

γv

s sinϕ

r + s cosϕ

)
= arctg

(
1

γv

uy
r + ux

)
. (B.0.14)

� When ϕ = ϑ, then u and v are collinear, hence we expect v ⊕ u to be collinear as well,
Θ = ϑ = ϕ. Indeed

Θ = ϑ+ arctg(0) = ϑ. (B.0.15)

� In the case r = 1 we obtain

Θ = ϑ+ arctg
(√

1− r2s sin(ϕ− ϑ)
)

= ϑ, (B.0.16)

which is related to the property (5.2.23) of the relativistic addition law.

� When ϑ = π
2 , the expression for Θ is given by:

Θ = arctg

(
γv
r + s cosϕ

s sinϕ

)
. (B.0.17)

There are di�erent ways to obtain the previous formula. One can use a boost along
the y-direction instead of Br, or equivalently exchange x′ and y′ in Equation (B.0.14).
Another way is to start from formula (B.0.13) and use the following relations:

arctgα± arctgβ = arctg

(
α± β
1∓ αβ

)
, (B.0.18)

− arctgα = arctg(−α). (B.0.19)

Indeed we can perform the following computations:

Θ =
π

2
+ arctg

(
1

γv

s sin(ϕ− π/2)

r + s cos(ϕ− π/2))

)
= lim

x7→+∞
arctgx+ arctg

(
1

γv

−s cosϕ

r + s sinϕ

)
(B.0.19)

= lim
x 7→+∞

arctgx− arctg

(
1

γv

s sinϕ

r + s cosϕ

)
(B.0.18)

= lim
x 7→+∞

arctg

(
x− 1

γv
s sinϕ

r+s cosϕ

1 + x 1
γv

s sinϕ
r+s cosϕ

)

= arctg

(
γv
r + s cosϕ

s sinϕ

)
.

(B.0.20)
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Appendix C

Monotonicity of the symmetrized

relative entropy

In Chapter 5 we have introduced the concept of relative entropy, which played an important
role in the de�nitions of chromatic attributes in Chapter 6.
Relative entropy between two states, see De�nition 5.4 in Chapter 5, is clearly not symmetric.
If symmetry is needed, e.g. to use it as a metric for color discernability as mentioned in
Chapter 9, it is natural to de�ne its symmetrized version.

De�nition C.0.1 (Symmetrized relative entropy). Let s, t be two quantum states and ρs, ρt
be their associated density matrices. Their symmetrized relative entropy is given by

RS(ρs, ρt) =
R(ρs||ρt) +R(ρt||ρs)

2
. (C.0.1)

In the following we will make a small abuse of notation using symbols of the corresponding
state symbols s, t or the chromatic vector ones vs,vt instead of ρs, ρt, i.e. RS(vs,vt) =
RS(ρs, ρt). Let ρs, ρt have the following expressions:

ρs =
1

2

(
1 + s cosϕ s sinϕ
s sinϕ 1− s cosϕ

)
, ρt =

1

2

(
1 + t cosψ t sinψ
t sinψ 1− t cosψ

)
, (C.0.2)

then, starting from Equation (5.4.4), straightforward computations lead to the following, more
explicit, expression for RS :

RS(s, t) =
1

2

[
s− t cos(ϕ− ψ)

2
log2

(
1 + s

1− s

)
+
t− s cos(ϕ− ψ)

2
log2

(
1 + t

1− t

)]
. (C.0.3)

The interest of proving the following proposition is explained in detail in Chapter 9.

Proposition C.0.2 (Monotonicity of the symmetrized relative entropy). Let s, t be two quan-
tum states, vs,vt being their associated chromatic vectors. Let e be an e�ect, with e�ect vector
ve, then the symmetrized relative entropy between vs and vt is not-increasing after applying
Einstein-Poincaré's addition law w.r.t. ve on the left as follows:

RS(vs||vt) ≥ RS(ve ⊕ vs||ve ⊕ vt). (C.0.4)



Proof of the collinear case. Let us start by calling s′ and t′ the states whose chromatic
vectors are ve⊕vs and ve⊕vt, respectively. Let (s, ϑ), (t, ψ), (r, ϑ), (s′, ϕ′), (t′, ψ′) be the polar
coordinates of the vectors vs,vt,ve,ve ⊕ vs,ve ⊕ vt, respectively. Using Equation (C.0.3),
the thesis is equivalent to prove that the following expression

RS(s, t) =
1

2

[
s− t cos(ϕ− ψ)

2
log2

(
1 + s

1− s

)
+
t− s cos(ϕ− ψ)

2
log2

(
1 + t

1− t

)]
, (C.0.5)

is greater or equal to the following one

RS(s′, t′) =
1

2

[
s′ − t′ cos(ϕ′ − ψ′)

2
log2

(
1 + s′

1− s′

)
+
t′ − s′ cos(ϕ′ − ψ′)

2
log2

(
1 + t′

1− t′

)]
. (C.0.6)

We are considering only the case of collinear vectors, hence ϕ = ψ = ϑ. Since cos(ϕ−ψ) =
1, Equation (C.0.5) has the following expression:

RS(s, t) =
s− t

4
log2

(
(1 + s)(1− t)
(1− s)(1 + t)

)
. (C.0.7)

By formula (B.0.13) also ϕ′ = ψ′ = ϑ, so cos(ϕ′ − ψ′) = 1. Moreover s′ = r+s
1+rs and

t′ = r+t
1+rt , thus Equation (C.0.6) can be simpli�ed as follows:

RS(s′, t′) =
s′ − t′

4
log2

(
(1 + s′)(1− t′)
(1− s′)(1 + t′)

)
. (C.0.8)

Notice that

(1 + s′)(1− t′)
(1− s′)(1 + t′)

=
1 + r+s

1+rs

1− r+s
1+rs

1− r+t
1+rt

1 + r+t
1+rt

=
(1 + r)(1 + s)

(1− r)(1− s)
(1− r)(1− t)
(1 + r)(1 + t)

=
(1 + s)(1− t)
(1− s)(1 + t)

.

(C.0.9)
Furthermore

s′ − t′ = s+ r

1 + rs
− t+ r

1 + rt
=

1− r2

(1 + rs)(1 + rt)
(s− t). (C.0.10)

Hence Equation (C.0.8) becomes

RS(s′, t′) = (s− t) 1− r2

4(1 + rs)(1 + rt)
log2

(
(1 + s)(1− t)
(1− s)(1 + t)

)
. (C.0.11)

The inequality that we want to prove, RS(s′, t′) ≤ RS(s, t), in this particular case, has the
following expression:

(1− r2)(s− t)
4(1 + rs)(1 + rt)

log2

(
(1 + s)(1− t)
(1− s)(1 + t)

)
≤ s− t

4
log2

(
(1 + s)(1− t)
(1− s)(1 + t)

)
. (C.0.12)

Notice that

log2

(
(1 + s)(1− t)
(1− s)(1 + t)

)
≥ 0 ⇐⇒ (1 + s)(1− t)

(1− s)(1 + t)
≥ 1 ⇐⇒ s− t ≥ 0. (C.0.13)

This means that for all s, t, we have that

(s− t) log2

(
(1 + s)(1− t)
(1− s)(1 + t)

)
≥ 0, (C.0.14)

so Equation (C.0.12) is equivalent to prove that

1− r2

(1 + rs)(1 + rt)
≤ 1. (C.0.15)

Straightforward computations show that this is true for all r, s, t ∈ [0, 1].
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