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Static Data Allocation Algorithms for Scheduling High Performance Applications

Abstract: Linear algebra applications are commonly used nowadays to solve large scale prob-
lems whose size requires the use of distributed and parallel execution on dedicated computation
platforms. Many modern linear algebra libraries rely on runtime systems that implement task-
based model for their parallel execution. Such tools allow to achieve high performance by per-
forming dynamic scheduling and automatic handling of communications on a set of distributed
resources. At the same time, they simplify the implementation of linear algebra operations by
decoupling the data distribution from the computations and relieve the programmer from ex-
plicit management of communications. Although runtime systems enable the use of virtually
any data distribution, most linear algebra applications still rely on the traditional 2D Block
Cyclic distribution inherited from the early years of High Performance Computing, when paral-
lel applications were essentially described using basic MPI primitives. In this work we explore
the possibilities offered by runtime systems and we design data distributions adapted to the
parallel distributed execution of specific linear algebra operations, namely matrix multiplica-
tion, symmetric rank-k update, LU and Cholesky factorization. We show that it is possible
to design original data distribution schemes that are best fitted to the characteristics of each
operation. By taking into account communications reduction and load balancing, the newly de-
veloped solutions manage to outperform classic distributions in many configurations, including
dense homogeneous cases, both in terms of theoretical and actual parallel performance. This
work illustrates that significant improvements over state-of-the-art solutions are achievable by a
more careful design of sophisticated data distributions which can in turn be easily implemented
using modern task-based linear algebra libraries.
Keywords: load balancing, scheduling, runtime schedulers
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Algorithmes d’allocation statique pour la planification d’applications haute
performance

Résumé : De nos jours, les applications d’algèbre linéraire sont couramment utilisées pour
traiter des problèmes dont la grande taille requiert une exécution parallèle distribuée par des
plate-formes de calcul dédiées. De nombreuses librairies d’algèbre linéaire reposent sur l’utilisation
d’ordonnanceurs dynamiques utilisant un modèle d’exécution à base de tâches. De tels outils
permettent d’atteindre de hauts niveaux de performance en appliquant un ordonnancement
dynamique des tâches et une gestion automatique des communications pour un ensemble de
ressources de calcul distribuées. Dans le même temps, ils simplifient la mise en œuvre des
opérations d’algèbre linéaire en découplant la distribution de données et les calculs et exemptent
le programmeur de la gestion explicite des communications. Bien que les ordonnanceurs dy-
namiques à base de tâches permettent l’utilisation de virtuellement n’importe quelle distribu-
tion de données, une grande partie des librairies d’algèbre liéaire reposent toujours sur la dis-
tribution classique 2D Bloc Cyclique héritée des premiers temps du domaine du Calcul Hautes
Performances durant lequel la description des applications parallèles reposait essentiellement
sur des primitives MPI rigides. Dans cette thèse, nous explorons les possibilités qu’offrent
les ordonnanceurs dynamiques à base de tâches et cherchons à concevoir des distributions de
données adaptées à l’exécution parallèle distribuée d’opérations d’algèbre linéaire particulières,
plus précisément la multiplication de matrices, l’opération symmetric rank-k update, la factorisa-
tion LU et la factorisation de Cholesky. Nous montrons qu’il est possible de concevoir des distri-
butions de données originales mieux adaptées aux caractéristiques de chaque opération. Prenant
en compte la réduction des communications et l’équilibrage de la charge de travail, les solutions
développées parviennent à surpasser les distributions classiques dans de nombreuses configu-
rations, en particulier dans les cas denses et homogènes, tant sur les performances théoriques
qu’expérimentales. Ce travail illustre que d’importants gains par rapport aux solutions de l’état
de l’art actuel sont atteignables grâce à une conception plus fine des distributions de données qui
peuvent être facilement mises en œuvre dans des librairies d’algèbre linéaire modernes utilisant
un modèle d’exécution à base de tâches.
Mots-clés : équilibrage de charge, ordonnancement, ordonnanceurs dynamiques
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Résumé étendu

Contexte scientifique : le calcul haute performance

pour les applications d’algèbre linéaire

De nos jours, le calcul numérique est un outil incontournable dans de nombreux do-
maines scientifiques et industriels. Que ce soit pour la modélisation, la simulation ou
l’optimisation, le calcul numérique est une méthode efficace, et souvent la seule alterna-
tive disponible, pour traiter des problèmes complexes et de grande taille. Depuis plusieurs
décennies, l’augmentation constante de la puissance de calcul a conduit à l’émergence du
domaine du calcul intensif et haute performance (HPC). Les techniques développées dans
ce cadre ont pour objectif d’exploiter au mieux les technologies émergentes et tirer parti
des capacités de calcul toujours croissantes pour les applications. L’accroissement de
la puissance de calcul des plates-formes s’accompagne néanmoins d’une plus importante
complexité de fonctionnement.

Alors que l’approche numérique est un outil polyvalent pour traiter des problèmes
scientifiques et d’ingénierie de nature variée, de nombreuses applications scientifiques
reposent essentiellement sur un nombre restreint d’opérations d’algèbre linéaire. Le fonc-
tionnement complet d’une application se résume alors souvent à l’exécution d’une seule ou
d’une combinaison d’opérations numériques d’algèbre linéaire effectuées sur les matrices
associées aux entrées du problème et l’essentiel du temps d’exécution correspond à ces
opérations.

Dans ce travail, on s’intéresse à certaines des opérations d’algèbre linéaires les plus
courantes dans le contexte du calcul hautes performances, à savoir :

• la multiplication de matrices (GEMM) : étant données A et B, calculer C +=
A ·B ;

• la mise à jour de rang-k (SYRK) : étant donnée A, calculer C += A ·AT ;

• la factorisation LU (GETRF) : étant donnée A, calculer deux matrices triangu-
laires inférieure L et supérieure U telles que A = L ·U ;

• la factorisation de Cholesky (POTRF) : étant donnée A symétrique définie
positive, calculer une matrice triangulaire inférieure L telle que A = L · LT.

Les opérations d’algèbre linéaire étant centrales pour un grand nombre d’applications
de calcul scientifique, leur formalisation sous forme d’algorithmes efficaces est essen-
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tielle et a été entreprise dès les premiers temps du calcul hautes performances. La bib-
liothèque BLAS [73], développé depuis les années 1970, fournit une description formelle
des principales opérations d’algèbre linéaire sous forme d’algorithmes génériques. Les
implémentations séquentielles basées sur ces algorithmes génériques et optimisées pour
chaque architecture matérielle sont appelées noyaux. Ces implémentations, telles que
celles proposées dans les bibliothèques OpenBLAS [69, 74] ou MKL [72], exploitent les car-
actéristiques spécifiques des architectures matérielles pour atteindre des performances
élevées sur une seule unité de calcul. Les descriptions formelles des algorithmes fourni
par BLAS constituent un standard de facto et sont utilisés comme blocs élémentaires pour
construire des opérations plus élaborées dans d’autres bibliothèques d’algèbre linéaire,
comme LAPACK [73].

Contexte technique : calcul parallèle distribué et

exécution à base de tâches

Malgré la tendance générale à l’augmentation de la puissance de calcul, l’exécution séquentielle
d’opérations sur une seule ressource est un modèle intrinsèquement limité en termes de
performances. Les exigences croissantes des applications scientifiques en termes d’échelle
et de précision ont donc naturellement conduit à l’émergence du calcul parallèle, c’est-
à-dire l’utilisation simultanée des ressources de calcul pour une même opération. Les
plates-formes de calcul modernes regroupent plusieurs unités de calcul, appelées nœuds
typiquement constitués : d’une mémoire (RAM), d’un processeur (CPU) comportant
plusieurs cœurs et, de plus en plus souvent, d’un ou plusieurs accélérateurs (GPU), ces
derniers disposant d’une mémoire dédiée. Les nœuds sont connectés via un réseau haute
performance visant à fournir la plus grande bande passante et la plus petite latence possi-
ble. Cette architecture matérielle permet d’exploiter deux niveaux de parallélisme : (i) à
l’échelle des unités de calcul (CPU, GPU), en mémoire partagée, grâce aux architectures
multi-cœurs, (ii) à l’échelle de la plateforme de calcul, par l’exécution distribuée des ap-
plications utilisant simultanément plusieurs dizaines voire centaines de nœuds. L’échelle
des problèmes considérés aujourd’hui nécessite d’utiliser ces deux niveaux de parallélisme
afin d’assurer un temps d’exécution raisonnable. Il est donc primordial de compren-
dre et d’optimiser le comportement parallèle des applications, notamment les opérations
d’algèbre linéaire sous-jacentes, afin d’obtenir les meilleures performances possibles.

Distribution de données et affectation des tâches

Dans ce travail, nous considérons l’exécution parallèle et distribuée d’opérations d’algèbre
linéaire dans ce modèle générique de plate-forme de calcul utilisant P nœuds identiques.
L’exécution d’une opération en parallèle nécessite que les données d’entrée et de sortie
soient divisées et distribuées aux nœuds. En pratique, pour les opérations d’algèbre
linéaire, les données correspondant à des matrices sont divisées en blocs ou tuiles de
taille identiques. Les tâches constitutives d’une opération d’algèbre linéaire prennent
place à l’échelle des tuiles et correspondent à l’exécution d’un noyau spécifique par une
ressource de calcul, un cœur d’un CPU ou un GPU, sur un nœud. Cette division des



données permet d’exploiter efficacement le parallélisme de la plateforme puisque plusieurs
tâches effectuées sur différentes tuiles peuvent être exécutées en parallèle par différentes
ressources de calcul, que ce soit par le même nœud ou par des nœuds différents. On appelle
distribution de données l’affectation d’un ensemble de tuiles à chaque nœud ; on qualifie
celle-ci de 2D, ou statique, lorsque chaque tuile existe dans la mémoire d’un seul nœud.
Une telle configuration est standard dans la littérature et dans les bibliothèques d’algèbre
linéaire parallèle. Il existe des distributions plus complexes faisant appel à la réplication
des données, appelées 2.5D ou 3D. On s’intéresse dans ce travail à des distributions des
données 2D, sauf dans la section 2.2.3

Pour une opération d’algèbre linéaire donnée, l’ensemble des tâches qui la compose
peut être abstrait sous la forme d’un Graphe Acyclique Orienté (cDAG) Dans un tel
cDAG, les tâches correspondent aux sommets et les dépendances aux arêtes orientées : la
présence d’une arête entre deux sommets indique que la tâche associée au sommet enfant
ne peut pas démarrer avant que les tâches associées aux sommets parents soient terminées.
Le cDAG associé à une opération explicite ainsi les dépendances de tâche inhérentes à
l’opération. D’autre part, ces dépendances de tâche correspondent à des dépendances
de donnée, les sorties de certaines tâches étant les entrées d’autres. Dans un contexte
distribué, ces dépendances de donnée rendent nécessaires des communications entre les
nœuds, car aucun ne dispose de la totalité des données. Le nombre et l’organisation de ces
communications est directement fonction de la distribution de données utilisée. Pour les
limiter, la répartition des tâches durant l’exécution suit souvent la règle owner computes,
c’est-à-dire que chaque nœud est en charge de réaliser toutes les tâches qui modifient les
tuiles dont il possède les données. Cette affectation des tâches s’articule naturellement
avec une distribution de données 2D.

Jusqu’à récemment, pour décrire l’exécution d’un opération, les communications entre
les nœuds devaient être explicitées et mises en œuvre à l’aide de technologies logicielles
dédiées, généralement via le protocole Message Passing Interface (MPI). Cela rend partic-
ulièrement difficile le développement des applications et leur évolution. Par conséquent, la
plupart des bibliothèques d’algèbre linéaire depuis les début du calcul parallèle et jusque
récemment utilisent presque exclusivement la distribution 2D Block Cyclic (BC), qui est
devenue un standard de facto. C’est le cas de la bibliothèque ScaLAPACK [22] mais aussi de
solutions logicielles plus récentes, telles que SLATE [40], Elemental [64] ou COnfLUX [57].
C’est une distribution basée sur un motif répétée qui est très régulière, ce qui implique des
dépendances des donnée assez simple et des schémas de communication faciles à décrire.
Par ailleurs elle possède des qualités importantes dans un contexte parallèle distribué :
un équilibrage de charge global parfait entre les nœuds, un bon équilibrage de charge au
cours de l’exécution, un nombre limité de nœuds présent sur chaque ligne et colonne (de
l’ordre de

√
P ) limitant le volume de communication. Malgré ces propriétés intéressantes,

la distribution BC n’est pas optimale dans toutes les situations. L’objectif principal de ce
travail est de proposer des alternatives plus efficaces, notamment des distributions basées
sur des motifs répétés, dans des configurations spécifiques.



Modèle d’exécution à base de tâches et ordonnanceurs
dynamiques

Depuis une dizaine d’années, le modèle d’exécution à base de tâches suscite beaucoup
d’intérêt dans le domaine du calcul hautes performances et est considéré comme l’une
des directions de recherche les plus prometteuses pour le développement d’applications
efficaces et flexibles dans un contexte parallèle distribué. Dans ce paradigme, la descrip-
tion et l’exécution du calcul sont découplées de la gestion des données et des dépendances
de tâche : le premier aspect est laissé à la charge d’une bibliothèque spécifique tandis
que le second est délégué à un outil dédié, l’ordonnanceur dynamique. Ce dernier gère
l’ordonnancement des tâches pour assurer l’exactitude des calculs et optimiser le temps
d’exécution. D’une part, à l’échelle de chaque nœud, les tâches sont réparties dynamique-
ment parmi les ressources en fonction de leurs caractéristiques, du noyau à exécuter, de
l’état courant de chaque ressource et d’une politique d’ordonnancement. À l’échelle de la
plate-forme, d’autre part, l’ordonnanceur assure le respect des dépendances de donnée et
de tâche en déclenchant les communications inter nœuds requises au bon moment.

L’utilisation du modèle d’exécution à base de tâches présente des avantages signifi-
catifs comparativement à une construction rigide des applications basée sur une descrip-
tion explicite de l’ordonnancement des tâches et des communications. D’une part, les
ordonnanceurs dynamiques prenant les décisions au cours de l’exécution, ils offrent la
possibilité de déployer des stratégies de gestion des données et d’ordonnancement à grain
fin. À l’échelle de chaque nœud, ils sont capables de gérer de manière automatique des
ressources hétérogènes (des cœur de CPU et différents GPU) et de les utiliser au mieux.
À l’échelle de la plate forme, ce paradigme permet une exécution asynchrone de toutes
les tâches composant une opération. Ceci augmente le parallélisme durant l’exécution et
offre la possibilité de recouvrir les communications et les calculs qui sont effectués en par-
allèle. D’autre part, le modèle d’exécution à base de tâches offre la possibilité d’utiliser de
manière transparente des distributions de données complètement irrégulières qui peuvent
être mieux adaptées à chaque opération considérée. Cette possibilité constitue d’ailleurs
un pré-requis aux développements présentés dans ce travail.

Le modèle d’exécution à base de tâches offre des avantages importants par rapport
à une conception rigides des applications. Ainsi, de nombreuses bibliothèques d’algèbre
linéaire modernes implémentent désormais entièrement ce paradigme. C’est le cas par
exemple des bibliothèques d’algèbre linéaire dense Chameleon [3–5], DPLASMA [23] ou
FLAME [47] ou la bibliothèque d’algèbre linéaire creuse PaStiX [49]. Elles s’appuient, pour
gérer les dépendances et les communications, sur des ordonnanceurs dynamiques qui sont
développés parallèlement, tels que StarPU [11, 33], PaRSEC [24, 25], SuperMatrix [30, 66]
ou OmpSs [35]. Au-delà des avantages liés au développement et à la conception, les bib-
liothèques qui s’appuient sur le modèle d’exécution à base de tâches atteignent des perfor-
mances nettement supérieures à celles des logiciels basés sur MPI, comme cela est illustré
par exemple dans [4].



Contributions

Dans ce travail, nous nous intéressons à l’exécution parallèle distribuée d’opérations
d’algèbre linéaire dans le modèle d’exécution à base de tâches. Nous traitons princi-
palement de questions liées à l’équilibrage de charge et aux communications qui se posent
dans ce contexte, l’objectif étant de minimiser le temps d’exécution total de ces opérations.
Nous nous intéressons aux méthodes de résolution directes sur des matrices denses ou com-
pressées et développons des distributions de données statiques adaptées à des opérations
et des configurations spécifiques. Bien que ce ne soit pas l’objet de ce travail, la plupart
des résultats présentés sont valables indépendamment de l’hétérogénéité intra-nœuds, i.e.
les différences entre ressources de calcul.

La première partie du document est consacrée à l’étude des opérations qui utilisent des
matrices d’entrée symétriques : la mise à jour de rang-k et la factorisation de Cholesky.
Nous considérons l’exécution parallèle distribuée de ces opérations sur des matrices denses.

Dans le chapitre 2 nous proposons une distribution de données originale dénommée
Symmetric Block Cyclic (SBC) qui utilise la symétrie de la matrice d’entrée pour réduire
le volume total de communication pour la factorisation de Cholesky. Nous détaillons le
schéma de communication de cette nouvelle distribution par rapport à la distribution BC
classique et présentons une estimation formelle détaillée du volume total de communica-
tion : le volume de communication généré par SBC est réduit d’un facteur

√
2 par rapport

à BC. Les résultats expérimentaux obtenus à l’aide de la bibliothèque Chameleon associée
à l’ordonnanceur dynamique StarPU permettent clairement d’observer une amélioration
significative des performances lors de l’utilisation de SBC par rapport à BC. Ces résultats
illustrent également que le recouvrement des communications et des calculs autorisés par le
modèle d’exécution à base de tâches est intrinsèquement limité en raison des dépendances
entre les tâches et constitue donc un argument en faveur d’une stratégie complémentaire
de réduction globale des communications. En plus de ces résultats, une extension 2.5D
de la distribution SBC est décrite et testée sur la même configuration. L’extension de
l’utilisation de la distribution SBC à des séquences d’opérations qui incluent une factori-
sation de Cholesky est également discutée ; des résultats préliminaires sont présentés pour
les opérations de résolution (POSV) et d’inversion (POTRI).

Le chapitre 3 se concentre sur l’aspect théorique du problème de minimisation des
communications pour la mise à jour de rang-k et la factorisation de Cholesky sur des ma-
trices denses. Contrairement au chapitre précédent, afin d’obtenir des bornes inférieures
fortes sur le volume de communication, nous nous plaçons dans un contexte out-of-core :
on dispose d’un unique nœud avec une mémoire limitée de taille M qui effectue les calculs,
seule une partie des données peut être présente en mémoire, et les communications in-
terviennent entre la mémoire locale limitée et une mémoire distante illimitée. Dans cette
configuration, il est possible d’établir des bornes pour les deux opérations sur le volume
de communication minimum nécessaire. Nous prouvons que l’exécution de la mise à jour
de rang-k sur une matrice de taille m×n nécessite au moins QSYRK. > 1√

2
m2n
M

communica-
tions ; d’autre part, la factorisation de Cholesky d’une matrice m×m symétrique définie
positive nécessite QCholesky. > 1

3
√

2
m3

M
communications. Ces bornes correspondent à une

amélioration d’un facteur
√

2 par rapport à la meilleure borne sur les communications de



l’état de l’art pour les mêmes opérations, proposée par Olivry et al. [62]. Ces deux bornes
utilisent une expression mathématique que nous qualifions d’explicite car le coefficient du
terme dominant est explicitement défini tandis que les termes d’ordre inférieur peuvent
être exprimés à l’aide de notations asymptotiques. Nous utilisons ce terme par opposi-
tion à asymptotique qui désigne les expressions où le terme dominant n’apparâıt que dans
une notation asymptotique et où son coefficient reste indéfini. La différence est d’une
importance majeure car de nombreux résultats historiques de l’état de l’art considérés
comme optimaux atteignent en fait une optimalité uniquement asymptotique. Dans le
même chapitre, nous présentons deux algorithmes dans le contexte out-of-core: Triangle
Block SYRK (TBS) pour la mise à jour de rang-k et Large Block Cholesky (LBC) pour
la factorisation de Cholesky. Nous montrons que ces algorithmes atteignent effectivement
une optimalité explicite vis à vis du nombre de communications.

Ces résultats permettent de clore le problème de minimisation des communications
dans un contexte out-of-core pour la mise à jour de rang-k et la factorisation de Cholesky
d’un point de vue théorique, fournissant une borne inférieure caractérisée comme optimale
puisque atteinte par les solutions des algorithmes proposés. En outre, les techniques
développées pour élaborer ces algorithmes apportent un nouvel éclairage sur la manière
d’adapter les distributions de données pour d’autres opérations ou ensembles d’opérations
utilisant des données d’entrée symétriques. Les expériences menées avec la distribution
SBC illustrent la facilité de mise en œuvre et d’utilisation de ces distributions de données
sur mesure dans un contexte parallèle distribué et faisant appel au modèle d’exécution
à base de tâches. Les résultats montrent également clairement le gain de performance
significatif qui peut être attendu de la réduction du volume total de communication. Dans
la deuxième partie de ce travail, nous essayons d’étendre les techniques élaborées dans
la première partie à d’autres configurations plus complexes, toujours dans un contexte
parallèle et distribué. Nous explorons deux directions de recherche différentes :

• la conception et l’application de distributions statiques sur mesure pour les opérations
sur des matrices compressées, ce qui implique des tâches hétérogènes ;

• pour des matrices denses, l’extension et l’amélioration des distributions BC et SBC
existantes à un nombre quelconque de nœuds.

Dans le chapitre 4, nous considérons les opérations non symétriques, la multiplication
de matrices et la factorisation LU dans le cas de matrices compressées utilisant le format
Block Low Rank (BLR). Dans ce contexte, nous proposons un modèle de performance qui
suppose que des taux de compression des tuiles des matrices d’entrée impliquent des temps
d’exécution différents pour chaque tâche. Contrairement au cas dense, l’ensemble des
tâches considérées est donc hétérogène. Nous étudions alors le problème de l’équilibrage
de charge entre les nœuds tout en imposant des contraintes additionnelles sur le nombre
de nœuds différents par ligne et par colonne afin de limiter les communications. Ces con-
traintes sont basées sur la structure de la distribution classique Block Cyclic (BC). Après
avoir formalisé le compromis entre les aspects d’équilibrage et de réduction des communi-
cations comme un problème d’optimisation discret, nous présentons deux distributions de
données originales élaborées à l’aide d’heuristiques : (i) Block Cyclic Extended (BCE)
étend de manière naturelle la distribution BC pour s’adapter aux contraintes liées aux



communications tout en permettant un meilleur équilibrage de la charge ; (ii) Random
Subsets (RSB) est une stratégie en deux étapes reposant sur des sous-ensembles de
nœuds avec des propriétés souhaitables calculées préalablement ; elle fournit des distri-
butions de données non régulières. Nous présentons des évaluations expérimentales de
ces deux stratégies obtenus par simulations d’exécutions sur des cas de test synthétiques.
Les résultats montrent que BCE et RSB assurent un meilleur équilibrage de la charge
que la distribution BC dans toutes les configurations testées. Elles atteignent aussi
systématiquement un temps d’exécution plus réduit que BC, bien que les deux stratégies
présentent des comportements différents : alors que les résultats obtenus avec la distri-
bution BCE sont très cohérents, la distribution RSB présente de grands écarts entre les
valeurs d’équilibrage de charge et les temps d’exécution pour la factorisation LU. Cela
illustre l’importance de la régularité de la distribution des données pour exploiter le par-
allélisme du calcul pour les opérations présentant de nombreuses dépendances entre les
tâches.

Le chapitre 5 est consacré à l’extension à un nombre quelconque de nœuds des distri-
butions à base de motifs répétés pour les factorisation LU et de Cholesky sur des matrices
denses. Bien que présentant des propriétés souhaitables concernant l’équilibrage de la
charge et la limitation des communications, les distributions Block Cyclic et Symmetric
Block Cyclic ne sont efficaces, ou même disponibles, que pour des valeurs spécifiques du
nombre de nœuds P . D’une part, BC limite efficacement les communications pour les
opérations non symétriques lorsque le nombre de nœuds disponibles peut être écrit sous
la forme P = pq avec p et q proches de

√
P . D’autre part, SBC réduit le volume de com-

munication par rapport à BC pour les opérations symétriques mais n’est disponible que
pour des valeurs spécifiques de P : lorsque P = r(r−1)

2
ou P = r2

2
, avec r ∈ N∗. Dans ce

chapitre, nous élaborons des distributions présentant la même propriété de réduction des
communications que ces deux méthodes mais pouvant utiliser efficacement tous les nœuds
disponibles. Nous proposons d’abord un modèle formel pour évaluer toute distribution
basée sur des motifs répétés vis à vis de l’équilibrage de la charge et de la limitation des
communications et nous l’utilisons pour guider la conception de deux distributions de
données originales. Pour la factorisation LU, la méthode Generalized Block Cyclic (G-
BC) fournit des distributions à motif quasi cyclique pour tout nombre de nœuds. Nous
prouvons que ces solutions atteignent une optimalité explicite concernant la métrique de
communication que nous avons défini. Pour la factorisation de Cholesky, nous présentons
un algorithme glouton randomisé, Greedy ColRow & Matching (GCR&M) qui vise à
générer des solutions avec des caractéristiques similaires. Pour tester la qualité des so-
lutions fournies par ces deux algorithmes, nous avons réalisé des expériences utilisant la
bibliothèque d’algèbre linéaire Chameleon associée à l’ordonnanceur dynamique StarPU.
Les résultats montrent que les méthodes G-BC et GCR&M sont plus performantes que
leurs homologues respectifs, BC et SBC. En particulier, pour les valeurs de P où les mo-
tifs BC ont des dimensions très déséquilibrées ou s’il n’existe même pas de solution SBC,
les méthodes G-BC et GCR&M parviennent à obtenir des performances plus élevées par
nœud tout en utilisant tous les nœuds disponibles. Un tel résultat est très prometteur
car il démontre la possibilité de concevoir des distributions de données qui s’adaptent à
des configuration très diverses.



Perspectives

Les techniques développées dans ce travail et les résultats qu’elles ont permis d’obtenir
constituent un argument pratique en faveur d’un usage généralisé du modèle d’exécution à
base de tâches pour les opérations d’algèbre linéaire dans un contexte parallèle distribué.
En effet, les distributions de données présentées permettent clairement d’atteindre de
meilleures performances en comparaison de la distribution classique Block Cyclic pour les
opérations considérées, tandis que leur implémentation dans la bibliothèque Chameleon

reste particulièrement aisée et leur utilisation automatiquement gérée par l’ordonnanceur
dynamique StarPU.

Pour les matrices denses, les méthodes présentées dans les chapitres 2 et 5, cela ouvre
de larges perspectives quant aux possibilités future d’utilisation de distributions adaptées
aux spécificités de chaque opération d’algèbre linéaire et laisse espérer que d’important
gains de performances sont restent à exploiter. En outre, la faciliter d’implémentation via
l’utilisation d’ordonnanceurs dynamiques permet d’entrevoir la possibilité de combiner
des distributions de données très spécifiques avec des stratégies de ré-allocation pour des
applications complexes faisant appel à plusieurs opérations successives.

Les bornes inférieures sur le volume de communication obtenues pour la mise à jour de
rang-k et la factorisation de Cholesky illustrent l’importance du développement d’outils
efficaces permettant d’évaluer la complexité des opérations, dans ce cas vis à vis des com-
munications, afin d’identifier les gains potentiels liés à l’amélioration des algorithmes
de résolution. Un aboutissement particulièrement utile de ces travaux pourrait être
l’intégration, dans l’outil IOLB développé par Olivry et al. [62], de la technique ad hoc
utilisée pour détecter la réutilisation de données dans les opérations symétriques au cœur
de l’élaboration des bornes théoriques et des algorithmes optimaux proposés.

Enfin, il semble naturel d’étendre les méthodes développées dans ce travail aux cas
d’opérations sur des matrices compressées ou creuses, étant donnée leur importances tant
dans le milieu académique que pour les applications industrielles. Les approches que
nous avons élaboré pour l’exécution parallèle distribuée des opérations de multiplication
de matrices et de factorisation LU avec des matrices compressées selon le format BLR
illustrent la difficulté du problème d’équilibrage de charge couplé à la minimisation des
communications dans le cas de tâches hétérogènes. Néanmoins il existe une large variété
d’heuristiques, telles que celles proposées dans ce travail, pouvant être adaptées et com-
binées. Là encore, l’utilisation d’ordonnanceurs dynamiques dans le modèle d’exécution
à base de tâches offre la possibilité d’explorer un large panel de stratégies de distribution
de données et laisse espérer d’important gain de performances par rapport aux solutions
classiques telles que la distribution Block Cyclic.
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Chapter 1

Introduction

1.1 Context

1.1.1 Linear Algebra in Scientific Computing

With the advent of modern computing, numerical applications are nowadays an unavoid-
able aspect of scientific research and engineering. Whether it is for modeling, simulation,
optimization, numerical computation is a tool of choice, and often the only available al-
ternative, to handle highly complex problems. Computationally intensive applications
are central in several scientific and industrial fields: simulation of physical systems, com-
binatorial optimization, AI, etc. For several decades, the dramatic increase in computing
power has enabled handling problems of unprecedented scale and complexity. The field of
High Performance Computing (HPC) has followed the same trend in terms of scientific de-
velopment, both from a formal and applied perspective, to make the best use of emerging
technologies and leverage their ever growing computing capabilities for the applications.

While the numerical approach is a versatile tool for handling various scientific and
engineering problems of diverse nature, many computationally intensive scientific appli-
cations essentially rely on a relatively small subset of the computing possibilities, namely
numerical linear algebra operations. Indeed, linear algebra appears at the core of several
applications, especially simulation and modeling of complex physical systems for which
analytical solution is too challenging: fluid mechanics, electro-magnetic propagation, etc.
In this type of applications, the modeling is performed via a discretization of the studied
domain and linearization of the differential equations describing the phenomenon. The
complete application execution then often comes down to a single or a combination of
linear algebra operations performed on matrices associated with the problem inputs. For
such applications, a large proportion of the time-consuming tasks logically comes from
the execution of those linear algebra operations. In this work we focus on some of the
most common operations, namely:

• matrix multiplication: for given matrices A, m × k, B, k × n, and C, m × n,
compute C += A ·B;

• symmetric rank-k update: for given matrices A, m×n, and C, m×m, compute
C += A ·AT;

1



• LU factorization: for a given matrix A, m×m, compute the lower triangular L
and upper triangular U matrices, both m×m, such that A = L ·U;

• Cholesky factorization: for a given m×m symmetric positive definite matrix A,
compute the lower triangular matrix L, m×m, such that A = L · LT.

The description of the tiled execution of those operations can be found in Algorithm 2
for the matrix multiplication, Algorithm 3 for the symmetric rank-k update, Algorithm 5
for the LU factorization, and Algorithm 4 for the Cholesky factorization. An element-wise
version of that last operation is also described in Algorithm 1.

Let us illustrate the use of linear algebra operations with an example application
from [12]. In this work, the authors study the propagation of electro-magnetic waves on
the surface of an object; the whole domain can be discretized using Boundary Elements
Method (BEM). The interactions between each two elements according to Maxwell’s laws
are then linearized, i.e. the relationships between the unknown values of interest, namely
electric and magnetic fields, are approximated using linear relationships. Coefficients
describing all the relationships between the unknowns are gathered into a matrix A which
entirely describe the considered problem. The solution of the problem, i.e. finding the
values of all the unknowns, then comes down to solving the linear system A · x = b
where b corresponds to boundary conditions. This can be performed in various different
ways according to the characteristics of A. One classical direct solution method in the
dense case, i.e. when A features a majority of non zero values, consists in performing the
factorization of A as a product of two triangular matrices and then apply two triangular
solutions successively to retrieve the final values of x. We provide below an outline of the
steps of such a method in the case of a symmetric positive definite matrix A, largely used
as case study in the following chapters.

Algorithm 1: Element-wise Cholesky factorization algorithm

Input: (A): A is m×m symmetric positive definite
Output: (L): L is m×m lower triangular such that A = L · LT

1 for k = 1 to m do
2 Ak,k =

√
Ak,k

3 for i = k + 1 to m do

4 Ai,k =
Ai,k

Ak,k

5 for j = k + 1 to i do
6 Ai,j −= Ai,k ·Aj,k update operations

7 L← lower triangular part of A

1. factorize A using the Cholesky factorization: compute L such that A = L · LT;

2. solve the triangular system: compute y such that LT · y = b;

3. solve the triangular system: compute x such that L · x = y.



This makes use of the Cholesky factorization, step (1), which is a central linear algebra
operation detailed in Algorithm 1 in its element-wise form.

Linear algebra is such a central part of numerical scientific computing that the formal-
ization of its essential operations as efficient algorithms dates back from the early times of
computer science. The set of Basic Linear Algebra Subprograms (BLAS [73]), developed as
a library since the 1970s, actually provides a formal description of the core linear algebra
operations as generic algorithms. Starting from the most basics operations, such as scalar
multiplication or dot product, it followed an incremental development to build up three
subsets, referred as levels, of algorithms now considered as de facto standard specifica-
tions of the associated operations. Each describes the elementary computations required
for a given operation as would be performed sequentially by a single computing unit. It
is therefore not very different from a plain pseudo-code description such as Algorithm 1
for Cholesky factorization. The algorithms provided in the BLAS library are used as a
common basis to build hardware specific sequential implementations of the linear algebra
operations at a low level. Such implementations, including the widely used open source
OpenBLAS [69,74] and proprietary MKL [72] library for Intel x86, make use of architecture
specific features to reach high performance on a single computing unit. The formal de-
scriptions of the algorithms provided by BLAS are also used as building blocks for more
elaborated operations in other linear algebra libraries such as LAPACK [73].

Although the term may have a broader meaning in the literature, in this work we
denote kernel the algorithm specification for a given linear algebra operation at element
level. We call arithmetic operations the computations performed directly on elements
of the matrix in the execution of a kernel. BLAS and LAPACK nomenclature is used to
designate those kernels, such as GEMM for matrix multiplication, SYRK for symmetric
rank-k update, GETRF for LU factorization and POTRF for Cholesky factorization.

Algorithm 2: Tiled matrix multiplication algorithm (GEMM)

Input: (C, A, B): C is mb × nb, A is mb × kb, B is kb × nb
Output: (C): such that C = C + A ·B

1 for k = 1 . . . kb do
2 for i = 1 . . .mb do
3 for j = 1 . . . nb do
4 GEMM(i, j, k): GEMM(C(i, j),A(i, k),B(k, j))

1.1.2 Parallel and Distributed Computing

Scientific applications requirements in terms of scale and precision is always growing,
making them ever more computationally intensive. At the same time, sequential com-
puting on a single processing unit is an execution model inherently limited in terms of
performance. To cope with the soaring demand of computing power, technological break-
throughs allowed to leverage sequential hardware performance by enabling two levels of
parallelism. In the context of shared memory computing units, multi-core architecture



Algorithm 3: Tiled symmetric rank-k update algorithm (SYRK)

Input: (C, A): C is mb ×mb symmetric, A is mb × nb
Output: (C): such that C = C + A ·AT

1 for k = 1 . . . nb do
2 for i = 1 . . .mb do
3 SYRK(i, k): SYRK(C(i, i),A(i, k))
4 for j = i− 1 . . . nb do
5 GEMM(i, j, k): GEMM(C(i, j),A(i, k),A(j, k))

Algorithm 4: Tiled Cholesky factorization algorithm (POTRF)

Input: (A): A is mb ×mb symmetric positive definite
Output: (L): L is mb ×mb lower triangular such that A = L · LT

1 for k = 1 . . .mb do
2 POTRF(k): POTRF(A(k, k))
3 for i = k + 1 . . .mb do
4 TRSM(i, k): TRSM(A(i, k),A(k, k))
5 SYRK(i, k): SYRK(A(i, i),A(i, k))
6 for j = k + 1 . . . i− 1 do
7 GEMM(i, j, k): GEMM(A(i, j),A(i, k),A(j, k))

8 L← lower triangular part of A

has emerged and is nowadays standard for all processors and more recently accelerators
(GPU). In the meantime, computing platforms have become massively parallel, allow-
ing distributed execution of applications simultaneously using several computing nodes.
The scale of the problems considered nowadays requires to make use of both levels of
parallelism in order to ensure a reasonable running time. Therefore, it is paramount to
understand and optimize the parallel behavior of applications, especially the underlying
linear algebra operations, to achieve the highest possible performance.

1.1.2.1 Parallel Computing Platforms

Modern computing platforms gather several computing units referred as nodes. They are
generally dedicated pieces of hardware composed of a memory (RAM), a processor (CPU)
featuring multiple cores and sometimes one or several accelerators that are actually GPU.
We refer to the CPU cores and GPUs as workers. They are connected together and to
the node memory, generally via a bus. While GPUs feature their own dedicated memory,
CPUs generally only have cache memories of smaller size, organized in hierarchical levels.
For homogeneous nodes, i.e. composed of a single type of CPU, the set of workers can
be considered as a single shared memory computing unit, fetching from and writing data
to the RAM. At the platform level, nodes are connected via a high performance network
whose characteristics, such as the topology, aim at providing the largest bandwidth and



Algorithm 5: Tiled LU factorization algorithm (GETRF)

Input: (A): A is mb ×mb

Output: (L, U): L is mb ×mb lower triangular, U is mb ×mb upper triangular,
such that A = L ·U

1 for k = 1 . . .mb do
2 GETRF(k): GETRF(A(k, k))
3 for i = k + 1 . . .mb do
4 TRSM(i, k): TRSM(A(i, k),A(k, k))
5 TRSM(k, i): TRSM(A(k, i),A(k, k))
6 for j = k + 1 . . .mb do
7 GEMM(i, j, k): GEMM(A(i, j),A(i, k),A(k, j))

8 L← lower triangular part of A
9 U← upper triangular part of A

smallest latency between any two nodes.

1.1.2.2 Data Distributions

In this work, we are considering the parallel and distributed execution of linear algebra
operations under this quite generic computing platform model. To perform operation in
parallel using several nodes, input and output data are divided into chunks and distributed
to nodes. In practice, for linear algebra operations, data correspond to matrices whose
values can be gathered in different manner to make chunks. Non-zero values of sparse
matrices can be packed in order to reduce the memory footprint, for example. In the
following, we consider that matrices are divided into square blocks or tiles. Each tile
corresponds to a sub-matrix of dimensions b× b with contiguous indices. It is particularly
suited to the dense case: as all tiles are identical, linear algebra operations of the same
type can be efficiently performed at the scale of a tile using a single highly optimized
kernel. Besides, it leverages the parallelism of the entire global operation as the execution
of each operation at the scale of one tile is a task performed by a single worker of a node.
Several operations performed on different tiles can therefore be executed in parallel by
different workers, whether in the same or in different nodes.

Let us now introduce the notations to describe the division of matrices into square tiles
using the Cholesky factorization as example. For such an operation, matrix A represents
both the input and the output since matrix L is written over A. Assume that A is of
dimensions m × m elements and only the lower triangular part of A is referenced. Let
(i, j) ∈ {1, . . . ,m}2, i > j. We denote Ai,j the element of A in position (i, j). We
extend the notation to sets of indices: let I ⊂ {1, . . . ,m} and J ⊂ {1, . . . ,max(I)}, AI,J

denotes the sub-matrix of A with positions (i, j) ∈ I×J . To simplify some notations, we
also define that, when a single dot is used instead of a set of indices, it means all valid
indices. Now, for a given tile size b, matrix A can be divided into tiles in the sense that
we are considering sub-matrices of A that are b × b squares. Let mb = m

b
, then for any



(i, j) ∈ {1, . . . ,mb}2, i > j, the tile in position (i, j) is denoted A(i, j) and corresponds
to the sub-matrix:

A(i, j) = A{(i−1)mb+1,...,imb},{(j−1)mb+1,...,jmb} (1.1)

For simplicity and unless otherwise specified, we use elements and tile indices starting
at 1 in the rest of the document.

The tile size b is generally selected such that m
b

is integer although the formal definition
of tiles, Equation 1.1, can easily be extended to deal with non-square ones. Applying
kernels to non-square tiles may however raise technical difficulties. Hence, unless otherwise
specified, we assume in this work that mb = m

b
∈ N∗, which is not a restrictive assumption

in practice.

Then, in a distributed setting, we denote data distribution the assignment of each
tile to a node. In the following, the distribution of a matrix is represented by another
matrix denoted D whose elements are integer indices of nodes, starting at 0: the element
in D at a given position is the index of the node owning the tile of the matrix at the
same position. Let us illustrate it again using the Cholesky factorization: assume A
is a symmetric positive definite matrix of size m × m, divided in m2

b tiles of size b × b
where mb = m

b
∈ N∗. It is both the input and output of the Cholesky factorization

operation. Since A is symmetric, the whole input data actually contains only mb(mb+1)
2

tiles, one half of the matrix. We assume that only the lower half of A is referenced.
A data distribution of distribution A among P nodes is a assignment of the tiles of A
to the nodes represented by a matrix D ∈ Mmb×mb({0, . . . , P − 1}). Let D be such a
distribution, let (i, j) ∈ {1, . . . ,mb}, i > j and p1 ∈ {0, . . . , P−1}. Then Di,j = p1 means
that all the elements of tile A(i, j) are present in the memory of the node with index p1.
In this work, we assimilate each node to its index and use the following terminology to
describe the distribution: we say that the node p1 owns the tile A(i, j) and conversely
that tile the A(i, j) is assigned or allocated to the node p1. When there is no possible
ambiguity about the matrix considered, such as for the Cholesky factorization, we can
simply assimilate the tile A(i, j) to its position (i, j) and say that p1 is present at position
(i, j). Thereby defined, data distributions are called 2D, which indicates that each tile is
owned by a single node. Such a configuration is standard in the literature and libraries
for parallel linear algebra operations. However more complex distributions making use of
data replication, referred to as 2.5D or 3D, exist. They are more precisely defined and
discussed to some extent in Section 2.2.3 of Chapter 2. In this work, unless otherwise
specified, we consider 2D data distribution.

1.1.2.3 Block Cyclic Distribution

In a parallel and distributed setting, the Block Cyclic distribution (BC) is the most
widely used data distribution scheme for linear algebra operations. In many linear algebra
libraries, it is the default [40,64], and sometimes the only available [57] data distribution,
in particular in the ScaLAPACK library [22] which can be considered as reference since
it is the extension of LAPACK to the parallel and distributed setting. It is very regular,
which implies quite simple data dependency and communication schemes that are easy to
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(a) P = 6 nodes; 2× 3 pattern.
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(b) P = 8 nodes; 2× 4 pattern.

Figure 1.1: Examples of 2D BC distribution over a 12× 12 symmetric matrix (only lower
triangular part referenced). Each color represents a node.

describe. This contributed to its large popularity and widespread usage, particularly in the
early times of parallel computing, because of the technical difficulty of implementation to
handle task dependencies and communications, as detailed in the following Sections 1.1.2.4
and 1.1.2.5.

Assuming a parallel and distributed execution using P nodes, the standard BC dis-
tribution is based on a repeated p × q pattern that we denote G, for “grid”, such that
P = pq. Node indices are associated with a position (x, y) in the pattern in a round-robin
fashion. For instance, a row-wise distribution is defined by:

∀(x, y) ∈ {1, . . . , p} × {1, . . . , q} : Gx,y = (x− 1)q + (y − 1)

The BC distribution D of a matrix of dimensions mb × nb tiles is then defined as:

∀(i, j) ∈ {1, . . . ,mb} × {1, . . . , nb} : Di,j = Gi mod p,j mod q

Illustrations of BC distributions can be seen Figures 1.1a and 1.1b.
Several properties of the BC distribution are common to all pattern-based distribu-

tions.

1. The load balancing associated with the entire distribution D depends on the bal-
ancing of positions in G among the nodes. Because the distribution is simply the
replication of the pattern, all the nodes in G appear regularly in D. Thus, assuming
that the pattern is replicated many times, i.e. the matrix size is large compared to
the pattern size, for each type of task, all nodes present in the pattern are roughly
assigned the same number of tasks. Hence, in the case of homogeneous tasks, in
particular when dealing with dense matrices, if all nodes appear the same number
of times in G, then the entire distribution is well balanced in terms of workload.



2. Pattern-based distributions imply a local load balancing which in turn translates
into a good load balancing in the course of the execution of an operation. This
is a particularly desirable feature for operations where the domain shrinks as the
computation progresses, such as LU and Cholesky factorization because it maintains
load balancing among all nodes even in the last phase of the operation.

3. The set of nodes that appear in each row and column of D is the same as the set of
nodes in the corresponding row or column of G.

In a parallel and distributed context, the characteristics (1) and (2) are all the more
desirable that the pattern used for a complete distribution is small. The pattern used
by the BC distribution is actually the smallest possible using P nodes since each node
appears exactly once. When using such a pattern of size p× q, there are p different nodes
in each column of D and q different nodes on each row. As illustrated in the analysis in
Section 2.2.2, for many linear algebra operations the number of different nodes per row and
column in a distribution is often a characteristic that defines the communication volume
it generates. For the BC distribution, since P = pq, minimizing p and q simultaneously,
or p+ q, implies p = q =

√
P , which corresponds to a square pattern. It is the minimum

achievable number of nodes per row and column for a pattern-based distribution using all
P nodes.

Despite featuring such interesting properties, the BC distribution is not optimal in all
situations. Providing more efficient alternatives, especially pattern-based distributions,
in specific configurations is the main objective of this work.

1.1.2.4 Task Assignment

The parallel execution of a linear algebra operation in a distributed setting occurs at the
scale of tiles. At this level, we say that nodes performs tasks on elements gathered as
tiles in order to complete the entire operation. Indeed, a blocked or tiled version of any
operation can be defined that uses tiles as the elementary pieces of data handled when
performing tasks. Algorithm 4 illustrates a tiled version of the Cholesky factorization
algorithm. The generic definition of an operation, as shown in Algorithm 1 for example,
and its tiled version are equivalent regarding the set of arithmetic operations actually
performed on each element of the matrices. Tiled algorithms use a coarser granularity
of data and tasks but describe the execution of operations in a form that better fits
parallel and distributed settings. A task assigned or allocated to a node is actually
performed by one of its worker executing the associated kernel on the required tiles.
Therefore we use the LAPACK kernel nomenclature to refer to tasks in the description of
tiled algorithms; though they are not formally kernels they are completed by executing
the corresponding kernel on a worker. Going back to the Cholesky factorization example
using its tiled algorithm description in Algorithm 4: let k ∈ {1, . . . ,mb}, let (i, j) ∈
{1, . . . ,mb}, i > j, and let us consider the task of updating tile A(i, j) at iteration
k, i.e. computing A(i, j) += A(i, k) · A(j, k). According to LAPACK nomenclature, we
denote it GEMM(A(i, j),A(i, k),A(j, k)) further simplified as GEMM(i, j, k), as can be
observed line 7. It corresponds to a matrix multiplication applied to tiles. To illustrate
the concept in a generic way, let us assume for now that there is no connection between



Figure 1.2: cDAG of the Cholesky factorization for a 5× 5 matrix

data distribution and task assignment. Let us consider that this task is assigned to the
node p1. To complete it, one worker of p1 executes the sequential kernel GEMM on
tiles A(i, j), A(i, k), and A(j, k). Since kernel implementations are optimized for specific
architectures and the workers of p1 may be different from one another, the completion of
the same task can correspond to different actual executions of the associated kernel. The
task-based execution model, described in Section 1.2, however allows to study parallelism
at node level without having to consider this aspect: inside a given node, a dedicated
tool, the runtime system, dynamically allocates tasks to workers.

In tiled algorithms, dependencies occur between tasks instead of arithmetic operations.
They can be abstracted in the form of a computational Directed Acyclic Graph (cDAG)
as could be done at element level for arithmetic operations. In such a cDAG, tasks
correspond to vertices and dependencies to directed edges: an edge between two vertices
means that the task associated with the child vertex cannot be started before the task
associated with the parent vertex is completed. As example, the cDAG of the Cholesky
factorization of a 5× 5 tiled matrix can be seen Figure 1.2. Vertices are labeled with the
name of their associated tasks.



The set of scalar arithmetic operations necessary to complete a given linear algebra op-
eration remains the same regardless of how the matrix is divided into tiles and distributed
among nodes. One can note that, on the contrary, the computation time required to ex-
ecute an operation may depend on the division of the matrix. The granularity of the
division nevertheless defines the number of tasks that compose the operation: a larger
tile size b implies that the input or output matrices are divided into fewer tiles and there-
fore the whole operation consists of fewer tasks. Moreover, each task is completed by
executing a kernel on a tile, which is simply a b × b sub-matrix. Now, the efficiency of
a kernel execution on a worker depends on the size of the matrix to which it is applied,
in particular it cannot reach the best performance if the matrix is too small. There is
therefore a trade-off in selecting the tile dimension b:

• it must be small enough so that the operation consists of sufficiently many tasks in
order to ensure load balancing when assigning them to nodes;

• it must be large enough so that the corresponding kernel reaches the best perfor-
mance when performed on the selected worker.

That second constraint is quite challenging to satisfy because nodes can be hetero-
geneous and are themselves composed of workers of different types (CPU cores, GPUs).
Hence, the optimal granularity of data to execute a given kernel depends on the worker.
Though it does not raise any problem from a formal point of view, the choice of the value
of b is a difficult topic in practice as it directly affects the performance. It is therefore
discussed on a case by case basis depending on the experiment carried out, notably in
Section 2.3.1 of Chapter 2.

At the scale of a computing platform, assigning tasks to nodes dynamically is very
challenging. Indeed, in order to ensure the correctness of the operation, i.e. that the set
of dependencies is satisfied during the execution, a dynamic strategy would require to
maintain a consistent distributed knowledge among nodes of the tasks assignment to be
able to issue communications between the correct sender and receiver. Furthermore, since
the input and output matrices are distributed between nodes, it would require being able
to specify communications dynamically, which is difficult, as explained in the following
Section 1.1.2.5. One can even imagine a dynamic reallocation of tiles during execution to
better fit dependencies and communications constraints, however such a strategy is way
too challenging for the current execution models and tools. Hence, the state-of-the-art and
only practical method used in linear algebra libraries is to assign tasks to node statically
prior to the execution. The most widely used method is called the owner computes rule:
it states that a node which owns a tile is assigned all the tasks that modify this tile, i.e.
overwrite its values. One can note that, in the case of a task modifying multiple tiles,
the owner computes rule may be very difficult to apply because if several tasks modify
a given subsets of tiles, then all those tiles must be allocated to the same node, which
may strongly restrict the possibilities to design distributions. The operations we consider
however do not involve such tasks and designing distributions adapted to those tasks is
beyond the scope of this work. Using again as example the Cholesky factorization of
matrix A of dimensions mb ×mb tiles: let (i, j) ∈ {1, . . . ,mb}, i > j, and assume that



node p1 owns tile A(i, j). Then p1 is assigned all the tasks which modify A(i, j): assuming
i > j, these are TRSM(i, j) and GEMM(i, j, k) for all 1 6 k < j. An illustration of the
assignment of tasks according to the owner computes rule can be seen on Figure 1.3; it uses
a 3D representation to depict the set of all tasks, the third dimension corresponding to
iterations of the algorithm. On this figure, we can see that the node 2 owns the tile A(5, 3)
therefore performs all the tasks that modify it, namely GEMM(5, 3, 1), GEMM(5, 3, 2)
and TRSM(5, 3). We say that we use a static distribution for a given operation if a
2D data distribution is used and the execution follows the owner computes rule. In the
following, unless otherwise specified, we assume that the owner computes rule always
applies. Therefore, we qualify indifferently as static or 2D distributions where each tile is
owned by a single node.
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Figure 1.3: Illustration of the owner computes rule (dashed horizontal lines) and inter-
node communications (black arrows) (Cholesky factorization of a 5× 5 matrix using BC
distribution with P = 6 nodes)

1.1.2.5 Communications

For a given linear algebra operation, tile-based tasks often involve several tiles as input and
a single tile as output. The output tile is generally overwritten, i.e. its values are modified
in place, it is thus also considered an input of the tasks. In the parallel and distributed
setting considered, since the matrices are split and distributed among nodes on a tile
basis, the completion of a task by a given node often requires some of the input tiles to
be transferred to the node. More simply, if a node is assigned a task requiring input tiles
that it does not own, it must fetch them from the owner node, inducing communication of
data over the network. Let us illustrate it using the Cholesky factorization example: let



A of size mb×mb tiles, (i, j) ∈ {1, . . . ,mb}, i > j, and 1 6 k < j. Assume that the node
p1 is assigned the task GEMM(i, j, k). Let us assume also that p1 owns the tile A(i, j) but
the tiles A(i, k) and A(j, k) are owned respectively by two other different nodes p2 and
p3. Then to perform the task GEMM(i, j, k), i.e. compute A(i, j) += A(i, k) ·A(j, k), p1

must fetch the input tiles A(i, k) and A(j, k) from their respective owner nodes: it implies
the communication of A(i, k) from p2 to p1 and the communication of A(j, k) from p3

to p1. Figure 1.3 illustrates the inter-node communications: node 2 is assigned the task
GEMM(5, 3, 1) which requires tiles A(3, 1) and A(5, 1) as input which are both owned by
node 0 (in this case p2 and p3 are the same node). Hence two communications must occur
from 0 to 2 to transfer these tiles. In this work, we simply denote communication the
transfer of data of between any two nodes. When considering tiled algorithms, such as in
Chapter 2, one communication corresponds to the transfer of one tile, when we consider
element-wise algorithms, it is the transfer of a single element.

As can be observed from the previous example, the set of communications required
during the execution of an operation depends on both the data distribution and the task
assignment. Besides, the communications must be scheduled in accordance with the task
dependencies in order to ensure the correctness of the execution. Until recently, for a
given operation, communications between nodes had to be explicitly described as part
of the whole execution and implemented using dedicated software technologies, the most
prominent one being the Message Passing Interface (MPI) protocol. The interdependence
between the data distribution, the tasks assignment, and the scheduling of communica-
tions, plus the fact that communications directives must be explicitly described prior to
the execution, make the design and implementation of distributed applications extremely
challenging. This heavily influences the design of linear algebra libraries that rely on very
regular distributions, especially static BC distribution, for both data and tasks, allowing
a simpler expression of communication schemes using fixed MPI primitives. Furthermore,
the majority of linear algebra libraries strictly applies owner computes rule as it simplifies
the problem by merging data and tasks distributions. One of the main objectives in the
development of runtime systems is to completely alleviate those issues, as discussed in
details in Section 1.2.

1.2 Task-Based Execution Model and Runtime

Systems

As mentioned in Section 1.1.2.5, developing parallel distributed linear algebra applications
is challenging. Many libraries, in particular ScaLAPACK, are therefore designed using the
same building blocks: usage of a very regular data distribution, generally Block Cyclic
(BC), assignment of tasks according to the owner computes rule and explicit description of
the communications. Such a development scheme allows for designing robust and efficient
applications that are tailored for a given set of operations on a given hardware. The
specific feature of such a design nevertheless comes with strong drawbacks: applications
are generally challenging to develop, they lack flexibility and portability which means
that they are not easily adapted to other operations or platforms, they cannot be easily



modified which strongly hinders the possibility to follow the evolution of both formal
models and hardware architecture.

For about a decade, the task-based execution model has gained much interest in the
field of HPC and is now regarded as one of the most promising research direction for
the development of efficient and flexible applications in the parallel distributed setting.
The core idea is to decouple the description of the actual computation from data and
task dependency management. While the first aspect is application dependent and left
to a specific library, the second one is delegated to a dedicated tool, the runtime system
or runtime scheduler, which handles dependencies during the execution. On one hand
this allows for the development of very specific and complex libraries that can achieve
high performance without having to explicitly describe data and task distributions and
communications. On the other hand, since runtime systems take decision during the
execution, they enable the elaboration and deployment of fine grain data management and
scheduling strategies. This design provides a much higher flexibility in the development of
both aspects and leverages the large performance gains related to task and communication
scheduling.

As the task-based model offers such important advantages over application specific
designs, many modern linear algebra libraries now fully implement it and solely rely
on the underlying runtime system to handle dependencies and communications. For
instance, it is the case of the dense linear algebra libraries Chameleon [3–5], DPLASMA [23]
or FLAME [47] or the sparse linear algebra library PaStiX [49], which can be interfaced with
different runtime systems. At the same time, several runtime systems are developed, such
as StarPU [11,33], PaRSEC [24,25], SuperMatrix [30,66] or OmpSs [35], that are based on
different task management models. Beyond the advantages related to development and
design, libraries relying on the task-based execution model and runtime systems are shown
to achieve high performance. As example, in [4], the authors show that Chameleon backed
by StarPU and DPLASMA using PaRSEC reach significantly higher performance on classic
linear algebra operations, namely matrix multiplication and Cholesky factorization, than
the reference ScaLAPACK library.

In this entire work, we elaborated data distribution strategies assuming that all op-
erations are executed under the task-based execution model. Indeed, it is the ability of
runtime systems to automatically manage tasks and dependencies solely from the descrip-
tion of the distribution of data that enabled to actually implement the original distribution
strategies proposed as our core contribution.

1.2.1 Dynamic Task and Communication Management

In the task-based execution model, runtime systems are dedicated to handling tasks and
communications and ensuring the correctness of the execution according to the dependen-
cies. Different programming paradigms exist to fulfill this role that are used in existing
runtime systems. In this work, we only consider the widely used StarPU tool that is based
on concepts of the Sequential Task Flow (STF) paradigm. Though its internal function-
ing is not fully generic, its behavior still illustrates the advantages associated with the
task-based execution model. In the context of this work, such a choice is not expected to



impact the results since the data allocation strategies we elaborated are formally agnostic
of the implementation characteristics of the runtime system.

Let us consider the execution of a linear algebra operation in a parallel distributed
setting using a dedicated library backed by the StarPU runtime system. Then each node
involved in the execution runs an instance of the runtime system. At the scale of a given
node, during the execution, several tasks assigned with the node may be available at a
given time, i.e. their associated input data is in memory and their inward dependencies
are satisfied. Then the runtime system is in charge of deciding how to execute those tasks,
which includes:

• defining a schedule for the tasks;

• for a given task, selecting which worker of the node executes the associated kernel.

The decisions are taken dynamically according to the state of the node: waiting tasks
(that are submitted but not ready yet), tasks currently executed, idle workers, and a
predefined scheduling policy. To come up with relevant scheduling decisions, the runtime
policy can use as input task priorities provided by the application and per-worker perfor-
mance models that are estimated from previous executions. Priorities allow the user to
provide, via the application, global information about a target schedule. They are often
computed as the length of the critical path up to the final task, like in the Chameleon

library. Performance models help selecting the best suited worker for a given task by
estimating how fast the associated kernel is expected to execute on each available worker.
Hence, the runtime system is able to deal with nodes featuring heterogeneous workers,
especially GPUs, and make the best use of their specific computing capacities. For ex-
ample, the default StarPU scheduling policy, called dmdas, uses a single ordered queue
of tasks from where the highest priority task is pulled each time a worker becomes idle
or a new task is assigned to the node. It then assigns the task to a worker in order to
minimize its expected completion time.

At the scale of the whole platform, the difficulty is to ensure the correctness of the
execution in a distributed way, i.e. ensure that tasks respect the dependencies of the
operation. In the considered distributed setting, it implies in turn that communications
must occur accordingly to the schedule of the tasks. Under the task-based execution
model, the runtime system is in charge of enforcing the task dependencies and issuing the
communications at the right time of the schedule. It does so using the informations pro-
vided by the application: (i) the complete data distribution among all nodes and (ii) the
set of all tasks to perform along with their respective input and output. The application
also determines the assignment of tasks to nodes, usually relying on the owner com-
putes rule. Following the principles of the STF paradigm, each instance of the StarPU

runtime system running on each node unrolls the complete cDAG of the operation as
tasks are completed, translating data dependencies into task dependencies. In practice,
each instance of StarPU also eliminates the tasks of the cDAG without any dependency
relationship to its own tasks. Such a “pruning” of the cDAG enables to maintain the
scalability of the runtime system as a whole and limits its overhead. Since each task is
issued by the application with its associated input and output, and since each instance of



the runtime system knows the entire data distribution, it can thus infer which communi-
cations are required to copy all input tiles, respectively elements, from their owner to the
node performing the task. More precisely, a dependency between two tasks implies that
the output of the parent task is required as input for the child task. If those tasks are not
assigned to the same node, StarPU simply requires a communication between the nodes
and inserts it as a regular task inside the cDAG between the two tasks. On one hand,
this mechanism ensures the correctness of the computations because a communication is
considered as an additional inward dependency for the task of the receiving node that
must be satisfied before the task starts. Furthermore, it completely alleviates the burden
of explicitly describing communications since they are inferred from the data distribution
and the dependencies.

The task-based execution model and the runtime systems also enable the use of com-
pletely irregular data distributions that can be more adapted to the considered operation
or platform configuration. The use of non standard data distributions that can be seam-
lessly handled by runtime systems is the central point of Chapter 2. An illustration of
such distributions adapted to operations with symmetric input can be found in Section 2.3
of this chapter.

1.2.2 Asynchronous Execution

For most linear algebra operations, several elements of the output matrix are updated
incrementally according to the sequence of arithmetic operations that compose the algo-
rithm. In the case of LU and Cholesky factorization, this corresponds to the outer loop
in the algorithm description. As an example, for the Cholesky factorization, described in
Algorithm 1, all elements Ai,j, for all (i, j) ∈ {1, . . . ,m}2, i > j, are updated using the
operation line 6 at each iteration of the outer loop line 1.

Let us now consider the execution of those operations in a parallel and distributed
setting. As already mentioned, in such a configuration, classic MPI-based linear algebra
libraries use explicit descriptions of communications between nodes. Because of the dif-
ficulty to elaborate such description while ensuring the correctness of the computations,
those libraries often rely on synchronization. A synchronized execution is a sequence of
non overlapping periods during which predefined subsets of tasks are performed in parallel
by all the nodes. All tasks of a period are completed before the next period start. We
denote synchronization points the instants between two successive periods. The reference
ScaLAPACK library implements parallel distributed linear algebra operations according to
this synchronized execution model. For LU and Cholesky factorization, synchronization
is naturally performed according to the iterations of the outer loop: tasks that would be
performed during the same iteration in a sequential execution belong to the same period.
Using again the tiled Cholesky factorization algorithm as example: let us assume that the
current index of iteration of the outer loop is k ∈ {1, . . . ,mb}. Then tasks POTRF(k),
TRSM(i, k) and SYRK(i, k) for k < i 6 mb, and GEMM(i, j, k) for k < j < i are
performed during this period. Afterwards the execution reaches a synchronization point.

In the schedule of such a synchronized execution, all tasks of a given iteration are
completed before any task of the next iteration starts. It is illustrated on Figure 1.4a
using a 3D representation where the third dimension is used to depict the iterations: the
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(b) Example of the “uneven” progression of tasks in an asynchronous execution.

Figure 1.4: Illustration of synchronous and asynchronous executions; the gray color indi-
cates that the task on the corresponding tile has been completed (Cholesky factorization
of a 5× 5 matrix using BC distribution with P = 6 nodes)



figure represents the state of the execution during the iteration k = 2 of the Cholesky
factorization of a 5 × 5 matrix; all tasks of the previous iteration 1 are already com-
pleted while no task of the next iteration 3 has started yet. Such a schedule facilitates
the description of the communications between nodes and ensures the correctness of the
computations. The value of each tile, respectively each element for element-wise versions
of the operations, are entirely defined by the index of the outer loop, i.e. this index is
enough to describe which update have already been performed on the values of the tile,
respectively the element. In the following, we denote this index the update index and use
it to precisely identify the value of each tile, respectively an element, by adding as an
exponent index between brackets. Still using the tiled Cholesky factorization as example:
for (i, j) ∈ {1, . . . ,mb}, i > j, and k 6 j, A(i, j)[k] is the value of tile A(i, j) computed
at iteration k of the loop line 7 of Algorithm 4. Note that for k = j it corresponds to the
output of the algorithm: A(i, j)[j] = L(i, j). Additionally, we define values with update
index index [0] as the input values.

On the other hand, in the task-based execution model, the runtime system does not
take into account the sequential description of the algorithm of the operation but only the
dependencies between tasks. As detailed previously in Section 1.2.1, using the StarPU

runtime system that we consider, the entire cDAG is known by each node, as is the
data distribution. The schedule of the communications between nodes is directly inferred
from the data distribution and dependencies and they occur in accordance with the ex-
isting task dependencies of the operation. Now, beyond simplifying the management of
communications and task dependencies, the task-based execution model and runtime sys-
tems allow an asynchronous execution of the operation, i.e. the schedule is no longer
composed as a sequence of non overlapping periods separated by synchronization points.
Hence, tasks associated with a given index of the outer loop can remain uncompleted
while tasks associated with following iterations are performed. The update index remains
however necessary to identify the values of each tile, respectively element. To illustrate
how asynchronous execution can occur, let us again consider the parallel distributed
Cholesky factorization of a 5 × 5 matrix using a static BC distribution over 6 nodes, as
can be seen on Figure 1.4b. The 3D representation enables to show simultaneously the
tasks and data dependencies and thus allows to observe the progression of the execution,
each completed task being depicted in grey. First we can observe that the state of the
execution illustrated on this figure corresponds to an asynchronous execution since the
SYRK(5, 1) has still not been performed while tasks corresponding to the iterations 2
and 3 have already been completed. Let us now illustrate how communications inferred
by the runtime system from data dependencies are inserted at the correct position in the
cDAG in order to ensure the correctness of the computation. At the state of execution
depicted on the figure, the tile A(5, 4)[1] exists in the memory of node 0, the tile A(5, 2)[1]

in the memory of node 1 and the tiles A(2, 2)[2] and A(4, 2)[2] in the memory of node 4.
The TRSM(5, 2) has not been performed yet. To update the tile A(5, 4), node 0 needs
to perform task GEMM(5, 4, 2) using A(4, 2) and A(5, 2) as input. As it knows the data
distribution, StarPU infers that communications are needed to transfer the tile A(4, 2)
from node 4 to node 0 and the tile A(5, 2) from node 1 to node 0. That last communica-
tion is depicted as a dashed arrow. Moreover, StarPU is aware of task dependencies as it
unrolls the cDAG. Since TRSM(5, 2) is a parent of GEMM(5, 4, 2), the output of the first



one, i.e. A(5, 2)[2], must be used as input for the second one. Hence, StarPU can add the
communication of tile A(5, 2) from node 1 to node 0 in the cDAG: this communication
is a child of task TRSM(5, 2) and needs therefore to occur after its completion and is a
parent of task GEMM(5, 4, 2) and must thus occur before it starts. This way, the correct
value of the tile A(5, 2) is transferred to node 0 to perform GEMM(5, 4, 2).

Asynchronous execution features clear advantages over synchronized execution. First
of all, it allows efficient load balancing among nodes in the course of the execution by
removing any constraint on the general schedule while automatically ensuring that de-
pendencies between tasks are satisfied. Secondly, it allows an “uneven” progression in
the cDAG, i.e. tasks that would be performed early in a synchronized execution can be
postponed to a very late stage of an asynchronous schedule, and conversely. Tasks closer
to the critical path can thus be prioritized over others, enabling better general schedules
of the operation. Though tasks prioritization is not dynamically handled and is left to
the application, careful static priorities based on simple analysis of the critical path in
the cDAG already allows to generate very efficient schedules. Finally, since communica-
tions are formally handled asynchronously like regular tasks in the cDAG, they can be
performed in parallel to tasks. Hence, their adverse effect on the running time can be
significantly reduced by overlapping them with computations.

As a consequence, linear algebra libraries implementing task-based execution model
backed by runtime systems have shown significantly superior performance over MPI-based
tools as is illustrated for example in [4].

1.3 Contribution and Outline

In this work we are interested in the task-based parallel and distributed execution of linear
algebra operations. We mainly deal with load balancing and communications issues that
arise in such a context, our objective being to minimize the total running time of those
operations. We focus on direct resolution methods and dense or compressed matrices and
develop static data distributions adapted to specific operations and configurations. More
precisely, we use four classical linear algebra operations as study case: matrix multiplica-
tion, symmetric rank-k update, LU and Cholesky factorization, and consider task-based
execution backed by the StarPU runtime system using identical nodes. Though it is not
the focus of this work, most results are valid regardless of the intra nodes heterogeneity,
i.e. of their workers.

The first part of the document is dedicated to the study of operations which use
symmetric input matrices: the symmetric rank-k update and the Cholesky factorization.
We consider the parallel distributed execution of those operations on dense matrices.

In Chapter 2 we propose an original data distribution called Symmetric Block Cyclic
(SBC) that makes use of the symmetry of the input matrix A to reduce the overall
communication volume for the Cholesky factorization. We provide a description of the
communication scheme for this new distribution compared to classic BC along with a de-
tailed formal estimation of the total communication volume: indeed, the communication
volume generated by SBC is smaller by a factor of

√
2 than the one generated by BC. Ex-

perimental results carried out using the Chameleon library backed by the StarPU runtime



system clearly show significant performance improvements when using SBC rather than
BC. It illustrates that the overlap of communications with computations allowed by the
task-based execution model is inherently limited because of tasks dependencies and thus
supports the complementary strategy of overall communications reduction. Additionally
to those results, a 2.5D extension of the SBC distribution is described and tested on one
configuration. Extending the use of the SBC distribution to sequence of operations that
include a Cholesky factorization is also discussed and preliminary results are shown for
solve (POSV) and inversion (POTRI) workflows.

Chapter 3 focuses on the theoretical aspect of the communication minimization prob-
lem for dense symmetric rank-k update and Cholesky factorization. Contrary to the
previous chapters, in order to obtain strong lower bounds on the communication volume,
we consider the classic out-of-core setting: a single node with limited memory of size M
performs the operation, only part of the data can fit into the memory, and communications
occur between the local limited memory and a distant unlimited one. In this configuration
we are able to derive bounds for both operations on the minimum necessary communica-
tion volume. We prove that the symmetric rank-k update of a m× n matrix A requires
at least QSYRK > 1√

2
m2n√
M

communications; the Cholesky factorization of m×m symmetric

positive definite matrix A requires QCholesky > 1
3
√

2
m3
√
M

. These bounds correspond to an

improvement by a factor of
√

2 over the previously known best bound on communications
for the same operations by Olivry et al. [62]. Both bounds use a mathematical expressions
that we refer as explicit, because the coefficient of the dominant term is explicitly defined
while lower order terms may be expressed using asymptotic notations. We use this term
as opposed to asymptotic that refers to expressions where the dominant term only appears
in an asymptotic notation and its coefficient remains undefined. Indeed the difference is
of major importance because many historical state-of-the-art results viewed as optimal
actually achieve asymptotic optimality. In the same chapter, we present two out-of-core
algorithms: Triangle Block SYRK (TBS) for the symmetric rank-k update and Large
Block Cholesky (LBC) for the Cholesky factorization. We show that those algorithms
indeed achieve explicit optimality regarding communications, which means that we can
express the respective minimal communication volume they generate as an explicit ex-
pression, whose coefficient of the dominant term is the same as in the expression of the
bound.

Those original results definitely close the problem of communication minimization in
the out-of-core setting for both the symmetric rank-k update and the Cholesky factoriza-
tion from a theoretical perspective. Besides, the techniques developed to elaborate those
algorithms bring new insight about how to tailor data distributions for other operations
or sets of operations using symmetric input data. The experiments carried out with the
SBC distribution illustrate the ease of implementation and usability of such tailored data
distributions in a parallel context in the task-based execution model. The results also
clearly show the significant performance gain that can be expected from reducing the
total communication volume. In the second part of this work, we try to extend the tech-
niques elaborated in the first part to other more complex configurations, still in a parallel
and distributed context. We explore two different directions of research:

• the design and application of tailored static distributions for operations on com-



pressed matrices, which implies heterogeneous tasks;

• for dense matrices, the extension and improvement of the existing BC and SBC
distributions to any number of nodes.

In Chapter 4, we consider non-symmetric operations, the matrix multiplication and
the LU factorization in the case of compressed matrices using the Block Low Rank (BLR)
format. We carry out the study using a performance model which assumes that uneven
compression ratios between the tiles of the input matrices lead to different execution
times of each task. Therefore, contrary to the dense case, the set of tasks considered are
heterogeneous. Then we study the problem of balancing the heterogeneous workloads
among the nodes while imposing additional constraints on the number of different nodes
per row and column in order to limit communications. Those constraints are based on
the structure of the classic Block Cyclic (BC) distribution Having formalized the trade-
off between balancing and communications aspects as a discrete optimization problem,
we present two original data distributions elaborated using heuristics: (i) Block Cyclic
Extended (BCE) naturally extends the BC distribution to fit the communication related
constraints of our trade-off optimization problem while allowing better load balancing; (ii)
Random Subsets (RSB) is a two steps strategy relying on subsets of nodes with desir-
able properties computed off-line; it provides non regular data distributions. We present
experimental evaluations of those two strategies using simulated executions over synthetic
test cases. Results show that BCE and RSB achieve better load balancing than the BC
distribution in all tested configurations. They also systematically reach shorter running
time than BC, although the two strategies show different behaviors: while results using
BCE are very consistent, RSB shows large discrepancies between load balancing values
and running times for the LU factorization. This give an insight of the importance of the
regularity of the data distribution for operations featuring tight dependencies between
tasks.

Chapter 5 is dedicated to extensions to any number of nodes of the cyclic pattern-
based distributions for both LU and Cholesky factorization in the dense case. On one
hand, the BC distribution efficiently limits communications for non-symmetric operations
when the number of available nodes can be written as P = pq with p and q close to

√
P .

On the other hand, the SBC distribution reduce the communication volume compared
to BC for symmetric operations but is available only for specific values of P : when
P = r(r−1)

2
or P = r2

2
, with r ∈ N∗. In this chapter we elaborate distributions featuring

the same property of communication reduction than those distributions which can make
efficient use of all available nodes. We first provide a formal model to evaluate any cyclic
pattern-based distribution regarding its load balancing and communication limitations
properties and use it to guide the design of two original data distribution schemes. For
the LU factorization, the Generalized Block Cyclic distribution (G-BC) provides an
almost-cyclic pattern distribution for any number of nodes provided as input. We prove
that its solutions achieve explicit optimality regarding the communication metric we have
defined. For the Cholesky factorization, we present the randomized greedy algorithm,
Greedy ColRow & Matching (GCR&M) that is aimed at generating solutions with
similar characteristics, though there is no guarantee regarding the quality of the output



distribution. We carry out experiments using the Chameleon library backed by the StarPU
runtime system to test the quality of the solutions provided by those two algorithms.
The comparative results show that both G-BC and GCR&M methods outperform their
respective counterparts, BC and SBC. In particular, for values of P where BC patterns
have very unbalanced dimensions or there is even no SBC solution, G-BC and GCR&M
manage to achieve higher per-node performance while making use of all available nodes.
As they are based on patterns that are almost optimal regarding the number of generated
communications, G-BC and GCR&M solutions actually reduce the total running time of
operations compared respectively to BC and SBC solutions.

Finally, the last part provides a summary of the results obtained and techniques elab-
orated in this work along with concluding remarks. Perspectives about related problems
and potential research directions to extend the results detailed in this document are also
presented.





Chapter 2

Overall Communication Reduction:
Effect on Performance

In a parallel and distributed setting, inter-node communications are an important factor
affecting the overall performance of linear algebra applications. As mentioned in Sec-
tion 1.1.2.5 their adverse effect on performance can be mitigated by either overlapping
them with computations or, more simply, by reducing their overall volume. For operations
which involve many dependencies, it is difficult to reach a high level of parallelism during
the entire execution, as in the final phase of LU or Cholesky factorization for example.
Thus the possibility of overlapping with computations is limited and therefore trying to
reduce the volume of data transferred between nodes is expected to provide higher per-
formance gain. The distribution of data is a direct lever to control the communication
volume between nodes when complying with the owner computes rule. In this chapter, we
consider the Cholesky factorization performed in parallel by a set of identical nodes. The
initial matrix A is divided into tiles and the data associated with each tile are owned by a
node according to a specific distribution. We focus on the dense version of the operation:
all values of the input matrix A are considered and all tiles are handled without any
compression. This implies that for a given kernel, the number of arithmetic operations
remains the same regardless of the tile to which it is applied, hence execution times are
similar. Using identical resource and considering a dense matrix makes the problem of
balancing the workload among nodes quite simple: since GEMM tasks dominate the total
number of arithmetic operations, other type of tasks can be neglected. Balancing load
between nodes is thus equivalent to evenly distributing GEMM tasks. The objective is
now to design a data distribution scheme that reduces the total communication volume,
counted as the number of tiles transfered between nodes, when performing the Cholesky
factorization. In the following, we develop such a distribution by taking advantage of the
symmetry of the input matrix A.

The chapter is divided as follows: the first section reviews the related work regarding
communication avoiding data distributions for operations on dense matrices and details
the communication volume generated when performing distributed Cholesky factoriza-
tion using the classical Block Cyclic (BC) distribution. The second section presents an
original data distribution, Symmetric Block Cyclic (SBC), designed to reduce the gen-
erated communication volume: indeed we show that using this distribution, performing
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the Cholesky factorization requires a factor
√

2 less communications than with static BC.
So called 2.5D variants of both distributions are discussed in the following section and
their expected impact on performance analyzed. Finally, the last section is dedicated to
experimental results.

2.1 State-of-the-art

2.1.1 Communication Lower Bounds

In a parallel and distributed setting, communication is a major topic as moving data
between nodes over the network on a computing platform requires time and consumes
energy. Data movement between computing resources is indeed a well known bottleneck
for many distributed applications. Since the computation power progresses faster than
the interconnection capacity, minimizing communications is acknowledged as a central
challenge for the performance of parallel computing.

Regarding linear algebra applications, research works on communication-avoiding tech-
niques has advanced through the development of theoretical lower bounds which express
the minimal communication volume necessary to perform a given operation. Both theo-
retical and practical aspects are developed together: striving to reach these lower bounds
has led to the design of more efficient algorithms in terms of communication reduction.

In order to obtain these lower bounds, two simplified machine models are generally
considered in the literature:

1. Two-levels memory or out-of-core model: the machine features one fast and limited
memory of size M and one “slow” and unlimited memory. Input required for any
computation must reside in fast memory to be performed.

2. Parallel model: P nodes, all equipped with a memory of size M , can communicate
through a network.

The first model is extensively used to prove communication lower bounds because of
its simple setting. Results are generally expressed as function of the memory size M .

Deriving lower bounds in the parallel model is more difficult. It is often carried out
by studying the communication volume of a single node using the out-of-core model and
considering the set of all other nodes as a single “slow” memory with which data transfers
occur. However this requires an assumption on the distribution of data among nodes.
Indeed without additional constraint the trivial solution to minimize communications is
to perform all computation using as few nodes as memory size allows, that can be a
single one. Such solutions are of no interest in this context, hence it is generally assumed
that the input data is evenly spread across all available nodes. This assumption may be
referred to as memory scalable because it means that the total available memory capacity
PM is proportional to the input data.

The first results on communications lower bound were obtained for classical matrix
multiplication: C = AB. For simplicity they are expressed assuming that A, B and C
are of identical square dimension m×m.



The paper from Hong and Kung [50] can be considered as the founding piece of
subsequent development on the topic. In this work, the authors consider a machine
following the out-of-core model. A set of rules referred as the pebbling game models
the required data transfers between the two types of memory. Based on the analysis of
the DAG, the authors derive asymptotic lower bounds for the number of data transfers
required between the two levels of memory. Then Ω( m3

√
M

) data transfers are required to
perform matrix multiplication.

Based on this work and using a geometric approach from [58], Irony et al. [53] extended
the lower bound to the parallel case. It is formulated as a memory-communication trade-
off : any node which has M words of local memory and performs W arithmetic operations
(here multiplications) must send or receive at least W

2
√

2
√
M
−M words. Under the memory

scalable assumption, i.e. M = O(m
2

P
), the result from [53] implies that the minimum

communication volume per node is Ω(m
2

√
P

).

This result for the parallel case was generalized to the Cholesky factorization in [13] by
means of reduction: the multiplication of matrices A·B can be performed via the Cholesky
factorization of a larger matrix derived from A and B. The asymptotic lower bound on
the total number of communications is therefore valid for the Cholesky factorization. The
same authors later showed in [14] that those bounds are part of a more general framework
applicable to almost all direct linear algebra applications in both the dense and sparse
cases. For such operations the total communication volume is Ω(# arithmetic operations√

M
) where

M is the memory capacity of a single node in the out-of-core model or the amount of data
owned by each of P nodes in the parallel model. Thus similar bounds can be derived for
a wide range of kernels including factorizations (Cholesky, LU, LDLT), operations using
orthogonal matrices (QR) eigenvalues and singular values decomposition and, to some
extend, sequence of such operations.

Additional work by Solomonik et al. [67] presents an original way of modeling the
dependencies of any operation as a lattice-hypergraph which enables the authors to extend
the memory-communication trade-off to take into account synchronizations and express
bounds about the communication on the critical path.

A more recent approach strives to get non asymptotic results, i.e. provide explicit
coefficient for the dominant term of the lower bound formula. In [31] Christ et al. devel-
oped a methodology based on a discrete version of Hölder-Brascamp-Lieb inequality [26]
which allows to deal with any algorithm that can be expressed as nested loops of elemen-
tary operations and array accesses. It can be viewed as a generalization of all previous
arguments: by seeing the set of computations as a volume and using geometric projec-
tions, the minimum number of data transfers can be computed. Olivry et al. [62] used
this methodology and other techniques to develop the IOLB tool that performs automatic
analysis to derive lower bounds on communications. This tool provided improved bounds
for several kernels in the out-of-core model. For Cholesky factorization the minimum
number of data transfers is lower bounded by m3

6
√
M

+O(m2).



2.1.2 Algorithms

Historically the implementations of linear algebra operations in a distributed context have
been developed outside of the task-based execution model and using the owner computes
rule thus requiring handcrafted description of inter-node communications. Hence the
data distributions needed to be simple and regular. The 2D BC data distribution is
therefore the de facto standard in many linear algebra libraries. The classical ScaLAPACK
library [22] contains parallel implementations of many linear algebra operations using
this distribution. It is a natural and relevant choice since BC ensures load balancing
between nodes (each node owns the same number of tiles) and even load balancing over
time, i.e. when the size of the computation domain shrinks during the execution, such
as the trailing matrix in the Cholesky factorization. Regarding communications, Irony
et al. proved in [53] that 2D BC is asymptotically optimal for matrix multiplication
under the memory scalable assumption: with 2D BC distribution M = Θ(m

2

P
) then

performing matrix multiplication requires O(m
2

√
P

) communications per node. This result

was extended to the Cholesky factorization in [13]: the authors show that the ScaLAPACK

implementation of the Cholesky factorization, which uses the 2D BC distribution, is a
factor of log(P ) from the lower bounds on communications per node, i.e. O(m

2
√
P

log(P )),

if used with a non constant block size b = Θ( m√
P

).

Though being the most natural and most easily implemented, the data distribution is
not restricted to 2D layouts such as 2D BC. When extra memory is available, it is actually
possible to replicate the input and/or output data on several nodes and thus to design 3D
algorithms that associate tasks rather than tiles to nodes, no longer following the owner
computes rule. In [53] the authors detail a 3D BC algorithm for matrix multiplication that
is the natural extension of 2D BC. They show that it corresponds to the second limit cases
of the memory scalable assumption where M = O(m

2

P
2
3

). Just like the 2D BC distribution,

this 3D version algorithm is asymptotically optimal regarding communications since it
matches the lower bound derived from the memory-communication trade-off. In [52]
Irony et al. propose a fully 3D algorithm for the triangular solve operation and the LU
factorization without pivoting. They show that their algorithms for the LU factorization
generates a total of 2.5m2P

1
3 + o(m2) communications.

There is actually a continuum between 2D and 3D algorithms where the trade-off
between memory footprint and communication is controlled by the number of data repli-
cation denoted c. Intermediate versions, i.e. replicating some data without using all
available memory, are referred as 2.5D algorithms. Data replication allows to expect bet-
ter performance via a higher degree of parallelism at the cost of extra communications.
Hence many variants based on the 2.5D principle have been designed for many kernels to
increase performance compared to classical 2D BC.

In [68] Solomonik et al. bridge the gap between 2D and 3D distributions by presenting
more generic 2.5D algorithms for the matrix multiplication and the LU factorization
with pivoting. The algorithm for the matrix multiplication is asymptotically optimal: it
generates Θ( m2

√
Pc

) communications per node, matching the bounds from [53] in the special

3D case c = P
1
3 . The algorithm for LU factorization makes use of tournament pivoting,

first introduced by Grigori et al. in [46], which decreases the necessary communications



to find a suitable pivot compared to classical partial pivoting method. The authors show
that it also reaches asymptotic optimality for the total communication volume if used
with a non constant block size m

r
√
Pc
× m

r
√
Pc

where r = Ω(log(P )).

In [41] Georganas et al. propose a quite similar implementation of 2.5D distribution
for the parallel Cholesky factorization on a Cray system. Using a carefully designed
pipelining of two consecutive iterations, the authors manage to increase the overlap of
communication by computation thus improving the overall performance.

In 2021, Kwasniewski et al. [57] present a similar implementation for both LU and
Cholesky factorization that further reduces the total communication volume by using
row masking technique to propagate pivot rows among nodes. They show that their
implementation for the parallel LU factorization, COnfLUX, and Cholesky factorization,
COnfCHOX, generates no more than m2

√
Pc

+O(m
2

P
) communications per node.

Experimental results from those studies show that 2.5D algorithms can achieve higher
performance than conventional 2D algorithms.

2.2 Communication Analysis of BC and SBC

Distributions

Most of the algorithms mentioned in the previous paragraph (2.1.2) are variants of a BC
distribution, whether using classical 2D layout or more elaborated 3D or 2.5D ones. As
explained, several implementations are asymptotically optimal regarding the communi-
cation volume generated for the matrix multiplication, LU and Cholesky factorization.
However it is difficult to evaluate which performs better since the coefficient of the actual
number of communications is not explicit.

In the following we provide a detailed study of the communication performance of two
data distributions for the parallel Cholesky factorization using P identical nodes. We
first detail an original 2D distribution, Symmetric Block Cyclic (SBC), designed to make
use of the symmetry of the input matrix. Then we evaluate the communication volume
generated by SBC compared to BC: first the communication scheme associated with the
Cholesky factorization algorithm is analyzed, then we provide closed form formulas for
the number of communications that are implied by each of the two distributions. We show
that the Cholesky factorization using SBC generates fewer communications than using
BC by a factor of

√
2. The communication volume is evaluated as the number of tiles that

need to be transfered between nodes, counted individually, and assuming point-to-point
transfers. This corresponds to what is often referred in the literature as the bandwidth
cost of communications. We do not take into consideration the latency cost, i.e. the
number of messages required to transfer data if a packing strategy is applied.

This section mainly deals with the 2D version of data distributions which implies
that the owner computes rule applies. However, notice that the results regarding the
communication volume generated are valid regardless of the scheduling of tasks, whether
the execution is highly synchronized or performed under the task-based execution model.
Extension of the analysis and results regarding SBC to 2.5D and 3D distributions are
provided in the last part of this section.
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Figure 2.1: SBC allocation: repetition of the 4× 4 pattern (using P = 6 nodes; one color
per node) over a 12× 12 matrix. Diagonal positions in the pattern are omitted.

2.2.1 Symmetric Block Cyclic Distribution

We now introduce a new distribution called Symmetric Block Cyclic (SBC) where the
two sets of nodes for rows and columns are the same. This is a desirable feature to reduce
the number of inter node communications, as detailed in the next Section 2.2.2. This is
achieved via a pattern, larger than for the BC distribution, in which each node appears
twice. Let us consider that the number of nodes is given by P = r(r−1)

2
for some integer

r > 2. The SBC distribution is built from a r × r pattern, which is to be repeated
over the whole matrix. In the pattern, each node is assigned a pair (x, y) with x < y,
and is associated with two indices, at coordinates (x, y) and (y, x). This pattern is then
repeated across the matrix just like for the BC distribution: tile (i, j) is assigned to the
node associated with the index (i mod r, j mod r). The resulting distribution for r = 4
and mb = 12 can be seen on Figure 2.1.

In the subsequent procedure, we call such pattern a generic pattern. It is unfinished
and thus cannot be used as is to produce a valid distribution for matrix A since its
diagonal positions are not assigned. To produce a complete pattern from a generic one,
diagonal indices, those with coordinates (x, x), require to be assigned in a specific way
to ensure that nodes present on a row and column are the same while preserving load
balancing between all nodes. To achieve a good load balance, it is important that each
node appears the same number of times on the diagonal, the generic pattern being already
balanced. Below we present two possible solutions to this issue: the basic version of SBC
which is only valid for even values of r and uses r

2
additional nodes on the diagonal; the

extended version which does not use any additional node and is valid for all r.
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Figure 2.2: Basic version of SBC pattern, with additional nodes, for r = 4.

2.2.1.1 Basic Version of SBC

For even values of r, we can add r
2

nodes to the generic pattern, and assign each of them to
two coordinates on the diagonal of the pattern. We assign them in a round-robin fashion,
as indicated on Figure 2.2. It yields a single valid balanced pattern featuring an identical
set nodes on any row and column. The final distribution using P = r2

2
nodes is then

produced by repeating this single pattern over the whole matrix A.

2.2.1.2 Extended version of SBC

The second solution assign diagonal positions of the pattern to the same set of P = r(r−1)
2

nodes. For each diagonal position, we want to choose nodes that are already present
in the same row or column. Since there are only r positions on the diagonal, achieving
overall load balance requires to define a set of patterns, which only differ by their diagonal
entries. They are then repeated alternatively over the matrix so as to balance the load
between all nodes.

Let us first consider the case of odd r. Starting from a generic pattern, we build r−1
2

complete patterns in the following way: for l in {1, . . . , r−1
2
}, the diagonal positions of the

l-th pattern are assigned to the nodes associated with index (1, 1+l), (2, 2+l), ..., (r−l, r),
which we call first group, and index (1, r + 1− l), ..., (l, r), the second group. Hence each
node appears on the diagonal of exactly one pattern: those of the first group on the same
row as their index in the right-upper part of the generic pattern, those of the second group
on the same column. Both patterns are depicted on the right of Figure 2.3, where nodes
of the first group are in blue, nodes of the second group are in red.

The case of even r is based on the same idea, but with an additional difficulty: using the
same construction leads to both groups of the last pattern containing twice the same set
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Figure 2.3: Extended SBC distribution for r = 5, P = 10. Left: generic pattern, right:
patterns with diagonal nodes.

of r
2

nodes. Therefore using it to produce a complete pattern would result in imbalanced
loads. Instead we create r − 1 patterns using the following procedure:

1. The first r
2
−1 patterns are obtained just like previously. Then for each pattern, the

set of nodes assigned to diagonal positions are considered as two packs of r
2

nodes,
the left and the right pack.

2. A last bonus pack is obtained with nodes at index (r/2 + 1, 1), ..., (r, r/2). This
pack can be used to assign the top left half (on the same row) or the bottom right
half (on the same column) of the diagonal. At this point any combination of a left
pack and a right pack can be used to assign the diagonal position and create a valid
pattern; the bonus pack can be used either as a left or as a right pack.

3. We create r
2

additional patterns by assigning diagonal positions as follows: shifting
the left packs of the diagonal of the first r

2
− 1 patterns; adding the bonus pack at

the top of the list of the left packs and at the bottom of the list of the right packs;
combining them together.

With this construction, each node appears on the diagonal of exactly two patterns,
and always on the same row or column. The result for r = 6 is shown on Figure 2.4,
where packs are represented with different colors.

Such procedure yields a set of r−1
2

patterns if r is odd, respectively r−1 if r is even, each
of those featuring an identical set of nodes on any row and column. The set of patterns
is overall balanced. The final distribution using P = r(r−1)

2
nodes is then produced by

repeating the set of patterns over matrix A in a round-robin column-wise fashion. An
example of distribution for r = 4 and mb = 12 is depicted in Figure 2.5.

2.2.2 Analysis of the Communication Volume

Let us first analyze the communication scheme associated with the distributed Cholesky
factorization. The algorithm of Cholesky factorization takes as input a symmetric positive
definite matrix A and overwrites it with a lower triangular matrix L such that: A = L·LT.
The tiled version of this operation, in the right looking variant, is described in Algorithm 4.

The algorithm of the operation shows the data dependencies associated with the tasks
from a receiver perspective: for each task that updates a tile, it details which other
tile must be used as input. Now, to ease the analysis, especially the evaluation of the
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Figure 2.5: Diagonal patterns: two normal packs (in orange) and one bonus pack (in
green) generate 3 diagonal patterns used in a round-robin column-wise fashion.



number of communications, we can simply reverse the description: for each tile, describe
which tasks must use it as input. Note that for all tasks, the tile to which the task
is applied is used as input. For example, tile A(i, j), for k < j < i, is both input
and output of GEMM(i, j, k). When considering only 2D distributions, the operation is
performed according to the owner computes rule. Hence, in this case, for all tasks, the
data dependency involving the tile that is modified by the task does not generate any
communication because input and output correspond to the same tile, which is assigned
to a single node. On the contrary, those dependencies must be taken into account for the
analysis of 2.5D or 3D distributions, as illustrated in Section 2.2.3.

For Cholesky factorization, according to Algorithm 4:

1. each tile A(k, k), for k ∈ {1, . . . ,mb − 1}, output of POTRF(k) is used as input of
TRSM(i, k), for i ∈ {k + 1, . . . ,mb}, to update tiles A(i, k);

2. each tile A(i, k), for k ∈ {1, . . . ,mb−1}, i ∈ {k+ 1, . . . ,mb}, output of TRSM(i, k)
is used as input of:

• SYRK(i, k) to update tile A(i, i);

• GEMM(i, j, k), for j ∈ {k + 1, . . . , i− 1}, to update tiles A(i, j);

• GEMM(j, i, k), for j ∈ {i+ 1, . . . ,mb}, to update tiles A(j, i).

Dependencies (1) imply that each tile A(k, k) is sent downward to all nodes owning
tiles along the corresponding column k. Dependencies (2) imply that each tile A(i, k) is
sent to the right along row i up to the diagonal position, and from the diagonal position
downward along column i.

According to this communication scheme, dependencies (1) imply Ω(mb) communi-
cations while dependencies (2) imply Ω(m2

b). In the following, to evaluate the dominant
factor of the number of communications generated when using different data distributions,
we can thus only consider the second type of dependencies.

The two data distributions BC and SBC are detailed respectively in Section 1.1.2.3
and Section 2.2.1. Using the analysis of the communication scheme of the distributed
Cholesky factorization, we can now assess how they perform in terms of total communi-
cation volume. Let k ∈ {1, . . . ,mb − 1} and i ∈ {k + 1, . . . ,mb}.

Block Cyclic Assume A is distributed among P nodes according to BC distribution
using a p × q pattern. With such distribution, tile A(i, k) as output of the TRSM(i, k)
task is required by the q nodes which are assigned tiles A(i, j) for k + 1 6 j 6 i and the
p nodes which are assigned tiles A(j, i) for i 6 j 6 mb. This involves p + q − 1 different
nodes, and since one of them performed the TRSM(i, k) task, tile A(i, k) needs to be
sent to p+ q− 2 nodes. An example of such communication pattern is highlighted in red
on Figure 2.6a: node 1 performs TRSM(5, 2) updating tile A(5, 2) to its final value; it is
transfered to nodes 2 and 0 on the same row, and to node 4 on the corresponding column.
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(a) BC; P = 6; (p, q) = (2, 3)
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(b) SBC extended; P = 6;
r = 4
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(c) BC; P = 8; (p, q) = (2, 4)
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(d) SBC basic; P = 8; r = 4

Figure 2.6: Communication scheme associated with tile A(5, 2) in a 12 × 12 matrix
distributed according to BC or SBC using 6 and 8 nodes.

Symmetric Block Cyclic With the SBC distribution, tiles on row i and column i are
assigned to the same set of r nodes for the basic version, respectively r − 1 nodes for
the extended version. One of them performs the TRSM(i, k) task which implies that tile
A(i, k) needs to be sent to r − 1 nodes for the basic version, respectively r − 2 for the
extended one, as can be seen on Figure 2.6b: 0 performs TRSM(5, 2) on tile A(5, 2) which
is transfered to nodes 1 and 3 that are present on the same row and the corresponding
column. We can observe that the SBC distribution takes advantage of data reuse to
perform the GEMM tasks: indeed, because of the symmetry of A, tile A(i, k) as output
of TRSM(i, k) is used as input of GEMM tasks on row i but also on column i. This in not
the case in LU factorization without pivoting, which shows a cDAG and communication
scheme very similar to Cholesky factorization but with non-symmetric data. For this
operation, A(i, k) output of TRSM(i, k) and A(k, i) output of TRSM(k, i) are not the
same. Therefore, the same data reuse cannot be used to reduce the communication of the
input of the GEMM tasks.

The previous analysis is valid for all TRSM(i, k) tasks. Then it yields the following



result:

Theorem 1. Let S be the total size required to store matrix A. The total communication
volume generated when performing the Cholesky factorization using the SBC distribution
with parameter r is:

• Qbasic = S · (r − 1) + o(S) for the basic version,

• Qextended = S · (r − 2) + o(S) for the extended version.

We can compare this result asymptotically when P grows to infinity with the BC
distribution. For a given value of P , the parameter r using SBC extended is such that
P = r(r−1)

2
. When P grows to infinity, r ∼

P→+∞

√
2P for both basic and extended versions

For a matrix with S elements, SBC induces a communication volume of:

S · (r − 2) ∼
P→+∞

√
2S
√
P

On the other hand, the communication volume generated using BC is: S · (p+ q− 2).
Since pq = P , it is minimum for p = q =

√
P . For a fair comparison, we thus consider

BC distributions using the most advantageous pattern layout regarding communications,
which implies that p ∼

P→+∞

√
P . Then the communication volume induced is:

S · (2p− 2) ∼
P→+∞

2S
√
P

Hence Symmetric Block Cyclic induces a communication volume smaller by a factor
of
√

2 than Block Cyclic for both weak scaling, where S grows at the same rate as P , and
strong scaling, where S remains constant while P grows.

2.2.3 2.5D Variants of the Data Distributions

Similarly to the 2.5D BC distribution (used for example in [57]), it is possible to use SBC
distribution in a 2.5D context. We describe it here with the basic version of SBC, but
the extended version can be used as well. Assume that we have P = c r

2

2
nodes for some

value or r > 1 and c > 1. In the 2.5D SBC distribution, these P nodes are partitioned
into c slices of r2

2
nodes. Each slice stores a copy of the matrix A, distributed with the

SBC distribution with parameter r.
Each iteration is performed by a different slice, in a round-robin fashion: tasks corre-

sponding to iteration k are performed according to distribution of slice k mod c. Because
of the data replication and task distribution, c versions of each tile of matrix A exist si-
multaneously and are owned by nodes on the corresponding slice. We denote as A(i, j)[l],
1 6 j 6 i 6 mb, 1 6 l 6 c, those c versions. Updates of each tile are accumulated as mod-
ifications of the c different versions. More precisely, for tile A(i, j) with 1 < j < i < mb,
respectively tile A(i, i), all GEMM(i, j, k) for k ∈ {1, . . . , j− 1}, respectively SYRK(i, k),
are distributed among the c nodes that are assigned this tile in the corresponding slice.
For example, the node assigned tile A(i, j)[l] in slice l ∈ {1, . . . , c} performs all tasks



{GEMM(i, j, k), k ∈ {1, . . . , j − 1} | k mod c = l}. Since the complete update of each
tile consist in a sum of multiplications, namely the GEMM and SYRK tasks, those can
be performed independently on different nodes.

Now for each tile, the aggregation of all its partially updated versions spread across c
nodes is required before computing its final value using a TRSM or POTRF task. The
aggregation step is simply a sum of all updates. In our implementation, the node in charge
of the final TRSM or POTRF task is also in charge of the aggregation of all updates. This
adds a new source of communication: each tile is part of c− 1 communications, whether
by a reduce over c nodes or by c−1 point-to-point operations, it does not change the total
communication volume. For instance, the final value of tile A(i, j), respectively A(i, i),
is computed by the node to which it is assigned on slice i.

• This nodes first aggregates all partially updated version of the tile:

A(i, j)←
∑

l∈{1,...,i}A(i, j)
[l]
l mod c.

• Then it computes the final value of the tile by performing a TRSM(i, j), respectively
a SYRK(i, i):

A(i, j)← TRSM(A(i, j),A(i, i)).

On the other hand, final values of tiles output of POTRF and TRSM tasks are always
communicated among nodes within a single slice.

With a synchronized, pure MPI implementation, performing each iteration on a subset
of the nodes would result in each slice working one after the other, thus preventing par-
allelism. But a task-based implementation allows an iteration to be started before all the
GEMM updates are finished. Nodes on one slice can thus start working while tasks of the
previous slice are still ongoing, and parallelism can be achieved. We show in Section 2.3
that such a 2.5D implementation can achieves higher performance compared to the simple
2D approach.

2.2.3.1 Communication Volume with Limited Memory

Let us consider a 2.5D SBC basic distribution as defined above: c slices, each containing
a basic 2D SBC distribution with parameter r. This distribution involves r2

2
· c nodes. We

denote again the total size of matrix A as S = mb(mb+1)
2

. As mentioned in Theorem 1,
each tile is sent to r− 1 nodes, so the communication volume for the intermediate results
is Q1 = S · (r − 1). In addition, each tile of the result is replicated c times, and needs to
be aggregated on one node, resulting in Q2 = S · (c − 1) communications. The total is
thus Q = Q1 +Q2 = S · (r + c− 2).

Let us consider that we have P nodes with an amount of memory M per node, and

that the dimension mb of the matrix grows to infinity while M = o
mb→+∞

(
m2
b

P 2/3 ). We can

use as many slices as memory size allows, in a way similar to [57], i.e. set c to PM
S

.

Since S ∼
mb→+∞

m2
b

2
, this gives c ∼

mb→+∞
2PM
m2
b

, and r =
√

2P
c
∼

mb→+∞
mb√
M

. We thus have



Q1 ∼
mb→+∞

m3
b

2
√
M

and Q2 ∼
mb→+∞

PM
m2
b

. The assumption on M ensures that the overall data

movement is dominated by Q1 and asymptotically we obtain Q = 1
2
· m3
√
M

+ o(m3
b).

This can be compared to the previous result by Kwasniewski et al. [57], who prove

that their 2.5D Block Cyclic algorithm performs a communication volume of
m3
b√
M

+o(m3
b).

Our result is a factor of 2 improvement.

2.2.3.2 Number of Slices with Large Memory

If M is large enough, using as many slices as possible may result in a too large com-
munication volume for the reductions. In this section we assume that the P nodes have
sufficient memory and we search for the value of c that achieves the minimum communi-
cation volume. Since Q = S · (r+ c− 2) and 2P = r2c, we want to minimize r+ c subject
to r2c > 2P . We can write Karush-Kuhn-Tucker necessary conditions: if (r, c) is a local
optimum to this optimization problem, then there exists u ∈ R+ such that{

1− u · 2rc = 0
1− u · r2 = 0

We obtain u = 1
r2

, and then r = 2c. Plugging this into 2P = r2c, we get c ∼ 3

√
P
2

and

r ∼ 2 3

√
P
2

. This yields the following total communication volume Q ∼ 3 3

√
1
2
· S 3
√
P .

In the same context, a 2.5D BC distribution has Q = S · (p+ q + c− 3) and P = pqc,
thus the parameters that minimize the communication cost are p = q = c = 3

√
P , which

yields a total communication cost Q2.5D BC = 3 ·S 3
√
P . SBC provides an improvement on

the communication volume of a factor of 3

3 3
√

1
2

= 3
√

2 ' 1.26 over the 2D BC distribution.

Furthermore, this is achieved with a lower value of c and thus requires a lower amount of
memory, again by a factor of 3

√
2.

2.3 Experiments

2.3.1 Experimental Setup

To test the performance of the SBC distribution and compare it to BC, we carry out exper-
iments considering three different operations: the main one is the Cholesky factorization
(POTRF), but we also evaluate the distributions for two other operations which make
use of the Cholesky factorization: the linear system solving (POSV) and the symmetric
matrix inversion (POTRI).

For each operation and each distribution, a random symmetric positive definite matrix
A is generated, along with a matrix B as right-hand-side for POSV, and distributed
among the nodes. Once the matrix has been generated and distributed, the computing
time to perform the operation is measured and the volume of data exchanged during
the operation recorded. The process is repeated 5 times to ensure that the results are
statistically meaningful. In all plots in the remaining of this chapter, each point represent



the average result over the 5 runs for each experiment while the shaded zone shows the
actual range of minimum to maximum values.

The performance obtained when running one of the considered operation is measured
in GFlop/s per node. More precisely, for an execution of duration t using P nodes,
this value is given by F = #flops

t·P , where #flops is the number of flops for the operation
that depends on the matrix size mb. This allows to fairly compare results obtained by
approaches using different numbers of nodes. For example, in Figure 2.9, some allocations
use 28 nodes while others use 30 nodes. Directly comparing execution times is therefore
not so relevant in such case.

All experiments are performed in double precision on the bora cluster of PlaFRIM [75],
which contains 42 nodes each with 36 Intel Xeon Skylake Gold 6240 cores, for a total of
1512 cores. The nodes are connected with a 100Gb/s OmniPath network. We use Intel
MKL 2020, Open MPI version 4.0.3, StarPU version 1.3.8, and Chameleon version 1.1.0.
The hardware peak for one core in this setup is estimated as follows: 2.6 GHz (core base
frequency) × 8 (double-precision Flop per cycle) × 2 (FMA feature). It yields a maximum
rate of 41.6 GFlop/s for each core, equivalent to 1497.6 GFlop/s for one node (36 cores)
and 1414.4 GFlop/s for 34 cores. In following plots regarding performance, a dotted line
indicates that latter value of the theoretical peak achievable by StarPU, using only 34
cores per node.

We ran 50000×50000 Cholesky factorization on a single node using different tile sizes
from 100 to 1000 to determine the most appropriate for this kernel and this hardware.
As shown on Figure 2.7, almost maximum value of GFlop/s is reached as soon as tile size
is at least 500× 500. Therefore we use tile size b = 500 for all subsequent experiments in
order to maximize computation throughput and parallelism. Table 2.1 show the average
performance achieved for the kernels considered in our experimental setup.

POTRF GETRF SYRK TRSM GEMM

Exe. time (ms) 1.238 2.947 2.827 2.404 4.703

Relative exe. time (to POTRF) 1 2.380 2.2828 1.941 3.798

Table 2.1: absolute and relative execution time of kernels in the selected experimental
setup (double precision, b = 500)

In the rest of this chapter and all experiments using the BC or SBC distributions, all
individual kernels are executed sequentially with this block size by a single CPU core.

We consider matrix sizes ranging from mb = 25 tiles, corresponding to m = 12, 500
elements, to mb = 600 tiles, m = 300, 000, for POTRF and POSV operations. The POSV
operation is performed using a right-hand-side matrix B of size m × b: matrix B is one
tile wide.
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Figure 2.7: Performance of the Cholesky factorization over a matrix of size m = 50000
using Chameleon- StarPU on a single node for different tile size.

2.3.2 Data Distributions Parameters

Within the Chameleon framework, we compare the 2D versions of BC and SBC distribu-
tions in the following setups:

• The SBC extended distribution with values of r ranging from 6 to 9, which respec-
tively correspond to a number of nodes P = 15, 21, 28 and 36. Since each node
contains 36 cores, the number of cores ranges from 510 to 1224.

• The BC distribution implemented by default in the Chameleon library, featuring
two options with a similar number of nodes, in order to cover the best possible
parameters p and q. This ensures that we avoid any unfairness based on a choice
of P that would be ill suited to BC, for example for r = 7, using P = 21 forces to
use a 7× 3 pattern, whereas a 5× 4 pattern is closer to a square and thus generates
fewer communications. The parameters used are summarized on Table 2.2.

Results for 2.5D versions of both BC and SBC are also provided for the case P = 28
or 30 in order to illustrate additional gains that can be achieved by such more complex
data and tasks distribution scheme.

The Chameleon library was shown to be very competitive with other state-of-the-art
implementations by Agullo et al. [4]. In the following experiments we thus focus on
illustrating the benefits of the proposed SBC data distribution compared to classical BC.
In addition, we also compare with the recently proposed COnfCHOX library. COnfCHOX is
able to use a 2.5D version and is designed to automatically select the most appropriated
distribution according to a provided value for P . In our experimental setups however,
its automatic parametrization only selects a 2D distribution. The experiments on our
platform confirmed that the 2.5D distributions resulted in worse performance than the



Symmetric Block
Cyclic

Block Cyclic

r P p q P

6 15
5 3 15
4 4 16

7 21
5 4 20
7 3 21

8 28
7 4 28
6 5 30
8 4 32

9 36
7 5 35
6 6 36

Table 2.2: Sizes of the considered distributions
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Figure 2.8: Measured volume of inter-node communication during POTRF, for P = 20
and 21 (one tile of dimension b× b in double precision is 2 MB).

plain 2D distribution. This is why we only present results for COnfCHOX with a 2D block-
cyclic distribution.

2.3.3 Reduction of the Communication Volume

Figure 2.8 shows the evolution with input matrix size of the overall communication vol-
ume, in GBytes, when performing Cholesky factorization using either BC or SBC data
distribution. The test case used as illustration is r = 7. As expected, the SBC distribu-
tion induces a significantly smaller communication volume, for all values of mb, even for
cases where BC uses fewer nodes.

The results shown on Figure 2.8 are experimental results, but it is easy to compute
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Figure 2.9: Performance per node for Cholesky factorization using 2D and 2.5D versions
of BC and SBC for P = 28, 30 and 32.

analytically the total communication volume induced for any given distribution. Indeed,
Chameleon and StarPU do not modify the initial placement of data and tasks, only their
scheduling. Besides, all communications are done at the tile level using point to point
transfers between nodes without any additional optimizations such as detection of col-
lective communications or message aggregation. Hence, the knowledge of the entire data
distribution is sufficient to know a priori which tiles need to be transfered between any
two nodes, and thus derive the actual communication volume. Indeed, for all experiments
carried out, the measured communication volume accurately matches the exepected value
computed analytically using the data distribution.

2.3.4 Performance Results for Cholesky factorization

In this section we present experimental results for the distribution parameters detailed
in Section 2.3.2. We first use the test case with P = 28 to 32 nodes to perform a
thorough comparison of our 2D Chameleon- StarPU distributions with the alternative BC
implementation in COnfCHOX library and with more elaborated 2.5D versions. Additional
results using only Chameleon- StarPU 2D distributions with different number of nodes
are shown on Figures 2.11 for performance and Figures 2.12 for the total running time.

Figure 2.9 shows the results obtained by all approaches for the r = 8 case which corre-
sponds to P = 28, where the 2.5D variants use c = 3 slices. The COnfCHOX library obtains
significantly better performance with power-of-two number of nodes, so we present the
results with P = 32 for this implementation. The Chameleon library clearly outperforms
the COnfCHOX implementation and manages to approach the peak performance for very



large matrix sizes. This is an expected result because the COnfCHOX library implements
the Cholesky factorization using synchronized iterations. On the other hand, by using the
task-based execution model, Chameleon can perform tasks asynchronously thus allowing
to overlap communications with computations. This results in better performance.

The comparison between the allocation schemes in Chameleon shows that reducing the
communication volume increases the performance further. This is particularly true for
intermediate values of mb where the communication has the most impact: indeed, when

mb is large, the O(m3
b) computation cost overshadows the O(

m2
b√
P

) communication cost.

In the case of intermediate values of mb, the benefit gained from the SBC distribution
over the BC distribution is similar to the benefit gained by the 2.5D approach, which
SBC achieves without increasing the memory requirements. Furthermore, these benefits
are not exclusive and the 2.5D SBC distribution yields even better performance than all
other schemes. In total, the 2D SBC distribution obtains up to 23% improvement over
2D BC and the 2.5D SBC distribution achieves up to 11% improvement over 2D SBC.
2.5D SBC also achieves improvement of up to 27% over the standard 2D BC distribution.

Figure 2.11 displays similar results for other values of r, focusing on the relative
performance of 2D SBC and BC. We can see that the improvement observed above is
valid over all tested values of P . The evolution of total running time against matrix
size is provided Figure 2.12 for the same values of P . The plots illustrate the overall
reduction of running time achieved by the SBC distribution compared to BC. Since the
performance gain is limited for very large matrices, only results for mb 6 200, 000 are
shown to highlight the differences.
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Figure 2.10: Strong scaling of BC and SBC for mb = 200, 000.

The same results are presented Figure 2.10 with focus on strong-scaling. It shows that
SBC has a much better scalability than BC. For example, for a matrix size mb = 200, 000,
SBC with P = 36 achieves roughly the same efficiency per node as BC with P = 16.
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Figure 2.11: Performance per node for Cholesky factorization (GFlop/s per node) using
BC and SBC, for P ranging from 15 to 36.
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2.3.5 Performance for Other Operations

The Cholesky factorization is often used as one stage of a multi-operations workflow
applied to matrix A. Common uses include solving linear systems, POSV operation, and
computing the inverse of the matrix, POTRI operation.

2.3.5.1 Solving linear systems

POSV aims at solving the linear system A · X = B for the unknown X where A is
symmetric positive definite and B is mb × nb. Multiple right-hand sides can be gathered
as columns of B to perform several solves simultaneously. Our test case uses a right-hand
side of dimensions mb × 1 tiles which is customary. POSV involves three steps:

1. Cholesky factorization A = L · LT: A← POTRF(A)

2. solve the system L ·Y = B in Y : B← TRSM(B,A)

3. solve the system LT ·X = Y in X: B← TRSM(B,AT)

The tiled version of triangular solve operation (TRSM) is presented in Algorithm 6.
Computations on B are column-wise independent and thus totally parallel, i.e. nb can
be selected as large as desired without sacrificing on parallelism. Those are dealt with by
the external for loop, line 1 in the algorithm.

Algorithm 6: Tiled triangular solve algorithm (TRSM)

Input: (B, A): B is mb × nb, A is mb ×mb lower triangular
Output: (X): X is mb × nb such that X = B ·A−1

1 for k = 1 . . . nb do
2 for j = 1 . . .mb do
3 B(j, k)← TRSM(j, k): TRSM(B(j, k),A(j, j))
4 for i = j + 1 . . .mb do
5 B(i, k)← GEMM(i, k, j): GEMM(B(i, k),A(i, j),B(j, k))

Because of the task dependencies, distributed TRSM operation requires two types of
inter-node communications for each column k ∈ {1, . . . , nb}:

a) each tile A(i, j) for 1 6 j 6 i 6 mb is used as input to update tile B(i, k), for
1 6 k 6 nb, wether via TRSM(i, k) or GEMM(i, k, j);

b) each tile B(j, k) for j ∈ {1, . . . ,mb − 1} and k ∈ {1, . . . , nb − 1}, output of
TRSM(j, k), is used as input to update tile B(i, k) for i > j via GEMM(i, k, j).

In our case B is one tile wide. Thus the communication volume of type (a) depends
on the number of different nodes that own tiles of A on a single row, denoted qA, and
whether the node owning the tile of B on the same row is among them. In this latter case
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Figure 2.13: Performance per node for POSV with A distributed using BC and SBC,
P = 28

the associated number of communication is: mb(mb−1)
2

(qA− 1). Otherwise qA− 1 becomes
qA in the expression of the number of communications. The communication volume of
(b) only depends on the variety of nodes owning tiles in the column of B, denoted pB.
The associated number of communications is: mbpB

Since the communication volume of type (a) dominates, we use a 1D row data alloca-
tion for matrix B such that for all j ∈ {1, . . . ,mb}, B(j, 1) is owned by the same node as
A(j, j).

The resulting performance for r = 8 is presented in Figure 2.13. We can observe that
SBC achieves better performance than BC, however the improvement ratio is lower than
for the Cholesky factorization alone, as can be seen on Figure 2.9. This can be explained
easily: the TRSM operations, performed at stages (2) and (3) of POSV, induce additional
computations and communications compared to POTRF alone, performed at stage (1).
Now the additional communications are independent of the distribution of A. Hence,
the relative effect of using SBC distribution on the total running time of the operation is
lower for POSV than for POTRF alone.

2.3.5.2 Inversion operation with data redistribution

POTRI is the operation used to compute the inverse of symmetric positive definite matrix
A. It is composed of three steps:

1. Cholesky factorization A = L · LT: L← POTRF(A)

2. triangular inversion, compute L−1: TRTRI(A)

3. symmetric matrix multiplication A−1 = (L−1)T · L−1: A−1 ← LAUUM(L−1)



Algorithm 7: Tiled symmetric matrix multiplication algorithm (LAUUM)

Input: (W): W is mb ×mb lower triangular
Output: (A−1): A−1 is mb ×mb symmetric such that A−1 = WT ·W

1 for i = 1 . . .mb do
2 for j = 1 . . . i− 1 do
3 W(j, j)← SYRK(j, i): SYRK(W(j, j),W(i, i))
4 for k = j + 1 . . . i− 1 do
5 W(k, j)← GEMM(k, j, i): GEMM(W(k, j),W(k, i),W(i, j))

6 W(i, j)← TRMM(i, j): TRMM(W(i, i),W(i, j))

7 W(i, i)← LAUUM(i): LAUUM(W(i, i))

8 A−1 ←W

The steps of LAUUM operation are described in Algorithm 7. Notice that it makes
use of TRMM as a sub-operation. TRMM is similar to a GEMM operation, which is
a matrix multiplication, except that the first input matrix on the left of the product is
triangular. It implies the following data dependencies:

a) each tile W(i, i), for i ∈ {1, . . . ,mb}, output of LAUUM(i) is used as input of:

• SYRK(j), for j ∈ {1, . . . , i− 1}, to update tiles W(j, j);

• TRMM(i, j), for j ∈ {1, . . . , i− 1}, to update tiles W(i, j);

b) each tile W(i, j), for i ∈ {1, . . . ,mb}, j ∈ {1, . . . , i − 1}, output of TRMM(i, j) is
used as input of GEMM(k, j, i), for k ∈ {j + 1, . . . , i− 1}, to update tiles W(k, j).

LAUUM actually features the same data dependencies as POTRF. In particular, just
as for POTRF, the dominant part of the total number of communications generated when
performing LAUUM comes from data dependency of type (b): output of TRMM→ input
of GEMM. Hence both operations induce the same communication volume for a given
distribution scheme.

On the other hand, some computations involved in TRTRI are performed using non-
symmetric input. This operation features the following data dependencies:

a) each tile L(k, k), for k ∈ {1, . . . ,mb}, output of TRTRI(k) is used as input of:

• TRSM(i, k), for i ∈ {k + 1, . . . ,mb}, to update tiles L(i, k);

• TRSM(k, j), for j ∈ {1, . . . , k − 1}, to update tiles L(k, j);

b) tiles L(i, k) and L(k, j), for i ∈ {k + 1, . . . ,mb} and j ∈ {1, . . . , k − 1}, output
of respectively TRSM(i, k) and TRSM(k, j), are used as input of GEMM(i, j, k) to
update tiles L(i, j).

Data dependencies of type (a) require that each tile A(k, k), k ∈ {1, . . . ,mb} is sent
on row k and column k. Data dependencies of type (b) on the other hand imply that



Algorithm 8: Tiled triangular inversion algorithm (TRTRI)

Input: (L): L is mb ×mb lower triangular
Output: (L−1)

1 for k = 1 . . .mb do
2 for i = k + 1 . . .mb do
3 L(i, k)← TRSM(i, k): TRSM(L(i, k),L(k, k))
4 for j = k − 1 . . .mb do
5 L(i, j)← GEMM(i, j, k): GEMM(L(i, j),L(i, k),L(k, j))

6 for j = k − 1 . . .mb do
7 L(k, j)← TRSM(k, j): TRSM(L(k, j),L(k, k))

8 L(k, k)← TRTRI(k): TRTRI(L(k, k))

each tile A(i, j), 1 < j < i < mb is sent to the left on row i and below on column j.
Communications generated by dependencies of type (b) are dominant. Hence, keeping
the same notation as for Theorem 4, the leading term of communication volume when
performing TRTRI is:

• for BC: S(p+ q − 2) ∼ 2S
√
P ;

• for SBC extended: S(2r − 2) ∼ 2
√

2S
√
P .

Using the BC distribution therefore generates a smaller communication volume than
SBC for this operation.

Because of this difference in the communication pattern for the different sub-operations
of POTRI, we consider a mixed strategy involving remapping of data between them. We
denote it SBC remap BC: POTRF and LAUUM are performed using SBC allocations
while TRTRI is done with BC. Data redistribution of the whole matrix occurs before and
after TRTRI to change the allocation. Higher order terms of the communication volume
for the whole POTRI are then given by:

• for BC: 3S(p+ q − 2) ∼ 6S
√
P ;

• for SBC remap BC:

2S(r − 2)︸ ︷︷ ︸
POTRF and LAUUM

+S(p+ q − 2)︸ ︷︷ ︸
TRTRI

+ 2S︸︷︷︸
two remaps

= S(2r + p+ q − 4) ∼ 2(
√

2 + 1)S
√
P .

The remapped version of SBC asymptotically generates a smaller communication vol-
ume than BC, though its relative advantage is smaller than for POTRF alone: the reduc-
tion ratio is 3√

2+1
' 1.24 instead of

√
2. A small performance gain can thus be expected

when comparing this strategy against BC. However, this asymptotic performance gain is
achieved for values of P which are large enough so that the cost of redistribution, which
does not depend on P , is negligible compared to the communication cost, which is pro-
portional to

√
P . Figure 2.14 presents the case r = 8 (P = 28), p = 7 and q = 4, so
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Figure 2.14: Performance per node for POTRI using BC and SBC, P = 28.

that the communication volume is reduced by a factor of only 27/23 = 1.17. In that
case, the reduction in communication is too low to obtain a visible improvement in per-
formance. Still, SBC reduces the communication volume, and thus energy consumption
and contention with other applications, without degrading performance. In addition,
this experimental result shows that SBC data allocation can be seamlessly integrated to
multi-operations workflow via data redistribution to reduce the communication volume
on specific symmetric steps while leaving the others untouched, hence resulting in global
better performance.

2.4 Conclusion

In this chapter we have questioned whether the reduction of overall communication can
lead to smaller running time of distributed operation, for linear algebra applications.
We have considered the case study of distributed dense Cholesky factorization with mini-
mization of the total volume of inter-node communications as objective function. We have
developed an original data distribution, Symmetric Block Cyclic (SBC), that is suited to
the symmetry of input matrix A and aimed at generating few communications. Indeed,
we proved analytically that it actually reduces the communication volume by a factor of√

2 compared to the classical Block Cyclic (BC) distribution. Beyond 2D data distribu-
tions that rely on the owner computes rule to distribute tasks among nodes, we propose a
2.5D version of SBC. In a configuration with limited memory of size M per node, we have

shown that 2.5D SBC generates a total communication volume of 1
2
· m

3
b√
M

+ o(m3
b) when

performing a Cholesky factorization. This improves by a factor of 2 over the previous best
result using 2.5D version of the BC distribution. Experimental results obtained with the
Chameleon library associated with the StarPU runtime system show that SBC achieves
significantly improved performance for the Cholesky factorization: the total running time



is reduced compared to similar execution using the BC distribution resulting in a higher
performance per node. Besides, the communication volume measured match the levels
predicted by the theoretical analysis.

Those results show that reducing the total communication volume can lead to addi-
tional performance gains, regardless of the computational aspect of the execution. Hence
they illustrate how important it is to use a data distribution scheme adapted to the data
access pattern: making best use of features specific to the considered operation to reduce
communication can lever the potential performance benefit. This work also highlights the
effectiveness and flexibility of task-based implementations that enable usage of complex
or irregular data distributions while allowing to reach high performance, what would be
extremely hard to achieve by explicitly stating tasks and data dependencies using MPI

Indeed in our case, the task-based execution model used by the Chameleon library
associated with StarPU allows for a seamless integration of the SBC distribution without
changing the Cholesky factorization implementation. Moreover, the experiments with the
POSV and POTRI operations show that SBC can be used in a wide variety of operations.
It illustrates the fact that, in addition to developing different distributions highly suited for
specific operations, it is crucial to work on enabling their efficient integration in complex
computation chains.





Chapter 3

Communication Optimal Algorithms
for Symmetric Operations

The conclusions from Chapter 2 seem quite promising as they show that inter-node com-
munication reduction is an effective way to improve performance of distributed opera-
tions. It is all the more satisfying that it does not require to target a particular subset
of communication but simply to seek at minimizing the total communication volume. As
illustrated by Symmetric Block Cyclic (SBC), it can be achieved via a data distribution
tailored to take advantage of the specific features of the communication pattern of the
considered operation. In a task-based context, such distribution can be arbitrarily com-
plex to save communications without interfering with the efficiency of each task execution
hence resulting in higher performance.

Such potential performance gains invite to push further the reduction of communi-
cations for every possible operation and design data distributions which match existing
theoretical bounds on the minimum communication volume required. For the Cholesky
factorization, in terms of total communication volume, there still exists a gap between
the lower bound [62] which claims that at least 1

3
√

2
·m2

b

√
P communications are neces-

sary, under the memory scalable assumption, and the best known algorithm, namely 2D
Symmetric Block Cyclic (SBC), which performs 1√

2
·m2

b

√
P + o(m2

b) communications. A
gap also exists for the symmetric rank-k update operation which consists in computing
C = A ·AT, where A is mb × nb, and whose data dependencies are very similar to those
of the Cholesky factorization. It is actually used as sub-routine whithin the Cholesky
factorization.

In this chapter, we study both operations under the assumptions of the out-of-core
model. In such a setting, any arithmetic operation can only be performed if the required
input data is in fast memory. We assume that a given algorithm explicitly controls which
data is loaded and removed to and from the fast memory. To tackle the problem, we use
the operational intensity metric, denoted ρ, which is a useful tool to compare the efficiency
of algorithms and their schedules regarding communications. The operational intensity is
defined as the ratio of the number of arithmetic operations to the volume of data movement
to/from the “slow” memory. For a given operation, the whole set of arithmetic operations
is fixed, minimizing communications is therefore equivalent to maximizing the operational
intensity. The arithmetic operations can be performed in different orders according to the
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algorithm, allowing to generate fewer communications between slow and fast memory, also
called I/O operations, thus achieving higher operational intensity. Similarly to Chapter 2
for tiled algorithms, communications are counted as individual transfers of elements to
and from the slow memory. We qualify as sequential, or simply out-of-core, the schedule
of an algorithm for a given operation in this context. As mentioned in Section 2.1.1, the
theoretical bounds in the out-of-core setting can be immediately extended to the parallel
case under the memory scalable assumption. Sequential algorithms developed in this
model can also give insight for efficient parallel versions.

In the following we close the gap by improving the best bound by a factor of
√

2
and designing optimal algorithms for the symmetric rank-k update and the Cholesky
factorization. In the first section, we review state-of-the-art works regarding bounds and
sequential algorithms for the Cholesky factorization and associated operations. Then,
in the next section, we provide an insight of the core idea to maximize the operational
intensity of symmetric operations and explain why it is not captured by state-of-the-art
bounds and algorithms. We also detail useful assumptions and definitions for subsequent
derivation of bounds. The third section details the proof of the improved bound for the
symmetric rank-k update which is then extended to the Cholesky factorization. Finally,
in the last section, we describe an original sequential algorithm, Triangle Block SYRK
(TBS), to perform the symmetric rank-k update and show that it generates the minimal
amount of communications according to the newly found bound. We then use it as
a building block for another sequential algorithm for the Cholesky factorization, Large
Block Cholesky (LBC), that is also proven optimal.

3.1 State-of-the-art

3.1.1 Summary of Communication Bounds

Several references that have been mentioned in Section 2.1 are not specific to the parallel
model and therefore provide valid bounds in the context of the out-of-core model. As a
summary of the results presented there, we can remind:

• Hong and Kung show in [50] that matrix multiplication requires Ω( m3
√
M

) communi-
cations in the out-of-core setting;

• in [53] Irony et al. prove that there exists a memory-communication trade-off for
the matrix multiplication; in the out-of-core model it gives a lower bound on the
number of communication: mb·nb·kb

2
√

2
√
M
−M ;

• this result is emcompassed by a more general formulation valid for several op-
erations, including the matrix multiplication, symmetric rank-k update, LU and
Cholesky factorization, presented in [14] by Ballard et al.: the minimum communi-
cation volume is Ω(# total arithmetic operations√

M
);

• in [62] Olivry et al. develop an automatic tool called IOLB, to derive non-asymptotic
bounds for a large set of operations under the assumptions of the out-of-core model;



their results state that performing a symmetric rank-k update requires a minimum
of 1

2
· m2n√

M
+ o(m2n) communications and Cholesky factorization 1

6
m3
√
M

+ o(m3).

Recent work from Kwasniewski et al. [57] uses explicit enumeration of data reuse to
provide an improved bound for both the LU and Cholesky factorization. It is formulated
in terms of operational intensity and can thus be applied to the out-of-core model. The
bound is primarily derived for LU factorization and the authors claim that it is valid

for Cholesky factorization. It states that, for both operations, ρ 6
√
M
2

, which implies

that LU factorization requires at least 2
3
· m3
√
M

+ o(m3) communications and Cholesky

factorization 1
3
· m3
√
M

+ o(m3).

3.1.2 Overview of Sequential Algorithms

In [19] Béreux proposes out-of-core algorithms for the symmetric rank-k update, triangular
solve, and Cholesky factorization. Two implementations of the tiled versions of those
algorithms exist using either one or two tiles that reside simultaneously in memory. We
are only interested in one-tile implementations which maximize the operational intensity,
as mentioned in Section 3.3 of [19]. A recursive version of the Cholesky factorization
algorithm is also developed that we do not consider in this chapter.

The out-of-core algorithms are based on single tile operations that perform updates
of the tile residing in memory using narrow-blocks of negligible size. The underlying
principle is to select the tile size b such that the tile whose values are updated can stay in
memory simultaneously with as many narrow-blocks as necessary which are used as input
to perform the computations; a narrow-block being a set of b elements of one of the input
tiles. The size of the narrow-blocks can be tuned to fit the memory size constraint. As
an example of such single tile operations, Algorithm 11 details the matrix multiplication,
denoted NBK GEMM. The algorithm sets the tile size such that M > b2 + 2b. Hence
the input tile of C can stay in memory during the whole execution of the algorithm with
two narrow-blocks of A and B that are used to update one of its element. By using such
single tile operations, the out-of-core algorithms from Béreux achieve high operational
intensity by ensuring that each tile is loaded and flushed from memory only once, thus
minimizing I/O data movements. The implementations of single tile symmetric rank-
k update, NBK SYRK, and triangular solve, NBK TRSM, are detailed respectively in
Algorithms 12 and 13. Béreux also makes use of the element-wise version of the Cholesky
factorization, denoted ELM CHOL. It is detailed in Algorithm 10 as a reminder of the
same algorithm provided in Section 1.1.1.

Using those single tile algorithms as building blocks, complete out-of-core algorithms
for operations on entire matrices are developed by Béreux. In this chapter, we consider
the following one-tile implementations of out-of-core algorithms as a reference for those
operations: OOC SYRK Algorithm (14) for the symmetric rank-k update, OOC TRSM
Algorithm (15) for the triangular solve, and OOC CHOL algorithm( 16) for the Cholesky
factorization.



Algorithm 9: ELM SYRK, element-wise symmetric rank-k update algorithm

Input: (C, A): C is m×m symmetric, A is m× n
Output: (C): such that C += A ·AT

1 for k = 1 to n do
2 for i = 1 to m do
3 for j = 1 to i do
4 Ci,j += Ai,k ·Aj,k update operations
5

Algorithm 10: ELM CHOL, element-wise Cholesky factorization algorithm

Input: (A): A is m×m symmetric positive definite
Output: (L): L is m×m lower triangular such that A = L · LT

1 for k = 1 to m do
2 Ak,k =

√
Ak,k

3 for i = k + 1 to m do

4 Ai,k =
Ai,k

Ak,k

5 for j = k + 1 to i do
6 Ai,j −= Ai,k ·Aj,k update operations

7 L← lower triangular part of A

Algorithm 11: NBK GEMM, narrow-blocks single tile matrix multiplication

Input: (C, A, B): C is b× b, A is b× n, B is n× b
Output: (C): such that C += A ·B
Assumes: memory of size M > b2 + 2b

1 Load C in memory.
2 for k = 1 to n do
3 Load A.,k, the kth narrow blocks (column) of A in memory.
4 Load Bk,., the kth narrow blocks (row) of B in memory.
5 Perform the outer product of the narrow blocks to update C: C += A.,k ·Bk,.

6 Flush the narrow-blocks Bk,. and A.,k from memory.

These algorithms respectively generate the following number of I/O operations:

QOOC SYRK (m,n) =
m2n√
M

+O(mn)

QOOC TRSM (m,n) =
m2n√
M

+O(mn)

QOOC CHOL (m) =
m3

3
√
M

+O(m2)



Algorithm 12: NBK SYRK, narrow-blocks single tile symmetric rank-k update

Input: (C, A): C is b× b symmetric, A is b× n
Output: (C): such that C += A ·AT

Assumes: memory of size M > b2 + b
1 Load C in memory.
2 for k = 1 to n do
3 Load A.,k, the kth narrow blocks (column) of A in memory.
4 Perform the outer product of the narrow block with its transposed self to

update C: C += A.,k ·AT
.,k

5 Flush narrow-block A.,k from memory.

Algorithm 13: NBK TRSM, narrow-blocks single tile triangular solve

Input: (B, A): B is b× b, A is b× b upper triangular
Output: (X): X is b× b such that X = B ·A−1 (solve X ·A = B)
Assumes: memory of size M > b2 + b

1 Load B in memory.
2 for k = 1 to b do
3 Load Ak,k→b, the kth narrow blocks (row) of A in memory.
4 for i = 1 to b do
5 Update row i of B:

6 Bi,k ←
Bi,k

Ak,k

7 for j = k + 1 to b do
8 Bi,j ← Bi,j −Ak,jBi,k

9 Flush narrow-block Ak,k→b from memory.

10 X← B

3.2 Preliminaries

3.2.1 Motivation

One can notice that the sequential algorithm for Cholesky factorization in the out-of-
core model proposed by Béreux in [19] matches the bound proved by Kwasniewski et
al. in [57]: the dominant term for the number of communication is in both case 1

3
m3
√
M

.
However, the methodology used by Kwasniewski et al. to prove the upper bound on
operational intensity is based on a restrictive assumption.

Let us summarize their methodology and detail its key steps to explain why it leads
to a bound which is invalid in the general case. The method used by the authors is
applicable to any operation that consists in nested loops of arithmetic operations, each
associated with a single instruction in the algorithm describing the operation. It is based
on a careful application of Lemma 1 (numbered Lemma 1 in [57]) which states:



Algorithm 14: OOC SYRK, out-of-core symmetric rank-k update

Input: (C, A): C is m×m symmetric, A is m× n
Output: (C): such that C += A ·AT

Assumes: memory of size M = b2 + 2b

1 Let us define: mb = bm
b
c and ` = m−mbb

2 Let us define the subsets of indices that divide A and C into tiles:
3 for k ∈ {1, . . . ,mb} do

4 Ik =

{
[0 ; `] if k = 0
[`+ (k − 1)b+ 1 ; `+ kb] otherwise

5 for k ∈ {0, . . . ,mb} do

6 Update tile CIk,Ik with SYRK operation:
7 NBK SYRK(CIk,Ik ,AIk,. ) CIk,Ik is in memory

8 for i ∈ {0, . . . , k − 1} do
9 Update tile CIk,Ii with GEMM operation:

10 NBK GEMM(CIk,Ii ,AIk,.,A
T
Ii,.

) CIk,Ii is in memory

Lemma 1. Fix a constant X > M and assume that any sub-computation H of a cDAG
G = (V,E) which reads at most X elements and writes at most X elements performs
a number of operations |H| bounded by |H| 6 Hmax. Consider any execution of G with
memory M . Its operational intensity ρ is bounded by ρ 6 Hmax

X−M and its number of I/O
operations Q is bounded by:

Q >
|V |
ρ

>
|V | (X −M)

Hmax

The main part of the method is thus to find the largest sub-computation H that
requires no more than X access, for a given X > M . To do so, Kwasniewski et al.
develop a technique, based on automatic cDAG analysis, that allows to analytically find
such an H by checking for two types of data reuse between statements: (i) a set of
elements can be used as input for more than one instruction, (ii) a set of elements, output
of one instruction, can be the input of another instruction. The technique assumes what
is referred to as the disjoint array access property, detailed in Section 2.2 of [57], that
explicitly states: “a given vertex can be referenced by only one access function vector
per statement”. It can be reformulated as: an element cannot be used as multiple input
arguments for the same instruction.

Let us illustrate this assumption in the case of the Cholesky factorization and detail
its implication. We focus on the instruction line 6 in Algorithm 1 which corresponds
to update operations (it is the statement S3 from Listing 1 in Section 6.2 in [57]). The
instruction states that the following update operations are performed:

∀i, j, k ∈ {1, . . . ,m}, k < j < i : Ai,j = Ai,j −Ai,k ·Aj,k



Algorithm 15: OOC TRSM, out-of-core triangular solve

Input: (B, L): B is m× n, L is m×m lower triangular
Output: (X): X is m× n such that X = B · (LT)−1

Assumes: memory of size M = b2 + 2b

1 Let us define: mb = bm
b
c and ` = m−mbb

2 Let us define the subsets of indices that divide B and L into tiles:
3 for k ∈ {1, . . . ,mb} do

4 Ik =

{
[0 ; `] if k = 0
[`+ (k − 1)b+ 1 ; `+ kb] otherwise

5 for k ∈ {0, . . . ,mb} do

6 Update tile BIk,Ik with GEMM operation:
7 NBK GEMM(BIk,Ik ,BIk,I0→k−1

,LT
Ik,I0→k−1

) BIk,Ik is in memory

8 Update again tile BIk,Ik with TRSM operation:
9 NBK TRSM(BIk,Ik ,L

T
Ik,Ik

) BIk,Ik is still in memory

10 X← B

Now, for given k0, i0 ∈ {1, . . . ,m} such that k0 + 1 < i0 < m, the element Ai0,k0

can be used as multiple input arguments for the update operations as it can appear at
different positions in the right-hand side of the expression: indeed it can be the second
argument for all j ∈ {k0 + 1, . . . , i0 − 1} and the third one for all i ∈ {i0 + 1, . . . ,m}.
More generally, each element in {Ai,k : k, i ∈ {1, . . . ,m} | k + 1 < i < m} is an
input of update operations, as second argument for some iterations, as third argument
for some others. Nevertheless the disjoint array access property prevents from taking into
account such input data reuse for the same instruction and thus restricts the search of the
largest H to a subset of all possible solutions. As a consequence, a bound on operational
intensity derived assuming disjoint array access property may not be valid for the general
case; it may be too restrictive. In this chapter we actually prove that the bound derived
by Kwasniewski et al., ρ 6 1

2

√
M , is not valid for the Cholesky factorization since the

disjoint array access property assumption does not hold for such operation. Indeed,
algorithms TBS for the symmetric rank-k update and LBC for Cholesky factorization
achieve ρ = 1√

2

√
M precisely via this type of input data reuse for the update operations.

We can observe that such an input data reuse inside the same instruction is enabled
by the symmetry of the input matrix A for the symmetric rank-k update and Cholesky
factorization. The third term of the update operation in the case of non symmetric
input actually is Ak,j which implies that disjoint array access property does not prevent
any input data reuse and thus is a non restrictive assumption. For the non symmetric
counterparts of the symmetric rank-k update and Cholesky factorization, namely matrix
multiplication and LU factorization, the bound by Kwasniewski et al. [57] is therefore
valid. Moreover, it is optimal because the algorithm proposed by Béreux [19] for the
Cholesky factorization, applied to LU factorization without modification, achieves the



Algorithm 16: OOC CHOL, out-of-core Cholesky factorization

Input: (A): A is m×m symmetric positive definite
Output: (L): L is m×m lower triangular such that A = L · LT

Assumes: memory of size M = b2 + 2b

1 Let us define: mb = bm
b
c and ` = m−mbb

2 Let us define the subsets of indices that divide A into tiles:
3 for k ∈ {1, . . . ,mb} do

4 Ik =

{
[0 ; `] if k = 0
[`+ (k − 1)b+ 1 ; `+ kb] otherwise

5 for k ∈ {0, . . . ,mb} do

6 Update tile AIk,Ik with SYRK operation:
7 NBK SYRK(AIk,Ik ,AIk,I0→k−1

) AIk,Ik is in memory
8 Perform an element-wise Cholesky factorization to update again tile AIk,Ik :
9 ELM CHOL(AIk,Ik) AIk,Ik is still in memory

10 for i ∈ {k + 1, . . . ,mb} do AIi,Ik is in memory
11 Update tile AIi,Ik with GEMM operation:
12 NBK GEMM(AIi,Ik ,AIi,I0→k−1

,AT
Ik,I0→k−1

)

13 Update it again with TRSM operation:
14 NBK TRSM(AIi,Ik ,A

T
Ik,Ik

)

15 L← lower triangular part of A

same operational intensity.

3.2.2 Methodology, Assumptions and Notations

In the following, we use the same general methodology as in [57], that is: for a given
X > M , find the largest sub-computation H which requires no more than X data access
in order to apply Lemma 1.

We consider the symmetric rank-k update and Cholesky factorization, as described
in Algorithms 9 and 10. For the Cholesky factorization, as already mentioned in Sec-
tion 2.2.2, we can restrict our study to the update operations, that can be observed line 4
of Algorithm 9 and line 6 of Algorithm 10, and which is the arithmetic operation that
generates the dominant part of the communication volume. Then we can describe each
operation by a triplet of positive integers (i, j, k), and for both cases we will further ignore
the diagonal operations where i = j. The sets of arithmetic operations are denoted S for
the symmetric rank-k update and C for the Cholesky factorization, and are given by:

S =
{

(i, j, k) ∈ {1, . . . ,m}2 × {1, . . . , n} | i > j
}

C =
{

(i, j, k) ∈ {1, . . . ,m}3 | i > j > k
}
,



We can see that for each statement of these algorithms, the set of written variables is
included in the set of read variables, so we only focus on the input data of each operation.
In the description of the sets of arithmetic operations S and C, the third index k actually
corresponds to the update index as defined in Section 1.2.2. In the following, if not
specified, the sums and unions of sets using this index are performed over all possible
values of k. Note also that, for each (i, j, k), the update operation is composed of one
multiplication and one addition that are counted as a single arithmetic operation. In
the rest of this chapter, H is used to denote a set of arithmetic operations, subset of
S or C. The following definitions and propositions are presented for H ⊂ S and the
entire process to derive a communication lower bound detailed in Section 3.3.1 is valid
for the symmetric rank-k update operation. However those results are then extended to
the Cholesky factorization using the argument presented in Section 3.3.2.

Definition 1. Given a set H ⊂ S of arithmetic operations, H|k is the restriction of H to
iteration k:

H|k =
{

(i, j) ∈ N2 | (i, j, k) ∈ H
}

Definition 2. Given a subset U of N2, τ (U) is the symmetric footprint of U :

τ (U) = {i ∈ N | ∃j, (i, j) ∈ U or (j, i) ∈ U}

If i > j for all (i, j) ∈ U , then |U | 6 |τ(U)|(|τ(U)|−1)
2

. In particular, this holds for any H|k.

With these definitions, we can express the number of data accessed by a set H: using
the symmetric rank-k update operation as an example, then ∪k∈{1,...,n}H|k is the set of
elements Ci,j accessed by H, and for any k ∈ {1, . . . , n}, τ

(
H|k
)

is the set of Ai,k elements
accessed by H.

Proposition 1. For any set H ⊂ S of operations, the number of data accessed by H is

D(H) =
∣∣∪kH|k∣∣+

∑
k

∣∣τ (H|k)∣∣
3.2.3 Triangle Blocks

Many of the following results make use of the concept of triangle blocks, which are general-
izations of the diagonal tiles in a tile decomposition of a symmetric matrix. In particular,
for the symmetric rank-k update operation, we show that accessing the result matrix by
triangle blocks minimizes the communications. The TBS algorithm precisely describes
how to partition the result matrix in disjoint triangle blocks. Figure 3.1 (page 67) depicts
examples of triangle blocks.

Definition 3 (Triangle block). Given a set R of integer indices, the triangle block TB(R)
is the set of all subdiagonal pairs of elements of R:

TB(R) = {(r, r′) | r, r′ ∈ R and r > r′}



It is clear that |TB(R)| = |R|(|R|−1)
2

. We say that TB(R) has side length |R|.
For any ` ∈ N, we define σ(`) as the smallest possible side length of a triangle block

with at least ` elements. σ(`) is thus the smallest element of N such that ` 6 σ(`)(σ(`)−1)
2

.
By solving the quadratic equation, we get:

Lemma 2. For ` ∈ N∗, σ(`) = d
√

1
4

+ 2`+ 1
2
e, and σ(0) = 0.

For any ` ∈ N, we define T (`) as any size-` subset of TB({1, . . . , σ(`)}). We use T (`)
as a canonical way of performing ` arithmetic operations in an iteration, while minimizing
the number of data accesses. Indeed, by definition |T (`)| = `, and it is easy to see that
|τ (T (`))| = σ(`).

3.3 Lower Bounds

3.3.1 Symmetric Multiplication (SYRK)

As mentioned above, in order to obtain a lower bound on the communications required for
the symmetric rank-k update operation, we first provide an upper bound on the largest
sub-computation H than can be performed while accessing at most X data elements. We
are thus looking for a bound on the optimal value of the following optimization problem:

P(X): max |H|

s.t.

 D(H) =
∣∣∪kH|k∣∣+

∑
k

∣∣τ (H|k)∣∣ 6 X

H ⊆ S

The main result of this section can be stated as:

Theorem 2. The optimal value of P(X) is at most
√

2
3
√

3
X

3
2 .

To prove this theorem, we first show that P(X) admits triangle-shaped optimal solu-
tions, which we call balanced solutions. We then compute an upper bound on the size of
such a balanced solution.

3.3.1.1 Balanced Solutions

Definition 4. For given x and `, we define the balanced solution B = B(x, `) by:
B|k = T (`) for all k ∈ {0, . . . , K − 1},
B|K = T (`′) for k = K,

B|k = ∅ for all k > K,

where K = bx
`
c and `′ = x−K` < `.



It is clear that |B(x, `)| = x, since K`+ (x−K`) = x. Besides
∣∣∪kB(x, `)|k

∣∣ = `. The
next lemma shows that any solution H can be turned into a balanced solution with lower
cost.

Lemma 3. If H is a solution of P(X), let the corresponding balanced solution be B =
B
(
|H| ,maxk

∣∣H|k∣∣). Then D(B) 6 D(H).

Proof. Given a solution H, let us define `k =
∣∣H|k∣∣ and denote ` = maxk `k. As mentioned

above, we have |B| = |H| and
∣∣∪kB|k∣∣ = ` = maxk `k 6

∣∣∪kH|k∣∣. Furthermore, since∑
k `k = |H| = K · `+ `′ and since the σ(·) function is concave, we have:

∑
k

∣∣τ (B|k)∣∣ = Kσ(`) + σ(`′)

6
∑
k

σ(mk)

=
∑
k

∣∣τ (H|k)∣∣
This shows that D(B) 6 D(H).

In particular, if H is an optimal solution, we obtain the following corollary.

Corollary 1. There exist x and ` such that B(x, `) is an optimal solution to P(X).

3.3.1.2 Optimal Balanced Solution

A balanced solution B can be described with three integer values I, J in {1, . . . ,m} with
J 6 I, and K ∈ {1, . . . , n} such that{

∀k ∈ {0, . . . , K − 1}, τ
(
B|k
)

= T (I)
τ
(
B|K

)
= T (J)

Such a solution satisfies |B| = K I(I−1)
2

+ J(J−1)
2

and D(B) = I(I−1)
2

+ KI + J . By
relaxing integrity constraints and upper bounds on I, J,K, we get that the optimal size
of a balanced solution is at most the optimal value of the following problem P ′(X):

P ′(X): max

(
K
I(I − 1)

2
+
J(J − 1)

2

)
s.t.

{
I(I−1)

2
+KI + J 6 X

J 6 I

Lemma 4. For any (I, J,K) solution to P ′(X), define K ′ = K + J(J−1)
I(I−1)

. Then (I, 0, K ′)

is a solution to P ′(X) with the same value.



Proof. The solution (I, 0, K ′) is feasible:

I(I − 1)

2
+K ′I =

I(I − 1)

2
+KI + J

J − 1

I − 1

6
I(I − 1)

2
+KI + J since J 6 I

6 X since (I, J,K) is feasible

Furthermore, its objective value is K ′ I(I−1)
2

= K I(I−1)
2

+ J(J−1)
2

, which is the objective
value of (I, J,K).

This lemma shows that the optimum value of P ′ is equal to the optimum value of the
simpler P ′′ problem below:

P ′′(X): max

(
K
I(I − 1)

2

)
s.t.

I(I − 1)

2
+KI 6 X

This problem is now simple enough and we can provide a direct bound on its optimum
value.

Lemma 5. The optimum value of P ′′(X) is at most
√

2
3
√

3
X

3
2 .

Proof. Reformulated as a minimization problem, P ′′(X) becomes:

min

(
f(K, I) = −KI(I − 1)

2

)
s.t. g(K, I) =

I(I − 1)

2
+KI −X 6 0

Since the regularity conditions are met over the whole definition space of variables
I and K, we can write Karush-Kuhn-Tucker necessary conditions: if (K, I) is a local
optimum for P ′′(X) then

∃u > 0, ∇f(K, I) + u∇g(K, I) = 0

⇔ ∃u > 0,

{
−K(I − 1

2
) + u(I − 1

2
+K) = 0

− I(I−1)
2

+ uI = 0

which implies u = I−1
2

, and then KI = (I − 1)(I − 1
2
).

Let us denote by (K, I) a local minimum of f . Then KI = (I − 1)(I − 1
2
). Besides we

can select (K, I) such that I(I−1)
2

+ KI − X = 0. This yields 3I2 − 4I − (2X − 1) = 0,

and we obtain I = 2
3

+
√

1+6X
3

.



An optimal solution of P ′′(X) is thus given by{
I∗ = 2

3
+
√

1+6X
3

K∗ = (I∗ − 1
2
)(1− 1

I∗
)

and its objective value is

H′′(X) = K∗
I∗(I∗ − 1)

2

=
1

4
(I∗ − 1)2(2I∗ − 1)

=
1

108
(
√

1 + 6X − 1)2(2
√

1 + 6X + 1)

6
(
√

6X
3

)3

2
=

√
2

3
√

3
X

3
2

To understand why the last inequality holds, one can observe that the function X 7→
H′′(X)−

√
2

3
√

3
X

3
2 equals 0 for X = 0. Besides,

∂

∂X

[
H′′(X)−

√
2

3
√

3
X

3
2

]
=

1

6

(√
1 + 6X − 1

)
−
√
X

6

=
1

6

[√
1 + 6X − (1 +

√
6X)

]
which is obviously negative.

3.3.1.3 Final Result

Proof of Theorem 2. The result follows directly from Corollary 1, Lemma 4 and Lemma 5.

Corollary 2. The number of data accesses required to perform a symmetric rank-k update
operation where A has size m× n, with memory M , is at least:

QSYRK(m,n,M) >
1√
2

m2n√
M

Proof. Consider the cDAG of the symmetric rank-k update operation, which has |S| =
m2n

2
vertices. According to Theorem 2, for any X, any sub-computation H of this cDAG

which reads at most X elements has size |H| 6
√

2
3
√

3
X

3
2 .

In particular, for X = 3M , we get |H| 6
√

2 ·M 3
2 . The value X = 3M is chosen to

obtain the strongest possible bound by maximizing the ratio |H|
X−M . According to Lemma 1,

the maximal operational intensity of the symmetric rank-k update is ρ = |H|
3M−M 6

√
M
2

.



This yields the following bound on the number of data accesses for the complete symmetric
rank-k update operation:

QSYRK(m,n,M) >
|S|
ρ

=
1√
2

m2n√
M

3.3.2 Cholesky Factorization

We now consider the Cholesky factorization, as described by Algorithm 16. As mentioned
above, we focus on the update operations, described by the set C = {(i, j, k) ∈ {1, . . . ,m}3 | i > j > k}.

For a given X, the largest subset H that accesses at most X elements can be found by
solving P(X), in which the constraint H ⊆ S is replaced by H ⊆ C. We consider a relaxed
version, in which the constraint is insteadH ⊆ C ′, where C ′ = {(i, j, k) ∈ {1, . . . , n}3 | i > j}.

Since C ⊆ C ′, the optimal value of this relaxed version is not smaller than the optimal
value of the original one. We can now remark that the relaxed version is a special case of
P(X) where n = m, so that we can directly apply Theorem 2, which leads to the following
corollary:

Corollary 3. The number of data accesses required to perform a Cholesky operation on
a matrix A of size m×m, with memory M , is at least:

QChol(m,M) >
1

3
√

2

m3

√
M
.

Proof. The cDAG of the Cholesky factorization contains |C| = m3

6
arithmetic opera-

tions (indeed only update operations). According to Theorem 2, for any X, any sub-

computation H of this cDAG which reads at most X elements has size |H| 6
√

2
3
√

3
X

3
2 .

As previously, we apply Lemma 1 to the case where X = 3M , and obtain that the
maximal operational intensity of the update operations in the Cholesky factorization is

ρ = |H|
3M−M 6

√
M
2

. Since a Cholesky factorization needs to perform all update operations,

this yields the following bound on the number of data accesses:

QChol(m,M) >
|C|
ρ

=
1

3
√

2

m3

√
M

3.4 Communication-Optimal Algorithms

In this section, we detail algorithms which perform the same arithmetic operations as
Algorithms 9 and 10 with an ordering that allows to achieve a higher operational intensity,
i.e. perform fewer I/O operations. We start by presenting an algorithm for the symmetric
rank-k update operation which we then use to design an algorithm for the Cholesky
factorization.



To ease the presentation of the algorithms, we index the matrices elements starting
from 0 instead of 1 as it simplifies the understanding of the modulo operation. Our
algorithms rely on existing out-of-core algorithms previously proposed by Béreux in [19].
More specifically we make use of the one-tile implementations of the symmetric rank-k
update, OOC SYRK 14, triangular solve, OOC TRSM 15, and left-looking variant of the
Cholesky factorization 16 as presented in Section 3.1.2. For conciseness, we denote them
respectively by OCS, OCT and OCC.

The analysis of communication cost in this section is asymptotic in the following sense:
we assume that M remains constant and that the sizes m and n of the matrices grow
without bounds.

3.4.1 TBS: Triangle Block SYRK

The proof of Theorem 2 shows that the largest operational intensity in the symmetric
rank-k update is achieved when computing the elements of C in a triangle T (`), which
is located at the top-left of matrix C. The result of Corollary 2 is tight if all, or at least
most, parts of the computation have the same operational intensity. But it is not clear
whether it is possible to tile the whole computation space with triangles. It is easy around
the diagonal, but what about the elements of the matrix away from the diagonal?

Algorithm 17: Pseudo-code of generic out-of-core SYRK algorithm

1 Partition C in blocks of size M
2 for each block B do
3 Load the corresponding elements of C in memory
4 for i = 0 to n− 1 do
5 Load the required elements of A[·, i]
6 Update block B with these elements

7 Remove block B from memory

Our algorithm uses the generic scheme described in Algorithm 17: store a block of
elements of the result matrix in memory, and iteratively load elements from A to update
this block. To maximize memory efficiency, it makes sense that blocks would contain
M elements. In the OOC SYRK algorithm proposed by Béreux, the blocks are squares
of
√
M ×

√
M , which is the optimal shape without data reuse; for example squares are

the optimal shape for the non-symmetric matrix multiplication. As mentioned above, in
order to match the lower bound for the symmetric rank-k update, we need to have blocks
shaped as triangles, up to row and column reordering: such blocks are triangle blocks
TB(R), as defined in Definition 3. Indeed, TB(R) is the set of indices of the elements of
C that can be updated with elements of A whose row belong in R.

We prove here that it is actually possible to tile almost all the result matrix C with
triangle blocks, each containing roughly M elements.



3.4.1.1 Partitioning the result matrix

We fix k such that M > k + k(k−1)
2

= k(k+1)
2

. This ensures that the memory can fit a
triangle of side length k from the result matrix C plus a vector of k elements of A used for
the update. It is the same principle as the OOC SYRK algorithm from Béreux, making
use of narrow-blocks of size k but used to update a block, i.e. the set of elements in
the memory, that is triangle-shaped rather than a square-shaped. Let us assume for the
moment that m = ck for some value c. We will see later that not all values of c are eligible,
and we will discuss how to choose an appropriate value. We decompose the result matrix
C in k(k−1)

2
square zones of size c × c. The rest of the matrix, k triangle-shaped zones

on the diagonal, will be considered later. In TBS, a block contains exactly one element
from each of these square zones, as depicted in Figure 3.1. For 0 6 i, j < c, we denote by
Bi,j the block which contains the element (i, j) of the top-most zone, which is the element
(i+ c, j) of the matrix C.

Let Ri,j be the row indices of block Bi,j. Since we search for blocks with one element
per zone, we can write

Bi,j = TB(Ri,j), with Ri,j =
{
u · c+ f i,j(u) | 0 6 u < k

}
(3.1)

where 0 6 f i,j(u) < c gives the position of the row of Bi,j within the u-th row of
zones, as can be observed on the left of Figure 3.2. To ensure that Bi,j contains (i+ c, j),
we just need to have f i,j(0) = j and f i,j(1) = i. We can thus specify our triangle blocks
with an indexing family :

Definition 5 (Indexing family). A (c, k)-indexing family is a family of functions f i,j(u),
defined for (i, j) in {0, . . . , c− 1}2, with:

f i,j : {0, . . . , k − 1} 7→ {0, . . . , c− 1}
∀i, j, f i,j(0) = j and f i,j(1) = i

To enforce the validity of the algorithm, triangle blocks Bi,j must not overlap. If two
functions f i,j and f i

′,j′ are equal for two different values u and v, the corresponding blocks
Bi,j and Bi′,j′ have two row indices in common and as can be seen on Figure 3.1, these
blocks are not disjoint. We thus need to consider valid indexing families:

Definition 6 (Validity). A (c, k)-indexing family f is valid if

∀u 6= v,

{
f i,j(u) = f i

′,j′(u)

f i,j(v) = f i
′,j′(v)

=⇒ i = i′ and j = j′.

It turns out that this condition is sufficient to ensure no collisions:

Lemma 6. If f is a valid (c, k)-indexing family, then the sets Bi,j defined in Equation 3.1
are pair-wise disjoint.



c

m = ck

4 triangle blocks

the corresponding row indices

a c by c square zone

two triangle
blocks with two
common row in-
dices (?) overlap

?

?

Figure 3.1: Zones and blocks in the TBS algorithm. Each block has one element in each
zone.

u = 0

u = 1

u = 2

u = 3
f(3) = 2

f(2) = 1

f(1) = 4

f(0) = 3

ck

l = m− ck OOC SYRK

Triangle blocks

Recursive calls

Figure 3.2: Left: f i,j(u) gives the position of the row of Bi,j within the u-th row of zones.
Right: which parts of the matrix C are computed by which method in the TBS algorithm.



Proof. We prove the contrapositive of this statement: if two Bi,j sets are not disjoint,
then f is not valid. Indeed, let us consider two different pairs (i, j) and (i′, j′) such that
Bi,j ∩Bi′,j′ 6= ∅. There exist (u, v) and (u′, v′), with u 6= v and u′ 6= v′, such that:

uc+ f i,j(u) = u′c+ f i
′,j′(u′)

vc+ f i,j(v) = v′c+ f i
′,j′(v′)

Since the values of an indexing function are in {0, . . . , c− 1}, this implies u = u′ and
v = v′.

Thus, there exist u 6= v and i, j, i′, j′, with (i, j) 6= (i′, j′), such that f i,j(u) = f i
′,j(u)

and f i,j(v) = f i
′,j′(v): f is not valid.

This shows that using a valid indexing family allows to partition the square zones
from Figure 3.1 in disjoint triangle blocks. The remaining elements, from the triangular
zones close to the diagonal, can be computed by recursive calls to the TBS algorithm. We
thus require several valid indexing families for a fixed k and different values of c, since
the recursive calls will be made with different value of c. However, we see below that
we cannot obtain valid indexing families for all values of c, so we are not yet ready to
describe the complete algorithm.

3.4.1.2 Defining a valid indexing family

In this section, we show that it is possible to define a valid indexing family for some values
of c > k − 1. We do this using the simple modulo operation:

Definition 7. The cyclic (c, k)-indexing family is defined by:

f i,jc (u) =

{
j if u = 0

i+ j(u− 1) mod c if u > 0

Lemma 7. If c > k − 1 is coprime with all integers in {2, . . . , k − 2}, then the cyclic
indexing family fc is valid.

Proof. Consider any u, v ∈ {0, . . . , k − 1} with u < v, and assume that i, j, i′, j′ in
{0, . . . , c− 1} are such that f i,jc (u) = f i

′,j′
c (u) and f i,jc (v) = f i

′,j′
c (v).

We first prove j = j′. If u = 0, this is direct. Otherwise, we can write:

{
i+ j(u− 1) = i′ + j′(u− 1) mod c

i+ j(v − 1) = i′ + j′(v − 1) mod c

⇔

{
i− i′ = (j′ − j)(u− 1) mod c

i− i′ = (j′ − j)(v − 1) mod c



This implies:

(j′ − j)(u− 1) = (j′ − j)(v − 1) mod c

⇔ (j′ − j)(u− v) = 0 mod c

Since u < v, 0 < u, v 6 k− 1, we know that 0 < v− u 6 k− 2. From our assumption,
v − u is coprime with c, so we obtain j′ − j = 0 mod c, and thus j = j′.

Then, since i+ j(v− 1) = i′+ j(v− 1) mod c, we deduce i = i′ mod c. Since i, i′ are
in {0, . . . , c− 1}, we have i = i′.

We define the constant integer q as the product of all primes no larger than k − 2:
q =

∏
p prime,p6k−2 p. Then c is coprime with all integers in {2, . . . , k − 2} if and only if c

is coprime with q. Notice that q is constant: it only depends on k, thus on M , but not
on m or n.

Now that we know how to build valid indexing families, we are ready to describe
the TBS algorithm. However, with the constraints on c imposed by Lemma 7, it is not
possible to use triangle blocks on the whole matrix C. Instead, given a matrix size m, we
set c to be the largest number coprime with q such that c 6 m

k
. If the obtained c is lower

than k − 1, we can use the simple OOC SYRK with square blocks. Otherwise, c satisfies
the condition of Lemma 7, so we can use triangle blocks to compute the first ck rows of
C, and the OOC SYRK algorithm for the remaining l = m− ck rows, as it is illustrated
on the right of Figure 3.2. The resulting algorithm is called TBS and is described in
Algorithm 18.

3.4.1.3 Communication cost analysis

Let us first notice that the TBS algorithm loads each entry of C exactly once, even for
the elements computed with OOC SYRK, so loading these elements has a communication
cost of m2

2
. In the following, we denote by Q̃TBS (m,n) the communication cost of TBS

related to elements of A, for a matrix A of size m× n.
The definition of c yields m

k
= c+g, and we need an upper bound on g to estimate the

amount of work performed by OOC SYRK. It is easy to see that for any integer a, aq+ 1

is coprime with q. In particular,
⌊
m
kq

⌋
q + 1 is coprime with q, thus c >

⌊
m
kq

⌋
q + 1, and

g 6 q. Since q only depends on M and not on m or n, we get g = O(1). Even though q is
a constant, it may be considered very large relative to M . However, the bound g 6 q is
very pessimistic: sieve methods allow to show that the number of integers coprime with
q in any interval {(a − 1)q, . . . , aq − 1} is exactly

∏
(p − 1), where p spans the prime

numbers below k − 1 (see Example 1.5 in [38]). In practice, one can expect the value of
g to be much lower than q.

We first consider the elements computed with the TBS algorithm, i.e. in the first ck
rows. There are c2 triangle blocks, and each triangle block loads kn elements of A. This
yields a communication cost Q1 = c2kn, and with c 6 m

k
, we obtain Q1 6 m2n

k
.

Elements computed with OOC SYRK (in the last l = gk rows) are computed by square√
M ×

√
M blocks, and each block loads 2n

√
M elements from matrix A. Since there are

at most gkm such elements, this yields a communication cost Q2 6
gkm
M
·2n
√
M = O(mn).



Algorithm 18: TBS, Triangle Block SYRK algorithm

Input: (A, C): A is m× n and C is m×m symmetric
Output: (C): such that C += A ·AT

Assumes: memory of size M = k(k+1)
2

1 q ← product of all primes in {2, . . . , k − 2}
2 c← the largest integer coprime with q below m

k

3 l← m− ck
4 if c < k − 1 then c is too small
5 OOC SYRK (A,C);
6 else
7 Use OOC SYRK to compute the last l rows of C
8 for i = 0 to k − 1 do recursive calls for triangular zones
9 R← {ic, . . . , (i+ 1)c}

10 TBS(AR,·,CR,R)

11 for (i, j) ∈ {0, . . . , c− 1}2 do loop over all blocks
12 R← {ru = uc+ f i,jc (u) | 0 6 u < k} see Def. 7
13 Load the elements of C indexed by TB(R)
14 for i = 0 to n− 1 do loop over columns of A
15 Load elements of A indexed by {(r, i) | r ∈ R}
16 for u = 0 to k − 1 do loops over elements
17 for v = 0 to u− 1 do of the block
18 Cru,rv += Aru,i ·Arv ,i

Adding the elements covered by the recursive calls, we get:

Q̃TBS (m,n) 6
m2n

k
+ kQ̃TBS

(m
k
, n
)

+O(mn)

We can iteratively apply this inequality t times, where t is the smallest integer such
that m

kt
< k − 1. We thus have kt−1 < m

k
, and t = O(log(m)). Then we get:

Q̃TBS (m,n) 6
t∑
i=1

m2n

ki
+ ktQ̃OCS (k, n) + t · O(mn)

6
∞∑
i=1

m2n

ki
+m · k

2n√
M

+O(mn log(m))

6 m2n(
1

1− 1
k

− 1) +O(mn log(m))

6
m2n

k − 1
+O(mn log(m))



Remember that k is defined by M = k(k+1)
2

, so that k − 1 '
√

2M .

In total, with the communications required to load elements of C, we get:

Theorem 3. The total communication cost QTBS (m,n) of the TBS algorithm for a matrix
A of size m× n, with a memory of size M , is bounded by:

QTBS (m,n) 6
1√
2

m2n√
M

+
m2

2
+O(mn log(m))

3.4.2 LBC: Large Block Cholesky

The lower bound detailed in Section 3.3.2 is based on the idea that the Cholesky fac-
torization generates at least as many data transfers as the symmetric rank-k update
operation. Since the TBS algorithm performs the symmetric rank-k update with the
minimum amount of I/O operations, the idea is to use it for the largest possible part of
the computation of the Cholesky factorization.

3.4.2.1 Algorithm description

We implement this strategy in the Large Block Cholesky (LBC) algorithm. It is a right-
looking, blocked algorithm which performs the Cholesky factorization of any input sym-
metric positive definite matrix A making use of OOC CHOL, OOC TRSM and TBS
algorithms. Note that it would be possible to use a recursive call to LBC instead of
OOC CHOL to perform the factorization, line 3 in Algorithm 19, since LBC performs
fewer transfers. However, it turns out that the successive Cholesky factorizations of
AI0,I0 do not contribute to the higher order term, so we choose to keep OOC CHOL to
simplify the presentation. LBC modifies A in-place to yield a lower triangular matrix L
as output such that A = L ·LT. The steps of the procedure are detailed in Algorithm 19
and described Figure 3.3.

Algorithm 19: LBC, Large Block Cholesky algorithm

Input: (A): A is m×m symmetric positive definite
Input: b: block size
Output: (L): such that A = L · LT

Assumes: b|m
Output: L: m×m lower triangular matrix s.t. A = L · LT

1 for i = 0 to bm
b
c do

2 I0 = {i · b, . . . , (i+ 1) · b}
3 AI0,I0 ← OOC CHOL (AI0,I0)
4 if (i+ 1) · b < m then
5 I1 = {(i+ 1) · b, . . . ,m}
6 AI1,I0 ← OOC TRSM (AI0,I0 ,AI1,I0)
7 AI1,I1 ← TBS (AI1,I0 ,AI1,I1)
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Figure 3.3: Algorithm LBC: updating the three parts of A at iteration i

LBC is a so-called right-looking variant of the Cholesky factorization. At each itera-
tion, the final values of the two leftmost panels AI0,I0 and AI1,I0 are computed; AI1,I0 is
then used to update the right panel AI1,I1 whose values are still temporary. By contrast,
left-looking variants perform all the update operations of a given value of A one after the
other, allowing to write each element only once.

Right-looking implementations of the Cholesky factorization are known to perform
more I/O operations than their left-looking counterparts, because the lower right panel
AI1,I1 needs to be reloaded at each iteration, so as to be updated using a symmetric
rank-k update operation. Nevertheless, this overhead can be rendered negligible. Indeed,
the main point of LBC is to use large enough blocks of size

√
m, so that the number

of iterations is low (
√
m): then, the communication volume induced by loading AI1,I1

remains negligible compared to the one required to update its values.

3.4.2.2 Communication cost analysis

Let us now analyze the total number of I/O operations required by the LBC algorithm on
an m×m matrix A; it is denoted QLBC (m). As mentioned above, we get from [19] that
QOCT (m,n) = m2n√

M
+ O(mn) and QOCC (m) = m3

3
√
M

+ O(mn). Furthermore, as detailed

in Section 3.4.1, we also know that QTBS (m,n) = 1√
2
m2n√
S

+ m2

2
+O(mn log(m)). Then:
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Since 0 < b < m, O(b2) = O(m2).
Besides:

m
b∑
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O(b2i log(ib)) 6

m
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b
O(mb log(m)) = O(m2 log(m))

The number of data transfers necessary to perform algorithm LBC is therefore:
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As previously discussed the volume of data transfers induced by loading AI1,I1 at each
step (4) clearly becomes dominant if b is a constant. On the other hand, if the chosen value
for b is of order m, the communications required to perform all triangular solve operations
(2) becomes dominant. Hence, to ensure that the volume of data transfers used for AI1,I1

update (3) is the only dominant term in the formula, we choose to implement LBC using
b =
√
m as block size. Then:
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Theorem 4. The total communication cost QLBC (m) of the Large Block Cholesky algo-
rithm for a matrix A of size m×m, with a memory of size M , is bounded by:
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2 )



3.5 Conclusion

In this chapter we have explored the complexity in terms of communication of two classical
operations, the symmetric rank-k update and Cholesky factorization. We carried out a
thorough study of the minimum data movements required to perform those operations in
the out-of-core setting using a careful application of a technique by Kwasniewski et al. [57]
and derive new bounds. In addition, we proposed two out-of-core algorithms, Triangle
Block SYRK (TBS) and Large Block Cholesky (LBC), that match the newly derived
bounds. By doing so, we provide a definitive answer to the asymptotic communication
complexity of both operations: the maximum operational intensity is ρ 6 1√

2

√
M and

it is reached by TBS and LBC algorithms, thus achieving explicit optimality regarding
communications. Table 3.1a summarizes the expressions in terms of total communication
volume of this bound and TBS and LBC algorithms. The main lesson of this work is that
the symmetric nature of the symmetric rank-k update and Cholesky factorization can
actually be taken advantage of. Hence their operational intensity are intrinsically higher,
which implies that they require fewer communications, than those of their non-symmetric
counterparts, namely matrix multiplication and LU factorization. The sequential algo-
rithms developed for the out-of-core setting provide insights about how to make use of
the symmetry to reach the highest possible operational intensity: the general idea is to
perform updates of zones that are triangle shaped in order to benefit from the symmetry
of the input. Indeed, this guides the elaboration of the partition of C into triangle blocks.

The two newly established lower bounds can be extended to the parallel and dis-
tributed setting assuming that the total available memory is proportional to the size S
of the input matrix, i.e. M = O( S

P
), as mentioned in Section 2.1.1 under the term of

memory scalable assumption. Hence, the quality of such a type of parallel algorithms re-
garding communications when performing either a symmetric rank-k update or Cholesky
factorization can be assessed against this bound. The static data distribution Symmet-
ric Block Cyclic (SBC), presented in Section 2.2.1, is a good candidate to get closer to
optimality for both operations. It reduces the communication volume compared to BC
and thereby achieves higher performance. As it is a cyclic balanced distribution, it com-
plies with the memory scalable assumption. However, there remains a factor of

√
2 for

symmetric rank-k update, respectively 3√
2

for Cholesky factorization, between the lower
bound and the communication volume generated by SBC. Results for the parallel setting
are available in Table 3.1b.

In the case of Cholesky factorization, a fraction of the gap between the lower bound
and the communication volume achieved by either BC or SBC distributions actually comes
from the fact that they are static distributions, and is entirely independent from their
characteristics. To illustrate it, let us analyze the value of the operational intensity of SBC
over two particular sets of tasks. Let us first consider all the tasks associated with the first
iteration of the Cholesky factorization algorithm: it corresponds to 1

2
m2
b tasks and, using

SBC distribution with an r× r pattern, requires to transfer rmb tiles. Asymptotically, it

yields the following value of operational intensity: ρ1st =
m2
b

2rmb
∼

P→+∞
1

2
√

2

mb√
P

. Since the

data stored on each node is M =
m2
b

2P
, it gives: ρ1st = 1

2

√
M . However, as the factorization

progresses, the trailing sub-matrix over which the computations are performed shrinks.



Hence, part of the data stored by each node is no longer used for the computations, and
thus the operational intensity decreases. Indeed, when considering the entire operation,
the total number of tasks is 1

6
m3
b and the communication volume generated by SBC is

1√
2
m2
bP . This yields a value of the operational intensity: ρglobal = 1

3

√
M . We can observe

that the intrinsic operational intensity of the SBC strategy, which would apply if the
operation was executed in the out-of-core setting, is 1

2

√
M but is reduced by a factor of

2
3

when considering the parallel and distributed execution of the operation. The same
reasoning applies to any static distribution and illustrates the inevitable loss of efficiency
of such type of solution for operations performed over a shrinking domain.

The optimality result in the case of the out-of-core model presented in this chapter
along with the SBC distribution for the parallel and distributed setting establish a new
standpoint for the problem of communication minimization for the symmetric rank-k
update and Cholesky factorization in the dense case. It brings a better understanding
of the mechanisms underlying data reuse in symmetric operations and provides a solid
foundation for subsequent development of theoretical bounds and communication avoiding
algorithms. Several promising research directions are therefore open from here on.

• In the context of out-of-core execution, the lower bound on the communication
volume may be extended to other linear algebra operations which feature symmetric
input or use the same input multiple times. Algorithms achieving explicit optimality
based on TBS may be elaborated.

• The techniques developed in the case of out-of-core execution may be used as build-
ing principle for communication efficient algorithms in a parallel and distributed
setting. In particular, triangle blocks as defined in TBS algorithm may be used as
building elements to design static data distribution that generate fewer communi-
cations than SBC.

• In the parallel and distributed context, for the symmetric rank-k update and Cholesky
factorization, the key characteristics that define the quality of a static distribution
regarding the communication volume it generates is the number of different nodes
in the union of each row and its associated column, i.e. with the same index. It
is the number of different nodes on each row and each column independently, for
the non-symmetric version of those operations, namely the matrix multiplication
and LU factorization. Hence, another direction of research may be to try designing
distributions that feature as few different nodes as possible in the union of row and
colum, respectively row and column independently for non-symmetric operations.
This criterion may then be a relevant objective function to search for communi-
cation avoiding data distributions whereas allowing a large flexibility regarding all
other characteristics.

• The data distributions elaborated to limit communications in the dense case may
be extended to sparse or compressed matrices. In those cases, the workloads associ-
ated with the tasks are heterogeneous therefore requiring to take into account load
balancing along with communication reduction in the design of static distributions.



The techniques used to develop TBS in the out-of-core context and SBC in the par-
allel and distributed setting may be adapted to tackle such type of multi-objectives
problems.

In the remaining of this work, we focus on two potential ways to extend the results and
techniques obtained so far. Chapter 4 presents strategies to design data distributions for
the matrix multiplication and LU factorization in the case of compressed matrices. Using
the criterion based on the number of different nodes per row and column, we develop
data distributions that trade additional communications to improve the load balancing
compared to plain BC distribution. Chapter 5 is dedicated to the extension of the BC
distribution, on one hand, for matrix multiplication and LU factorization, and of SBC,
on the hand, for symmetric rank-k update and Cholesky factorization. The objective is
to develop data distributions that generate as few or even fewer communications than BC
and SBC but can make an efficient usage of any number of nodes.
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Table 3.1: Summary of the total communication volume for the symmetric rank-k update
and Cholesky factorization: theoretical lower bound and value achieved by the algorithms





Chapter 4

Communication Aware Allocation
Strategies in Block Low Rank
Context

4.1 Introduction

The conclusions of Chapters 2 and 3 provide a thorough insight of the communication
minimization problem, especially for symmetric operations. This defines a clear view
of the quality of existing algorithms regarding communication reduction in the dense
case for both out-of-core and parallel and distributed settings. It is therefore natural to
try extending these developed techniques to other configurations. In particular, sparse
and compressed matrices are classical solutions to reduce the memory footprint of linear
algebra operations and limit the impact of communications in parallel and distributed
settings. Those configurations are of high interest as operations using such matrices
are commonplace in practical applications [8, 63, 65]. Hence, it is crucial to apply the
communication reduction techniques developed in the dense case to the design of data
distributions for such types of matrices. Operations applied to sparse matrices are nev-
ertheless very different from dense versions: since large parts of input matrices are zeros,
the set of computations of a given operation completely changes from its dense version
as most arithmetic operations can be omitted. The techniques elaborated in the dense
case therefore cannot be easily adapted to this configuration. The operations applied to
compressed matrices require the same set of tasks than in the dense case, though the
performance of each varies according to the local compression level of the data to which it
is applied. We thus aim at designing algorithms to reduce communications for operations
on compressed matrices, based on extensions of the techniques elaborated in the dense
case, in particular in parallel and distributed settings.

The compression of data however introduces additional complexity to the communica-
tion minimization problem since: (i) communication costs are then heterogeneous and (ii)
the performance of a kernel is expected to vary according to the level of compression of the
data handled. Then a new problem arises because minimizing the total communication
volume can alter the load balancing between nodes and thus degrade the overall perfor-
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mance. Therefore optimizing the performance of the distributed execution of an operation
in this context implies finding a trade-off between the two objectives, load balancing and
communication reduction, which is a difficult problem.

In this chapter we consider two linear algebra operations, the matrix multiplication
and LU factorization, performed in a parallel and distributed memory setting using P
identical nodes. They can be seen as the non-symmetric versions of the symmetric rank-k
update and Cholesky factorization already studied. As in the previous Chapter 2, we
assume that input and output matrices are tiled and that the execution of the operations
is tiled-based, complying with the owner computes rule, i.e. we investigate static data
distributions. Besides, we consider that input data matrices are compressed using the
Block Low Rank (BLR) format on each tile; heterogeneous compression level between
tiles having an impact on the execution efficiency of tasks. In this context, our general
goal is to design 2D data distributions that take into account the heterogeneity introduced
by BLR compression in order to address the communication versus load balancing trade-
off. These distributions should be able to:

• balance the load between the different nodes, knowing the workload associated with
each tile and related to the rank of its low-rank decomposition in the BLR format.

• minimize communication volume between nodes.

The quality of a data distribution is assessed according to its overall performance,
measured via the total running time of the operation. When talking about workload we
thus actually consider the cumulated execution time of tasks according to the performance
model detailed in Section 4.3.3.

In the following, we define a general strategy to elaborate data distributions that trade
additional communications for improved workload balance among nodes. We propose two
heuristics based on this strategy that provide data distributions that ensure load balancing
and meet some constraints on the maximum number of different nodes on each row and
column:

• Block Cyclic Extended (BCE) is an extension of Block Cyclic (BC) allowing more
flexibility by using a repeated pattern in which each node can appear several times;

• Random Subsets (RSB) is a heuristic that directly provides a complete distribution
for the whole matrix using subsets of nodes randomly built in a previous step.

For the two considered operations, we compare the performance of the distributions
provided by BCE and RSB to BC. Experimental results show that both BCE and RSB
perform significantly better than BC in all cases. RSB consistently achieves better load
balancing than BCE and BC. However for LU factorization which features numerous task
dependencies, the best gain in terms of total running time goes either to BCE or RSB
depending on the configuration of the test case, in terms of problem size compared to
the number of nodes, and in terms of constraints on the maximum acceptable number of
communications.



The rest of the chapter is organized as follows: in Section 4.2, we review the related
work regarding tile-based data compression methods, heterogeneous partitioning problems
arising in linear algebra and we provide some examples of practical solutions used to deal
with compressed matrices from an applied perspective. Then we define some notations and
detail the linear algebra operations we are considering in Section 4.3. We also formalize
the BLR format, present a simple performance model for tasks on compressed tiles and
detail the metrics used to evaluate the quality of data distributions. Finally we describe
the load balancing versus communications trade-off, derive an optimization problem for
obtaining efficient data distributions and point out connections to existing bin packing
variants studied in the literature. In Section 4.4, we detail BCE and RSB heuristics to
solve the constrained allocation problem. The experimental framework and a comparison
of each distribution scheme relative performance is described in Section 4.5. Finally, a
more in-depth analysis of the behavior of BCE is provided in Section 4.6 along with a
discussion about practical issues of using such data distribution heuristics.

4.2 Related Work

4.2.1 Data Compression

Reducing the size of data handled when executing a distributed algorithm is a way to limit
the cost of communications. In the context of linear algebra operations, several approaches
have been proposed to store data using the opportunity of representing the matrices in
a compressed form. For example, the H-matrix representation introduced in [48] is now
widely used to reduce storage costs and also execution time significantly, when the matrix
can actually be compressed. For instance, it is known [44] that in the context of LU
factorization, the number of floating point operations can be reduced from Θ(2

3
m3) to

Θ(mk2 log2(m)), where k is a parameter that represents the compression that can be
achieved. Similar results have been proved in [7] for semi-separable matrices. Recently,
these techniques have also been extended to sparse matrices, for example in [37,63].

Complementary approaches have been proposed to avoid issues related to complex
and irregular data accesses induced by H-matrix representation. In Block Low Rank
(BLR) decomposition, matrices are regularly tiled and, when compression is possible,
the data of each tile is approximated using a low-rank decomposition. This technique
is detailed in Section 4.3.2. BLR decomposition has been advocated for instance for
multi-frontal methods in [8, 60] or finite-element matrices in [9]. Another approach is
lattice H-matrices presented in [51,70]. The work in [28] follows the same line of research.
In all cases, the idea is to increase simplicity and to keep a high compression ratio,
even at the price of a slightly higher flop complexity. Indeed, keeping the regular tiled
structure makes it possible to use runtime schedulers, that have proven their efficiency in
making use of heterogeneous resources (CPU cores, GPUs) at the level of a single node by
applying dynamic scheduling strategies [5], and achieving high performance in a parallel
and distributed context via task-based execution of the operations [4].



4.2.2 Heterogeneous Allocation Problems in Linear Algebra

The problem of designing alternative placement strategies has been considered in the
case of heterogeneous resources. In this framework, in the most general situation, P
processors are given with relative speeds v1, . . . , vP and the goal is to allocate tiles to
these different resources in a way that balances the load (each node receives a number of
tiles proportional to its speed) and minimizes the communication volume.

In the case of matrix multiplication, the original matrix is partitioned into P rect-
angles, whose areas are proportional to the relative speeds of processors, and such that
the sum of all rectangle perimeters is minimal. Indeed, using Cannon-type algorithms for
multiplying matrices, the volume of data exchanged by a node at each step is proportional
to the perimeter of its assigned area in the matrix . This approach was initially proposed
in [55] and [16]. It led to developments in two orthogonal directions, one concerned with
solving the optimal problem for a small number of resources [18,34,59] and the other con-
cerned with the design of approximation algorithms [17, 39, 61]. A survey on the results
obtained with these different approaches has been proposed in [15].

A closely related problem is the one of allocating a sparse matrix to a set of homoge-
neous processors in order to balance the load between processors while keeping a regular
allocation structure. It has been introduced by Manne et al. under the name of rectilin-
ear partitioning or generalized block distribution in [45] and is still the object of an active
literature, such as [71]. In rectilinear partitioning, the problem consist in partitioning the
rows and the columns into groups, the intersection between a group of columns and a
group of rows being in turn assigned to a given processor. In this context, the main goal
is to build groups such as the load, i.e. the number of non-zero elements allocated to a
processor, is well balanced.

Most of the work related to partitioning algorithms however focuses on the operation
of matrix multiplication with few exceptions that are interested in the LU factorization
for sparse matrices [63,65]. Besides, because of the difficulty of the problem when dealing
with heterogeneous resources and/or workloads, the developed solutions generally rely
on approximation algorithms that perform worse in the homogeneous case than 2D BC
distributions.

4.2.3 Applied Perspective

Compression techniques, such as BLR, are actually used in several scientific applications
where the reduction of very large input data is necessary to allow reasonable execution
time. In [12] for example, the Boundary Elements Method (BEM) is applied to the surface
of an aircraft to model the propagation of electro-magnetic waves. It yields a symmetric
linear system, equivalent to a matrix, whose values represent the interactions between any
pair of elements. Since far-field interaction are weak, the resulting matrix features off-
diagonal regions which can be compressed using BLR format. The authors then propose
an implementation for a distributed memory platform to perform the Cholesky factoriza-
tion of the matrix using plain BC method for the distribution of tiles to the computing
nodes.



In the field of weather forecast, maximum-likelihood estimation method also requires
the solution of large scale linear systems, as illustrated in [1] The authors tackle the
problem using Cholesky decomposition of a matrix whose tiles are compressed using
BLR. A similar technique is applied to LU factorization in [6] to study the propagation
of sound waves on the surface of 3D objects. Both implementations make use of a hybrid
data distribution method based on BC and detailed in [27]: since full rank diagonal tiles
are not compressed, and therefore associated with longer execution time, they are treated
specifically to ensure a better load balancing between nodes in a distributed setting.
Diagonal tiles are distributed in a round robin fashion while a plain BC distribution
scheme is applied for off diagonal ones.

4.3 Problem Description and Modeling

4.3.1 Communication Scheme of the Operations

The tiled version of the operations considered in this chapter, the matrix multiplication
and LU factorization, are presented in Section 1.1.2.4 and reminded here in Algorithms 20
and 21. To analyze their communication scheme, we follow the same methodology as
detailed in Section 2.2.2 for the Cholesky factorization: considering the data dependencies
implied by each type of task in the algorithm, we count the number of different nodes to
which each tile need to be sent. This allows to determine which type of tasks is responsible
for the dominant part of the communication volume.

4.3.1.1 Matrix Multiplication

Algorithm 20: Tiled matrix multiplication algorithm (GEMM)

Input: (C, A, B): C is mb × nb, A is mb × kb, B is kb × nb
Output: (C): such that C = C + A ·B

1 for k = 1 . . . kb do
2 for i = 1 . . .mb do
3 for j = 1 . . . nb do
4 GEMM(i, j, k): GEMM(C(i, j),A(i, k),B(k, j))

Matrix multiplication algorithm computes the matrix product C = C + A · B. It
only makes use of GEMM type of task and is completely parallel since there are only
dependencies between two successive GEMM applied to the same tile, i.e. for each (i, j) ∈
{1, . . . ,mb}×{1, . . . , nb} and k ∈ {2, . . . , kb}, the task GEMM(i, j, k− 1) is a parent task
for GEMM(i, j, k), because they modify the same tile C(i, j). Data dependencies can be
summarized as follows:

1. each tile A(i, k), for (i, k) ∈ {1, . . . ,mb}×{1, . . . , kb} is used as input of GEMM(i, j, k),
for j ∈ {1, . . . , nb}, to update tiles C(i, j);



2. each tile B(k, j), for (k, j) ∈ {1, . . . , kb}×{1, . . . , nb} is used as input of GEMM(i, j, k),
for i ∈ {1, . . . ,mb}, to update tiles C(i, j).

Dependencies (1) imply that each tile A(i, k) is sent to all nodes owning tiles of C
on the same row i. Similarly, dependencies (2) imply that each tile B(k, j) is sent to all
nodes owning tiles of C on the same column j.

4.3.1.2 LU Factorization

Algorithm 21: Tiled LU factorization algorithm (LU)

Input: (A): A is mb ×mb

Output: (L, U): such that A = L ·U
1 for k = 1 . . .mb do
2 GETRF(k): GETRF(A(k, k))
3 for i = k + 1 . . .mb do
4 TRSM(k, i): TRSM(A(k, i),A(k, k))

5 for i = k + 1 . . .mb do
6 TRSM(i, k): TRSM(A(i, k),A(k, k))
7 for j = k + 1 . . .mb do
8 GEMM(i, j, k): GEMM(A(i, j),A(i, k),A(k, j))

9 L← lower-triangular part of A
10 U← upper-triangular part of A

For a given square matrix A, the LU factorization computes a lower-triangular matrix
L and an upper-triangular matrix U such that: A = L · U. The description of the
operation according to Algorithm 21 corresponds to the right looking variant as detailed
in [42]. Besides, we consider the version of LU factorization without pivoting. This
operation makes use of three types of task, namely GETRF, TRSM and GEMM. Data
dependencies can be described at each iteration step, line 1 of Algorithm 21, as follows:

1. each tile A(k, k), for k{1, . . . ,mb} is used as input of TRSM(i, k) and TRSM(k, i),
for i ∈ {k + 1, . . . ,mb}, respectively to update tiles A(i, k) and A(k, i);

2. each tile A(i, k), for i ∈ {1, . . . ,mb} is used as input of GEMM(i, j, k), for j ∈
{k + 1, . . . ,mb}, to update tiles A(i, j);

3. similarly each tile A(k, j), for j ∈ {1, . . . ,mb} is used as input of GEMM(i, j, k),
for i ∈ {k + 1, . . . ,mb}, to update tiles A(i, j).

Dependencies (1) imply that each tile A(k, k) is sent to all nodes owning tiles of A
on the row k and column k. Dependencies (2) imply that each tile A(i, k) is sent to all
nodes owning tiles of A on the same row i. Similarly, dependencies (3) imply that each
tile A(k, j) is sent to all nodes owning tiles of A on the same column j.



4.3.2 Block Low Rank Compression

The BLR format is based on a low rank approximation of individual tiles. According to
the considered application, some tiles of the input matrix, especially off-diagonal ones,
generally correspond to far field interactions that can be approximated or even omitted
without degrading too much the linear system representation of the underlying physical
model. Such tiles, if considered compressible, can be approximated using a truncated
version of their Singular Value Decomposition (SVD). More precisely, let us assume that
tile A(i, j), (i, j) ∈ {1, . . . ,mb}2 of matrix A is considered compressible, then there exists
ri,j ∈ {1, . . . , b} and two rectangular matrices Ui,j, Vi,j of size b × ri,j such that A(i, j)
can be approximated by the outer product of Ui,j and Vi,j:

A(i, j) ≈ Ui,j ·VT
i,j

The value of the approximation rank ri,j is tile dependent and is derived from the
accuracy required by the end user. It is selected according to the application. Generally
compression is applied to all off-diagonal tiles while diagonal ones are considered full rank
and not compressed at all.

The selection of a threshold for the rank of each compressed tile according to the ex-
pected accuracy of the end result is outside of the scope of our study. Extensive discussion
about this question can however be found in the literature. In the following, we assume
that the input matrix is provided in its compressed form and the rank for each tile is
known.

4.3.3 Performance Model and Evaluation Metrics

For each operation we are looking for data distributions D to P identical nodes. For the
LU factorization the distribution D applies to the input matrix A which is factorized.
For matrix multiplication, C += A · B, it applies to C while the distribution of A and
B may be different.

Let us introduce some additional notations:

• For each operation, we define I the set of valid tile positions of the output matrix:

I =

{
{1, . . . ,mb} × {1, . . . , nb} for matrix multiplication
{1, . . . ,mb}2 for LU factorization

• For (i, j) ∈ I, the set of valid iteration index for the tile in position (i, j) is denoted
Ki,j. It corresponds to the index of the outermost loop in the algorithm describing
the operation.

Ki,j =

{
{1, . . . , kb} for matrix multiplication
{1, . . . ,min(i, j)} for LU factorization

• For (i, j) ∈ I and k ∈ Ki,j, the task modifying the tile in position (i, j) at iteration

k is denoted T
[k]
i,j . In the following, we use the expression T

[.]
i,j = {T [k]

i,j : k ∈ Ki,j}.



• The type of operation, named after LAPACK terminology, associated with a task T
is denoted τ(T ). We define the simplified expression: τ(T

[k]
i,j ) = τ

[k]
i,j .

• Its execution time is denoted w(T ), for “working” time. Similarly, we define the

simplified expression: w(T
[k]
i,j ) = w

[k]
i,j .

In the BLR format, a compressed tile A(i, j) is approximated by the outer product of
two matrices Ui,j and Vi,j of size b× ri,j that can be considered tall and skinny, i.e. b�
ri,j. Operations performed using such approximation require fewer arithmetic operations
than if performed on uncompressed tiles and therefore have different execution times. In
order to reflect the variability of the execution time according to the compression, we use
a simple performance model based on the reasonable assumption: the more compressed
a tile is, the faster the execution of a task applied on it. Formally we assume that the
execution time of an operation performed on a compressed tile is proportional to its
compression ratio:

∀(i, j) ∈ I, ∀k ∈ Ki,j : w
[k]
i,j =

ri,j
b
C
τ
[k]
i,j

where CX represents the estimated execution time of the type of operation X when
performed on an uncompressed tile.

Because operations are performed according to the owner computes rule, it is useful
to exhibit the cumulated execution time associated with all the tasks applied to a single
tile, since they all are performed by the same node. Therefore we define the matrix W
of such cumulated execution time:

∀(i, j) ∈ I : W(i, j) =
∑
k∈Ki,j

w
[k]
i,j (4.1)

Note that we do not consider the phenomenon of “rank-filling”, i.e. the fact that tiles
become less and less compressed as tasks update their values, as it is very difficult to
predict and model. In our model, the rank of each tile remains unchanged over the entire
operation. In practice, to avoid a prohibitive increase in memory consumption during the
execution, this phenomenon is often dealt with by ad hoc re-compression strategies, using
a fixed number of updates or a maximum rank as threshold.

We consider the total running time to complete an operation using a given data dis-
tribution as the objective function to optimize. However, finding a closed form formula
to estimate the running time associated with a distribution is impossible in practice be-
cause it would require taking into account the evolution of the ranks of the tiles, the
communication costs including the contention on the communication medium and esti-
mating the overlap with computations. Hence to evaluate the quality of a distribution for
a given operation we use three different metrics that act as surrogate values for the ex-
pected achievable performance in terms of total running time, with increasing predictive
capacity.

1. B is the load balancing metric. It is a proxy to the total running time assuming
that the nodes are never idle and that communications can always be overlapped



with computations. For a given data distribution D, B(D) corresponds to the total
execution time associated with any node:

B(D) = max
p∈{1,...,P}

( ∑
(i,j)∈I
D(i,j)=p

W(i, j)

)

2. D is the no communication running time. It corresponds to the simulated
running time assuming that communications are instantaneous or can always be
overlapped with computations. However it takes into account the idle time that can
be induced by task dependencies. D(D) value is calculated using a simple discrete
events based algorithm where each node is fed by a queue of ready tasks, ordered
according to their priority. Task priorities are computed as the longest path in the
cDAG from this task to the end task, each edge being weighted according to the
estimated execution time of the origin task. The chosen implementation of this
algorithm allows preemption of incomplete tasks, so as to model a real task-based
scheduler behavior. Indeed, since a real task applied to a tile consists in many
arithmetic operations, stopping its execution at the end of one of these arithmetic
operations can be assimilated to the preemption of the task.

3. C is the simulated running time. It is the simulated total running time using
the communication model provided by SimGrid [29]. It takes into account the
communication time that cannot be overlapped by computations and the idle time
induced by task dependencies. This simulation is based on an actual implementation
in the Chameleon library, using the SimGrid based simulation backend of StarPU,
which allows to obtain realistic results.

4.3.4 General Problem Modeling: Load Balancing versus
Communication Trade-Off

Since D and C metrics require simulating the complete execution of an operation to be
evaluated they are not suitable as guiding criterion to search for data distributions. To
guide the search for efficient distributions we therefore make use of the load balancing
metric B which is straightforward to evaluate. The values D(D) and C(D) are never-
theless used to evaluate the quality of a distribution D for a given operation because
they give a more accurate estimation of the real total running time which is the objective
function.

Section 4.3.1 details the communication scheme associated with the parallel and dis-
tributed execution of matrix multiplication and LU factorization. For both operations,
the communications required to transfer the input of GEMM tasks represent the domi-
nant part of the total communication volume. Those types of communications imply that
each tile is sent to all nodes owning a tile on the same row and on the same column. We
can observe that this communication scheme corresponds to the non-symmetric version
of the Cholesky factorization, that is detailed in Section 2.2.2. The key difference is that,
in the symmetric case, the communication volume induced by a distribution is controlled



by the number of different nodes on each union of a row and its corresponding column
while, in the non-symmetric case, it depends on the number of different nodes on rows
and columns independently.

Therefore, we try to design data distribution that feature few different nodes on each
row and each column. More specifically a distribution D is considered valid if no more
than pmax different nodes are allocated on any row or any column. The formal optimization
problem we seek to solve can be stated as:

given a weight matrix W, a number of nodes P and an integer pmax 6 P

1. find a data distribution D of the output matrix A for LU factorization, C for matrix
multiplication, such that:{

(1) ∀i |{D(i, `) : (i, `) ∈ I}| 6 pmax

(2) ∀j |{D(`, j) : (`, j) ∈ I}| 6 pmax
(4.2)

2. which minimizes the load balancing metric B(D)

Given the communication scheme of matrix multiplication and LU factorization, and
according to the discussion in Section 1.1.2.3, the BC distribution using a square pat-
tern

√
P ×

√
P is the optimal solution to minimize the communication volume for those

operations. It can thus be considered as a limit case for the load balancing versus commu-
nication trade-off formalized above. Therefore, we carry out the analysis of the problem
in the heterogeneous case by defining the constraints (1) and (2) of System 4.2 as fol-

lows: let α ∈ [1; +∞[, then: pmax =
⌈
αd
√
P e
⌉
. α is parameter controlling the tightness

of communication restriction; α = 1 corresponds to the square BC distribution. In the
following, we assess this trade-off using several values for α = 2 or 3.

4.3.5 Bin Packing Problem Variant

The heterogeneity of task execution times when applied to low-rank compressed tiles
makes the load balancing versus communications trade-off particularly difficult to solve.
Indeed, the optimization problem as defined in the previous paragraph (4.3.4) can be
considered as a variant of the bin packing problem, where values of the matrix W are
weighted items to be associated with the different nodes, considered as bins.

The bin packing problem is known to be NP-hard, even in its most plain form. Includ-
ing additional constraints (1) and (2) of System 4.2 to limit the communication volume
leads to an even harder version of the problem. Those constraints actually reduce the set
of the feasible packings. Thus the problem we are considering can be seen as a generaliza-
tion of some related literature on bin packing: bin packing with class constraints [36, 54]
in which there is a limit to the number of classes allowed in a bin, and bin packing with
minimum color fragmentation [20] in which the number of bins containing a given class
is limited. Since we consider constraints on both rows and columns, our case is a two-
dimensional version of these problems. However the techniques developed in those papers
can not be generalized to our context.



The same modeling is directly applicable in the dense case. For pattern-based dis-
tributions, as considered in Chapter 2 and 5, the problem is simpler because balancing
the load is equivalent to balancing the number of positions in the pattern associated with
each node, as discussed in Section 1.1.2.3. However, when designing patterns where each
node may appear several times, we face a similar constrained bin packing problem with
items of identical weights. In Chapter 5 where such a strategy is proposed, the problem
is actually solved using a heuristic strategy, as here.

4.4 Data Distribution Schemes

In this section, we present the strategies developed to address the load balancing versus
communication trade-off, formalized as an optimization problem and detailed in Sec-
tion 4.3.4. For a given number of nodes P , a constraint parameter α and an input matrix
of cumulated workload W, the methods provide a data distribution D of the output
matrix which is feasible, in the sense that it respects the constraints of System 4.2, and
which is designed to minimize B(D), i.e. balance the workloads among nodes. We first
briefly review the Block Cyclic (BC) distribution in Section 4.4.1 to explain how it can be
adapted to heterogeneous tasks in the case of compressed matrices. In Section 4.4.2, we
consider a natural extension of the BC algorithm, called Block Cyclic Extended (BCE).
Variants of this scheme have been proposed in [21] for example, but we propose here a
formalization of its design and a simple algorithm to solve the associated optimization
problem. Finally, we propose a randomized strategy in Section 4.4.3, Random Subsets
(RSB), that does not rely on a repeated pattern.

Both BC and BCE distributions are based on a repeated pattern, denoted G of size
r × c. To ease the evaluation of the load balancing metric for those distributions, we
define the aggregated grid of workload, denoted W. It has the same dimensions as G and
depends on the input matrix of workloads W: the value at each position of W corresponds
to the total execution time of all tasks assigned to the node at the same position in G:

∀(k, `) ∈ {1, . . . , r} × {1, . . . , c} : W(k, `) =
∑

(i,j)∈I
k=i mod r
`=j mod c

W(i, j) (4.3)

The value of the load balancing metric is then:

B(D) = max
p∈{1,...,P}

( ∑
Gk,`=p

(k,`)∈{1,...,r}×{1,...,c}

W(k, `)

)

4.4.1 Block Cyclic

As already mentioned, BC distribution using a square pattern of size
√
P ×
√
P is optimal

for matrix multiplication and LU factorization regarding the generated communication
volume. However, in the case of heterogeneous tasks that we are considering in this
chapter, it no longer provides an optimal distribution regarding the load balancing among



nodes. Besides, the compressed matrices that we are considering typically come from
the discretization of physical equations in practice, as mentioned in Section 4.2.3. As
a consequence, they often feature full rank diagonal tiles, that are not compressed, and
low rank off diagonal ones, that are highly compressed. Hence, the workloads associated
with diagonal tiles are significantly larger that those associated with off diagonal ones.
To allow a better load balancing among all nodes in this situation, the shape of choice
for the pattern of BC distribution is such that |p − q| = 1 as it ensures a wide variety
of nodes present on the diagonal tiles. To compare our strategies to the best possible
variant of BC, we therefore carry out the experimental tests using values of P such that
P = p(p− 1).

4.4.2 Block Cyclic Extended

Since BC is optimal regarding communications but does not necessarily achieve a good
load balancing among nodes in the heterogeneous case, a quite natural idea is to relax
its characteristics regarding the number of different nodes on rows and columns, allowing
potentially more communications, so as to better control the load allocated to each node.
This strategy has already been proposed in [21] but with a non-optimal computation
algorithm. We formalize it here into a data distribution strategy called Block Cyclic
Extended (BCE). The key point of the method is to allow pmax >

√
P different nodes

per column and per row. As mentioned in Section 4.3.4, pmax is defined according to a

constraint tightness parameter α > 1: pmax =
⌈
αd
√
P e
⌉
. The whole BCE strategy is

then carried out following two steps:

1. For a given number of nodes P and parameter α, define a grid of dimensions (r, c)
with r = pmax and c the largest integer smaller than or equal to pmax such that P
divides rc. Then compute the aggregated grid of workload W of dimension (r, c)
according to Equation 4.3: the value associated with each position in W is the sum
of the workloads of all corresponding positions in W when replicating the grid over
the entire matrix.

2. Create a pattern G of dimensions (r, c) by allocating each position to a node based
on the aggregated workload values in W. The final distribution D of the output
matrix is then derived the same way as when using BC method, simply replicating
the pattern G over the entire matrix.

The whole process can be seen as a solution according to BC method using α2P
“virtual” nodes since G features approximately α2 times more positions than P . The
procedure is then completed by associating those virtual nodes with real ones.

Relaxing the constraint on the number of different nodes on rows and columns allows
many pairs of dimensions (r, c) for the pattern, thus leading to as many different feasible
distributions after step 2. One may expects that all of such potential dimensions are
worth testing. However, the matrix of cumulated workload W is obtained by aggregating
many values of execution times in W. Hence, the values in W are very homogeneous.
It is therefore very difficult to achieve a good load balancing between nodes in step 2 if
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Figure 4.1: Example of BCE allocation: P = 6, pmax = 4, G is 3× 4

not all of them are associated with the same number of positions in the pattern. It is
therefore very difficult to achieve a good load balancing between nodes in step 2 if not all
of them are associated with the same number of positions in the pattern. That is why we
select c as the largest possible integer such that P divides rc. This issue is discussed in
more details in Section 4.6.

Once the aggregated grid of workload W is calculated, building up the pattern G in
step 2 reduces to a well known scheduling problem: the makespan minimization problem
on P homogeneous machines, denoted P | |Cmax according to Graham notation (intro-
duced in [43], application can be found at [76]). This problem is also closely related to
the bin packing problem. In our context, each aggregated workload value in W must be
allocated to a node and the objective is to minimize the load of the most loaded one.
Several solution methods exist for such problem: exact ones such as Integer Linear Pro-
gramming, and approximated ones. With a naive formulation, the linear program which
has to be solved when using such exact method is quite large, featuring O(α2P ) variables
and O(α

√
P ) constraints, thus leading to long solution time. On the other hand, some

simple heuristics provide, in virtually no time, good quality approximated solutions to
this problem, though this should be tampered according to the specific cases mentioned
above. We chose to perform step 2 of BCE method using the Largest Processing Time
(LPT) greedy heuristic well known for its good average performance and its guaranteed
approximation ratio of 4

3
. Its implementation is detailed in Algorithm 22.

4.4.3 Random Subsets Algorithm

Both BC and BCE impose a very regular pattern for allocating tiles to nodes. This has
the advantage of allowing direct control of the number of nodes allocated to each row
and each column and ease of implementation. On the other hand, such a regular pattern
(i) imposes constraints on P because of the fixed size of the pattern and (ii) limits the
search for a well balanced solution since the complete distribution is build from a solution
of a restricted load balancing problem using W as input. BCE distribution is however
expected to limit those issues somewhat.

In the following we define another data distribution scheme called Random Subsets



Algorithm 22: Largest Processing Time algorithm

Input: P , W
Output: G, L

1 (r′, c′) are the dimensions of W.
2 Initialize the total load of each node: L(p) = 0, ∀p ∈ {1, . . . , P}
3 for (i, j) ∈ {1, . . . , r′} × {1, . . . , c′} considered in decreasing order of W(i, j) do
4 Find least loaded node: pleast = argmin

p∈{1,...,P}
(L(p))

5 Allocate node pleast to position (i, j): G(i, j) = pleast

6 Update the load of node pleast: L(pleast)← L(pleast) + W(i, j)

(RSB) which attempts to overcome those issues. The underlying idea in RSB is to step
away from distributions based on regular pattern replication and their inherent con-
straints, and try to apply the non expensive and relatively efficient LPT heuristic on
the whole matrix of cumulated workload W. However, trying to directly apply this
method to solve the load balancing problem under the constraints of System 4.2 may lead
to “dead end” configurations where the algorithm cannot complete the allocation process
because the selection of any node would increase the number of different nodes per row
and column beyond the constraint limits. An illustration of such a configuration can be
seen on Figure 4.2. The probability of the algorithm getting stuck in such configuration
dramatically increases with the size of the problem mb and the number of processors P .
Because of the highly combinatorial nature of the problem, backtracking to the last feasi-
ble configuration in order to continue the exploration of the solution space would lead to
prohibitively long resolution time. Hence direct application of LPT is unusable in practice
for almost all use cases.
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Figure 4.2: Example of “dead end” configuration (mb = 8, P = 6, pmax = 3)

To circumvent this problem RSB method is based on predefined subsets of nodes



associated with either rows or columns. Nodes allocated on each row, respectively column,
all belong to one subset. Those subsets have the following properties:

1. each has no more than pmax elements;

2. each row, respectively column, subset is compatible, i.e. has a non empty intersection
with each column, respectively row, subset.

Using row and column subsets, a modified version of LPT can be applied to directly al-
locate nodes to tiles of the output matrix. This greedy heuristic, detailed in Algorithm 23,
necessarily provides a feasible distribution.

Having available row and column subsets of nodes is a prerequisite to the above men-
tioned heuristic. Finding subsets featuring the required properties (1) and (2) in a de-
terministic way seems at least tedious for small use cases and extremely challenging for
large values of P . Therefore, in the practical implementation of RSB we chose to generate
those subsets using a randomized strategy.

More precisely, we select a number Q of row and column subsets that needs to be
created, along with K > 1, the minimum accepted intersection size between any two row
and column subsets. Then the subsets are generated using random sampling according
to the procedure described in Algorithm 24.

This process produces the two necessary families of row (R) and column (C) subsets of
nodes which feature the desired properties (1) and (2). Although quite straightforward,
the subsets generation procedure may require a long time to complete due to the fact
that, given the R family of row subsets, each randomly sampled column subset C is tested
against a compatibility criterion, line 5 of Algorithm 24, that, if not met, imposes to re-
sample C thus lengthening the execution. The procedure can be tuned by using different
numbers of row and column subsets to accelerate the generation process. However this
would make the following statistical analysis more complex. Using the same number of
row and column subsets, the difficulty to sample a suitable C subset can then be linked
to the input parameters Q and K values.

Assuming, for each subset, unbiased and independent samplings of nodes according
to a uniform probability distribution, the probability of C being compatible with each
subset in R is:

Pr({R1 ∩ C > K}; ...; {RQ ∩ C > K})

which reduces to:

Pr({R ∩ C > K})Q (4.4)

since all subsets are supposed identically and independently sampled, R being any
of the row subsets in family R. This probability can be calculated from the following
expressions:

Pr({R ∩ C > K}) = 1−
∑

k∈{0,...,K−1}

Pr({R ∩ C = k}) (4.5)



Algorithm 23: Random Subsets greedy algorithm

Input: P , W, R = {R1, ..., RQ}, C = {C1, ..., CQ}
Output: D, L

1 Initialisation
2 Total load for each node: L(p) = 0, ∀p ∈ {1, . . . , P}
3 Initially empty mb ×mb mapping of tiles: M
4 Initial set of usable subsets for each row: Ri = R, ∀i ∈ {1, . . . ,mb}
5 Initial set of usable subsets for each column: Cj = C, ∀j{1, . . . ,mb}
6 Initial set of usable processors for each position:
Pi,j = {1, . . . , P}, ∀(i, j) ∈ {1, . . . ,mb}2

7 Initial list of tiles to allocate: B = {(i, j) : ∀(i, j) ∈ {1, . . . ,mb}2}
8 Allocation

9 while B 6= ∅ do
10 Get the heaviest tile’s position to allocate: (i, j) = argmax

(i,j)∈B
(W(i, j)),

w = W(i, j)
11 Remove it from the list: B ← B \ {(i, j)}
12 Find least loaded processor among usable ones: pleast = argmin

p∈Pi,j
(L(p))

13 Allocate processor pleast to position (i, j): D(i, j) = pleast

14 Update the load of processor pleast: L(pleast)← L(pleast) + w
15 Update the set of still usable subsets on row i:
16 for R ∈ Ri do
17 if ∃ p ∈ {D(i, `) : ` ∈ {1, . . . ,mb}} : p 6∈ R then
18 Ri ← Ri \R

19 Update the set of still usable subsets on column j, Cj, the same way as Ri

20 Update the sets of still usable processors on row i:

∀` ∈ {1, . . . ,mb} : Pi,` =
(
∪R∈Ri R

)
∩ C` Pi,` 6= ∅ because subsets are

compatibles
21 Update the sets of still usable processors on column j:

∀k ∈ {1, . . . ,mb} : Pk,j =
(
∪C∈Cj C

)
∩Rk

22 for (k, `) ∈ B such that |Pk,`| = 1 do
23 Allocate the only possible processor p ∈ Pk,` to position (k, `): Mk,` = p
24 Update its load: L(p)← L(p) + W(k, `)
25 Remove position (k, `) from B: B ← B \ {(k, `)}



Algorithm 24: Subsets Generation algorithm

Input: P , pmax, Q, K
Output: R, C

1 Randomly sample Q sets of pmax indices among {1, . . . , P} without replacement;
they are the row subsets {R1, ..., RQ} gathered in R = {R1, ..., RQ}

2 Initialize the family of column subsets: C = ∅
3 while |C| < Q do
4 Randomly sample a subset C of pmax indices among {1, . . . , P} without

replacement
5 if C is compatible: ∀i ∈ {1, . . . , Q} : |C ∩Ri| > K then
6 Add C to the family of column subsets: C ← C ∪ {C}

and:

Pr({R ∩ C = k}) =
∑

16`1<...<`k6P

[( k∏
t=1

pmax

P − `t + 1

)
×
( pmax∏

`=1
` 6=`1,...,` 6=`k

1− pmax

P − `+ 1

)]
(4.6)

On the one hand, parameters Q and K can be selected so that this probability is large
enough to ensure that the subsets generation process is “easy”. Given a target lower
bound 0 < η < 1 for this probability, the number of subsets in each family must not
exceed:

Q 6 b log(η)

log(Pr({R ∩ C > K}))
c (4.7)

On the other hand, the value of Q must ensure a sufficient expected number of oc-
curences of each node in the subsets so that the variety of nodes allows the subsequent
allocation process using RSB algorithm to provide a good load balancing. For instance,
requiring an average of β > 0 occurences of each proc in the subsets imposes to select Q
such that:

Q >
βP

pmax

(4.8)

In turns, this leads to a probability of a successful column subset sampling η:

η 6 Pr({R ∩ C > K})
βP
pmax (4.9)

There is therefore a trade-off to handle between the number of subsets and the sampling
difficulty and associated generation time. However, the generation process is only specific
to a pair of (P, α) parameters but not to the matrix size.

In the following experiments, for each (P, α) pair, subsets are generated using the
value of parameter Q derived form Equation 4.8 with β = 10, and simply K = 1. 10



families (R, C) are generated using those parameters and for each test case, resolutions
are performed using each of the 10 families of subsets. The best result according to the
load balancing metric B is kept as final result for the test case.

The RSB algorithm, derived from the LPT heuristic, is expected to have good perfor-
mance regarding load balancing inasmuch as it allows choice between different resources at
each iteration. Hence, one may want to enforce such behavior by generating subsets using
a parameter K > 2. However, it makes the sampling process significantly longer, because
of a tighter compatibility criterion, for only slight improvement: we indeed observed that
the generation process using K = 1 leads to an average intersection size between any two
row and column subsets R and C generally larger than 1 and, in practice, often close to
2.

Compared to BC and BCE, RSB is expected to produce better load balancing. On
the other hand, the distribution of tiles allocated to a node is not a priori regular in the
output matrix, contrary to pattern-based allocations. It is likely to cause load balancing
problems in the course of execution for LU factorization in which, on one hand, all tasks
are not available from the beginning and, on the other hand, only a few set of tasks remain
available during the last phase of the execution.

4.5 Experiments

4.5.1 Test Cases

To evaluate the performance of the data distribution strategies developed in this chapter,
it is relevant to try them out on test cases that feature a large diversity of compression
levels among the tiles, i.e. their ranks, so that the load balancing problem is challenging
enough to observe differences between solutions provided by the tested methods. In order
to have a complete control on this property for the test matrices, we relied for our exper-
iments on synthetic test cases. Nevertheless, those synthetic matrices are generated in a
way that reproduces the main characteristics of actual matrices that can be encountered
in various large scale simulation problems, such as in [2, 12]. An example of such a ran-
domly generated matrix is illustrated on Figure 4.3: Figure 4.3a shows the distribution
of the tile ranks while Figure 4.3b shows the cumulated execution time associated with
each tile in the LU factorization. Note that for matrix multiplication, since each tile is
associated with the same set of tasks, the relative distribution of cumulated execution
time is essentially the same as the distribution of the ranks.

For each selected matrix size mb×mb, we generated a pool of five square matrices for
which the rank of each tile is defined according to a randomized procedure described below.
The rank distribution of each synthetic matrix is used to simulate both input matrices A
and B in the case matrix multiplication and matrix A in the case of LU factorization. The
generation of those synthetic matrices requires to define the distribution of the ranks of
the tiles according to their position and in particular on their distance from the diagonal.
The following randomized process is used:

• All diagonal tiles are associated with a rank value ri,i = b for i ∈ {1, . . . ,mb}, which
means that diagonal tiles are assumed to be non-compressible, or full rank.



• For all other tiles: (i, j) ∈ {1, . . . ,mb}2, i 6= j, the value of
ri,j
b

is set to:

ri,j
b

= max(min(v(i, j) + γ, 1), 0)

where:

– v(i, j) follows an exponential distribution as a function of the distance to the

diagonal: v(i, j) = exp
−δ( i−j

mb−1
)2

;

– γ is a noise that follows a normal distribution: γ ∼ N (0, 1
20

).

To generate synthetic matrices featuring a large variety of compression levels, slowly
decreasing from diagonal positions, we used δ = 4 as parameter of the exponential
law of v.

• In addition to diagonal tiles, a number θ of off-diagonal tiles are assumed to be full
rank. They are located uniformly randomly in the matrix, and θ follows a normal
distribution: θ ∼ N (

√
mb,

√
mb
2

).
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Figure 4.3: Example of rank distribution and cumulated execution time for LU factoriza-
tion on a 30×30 matrix using individual execution time for each type of task: CGETRF = 2,
CTRSM = 2, CGEMM = 4

Regarding the execution times of each type of task, they are chosen as follows: CGETRF =
2, CTRSM = 2 and CGEMM = 4. It corresponds roughly to the relative execution times
of the kernels associated with those types of task on dense tiles, as observed in the ex-
perimental setup described in Section 2.3.1. The exact values can be found in Table 2.1.



Then the actual execution time of each individual task is estimated using the rank of the
tile to which it is applied, according to the performance model described in Section 4.3.3.

4.5.2 Results

The performance of the three strategies described in Section 4.4 has been evaluated using
the synthetic test matrices for different values of the parameters (mb, P, α). Each pair
of values (P, α) is associated with a maximum number pmax of different nodes on each
row and column whose values are summarized in Table 4.1. For all test cases, we choose
values for P such that P = q(q − 1), q ∈ N∗ so that we can concentrate on the load
balancing itself and not on rounding errors. Note that this situation favors BC and BCE
distributions with respect to RSB, as discussed in more details in Sections 4.6.

All cases defined by the pair of values (P, α) are tested on matrices of size mb ×mb

with mb = 30, 60, 90. For each triplet of parameters, all three methods are applied to the
five synthetic matrices of the corresponding size mb × mb providing a data distribution
for each. Then the evaluation metrics (maximum load, total simulated running time
with and without communications) are computed for each distribution. The values of
those metrics for the distribution obtained using each method are the results of our
experimental evaluation. They are all normalized with respect to ideal load balancing
where all processors would receive exactly the same load.

Those results are depicted for matrix multiplication in Figure 4.4 and for LU factor-
ization in Figure 4.5. Each color corresponds to one method: BC in red, BCE in purple
and RSB in green. The different metric values are represented by different shapes: the
maximum load, B, is a dot, the running time without communications, D, is a triangle
and the simulated running time with communications, C, is a square. Each point corre-
sponds to the mean value of one metric over the five test cases; the error-bar represents
the minimum and maximum values. Note that results for BC are shown on α = 2 and
α = 3 plots as well to ease the comparison with the other methods but actually correspond
to α = 1 case.

α
2 3

P
12 8 (8× 6) 12 (12× 9)
30 12 (12× 10) 18 (18× 15)
90 20 (20× 18) 30 (30× 27)

Table 4.1: Values of pmax (the maximum number of different nodes per row and column)
according to the values of the parameters (P, α) and associated pattern sizes (r, c) used
for BCE

Results show that both BCE and RSB lead to better solutions that plain BC distri-
bution in specific regions of the parameters space. The general trends can be summarized
as follow:

• The values of the load balancing criteria B is significantly lower for both BCE and
RSB compared to BC regardless of the problem size, number of nodes and constraint
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Figure 4.4: Results for matrix multiplication

on communications, controlled by the parameter α, for matrix multiplication and
LU factorization alike.

• The values of the total simulated running time with, C, and without communica-
tions, D, show more mitigated results: though being generally lower for BCE and
RSB than those achieved by BC, they become larger with the ratio P

mb
. This ef-

fect is particularly visible for both methods for P = 90 and mb = 30 in the case
of LU factorization and affects in a lesser manner BCE only in the case of matrix
multiplication.

First, we can draw some interesting conclusions for the case of matrix multiplication
whose results are depicted on Figure 4.4. Since the matrix multiplication consists of a set
of independent tasks, there is in general no difference between pure load balancing and
simulation without communications. For this operation, the best heuristic is clearly RSB
for all values of P and mb, provided that α is large enough. This observation is true even
though the chosen P values benefit BC and BCE. With α = 3, for all the configurations
tested here, the value of the total running time with communications is indeed always less
than 1% of the value that would be obtained without communications and with optimal
load balancing.

The conclusions that can be drawn in the case of LU factorization, Figure 4.5, are
quite similar, except that the dependencies between tasks generate a difference between
total running time values with and without communications. We can notice that BC
distribution achieves a better load balancing value for matrix multiplication than for LU
factorization. This situation is related to the fact that the loads associated with the tiles
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Figure 4.5: Results for LU factorization

are less homogeneous: indeed the weight of a tile increases with i and j, which makes
load balancing more difficult. In this context, both BCE and RSB are strategies of choice
for data distributions and both give excellent results. Nevertheless, the performance
degradation between pure load balancing and running time without communications is
more important in the case of RSB than in the case of BCE. This can be explained
by the fact that, for distributions based on BCE, just like BC, the tiles assigned to a
given node are always distributed regularly by construction, whereas this property is
not automatically met with RSB. This can lead to load unbalance in the course of the
execution of the operation, i.e. at certain instants, a subset of nodes may be overloaded
compared to the rest of the nodes, which in turn can slow down the whole execution.

In all cases, we can observe that BCE behavior is very robust, as soon as α is greater
than 2. For example, with α = 3, BCE returns allocations that are within 5% of the
lower bound. BCE often performs at least as well as RSB, which is a more expensive and
sophisticated heuristic. As general conclusion from those results, we can therefore state
that a meta-strategy based on selecting the solution with minimum maximum load among
all three methods is already a significant improvement over BC and over each method
alone. Such a strategy provides a good quality distribution for almost any combination
of parameters.

4.6 Analysis of Block Cyclic Extended Algorithm

In this section, we analyze the behavior of BC and BCE for two types of tile weight distri-
bution. In the case of the matrix multiplication, Figure 4.6, the tile weights in the matrix
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Figure 4.6: BCE load balancing for matrix multiplication

depend only on their distance to the diagonal. In the case of LU factorization, Figure 4.7,
the weights of the tiles in the matrix depend on both their distance to the diagonal and
to the bottom right corner, since the bottom right tiles induce a naturally higher compu-
tation cost because many more tasks are performed to update them. The heterogeneity
of tile weights is therefore higher for LU factorization than for matrix multiplication.

In our experimental setup, we consider different sizes of matrices (mb = 30, 60, 90),
different values of the number of nodes (P = 12, 30, 90) and different values of α (α =

1, 2, 3), where pmax =
⌈
αd
√
P e
⌉

is the maximum number of different processors that can

be present on the same row or column. α = 1 corresponds to BC, whereas α = 2, 3
correspond to two different variants of BCE.

Let us measure the quality of the load balancing between the nodes for pattern-based
distributions BC and BCE. On Figures 4.6 and 4.7, blue points are associated with grid
tiles, i.e. show the balance between the loads of the virtual nodes, whereas red points
are associated with actual nodes. When α = 1, values represented by the red and blue
dots are the same since the numbers of virtual and real nodes are the same whereas
the number of virtual nodes is α2 times higher in general. Each point represents the
dispersion of the load of virtual nodes (the blue points) or real nodes (red points), where

the dispersion of nodes load is defined as
standard deviation of the distribution of loads

mean value of the distribution of loads
so that a lower value represents a better load balancing. A ratio of 0 corresponds to
perfect load balancing.

The first conclusion that can be drawn is related to the observation of the blue dots
on any cell for α = 1, 2, 3. We can notice that the first phase of tile aggregation following
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Figure 4.7: BCE load balancing for LU factorization

the regular pattern is efficient enough to limit the dispersion and that the dispersion is
much greater when the number of virtual nodes is increased and therefore the number of
tiles allocated to each virtual nodes is decreased.

The second conclusion is related to the observation of the relative values of the blue
and red dots when α = 2, 3. It shows that the second phase of packing virtual nodes into
a pattern using LPT heuristic, as in BCE, is very efficient. Indeed, we can observe that
the dispersion is almost null as soon as we group the virtual nodes by groups of 4 (α = 2)
or 9 (α = 3).

The intuition is as follows: if we use for example α =
√

2, we will obtain 2P virtual
nodes, whose respective loads are already rather homogeneous since each virtual node
corresponds to the aggregation of a certain number of tiles. In this case, the packing
algorithm results in the most loaded kth virtual node being matched with the least loaded
kth virtual node inside the real kth node, resulting in a very homogeneous distribution of
weights.

We have tried to establish this result theoretically but it is in fact notoriously difficult.
Indeed, even if we assume that the initial weight distribution is known and simple, uniform
or normal for example, then the distribution of the mean value and standard deviation
for the kth element are only known by approximate and non-closed formulas [10,32]. This
is why we relied on simulations to establish these properties.



4.7 Conclusion

In this chapter, we have considered the problem of designing data distributions to perform
the matrix multiplication and LU factorization in a parallel and distributed setting in the
context of compressed matrices with heterogeneous tile compression levels. We have
considered the Block Low Rank (BLR) format which is largely used in the community
of numerical linear algebra to reduce the memory footprint of operations involving large
matrices. It is based on a regular per-tile compression that approximates each tile by
the outer product of two low-rank dense matrices. In such a compressed case, the total
execution time, or “workload”, associated with the set of all tasks to be performed on a
given tile varies according to its compression level which is generally higher for tiles away
from the diagonals in actual applications. Thus, contrary to the dense case, workloads
among tiles are no longer homogeneous. We presented two original data distribution
strategies designed to handle this heterogeneity and ensure a good load balancing between
nodes. The first one, Block Cyclic Extended (BCE), is an extension of Block Cyclic
(BC). It makes use of a pattern, G, whose size is such that there are more positions than
available nodes. The workloads associated with each tile of the matrix are aggregated
to each position in G, each “virtual” node, by replicating the pattern over the entire
matrix, as for classic BC method. Each position of the pattern along with its aggregated
workload is then associated with a real node using a greedy heuristic. The use of a
pattern with more positions than actual nodes allows to achieve a better load balancing
between nodes than BC at the cost of a slightly higher number of processors per row
and per column, which is however entirely controlled by an input parameter α of the
method. The second one is a randomized strategy called Random Subsets (RSB) that
is not pattern-based but rather directly provides an entire distribution of the matrix.
It is a greedy algorithm that allocates each tile of the matrix one by one in order to
balance the load among nodes. To make sure that the procedure finishes and provides a
feasible solution according to the constraints on the maximum number of different nodes
per row and column, it makes use of precomputed subsets of nodes that ensure that there
is always a at least one valid candidate node when considering the allocation of each
tile. Both of these strategies significantly improve the results compared to BC, achieving
better load balancing and total running time. RSB show excellent results regarding load
balancing, although the irregularity of its solutions seem to hinder its performance in
terms of running time. BCE proves to be particularly efficient, in particular the good load
balancing consistently translates into short running times, illustrating the importance of
the distribution regularity to maintain load balance among all nodes in the course of the
execution. RSB, on the other hand, has the advantage of giving very interesting results
regardless of the value of P . The developments carried out in this chapter therefore open
several perspectives. First of all, one can try to improve the RSB strategy so that it better
takes into account the specific dependencies of the application’s tasks, in order to better
balance the load throughout the entire computation. It may also be possible to hybridize
the different strategies by adding a randomized component to BCE so that it can run on
any number of processors.





Chapter 5

Data Distribution Schemes for Dense
Linear Algebra Factorizations on
Any Number of Nodes

5.1 Introduction

As already mentioned, the results presented in Chapters 2 and 3 define a new interest-
ing standpoint regarding the problem of communication minimization for dense linear
algebra operations. As it is summarized in Section 3.5, a new set of simple and efficient
algorithms is now readily available for the two operations symmetric rank-k update and
Cholesky factorization, along with bounds that enable to evaluate their absolute perfor-
mance regarding communications. In the out-of-core context, both those operations and
their non-symmetric counterparts, matrix multiplication and LU factorization, can there-
fore be performed with the minimum possible number of communications. On the other
hand, BC and SBC distributions provide the best known solutions to the load balancing
and communication minimization problem in a parallel and distributed setting, though
SBC is not optimal in terms of communications. Furthermore, while BC is already used
in almost all linear algebra libraries, SBC can be easily implemented under a task-based
execution model.

However, regardless of the optimality of the distribution, there remains a limitation
to the practical usage of both BC and SBC methods related to the number of nodes used
to carry out a computation. As mentioned in Sections 1.1.2.3 and 4.3.4, the BC pattern
produced for P = p2 nodes has many qualities: it ensures a good load balancing, both
globally and in the course of the execution of an operation, as it is the smallest possible
pattern where all nodes are present. Besides, in the case of non-symmetric operations, it
minimizes the total communication volume because the number of different nodes per row
and column,

√
P , is minimum, which is proven to be optimal for matrix multiplication [53].

The situation is more complex for many specific values of the number of available nodes
P , the worst case being if it is a prime number. Let us consider for example that 23
nodes are available. Using BC distribution with a 23× 1 pattern is very unbalanced and
generates many communications as broadcasts along the rows requires sending messages
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to 22 receiver nodes. A classical solution is to use 22 nodes instead, in a 11× 2 pattern,
which is still unbalanced, or 21 in a 7 × 3 pattern, which is better, or even only 20 in a
5 × 4 pattern. Sample results for LU factorization can be observed on Figure 5.1 which
were obtained using the Chameleon library and the StarPU runtime system (details about
the experimental setting used can be found in Section 5.6). These results show that,
as expected, the performance per node increases when the pattern becomes closer to a
square. However, the raw performance gains, which are equivalent to the time to solution,
are limited by the fact that fewer nodes are used, so that all these solutions obtain roughly
similar results, as can be observed on Figure 5.1 for patterns of size 11 × 2, 7 × 3 and
5 × 4. In practice, being able to run an operation on any number of nodes is of great
practical interest because it is common that, given already scheduled reservations on a
computing platform, the number of available nodes is not, or not even close, of the form
P = p2. Generally, in this case, users reserve fewer nodes than are actually available, as
in the example above, but in the form P = p× q, where p and q are of the same order of
magnitude.
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Figure 5.1: Sample results for LU factorization of matrix A of size m ×m, m = 50, 000
to 200, 000, distributed using 2DBC with different pattern shapes.

In this chapter, we attempt to tackle this type of limitation and show that it is possible
to use any number of nodes without sacrificing on the efficiency per node. Our objective
is thus to build distribution patterns that can be used on an arbitrary number of nodes,
while keeping good properties in terms of communications. The general approach is to



build larger patterns, in which each node may appear several times. This allows us to
explore a larger solution space than plain BC, and we propose several new solutions, in
both the non-symmetric and symmetric contexts.

We first study the non-symmetric case, where we propose a systematic way to con-
struct, for all possible values of P , a perfectly balanced pattern of size b(b−1)×P , where

b = d P⌈√
P
⌉e. Hence, b(b − 1) is of order P , and

⌈√
P
⌉

different nodes appear in each

row and in each column of the pattern. This pattern is therefore optimal in terms of load
balancing, since each node appears exactly P − 1 times, and in terms of communications,

because any pattern using P nodes would require at least
⌈√

P
⌉

different nodes per row

and per column. The pattern is larger in general than the BC pattern but it is valid for
all values of P .

We then consider the case of distributions tailored to symmetric problems. The Sym-
metric Block Cyclic distribution (SBC) introduced in Section 2.2.1 is valid for specific

values of P , of the form either r2

2
for an even integer r, or r(r−1)

2
for any integer r. SBC

induces a communication volume lower by a factor of
√

2 than BC, but however remains
within a factor of 3√

2
of the lower bound, as summarized in Section 3.5. In the following,

we propose an extension of this symmetric distribution to all possible values of P . Unlike
for the non-symmetric case, it is very challenging to analytically build an elegant, opti-
mal and valid distribution scheme for all P . Instead, we propose a greedy-based heuristic
called Greedy ColRow & Matching (GCR&M) that builds an efficient pattern for a given
P and a pattern size r × r. The found solutions are not optimal, but yield better perfor-
mance than SBC on average, with the additional benefit that GCR&M is able to provide
solutions for all values of P .

Note that all the strategies elaborated in this chapter are dedicated to static data
distributions, assuming that the execution of the considered operations is then performed
using the owner computes rule. This assumption is not restrictive at all regarding the
cases where additional memory is available because, as already mentioned in Section 2.2.3
for BC and SBC, the distributions presented here can as easily be extended to 2.5D or
3D versions. Such additional developments are simply orthogonal to the problem dealt
with in this chapter and therefore left out of its scope.

The content of this chapter is organized as follows. In Section 5.2, we provide reminders
of the context and point out already mentioned references about task-based runtime sys-
tems, lower bounds on communications induced by different linear algebra operations, and
data distributions in the dense case and the sparse case, with homogeneous or heteroge-
neous resources. In Section 5.3 we introduce the model and notations used to evaluate
the quality of data distributions and guide the design of more efficient ones, regarding
total running time. In Section 5.4, we show how to build, in the non-symmetric case, a
generic data distribution scheme that is valid for any number of nodes, while providing an
optimal overall communication volume. In Section 5.5, we consider the symmetric case,
and we propose an algorithm that, despite not being optimal, allows us to build efficient
distribution schemes for any number of nodes. Section 5.6 present the results of an exper-
imental evaluation of those two new distributions using the Chameleon library. It shows
that the theoretical reduction of the communication volume induced by our distributions



actually translates into a reduction of the execution time of the factorization operations.
Finally, we provide concluding remarks in Section 5.7.

5.2 Context

We investigate here the possibility of designing data distributions aimed at reducing the
total communication volume for parallel execution of linear algebra operations in a task-
based model. Prior research works related to this problem are already largely referenced in
this document: the principles of the task-based model are described in Section 1.2; reviews
of the existing work on communication bounds and algorithms can be found in Sections 2.1
and 3.1 for both out-of-core and parallel and distributed settings; Section 4.2 provides
references regarding the problem of load balancing between nodes in parallel executions,
in particular when considering heterogeneous computing resources or heterogeneous tasks.
A quick summary of the main existing results is provided below; the reader may refer to
those previous sections for additional details.

In this entire chapter, we consider the execution of linear algebra operations under the
task-based model, i.e. the application performing the computations is associated with a
runtime system which manages tasks and data dependencies as well as communications.
Such a tool allows to perform operations using very irregular data distributions since the
runtime system automatically enforces dependencies and infers the required inter-node
communications from the distribution. The task-based model is therefore a requirement
to actually implement the solutions elaborated in this chapter. This paradigm has been
shown very efficient and scalable for many linear algebra applications [4] even when deal-
ing with non-standard data distribution, as illustrate the results for SBC presented in
Section 2.3.4.

Regarding communication lower bounds in the out-of-core context, the state-of-the-
art results for LU and Cholesky factorization are respectively from Olivry et al. [62] and
the work presented in Chapter 3. In this setting, with a memory of size M , the LU
factorization of an m×m matrix requires a minimum of 2

3
m3
√
M

+O(m2) communications

while Cholesky factorization requires 1
3
√

2
m3
√
M

+O(m2). As any bound in the out-of-core
context, they can be extended to the parallel and distributed case using P nodes under
the memory scalable assumption which states that the size of the total available memory
is proportional to the size of the input matrix. This assumption is valid when using all the
nodes in pattern-based data distributions. It thus exactly corresponds to the situation
considered in this chapter. In such a case, the lower bounds translate as: the parallel
and distributed LU factorization of an m×m matrix generates at least 2

3
m2
√
P + o(m2)

inter-nodes communications; Cholesky factorization generates 1
3
m2
√
P +o(m2). The 2.5D

algorithm proposed by Kwasniewski et al. in [56], which is actually based on BC, generates
m2
√
P + o(m2) communications. For the symmetric case, the best known solution is

SBC which generates 1√
2
m2
√
P + o(m2) communications when used to perform Cholesky

factorization, as stated in Theorem 1 in Section 2.2.2.
In parallel and distributed settings, the problem of balancing the load among nodes has

been extensively studied, particularly in the heterogeneous case, from two perspectives:
(i) assigning heterogeneous tasks among identical resources, as it occurs in the context



of sparse or compressed matrices, such as illustrated in Chapter 4 or (ii) distributing
homogeneous tasks among heterogeneous resources with different computing power. In
both cases, however, the solutions provided focus on the matrix multiplication and do not
consider symmetric problems and factorization operations. Moreover, because of the ad-
ditional difficulty introduced by heterogeneity, they usually have to rely on approximation
algorithms that perform worse in the homogeneous case than plain BC distributions.

5.3 Model and Notations

The objective of this chapter is essentially to build patterns that reduce the communi-
cation volume generated when performing for LU and Cholesky factorization. In this
section, we analyze the communication volume induced by an arbitrary pattern when
replicated onto the entire matrix and used for those two operations. The formal method
to do so generalizes the analysis carried out for SBC pattern in Section 2.2.2. It allows
us to define a communication cost metric for an arbitrary pattern.

We consider a matrix A divided into mb × mb tiles and distributed according to a
pattern G, of dimension p× q. To avoid any ambiguity, we use tile to denote a position
in the matrix, and cell to denote a position in a pattern. A pattern completely defines
the data distribution of the matrix: indeed, just like for BC distribution, for all (i, j) ∈
{1, . . . ,mb}2, the tile at position (i, j) is owned by the node which is present in the cell (i
mod p, j mod q) in G. Therefore the set of nodes in a row or column of A is the same
as the set of nodes in the corresponding row or column of G.

5.3.1 Case of LU factorization

To complete the analysis, we denote by:

• xi the number of different nodes on row i ∈ {1, . . . , p} of G;

• yj the number of different nodes on column j ∈ {1, . . . , q} of G.

First, let us analyze the communications scheme in the case of the tiled LU factoriza-
tion as described in Algorithm 21 in Chapter 4. Let us assume that matrix A is distributed
according to a cyclic distribution using P nodes. Its values are overwritten by L and U
during the operation. An illustration with a BC distribution with mb = 12 and P = 6 is
depicted in Figure 5.2a. The replicated pattern is of size p× q, with (p, q) = (2, 3) in the
example.

According to the analysis of the data dependencies of this operation detailed in Sec-
tion 4.3.1.2, at each iteration ` ∈ {1, . . . ,mb} of the algorithm, each node owning a tile
in column ` of A sends it to all other nodes on the same row to the right, and each node
owning a tile in row ` sends it to all other nodes on the same column below, as illustrated
by the black zones on Figure 5.2a.

There are xi different nodes on a row i of the pattern, respectively yj on a column j,
and one among them is the sender. Hence, for each replicated pattern, the communication



volume generated is

p∑
i=1

xi − 1︸ ︷︷ ︸
row-wise

+

q∑
j=1

yj − 1︸ ︷︷ ︸
column-wise

. The pattern is replicated mb−`
p

times vertically

and mb−`
q

times horizontally over the trailing sub-matrix of A. Assuming that ` 6 mb −
max(p, q) at least one full pattern appears both vertically and horizontally. Therefore the
total number of communications at iteration ` is:

QLU
` = (mb − `)

(1

p

p∑
i=1

(xi − 1) +
1

q

q∑
j=1

(yj − 1)
)

If we denote by x̄ and ȳ the average values of xi and yj, so that x̄ = 1
p

∑p
i=1 xi and

ȳ = 1
q

∑q
j=1 yj, and the total communication number over the complete factorization is

given by:

QLU(G) =
mb(mb + 1)

2

(
x̄+ ȳ − 2

)
(5.1)
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(a) Example for LU factorization: solid
black rectangles highlight two tiles of A
sent by nodes 3 and 5 at iteration ` = 3 and
the corresponding sets of receiver nodes
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(b) Example for Cholesky factorization:
one tile of A is sent by node 3 at iter-
ation ` = 3 to receiver nodes in its col-
row, as highlighted by the solid black shape.
This communication scheme comes from
the symmetry of A as illustrated by the
dashed black rectangle

Figure 5.2: Communication scheme for LU and Cholesky factorization using BC distri-
bution over an mb ×mb matrix, mb = 12, using P = 6 nodes laid out as a 2× 3 pattern.

As soon as ` > mb − max(p, q), the trailing matrix of A becomes smaller than a
full pattern, either vertically or horizontally. If ` > mb − p, the term of the first sum
in Equation 5.1 is not xi but the number of different nodes on row i of the pattern
allocated to the last mb−` columns of matrix A, which is smaller than xi, and similarly if



` > mb − q for yj. Equation 5.1 therefore overestimates the row-wise communications for
the last q iterations, respectively column-wise communications for the last p iterations,
because the domains where elementary operations are performed shrinks as iterations
progress. Besides, partial pattern replication may occur at the edges of the matrix if p
does not divide mb (and/or q does not divide mb) which would change one term of each
sum in Equation 5.1. In either cases, it modifies the non-dominant parts of the total
communication estimate and can therefore be neglected.

5.3.2 Case of Cholesky factorization

The case of Cholesky factorization is depicted in Figure 5.2b. Since A is symmetric,
only half of it need to be handled; we assume that it is the lower triangular part. The
data dependencies associated with the Cholesky factorization, described in Algorithm 4
in Chapter 1, have already been analyzed in Section 2.2.2. In this case, during iteration
`, tiles of column ` are sent to all nodes along the same row to the right, and along the
column with the same index. In the following, we denote such a set of tiles as a colrow :

Definition 8 (colrow). Given a square pattern or a square matrix, we denote as colrow
i the union of the column i and of the row i of the pattern or matrix. In addition, for a
square pattern G, we denote by zi the number of nodes belonging to colrow i of G.

Thus, in the case of Cholesky factorization, tiles are sent along a colrow instead of
a row or a column. Furthermore, when the pattern G is square, a colrow of the matrix
always corresponds to exactly one colrow of the pattern. If this is the case, the previous
reasoning to compute the number of communications at a given iteration remains valid if
applied with the number of different nodes in a colrow, i.e. zi for colrow i of the pattern.
The number of communications generated at a given iteration for this kernel is therefore
given by:

QChol(G) =
mb(mb + 1)

2
(z̄ − 1). (5.2)

The same restrictions apply as for LU factorization regarding domain shrinking and
partial model replications.

5.3.3 Communication cost metric

In both cases (Equations 5.1 and 5.2), neither the multiplicative factor mb(mb+1)
2

nor the
additive −1 depend on the pattern. In the following, we thus aim at designing patterns
G that minimize the following metric T (G), which we call communication cost :

T (G) =

{
x̄+ ȳ for LU factorization
z̄ for Cholesky factorization, if p = q

In addition, in order to enforce a good load balancing of the computations, we require
that the patterns are balanced, i.e. that all nodes appear the same number of times in
the pattern. Note that contrarily to the BC pattern, we allow a node to appear several
times in the pattern.



5.4 Generalized Block Cyclic

In this section, we present the Generalized Block Cyclic (G-BC) distribution, which ex-
tends the original BC distribution to any number of nodes, maintaining the good proper-
ties in terms of communication volume of the square BC distribution with P = p2 nodes.
First, we show in Section 5.4.1 how to build the pattern. Then, in Section 5.4.2, we prove
some properties associated with G-BC. We then provide a comparative evaluation of the
cost of G-BC and BC in terms of communication in Section 5.4.3. Finally experimental
results illustrating the performance of G-BC are presented in Section 5.6.

5.4.1 Pattern Construction

In order to approximate a square pattern, we first build a quasi-square pattern with P

cells, if there exists p, P = p2, or slightly more. Let us denote a =
⌈√

P
⌉
, b =

⌈
P
a

⌉
and

c = ab− P . By construction, we can first observe that 0 6 c < a. Indeed, P
a
6 b < P

a
+ 1

so that P 6 ab < P + a and 0 6 c < a. We can now define an incomplete b× a pattern
IP which contains the elements from 1 to P and whose c elements of the last row are left
undefined. An example for P = 10 is given on the left of Figure 5.3.

From IP , we now build b−1 different b×a patterns Pi, for 1 ≤ i ≤ b−1. For a given
1 ≤ i ≤ b− 1, the pattern Pi is a copy of IP , where the undefined elements are replaced
with the last c elements of row i in IP . These c elements are thus present twice in Pi.

Additionally, we also build a last pattern of size b×(a−c), denoted LP , which consists
of the a− c first columns of IP .

1
5
9

2
6
10

3
7

4
8

IP 1
5
9

2
6
10

3
7
7

4
8
8

1
5
9

2
6
10

3
7
3

4
8
4

1
5
9

2
6
10

3
7
7

4
8
8

1
5
9

2
6
10

3
7
3

4
8
4

1
5
9

2
6
10

1
5
9

2
6
10

P1

P2

LP

Figure 5.3: Example of the G-BC pattern for P = 10, thus a = 4, b = 3 and c = 2. Left:
incomplete pattern IP , right: full G-BC pattern.

Finally, the complete G-BC pattern P has size b(b − 1) × P , and is built as follows.
The first b rows of P contain b− 1 copies of P1, followed by a copy of LP . This leads to
a total of a(b− 1) + a− c = ab− c = P columns. The following rows of P are built in the
same way, successively using copies of P2, . . . ,Pb−1. The result pattern for P = 10 can
be seen on the right of Figure 5.3.



5.4.2 Pattern Properties

We first show that the pattern P is well balanced: each node appears exactly b(b − 1)
times.

Lemma 8. In the G-BC pattern P defined above, each node is assigned to exactly b(b−1)
cells.

Proof. We distinguish two cases: nodes that appear in LP and the others.

• Nodes in LP appear exactly once in LP and in each of the patterns Pi. Furthermore,
the pattern P contains exactly b−1 copies of LP and b−1 copies of each Pi. Hence,
a node in LP appears b(b− 1) times P .

• Let us now consider a node that does not appear in LP , and denote by u its row in
IP . This node appears in exactly two cells of Pu, and in exactly one cell in each Pi
for i 6= u. Therefore, this node appears in exactly 2(b−1) + (b−2)(b−1) = b(b−1)
cells in P .

Let us now analyze the communication cost T (P) of this pattern. For this purpose,
let us compute the number of different nodes that appear in each row and each column
of P . By construction, in each row of P , exactly a different nodes are present, so that
x̄ = a. In terms of columns, the situation differs depending on whether the column is
part of LP or not. A column of LP contains exactly b different nodes, there are a − c
such columns, and the complete pattern contains b copies of each of these columns, one
as a column of LP , and b − 1 as copies of the Pi. A column not in LP contains b − 1
different nodes, since the c undefined cells of IP are filled with nodes already present in
the column. There are c such columns, and they are copied b− 1 times in pattern P .

In total, the pattern P has P columns, so that the average number of nodes per column
in P is

ȳ =
1

P

( columns in LP︷ ︸︸ ︷
b · (a− c) · b +

columns not in LP︷ ︸︸ ︷
(b− 1) · c · (b− 1)

)
We can thus provide a bound on the total cost of the G-BC pattern.

Lemma 9. For any P , the Generalized Block Cyclic pattern P with P nodes has a total
cost T (P) bounded by 2

√
P + 2√

P
.

Proof. By definition, T (P) = x̄ + ȳ. The above considerations yield x̄ = a and ȳ =
1
P

(b2(a− c) + (b− 1)2c). We start by bounding ȳ:



ȳ =
b2a− 2bc+ c

P

=
b(ab− c)− cb+ c

P
and since ab− c = P :

= b
(

1− c

P

)
+
c

P
we now replace b =

P + c

a
:

=
(P + c)(P − c)

aP
+
c

P

=
P 2 − c2

aP
+
c

P

6
P

a
+
c

P
.

This yields T (P) = x̄ + ȳ 6 a + P
a

+ c
P

. Let us write a =
√
P + µ, where 0 6 µ < 1.

If we develop µ2, we obtain:

µ2

a
=

(a−
√
P )2

a
= a− 2

√
P +

P

a
,

thus a+ P
a

= 2
√
P + µ2

a
. We obtain T (P) 6 2

√
P + µ2

a
+ c

P
. And finally, since µ < 1,

a >
√
P , and c 6 a− 1 6

√
P , we can conclude T (P) 6 2

√
P + 2√

P
.

As a comparison, the square BC pattern for P = p2 obtains a cost exactly equal to
2
√
P . In addition, we can remark that whenever c = 0, the G-BC pattern reduces to the

standard BC pattern; this happens if P = p2 or if P = p(p+ 1).

5.4.3 Evaluation of G-BC

We can observe on Figure 5.4 a representation of the cost T (P) of the G-BC pattern,
compared to the standard BC pattern. For each value of P , we show the cost of the best
available BC pattern for this value of P , using all possible ways to write P as P = pq,
and the cost of the corresponding G-BC pattern. As we can see, the cost of G-BC closely
follows the 2

√
P value, and allows to significantly improve the communication volume

over BC for many values of P .

5.5 Data Distributions for Symmetric Matrices

In this section, we consider the symmetric case and search for patterns to generalize the
SBC distribution. A mentioned above, in the symmetric case it is necessary to use square
patterns of size r. Having a balanced pattern of size r imposes a strong constraint on r:
since there are r2 cells to distribute among P nodes, a balanced pattern would require
that r2 is a multiple of P . To soften this constraint, we use a property of the diagonal
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Figure 5.4: Total cost T of G-2DBC and the best 2DBC for varying values of P .

cells of the pattern: each diagonal cell belongs to a unique colrow. It can thus be assigned
to any node on its colrow without changing the communication cost, and its different
replicas on the complete matrix might even be assigned to different nodes as long as these
nodes belong to the colrow of the pattern.

It is thus possible to design incomplete patterns, where the diagonal cells remain
undefined, and assign them only when the pattern is replicated on the complete matrix.
This can be done greedily, by successively assigning undefined tiles to the least loaded
node among those present in the colrow. This is a generalization of the extended version
of SBC detailed in Section 2.2.1.

Still, there are limitations to the possible values of r. On one hand, the load balancing
procedure above can only be performed successfully if all nodes are assigned at most r2

P

cells of the pattern. Otherwise, when the pattern is replicated over the entire matrix, one
node would be assigned too many tiles, even not considering the undefined tiles which
correspond to diagonal cells of the pattern. Then, assigning all those undefined tiles to
other nodes would not be enough to compensate the imbalance. On the other hand, the
average number of non-diagonal cells to assign to each node is r(r−1)

P
, so that at least one

node receives
⌈
r(r−1)
P

⌉
cells. Hence, the following condition is necessary to ensure that

there exists a pattern which is balanced or which can lead to a balanced distribution once
replicated over the entire matrix:

⌈
r(r − 1)

P

⌉
≤ r2

P
(5.3)



5.5.1 Greedy ColRow & Matching

Our greedy algorithm, Greedy ColRow & Matching (GCR&M), has two phases. The first
phase assigns colrows to each node, trying to balance the load among all nodes. In this
process however, it may happen that the colrow assignment allows several nodes to be
assigned the same cell. Then, the second phase of the greedy algorithm applies a matching
algorithm to perform the assignment of cells to the nodes.

Algorithm 25: Greedy ColRow & Matching Algorithm

Input: Number of nodes P , Pattern Size r
1 U ← {(i, j)|1 6 i 6= j 6 r}
2 for i← 1 . . . r do
3 A[i mod P ]← {i}
4 while U 6= ∅ do
5 p← least loaded node
6 for each colrow r do
7 C[r]← U ∩ {(r, i)|i ∈ A[p]}
8 b← argmaxr(Card(C[r])) (tie-break: lowest usage)
9 A[p]← A[p] ∪ {b}

10 remove C[b] from U

11 k ←
⌊
r(r−1)
P

⌋
12 Compute a matching between all cells and k duplicates per node
13 Compute a matching between unassigned cells and 1 duplicate per node
14 if unassigned cells c = (i, j) remain then
15 Assign (i, j) to the least loaded node p s.t. A[p] contains i or j

First phase. The first phase of the GCR&M algorithm computes an assignment A of
colrows to nodes, so that A[p] is the set of colrows on which node p can appear. A cell
(i, j) is covered by a node p if p can appear on this cell, i.e. i and j are both in A[p]. In
Algorithm 25, the set U , defined line 1, contains all uncovered cells.

The algorithm starts by assigning one node to each colrow, in a round robin way if
P < r, as shown line 3. The rest of the assignment is performed with a greedy procedure:
as long as an uncovered cell remains, we assign an additional colrow to the least loaded
node. The colrow is chosen so as to maximize the number of newly covered cells, as can
be observed line 8. In case of equality, the least used colrow is selected, i.e. the one which
appears in the lowest number of A[p] sets. Further ties are broken randomly. Once a
colrow has been selected, the set of covered cells is updated.

An illustration of the first phase of Greedy ColRow & Matching algorithm is presented
on Figure 5.5 for a pattern size of r = 9 and P = 12 nodes. The figure shows the set
of uncovered cells, in grey, and the other cells colored according to the nodes that cover
them. It illustrates the step of assigning an additional colrow to the least loaded node,
line 5 in Algorithm 25. In this case, node 9 is the least loaded one, as it covers 2 cells while



all others cover at least 3. Node 9 is already assigned colrows 1 and 9: A[9] = {1, 9}. The
algorithm can assign to node 9 the colrow 1 because it allows to cover 4 additional cells
(Figure 5.5a), which is the maximum, but not the colrow 4 which only allows to cover 2
additional cells (Figure 5.5b).
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(a) Assigning colrow 2 to node 9 allows to
cover 4 additional cells.
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Figure 5.5: Illustration of the first phase of GCR&M algorithm on a 9× 9 pattern using
P = 12 nodes. Gray cells are uncovered, the striped zone is the additional colrow, thick
purple highlighted cells are newly covered cells.

Second phase. The first phase of the algorithm provides an assignment of colrows to
the nodes, and could also be used to obtain an assignment of cells. For example, one
could assign a cell to the first node that covers it. However, this does not guarantee a
good load balancing. To solve this, the second phase of the GCR&M algorithm uses a
bipartite graph matching approach. We build a bipartite graph with all cells on one side,

and k copies of each node on the other side, where k =
⌊
r(r−1)
P

⌋
. There are edges between

a cell and all copies of all nodes that cover this cell. A bipartite matching algorithm is
used to perform an assignment of cells to nodes.

The reasoning behind this choice of k is the following: the total number of copies of
nodes is lower than the number of cells, so that in a perfect matching all nodes receive k

cells. Using k′ =
⌈
r(r−1)
P

⌉
would result in more copies of nodes than cells, so that all cells

would be assigned. However, there would be no guarantee on the load balance between
nodes: it could happen that many nodes receive k′ cells, and some nodes receive few or
even zero cells.

Hence, this first matching assigns k cells per node but may leave some cells unassigned.
Another matching procedure is performed next, between all unassigned cells and a single

copy per node. This ensures that all nodes have at least
⌊
r(r−1)
P

⌋
and at most

⌈
r(r−1)
P

⌉
cells. If some cells remain unassigned after both matching procedures, each remaining
cell is assigned greedily to the least loaded node p that can cover it by adding only one
colrow to A[p], it is the statement on line 15 of the algorithm.
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Figure 5.6: Total cost T of the symmetric and non-symmetric patterns for varying values
of P .

Random choices The result of Algorithm 25 depends on random choices made when
breaking ties. To obtain better results, the algorithm is run several times, and the pattern
with the lowest cost is kept. 5 resolutions for the same case is enough in practice and this
value is used later in the experiments.

5.5.2 Evaluation of GCR&M

We perform the evaluation of GCR&M as follows: for each value of P , we apply Algo-
rithm 25 for all values of r 6 6

√
P which satisfy Equation 5.3. The algorithm is run 5

times with different random seeds. For each value of P , we keep the pattern with the
lowest cost. These thresholds, the 6

√
P limit and the 5 re-executions of the algorithm,

are sufficient in practice to obtain good patterns.
A comparison of the cost of all patterns for the symmetric case can be seen on Fig-

ure 5.6. As before, for each value of P the plot shows the cost of the best pattern of each
type for this value of P . Note that for BC and G-BC, the symmetric cost is equal to
the non-symmetric cost minus 1: indeed, the intersection between nodes in a row and in
a column of the pattern always contains exactly one node. Thus, the number of nodes
on a colrow is the number of nodes on some column, plus the number of nodes on some
row, minus 1 for the intersection. The plot shows the SBC pattern, whose cost grows as√

2P for its basic version, and
√

2P − 1
2

for the extended version. The GCR&M algorithm
obtains patterns with a cost either similar to SBC, or even lower in many cases, with a

lower limit that we empirically observe to be
√

3P
2

.



An intuition for this limit can be provided. Let us consider a regular pattern in which
each node is present on v colrows, and is assigned l non-diagonal cells. For example, on
the SBC pattern, v = 2 and l = 2. If such a regular pattern contains P nodes, then its
size r satisfies r(r− 1) = Pl, so that r ∼

√
Pl. In addition, since each node is present on

v colrows, we can compute the total number of nodes present on the colrows:
∑

i zi = Pv.

Thus, z̄ ∼ Pv√
Pl

= v√
l

√
P .

As mentioned, for SBC we have v = 2. The next possible value for v is v = 3, in
which case the maximum possible number of non-diagonal cells is v(v− 1) = 6. A regular

pattern with these values would have a communication cost T ∼ 3√
6

√
P =

√
3P
2

. The

results obtained by GCR&M show that it is able to produce patterns where most of the
nodes obtain an assignment of cells with a similar efficiency as what can be done with
v = 3.

5.6 Experimental Performance Evaluation

In this section, we present sample results of experiments to test out the connection be-
tween the patterns cost and the actual performance of the associated cyclic distribution.
We performed LU and Cholesky factorization on four test cases, using P = 23, 31, 35
and 39 nodes, which correspond to situations where there is no satisfying BC and SBC
pattern using all the resources. For each test case, we compare the execution of the LU
factorization with the G-BC distribution using all nodes and one or several BC distri-
butions using a reasonably similar number of nodes, smaller or equal to P . Similarly,
for Cholesky factorization, we compare the execution with the best GCR&M distribution
found and the SBC distribution using the largest number of nodes smaller or equal to P .
We observe the global and per-node performance in terms of GFlop/s.

5.6.1 Experimental Setup

The experiments were performed using the same platform as the one used to test SBC
distribution. The complete description of the experimental setup can be found in Sec-
tion 2.3.1 and is briefly summarized below:

• all the operations are performed in double precision on a cluster of 42 nodes, each
equipped with 36 Intel Xeon Skylake Gold 6240 cores;

• the nodes are connected with a 100Gb/s OmniPath network;

• experiments are carried out on randomly generated matrices which size ranges from
50, 000 to 300, 000 divided in tiles of size 500× 500;

• 5 runs are performed for each matrix size and each tested method; on result plots
each dot represents the average value over the 5 runs and the shaded zone the range
between the minimum and maximum value;

• we use Chameleon version 1.1.0 associated with StarPU version 1.3.8;



• 2 cores per node are used to by StarPU for the scheduling and management of MPI
communications;

• the Intel MKL 2020 implementation of BLAS routines is used for the computations;

• Open MPI version 4.0.3 is used for inter process communications.

5.6.2 Results for Generalized Block Cyclic

For the test case using P = 23 and 39 nodes, we observe on Figures 5.7 and 5.10 that
G-BC distribution consistently achieves a larger raw performance for all tested matrix
sizes. More precisely, for P = 23, we can see on Figure 5.7 that BC using all the nodes
performs poorly because of the tall and narrow shape of the pattern used, 23× 1, which
induces many communications. Its global throughput is even smaller than the version
using only 16 nodes laid out as a perfect square, though the trend seems to reverse for
larger matrix sizes. On the other hand, G-BC shows better global performance for all
matrix sizes, which immediately translates into smaller running time. On a per-node basis,
its performance is comparable to the BC distribution using 21 nodes with a 7×3 pattern.
The observations are quite similar for P = 39: though using all the available nodes, the
performance of the second BC distribution is hindered by the rectangular shape of its
13× 3 pattern which generates many communications. As in the previous case, it is less
efficient than its square-pattern counterpart using 36 nodes. G-BC consistently achieves
the highest throughput of all three distributions for all matrix sizes and manages to reach
the same per-node efficiency than BC with a 6×6 patterns while using roughly 10% more
resources. As a conclusion, those experiments illustrate that G-BC distribution enables
to efficiently use all available resources in parallel while not sacrificing on the number
of inter-node communications thanks to its almost periodic and square pattern. Indeed,
even if the G-BC pattern is significantly larger (22 × 23 for G-BC with P = 23 against
4× 5 for BC for P = 20), it is in fact itself quasi-periodic since it is built from 20 quasi-
copies of the 5×5 incomplete pattern IP defined in Section 5.4.1. The workload between
the processors in the trailing matrix remains very well balanced, even if the pattern is
larger. This allows to achieve higher global performance than BC distribution for specific
values of the number of nodes P and in turn translates into faster global execution of the
operation.

For the other test cases using P = 31 and 35 nodes, illustrated on Figures 5.8 and 5.9,
the G-BC distribution performs as well as the BC distribution using exactly (for P = 35)
or slightly fewer (for P = 31) nodes, with an almost square pattern. In the case P = 31,
we can observe again that the BC distribution using all available nodes but laid out as
a narrow shaped pattern of size 31 × 1 generates many more communications than the
other methods and therefore achieves significantly inferior performance. Those results
show that, in configurations where P is favorable to efficient BC distributions, G-BC can
also be used indifferently without degrading the performance.



5.6.3 Results for Greedy ColRow & Matching

Table 5.1 summarizes the characteristics of the best patterns found using the GCR&M
algorithm for the considered test cases and used for the experiments. It also provides the
size of the SBC patterns to which it is compared. The key property z̄ associated with
each pattern, which corresponds to its cost T (G), is shown along with the pattern size
r. We can observe that the cost of each GCR&M pattern is either lower, for P = 35, or
roughly similar, in all other cases, to the cost associated with the SBC patterns. Hence,
the GCR&M distributions are expected to generate no more communications than the
SBC ones. The size of the GCR&M patterns are relatively large, equal or almost equal
to P for all cases except P = 35. The load balancing among nodes in those patterns, i.e.
the number of cells allocated to each node, is perfect except in the case P = 23 where
there is an imbalance of approximately 10% between the most and least loaded nodes.

Results for Cholesky factorization are quite similar to those obtained for LU factoriza-
tion for the test cases P = 31 and 35. They can be observed on Figures 5.12 and 5.13. In
those cases, the GCR&M distributions outperforms the SBC one in terms of raw perfor-
mance and achieves very close performance per node for all the matrix sizes considered.
Results for the BC distribution, for both cases, and the G-BC distribution, for the case
P = 31 only, are also show on the figures in order to stress again the clear disadvantage
of those distributions compared to the SBC and GCR&M distributions that are tailored
for symmetric operations. Indeed, as they induce more communications when performing
the Cholesky factorization, both BC and G-BC show significantly lower performance than
SBC and GCR&M in the two test cases. This extends to the two new distributions the
conclusions from the comparative results between BC and SBC presented in Section 2.3.4.

Results for the two others test cases are less clear. For P = 39, GCR&M distribution
using all the nodes achieves roughly the same raw performance as SBC using only 36
nodes, as can be observed on Figure 5.14. However, the general trend seems to be that
GCR&M performs better for larger matrix sizes; from m > 200, 000, the difference of
performance between the two methods becomes significant. The results for the test case
with P = 23 nodes, illustrated on Figure 5.11, does not show any comparative advantage
of GCR&M over SBC, although it makes uses of 2 additional nodes. The lower than
expected performance of the GCR&M distribution may comes from a problem of load
balancing: since its associated pattern features a small imbalance between nodes, as
shown in Table 5.1, the greedy procedure, mentioned in the beginning of Section 5.5,
used to transform the incomplete pattern into a complete distribution compensates the
imbalance by allocating many tiles to the least loaded node. Those tiles correspond to
the diagonal cells of the pattern. Therefore, the distribution obtained from this pattern
may show a poor local load balancing, which translates into an imbalance in the course
of the execution In turn, it can affect the overall performance of the distribution.

5.7 Conclusion

In this chapter, we investigated the possibility to extend the state-of-the-art data distribu-
tions for the parallel and distributed execution of linear algebra operations to any number



Symmetric Block Cyclic Greedy ColRow & Matching
P r z̄ P r z̄ min. load max. load

21 7 6 23 22 6.045 19 21
28 8 7 31 31 7.065 30 30
32 8 8 35 15 7.4 6 6
36 9 8 39 27 7.926 18 18

Table 5.1: Sizes and characteristics of the SBC and GCR&M patterns used for the ex-
periments; the SBC pattern for P = 32 is the basic version of size 8× 8

of identical nodes. Indeed, in a parallel and distributed context, the classic Block Cyclic
(BC) and recently developed Symmetric Block Cyclic (SBC) distributions show very good
performance respectively for LU factorization and Cholesky factorization. However, the
SBC pattern can only be defined for specific values of the number of available nodes P
while the BC pattern obtains poor results regarding communications for many values of
P .

To overcome this limitation, we developed two improved, but more irregular, distribu-
tion schemes that allow to perform those operations using all available nodes, regardless
of their number P , and which feature the same quality as BC and SBC regarding the load
balancing and the communication volume they generate. In the non-symmetric case, Gen-
eralized Block Cyclic (G-BC) is a pattern-based distribution whose pattern is perfectly
balanced and features the same property as BC pattern when used with a square number
of nodes, P = p2, i.e. it minimizes the number of different nodes per row and column,

reaching
⌈√

P
⌉
. Hence, it achieves explicit optimality regarding the total communication

volume generated for LU factorization. In the symmetric case, we propose a randomized
greedy heuristic, Greedy ColRow & Matching (GCR&M), which provides patterns for any
number of available nodes P . The procedure is designed to search for perfectly balanced
patterns which minimize the number of different nodes on all colrows, i.e. unions of row
and column with the same index, which is the key property to reduce communications for
Cholesky factorization. Sample results actually show that, for P up to a few hundreds,
GCR&M algorithm can effortlessly provide patterns expected to generate as few or even
fewer communications than SBC according to this criterion. These patterns can therefore
be seen as a generalization of the SBC method. The irregular distributions provided by
these two methods can be easily used under the task-based execution paradigm. An ex-
perimental evaluation carried out with Chameleon linear algebra library associated with
StarPU as runtime system actually shows that G-BC and GCR&M achieve improved per-
formance respectively compared to BC and SBC. In particular, they manage to efficiently
use all available nodes in situations where the value of P forces BC and SBC distribution
to either use fewer resources or use them all at the cost of extra communications. It
leads to shorter running time in those situations while both G-BC and GCR&M remain
competitive with BC and SBC in situations where the value of P is more favorable.

This work opens several interesting perspectives. The question of whether it is possible
to find an explicit description of an efficient pattern in the symmetric case, instead of
relying on a heuristic, remains open. It would also be interesting to assess how large a



pattern needs to be to obtain good communication efficiency, or to explore the trade-off
between pattern size and communication efficiency, similarly to what has been attempted
with the elaboration of BCE in Chapter 4. Note that, for GCR&M which is a randomized
procedure, the computational cost of providing patterns is not a problem, since they do
not need to be computed at each execution. On the contrary, one could imagine to
provide in database containing, for each possible value of P , a very efficient pattern for
the symmetric case. Another avenue of research could be to extend those results to the
case of heterogeneous nodes, as it seems that both methods can be adapted to this case
without substantial modifications.
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Figure 5.7: Performance results for LU factorization using P = 23 nodes
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Figure 5.9: Performance results for LU factorization using P = 35 nodes
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Figure 5.10: Performance results for LU factorization using P = 39 nodes



T
F

lo
p/

s 
/ n

od
e

T
F

lo
p/

s

100 200 300

100 200 300

0.0

0.5

1.0

0

10

20

Matrix size (x1000)

Distribution

GCR&M (P=23)

SBC 7x7 (P=21)

Figure 5.11: Performance results for Cholesky factorization using P = 23 nodes
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Figure 5.12: Performance results for Cholesky factorization using P = 31 nodes



T
F

lo
p/

s 
/ n

od
e

T
F

lo
p/

s

100 200 300

100 200 300

0.0

0.5

1.0

0

10

20

30

40

Matrix size (x1000)

Distribution

GCR&M (P=35)

SBC basic 8x8 (P=32)

BC 7x5 (P=35)

Figure 5.13: Performance results for Cholesky factorization using P = 35 nodes
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Conclusion and Perspectives

Linear algebra applications are central for the solution of many large scale scientific prob-
lems that cannot be handled analytically. Performing linear algebra operations in parallel
on distributed platforms is a necessity to provide solutions in a reasonable time. As the
scale and the complexity of computing platforms grow, so is the difficulty of using effi-
ciently available resources. The recent development of the task-based execution model
and associated runtime systems is a paradigm shift for such applications as it provides a
level of abstraction for the development of efficient data distributions.

In this work, we consider the parallel and distributed execution of four linear algebra
operations: matrix multiplication, symmetric rank-k update, LU and Cholesky factoriza-
tion, in the context of task-based model. We explore the possibility offered by runtime
systems to seamlessly perform those operations using any arbitrary data distribution, fo-
cusing on static distributions. As many existing linear algebra libraries implementing the
task-based execution model and relying on runtime systems still make almost exclusive
use of the traditional 2D Block Cyclic (BC) distribution, taking advantage of such possi-
bility appears as a relevant way for potential improvements.

In Chapters 2 and 3, we focus on symmetric operations, symmetric rank-k update and
Cholesky factorization, performed on dense matrices.

The parallel and distributed execution of Cholesky factorization using P identical
nodes is considered in Chapter 2. For this operation, we design a static pattern-based
distribution, Symmetric Block Cyclic (SBC), aimed at reducing inter-node communica-
tions. By arranging the nodes in a specific layout which takes advantage of the symmetry
of the input matrix, the SBC distribution generates a factor of

√
2 fewer communications

than plain 2D BC distribution when performing Cholesky factorization. Moreover, exper-
imental results using the Chameleon library associated with the StarPU runtime system
show that the reduction of communication directly translates into faster executions of
the operation. This advocates the use of the task-based execution model as a mean to
achieve higher performance via adapted data distributions. The easy integration of SBC
distribution in Chameleon library also illustrates the advantage of the task-based model to
investigate and develop such sophisticated distributions. The integration of SBC method
into multi-operations workflow and reallocation from and to BC are also tested, along
with 2.5D and 3D variants.

Chapter 3 provides a theoretical foundation for the ad hoc SBC distribution. It
presents original results regarding the communications volume required for symmetric
rank-k update and Cholesky factorization in the out-of-core setting, i.e. using a single
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resource which fetches and stores data from a distant memory. New lower bounds for
the communication volume are proven for both operations that improve previous results
by a factor of

√
2. In addition, two optimal algorithms are developed: Triangle Block

SYRK for symmetric rank-k update and Large Block Cholesky for Cholesky factoriza-
tion. Extending the idea underlying the SBC distribution, they are both designed to
take advantage of the symmetry of the input matrix to maximize the operational inten-
sity. Thereby, each generates a communication volume that matches the associated lower
bound for the operation.

Chapters 4 and 5 explore two different research directions to extend the techniques
elaborated in the previous chapters.

Chapter 4 deals with the problem of data distribution for the parallel and distributed
execution of non-symmetric operations, matrix multiplication and LU factorization, in
the case of heterogeneous tasks. Such heterogeneity arises when dealing with compressed
matrices; in this case we considered the regular Block Low Rank (BLR) format. In this
context, we develop two heuristic methods that provide data distributions adapted to the
set of heterogeneous tasks and which aim at balancing the workload among nodes while
controlling the number of communications: (i) Block Cyclic Extended (BCE) is a simple
yet robust extension of the classic Block Cyclic distribution; (ii) Random Subsets (RSB)
is a greedy procedure which generates non-regular distributions. Results of simulated
executions using those two methods show that they perform significantly better than 2D
BC in terms of load balancing for the majority of the tested configurations. This in
turn implies shorter total running time, although this must be tempered for RSB, as its
irregularity induces some inefficiency for LU factorization.

In Chapter 5, we consider again the parallel and distributed executions of LU and
Cholesky factorizations in the dense case. We investigate techniques to directly extend
and improve BC and SBC strategies for any number of nodes. We develop two pattern-
based data distribution schemes, Generalized Block Cyclic (G-BC) and Greedy ColRow
& Matching (GCR&M) which preserve the quality of BC and SBC methods regarding
the load balancing and the reduction of communications and which can provide solu-
tions for any number of nodes. While G-BC is defined analytically and is proven optimal
regarding the communication volume generated for LU factorization, GCR&M is a ran-
domized greedy algorithm. According to the results of sample experiments performed
using Chameleon and StarPU, both G-BC and GCR&M show improved performance in
terms of total running time compared respectively to BC and SBC. Overall, they perform
as well or even slightly better than BC and SBC while being able to maintain the same
performance on any number of resources.

The techniques developed in this work and the results they allowed to obtain act as
a practical argument in favor of the extensive usage of the task-based model ability to
perform parallel and distributed operations according to any data distribution. Indeed,
the data distributions presented in this work clearly allow performance gains over the
classic and widely used BC distribution. Nevertheless, they are easy to implement in the
Chameleon library and automatically used by the StarPU runtime system to perform the
required operations. It therefore definitely shows that the task-based model is currently
the best tool for the development of efficient and versatile linear algebra libraries able to



handle the specificities of each operation.
This opens wide perspectives for additional research as the results obtained in this

work let us expect that there remains a lot of potential performance gains for linear
algebra applications that are still unexploited.

Regarding the theoretical aspects, existing communication lower bounds may be im-
proved by taking into account more carefully the many possible ways of data reuse. Our
results on the lower bounds for symmetric rank-k update and Cholesky factorization in
the out-of-core setting from Chapter 3 illustrates that such data reuse may not be cap-
tured even by sophisticated techniques. One first step towards the integration of our
theoretical results into a broader formal framework would be the adaptation of the IOLB

tool, proposed by Olivry et al. in [62], so that it is able to handle the type of data reuse
that we have been exploiting using ad hoc techniques. Such theoretical results also show
the importance of understanding the underlying key aspects of the operations to help
guiding the elaboration of efficient solutions.

For parallel and distributed linear algebra operations in the dense case, the methods
presented in Chapters 2 and 5 open the door to a large exploration of potential techniques
to provide efficient communication-avoiding distributions for all existing operations. The
very good results obtained by the SBC, G-BC and GCR&M strategies are very encour-
aging. They suggest that, for each operation, specifically tailored designs of distribution
are likely to lead to significant performance gains. It is therefore worthy to question the
quality of already existing strategies, especially BC, for each specific linear algebra ap-
plication. Furthermore, the ease of implementation of solutions as irregular as those we
proposed, allows to envision the possibility of combining highly tuned data distributions
and reallocation strategies for very complex applications featuring multiple operations.

The core of this work has been targeted toward communications reduction for parallel
and distributed operations in the context of dense matrices. The introduction of hetero-
geneities of tasks and/or resources to the problem adds a complementary objective of load
balancing in the search of efficient data distributions, which then becomes much harder.
Our attempt to tackle such problem in the case of compressed matrices in Chapter 4 illus-
trates the difficulty of designing data distribution schemes that ensure both load balancing
and communication reduction at once. Future research in that direction should probably
be oriented towards the case of sparse matrices because of its practical importance in the
linear algebra community and in the industry. Although dealing with multiple objectives
is very challenging, a wide range of heuristic methods and their combination can be tried
on such problems. Hence, we can expect that extensions of the type of resolution methods
that we explored could be efficiently adapted and provide solutions that allow to achieve
significant performance improvements.
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[19] Natacha Béreux. Out-of-Core Implementations of Cholesky Factorization: Loop-
Based versus Recursive Algorithms. SIAM Journal on Matrix Analysis and Applica-
tions, 30(4):1302–1319, 2009.

[20] David Bergman, Carlos Cardonha, and Saharnaz Mehrani. Binary decision dia-
grams for bin packing with minimum color fragmentation. In CPAIOR, pages 57–66.
Springer, 2019.



[21] Paul Beziau. Rééquilibrage de charge dans les solveurs hiérarchiques pour machines
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