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Image denoising is a fundamental task in image processing. Indeed, the presence of noise in natural raw images (or videos) is unavoidable since it is due to the acquisition of the light itself. Noisy images or videos are degraded versions of the clean ones, which is clearly unwanted. The goal of denoising is to recover the underlying signal from the noisy data. Since the beginning of digital images, many methods have been proposed. They can be classified in two main categories: the first one concerns the traditional model-based approaches while the second one contains the more recent data-driven methods which are currently based on training neural networks. In early model-based methods, a comprehensive model of the signal and the noise is required. As a result, the algorithms are tailored for a specific noise and underperform when the actual noise deviates from that specific noise. In theory, these approaches could be adapted to handle other noise types but this has revealed to be a tedious task since we potentially need to redesign the initial algorithms. Typically, this requires models of noise which are at the same time accurate and tractable. Finding such models is often a very difficult endeavor. On the other hand, the learningbased approaches have many advantages. First, even if they are trained for a specific noise (although some can handle multiple noise types), a same neural network architecture (designed algorithm) can, in principle, be trained to handle any noise type (provided that the corresponding datasets are available). Second, they have proved to reach high performance and have advanced significantly the state of the art.

For these reasons, in this thesis, we are interested in the case of data-driven denoising methods. Nowadays, the standard approach is to use convolutional neural networks (CNNs), trained under the supervision of a ground-truth (clean signal). This means that a dataset of clean/noisy pairs is needed. However, acquiring a dataset of real images or videos with clean data is a very difficult task. For the case of images, it is possible to circumvent this by generating a pseudo noiseless image by aggregating numerous noisy frames or equivalently increasing the exposure time for instance. However, those tricks are no longer conceivable for the case of real dynamic videos (with real motion). An alternative is to train on synthetic datasets. But it is a known fact that neural networks have a poor ability to generalize to data with different distribution. Mismatches between the distributions of the synthetic and real data will lead to sub-optimal results. Simulating realistic datasets requires a comprehensive model for the real noise plus accurate ways to generate the clean raw data, both of which are unsolved research problems.

Recently, self-supervised techniques have been proposed for image denoising. They have a great advantage over the supervised methods as they do not rely on the supervision of a clean data, meaning that no specific dataset with clean/noisy pairs is needed. Although these methods perform slightly worse than their supervised counterparts, they have proven to be competitive and the gap between the two has narrowed.

This means that self-supervised approaches can be very suitable candidates for video denoising. Nonetheless, video processing is still rather unexplored compared with image processing. In this thesis, we propose the first self-supervised method for training multiframe video denoising networks. This framework, called MF2F, can be used to adapt any denoising neural network to a large family of noise types. The adaptation can be done offline or online, within a single video. This effectively results in a blind denoising method. MF2F relies on a self-supervised fine-tuning of a pre-trained denoising network. For several synthetic noise types, a network fine-tuned with this proposed approach competes with the noise-specific network trained under supervision. On real noisy videos, it has given very Bien que traditionnelle, la rédaction d'une page de remerciements dans les manuscrits de thèse n'en est pas moins une tâche délicate. Il est certainement impossible de donner la liste exhaustive de l'ensemble des personnes qui ont contribué durant trois années de près ou de loin à la réalisation de cette thèse. Aussi, je tiens particulièrement à m'excuser auprès de ceux que j'oublierai de mentionner ici car je les remercie tout autant.
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Titre: Débruitage et dématriçage concret de vidéos avec des réseaux de neurones. Mots clés: Débruitage, Traitement video, Dématriçage, Entraînement auto-supervisé, Traitement en ligne Résumé : Depuis l'ère de la photographie numérique, le débruitage est devenu une taĉhe fondamentale du traitement d'images. Il y a deux catégories de méthodes de débruitage : les méthodes traditionnelles basées sur des modélisations et celles basées sur l'apprentissage d'un réseau de neurones. Les méthodes traditionnelles requièrent un modèle explicite du bruit. Inversement les méthodes basées sur l'apprentissage peuvent être entraînées pour n'importe quel type de bruit et sont très performantes. Nous nous intéressons au cas des méthodes de débruitage basées sur l'apprentissage. L'approche traditionnelle consiste à utiliser des réseaux de neurones convolutionnels entraînés sous supervision. Les récentes techniques auto-supervisées atteignent des résultats légérement inférieurs mais tout de même compétitifs avec ceux obtenus par les approches supervisées et ne s'appuient pas sur la supervision d'une vérité-terrain. Elles sont de bonnes candidates pour le débruitage de vidéos réelles. Nous proposons la première méthode auto-supervisée pour entraîner des réseaux de neurones de débruitage vidéo. Cette méthode, appelée MF2F peut être utilisée pour adapter n'importe quel réseau de neurones de débruitage pour débruiter une grande collection de types de bruit.

MF2F repose sur un ajustage fin des paramètres d'un réseau de neurones de débruitage initialement pré-entraîné. Sur des vidéos bruitées à bruit réel, elle a donné des résultats extrêmement prometteurs puisqu'elle était devenue le nouvel état de l'art au moment de la publication. À ce stade, nous pouvons faire deux observations :

(1) Les CNNs peuvent être entraînés avec les entraînements supervisés et auto-supervisés. Le dernier est dominé par le premier et (2) les expériences menées avec notre méthode auto-supervisée MF2F montrent que cette dernière est très propice au débruitage de données réelles. Partant de ces deux constatations, quelle technique devons-nous utiliser pour entraîner un réseau de débruitage afin de débruiter des vidéos à bruit réel? Nous répondons à cette question dans la deuxième partie de la thèse. Avec le débruitage, le dématriçage est une autre étape très importante de l'acquisition d'une image RGB. Elles sont traditionnellement effectuées séparément mais le mieux serait d'effectuer ces deux opérations en même temps. Dans la troisième partie de la thèse, nous considérons différentes architectures conduisant à la première méthode traitant le problème de débruitage et dématriçage conjoint pour vidéo. image processing which aims to recover the underlying signal from the noisy data. There are two categories of denoising method: the traditional modelbased approaches and the data-driven methods (based on training neural networks). The model-based methods require a comprehensive model of the noise. Conversely the learning-based approaches can be trained to, in principle, any noise type and have a great performance. This thesis studies the case of data-driven based denoising methods. The standard approach is to use convolutional neural networks (CNNs), trained under supervision. Recently, self-supervised techniques have been proposed (mainly for image denoising). Although those latter methods achieve slightly worst results that their counterpart trained with supervision, they proved to be competitive on synthetic data and do not rely on the supervision of a clean data. An alternative is to train on synthetic datasets. But neural networks have a poor ability to generalize to data with different distribution plus simulating realistic datasets requires a comprehensive model for the real noise and to generate the clean raw data, both of which are unsolved research problems. Self-supervised approaches are suitable candidates for video denoising. We propose the first self-supervised method for training multi-frame video denoising networks. This framework, called MF2F, can be used to adapt any denoising neural network to a large family of noise types. MF2F relies on a fine-tuning of a pre-trained denoising network. For several synthetic noise types, a network fine-tuned with this proposed approach competes with the noise-specific network trained under supervision. On real noisy videos, it has given very promising results, setting the state of the art at the moment of the publication.

For now, two observations can be done: (1) CNNs can be trained with supervised and self-supervised learning, the latter being dominated by the former and (2) the self-supervised technique MF2F achieves auspicious results on real data. Hence which one should be used to trained a denoising network? In the second part of the thesis, we answer this question and describe the study we did to compare both approaches.

After denoising, demosaicing is also a very important step in the acquisition of an RGB image. Traditionally, denoising and demosaicing are applied separately but the best is to operate both operations together in the same time. In the third part of the thesis, we examine different architectures, leading to the first method at this time that operates joint denoising and demosaicing for videos.
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For now, two observations can be done: (1) CNNs can be trained with two training techniques which are supervised and self-supervised learning, the latter being dominated by the former (at least on synthetic data) and (2) the self-supervised technique MF2F achieves promising results on real data. From those two statements, the natural question is to determine which one should be used to train a denoising network when dealing with real data. In the second part of the thesis, we focus on answering this question and we describe the study we did to compare both approaches as well as the obtained results.

After denoising, demosaicing is also a very important step in the acquisition of an RGB image. Traditionally, denoising is done before demosaicing, but there are some papers claiming that it is beneficial to operate demosaicing before. The best is even to perform both operations together simultaneously. Joint denoising and demosaicing (JDD) methods have been proposed for image denoising. Still, the case of videos has been far much less studied. While the two first parts of the thesis focus on training network for practical use cases, this third part is devoted to the architecture. Starting from the promising results on real raw videos obtained with the framework MF2F, we examine different architectures for video JDD, evaluating the impact of aspects such as motion compensation and recurrent vs. non-recurrent approaches. The best results were obtained by a simple recurrent CNN with a multi-scale architecture, hopefully setting a baseline for future research in the subject. Both the multi-scale and recurrent CNN are not novel, yet this is the only method at this time that operates joint denoising and demosaicing for videos.

Résumé

Depuis l'émergence de la photographie numérique, le débruitage s'est avéré être une taĉhe très fondamentale du traitement d'images. En effet, la présence de bruit dans les images (ou vidéos) naturelles et brutes est inévitable, puisqu'elle est due à l'acquisition de la lumière elle-même. Les images ou vidéos bruitées sont des versions dégradées des données véritésterrains, ce qui est clairement non voulu. Le but du débruitage est de retrouver le signal non bruité sous-jacent à partir des données bruitées. Depuis le début des images numériques, beaucoup de méthodes ont été proposées. Elles peuvent être classifiées en deux catégories principales : la première concerne les méthodes traditionnelles basées sur des modélisations, tandis que la seconde regroupe les méthodes plus récentes basées sur l'apprentissage d'un réseau de neurones. En ce qui concerne les premières méthodes basées sur une modélisation, un modèle explicite du bruit et du signal est nécessaire. Par conséquent, les algorithmes sont conçus pour un bruit bien spécifique, ce qui fait qu'ils sont souvent sous-performants quand le véritable bruit s'écarte du bruit pour lequel ils furent initialement élaborés. Ces méthodes pourraient en principe être ré-utilisées pour d'autres types de bruit, mais ce serait cependant une tâche très fastidieuse puisque cela nécessiterait de reconcevoir l'algorithme initial. D'une manière générale, cela nécessiterait des modèles de bruit qui sont à la fois précis et faciles à traiter. Or, il est très difficile de trouver de tels modèles. D'un autre côté, les méthodes basées sur l'apprentissage ont beaucoup d'avantages. Tout d'abord, même si elles ont été entraînées au préalable pour un type de bruit donné, la même architecture de réseau de neurones peut être entraînée pour, en théorie, n'importe quel type de bruit (pourvu qu'une base de donnée d'entraînement est disponible). En outre, certaines architectures ont été entraînées pour débruiter indifféremment plusieurs types de bruit différents. Ensuite, elles se sont révélées être d'une grande performance et ont amélioré significativement l'état de l'art.

Pour toutes ces raisons, nous nous focaliserons dans cette thèse sur le cas des méthodes de débruitage basées sur l'apprentissage. De nos jours, l'approche standard consiste à utiliser des réseaux de neurones convolutionnels (CNN de l'acronyme anglais Convolutional Neural Network), entraînés sur des bases de données sous la supervision d'une vérité-terrain, c'està-dire d'un signal sans bruit. En particulier, cela nécessite une base de données composée de paires de données sans bruit/bruitée. Cependant il est très difficile d'acquérir une base de données d'images ou de vidéos à bruit réel avec des données non bruitées. Dans le cas particulier des images, il est possible de contourner ce problème en générant des données pseudo-débruitées en agrégeant un très grand nombre d'images de la même scène, ou de manière équivalente en augmentant le temps d'exposition lors de l'acquisition. Toutefois, ces astuces ne sont plus valables dans le cas des vidéos réelles et dynamiques (avec mouvement réel). Une alternative consisterait à entraîner sur des bases de données synthétiques, mais il est connu que les réseaux de neurones ont une très médiocre capacité à généraliser à de nouvelles données dont la distribution diffère. Le manque de correspondance entre les distributions des données synthétiques et réelles conduira obligatoirement à des résultats sous-optimaux. Simuler des bases de données réalistes nécessite un modèle complet du bruit réel, ainsi que des moyens de générer avec précision des données brutes non bruitées. Or, ces deux problèmes de recherches sont encore non résolus.

Récemment sont apparus les techniques auto-supervisées, principalement pour le débruitage d'images. Elles ont par rapport aux méthodes supervisées, le grand avantage de ne pas s'appuyer sur la supervision d'une vérité-terrain, ce qui signifie que les bases de données avec des paires non bruitée/bruitée n'est plus nécessaire. En outre, bien que ces dernières atteignent des résultats légérement inférieurs que ceux obtenus par les approches supervisées, elles se sont avérées être tout de même compétitives et l'écart entre les deux approches s'est réduit.

Ainsi, les approches auto-supervisées s'avèrent être des candidates très adéquates pour le débruitage de vidéos réelles. Néanmoins, le traitement de vidéos est encore assez peu exploré en comparaison avec le traitement d'images. Dans cette thèse, nous proposons la première méthode auto-supervisée pour entraîner des réseaux de neurones de débruitage vidéos multi-images. Cette méthode, appelée Multi Frame-to-Frame (MF2F) peut être utilisée pour adapter n'importe quel réseau de neurones de débruitage pour débruiter une grande collection de types de bruit. L'adaptation peut avoir lieu aussi bien de manière en ligne que de manière hors ligne et en utilisant seulement une unique vidéo, résultant en une méthode de débruitage à l'aveugle. MF2F repose sur un ajustage fin des paramètres d'un réseau de neurones de débruitage initialement pré-entraîné, cet ajustage étant fait par autosupervision. Pour plusieurs types de bruit synthétiques, les réseaux de neurones entraînés par cette approche sont capables de rivaliser avec les réseaux de même architecture mais entraînés sous supervision spécifiquement et uniquement pour le bruit testé. Sur des vidéos bruitées à bruit réel, elle a donné des résultats extrêmement prometteurs puisqu'elle était devenue le nouvel état de l'art au moment de la publication.

A ce stade, nous pouvons faire deux observations : (1) Les CNNs peuvent être entraînés avec deux techniques d'apprentissage que sont les entraînements supervisés et autosupervisés. Le dernier est classiquement dominé par le premier (tout au moins sur des données artificielles) et (2) les expériences menées avec notre méthode auto-supervisée MF2F montrent que cette dernière est très propice au débruitage de données réelles. Partant de ces deux constatations, il est naturel de se poser la question de savoir quelle technique devons-nous utiliser pour entraîner un réseau de débruitage afin de débruiter des vidéos à bruit réel. Dans la deuxième partie de la thèse, nous nous concentrons sur la réponse à cette question et nous décrivons l'étude que nous avons faites pour comparer de manière juste les deux approches, ainsi que les divers résultats que nous avons obtenus.

Tout comme le débruitage, le dématriçage d'images est aussi une étape très importante de l'acquisition d'une image RGB. Le débruitage est traditionnellement effectué avant le dématriçage, mais certains articles de recherche affirment qu'il est favorable d'opérer le dématriçage au préalable. Le mieux serait même d'effectuer ces deux opérations en même temps. Pour le cas des images, le débruitage et dématriçage conjoint (JDD, de l'acronyme anglais Joint Denoising and Demosaicing ) a été proposé. A nouveau, en raison des complexités inhérentes au cas des vidéos, ce dernier a été largement moins étudié. Tandis que les deux premières parties de la thèse sont dédiées à l'entraînement des réseaux pour des cas d'utilisation pratiques, la troisième partie de la thèse est consacrée aux architectures. En partant des résultats prometteurs obtenus avec la méthode MF2F sur des vidéos brutes à bruit réel, nous considérons différentes architectures pour la tâche du débruitage et dématriçage coinjoint de vidéos, en évaluant les impacts des différents aspects inhérents tel que la compensation de mouvement, ou par exemple les approches récurrentes vs. non récurrentes. Les meilleurs résultats ont été obtenus avec un simple réseau convolutif ayant une architecture multi-échelle. Nous pouvons espérer qu'il sera une référence pour les recherches futures dans ce domaine. Bien que les réseaux à la fois récurrents et multi-échelle ne sont pas nouveaux, il s'agit cependant de la toute première méthode traitant le problème de débruitage et dématriçage conjoint pour vidéos.

Introduction

Denoising has been a fundamental problem of image and video processing since the early days of these disciplines. It continues to be an active research area, both for images and videos, due to the continuous need for reducing the size of the sensors and the desire of imaging in increasingly challenging conditions (such as low light and short exposure times for instance, which reduce the SNR1 of the acquired data). This is all the more so in the case of real noise for which the distribution of the noise is hard to model (see the Preliminaries Chapter 1) and may require a complex mathematical modeling, which is usually camera dependent.

Another key component in the image acquisition pipeline is demosaicing. Most imaging sensors have a single photo-receptor at each spatial location. A color filter array placed on top of the sensor filters the incoming light in either red, green and blue components. Thus each pixel only acquires one of the three required color components. Demosaicing is the problem of interpolating the missing components. The usual approach to combine these two steps is to apply denoising and demosaicing separately, by applying denoising first and then demosaicing, although a few works have claimed that inverting this order could be better [START_REF] Jin | A review of an old dilemma: Demosaicking first, or denoising first?[END_REF]. The most recent trend is to perform both jointly, using an end-to-end Joint Denoising and Demosaicing solution.

Regarding image denoising, there are basically two categories of methods. The first one corresponds to the model-based methods, which dominated the state of the art since the early days of these disciplines until recently. They are based on mathematical models of natural images. For example, one of them is the non-local self-similarity prior, which exploits the fact that a given local patch usually has many similar patches across the image or frame of a video, and in the case of video, also across the neighboring frames. Those traditional approaches typically require a tractable model of the noise, and specific algorithms for each noise type (e.g. [LCM15; GPMA18; MSF14; SHDW14; CHKB09; BKB+09; ZDD+19]).

The second category concerns the data-driven methods, which nowadays mostly rely on training neural networks. The current state of the art in image and video denoising is dominated by convolutional neural networks (CNNs) [ZZC+17; SMD16; LWF+18; DEM+20; TDV20] trained with supervision on large datasets consisting of clean-noisy pairs. The same holds for demosaicing and most restoration problems. In addition to their superior performance, CNNs offer a greater flexibility as they can be trained to denoise potentially any type of noise [CCXK18; WZP17; KMY17; CYC+19], in contrast with the previous model-based methods.

This makes learning-based approaches an ideal candidate for restoration of real videos. Yet, this is still a rather unexplored subject, with most of the research that considers real data focusing on single image denoising. The main reason for this is the shortage of available training datasets for real video denoising. Indeed, the datasets with pairs of clean-noisy signals required by supervised training are very hard to obtain in the case of real images [CCXK18; PR17; ALB18], and even more so for real videos. The classical approach is then to train on synthetic datasets, generated by artificially degrading a large set of clean RGB images or videos. The resulting networks perform very well on similar synthetic test data, but might not generalize well to real data. The main reason is that neural networks are very sensitive to mismatches between the data distributions at training and testing times [START_REF] Plotz | Benchmarking denoising algorithms with real photographs[END_REF]. This is currently one of the most important problems in learning-based image and video restoration.

In this thesis we work on the application of neural networks for practical video denoising and demosaicing problems on real data. The chapters 2 to 4 deal with the problem of how to train video denoising networks so that they perform well on real noisy videos. The chapter 5 focuses on the designing lightweight network architectures for efficient video joint denoising and demosaicing.

Self-supervised training of video denoising networks

Self-supervised denoising methods allow to train a network exclusively from noisy images/videos.2 These methods exploit the statistical independence of the noise across different dimensions of the acquired signals (i.e. different images, or neighboring pixels). In Chapter 1.1, we give a brief summary of the principles behind self-supervised methods. Two immediate benefits that come from this type of training are: 1) no ground-truth is required and 2) a priori, there is no need to model the actual noise in order to apply them.

The frame-to-frame (F2F) algorithm by Ehret et al. [START_REF] Ehret | Model-blind video denoising via frame-to-frame training[END_REF] was the first to propose a noise blind image denoising network fine-tuned with self-supervision only using noisy videos (blind in the sense that the distribution of the noise is unknown). The self-supervised fine-tuning exploited the temporal redundancy between frames by minimizing a loss that penalizes the motion compensated error between the predicted frame and the previous noisy frame as target. For the first time, a network trained with self-supervision on an unknown noise type gave results on par with those of the same network trained with supervision specifically for that noise type. However, an important limitation of F2F is that the training is adapted only to single-frame denoising networks. These networks attain sub-optimal results on the video denoising task as they do not take advantage of the temporal redundancy between frames. In addition the results also lack temporal consistency.

In Chapter 2 we propose Multi-frame-to-frame (MF2F) a generalization of the F2F framework to train video denoising networks that take several neighboring frames as input. This extension is not straightforward. Indeed, if we naively apply F2F to a multi-frame network, the network will learn a trivial solutions that still contain noise. In order to avoid such trivial solutions, we explored several possibilities for the input stack and we also considered several choices for the target. In the end, we kept the option that gave the best results. MF2F was the first blind video denoising method achieving state-of-the-art results (on a wide range of synthetic noise types but also when applied to real noise). Figure 1 shows that, for different noise types, the same pretrained network fine-tuned with the MF2F framework attains results on par with those of the same network trained with supervision on each specific noise.

Best training strategy for denoising real data

Following the good results obtained by self-supervised methods like MF2F, in the second part of this thesis, we are interested in comparing them with the standard approach of training with supervision on realistic synthetic data. Both approaches have advantages and drawbacks.

Simulating realistic datasets requires on the one hand to generate realistic clean data and on the other hand to simulate realistic noise. In Chapter 3, we describe the "unprocessing" method of Brooks et al. for generating raw data from any sRGB image. Figure 2 shows an example of the unprocessing of a sRGB image to the raw domain. Unprocessing sRGB data aims at recovering the underlying raw data by inverting the processing pipeline, this allows us to generate as many clean data as we want. Simulating realistic noise is also an active research area. A common approximation used to model real noise is the so-called additive heteroscedastic Gaussian noise, which has a signal dependent variance [START_REF] Foi | Practical poissoniangaussian noise modeling and fitting for single-image raw-data[END_REF]. As discussed in Chapter 1.2, more accurate models for real noise distributions also exist: the Poisson-Gaussian model [START_REF] Foi | Practical poissoniangaussian noise modeling and fitting for single-image raw-data[END_REF] for instance. Those models still have some limitations as they do not take into account the non-linear behavior of the sensor (e.g. clipping), dead pixels, the heavy tails of read noise, etc. Data driven generative approaches such as [CCCY18; KRJ19; CWL+20; YZZM20; ABB19; WLD+21] have been also proposed to synthesize noise.

Using unprocessing and a given noise model, we can generate datasets of realistic videos with clean ground-truth. Such a dataset can be used for training supervised networks. In Chapter 4, we compare on real data different networks initially trained either with supervision on synthetic data or with self-supervision directly on the real (noisy) data. Our goal is to answer the question of knowing which training strategy should be used to train a denoising network. Figure 3 shows a comparison of both approaches on real data. This chapter consists of several experiments from which we took some interesting conclusions: (1) in normal illumination conditions, the simplistic heteroscedastic Gaussian noise model is a good enough approximation of real noise (2) self-supervised networks trained on real data outperform supervised networks pretrained on synthetic data (3) the lower performance of the networks trained with supervision is due to the mismatching between the synthetic data and the real ones and consequently a special attention should be taken for unprocessing the clean raw data.

Recurrent networks for video JDD

In the last part of the thesis, we focus on the problem of Joint video Denoising and Demosaicing (JDD), with particular interest in identifying the architecture elements that lead to best results. As explained above, the JDD task has attracted a lot of attention in the past few years because it promises to improve the performance of raw to sRGB pipelines, while also simplifying them. However, most of the recent works focus on still images or bursts of images (i.e. a temporal window of a few contiguous frames).

While the processing of video and image bursts are related, there is a significant difference between them: the goal of burst JDD is to obtain a single sRGB image from the burst, while in a video each frame needs to be processed. Oftentimes, videos are processed as a sequence of independent frame bursts. This typically leads to a poor temporal consistency and impractical solutions due to their high computational time, memory consumption and latency.

In Chapter 5, we propose a simple architecture which only has access to at most three frames to keep the latency and memory consumption low. We carry out several studies comparing recurrent and non recurrent architectures and analyzing the impact of explicit motion compensation as well as the use of a future frame in the network inputs. This exploration led to a recurrent multi-frame CNN architecture that uses an explicit motion compensation, which we called Recurrent Video joint Denoising and Demosaicing (RVDD). The resulting architecture sets the state-of-the-art in this domain and could serve as a reliable baseline for future work on video JDD.

The proposed RVDD network attains a performance similar to a heavier state of the art multi-frame architecture (FastDVDnet [TDV20], a video denoising network which we adapted to the JDD task), at a fraction of the computational cost and memory use. Figure 4 shows the results of our proposed method on a synthetic video corrupted with realistic noise with ISO 12800 (the ISO level represents the sensitivity to light of the camera; high sensitivities like this one produce a lot of noise).

Publications related to this thesis

The work carried out during this thesis has led to the following publications: Le dématriçage est une autre composante clef de l'acquisition d'image (voir le Chapitre Préliminaire 1). La plupart des capteurs ont un unique photo-récepteur à chaque localisation spatiale. Une matrice de filtres colorés est placée au devant du capteur et filtre la lumière incidente dans ses composantes rouge, verte ou bleue. Ainsi, chaque pixel n'acquiert qu'une seule des trois composantes de couleur requises. Le dématriçage consiste à interpoler les composantes manquantes. La façon usuelle de combiner ces deux étapes est d'appliquer le débruitage et le dématriçage séparément. Bien qu'il soit très courant d'appliquer le débruitage en premier suivi du dématriçage, quelques travaux ont affirmé qu'il était mieux d'inverser cet ordre [START_REF] Jin | A review of an old dilemma: Demosaicking first, or denoising first?[END_REF]. Néanmoins, appliquer le débruitage en premier continue d'être toujours largement utilisé. La tendance la plus récente consiste à effectuer ces deux étapes en même temps (conjointement), conduisant à une approche intégrale de Débruitage et Dématriçage Conjoint (JDD de l'acronyme anglais Joint Denoising and Demosaicing ).

En ce qui concerne le débruitage d'images, on distingue typiquement deux catégories de méthodes de débruitage. La première catégorie est composée des méthodes basées sur la modélisation. Celles-ci ont dominé l'état de l'art depuis les débuts de cette discipline et jusqu'à récemment. Elles sont basées sur des modèles mathématiques des images naturelles. Par exemple, l'une d'entre-elles est l'a priori d'auto-similarité non locale qui consiste à exploiter le fait que chaque imagette locale et donnée d'une grande image a de nombreuses telles imagettes similaires au sein de la grande image ou vidéo. De plus dans le cas d'une vidéo, la recherche peut s'effectuer selon la dimension temporelle, c'est-à-dire dans les images avoisinantes (temporellement). Ces approches traditionnelles requièrent généralement une modélisation globale du bruit et des algorithmes spécifiques pour chaque type de bruit (e.g. [LCM15; GPMA18; MSF14; SHDW14; CHKB09; BKB+09; ZDD+19]).

La seconde catégorie regroupe les méthodes basées sur l'apprentissage qui de nos jours reposent principalement sur l'entraînement d'un réseau de neurones. L'état de l'art actuel en débruitage d'images ou de vidéos est représenté par les réseaux de neurones convolutifs (CNNs de l'acronyme anglais Convolutional Neural Networks) [ZZC+17; SMD16; LWF+18; Tout ceci fait des méthodes basées sur l'apprentissage des candidates idéales pour la restauration de vidéos réelles. Pourtant, c'est un sujet qui est encore assez peu exploré et la plupart des recherches à propos de débruitage de données réelles continuent de considérer uniquement le cas des images. La raison principale est l'insuffisance de bases de données pour le débruitage de vidéos réelles. En effet, les bases de données avec des paires de signaux bruités/non bruités requises par les entraînements supervisés sont très difficiles à obtenir pour le cas des images réelles [CCXK18; PR17; ALB18], et sont même encore plus difficiles à obtenir dans le cas des vidéos à bruit réel. L'approche classique est alors d'entraîner sur des bases de données synthétiques, générer en dégradant artificiellement un grand ensemble d'images ou de vidéos RGB non bruitées. Les réseaux ainsi entraînés ont une très bonne performance sur les données d'évaluation synthétiques, mais pourrait ne pas généraliser comme il se doit sur des vidéos bruitées à bruit réel. Le dernier chapitre de cette thèse est consacré à la conception d'architectures de réseau de neurones légères pour un débruitage et dématriçage conjoint efficace de vidéos.

Entraînement auto-supervisés de réseaux de débruitage vidéo

Les méthodes auto-supervisées de débruitage permettent d'entraîner un réseau exclusivement à partir des images/vidéos bruitées. 4 Ces méthodes exploitent l'indépendance statistique du bruit à travers différentes dimensions des signaux acquis (i.e. differentes images ou des pixels adjacents). Dans le Chapitre 1.1, nous donnons un bref résumé des principes sous-jacents des méthodes auto-supervisées. Deux avantages ressortent immédiatement de ce type d'entraînement : 1) elles ne nécessitent pas de vérité-terrain et 2) elles n'ont a priori pas besoin d'un modèle du bruit pour pouvoir être appliquées.

Frame-to-frame (F2F), proposée par Ehret et al. [START_REF] Ehret | Model-blind video denoising via frame-to-frame training[END_REF], a été la première méthode de débruitage à l'aveugle (dans le sens où la distribution du bruit est inconnue), proposant l'ajustage fin des poids d'un réseau de débruitage par auto-supervision en utilisant uniquement des vidéos dégradées. L'ajustage fin par auto-supervision exploite la redondance temporelle entre deux images consécutives en minimisant une fonction de coût qui pénalise l'erreur entre l'image prédite (le mouvement est alors compensé) et la précédente image bruitée (qui est alors utilisée comme image cible lors de l'entraînement). Pour la première fois, un réseau entraîné par auto-supervision sur un type de bruit inconnu donna des résultats à égalité avec ceux du même réseau mais entraîné par supervision et spécifiquement pour ce bruit. Cependant, une limitation importante de F2F est que l'entraînement est uniquement adapté aux réseaux de débruitage mono-image. Ces réseaux atteignent des résultats sous-optimaux dans le cas de débruitage vidéo car ils ne bénéficient pas de la redondance temporelle naturelle entre deux images temporellement contiguës. En outre, les résultats manquent aussi de consistance temporelle.

Dans le chapitre 2, nous proposons la méthode Multi-frame-to-frame (MF2F) qui est une généralisation de la méthode F2F pour entraîner des réseaux de débruitage de vidéos prenant en entrée une fenêtre temporelle. Cette extension n'est pas triviale. En effet, si on applique naïvement F2F à un réseau multi-images, ce réseau fournira des solutions sans intérêt qui contiendront encore du bruit. Nous avons exploré plusieurs possibilités de sélectionner une pile d'images d'entrée ainsi que le choix de l'image cible qui éviteraient de telles solutions triviales, et nous avons gardé celles qui donnaient les meilleurs résultats. MF2F a été la première méthode de débruitage vidéo à l'aveugle à atteindre des résultats état-de-l'art (et ce, sur une large gamme de bruits synthétiques mais aussi une fois appliquée sur des données à bruit réel). La Figure 1 montre que pour différents types de bruit, et une fois ses paramètres ajustés par la méthode auto-supervisée MF2F, un réseau pré-entraîné (toujours le même) atteint des résultats à égalité avec ceux du même réseau entraîné par supervision pour chaque type de bruit donné.

Meilleure stratégie d'entraînement pour le débruitage de données réelles

Compte-tenu des bons résultats obtenus avec les méthodes auto-supervisées comme MF2F, nous nous sommes intéressés dans la deuxième partie de la thèse, à leur comparaison avec l'approche standard d'entraînement par supervision sur des bases de données réalistes et synthétiques. Les deux approches ont des avantages et des inconvénients. La simulation de bases de données réalistes nécessite d'une part de générer des données non bruitées réalistes et d'autre part de simuler du bruit réaliste. Dans le Chapitre 3, nous décrivons la méthode de "détraitement" ("unprocessing" en anglais) de Brooks et al. qui permet de générer des données brutes à partir de n'importe quelle image RGB. La Figure 2 montre un exemple du détraitement d'une image sRGB vers le domaine des images brutes. Détraiter une donnée sRGB consiste à retrouver la donnée brute sous-jacente en inversant la chaîne de traitement, ce qui nous permet de générer autant de données brutes que l'on souhaite.

Simuler du bruit réaliste est aussi un sujet de recherche actif. Une approximation couramment utilisée pour modéliser le bruit réel est le célèbre bruit gaussien additif hétéroscédastique, qui a une variance qui est fonction du signal [START_REF] Foi | Practical poissoniangaussian noise modeling and fitting for single-image raw-data[END_REF]. Comme mentionné au Chapitre 1.2, il existe d'autres modèles plus précis pour modéliser la distribution du bruit réel : Le modèle Poisson-gaussien [START_REF] Foi | Practical poissoniangaussian noise modeling and fitting for single-image raw-data[END_REF] par exemple. Ces modèles ont tout de même quelques limitations puisqu'ils ne prennent pas en compte les comportements non linéaires du capteur (e.g. la saturation par écrêtage), le phénomène de pixels morts, l'étalement de la queue de distribution du bruit de lecture, etc. Des approches basées sur l'apprentissage telles que [CCCY18; KRJ19; CWL+20; YZZM20; ABB19; WLD+21] ont aussi été proposées pour synthétiser du bruit réaliste.

En utilisant le détraitement et un certain modèle de bruit, il est possible de générer des bases de données de vidéos brutes réalistes avec des vérités-terrains (non bruitées). Une telle base de données peut alors être utilisée pour des entraînements supervisés de réseaux de neurones. Au Chapitre 4, nous comparons sur des données brutes, différents réseaux préalablement entraînés soit par supervision sur des données synthétiques, soit alors par auto-supervision et directement sur les données (bruitées) brutes et réelles. Notre but est de répondre à la question de savoir quelle stratégie d'entraînement devons nous utiliser pour entraîner un réseau de débruitage. La Figure 3 montre une comparaison des deux approches sur des données à bruit réel. Ce chapitre consiste en de nombreuses expériences desquelles nous avons tiré quelques conclusions : (1) dans les conditions normales d'illumination, le modèle simpliste de bruit gaussien hétéroscédastique est une approximation suffisante du bruit réel (2) les réseaux entraînés par auto-supervision sur les données réelles atteignent une plus grande performance que les réseaux entraînés par supervision sur des données synthétiques (3) la plus faible performance des réseaux entraînés par supervision est due à la discordance entre les données synthétiques et les données réelles et par conséquent une attention très spéciale doit être donnée au détraitement des données brutes non bruitées. Le réseau ainsi proposé dans la méthode RVDD atteint une performance similaire à une architecture état-de-l'art plus lourde (FastDVDnet [START_REF] Tassano | Fastdvdnet: Towards real-time deep video denoising without flow estimation[END_REF], un réseau de débruitage vidéo que nous avons adapté pour la tâche de débruitage et dématriçage conjoint), tout en n'utilisant pour autant qu'une fraction de son temps de calculs et de son utilisation mémoire. Nous montrons dans la Figure 4 les résultats de notre méthode sur une vidéo synthétique altérée avec un bruit réaliste correspondant à un ISO de 12800 (la valeur de l'ISO représente la sensibilité de la caméra à la lumière ; les fortes valeurs de sensibilité comme celle-ci produisent beaucoup de bruit).

Réseaux récurrents pour le débruitage et dématriçage conjoint de vidéos
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Preliminaries

In this chapter, we review some general concepts common to all chapters of the thesis. First, we talk about neural networks and how they are trained. In particular we describe the Noise-to-noise framework, which is used for training denoising networks with self-supervision. The second section is dedicated to the acquisition of image or video, from the raw data to sRGB. We describe the heteroscedastic Gaussian noise model, a common noise model that is used throughout the thesis to model real noise.

Neural Networks and Self-Supervised Training

Generalities on Artificial Neural Networks

Inspired from biology, an artificial neural network (or simply a neural network) is a computing system based on a collection of numerous connected nodes (the neurons). The output of each neuron is computed as a function (often non-linear) of its inputs. The neurons are gathered into layers. In typical architectures, neurons in a given layer receive their inputs from the outputs of neurons in the previous layer. The output of a neuron can be used as input to several neurons in the next layer. Figure 1.1 shows the structure of a multi-layer neural network.

Denoting with x the input of a given neuron, its output y is computed by y = ρ(W x+b), where W and b are the weights and bias of the neuron and ρ(•) is the nonlinear activation. The weights and biases of all neurons of a network constitute its parameters which are adjusted during the training. By stacking layers of neurons in a complex network more complex operations can be made. The interest of neural networks comes from the fact that we can devise learning algorithms which can automatically tune the weights and biases of a network. This tuning happens in response to external stimuli, without direct intervention by a programmer. These learning algorithms enable us to use artificial neurons in a way which is radically different to conventional hand made algorithms.

In image processing, we mostly employ convolutional neural networks (CNNs). In the convolutional the weights correspond to convolution kernels (i.e. the features are computed with convolutions). Convolution layers have two advantages: they are invariant to any integer translations (a desirable property in image restoration) and are lighter than fully connected layers. 

Supervised network training

Training a neural network corresponds to adjusting its parameters (weights) in such a way to minimize the empirical risk computed on a large set of example pairs of inputs and desired outputs (or labels).

Let us denote {v i } i∈I a set of inputs and {u i } i∈I the corresponding desired outputs (also named labels or targets). Also, let F θ 0 denote the network with its initial weights θ 0 . The goal of the training is to reduce the value of a loss function that measures the error between the output of the network and the corresponding target. That is, training the network F means updating the weights θ 0 so that we minimize a given loss function ℓ (F θ 0 (v), u) over the dataset indexed by I. Such a loss function measures the discrepancy between the predicted output (the noiseless image or video in the case of denoising) and the desired output (the clean ground-truth in denoising).

In theory, this would require to minimize the expected value of the loss function ℓ

R (F θ ) = ℓ (F θ (v), u) p(v, u) dvdu, (1.1)
where p(v, u) is the joint PDF for the noisy data v and the clean target u. In other words, the weights are updated from θ 0 by finding θ minimizing the risk

θ = arg min θ R F θ . (1.2) We can rewrite p(v, u) = p(v)p (u | v)
, where p(v) is the probability of the noisy image v and p (u | v) is the probability that u is the clean underlying image given v. Unfortunately, the distribution of the data p is inaccessible. To circumvent this, the risk in Equation 1.1 is approximated by a Monte-Carlo approximation. Suppose |I| to be large enough (i.e. the dataset consists of enough labeled samples (v i , u i )), then R (F θ ) can be approximated by the empirical risk

R emp (F θ ) = 1 |I| i∈I ℓ (F θ (v i ), u i ) . (1.3)
Note that this approximation would be a rigorous equality if we wrote it with a limit when |I| tends to infinity, but the datasets are evidently finite in practice. This has important consequences since a too small dataset will cause the network to memorize features of the training data, which are not representative of general data. This is known as over-fitting and mainly appears when the training set contains too few samples and the network has too many parameters. The consequence of over-fitting is a bad generalization to new data, even if the loss was well minimized during training.

The commonly used loss functions for denoising are the Mean Squared Error (MSE or L 2 -loss) (used to measure the average squared error between the network output and the target) and the absolute error (L 1 loss) (used to measure the absolute error between the output of the network and the target).

A stochastic gradient descent algorithm is then used to update step-by-step the network weights such that the empirical risk over the dataset indexed by I is minimized. Upon convergence, the outputs of the network should be very close to the corresponding targets (since the error between the target and the prediction is reduced). Often, a criterion is used to stop the training (when the error does not decrease anymore for instance).

Note that the minimizer θ ⋆ depends on the loss function. For instance for the MSE loss, if we denote by v a noisy data and u the clean underlying one, then F θ ⋆ (v) is the expectation of the clean data u knowing the noisy v:

E [u | v]. For the L 1 loss, it becomes F θ ⋆ = median [u | v].
Observe that in these two examples, the superscript ⋆ denotes the theoretical estimator. In practice we deviate from the theoretical setting in several aspects. Firstly, the network might not be able to express the optimal estimator (this is related to the capacity of the network). In addition, the optimization algorithm might converge to a local minimum. And finally, the dataset is finite.

Noise-to-noise (N2N)

In the previous section, the network was trained by minimizing the empirical risk of Equation 1.3. The minimization is operated under the supervision of the desired output. In the case of denoising (either image or video), a sample (v i , u i ) is a couple of noisy data and corresponding clean ground-truth data. This is called supervised training. In [START_REF] Lehtinen | Noise2Noise: Learning image restoration without clean data[END_REF], the authors show that in certain conditions, it is also possible to train a denoising network with pairs of noisy data. They called their method Noise-to-Noise (N2N). This means that the labels are no longer clean ground-truth data. The empirical risk for N2N becomes:

R emp N 2N (F θ ) = 1 |I| i∈I ℓ (F θ (v i ), z i ) .
(1.4)

Here v i and z i are two noisy versions of the same clean data u i

v i = u i + n 1 i z i = u i + n 2 i , (1.5) 
where n 1 i and n 2 i are two noise realizations (potentially of different distributions), conditionally independent given the clean data u i . In practice, v i and z i could be two images of the same static scene taken with the same camera. In this case n 1 i and n 2 i are sampled from the same noise distribution, but this is not mandatory.

The intuition behind N2N is the following. During the training, we minimize the empirical risk in Equation 1.4. When a sample data (v i , z i ) is used, the network is fed with v i and consequently, because of the conditional independence of the noise, it is impossible for the network to predict the noise component n 2 i in z i . The loss ℓ (F θ (v i ) , z i ) can only be minimized as long as F θ (v i ) → u i , that is the network learns to predict the clean data.

However, showing that this intuitive idea holds requires further assumptions on the loss and the noise. The minimizers of the N2N risk in Equation 1.4 are similar to the ones obtained with supervised training:

F θ ⋆ (v) = E[z | v] for the MSE loss and F θ ⋆ (v) = median[z | v]
for the L1 loss. Thus the optimal estimators now depend on the posterior distribution of the noisy target z given the noisy observation v. Thus, for N2N to be equivalent to the supervised training, we have the following conditions:

E[z | v] = E[u | v] if we use the MSE loss, median[z | v] = median[u | v] if we use the L 1 loss.
(1.6)

For the MSE loss, the first condition in 1.6 can be simplified: we have that

E z [z | v] = E u [E z (z | u) | v] , (1.7) 
where we put in index the variable on which the integral is computed. If the noise n 2 in the target is zero mean (i.e. E[n 2 ] = 0), we have that

E z [z | u] = u and thus E[z | v] = E[u | v].
Note that in practice the condition of zero-mean of the noise holds true and is often easy to check. With this assumption and for the MSE loss, the N2N training is therefore equivalent to the supervised one. This is more complicated to get such a sufficient condition for the L 1 loss. Indeed, even if the noise in the target is median preserving (i.e. median[z | u] = u), this does not imply that median

[z | v] = median[u | v]. However when the noise is median preserving, median[z | v] approximates median[u | v]
and the authors of [START_REF] Lehtinen | Noise2Noise: Learning image restoration without clean data[END_REF] argue that the N2N training can be equated with supervised training.

About the image acquisition 1.2.1 Introduction

Raw images, as they are just at the sensor stage, are far from the final rendered image, known as an sRGB image. The acquisition of images is a quite complex process. There are two main steps. The first step concerns the acquisition of the raw signal itself when gray scale levels are deduced from the incident photons (themselves coming from the light in the scene) in the sensor. Unwanted noise appears in this step. The second step consists in an image processing pipeline: an Image Signal Processor (ISP) transforms the raw image into an sRGB one.

The raw image is a mosaiced single-channel image. Each photo receptor of the sensor counts the number of photons that hit the sensor at this spatial position. In front of the sensor, a color filter array (CFA) is placed, letting only the photons of a given color (a given range of wavelengths) pass through it. Each pixel measures the intensity of only one color. The CFA is a mosaic of repeated color filters. Some camera makers have specific arrangement of colors but the most commonly used is the Bayer CFA where colors are Green, Blue and Red, disposed in an array. Green and blue alternate in a given row (respectively column) and red and green alternate in the next row (respectively column), such that two more green filters are used. 1 And this periodic 4 × 4 pattern is spatially repeated. In Figure 1.2, we show an example of the Bayer CFA. In the end, the raw mosaiced output of the sensor contains one third of RGB information. The other two thirds must be deduced by interpolation. This is the purpose of the demosaicing algorithm, which is an important part of the pipeline.

This pipeline differs between camera-makers. However although they do not agree completely in the order of application, all of them use the same main stages in the pipeline such as linearization, demosaicing, white balance correction, color space transform, tone curve with gamma correction, quantization and compression. Denoising is another main stage of the pipeline and knowing where to place it is a very delicate task, as each of the ISP stage has a significant impact on the noise distribution: amplifying it, making it correlated, transforming it with non-linear functions, etc.

A model for real noise

The noise in an image (or a video) is characterized by the abrupt changes in brightness levels (random variation in intensity levels or even color). This means that pixels can have intensity values far away from the pixels in the surrounding. The real noise is certainly undesired but inevitable.

Noise is usually modeled as either additive or multiplicative. The noise in digital optical cameras is modeled as additive noise and consequently, in this thesis, we focus on this noise type (many algorithms and methods have been proposed for removing additive noise). Given the actual clean signal (image or video in our case) u, the noisy signal v is v = u + n, where n is a zero-mean noise process. Gaussian noise (normal distribution) is the most common example of additive noise. It is often called Additive White Gaussian Noise (AWGN).

The characteristics of real noise are very complex and modeling the distribution of real noise is not straightforward. The noise distribution can be affected by a large variety of factors (environmental factors, lighting and illumination condition, temperature of the sensor, etc.). However, the final noise at the raw stage is due to only two main reasons. First, the light is quantized. The quantized "light particles" are called photons and the number of photons hitting the sensor is a random process. This is called the shot noise. The second main reason is the process of the readout itself. This is called the read noise. In addition, there could have other sources of noise like row noise, thermal noise. Other phenomena are also modeled as noise such as quantization, dead pixels, etc. [ABF18; WFZY21].

Heteroscedastic Gaussian noise model [ABF18]

The shot noise can be modeled by a Poisson distribution and the read noise can be modeled by a Gaussian distribution. The so-called Poisson-Gaussian noise is therefore a very common candidate for modeling real noise distributions. Let u be the clean image or video. The corresponding noisy signal v can be described as v = ap(u) + n, where p ∼ P a -1 u , n ∼ N (0, σ 2 ),

(1.8)

where a > 0 is the scaling factor of the Poisson distribution component and σ is the standard-deviation of the Gaussian component. Furthermore, it is well known that the Poisson distribution parameterized by its mean and variance λ can be approximated by a Gaussian distribution with mean and variance λ, as long as λ is large enough. In the image/video case, this assumption is valid if we are not in the low light condition setting. That is, if the mean values are large enough, the shot noise can be approximated by a Gaussian distribution. And thus, the real noise distribution as well (as a sum of two Gaussian distributions), with a variance as an affine function of the clean data. This model is known as Heteroscedastic Gaussian noise model. With the same notation as before, we have

v = u + n, where n ∼ N (0, au + b), (1.9) 
with a > 0 and b > 0 the two parameters of the heteroscedastic Gaussian noise model. The parameter a is the signal-dependent part strength, which has to be seen as the previous Poisson scale factor a, while b is the strength of the homoscedastic Gaussian distribution (i.e. its variance) as the previous σ 2 of the Poisson-Gaussian noise model.

Chapter 2

Self-supervised fine-tuning for video denoising networks

In this chapter, we propose a self-supervised approach for training multi-frame video denoising networks. These networks predict each frame from a stack of frames around it. Our self-supervised approach benefits from the temporal consistency in the video by minimizing a loss that penalizes the difference between the predicted frame and a neighboring one, after aligning them using an optical flow. We use the proposed strategy to denoise a video contaminated with an unknown noise type, by fine-tuning a pre-trained denoising network on the noisy video. The proposed finetuning reaches and sometimes surpasses the performance of state-of-the-art networks trained with supervision. We demonstrate this by showing extensive results on video blind denoising of different synthetic and real noises. In addition, the proposed finetuning can be applied to any parameter that controls the denoising performance of the network. We show how this can be expoited to perform joint denoising and noise level estimation for heteroscedastic noise.

Introduction

The current state of the art in image and video denoising is dominated by convolutional neural networks (CNNs) [ZZC+17; SMD16; LWF+18; DEM+20; TDV20]. In addition to their superior performance, CNNs offer a greater flexibility as they can be trained to denoise potentially any type of noise [CCXK18; WZP17; KMY17; CYC+19]. In contrast, traditional model-based approaches typically require a tractable model of the noise, and specific algorithms for each type of noise (e.g. [LCM15; GPMA18; MSF14; SHDW14; CHKB09; BKB+09; ZDD+19]). This flexibility however, comes at a price, as it has been observed that CNNs are very sensitive to mismatches between the data and noise distributions at training and testing [START_REF] Plotz | Benchmarking denoising algorithms with real photographs[END_REF]. This has fueled the interest in training CNNs for real noisy raw images, with the publication of several datasets and benchmarks [NHMJ16; PR17; CCXK18; ALB18; BD19a], as well as methods [GYZ+18; BMX+19; PR18; KSPC20; KSPC20; ZAK+20]. Most of this research focuses almost exclusively on still image denoising.

Producing datasets of realistic noisy-clean pairs for supervised training is a challenging task. Some works contaminate clean images with synthesized realistic noise [GYZ+18; BMX+19; KSPC20; ZAK+20], but the results depend on the fit between the synthetic and real data. Realistic data cannot always be generated. For example the noise distribution might be unknown. Generative Adversarial Networks have been proposed to generate samples from an unknown noise distribution [START_REF] Chen | Image blind denoising with generative adversarial network based noise modeling[END_REF]. Other works have proposed datasets of real images with ground truth. For still image denoising, it is possible to acquire pairs of images of exactly the same scene, either altering the exposure time so that one of them is approximately noiseless [PR17; CCXK18; CCDK19], or by taking a second noisy shot with an independent noise realization as proposed by noise-to-noise [START_REF] Lehtinen | Noise2Noise: Learning image restoration without clean data[END_REF] (see Chapter 1).

Acquiring such pairs with real noise can be cumbersome and prone to dataset biases as the scenes need to be static. For video denoising the situation is even worse as it would require independent acquisitions of the exact same action [START_REF] Yue | Supervised raw video denoising with a benchmark dataset on dynamic scenes[END_REF].

A more ambitious goal is that of self-supervised training, where the network learns exclusively from noisy images/videos x i with a loss that uses them both as input and target, for instance i ∥F(x i ) -x i ∥ 2 . To prevent the network from learning the identity function, restrictions are incorporated in the architecture. Denoising autoencoders [START_REF] Vincent | Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[END_REF] use a bottleneck forcing the network to filter out information. Blind-spot networks [KBJ19; BR19] do not have access to the input pixel at j for computing the output pixel j (a blind spot at the center of the receptive field). This has a significant penalty on the performance, as the noisy value of a pixel is a valuable piece of information for denoising it. Some works re-introduce the blind spot in a second Bayesian estimation step [LKLA19; KVJ19], but this requires knowing the noise distribution. A related approach is proposed in [START_REF] Quan | Self2Self With Dropout: Learning Self-Supervised Denoising From Single Image[END_REF], where a fraction of input pixels is masked at random, and the network then learns to do joint denoising and inpainting. Averaging predictions obtained with different random masks leads to results comparable to supervised training. Blind-spot networks fail if the noise is spatially correlated. Spatially correlated noise is handled in [START_REF] Moran | Noisier2Noise: Learning to Denoise from Unpaired Noisy Data[END_REF], but it requires knowing the parameters (e.g. variance) of the noise distribution. Other works [MMHB18; SC18] approximate the MSE risk with an unsupervised loss using Stein's unbiased risk estimator (SURE) [START_REF] Stein | Estimation of the mean of a multivariate normal distribution[END_REF]. Unfortunately, these approaches require the noise distribution to be known and cannot be applied to other risks.

Lately, the treatment of real noise in videos, has begun to attract more attention. Patchbased approaches have been proposed for handling correlated noise in compressed [START_REF] Liu | A high-quality video denoising algorithm based on reliable motion estimation[END_REF] and infrared videos [START_REF] Maggioni | Joint removal of random and fixed-pattern noise through spatiotemporal video filtering[END_REF]. In [MBC+18; MSG+19; CvG19] CNNs are trained by synthesizing signal dependent noise. In [START_REF] Chen | Seeing motion in the dark[END_REF] a still image denoising network is trained on low-light static sequences using a long exposure image as ground truth. The authors add a temporal consistency term to the loss to improve generalization to dynamic scenes. In [START_REF] Yue | Supervised raw video denoising with a benchmark dataset on dynamic scenes[END_REF] the authors train a video denoising network for raw video using a complex combination of simulated noise, datasets of long and short exposure raw images and a dataset of stop motion raw videos. In the latter each video is actually a sequence of static scenes. In this way several images can be captured for each video frame, and averaged to reduce the noise. Recently, Ehret et al. [START_REF] Ehret | Model-blind video denoising via frame-to-frame training[END_REF] proposed frame-to-frame (F2F), a method to fine-tune an image denoising network (or joint denoising and demosaicing [START_REF] Ehret | Joint demosaicking and denoising by fine-tuning of bursts of raw images[END_REF]) to an unknown noise type from a single noisy video. The fine-tuning is based on a loss that penalizes the motion compensated error between the predicted frame and the previous noisy frame as target. This fine-tuning can be done offline or frame-by-frame in an online fashion. The fine-tuned network achieved (and even surpassed) the performance of the same network trained with supervision for that specific noise. An important limitation of F2F is that its single-frame denoising network leads to sub-optimal video denoising results and lacks of temporal consistency.

Chapter plan and purpose. In this chapter, we introduce multi-frame-to-frame (MF2F), a self-supervised fine-tuning framework for video denoising networks that take a stack of several frames as input. The proposed fine-tuning allows to adapt a multi-frame network to an unknown noise type using a single noisy sequence. Our work extends the single-image F2F approach of [START_REF] Ehret | Model-blind video denoising via frame-to-frame training[END_REF] to multi-frame networks, resulting in a model blind video denoising method that achieved, for the first time, results on par with those of non-blind state-of-theart methods. Concurrently with this work, a method based on blind-spot networks, called Unsupervised Deep Video Denoising (UDVD), was also proposed [START_REF] Sheth | Unsupervised deep video denoising[END_REF]. This method is described in more detail in Chapter 4.

Naively applying F2F to a multi-frame network leads to unwanted trivial solutions, as the target frame in the loss is part of the input stack. This applies to any loss in which the target is a function of the network input. We evaluate different configurations of non-overlapping input stacks and target frames and identify the ones yielding the best performance. We show that the straightforward extension of taking the target frame outside of the input stack is not optimal. Instead, the best performance is achieved by fine-tuning using a dilated input stack that excludes one out of every two frames (see Section 2.2). We also found that the fine-tuned network leads to even better results if we switch back to the standard input stack at inference time.

We demonstrate the effectiveness and flexibility of the proposed MF2F by fine-tuning a network pre-trained for additive white Gaussian noise (AWGN) to different noise types (AWGN, Poisson, colored Gaussian and demosaiced Poisson) and levels. The results of the network, even fine-tuned on a few frames, are comparable to those of the noise-specific network trained with supervision on a large external dataset (see Figure 2.1). Evaluations on videos with real and realistic [START_REF] Brooks | Unprocessing images for learned raw denoising[END_REF] camera noise show that MF2F outperforms state-ofthe-art raw video denoising networks. We believe that these conclusions might be valuable for the community, especially since the proposed self-supervised training performs on par with supervised training. This should not be taken for granted: in still image denoising, , each of which takes as input three frames (without alignment), plus a variance map Σ i of the same size as the input frames. The first U-Net is applied three times to produce initial estimates of the frames t -1, t and t + 1. These estimates are then fed into the second network which predicts the central frame ût .

Unet Unet

self-supervised approaches are far below supervised training or require a computationally costly ensemble of networks. Moreover, the proposed fine-tuning can also be applied to any network parameter that influences the denoising performance. We illustrate this by working with an AWGN denoising network that receives as input a noise variance map. Fine-tuning the variance map allows to jointly estimate the variance at each input pixel and denoise the video. We apply this to heteroscedastic Gaussian and Poisson noises. The proposed fine-tuning is able to recover complex variance maps with remarkable spatial resolution.

In Section 2.2 we describe the proposed framework. We validate our approach on synthetic data in Section 2.3 and on real noisy sequences in Section 2.4, demonstrating that our MF2F training leads to results that are on par with the state-of-the-art supervised training. Section 2.5.1 studies the convergence of the proposed method. The choice of the pre-trained weights is discussed in Section 2.5.2. In Section 2.5.3 and Section 2.5.4, we present a way to reduce the memory footprint of the presented algorithms and to deal with the catastrophic forgetting. In Section 2.5.5, we evaluated the running time of our algorithms. Concluding remarks are given in Section 2.6.

Self-supervised video denoising

We consider a video f with frames f t , that is a noisy version of a video u. The distribution of the noise is unknown. We assume that the noise at each frame is independent and median preserving in the noise-to-noise sense [LMH+18; EDM+19] (i.e. median[f t | u t ] = u t ). As mentioned in Chapter 1, this is not a sufficient condition for an exact equivalence between noise-to-noise and noise-to-clean, but it works well in practice as shown in [LMH+18; EDM+19].

Our self-supervised loss for video denoising extends the F2F loss introduced in [EDM+19], which penalizes the error between the output of the network at frame t with the noisy frame t -1 (the target frame). The authors of [EDM+19] consider a denoising network F θ which takes a single image as input, and train it via the following loss:

ℓ F2F 1 (F θ (f t ), f t-1 ) = ∥κ t • (W t,t-1 F θ (f t ) -f t-1 )∥ 1 .
(2.1)

Here • denotes the element-wise product, W t,t-1 the warping operator from frame t to the target frame t -1, and κ t is an occlusion mask removing mismatches from the loss. Given the optical flow v t-1,t , the warping operator from frame t -1 to t is defined as

(W t,t-1 u t ) (x) = u t (x + v t-1,t (x)) , (2.2)
where bicubic interpolation is used to resample the u t . Note that the warping operator can be computed using an any optical flow algorithm or even defined according to a global transformation estimated between both frames (e.g. a homography).

In [START_REF] Ehret | Model-blind video denoising via frame-to-frame training[END_REF] the temporal consistency of the video is used to train the network but the network itself takes as input a single image. Better results can be obtained by video neural networks. Such network architectures take into account temporal information. This can be done with frame recurrent networks [START_REF] Chen | Deep rnns for video denoising[END_REF] or by providing multiple frames as the input of the network [XCW+19; DEM+19; TDV20]. We focus on the latter type of networks as they were the state of the art at the beginning of this thesis.

In particular, we will adopt the recent FastDVDnet [TDV20] architecture, which consists of two cascaded U-Nets [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], but the proposed fine-tuning can be applied to other multiframe networks as well. The FastDVDnet architecture (see Figure 2.2) is well suited as it takes five frames as input (each U-Net takes as input three frames without alignment) as well as variance maps (concatenated as an additional input channel). Furthermore, it can be trained end-to-end without requiring an external motion estimation stage. The first U-Net accesses the input noisy frames and is applied three times to produce an initial estimate corresponding to frames f t-1 , f t and f t+1 . These are fed into the second network which predicts the central frame u t . This architecture has the advantage of not explicitly including a motion estimation stage. Due to their large receptive fields, U-Net blocks were shown to be able to cope implicitly with some amount of motion [START_REF] Ilg | Flownet 2.0: Evolution of optical flow estimation with deep networks[END_REF].

We denote the input stack of frames as S t = [f t-n , ..., f t+n ]. They are concatenated as channels in a tensor. The t th denoised frame is produced as ût = F θ (S t ) (to simplify the notation we will omit the input variance map).

Frame stacks for self-supervised training

The F2F loss (2.1) cannot be directly applied to F θ (S t ), as it can be minimized simply by warping f t-1 (which is in the input stack) to W -1 t,t-1 f t-1 , i.e. by aligning the noisy frame f t-1 to f t without removing the noise. In fact in the following, we show that any loss that depends only on the network input and its output leads to these unwanted solutions.

Suppose we want to predict y from z. In our case, z is a stack of noisy frames and y the clean version of the central frame of the stack, however the following arguments also apply to other regression problems. As explained in Chapter 1, in a supervised training setting we minimize an approximation of the expected value of a loss penalizing the difference between the network output and the desired output y:

R emp (F) = 1 m m i=1 ℓ(F(z i ), y i ) ≈ E z,y {ℓ(F(z), y)} = E z E y|z {ℓ(F(z), y)}, (2.3) 
provided that enough training samples are used (the equality holds when we use a limit m → ∞). In the Chapter 1, we saw that the above risk is minimized when

F * (S) = arg min x E u|S {ℓ(x, u)}.
(2.4)

The optimal estimators ŷ = F * (z) capture some aspects of the data distribution, which is the point of a data-driven approach. For instance, for the MSE loss we have F * (z) = E{y|z}; for the L 1 loss we have the median of the posterior distribution F * (z) = median{y|z} (see [START_REF] Kay | Fundamentals of statistical processing[END_REF]). These estimators depend on the posterior distribution p(y|z), which in turn depends on the prior p(y) and the data likelihood p(z|y) (the noise distribution in a denoising setting). A similar reasoning can be applied in the more general case in which the target is z dependent on u and conditionally independent of S given u (such as a second noisy version of u, as in [START_REF] Lehtinen | Noise2Noise: Learning image restoration without clean data[END_REF]). This is in contrast to traditional model-based approaches that use hand-crafted priors and noise models. Such approaches are often formulated as an energy minimization problem:

ŷ(x) = arg min y D(y, x) + R(y), (2.5)
where D is a data fitting term and R a regularization term. The resulting estimator only depends on the chosen energy and the observed x. Often, this is given a Bayesian probabilistic motivation as the maximum a posteriori (MAP) under the assumption of a hand-crafted prior distribution p(u) ∝ exp(-R(u)).

We would like to configure the input stack to our network so that the fine-tuning can learn data-driven estimators that depend on the true data distribution. The following observation restricts the number of options.

Observation 1. Let (z, y) distributed according to p(z, y). An estimator ŷ(z) = F * (z) minimizing the expected value of a loss E{ℓ(F(z), z)} that depends only on z and F(z), is independent from the data distribution p(z, y).

As the loss depends only on the input z and F(z), the minimization of E{ℓ(F(z), z)} can be done for each input z independently, i.e.

F * (z) = arg min ŷ ℓ(ŷ, z).
(2.6)

The function being minimized only depends on the input S and on the hand-crafted data and regularization terms. More importantly, it does not depend in any way on the data distribution p(u). Given z, the optimal estimator is the minimizer of the loss for that specific z. As a consequence it is independent of the data distribution and only depends on the chosen loss.
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This test was carried out on the datasets Derf [Mon+] and Vid30C-10 [KLF+19] using the online MF2F fine-tuning. The reported PSNRs are the average on all the sequences, but excluding the first 10 frames (to avoid perturbations due to the adaptation time). We considered 3 × 3 box noise with σ = 40, AWGN σ = 20 and scaled Poisson noise with p = 8. This observation rules out options that a priori would seem reasonable such as using as target a randomly chosen frame from the input stack. In fact, as argued in Observation 1, a network cannot learn a data-driven estimator if the loss is a function of the input S t and the network output F θ (S t ); in other words, this observation implies that the target frame cannot be part of the input stack. This result also generalizas to the case when the reference frame is a function (either deterministic or randomized) of the input stack (e.g. using as target a randomly chosen frame from the input stack). Therefore, for our input stack we will adopt a solution similar to that of blind spot networks [KBJ19; BR19] by removing the target frame from the input stack. Denoting by S ′ t the fine-tuning stack, we then minimize the following multi-frame to frame (MF2F) loss:

ℓ MF2F 1 F θ (S ′ t ), f t-1 = ∥κ t • (W t,t-1 F θ (S ′ t ) -f t-1 )∥ 1 , (2.7)
where the warping operator W t,t-1 is defined in (2.2).

We evaluated the fine-tuning with different configurations of disjoint stack and target frame: introducing the blind spot at different distances from the central frame or evenly spacing the frames in the stack. Table 2.1 summarizes the results.

We found that:

1. The target frame has to be as close as possible to the denoised frame. Otherwise, the quality of the alignment degrades, negatively impacting the fine-tuning.

2. The results can be slightly improved using the dilated stack

[f t-4 , f t-2 , f t , f t+2 , f t+4 ],
which constitutes an even dilation of the natural stack (i.e.

[f t-2 , f t-1 , f t , f t+1 , f t+2 ]).
We believe that this is because the even dilation of the stack preserves the uniform motion, while the blind spot unevenly distorts motion, which affects the network performance.

3. We also observed that, regardless of the fine-tuning stack, the best way to perform the inference is by using the natural stack. The frames in the natural stack are more temporally correlated and this helps improving the denoising.

Table 2.1 shows that the results obtained using the training stack at testing time are on average 0.3dB below the ones obtained by switching back to the natural stack at inference. Note that for the first row, the training stack comparison, a row with the noise-specific supervised FastDVDnet was added. FastDVDnet was trained on the natural stack, The evalutation of FastDVDnet on our training stack does not make sense as it absurdly degrades its performance. We omitted them in the table.

S ′ t = [f t-2 , f t-1 , f t , f t+1 , f t+2 ]
In our remaining experiments we will always use the dilated stack for fine-tuning and the natural stack for final inference as illustrated in Figure 2.3.

Handling warping errors a) Masking misalignments

The proposed MF2F loss penalizes the difference between the network output at t with the previous noisy frame f t-1 . The network output is aligned to frame t -1 by the warping operator W t,t-1 which results from the optical flow computed between t -1 and t. Following [START_REF] Ehret | Model-blind video denoising via frame-to-frame training[END_REF], the warping transformations are estimated using the TV-L1 optical flow method [ZPB07; SMF13], as it gives consistent results across noise types and intensities. Moreover, it is based on minimizing the photometric distance between pixels, which is precisely what we need for our loss. We also tested pre-trained CNN-based optical flows (such as FlowNet2 [START_REF] Ilg | Flownet 2.0: Evolution of optical flow estimation with deep networks[END_REF]) but we found them to be less robust to noise. Furthermore, some are trained to predict the real projected scene motion, which might not result in a warping where colors match (due to shading, shadows, reflections, etc.). A similar observation was found in [START_REF] Xue | Video enhancement with task-oriented flow[END_REF]. Alignment errors have a negative impact in the training and are removed in the computation of the loss (Equation 2.7): the mask κ is zero for regions where a misalignment is likely, and one otherwise.

This mask is particularly important for fine-tuning a multi-frame denoising network. Indeed, since the network has access to multiple input frames, it is likely that the mismatched target can be found in the stack. The result in Figure 2.4 confirms this. We see that the result of F2F barely changes with or without mask. However, applying MF2F without a mask leads to a degradation of the result. The mask κ differs from the one used in [START_REF] Ehret | Model-blind video denoising via frame-to-frame training[END_REF], which is based on the divergence of the optical flow. We described its computation in the next subsection. 

b) Computation of the mask threshold

The mask κ is the product (or logical AND) of two binary masks:

κ t (x) = κ OCC t (x) κ W t (x).
The first factor estimates occlusions by looking at collisions in the optical flow, similar in spirit to [START_REF] Ehret | Model-blind video denoising via frame-to-frame training[END_REF]. The second factor is explained below.

The mask κ W t is zero in areas where the warping residue is larger than a threshold and one elsewhere. For a pixel x at time t, the warping residue is computed as

r t,t-1 (x) = g 1 (x) * |g 2 (x) * f t-1 (x) -g 2 (x) * W t,t-1 f t (x)| 1 , (2.8)
where g 1 and g 2 are two Gaussian convolution kernels and the 1-norm | • | 1 means the sum of the errors (in absolute value) for each channel at pixel x. We smooth the images with the kernel g 2 to obtain a rough estimate of the clean video. Then, this pixelwise norm (i.e. the warping residue) is smoothed again by the kernel g 1 . In practice, we used a Gaussian kernel with standard deviation σ = 2 for both g 1 and g 2 . Indeed, as the warping W t,t-1 has been done on noisy images, the error is not only due to the misalignment, but also to the noise. In order to further reduce noise, we downsample f t-1 and f t by a factor 2. The final warping residue r t,t-1 is then upsampled to the original resolution. The distribution of the warping residuals can be considered as a mixture of two components. The first one is due to the residuals caused by the noise, and the other is due ût ← F θt (S t ) // denoise the frame t to registration errors. We compute a threshold so that values above that threshold are likely to be registration errors and not just differences caused by the noise. Computing such a threshold is difficult without making any assumption on the noise distribution. We will assume that the distribution of residual caused by the noise is unimodal. We compute the threshold automatically for each frame as

5 v t-1,t ← optical-flow(f t-1 , f t ) 6 W t,t-1 ← warping-operator(v t-1,t ) 7 κ t ← alignment-error-mask(v t-1,t , W t,t-1 f t , f t-1 ) 8 S ′ t ← [f t-4 , f t-2 , f t , f t+2 , f t+4 ] // training input stack 9 S t ← [f t-2 , f t-1 , f t , f t+1 , f t+2 ] // inference
τ t = m t + s t f,
where m t is the mode of the histogram of residuals r t,t-1 and s t = m t -p t , the difference between the mode and the 10% percentile p t (thus we are also assuming that the mode is larger than the 10%). The mode of the histogram serves as a robust estimation of the position of the distribution, whereas s is a measure of the spread of the distribution. We use the distance between the mode and a low percentile, since we expect warping errors to affect the tail of the distribution (values larger than the mode). The histogram is smoothed by a Gaussian kernel. In Figure 2.5 we show an example of warping mask computed with this strategy. In this example, the motion is very fast between two consecutive frames f t-1 and f t . The arms, the knee of the skater and the skate itself moves quickly. This fast motion is not tracked well by the optical flow and leads to inconsistent warping for those regions. The mask κ t removes these pixels from the loss. Figures 2.5e and 2.5f illustrate mask overlaid on the target frame (f t-1 ) and the warped central frame of the stack (f t ) .

All the experiments in the following sections were computed using the same parameters for the optical flow and misalignment mask. Note that they are part of the hyper-parameters of the proposed fine-tuning framework.

Algorithm 2: Online fine-tuning input : Noisy video {f t } t∈{1,...,T } , initial weights θ 0 , number of Adam step N S output : Denoised video û 1 for t = 2, . . . , T do

2 v t-1,t ← optical-flow(f t-1 , f t ) 3 W t,t-1 ← warping-operator(v t-1,t ) 4 κ t ← alignment-error-mask(v t-1,t , W t,t-1 f t , f t-1 ) 5 S ′ t ← [f t-4 , f t-2 , f t , f t+2 , f t+4 ] // training input stack 6 S t ← [f t-2 , f t-1 , f t , f t+1 , f t+2 ] // inference input stack 7 // update the network 8 for i = 1, . . . , N S do 9 θ t ← adam-step(ℓ MF2F 1 (F θ (S ′ t ), f t-1 , W t,t-1 , κ t )) 10 // denoise the frame t 11 ût ← F θt (S t )

Fine-tuning and inference

Similarly to [START_REF] Ehret | Model-blind video denoising via frame-to-frame training[END_REF], the proposed fine-tuning can be done online or offline. In the offline setting, the network is first fine-tuned on the entire video, which is considered as a dataset of frames. We form batches by randomly sampling frame stacks from the video and update the network parameters by performing one optimizer step per batch. This is repeated a fixed number of epochs. Afterwards, the fine-tuned parameters are used to denoise the video by applying the network to each frame using the natural input stack. The online setting defines a time-varying sequence of network parameters, and can thus adapt to temporal changes in the distribution of the noise or the signal. The video is processed sequentially, applying the following two steps on each frame. First the network parameters are updated by performing a fixed number N S of optimizer steps of the loss (2.7). Then the denoised output is produced by applying the updated network on the natural input stack. The pseudo-code for each strategy is given in Algorithms 1 and 2. In both cases, the input video is made of frames {f t } t∈{1,...,T } . For the online method, the weights are updated every N iterations of the Adam optimizer. The offline method uses minibatches of N b frames, and the weights are updated every N A steps of the Adam optimizer. The source code of the proposed method is available in the MF2F project webpage. 1The proposed fine-tuning can be applied to the network weights, or any other parameter that has an influence on the denoising performance, such as the variance map Σ t that FastDVDnet takes as input (see Figure 2.2). In FastDVDnet [START_REF] Tassano | Dvdnet: A fast network for deep video denoising[END_REF] the authors consider only homoscedastic AWGN, and use therefore a constant image Σ t (x) = σ 2 as variance map. During training the network is presented with samples with different noise variance, and in this way it learns to denoise AWGN of different variances with a single set of weights (this idea was first proposed in [START_REF] Zhang | Ffdnet: Toward a fast and flexible solution for cnn-based image denoising[END_REF]). The input variance map controls the denoising strength and the correct value has to be provided at inference time. In Section 2.3.2 we apply the MF2F fine-tuning to simultaneously estimate the variance map and denoise the video. This is particularly relevant when the noise is AWGN, but its variance map unknown.

We tested a per-level noise map (where the image is segmented in 8 intensity ranges, and each range was associated to a variance) to model Gaussian noise with signal dependent variance, and a more general spatially varying noise map. We also propose to fine-tune half of the weights (only one U-Net or only the decoder part of both U-Nets). Those experiments are discussed later in the next sections.

In all the experiments in upcoming sections we use the same hyper-parameters when the fine-tuning is done with respect to the weights. In the online setting we use a learning rate of 10 -5 and N = 20 iterations of the Adam optimizer on mini-batches consisting of pairs of frames (i.e. the weights are updated each two frames). In the offline setting we use the same learning rate and perform 200 Adam iterations with mini-batches of 20 frames (no improvement was observed with more iterations). When the fine-tuning is applied to the variance map, we adapt the learning rate and keep the same number of iterations and batch sizes. 

Non

Experiments on synthetic noise

In this section we present experimental results of the proposed framework for a wide range of synthetic noise types and use cases. All the fine-tunings are done starting from the same pre-trained weights, trained for AWGN with σ = 25. This demonstrates the adaptability of the proposed blind video denoising method to new noise types. The impact of the pretrained weights on the performance of the fine-tuned network are discussed in Section 2.5.2. We first describe the experimental setup and the considered algorithms, then we analyze the results and perform ablation studies to determine the impact of the different choices.

The evaluation is performed on videos from two datasets. One is a set of seven Full HD videos of 100 frames each extracted from the Derf's Test Media collection [Mon+]. 2 The second dataset consists of ten videos of 120 frames extracted from the training split of the Vid3oC dataset [START_REF] Kim | The vid3oc and intvid datasets for video super resolution and quality mapping[END_REF]. 3 This second dataset is more challenging because it presents larger motion. We refer to this dataset as Vid3oC-10. Following [START_REF] Arias | A comparison of patch-based models in video denoising[END_REF], we downscaled all videos by a factor of two from the original 1920 × 1080 RGB videos (the resolution is thus 960 × 540), to ensure that they contain little to no noise and reduce compression artifacts.

In our experiments we consider four noise types:

1. AWGN noise, with zero-mean and variance σ 2 .

2. Scaled Poisson noise with scaling parameter p: the mean of the noisy pixel f i is the clean pixel u i , and the variance is pu i . As explained in [START_REF] Azzari | Modeling and estimation of signal-dependent and correlated noise[END_REF], scaled Poisson noise is used to model the ratio (called quantum efficiency ) between the average number of converted electrons and the number of photons, where the photons follow a Poisson law.

3. Correlated noise (denoted box noise) obtained by filtering AWGN with an s × s box filter.

4. Demosaiced Poisson noise, obtained by mosaicing the image, adding scaled Poisson noise and then applying the demosaicing algorithm of [START_REF] Kiku | Minimized-Laplacian residual interpolation for color image demosaicking[END_REF].

For the first three types we consider two noise levels, indicated in the first columns of Table 2.2. The demosaiced Poisson noise simulates the correlation introduced by a demosaicing algorithm applied on the noisy data.

We evaluate the average PSNR and SSIM for the given sequences using the groundtruth, but excluding the first 10 frames of each sequence (to skip the online adaptation time of the methods). We remark that all results are obtained by fine-tuning a network independently on each video.

Fine-tuning the network weights

In the following experiments we apply the proposed fine-tuning to the network weights of FastDVDnet, while keeping constant the input variance map. We compare with F2F [START_REF] Ehret | Model-blind video denoising via frame-to-frame training[END_REF] which is, to the best of our knowledge, the only other blind video denoising method in the literature. As reference, we compare with three non-blind algorithms: 3. The VBM3D [DFE07] path-based method in which the noise parameter is set to yield the best result.

In Table 2.2, we report quantitative results obtained with the proposed MF2F finetuning applied on the network weights both in the online and the offline settings. The fine-tunings are done on each sequence. From the results we can see that the performance of the offline MF2F method is slightly superior to the online one. Compared against the multi-task network the proposed MF2F fine-tuning always attains better results. Furthermore, the multi-task network cannot handle demosaicing noise (which was unseen during training) while our self-supervised networks compete with the network specifically trained with supervision for that noise type.

For most noise types, the results of our self-supervised MF2F fine-tuning are close to those obtained with the noise-specific FastDVDnet network trained with supervision. In some cases, such as AWGN, Poisson and the 3 × 3 box noise, the self-supervised networks outperformed the supervised one in the Derf dataset. This is confirmed in Figure 2.1, where we compare some results of the offline method with the noise-specific FastDVDnet (supervised), and F2F. Note that our blind denoising recovers fine details comparable to those obtained with the supervised FastDVDnet trained for these specific noise types.

In all experiments we observe a consistent PSNR gain of about 3dB with respect to F2F. This corresponds to a noise reduction of a factor 2, which is expected from a network that exploits the redundancy of 5 frames compared against a single-frame method.

We now illustrate the ability of the proposed fine-tuning method for handling any noise type, proving that the fine-tuned network behaves as the supervised one for many types and levels of noise. Figures 2.6 and 2.7 show the results for all the synthetic noise types used in the Table 2.2, for two video sequences. We recall that whatever the targeted noise type, all the fine-tuned networks are obtained from the same pre-trained FastDVDnet network, trained in a supervised setting for Gaussian noise with noise level σ = 25 and that this network is fine-tuned blindly on each noisy sequence.

Additional results obtained with the proposed fine-tuning for both online and offline versions are shown in Figure 2.8. Those results are compared with the ones obtained by evaluation of the noise-specific FastDVDnet trained in a supervised setting in case of AWGN with σ = 20. It shows that both the online and offline method achieve the performance of the supervised network and surpasse it.

Time varying noise.

The online fine-tuning of the weights permits to quickly adapt to changes in the noise properties. The PSNR plot in Figure 2.9 shows the per-frame PSNR computed on a video in which the noise switches from Poisson (p = 8) to Gaussian (σ = 40) at frame 50. While the two noise-specific FastDVDnet networks perform well for their respective noise types, their performance strongly degrades for the other type. On the other hand, the proposed MF2F approaches are able to cope with the abrupt change of noise, and the online version even outperforms the network trained for Gaussian on the Gaussian section of the video. Note also that the offline method is able to handle both noise types by learning to denoise them with the same network. The results obtained with MF2F are on par to those of a multi-task FastDVDnet trained with supervision for these two noise distributions. The crops in Figure 2.9 show that, as expected, the noise-specific networks failed for the other noise types (i.e. the network trained on Poisson noise leaves residual noise on the Gaussian noise part, whereas the network trained on Gaussian noise over-smoothes the results on the part with Poisson noise), while the online method is able to restore fine details for both noise types.

Fine-tuning only the noise map

The proposed fine-tuning can be used to estimate the input variance map of the network, while keeping the network weights fixed. This is done by minimizing the MF2F loss (2.7) with respect to the variance map Σ t (x). To highlight the flexibility of the framework, we examine three parameterizations of the input variance map. All experiments in these section were performed with the online fine-tuning. Thus, a different input variance map is estimated for each frame, and used as the starting condition for the next frame.

Homoscedastic AWGN. If a sequence has homoscedastic AWGN of unknown variance σ 2 , we set a constant variance map Σ t (x) = σ 2 . By fine-tuning only with respect to σ, we obtain a σ-blind denoiser (refered as scalar sigma in Table 2.2). The convergence is very fast and after a few frames the estimated σ stabilizes around the real noise variance. If the noise is not homoscedastic AWGN, a compromise value for σ is found. Heteroscedastic AWGN. We now consider AWGN with a space varying variance map which is constant in time, i.e. Σ t (x) = Σ 0 (x), and fine-tune with respect to the entire input variance map. We add a TV regularization term to the loss (e.g. [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]) enforcing smoothness on the variance map. We tested this on a sequence contaminated with AWGN with variance map shown in Figure 2.10. Our method is able to recover the message hidden in the noise variance, with remarkable spatial resolution. The convergence took around 40 frames, which is quite slower than for the scalar σ. To the best of our knowledge, there are no other methods in the literature that can estimate such a noise map from a video. Note that this experiment was designed mainly as a proof of concept without a real application in mind. It is intended as a demonstration of the capabilities of the proposed fine-tuning, showing particularly that we can recover any pattern concealed in the noise map. However, it could be useful for practical cases where the noise distribution is spatially variant, such as optical images with vignetting or MRI imaging [START_REF] Landman | Robust estimation of spatially variable noise fields[END_REF]. In these cases the variance map is much smoother than the artificial one we used for our experiment. Note that the ultimate goal here is not to accurately recover the noise map, but to maximize the denoising performance. For example, in a flat region, the fine-tuning might lead to an over-estimation of the variance so as to increase the amount of smoothing. This explains the differences in Figure 2.10 between the actual noise map and the one found.

Signal dependent AWGN. Poisson noise can be approximated as AWGN with signal dependent variance map given by Σ t (x) ∝ u t (x). To cope with this noise, we use a spatially-variant noise map based on the brightness of the noisy video. We parameterize the variance map with K trainable parameters σ 1 , . . . σ K . We split the intensity range of the noisy video in K equal intervals, each with a corresponding σ i . The input variance map at pixel (x, t) is the σ i corresponding to the pixel brightness. At each frame, the σ i are automatically determined with the proposed online MF2F fine-tuning. We set K = 8, since it results a good trade-off between efficiency and denoising performance. The example shown in Figure 2.11 illustrates how the signal dependent noise map performs on Poisson noise. We compare the results obtained for the constant variance map and the per-level variance map with K = 8. We recall that in both cases, the network weights are fixed and only the noise map is fine-tuned. As expected, the results obtained with a constant variance map contain remaining noise in the bright areas and are over-smoothed in dark areas. On the contrary, the results with our signal-dependent variance map are uniformly denoised. Table 2.2) shows the quantitative results when fine-tuning this per-level variance map (refered as 8 sigmas. For Poisson and AWGN noise, the obtained results are close to the ones obtained by the noise-specific FastDVDnet trained with supervision.

The obtained noise map is displayed with the reference in Figure 2.12. We compare it with a reference variance map. The reference is computed by first averaging the 3 color channels of the clean image into an intensity image, which is then segmented into 8 uniformly spaced intensity ranges. For each range, we define the reference variance as the average of the intensity values in that range (as the variance of the Poisson noise is the clean pixel value). The variance map resulting from the fine-tuning is close to this reference noise map. For information, the value of σ found by fine-tuning a constant noise map on this frame was 10.41, which is close to the average variance of the per-level variance map. We remark that the per-level noise map extends the performance of the scalar noise map on non-homoscedastic noise. Indeed, Table 2.2 shows that it leads to the same performance on AWGN and manages to handle signal-dependent noise as Poisson noise. Moreover, it also improves the results on noises as correlated Box noise or the demosaicing noise. In the case of AWGN, the scalar noise map is well adapted, given that the noise level does not depend on the signal. Actually we found that the per-level tends to behave as the scalar noise map: after a few iterations, all the σ i tends to be equal, leading the per-level noise map to be almost constant. A visual comparison of fine-tuning the weights or the per-level noise map is shown in Figure 2.13 and 2.14.

Results on real noisy videos

In this section we show results on videos with real noise of unknown statistics. In these examples the network adapts not only to different types of noise, but also to signals on different domains.

Results on the real noisy videos from the CRVD dataset

Figure 2.15 shows results obtained on the outdoor CRVD dataset [START_REF] Yue | Supervised raw video denoising with a benchmark dataset on dynamic scenes[END_REF]. This dataset consists of raw sequences of 50 frames with real noise from a surveillance camera with the sensor IMX385, at five ISO levels. Since our fine-tuning does not handle mosaiced videos, we first applied a simple tone curve (γ = 2.5) and a demosaicing algorithm [START_REF] Kiku | Minimized-Laplacian residual interpolation for color image demosaicking[END_REF]. We then applied our offline blind denoising on the demosaiced noisy frames. Although the conventional approach is to perform first denoising and then demosaicing (or even better, perform both jointly), recent work in [START_REF] Jin | A review of an old dilemma: Demosaicking first, or denoising first?[END_REF] suggested that good results can also be obtained by applying the denoising after the demosaicing. We compare with the multiframe denoiser of RViDeNet [START_REF] Yue | Supervised raw video denoising with a benchmark dataset on dynamic scenes[END_REF] which was fine-tuned on the indoor CRVD dataset, consisting of short raw stop motion sequences with ground truth. This network takes raw noisy videos as input. In order to obtain comparable results, the denoised raw frames are then tone-mapped and demosaiced [KMTO14] as described above. From Figure 2.15 we can see that MF2F adapts to the noise specifically present on the sequence, its results are sharper, contain more details than those of RViDeNet, and have less residual noise than F2F. In Figure 2.16, we compare the results on a same scene but with different ISO levels: 1600, 3200, 6400, 12800, 25600. The visual quality of denoising is not affected by the ISO level since the method quickly adapts to those different noise level. We display the results obtained both by the online MF2F and the offline MF2F. For comparison, we also added the results of online F2F and RViDeNet [START_REF] Yue | Supervised raw video denoising with a benchmark dataset on dynamic scenes[END_REF]. MF2F extends the performance of F2F and can adapt specifically to the noise of the video. As a results, it gives sharper results and with more details than RViDeNet. To illustrate that, more crops are shown in Figure 2.17). RViDenet poorly reconstructs the texture of the trees, the sidewalk and even the folds in the coat. On the crops showing the legs, we see that RViDeNet has also ghosting effect which is not present on the results of MF2F. An illustration of this ghosting effect is also shown in Figure 2.18 (see in front of the motorbike). 

Results on simulated realistic noisy videos mimicking the CRVD dataset

To obtain a quantitative evaluation on realistic noisy videos we follow [START_REF] Yue | Supervised raw video denoising with a benchmark dataset on dynamic scenes[END_REF] and use the unprocessing pipeline [START_REF] Brooks | Unprocessing images for learned raw denoising[END_REF] to simulate raw videos from clean sRGB ones. This unprocessing pipeline is subject to the Chapter 3. These simulated videos are also used in [START_REF] Yue | Supervised raw video denoising with a benchmark dataset on dynamic scenes[END_REF] to pre-train (in a supervised setting) RViDeNet. We process back the Derf dataset to get ground truth clean sequences in raw and consider the Poisson-Gaussian noise (to model the shot and read noises), using the parameters estimated in [START_REF] Yue | Supervised raw video denoising with a benchmark dataset on dynamic scenes[END_REF] for the ISO levels 1600, 3200, 6400, 12800 and 25600. To avoid any influence from the demosaicing step we evaluate the performance on the raw denoised videos. For MF2F the fine-tuning is performed independently on each video. We apply the same raw process as for the outdoor CRVD dataset: tone curve and demosaicing [START_REF] Kiku | Minimized-Laplacian residual interpolation for color image demosaicking[END_REF] before denoising. Since the results are in sRGB, we re-mosaice them and invert the tone curve for evaluating the PSNR in the raw domain. Table 2.3 presents the average PSNRs on all the sequences for each ISO level. We can see that even though RViDeNet was pre-trained on the same noise type, MF2F performs much better.

Results on the IR-FLIR ADAS dataset

We also tested MF2F on thermal infra-red video from the FLIR ADAS [START_REF] Inc | Flir thermal dataset for algorithm training[END_REF] dataset, which consists of video sequences of street scene taken with a Tau2-640 sensor (which produces a 16 bit signal). Figure 2.19 shows a frame from the result obtained with the offline MF2F method on a sequence of 4224 frames. Since these frames are grayscale we replicated each frame into three channels and mapped the intensity to the range [0,255]. In this case the network adapts to a different signal domain, in addition to a new noise type. Figure 2.20 shows results on videos with real noise from the FLIR ADAS thermal infrared dataset, both online and offline methods are compared. Results of the last row were displayed using a jet color map.

Results on World War I footage

Lastly, Figure 2.21 presents results obtained by applying our MF2F framework on two sequences of World War I footage. 4 These poor quality sequences present noise with unknown characteristics. Nevertheless, our self-supervised methods manage to remove most of the noise. Although the online fine-tuning tends to blur the background, the offline fine-tuning recovers slightly more details.

Additional experiments 2.5.1 Convergence of the offline fine-tuning

In the offline fine-tuning we estimate the gradient using mini-batches corresponding to 20 frames randomly sampled throughout the video. For each sampled frame, the denoised frame is computed using the corresponding training stack. The weights are updated using the Adam update. This is repeated for N A = 200 iterations.

We show in iterations. After that it continues to grow at a slower rate, or plateaus. Based on this evolution, we set N A = 200 iterations which is a reasonable trade-off between fine-tuning time and denoising performance.

Dataset & noise

Impact of the pre-trained network

The proposed fine-tuning scheme can be applied to any denoising network and any pretrained weights can be used as a starting point. Here we evaluate the impact of the choice of the pre-trained weights. This issue is related to transfer learning and domain adaptation, where a pre-trained network is re-targeted for a different task or input data distribution. In [START_REF] Zamir | Taskonomy: Disentangling task transfer learning[END_REF] it is shown that effectiveness of the transfer depends on the similarity between the source and target tasks.

In the same spirit as [START_REF] Zamir | Taskonomy: Disentangling task transfer learning[END_REF], we tested our fine-tuning starting from weights pretrained for four types of noise: AWGN with σ = 15, 25, 35 and box noise with kernel size 3 × 3 and σ = 40. For the AWGN noise we used the pre-trained network provided by [START_REF] Tassano | Fastdvdnet: Towards real-time deep video denoising without flow estimation[END_REF]. We fine-tuned those pre-trained networks for three different target noises: AWGN with small σ = 10, a stronger AWGN with σ = 40 and box noise with kernel size 5 × 5 and σ = 65.

Figure 2.23 shows three plots, one per target noise. We consider the online version of our fine-tuning to evaluate the convergence speed. The fine-tunings were performed independently on sequences of 100 frames. For each frame, we average the PSNR obtained at that frame for the seven sequences of the Derf dataset. We plot the evolution of the difference between the average per-frame PSNR for our fine-tuned network and a network which was trained with supervision specifically for each target noise type.

As expected, the similarity between the source and target noise distributions impacts the convergence speed of the online fine-tuning. For both AWGN noise targets the weights pretrained for AWGN with the closest σ show the fastest convergence. Similarly, the weights pre-trained for box noise work better when the target noise is also box noise. In all cases the fine-tuned network achieves a performance comparable to the supervised network (within a 0.4dB range), and even surpasses it in the case of AWGN. It seems to be easier for the weights pre-trained for AWGN to adapt to the box noise than the other way around. For this reason, all our experiments were done starting our fine-tunings from the weights pre-trained for AWGN with σ = 25.

Fine-tuning half of the weights

The FastDVDnet architecture [TDV20] consists of two cascaded blocs of U-Net. In the previous section, we showed that fine-tuning the parameters of the noise map while leaving the weights fixed can achieve good results for certain types of noise; while, in the previous sections, we have seen that fine-tuning all the weights of the network permits to adapt to a wider range of noise types. In this section we investigate if we can update a smaller part of the network in order to attain the same adaptation capacity and potentially reduce the memory footprint and/or the computational time.

We will fine-tune half of the network weights. For that we consider four ways of splitting the weights. We can either fine-tune the weights corresponding to the first U-Net (denoted U-Net 1 ), or the second one (U-Net 2 ), while leaving the other fixed. But also we can finetune the weights of the encoder parts of both U-Nets (denoted "encoder") or the decoder parts ("decoder"). The average PSNR obtained with this fine-tuning experiments are reported in Table 2.4. The averages are computed over seven video sequences of the Derf dataset and ten video sequences of the Vid3oC-10 dataset. Surprisingly, one of the configuration for half fine-tuning competes with the full training. Indeed training only the encoder parts of both U-Net consistently attains the performance obtained by fine-tuning the full weights. This is true for all the tested noises. This is an interesting result because it reveals that we get the same results (both visually and quantitatively) by fine-tuning only encoders of the U-Nets. Thus, at least for the FastDVDnet architecture, most of the "noise-specific" work is being done in the encoders. We also found that in addition to having a similar PSNR, the network with the fine-tuned decoders seems to produce results with better temporal consistency (the flickering effect is reduced).

We can also observe that the other half-fine-tuning configurations reach a good performance and sometimes overtake the noise-specific FastDVDnet trained with supervision (see Table 2.2 for comparison). Furthermore, we notice the coherence of the results since each strategy compares with the others in a similar way irrespective of the noises and datasets.

Furthermore, in case of fine-tuning the end of the network (decoder of both U-Net or encoder & decoder of the last U-Net), it is worth noting that fine-tuning half of the network does not require to back-propagate through the whole network. Thus, this allows to reduce the computational memory needed (however, Table 2.4 shows it slightly affects the performance compared with a full-weights training).

Dealing with catastrophic forgetting a) Motivation

If we denote by F θ the network with the set of parameters θ,we recall that the MF2F loss is

ℓ MF2F 1 F θ (S ′ t ), f t-1 = ∥κ t • (W t,t-1 F θ (S ′ t ) -f t-1 )∥ 1 , (2.9)
where W t,t-1 is the warping operator defined in Equation 2.2, κ t is a mask (see Section 2.2.2), S ′ t is the dilated stack of input frames and f t-1 is the previous noisy frame used as target.

Although the results of the MF2F fine-tuning are already competitive with state-of-theart networks trained with supervision, they may suffer from salient artifacts around some motion boundaries. Indeed, in order to avoid warping errors, the mask κ t in Equation 2.9 systematically removes such boundaries from the loss. It results that some fast moving objects could become semi-transparent near to the motion boundary. This problem does not affect much the PSNR or SSIM and is not really noticeable while watching the video. However it may harm applications that require frame-by-frame analysis. Indeed, this forgetting creates a transparency effect as shown in Figure 2.24b.

In this section, we propose to address this issue by using a secondary weak denoiser as target in the loss. The goal of the weak denoiser is to circumvent the training bias due to the removal of alignment errors and therefore it will only act on areas where alignment errors are large. For the remaining region, we keep the initial MF2F loss.

b) Forgetting and teacher network

Fast moving objects cause large occluded and dis-occluded areas where the warping is not well-defined. For these reasons, the boundaries around fast moving objects are systematically removed from the loss. Thus the network is never fine-tuned on such regions. As we update the weights of the network, it may "unlearn" how to process these regions (even if the initial pre-trained network was trained with video sequences containing large motion) as shown in Figure 2.24. This is similar to the more general phenomenon of catastrophic forgetting [START_REF] Kirkpatrick | Overcoming catastrophic forgetting in neural networks[END_REF] (namely the tendency of neural networks to forget about a past task after some training iterations on a new task) observed when sequentially learning multiple tasks.

To alleviate the forgetting effect, we introduce a weak denoiser and use its output as target at motion boundaries. We call this weak denoiser the teacher as it "teaches" our network (the student) how to handle motion boundaries. We will denote the teacher and student networks with superscripts "T" and "S". Let ûT t be the output at frame t produced by the teacher network. Then, we propose to use the following loss function for the student network:

ℓ MF2F+T 1 F S θ (S ′ t ), f t-1 , ûT t = l MF2F 1 F S θ (S ′ t ), f t-1 ) + (1 -κ t ) • F S θ (S ′ t ) -ûT t 1
. (2.10) Note that no warping is required in the last term, because both output of the teacher and student network are aligned.

A choice for a weak denoiser. Several weak denoisers can be used as teacher provided they can "teach" the primary network how to handle areas removed by the misalignment mask. Potentially, it can produce poor global denoising results because its output is only used at a small fraction of the frame but we found empirically that this is enough to improve the performance of the student network on the motion discontinuities. In Section 2.3.2, we presented a FastDVDnet pre-trained for AWGN, but for which we fine-tuned only the variance map that FastDVDnet takes as input with our framework. We have shown that fine-tuning a per-level noise map achieves already competitive results for a wide range of noises. We use it as teacher for the experiments reported in this section.

Note that this teacher denoiser is not fully fine-tuned so that it does not suffer from the same forgetting, and it can therefore act as a memory that "teaches" the primary network how to handle the removed regions. .25: Overview of the proposed multiframe-to-frame blind fine-tuning for a video denoising network taking as input a stack of frames. The algorithm applies three steps for each frame t. The noise parameter of the "teacher" network is fine-tuned (step 1) with the MF2F loss 2.9, which compares the output of the network with the previous frame t -1 (frames are aligned to compensate for motion). A similar MF2F+T loss 2.10 is used to fine-tune the "student" network (step 2), except that at locations where alignment errors are detected the output of the "teacher" network is used as target. During finetuning we use a dilated input stack (in red) so that the target frame is hidden from the network. At inference time (step 3) we use the natural stack (in blue).

c) Fine-tuning and inference

The methodology for fine-tuning and inference is very similar to the framework without teacher discussed in the previous sections, except that we have a pre-step beforehand which consists in computing the results of the teacher network. As illustrated in Figure 2.25, the scheme processes the video applying three steps on every frame:

1. At frame t, the input variance map of the teacher network is updated using Equation 2.9. The teacher's output ûT is computed with the updated variance map and the natural stack.

2. The weights of the student network are updated using Equation 2.10.

3. Finally, the denoised frame is computed with the updated student network evaluated on the natural stack.

To update both the teacher and the student networks, we perform a fixed number N of optimizer steps on the losses 2.9 and 2.10. We give a pseudo-code of this MF2F+Teacher framework in Algorithms 3 and 4, respectively for the online and offline settings. In both cases, the input video is made of frames {f t } t∈{1,...,T } . For the online method, the input variance map Σ T is updated by N T iterations of Adam optimization and the student ones by N S . The offline method uses mini-batches of N b frames. The weights are updated for N A steps of Adam optimizer. In the project webpage 5 , we made available the source code of the proposed method with the 8 sigmas teacher network.

Note that in Algorithms 3 and 4, the output of the teacher network is computed in the same time as the student network. It is also practicable to compute the results of the teacher network beforehand and store them to reuse them in the MF2F+T loss 2.10 when we fine-tune the student network.

Algorithm 3: Pseudo-code of the proposed online fine-tuning, with the use of the teacher network.

input : Noisy video f , initial teacher parameters Σ T 0 , initial student weights θ S 0 output : Denoised video û 1 for t = 2, . . . , T do 2.5: Average PSNR and SSIM over all the sequences for a given dataset and type of noise. The MF2F fine-tuning is applied to a FastDVDnet network [START_REF] Tassano | Fastdvdnet: Towards real-time deep video denoising without flow estimation[END_REF], either on the weights (model blind) or the input variance map (σ blind). The fine-tuning is done using the MF2F loss with or without the use of the teacher network. The best PSNR in each case is underlined. The best blind method is in bold. .24 shows that using our teacher network on the occlusion mask reduces the transparency artifacts (in Figure 2.4, we also show that removing the occlusion mask and the teacher altogether results in even worse artifacts). In Table 2.5, we compare the fine-tuning with and without teacher on our two datasets Derf [Mon+] and Vid3oC-10 [KLF+19]. For a better understanding, we include the results of the noise specific FastDVDnet (trained with supervision), and the results when finetuning only the noise map (with fixed weights). Note that the teacher is the network where we fine-tuned our per-level noise map (denoted "8 sigmas" in Table 2.5). For comparison with the teacher and other baseline methods (F2F, VBM3D), we refer to the Table 2.2. We can see that fine-tuning using a teacher network has a positive impact on the results in terms of PSNR and SSIM. In the case of box noise the teacher network leads to a slightly lower PSNR and SSIM. The reason is that the teacher was not trained for correlated noise. Even so, the use of the teacher network improves the denoising of regions with fast motion, as can be seen in Figure 2.24.

2 v t-1,t ← optical-flow(f t-1 , f t ) 3 W t,t-1 ← warping-operator(v t-1,t ) 4 κ t ← alignment-error-mask(v t-1,t , W t,t-1 f t , f t-1 ) 5 S ′ t ← [f t-4 , f t-2 , f t , f t+2 , f t+4 ] // training input stack 6 S t ← [f t-2 , f t-1 , f t , f t+1 , f t+2 ] // inference input stack // update teacher network 7 Σ T t ← Σ T t-1 8 for i = 1, . . . , N T do 9 Σ T t ← adam-step(ℓ MF2F 1 (F T Σ T (S ′ t ), f t-1 , W t,t-1 , κ t )) 10 ûT ← F Σ T t (S t ) // update student network 11 θ S t ← θ S t-1 12 for i = 1, . . . , N S do 13 θ S t ← adam-step(ℓ MF2F,S 1 (F S θ S (S ′ t ), f t-1 , ûT t , W t,t-1 , κ t )) //
5 v t-1,t ← optical-flow(f t-1 , f t ) 6 W t,t-1 ← warping-operator(v t-1,t ) 7 κ t ← alignment-error-mask(v t-1,t , W t,t-1 f t , f t-1 ) 8 S ′ t ← [f t-4 , f t-2 , f t , f t+2 , f t+4 ] // training input stack 9 S t ← [f t-2 , f t-1 , f t , f t+1 , f t+2 ] // inference
Note that the improvement is more noticeable on the Vid3oC-10 dataset than in the Derf dataset. This is very remarkable because the Vid3oC-10 dataset is more challenging than the Derf one because it contains larger motion and thus more fast moving objects. In Figure 2.26, we compare the network trained in an online fashion with and without the use of the teacher (the contrast has been enhanced for visual purpose). For this example, we show a sequence of the Vid3oC-10 dataset with a fast moving train. The graffiti (tag) on the railroad car is not recovered by the fine-tuning without teacher while the teacher network helps a lot for reconstructing this tag. The reason is that this graffiti is entirely removed from the MF2F loss without teacher network. Indeed, the Figure 2.27 shows the noisy image with and without the mask. All the fast moving object have been removed over the video. After many frames, the online fine-tune network "has forgotten" to deal Note that fine-tuning the variance map or all the weights of the network requires roughly the same amount of time. This is because in both cases we need to back-propagate through the entire network and we perform the same number of weight update steps. Remark. The running time needed for evaluating the FastDVDnet network on a sequence is negligible compared with the time needed for the fine-tuning, which requires back-propagation of the loss through the whole network.

Running time of the online algorithm

Conclusions

In this chapter we addressed the problem of blind video denoising. To that aim, we extend the self-supervised fine-tuning approach introduced in [EDM+19] to multi-frame denoising networks. This is achieved by fine-tuning the network using a dilated input frame stack and switching back to the natural input stack at inference time.

The proposed approach demonstrates that by exploiting the temporal consistency in videos it is possible to fine-tune a video denoising network using only a few frames of a single noisy sequence and attain the performance of a network trained with supervision on a large dataset. This also allows to handle time-varying noise, which could be useful for vision systems exposed to varying conditions (for instance a surveillance camera at day and night). A pre-trained network is fine-tuned by minimizing a loss that penalizes the error between the frame denoised by the network and the previous frame, after aligning them with an optical flow.

The results on real videos are very promising. The network fine-tuned with selfsupervision shows results that are significantly better than those obtained by RViDeNet, a network trained with supervision. Yet, both networks have different architectures, thus we cannot attribute this difference to the self-supervised training. A fair comparison between supervised and self-supervised training is the subject of Chapter 4.

The main limitation of the MF2F framework is its reliance on an external motion alignment algorithm (warping operator based on TV-L1 optical flow). The performance of MF2F

Introduction

After acquisition, raw images (or videos) are processed by a pipeline which aims to render the final sRGB output. The pipeline stages as well as the order differ from camera-makers or softwares, but all of them share the same main essential elements such as demosaicing, denoising, color correction, and tone-mapping.

However in image or video processing, many tasks are performed in the raw domain (demosaicing or denoising tasks, for example).

For a few years, data-driven methods have proved very efficient in many image processing tasks for which they set the recent state of the art. In these methods, neural networks are trained with supervision on large datasets consisting of clean-noisy pairs. Although a very large amount of sRGB images and videos can be found easily on the internet, there are unfortunately not so many datasets for raw data. Consequently, most data-driven methods are trained on synthetic data. Of course, the performance of the CNNs at test time highly Generating realistic raw data from sRGB images requires inverting properly the processing pipeline. In 2018, Brooks et al. [START_REF] Brooks | Unprocessing images for learned raw denoising[END_REF] trained a denoising CNN for the task of raw denoising with real noise. They proposed a reverse pipeline for generating realistic raw images by "unprocessing" sRGB ones. In this chapter, we describe the unprocessing method introduced in [BMX+19] and show some results we obtained with it. The next section is dedicated to the methodology and the technical details for the inversion of the pipeline. In Section 3.3, we present some results of the method.

Method

The unprocessing pipeline proposed by Brooks et al. consists of a few main steps. In Figure 3.1, we summarize them in the order they appear in the procedure. For each step, we provide an example image of the output. Basically, the pipeline consists of:

1. Inverting the tone-mapping curves.

Inverting the gamma compression

3. Inverting the color matrix multiplication (from RGB to the camera color-space) 4. Inverting white-balance and brightening

Mosaicing the 3 channels image

Starting with a clean sRGB image, this pipeline produces realistic clean raw image. In the demo, we also include the possibility to add synthetic but realistic real noise. The next paragraphs detail the pipeline steps more deeply: we start by explaining how each step is operated in the forward processing pipeline and then how it can be inverted in the unprocessing pipeline.

Tone-mapping. In an image processing pipeline (from raw to sRGB), the final output is rendered with a contrast enhancement curve. Although some local enhancements can be done, we consider in this step a global tone-mapping. Basically, the purpose of the global tone-mapping is to stretch the dynamics by pushing up the high values in the same time as darkening the dark areas further. This curve (sometimes denoted as "S-curve") can be approximated by a cubic polynomial. For images between 0 and 1, an approximation can be x → -2x 3 + 3x 2 ([BMX+19]), which has the reciprocal function Therefore, this reciprocal function can be directly used for the unprocessing pipeline. In Figure 3.2, we show the stretching effect (or crushing effect for the inverse) of the global tone-mapping.

x → 1 2 -sin asin(1 -2x) 3 .
Gamma compression. Human perception of brightness is not a linear function of the luminosity level. It has a higher sensitivity to small changes of brightness in the dark areas than in the lightest ones. Furthermore, two times more light is only perceived as slightly brighter. On the other hand, cameras have a linear perception since this time, the signal given by the camera is simply doubled when two times more photons hit the sensor. In order to compensate that difference of behavior, a gamma correction (also called gamma compression or sometimes gamma encoding) is performed: basically, it ensures that the images taken by the camera appear as they do to the human eye. Another advantage is that, when images are stored with quantization (finite number of levels), it optimizes the brightness encoding by using more levels to encode the low intensity range of the dynamics (for which the human eye is more sensitive to changes), leading then to more details in the dark areas. The gamma corrected image is simply obtained from the linear one by applying a power function v = u 1 γ where v is the gamma corrected image and u is the linear one. In the unprocessing pipeline, the goal of this step is to go back to the linear space and the inversion is straightforward: u = v γ . In practice, a standard value of γ = 2.2 is usually used [BMX+19; PR17] and data are clipped to 0 to avoid negative values.

Figure 3.3 shows the stretching of the dynamic range for an image u ∈ [0.255], and one example of a linear and a gamma corrected gradient of luminosity.

Camera Color Matrix. Usually, the final rendered color space after the processing pipeline is different to the camera color space. The latter is camera dependent. For going from the internal camera color space to the sRGB one, camera-makers have tuned a 3 × 3 invertible matrix, called the "Camera Color Matrix" (CCM). This matrix depends on the camera. The Darmstadt Noise Dataset [START_REF] Plotz | Benchmarking denoising algorithms with real photographs[END_REF] is a dataset of real raw images taken with four different consumer cameras for which the CCM matrix is available. In [START_REF] Brooks | Unprocessing images for learned raw denoising[END_REF], the authors trained a denoising network which was afterwards evaluated on this dataset. In order to yield a good generalization, they synthesized realistic raw data by simulating a camera which has a CCM as a random convex combination of these four CCMs. In the demo, we propose either to apply this randomly synthesized CCM or any of these four consumer cameras. For inverting the color space change, once the CCM has been sampled (either randomly computed or as a fixed and pre-selected one), the CCM is inverted and applied to the intermediate image in the unprocessing pipeline.

White-balance and digital gain. In the processing pipeline, the image exposure is corrected using a global digital gain (which is applied to all the channels). Unfortunately, the value of this gain is image-dependent. In [START_REF] Brooks | Unprocessing images for learned raw denoising[END_REF], the authors estimated an average value by looking at the digital gain on the Darmstadt Noise Dataset and found the value 0.8. When they trained their denoising network, they sampled a gain from a normal distribution centered in this value with a small standard deviation of 0.1, leading to roughly spanning the interval 0.8 ± 3 × 0.1 = [0.5, 1.1]. In the demo, we propose to select the global gain (called g rgb ) in this range.

Channel-wise gains are also applied in the processing pipeline for balancing color channels together. Basically, the goal of a white balance is to display areas that look white when seen by humans in the scene as white in the screen, thus balancing any color cast due to the illumination source light. Furthermore, the white balance compensation not only depends on the scene (the real colors in the scene) but also on the light condition, thus it has to be set individually for each image. Since a global gain (applied to all the channels) is used, instead of having three channel-wise gains (for the red, green and blue channels), we can formulate the color balancing for only two channels as a ratio with respect to the third channel (set as a reference channel). The green channel has often higher intensities than the others (it is in the green wavelengths that the sun emits the most and nature reflects a rather green hue). Therefore the green channel is set as reference and a whitebalance algorithm estimates the gains which need to be applied to the red and blue channels (equivalent to fix the green gain to 1). When the gains used are unknown, inverting this is a very difficult task. Instead, Brooks et al. proposed to estimate an average red and blue gain on the Darmstadt Noise Dataset for which the gains have been saved in the metadata. They determined that the red gain g red spans the range [1.9, 2.4] and the blue gain g blue spans [1.5, 1.9]. They sampled white-balance gains uniformly in their respective interval for synthesizing their training data. In the demo, the user can specify the value of these gains in the corresponding range.

Finally, for inverting the color balance in the unprocessing pipeline, we divide instead of multiplying by the color balance coefficients of each channel: However, given the range values of g rgb , g red and g blue , the per-channel inverse gain (of the form 1/g) is sometimes smaller than one, and consequently the intensity in channel c is likely to be decreased after the inverse gain 1/g c . As a result, the synthesized raw image is unlikely to contain any highlights or saturated areas and might be therefore unrealistic.

[ 1 g red g rgb , 1 g rgb , 1 g blue g rgb ].
In [START_REF] Brooks | Unprocessing images for learned raw denoising[END_REF], each intensity i of channel c with inverse gain 1/g c is then transformed with the continuous function:

f g c : i →      i g c if inverse gain 1 g c ≥ 1 i g c
if inverse gain 1 g c < 1 and intensity i ≤ 0.9

i g c + 100i(i -0.9) 2 1 -1 g c
if inverse gain 1 g c < 1 and intensity i ≥ 0.9.

Note that in [START_REF] Brooks | Unprocessing images for learned raw denoising[END_REF], the value of 0.9 is a threshold value that the authors determined to add enough highlights. Figure 3.4 shows a plot of this function for the intensities in the range [0, 1].

Remosaicing. In a camera sensor, each pixel is like a single intensity sensor which counts the number of photons (the light intensity) that hit it during the exposure. The count is independent of the color and there is only a single counting per pixel: a color filter array (CFA) is placed in front of the sensor, determining the intensity of the light for one given color per pixel. The CFA consists in a mosaic of color filters (either red, green or blue), arranged in a Bayer pattern such as RGGB, for instance. This results in a sparse color samples output, with a single channel. In the processing pipeline, the 3 channels (RGB) image is computed by interpolating the missing color channel [START_REF] Gharbi | Deep joint demosaicking and denoising[END_REF]. Consequently, in the unprocessing pipeline, we need to remosaice the RGB image, that is, undo this interpolation. This can be done straightforwardly by omitting two thirds of the color values according to the Bayer pattern.

Simulating realistic noise. In the demo, we propose to add heteroscedastic Gaussian noise (see the Preliminaries Chapter 1) with variance σ 2 = a • u + b, where u is the clean image and a, b are two noise parameters pre-selected by the user.

Experiments

In Figure 3.5, we display an example of the results obtained using the default parameters and for which we add noise. The default parameters are set to produce a realistic result. For some applications, it is interesting to tune the white-balance gain parameters, for instance when the user wants to simulate a specific lighting condition (or knows the color cast of the illumination which produces the sRGB image). However, modifying those gains is a tricky task. As explained in the Section 3.2, applying the inverse gain is not a trivial multiplication, but a function which aims at producing highlights. In Figure 3.6, we show an example for which the choice of white-balance gains can create many saturations. To produce this example, we set the white-balance gains to the extreme cases with the minimum values (g red = 1.9, g blue = 1.5, g rgb = 0.85) (top of the figure) and the maximum values (g red = 2.4, g blue = 1.9, g rgb = 2.05) (bottom of the figure).

In Figure 3.7, we show another example with the clean RGB image and the results of the clean unprocessed images with small and large inverse gains. Again, we used the extreme values. In the sRGB image, the alley on the right and the house on the top left are saturated; the house in the background is close to saturation. After unprocessing, the house on the top left is still uniformly saturated, but the alley contains some discontinuities, due to the highlight-preserving function used to invert the gains. With small inverse gains (inverse gain 1/g < 1), this function creates a jump toward saturation (on high values of intensity). This means that a small variation of intensity is highly amplified. In this latest case (Figure 3.7c) the alley contains much more highlights and the house in the background has also some highlights. This is wanted by the authors of [START_REF] Brooks | Unprocessing images for learned raw denoising[END_REF], who designed a function for inverting gain which is likely to produce highlights with small inverse gains. The demo allows the user to set himself in this case or not by tuning the gain values. For example, if one wants to evaluate a CNNs on (real) data with highlights, we can create datasets with many highlights. Alternatively, one can generate datasets with few, or even no highlights.

Conclusion

In this chapter, we presented the unprocessing pipeline introduced in [START_REF] Brooks | Unprocessing images for learned raw denoising[END_REF]. This method allows to generate synthetic clean raw images from existing RGB images which can then be used (in conjunction with a suitable noise model) to create datasets for supervised training of denoising networks. The pipeline comprises many steps which we detailed in this chapter. By tuning the parameters of these steps one can control the characteristics of the produced raw images. In this way, it is possible to tailor the dataset to approximate the data captured for a given camera. This tuning is manual.

Chapter 4

Supervised training on synthetic data or self-supervised on real data?

In this chapter, we propose a study aiming to determine which is the best approach to train denoising networks for real raw videos: supervision on synthetic realistic data or self-supervision on real data. The former suffers from the generalization gap, while the latter, from not having supervision from the ground truth. A complete study with quantitative results in case of natural videos with real motion is impossible since no dataset with clean-noisy pairs exists. We address this issue by considering three independent experiments in which we compare the two frameworks. We found that self-supervision on the real data outperforms supervision on synthetic data, and that in normal illumination conditions the drop in performance is due to the synthetic ground truth generation, not the noise model.

Introduction

If denoising is still an active research subject, both for images and videos, this is all the more so in the case of real noise. For this latter, the real distribution of the noise may be unknown or at least hard to model. This almost prevents the use of traditional modelbased approaches, since indeed they need a tractable model of the noise. Furthermore, they require specific algorithms for each type of noise, e.g. [LCM15; GPMA18; MSF14; SHDW14; CHKB09; BKB+09; ZDD+19].

On the other hand, CNNs are an ideal candidate for restoration of real videos because they achieve state-of-the-art results on different types of noise [CCXK18; WZP17; KMY17; CYC+19]. As we discussed in previous chapters, training neural networks on real imagery is difficult due to the lack of real data with clean ground truth. There are two research trends addressing this problem. One of it is given by self-supervised methods that do not require ground-truth, like the one we described in Chapter 2. The other one focuses on generating realistic synthetic datasets for supervised training. This requires an accurate synthesis of the noise and of the clean raw data.

When synthesizing real noise, a first common approximation is to consider the noise in the raw sensor as an additive heteroscedastic Gaussian with a signal dependent variance [START_REF] Foi | Practical poissoniangaussian noise modeling and fitting for single-image raw-data[END_REF]. A more accurate model is the Poisson-Gaussian model [START_REF] Foi | Practical poissoniangaussian noise modeling and fitting for single-image raw-data[END_REF], which still has some limitations as it does not take into account non-linear behavior of the sensor (e.g. clipping), dead pixels, heavy tails of read noise, etc. It has been shown that more comprehensive models of the noise yield better results [START_REF] Wei | Physics-based noise modeling for extreme low-light photography[END_REF]. Other works rely on data driven generative approaches to synthesize noise [CCCY18; KRJ19; CWL+20; YZZM20; ABB19; WLD+21]. Creating synthetic datasets requires synthesizing the clean data too. This is straightforward for RGB denoising, but as seen in Chapter 3, it is far from trivial for raw denoising [BMX+19; ZAK+20; WHX+20; CMM+22] or for other imaging modalities.

On artificial datasets, supervised training outperforms self-supervised approaches. However recent self-supervised methods have shown competitive results, specially in video denoising (see the results obtained in Chapter 2).

The natural question is then, what is the best approach to train denoising neural networks for real videos? Is it better to train with ground truth supervision on realistic synthetic datasets, or should one train directly on the real data with a self-supervised approach? The former suffers from the generalization gap between simulated and real data, while the latter pays the price of not having supervision from a clean ground truth. The question is which is the lesser evil.

Chapter plan and purpose. In this chapter, we study the question of which training framework has to be used for video denoising networks: supervised on synthetic data or selfsupervised on real data. Although this is a very relevant question with many applications, this is to the best of our knowledge the first study about comparison of supervised and selfsupervised approaches for video denoising networks. This requires to compare quantitatively and fairly both approaches in a controlled setting. Ideally, this should be done by testing them on evaluation datasets of real natural videos (both with real noise and real motion) with ground-truth. However, there are no such datasets due to the inherent complexity of simultaneously acquiring noisy and noiseless videos for natural dynamic scenes, and they are not likely to appear soon. We circumvent this problem by considering two surrogates for real data: 1) a synthetic raw dataset with a comprehensive noise model, and 2) a real dataset of static scenes for which ground truth can be estimated via frame averaging. Finally, we evaluate both approaches on real natural videos visually. In all cases, we apply a rigorous training methodology to make sure that we compare fairly the training approaches.

The next section reviews the related work. In Section 4.3, we present the architecture used in this study as well as a description of the self-supervised trainings. The overall protocol of the study (including datasets and training strategies) is detailed in Section 4.4. Experiments details and results are presented in Section 4.5.

Related work

Self-supervised training methods are often compared to supervised training on synthetic datasets [EDM+19; BR19; KBJ19; DAD+21; SMV+21]. For instance, in Chapter 2, we compared the supervised FastDVDnet with the one fine-tuned using the proposed selfsupervised method MF2F. In this setting, supervised training is optimal (e.g. with respect to the MSE) and the goal is to achieve the same performance with self-supervision. Our situation is different, since we are interested on the performance on real data of a supervised network trained on synthetic data.

In the case of still images, it is possible to acquire real datasets with ground truth. The ground truth can be either estimated by acquiring a burst of images of static scenes and averaging them [ALB18; CCXK18] or using long exposure times [START_REF] Plotz | Benchmarking denoising algorithms with real photographs[END_REF]. In such datasets it is possible to train with supervision on real data, and it has been observed that training a network with unrealistic simulated data leads to worse results [ABB19; WFZY21].

The study of this trade-off is more accessible in the case of image denoising due to the fact that we have datasets with real images and clean ground-truth. Some previous works evaluate on real noise CNNs which were trained on different synthetic noises.

This motivated research into how to better simulate real noise. The simplest noise model for raw images is the heteroscedastic Gaussian noise model [START_REF] Liu | Practical signal-dependent noise parameter estimation from a single noisy image[END_REF] which supposes the noise to be additive, zero-mean and with a variance as an affine function of the intensity. This corresponds to the sum of two noise sources: the shot noise modeling photons arriving at the sensor and the readout noise introduced by the electronics. In spite of its known limitations ( [START_REF] Wei | Physics-based noise modeling for extreme low-light photography[END_REF]), this model is widely used [GYZ+18; PR18; JBAD19; BMX+19; ZAK+20; WHX+20]. In [START_REF] Claus | Videnn: Deep blind video denoising[END_REF] the authors use an additive and zero-mean heteroscedastic Gaussian noise but the variance does not follow an affine model. In [ZCH16; ZMX+14] a Gaussian mixture model is used. In [START_REF] Wei | Physics-based noise modeling for extreme low-light photography[END_REF], the shot noise is considered Poissonian and a Tukey-Lambda distribution is used to model heavy tails in the readout noise. The Tukey lambda distribution is a family of probability distributions which can approximate many usual distributions. It is a continuous and symmetric distribution, parameterized by a single shape parameter λ (of course, it can be in addition either shifted or scaled by parameter µ or σ). Additionally, other noise sources are also modeled like the banding pattern noise (e.g. row noise) or quantization noise.

Other approaches for simulating real noisy sequences use data-driven generative methods, such as adversarial generative models [CCCY18; KRJ19; YZZM20]. They have proven to be efficient for generating real noise after pre-training on image datasets with clean/noisy pairs. In these works, a generative network is trained to generate a noise close to the real one while a discriminative network is trained to determine whether a noise sample is real or has been generated. In [START_REF] Abdelhamed | Noise flow: Noise modeling with conditional normalizing flows[END_REF] a neural network entirely composed of invertible layers is used to simulate realistic noise from clean data. It was trained on the SIDD dataset [START_REF] Abdelhamed | A high-quality denoising dataset for smartphone cameras[END_REF] and can reproduce the realistic noise of the five cameras with a smaller KL-divergence with respect to the real noise than the heteroscedastic Gaussian noise. Similarly in [START_REF] Wolf | Deflow: Learning complex image degradations from unpaired data with conditional flows[END_REF], a CNN is trained to generate realistic degraded data from clean ones.

For raw denoising, it is important also to simulate the raw clean ground truth (as explained in the previous Chapter 3). This problem has received less attention. The standard approach is to use sRGB images and apply a simple inverse camera pipeline to generate the raw [GYZ+18; BMX+19]. In [START_REF] Zamir | Cycleisp: Real image restoration via improved data synthesis[END_REF] the inverse pipeline is implemented by a network that is learned from real data. In [START_REF] Conde | Model-based image signal processors via learnable dictionaries[END_REF], the authors use a ISP (Image Signal Processor) pipeline, similar to [START_REF] Brooks | Unprocessing images for learned raw denoising[END_REF], but instead of being hand-crafted by a statistical analysis on a dataset, the parameters of each ISP steps are learned using an end-to-end training.

Self-supervised training methods

Self-supervised learning methods learn directly from the noisy data by exploiting differences in the correlation structure of signal and noise. A part of the input is withheld from the network, which is trained to predict the withheld part. If the noise of the withheld part is independent from the one given to the network, then the network can only minimize the loss by predicting the clean signal.

The state of the art in self-supervised video denoising is represented by Multi Frame-to-Frame (MF2F) [START_REF] Dewil | Self-supervised training for blind multi-frame video denoising[END_REF] presented in Chapter 2 and Unsupervised Deep Video Denoising (UDVD) [START_REF] Sheth | Unsupervised deep video denoising[END_REF]. UDVD is a recently introduced CNN architecture that was designed for video denoising. Both techniques were found to be efficient on the real raw video denoising task, and thus we are going to include both of them in our comparison. We will describe them below. Concerning MF2F, we refer to Chapter 2 for more details.

UDVD: blind-spot network for video denoising

The UDVD method relies on the blind-spot technique recently introduced in [KBJ19; BR19; LKLA19; KVJ19]: a special convolutional network architecture is used, which has a blindspot at the center of its receptive field. The network is trained to predict the value of this pixel in the noisy video. It is predicted from the surrounding neighbors (both spatial and temporal), exploiting the spatio-temporal regularity of the clean video. The blind-spot technique decreases the denoising performance compared with a non blind-spot (normal) network, as many details are lost. This gap is significant in the case of image denoising, depends on the optical flow accuracy, which is computed using the TV-L1 method [START_REF] Zach | A duality based approach for realtime tv-l 1 optical flow[END_REF][START_REF] Pérez | Tv-l1 optical flow estimation[END_REF].

The application of the warping operator W t,t-1 requires interpolating the network output at subpixel positions. Interpolating the raw image is problematic. A naive approach would be to pack the raw as a 4 channels image of half the resolution and warp each channel. However, these low resolution channels are heavily aliased. We found better results applying a demosaicing D to the network output, warping on the RGB domain, and re-mosaicing it afterwards. That is, our warping operator can be expressed as W raw t,t-1 = M W rgb t,t-1 D, where M is the remosaicing operator. For the demosaicing we use the Hamilton-Adams method [JGMF21; HA97].

Methodology

Datasets

Our goal is to compare two strategies for training a denoising network for raw real videos: supervised training on realistic synthetic data, or self-supervised training directly on the real data. To that aim we need a dataset of synthetic noisy videos and another one of real natural videos for evaluation. In the following, we describe our evaluation protocol (see Figure 4.3).

Dataset of real videos. Since there are no datasets of real natural videos with ground truth, we will consider two surrogates: (1) synthetic videos with a comprehensive noise model, and (2) static real videos with ground truth generated by frame averaging. The first will allow us to measure the effect of an oversimplified noise model in the synthetic dataset of dynamic scenes with natural motion. The second is static, but will be useful to have a quantitative evaluation on real data. Lastly, we will consider a dataset of real natural videos for visual evaluation. More details about these datasets will be given respectively in Sections 4.5.1, 4.5.2 and 4.5.3. For simplicity we will talk about the surrogate real dataset (abridged to surrogate dataset) in the following, even though it might not be actually real data, but our proxy for real data. The surrogate real dataset is represented in green in the diagrams of Figure 4.3.

Dataset of synthetic videos. For each surrogate dataset we generate a synthetic realistic dataset with clean-noisy pairs for supervised training (represented in red in Figure 4.3). We use the REDS 120 dataset [START_REF] Nah | Ntire 2019 challenge on video deblurring and super-resolution: Dataset and study[END_REF] which consists of 270 dynamic sequences (split in 240 training and 30 validation sequences) with real motion of outdoors scenes taken in daylight conditions, with frame rate 120 fps and of size 1280 × 720. We temporally downsampled each sequence by taking one frame over three, resulting sequences with 166 frames at 40 fps. This makes the dataset more realistic. Note that this makes also the task more complicated for MF2F whose results highly depend on the optical flow estimation accuracy, and therefore on the amount of motion.

These clean sRGB sequences are unprocessed back to the raw domain following the unprocessing method explained in Chapter 3([BMX+19]), which we adapted to our specific case. This gives us a dataset of clean raw video sequences.

Finally, we add realistic noise to the unprocessed ground-truth for simulating real noisy sequences from the clean ones. For that purpose, a heteroscedastic Gaussian noise model is estimated from the surrogate dataset [START_REF] Liu | Practical signal-dependent noise parameter estimation from a single noisy image[END_REF]. In the next subsection, we give more explanations about our unprocessing procedure.

Unprocessing of SRGB dataset a) Generation of the clean raw data

Starting from the clean sRGB sequences from the REDS dataset [START_REF] Nah | Ntire 2019 challenge on video deblurring and super-resolution: Dataset and study[END_REF], we need two steps to create the synthetic dataset: (1) unprocess back sRGB data to the raw domain and (2) adding realistic noise. We follow the method from the Chapter 3 with some modifications to adapt it to our case. First the REDS dataset is made with 8-bits quantized frames. To reduce the effect of the quantization we add a quantization noise to each pixel value sampled from uniform distribution in the range [-1/2, 1/2]. Originally, the authors of [START_REF] Brooks | Unprocessing images for learned raw denoising[END_REF] provide the Camera Color Matrix for four different cameras from the Darmstadt Noise Dataset (DND) [START_REF] Plotz | Benchmarking denoising algorithms with real photographs[END_REF]. In our case we want to simulate a single camera, thus we use only one of them. For simulating the CRVD dataset (a dataset made of raw sequences of 50 frames from a surveillance camera using the IMX385 sensor, at five ISO levels), we used the CCM matrix provided by the authors of the CRVD dataset, publicly available on their github page. 1The white balance is image dependent and thus inverting it is not straightforward. The authors of [BMX+19] estimated a range of realistic red and blue gains from DND (normalized with respect to the green gain being set to 1). They found that the red gain g R has to be sampled uniformly in [1.9, 2.4] and the blue gain g B in the range [1.5, 1.9]. They also consider a global gain g global applied to all channels (to invert the brightness adjustment in the forward pipeline). This global gain is sampled from a Gaussian distribution N (0.8, 0.1), which has most of its mass in the range 0.8 ± 3 × 0.1 = [0.5, 1.1]. The total per-channel gain for channel c is then g global /g c . As explained in the Chapter 3, the global gain can occasionally become greater than 1, which causes saturation (wanted by Brooks et al. to create highlights and saturation) later in the pipeline. However, none of our surrogate datasets contains saturated areas, thus we prevent our per-channel gain to exceed one by sampling a global gain from a truncated Gaussian instead, clipping its value to one. As we work with video sequences instead of images, we sample random white balance coefficients for each sequence, and use the same coefficients for all frames in the sequence.

Note that for each experiment, the clean synthetic raw dataset is tailored to model the surrogate dataset: we use the same Bayer pattern and the ranges of both datasets are matched. For that purpose, we apply to the synthetic videos an affine tone mapping that maps the 1% and the 99% percentiles of the synthetic dataset to those of the surrogate dataset. Moreover, the parameters of the synthetic noise model are fitted to approximate the noise in the surrogate dataset. The next subsection describes how we generate the noisy counterpart of the clean raw data.

b) Simulating realistic noise

Let {u i } I be the set of unprocessed clean data and {ṽ j } J be a dataset of real noisy data (the surrogate dataset). Given the clean data {u i } I we can generate realistic noisy data {v i } I by applying the heteroscedastic Gaussian noise model. For that purpose, the steps to follow are:

1. Estimate from {ṽ j } J the parameters a and b of an heteroscedastic Gaussian noise model.

2. Simulate a set of sequences with synthetic noise {v i } I where each v i = u i + n i with n i ∼ N 0, √ au i + b . The pairs of sequences ({u i } I , {v i } I ) can then be used for training with supervision.

As explained above, we considered three independent experiments in which we compare the two frameworks: supervised and self-supervised training. For addressing the point (1), we used two different strategies. For the Experiment I, we model a camera with a synthetic noise generator [START_REF] Wei | Physics-based noise modeling for extreme low-light photography[END_REF] and thus we can simulate the acquisition of flat-field images. Contrarily for the Experiment II and III, we want to model the noise of a given camera having only a few noisy sequences. Those two different methods to evaluate the noise model parameters are described in the two following paragraphs.

c) Noise parameters estimation

Noise parameters estimation for Experiment I. In Experiment I we use the noise model introduced in [START_REF] Wei | Physics-based noise modeling for extreme low-light photography[END_REF], which models extreme low-light noise as a sum of a Poisson and a Tukey lambda distributions. In that sense, we have a simulated camera and the goal is to model its noise by a heteroscedastic Gaussian model whose variance is σ 2 (u) = au + b, where u is the clean frame. To calibrate the a, b parameters, we simulate the acquisition of flat-field images, which is the usual way to calibrate signal dependent noise models.

We sample a range of constant patches P i with intensity level i. For each patch P i we generate a noisy patch Pi using the Poisson-Tukey lambda noise model and compute the variance σ i of the noisy patches. The parameters a and b are deduced from the points cloud (i, σ i ) using the least square error method. Figure 4.4 shows a plot of this points cloud and the estimated linear model. The variance estimated from the Poisson-Tukey lambda noise is (as expected) an affine function of the intensity, therefore the affine model fits perfectly. The heteroscedastic Gaussian model will have the same intensity-variance curve, but the distributions are very different. Figure 4.5 shows the histogram of the variance for a patch of middle range intensity. The estimated Gaussian distribution is also displayed. It can be seen that around the mean, the Poisson-Tukey lambda noise is well approximated by the Gaussian distribution. However, the Tukey lambda component has heavier tails than the Gaussian distribution.

Noise parameters estimation for Experiments II and III. In the case of Experiments II and III, the surrogate datasets consist of real noisy sequences but we cannot acquire flat field images. Thus we need to estimate the camera noise level function (NLF) directly from the real data (SIDD [START_REF] Abdelhamed | A high-quality denoising dataset for smartphone cameras[END_REF] in Experiment II or CRVD [START_REF] Yue | Supervised raw video denoising with a benchmark dataset on dynamic scenes[END_REF] for the Experiment III). For that purpose, we estimate the NLF of each frame from each sequence of the surrogate dataset using the method of Ponomarenko [PLZ+07; CB13]. For each individual noisy frame v i , this method estimates a set of intensity-variance points which are noisy samples from the NLF. We gather estimated intensity-variance points of each frame into a large point cloud. Figure 4.6 shows this point cloud for Experiment II (one camera of the SIDD dataset). We use transparent points, thus the level of opacity gives an indication of the density in the point cloud. We then fit an affine model σ 2 (u) = au + b by minimizing the least square error.

Networks

We will use for our experiments the UDVD architecture described in the previous section. This network is computationally costly and has a significant memory footprint. In this chapter, we do not focus on achieving the state of the art and reduce this architecture by a factor 4 by using 1/4 of the channels in all layers. This architecture can be used with or without the blind-spot.

Due to the small size of the surrogate dataset, we followed [YCL+20; DAD+21] and pre-trained the network with supervision on the bigger synthetic dataset.

We pre-trained this architecture with a blind-spot as well as without the blind-spot (denoted as normal ). The reason is that we do not need a blind-spot network for applying MF2F as well as for other supervised training strategies discussed later; while the selfsupervised UDVD requires a blind-spot.

For comparing the supervised and self-supervised frameworks, we consider different training strategies. Figure 4.3 summarizes them. Note that once trained, the evaluation of networks trained with or without supervision requires the same amount of time and computational resources. We now describe the different networks and how we trained them.

Model-supervised net This network is trained with supervision on the synthetic dataset. We train two versions of this network: normal and with the blind-spot. The latter will be used as the pre-trained network for the self-supervised blind-spot fine-tuning (we also add it in the comparison), while the former is the supervised network trained on synthetic data that we wish to compare with the self-supervised approaches.

Gold standard net

The gold standard solution for such training is to train with supervision directly on the real data. Although this is not possible in practice because it requires to have access to a large dataset with clean-noisy pairs, it is possible here to fine-tune the normal model-supervised net on the surrogate dataset. This will give us a reference of the best training that could be achieved to situate the performance of the other trainings.

Noise-ablation net Two kinds of modeling were used for the supervised trainings: the unprocessing of sRGB to generate synthetic raw clean videos and the noise. When possible, we fine-tune an noise-ablation net that will allow us to differentiate the impact of the noise model from that of the generation of the clean data by eliminating the unprocessing step. To this aim, we generate noisy images by adding synthetic heteroscedastic Gaussian noise to the clean ground truth of the surrogate dataset. We fine-tune the normal model-supervised net on this data with supervision from the real ground truth.

Self-Supervised blind-spot We fine-tune the pre-trained UDVD architecture with blindspot on the surrogate dataset with self-supervision following [START_REF] Sheth | Unsupervised deep video denoising[END_REF].

MF2F net A second self-supervised network is trained following the MF2F framework as explained in the Section 4.3.2. Given that MF2F does not requires the network to have a blind-spot, we use the weights of the pre-trained normal model-supervised net as starting point of the fine-tuning. are performed using the training split of the surrogate dataset.

Results. The first row of Table 4.1 summarizes the average PSNR on our surrogate validation set for the different training strategies. The results show that the self-supervised approaches outperform the supervised training in the synthetic dataset: the self-supervised blind-spot network surpasses the model-supervised network by almost 0.7dB and has a much higher SSIM value. The results of the MF2F network have a PSNR similar to the modelsupervised, but has a higher SSIM. From Figure 4.7, we notice that both self-supervised networks recover more details and have a better reconstruction of the textures. The self-supervised blind-spot is even close to the gold standard. The result of MF2F has a small color shift, which is why it has a lower PSNR. As the heteroscedastic Gaussian noise model does not fully approximate the noise of the surrogate real test set, the model-supervised net results contain denoising artifacts which decrease its performance. On the contrary the self-supervised networks learn the actual noise of this simulated camera and produce results which compete with the gold standard.

Exp II: real static videos as surrogate data

In the previous experiment, we use artificial ground truth in the surrogate dataset. In this section, we are interested in the comparison between model-supervised and self-supervised on real data. To provide quantitative results, we use the Smartphone Image Denoising Dataset (SIDD) [START_REF] Abdelhamed | A high-quality denoising dataset for smartphone cameras[END_REF], as it has ground truth. It provides images of ten static scenes, taken by five real cameras with different ISO levels, shutter speeds or illuminations levels. For each, the authors give an estimated ground-truth image obtained by averaging a burst of frames. We generate a ground truth constant video from the ground truth image, as there is no motion in the scene. We use eight static sequences of about 150 frames each obtained with the Google Pixel camera for ISO level 800. This surrogate dataset is split into six sequences as a fine-tuning pool and two as a testing/validation pool. For both supervised and self-supervised networks, quantitative results are evaluated on the testing pool of this surrogate dataset.

Results. The average PSNR and SSIM on the real validation set are presented in Table 4.1.

As for Experiment I, the trainings with self-supervision lead to a better performance than the trainings done in a supervised setting. On average, the self-supervised blind-spot outperforms the model-supervised by 1.5dB. In Figure 4.8, the results with the self-supervised networks are sharper and have more details. Figure 4.9 shows that the model-supervised network creates also artifacts (see near the text).

In this experiment, the synthetic dataset differs from the surrogate both in the noise model and the ground truth. In order to differentiate these effects, we look at the results of the noise-ablation network, which is trained using clean real data as ground truth, with the simulated heteroscedastic noise. It is remarkable that the result of the noise-ablation network matches exactly with the one of the gold standard (both in PSNR and SSIM). Visual inspection confirms that both results are indeed very similar. We deduce from this that in this case, the heteroscedastic noise model is a good approximation of the real noise. Therefore, the problem of the model-supervised network is likely due to two reasons: 1) the motion (indeed the surrogate dataset is static while the synthetic dataset has large motion) and 2) the unprocessing of the synthetic clean data. Note that on the contrary, in Experiment I, the clean dynamic data was the same for both the surrogate and synthetic datasets, thus the failure of model-supervised net was caused by a bad noise modeling.

In order to determine the impact of both possibilities, we retrain the model-supervised network on a static version of the synthetic dataset. For the latter, we simply keep frame of each sequence and replicate it to create static sequences. Thus, only difference between the real and synthetic datasets is due to the clean raw images generated by the unprocessing. We report the PSNR and SSIM in Table 4.2. This experiment reveals that both unprocessing and motion are jointly responsible of the bad performance of the model-supervised. Removing the motion from the experiment leads to a significant gain of 1.7dB. It points out that the amount of motion can create a considerable bias between training and testing data and consequently it has to be taken into account when designing a synthetic dataset. However it worth noting that the model-supervised trained on the static synthetic dataset is still far below the noise-ablation network. This shows that raw data generated with the unprocessing still fails to capture some characteristics of the real data.

Exp III: real dynamic scenes

In our final experiment, we will use the dataset introduced in [YCL+20] for a visual comparison. It consists of real noisy raw videos of 10 outdoor dynamic scenes acquired with a surveillance camera for five ISO levels. For such real data, we do not have ground-truth. before we pre-train the networks on the synthetic REDS 120 dataset with heteroscedastic noise. We considered two ISO levels: 3200 and 12800, and fit the parameters of the noise model to approximate the real noise for each ISO level.

Results. Visual results are shown in Figure 4.1. In this setting as well, the self-supervised training yields more details leading to a better global reconstruction of the objects.

In [START_REF] Yue | Supervised raw video denoising with a benchmark dataset on dynamic scenes[END_REF], the authors also acquire a dataset of videos with ground-truth of indoor scenes taken with the same camera (denoted CRVD). To simulate motion the authors produced stop-motion videos: the camera is fixed on a tripod and several images are taken for ground-truth estimation via averaging. Then, objects in the scene are slightly moved and the process is repeated to acquire new frames. This results in an unnatural motion. As an additional study, we evaluated the previous networks (trained on either the synthetic dataset or the real outdoor data with real motion) on this indoor dataset. No fine-tunings were done to the indoor dataset as it is very small (10 sequences of only 7 frames each). In particular, the self-supervised networks were trained for the CRVD outdoor dataset and all the networks were trained for real motion. This study is another illustration of the network behavior in case of dataset bias. The quantitative results for two ISO levels 3200 and 12800 are gathered in Table 4.3. For both ISOs, self-supervised methods outperform the supervised network, especially the network trained using the MF2F framework which generalizes better than the self-supervised blind-spot (UDVD).

Finally, Table 4.4 contains the PSNR of the supervised pre-training, computed on the unprocessed REDS validation set, for both ISO levels. The results in this table show the effect of the blind spot.

Conclusion

In this chapter, we propose a protocol to compare in fair conditions two training approaches for denoising real raw videos: supervised training on synthetic data and self-supervised training on the real data. In the case of video denoising, both approaches were competitive and knowing which approach should be used for training a denoising network has become an important question. In practical cases supervised training requires careful modeling of the acquisition process. On the other hand, self-supervised training needs nothing else than a dataset of degraded data and thus it can also considerably reduce the development time of learning-based solutions. Answering this question may have a significant impact. However the difficulty of acquiring real videos with ground truth prevents us for doing a simple comparison. To address this issue, we set three experiments covering different use cases such as low light conditions, real motion, real noise at different ISO levels. In all cases, the self-supervised approaches outperformed the supervised one. Among selfsupervised techniques, the blind-spot approach UDVD gave better results than MF2F. The main caveat of UDVD is that blind-spot networks tend to be costlier. MF2F can be used to train any multi-frame network architecture. Our experiments also shed light on how to improve the supervised approach. For normal illumination conditions (such as in the SIDD dataset) the main cause of the generalization gap of supervised training on synthetic data, is not necessarily the simple heteroscedastic Gaussian noise, indicating that more effort needs to be put in better modeling of the clean raw data. Actually, while several works have been done to model accurately real noise, unprocessing back to raw data from clean sRGB is a problem that deserves more attention.

Chapter 5

Recurrent CNNs for joint video demosaicing and denoising Denoising and demosaicing are two critical components of the image/video processing pipeline. While historically these two tasks have mainly been considered separately, current neural network approaches allow to obtain state-of-the-art results by treating them jointly. However, most existing research focuses in single image or burst joint denoising and demosaicing (JDD). Although related to burst JDD, video JDD deserves its own treatment. In this chapter we present an empirical exploration of different design aspects of video joint denoising and demosaicing using neural networks. We compare recurrent and non-recurrent approaches and explore aspects such as type of propagated information in recurrent networks, motion compensation, video stabilization, and network architecture. We found that recurrent networks with motion compensation achieve best results. Our work should serve as a strong baseline for future research in video JDD.

Introduction

Every optical camera, ranging from mobile phones to professional DSLRs, uses an image signal processor (ISP) which aims at producing good quality sRGB images from the raw input captured by the sensor. ISPs implement numerous operations, some of which can be quite complex. A considerable effort goes into designing, implementing and tuning the image processing pipeline to achieve the best possible picture quality using limited computational resources.

Two important components of a camera pipeline are denoising and demosaicing. They are typically applied separately: first a denoising method is applied on the raw data and then the denoised raw is demosaiced [PKL+09; ZLWZ09; PTKA07; KR02]. The main benefit of this approach is that denoising is applied on one third of the data of the RGB image, thus reducing the memory footprint and the computational time. Furthermore, it is easier to model the noise distribution in the raw domain rather than after the demosaicer has correlated the channels together. An other advantage is that the demosaicer does not have to be robust to noise. Recent works have proposed to invert the order of these operations in order to better preserve the small image structures at the denoising stage. Demosaicing before denoising produces correlated noise, however it is shown in [START_REF] Jin | A review of an old dilemma: Demosaicking first, or denoising first?[END_REF] that denoisers can be easily adapted to handle this correlated noise yielding results that surpass the ones of denoising first approaches.

Yet, the ideal situation is to combine these two steps into a single joint denoising and There are obvious similarities between bursts and videos. In both cases the focus is to use multiple frames as input. Temporal aggregation of information should benefit both denoising and demosaicing. Indeed, when multiple input frames are available missing values on the current frame can be observed in neighboring frames. This is the approach taken by [FEM05; WGE+19], which obtains a super-resolved sRGB image exploiting the handheld camera motion with a traditional pipeline. Several learning based approaches have been proposed for burst JDD either with supervised [KL19; GLZ21; GLZ21; GYM+22] or self-supervised [START_REF] Ehret | Joint demosaicking and denoising by fine-tuning of bursts of raw images[END_REF] training. Very recently some authors have attacked the problem using neural fields [PTK22; MHM+22]. A related problem is raw burst super-resolution, where the goal is to obtain a super-resolved sRGB image [WGE+19; BDY+21; LPM21; BDT+22].

In spite of the similarities between burst and video JDD there are important differences. Since the objective of burst processing is to produce a single image, many frames are usually processed/aggregated. In contrast, a realistic video processing ISP cannot afford to maintain a rolling window containing dozens of frames. Moreover, the processed video needs to be temporally consistent, which is a challenging crucial aspect of the quality of the processed video, that is not present in the context of bursts. These constraints shape already the very few methods dedicated to raw video denoising, which either resort to recurrent techniques [MHL+21; HLL+22; OKWJ22], or limit themselves to small temporal windows of a few frames [TDV20; YCL+20; SMV+21; XLSY20; VEM21; CJX+22; SDL+21; KSHS18].

Although there is a large body of work in closely related problems, the problem of joint video denoising and demosaicing, to the best of our knowledge, has not yet been addressed with learning based approaches, in spite of it being a basic operation which is part of every sRGB video acquisition pipeline. In Chapter 2, we use a sRGB video denoising CNN to denoise raw videos. However, the network only worked on sRGB data. This very simple approach already sets a method for handling raw videos denoising but relies on a first offline step of demosaicing. This strategy can be called "pre-demosaicing", but the network is not trained end-to-end from the raw video to the sRGB one. Our goal in this chapter is to set a CNN baseline on the problem of video JDD.

Chapter plan and purpose. In this chapter, we address the problem of raw video joint denoising and demosaicing using neural networks. Our contributions are:

(1) We propose a recurrent CNN for video JDD. We perform an ablation study considering recurrent and non-recurrent versions, with and without explicit motion compensation, among others.

(2) We adapt FastDVDnet [TDV20] (a state-of-the-art video denoising network) to the JDD problem. This will be used as our reference network without explicit motion compensation (MC). As the network with explicit MC, we use a baseline U-Net that takes as input two frames, which can be used as a recurrent network or as a non-recurrent one.

(3) For quantitative evaluation and training, we provide a simulated raw-to-sRGB realistic dataset (based on REDS [NBH+19]), with and without motion stabilization. Our dataset is tailored to the characteristics of CRVD [START_REF] Yue | Supervised raw video denoising with a benchmark dataset on dynamic scenes[END_REF] (the only public real raw video dataset). In this way we can apply the trained networks on the real CRVD dataset (see Figures 5.1,5.10). We consider two versions of the dataset with and without motion stabilization, which allows to evaluate the generalization of JDD networks across datasets with different motion statistics.

Our results confirm that a simple early fusion architecture, based on a U-Net, with motion compensation and recurrence is a strong baseline for video JDD.

Our dataset, code and results can serve as a baseline for future works on the subject. They are publicly available on the project webpage.1 

Recurrent CNN for video JDD

We denote by f a noisy raw video of size W × H, and by f t with t = 1, . . . , T one of its frames. The frame f is a mosaiced noisy version of the linear RGB video u (W × H × 3). We denote by M the mosaicing operator, and u M t = M u t the clean raw frame. We assume the widely used heteroscedastic Gaussian approximation of the real sensor noise [START_REF] Foi | Practical poissoniangaussian noise modeling and fitting for single-image raw-data[END_REF]:

f t = u M t + n t ⊙ au M t + b with n t ∼ N (0, I), (5.1) 
where ⊙ denotes the element-wise product, n t is an image of Gaussian white noise of mean µ = 0 and variance σ 2 = 1 and a, b ≥ 0 are the parameters of the noise model. In this model, the noise is white Gaussian with a variance that is an affine function of the clean value of the pixel. That is, for pixel x in raw frame t, the variance of the noise is au M t (x)+b. For a video restoration task, it is practical to consider a large set of input frames, which makes recurrent networks an appealing choice for integrating temporal information across a larger number frames beyond the input window. Recurrent strategies have been A diagram of the proposed Recurrent Video joint Denoising and Demosaicing (RVDD) method is given in Figure 5.2. We consider a standard U-Net CNN (similarly to [TDV20; SMV+21; OKWJ22; XLSY20]) which we denote by F, as it is simple and due to its multiscale nature, it provides a good trade-off between denoising quality and computational cost. We show the architecture of our U-Net in Figure 5.3. It is composed with 4 dyadic scales. Each scale contains two convolutional layers. The fusion of skip connections is done via concatenation. The upsaling are done using bilinear upsampling followed by a convolution and the downscaling use a convolution followed by max-pooling. All convolutions are 2D convolution with 3 × 3 filters and output feature maps of 48 channels. The U-Net receives four inputs: the previous RGB output u t-1 , the current and next raw noisy frames f t , f t+1 , and the feature map from the last hidden layer φ L t-1 of the previous frame (with C channels and spatial resolution W × H). The raw inputs f t and f t+1 are demosaiced with the Hamilton-Adams method [START_REF] Hamilton | Adaptive color plane interpolation in single sensor color electronic camera[END_REF], which we denote by D. Adjacent frames and their corresponding activation maps are aligned to frame t using warping operators W t-1→t and W t+1→t to compensate for motion:

u t = F W t-1,t φ L t-1 , W t-1,t u t-1 , D(f t ), W t+1,t D(f t+1 ) .
(5.2)

The warping operator W t±1,t is given by an optical flow v t,t±1 from frame t to t ± 1. For frame t -1 we have

W t-1,t u t-1 (x) = u t-1 (x + v t,t-1 (x)).
(5.3)

We interpolate the warped frame with a differentiable version of bicubic interpolation so as to be able to back-propagate gradients during training. Optical flows are estimated on the noisy raw video. The raw frames are downsampled to half resolution via average pooling (the 4 pixel values in each Bayer cell are averaged). We use TV-L1 [START_REF] Zach | A duality based approach for realtime tv-l 1 optical flow[END_REF] and upscale the result to the full resolution. By operating the optical flow at half resolution we reduce the computational time and the noise level.

The image inputs W t-1,t u t-1 , D(f t ), and W t+1,t D(f t+1 ) are concatenated along the channel dimension into a tensor of size W × H × 9. The proposed network is recurrent on the output frame and on the features. The feature map input W t-1,t φ L t-1 is concatenated to the feature map of the first hidden layer φ 1 t resulting in a tensor of size W × H × 2C. Concatenating after feature extraction ensures a balanced combination of the previous features with the new ones.

Basic recurrent baseline. We also consider a basic recurrent CNN, keeping the same U-Net architecture but with only two inputs: the current noisy frame f t and the previous RGB output ût-1 , i.e.

u t = F (W t-1,t u t-1 , D(f t )) .
(5.4)

We denote this as RVDD-basic and will serve as a recurrent baseline for the ablations studies and other comparisons in Section 5.6.

Modified FastDVDnet architectures for JDD

In the previous chapters, we have already described FastDVDnet. This CNN, developped by Tassano et al. [START_REF] Tassano | Fastdvdnet: Towards real-time deep video denoising without flow estimation[END_REF], was originally trained for denoising sRGB videos degraded with Gaussian noise. We recall that its architecture is based on two cascaded U-Nets trained with residual learning. The video is processed using sliding windows: the network takes as input a stack of five contiguous frames. The first U-Net is applied three times on each temporal window of three frames. The three outputs are then used as input for the second U-Net that produces the final result. We propose two adaptions of FastDVDnet, shown in Figure 5.4, for performing joint denoising and demosaicing. The two options are discussed below. 1), U-Net 1 is followed by a non-trainable upsampling layer (2) which produces 3 channel images (pixel shuffling), the 4 channels input frame is demosaiced using the Hamilton-Adams demosaicing [HA97; JGMF21] (3) for the final skip connection. This is repeated for the three possible windows of three contiguous frames and the three outputs are used as input for the U-Net 2 which produces the denoised result (4).

Early demosaicing. We propose a simple adaptation of FastDVDnet to perform joint denoising and demosaicing. Following the logic of [START_REF] Jin | A review of an old dilemma: Demosaicking first, or denoising first?[END_REF] we demosaic the frames (using the Hamilton-Adams demosaicing [HA97; JGMF21]) before feeding them to FastDVDnet. The network will therefore remove the demosaic noise. This allows for a fair comparison with the networks proposed in Section 5.2 in the sense that the network operates at the full output resolution. Indeed, training FastDVDnet to operate on raw frames and demosaicing the result afterwards leads to substantially worse results. The modified architecture for this option is shown is Figure 5.4a. Note that we use this same architecture in Chapter 2, except that we use the MLRI [START_REF] Kiku | Minimized-Laplacian residual interpolation for color image demosaicking[END_REF] demosaicing instead of the Hamilton-Adams method.

Late demosaicing. For this option, we first modified the input layer of the first U-Net so that it takes mosaiced frames packed in four channels at half-resolution. At the final layer of the first U-Net, a twelve-channel image is produced and then upscaled with a non-trainable upsampling (pixel shuffle) into a three-channel image. In order to apply the skip connection at the original scale, the middle frame of the input temporal window is demosaiced using the Hamilton-Adams demosaicing [HA97; JGMF21]. The second U-Net then takes threechannel frames and outputs a three-channel frame as in the original RGB FastDVDnet. This modified architecture is trained with the same hyperpameters as the early demosaicing, except the patch size which is doubled for the late demosaicing so that the first U-Net of both adaptations work at the same resolution. The training details are discussed in the Section 5.5. In Figure 5.4b, we show the modified architecture for this second option.

Both versions, late and early demosaicing, attain a very similar performances but both have flaws and assets. The early demosaicing has a slightly higher performance than the late demosaicing, but this latter approach offers a lighter alternative.

Datasets

In order to compare all the methods quantitatively, we use the dataset generated in Chapter 4. We recall that this is a dataset of pairs of raw noisy videos, with clean RGB ground truth that was tailored to model the CRVD dataset [START_REF] Yue | Supervised raw video denoising with a benchmark dataset on dynamic scenes[END_REF]. 2 We use this CRVD dataset to evaluate our networks on real data. The datasets are generated as in the Chapter 4 for two ISO levels out of the five in CRVD: 3200 and 12800.

We remind that we use the REDS-120 dataset [START_REF] Nah | Ntire 2019 challenge on video deblurring and super-resolution: Dataset and study[END_REF] as synthetic dataset. It is unprocessed using the method described in Chapter 3, but slightly adapted to approximate some statistics of the CRVD dataset, as explained in Chapter 4. Heteroscedastic Gaussian noise was added, with parameters estimated from the CRVD dataset with the Ponomarenko's noise estimation algorithm [CB13; PLZ+07].

Stabilized dataset. The sequences in REDS-120 were captured with a handheld camera resulting in large camera motion. While our networks rely on an external optical flow for explicit motion compensation, FastDVDnet does not. The idea is that U-Nets, with their large receptive field, should be capable, up to a certain degree, of implicitly handling the motion in the sequence. However, the performance of FastDVDnet drops in presence of large and unpredictable motion. In order to ease the job of FastDVDnet, we create a second version of our dataset where the motion is stabilized using an offline video stabilization algorithm [Sán17; SM18]. The stabilization algorithm estimates homographies for each frame that reduce the camera motion and makes it more predictable. Application of the homographies creates black borders therefore we crop each sequence at the largest rectangle without any black border. This version of the dataset helps the methods without explicit motion compensation (like FastDVDnet) because the stabilized dataset has limited motion between contiguous frames and the motion inside an input stack is more tractable.

Training details

Training details. At the beginning of each epoch we load into RAM a random segment of 10 consecutive frames from each sequence in the training set, together with the optical flows, masks, etc. From these spatio-temporal volumes, we define a set of 3D crops with a stride of three pixels in all dimensions (both spatial and temporal). During the entire epoch, mini-batches are sampled at random from these set of crops. Crops have a spatial size of 272 × 272 with a number of frames dictated by the network and the number of unrollings (e.g. for training 4 unrollings we need 5 consecutive frames for the recurrent JDD network, and 6 if we use the future frame). The denoising network processes each 3D crop in the mini-batch and returns an output which can be (a) a single frame for the non-recurrent network or (b) T frames for a recurrent network trained with T unrollings. We use the AdamW optimizer to update the weights with a decay parameter of 0.01. We perform 70 epochs, with a fixed learning rate and then 30 epochs reducing it at each epoch linearly to 0. We start with a learning rate of 1.6e-4.

The loss of our recurrent network with T unrollings is a weighted sum of T individual L 1 losses that are computed with the denoised frame for each unrolling. Let u t be as defined in Equation 5.2 and u t , be the clean underlying ground-truth (i. and after the pipeline (sRGB) (bottom) in the validation set of our synthetic dataset. We compare our JDD adaptations of FastDVDnet [START_REF] Tassano | Fastdvdnet: Towards real-time deep video denoising without flow estimation[END_REF] with six variants of our network: two recurrent -RVDD-basic and the full RVDD-, and four nonrecurrent networks labeled VDD: with/without warping (W) and with/without the future frame f t+1 . We also include in the comparison the results of GCP-Net, which is a state-of-the-art JDD method for real-work burst images. GT noisy iso 3200 raw+post-demo RVDD GT noisy ISO12800 RVDD-basic RVDD Figure 5.6: Results obtained with our method. We present two frameworks for handling the temporal information: either frame recurrence or frame and feature recurrence with the use of the future frame.

The PSNR is shown in the image corners.

In Figure 5.5, we show the comparison between our JDD methods and the raw denoiser followed by a demosaicing network. The JDD results has clearly a better recovery of details and less color demosaicing artifacts.

Ablation study. In Table 5.2, we show the effect of the different inputs to our RVDD network on our dataset with the two ISO levels. The results improve with both the feature recurrence and when adding the future frame as input. Adding the feature representation φ L t-1 contributes 0.25dB and 0.3dB respectively for the low and high ISO. This makes intuitive sense since the feature map has C channels that can be used to give a richer representation of the spatial neighborhood of each pixel. The largest improvement comes however from adding the future raw frame f t+1 : compared to the baseline RVDD-basic, it gives a gain of 0.3dB for the ISO 3200 and 0.4dB for the ISO 12800 when evaluated in the linear RGB domain or after the pipeline. The best results are obtained when we add both the feature recurrence and the future frame. The final gain compared with the baseline is then 0.47dB for the small ISO and 0.62dB for the highest one when evaluated in the linear RGB domain and respectively 0.55 and 0.72dB for the small and high ISO in the sRGB domain. In Figures 5.6 we compare the results obtained with the baseline (only frame recurrence) and with the best configuration (frame and feature recurrence and the use of future frame). We can see that the full RVDD is able to recover more details.

Comparison with others methods. In Table 5.3, we compare our method with the Fast-DVDnet JDD described in Section 5.3 and with GCP-Net [START_REF] Guo | Joint denoising and demosaicking with green channel prior for real-world burst images[END_REF] as well. GCP-Net is a method for joint denoising and demosaicing of image bursts. We retrain it independently for each ISO on our dataset using the code available on the github webpage of the authors. 3For each ISO, we use the noise parameters that we estimated. During training, we keep the weights that have led to the highest validation score.

FastDVDnet is a rather lightweight raw denoising architecture. One of the reasons for this is that it does not require motion estimation. However, the REDS dataset contains significant camera shake which is unfavorable to FastDVDnet. Thus, as mentioned in Section 5.4, we also consider a stabilized version of our dataset. This is a practical use case, as most mobile cameras are capable of performing some sort of motion stabilization. This will allow us to evaluate the impact of motion stabilization on the performance of different methods. In addition, we can test generalization across datasets with different motion statistics.

GCP-Net does not rely on an external alignment but its architecture is based on deformable convolutions [START_REF] Dai | Deformable convolutional networks[END_REF]. It also takes five frames as input. We train it as well on the stabilized and non-stabilized versions of the dataset.

Since FastDVDnet is not a recurrent network, we include four non-recurrent versions of our network in the comparison: with and without warping (denoted by W in Table 5.3), and with and without the future frame f t+1 . We call these non-recurrent variants VDD. Finally, we add to the comparison the RVDD-basic as a recurrent baseline and the full RVDD method proposed in this chapter.

The best results in PSNR and SSIM are obtained by the networks with motion compensation, for both stabilized and non-stabilized datasets. The recurrent RVDD achieves the best performance in all cases. It is noteworthy that RVDD-basic, with only two input frames (the current frame f t and the motion compensated previous output frame W t-1,t u t-1 ), achieves a better performance than the non-recurrent VDD network with three motion compensated input frames (around 0.2dB). This shows the impact of frame recurrence in aggregating temporal information. When compared with the VDD without the future frame, the difference climbs to 0.7dB.

The networks without motion compensation are consistently worse in both datasets, although as expected, the performance gap is larger on the non-stabilized dataset. The gap between the best non motion compensated network and the worst with motion compensation is 1dB on the non-stabilized vs. 0.3dB on the stabilized.

For the VDD network, motion compensation allows to make better use of the additional temporal information when adding the future frame f t+1 to the inputs. With motion compensation, the PSNR gain is between 0.5dB and 0.7dB in all cases. Without motion compensation, there is still a small gain of around 0.2dB on the stabilized dataset, but there is no gain on the non-stabilized dataset and in fact, there might be a loss of around 0.2dB.

Finally, we can also evaluate the generalization ability of a network across changes in the motion statistics. To that aim, we compare the performance attained on a dataset A by a network trained on dataset A versus the same network trained on dataset B. With motion compensation this generalization gap is between 0.05dB and 0.07dB, regardless of the direction of the generalization (from stabilized to non-stabilized or vice-versa). The exception is the full RVDD, which has worse generalization gap from the non-stabilized to the stabilized dataset (0.24dB and 0.13dB in the sRGB domain depending on the ISO). For the networks without motion compensation the generalization gap is larger. The largest one is for FastDVDnet-JDD late demosaicing on the non-stabilized dataset: 0.58dB in the sRGB domain. This is intuitive: when compensating for motion we are factoring out the motion in the dataset.

On video sequences, our RVDD method also improves a lot the performance of GCP-Net [START_REF] Guo | Joint denoising and demosaicking with green channel prior for real-world burst images[END_REF], a JDD method for image bursts. In the sRGB domain, RVDD has a PSNR of 2dB and 2.6dB above GCP-Net [START_REF] Guo | Joint denoising and demosaicking with green channel prior for real-world burst images[END_REF], respectively for ISO 3200 and 12800. It is worth noting that GCP-Net performs a motion compensation internally using deformable convolutions and it performs similarly on the stabilized and non stabilized dataset.

Improved architecture. We tested a modified U-Net taking into account the latest improvements in convolutional architecture design. We call the resulting architecture a Con-vNeXt U-Net. It has the same structure as the original U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] with four main differences:

1. The 3×3 convolutions followed by ReLUs are replaced by ConvNeXt blocks [START_REF] Liu | A convnet for the 2020s[END_REF]. 2. A ConvNeXt block is inserted right after every downsampling and upsampling operations.

3. Three downsampling/upsampling operations are used instead of four.

4. At the end of the network, two additional ConvNeXt blocks are added at the finest scale.

The number of channels is kept unchanged throughout the network and is set to be 48. This new architecture does not increase the number of FLOPS 4 and has been proven to be very expressive for classification [START_REF] Liu | A convnet for the 2020s[END_REF]. The structure of the ConvNeXt block is shown in Figure 5.7. In addition to what is shown in the figure, LayerScale [START_REF] Touvron | Going deeper with image transformers[END_REF] is used with a starting value of 0.1. Surprisingly, while we found that Batch Normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] harmed the performance of the U-Net on our task, we found that LayerNorm did have a positive impact. Regarding LayerScale, we noticed that a too small initial value results in longer convergence time. We compared both U-Nets on the baseline RVDD-basic and with the full network RVDD. For the baseline, both architectures reached the same performance. However, the training converged much faster with the ConvNeXt U-Net (about 30 epochs versus 100 epoch for the first architecture). In Figure 5.8, we show a plot comparing the PSNR per epoch in our validation dataset for both architectures and for both ISOs. For the full RVDD network, the ConvNeXt U-Net yields a gain of 0.2dB for the ISO 3200 and 0.36dB for the ISO 12800. Table 5.4 summarizes these results both in the linear RGB and sRGB domain.

This configuration of the full RVDD method (with feature recurrence of the use of the future frame) with the improved architecture described above reaches the best performance. Figure 5.9 shows a comparison of this RVDD using ConvNeXt U-Net with GCP-Net. RVDD leads to a much better reconstruction. We also notice that the results of GCP-Net have a slight color bias, while RVDD preserves better colors.

Visual results on real data In this section, we present the results obtained by applying RVDD with the ConvNeXt U-Net on the outdoor sequences of the CRVD [START_REF] Yue | Supervised raw video denoising with a benchmark dataset on dynamic scenes[END_REF] dataset. We compare against two methods: FastDVDnet-JDD and Multi-Frame-to-Frame (MF2F) [START_REF] Dewil | Self-supervised training for blind multi-frame video denoising[END_REF]. In MF2F, we proposed a self-supervised framework for fine-tuning a pre-trained denoising network to a new noise type. We achieve joint denoising and demosaicing by demosaicing the noisy raw images (using [START_REF] Kiku | Minimized-Laplacian residual interpolation for color image demosaicking[END_REF]) and then fine-tuning a FastDVDnet (initially trained for handling additive white Gaussian noise) on the demosaiced raw. We refer to Chapter 2 for more details. The results are shown in Figure 5.1. More visual results are also shown in Figure 5.10. It can be seen that the proposed RVDD recovers more details than FastDVDnet-JDD. Globally it has a better reconstruction of the textures.

Conclusions

In this work we apply neural networks to the problem of video joint denoising and demosaicing for the first time. While related to image and burst JDD, the case of video has significant differences and enough relevance so as to deserve a separate treatment. In particular, recurrent neural networks such as the ones explored in our work are better suited for video than for bursts. We proposed a basic baseline network: a U-Net where different inputs are concatenated, and we evaluated different configurations: inputting different number of frames, frame recurrent, feature recurrent and non-recurrent, motion compensation or not. In addition, we explore an adaptation to JDD of a state-of-the-art video denoising network, FastDVDnet, and compare its performance with those attained by the baseline U-Net. The best results were obtained by the recurrent U-Net, yielding a strong baseline for video joint denoising and demosaicing.

Conclusion and future prospects

In this thesis, we studied the video denoising task with particular interest on the selfsupervised approaches. In Chapter 2, we proposed a framework for self-supervised finetuning of a pre-trained network for any noise type. We called it Multi-frame-to-frame (MF2F), and it can be applied to any multi-frame video denoising network. The fine-tuning is based on a loss which uses an optical flow motion alignment. This constitutes a weak point of the proposed method. Indeed, the results are heavily dependent on the accuracy of the optical flow. In particular, the motion estimation has to be robust to noise. It is worth noting that the external optical flow is only needed at training time and that using a more accurate flow would automatically lead to an improved MF2F performance.

We evaluated this self-supervised fine-tuning with multiple experiments on artificial noises. In addition we studied its convergence and the impact of the initial pre-trained weights. The experiments show that MF2F can be on par with noise-specific networks trained with supervision. We also demonstrated that MF2F improves the state of the art in video denoising with real noise.

Additional experiments with the MF2F framework were motivated by the possibility of speeding-up the training by fine-tuning only parts of the underlying FastDVDnet architecture, while keeping the others frozen. In most configurations this leads to a loss of performance. However, we found that fine-tuning only the encoders of the cascaded U-Net that form FastDVDnet yields equivalent results (both visually and quantitatively) to fine-tuning the whole network. This was confirmed to happen for different noise types and levels. Although this does not accelerate training, it seems to indicate that, at least for the FastDVDnet architecture, most of the "noise-specific" work is being done in the encoders. We believe that this could contribute to a better understanding of how denoising networks operate.

The results of MF2F obtained in Chapter 2 were very promising, especially on the use-case of real noise denoising. This reveals that we have two practicable approaches for training a denoising network for real raw noise: supervision on synthetic dataset or selfsupervision directly on the real noisy data. In principle, the traditional supervised training should outperform self-supervision. However, the lack of available datasets with clean-noisy pairs for real (and dynamic) videos prevents us from training with supervision on real data. Instead, we are forced to train the network on artificial datasets. This basically requires two points: 1) generating realistic clean raw data and 2) generating realistic noise. In Chapter 4, we presented a study aiming at knowing which of those two training strategies should be used to train a denoising network for real noise. We discussed about the shortcomings and strengths of both approaches and compared the two approaches fairly.

Unprocessing was used to generate realistic raw data from noiseless sRGB images and the heteroscedastic Gaussian model was adopted for the noise. Our experiments have shown that, under reasonable lighting conditions (not extremely low light), training using a well-estimated heteroscedastic Gaussian noise model is realistic enough to generalize to real data. However, using a mismatched unprocessing for training can lead to a large degradation of the denoising performance. This draws attention to the degree of realism of the synthetic data rather than the noise. Aspects such as the amount of motion, or the level of blur in the images, might deserve more attention in future research.

In Chapter 5 we focused on the problem of Joint video Denoising and Demosaicing (JDD), with particular interest in identifying the architecture elements that lead to best results. Our objective was to the set the baseline for future research in videos JDD. This exploration lead to identifying recurrent multi-frame CNN architecture that uses an explicit motion compensation, which we called RVDD. We tested RVDD on datasets with realistic noise, but also real noise. RVDD uses a pre-demosaicing step and in our experiments we have shown that this pre-demosaicing steps not only helps in the JDD task, but also in the raw denoising task. This could be explained by the fact that unlike RGB images, the raw data is aliased and in addition it has only one third of the information of the RGB data. The impact of a pre-demosaicing for real raw denoising deserves to be further studied.
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 1 Figure 1: Denoising results on Poisson noise (p = 8), Box noise (σ = 40, 3 × 3) and demosaiced Poisson noise (p = 4). From left to right: noisy frame; FastDVDnet [TDV20] trained for each noise (supervised); DnCNN [ZZC+17] fine-tuned with frame-to-frame (F2F) [EDM+19] (self-supervised); FastDVDnet fine-tuned with the offline version of the proposed multi-frame-to-frame (MF2F) framework (self-supervised). The PSNR is shown in the image corners.

Figure 2 :

 2 Figure 2: Unprocessing of a sRGB image to the raw domain with the method of Brooks et al. [BMX+19]. We show the intermediate output of the different stages the pipeline. Each step takes as input the output of the previous stage.

Figure 3 :

 3 Figure 3: Comparison of video denoising networks trained with supervision on synthetic data (b) or self-supervision on real data (c-d). All network architectures are based on UDVD [SMV+21], MF2F (c) uses the self-supervised framework introduced in Chapter 2 and blind-spot (d) uses [SMV+21]. (topbrick wall ISO 3200) Self-supervised networks recover more details. (bottom-wire-grid ISO12800) The structure of the wire grid is better reconstructed with the self-supervised networks.
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 4 Figure 4: Results obtained with our Joint Denoising and Demosaicing method. The PSNR is shown in the image corners.
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 1 Figure 1: Résultats de débruitage sur du bruit poissonnien (p = 8), bruit "de boîte" (σ = 40, noyau de taille 3×3) et du bruit de Poisson suivi d'un dématriçage (p = 4). De gauche à droite : l'image bruitée ; FastDVDnet [TDV20] spécifiquement entraîné pour chaque bruit (supervisé); DnCNN [ZZC+17] avec poids ajustés finement avec frame-to-frame (F2F) [EDM+19] (auto-supervisé); FastDVDnet avec poids ajustés finement avec la version hors ligne de notre méthode multi-frame-to-frame (MF2F) (autosupervisé). Le PSNR est indiqué dans le coin de chaque image.
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 2 Figure 2: Détraitement d'une image sRGB vers le domaine des images brutes par la méthode de Brooks et al. [BMX+19]. Nous affichons les résultats intermédiaires à chaque étape de la chaîne de traitement. Chaque étape prend en entrée la sortie de l'étape précédente.
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 3 Figure 3: Comparison des résultats de réseaux de débruitage vidéos entraînés par supervision sur des données synthétiques (b) ou par auto-supervision sur les données réelles (c-d). Toutes les architectures des réseaux sont basées sur UDVD [SMV+21], MF2F (c) utilise la méthode auto-supervisée introduite au Chapitre 2 et le blind-spot (d) utilise [SMV+21]. (haut-mur de briques ISO 3200) Les réseaux auto-supervisés restaurent plus de détails. (bas-grillage ISO 12800) La structure du grillage est mieux reconstruite par les réseaux auto-supervisés.

  Figure 4: Resultats obtenus avec notre méthode de débruitage et dématriçage conjoint. Le PSNR est indiqué dans le coin des images.
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 11 Figure 1.1: Example of a multi-layer neural network. Each circle represents a neuron. The neurons are gathered into layers. The first layer is called input layer and contains input neurons. The last layer is called output layer and contains output neurons. The other layers in between contain neurons that are neither inputs nor outputs, they are called hidden layers.

Figure 1

 1 Figure 1.2: Example of the arrangement of color filters. Although several layout exist, this filter array (called the Bayer) is the most commonly used by camera makers.
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 21 Figure 2.1: Denoising results on Poisson noise (p = 8), Box noise (σ = 40, 3 × 3) and demosaiced Poisson noise (p = 4). From left to right: noisy frame; FastDVDnet [TDV20] trained for each noise (supervised); DnCNN [ZZC+17] fine-tuned with frame-to-frame (F2F) [EDM+19] (self-supervised); FastDVDnet fine-tuned with the offline version of the proposed multi-frame-to-frame (MF2F) framework (self-supervised).
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 22 Figure2.2: The FastDVDnet[START_REF] Tassano | Fastdvdnet: Towards real-time deep video denoising without flow estimation[END_REF] architecture consists of two cascaded U-Nets[START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], each of which takes as input three frames (without alignment), plus a variance map Σ i of the same size as the input frames. The first U-Net is applied three times to produce initial estimates of the frames t -1, t and t + 1. These estimates are then fed into the second network which predicts the central frame ût .
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 24 Figure 2.4: Effect of the mask. Errors in the optical flow create mismatches that negatively influence the fine-tuning (e.g. transparency of right arm, hallucinated texture). We detect occlusions and warping errors and remove them from the loss via a binary mask.

  Figure 2.5: Example of mask, flow and warping in case of a very fast motion. The notations are those of section 2.2.3.

Algorithm 1 :

 1 Offline fine-tuning input : Noisy video f , initial weights θ 0 , number of Adam updates N A , mini-batch size N b output : Denoised video û 1 for i = 1, . . . , N A do 2 loss ← 0 3 for j = 1, . . . , N b do 4 t ← randint(1, T ) // choose a random frame
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 26 Figure 2.6: Comparison on all synthetic noise types. From left to right: the noisy image, the result of the noise-specific FastDVDnet (supervised), the result of our offline MF2F fine-tuning (self-supervised) and the per-level variance map MF2F (self-supervised). From the top to the bottom: AWGN20, AWGN40, Poisson1, Poisson8, box noise 3 × 3, σ = 40, box noise 5 × 5, σ = 65 and the demosaicing noise.
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 27 Figure 2.7: Comparison on synthetic noise types. From left to right: the noisy image, the result of the noise-specific FastDVDnet (supervised), the result of our offline MF2F fine-tuning (self-supervised) and the per-level variance map MF2F (self-supervised). From the top to the bottom: AWGN20, AWGN40, Poisson1, Poisson8, box noise 3 × 3, σ = 40, box noise 5 × 5, σ = 65 and the demosaicing noise.
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 28 Figure 2.8: Comparison of results obtained with the online and offline MF2F (both self-supervised) on Gaussian 20. From left to right: noise-specific FastDVDnet (supervised), online MF2F (selfsupervised) and offline MF2F (self-supervised).

  Figure2.9: Adaptation to changes in the noise properties. We simulate a sequence with Poisson noise for the first half and Gaussian noise for the second half. The frames (1) and (2) corresponds to Poisson and Gaussian noise respectively. The pretrained methods for the specific noise types perform poorly on the other half (yellow and blue), while the proposed methods (online and offline) are able to cope with the abrupt change.

Figure 2

 2 Figure 2.10: Spatially variant variance map used in a synthetic experiment. From left to right and top to bottom: a noisy frame; the corresponding denoised by the proposed online MF2F; variance map of the added Gaussian noise; and the variance map obtained by using the proposed fine-tuning of the input variance map. The noise level of the letters is σ = 0 and varies linearly in the background from σ = 0 to 40.

  Figure 2.11: Comparison between a constant variance map and per-level variance map for an image with Poisson noise of p = 1. The results with the constant variance map still contain remaining noise for bright areas, but are improved when we use instead the per-level variance map. Contrast has been linearly scaled for visualization. Notice that no color variance was applied (it is not within the scope of this work to reproduce a complete image pipeline).
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 2 Figure2.12: Comparison of the obtained per-level noise map and a reference noise map, which serves as ground-truth. The noise was Poisson noise with p = 1. We display the square root of the variance map (i.e. the standard deviation). For information, the value of σ found by fine-tuning the constant variance map was 10.41.
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 2 Figure 2.13: Comparison of our methods on the "train station" sequence of the NTIRE dataset. Rows correspond to Gaussian noise (σ = 40, top row), Poisson noise (p = 8, middle row) and box filtered noise (k = 3, σ = 40, bottom row). From left to right: noisy, F2F [EDM+19], online MF2F, offline MF2F, supervised training and per-level noise map fine-tuning.
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 22 Figure 2.14: Comparison of our methods on the "pedestrian area" sequence of the Derf dataset. Rows correspond to Gaussian noise (σ = 40, top row), Poisson noise (p = 8, middle row) and box filtered noise (k = 3, σ = 40, bottom row). From left to right: noisy, F2F [EDM+19],online MF2F, offline MF2F, supervised training and per-level noise map fine-tuning.
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 2 Figure 2.16: Real noise sequence: comparison of the same scene with different ISO levels. From top to bottom: noisy, online MF2F, offline MF2F, RViDeNet and online F2F.

Figure 2 Figure 2

 22 Figure2.17: Comparison between RViDeNet and MF2F on real noisy images[START_REF] Kim | Transfer Learning From Synthetic to Real-Noise Denoising With Adaptive Instance Normalization[END_REF]. The texture of trees, the coat, and the legs are poorly reconstructed by RViDeNet. On the contrary, MF2F produces results with more details. Furthermore, on the legs, we can see a ghosting effect on the result of RViDenet.
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 2 Figure 2.19: Example frame of a restoration of infra-red real video.
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 22 Figure 2.20: Results on real noise from a thermal camera (FLIR ADAS dataset). From left to right: noisy, online MF2F and offline MF2F.
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 2 Figure 2.22: Justification of the number of iterations in the offline framework: average PSNR on the whole sequence as a function of the number of Adam updates done during the fine-tuning.

  Figure 2.23: Online MF2F fine-tuning starting from different pre-trained weights for different target noise types. For each frame, we plot the difference in PSNR with respect to the result of a noise-specific network trained with supervision. The per-frame PSNRs are averaged over the seven videos of the Derf dataset.
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 2 Figure 2.24: Illustration of the forgetting effect: without proper care, the network unlearns how to handle moving objects (b). With the proposed mask and student-teacher mechanism, fast moving objects are correctly restored (c).

Figure 2

 2 Figure 2.26: Comparison of denoising results for Poisson noise (p = 8, top row) and demosaiced Poisson noise (p = 4, bottom row). The graffiti (tag on the railroad car) is only reconstructed when we use the teacher network.

  Figure 2.27: Noisy frame with and without mask. The mask removes the graffiti on the railroad car in the MF2F loss.
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 31 Figure 3.1: Overall unprocessing pipeline: visualization of the typical output of each unprocessing step. Each step takes as input the output of the previous stage.
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 32 Figure 3.2: Illustration of how the global tone-mapping (respectively its inverse) stretches (respectively crashes) the dynamic range. Note that the range remains [0, 1].
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 3 Figure 3.3: (left) Illustration of the gamma stretching of the dynamics. (top right) the linear dynamics [0, 255]. (bottom right) the same dynamic range stretched with γ = 2.2.
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 34 Figure3.4: Graph of the function f g c (x, g). This function is applied channel-wise. It allows to create saturation even when the inverse gain of a given channel c is smaller than 1, by pushing up the values toward saturation (for intensities i ≥ 0.9).

  Figure 3.5: Unprocessing of a sRGB image with the default parameters. In (d), we show a crops of the clean raw (top) and the corresponding noisy (bottom).

  Figure 3.6: (top) The set of gains used does not create more saturation. (bottom) With a different set of gains, more saturation is created.
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 37 Figure 3.7: Highlights created by the highlight-preserving gain function.

  Figure 4.1: Comparison of video denoising networks trained with supervision on synthetic data (b) or self-supervision on real data (c-d). All network architectures are based on UDVD [SMV+21], MF2F (c) uses the self-supervised framework of [DAD+21] and blind-spot (d) uses [SMV+21]. (top-brick wall ISO 3200) Self-supervised networks recover more details. (middle top-bench ISO12800) Natural texture of the stones and the granularity of the ground are removed by the supervised network. (middle bottom-trees ISO 3200) Self-supervised networks have a better reconstruction of the texture of the trees (bottom-wire-grid ISO12800) The structure of the wire grid is better reconstructed with the selfsupervised networks.

  Fine-tuning on the surrogate dataset
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 43 Figure 4.3: The surrogate real dataset is the green cylinder, the synthetic dataset is in red. (a) The model-supervised is trained with supervision on the synthetic dataset with synthetic noise (either with or without blind-spot). (b) The previous model-supervised are fine-tuned on the surrogate dataset. The steps are (1) fine-tune on real data (2) (when possible) fine-tune on real clean data but with synthetic noise (3) Self-supervised fine-tuning directly on noisy data (UDVD and MF2F).
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 44 Figure 4.4: Variance of the noise model [WFZY21] and the estimated linear model.
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 45 Figure 4.5: Example of the actual histogram of the physic-based noise model ([WFZY21]) and the heteroscedastic Gaussian fitting (the y-axis is in logarithmic scale).
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 4 Figure 4.6: Linear model estimation of the noise curve.

  Figure 4.8: Comparison of the different training strategies for the Experiment II: the normal network trained with supervision (e) recovers less details than networks trained with self-supervision (see the red rectangles) and does not preserve correctly the colors (colors are washed in the orange and red pens). Furthermore, the model-supervised leaves some residual noise (see the blue rectangles).

  Figure 4.9: Comparison of the different training strategies for the Experiment II: the model-supervised normal leaves some residual noise (see around the letters).
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 51 Figure 5.1: Results obtained with our joint denoising and demosaicing method on real raw videos from the CRVD dataset [YCL+20].
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 52 Figure 5.2: Joint denoising & demosaicing in the RGB domain. Data inputs and outputs are represented as colored rounded squares. Small squares represent the packed raw frames whereas large squares represent RGB frames.

  Figure 5.3: Network diagram of the U-Net.
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 54 Figure5.4: Two modified architectures of FastDVDnet[START_REF] Tassano | Fastdvdnet: Towards real-time deep video denoising without flow estimation[END_REF] for performing joint denoising and demosaicing. (a) First version (called early demosaicing) : the raw input packed in 4 channels of half-resolution are demosaiced using the Hamilton-Adams demosaicing [HA97; JGMF21], then U-Net 1 and 2 are applied on RGB images as in the original FastDVDnet[START_REF] Tassano | Fastdvdnet: Towards real-time deep video denoising without flow estimation[END_REF]. (b) Second version (called late demosaicing): U-Net 1 takes a temporal window of three contiguous raw frames packed in 4 channels (1), U-Net 1 is followed by a non-trainable upsampling layer (2) which produces 3 channel images (pixel shuffling), the 4 channels input frame is demosaiced using the Hamilton-Adams demosaicing [HA97; JGMF21] (3) for the final skip connection. This is repeated for the three possible windows of three contiguous frames and the three outputs are used as input for the U-Net 2 which produces the denoised result (4).
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 55 Figure 5.5: Comparison of our RVDD method with a raw denoiser followed by a demosaicing network [TZZZ17]. Both RVDD and the raw denoising network share the same architecture. A postprocessing pipeline has been applied to both results. The contrast has been enhanced in the last row. The box in the bottom-left corner contains the PSNR of the full frame.
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 57 Figure 5.7: Structure of the ConvNeXt block [LMW+22].

  U-Net RVDD -standard U-Net RVDD-basic -convNeXt U-Net RVDD-basic -standard UU-Net RVDD -standard U-Net RVDD-basic -convNeXt U-Net RVDD-basic -standard U-Net
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 58 Figure 5.8: Evolution of validation PSNR during training of our RVDD and RVDD-basic models with the standard U-Net and the convNeXt U-Net. On the top, ISO 3200 and bottom ISO 12800.
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 59 Figure5.9: Comparison of our RVDD method using the improved architecture and GCP-Net[START_REF] Guo | Joint denoising and demosaicking with green channel prior for real-world burst images[END_REF] for the ISO 12800. Many details are removed in the results of GCP-Net. RVDD has also a better preservation of the colors.
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 5 Figure 5.10: Results obtained with our joint denoising and demosaicing method on real raw videos from the CRVD dataset [YCL+20].

•

  Self-supervised training for blind multi-frame video denoising, Valéry Dewil, Jérémy Anger, Axel Davy, Thibaud Ehret, Gabriele Facciolo and Pablo Arias, IEEE Winter conference on Applications of Computer Vision, 2021Le débruitage est devenu un problème fondamental du traitement d'images ou de vidéos depuis le début de ces deux disciplines. Que ce soit pour le cas des images ou celui des vidéos, il continue d'être un sujet de recherche actif en raison des besoins toujours croissants de réduire la taille des capteurs des appareils photos et des caméras, ainsi que du désir

• Self-supervision versus synthetic datasets: which is the lesser evil in the context of video denoising?, Valéry Dewil, Arnaud Barral, Gabriele Facciolo and Pablo Introduction en français d'acquérir des images dans des conditions toujours plus ambitieuses (comme en condition de très faible illumination ou en court temps d'exposition qui réduise le SNR 3 des données acquises). C'est d'autant plus vrai pour le cas du bruit réel pour lequel la distribution du bruit est difficile à modéliser (voir le Chapitre Préliminaire 1) et peut recourir à une modélisation mathématique complexe, qui est habituellement dépendante de la caméra.

  d'une série d'images est d'obtenir une unique image sRGB à partir de la série, alors que pour les vidéos, chaque image de la vidéo nécessite d'être traitée. Dans bien des cas, les vidéos sont traitées comme une séquence de séries indépendantes d'images. Ceci conduit généralement à une consistance temporelle médiocre et des solutions inutilisables dues à leur grand temps de calcul, leur consommation de mémoire et leur temps de latence.Dans le Chapitre 5, nous proposons une architecture simple ayant accès à au plus trois images consécutives de la vidéo afin de garder un faible temps de latence et une faible consommation de mémoire. Nous détaillons dans ce chapitre plusieurs études que nous avons menées en comparant les architectures récurrentes et non récurrentes et en analysant l'impact d'une compensation explicite du mouvement ou encore de l'usage d'une image provenant du temps futur au sein de l'entrée du réseau. Cette exploration conduit à un réseau avec une architecture convolutive, récurrente et multi-images, qui utilise une compensation explicite du mouvement et que nous avons appelé RVDD (de l'acronyme anglais Recurrent Vidéo joint Denoising and Demosaicing ). Cette architecture établit le nouvel état de l'art dans ce domaine et pourrait servir de solide référence de base pour les travaux futurs sur le débruitage et dématriçage conjoint de vidéos.

  Proposed multiframe-to-frame blind fine-tuning for a video denoising network taking as input a stack of frames. During fine-tuning we use a dilated input stack (in red) so that the target frame is hidden from the network. At inference time we use the natural stack (in blue).

	fine-tuning t-1 t t+2 t+4	t-2	t-4	inference t-1 t t+2 t+1	t-2
	FastDVDnet	FastDVDnet
		backprop		
	MF2F loss	denoised frame t
	Figure 2.3:				

  1 36.23 35.98 37.25 37.10 35.20 35.02 f t-4 , f t-2 , f t , f t+2 , f t+4 f t-1 36.22 35.78 37.32 36.94 35.21 34.86 Table 2.1: PSNR results for different target frames and training stacks S ′ t . S t denotes the natural input stack

	FastDVDnet superv.	n/a	36.58	n/a	37.29	n/a	35.82	n/a

  Table2.2: Average PSNR and SSIM over all the sequences for a given dataset and type of noise. The MF2F fine-tuning is applied to a FastDVDnet network[START_REF] Tassano | Fastdvdnet: Towards real-time deep video denoising without flow estimation[END_REF], either on the weights (model blind) or the input variance map (σ blind). F2F fine-tuning is applied to the weights of a single frame DnCNN network[START_REF] Zhang | Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising[END_REF]. The best PSNR in each case is underlined. The best blind method is in bold.

				-blind		AWGN σ blind		Model blind
			FastDVDnet supervised		online MF2F online MF2F	online F2F online MF2F offline MF2F
			noise specif.	multi task	VBM3D	scalar sigma	8 sigmas	weights	weights	weights
		Gaussian 20	36.96 / .946 36.49 / .942 36.21 / .933	36.92 / .946	36.90 / .945	34.53 / .909 37.32 / .951	37.48 / .952
		Gaussian 40	34.00 / .907 33.70 / .903 32.63 / .871	33.95 / .906	33.93 / .905	32.04 / .847 34.24 / .913	34.27 / .914
	Derf	Poisson 1 Poisson 8	40.45 / .974 39.71 / .970 38.99 / .959 36.00 / .939 35.58 / .935 34.18 / .897	39.50 / .960 34.15 / .890	40.15 / .972 35.73 / .934	36.56 / .953 40.39 / .974 31.98 / .890 35.57 / .941	40.51 / .974 35.68 / .942
		Box 3 × 3, 35.42 / .932 34.86 / .924 29.94 / .757	34.13 / .900	34.34 / .902	32.55 / .891 35.51 / .927	35.60 / .927
		Box 5 × 5, 34.78 / .932 33.98 / .919 28.37 / .736	32.14 / .873	32.60 / .888	31.78 / .886 34.29 / .928	34.35 / .928
		Demosaiced 34.85 / .926 25.53 / .533 33.16 / .890	33.23 / .877	34.30 / .916	32.61 / .885 34.75 / .926	34.81 / .927
		Gaussian 20	37.49 / .964 36.84 / .959 36.55 / .951	37.43 / .963	37.40 / .963	31.62 / .868 37.32 / .964	37.55 / .966
	Vid3oC-10	Gaussian 40 Poisson 1 Poisson 8 Box 3 × 3, 37.28 / .964 36.54 / .957 30.19 / .770 34.27 / .937 33.70 / .929 32.74 / .901 40.63 / .980 39.71 / .975 39.32 / .967 35.72 / .951 35.09 / .944 32.16 / .844	34.23 / .935 39.30 / .966 33.26 / .887 34.70 / .936	34.21 / .935 40.29 / .978 35.42 / .946 34.90 / .938	29.10 / .799 34.17 / .937 33.54 / .905 40.01 / .978 29.92 / .823 34.99 / .947 31.27 / .871 36.65 / .963	34.26 / .938 40.16 / .979 35.00 / .947 36.76 / .963
		Box 5 × 5, 36.81 / .965 35.84 / .955 28.53 / .746	32.65 / .909	33.11 / .917	30.75 / .869 35.65 / .956	35.79 / .957
		Demosaiced 34.50 / .941 23.96 / .508 32.31 / .882	32.24 / .876	33.86 / .931	31.59 / .890 33.95 / .933	33.98 / .934

Table 2 .

 2 3: Synthetic raw denoising: average PSNR per ISO levels over the dataset Derf. The best PSNR in each case is in bold.

		1600 3200 6400 12800 25600
	RViDeNet	45.79 44.26 42.64 40.83 38.93
	Online MF2F 46.51 45.13 43.64 41.91 39.68

  denoise the frame t

	14	ût ← F S θ S t	(S t )
			33.88dB	34.29dB

Table 2 .

 2 6: Running time needed to process one color frame (800 × 540) with the online algorithm. The fine-tunings (FT) are all on the FastDVDnet network.

	Method	time (in s)
	Online FT with teacher	8.00
	Online FT without teacher	6.78
	FT of variance map with 8 sigmas values	4.45
	FastDVDnet inference	0.56
	with fast moving objects.	

Table 2 .

 2 6 reports the running time needed to process one color frame of 800 × 540 pixels (including file IO) for all the proposed online methods. The times were measured on a multi-core server with a NVIDIA RTX 2080 TI GPU. The online methods compute 20 Adam weight updates of the network (FastDVDnet) for each frame of the sequence. Offline methods, on the other hand, perform a fixed number of Adam update steps regardless of the length of the video. A comparison with the inference time of the FastDVDnet network is also provided.

Table 4 .

 4 2: Average PSNR and SSIM over the surrogate real test dataset a network trained with supervision on different datasets. The noise ablation net is trained using the real ground truth sequences contaminated with synthetic noise. The rightmost column corresponds to a network trained on a static version of the synthetic dataset.

	Network	Gold standard net Noise-ablation net	Model-supervised normal
	Noise	real	synthetic	synthetic	synthetic
	Motion	static	static	dynamic	static
	PSNR / SSIM	50.03 / .9913	50.03 / .9913	47.22 / .9847 48.91 / .9889

Table 4 .

 4 4: Average PSNR and SSIM of the supervised training in the synthetic dataset. We measure the effect of the blind spot the blind-spot.

	As

Table 5 .

 5 e. corresponding to the 1: PSNR (top) and SSIM (bottom) on the linear RGB, in the raw domain and after the pipeline (sRGB) for the raw denoiser followed by a demosaicing[START_REF] Tan | Color image demosaicking via deep residual learning[END_REF] (denoted RVD-basic + CDM) and our JDD method in the validation set of our synthetic dataset. Ignoring the pre-demosaicing in our JDD method, the architecture is the same. The results of our JDD are previously remosaiced for computing the PSNR in the raw domain. In the network denoted with WD, we directly propagate a raw output (packed as 4 channels with half resolution). The network denoted with DW means that we apply the warping on the raw output (again, a 4 channels frame). We consider two ISO levels taken from the CRVD dataset.Best results are in bold. non stab. 44.74 40.73 0.989 0.977 45.09 40.97 0.990 0.979 RVDD ✓ ✓ non stab. 45.29 41.45 0.990 0.981 45.56 41.67 0.991 0.982 FastDVDnet-JDD late stab. 42.67 38.15 0.982 0.962 44.28 40.11 0.987 0.973 FastDVDnet-JDD early stab. SSIM sRGB PSNR sRGB SSIM 3.2k 12.8k 3.2k 12.8k 3.2k 12.8k 3.2k 12.8k FastDVDnet-JDD late non stab. 36.11 33.47 0.942 0.907 36.59 34.06 0.948 0.917 FastDVDnet-JDD early non stab. 36.10 33.19 0.943 0.903 36.77 34.20 0.951 0.919 Table 5.3: PSNR and SSIM in the linear RGB domain (top)

	Framework		Lin. RGB PSNR 3.2k 12.8k	raw PSNR 3.2k 12.8k 3.2k 12.8k sRGB PSNR
	RVD-basic + CDM [TZZZ17] 42.54	38.95	43.38 38.96 33.18 32.13
	RVDD-basic		44.74	40.73	43.92 39.78 37.90 35.64
	RVDD-basic-WD		44.59	40.59	43.80 39.67 37.70 35.45
	RVDD-basic-DW		44.36	40.33	43.56 39.39 37.51 35.23
	Framework		Lin. RGB SSIM 3.2k 12.8k	raw SSIM 3.2k 12.8k 3.2k 12.8k sRGB SSIM
	RVD-basic + CDM [TZZZ17] 0.984	0.969	0.987 0.974 0.927 0.906
	RVDD-basic		0.989	0.977	0.989 0.978 0.961 0.938
	RVDD-basic-WD		0.989	0.977	0.989 0.978 0.960 0.937
	RVDD-basic-DW		0.988	0.975	0.988 0.976 0.957 0.932
				Lin. RGB PSNR Lin. RGB SSIM
		φ L t-1 f t+1 3.2k		12.8k	3.2k	12.8k
	RVDD-basic ✗	✗	44.74	40.73	0.989	0.977
		✓	✗	44.99	41.05	0.989	0.979
		✗	✓	45.05	41.14	0.989	0.979
	RVDD	✓	✓	45.29	41.45	0.990	0.981
				sRGB PSNR	sRGB SSIM
		φ L t-1 f t+1 3.2k	12.8k	3.2k	12.8k
	RVDD-basic ✗	✗	37.90 35.64 0.961 0.938
		✓	✗	38.12 35.72 0.962 0.941
		✗	✓	38.19 36.05 0.962 0.943
	RVDD	✓	✓	38.37 36.26 0.964 0.946
	Table 5.2: PSNR and SSIM in the linear RGB domain (top) and after the pipeline (sRGB) (bottom)
	for the different frameworks for handling the recurrence (see Section 5.2) in the validation set of our
	synthetic dataset. We consider two ISO levels taken from the CRVD dataset. Best results are in bold.

  Table5.4: PSNR and SSIM in the linear RGB domain (top) and after the pipeline (sRGB) (bottom), for the standard and the ConvNeXt U-Net in the validation set of our synthetic dataset. We consider two ISO levels taken from the CRVD dataset. Best results are in bold.

	Architecture	Lin. RGB PSNR Lin. RGB SSIM 3.2k 12.8k 3.2k 12.8k
	RVDD-basic U-Net	44.74	40.73	0.989	0.977
	RVDD-basic ConvNeXt U-Net 44.73	40.83	0.989	0.977
	RVDD U-Net	45.29	41.45	0.990	0.981
	RVDD ConvNeXt U-Net	45.49	41.73	0.990	0.982
	Architecture	sRGB PSNR 3.2k 12.8k	sRGB SSIM 3.2k 12.8k
	RVDD-basic U-Net	37.90	35.64	0.961	0.938
	RVDD-basic ConvNeXt U-Net	37.93	35.70	0.960	0.941
	RVDD U-Net	38.37	36.26	0.964	0.946
	RVDD ConvNeXt U-Net	38.56	36.62	0.964	0.948
	27.10dB	32.51dB		36.95dB
	26.27dB	31.99dB		37.48dB
	27.10dB	32.48dB		36.98dB

Signal to Noise Ratio: logarithmic metric defining the ratio between the clean underlying signal and the noisy one.

We use the term "self-supervised learning" with a different meaning from the one used in the computer vision literature, particularly in the context of representation learning, where the goal is to learn a useful representation of data without requiring labels[START_REF] Ericsson | Self-supervised representation learning: Introduction, advances, and challenges[END_REF].

de l'accronyme anglais Signal to Noise Ratio, le rapport signal à bruit est une métrique logarithmique qui définit le ratio entre le signal non bruité et le signal bruité.

Nous utilisons le terme "entraînement auto-supervisés" avec une signification différente de celle utilisée dans la litérature de la vision par ordinateur, en particulier dans celle dans le contexte de la réprésentation, où le but est d'apprendre une réprésentation utile des données dans requérir aux étiquettes[START_REF] Ericsson | Self-supervised representation learning: Introduction, advances, and challenges[END_REF].

This is due to the fact that the spectral sensitivity of the human eye reaches a maximum for the green colors, itself presumably because the sun light spectral power distribution reaches also a maximum around the green wave lengths.

https://centreborelli.github.io/mf2f/

https://media.xiph.org/video/derf/

http://www.vision.ee.ethz.ch/ntire20/

https://www.army.mil/ We compare the online and offline fine-tuning and the fine-tuning of the perlevel noise map (denoted 8 sigmas).

https://centreborelli.github.io/mf2f/

http://www.ipol.im/pub/art/2022/438

https://github.com/cao-cong/RViDeNet/

https://centreborelli.github.io/RVDD/

The CRVD dataset consists of real noisy raw videos of 50 outdoors scenes acquired with a surveillance camera at five ISO levels, see Chapter 4 for more details about the CRVD dataset.

https://github.com/GuoShi28/GCP-Net/
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is highly dependent on the accuracy of the estimated optical flow. Consequently, drastic conditions (such as large amont of noise, very low light sequences, etc.) affecting the optical flow computation may decrease the performance. . The input stack is firstly rotated by multiples of 90°(1). Each four rotated stacks is processed by the cascaded U-Nets (2), producing four outputs (3) which are combined together after the rotations are inverted and a 1 × 1 convolution (4).

but it is less discernible for video. And consequently this makes the comparison done in this study for the case of videos more relevant.

Network architecture. For our experiments, we use the architecture of UDVD [START_REF] Sheth | Unsupervised deep video denoising[END_REF]. This video denoising network takes a stack of five frames as input. It consists of two cascaded U-Nets (as in [START_REF] Tassano | Fastdvdnet: Towards real-time deep video denoising without flow estimation[END_REF]). The first U-Net is applied three times on each group of three contiguous frames. This produces three outputs that are fused by a second U-Net into the final denoised output. The input stack is rotated by the four multiples of 90°and denoised by the network. The four outputs are finally combined by a 1 × 1 convolution. The architecture is shown in Figure 4.2.

To generate the blind-spot, the first U-Net uses asymmetric convolutional filters that are vertically causal so that the four outputs only depend on the pixels above. In this way, the receptive field does not contain the central pixel. The blind-spot can be removed by shifting the input data one pixel down after the rotation. The UDVD architecture is also bias-free [START_REF] Mohan | Robust and interpretable blind image denoising via bias-free convolutional neural networks[END_REF], which has proved to generalize better to unseen noise level at test time.

UDVD training. The self-supervised UDVD blind-spot network is trained by minimizing the L2 loss between the output of the network and the corresponding noisy input frame.

MF2F training

We recall that in MF2F, the weights θ of a network F θ are updated by minimizing the loss

where κ t is an occlusion mask, W t,t-1 is a warping operator from frame at time t to t -1 (based on an estimated optical flow), S t is the stack of frames [f t-4 , f t-2 , f t , f t-2 , f t+4 ] and f t-1 is the first past frame serving as target (to prevent the trivial identity mapping, it is out of the input stack). The alignment requires a high quality optical flow plus a mask for alignment errors, which are estimated on the noisy data. The MF2F results strongly 

Experiments

In this section, we first describe the setting of each of the three experiments together with the obtained results for both approaches (supervision on synthetic data or self-supervision on real data). For better visualization, the video frames displayed in this section have been gamma corrected (with γ = 2.2), demosaiced with [KMTO14] and white-balanced.

Exp I: dynamic scenes with simulated noise

In this experiment we use the REDS 120 dataset to generate the clean raw data for both the surrogate dataset and the synthetic dataset. The difference lies on the noise model: we use the Poisson-Tukey lambda distribution of [START_REF] Wei | Physics-based noise modeling for extreme low-light photography[END_REF] as noise model for the surrogate dataset. This noise models extreme low-light conditions. In [START_REF] Wei | Physics-based noise modeling for extreme low-light photography[END_REF] the authors provide parameters for three cameras. We use the noise parameters estimated for the Nikon D850. The noise in the synthetic dataset is the heteroscedastic Gaussian with parameters set to approximate the Poisson-Tukey lambda noise of the surrogate dataset. All networks are pre-trained on the training split of the synthetic dataset, and the fine-tunings frame f t ); when training, we run the network on short videos of (T + 1) frames (or (T + 2) if we are using the future frame) to generate T output frames ( u 1 , ..., u T ). For the first output u 1 the previous feature map φ L 0 is initialized as zero, and the previous output u 0 as the previous noisy raw frame f 0 . The loss is computed by Loss (( u t ) t=1,...,T , (u t ) t=1,...,T ) =

(5.5)

where the weights λ t are non-negative and sum to one. The weights control the importance given to each output. We vary the weights during training. For the first 20 epochs, we only train the first unrolling by setting all the weights on the first output, i.e. λ 1 = 1 and λ t = 0 for t ≥ 1. This is mainly to speed up the training, as we only need to compute the first unrolling. Starting at epoch 20 to 25, we gradually shift the weights until 90% of the weight is given to the last unrolling and the remaining 10% is split uniformly between the first (T -1) unrollings, i.e. λ t = 1 10(T -1) , t = 1, ..., T -1 and λ T = 9 10 . The rationale for these weights is to give more importance to the last unrolling, as it is the one more similar to the steady state of the network operation in a video, while still giving some weight to the first unrollings, as they are necessary to reach that steady state.

Training details for FastDVDnet We initially trained our modified architectures using the same hyperparameters (learning rate, patch size and batch size) from [START_REF] Tassano | Fastdvdnet: Towards real-time deep video denoising without flow estimation[END_REF]. However, the resulting networks were unstable at test time, creating very high output values in flat regions. We fixed these issues by removing the batch normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] and by adapting the hyper-parameters to the new architecture. The hyper-parameters chosen are for a patch size of 68, batch size of 2 and learning rate of 10 -4 (it means that for the late demosaicing option, we use a patch size of 68 × 2 = 136). The learning rate is reduced by a factor of 10 after 50 epochs; and reduced again by a factor of 100 after epoch 60. The networks are trained for 100 epochs and we keep the network with the highest validation score.

Experimental results

Throughout this section we use PSNRs and SSIMs as metrics to compare the different models. For computing quantitative results we restrict the validation dataset to the first five sequences of the simulated dataset. We firstly evaluate the PSNRs/SSIMs in the linear RGB domain. In addition, we evaluate the PSNRs/SSIMs in the sRGB domain. For this purpose, we apply a white balance, a color matrix correction and a gamma correction. We use the inverse of the actual white balance coefficients which have been used to generate the raw dataset during unprocessing. This post-processing is also applied on the different images displayed throughout this chapter.

In the end of this section, we report experiments on real raw videos from the CRVD datasets (see Figures 5.1,5.10).

JDD vs. raw denoising and demosaicing. We first evaluate the impact of joint denoising and demosaicing, as opposed to first denoising the raw and then demosaicing the denoised raw output. In Table 5.1, we compare our baseline recurrent JDD network RVDD-basic against a raw denoiser followed by a pre-trained demosaicing network [START_REF] Tan | Color image demosaicking via deep residual learning[END_REF] (we use the implementation of [START_REF] Ehret | A study of two cnn demosaicking algorithms[END_REF]).

For the raw denoising network, we adapt the RVDD-basic network by removing the Hamilton-Adams demosaicing of the input and feeding directly the packed 4 channel raw frames. We then train it using the clean raw ground truth in the loss (instead of the linear RGB). We refer to this network as RVD-basic.

The JDD network demonstrates much better performance than first raw denoising followed by pre-trained demosaicing, even when the raw denoising network has a similar architecture than the JDD (e.g. same number of parameters). Note that on the other hand, since the JDD network applies the demosaicing early to the raw input frame, its computational cost is 4 times larger than that of the raw denoising network. From an architectural point of view, the main difference is that the JDD network applies the demosaicing on the input, thus operating at the RGB resolution, whereas the raw denoising network operates in the raw domain. In particular, the JDD network outputs and propagates from frame t -1 to t, an RGB image u t-1 which contains three times more information than the raw. To measure the impact of this aspect, we add to the comparison two degraded versions of our JDD network where only the raw frame u M t-1 = M u t-1 is propagated. In one we mimic the temporal propagation in the raw denoising network RVD-basic, and apply the warping on the raw image

(5.6)

To warp the raw image u M t-1 we store it in the packed raw format (i.e. as a 4 channels W/2 × H/2 image where each channel contains one phase of the Bayer pattern) and warp each channel. This is not ideal, since the phases of the Bayer pattern are downsampled versions of the color channels and are heavily aliased. Therefore we consider also a degraded version of RVDD-basic in which we demosaic the raw frame before warping:

(5.7)

We refer to these methods as RVDD-basic-WD and RVDD-basic-DW. Propagating the raw and demosaicing before warping causes a drop of 0.15dB in the linear RGB domain and 0.2dB in the sRGB domain. Although this is not a negligible drop, it is rather small. This can be exploited in use cases in which there are limitations on the amount of information shared between the processing of one frame to the next. On the other hand applying the warping on the raw domain causes an additional drop of around 0.4dB both in the linear RGB and after the pipeline. This confirms that warping aliased frames is sub optimal.

Nevertheless, note that those two weak versions of JDD still far outperform the raw denoiser followed by a demosaicer. Looking in the linear RGB domain, in total, propagating and warping raw frames accounts for 0.4dB out of the 2.2dB gap between the baseline JDD RVDD-basic and raw denoising RVD-basic followed by a demosaicing network. This suggests that most of the difference comes from working on the RGB domain and end-toend training.

It is particularly interesting to note that the improvement in performance does not only come from the 2/3 of the pixel values that are interpolated by the demosaicing. In Table 5.1, we also show the PSNR on the raw frame, obtained by comparing the mosaiced of the RGB output M u t with the clean raw ground truth u M t . The performance is significantly higher for the RVDD-basic JDD network (0.54dB for ISO 3200 and 0.8dB for ISO 12800), which shows that surprisingly working at the RGB resolution and training for RGB reconstruction benefits also the raw denoising task.