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Introduction

0.1 Motivation

Shapes in nature, from cauliflower to brain, arise from growth of tissues. Growth intrinsically
generates strains and stresses. Conversely, through mechano-transduction mechanisms, stresses
regulate growth as growing plants [1, 2]. Understanding ultimately the emergence of shapes, in
particular in biological tissues, requires to capture the mechanical features that are inherent to the
living material [3].

Our human body consists of four types of tissues: epithelial, connective, muscular, and ner-
vous. The aim of this thesis is to investigate growing epithelial tissues with an extracellular matrix
(ECM). The epithelium is a composite of specialized cellular organizations arranged into sheets
without significant intercellular substance. It covers the body, lines all cavities, and composes
the glands. It may be simple, consisting of a single layer in Fig.(0.1), or stratified, consisting of
several layers in Fig.(0.2).

Fig. 0.1 Simple classification of epithelium tissue

Fig. 0.2 Stratified classification of epithelium tissue

v



vi Introduction

There are two biological systems for basic research in our interest: epithelium in C.elegans
[4] and Drosophila wing disc [5, 6, 7].

Fig. 0.3 C. elegans embryonic elongation: ventral cells are shown in pink, seam cells
in yellow, and dorsal cells in teal. Contractile forces are produced predominantly by
seam epidermal cells (arrows pointing toward one another), and transmitted to dorsal
and ventral cells via adherens junctions (black ovals), which anchor circumferential
actin filament bundles (CFBs) in dorsal and ventral cells (black lines and arrows within
dorsal and ventral cells). CFBs are thought to transmit and distribute the forces of
contraction evenly throughout the epidermis. Scale bar = 5µm (from [4]).

Fig. 0.4 Actin filament organization during C. elegans embryonic elongation when
∆L/L0 = 30%, 50%, 70% (from [8]).
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Fig. 0.5 Cross-section of the outer layers of the C. elegans tissue showing muscle cells
below the epidermis and cuticle viewed by transmission electron microscopy (from [9]).

Fig.(0.3) and Fig.(0.4) show a C. elegans embryo during morphogenesis. We give attention
to the role of monolayer epidermis with an extracellular matrix (ECM) in elongation. In this
course of the development, an actin-myosin network is found active [8] which acts as a pivotal
part in chemical-mechanical transmission. It will exert inner stress along the circumferential
direction (see arrows) in Fig.(0.3). In Fig.(0.4) we can see clearly the fiber distribution indicated
by yellow arrows. Filaments (fibers) are more ordered in the white box (dorsal cells) than in
the red one (seam cells) after extension. And they align circumferentially as elongation passes
from 30% to 70%. This implies that the network with filaments is coupled with the mechanical
deformation which might generate the active force for the development. Fig.(0.5) demonstrates
the final multilayer structure of the animal surface. Each layer has its own structure and there are
wrinkles in the epidermis and basal lamina. Although it is not easy to quantify the stresses in vivo,
there are some methods to measure the force more or less at the cell scale [10, 11, 12, 13, 14]. In
this thesis, we exploit results from the laser ablation technique [8] for our case study. We attempt
to use an analytical method to understand the mechanism of C. elegans elongation. We shall focus
on stresses in each part tagged by different colors (see Fig.0.3) with finite strain and use laser cuts
to give an estimate for the stress distribution in the experiment.
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Fig. 0.6 Images of a stretched disc for increasing force-displacement (F-d) values
(from [7]).

Fig. 0.7 Classical apical constriction. In a monolayer where cells keep constant vol-
umes, accumulated actomyosin meshwork at the apical end of the cells constricts, giv-
ing rise to wedge-shaped cells. This forces the epithelium into a concave apical surface
with an enlarged basal area. Red, actomyosin (note enrichment on the apical side of the
cells); blue, basal lamina; purple, nucleus (from [15]).

The second biological system of our work is the Drosophila wing disc in Fig.(0.6). We find
two scales of deformation on the right picture: global bending curve shown in yellow and local
folding deformation in green. As far as we know, growth with constraints will induce buckling
[16, 17] resulting in large geometry change. Moreover, there is always differential growth rate in
various kinds of cells during morphogenesis. In-plane cell-cell compression induced by growth as
well as boundary squeezes naturally generate out-of-plane bending. In addition, active networks
can also play an important role in tissue deformation. In Fig.(0.7), there is a schematic diagram
explaining such a mechanism: a contractile network and stress gradient give rise to the bending
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of a multilayer structure. These two mechanisms often appear simultaneously in the experimental
observation. With genetic control, we can regulate the final shape and size of the epithelium
tissue [18] on the basis of a full understanding of the development of multicellular organisms.
It is possible to use structure design with growth for shape programming. In this thesis, we try
to explain the buckling phenomena and provide some ideas for tissue scale deformation with
geometrical nonlinearity.

0.2 Approach of the present work

There are some successful models at micro and meso scale [19, 20, 21]. We shall use classical
continuum mechanics as the main tool with the traditional finite element method [22, 23, 24, 25]
in numerical simulations. At the macroscopic tissue scale, the theory of nonlinear elasticity is
shown to be most often appropriate for large deformation. This thesis will deal with two scientific
problems about C. elegans and Drosophila.

We introduce the basic knowledge on finite elasticity in chapter 1 and briefly review the theory
of plates and shells. We employ a general variational method to get the governing equations of
a type of fiber-reinforced materials in our concern. Then we introduce the Föppl-Von Kármán
(FvK) model for a thin plate. Finally we mention the shallow shell theory and difficulties in
numerical implementation.

For the first part (C. elegans), we want to study the results of the laser ablation technique to
obtain the stress distribution estimate [8]. Tiny laser cuts with several micrometers are made in
the external epithelium. The crack will open in a stretched state and the ratio of opening size over
equilibrium length can reflect the value of stress vertical to the cut. But we need to consider the
effect of finite strain in practice. Besides, an analytical formula as simple as possible is favored
by biologists for a quick evaluation. So we modify the linear formula in our problem.

In chapter 2, a simplification of the geometry assuming cylindrical configuration with an
opening angle provides the possibility for theoretical analysis, which perfectly matches the ex-
perimental data [26]. Fiber anisotropy is judged in calculations with finite elasticity. Active stress
induced by molecular motors is important in the elongation of C. elegans which explains the crack
opening in both orthogonal directions in seam (S) cells.

In chapter 3, linear elastic fracture mechanics (LEFM) is surveyed for mode I crack opening.
The analytical solution in the isotropic case is given for the plane problem under biaxial loading.
In order to extend the simple theory for finite strain, a modified formula with the fracture factor
is proposed by replacing the original Young’s modulus with an equivalent one from the tangent
stiffness matrix. Results demonstrate the validity of the method in the real application for stress
assessment. On the other hand, XFEM is utilized for the real size simulation. A basic algorithm
is introduced and we apply the open source code in MATLAB in our situation. A tilting angle of
the initial crack in biaxial loading is then discussed.

For the second part (Drosophila), we want to employ the theory of plates and shells on a thin
cell lamina with an extracellular matrix (ECM) for tissue scale buckling. As we know, many thin
living objects are composed of several layers which might have varying elastic properties and also
follow different rules of growth. So it is necessary to extend the traditional monolayer model to
multilayer slender structures with geometrical nonlinearity. We hope the theory with simulations
can more or less offer some valuable opinions.

In chapter 4, an equivalent monolayer model is obtained through a homogenization method
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by integral over the thickness. A bilayer Föppl-Von Kármán (FvK) representation is acquired in
consideration of growth, active bending and initial curvatures. Governing equations are deduced
with different boundary conditions. An extra nonlinear term appears and one analytical solution
is derived in 1D. More complicated situations involving ECM defects are examined through the
numerical calculation in MATLAB. Afterwards, COMSOL is used to calculate a 3D growing
shell with nonlinear effects. We emphasize on the localized growth. Various cases are tackled and
implemented in the module of solid mechanics.

Eventually in chapter 5, a finite element simulation is carried out in a MATLAB platform.
Geometrical nonlinearity is implemented in the toolbox with beam and solid elements. The Riks
solver is employed for the buckling solution. A 3D strip case is discussed considering nonuniform
growth and the stiffer ECM. Then 2D wrinkling and folding simulations are analyzed with vis-
coelasticity for pattern formation. We find geometry as well as material properties like modulus
and viscosity will affect the final solutions obviously.



Chapter 1

Basic theories

In this chapter, we shall first review the theory of finite elasticity with fiber anisotropy by
introducing the deformation gradient tensor and the special direction vector for fibers. The main
idea of finite strain theory is to distinguish the initial and current configuration for the description
of the geometry. Different strain measurements are set up in both configurations with the relative
transform rule. Hereafter, stresses can be calculated once the strain energy density function is
known. A variational method unifies the governing equations in different configurations with the
corresponding stress definition. One class of nonlinear visco-elastic models is derived and the
energy decomposition is employed for further simplification.

Then it comes to an overview of plate and shell theories. A Classical model, Föppl-Von
Kármán (FvK) limit, is favored for the thin plate and the initial curvature is considered by shallow
shell theories. In order to obtain the governing equations in 2D, a variational method is used again
with perturbation of the thickness. Difficulties in numerical implementation are also mentioned
briefly in this section.

1.1 Finite strain theory

We begin with a brief review of the finite deformation theory. We assume the initial configu-
rationX and the current one x(X, t). The deformation gradient tensor is defined as

FiJ = ∂xi
∂XJ

= δiJ + ∂ui
∂XJ

(1.1)

where u(X, t) is the displacement vector and we have u(X, t) = x(X, t)−X . We can see
from Fig.(1.1) that the deformation gradient tensor (Matrix) contains all the kinematic informa-
tion. Here the alphabet i, j, k, l takes the value from 1 to 3. The uppercase and the lowercase
represent the initial point (undeformed) and the current one (after deformation) respectively. In
some references [27, 28, 29] F is called a two-point tensor because it connects two configu-
rations and contains geometric information. Obviously the gradient tensor ought to satisfy the
compatibility condition

F ×∇X = 0⇒ ∂FiJ
∂XK

EJKL = 0iL (1.2)

where EJKL = (EJ × EK) · EL.

1
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Fig. 1.1 Illustration of the deformation map

1.1.1 Strain-displacement relation

According to Eq.(1.1), we know dx = F ·dX and then dx·dx−dX ·dX = dXT(F TF−
I)dX . Henceforward we define the Green-Lagrange strain tensor [27, 28, 29]

E =
1
2

(F TF − I) =
1
2

(∇Xu+ u∇X +∇Xu · u∇X) (1.3)

where u∇X = (∂Jui)ei
⊗
EJ and ∇Xu = (u∇X)T. We could decompose the strain tensor

into a linear and a nonlinear part [30, 31]

EIJ = eIJ + ηIJ
eIJ = 1

2(∂Jui + ∂Iuj) ; ηIJ = 1
2∂Iuk∂Juk

(1.4)

In comparison, we define the Euler-Almansi strain [27, 28, 29] in the current configuration as

ε =
1
2

(I − F−TF−1) ≈
1
2

(∇xu+ u∇x) (1.5)

and there is a relation between the two strains as

E = F T · ε · F (1.6)

In 1D, for example, we have dx2−dX2

dX2 = [(1+ ∂u
∂X )2−1] and the right hand side equals 2E11 with

Eq.(1.3). In linear theory, ε ≈ 1
2(∇xu+u∇x) with compatibility condition: −∇×ε×∇ = 0.

Surely, we could offer a more general definition of the strain measurement via the Seth–Hill
family [27, 28, 29]. Nevertheless, we henceforth limit our discussion in the dissertation using
Eq.(1.3) to Eq.(1.6).

1.1.2 Stress

There are many text books presenting a full discussion of stress with finite strain [27, 28, 29].
The main idea is that we should be very careful of the area or volume change due to large deforma-
tion. In infinitesimal theory, there is no difference between the current and initial configuration.
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The Cauchy stress is thus enough with the linear part of the strain in Eq.(1.4) and Eq.(1.5). In
nonlinear analysis, however, the Green-Lagrange strain is of practical usage even though the equi-
librium equation is expressed in the current body after deformation. Here we want to summarize
the comprehension by work duality [27, 28, 29]. The virtual work principle on the total elastic
energy density function E reads

δE =
∫
t
V
σijδεijd

t
V =

∫
0
V
SI
iJδFiJd

0
V =

∫
0
V
SII
IJδEIJd

0
V (1.7)

where ε and E are described by Eq.(1.3) and Eq.(1.5). σij is the Cauchy stress tensor, SI
iJ is

the first Piola-Kirchhoff (PK-I) stress tensor and SII
IJ is the second Piola-Kirchhoff (PK-II) stress

tensor. 0
V is the domain in the reference configuration and t

V in the current one. In order to
change the integral domain, we need to use the volume transform

d t
V = det(F )d 0

V = Jd 0
V (1.8)

After we employ Eq.(1.3) and

δε ≈ 1
2F
−T (δ∇Xu) + 1

2(δu∇X) · F−1 (1.9)

then we arrive at the clarification of Cauchy σ , PK-I SI and PK-II SII stresses as

σ = J−1SI · F T = J−1F · SII · F T (1.10)

where we assume σ and SII are symmetric in the proof of the relationship above. In other words,
we do not consider the micro-polar effect [32, 33, 34]

a) Hyper-elasticity

A material is called hyper-elastic if it satisfies the integrability condition [27, 28, 29]

SI
iJδFiJ = δW(F )⇒ SI

iJ = ∂W
∂FiJ

(1.11)

Thanks to Eq.(1.10), we can obtain the Cauchy stress from the elastic energy density function
W(F )

σ = J−1∂W(F )
∂F

· F T (1.12)

But the functionW(F ) can not be chosen arbitrarily and there are the limitations called objectiv-
ity and symmetry

W(F ) =W( tQ · F ) (1.13a)

W(F ) =W(F · 0
H) (1.13b)

where tQ is the orthogonal matrix for rigid rotations and 0
H is the transform operator for the

symmetry of matter. Obviously, with principle of objectivity [27, 28, 29], we obtain

W(F ) =W(C) =W(F TF ) (1.14)
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where C is called the right Cauchy-Green tensor. We introduce the polar decomposition for a
better understanding. We know that an arbitrary non-singular matrix is a map which consists of a
rotationR and a distortion U as

F = RU ⇒ F TF = U2 > 0 (1.15)

where R−1 = RT is a two-point tensor and U = UT is defined in the reference configuration.
So we findW(C) =W(U2). Furthermore, if the material is isotropic then we have 0

H is in the
orthogonal group too. Then we can get

W(U2) =W( 0
HTU2 0

H) =W(λ1, λ2, λ3) (1.16)

where λi > 0 are the eigenvalues of U . In physics, they represent the average deformation field
of a representative volume element in the local eigen-space. In practice we can use an invariant
form for the isotropic hyper-elastic constitutive relation [28, 29, 35, 36]

W(C) =W(I1, I2, I3)

I1 = tr(C) , I2 = 1
2(tr(C)2 − tr(C2)) , I3 = det(C)

(1.17)

b) Equilibrium equation

In classical continuum mechanics, momentum conservation reads the same for both the linear
and nonlinear problem [37] as

ρẍi = ∂

∂xj
σij + bi (1.18)

where ρ is the density of matter, b is the body force andσ is the Cauchy stress tensor withσ = σT

due to the equilibrium of angular momentum. Furthermore, if we neglect the inertial term and the
body force, the equation becomes

∂

∂xj
σij = ∂jσij = 0 (1.19)

We can also obtain the equilibrium equation in the initial configuration by the variation Eq.(1.7)

∂J(SI
iJ) = 0 (1.20)

In a numerical implementation like the finite element method (FEM), we also employ the virtual
work of the PK-II stress [27, 28, 29] as Eq.(1.7) and Eq.(1.4) by an incremental-iterative solver
from the point view of the total and updated Lagrangian form [30, 31, 38, 39, 40]. The total
Lagrangian formulation refers the stress and the strain variables at time t + ∆t to the original
configuration at time zero. In comparison, the updated Lagrangian method is that the geometry
(initial configuration) is updated after calculation of each time step.

1.1.3 Variational method for fiber anisotropy

In this section, we want to use the principle of virtual work to get the governing equations for
elasticity with fiber anisotropy. We employ the method [41] taking dissipation into account. It
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is a general approach for a material with a special direction n. We start with the power balance
equation

δĖelas + δṘ+ δĖkine − δẆext = 0 (1.21)

where Eelas is the total free energy, Ṙ is the dissipative part of the system, Ekine is the kinetic
energy (inertial term in Eq.(1.18) ) and Wext is the external work. Generally, we can define

Eelas =
∫

tW(F,n,n0, n∇, η, η0) d tV (1.22a)

Ṙ =
∫
Ṙ(D,nJ , η̇) d tV (1.22b)

Ekine =
∫
ρ

1
2v

2 d tV ⇒ δĖkine =
∫
ρv̇δv d tV (1.22c)

δẆext =
∫

(b · δv+ bn · δṅ+ bηδη̇) d tV +
∫
γn · δṅ d tV (1.22d)

where n is a unit vector field with a Lagrange multiplier γ representing the specific direction of
the material, n0 is the initial vector and η is an inner parameter (could be the dispersion angle
of the fibers) which reflects the degree of anisotropy. tW is the elastic energy density function
at time t and Ṙ is the dissipation density function. The variables like D, nJ will be explained
in Eq.(1.23). Body forces b, bn, bη and the Lagrange constraint γ appear in the variation of the
external work.

In order to obtain the variation of the energy in a rate form, also for the dissipative function
Ṙ, we need to define several kinds of velocity quantities here.

Ḟ = d

dt

∂x

∂X
= ∂v

∂X
= ∂v

∂x
· ∂x
∂X

= L · F (1.23a)

L = D+W = 1
2(L+LT) + 1

2(L−LT) (1.23a)

nJ = ṅ−W · n (1.23b)

whereL = v∇x = grad(v) is the gradient of the velocity of a material point after deformation
with Ḟ = v∇X = Grad(v) in the initial configuration. Here we can divide L in two matrices:
the symmetric part D for deformation and the anti-symmetric one W for rigid rotations. For
objectivity, we employ the Jaumann derivative nJ to eliminate rotation effects while it is not the
unique choice [41]. Then we can calculate δĖ with generalized velocities

δq̇ = δ(v, ṅ, η̇) (1.24)

In addition, we shall use the integral transform
∫
d tV =

∫
Jd 0V to change the domain for

time derivative calculations sinceX is independent of t. For the variation of the gradient operator,
we take ∇X = ∇x · F for the transform. Finally, it is not difficult to get governing equations
back in the current configuration as

ρv̇ = σ · ∇+ b (1.25a)

∂Ṙ

∂nJ
= bn + γn− ∂ tW

∂n
+ ∂ tW
∂n∇ ·∇ (1.25b)
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∂Ṙ

∂η̇
= bη −

∂ tW
∂η

(1.25c)

In this dissertation, we just take the symmetric part of the Cauchy stress tensor as

σ = ∂ tW
∂F

F T + ∂Ṙ

∂D
−∇n · ∂

tW
∂n∇ (1.26)

If we take tW = tWelas(F ,n,n0) + Kn
2 Tr(n∇ · ∇n) and Ṙ = µD

2 Tr(D2) , omitting inertia
terms and body forces, governing equations and the constitutive relation reduce to

σ · ∇ = 0 (1.27a)

Kn∆n− ∂ tW
∂n

+ γn = 0 (1.27b)

σ = ∂ tW
∂F

F T + µDD −Kn(n∇)T · n∇ (1.28)

Considering the decomposition of the elastic energy in the reference configuration as following

W =WMat(C) +Wfib(F,n0, η0) (1.29)

whereC is the right Cauchy-Green tensor, One can study the statistics for a hyper-elastic material
with fiber reinforcement in the known direction n0. For example, Holzapfel and Ogden [42] take

W =WMat(C) +Wfib(C,H(n0, η0))

H = η0I + (1− 3η0)n0⊗ n0
(1.30)

Then one can get the stress via a superposition form

σ = J−1F · ∂W∂C · F
T = σMat + σfib

σfib = J−1µfib(I4, η0)F · n0⊗ n0 · F T = J−1µfib(I4, η0) (F · n0)⊗ (F · n0)
(1.31)

where I4 = I4(η0, tr(C),n0 ·C · n0).

1.2 Overview of plate and shell theories

Slender structures are quite common in biology from membranes at cell scale to the skin
at tissue scale, which always result in the large displacement and finite deformation induced
by morphology. When continuum mechanics is favored to study strain and stress in biological
problems, theory of plates and shells [43, 44, 45, 46, 47, 48, 49] is frequently employed to deal
with surface systems. In this section, we will present a brief review of the basic knowledge.

Following the method of the previous section, a variational principle is taken to help us obtain
governing equations in elasticity. The only extra assumption is the strain-displacement relation-
ship. We shall write down the physical conservation law on the 2D curved surface with the integral
over the thickness, namely reducing the original 3D problem into 2D mathematical PDEs. From
the point view of physics, bending together with in-plane stretching dominate the total elastic
energy, which makes it possible to reduce the dimension.

We will first introduce the Föppl-Von Kármán (FvK) plate theory, which is the primary model
for analytical work in this thesis, and then we review concisely the general shell formula for an
implementation of the initial curvature. Mindlin–Reissner theory will also be mentioned for plates
with moderate thickness.
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1.2.1 Föppl-Von Kármán (FvK) model

The Fvk model is the simplest one for a plate undergoing large deflections. More precisely,
it holds the effect of geometrical nonlinearity induced by bending. This model is popular among
physicists and engineers because it not only keeps nearly all the pictures of nonlinear phenomena
such as buckling but also it is still valid not far beyond the limit of the small-strain constraint.

a) Strain-displacement assumption

We start by providing the displacement relation between the initial configuration R(x, y, Z)
and the current shape r(x, y, Z) with a first order expansion.

r = R+ u0(x, y) + Zu1(x, y)
≈ R+ (U0(x, y) + ZU1(x, y))e1 + (V 0(x, y) + ZV 1(x, y))e2 + ζ(x, y)e3

(1.32)

Fig. 1.2 Illustration of geometry

Each ei represents the Cartesian unit vector and the superscripts “0” and “1” denote the
perturbation order. Indeed, the ratio between the thickness and the horizontal scale L is a small
parameter as ε1 = h/L. And the magnitude of the displacement in the Z direction ζ compared to
L is another small quantity as ε2 = ζ/L. In the classical FvK approach, ε2 ∼

√
ε1.

We introduce later the position of the neutral surface Zn, a constant of order h , whose role
is to minimize the free energy. For a homogeneous monolayer material, Zn corresponds to the
middle plane. We also take into account later in the shallow shell approximation that the sample is
slightly curved before buckling with a tiny deviation w0 in the simulation. After we can calculate
the deformation gradient tensor F as

FiJ = δiJ + ∂

∂XJ
ui ≈ δij + ∂u0

i

∂xj
+ u1

i δ3j + (Z − Zn)∂u
1
i

∂xj
(1.33)

So the elastic strain tensor becomes

E = 1
2(F TF − I)⇒

Eij ≈
1
2(∂u

0
i

∂xj
+
∂u0

j

∂xi
+ ∂u0

k

∂xi

∂u0
k

∂xj
+ u1

ku
1
kδ3iδ3j) + 1

2(u1
jδ3i + u1

i δ3j) + 1
2(∂u

0
k

∂xi
u1
kδ3j + ∂u0

k

∂xj
u1
kδ3i)

+Z − Zn
2 (∂u

1
i

∂xj
+
∂u1

j

∂xi
)

(1.34)



8 Chapter 1. Basic theories

If we just take the in-plane components and neglect higher order terms of u0(x, y)

εαβ ≈
1
2(∂u

0
α

∂xβ
+
∂u0

β

∂xα
+ ∂ζ

∂xα

∂ζ

∂xβ
) + Z − Zn

2 (∂u
1
α

∂xβ
+
∂u1

β

∂xα
) (1.35)

The Greek alphabet like α, β, γ is limited from 1 to 2.

b) Hooke’s law for the stress-strain relation

We apply Hooke’s law with the plane stress assumption: σi3 = 0. Then it reads for the
Cauchy stress components with Young’s modulus E and Poisson coefficient ν for an isotropic
material

σαβ = E

1− ν2 ((1− ν)εαβ + νεγγδαβ) (1.36)

where εαβ = ε0
αβ + (Z − Zn)ε1

αβ with ν = 1/2 for the incompressible case, an assumption
commonly used for living tissues. Taking into account the plane stress assumption again for thin
samples, σ13 = σ23 = 0, we take E0

13 = E0
23 = 0 which leads to the first order for U and V from

Eq. (1.32) and Eq.(1.34)

U1(x, y) ≈ −∂ζ
∂x

; V 1(x, y) ≈ −∂ζ
∂y

(1.37)

So the zero and first order strain tensor read

ε0
αβ = 1

2(∂uα
∂xβ

+ ∂uβ
∂xα

+ ∂ζ

∂xα

∂ζ

∂xβ
) ; ε1

αβ = −∂αβζ (1.38)

where uα(x, y) is the first order displacement {U0, V 0}. With Eq.(1.36), we can also obtain the
perturbation of stress as σαβ = σ0

αβ + (Z − Zn)σ1
αβ .

c) Lagrange-Euler equations by variational method

The elastic energy reads

E =
∫

Ω

1
2σαβεαβdV = 1

2
E

1− ν2

∫
Ω

(ε11)2 + (ε22)2 + 2νε11ε22 + 2(1− ν)(ε12)2dV (1.39)

The linearity between the stress and strain leads to δE ∼ σαβ δεαβ and then the Euler-
Lagrange equations result from the variation of E with respect to ζ and uα

∆(D∆ζ)− ∂α(Nαβ∂βζ) + ∂αβM
g
αβ = 0

∂

∂xβ
(
∫
σαβdZ) = ∂

∂xβ
(Nαβ) = 0

(1.40)

The first equation represents the out-of-plane bending equilibrium and the second one stands
for the in-plane stress equilibrium with definitions as following
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D =
∫

E

1− ν2 (Z − Zn)2dZ

Mg
αβ = −

∫
(Z − Zn)σ0

αβdZ
(1.41)

For a monolayer [50], Mg
αβ = 0 automatically due to

∫
(Z − Zn)dZ = 0 with Zn = h/2.

1.2.2 Classical shell theory

The FvK model can be extended to a slightly curved sheet. We use the method by Sanders
[51] to get the governing equations for a curved plate or shell. But we change some notations
to keep consistency with the thesis. We suppose the initial curved middle surface in 3D physical
space is given by a 2D parametric form as

0x
i = 0x

i(ξ1, ξ2) (1.42)

According to differential geometry [52, 53], we can create a group of local basis on the surface as

Span{∂
0x

∂ξ1
,
∂ 0x

∂ξ2
, 0n =

∂
0x
∂ξ1
× ∂

0x
∂ξ2

‖∂
0x
∂ξ1
× ∂

0x
∂ξ2
‖
} (1.43)

where n(ξ) is the normal vector and the left superscript “0” represents the initial undeformed
configuration. And we shall use “t” for the current deformed one with the kinematic relation by
displacement 0u

i as
tx
i = 0x

i + 0u
i

0u
i = uα(ξ)∂α 0x

i + w(ξ) 0ni(ξ)
(1.44)

where uα is the in-plane part on the middle surface. Then the metric referred to the tangent space
0
Gαβ could be calculated

d 0s
2 = ∂α

0x
i
∂β

0x
i
dξαdξβ = 0

Gαβdξ
αdξβ (1.45)

with the element of area as d 0a =
√

det( 0
G)dξαdξβ .

Gauss, Weingarten and Codazzi equations are concluded as

∂αβ
0x
i = − 0

Bαβ
0n

i

∂α
0n

i = 0
B
β
α∂β

0x
i

∂γ
0
Bαβ = ∂β

0
Bαγ

(1.46)

where Bαβ = ∂αn ·∂βx denotes the second fundamental form and Bβ
α = BαγG

γβ . The first two
equations enable us to calculate the derivatives of the basis vectors and the last one is an extra
constraint for surface geometry.
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Fig. 1.3 Illustration of the surface coordinates

1.2.3 Strain-displacement assumption

We directly write down the in-plane strain defined by a difference of the metric between the
current and the initial tangent space

Eαβ = 1
2( tGαβ − 0

Gαβ) (1.47)

and the out-of plane bending part by normal vector change as

Kαβ = t
Bαβ − 0

Bαβ (1.48)

Then we shall calculate the metric tensor after deformation t
Gαβ,

t
Bαβ with the kinematic re-

lation Eq.(1.44). Here we do not expand all terms one by one with the surface basis Eq.(1.43).
Given that n · ∂αn = 0 as well as Eq.(1.46) , it is not difficult to get a similar result as work by
Sanders, Koiter and Budiansky [48, 51, 54, 55, 56].

a) Variational method with the linear stress-strain relation

The variation of the elastic energy is

δE =
∫
ta

(NαβδEαβ +MαβδKαβ)d ta (1.49)

where the in-plane force Nαβ and the out-of-plane bending Mαβ satisfy the tensor transform rule

Nαβ = GαγGβδN
γδ ; Mαβ = GαγGβδM

γδ (1.50)
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with the linear constitutive relation for an isotropic material as an example

Nαβ =
∫
dz

E

1− ν2 ((1− ν)Eαβ + νEγγδαβ)

Mαβ =
∫
Z2dz

E

1− ν2 ((1− ν)Kαβ + νKγγδαβ)
(1.51)

With this we can calculate the free elastic energy as

E =
∫
ta

1
2(NαβEαβ +MαβKαβ)d ta (1.52)

The Euler-Lagrange equation can be deduced by taking the variation of general field variables
{uα, w}. The exact expression with boundary conditions in the part of small-strain approxima-
tions is fully discussed in the work by Sanders [51]. In this dissertation we focus on the shallow
shell theory aiming at the initial curvature in the Fvk model.

b) Shallow shell approximation

We more or less simplify the general shell theory by the famous Donnell-Mushtari-Vlasov
(DMV) approximation [44, 57]

Eαβ = 1
2(∂βuα + ∂αuβ) + 0

Bαβw + 1
2∂αw∂βw

Kαβ = −∂αβw
(1.53)

For a slightly curved plate, we could suppose the middle surface before deformation as 0x =
[x, y, w0(x, y)] with 0

Gαβ ≈ δαβ and 0n ≈ [−∂xw0 , −∂yw0 , 1]T. Then we can get the shallow
shell assumption as

0
Bαβ ≈ −∂αβw0(x, y)

w ≈ ζ(x, y)
uα ≈ uα(x, y) + ζ∂αw

0
(1.54)

Neglecting the higher order terms of small quantity w0(x, y), we finally obtain the so-called
Marguerre model [51, 58] as

Eαβ = 1
2(∂βuα + ∂αuβ + ∂αw

0∂βζ + ∂βw
0∂αζ + ∂αζ∂βζ)

Kαβ = −∂αβζ
(1.55)

Compared with the Fvk model, we find there is a new bending momentum induced by the initial
curvature as

δE ∼ δEFvk +Nαβ
0
Bαβδζ (1.56)

Although we have made a lot of simplifications for the shell in the shallow case, the theory can
be extended to small but finite deformation in many situations [59].

1.2.4 Mindlin–Reissner model

If we review the process of the derivation for the Fvk equations, we encounter the following
hypotheses
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1) Scaling of thickness h, deflection ζ and horizontal length L:

h

L
∼ ( ζ

L
)2 � 1 (1.57)

In practice, it still works as a conservative estimate with ζ
h ∼ O(10) and h

L <
1
10 ;

2) Love-Kirchhoff hypothesis: no transverse shear

uα(x, y, Z) = u0
α(x, y)− (Z − Zn)θ(x, y) ; θ = ∂αu

0
3 = ∂αζ(x, y) (1.58)

where u0
α is the first-order in-plane displacement on the neutral surface and θ is the rotation

of the normal vector which approximately equals ∂αζ within the shallow shell limit. For
the notation consistency with the discussion before in FvK, we just simplify u0

α(x, y) as uα
later;

3) (u0
α)2 are higher order terms compared to ζ2 for strain contribution (related with the first

hypothesis here)

For a thick plate as h/L > 1/10, we should consider the rotation contribution by transverse
strain

θx = ∂ζ

∂x
+ φx ; θy = ∂ζ

∂y
+ φy (1.59)

Then we can get the Mindlin-Reissner modification for the Fvk model [45, 58, 60, 61]

εαβ = εFvKαβ − Z − Zn
2 (∂φα

∂xβ
+ ∂φβ
∂xα

)

γ13 = 2ε13 = −φx ; γ23 = 2ε23 = −φy
(1.60)

We can apply the linear stress-strain relation with 2 more shear moduli for the elastic energy.
Surely, we should add 2 new degrees of freedom (DOFs) for the numerical implementation. In
the commercial software COMSOL, the plate model for large deflections is based on the Mindlin-
Reissner hypothesis. It can be used for thin panels. The standard FvK model can be recovered by
substituting in the Love-Kirchoff constraint Eq.(1.58).

1.2.5 Difficulties in numerical implementation

There is always a gap between the classical theory and the robust computational algorithm for
practical applications. We shall use the scaling of the elastic energy to explain the main problem
here. With the given thickness h and the length L of a plate or shell, it is obvious for a thin slender
structure that h/L� 1. The elastic energy can be expanded as [38]

E = h3Ebend + h2Ebend−memb + hEmemb (1.61)

For a couple of physical problems like crumpling a piece of paper [62], deformation ought to be
mainly described by the bending equation referred to Ebend. However, according to Eq.(1.61),
we can see that the membrane deformation contributes a lot to the elastic energy especially when
h → 0 which may result in an ill-conditioned system during numerical simulations as well as
transverse shear locking [38, 63]. Assuming the variable space {q}, the elastic equilibrium state
results from the minimization of the given potential function Π(q) with the stability condition
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[Kmn] = [ ∂2Π
∂qm∂qn

] > 0 [54, 64]. We will frequently need to solve the linearized incremental
solution by {∆q} = [Kmn]−1{∆f}where {∆f} is the generalized incremental force and [Kmn]
is the Hessian matrix or stiffness matrix of the potential function . In finite element solvers, there
is a catastrophic locking problem of ill-conditioned [Kmn] due to Eq.(1.61) when h is small.
This is the reason why many scientists try to develop new elements [46, 65, 66] and even new
methods [64, 67, 68] to reduce or conquer the numerical difficulty. In addition, we have a strong
prior hypothesis on the smoothness of the surface which also limits the test space of the solver.
It seems we need to come back to the original physics with a discrete form of the energy in
place of a differential operator and employ a more robust algorithm [69, 70, 71, 72] for the large
deformation problem.
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Part I

Crack opening on epithelium of C.
elegans

We will discuss the experiment of [8] in this part. C. elegans embryos are observed

in a particular stage of their development with an evaluation of the stress

distribution by laser cuts in the epithelium. Method and analysis could be extended

to other similar systems. We divide the calculation into two steps: first we simplify

the geometry in chapter 2 and give the stress expression with the assumed

deformation gradient matrix. Then we use the crack formula by Theocaris [73, 74]

and revise it for finite strain in chapter 3. We suggest a cylindrical tube with an

opening angle as the zero-stress configuration for the composite epithelium.

Different areas on the animal surface are handled separetely. The total stress is

calculated in consideration of anisotropy and active motors. For fracture

mechanics, we give a short review at the very beginning. We then introduce the

linear theory for the crack shape and modify it for our case using the tangent

stiffness matrix.

15





Chapter 2

Stress assessment in C. elegans elon-
gation

It seems growth of a living system is quite natural but more complicated and subtle than a
handmade clock. Perhaps one argument is that morphogenesis is always accompanied by large
and soft deformation in order to adapt to the external environment. In addition, many scientists
recognize [75] that stresses play a vital role during the development of an embryo. At the macro-
scopic level, differential growth generates residual stress creating the circumvolutions of the in-
testine [76, 77, 78], the brain cortex [79, 80, 81], and the fingerprints of skin [82, 83]. The folding
of tissues is then directly linked to the coupling between volumetric growth, tissue properties
and geometry. At the cellular level, the high mobility of cells is counterbalanced by the cellular
filament networks, especially by the actomyosin cortex. It comprises a network of cross-linked
actin filaments located below the plasma membrane, so that the local cell contractility results from
the myosin molecular motors which transform the chemical energy of ATP hydrolysis into inner
stresses.

Here we investigate the early stage of C. elegans elongation up to 70% when the embryo con-
tains 65 epidermal cells in the cortical position in an ovoid shell. We try to use finite elasticity to
get the stress distribution on the surface of C. elegans. Given the assumption of deformation gra-
dient matrix and energy density function, we calculate the stress components with the constitutive
relation as Eq.(1.31). However, in elasticity, we need to know the stress-free conformation. So
we first characterize the geometry in section 2.1 which matches well with the experiment. Then
we calculate stress components in section 2.2 with incompressibility after growth. Afterwards we
introduce the active stress by a planar active network in section 2.3 with further explanations and
simulations in section 2.4.

We consider a cylindrical tube with an opening angle as the starting point. Then we define
different configurations for the corresponding stages of loading history. Anisotropy and active
stress induced by the actin-myosin network and microtubules are covered in this part. It will be
used in the next chapter to explain the ablation experiment.

2.1 Simplified cylindrical geometry

For theoretical analysis, we simplify the elongated C. elegans as a composite cylinder made
of a row of epithelial cells and nascent intestine. Since the scientific concern is on the thin exterior

17
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Fig. 2.1 Deformation map from left to right columns are: Before closure (BE) and also
the reference stress-free configuration Br, initial state B0 with cylindrical coordinates
R,Θ, Z and the current elongated configuration Bt with coordinates r, θ, z. The pic-
tures of the third row are taken from the experiments: we observe an opening angle (red
dotted line) in the left slice. The opening angle is closed in the region of cells (brown
area of the first row) with residual circumferential tensile stress (see middle slice). The
picture on the right shows the position of the laser cuts during elongation.

surface of approximately 10µm thick, we use the inverse method by assuming the deformation
gradient tensor Eq.(1.1) to calculate the stress components in 3D for the outer tube.

We introduce three configurations for our calculation: the initial state B0 for zero elongation
as the start of the experimental observation, the reference configuration Br which is stress-free
with an opening angle and finally the current one Bt with the laser cuts after deformation.

We label different cells with dissimilar colors in Fig(2.1): Brown area indicates the ventral
cells which constitutes the abdominal part of the embryo. Hence yellow area is the dorsal part, and
blue is used for the seam cells which corresponds to the waist of the worm. During the experiment
[8, 84], there is a pre-stress or pre-strain [26] due to the closure of the ventral cells. When it comes
to the elongation process, molecular motors are very active leading to the shrinking of the seam
cells. Special concern is paid on the inner stress with the actin-myosin network where molecular
motors are located. In order to offer the stress estimate, laser cuts are made after elongation in
Fig.(2.1) in different parts of the embryo: Head, Body and Tail. We now attempt to calculate
the elastic strain for our simplified composite cylindrical tube with three different cell types. The
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deformation gradient matrix in cylindrical coordinates reads

F =


∂r
∂R 0 0
0 ∂θi

∂Θi
r
R 0

0 0 ∂z
∂Z

 =

 dr
dR 0 0
0 Gi

r
R 0

0 0 λZ

 =

λR(R) 0 0
0 Giλ(R) 0
0 0 λZ

 (2.1)

where we assume constant angle change Gi for different cells and homogeneous extension λZ .
Specially, because of the diagonal form of the gradient tensor, strain compatibility is satisfied
automatically for F ×∇ = 0 as Eq.(1.2). And thus there is only one variable R, the radius of the
tube varied between value Ri and Re. The rotation and axial extension Gi and λZ are regarded as
measurable quantities, i.e., known data from the experiments. In addition, the elastic stress should
also be diagonal. Furthermore, we build the observable deformation gradient after elongation as

FOb =

ΛR 0 0
0 Λ 0
0 0 ΛZ

 = ΛRer ⊗ER + Λeθ ⊗EΘ + ΛZez ⊗EZ (2.2)

with the incompressibility hypothesis as det(FOb) = 1. This is a strong condition based on the
fact of nearly no growth during the extension and the assumption of incompressible deformation
of every cell. We can solve the function r(R) with ΛRΛΛZ = 1. To avoid solving the ordinary
differential equation, we directly use the volume conservation of a cylindrical tube

r2 − r2
i = 1

GiΛZ
(R2 −R2

i ) (2.3)

where ri = r(Ri) and the governing equation is valid for all cells of the system.

Fig. 2.2 Geometry of a simplified cylindrical tube for the strain calculation: The first
picture (a) is the reference configuration Br with an opening angle for pre-stress and Cr
represents the arc-length of the outer surface for each part respectively. The second and
the third sketch (b) show the initial complete tube B0 after closure which is the domain
for the following stress computation. D means dorsal section, V is the ventral part and
S denotes the seam cell. Here we assume stress-free condition on the exterior boundary
for the thin membrane tube. R is the radius varying from Ri to Re and Gi is the angular
change which shall be defined later. Θi is the absolute angle for each part {D,V, S}
and we take the double value because of the symmetry of the geometry. The exterior
surface is covered by the extracellular matrix (ECM), a thin layer of secreted proteins.

Let us come back to the original geometry for a clear discussion. In Fig.(2.2a), we observe
that there is an opening angle β. In this stress-free configuration, we define half of the system: D
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cells are located in the interval [−φDV , φDV ], S cells occupy the sector [φDV , π − β/2− φDV ]
and V cells fill the remaining part up to π − β/2. From mechanics, we do not distinguish D and
V cells so we call them DV cells. After the closure, the complete domain is demonstrated by
Fig.(2.2b) with new angle Θ. Now we can write the geometric constraint with the missing angle
β

φDV + φS = π/2− β/4
ΘDV + ΘS = π/2

ΘDV = G0,DV φDV ; ΘS = G0,SφS

(2.4)

where G0,i > 1 is the initial pre-stretch of each part. We can now calculate the initial defor-
mation gradient F0 with the help of Eq.(2.2) and the volume conservation Eq.(2.3) assuming
incompressibility

F = FOb · F0 ⇒

F =

(ΛΛZ)−1 0 0
0 Λ(R) 0
0 0 ΛZ


(λ0λ0Z)−1 0 0

0 λ0 0
0 0 λ0Z

 (2.5)

and

Λ(R) = Gi√
ΛZ

√
1 + (G−1

i − 1)η(R)

η(R) = 1− R2
i

R2

⇒ Gi = −η(Re) +
√
η(Re)2 + 4(1− η(Re))Λ2ΛZ

2(1− η(Re))

(2.6)

Thus at (R = Re) we can calculate the superficial circumferential deformation with η(Re) =
1−R2

i /R
2
e . In practice, we can use data of arc-length Ci in Fig.(2.2) as well as the length change

ΛZ = L/L0,Λ(Re) = C/C0 to give an estimate for Gi and accordingly obtain the deformation
information for the stress calculation. Besides, once we get the deformation of seam cells, the
geometric constraint Eq.(2.4) allows us to calculate the quantity for DV cells as

C0,DV ΛDV (Re) + C0,SΛS(Re) = C0,DV + C0,S√
ΛZ

(2.7)

where C0,i is the arc-length of each part at ΛZ = 1.
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Fig. 2.3 (a) Experimental circumferential length of the seam cellular domain. In blue
the best fitting curve corresponding to C = C0Λ and the ortho-radial stretch in the top
inset. Red squares are experimental data [8]. (b) Analytical Results for the DV cells
using Eq.(2.6) and Eq.(2.7). Experimental points [8] are included for comparison. (c)
Theoretical GS value as a function of ΛZ according to Eq.(2.7) when the epithelium
thickness is varied.

In Fig.(2.3), we use the limited data in an attempt to extrapolate the full information during
elongation as ΛZ increases from 1 to 1.7 (∆L from 0 to 70%L0). Here the only fitting is the blue
curve for the circumferential length of seam cells. After we make an convention that Λ = Λ(R =
Re) since we just make the laser cut on the surface of the skin. So far we have introduced the
geometry of our system, but we need to get the expression of the stress by defining the energy
density function in the next section.

2.2 Calculation of the elastic stress

Due to the diagonal form of the simplified F in the above analysis, we prefer to employ
the constitutive relation in the eigenspace [28]. We adopt the energy density function W like
Eq.(1.29) considering hyper-elasticity with fiber anisotropy. We introduce as few material param-
eters as possible.

W =WMat(F TF ) +Wfib(F,n0)

=WMat(λ1, λ2, λ3) +Wfib(nT
0diag(λ2

1, λ
2
2, λ

2
3)n0)

(2.8)

In our case, we suppose that the mean direction of the fiber is parallel to the eigenvector of the
right Cauchy-Green tensor and consequently

W →W(λR, λ, λZ) =
3∑
i=1

2µ
α2
p

(λi)αp +
3∑
i=1

τi
4 (λ2

i − 1)2 +W(J) (2.9)

where µ > 0 is the mean average shear modulus of the continuum , τ > 0 includes the con-

tribution of fiber elasticity and αp is a positive parameter for different material with J =
3∏
i=1

λi

representing the volume change. In our system, we take αp = 2 for a Neo-Hookean solid and we
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Fig. 2.4 Depiction of W̃ in Eq.(2.11) with dimensionless parameter τ/µ = 0.15.

assume the fiber effect only in the circumferential direction. Finally we employ the incompress-
ibility condition J = 1 leading to

W(λR, λ, λZ)→ µ

2

3∑
i=1

λ2
i + τ

4 (λ2 − 1)2 − p(J − 1) =Wm − p(J − 1) (2.10)

where p is a Lagrange parameter for the constraint J = 1. If we do not want to keep it, we can
define

W̃(λR, λ, λZ) = µ

2 [(λλZ)−2 + λ2 + λ2
Z − 3] + τ

4 (λ2 − 1)2 (2.11)

It is a convex function as shown in Fig.(2.4).
Eventually, we can calculate the Cauchy stress as

σ = J−1∂W
∂F

F T = ∂Wm

∂F
F T − pI

⇒ σi = ∂Wm

∂λi
λi − p

(2.12)

as well as the PK stress defined by Eq.(1.10). Furthermore, if we suppose σr = 0, we obtain

p = ∂Wm

∂λR
λR and

σθ = ∂W̃
∂λ

λ ; σz = ∂W̃
∂λZ

λZ (2.13)

If we want to consider the stress distribution along the radial direction, we need to settle the ODE
as following

∂σr
∂r

+ 1
r

(σr − σθ) = 0 or
∂SR
∂R

+ 1
R

(SR − SΘ) = 0 (2.14)
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We take SI as the PK-I stress. Boundary conditions read

σr(r = re) = −κECM
re

≈ 0 ; σr(r = ri) = −pi
⇔ SR(Re) = Jσr(re)Λ−1

R = σr(re)Λ−1
R ≈ 0 ; SR(Ri) = −piΛ−1

R = −pI
(2.15)

where J = 1 and we assume the surface tension effect κECM is weak compared with the elastic
stress, that’s to say κECM/E � 1 and pi is the inner pressure which might be a function of the
deformation change. In the thin membrane case, σr is a higher order term which can be neglected
in the calculation of σθ and σz . In the following we need to introduce the inner force contribution
by active networks in S cells.

2.3 Planar active stress by actin-myosin networks

Myosin II, the actin molecular motors, have been observed [84, 85] in the seam (S) domain.
They can induce contractile deformation of the network and simultaneously generate inner-stress.
Similarly, we could imagine heating a rubber-like material under stretch. High temperature (in
a range) will make the rubber stiffer which generates a positive inner stress. And if we stretch
it, temperature will increase. In other words, we could pump in energy for a contractile shape
change. Here we suppose that the active stress [86] in S cells is induced by such a mechanism
(see Fig.(2.5)). We also consider the fiber/filament anisotropy in the elastic energy. Fig.(2.6)
demonstrates the dispersion angle of the fiber/filament. In the figure data are limited just to seam
cells of the body part (see Fig.(2.1)) due to experimental difficulties. Because of symmetry, the
planar angle distribution is a function of ϕ = [0, π/2]. Before elongation, the filaments lie in the
circumferential direction in both S and DV cells. After, motors in S cells become active with an
increase of the dispersion value κ generating contractile deformation with GS < 1 and GDV > 1
in Fig.(2.2).
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Fig. 2.5 Mechanism of the actin-myosin network with motors: (a) (From [87]) One
representative volume element where there are numerous actin filaments with motors.
Energy transmission happens through actin monomers resulting in polymer (filament)
reorganization. (b) Visualization of the interaction between filaments. Contractility is
produced through the concerted movement of myosin heads (green) along actin thin
filaments, which are made up of f-actin (blue) and tropomyosin (red)

Fig. 2.6 Distribution of the planar fiber/filament direction in seam cells: Points in
red are experimental data [8] when elongation ΛZ equals 1.3 in comparison of points
in green as ΛZ equals 1.5. The curves in black are fitting results of the Von Mises
distribution function [42]. ϕ is the angle along the average alignment and ϕ = 0 means
that fibers align completely along the circumferential direction eθ in our case and ϕ =
±π/2 is the vertical direction ez . The dispersion value κ characterizes the disorder of
fiber anisotropy. Because of symmetry, we can calculate all the quantities as a function
of ϕ = [0, π/2] in practice.
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If the active stress/strain merely depends on the distribution of the network, we have

σ = σp(F ) + σa(n) (2.16)

where σp is the classical stress tensor induced by the elastic strain and σa is the active part [86]
which is related to the fiber/filament direction. In a thin membrane system, the planar active stress
[42] reads

σa = −paI +Hd

Hd = H − 1
3 tr(H)I ; H = −ζ̃1κI + ζ̃2(1− 2κ)n⊗ n

κ = 1
π

∫ π/2

−π/2
ρ(ϕ)sin2ϕ dϕ ; n ‖ F · n0

(2.17)

If we take ρ(ϕ) = δ(0), thenH ∼ −ζ̃1I + ζ̃2diag [1, 0, 0] with n = [1, 0, 0]T. Surely we can use
the similar formula for the multi-axis case as

H =
∑
Hi

Hi = −ζ̃1(i)κiI + ζ̃2(i)(1− 2κi)ni⊗ ni ; κi = κi(pϕi )
(2.18)

Correspondingly we can employ ρ1(ϕ) = δ(0) , ρ2(ϕ) = δ(π/2) and thus H ∼ −ζ̃1I +
ζ̃2diag [1,−1, 0] with n1 = [1, 0, 0]T , κ1 = 0 and n2 = [0, 1, 0]T , κ2 = 1. We can use the
superposition Eq.(2.18) to realize an inner stress in any direction.

2.4 Active strain/stress with simulations

We first take the general multiplicative decomposition for finite strain

F = FeFaG (2.19)

which means the total deformation is decomposed by elastic part, inelastic self-strain [88] and
growth. In our case, the diagonal form reads

F =

λR 0 0
0 λ 0
0 0 λZ


λaR 0 0

0 λa 0
0 0 λaZ


gR 0 0

0 gΘ 0
0 0 gZ

 (2.20)

where Je = Ja = 1 for incompressibility and Jg > 1 for positive growth. Therefore the elastic
energy function should be modified as

W = µ

2 tr(F T
e Fe) +Wfib(Fe,n0)− p(J/Jg − 1) (2.21)

For example, we take G = I , Fa = diag
[
0, λa, λ−1

a

]
which leads to , in the linear approxima-

tion, an active stress σa = diag [0, σθ,−σθ] with σθ > 0 if λa < 1. On the other hand, if we take
Fe = I andG = (1 + g2)1/3I , it creates a hydrostatic pressure which might cause instability or
buckling of solid [89].

Let us consider some simulations to show the mechanics of the deformation coupled with
the network during elongation. In Fig.(2.2) and Fig.(0.3,0.4), there are at least two processes
happening in the epithelium of different parts: Filaments in the DV area align along the peripheral
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direction due to the external stretch of the S domain. And the driving force comes from the inner
stress of active networks in S cells. We use the general theoretical framework introduced in
Chapter 1 to simulate the two mechanisms. We suggest the elastic energy density and dissipative
function for Eq.(1.25) in plane strain as

W = µεeαβε
e
αβ + K

2 (εeγγ)2 + Kn

2 ∂αnβ∂αnβ

Ṙ = bn
2 (n−W · n)2

(2.22)

where we suggest a linear isotropic stress-strain (constitutive) relation for simplification, with
shear modulus µ and bulk modulus K, which results in a linear decomposition of the elastic
strain εeαβ by

εeαβ = εαβ − εfαβ − ε
g
αβ (2.23)

where εαβ is the total strain, εfαβ is the inner strain by the fiber rotation and network reordering
and εgαβ is the strain by growth. While we neglect the growth in the simulation with

εαβ =


∂u

∂x

1
2(∂u
∂y

+ ∂v

∂x
)

1
2(∂u
∂y

+ ∂v

∂x
) ∂v

∂y


εfαβ = γn diag(n⊗ n− n0⊗ n0) = γn

[
cos2ϕ− cos2ϕ0 0

0 sin2ϕ− sin2ϕ0

] (2.24)

In addition, we suppose bn and Kn is fairly small compared to µ and K so that we could neglect
the higher order terms related to bn and Kn in the constitutive relation. Then we get the coupled
time-dependent governing equations

∂βσαβ = 0 , σαβ ≈
∂W
∂εαβ

= 2µ(εαβ − εfαβ) +Kεγγδαβ

bnϕ̇ = −∂W
∂ϕ

+Kn∆ϕ⇒

bnϕ̇ = 2µγnsin(2ϕ)(−cos2ϕ+ sin2ϕ+ cos2ϕ0 − sin2ϕ0 −
∂u

∂x
+ ∂v

∂y
) +Kn∆ϕ

(2.25)

where ϕ(t = 0) = ϕ0(x, y) is the average dispersion angle and can be explained by discussion
about Eq.(2.18). And we choose the Young’s modulus E = 105Pa and the Poisson coefficient
ν = 0.499 which leads to µ = 33356Pa and K = 1.67× 107Pa.



2.4 Active strain/stress with simulations 27

Fig. 2.7 Sketch of the two mechanisms in the epithelium during elongation. In D cells
(yellow area), the arrangement of the filaments will change with external loading. In
S cells (blue rectangular), positive active stress from the active network shortens the
material with an contribution to the stretch of the D cell as u(t). Here kDV represents
the stiffness of the D cell. Both cells are in a tension state.

We give an elementary illustration in Fig.(2.7) for the orientation-mechanical coupling in D
and S cells. We then solve the governing equations Eq.(2.25) with appropriate boundary condi-
tions ϕ(x = 0) = ϕ0(x = 0), ϕ(x = 1) = ϕ0(x = 1), ∂ϕ∂y (y = 0) = ∂ϕ

∂y (y = 1) = 0 , u(x =
0) = 0, v(y = 0) = 0, u(x = 1) = u(t) and initial conditions ϕ(x, y, t = 0) = ϕ0(x, y).
The initial stress-free configuration is a square with length L = 1. We first consider a uniform
situation with ϕ0 = 450.
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Fig. 2.8 Angle distribution ϕ(x, y) with color bar after deformation: µ =
33356Pa , K = 1.67 × 107Pa , bn = 1Pa · s,Kn = 10−4Pa ·m2 , γn = 0.8 , u(t) =
0.01 ∗ t

The total strain in Fig(2.8) equals 10% when t = 10s. We find that the filaments have an
average rotation of about 70. There is a large gradient on the left and right side since we assume
a constant value on the boundary.

Fig. 2.9 Contour of σx[Pa] with given material parameters in Fig.(2.8)

We find that the average stress in the middle plane x = 0.5 equals approximately 2.8 ×
103Pa which is smaller than the normal value due to εf11 ≈ 0.08. Then we consider ϕ0(x, y) =
450|sin(2πx)| leading to the following results
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Fig. 2.10 Angle distribution ϕ(x, y) with color bar after deformation: µ =
33356Pa , K = 1.67 × 107Pa , bn = 1Pa · s,Kn = 10−4Pa ·m2 , γn = 0.8 , u(t) =
0.01 ∗ t

Fig. 2.11 Contour of σx[Pa] with given material parameters in Fig.(2.10)

Fig(2.10) shows the corresponding angle distribution. There are two regions of dispersion
in red as expected. As the elongation, the region ϕ = 0 grows and filaments rotate along the
stretch direction. In addition, we find the upper free edge also has an interesting deformation
compared with the straight line in the uniform case (see Fig.(2.8)). Fig(2.11) reflects the relative
stress contour and we see the abnormal value on the upper border because of the boundary effect.

Admittedly deformation can give rise to the reordering of the network with filaments. Corre-
spondingly, the self change of the network would generate the inner force of the elastic substrate.
In Eq.(2.25), if we know ϕ = ϕ(t), we can get the inner stress as σfαβ(t) = −2µεfαβ(t). Fig.(2.6)
shows the dispersion change in S cells during elongation which is an evidence for an active net-
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work. Besides, it is proved that microtubules in the network will also generate an active force.
So we combine the two terms in one expression like Eq.(2.17). After we suppose the active
contribution in S cells as σa(t) = diag[σ(t),−σ(t)].

2.5 Conclusion

To evaluate the stresses during C. elegans elongation, we start from a simplification of the
geometry. Residual stress caused by the initial opening angle is introduced by adding an extra de-
formation gradient matrix before elongation. Different regions of the epithelium are distinguished
in the theoretical analysis and interface continuity is considered. The geometric assumption based
on finite elasticity is verified by experimental data in Fig.(2.3). The elastic stress is calculated by
a constitutive relation. Hyper-elasticity with fiber reinforcement is suggested for the assessment.
The equilibrium equations are solved with appropriate boundary conditions. Besides, active stress
induced by the actomyosin network is considered by a deviatoric decomposition with fiber dis-
persion. Results from Simulations are given briefly for understanding the picture. In our system,
we have to consider three effects of the network with filaments and microtubules. First, we need
to consider the material strength of stretching the filaments. Second we should notice the self
shortening and rotation of these filaments in the network. Finally, we ought to analyze the ex-
tra force contribution of the microtubules. In mechanics, we just adjust the force-displacement
(constitutive) relation and combine the self-strain and inner stress as the force contribution. This
chapter provides the stress calculation for the next section.



Chapter 3

Solutions for crack opening by laser
ablation

In the experiment [8, 84], laser cuts are made on the surface of C. elegans after elongation.
The crack length in equilibrium is l and the cut will open with size of b. The shape factor is
defined by F = b/l which is related to the displacement field near the crack tip. In linear fracture
mechanics, this ratio can be solved analytically by the far field stress distribution. Whereas, we
will consider finite elasticity because the deformation of the epithelium is about 70%. So we
employ the calculation of the previous chapter in our case. In addition, according to [8], cuts
are made in two orthogonal directions on the epithelium during elongation and cracks open in
both directions. This is strange since the tissue is in the compression state in one direction. So it
visualizes the existence of the active network which was also discussed before.

In this chapter we shall first introduce the fundamental idea of linear elastic fracture mechanics
(LEFM) and focus on a planar open crack. The analytical solution by Theocaris [73, 74] is applied
to finite strain with our modified formula [26] in consideration of the fiber anisotropy and active
stress. But the solution is for an infinite plane. So we employ the extended finite element method
(XFEM) for finite size. The basic algorithm is reviewed in outline and then the complex scenario
is studied in comparison with the analytical prediction.

3.1 Linear elastic fracture mechanics (LEFM) for a planar crack

In this section, we review the basic knowledge of linear elastic fracture mechanics following
the idea of Inglis, Westergaard and Muschelisvili [90, 91, 92]. We try to use the complex method
as well as the Airy stress function to obtain the asymptotic approximation near the crack tip due
to strain compatibility and symmetry.

3.1.1 Review of LEFM

Fracture theory is relatively young compared with other branches in solid mechanics not only
because it requires complicated mathematics but also the physical explanation is limited to the
observation scale before we know better about the matter structure. Here we want to use clas-
sical mechanics to deal with the crack singularity within the linear assumption. Even with such
simplifications, further analysis seemed impossible until some outstanding work made progress

31



32 Chapter 3. Solutions for crack opening by laser ablation

[91, 93, 94, 95, 96, 97, 98, 99, 100]

Problem Coordinate System Analytical Method Contributor Year
Circular Hole Polar Real Kirsch 1898
Elliptical Hole Curvilinear Complex Kolosoff/Inglis 1913
Crack Cartesian Complex Westergaard 1939
V Notch Polar Complex Williams 1952
Dissimilar Materials Polar Complex Williams 1959
Anisotropic Materials Cartesian Complex Sih/Paris/Irwin 1965

Table 3.1: Summary of analytical solutions using the linear hypothesis (from lecture notes by
Prof. VE Saouma)

To make a brief review of linear fracture mechanics (LFM), we adopt complex method to
generalize the calculation. We begin with the homogeneous anisotropic constitutive relation in
2D defined by the flexible/compliance matrix aij [37] as

εx
εy

γxy (2εxy)

 =

a11 a12 a13
a12 a22 a23
a13 a23 a33




σx
σy

τxy (σxy)

 (3.1)

We can simplify this relation with symmetry of the material e.g. a13 = a23 = 0 for the orthotropic
case. The strain compatibility in 2D reads

∂2εx
∂y2 + ∂2εy

∂x2 = ∂γxy
∂x∂y

(3.2)

If we neglect the body force, the equilibrium equation in 2D becomes

∂σx
∂x

+ ∂τxy
∂y

= 0
∂σy
∂y

+ ∂τxy
∂x

= 0
(3.3)

One can also introduce the Airy function to satisfy the governing equation Eq.(3.3) by

σx = ∂2Φ
∂y2 ; σy = ∂2Φ

∂x2 ; τxy(σxy) = − ∂2Φ
∂x∂y

(3.4)

The definition with a body force potential can be found in [37]. Substituting Eq.(3.1) and Eq.(3.4)
into Eq.(3.2), we obtain

a11
∂4Φ
∂y4 − 2a13

∂4Φ
∂x∂y3 + (2a12 + a33) ∂4Φ

∂x2∂y2 − 2a23
∂4Φ
∂x3∂y

+ a22
∂4Φ
∂x4 = 0 (3.5)

Specially in an isotropic situation, the constraint for the Airy function Eq.(3.5) reduces to

∆2Φ = ( 1
α
− 2)∆V = 0 (3.6)

where α = 1−ν for plane strain and α = 1/(1+ν) for plane stress. f = −∇V is the body force
which is neglected in the thesis. One key point for understanding the crack is that the singularity
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of stress near the tip is σtip ∝ 1/
√
r [94] where r is the distance from a given point to the tip in

the polar coordinate system. This is quite important for supposing a corresponding Airy function
Φ in the actual problem.

The stress function can be written in complex form as

Φ(x, y) = 2Re[Φ1(z1) + Φ2(z2)] (3.7)

and there are different choices for Φ1 and Φ2. For the isotropic case, we can use harmonic
potential functions to represent the biharmonic operator [101, 102] such as the famous Goursat
form [92]: Φ = Re [zψ(z) + χ(z)]. More generally, Φ can be expressed in either of the three
equivalent forms as: Φ = yΘ + Θ0 = xΘ2 + Θ1 = (x2 + y2)Θ4 + Θ3 where Θi are various
logarithmic potential functions [101, 102]. Here we shall focus on the isotropic case with the
method by Westergaard [91, 103] for a physical picture about the crack tip asymptotic solution.
Westergaard defines potential function for Mode I as

Φ(x, y) = Re(φ2 − iyφ1) = Reφ2(z) + yImφ1(z)

φ1 =
∫
φ(z)dz ; φ2 =

∫
φ1dz

(3.8)

with the first and second derivative of φ(z) by φ
′

and φ
′′
. Thanks to the Cauchy-Riemann con-

dition of analytical complex potential functions, we have obviously ∆φi = 0 and the stress
components

σy = ∂2Φ
∂x2 = Reφ(z) + yImφ

′(z)

σx = ∂2Φ
∂y2 = Reφ(z)− yImφ

′(z)

τxy = − ∂2Φ
∂x∂y

= −yReφ
′(z)

(3.9)

which satisfy the 2D equilibrium equation without the body force Eq.(3.3). For an isotropic
material under plane stress conditions we have


εx
εy
γxy

 =


∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x


{
u
v

}
= 1
E

 1 −ν 0
−ν 1 0
0 0 2(1 + ν)



σx
σy
τxy

 (3.10)

and then the displacement via the integral of the strain with boundary conditions.
We rewrite Eq.(3.4) as [104]

σx + σy = 4 ∂
2Φ

∂z∂z
= (∂x − i∂y)(∂x + i∂y)Φ = ∆Φ(x, y)

σy − σx + 2iτxy = 4∂
2Φ
∂z2

∂z = 1
2(∂x − i∂y) ; ∂z = 1

2(∂x + i∂y)

(3.11)

where Φ is a real function and ∂
∂z and ∂

∂z are formal operators defined by Eq.(3.11). In the next
step we employ Eq.(3.10) as

εx + εy = ∂z(u+ iv) + ∂z(u− iv) = 1− ν
E

(σx + σy) (3.12a)
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εy − εx + 2iεxy = −2∂z(u− iv) = 1 + ν

E
(σy − σx + 2iτxy) (3.12b)

Substituting Eq.(3.11) into Eq.(3.12b) with the conjugate on both sides, we derive

−2∂z(u+ iv) = 41 + ν

E

∂2Φ
∂z2 ⇒

u+ iv = − 1
µ

∂Φ
∂z

+ F (z) ; µ = E

2(1 + ν)

(3.13)

Since ∂z(u− iv) = ∂z(u+ iv), we can obtain a constraint for F (z) by Eq.(3.12a)

F
′(z) + F ′(z) =

[ 2
µ

+ 4(1− ν)
E

]
∂2Φ
∂z∂z

= 4
E

Reφ(z) (3.14)

which leads to
F (z) = 2

E
φ1(z) + (ic1z + c2) (3.15)

where the last two terms represent the rigid rotation and movement. Finally we arrive at the
displacement expression in complex form for plane stress as

u+ iv = − 1
µ

∂Φ
∂z

+ 2
E
φ1 = − 1

2µ(∂x + i∂y)Φ(x, y) + 2
E
φ1(z) (3.16)

Sih and Paris [97, 103, 104, 105] take the analytical method for a general anisotropic situation
with a more complicated form. Here we want to continue the analysis of Westergaard for the
crack tip singularity.

Considering the symmetry, we have reason to guess σy ∼ σ∞y /(1 − a2/x2) where a is the
semi-length of the center crack and σ∞y is the boundary stress for y → ∞. Here we use the
notation σ0 to follow the lecture notes by Saouma. However, in order to recover σy = 0 for
−a < x < a, we need to modify the formula as σy(y = 0) ∼ Re(σ0/

√
1− a2/x2) → 0. So

Westergaard has the reason to suppose

φI(z) = σ0√
1− a2

z2

⇒ ΦI(x, y) (3.17)

We can get the stress components using Eq.(3.9). Let us do the Talyor expansion near the crack
tip by ε = z − a = reiθ with r/a� 1 and thus

σI
y(ε) = σ0

√
a

2r cos
θ

2(1 + sin
θ

2sin
3θ
2 ) + h.o.t

σI
x(ε) = σ0

√
a

2r cos
θ

2(1− sinθ2sin
3θ
2 ) + h.o.t

τ I
xy(ε) = σ0

√
a

2rsin
θ

2cos
θ

2cos
3θ
2 + h.o.t

(3.18)

where σx could be reproduced by superposing a linear solution with σ̃x = −σ0. It is natural for
Irwin [106, 107] to introduce the stress intensity factor (SIF) as

KI = lim
r→0,θ→0

√
2πrσy ∼ σ0

√
πa (3.19)
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Fig. 3.1 Geometry of the Mode I open crack: 2a is the initial crack length and σ0 is
boundary stress in the y direction.

where 2π is merely a normalization factor. The work of Sih, Paris and Irwin [97] for Mode I crack
opening in the plane anisotropic case finds [104, 106, 108]

u = KI

√
2r
π

Re{ 1
s1− s2

[
s1p2(cosθ + s2sinθ)1/2 − s2p1(cosθ + s1sinθ)1/2

]
}

v = KI

√
2r
π

Re{ 1
s1− s2

[
s1q2(cosθ + s2sinθ)1/2 − s2q1(cosθ + s1sinθ)1/2

]
}

(3.20)

with material constants

pα = a11s
2
α + a12 − a13sα

qα = a12sα + a22
sα
− a23 (3.21)

where

sα = aα + ibα , bα > 0 (3.22)

are two groups of conjugate roots of the eigen equation [97, 109] by Eq.(3.5) as

a11s
4 − 2a13s

3 + (2a12 + a33)s2 − 2a23s+ a22 = 0 (3.23)
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Fig. 3.2 Schematic diagram of the different modes (from [110]).

Following the similar approach by Westergaard, the potential function for Mode II is found
by setting

ΦII = −yRe
τ√

1− a2

z2

(3.24)

And the Mode III crack opening induced by an anti-plane shear problem can also be obtained
by a Williams expansion or by the complex theory for an easier harmonic compatibility equation
[104, 105, 106, 108, 107]. For the general displacement of an isotropic material under biaxial
loading, we use the solution by Theocaris [73, 74] for our system in the next subsection.

3.1.2 Analytical solution by Theocaris

Theocaris [73, 74] offers a full discussion for the planar crack opening within the linear limit.
He uses Kolosov-Muskhelishvili relations [92] to obtain the solution in consideration of the ori-
entation of the crack and the biaxial loading.
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Fig. 3.3 Geometry of the inclined crack with boundary loading (from [74]): 2a is the
initial crack length and k could be negative.

As demonstrated in Fig.(3.3), there is an initial tilting angle β which will generate a mix-mode
solution with KI and KII. The displacements for the crack −a < x < a are given as

u±(x) = Cmat{(1− k)(cos2β)x± (1− k)(sin2β)
√
a2 − x2}

v±(x) = Cmat{(1− k)(sin2β)x± [(1 + k)− (1− k)cos2β]
√
a2 − x2}

(3.25)

where the material constant Cmat is given by

Cmat = σ0(1 + κmat)
8µ =


σ0
E

plane-stress

σ0
E

(1− ν2) plane-strain
(3.26)

as well as the stress intensity factors (SIF)

KI = σ0
√
πa

2 [(1 + k)− (1− k)cos2β]

KII = σ0
√
πa

2 (1− k)sin2β
(3.27)
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Here we suppose Cmat > 0 for a special convention which is different from the original work by
Theocaris [74]. For the compressive case of σ0 < 0, we could set β = 0 and k < 0. There is a
geometry index for the elliptical crack as

δcr = (1 + k)− Cmat(1− k)2 + cos2β(1− k) [Cmat(1 + k)− 1] (3.28)

The criterion gives an open crack with δcr > 0 and two overlapped lips (branches) when δcr < 0.
We focus on the analysis with 0 < Cmat < 25% where Cmat has the same order of strain and
25% is really large in the linear assumption.

1) Crack with perpendicular tension force: β = π/2 and |kCmat| < 25%

δcr = 2 [1− Cmat(1− k)] > 0

v±(x = 0) = ±2Cmat · a
(3.29)

and we find v+/a ∼ 2σ0/E

2) Crack with perpendicular compressive force: β = 0 and k < 0

δcr = 2k(1 + Cmat − kCmat) < 0

v±(x = 0) = ∓2 |k| · Cmat · a→ overlap
(3.30)

Besides, Theocaris also compares the method by Westergaard and Sih et al. He then gives the
transform between the two potential functions φI and ZI. He then proves the equivalence just
when β = 0 and β = π/2. An extra constant term is necessary for the analysis of the slant crack.
[73].

3.1.3 Modified formula for finite strain

In our case of C. elegans elongation, finite strain is considered with hyper-elasticity and fiber
anisotropy. In addition, active stress, as well as initial strain, are also of the same order beyond
the linear limit. So it is not easy to obtain an analytical solution for the crack shape in classical
fracture mechanics. As far as we know, there is no formula of an open crack shape in anisotropic
hyper-elasticity. Nevertheless, there is the basic picture of Eq.(3.29) that the crack opening length
b is proportional to σ0/E which is natural and also favored by biologists due to its simple form.

Following the work by Theocaris, we modify the original formula by replacing σ0 and E
respectively with the Cauchy stress σα(F ) and the tangent stiffness modulus Eα in the opening
direction. According to the experiment [8, 84], cuts are made in the current configuration and we
use the superposition law to gain the total stress and calculate the tangent stiffness matrix with
information of equivalent components Eθ and Ez . Here we make a simplification of pure Mode I
crack opening which can be achieved by laser cuts along the special direction. Due to the biaxial
tension state, a small tilting angle can be neglected. We give the relation between the measurable
geometry factor Fα and elastic quantities depicted in Fig.(3.4) as

Fα = bα
lβ
≈ 2σα

Eα
σα = σpα(F ) + σaα(n, ζ)

Eα = Kαα −
K2
αβ

Kββ
; Kαβ = ∂σpα

∂lnλβ
= λβ

∂σpα
∂λβ

(3.31)
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Fig. 3.4 Geometry of an open crack with initial length lβ and opening length bα in the
biaxial loading state.

where {α, β} takes {θ, z} or {z, θ} and there is no Einstein summation convention in Eq.(3.31).
σp and σa are the passive and active stress defined in Chapter 3. We take for C. elegans

σpα(F ) = ∂W̃

∂λα
λα = ∂W̃

∂lnλα
W̃ = µ

2
[
(ΛΛZ/λ0λ0z)−2 + (Λ/λ0)2 + (ΛZ/λ0z)−2 − 3

]
+ τ

4
[
(Λ/λ0)2 − 1

]2 (3.32)

where λ0 and λ0Z are unknown pre-strains. The active stress tensor is decomposed into a volu-
metric/spherical and a deformatic/deviatoric part

σa = −paI + ζdiag(0, 1,−1)

ζ ≈ 2α1
π

tan−1 [α2(ΛZ − 1)]
(3.33)

with two unknown coefficients α1 and α2 for the empirical formula of ζ. The volumetric part will
be eliminated just like the hydrostatic pressure Eq.(2.12) and Eq.(2.13). Hereafter, we can use
the experimental data to identify all the parameters in Fig.(3.7) with continuous conditions on the
interface of S and DV cells: σSθ = σDVθ .
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Fig. 3.5 Flow chart of fracture factor F with stress in finite elasticity.

Fig. 3.6 Elongation by active stress with Z/Z0 = 1.3, 1.5, 1.7.
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Fig. 3.7 List of parameters and available data from [8] concerning three positions in
the embryo: head, body and tail and two different kinds of cells: S and DV. Number of
unknowns: 18, measurements: 17 and continuity equations: 10.

We use the shear modulus of the seam cells, µS , as the unit for nondimensionalization. This al-
lows us to get the table (3.2) of all material constants with the help of the crack factor F Eq.(3.31)
as well as the experimental measurement (see Fig.(2.3)).

C0S C0DV
[µm] [µm] λ0Z λ0S λ0DV α1 α2

Head 14.5 33.0 1.025 1.06 1.0326 2.2 1.27
Body 10.1 24.8 1.025 1.09 1.05 1.15 3.2
Tail 10.1 24.8 1.055 1.05 1.0232 1.25 2.9

Elastic coefficients: µDV = 1.44 , τS = 0.15 , τDV = 0.67 with µS = 1

Table 3.2: Geometry and material parameters
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Fig. 3.8 Calculation map with equivalent Young’s modulus defined by Eq.(3.31).

(a) Crack opening in seam cells (b) Stress evolution in seam cells (c) Active stress during elongation

Fig. 3.9 Estimate of active stress: (a) Fitting curve for crack factor F = b/l ∼
2σα/Eα with experimental data; (b) Dimensionless passive stress versus elongation;
(c) Estimate of active stress calculated by the connection equation σSθ = σDVθ .

Fig.(3.9) shows us some primary results through the calculation with our modified expression
in seam cells. Our theoretical formulas (solid lines) meet well with the experimental data (hollow
triangles). We can see that through solving a series of nonlinear constraint equations by Fig.(3.7)
with the connecting condition σSθ = σDVθ , we can get the active stress ζ as a function of the
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elongation ΛZ by ζ(ΛZ) = σPθ (DV )− σPθ (S) since molecular motors are mainly active in seam
cells. Then we can identify two parameters α1 and α2 for an empirical fitting Eq.(3.33) for such
a mechanism. However, we can just acquire an assessment of stress distribution and the absolute
value of Young’s modulus should be derived through other methods [10, 11, 12, 13, 14]. During
the calculus, we assume stress and strain orthogonality by Eq.(2.5) and Eq.(2.11). Besides we
provide the results of equivalent stiffness coefficients Eα of Eq.(3.31)

Cracks open in two orthogonal directions which implies a biaxial tension state of the epithe-
lium. According to our analysis, there is no surprise for FZ but it might seem rather bizarre that
the passive part σpθ is negative in θ direction during elongation. So there ought to be an extra inner
tensile stress. Thanks to laser ablation, we can first know the local sign of the total stress with
open for positive and closed for negative. Furthermore, the shape factor reflects more or less the
anisotropy in different orthogonal directions. With data analysis, we finally obtain some quanti-
tative information about pre-strain and active contribution in mean average field. This technique
can be used for other soft matter systems in elasticity. Moreover, we want to simulate the crack
opening in a finite plane on purpose of mechanics. Besides, the real biological system has finite
size. We shall use a numerical method in the next section.

3.2 Numerical simulations with XFEM in MATLAB

We could use the J integral [111] with a Newton iterative solver for the nonlinear problem. But
here we still want to give an fast estimate of the crack opening factor with our modified formula.
Therefore, we employ FEM with enriched node approximations [38, 112, 113, 114, 115, 116]
because of its simple implementation. There are other numerical methods like BEM, phase field
and MD [117, 118, 119] with techniques for the crack tip interpolation and reconstruction. In this
section, we use the open source code in MATLAB [120]

3.2.1 Basic algorithm

Here we give a brief introduction on the extended-FEM (XFEM) in fracture mechanics.
XFEM is developed to settle all kinds of discontinuities for classical continuum mechanics like
material interfaces and cracks by singular elements and mesh-free interpolations. Essentially, it
is a modification and extension on the basis of FEM. In this chaper, we shall focus on one of its
applications in 2D, the crack problem by enriched elements within the Ritz-Galerkin frame.

We begin with the constitutive relation

σij = D̂ijklεkl ⇒ {σ} =
[
D̂
]
{ε} (3.34)

where the left equation is written in tensor components and the right in a matrix form. During
the computation, we prefer the latter. Here D̂ = D(u, x) is related to deformation as well as
positions for the general case and we make a strong assumption of Eq.(3.10) which means

[
D̂
]

is a constant matrix with only two material parameters. We limit our discussion to the linear
isotropic case. We make a temporary convention: vectors are written in bold and matrices are
labeled with square brackets or subscripts for the size.

The virtual work principle without inertial terms reads∫
Ω
δεTσ −

∫
Ω
δuTb−

∫
∂Ω
δuTfbc = 0 (3.35)



44 Chapter 3. Solutions for crack opening by laser ablation

where b is the body force and fbc is the known boundary force with the Cauchy relation. The
stress-strain and strain-displacement relations in a matrix form were provided previously in Eq.(3.10).
We use the Ritz-Galerkin method [63, 121, 122] with enriched degrees of freedom (DOFs) [38]
as

{u} = [Nstd] {qstd}+ [Nenr] {qenr}
{ε} = [L] {u} = [Bstd] {qstd}+ [Benr] {qenr}

(3.36)

where [N ] is the shape function matrix, {qstd} is the standard nodes in FEM,{qenr} represents the
enriched part and [L] is the linear partial differential operator matrix. In each element, we have
the same piece-wise interpolation approximations

uh(x) = uh(x;nstd) + uh(x;nH) + uh(x;ncr)

=
nstd∑
I=1

NI(x)qI +
nH∑
J=1

NJ(x)H(x)qJ +
ncr∑
K=1

NK(x)
nasy∑
m=1

fm(r, θ)qmK
(3.37)

where
∑
NI =

∑
NJ =

∑
NK = 1, H(x) gives displacement jumps between different phases

and fm(r, θ) are enriched functions for crack tips which are related to material properties [104,
112]. For the isotropic case, we can take the asymptotic basis

[f1, f2, f3, f4] =
[√

rcos
θ

2 ,
√
rsin

θ

2 ,
√
rcos

θ

2sinθ,
√
rsin

θ

2sinθ
]

(3.38)

For the orthotropic or even anisotropic material, we shall modify the asymptotic basis to ensure
completeness of the solution space. We have the general relationship between stress and SIF as

σy
τxy
τxz

 = 1√
2πr

f I
11(θ) f II

12(θ) f III
13(θ)

f I
21(θ) f II

22(θ) f III
23(θ)

f I
31(θ) f II

32(θ) f III
33(θ)



KI
KII
KIII

 (3.39)

where Ki = f(g)σi
√
πa and f(g) is a parameter dependent of specimen, geometry and loading.

Eq.(3.39) is employed for crack opening in an anisotropic material with the same definition of Ki

in the isotropic hypothesis while the square root law has to be modified in other cases which will
not be discussed here [105, 106, 123]. For orthotropic circumstances, it is suggested to use the
following enriched interpolation [114, 115] as

fi ∼
√
r

[
cos

θ1
2

√
g1(θ), cos

θ2
2

√
g2(θ), sin

θ1
2

√
g1(θ), sin

θ2
2

√
g2(θ)

]
gα(θ) = cos2(θ) + sin2(θ)

e2
α

; θα = tan−1( tanθ
eα

)
(3.40)

where eα are two material constants. The calculation framework in 3D is given in references
[112, 124]. Back to Eq.(3.37), two level set functions ψn and ψt are used to divide the DOFs
into three types. We assume an initial crack as a straight line in the center of an elastic body in
Fig.(3.10). There are three kinds of elements necessary in Eq.(3.37): the standard element with
uh(x) = uh(x;nstd), the Heaviside-enriched (H) element with uh(x) = uh(x;nstd)+uh(x;nH)
and finally the crack tip element with uh(x) = uh(x;nstd) + uh(x;ncr). For neighbor interface
elements close to the crack body or tips, there is a criterion for whether it needs the Heavi-
side enrichment at the Gaussian integral point [123]. In practice, we initialize all the elements
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with standard interpolations and then identify all crack tips one by one through the criterion in
Fig.(3.11). We first provide the definition as

ψn(X) = d(X) · n̂ ; n̂ = e3 × (Xtip
1 −X

tip
2 )

ψt(X;Xtip
α ) = (X −Xtip

α ) · tα ; t1 = −t2
(3.41)

Now we shall give several explanations for these two functions on the straight line crack. The
method can also be applied to multi-cracks in 2D and 3D. We define the left starting point as
Xtip

2 , the right end point as Xtip
1 , unit tangent vectors t2 and t1 as well as tip normal vectors

nα = e3 × tα. There is a linear transform map between the global xy coordinates and the
special center x

′
y
′

coordinates as {
X
′

Y
′

}
=
[
tT1
n̂T

]{
X −X0
Y − Y0

}
(3.42)

For the definition of ψn(X), we define the uniform normal vector in each crack segment as
n̂ = n1 and the distance vector d from the given node point X to the nearest point of the crack.
It is obvious that ψn is positive above the crack line in Fig.(3.11) and negative below the crack.
In the same way we can define another function ψt as the signed distance to the nearest crack tip
in Eq.(3.41). In abbreviation, we take ψtα = ψt(X,Xtip

α ) for the illustration of Fig.(3.11).
It is easy to understand these definitions with the help of the local coordinate system in the

center of the crack line.

ψn ≥ 0⇔ Y
′ ≥ 0

ψt1 ≥ 0⇔ (X ′ −X ′1) ≥ 0 ; ψt2 ≥ 0⇔ (X ′ −X ′2) ≤ 0
(3.43)

In the actual application, we can determine which tip is closer to the node point by a radius
search algorithm and it is sufficient to decide which enrichment should be implemented for the
concerning domain. The general rule is given by

min(ψnNi)max(ψnNi) < 0 , min(ψtNi)max(ψtNi) < 0⇒ Crack

min(ψnNi)max(ψnNi) < 0 , min(ψtNi)max(ψtNi) > 0⇒ Heaviside

min(ψnNi)max(ψnNi) > 0 , min(ψtNi)max(ψtNi) > 0⇒ Standard

(3.44)

where Ni is the node number of each element and ψt is calculated with respect to the near-
est tip point. For example, in Fig.(3.11) the element [a2, b2, c2, d2] is calculated with ψt2 and
[a1, b1, c1, d1] is judged by ψt1. For crack propagation, we have to employ an updated algorithm
with an empirical growth formula [120]. In practice we define two narrow bands to target a point.

With these definitions we can assemble the total stiffness matrix by substituting Eq.(3.36) into
Eq.(3.35) as

[
K̂
]

=

 [Kstd] [Kcoup]

[Kcoup]T [Kenr]

 ; {q̂} =
{
qstd
qenr

}
; {f̂} =

{
fstd
fenr

}
[
Kie
std/enr

]
∼
∫

Ωe

[
Bstd/enr

]T
[D]

[
Bstd/enr

]
dVe ;

[
Kie
coup

]
∼
∫

Ωe
[Bcoup]T [D] [Bstd] dVe

(3.45)
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where
[
K̂
]

is the final stiffness matrix with all DOFs, {q̂} is the generalized displacement vector

after reordering and {f̂} is the force vector. For each element ie, the local elastic energy with[
Kie

]
is calculated by the expanded B matrix.

Fig. 3.10 Demonstration of enriched nodes and elements

Fig. 3.11 Level Set functions ψn and ψt
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We now proceed with a benchmark of the calculus and discuss the effect of the initial angle
of the crack and biaxial loading.

3.3 Results and discussion

In this section we will apply the algorithm to the calculation. First we will use the theoretical
formula with geometric modifications to verify the simulations. Then we use the XFEM to study
the opening of the crack in consideration of different tilting angles with loading. In the following,
we use the SI unit.

3.3.1 Geometry effects

For XFEM in finite size, we need to add a geometric factor for the SIF as [106, 107]

Kg
I = βgeo KI

(3.46)

Fig. 3.12 Sketch of mode I opening with the geometric effect in full size

We neglect the crack propagation by setting a large value for the critical stress. Theoretically
our geometry factor F ≈ 2σ∞Y /E can offer a priori estimate for an infinite plane where E is cal-
culated by Eq.(3.31). However, the experiment might exhibit size effects which can be simulated
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by XFEM. We fix the geometry with W = H = 4, 2a = 0.6 and mesh size ∆x = ∆y = 1/32.
We focus on the deformation and stress distribution when σ∞Y /E = 10% and thus F ≈ 0.2. For
the theoretical calculus of the stress intensity factors, we employ Eq.(3.27) and Eq.(3.46).

(a) (b)

Fig. 3.13 E = 105Pa, ν = 0.3, σ∞Y = 104Pa,Kg
I ≈ 9.84×103Pa

√
m (a) Open Crack

(Half size) under uniaxial stretch withF ≈ 0.22, Kcomp
I = 9.72×103Pa

√
m; (b) Open

Crack (Full size) under uniaxial stretch with F ≈ 0.236, Kcomp
I = 9.83× 103Pa

√
m
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(a) (b)

Fig. 3.14 Stress contour of components σxx and σxy

(a) (b)

Fig. 3.15 Stress contour of components σyy and Von Mises value σvm
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The code in MATLAB is verified by a simple benchmark study. With finite size modifications,
the results of the numerical simulations are confirmed by the theoretical stress intensity factor.

3.3.2 Tilting angle in biaxial loading

In reality, we have the defect with a tilting angle and the membrane is under the biaxial
tension state according to the experiments [8, 84] which means that the crack is under mixed
mode loading. We again fix W = H = 4 and take ∆x = ∆y = 1/128.

Fig. 3.16 Sketch of mixed mode crack opening with tilting angle δβ = π/2 − β and
biaxial loading parameter k0

In the following we will calculate the crack shape and stress distribution in two states: pure
angle change of β < 900 in uniaxial loading with k0 = 0 and tilting effect β < 900 in biaxial
loading with k0 > 0. First we increase δβ as 20, 50 and 100. Then for δβ = 50 and δβ = 100

respectively, we add the force in the X direction with k0 = 0.2, 0.5, 1.0. The crack shape is
described in blue. We provide the shape factor F and stress intensity factors KI,KII of the mixed
mode problem in each case. We use the MATLAB function contourf(X,Y, Z, levels) with 20
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levels for the 2D stress contour plots in the undeformed configuration. The curve density and
shape reflect the singularity near the crack tip and the solution in the total computational domain.
In the experiment, we utilize the shape factorF for the estimate of the far field stress perpendicular
to the direction of laser cuts. This is our main concern in this part. We also provide the stress
plots which might be useful for biologists. For example, the von Mises stress is connected with
the plastic region. σyy is the most relevant component. We can see clearly from the contours how
singularity decays with the radius. In this section, we neglect the crack growth as a simplification.

Fig. 3.17 E = 105Pa, ν = 0.3, σ∞Y = 104Pa, β = 880, k0 = 0,Kg
I ≈ 9.83 ×

103Pa
√

m,Kβ
II ≈ 0.34 × 103Pa

√
m. Calculation results are F ≈ 0.215, Kcomp

I =
9.80× 103Pa

√
m, Kcomp

II = 0.32× 103Pa
√

m
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(a) (b)

Fig. 3.18 Stress contour of components σyy and Von Mises value σvm with β =
880 , k0 = 0

Fig. 3.19 E = 105Pa, ν = 0.3, σ∞Y = 104Pa, β = 850, k0 = 0,Kg
I ≈ 9.77 ×

103Pa
√

m,Kβ
II ≈ 0.85 × 103Pa

√
m. Calculation results are F ≈ 0.214, Kcomp

I =
9.74× 103Pa

√
m, Kcomp

II = 0.85× 103Pa
√

m
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(a) (b)

Fig. 3.20 Stress contour of components σyy and Von Mises value σvm with β =
850 , k0 = 0

Fig. 3.21 E = 105Pa, ν = 0.3, σ∞Y = 104Pa, β = 800, k0 = 0,Kg
I ≈ 9.55 ×

103Pa
√

m,Kβ
II ≈ 1.68 × 103Pa

√
m. Calculation results are F ≈ 0.207, Kcomp

I =
9.58× 103Pa

√
m, Kcomp

II = 1.69× 103Pa
√

m
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(a) (b)

Fig. 3.22 Stress contour of components σyy and Von Mises value σvm with β =
800 , k0 = 0

From Fig.(3.17) to Fig.(3.22), we find that the crack factor F decreases slightly compared to
the theoretical valueF = 0.2. Mixed mode crack opening happens as expected with a rising value
of KII. We notice the dark region in σyy and σvm which reflects the small-stress area. Compare
the results for different tilting angles, we find that the domain expands along the y direction.
For the small tilting angle δβ ≤ 100 which is observed in the experiment [8], the simulation
with given parameters prove the validity of our modified formula with respect to F . The stress
distribution almost keeps its symmetry despite the rotation of singularity tips. The affected area
of the local stress state due to the cut is described by contour plots.
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Fig. 3.23 E = 105Pa, ν = 0.3, σ∞Y = 104Pa, β = 850, k0 = 0.2,Kg
I ≈ 9.78 ×

103Pa
√

m,Kβ
II ≈ 0.68 × 103Pa

√
m. Calculation results are F ≈ 0.205, Kcomp

I =
9.76× 103Pa

√
m, Kcomp

II = 0.68× 103Pa
√

m

(a) (b)

Fig. 3.24 Stress contour of components σyy and Von Mises value σvm with β =
850 , k0 = 0.2
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Fig. 3.25 E = 105Pa, ν = 0.3, σ∞Y = 104Pa, β = 850, k0 = 0.5,Kg
I ≈ 9.81 ×

103Pa
√

m,Kβ
II ≈ 0.43 × 103Pa

√
m. Calculation results are F ≈ 0.201, Kcomp

I =
9.78× 103Pa

√
m, Kcomp

II = 0.42× 103Pa
√

m

(a) (b)

Fig. 3.26 Stress contour of components σyy and Von Mises value σvm with β =
850 , k0 = 0.5
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Fig. 3.27 E = 105Pa, ν = 0.3, σ∞Y = 104Pa, β = 850, k0 = 1.0,Kg
I ≈ 9.85 ×

103Pa
√

m,Kβ
II ≈ 0Pa

√
m. Calculation results are F ≈ 0.186, Kcomp

I = 9.82 ×
103Pa

√
m, Kcomp

II = −7× 10−3Pa
√

m

(a) (b)

Fig. 3.28 Stress contour of components σyy and Von Mises value σvm with β =
850 , k0 = 1.0

With a fixed small angle δβ = 50, the shape factor F decreases as k0 increases. Because of
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finite strain, the stretch along the crack will increase the displacement of the tips, which is not
considered by our formula. The stress distribution σyy does not change too much with the loading
along the x direction. But the large-stress domain grows with the external stretch.

Fig. 3.29 E = 105Pa, ν = 0.3, σ∞Y = 104Pa, β = 800, k0 = 0.2,Kg
I ≈ 9.61 ×

103Pa
√

m,Kβ
II ≈ 1.35 × 103Pa

√
m. Calculation results are F ≈ 0.204, Kcomp

I =
9.64× 103Pa

√
m, Kcomp

II = 1.34× 103Pa
√

m
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(a) (b)

Fig. 3.30 Stress contour of components σyy and Von Mises value σvm with β =
800 , k0 = 0.2

Fig. 3.31 E = 105Pa, ν = 0.3, σ∞Y = 104Pa, β = 800, k0 = 0.5,Kg
I ≈ 9.70 ×

103Pa
√

m,Kβ
II ≈ 0.84 × 103Pa

√
m. Calculation results are F ≈ 0.202, Kcomp

I =
9.73× 103Pa

√
m, Kcomp

II = 0.82× 103Pa
√

m
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(a) (b)

Fig. 3.32 Stress contour of components σyy and Von Mises value σvm with β =
800 , k0 = 0.5

Fig. 3.33 E = 105Pa, ν = 0.3, σ∞Y = 104Pa, β = 800, k0 = 1.0,Kg
I ≈ 9.85 ×

103Pa
√

m,Kβ
II ≈ 0Pa

√
m. Calculation results are F ≈ 0.189, Kcomp

I = 9.88 ×
103Pa

√
m, Kcomp

II = 7.8× 10−3Pa
√

m
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(a) (b)

Fig. 3.34 Stress contour of components σyy and Von Mises value σvm with β =
800 , k0 = 1.0

Now we compare the figure groups Fig.(3.23 to 3.28) and Fig.(3.29 to 3.34). First, the shape
factor is almost the same with given parameters and boundary conditions. Second, the stress
intensity factors KI and KII satisfy Eq.(3.27) with the same geometric modification Eq.(3.46) for
finite size. Last but not least, the stress contours of σyy and σvm are also quite similar when
k0 = 0.5, 1.0. Biaxial loading will decrease the effect of the crack orientation when δβ ≤ 100. In
conclusion, our modified formula works in all situations above. But the local stress distribution
depends on the angle change and loading condition.

3.4 Conclusion

In this chapter, a modified crack opening factor is suggested by substituting the original
Young’s modulus in the linear instance with an equivalent one from the tangent stiffness ma-
trix. The tilting angle of a crack under biaxial loading is considered. Stress intensity factors and
the crack opening factor are acquired by both theoretical and numerical methods. For a tilting
angle δβ ≤ 100 and biaxial loading k0 ≤ 1, formula Fα = 2σα/Eα, Eq.(3.31), gives a rela-
tively accurate estimate. For finite size with irregular geometry, XFEM could help us recognize
the displacement and stress distribution even in anisotropic systems. Results in Fig.(3.9) demon-
strate that active stress is of the same order as the passive one during C. elegans elongation which
could explain the crack opening in both orthogonal directions in the experiment. Laser ablation
technique is verified as a powerful tool for biologists for tissue scale mechanical measurement.

In this part, we have employed finite elasticity with fracture mechanics to deal with our bio-
logical problem. We have given a theoretical analysis for the deformation of C. elegans elonga-
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tion. We have also provided the stress-strain relationship in consideration of the active network
in the seam cells. Finally we have derived a simple formula for a stress estimate by laser ablation.
Theoretical and numerical solutions explain the experimental results very convincingly.



Part II

Buckling of Drosophila wing disc

We study the buckling of the Drosophila wing disc by nonlinear elasticity. We model the

system as a bilayer composed of a soft substrate and a stiffer and thinner extracellular

matrix (ECM). We find two deforamtion scales shown in Fig.(0.6). In this part, we focus on

the bending at the tissue scale. Meanwhile, 3D solid finite element simulations are

time-consuming for thin bilayers. So we choose two kinds of methods in chapter 4 and

chapter 5 respectively. First we treat the bilayer structure as a whole slender plate in

chapter 4 because both layers are still thin compared to other length scales. We use the

homogenization method to get the equivalent monolayer equations with inner bending

induced by growth and active networks. We discuss the 1D case and present an analytical

solution. We find that an extra nonlinear term will break the symmetry of the buckling

shape. We consider the defect of the ECM in the bending stiffness. Then we use COMSOL

for 3D shell simulations. In chapter 5, we model the bilayer system as a 3D solid with

nonlinear Euler beam elements. Geometrically nonlinear elasticity is considered in finite

element simulations. Growth in beams and solids is included by inner stress. A platform in

MATLAB is used for the simulations with a friendly interface for secondary development.

Finally, we study 2D wrinkling and folding simulations with viscoelasticity.
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Chapter 4

Bilayer Fvk model with growth

Growth of thin layers can explain the shape diversity observed in nature such as in flowers,
leaves or algae. A decade ago, the formalism of a growing plate [125] has been established
and has shown that inhomogeneous growth inside a thin layer may induce buckling, generating
simultaneously the so-called Gaussian and the average curvature in the FvK equations. Whereas,
many thin living objects are made of several layers which have varying elastic properties and also
follow different rules of growth. The scope here is to extend the analysis from a single layer to a
bilayer [126, 127]with distinct moduli and growth but remaining thin. Besides, we also consider
the role of the extracellular matrix (ECM). Biologists can modify this layer which, in our case,
changes the bending stiffness, growth and even active momentum in the model.

FvK equations are the preferred tool for us: assuming an initially planar plate, the order of
magnitude of the vertical deflection ζ may be much larger than that of the thickness h of the plate
but smaller compared with the horizontal length L. These restrictions concern also the bilayer
specimen. We shall employ the same method in Chapter 1 to obtain governing equations for the
thin bilayer plate in section (4.1) with discussion of the 1D case. We consider 3D simulations
with complex geometry in section(4.2).

4.1 Governing equations with growth

In this section, we will derive the bilayer Fvk model with growth. Then we will introduce
the bending contribution induced by bilayer growth and the active network. In order to determine
the neutral surface for the equivalent monolayer model, we minimize the corresponding elastic
energy in 1D. We also analyze the 1D case with the ECM defects and a new quadratic term.

We start from the elastic strain in finite deformation theory. According to the famous Kroner-
Lee decomposition [128], the deformation gradient tensor F results from both the elastic tensor
A and the inelastic growth part G in a simple way:

F = AG (4.1)

When growth is relatively small, we can linearize the matrix as Gij ' δij + g̃ij with |g̃ij | � 1.
And thus

A = FG−1 ≈ F(I− g̃) (4.2)

To calculate F , we use the kinematic relations Eq.(1.32,1.33,1.34) and neglect higher order terms
within the Fvk limit
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The elastic strain tensor becomes

E = 1
2(ATA− I)⇒

Eij ≈
1
2(∂u

0
i

∂xj
+
∂u0

j

∂xi
− gij + ∂ζ

∂xi

∂ζ

∂xj
)− ∂ζ

∂xγ
g̃γ3δ3iδ3j + 1

2(u1
jδ3i + u1

i δ3j)

+Z − Zn
2 (∂u

1
i

∂xj
+
∂u1

j

∂xi
)

(4.3)

where g equals two times the symmetric part of the linearized growth tensor, i.e. gij = (g̃ij+ g̃ji).
This notation shall be used for the following discussion.

In this thesis within the Fvk limit, we use the homogenization method by taking the integral
over the thickness and consider the difference in each layer as a kind of inner angular momentum
or extra force on the neutral surface. Due to small but finite strain for such biological systems,
we still apply Hooke’s law. We also take the standard membrane hypothesis: σi3 = 0 as we have
demonstrated in the monolayer model. Then, for every layer, the in-plane stress-strain relation in
the isotropic situation reads σαβ = E

1−ν2 ((1−ν)εαβ+νεγγδαβ) where εαβ = ε0
αβ+(Z−Zn)ε1

αβ .
With Ei3 = 0 , the first-order bending part (Eq.1.37) related to ε1

αβ becomes

U1(x, y) ≈ (− ∂

∂x
ζ + g13) ; V 1(x, y) ≈ (− ∂

∂y
ζ + g23) (4.4)

So the zero and first order membrane strain are given by

ε0
αβ ≈

1
2(∂uα
∂xβ

+ ∂uβ
∂xα

+ ∂ζ

∂xα

∂ζ

∂xβ
)− 1

2gαβ ; ε1
αβ ≈ −∂αβζ+ 1

2(∂gβ3
∂xα

+ ∂gα3
∂xβ

) = −∂αβζ+ε1,g
αβ

(4.5)
It is not difficult to obtain the Euler-Lagrange equations with growth as

∆D(∆ζ − CM )− ∂α(Nαβ∂βζ) + ∂αβM
g
αβ = 0

∂

∂xβ
(
∫
σαβdZ) = ∂

∂xβ
(Nαβ) = 0

(4.6)

The first equation represents the out-of-plane bending equilibrium and the second one stands
for the in-plane stress equilibrium with the following definitions

D =
∫

E

1− ν2 (Z − Zn)2dZ

CM = 1
D

∫
E

1− ν2 (Z − Zn)2∂gγ3
∂xγ

dZ

Mg
αβ = −

∫
(Z − Zn)σ0

αβdZ ∼
∫

(Z − Zn) E

1− ν2 [(1− ν)1
2gαβ + 1

2νgγγδαβ]dZ

(4.7)

where Mg
αβ is the inner angular momentum due to the growth gradient. We consider the

bilayer with the volume set Ω = S0(x, y)× [−hS , hf ] . Here we set the coordinate system on the
interface S0, which is a plane for the moment i.e. Z = 0. hS is the thickness of the bottom layer
(substrate) and hf stands for the top one (film). We assume that these two layers connect each
other, do not separate during the deformation and share the same Poisson coefficient.
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The total free energy is the sum of the upper film and the lower substrate (without debonding
surface energy [129]).

E =
∫ hf

0
dZ

∫
S0(x,y)

1
2σ

f
ijε

f
ijdxdy +

∫ 0

−hS
dZ

∫
S0(x,y)

1
2σ

S
ijε

S
ijdxdy (4.8)

On the binding surface S0(x, y), we have the continuity of the interface (at Z = 0)

{U+, V +, ζ+} = {U−, V −, ζ−} = {U0, V 0, ζ}(x, y) (4.9)

The principle of minimum potential energy of a conservative system states

δΠ = δE −
∫
S0
pδζdS −

∫
∂S0

Nαβnβ δuαdl−
∫
∂S0

Qα δζαdl−
∫
∂S0

Mαβ δζαβdl = 0 (4.10)

Here p is the out-of-plane deflection force; Q is the edge shear force and M is the edge
bending momentum on the boundary of S0. For the variation of u0, we have the in-plane force
equilibrium equation about the plate.

Nαβ,β = 0 ; Nαβ :=
∫
σ0
αβdZ = hfσ

0,f
αβ + hSσ

0,S
αβ (4.11)

where we use
∫

(Z −Zn)σ1
αβdZ = 0 due to minimization of the potential energy which will later

be presented by a 1D case study. We neglect the higher order bending terms in the classical Fvk
limit.

In principle we can assume all kinds of boundary conditions for the degree of bending ζ. For
a clamped membrane

ζ = ζ,α = 0 (4.12)

And for a "free boundary", classically it reads with Kirchhoff conditions [130]

Mnn = 0 ; Qn + ∂Mns
∂xs

= 0 (4.13)

where n and s are, respectively, the normal and tangent direction of the boundary. For simplifica-
tion we just consider the main linear part of the boundary conditions.

4.1.1 Active momentum by ECM and initial curvatures

We could also reckon that the inner bending is induced by the ECM. As a simple implemen-
tation, we assume that the elastic curvature tensor equals

κeαβ = καβ − κaαβ (4.14)

where κaαβ is the momentum contribution by the active network. The bending energy with the
Kirchhoff assumption reads

Ebend = 1
2Dαβγδ(καβ − κaαβ)(κγδ − κaγδ) ; καβ = ζαβ (4.15)

Thus we can obtain the modified governing equations (see Eq.(4.7)) as

∆D(∆ζ − CM )− ∂α(Nαβ∂βζ) + ∂αβM
g
αβ = ∂αβ(Dκaαβ)

∂

∂xβ
(
∫
σαβdZ) = ∂

∂xβ
(Nαβ) = 0

(4.16)
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For the effect of an initially curved shape w0(x, y), we use the shallow shell approximation of
chapter 1. The equations become

∆D(∆ζ − CM )− ∂α(Nαβ∂βζ) + ∂αβM
g
αβ = ∂αβ(Dκaαβ) +Nαβ∂αβw

0

∂

∂xβ
(
∫
σαβdZ) = ∂

∂xβ
(Nαβ) = 0

(4.17)

Furthermore, we can use a term pag(x, y) to combine the contribution of an active momentum
and growth differences as

∆D(∆ζ − CM )− ∂α(Nαβ∂βζ) = Nαβ∂αβw
0 + pag(x, y)

pag(x, y) = ∂αβ(Dκaαβ −M
g
αβ)

∂

∂xβ
(
∫
σαβdZ) = ∂

∂xβ
(Nαβ) = 0

(4.18)

While the governing equations are not closed with the unknown Zn in Eq.(4.7). We have to make
sure that our theory reduces to the composite Euler beam formulation with Kirchhoff hypothesis
in 1D. Next we will discuss the 1D case and determine the neutral surface Zn via a minimization
of the strain energy.

4.1.2 Reduced 1D case with clamped boundary

We use Eq(4.8) and assume uniaxial deformation by taking σ0
22 = 0 and ε1

22 = 0. The free
energy in 1D is then given by

E =
∫ 1

2σ
0ε0 − (Z − Zn)σ0(d

2ζ

dx2 − CM ) + E(Z − Zn)2

2(1− ν2) (d
2ζ

dx2 − CM )2 dZdS (4.19)

where CM is defined by Eq.(4.7).

The elastic strain components reduce to ε0 = dU0

dx
− g11 + 1

2(dζ
dx

)2 ; ε1 = −d
2ζ

dx2 + dg13
dx

and the stress components of different orders tend to σ0 = Eε0 ; σ1 = E

1− ν2 ε
1.

Next we minimize the elastic energy with constant Zn

δE
δZn

= 0⇒ N(d
2ζ

dx2 − CM )− (d
2ζ

dx2 − CM )2
∫ hf

−hS

E

1− ν2 (Z − Zn)dZ = 0 (4.20)

where N =
∫
σ0dZ = N11. To be consistent with the pure bending of the small-strain case,

we take νf = νS = ν and ∫
E(Z − Zn)/(1− ν2)dZ = 0 (4.21)

which gives the bending stiffness for Eq.(4.6)

D = 1
12(1− ν2)

E2
fh

4
f + 4EfESh3

fhs+ 6EfESh2
fh

2
S + 4EfEShfh3

S + E2
Sh

4
S

Efhf + EShS
= 1

12(1− ν2)D̃

(4.22)
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In addition, we can get the expression of Mg
αβ in Eq.(4.7) since u, v, ζ are independent of Z.

We take the bending stiffness for the incompressible case as D(ν = 1/2) = D1/2 = 1
9D̃.

The formula is verified by the composite beam theory with D(ν = 0) = D0 = 1
12D̃ where

Zn =
Efh

2
f − ESh2

S

2(Efhf + EShS) from Eq.(4.21) by taking the integral over the thickness from −hS to

hf .

Stress equilibrium gives a simple result in 1D as

N =
∫
E(Z)ε0dZ = N11 = Const. (4.23)

Bending equilibrium now reads

d2

dx2 (Dd2ζ

dx2 −D
dg13
dx

) + d2

dx2M
g
11 −N

d2ζ

dx2 = Nw0
xx + p(x) (4.24)

where

Mg
11 =

∫ hf

−hS

E(Z − Zn)
1− ν2 g11dZ =

∫ hf

0

E(Z − Zn)
1− ν2 gfdZ +

∫ 0

−hS

E(Z − Zn)
1− ν2 gSdZ (4.25)

For the moment we assume that each layer has uniform growth gf,S , so Mg
11 equals a constant

in the bending equation but acts as an extra angular momentum on the boundary. And w0
xx is the

initial curvature of the stripe by the shallow shell approximation.
With Eq.4.24 divided by ES , we obtain the dimensionless equation as

d2

dx2 (D∗ d
2ζ

dx2 −D
∗dg13
dx

)−N∗ d
2ζ

dx2 = N∗w0∗
xx + p∗(x) (4.26)

where the dimensionless bending stiffness D∗ is

D∗ = η3
S

12(1− ν2)
α2β4 + 4αβ3 + 6αβ2 + 4αβ + 1

αβ + 1
(4.27)

with the following scaled quantities

α = Ef/ES , 0 < α < 1
ηf = hf/L , 0 < ηf � 1
ηS = hS/L , 0 < ηS � 1
β = hf/hS = ηf/ηS

x = x/L , −1/2 ≤ x ≤ 1/2
ζ = ζ/L , 0 ≤ |ζ| ≤ |ζ0|

w∗ = w/L
N∗ = N0/ESL
p∗ = p/ES

(4.28)

Next we try to find the buckling solution with MATLAB and MANLAB in 1D [131]. We focus
on buckling phenomena induced by the inner stress N due to growth in Eq.(4.23). Furthermore,
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we take COMSOL [132] for the complicated situation in 3D. We employ Matlab to deal with the
bending equation with constant growth in Eq.(4.25).

d2

dx2 (D∗ d
2ζ

dx2 )−N∗ d
2ζ

dx2 = N∗w0∗
xx + p∗(x, g,N) (4.29)

where p∗ includes the active momentum and growth in Eq.(4.18) with the shear effect g13 from
CM in Eq.(4.7,4.26). Since the real bilayer system is not perfectly uniform and the inner mem-
brane force N will also change the location of the neutral surface in Eq.(4.20), we attempt to take
this into account in the next section.

4.1.3 Solution with nonlinear effects

In this section, we will describe the nonlinear effect stemming from the location change of
the neutral surface Zn with an analytical solution. We perturbate the neutral surface as Zn =
Zn + εbhf . The dimensionless bending equation becomes

d2

dx2 (D∗ d
2ζ

dx2 ) + b∗

2
d2

dx2 (dζ
dx

)2 + (−N∗ + b∗w0∗
xx)d

2ζ

dx2 = N∗w0∗
xx + p∗ (4.30)

where

b∗ = −εb2 η
2
S(αβ2 + β) (4.31)

The change ofZn induces a nonlinear term of orderO(bζ2). We want to find an analytical solution
to show the role of this nonlinear effect. With dD/dx = 0 , p(x) = 0 , w0 = 0 as well as constant
growth, the bending equilibrium is integrable as

D∗
d2ζ

dx2 + b∗

2 (dζ
dx

)2 = N∗ζ +Ax+B (4.32)

where D∗ , b∗ are defined according to Eq.(4.27,4.31) and A,B are integral constants. Further-
more, we assume ζ(x) is an even function and thus we have A = 0. So we have the implicit

analytical solution with ζ(±1
2) = ζ

′(±1
2) = 0

(dζ
dx

)2 = −2N∗ζ0
b∗

( e
− b∗
D∗ ζ − 1

e−
b∗
D∗ ζ0 − 1

− ζ

ζ0
) ≥ 0 ,−1/2 ≤ x ≤ 1/2 (4.33)

where N∗ is supposed negative (compression stress to assure the right hand side is always posi-
tive), ζ0 is the peak/valley deflection of the plate and it can be solved by ζ(0) = ζ0. Finally we
can get the solution with the integral of Eq.(4.33).
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Fig. 4.1 Analytical solution with ν = 0.5, α = 50, ηf = 0.0005, ηS = 0.01, εb =
1, b∗/D∗ ≈ O(10): (a) bifurcation map (b) deflection shape of two branches with in-
creasing N

Fig.(4.1) shows the bifurcation diagram (left) and the buckling shape of two branches (right)
due to the nonlinear effect. ζ is the nondimensional deflection with ζ = ζ/L, x is the nondi-
mensional position. ζ(0) is the peak value at the middle point x = 0. In order to increase
the numerical convergence, we suppose w0 = −δ(x − 0.5)(x + 0.5) with an initial curvature
1/R0 ≈ w0∗

xx = −2δ where δ is a small quantity. There is a symmetry breaking due to the square
term of ζ. But when ζ is not large, ζ(0) < 0.1, one finds that the shapes of the two branches are
quite similar. After we should consider defects of the extracelluar matrix.

4.1.4 Solution with ECM defect

In the experiment, biologists can remove a part of the ECM during morphogenesis of the
wing disc. In mechanics, this reduces the bending stiffness D directly in Eq.(4.22). We use the
following form

D∗(x) = D0 − (D0 −Dd)exp
[
εw(x− xm)2/dw2

]
> 0

b∗(x) = b∗(1− exp
[
εw(x− xm)2/dw2

]
)

(4.34)

where xm is the position of the defect, dw reflects the removed length and we take εw ≈ −10 for
this experimental formula. It is obvious that when dw → 0, we have D∗ = D0. Near xm, D =
Dd(ES , hS) > 0 and far away from the defect domain, D = D0(Ef , hf , ES , hS) > Dd.
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(a) ECM defect: xm = 0.2, dw = 0.1 (b) ECM defect: xm = 0.3, dw = 0.2

Fig. 4.2 Defects with D(x). (a) Different buckling shapes between analytical so-
lutions (left) and results in consideration of bending stiffness distribution (right); (b)
buckling shapes and the bifurcation diagram with given parameters. Arrows point out
the rise of the membrane force N induced by constant growth in Eq.(4.23)

In Fig.(4.2a), we remove the ECM near xm = 0.2 with dw = 0.1. It does not change the
shape of the solution compared with Fig.(4.1) but the position of the peak. In Fig.(4.2b), we
take xm = 0.3 and raise dw to 0.2. We find it generates a buckling mode shift for one branch.
Moreover, there is an instability shown in the figure. We suppose a buckling shape controlled by
growth together with the ECM defect.

In the following, we want to simplify the nonlinear effect by replacing it with a simple
quadratic term.

4.1.5 Quadratic effect calculated in MANLAB

We substitute the nonlinear term referred to ( dζdx)2 in Eq.(4.30) with ζ2 in the toolbox MAN-
LAB [131] for the calculation. The governing equation becomes

d2

dx2 (D∗ d
2ζ

dx2 )−N∗ d
2ζ

dx2 = N∗w0∗
xx + k1ζ + k2

2 ζ
2 −N∗p(x) + p0(x) (4.35)

where k2 is in our concern and k1 behaves like a linear Winkler foundation [133]. −Np(x) is
a term proportional to growth, p0(x) is the initial deflection force and Nw0

xx reflects the effect
of the initial curvature. We write the general model in MANLAB but we focus on the role of
k2. After the finite difference procedure, the discrete governing equation can be generalized as a
constant part L0, a linear operator L(U) and a quadratic term Q(U,U).

R(U) = L0 + L(U) +Q(U ,U) = 0

U =

ζiN
λ

 (4.36)



4.1 Governing equations with growth 73

where

L0 =
[
−p0(xi)

0

]

L(U) =

 d2

dx2 (D d2

dx2 ζi)− k1ζi − λp(xi)
−N − λ


Q(U) =

−N d2

dx2 ζi −
k2
2 ζ

2
i

0


(4.37)

We use D = 1, x = x/L, ζ = ζ/L to normalize the equation Eq.(4.35) with the ECM defect
defined by Eq.(4.34). p(x) is a force system for the test of the quadratic term ζ2 with no significant
physical meanings. With Eq.(4.36,4.37), λ = −N is positive and it is assumed to be a continuous
loading parameter in the buckling analysis. After we define 0 ≤ x ≤ 1 and we take the deflection
value at the middle point ζ(0.5) for the phase diagram. The results are as follows

(a) Deflection shape with variable λ (b) Diagram of ζ(x = 0.5)with variableλ

Fig. 4.3 Results with D0 = 1, Dd = 0.5, xm = 0.5, dw = 0.2, k1 = 0, k2 =
10000, p(x) = 0. (a) Buckling shape with ECM defect; (b) diagram with given pa-
rameters
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(a) Deflection shape with variable λ (b) Diagram of ζ(x = 0.5)with variableλ

Fig. 4.4 Results with D0 = 1, Dd = 0.5, xm = 0.5, dw = 0.1, k1 = 0, k2 =
10000, p(x) = 100δ(0.5) − 100δ(0.3) − 100δ(0.7). (a) Buckling shape with ECM
defect; (b) diagram with given parameters

In Fig.(4.3), we can see the buckling shape (one branch) and the diagram with the loading
parameter λ versus deflection value at x = 0.5. There is a continuous phase transition with no
external deflection force. In Fig.(4.4), phase transition disappears due to p(x).

(a) Deflection shape with variable λ (b) Diagram of ζ(x = 0.5)with variableλ

Fig. 4.5 Results with D0 = 1, Dd = 0.5, xm = 0.5, dw = 0.2, k1 = 0, k2 =
10000, p(x) = 100δ(0.5) − 100δ(0.3) − 100δ(0.7). (a) Buckling shape with ECM
defect; (b) diagram with given parameters

We increase the defect area from dw = 0.1 in Fig.(4.4) to dw = 0.2 in Fig.(4.5). One
observes shape change similar to Fig.(4.2). In addition, there is a critical point in Fig.(4.5b).
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(a) Deflection shape with variable λ (b) Diagram of ζ(x = 0.5)with variableλ

Fig. 4.6 Results with D0 = 1, Dd = 0.5, xm = 0.5, dw = 0.2, k1 = 0, k2 =
100, p(x) = 100δ(0.5)− 100δ(0.3)− 100δ(0.7). (a) Buckling shape with ECM defect;
(b) diagram with given parameters

We then decrease the quadratic effect by k2 in Fig.(4.6) compared to Fig.(4.5). We observe a
different bending shape with loading.

(a) Deflection shape with variable λ (b) Diagram of ζ(x = 0.5)with variableλ

Fig. 4.7 Results with D0 = 1, Dd = 0.5, xm = 0.5, dw = 0.2, k1 = 0, k2 =
10000, p(x) = −100δ(0.5) + 100δ(0.3) + 100δ(0.7). (a) Buckling shape with ECM
defect; (b) diagram with given parameters
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(a) Deflection shape with variable λ (b) Diagram of ζ(x = 0.5)with variableλ

Fig. 4.8 Results with D0 = 1, Dd = 0.5, xm = 0.5, , dw = 0.2, k1 = 0, k2 =
100, p(x) = −100δ(0.5) + 100δ(0.3) + 100δ(0.7). (a) Buckling shape with ECM
defect; (b) diagram with given parameters

Finally we show the symmetry breaking due to k2. We compare Fig.(4.7,4.8) with Fig.(4.5,4.6).
Difference increases as the rise of k2. In addition, we find an unstable point in Fig.(4.7).

In conclusion, the quadratic term associated to k2 will break the symmetry of the solution like
the nonlinear effect b∗ in Eq.(4.32). Buckling shapes induced by growth with different parameters
were found numerically by writing a self-defined class document in MANLAB. We have assumed
constant growth in each layer in the calculation (see Eq.(4.25)). We will use the COMSOL shell
to calculate more complicated situations referred to differential growth and complex geometry in
3D.

4.2 Numerical implementation in COMSOL

We employ the COMSOL shell [46, 134, 135] for 3D simulations referred to Eq.(4.18). First
we will discuss the inner bending induced by growth and the active network in section(4.2.1).
We then set up the geometry for a thin wing disc and add in-plane growth in section (4.2.2).
Afterwards we consider the additional bilayer bending and the ECM defect in section(4.2.3) and
(4.2.4). Finally, we introduce the nonlinear term in section (4.2.5).

COMSOL uses the SI unit system as default. Particularly, we use the unit [m] for the length
scale. It does not change the strain and final deflection results during the simulations. But we
should be careful about the loading.

4.2.1 Active bending with growth

First we imagine a bilayer plate with parameters in Fig.(4.9)
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Fig. 4.9 Sketch of bilayer: Lx = 1, Ly = 0.5, hS = 0.01, hf = hS/20, ES =
1Kpa,Ef = 50Kpa, ν = 0.3,Zn = −0.00125,D = 3 ∗ 10−4Pa ·m3,E = 2.9Kpa

The coordinate system is set on the interface of two layers with Z = 0. The diagram also
provides material parameters and geometry size.

We assume growth only in the soft substrate as gfαβ = 0 and neglect the membrane force with
Nαβ = 0. Furthermore we take growth as a function of position gSαβ(x, y). Then the governing
equations Eq.(4.18) with definitions Eq.(4.7) read

∆D(∆ζ − CM ) = ∂αβ(Dκaαβ −M
g
αβ)

Mg
αβ = −1

2(h2
S + 2hSZn) ES

1− ν2 [(1− ν)1
2g

S
αβ + 1

2νg
S
γγδαβ]

(4.38)

where the second equation can be deduced by taking the integral over the thickness from −hS to
hf . Moreover we assume a constant D and neglect the shear effect CM , so we have

D∆∆ζ = D∆∆wa + qgS

∂αβw
a = κaαβ

qgS = 1
2
ESh

2
S

1− ν2 (1 + 2Zn
hS

) · ∂αβ[(1− ν)1
2g

S
αβ + 1

2νg
S
γγδαβ]

(4.39)

We have to be careful about the definition of the growth tensor in Eq.(4.3) as gαβ = g̃αβ + g̃βα.
If we assume g̃12 = 0 and D = E

12(1−ν2) , we get the expression of qgS as

qgS = D · 6ESh2
S

Eh3 (1 + 2Zn
hS

)[∂xxg̃S11 + ∂yy g̃
S
22 + ν(∂xxg̃S22 + ∂yy g̃

S
11)] (4.40)

After we run simulations in COMSOL with the parameters of Fig.(4.9). We take gSαβ = 0 and
wa(x) = x2(1− x)2 leading to κa11 = 12x2 − 12x+ 2 with the following results.
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(a) (b)

Fig. 4.10 Deformation by active bending in clamped-clamped boundary condition: (a)
deflection curve: vertical displacement w versus x with Lx = 1, Ly = 0.5 in Fig.(4.9);
(b) Von Mises stress contour

The deflection curve in Fig.(4.10a) meets well with the 1D approximation ζ ≈ wa = x2(x−
1)2. Then we takewa = 0 and g̃S11 = δexp[−γ(x−xm)2] resulting in qgS ∼ δexp[−γ(x−xm)2]∗
[4γ2(x− xm)2 − 2γ].

(a) (b)

Fig. 4.11 Deformation by differential growth along the x axis in clamped-clamped
boundary condition: δ = 0.1, γ = 1000, xm = 0.5 (a) deflection curve: vertical dis-
placement w versus x with Lx = 1, Ly = 0.5 in Fig.(4.9); (b) Von Mises stress contour

In this case qgS behaves like a special force with an exponential rate γ. Both results in
Fig.(4.10) and Fig.(4.11) demonstrate that global bending can be induced by active networks
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and differential growth.
Then we add growth directly in the membrane strain with the linear decomposition ε = εe +

εth [88] which means that the total strain is composed of an elastic and an inelastic part. We focus
on the buckling by in-plane loading. In the following simulations, we suppose that the thin ECM
only contributes to the bending stiffness and active momentum.

4.2.2 Equivalent monolayer shell with in-plane growth

We simplify the real complex geometry of the wing disc as an ellipsoidal shell (see Fig.(4.12)).
We assume the structure is very thin with in-plane expansion. The boundary is fixed. We want to
use the bilayer plate/shell model to offer some predictions for the biological system.

Fig. 4.12 Sketch of geometry in COMSOL: Ellipsoid surface ( x
Rx

)2+( y
Ry

)2+( z
Rz

)2 =
1 , −Rx ≤ x ≤ Rx,−Ry ≤ y ≤ Ry, z(x, y) ≥ 0 with Rx = 0.5, Ry = 0.2, Rz =
0.05 and thickness d = 0.001; E = 1Kpa, ν = 0.33. Initially all boundaries are fixed.

After the homogenization process, we can set the equivalent Young’s modulus and thickness
for the shell and choose arbitrary functions respectively. In this section, we assume a uniform
growth with a Gaussian distribution for the local difference as

ε̃gαβ =
[
εth(x) 0

0 εth(x)

]

εth(x) = αth(1 + βthexp
[
−γth(x− xm)2

]
) ∗ λth −Rx ≤ x ≤ Rx, 0 ≤ λth ≤ 1

(4.41)

where αth is the value of uniform growth over the domain, βth is the amplitude of extra growth,
γth stands for the decay rate, xm is the center of this gradient distribution and λth is the loading
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parameter ranging from 0 to 1. Special attention is paid on the final buckling shape which is
important for biology. We study how different deformation arises with the controlling parameters.

Fig. 4.13 Buckling shape with xm = 0, αth = 0.03, βth = 1, γth = 1000, d = 0.001

The in-plane growth of a thin shell can generate local buckling (see Fig.(4.13) with displace-
ment contour). We set maximum growth αth ∗ (1 + βth) = 6% within the linear limit.

(a) (b)

Fig. 4.14 Deflection shape w+Z in Fig.(4.13) for λth = 0, 0.2, 0.4, 0.6, 0.8, 1.0 with
given parameters: (a) along path AOA′; (b) along path BOB′

Fig.(4.14a) shows the buckling curve along AA′ as y = 0. We see that there is a bulge due
to the localized in-plane expansion difference in Eq.(4.41). Since the center point grows more, it
buckles more. But in the perpendicular direction, deformation is smooth (see Fig.(4.14b)). Here
λth is the loading paremeter defined in Eq.(4.41).
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Fig. 4.15 Buckling shape with xm = 0, αth = 0.03, βth = 1, γth = 10, d = 0.001

We lower the coefficient γth in Eq.(4.41) from 1000 to 10. The solutions become smoother
near the center. The bulge of the previous case disappears while the total displacement increases
in Fig.(4.16) compared to Fig.(4.14).

(a) (b)

Fig. 4.16 Deflection shape w+Z in Fig.(4.15) for λth = 0, 0.2, 0.4, 0.6, 0.8, 1.0 with
given parameters: (a) along path AOA′; (b) along path BOB′
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Fig. 4.17 Buckling shape with xm = 0, αth = 0.03, βth = −1, γth = 10, d = 0.001

Then we suppose less growth in the center part by setting βth = −1 with γth = 10. In
the experiment, this translates to a low dividing activity in the middle. Fig.(4.17) and Fig.(4.18)
demonstrate the deformation. In comparison with the previous solution, the buckling shape is
quite flat.

(a) (b)

Fig. 4.18 Deflection shape w+Z in Fig.(4.17) for λth = 0, 0.2, 0.4, 0.6, 0.8, 1.0 with
given parameters: (a) along path AOA′; (b) along path BOB′
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Fig. 4.19 Buckling shape with xm = 0, αth = 0.03, βth = −1, γth = 1000, d =
0.001

Finally we increase γth compared to Fig.(4.17,4.18) and we find a new buckling shape. We
focus on Fig.(4.20a) and there is an obvious indentation as opposed to Fig.(4.14a).

(a) (b)

Fig. 4.20 Deflection shape w+Z in Fig.(4.19) for λth = 0, 0.2, 0.4, 0.6, 0.8, 1.0 with
given parameters: (a) along path AOA′; (b) along path BOB′

The results demonstrate that within the linear limit, i.e εth ≤ 0.06 in our case, exponential
growth can generate local buckling phenomena in complex geometry.
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4.2.3 Additional bending

We introduce an additional deflection force for the bilayer with growth only in the substrate
as

qgS = 1
2
ESh

2
S

1− ν2 (1 + 2Zn
hS

) · ∂xx(1 + ν)εth

∂xxε
th(x) = αthβthexp[−γth(x− xm)2][4(γth)2(x− xm)2 − 2γth] ∗ λth

(4.42)

with the definitions of section 4.2.1. Zn in Fig.(4.9) can affect the extra bending part ascribed to
varying expansion of the two layers. For a monolayer or hf/hS � 1, Zn = −hS/2 and thus
qgS = 0. We take Zn = 0, hS = d for simplification in this section.

Fig. 4.21 Buckling shape with xm = 0, αth = 0.03, βth = 1, γth = 1000, d =
0.001, Zn = 0
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(a) (b)

Fig. 4.22 Deflection shape w+Z in Fig.(4.21) for λth = 0, 0.2, 0.4, 0.6, 0.8, 1.0 with
given parameters: (a) along path AOA′; (b) along path BOB′

Compared to Fig.(4.14a), there is a buckling shape change in Fig.(4.22a) due to Eq.(4.42).

Fig. 4.23 Buckling shape with xm = 0, αth = 0.03, βth = −1, γth = 1000, d =
0.001Zn = 0
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(a) (b)

Fig. 4.24 Deflection shape w+Z in Fig.(4.23) for λth = 0, 0.2, 0.4, 0.6, 0.8, 1.0 with
given parameters: (a) along path AOA′; (b) along path BOB′

Then we set βth = 1 leading to another buckling deformation near the middle part demon-
strated in Fig.(4.23,4.24).

We consider the effect of active bending by networks with Eq.(4.39). For example we take
wa = δa(x + 0.5)2(x − 0.5)2 which will give rise to a uniform deflection force of 24δ ·D (see
Fig.(4.10)). This effect can be absorbed by bending due to growth. So we do not provide more
simulations here.

In this section, we have considered the bending contribution from bilayer differential growth.
Next we try to take an ECM defect into account.

4.2.4 ECM stiffness contribution

In reality, biologists can remove the extracellular matrix (ECM) in order to modify the mate-
rial and the geometry. For stiffness contribution, this can be described easily with the help of a
distribution function of thickness d(x) as

d(x) = d(1− βd ∗ δd(x, xd, wd)) −Rx ≤ x ≤ Rx

δd(x, xd, wd) = H(x− xd + wd
2 )−H(x− xd −

wd
2 )

(4.43)

where βd reflects the bending stiffness by the ECM, δd is a square wave distribution defined by
the Heaviside function H(x), xd is the location of the defect and wd is the band of the removed
area.
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Fig. 4.25 Buckling shape with xm = 0, αth = 0.03, βth = 1, γth = 1000, d =
0.001, Zn = 0, βd = 0.1, xd = 0, wd = 0.1

(a) (b)

Fig. 4.26 Deflection shape w+Z in Fig.(4.25) for λth = 0, 0.2, 0.4, 0.6, 0.8, 1.0 with
given parameters: (a) along path AOA′; (b) along path BOB′

We first take βd = 0.1, xd = 0, wd = 0.1 for the original case in Fig.(4.21). There is almost
no change of the buckling shape according to the results in Fig.(4.25,4.26).
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Fig. 4.27 Buckling shape with xm = 0, αth = 0.03, βth = 1, γth = 1000, d =
0.001, Zn = 0, βd = 0.5, xd = 0, wd = 0.1

(a) (b)

Fig. 4.28 Deflection shape w+Z in Fig.(4.27) for λth = 0, 0.2, 0.4, 0.6, 0.8, 1.0 with
given parameters: (a) along path AOA′; (b) along path BOB′

We then lower the bending stiffness D with βd = 0.5. The buckling near the center point
increases as shown in Fig.(4.28) compared to the solution in Fig.(4.26). In this context we should
bear in mind that βd depends on the material properties and thickness of the ECM and the soft
substrate. In addition, destroying the ECM might affect the active momentum by networks in
the previous discussion. In this section, We focus on the stiffness contribution by the ECM with
Eq.(4.43). Finally we will study the nonlinear effect in the following part.
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4.2.5 Nonlinear effects

We take the weak form in COMSOL as

δE II
bi = −ε̃II

b

∫
Zζ,ασ

b
αβδζ,βdV ∗ λth ≈ −ε̃II

b

∫
Z∆θασbαβδ∆θβdV ∗ λth

≈ −λII
b

∫
∆θα( 1

1 + ν
εbαβ + ν

1− ν2 ε
b
γγδαβ)δ∆θβdS ∗ λth

(4.44)

where the nonlinear term takes into account the coupling of angle change and curvatures in
Eq.(4.30) as −ζ,xζ,xxδζ,x. It stems from the higher order effect of neutral surface change. λb
is assumed of the same order as Ebd2, εbαβ are out-of-plane bending components, ∆θ is corre-
lated to the angle change of the shell normal vector.

Fig. 4.29 Buckling shape with xm = 0, αth = 0.03, βth = 1, γth = 1000, d =
0.001, Zn = 0, λII

b = 0.001
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(a) (b)

Fig. 4.30 Deflection shape w+Z in Fig.(4.29) for λth = 0, 0.2, 0.4, 0.6, 0.8, 1.0 with
given parameters: (a) along path AOA′; (b) along path BOB′

We take λII
b = 0.001 with the same sign of ζ and we find it behaves like a global negative

deflection force when ζ is not too large. Buckling shape terns to be steady with the nonlinear
effect.

Fig. 4.31 Buckling shape with xm = 0, αth = 0.03, βth = 1, γth = 1000, d =
0.001, Zn = 0, λII

b = −0.001
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(a) (b)

Fig. 4.32 Deflection shape w + Z in Fig.(4.31) for λth = 0, 0.2, 0.4, 0.6, 0.8 with
given parameters: (a) along path AOA′; (b) along path BOB′

The simulation with negative λII
b shows that the quadratic term makes the buckling shape

steeper (see Fig.(4.31,4.32)).

4.2.6 Conclusion

Results Description

Buckling shape with xm = 0, αth = 0.03, βth = 1, γth = 1000, d = 0.001

Buckling shape with xm = 0, αth = 0.03, βth = 1, γth = 10, d = 0.001

Buckling shape with xm = 0, αth = 0.03, βth = −1, γth = 10, d = 0.001

Buckling shape with xm = 0, αth = 0.03, βth = −1, γth = 1000, d = 0.001

Buckling shape with xm = 0, αth = 0.03, βth = 1, γth = 1000, d = 0.001, Zn = 0

Buckling shape with xm = 0, αth = 0.03, βth = −1, γth = 1000, d = 0.001Zn = 0

Buckling shape with xm = 0, αth = 0.03, βth = 1, γth = 1000, d = 0.001, Zn = 0, βd =
0.1, xd = 0, wd = 0.1

Buckling shape with xm = 0, αth = 0.03, βth = 1, γth = 1000, d = 0.001, Zn = 0, βd =
0.5, xd = 0, wd = 0.1

Buckling shape with xm = 0, αth = 0.03, βth = 1, γth = 1000, d = 0.001, Zn = 0, λII
b

= 0.001

Buckling shape with xm = 0, αth = 0.03, βth = 1, γth = 1000, d = 0.001, Zn = 0, λII
b

=
−0.001

Table 4.1: Summary of computational results with COMSOL shell
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With linear decomposition, 3D shell buckling is calculated in COMSOL. An equivalent mono-
layer method is taken for the modeling. Special concern is paid on the local growing process for
genetic control in the experiment. Active bending by growth and networks is covered in the
numerical implementation. ECM defect is introduced in the bending contribution. Finally, the
nonlinear effect is considered with the weak form toolbox of COMSOL.

4.3 Conclusion

A bilayer FvK model with growth is derived using a variational method. Neutral surface and
equivalent bending stiffness are acquired by the minimization of the elastic energy. In a second
step, general FEM simulations with the additional bending and nonlinear effect are implemented
in the software COMSOL. In this chapter we utilize the theory of plates and shells to explain
the buckling of the bilayer membrane in biological systems such as the Drosophila wing disc.
We attempt to set up a general model to explain the experimental phenomena. Local exponential
growth with an ECM defect is discussed as well. Different buckling shapes at the tissue scale can
be controlled with appropriate parameters of the system.



Chapter 5

Finite element simulations with beams
and solids

In this chapter, we want to use the traditional finite element method (FEM) for the bilayer
structure simulation. For research purpose, we employ a numerical platform in MATLAB equipped
with nonlinear Euler beam elements and isoparametric solid elements. The Riks method is taken
for the solver of the buckling analysis. During the simulation, we first suggest our system as a
solid stripe coupled with bending beams. Growth in different parts is implemented as the inner
stress with an updated algorithm. The ECM defect and the initial curvature are considered during
the study. The toolbox is written in a general form with an interface of input files, which could
be applied to other problems. Finally, we consider the 2D wrinkling and folding simulations with
viscoelasticity.

5.1 Algorithm of geometrical nonlinearity

We employ beam and solid elements for the geometrically nonlinear problem [30, 31, 38].
We start with the decomposition of the Green-Lagrange strain measurement

EIJ = 1
2(FKIFKJ − δIJ) = eIJ + ηIJ

eIJ = 1
2( ∂uI
∂XJ

+ ∂uJ
∂XI

) , ηIJ = 1
2
∂uK
∂XI

∂uK
∂XJ

(5.1)

as well as the variation of the elastic energy in Chapter 1

δE =
∫
t
V
σijδεijd

t
V =

∫
0
V
SI
iJδFiJd

0
V =

∫
0
V
SII
IJδEIJd

0
V (5.2)

In FEM, matrices are preferred due to the numerical implementation. We thus need to intro-
duce a vector form of the strain γ and the stress τ as

γ = e+ η =



e11
e22
e33
2e12
2e23
2e31


+



η11
η22
η33
2η12
2η23
2η31


, τ =



τ11
τ22
τ33
τ12
τ23
τ31


(5.3)

93
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For geometrical nonlinearity, we do the variation in a Lagrangian formulation∫
0
V
δγTτ t+∆tdV =

∫
0
S
δuTfbc dS +

∫
0
V
δuTb dV (5.4)

where τ is an unknown stress vector, fbc is a boundary force and b is a body force. In order to
obtain the incremental procedure with the field variables, two decompositions should be employed
as

τ t+∆t = τ t + ∆τ = τ t + Dt ·∆τ

∆γ = ∆e+ ∆η
(5.5)

where
∆e = 1

2(FT · (∆u)∇X +∇X(∆u) · F)

∆η = 1
2∇X(∆u) · (∆u)∇X

(5.6)

Under the assumption of small strains, we can take the tangent stiffness Dt as a constant
matrix D and τ t ≈ D · γt. After linearisation with δγ = δ∆γ, Eq.(5.4) becomes∫

0
V
δ∆eTD∆e dV +

∫
0
V
δ∆ηTτ t dV =

∫
0
S
δuTfbc dS+

∫
0
V
δuTb dV −

∫
0
V
δ∆eTτ t dV

(5.7)
In a discrete form, Eq.(5.7) reduces to

δ∆aT(KL +KNL)∆a = δ∆aT(f t+∆t
ext − f tint) (5.8)

The full derivation is as follows.
First, the displacement field is given by u = Ha where a is the total discrete nodal vector of

degrees n and H is the interpolation matrix for all degrees of freedom. For a three-dimensional
configuration H has the size of 3× 3n as

H =

 h1 0 0 h2 0 0 · · · hn 0 0
0 h1 0 0 h2 0 · · · 0 hn 0
0 0 h1 0 0 h2 · · · 0 0 hn

 (5.9)

Then comes to the relation between the linear strain increment and the nodal displacement
increment

∆e = L∆u (5.10)

where in 3D

L =



F11
∂

∂X1
F21

∂
∂X1

F31
∂

∂X1

F12
∂

∂X2
F22

∂
∂X2

F32
∂

∂X2

F13
∂

∂X3
F23

∂
∂X3

F33
∂

∂X3

F11
∂

∂X2
+ F12

∂
∂X1

F21
∂

∂X2
+ F22

∂
∂X1

F31
∂

∂X2
+ F32

∂
∂X1

F12
∂

∂X3
+ F13

∂
∂X2

F22
∂

∂X3
+ F23

∂
∂X2

F32
∂

∂X3
+ F33

∂
∂X2

F13
∂

∂X1
+ F11

∂
∂X3

F23
∂

∂X1
+ F21

∂
∂X3

F33
∂

∂X1
+ F31

∂
∂X3


(5.11)
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So we have ∆e = LH∆a = BL∆a and∫
0
V
δ∆eTD∆e dV = δ∆aTKLδ∆a

KL =
∫

0
V

BT
LDBL dV

(5.12)

as well as ∫
0
V
δ∆ηTτ t dV = ∆aTKNLδ∆a

KNL =
∫

0
V

BT
NLTBNL dV

(5.13)

where

BNL =



∂h1
∂X1

0 0 ∂h2
∂X1

0 0 · · ·
∂h1
∂X2

0 0 ∂h2
∂X2

0 0 · · ·
∂h1
∂X3

0 0 ∂h2
∂X3

0 0 · · ·

0 ∂h1
∂X1

0 0 ∂h2
∂X1

0 · · ·

0 ∂h1
∂X2

0 0 ∂h2
∂X2

0 · · ·

0 ∂h1
∂X3

0 0 ∂h2
∂X3

0 · · ·

0 0 ∂h1
∂X1

0 0 ∂h2
∂X1

· · ·

0 0 ∂h1
∂X2

0 0 ∂h2
∂X2

· · ·

0 0 ∂h1
∂X3

0 0 ∂h2
∂X3

· · ·



(5.14)

and

T =



τxx τxy τxz 0 0 0 0 0 0
τxy τyy τyz 0 0 0 0 0 0
τxz τyz τzz 0 0 0 0 0 0
0 0 0 τxx τxy τxz 0 0 0
0 0 0 τxy τyy τyz 0 0 0
0 0 0 τxz τyz τzz 0 0 0
0 0 0 0 0 0 τxx τxy τxz
0 0 0 0 0 0 τxy τyy τyz
0 0 0 0 0 0 τxz τyz τzz


(5.15)

Finally we have f t+∆t
ext andf tint for Eq.(5.8) as

f t+∆t
ext =

∫
0
S

HTfbc dS +
∫

0
V

HTb dV

f tint =
∫

0
V

BT
Lτ

t dV
(5.16)

We can now apply the algorithm in MATLAB.
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5.2 Finite element simulations in MATLAB

A simple toolbox is established for the numerical simulation. It contains a general framework
of FEM and it is ready for secondary development. We could use this toolbox for an arbitrary
geometry once the mesh information is provided with boundary conditions and loading history.
There are many advantages of the self-written environment. We could easily change the element
data and get the information of the global stiffness matrix in comparison with the commercial
FEM software.

Parametric modeling is founded in the platform and we could add new element types if nec-
essary. As shown in Fig.(5.1), the Riks method [31] is used for the numerical solver.

Fig. 5.1 Flow chart of calculation

A bi-material biological system is always of great interest. We will employ FEM in 1D, 2D
and 3D to study buckling phenomena with growth. In the following, we will first come back to
the original problem discussed in chapter 4. We use beam elements to describe the thinner and
stiffer ECM and employ a 3D solid for the soft tissue layer. According to our knowledge, the
beam elements includes the contribution of bending stiffness. Active stress is achieved by setting
growth along the beam axis. Then in 2D, we use viscoelasticity to explain different buckling
shapes in the same morphogenesis process.
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5.2.1 Nonlinear Euler-Bernouli beam

Before coupling of different elements, we first introduce the buckling of the beam. In our tool-
box, first-order nonlinear Euler-Bernouli elements (called B31 after) [61, 136, 137] are employed
for 3D simulations. Shear is neglected and the elastic axial strain induced by growth reads

εg = −λg ∗∆T (5.17)

where λg is the loading variable and ∆T is a known non-dimensional parameter.

We firstly consider a straight cylindrical beam oriented along the x-axis as a patch test with
length a, section areaA, moment along the y-axis Iy, moment along the z-axis Iz , torsion moment
along the x-axis Jt, Young’s modulus E and Poisson coefficient ν. The left end is fixed and the
right end is under compression parallel to the x-axis with prescribed displacement u = −λg ∗ u0.

(a)

(b)

Fig. 5.2 Deflection shapes for λg = 0.002, 0.04, 0.15, 0.5 with ∆T = 1 , u0 = 0.5

Fig.(5.2) demonstrates the final deflection curve induced by axial compression u0 and inner
growth ∆T . There are literatures for the more sophisticated situations [138, 139]. Next we
suppose a honeycomb structure with the same geometry and material properties for each element.
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Fig. 5.3 Buckling shape of the structure

We observe in Fig.(5.3) a buckling mode due to the external loading. We apply a defect such
as a small force to achieve a out-of-plane deflection. Hereafter, we focus on the simulation of a
3D stripe case.

5.2.2 3D Solids with beams

In this section, 3D isoparametric solid elements (called S38 after) are used for a monolayer
epithelium with nonlinear beam elements B31 for extra bending stiffness. We try to explain our
problem as simple as possible. The geometry is sketched in Fig.(5.4)
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Fig. 5.4 Geometry of 3D stripe

where the size of the Volume Ω = Ω1 ∪ Ω2 ∪ Ω3 is LX × LY × LZ . There is a section of
the beam AB which could be initially curved. In this case, the left and the right side of the stripe
noted as ∂ΩL and ∂ΩR are fixed by the boundary condition. Local growth happens in domain Ω2
and initial shapeAB might determine the final resolution. Mesh information is labeled as follows

Fig. 5.5 Mesh diagram of the system: The region in green is the normal part without
growth and the piece in red has isotropic growth with a loading parameter λg. Blue
circles represent stiffer beam elements which have additional bending energy
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We use the notation λg for a loading parameter of Eq.(5.17) and Nstep for the calculation
step. We try to use the initial curvature AB to control the final buckling shape. We suggest
growth only in the red domain of Fig.(5.5) for simplification. We set different Young’s moduli
in different areas. The SI unit system is applied and the color bar represents the value of the
displacement. We obtain the following results

Fig. 5.6 LX = 1, LY = 0.2, LZ = 0.05, Ω2 : 0.5 ≤ X ≤ 0.7, AB ≈
δsin(2πX), E1 = E3 = 103Pa, E2 = 0.5 × 103Pa, Ebeam = 50 ∗ E1, ν1 = ν2 =
ν3 = 0.3,∆T = 1, Nstep = 5, λg = 0.2
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Fig. 5.7 LX = 1, LY = 0.2, LZ = 0.05, Ω2 : 0.5 ≤ X ≤ 0.7, AB ≈
δsin(2πX), E1 = E3 = 105Pa, E2 = 0.5 × 105Pa, Ebeam = 50 ∗ E1, ν1 = ν2 =
ν3 = 0.3,∆T = 1, Nstep = 8, λg = 0.5

Fig. 5.8 LX = 1, LY = 0.2, LZ = 0.05, Ω2 : 0.5 ≤ X ≤ 0.7, AB ≈
δsin(2πX), E1 = E3 = 105Pa, E2 = 0.5 × 105Pa, Ebeam = 50 ∗ E1, ν1 = ν2 =
ν3 = 0.3,∆T = 1, Nstep = 10, λg = 0.8
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Fig.(5.6) to Fig.(5.8) is a group of results withAB in Fig.(5.4) initially curved as δsin(2πX).
Loading parameter λg varies from 0.1 to 1.3 with an adaptive step size. We find that the domain
of growth expands isotropically in 3D leading to the global buckling of the total length.

Fig. 5.9 LX = 1, LY = 0.2, LZ = 0.05, Ω2 : 0.5 ≤ X ≤ 0.7, AB ≈
δsin(3πX), E1 = E3 = 103Pa, E2 = 0.5 × 103Pa, Ebeam = 50 ∗ E1, ν1 = ν2 =
ν3 = 0.3,∆T = 1, Nstep = 3, λg = 0.02
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Fig. 5.10 LX = 1, LY = 0.2, LZ = 0.05, Ω2 : 0.5 ≤ X ≤ 0.7, AB ≈
δsin(3πX), E1 = E3 = 103Pa, E2 = 0.5 × 103Pa, Ebeam = 50 ∗ E1, ν1 = ν2 =
ν3 = 0.3,∆T = 1, Nstep = 5, λg = 0.1

Fig. 5.11 LX = 1, LY = 0.2, LZ = 0.05, Ω2 : 0.5 ≤ X ≤ 0.7, AB ≈
δsin(3πX), E1 = E3 = 103Pa, E2 = 0.5 × 103Pa, Ebeam = 50 ∗ E1, ν1 = ν2 =
ν3 = 0.3,∆T = 1, Nstep = 7, λg = 0.3
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Fig.(5.9) to Fig.(5.11) show a similar phenomenon as expected with the given parameters.
After we change the geometry by increasing the total length. We also move the growing area
from the right to the middle part.

Fig. 5.12 LX = 2, LY = 0.2, LZ = 0.05, Ω2 : 0.5 ≤ X ≤ 1.5, AB ≈
δsin(6πX), E1 = E3 = 103Pa, E2 = 0.5 × 103Pa, Ebeam = 50 ∗ E1, ν1 = ν2 =
ν3 = 0.3,∆T = 1, Nstep = 5, λg = 0.01
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Fig. 5.13 LX = 2, LY = 0.2, LZ = 0.05, Ω2 : 0.5 ≤ X ≤ 1.5, AB ≈
δsin(6πX), E1 = E3 = 103Pa, E2 = 0.5 × 103Pa, Ebeam = 50 ∗ E1, ν1 = ν2 =
ν3 = 0.3,∆T = 1, Nstep = 10, λg = 0.06

Fig. 5.14 LX = 2, LY = 0.2, LZ = 0.05, Ω2 : 0.5 ≤ X ≤ 1.5, AB ≈
δsin(6πX), E1 = E3 = 103Pa, E2 = 0.5 × 103Pa, Ebeam = 50 ∗ E1, ν1 = ν2 =
ν3 = 0.3,∆T = 1, Nstep = 15, λg = 0.16
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We find that the final buckling shape follows the same rule as discussed before. The system
prefers to bend instead of expanding laterally.

Results Description
LX = 1, LY = 0.2, LZ = 0.05, Ω2 : 0.5 ≤ X ≤ 0.7, AB ≈ δsin(2πX), E1 = E3 =
103Pa, E2 = 0.5 × 103Pa, Ebeam = 50 ∗ E1, ν1 = ν2 = ν3 = 0.3,∆T = 1, Nstep =
5, λg = 0.2

LX = 1, LY = 0.2, LZ = 0.05, Ω2 : 0.5 ≤ X ≤ 0.7, AB ≈ δsin(2πX), E1 = E3 =
105Pa, E2 = 0.5 × 105Pa, Ebeam = 50 ∗ E1, ν1 = ν2 = ν3 = 0.3,∆T = 1, Nstep =
8, λg = 0.5

LX = 1, LY = 0.2, LZ = 0.05, Ω2 : 0.5 ≤ X ≤ 0.7, AB ≈ δsin(2πX), E1 = E3 =
105Pa, E2 = 0.5 × 105Pa, Ebeam = 50 ∗ E1, ν1 = ν2 = ν3 = 0.3,∆T = 1, Nstep =
10, λg = 0.8

LX = 1, LY = 0.2, LZ = 0.05, Ω2 : 0.5 ≤ X ≤ 0.7, AB ≈ δsin(3πX), E1 = E3 =
103Pa, E2 = 0.5 × 103Pa, Ebeam = 50 ∗ E1, ν1 = ν2 = ν3 = 0.3,∆T = 1, Nstep =
3, λg = 0.02

LX = 1, LY = 0.2, LZ = 0.05, Ω2 : 0.5 ≤ X ≤ 0.7, AB ≈ δsin(3πX), E1 = E3 =
103Pa, E2 = 0.5 × 103Pa, Ebeam = 50 ∗ E1, ν1 = ν2 = ν3 = 0.3,∆T = 1, Nstep =
5, λg = 0.1

LX = 1, LY = 0.2, LZ = 0.05, Ω2 : 0.5 ≤ X ≤ 0.7, AB ≈ δsin(3πX), E1 = E3 =
103Pa, E2 = 0.5 × 103Pa, Ebeam = 50 ∗ E1, ν1 = ν2 = ν3 = 0.3,∆T = 1, Nstep =
7, λg = 0.3

LX = 2, LY = 0.2, LZ = 0.05, Ω2 : 0.5 ≤ X ≤ 1.5, AB ≈ δsin(6πX), E1 = E3 =
103Pa, E2 = 0.5 × 103Pa, Ebeam = 50 ∗ E1, ν1 = ν2 = ν3 = 0.3,∆T = 1, Nstep =
5, λg = 0.01

LX = 2, LY = 0.2, LZ = 0.05, Ω2 : 0.5 ≤ X ≤ 1.5, AB ≈ δsin(6πX), E1 = E3 =
103Pa, E2 = 0.5 × 103Pa, Ebeam = 50 ∗ E1, ν1 = ν2 = ν3 = 0.3,∆T = 1, Nstep =
10, λg = 0.06

LX = 2, LY = 0.2, LZ = 0.05, Ω2 : 0.5 ≤ X ≤ 1.5, AB ≈ δsin(6πX), E1 = E3 =
103Pa, E2 = 0.5 × 103Pa, Ebeam = 50 ∗ E1, ν1 = ν2 = ν3 = 0.3,∆T = 1, Nstep =
15, λg = 0.16

Table 5.1: Summary of computational results with beams and solids

In this section, we have studied the buckling of a bilayer stripe with coupling beam and solid
elements. We use the initial curvature to control the final buckling shape with given parameters.
When the ECM is much thinner than the soft substrate, this method can help to save computational
resources. In the final section we perform 2D simulations with viscoelasticity for local pattern
formation.

5.2.3 2D wrinkling and folding simulations

Two cell population with different growth rates could create in-plane compression leading to
out-of-plane buckling during the morphological process. In this section, we transfer the growth
competition as boundary compression. There are references for elastic problems of bilayer sys-
tems [140, 141, 142]. Nevertheless, we try to consider viscosity in this part.
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We study a bilayer of the viscoelastic material [143] with different Young’s moduli Eα, Pois-
son coefficients να, shear viscosity ηα and thickness hα. We assume that the deviatoric part of
the strain is governed by the Maxwell model with ε̇dαβ = 1

2µ σ̇
d
αβ + 1

2ησ
d
αβ where µ is the shear

modulus and η is the shear viscosity. The length and the width of the system are LX and LY re-
spectively. In practice, we assume an initial boundary velocity vX to shorten the soft material and
wait long enough until the boundary side approaches the value we want. A defect point is preset in
the initial configuration and the mesh is perturbed for non-trivial solutions. Different case studies
are shown below. We assume the length scale is LX = 100µm,LY = 10µm and vX ≈ 1µm/s
in Fig.(5.15). We employ a simple explicit method for the time step with ∆t = 0.01s.

Fig. 5.15 Mechanical sketch of the simulation with boundary conditions: X = 0, v1 =
0; X = LX , v1 = −vX ; Y = 0, v2 = 0

Fig.(5.15) shows the bilayer system with a roller constraint on the left and a constant com-
pression rate on the right. The Maxwell model can result in different buckling shapes in plane
strain with low stress.
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Fig. 5.16 Wrinkling deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 =
0.49, η1 = 105Pa · s, η2 = 103Pa · s, LX = 100µm, LY = 10µm, h1/LY = 0.25

Fig. 5.17 Folding deformation with E1 = 1KPa, E2 = 50KPa, ν1 = 0.3, ν2 =
0.3, η1 = 103Pa · s, η2 = 10Pa · s, LX = 100µm, LY = 10µm, h1/LY = 0.15

Fig.(5.16) represents a wrinkle-like buckling with given parameters. Fig.(5.17) exhibits fold-
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ing. We use the explicit time algorithm for the buckling mode but we do not consider some effects
like contact mechanics. In this section, we try to solve the solution with different geometry and
material properties which might be controlled in morphology.

a) Geometry effects

We could tune the length LX and the thickness h1 to achieve the corresponding shape change.

Fig. 5.18 Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 =
105Pa · s, η2 = 103Pa · s, LX = 100µm, LY = 10µm, h1/LY = 0.15
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Fig. 5.19 Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 =
105Pa · s, η2 = 103Pa · s, LX = 30µm, LY = 10µm, h1/LY = 0.15

Fig. 5.20 Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 =
105Pa · s, η2 = 103Pa · s, LX = 20µm, LY = 10µm, h1/LY = 0.15

From Fig.(5.18) to Fig.(5.20), we change the length LX from 100 to 20. We find that the
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wave number of the wrinkle-like solution decreases when the ratio LX/LY drops as predicted in
elasticity. However, there is a decay of the peak amplitude from right to left in Fig.(5.18) due to
viscosity. In addition, in Fig.(5.20), material accumulates at the left side. It can be explained by
the dynamic loading together with the chosen boundary conditions.

Fig. 5.21 Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 =
105Pa · s, η2 = 103Pa · s, LX = 100µm, LY = 10µm, h1/LY = 0.35
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Fig. 5.22 Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 =
105Pa · s, η2 = 103Pa · s, LX = 50µm, LY = 10µm, h1/LY = 0.35

Fig. 5.23 Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 =
105Pa · s, η2 = 103Pa · s, LX = 30µm, LY = 10µm, h1/LY = 0.35

Then we increase the ratio h1/LY which corresponds to an increase of the thickness of the
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upper layer. Two unusual buckling shapes appear in Fig.(5.21) and Fig.(5.22) due to the time
effect. In this section, we find that the geometry as well as the dynamics can generate different
buckling shapes. Next we will discuss the role of material parameters.

b) Material properties

Material properties like Young’s modulus and viscosity can also determine the final buckling
shape as follows

Fig. 5.24 Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 =
105Pa · s, η2 = 103Pa · s, LX = 100µm, LY = 10µm, h1/LY = 0.15
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Fig. 5.25 Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 =
103Pa · s, η2 = 10Pa · s, LX = 100µm, LY = 10µm, h1/LY = 0.15

Fig. 5.26 Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 =
10Pa · s, η2 = 10−1Pa · s, LX = 100µm, LY = 10µm, h1/LY = 0.15

Comparing Fig.(5.24,5.25,5.26), we observe that the wave number decreases as the shear
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viscosity η declines.

Fig. 5.27 Deformation with E1 = 1KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.3, η1 =
105Pa · s, η2 = 103Pa · s, LX = 100µm, LY = 10µm, h1/LY = 0.15

Fig. 5.28 Deformation with E1 = 1KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.3, η1 =
10−2Pa · s, η2 = 10−4Pa · s, LX = 100µm, LY = 10µm, h1/LY = 0.15
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We now adjust the stiffness. There is a ridge in Fig.(5.27) with E1 = E2. With a drop of
viscosity in Fig.(5.28), the deformation tends to be flat.

c) Clamped boundary

We then squeeze the bilayer system assuming the left and the right side are clamped as follows

Fig. 5.29 Mechanical sketch of the simulation with fixed boundary conditions: X =
0, v1 = v2 = 0; X = LX , v1 = −vX , v2 = 0; Y = 0, v2 = 0

Fig. 5.30 Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 =
105Pa · s, η2 = 103Pa · s, LX = 50µm, LY = 10µm, h1/LY = 0.15
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Fig. 5.31 Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 =
103Pa · s, η2 = 10Pa · s, LX = 50µm, LY = 10µm, h1/LY = 0.15

We find two symmetric wrinkle solutions with different viscosity in Fig.(5.30) and Fig.(5.31).

Fig. 5.32 Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 =
105Pa · s, η2 = 103Pa · s, LX = 30µm, LY = 10µm, h1/LY = 0.15



118 Chapter 5. Finite element simulations with beams and solids

Fig. 5.33 Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 =
105Pa · s, η2 = 103Pa · s, LX = 20µm, LY = 10µm, h1/LY = 0.15

Finally we reduce the length and the wave number decreases.

In this part, we have considered a bilayer system with different stiffnesses and viscosity.
Geometry, material properties and boundary effects are discussed. Different buckling shapes are
acquired with given parameters. In biology, growth with boundary constraints might generate
amazing buckling deformation.
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Results Description
Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 = 105Pa · s, η2 =
103Pa · s, LX = 100µm, LY = 10µm, h1/LY = 0.15

Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 = 105Pa · s, η2 =
103Pa · s, LX = 30µm, LY = 10µm, h1/LY = 0.15

Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 = 105Pa · s, η2 =
103Pa · s, LX = 20µm, LY = 10µm, h1/LY = 0.15

Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 = 105Pa · s, η2 =
103Pa · s, LX = 100µm, LY = 10µm, h1/LY = 0.35

Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 = 105Pa · s, η2 =
103Pa · s, LX = 50µm, LY = 10µm, h1/LY = 0.35

Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 = 105Pa · s, η2 =
103Pa · s, LX = 30µm, LY = 10µm, h1/LY = 0.35

Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 = 105Pa · s, η2 =
103Pa · s, LX = 100µm, LY = 10µm, h1/LY = 0.15

Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 = 103Pa · s, η2 =
10Pa · s, LX = 100µm, LY = 10µm, h1/LY = 0.15

Deformation withE1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 = 10Pa · s, η2 = 10−1Pa ·
s, LX = 100µm, LY = 10µm, h1/LY = 0.15

Deformation with E1 = 1KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.3, η1 = 105Pa · s, η2 = 103Pa ·
s, LX = 100µm, LY = 10µm, h1/LY = 0.15

Deformation withE1 = 1KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.3, η1 = 10−2Pa·s, η2 = 10−4Pa·
s, LX = 100µm, LY = 10µm, h1/LY = 0.15

Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 = 105Pa · s, η2 =
103Pa · s, LX = 50µm, LY = 10µm, h1/LY = 0.15, clamped

Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 = 103Pa · s, η2 =
10Pa · s, LX = 50µm, LY = 10µm, h1/LY = 0.15, clamped

Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 = 105Pa · s, η2 =
103Pa · s, LX = 30µm, LY = 10µm, h1/LY = 0.15, clamped

Deformation with E1 = 50KPa, E2 = 1KPa, ν1 = 0.3, ν2 = 0.49, η1 = 105Pa · s, η2 =
103Pa · s, LX = 20µm, LY = 10µm, h1/LY = 0.15, clamped

Table 5.2: Summary of computational results with 2D solids

5.3 Conclusion

In this chapter, we have built a FEM platform for geometrically nonlinear problems. The
toolbox is set up in MATLAB. 3D solid elements are built in for the modeling of the growing
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epithelium [7, 25]. Via structural coupling, the additional bending contribution of the ECM is
achieved by appending beam elements. Growth and inner stress by beams and solids can also be
considered with an updated algorithm. We employ it to the 3D strip buckling in our case. This
tool box could be used as a supplementary solver for COMSOL since COMSOL lacks the Riks
method for post-buckling analysis.

Then a 2D bilayer has been studied with viscosity. Different geometric and material parame-
ters are treated with two distinct boundary conditions. In contrast to the purely elastic hypothesis,
viscosity can generate more complicated buckling solutions due to growth and boundary con-
straints.



Chapter 6

Conclusion

The main purpose of this thesis is to study the epithelium with growth from the view point
of macroscopic continuum mechanics. Two biological systems with the epithelium and ECM are
concerned: C. elegans and Drosophila wing disc. We make an attempt to use classical elasticity
theory as well as numerical simulations to explain the experiments. We propose a modified crack
opening formula for a stress assessment on the epithelium of C. elegans. On the other hand, we
try to use structural mechanics to mimic the Drosophila wing disc buckling by a homogenization
method. In addition, we start to set up a FEM platform for the geometrically nonlinear problems
in COMSOL and MATLAB.

6.1 Crack opening on epithelium of C.elegans

Finite strain theory is favored in our case of C. elegans elongation up to 70%. Pre-stretch
with an initial opening angle of about 300 is also considered in the analysis. After simplification
of the complex geometry, we succeed to provide the theoretical prediction of stress and strain.
The anisotropic actin-myosin network with active stress is taken into account. In order to apply
the experimental data by laser cut ablation, we amend the crack opening formula F = 2σ∞/E
into Eq.(3.31) as Fα = 2σα/Eα where σα is the total stress including the active part and Eα is
an equivalent Young’s modulus. Specially, this formula is a good estimate when the laser cut is
parallel or perpendicular to the eigenvector of the stress tensor. For real size evaluation, we apply
the extended finite element method (XFEM) as a numerical tool. Tilting angle and biaxial loading
can be easily set during the simulation. It shows that, within the limit δβ ≤ 100 and k0 ≤ 1,
our theoretical prediction works with an error ≤ 10%. The stress intensity factor (SIF) is also
obtained. According to the theoretical analysis, active stress is of the same order as the passive
one during C. elegans elongation. It explains the crack opening in both orthogonal directions even
when the epithelium is under contractile deformation. Laser cut ablation technique is proved to be
a practical auxiliary method for the stress distribution assessment for biological systems in vivo.
But our method is not quite appropriate for large tilting angle δβ in the case of anisotropy. In
addition, we do not consider the complex geometry in the simulations. If possible, it is necessary
to take more mechanical experiments to simulate the crack opening with polymer networks.
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6.2 Buckling of Drosophila wing disc

The Föppl-Von Kármán (FvK) model with growth is extended to a bilayer specimen including
the monolayer epithelium and stiffer ECM. If the structure is relatively thin compared with other
length scales, we can use the homogenization method by taking the integral over the thickness.
We assume different material properties in each layer. Varying growth will lead to an inner mo-
mentumMg

αβ , Eq.(4.7), once the neutral surface Zn is determined. Zn is given by minimizing the
elastic energy Eq.(4.20). Hereafter we obtain the equivalent bending stiffness D in Eq.(4.7) and
make the governing equations Eq.(4.6) closed with well-defined boundary conditions. Since the
in-plane membrane force might affect the position of the neutral surface, we then perturbate Zn
leading to Eq.(4.30). An analytical solution is found in 1D with unsymmetrical branches shown
in Fig.(4.1). An ECM defect can change the buckling shape as well as the buckling mode (see
Fig.(4.2)). Then we implement this nonlinear effect as a simple quadratic term in the numerical
toolbox MANLAB.

For FEM implementation, we choose two methods in chapter 4 and 5 respectively. First we
use a shell module in COMSOL with an equivalent monolayer model. Growth is considered as
inelastic strain with linear decomposition. Additional bending by growth and active networks is
covered. We focus on the local exponential case with all kinds of parameters including the ECM
defect and we utilize a self-defined weak form to consider the nonlinear effect. Different buckling
shapes in 3D are obtained by appropriate input. Then we try to use beam and solid elements
to simulate the buckling of bilayer structures. We employ an updated Lagrangian algorithm and
simplify the biological system of the epithelium with stiffer ECM as 3D solid elements coupled
with a nonlinear Euler beam network. In Fig.(5.4), we provide different buckling solutions by
tuning the stiffness of the beam and growth. Furthermore, a FEM platform is under preparation
in MATLAB. Finally 2D wrinkling and folding simulations are studied for a Maxwell viscoelas-
tic bilayer. In contrast to pure elasticity, viscosity and boundary conditions can affect the final
buckling shape which might explain the real situation.

However, we do not take full use of the micro structure of the biological system. We need to
bridge different scales by coupling techniques and a meso-scale theory is important to understand
the biophysics.
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The role of the actomyosin network is investigated in the elongation of C. elegans during embryonic
morphogenesis. We present a model of active elongating matter that combines prestress and passive stress
in nonlinear elasticity. Using this model we revisit recently published data from laser ablation experiments
to account for why cells under contraction can lead to an opening fracture. By taking into account
the specific embryo geometry, we obtain quantitative predictions for the contractile forces exerted by the
molecular motors myosin II for an elongation up to 70% of the initial length. This study demonstrates the
importance of active processes in embryonic morphogenesis and the interplay between geometry and
nonlinear mechanics during morphological events. In particular, it outlines the role of each connected layer
of the epidermis compressed by an apical extracellular matrix that distributes the stresses during elongation.

DOI: 10.1103/PhysRevLett.121.268102

Mechanical stresses play a crucial role in animal embryo
genesis. At the macroscopic level, differential growth
generates compressive stresses creating the circumvolu-
tions of intestine [1–3], brain cortex [4–6], and fingerprints
of skin [7,8]. The folding of tissues is then directly linked to
the coupling between volumetric growth, tissue properties,
and geometry. At the cellular level, the interplay between
mechanics and morphological events such as division,
migration, and tissue organization is much more subtle.
The high deformability of cells is counterbalanced by
the cellular filament networks, especially by the actomyo-
sin cortex. It comprises a network of cross-linked actin
filaments located below the plasma membrane, so that the
local cell contractility results from the myosin molecular
motors which transform the chemical energy of ATP
hydrolysis into contractile stresses. How these microscopic
processes at the cell level cooperate to induce shape
transition at the tissue level is central in “active matter.”
At early stages in small organisms such as Drosophila [9]
or C. elegans [10], the number of cells is relatively small
and the structure is simple enough, giving perhaps a way to
bridge scales between microscopic activity and observable
tissue displacements. Both of these biological species are
considered as model systems where the theoretical frame-
work of active matter [11–15] can be applied and more
importantly quantified by analyzing experimental data.
Here we investigate the early stage of C. elegans elongation
up to 70% when the embryo contains 65 epidermal cells in

the cortical position in an ovoid shell. Among available
approaches, laser cuts in different locations on live embryos
allow us to evaluate either the tension or the stiffness [16],
quantities necessary to assess the active stresses at the
origin of the elongation [17,18]. Since, in this process, there
is no cytokinesis or apoptosis and no position exchange
between neighboring cells, we select a continuum approach
of active matter to predict the fracture opening. However, as
highlighted in Refs. [19,20], the difficulty in active matter
consists in evaluating the stresses: active or passive for
samples with complex geometry and elastic properties. To
this end, one must comprehend the nonlinearities of shape
transformations in these small organisms with a limited
information on mechanical quantities.
The aim of this Letter is to investigate this problematics

when only some characteristics are known for C. elegans
embryos. Our scope is to estimate the activity of the
molecular motors and to compare it to the elastic resistance.
For that, we establish an analytical model based on non-
linear elasticity for soft tissues and compare our predictions
with measurements by laser ablation [16]. The proposed
treatment can be adapted to other morphogenetic events in
embryogenesis.
Laser ablation.—Fracture opening gives a way to deter-

mine the forces at the cellular level. This technique helps
to experimentally deduce the tensile stress in the
perpendicular direction to the fracture line when the cell
stiffness is known. Conversely, when the stresses are well
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identified, it gives some insights on the fiber network
organization. Indeed, the crack opening in linear elasticity
is an ellipse [21] and the shape factor (opening bi along xi
divided by the crack length lk along xk) is given by
F ik ¼ bi=lk ∼ 2σi=E, where σi is the tension and E the
Young modulus, see Fig. 1(c). For F ik, other stress
components than σi do not play a role and for an
anisotropic sample, E must be replaced by Ei the stiffness
in the xi direction [16].
In a recent work [16], Vuong-Brender et al. apply this

technique in different parts of C. elegans [in Fig. 1(d)] and
demonstrate that the cracks always open both in the dorso-
ventral (DV) and in the anterior-posterior (AP) directions. If
the crack opening is not a surprise in AP, it is more puzzling
in the DV direction for various reasons, Fig. 1(d). First,
cracks cannot open in compression (except in some very
specific conditions [22]). Because of volume conservation,
an extension in AP leads automatically to a contraction in
DV. In addition, myosin II, the actin molecular motors have
been observed [23–26] in the seam (S) domain [blue in
Figs. 1(a),1(b),1(d)], and these motors are contractile. Even
more intriguing, in S cells, the opening is larger in the DV
than in the AP direction [16]. The theoretical interpretation
of these experiments cannot be captured by the linear
elasticity framework. To recover the shape factor F ik
requires evaluating first the state of stresses or strains
inside the embryo before elongation and then incorporating
the active stresses due to molecular motors. By coupling
them, the modeling must recover the results of the laser
ablation but also the possibility to elongate the embryo up
to 70%. Nonetheless, in nonlinear elasticity, and to the best
of our knowledge, there is no general formula for crack
opening but only local analysis of the stresses at both ends
[27,28]. A simple analogy between linear and nonlinear

elasticities suggests to replace σ by the equivalent Cauchy
stress σi and E by the local stiffness Ei. The following
addresses the evaluation of these two quantities in the
nonlinear elasticity framework beginning first by the
geometry analysis.
Geometry and strains.—The morphogenetic events of

the embryo elongation consist of cell intercalation and
ventral enclosure [10]. The displacements of matter are
strongly constrained by the limited space and induce
significant strains [29]. In particular, the ventral enclosure,
schematized by Fig. 1(a), cannot be achieved without local
forces to join the two parts of the epithelial cortex, as
demonstrated by myosin accumulation [23,24]. Hence,
when elongation begins, the tissues have already stored
prestrains and prestresses [20] and the measurements in
Ref. [16] result from those cumulated stresses. Their
evaluation requires a complete knowledge of the history,
which is difficult to assess. A possible simplified scenario
will be the enclosure of a cylindrical partial shell with a
lacking angular sector β, see Fig. 1(a), by orthoradial
stretching. But this shell is made of a nonhomogeneous
epidermis with 3 kinds of cells called hereafter dorsal (D),
seam (S), and ventral (V) cells; see Fig. 1(b). Once the
suture is achieved, the embryo becomes a composite
cylinder made of a row of epithelial cells and nascent
intestine. Besides, it is covered by the extracellular matrix
(ECM), a thin layer of secreted proteins. In the stress-free
configuration, before enclosure, the D cells occupy one
sector between ½−ϕDV;ϕDV �, S cells are located between
½ϕDV; β̃ − ϕDV �, and V cells fill the remaining sector up to
β̃ ¼ π − β=2 [Fig. 1(a) and in the Supplemental Material
[30]]. From the mechanical viewpoint, we do not make a
distinction between the D and V cells and now call them
DV cells. As shown in the Supplemental Material [30], at
full enclosure [FE, Fig. 1(b)], the position of material
points are defined by R, Θ, Z and then becomes r, θ, z with
elongation. At FE, the epidermis lies between the inner Ri
and the outer Re radius. It is possible to map the stress-free
configuration onto the current one and then to define the
elastic strains, but one must keep in mind that the
experimental results refer to the beginning of elongation
which is not a stress-free state. This distinction is essential
in nonlinear elasticity. We call G the angular stretch
defined by θ ¼ GΘi, which varies with the axial stretch
ΛZ and the domain area. We hypothesize that at FE, all
parts are stretched in the orthoradial direction so G0 > 1.
The two unknown parameters of the initial geometry
(e.g., β̃ and ΘDV) are determined in the Supplemental
Material [30] by arclength measurements [16]. Looking for
the simplest solution where strains and stresses remain
diagonal, the deformation gradient tensor defined by F ¼
DiagðΛR;Λ;ΛZÞ is then F ¼ Diagð∂r=∂R;Gr=R; dz=dZÞ.
Resulting from both enclosure and elongation, the elastic
tensor Fe defined by Diag ðλR; λ; λZÞ reads Fe ¼ FF0. F0 is
the prestretch tensor defined by 2 independent eigenvalues:

FIG. 1. The ventral enclosure of C. elegans. (a) Schematic
representation before enclosure. (b) Horizontal section at enclo-
sure. Different colors are chosen: yellow for the dorsal (D), blue
for the seam (S), and brown for the ventral (V) cells. (c) Schema
of a planar fracture under tensile stresses. (d) Position of laser
fractures achieved in the embryo [16].
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F0 ¼ Diag(ðλ0λ0ZÞ−1; λ0; λ0Z), since the incompressibility
imposes λR ¼ 1=ðλλZÞ. (See also the Supplemental Material
[30]). These tensors are defined everywhere in the cylinder
and are different inS orDV domains.Only the elongationsΛZ
and λ0Z will remain identical in all parts for reasons of
integrity. Since there is no cell division during the process, the
volume conservation in the epithelium gives

r2 − r2i ¼
1

GΛZ
ðR2 − R2

i Þ; ð1Þ

which allows us to calculateG, knowing that at the border of
the interior zone,Λ ¼ ri=Ri ¼ 1=

ffiffiffiffiffiffi

ΛZ
p

. In the Supplemental
Material [30], it is shown how the angular stretchG for S and
DV cells, Fig. 2, is obtained from measurements of the
circumferential lengths published in Ref. [16]. Since data are
available only at ΛZ ¼ 1.3, 1.5, extrapolation at ΛZ ¼ 1 is
used. Agreement between modeling and experimental data
[30] validates the first steps with an epithelium thickness of
order 2 μm. Mechanical stresses can now be evaluated.
Equilibrium equations and boundary conditions.—The

crack opening reaches its finite value after only a few
seconds, which is in the same order of magnitude as the
velocities of actomyosin flows (in the order of 1 μm=s
[31,32]). Focusing on the equilibrium value of the slit
opening, we can neglect viscoelasticity [33,34]. Then, in
cylindrical geometry, the Cauchy stress σ, diagonal as the
deformation gradient tensor Fe, satisfies

∂σr
∂r þ 1

r
ðσr − σθÞ ¼ 0; ð2Þ

where σr and σθ are the radial and orthoradial components
in the current configuration. This equation is identical in

linear elasticity [35]. Equation (2) requires only one
boundary condition, chosen at the apical border, just below
the ECM whose thickness is about 10−2 the embryo radius
[16,26]. So, it imposes a weak compressive surface stress,
σr ∼ 0, during elongation. Defining WP as the passive
elastic energy density, each stress component becomes σk¼
λkð∂WP=∂λkÞþσak−p [17,18], where p is a Lagrange
parameter ensuring the incompressibility and σak the active
stress which only exists in the S cells. σak can be decom-
posed into a volumetric σa;v and a deviatoric σa;d part
defined by: σa;v¼ ζa;vI and σa;d¼ ζDiagð0;1;−1Þ [14,19].
ζa;v may be included into the Lagrange parameter p (a
detailed demonstration can be found in the Supplemental
Material [30]). Conversely, the deviatoric part is a traceless
tensor with no specific sign. Finally, the definition of a new
energy functional [36]: W̃P ¼ WP½ðλλZÞ−1; λ; λZ� enforces
automatically incompressibility giving:

σθ ¼ σpθ þ σr þ ζ; σz ¼ σpZ þ σr − ζ;

σpθ ¼ λ
∂W̃P

∂λ ; σpZ ¼ λZ
∂W̃P

∂λZ ; ð3Þ

where σpθ and σpZ decouple from the active part ζ. Once
Eq. (2) is solved, all stresses can be calculated explicitly
[30]. Since fractures are made superficially on the outer
surface where σr ∼ 0, only σθ and σz are the components of
interest for our study.
Evaluation of the stresses and fracture opening.—In

these epithelial cells, it was found [25] that both micro-
tubules and actin filaments are oriented mainly in the
orthoradial direction in both cells. So we choose the
simplest constitutive law as a superposition of a matrix
and a fiber network elasticity:

WP ¼ μ

2
ðλ2R þ λ2 þ λ2Z − 3Þ þ τ

4
ðλ2 − 1Þ2; ð4Þ

when orientation along θ is imposed. Such superposition is
currently achieved with some variants concerning the last
term [37,38]. Choosing the S cell coefficient μS as the unit
of elastic energy, we estimate that μDV > 1 to represent a
stiffer material and τS < τDV , to represent a weaker degree
of fiber alignment in S cells. Since orientation is the same
for actin or microtubules [16,25], a unique coefficient τ
involves both filaments.
At FE, the state of the cylinder is characterized by 3

independent prestrain quantities which are the orthoradial
stretches (λ0S and λ0DV) and the axial stretch λ0Z; see the
Supplemental Material [30]. Within the thin epithelium
approximation, η ¼ 1 − R2

i =R
2 ≪ 1, one easily finds G0∼

λ0
ffiffiffiffiffiffiffi

λ0Z
p

, from Eq. (1). From the geometry, the lacking angle
of the sector reads β ∼ 2ðπ − β̃Þ ∼ 2π½1 − ð ffiffiffiffiffiffiffi

λ0Z
p

λ0SÞ−1�. In
addition, λ0S and λ0DV values must be compatible with the
continuity of the orthoradial stresses σθ;S ¼ σθ;DV at FE,

FIG. 2. Angular stretch for S and DV cells. Notice that GS < 1
for S and GDV > 1 for D cells. Theoretical curves, explained in
the Supplemental Material [30], are weakly dependent of the
epidermis thickness, represented by η ¼ 1 − ðRi=ReÞ2. Compari-
son with experimental data from Ref. [16].
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which fixes the ratio of stiffnesses between the S and DV
cells with λ0DV < λ0S. Post enclosure, the prestrains modify
the elastic strains into λ ¼ λ0Λ ¼ λ0Gr=R and λZ ¼ λ0ZΛZ
(see the Supplemental Material [30]). This explains why a
tissue remains in tension even if contractile motors exert a
compressive work on it. For a thin epithelium, the elastic
stretch λ is transformed into λ ∼ λ0G=

ffiffiffiffiffiffi

ΛZ
p

and we have
now σpθ;S þ ζ ¼ σpθ;DV, which gives ζ. GS decreases as ΛZ

increases leading to a decrease of the passive stress σpθ .
However, the active stress ζ, an increasing function of ΛZ,
compensates the opening of cracks in the DV direction.
Finally, because the epithelial elasticity is both orthotropic
and nonlinear, the adapted mathematical formula for the
shape factor F ik is deduced from WP, Eq. (4). The
equivalent Young modulus in the ith direction reads

Ei ¼ Kii −
K2

ij

Kjj
; Kij ¼ λj

∂σpi
∂λj and F ∼ 2

σpi þ ζi
Ei

:

ð5Þ

This evaluation presents no difficulty once the elastic
energy density is known, albeit this question remains
challenging for small organisms.
Results and discussion.—The incompressibility

hypothesis and the cylindrical shape are tested by
comparing the angular stretch G with the experimental
values of each domain: seam, dorsal, and ventral (see
Fig. 2 and Table I). There is a slow dependence with the
thickness of the epidermis which is reassuring since this
thickness in the order of 2 μm is not known with
precision. By extrapolation, we derive a value of each
arclength at the “supposed” beginning of elongation and
finally an angle of order β ∼ 26°, indicating a significant
prestretch at enclosure, associated with a prestress about
0.45 for σθ and 0.35 for σZ. As shown in Figs. 3(b) and
3(c) the amplitude of the active stress ζ is an increasing
function of ΛZ which saturates around the value 1.8.
Above this value, a new mechanism involving muscle
cells [39–41] occurs, not considered here as we focus on
the role of the actomyosin network. Once the elastic
energy WP is obtained from the body results, this energy
function is fixed everywhere: in the head and in the tail,
only the prestretch values due to enclosure are very
slightly modified as shown in Table I. After, the theo-
retical curves are derived from F , Eq. (5) and shown
in Fig. 3(a). Notice that the active stress ζ is derived
from the difference between passive parts of the S and
DV cells with an empirical formula of 2 parameters:
ζ ¼ 2α1π

−1tan−1α2ðΛZ − 1Þ. The agreement is good for
the crack opening in S cells. All the results concerning
this elongation step in the C. elegans embryonic life are
gathered in Table I. The methodology to derive these
parameters, which rest on the border conditions and
available experimental data, is explained in detail in the
Supplemental Material [30].

FIG. 3. (a) Crack opening in S cells for head, body and tail in the DVor AP directions, Eq. (5). Difference between curves comes from
prestrain values, Table I and the Supplemental Material [30]. In the inset, the active stress ζ beginning at enclosure. (b) Comparison of
passive versus active stress in S cells [Eqs. (3), (4)]. The scale for stresses is the stiffness of S cells μs ¼ 1. (c) Active stress evaluated as
the difference of σpθ between DVand S cells. In the inset, ζ, deduced from the model and approximated by ζ ¼ 2α1π

−1 tan−1 α2ðΛZ − 1Þ
with 2 parameters is given in Table I.

TABLE I. Geometric and elastic parameters of the model in
different parts of the embryo.

C0S C0DV
λ0Z λ0S λ0DV α1 α2μm μm

Head 14.5 33.0 1.025 1.06 1.0326 2.2 1.27
Body 10.1 24.8 1.025 1.09 1.05 1.15 3.2
Tail 10.1 24.8 1.055 1.05 1.0232 1.25 2.9

Elastic coefficients: μDV ¼ 1.44, τS ¼ 0.15, τDV ¼ 0.67

The circumference lengths C0 are extrapolated from
Refs. [16,30]. λ0, values at enclosure, differ in S and DV and
from head to tail. The coefficients α’s refer to active stress
evolution, see Fig. 3(c). The elastic parameters of Eq. (4) do not
vary along the embryo.
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To conclude, as emphasized in Ref. [20], it is especially
delicate to extract quantitative information from nonlinear
mechanical systems involving active and passive stresses
and, in addition, prestretch and prestress. The complexity
increases with the geometry for a multilayered inhomo-
geneous epidermis trapped between a central intestine
and the apical ECM. In vivo measurements, difficult at
the scale of the cell are made possible thanks to the
technique of laser ablation which, combined with this
analysis, gives a satisfactory picture of how molecular
motors can achieve cell and embryo deformations. Even if
the focus is put on C. elegans geometry, the theory
developed here can be adapted to other systems where
laser ablation is achieved to assess stresses and illustrates
how prestress can be accounted for in vivo. The role of
mechanics in embryogenesis needs not to be demonstrated
anymore. However, it is crucial to develop experimental
and theoretical tools to fully understand the origin of
morphogenetic events in model systems.
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Abstract. Epithelia, which consists of cell sheets lying on a substrate, are prevalent structures of multi-cellular organ-
isms. The physical basis of epithelial morphogenesis has been intensely investigated in recent years. However, as 2D
mechanics focused most attention, we still lack a rigorous description of how the mechanical interactions between the
cell layer and its substrate can lead to 3D distortions. This work provides a complete description of epithelial mechanics
using the most straightforward model of an epithelium: a thin elastic bilayer. We first provide experimental evidence
in Drosophila tissues that localized alterations of the cell-substrate (the extracellular matrix) can lead to profound 3D
shape changes in epithelia. We then develop an analytical model modifying the Föppl-von Kármán equation with growth
for bilayers. We provide a complete description of all contributions from biophysical characteristics of epithelia. We
show how any localized inhomogeneity of stiffness or thickness drastically changes the bending process when the two
layers grow differently. Comparison with finite-element simulations and experiments performed on Drosophila wing
imaginal discs validate this approach for thin epithelia.
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1 Introduction

Biological cell assemblies are often organized in laminar structures called epithelia. Epithelia cover most of our hollow organs,
such as the esophagus [1], intestine [2,3] and stomach. The skin is also an epithelium constituted of several cell layers. The
structure of epithelia is of one or several attached cell layers, which rest on a more disorganized polymeric substrate, called the
extra-cellular matrix (ECM). Even the simplest epithelium, constituted of a single cell layer, must rest on an abutting ECM layer.

In the past decade, a lot of emphasis has been put on the role of the cytoskeletal cortex on the apical side of the cells (the side
away from the ECM layer) in setting mechanical properties of epithelia [4]. However, recent investigations have established that
the mechanical properties of the ECM may be as important in setting the shape of a tissue [5]. Both the cell layer and the ECM
must be taken into account in the mechanical description of epithelia.
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From the biomechanical viewpoint, an epithelium may be viewed as a bilayer made of two different soft materials with
different stiffnesses and different ways to grow: the cell layer grows by mass increase and proliferation, while the ECM grows
by addition of polymer-chains and swelling. A bilayer can also serve as a suitable approximation for more complex geometries,
such as the multilayered skin, sub-divided into the dermis and the epidermis. In between layers of cells or in between cells and
connective tissues, the ECM may develop into a stiff membrane enriched in collagen filaments called the basal membrane [6].
Epithelial cells may also have a reinforced cortex at their basal side, increasing the interfacial stiffness [7,8]. A more realistic
mechanical view of epithelia would thus be that of a bilayer with the addition of stiff interfaces originating from the ECM or the
cytoskeleton.

When one layer is a very soft substrate, several studies have attempted to deal with such bilayered systems [9–14] by treating
the soft layer as an elastic foundation or as an ad-hoc resistance potential [10,11]. These models become essentially single-
layered and cannot account for the diversity of behavior of two-layered systems where the two layers play similar roles and have
similar properties. We aim here to present a simple mechanical model of thin bilayers using the Föppl-von Kármán equations
(FvK) with growth. In the context of a thin plate hypothesis, the FvK equations allow a 3D to 2D dimensional reduction which
considerably simplifies the analytical treatment of plate mechanics. The FvK equations are thus well adapted to incorporate many
different biological features of layered tissues which are difficult to handle analytically in a fully three-dimensional formalism. It
has recently been shown that FvK equations with growth allow to explain the buckling of thin objects such as flowers and algae
in a rather simple way [15,16], when compared to the full treatment of finite elasticity with growth [17]. In addition, a slight
modification of these equations allows to treat initially weakly curved membrane. This prompted us to use the same approach for
a bilayer with growth. When modeling a single-layered epithelium, the two layers of the model are the ECM and the cells, while
the interfacial stiffness represents the basal cytoskeletal cortex of cells (left inset in fig. (1)). When modeling a more complex
system, such as the skin, one layer of the model represents the cell layers of the epidermis, the second layer is the dermis (a
connective tissue) and the interfacial stiffness represents the extra-cellular basal lamina (right inset in fig. (1)), see reference
([6]). Our model can account for local variations in the stiffness or in the thickness of the layers as well as interfacial stiffnesses.
Such variations are often present in biological tissues, and are thought to be shape generators in morphogenetic processes. These
local variations in mechanical properties can also be induced in the context of perturbative experiments.

As much as elasto-mechanical processes may drive the shape of epithelia, this shape builds upon a long and intricate history of
growth, stress distribution, and changes in mechanical properties. On the other hand, our formalism, which uses linear elasticity
with moderate non-linear elastic strains, can only account for slight shape variations, spanning time intervals typically smaller
than the doubling time of cells within the tissue. To mitigate this problem, we encapsulate all the previous history of development
and morphogenesis in an initial shape and a pre-stress. This allows confrontation with experiments where the tissue, at the onset
of observation, is rarely in a flat and stressless configuration and where the full history of development is also inaccessible. We
show that the model can treat many aspects of biological tissues, which are not so common in material sciences. Although the
formalism was initially developed to treat biological growth, it could also serve for the opposite case of resorption, which could
be of interest both in a biological and material science context.

In this paper, we first demonstrate experimentally how alteration of the ECM can substantially impact the shape of an ep-
ithelium. For this, we genetically degrade the ECM in a band of cells in the Drosophila wing imaginal disc -the precursor of
the adult wing. Subsequent sections are devoted to developing an analytical and numerical treatment of a bilayer model. We aim
to account for the experimentally observed distortion of the tissue and provide a general framework to address the mechanics
of growing bilayered tissues at large. Section (3), is devoted to the geometry of the sample under study and a reminder of the
necessary approximations to incorporate the formalism of finite elasticity with growth into the FvK approach. In sect.(4), we
give the main equations for a bilayer and an approach of the treatment of the interface. In sect.(5), we derive the Euler-Lagrange
equations for the elastic bilayer equivalent to the FvK equations and we demonstrate the peculiar role of the neutral surface for
the bending of the plate. Its position is derived for arbitrary stiffness and thickness, not necessarily constant, of the two layers.
Section (6) focuses on uniaxial deformations, which simplify the FvK modified equations for a bilayer with additive terms at
the origin of buckling. In this section, numerical results illustrate the various cases for pre-stressed plates but also for slightly
curved membranes, and the theory is confronted to experimental data. In sect.(7), results obtained with finite element simulations
achieved in the same context of growth, thickness, stiffness and defects are presented. Finally, we conclude in sect.(8) by giving
some perspectives.

The model can be adapted to many other biological systems, as epithelia are ubiquitous in most living species. It could also
be used for other thin objects such as leaves or algae.

2 Experimental motivation: biomechanics of Drosophila wing imaginal discs

The Drosophila wing imaginal discs (the precursors of the adult wing) are epithelial tissues that became, over the years, one of
the most studied and best characterized system to study growth [18]. The growing wing imaginal disc displays a highly patterned
field of mechanical stresses[19–21]. Cells at the periphery of the epithelium sustain a strong mechanical stretch. This pre-stress
builds up as the tissue grows. In addition, the tissue becomes curved as development proceeds, gradually changing from a simple
flat surface to a more complex curved surface.
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Fig. 1. Geometry of the bilayer model. w0(x, y) is the deviation of the initial configuration from a flat surface; ⇣(x, y) is the displacement
from this initial configuration as a result of elastic energy minimization under the action of growth and pre-stress (N0). The schema at bottom
represent biological context that can be modeled by the theory: the two layers can either be cell or ECM layers of different height, Young
modulus and growth rate; the stiff interface can be a cytoskeletal cortex or a thin ECM.

Until recently, most attention was brought upon the role of the apical surface of the epithelium in setting its mechanical
properties. It was however recently demonstrated that the extracellular matrix upon which the epithelium sits plays a major role
in shaping the tissue. Alterations in the basement membrane composition, which includes collagen IV, laminin, nidogen, and
heparan-sulfate proteoglycans, have profound effects on the shape of the wing imaginal disc [22]. Alterations of the basement
membrane have also been shown to play an active part in setting the 3D shape of the wing disc by promoting the formation of
the folds that gradually arise in the tissue [23,24]. From these experiments, it now stands that wing imaginal discs, and most
epithelia in general, are two layered composite structures. Both the cell layer and the ECM layer take an active part in shaping
the tissue [25].

To assess the role of basement membranes in setting mechanical properties of the imaginal discs, we used Drosophila ge-
netics to express the matrix-cleaving metallo-protease Mmp2 in a band of cells, located at the center of the wing imaginal disc
along the Dpp-Gal4 genetic pattern (fig.(2a)). The genotype of the observed tissues is ubi-cad:GFP UAS-GFP tub-Gal80ts/+;
Dpp-Gal4/UAS-Mmp2. It combines the necessary transgenes to express the metallo-protease locally and to visualize cells with a
cadherin: GFP fusion. The biochemical action of Mmp2 is to degrade structural components of the ECM [26], which in mechan-
ical terms implies a possible change of ECM stiffness as well as the thickness. We cannot rule out also an indirect effect on the
the basal cytoskeletal cortex of cells, as an altered ECM in the vicinity of the cell layer implies a reduced activation of integrin
receptors. Our elastic model will need to take into account these different contributions. The metallo-protease expression is con-
trolled in time via the thermo-sensitive mutant of Gal80, by switching Drosophila from 18°C to 29°C 24h before observations
(fig.(2b)). Such a timing corresponds to approximately 18 hours of Mmp2 expression since 6 hours are required to reach full
Gal4 expression after the temperature switch [27]. To image the imaginal discs, we performed ex-vivo cultures of wing imaginal
discs as in [19]. The living tissues were then imaged with a spinning disc confocal microscope.
Figure (2c) shows the cross-section of an imaginal disc 18 hours after metalloprotease expression. The region of perturbation,
identified by RFP expression, is shaded in red on the figure. Figure (2d) shows the profile of the apical surface of the epithelium,
which has a region of inflection near the protease expression. This profile (fig.(2c,d) corresponds to a wing imaginal disc that
was initially flat. Alternatively, fig.(2d,e). shows the same perturbation outcome on a wing imaginal disc that was initially curved
- curvature normally builds up at late stages of wing disc development (around 80 hours after egg laying). The resulting tissue
is very different from the previous case. This time, the profile shows a more complex configuration: the naturally occurring
curvature is prevalent on the borders of the wing disc; at the same time, the metalloprotease action in the region of perturbation
induces an inversion of the curvature there.
To conclude, we observed that upon ECM degradation (which may impact the stiffness, the thickness, and the interfacial mechan-
ics), the epithelium curves in the perturbation region (fig.(2h)). We observed two archetypal outcomes depending on whether the
tissue was initially flat or curved, which can lead to the inversion of the naturally occurring curvature in the perturbation region.
These experimental observations will be subsequently confronted to our FvK bilayer model and our finite-element simulations
(see fig.(8) and fig.(10)).
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Fig. 2. Folding an epithelium by local ECM degradation. (A) Transmission light imaging of a Drosophila wing imaginal disc (left) and
corresponding sketch with the region of localised expression of the protease Mmp2 shaded in red (right). (B) To control expression of the
metalloprotease, the sample is switched from 18°C to 29°C several hours before observation. (C-F) Experimental demonstration. (C) An xz
cross section demonstrates the shape of an initially flat wing imaginal disc under the effect of a localized metalloprotease expression (in the
red colored region). The schema in (D) demonstrates the change in shape of the tissue. (E,F) Same as (C,D) but with an initially curved wing
imaginal disc. (G) A schematic representation of the shape changes observed in the wing imaginal disc.

3 Modeling

The geometry of the model is represented in fig.(1): two layers of different thickness (hf and hs), stiffness and growth rate are
organized in a bilayer, with an interface which may also bear a stiffness. The shape of the initial configuration (see explanations
in fig.(1) is given by w0(x, y), the deviation from the horizontal line; the vertical deflection arising from the elastic minimization
is denoted ⇣(x, y). There are no explicit rules about the difference in stiffness or thickness of the two layers, but they have the
same order of magnitude most of the time for living species. While there is also no rules regarding the thin interface layer, it will
only play a role if it is much stiffer. Contrary to inert materials, changes in the shape of the structure arises from inner processes
such as volumetric growth rather than through external loading, although this latter is not eliminated a priori from the model.
The bilayer can model, with different degrees of accuracy, a single or a multi-layered epithelium.

A decade ago, Dervaux et al. established the formalism of a growing plate using the theory of finite elasticity with growth
[15,16]. Here, we extend their analysis of a single layer to a thin bilayer, both layers having different growth rates and different
elastic properties but remaining thin. Indeed, the FvK equations rest on some limitations: the order of magnitude of the vertical
deflection ⇣ due to the buckling and the initial deviation from the horizontal line w0 must remain small compared to the horizontal
length L (they may be larger than the thickness h of the plate).

In the following, we first present the model for the general 2D case with arbitrary buckling deformations, and subsequently
treat the simpler uni-axial folding.

3.1 The geometric and elastic strain

We consider two different layers with thickness hf (top) and hs (bottom). When volumetric growth or degrowth occurs in an
elastic sample, each point is displaced and the gradient of this displacement is a geometric tensor called the deformation tensor:
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F . According to the famous Kroner-Lee decomposition [28], F results from both the elastic tensor A and the growth tensor G
in a simple way :

F = AG (1)

Here, plasticity is neglected. The amount of growth per unit volume is given by Det G � 1, which is negative for mass
resorption and positive for growth. When it is small, the growth tensor G can be decomposed into : Gij = �ij + �gij with
|�gij | << 1. The deformation tensor is then also small leading to the following displacement of the points originally located at
r = (x, y, Z) :

u(r) = u0(x, y) + (Z � Zn)u
1(x, y) + w0(x, y)

=
�
U

0
1 (x, y) + (Z � Zn)U

1
1 (x, y)

�
e1 +

�
U

0
2 (x, y) + (Z � Zn)U

1
2 (x, y)

�
e2 + (⇣(x, y) + w0(x, y)) e3

(2)

where w0(x, y) represents the intial position of the interface bilayer, and ⇣(x, y) the deflection due to the buckling event. Each
ei represents a cartesian unit vector and the superscripts ”0” or ”1” stand for the order of perturbation. Indeed, the ratio between
the thickness of the bilayer and the horizontal size L is one small parameter ✏1 = h/L but the magnitude of the displacement in
the Z direction compared to L is a second independent small parameter ✏2 = ⇣/L. We assume that both layers have comparable
thickness and h means either hf or hs. In the classical FvK approach, ✏2 ' p

✏1 a scaling which is justified below and which
will constrain g̃ij and w0. Since we examine here a composite material, the choice of the origin of the Z axis is free at this stage.
We define this origin at the physical interface between both layers. We also introduce Zn, a possible shift in the expansion of
order h , whose role is to minimize the elastic strains. This surface defines the surface of separation between parallel surfaces in
extension compared to the ones in compression due only to the buckling process. In the single plate geometry, Zn corresponds
to the position of the neutral surface and is located at h/2. We can then define the geometric deformation gradient :

Fij = �ij +
@ui

@xj
(3)

where, as in Landau’s book of elasticity [29], the index i indicates an index varying between 1 and 3 while greek letters restrict
to 1 or 2. The elastic strain that we deduce from eq.((1)) when A and G are close to unity reads :

Aij = �ikG
�1
kj +

@ui

@xk
G

�1
kj (4)

Defining G�1 = I � g̃, each component of g̃ must remain a small quantity to validate the FvK approach. In addition, we
assume no change of the thickness of the sample which means g̃33 = 0, this hypothesis simplifies the equations and can be easily
revisited. A spatially constant value of g̃33 over the sample simply enters in the definition of h. We also assume that g̃↵� scales
as ✏22 while g̃↵3 and g̃3↵ scale as ✏2. To order 2 in ✏2, the elastic strain ✏ reads:

✏↵� ⇡ 1

2

✓
@u↵

@x�
+

@u�

@x↵
� g↵� � g̃3↵

@⇣

@x�
� g̃3�

@⇣

@x↵
+

@⇣

@x↵

@⇣

@x�
+

⇣

R↵
�↵�

◆
(5)

where we only keep the quadratic term in ⇣ for the deformation tensor, all the other contributions being neglected. In addition,
to simplify the notations, we define g↵3 = g̃3↵ + g̃↵3 and g↵� = g̃↵� + g̃�↵ � g̃3↵g̃3� . The last term in eq.(5) represents the
geometric stretch of the deformation due to the eventual curvature of the initial shell formulated with Rx and Ry , the local radii
of curvature, in the direction x and y [10]. A more precise mathematical formulation can be found in [30] in function of the
curvature tensor of the shell. To simplify, we have assumed that Rx and Ry are the principal radii of curvatures of the initial
shell, positive for a concave membrane. So R

�1
x = �@xxw0(x, y) and R

�1
y = �@yyw0(x, y) for a slightly curved membrane.

For a consistent expansion, all terms in this relation must have the same order of magnitude. This implies several scaling
relations. We get for the horizontal deformation: u ' ⇣

2
/L, for the growth element g↵� ' ⇣

2
/L

2 and for the two radii of
curvature Ri or Rj : R ' L

2
/⇣ ' L✏

�1
2 .

3.2 Dimensional reduction of the Hooke’s Law for one layer

We aim here to establish the equilibrium equations of a growing bilayer under initial pre-stress (represented by N0 in fig.(1)
when it is initially planar or weakly curved. For that, as in Landau et al. book [29] and in [11,15,16], our strategy consists in
calculating the elastic energy and deriving the Euler-Lagrange equations through variations. Most importantly, we write the stress
and strain tensors as a function of x and y only. First, we consider each layer independently since each of them has its own elastic
coefficients and its own growth characteristics. The coupling will be realized via the boundary conditions. Due to the weakness
of the deformation for slender objects, we can apply the Hooke’s Law which is the constitutive equation of linear elasticity, but
we maintain the nonlinearities of the strains according to the strategy of the FvK equations. We also consider the usual membrane
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hypothesis: �i3 = 0 which is equivalent to the plane stress approach. Then, it reads for the Cauchy stress components �↵� where
↵ and � are restricted to x, y:

�↵� =
E

1� ⌫2

�
(1� ⌫)✏↵� + ⌫✏���↵�

�
(6)

with ⌫ ' 1/2 for the incompressible case, an assumption commonly used for living tissues. In order to determine the elastic
energy ⌥ , we then write the elastic strain tensor (also a function of x and y), which we decompose in orders of (Z � Zn) with
the help of the expansion 2), so that

✏↵� = ✏
0
↵� + (Z � Zn)✏

1
↵�

First the zero order:

✏
0
↵� =

1

2

✓
@↵U

0
� + @�U

0
↵ + @↵⇣@�⇣ � g↵� � g̃3↵

@⇣

@x�
� g̃3�

@⇣

@x↵
+

⇣

R↵
�↵�

◆
(7)

The first order results from the cancellation of the stresses of the third dimension : �33 = �13 = �23 = 0, so ✏13 = ✏23 = 0 (see
[29]) and using the definition eq.((5)), we derive:

U
1
1 (x, y) ⇡ � @

@x
⇣ + g13; U

1
2 (x, y) ⇡ � @

@y
⇣ + g23 (8)

Thus the strains at first order become :
✏
1
↵� = �@

2
↵�⇣ +

1

2
(@↵g�3 + @�g↵3) (9)

One recovers the bending contribution @
2
↵,�⇣, multiplied by Z � Zn. Following the equilibrium equation eq.(6) and the decom-

position of the elastic strain (eq.((7))) and eq.((9))), we can also decompose �↵� as �↵� = �
0
↵� + (Z � Zn)�1

↵� .

4 FvK equations for the bilayer case

As in Landau’s book of linear elasticity [29], we average the elastic energy in the thickness of the bilayer.

4.1 Averaging the FvK equation

An important problem in the construction of the model is to establish the position of the neutral surface when the layer is
not perfectly homogeneous or for multiple layers. According to [29], the neutral surface defines the separation between layers
in compression from layers in tension when the structure is weakly bent. For an homogeneous sample, the neutral surface is
naturally the middle surface of the sample. But for a bilayer, the position of the neutral surface is unknown. The interface
between both layers seems to be the natural choice for the definition of the origin of the Z coordinate but it is not the neutral
surface. So, we put the neutral surface at a position Zn that we ignore and this position will also contribute to the minimization
of the elastic energy ⌥ .

⌥ =

Z hf

�hs

dZ

ZZ

S0

dS

✓
1

2
�↵�✏↵�

◆
(10)

The Euler-Lagrange equations result from variations of ⌥ with respect to ⇣ and u↵, the linearity between � and ✏ leading
to �⌥ = �↵��✏↵� . These variations, taken one after the other must vanish at linear order. Special attention must be given if the
growth tensor or the Young modulus E are dependent on Z as it is obviously the

Case 1 for the bilayer, and sometimes of the other coordinates x and y. The variation of ⌥ with respect to the horizontal defor-
mation u↵ is easily derived and gives:

�⌥ (u↵, ⇣, Zn;u↵) = �
ZZ

S0

dS�u↵

(
@

@x�

 Z hf

�hs

�↵�dZ

!)
= 0 (11)

This corresponds to the second equation in the FvK formalism [29], sometimes re-written with the Airy potential, which is very
useful for analytical or numerical solutions of a 2D problem. Variation of ⌥ with respect to ⇣ gives:

�⌥ (u↵, ⇣, Zn; ⇣) =

ZZ

S0

dS�⇣

(Z hf

�hs

dZ

✓
�(Z � Zn)@

2
↵��↵� � @↵(@�⇣ · �↵�) +

�↵↵

R↵
+

���

R�

◆)
= 0 (12)
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In eq.(11,12), the two bracketed terms mush vanish. We do not mention explicitly the contributions coming from integration
by part which fixes the boundary conditions for free boundaries. In the following, we consider only clamped boundary conditions.
Finally, there remains one free parameter, Zn, that we will use to minimize the bending energy. Indeed at a low level of stress, the
bending contribution given by eq.(12) ([29]) is the dominant one. As mentioned above, the neutral surface Zn is a characteristic
of the bilayer structure and geometry and does not depend on any loading and/or any growth process. Considering ⌥ in the limit
of a tiny buckling mode ⇣ in eq.(10) and separating � as �↵� = �

0
↵� + (Z � Zn)�1

↵� , we have:

�⌥ (u↵, ⇣, Zn;Zn) = �
ZZ

S0

dS�Zn

Z hf

�hs

dZ
�
�

0
↵�✏

1
↵� + 2(Z � Zn)�

1
↵�✏

1
↵�

�
= 0 (13)

where we have separated in �↵� the contribution of zero and first order in (Z�Zn) as for ✏↵� , both terms satisfying the Hooke’s
law independently. In the limit of negligible in-plane stresses and tiny bending deformations, with ⇣ << h, the scaling evaluations
estimated before indicate that the first term will behave as E(Z)⇣3

/L
4 while the second term behaves as E(Z)h⇣2

/L
4 and so

the second term dominates, giving an implicit equation for the neutral surface position:

Z hf

�hs

E(Z, x, y)(Z � Zn)dZ = 0 (14)

since ✏
1
↵� does not depend on Z. Notice that if E is also a function of (x, y), Zn becomes also a function of (x, y). It is now

possible to transform eq.(12) once we define the new bending coefficient and the new spontaneous curvature due to growth:

D =
1

1� ⌫2

Z hf

�hs

E(Z, x, y)(Z � Zn)
2
dZ; C↵� =

1

2

Z hf

�hs

E(Z, x, y)

1� ⌫2
(Z � Zn)

2

✓
@g↵3

@x�
+

@g�3

@x↵

◆
dZ (15)

Doing again the separation of � into �
0 and �

1, an intermediate step consists in integrating �↵� over the Z variable, which gives
first:

⌃↵� = �
Z hf

�hs

(Z � Zn)�↵�dZ = (1� ⌫)(D@
2
↵�⇣ � C↵�) + ⌫(D�⇣ � C��)�↵� +M↵� (16)

where we have dropped the dependence of D and C↵� in x, y to simplify notations, introduced the 2D Laplacian � = @↵↵, and
a new tensor M↵� :

M↵� =

Z hf

�hs

E(Z, x, y)

1� ⌫2
(Z � Zn) {(1� ⌫)g↵� + ⌫gµµ�↵�} dZ (17)

The simplification of M is due to the definition of the neutral surface and the fact that only the growth component g↵� may
depend on Z. If it is not the case, M↵� vanishes. At last, eq.(12) gives the equivalent of the first FvK equation:

@
2
↵�⌃↵� � @↵

(Z hf

�hs

�↵�@�⇣dZ

)
+

 R hf

�hs
�xxdZ

Rx
+

R hf

�hs
�yydZ

Ry

!
= P (18)

where P is a vertical pressure, possibly applied to the bilayer.
This last equation, eq.(18), governs mostly the bending deformation. In the nonlinear regime of the FvK formalism, it is

coupled to the horizontal stresses �↵� whose equilibrium is given by eq.(11). When not stated otherwise, �↵� is the total stress.
D appears to be an effective bending coefficient of the composite structure and C↵↵ as a spontaneous curvature associated with
growth. For a homogeneous layer with no growth Zn = h/2, M↵� vanishes and one recovers the traditional FvK equations
without growth, see [29]. Notice that in eq.(18), we also recover the spontaneous curvature  = @↵g↵3 found in [16]. Let us
focus now on the uniaxial folding where all the equations simplify.

4.2 New FvK equations governing uniaxial folding

For uniaxial folding, the only dependence is along the x axis and all the tensors are reduced to one element, which simplifies a
lot the analysis but reduces the diversity of observed buckling patterns, as explored in previous works [12,14]. The elastic plane
stress equilibrium equation, eq.(11) gives :

N =

Z
�11dZ = �N0 (19)

where N0 is a constant that we choose positive. N0 indicates a lateral compression, a situation easily realized in material sciences
but in embryo it results from accumulated pre-stress [31,20] (see fig.(1)). The bending equilibrium equation now reads:
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d
2

dx2

✓
D

d
2
⇣

dx2

◆

| {z }
Elastic term

+N0
d
2(⇣ + w0)

dx2| {z }
Pre-stress

=
d
2

dx2
(C11 �M11)

| {z }
Growth contribution

+ P (x)| {z }
External stress

(20)

where we detail M11 in the simplified case of growth occurring only in a single layer.
8
><
>:

M11 =
R hf

�hs

E(Z�Zn)
1�⌫2 g11dZ =

R hf

0
E(Z�Zn)

1�⌫2 g
f
11dZ +

R 0

�hS

E(Z�Zn)
1�⌫2 g

s
11dZ

C11 =
R hf

�hs

E(Z�Zn)2

1�⌫2
dg13

dx dZ =
R hf

0
E(Z�Zn)2

1�⌫2

dgf
13

dx dZ +
R 0

�hS

E(Z�Zn)2

1�⌫2

dgs
13

dx dZ

(21)

We have derived an effective equation for the bilayer, which takes into account that the growth may differ from the top to the
bottom layer via C11 and M11. Contrary to C11, M11 appears only if the growth tensor component g11 is different in both layers.
If in addition, the second derivative of these two quantities does not vanish, they appear equivalent to a vertical loading acting on
the bilayer giving it a curvature in absence of an initial one (w0 = 0). This will destroy the perfect symmetry up and down, once
averaged over the thickness of the bilayer and explain the bending in the case of growth. We now examine in more detail how the
structure of the bilayer and eventually how defects affect the bending one-dimensional equation.

4.3 Boundary conditions for the bilayer.

Boundary conditions concern the top and the bottom interfaces between the surrounding fluid and the two layers, as well as
the interface between the two layers (Z = 0). In solid mechanics, the interface between layers is often considered as a line of
discontinuity. More realistically, it is a thin zone of sharp variations for physical constants - in our case for growth coefficients or
stiffness. Moreover, it may happen that the elasticity of the interface is not simply the mean-value of both elastic coefficients. As
discussed above, this happens when the interface of a cell layer and the ECM is enriched in intracellular cytoskeletal filaments,
or when a thin basal lamina separates two cell layers, both circumstances leading to a stiffer interface. If the interface is really
smaller than each layer, we can consider it as a transition zone around Z = 0, then avoiding the application of boundary
conditions to a system of 3 layers. A way to avoid writing boundary conditions is to represent the sample as a unique layer where
the elastic parameters such as the Young modulus vary continuously. If the interface is very thin, one needs only to know its
thickness relative to the thickness of the bilayer, the detail of the description is not really important. The fact that we use the
so-called membrane hypothesis with cancellation of the stresses �13 = �23 = �33 = 0 ensure automatically the continuity of the
normal and shear stress at the upper and lower boundaries and at the interface of the two layers (Z = 0). So only the continuity
of the displacements is required at the interface. Choosing a ”continuous approach” and aiming to transform the bilayer into a
unique layer whose entire thickness will be hf + hs, we assume that the Young modulus E and any growth number g↵� can be
written as:

E(Z) =
Ef + Es

2
+

(Ef � Es)

2
tanh(Z/l0) with l0 <<< hf and l0 <<< hs (22)

and

gij(Z) =
g

f
ij + g

s
ij

2
+

(gf
ij � g

s
ij)

2
tanh(Z/l0) with l0 <<< hf and l0 <<< hs (23)

When a thin stiff membrane superposes to the two main layers of the sample at a position Zm which can be on top Zm = hf ,
or at the bottom Zm = �hs, or at the surface of separation: Zm = 0, as justified above, then we can slightly modify eq.(22) into

E(Z) =
Ef + Es

2
+

(Ef � Es)

2
tanh(Z/l0) + Eme

�↵2
m(Z�Zm)2/l20 with l0 <<< hf and l0 <<< hs (24)

the Young modulus of the membrane, Em, can be much larger than both Ef and Es. ↵m is a numerical coefficient characterizing
the thickness of the membrane. Another boundary layer may exits on top or bottom of the bilayer, in addition to the interfacial
one. The formulation of the Young modulus, E(Z), must then also includes this new contribution. Such definition of E(Z) can
be implemented into eq.(15) very easily to deliver the new FvK equations. We focus now on the the neutral surface position and
on the bending coefficients when either the elastic coefficients or the thicknesses present a sharp but small in size variation along
the sample.

5 Position of the neutral surface Zn for uniaxial loading

We can guess from the definition of the coefficients (eq.(21)) of the bending FvK equation (eq.(20)), that the position of the
neutral surface is crucial for the shape of the sample when growing and buckling. We consider first the position of the neutral
surface for layers of constant thickness and constant Young modulus and we introduce a linear perturbation dependent on the x

variable. If the linear approximation is not valid, a numerical solution is always possible as in sect.(7).
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5.1 Position of the neutral surface for a bilayer without structural defects

In the case of an ideal bilayer with no structural defects, Z(0)
N is determined implicitly via eq.(14) with a Young modulus E(Z)

defined by: E(Z) = Ef if 0  Z  hf and E(Z) = Es if �hs  Z  0. D is deduced from eq.(15) and it reads:

Z
(0)
n =

Ef h2
f�Esh2

s

2(Ef hf +Eshs) D
(0) =

E
2
fh

4
f + 4EfEsh

3
fhs + 6EfEsh

2
fh

2
s + 4EfEshfh

3
s + E

2
sh

4
s

12(1� ⌫2)(Efhf + Eshs)
(25)

where the superscript ”(0)” for Zn and D reminds us that these formula are restricted to ideal cases. One can notice that if the
two layers have the same elastic coefficient, one recovers the standard bending stiffness: D = E(hs + hf )3/(12(1 � ⌫

2)) and
the neutral surface is located at the middle of the layer of thickness (hf +hs)/2. We can convince ourselves that the neutral layer
is located inside the bilayer since �hs < Z

(0)
n < hf , which is a necessary condition. These two quantities Z(0)

n and D
(0) play a

deep role in the bending equation, first equation of the FvK set of equation eq.(18) and for the definition given by eq.(15). It is
why we consider now the departure from the ideal situation:

Zn = Z
(0)
n + �Zn; and D = D

(0) + �D (26)

Hereafter, several causes are investigated at linear order in the perturbation amplitude.

5.2 Position of the neutral surface for diffuse or stiff interfaces

We allow a diffuse interface according to the representation given by eq.(22). The thickness of the interface l0 is small compared
to hf or hs. Although an exact calculation of Zn is doable, it involves unusual analytical functions so we give here only an
asymptotic formula for the result up to a correction of order e�h/l0 :

Zn = Z
(0)
n + bl; bl ' � ⇡

2
l
2
0(Ef � Es)

24(Efhf + Eshs)
(27)

This is a tiny effect being of order l20/h
2. In the presence of a stiff interface with EI larger than Ef or Es, the correction to Zn

is more important:

Zn '

⇣
Efh

2
f � Esh

2
s

⌘
� ⇡

2
l
2
0(Ef � Es)/12

2 (Efhf + Eshs) +
p
⇡EI l0/↵I

(28)

where the symbol ' indicates also a correction of order e�h/l0 , h being either hf or hs. In the presence of an additional stiff
layer, on top or on the bottom, with a different stiffness Eb, we derive in the limit of vanishing e

�h/l0 , the following value for
the neutral surface position:

Zn '

⇣
Efh

2
f � Esh

2
s

⌘
+ ⌧bEbj l0(hs/↵b � l0/↵

2
b)� ⇡

2
l
2
0(Ef � Es)/12

2 (Efhf + Eshs) +
p
⇡l0(Eb/(2↵b) + EI/↵I)

(29)

with ⌧b = 1 when the stiff layer is on top, and ⌧b = �1 when the stiff layer is at the bottom. Knowing that the interface stiffness
EI or Eb may be an order of magnitude larger than Ef or Es, this correction may modify significantly the values of the D

coefficient in the FvK equations. The addition of thin layers, as described here, to the initial bilayered system will change the
position of the neutral surface and the resulting D coefficient, but it will not change the structure of the FvK equations.

5.3 Localized defects of the thickness

Let us consider now a weak and localized variation of the thickness of one of the two layers. The neutral surface will then be
distorted. We derive its new position by a simple linear expansion of Zn. This induces an equivalent expansion on the parameter
D which multiplies the bending term in the equation eq.(20). Assuming that the thickness varies as

h = hi(1 + �i(x)) then Zn ' Z
(0)
n +

@Z
(0)
n

@hi
hi�i(x) and D ' D

(0) +
@D

(0)

@hi
hi�i(x). (30)

where D
(0) and Z

(0)
n are given by eq.(25). and ' means an expansion restricted to first order. It reads
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Fig. 3. Cylindrical mylar shell under a localized forcing. Originally the plate has a length of � = 35 cm and a width L = 17.5 cm. The
Young modulus of the mylar plate is 3.8109 Pa.s and the Poisson ratio is ⌫ = 0.4. The initial bending is realized by imposing the boundary
conditions. On left, one notices that for a low value of the imposed deviation Z = 4 mm, the pattern of sinking is quite elliptical while it
becomes cylindrical for Z = 15 mm representing a folding in the opposite direction of the initial one. Image extracted from [32]

– On the top layer, we get:

Zn ' Z
(0)
n +

Ef

⇣
hf � Z

(0)
n

⌘

(Efhf + Eshs)
hf�f (x); and D ' D

(0) +
Ef

(1� ⌫2)

⇣
hf � Z

(0)
n

⌘2

hf�f (x) (31)

– On the lower layer:

Zn ' Z
(0)
n �

Es

⇣
hs + Z

(0)
n

⌘

(Efhf + Eshs)
hs�s(x); and D ' D

(0) +
Es

(1� ⌫2)

⇣
hs + Z

(0)
n

⌘2

hs�s(x) (32)

It is to be noted that a dip in either the upper or the lower layer means a negative value for the coefficients �i(x) so, as expected,
a local decrease of the stiffness of the sample.

5.4 Localized inhomogeneity of the Young modulus

We now consider a localized variation of the Young modulus, which we treat through the expansion:

E ' Ei(1 + �i(x)) and Zn ' Z
(0)
n +

@Zn

@Ei
Ei�i(x) and D ' D

(0) +
@D

@Ei
Ei�i(x) (33)

Leading to:

– Inhomogeneity in the top layer:

Zn ' Z
(0)
n +

EfEshfhs(hf + hs)

(Efhf + Eshs)2
�f (x); and D ' D

(0) +
Ef

3(1� ⌫2)

⇣
h

3
f � 3h2

fZ
(0)
n + 3hf (Z

(0)
n )2

⌘
�f (x) (34)

– Inhomogeneity in the bottom layer:

Zn ' Z
(0)
n � EfEshfhs(hf + hs)

(Efhf + Eshs)2
�s(x); and D ' D

(0) +
Ef

3(1� ⌫2)

⇣
h

3
s + 3h2

sZ
(0)
n + 3hs(Z

(0)
n )2

⌘
�s(x) (35)

6 Results for uni-axial folding

As mentioned above, the uniaxial case simplifies a lot the analytical analysis but reduces the diversity of buckling patterns that
can be accounted for compared to the 2D case. Nevertheless, the 1D approximation is still of great experimental relevance for
some experimental systems. In the case of the experiments of fig.(2), for example, the tissue and the genetic perturbation can be
assumed to be spatially invariant along the y-coordinate, making it essentially a 1D problem. In this context, the present section
provides an in-depth analysis of bending contributions of the bilayer in the uniaxial case, with and without structural defects.
We first analyze the bending equation of the uni-axial folding analytically. We then address the problem numerically by selected
possible 1D examples using the software of resolution Mathematica. Finally, simulations from the FEM (Finite-element method)
software COMSOL Multi-Physics are presented.
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6.1 Source of bending in bilayers

We will demonstrate in the following that the source of bending for growing bilayers are numerous and diverse and may have
different biological origins. We analyze here some cases as examples. First, we define dimensionless parameters which will
govern our FvK equations for a bilayer made of two layers with constant elastic coefficients.

6.1.1 Dimensionless bending equation

Using as length unit the length L of the sample, eq.(20) reads:

d
2

dX2

⇢
(1 + �D)

d
2
⇣

dX2

�

| {z }
Elastic term

+N0
d
2(⇣ +W0)

dX2| {z }
Pre-stress

=
d
2

dX2
(C �M)

| {z }
Growth contribution

(36)

where we keep the same notation for ⇣(X) which becomes ⇣(x)/L, X = x/L, N0 = N0L
2
/D

(0)
, �D = (D�D

(0))/D(0)
,M =

M11L/D
(0)

, C = C11/(D(0)
L) are dimensionless quantities and W0(X) = w0(x)/L represents the initial position of the curved

sample. External vertical loading is discarded. It is worth noting however that the equivalent of a loading can arise from the growth
contribution (right-hand term of eq.(36)) owing to the fact that it involves spatial second derivatives, like the pre-stress term. For
such a growth-induced loading to arise, growth of the two layers must differ to get a non-vanishing M value, and at least one
of the terms (C or M) must vary spatially. This growth induced loading accords with previous investigations that demonstrated
the need for differential growth of apposed layers to induce buckling of brain cortical folds for example [33–36]. Even with
homogeneous growth, the right hand term can lead to a non-vanishing contribution, for example in the case of a structural defect
that will change Zn, and induce high spatial frequency components in C or M . Nevertheless, it is difficult to discuss a priori the
⇣ profile which is added to W0 as a result of the growth term, since it depends also on the boundary conditions. We can intuitively
predict that inhomogeneous growth is responsible to a ”fictitious pressure” or on the contrary to a tension added to the sample.
The simplest case may be the one of a homogeneous bilayer that we consider first.

6.1.2 Bilayer without structural defects

This case corresponds to sect.(5.1). For simplification, we do not consider the case of a sharp interface and the bilayer is made
of two perfect layers of constant thickness and Young modulus. The growth process occurs mostly in one layer. Assuming first
g

f
11(X) in the upper layer and g

s
11(X) = 0 in the lower layer, we have for Mf

0 and C
f
0 according to eq.(21):

M
f
0 = g

f
11(X)

 
Efhf (hf � 2Z(0)

n )

2D(0)(1� ⌫2)

!
; C

f
0 =

dg
f
13

dX

 
Efhf (h2

f � 3Z(0)
n (hf � Z

(0)
n )

3D(0)(1� ⌫2)

!
(37)

where Z
(0) and D

(0) are given by eq.(25). It is easy to check that both parameters M0 and C0 have the same sign as the growth
elements gf

11 and @Xg
f
13. If growth occurs in the lower layer and not in the upper layer, it reads

M
s
0 = �g

s
11(X)

 
Eshs(hs + 2Z(0

n )

2D(0)(1� ⌫2)

!
C

s
0 =

dg
s
13(X)

dX

 
Eshs

(
h

2
s + 3Z(0)

n (hs + 3Z(0)
n )

3D(0)(1� ⌫2)

)!
(38)

Here again, hs + 2Z(0)
n is a positive quantity and the sign of M

s
0 is opposite to the sign of g

s
11 while the sign of C

s
0 is

automatically given by the growth coefficient derivative. Without pre-stress it is possible to observe a buckling of an initially flat
plate because of a differential and inhomogeneous growth process. It exists a competition of the origin of this buckling between
g11 or g13, or between M0 and C0. Differences in growth of the two layers induces a symmetry breaking between up and down.
It is non trivial to compute the sign of the growth term -whether it contributes to a vertical pressure or tension-owing to the fact
that it stems from the competition of two terms (M0 and C0) through their second derivatives. Notice however, if the growth is
not x dependent, these terms will disappear from the buckling equation, on the contrary they will become more efficient if they
strongly depend on x. Localized defects will increase the efficiency of the buckling as shown hereafter.

6.1.3 Analysis of structural defect in growing bilayers

a) Localized stiffness variation in one layer
We first consider that the stiffness can be locally modified as discussed in fig.(2), inducing a small change in the position

of the neutral surface. We focus on the linear variation of Mf or Ms, and C
f or Cs, simply deduced from eq.(37,38). The
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modification of these quantities are simply deduced taking into account the variation of �Zn reported by eq.(34,35) in sect.(5.4),
which reads:

�M
f =

@M
f
0

@Z
(0)
n

@Z
(0)
n

@Ei
�Ei; �C

f =
@C

f
0

@Z
(0)
n

@Z
(0)
n

@Ei
�Ei (39)

where Ei is the Young modulus of the layer affected by the defect: Ef or Es and �Ei is represented by Ei�i(X), in a similar
way to eq.(34,35). Similar results apply for �Ms which corresponds to growth in the lower layer and for �Cs. We give here only
the results but we define first the following positive quantities:

m
f =

E
2
fEsh

2
fhs(hs + hf )

2D(0)(1� ⌫2)(Efhf + Eshs)2
c
f =

(EfEshfhs(hf + hs))
2

2D(0)(1� ⌫2)(Efhf + Eshs)3
(40)

– When the growth occurs in the upper layer, which also exhibits a stiffness defect, then

8
><
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f
11(X)mf
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13

dx c
f
�f (X) defect on top

�M
f = g

f
11(X)mf

�s(X); �C
f = dgf

13

dx c
f
�s(X) defect on the bottom

(41)

– When the growth occurs in the substrate, perturbation occurs now on M
s
0 and C

s
0 and one needs to consider again a defect of

the stiffness either on top or on the lower layer.

8
><
>:

�M
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11(X)mf Eshs

Ehhf
�f (X); �C

s = dgs
13

dx c
f
�f (X) defect on top

�M
s = g

s
11(X)mf Eshs

Ehhf
�s(X); �C

s = �dgs
13

dx c
f
�s(X) defect on the bottom

(42)

b) Localized variation of the thickness of one layer.
A defect in the thickness affects the position of the neutral surface but also, when the thickness defect occurs in the same

layer as the growth, the averaged value of the coefficients of eq.(21) related to the first bending FvK equation, eq.(20). We give
here only the schema when a dip appears in the lower layer, the growth occurring either on the top or the lower layer. A similar
analysis gives

�M
f =

dM
f
0

dZ
(0)
n

�Zn = g11(X)Mf
�s(X); �C

f =
dC

f
0

dZ
(0)
n

�Zn =
dg

f
13

dX
Cf

�s(X) (43)

where as in sect.(5.3), �s(X) describes the shape of a notch and Mf and Cf are dimensionless positive quantity.

Mf = EfEshfhs
Esh

2
s + Efhf (2hs + hf )

2D(0)(1� ⌫2)(Efhf + Eshs)2
; Cf =

Eshs(hf + hs)

Ehhf + EshS
Mf (44)

We examine now the case where growth occurs in the bottom layer where also the defect is localized: .

�M
s = �g

s
11(X)Mf

�s(X); �C
s =

d
s
g13

dx
Cs

�s(X) (45)

with

Cs =
E

2
sh

3
s + EfEshfhs(�hf + hs) + E

2
fh

2
f (hf + 2hs)

2Efhf (Efhf + EshS)
Mf (46)

c) Shape of defects
Localized defects can be positioned in any place of the sample. From eq.(36), we have noticed that they may induce an

equivalent forcing on the sample if they contribute to strong variation of the second derivatives of the coefficients �M and/or
�C. Choosing a sharp defect in the center of the sample, a good representation may be � = eY e

�X2/`2 where eY is the relative
amplitude of the stiffness defect which can be positive or negative, 2` depicts qualitatively its width. The second derivative is
@XX� is of order �2eY /`

2 which for a defect of width 0.05 corresponds to an amplitude of 200eY at the center. It is to be noted
that the sign is opposite to eY . So the sign of the second derivative of �M or �C can be easily found from paragraph (a). The
convention for thickness defect is the following:hi�i(X) where �i(X) is negative for a notch and positive for a protusion. Here
again, @xx� will be opposite to �. In any case, it remains that the prediction of the global sign of the second member of eq.(36).
is hard to predict due to the competition between g11 and g13. Let us remember that a positive sign of a localized contribution
will be equivalent to a localized forcing which will mimic the experiment [32] shown in fig.(3).
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(a) ⇣ under pre-stress and variable stiffness (b) ⇣ under variable stiffness on a shell (c) Full shell profile ⌦ = ⇣ + W0(X)

Fig. 4. Buckling deviation due to a variable stiffness coefficient D(X), in a pre-stressed non-growing plate or shell. In (a), the profile ⇣ of an
initial elastic plate under pre-stress N0 = 4 is plotted as a function of the X coordinate. The X-domain is reduced to the interval {�0.3, 0.3}
for clarity. At both ends,X ±0.5, ⇣ = 0 and X = ±0.5, @X⇣ ±0.03. �D = �D0e

�(X�Xd)2/l2d with D0 = 0 for the black line and D0 = 0.3
for the blue, red, magenta colored lines. Except for the magenta line, the dip is centered on X = 0, otherwise, it is located at Xd = 0.3. The
blue and magenta curves correspond to a narrow dip with ld = 0.1, the red curve to a larger one with ld = 0.3. Notice that a dip located far
from the center has no effect and the deflection remains weak in any case (scale of the vertical line). In (b), ⇣ for a pre-stressed shell of equation
W0(X) = (1/4� x2)/5 of negative curvature and clamped boundary conditions :X ± 1/2,⇣ = @X⇣ = 0. In (c) the full profile ⌦ = ⇣ +W0

with dotted black line for W0. The same code of colors is applied in the three panels (a, b, c).

6.2 Numerical investigations of the FvK bilayer for a plate or a shell.

In this section, we aim to demonstrate the role of defects on plates and slightly curved shell portion under pre-stress. To simplify
we focus first on a homogeneous growth process: it means a process independent of X and identical in both layers or equivalently
a non growing sample. Then we will give numerical examples to illustrate the analytical results of the previous section when
differential growth occurs contingently to defects.

6.2.1 Decrease of thickness on a non-growing pre-stressed plate or shell

In this section, we will evaluate the role of a sharp variation on the D coefficient of a pre-stressed sample initially flat or
curved. For numerical purpose the defect has the shape of a penetrating peak and is represented by a Gaussian so �D =
�D0e

�(X�Xd)2/l2d . D0 is a positive coefficient which can be evaluated with either eq.(31) or eq.(32), ld is an estimation of
the scale of the defect compared to the scale of the sample L and Xd is its relative position in the sample. For a plate, a curvature
is initially induced by the pre-stress and applying a slope at both ends. In fig.(4a) the imposed slope is @X⇣ ± 0.03 at X ± 0.5
giving a deflection below the horizontal (black line). This deviation increases with the defect since it weakens the stiffness more
and more with the amplitude D0 = 0.2 (blue curve), D0 = 0.3 amplitude (red curve). Even for a sharp-pointed defect, with
ld = 1/10, the deviation ⇣ remains small and not very selective. In addition, a displacement on the position of the defect does
not affect ⇣ too much (magenta curve). For a shell which is initially curved in the positive Z direction with clamped conditions at
both ends, as shown in fig.(4b,c), the deviation ⇣ is amplified by the initial curvature and the pre-stress. Here again, any deviation
on the right of the defect weakens its role on ⇣ since we cannot distinguish the deviation with lateral defect (magenta line) from
the black line. When the whole profile ⌦ = ⇣ +w0(X) is considered, we clearly observe on increase of the total curvature when
the defect is centered at the maximum of deflection.

6.2.2 Thickness defects on growing plates and shells

The thickness variation on �D gives a very intuitive result. A much less intuitive result concerns the sign of @X2�M and @X2�C

of eq.(36) since the results are dependent of the second derivative of these growth coefficients. These quantities have been studied
in details in sect.(6.1.3). We must notice that they have an opposite sign a priori and in practical situations, we will have little
information except by comparison with genetically modified tissues. So we will join these two contributions into a unique term
�SG = �(�M � �C) = sge

�(X�Xd)2/l2d in the right-hand-side of eq.(36). Intuitively, as soon as this term is differentiated 2
times, it behaves as either a pressure if it is positive or a tension in the opposite case while the initial curvature of the concave
shell behaves like a pressure and a convex one like a tension. Knowing that a groove in the substrate is represented by a negative
profile, the second derivative is then positive for X = Xd being given by @X2�SR ⇠ �2/l2dsge

�(X�Xd)2/l2d . Illustration is
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(a) Centered defect with ld = 0.1 (b) Centered defect with ld = 0.3 (c) Defect with ld = 0.3, Xd = 0.2

Fig. 5. Buckling deviation ⇣ in a pre-stressed growing plate. The prescribed boundary conditions are: ⇣ = 0 and @X⇣ = ±0.03 at X ± 0.5,
N0 = 4 and the black line is the initial shape of the plate under pre-stress. The defect is as follows: for D , �D(0) = �0.3e�(X�Xd)2/l2d ,
�SG = sge�(X�Xd)2/l2d with sg = 0.5 (resp. �0.5) represented by a continuous blue line (resp. a dot-dashed blue line) and sg = 1 (resp.
sg = �1) represented by a continuous red line (resp. dotted-dashed red line) for the 3 panels. In (a), Xd = 0 and ld = 0.1. In (b),Xd = 0 and
ld = 0.3. In (c) the same as in (a) for an eccentric defect positioned at Xd = 0.2. Notice the strong asymmetry of all curves in panel (c).

(a) ⇣ deviation of a concave shell (b) ⇣ deviation from a convex shell (c) ⇣ deviation for eccentric defect:Xd = 0.2

Fig. 6. Buckling deviation ⇣ for a pre-stressed (N0 = 4) shell. The same definition and color codes apply as in fig.(5): black no defect, blue
continuous sg = 0.5,blue discontinuous sg = �0.5, red continuous curve sg = 1 and ld = 0.1, red discontinuous sg =1 for the 3 panels.
Clamped boundary conditions are applied. In (a), the shell is initially concave and ld = 0.1. In (b) the shell is initially convex. In (c), the defect
is localized on right xd = 0.2 and the shell is concave. W0(X) = (1/4�X2)/5., for concave shape and W0(X) = (X2 �1/4)/5 for convex
shape

.

given in fig.(5) for a pre-stress plate with defect localized at X = 0 with two different length-scales: ld = 0.1 and ld = 0.3 and
different amplitudes for sg = ±0.5 and ±1. A defect put on the right is also shown with a noticeable distortion in panel (c) of
fig.(5). In fig.(6), the same set of perturbations act on a shell either concave (panel(a)) or convex (panel(b)) and the deviation
⇣ is plotted with boundary conditions ⇣ = @X⇣ = 0 for X ± 0.5. For the concave case (a), the deviation due to the defect is
decreased for sg > 0 and increased otherwise. The opposite result is obtained for in the convex case panel (b).The distortion is
shown in panel (c) only for the concave case. Once the deviation is superposed on the initial shell, depending on the respective
sign of the deviation versus the shell geometry, it is possible to observe an inversion of the curvature. This is demonstrated in the
three panels of fig.(7).

6.3 Confrontation of the uniaxial FvK bilayer model with experiments

In section (2), we presented experimental evidences that a local change in the mechanical properties of the ECM can induce
major morphological changes in the wing imaginal disc epithelium. Here, we confront our bilayer FvK formalism in the uniaxial
geometry to experimental profiles extracted from the images of fig.(2c,e).
We first focus on the tissue presented in fig.(2c), that we rescale in unit of the lateral size of the imaginal disc (fig.(8a)). The
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(a) Full profile ⌦ for a concave shell (b) Full profile ⌦ for a convex shell (c) Eccentric defect of the convex shell

Fig. 7. In (a,b,c)The shell profile ⌦(X) = W0(X) + ⇣(X). The colored lines correspond to the buckling conditions of fig.(6)
. Notice the possibility to observe an inversion of curvature in panel (a) and (b) for a suitable size of sg with respect to the curvature of the

shell.
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Fig. 8. Fitting experimental wing disc profiles with the uniaxial FvK bilayer theory. (a): Theoretical fit of an early wing imaginal disc, for
which the initial profile before perturbation was flat (same as fig.(2c)). (b): Theoretical fit of an older wing imaginal disc, for which the initial
profile before perturbation was curved (same as fig.(2e).

perturbation of the ECM was induced before the naturally occurring curvature could develop in the tissue. We therefore assume
no initial curvature: a horizontal plate only under pre-stress. We fix the slope conditions at the border, making the hypothesis that
the tissue periphery is not affected by the perturbation. This hypothesis is justified by the fact that the defect is well localized
at the center of the tissue. The fit of parameters is achieved by a limited number of trials. Fitted parameters converge to the
following values: a pre-stress of order 9 in unit of D and a parameter D0 = 0.3; a defect characterized by an amplitude sg = 4,
position xd = 0.1 and width ld = 0.25, when the defect is modeled by the relation sge

�(X�Xd)2/l2d , see sect.(6.2.2). Finally
in fig.(8b), the shape of the disc at the boundaries and the developmental timing of the perturbation, suggest that the tissue was
already curved at the onset of the perturbation. We then used the shell treatment with a best guess for the unperturbed shape
w0(X) = 0.7(1/4�X

2 + 4(1/16�X
4)), N0 has little effect and is put to zero, which suggests that in old epithelia, the outer

stresses have relaxed which is not the case for young epithelia. The amplitude of the defect have increased: it is now sG = 10;
localization is Xd = �0.05, and width ld = 0.1. Thus, the bilayered FvK theory can account for the mechanics at play in the
growing wing imaginal disc in the presence of a localized defect in the ECM, both when the tissue is initially flat and curved.

7 Numerical Simulations with Finite-Element Method

We now consider the problem of the bilayer bending in the linear Hookean elasticity approach using Comsol Multiphysics which
computes the deformations in the real geometry of the bilayer, two different connected layers, without averaging the elastic
properties. The bilayer we study in the following is made of a thin (hf = 10µm) and relatively soft (Ef = 50 kPa) upper layer
and a thicker (hs = 12µm) and stiffer (Es = 75 kPa) bottom layer. The length of the bilayer is L = 500 µm. The layers are
submitted to growth and pre-stress, and the boundaries are either free or constrained. We investigate a defect, as a local removal
of the basal layer in the middle of the bilayer with an extension of 10 µm and a thickness hd  hs, and as a local change of
stiffness and growth in the bilayer. The growth is anisotropic and is introduced in a tensorial form: Gij = 1 + g �1i�1j , with
g ⇠ 0 � 0.1. The growth may be introduced in the top layer only as in sect.(7.2), the bottom layer only in sect.(7.4), or in
both layers as in sect.(7.3). The pre-stress consists in an anisotropic compression or tension, so that �PS

ij = ��
PS

�1i�1j where
�

PS ⇠ 0� 500 Pa.
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We also study the case of the shell on the further deviation of the sample. We set an initial curvature to the shell: W0 =
H⇥ (L/2)�2((L/2)2 �X

2) where H is the displacement at X = 0. In order to compare the different results, we plot the profile
of the interface between the upper and lower layer (the red line in fig.(9e).

Finally, we fit FEM simulations to the experiment described in sect.(2). The result is compared to the one obtain from the
FvK calculation sect.(6.3).

7.1 Pre-stress on an initially curved bilayer

In fig.(9a) we investigate different initial shell shapes with different curvatures characterized by H = �20 µm, 0 µm, 20 µm with
the same pre-stress �PS = 200 Pa in the bilayer. For a plate, with no initial curvature, a bending toward the stiffer and thicker
basal side is obtained while for a convex or a concave shell, the initial curvature of the shell is reinforced in absolute value. This
is consistent with the previous FvK model for shells. In fact the bending deviation follows the initial shape of the shell.

7.2 Thickness and growth defect on growing plates and shells

In biological systems, the two layers in epithelia are not independent. For instance, the basal membrane regulates the proliferation
and the differentiation in the epithelium. In general, the basal layer structures the upper layer of the epithelium, and a defect in
the lower layer can have consequences on the proliferation and metabolism of the upper layer. Therefore, we now investigate
the shape change at the level of a defect which alters the thickness of the basal layer and consequently the growth of the upper
growing layer. Figure (9b) displays the results when the basal layer is removed in proportion of 85% (dotted lines) in thickness
and the upper layer is not growing at the defect level, as well as the case with no defect (continuous lines). We observe a buckling
towards the basal membrane, in the neighborhood of the defect.

7.3 Place of a defect

Defects can appear anywhere along a bilayer. In fig.(9c) we impose defects on a planar bilayer, located at X = 0, 0.08, 0.16 for
the blue, green and red lines respectively. Both layers grow to the same extent g = 0.1. The defect consists in removing a part of
the bottom layer. Interestingly, with the same size of the defect, the amplitude of the deformation is different, and the shift of the
defect is not only a shift in the deformation.

7.4 Dependence on boundary conditions

The comparison between confined and free geometries is a recurrent topic in cellular growth studies [37,38] from multiple
perspectives, such as the folding of epithelial sheets [39]. The boundary conditions of bilayer plates or shells are also necessary
for the analytical and numerical study of the system. But unfortunately, they are not always perfectly known. When the set-up
is symmetric, one can use those symmetries to constrain the problem, and the system has free-boundary conditions. Sometimes
the experiment is such that the system is clamped, or loses its symmetry. Confined systems are strongly dependent on boundary
conditions.

In fig.(9d) we compare the buckling in a constrained and free geometry. The buckling is very different, and its direction
(up or down) even changes when starting with a concave geometry. It may lead to strong inaccuracies in FEM simulations of
rectangular geometry and semi-analytical treatments become necessary, see reference [40]. Notice that in the previous sections,
sect.(6.2.1,6.2.2), boundary conditions are always fixed symmetrically for plates and clamped boundary conditions for shell
deviations. This point is important for comparing our numerical results to the experiments as shown in the next section. There
can be a few types of constrained geometry. In fig.(9d), it is obtained by imposing a zero displacement at two points on the lateral
boundaries. In fig.(9f), the whole lateral boundaries are imposed a zero displacement. In the second case, the Z-displacement is
close to have a zero derivative as boundary conditions.

7.5 Confrontation of the finite-element simulations with experiments

We use the finite element method to reproduce qualitatively the side to which the imaginal wing curves. We assume that the stress
inside the cell layer is induced by growth, and is relaxed when a defect is introduced. Since in classical mechanics only the stress-
free configuration and the configuration obtained after the process are to be taken into account, we make a multi-layer growth
with and without defect. In our simulations, we observed that a 2-layer model could not reproduce the experimentally observed
change of curvature upon ECM degradation. Only when an apical membrane is introduced in the model, can we reproduce
the behavior - making it essentially a 3 layers model. Indeed, contrary to the resolution of the FvK equation where boundary
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Fig. 9. (a): Profile of the interface between the two layers for different curvatures and a pre-stress �
PS = 200 Pa, with no defect in the

lower layer. The continuous, dashed, and dotted lines correspond respectively to W0 + ⇣, W0 and ⇣. The red, green and blue lines correspond
respectively to H = {�20, 0, 20} µm. (b): Profile of the interface between the two layers for a case with a defect of relative thickness
hd/hs = 0.85 with hd the defect thickness and hs the bottom layer thickness. The growth parameter is g = 0.05. The green, blue, and red
curves correspond respectively to cases with an initial zero, concave and convex curvatures H = 0, 20,�20. (c): Different shifts for the defect,
which is at X = 0, 0.08, 0.16 respectively for the blue, green, and red line. The amplitude of the deformation depends on the localization of
the defect. The growth parameter takes the value g = 0.1. (d): Comparison between constrained (dashed lines) and free (continuous lines)
boundary conditions for zero, convex and concave initial curvatures (H = 0,�20, 20 for the green, red and blue lines) and a growing bottom
layer (g = 0.03). (e): Interface between the lower and upper layer in red. (f): Buckling for a constrained bilayer with a growing bottom layer
and an initial concave curvature.
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Fig. 10. Cuts of the imaginal wing for the different FEM simulations with and without defect. The colors reflect the stiffness: red for the basal
ECM, blue for the upper membrane and the cell layer, and cyan for the zone of the cell layer around the defect that softens in the refined model.

conditions are imposed, we use free boundary conditions with the Finite Element Method. Therefore a third layer has to be added
in order to constrain the system to bend towards the correct side.

More precisely, we simulated a thick (15 µm) cell layer of length L = 500 µm, growing between two non growing thin layers.
This process creates a compressive stress in the two non growing layers. The top layer has a thickness of 5 µm and the lower
layer has a thickness of 2 µm. The apical membrane may represent the apical cortex, and the apical adherens layer that dominates
apical mechanics in epithelia [4], whereas the basal membrane represents the ECM. The growth deformation gradient is written
as: Gij = 1 + �1i�1jg11. The boundary conditions are free.

We fit the experiment (fig.(11a,11b)) and we find a basal ECM stiffer (Eb = 100 kPa or Eb = 30 kPa) than the upper
membrane and that the cell layer (E = 10 kPa). In the case of the early imaginal wing, g11 = 0.2 and Eb = 30 kPa, and for the
old imaginal wing g11 = 0.25 and Eb = 100 kPa. We also introduce an asymmetry for the place of the defect at X = �0.025
for the old epithelium and X = 0.15 for the early epithelium. The apparent growth is thus higher and the ECM stiffer for the
old imaginal wing when compared to the early imaginal wing. This set-up results in a bending toward the upper layer in the case
with no defect for the old imaginal wing and a slight bending towards the basal side for the early imaginal wing (fig.(10a,10c)).
However, when a defect of length ld = 100 µm is introduced in the form of a removal of the basal ECM, the curvature undergoes
an inversion toward the basal side in in both cases (fig.(10b,10d)).

It seems that for the early imaginal disc this model is sufficient to properly reproduce the experimental profile (fig.(11a)).
However, the agreement was not as good for the older initially curved imaginal disc (fig.(11b)).We then modified the FEM model
with the same strategy as for the FvK model, by changing the stiffness at the level of the defect, making the cell layer softer. This
refined model provided a better fit to the experiments (fig.(10e,11c)). The new values of the fit for the old imaginal wing are:
g11 = 0.43 and E = 1.7 kPa in the cell layer at the defect level. The other parameters remain unchanged. Contrarily, changing
the growth rate at the level of the defect does not improve the fit. We deduce that the contribution sg of the defect in sect.(6.3) is
mostly due to a change of the stiffness in the growing cell layer at the level of the defect, rather than a change of growth. This
is consistent with the duration of Mmp2 expression during the experiment (18-24 h), see sect.(2). No pre-stress was introduced
in the FEM simulations, since this pre-stress is assumed to be caused by growth, and the growth can be introduced explicitly
with an order of magnitude larger than with FvK. For the same reason, growth generates the curvature, which is not introduced
explicitly. To conclude, FEM simulations validate the FvK calculations.
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Fig. 11. Fitting experimental wing disc profiles with the FEM model. (a): Theoretical fit of an early wing imaginal disc, for which the initial
profile before perturbation was flat (same as fig.(2c)). (b): Theoretical fit of an older wing imaginal disc, for which the initial profile before
perturbation was curved (same as fig.(2e). The stiffness of the cell layer is not altered by the defect. (c): Comparison between the refined fit
when the stiffness of the cell layer is altered by the defect (in green) and the case when it is not (red).

8 Discussion and conclusion

Motivated by experimental evidence that the ECM plays an important role in shaping epithelia in 3D, as shown in fig.(2), this
work provides a mechanical description of growing epithelia in the Föppl-von Kármán framework. In the context of embryo-
genesis and organo-genesis, previous theoretical studies have modeled epithelia using the vertex model [41–43] inspired from
the physics of foams [44]. Indeed, epithelia are cellular pavings where the main unit has a polygonal shape in 2D or a shape
of polyhedrons in 3D. Vertex models approximate cells as polygons, make hypothesis about the mechanics of individual cells
(e.g.their growth, surface or line tension and stiffness) and simulate the behavior of cell assemblies from these elementary rules.
These simulations are based on energy minimisation, as in the present work. One limitation of cell-based models is the fact that
simulating cell assemblies may become difficult at very large cell number, notably when the parameter-space must be explored. In
addition, it is rather hard to extract macroscopic physical quantities such as Young modulus or surface tension from microscopic
parameters describing the cells.

Most of the aforementioned theoretical works focused on the 2D mechanics of the apical surface of epithelia, with only
few studies addressing the 3D aspects of tissues [45,46]. Epithelia are usually thin layers and the elasticity of slender elastic
objects such as plates, tubes or membranes can be good candidates to describe their mechanical properties especially in the
presence of bending. However, a single plate may be too simple a model when it comes to explain the behavior of epithelia,
which are intrinsically multilayered systems. In the present paper we have considered the multi-component structure of epithelia
from the view point of elasticity. Local changes in elastic coefficients and differential growth are at the origin of stresses able to
buckle the sample. Not only could our bilayered elastic model predict a broad range of morphogenetic behavior, it also yielded
surface profiles that were in very good agreement with experimentally observed ones. Notably, it could account for the localized
degradation of the ECM on two experimental observations that were limit cases: one initially flat and one initially curved wing
imaginal discs (figs. (2,8)). The morphogenetic processes that we observed and modeled -fold formation upon ECM degradation-
were artificially induced via an ectopic genetic expression of the metalloprotease Mmp2. These experiments, as such, fall in the
realm of ”synthetic morphogenesis”. Nevertheless, similar processes are naturally occurring in tissues. For example, deep folds
that develop at late stage of the wing imaginal disc are thought to arise through such a local degradation of the ECM [23,24].
In this paper, we performed experimental observations of tissues exclusively after the action of the genetic perturbation. Ideally,
one would need to image the tissues before and after the onset of the perturbation to completely disentangle the origin of the
buckling. This is experimentally possible in Drosophila with chronic imaging [47].

In the uniaxial geometry (with only one dimension for the sample), defects generates buckling distortions of the shape due
to variation of thickness, stiffness but also of growth process. For a 1D bending process, the in-plane elastic equation is trivially
solved and only the bending equation exhibits interesting degrees of distortions. It is not the case for 2D modes of deformations
where spatial patterns happen on the outer periphery of the samples ([15,16]). One can then expect interesting patterns in these
geometries.
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MOTS CLÉS

croissance, épithélium, élasticité non linéaire, réseau actif, bicouche

RÉSUMÉ

Les formes dans la nature, du chou-fleur au cerveau, proviennent de la croissance des tissus. Pour comprendre
l’émergence des formes, en particulier dans les tissus biologiques, il faut saisir les caractéristiques mécaniques in-
hérentes au matériau vivant. De plus, de nombreux objets vivants minces sont composés de plusieurs couches qui ont
des propriétés élastiques différentes et suivent également des règles de croissance différentes. Dans cette thèse, nous
essayons d’utiliser l’élasticité non linéaire pour modéliser la croissance de l’épithélium de C.elegans et de la drosophile.
Nous étudions d’abord le mécanisme de l’élongation embryonnaire de C.elegans. Nous étudions l’effet de l’application de
la technique d’ablation laser pour l’évaluation des contraintes sur l’épiderme externe. L’hyperélasticité avec renforcement
par fibres est considérée dans la relation constitutive. La contrainte interne induite par le réseau actif est examinée dans
le calcul. En outre, une formule modifiée est proposée pour la fissure ouverte sur la surface de l’animal. Les résultats
avec les données expérimentales prouvent la validité de notre approche. Ensuite, nous essayons de simuler le flambage
du tissu épithélial du disque alaire de la drosophile. Un modèle de Föppl-Von Kármán bicouche avec croissance est
obtenu pour une fine lamelle avec une matrice extracellulaire (ECM). La contribution à la flexion par le réseau actif est
incluse dans le modèle. Nous obtenons une solution analytique des équations non linéaires. Le défaut de l’ECM est pris
en compte pour l’expérience. Nous utilisons le logiciel commercial COMSOL pour la simulation numérique en 3D. Une
plateforme d’éléments finis est également préparée dans MATLAB pour les besoins de cette recherche.

ABSTRACT

Shapes in nature, from the cauliflower to the brain, arise from growth of tissues. Understanding ultimately the emergence
of shapes, in particular in biological tissues, requires to capture the mechanical features that are inherent to the living
material. Besides, many thin living objects are composed of several layers which have varying elastic properties and also
follow different rules of growth. In this thesis, we try to employ nonlinear elasticity to model the growing epithelium of
C.elegans and Drosophila.
We first study on the mechanism of C.elegans embryonic elongation. We investigate the effect of the application of
laser ablation technique for the stress assessment on the external epidermis. Hyper-elasticity with fiber reinforcement is
considered in the constitutive relation. Inner stress induced by active networks is examined in the calculation. In addition,
a modified formula is proposed for the crack opening on the animal surface. Results with experimental data prove the
validity of our approach. Then we try to simulate the buckling of the epithelial tissue of the Drosophila wing disc. A
bilayer Föppl-Von Kármán model with growth is obtained for a thin lamina with an extracellular matrix (ECM). Bending
contribution by active networks is included in the model. We acquire an analytical solution of the nonlinear governing
equations. Defects of ECM are taken into account for the experiment. We employ commercial software COMSOL for
numerical simulations in 3D. A finite element platform is also prepared in MATLAB for research purpose.

KEYWORDS

growth, epithelium, nonlinear elasticity, active network, bilayer
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