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dict population dynamics . . . 8
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1.1 Demography and management of marine
megafauna

Marine Megafauna: essential and impacted

The term megafauna comes from the combination of the

Greek word "megalos", which means large, and the Latin word

"fauna", which means the total number of animals living in a

certain area at a certain time. The term megafauna is broad and

ambiguous. It can refer to large animals, large vertebrates, large

mammals or even giant mammals. In the scientific literature, the

term can also lead to confusion. Moleón et al. (2020) recently

proposed a critique of the use of the term megafauna through

a literature review and proposed a goal-oriented framework for

megafauna research. Megafauna can be defined in several ways.

Themost commondefinition is based on the size of organisms:mass

for vertebrates and length for invertebrates. Another possibility

is to define megafauna according to its functional role in the

ecosystem and in particular in the food chain. The megafauna can

be described as "apex megafauna" in the case of top predators or

"keystone megafauna" in the case of keystone species.

The marine megafauna is a compartment of the ecosystem

that includes long-lived marine species such as reptiles, birds,

sharks, turtles and mammals. The species diversity of the marine

megafauna is marked by the presence of top predators within it.

These top predators are so called because they are at the top of the

food web. They directly regulate the abundance and biomass of

their prey, which may themselves be predators of other species.

Within an ecosystem, each species is structured into populations.

A population of marine megafauna can thus be defined as all

the individuals of the same megafauna species living together in

the same environment at the same time. The predatory action of

top predators causes a trophic cascade of regulatory effects on

the other populations that compose the ecosystems. This regu-

latory action of lower trophic levels in terms of abundance and

biomass is theorised as top-down control (Hairston, F. E. Smith,

and Slobodkin 1960; Paine 1969). The presence of top predator

populations is therefore essential to maintain the balance of energy

flows within the ecosystem. These populations therefore structure
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Figure 1.1: Schematic representa-
tion of the keystone role of preda-
tory starfish Pisaster ochraceus in
an intertidal ecosystem inWashing-
ton. (a) Pisaster ochraceus predation

maintains a diverse community. (b)
removal of Pisaster ochraceus allows

mussels to dominate, and reduces

species diversity.

Based on (Paine 1969).

the entire ecosystem despite their proportionally lower abundance

than other populations. Their presence contributes to structuring

the communities (set of populations) that make up the biotic part

of the ecosystem (Odum and Barrett 1971). Populations of top

predators can sometimes be considered as keystone species, a con-

cept developed from the observation of the ecological importance

of the purple starfish (Pisaster ochraceus, Brandt 1835; Paine 1969;
L. S. Mills, Soulé, and Doak 1993; Paine 1995).

Definition of the term "population" used in this project

I will use here the following definition of a population, provided

by Berryman (Berryman 2002): "A group of individuals of the same
species that live together in an area of sufficient size to permit normal
dispersal and/or migration behaviour and which numerical changes
are largely determined by birth and death processes."

The presence of certain species is essential for maintaining

the diversity of ecosystems. Some species are considered keystone

species, a concept that includes, but is not limited to, predatory

species and species associated with megafauna (Figure 1.2). For

example, elephant populations (genus Loxodonta, Anonymous 1827)

control the tree population in the savannah and allow other herbi-

vores access to the plains for grazing (Western 1989; Ishida et al.

2018). But top predator species are often key species for the ecosys-

tem. For example, the grey wolf (Canis lupus, Linnaeus 1758) was

an important top predator in Yellowstone National Park, preying

mainly on the abundant elk (Cervus canadensis, Erxleben 1777) and

bison (Bison bison, Linnaeus 1758) herds. The disappearance of the
grey wolf from Yellowstone Park around 1920 led to a proliferation

of elk that consumed primary producers in large numbers. Other

populations dependent on primary producers were affected and

the biodiversity of the ecosystem was greatly reduced (Ripple and

Larsen 2000). The reintroduction of wolves in the 1990s helped to

regulate the elk population and promote greater biological diver-

sity (Ripple and Beschta 2012). The concept of keystone species

should not be confused with the concept of umbrella species. Con-

fusion is possible because both terms refer to a species on which

other populations depend. One of the main differences is that

umbrella species cover a wide geographical area and are linked

to a wide variety of habitats and ecosystems. This difference is

important from a conservation point of view. The umbrella species

concept is linked to ecosystem conservation. It is recognised that

the conservation of umbrella species is a means to preserve one or

more ecosystems and their associated communities. An example

of an top predator umbrella species is the Amur tiger (Panthera
tigris altaica, Temminck 1844; Miquelle et al. 1999). Populations of
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this predator extend over a vast area covering part of Southeast

Asia. They are at the top of the food chain in many ecosystems

with different environments (Carroll and Miquelle 2006). The

conservation of keystone and umbrella species is an interesting

conservation approach, as it helps to maintain the diversity and

balance of one or more ecosystems. From a marine ecosystem

management (and conservation) perspective, it can be effective to

focus on populations of top predatory marine species (Roberge

and Angelstam 2004).

Figure 1.2: Conceptual definition of
megafaunabasedon size and impor-
tance for the ecosystem.

a. Large animals have an high impact

on local ecosystems whereas the im-

pact of smaller ones is more variable.

There is a challenge to correctly de-

fine the size-effect relationship.

b. Two-dimensional qualitative dis-

ruption of animal species. The two-

dimensional space is defined by body

size and ecosystem effect. Keystone

species have an high effect on ecosys-

tems and only the largest keystone

species are defined as megafauna.

Figure from Moleón et al. 2020.

Humans are currently impacting marine megafauna in a

variety of ways. These impacts can be described as indirect if

the human action affects an intermediate factor that has an im-

pact on the population (e.g. human-induced climate variations).

Conversely, they can be defined as direct if the human action

directly affects the population (e.g. hunting or accidental capture

in fishing gear). Recently, Authier et al. (2017) has proposed a new

classification of impacts using the example of marine megafauna

populations, these impacts are classified into three categories. Each

is associated with a pressure that generates a different response

within the population (Figure 1.3). The pressure is classified as

tertiary if it generates a response in the behaviour of individuals in

the population. Pressure is classified as secondary if it generates a

response in the health of individuals in the population. Pressure is

classified as primary if it generates a response in the demographic

rates of the population or individuals within the population. In my

opinion, this classification is relevant because it allows for more

nuance. For example, it has been shown that pile driving during

the construction of offshore wind farms can impact marine mam-

mals such as the harbour porpoise (Phocoena phocoena, Linnaeus
1758) by causing displacement of individuals (Nabe-Nielsen et al.

2014; Pirotta et al. 2014; Graham et al. 2019). This displacement can

generate an energy cost which is then passed on to other levels

of response (Authier et al. 2017). These impacts constitute tertiary
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pressures in the proposed new form of classification, which allows

for better mapping of their effects on population status. Demogra-

phy is considered to be the response level with themost direct effect

on population status, although populations are rarely exposed to

only one type of pressure, particularly marine megafauna (Authier

et al. 2017). It is mainly this level of response that interests us here

and in particular the primary pressure associatedwith it, especially

for marine mammal species.

Figure 1.3: Typology of pressures based on their effects on marine megafauna.
Figure from Authier et al. 2017.

Marine mammal demography

Vital rates definition

Vital rates are refereed as demo-

graphic parameters such as age-

specific survival and fecundity

distributions (Reilly and Barlow

1986).

The life histories of marine mammal species are typical of

long-lived species. The life history of an organism is its survival

and reproductive pattern, as well as characteristics that directly

affect survival and the timing or amount of reproduction. As

long-lived species, marine mammals have low reproductive rates,

high survival rates and a focus on caring for young individuals.

They are iteroparous with several reproductive episodes during

their lifetime (Cole 1954). They can also be described as  species,

according to the definition of MacArthur and Wilson (2016), as

they exhibit stable strategies with low growth rate values, high care

for young survival and low fecundity in stable environments. If we

take into account the continuous reference framework proposed

by Pianka (1970) and Stearns (1976) which described the strategies

as a continuum, they would tend towards the extreme of the slow

strategy. The slow strategy is characterised by a long life expectancy

with low reproductivity (i.e. high investment in survival and

growth over reproduction). The life history of marine mammals is

characterised by a trade-off between survival and reproductive vital

rates that appears to favour survival over reproduction. Although

life histories within a species, or even a population, may appear to

be uniform, they may in fact differ between individuals.
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Differences

Some concepts

Fitness: Ability of an individual

of a given genotype to reproduce.

Also called selective value or re-

productive success.

Cohort: A group of individuals

who have experienced the same

event during the sameperiod. The

term cohort is usually used to re-

fer to birth cohorts which refers to

all individuals born in the same

year.

Phenotype: The set of apparent

characteristics of an individual

conferred by its genotype, its de-

velopment and its environment.

in life history between individuals in the same

population can be explained by observable factors (e.g. age or

sex) but some inter-individual variability is not accounted for by

these factors (Camus and Lima 2002). This variability is defined as

individual heterogeneity or frailty (Cam, Aubry, and Authier 2016).

Heterogeneity can be defined as time-invariant if we consider the

differences between individuals acquired at birth and inherent

to the individual’s phenotype (Van Noordwĳk and de Jong 1986).

Time-invariant differences between individuals are considered as

the basis of the quality of individuals (Camus and Lima 2002;

Vaupel, Manton, and Stallard 1979; Coulson and C. Thomas 1985).

The quality of an individual can be seen as the latent probability of

surviving and reproducing in a time interval. High quality individ-

uals are therefore more likely to survive and reproduce than lower

quality individuals who will tend to die younger. These differences

between individuals due to time-invariant effects, acquired at birth,

can lead to a selection process. The best phenotypes are thus se-

lected by mortality selection within the birth cohorts (Curio 1983;

Endler 1986). Lower quality individuals may not contribute to pop-

ulation renewal to the same extent as higher quality individuals,

which would lead to an age-related decrease in the proportion

of lower quality individuals in cohorts and this would lead to an

increase in population-level survival (C. S. Thomas and Coulson

1988; Vaupel and Yashin 1985). The proportion of individuals with

a low probability of survival, tends to decrease over time while the

probability of survival of the remaining (i.e. better quality) individ-
uals should increase (Camus and Lima 2002). Thus, the apparent

probability of survival of the population would appear to increase

while in reality the probability of survival of individuals would

not change. This could be the source of surprising correlations

between the probability of survival of an individual and its age,

since this probability of survival would be linked to the population

(Camus and Lima 2002). The probability of survival and viability

of a population is also influenced by human activities. For marine

mammals, one of the activities that has the greatest impact on

them is fishing. This is particularly the case for odontocetes.
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Figure 1.4: Survival probability of
killer whales along time. Non-

depredating killer whales are repre-

sented with empty circles whereas

depredating killer-whales are repre-

sented with black circles. Error bars

are the 95% CI.

From Tixier et al. (2017).

The link between Frailty Hazard and Survival

In demography, frailty can be referred to as susceptibility to

disease or death (Kannisto 1991). Individuals in a population

do not have the same life histories, particularly with regard to

hazard and survival. Differences between these components

of the life history of individuals that are not explained by ob-

servable factors are called heterogeneity or frailty (Aalen 1994).

Susceptibility to death or disease can vary from one individual

to another but this variation cannot be explained directly (i.e.
by observing the phenotype of individuals). It is impossible

to take these variations into account as covariates in survival

analyses because they are hidden. However, it is possible to

statistically account for this inter-individual frailty in order to

model its effect on the survival and hazard of a population.

Thesemodels are called frailtymodels (R.Henderson andOman

1999). Frailty models include the notion of individual frailty

in demographic models (Kannisto 1991). Individual frailty is

then taken into account statistically as a random effect having a

multiplicative action on hazard (Hougaard 1995). This random

effect can be individual or common to several individuals. In

case of individual random effect, modelling is called univariate

and frailty describes heterogeneity. In this thesis project, we

have developed a new approach to survival analysis, based on

taking into account the effect of individual frailty on hazard

(Reed 2011).

The case of odontocetes, especially delphinids

Among the marine megafauna, odontocetes are particularly

threatened because they are often subject to bycatch pressure.

Of the human activities that can have an impact on odontocete

populations, fishing has the greatest impact on populations world-

wide (A. J. Read, Drinker, and Northridge 2006). Odontocetes are

cetaceans with teeth, as opposed to mysticetes, which are baleen

whales. Because of their top predator position, odontocetes com-

pete with humans for food resources (i.e. fish). These interactions
can sometimes be positive for odontocete populations by favouring

their survival. One example is the phenomenon of depredation,

which is defined for marine mammals as the removal of fish caught

on commercial fishing gear. Recently, it has been shown that among

the orcas of the Crozet Island population (Orcinus orca, Linnaeus
1758), individuals with depredation behaviour have a better sur-

vival than those that do not engage in depredation (Margin-Figure

1.4). From a more general point of view, these interactions are

deleterious to odontocetes as they can reduce the survival of pop-
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Figure 1.5: Vaquita (Phocoena
sinus, Norris and McFarland
1958). Picture from https:
//cseweb.ucsd.edu/~awilby/
Brink-of-Extinction_NGS.html

ulations (and by extension their growth and viability). One of

the most worrying phenomena associated with competition for

food resources is the phenomenon of bycatch. It is defined as the

accidental capture of a non-commercial or even protected species

(M. A. Hall 1996). Populations, even species, of odontocetes have

already disappeared or are on the brink of extinction because of

this additional mortality pressure, which they cannot withstand.

This is the case of a Chinese river dolphin named Baĳi (Lipotes
vexillifer, Miller 1918). This species is now considered extinct. In-

tensive human activity in the Yangtze River, including shipping

traffic, water pollution and bycatch, is suspected to have caused its

extinction (Dudgeon 2005; D. Wang et al. 2006). Another example

is the vaquita (Phocoena sinus, Norris and McFarland 1958), whose

population is now almost extinct. The vaquita is in fact the most

critically endangered marine mammal, with very few individuals

remaining in the wild. This species is endemic to the shallow,

turbid and highly productive habitat of the upper Gulf of Califor-

nia, between Baja California and mainland Mexico (Rojas-Bracho,

Reeves, and Jaramillo-Legorreta 2006). The Vaquita population

has been subject to increasing bycatch pressures associated with

fisheries that target totoaba (Totoaba macdonaldi, Charles Henry

Gilbert 1980) and has been severely depleted. This fish, which is

about the same size as the vaquita, is targeted for the black market

trade in its swim bladders in China (Rojas-Bracho et al. 2019). The

implementation of management measures is one way to prevent

a population from becoming too depleted. It is based in part on

determining the viability of delphinid populations. This viability

can be determined from population dynamics models (Wade 1998;

Mannocci et al. 2012).

1.2 Describe, quantify and predict population
dynamics

Contribution to the management

Management of wildlife populations can be considered as

"management of wildlife populations in the context of the ecosys-

tem" or could be considered in a broader sense by integrating

several socio-economic aspects (Fryxell, Sinclair, and Caughley

2014). Managing a population can be done in four ways: increasing

the population, decreasing the population, harvesting the popu-

lation for a continuous yield, leaving the population alone and

monitoring it (Fryxell, Sinclair, and Caughley 2014). The manage-

ment of each living resource therefore involves a trade-off between

promoting the continued existence of the resource (i.e. conservation
aspect) and obtaining an economic benefit from it (i.e. exploitation

https://cseweb.ucsd.edu/~awilby/Brink-of-Extinction_NGS.html
https://cseweb.ucsd.edu/~awilby/Brink-of-Extinction_NGS.html
https://cseweb.ucsd.edu/~awilby/Brink-of-Extinction_NGS.html
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aspect; Harwood 2010). The concept behind managing exploited

animal populations is intrinsically linked to growth rate. A popu-

lation that is reduced from its maximum level of abundance given

the environmental conditions (i.e. carrying capacity) will have a

positive growth rate. It is on this positive growth rate that the

removal of the population is carried out (Harwood 2010). More

specifically, it is assumed that density-dependence influences pop-

ulation recruitment in a stock-recruitment relationship that is at

the heart of population harvesting (Sale 1990). This foundation is

inherited from fish stock management studies (Beverton and Holt

1957, 2012). The use of population growth models is therefore par-

ticularly interesting in the context of the management of exploited

populations and in the event of accidental catches, the bycaught

population can theoretically be considered as an exploited pop-

ulation (Barbraud et al. 2008; Lebreton 2005). Theoretical bases

related to the science of fisheries management can therefore be

applied to implement bycatch management measures. The basic

premise changes. We no longer seek to exploit the population

for a continuous yield, but we want to reduce bycatch to a sus-

tainable level that is relative to the dynamics of the population

concerned. To do this, we use models that take into account ei-

ther abundance (Wade 1998) or abundance and vital rates by age

(Hammond, Paradinas, and Smout 2019; Genu et al. 2021) within

or outside of a Management Strategy Evaluation procedure (Punt

et al. 2016). European waters are fishing grounds where many

different gears are used at different times of the year, with complex

and structured ecosystems, including marine megafauna (Peltier

et al. 2021; Corrales et al. 2022). Among the 17 cetacean species

frequently observed in these waters (and in particular in the Bay

of Biscay), the common dolphin (Delphinus delphis, Linnaeus 1758)
currently presents strong conservation challenges and is possibly

a Keystone species (Peltier et al. 2021; Corrales et al. 2022; Murphy

et al. 2021).

Population growth models

Population Here, the margin notes will include

themathematical expressions ofwhat

is said in the text. This is done so

as not to interfere with the reading,

but to provide a more mathematical

background and insight.

dynamics is the scientific field of ecology con-

cerned with the changes in abundance that populations experience

over time and the factors that influence these changes (Gotelli 2008).

The main objective of the study of the dynamics of a population is

to carry out an evaluation of the population which can be consid-

ered as the evaluation of both the status of the population and its

vitality (or viability, Skalski, Ryding, and Millspaugh 2010). The

population status corresponds to the current state of the population

with regard to certain characteristics such as age and sex structure

or abundance in relation to a certain reference. Status using abun-

dance can be assessed through time series of abundance estimates,
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but it is also possible to study the underlying mechanisms that

shape these changes in abundance (J. D. Baker, A. Westgate, and

Eguchi 2010). To do this, it is possible to assess the viability of the

population through the evaluation of its demographic health and

its capacity to maintain itself from one year to the next. Several

models (i.e. representation of reality. In our case, representation of

the dynamics of a population from a mathematical point of view)

have been developed in order to represent the annual dynamics of

populations.

Geometric population growth models

Basic The abundance at time C + 1 (#C+1)

is obtained from the previous abun-

dance at time C (#C ), additions

through births and immigrants (�+ �)
and losses through deaths and emi-

grants (� + �):

#C+1 = #C + (� + �) − (� + �)

dynamic changes within a population are due to the

losses of individuals through processes of death/emigration and

additions through processes of births/immigration (J. D. Baker,

A. Westgate, and Eguchi 2010). Considering a closed population

(without immigration and emigration) it is possible to imagine its

growth dynamic geometrically (i.e. in way that each abundance

value is determined by the multiplication of its previous value

by a constant factor) according to a continuous or a discrete

time stamp (depending on population dynamic to be modelled). The rate of change in population size

through time
3#C
3C

is expressed given

instantaneous birth rate 1, instanta-

neous death rate 3 and intrinsic rate

of increase A:

3#C
3C

= � − �

= (1 − 3)#C
= A#C

Considering a continuous time model (i.e. birth and deaths occurs

continuously) associatedwith a continuous population growth, the

rate of change in population size through a continuous time period

could be explained as the difference between births and deaths.

They depends on the total abundance, instantaneous births and

death rates. In other words, the rate of change in population size

through a continuous time period is equal to the intrinsic rate of

increase A effect on population abundance (Gotelli 2008). The rate

of increase value is determinant to understand the viability of the

population and define if it is stationary (A = 0), decreasing (A < 0)

or increasing (A > 0). The abundance at any time C (#C ) is

obtained from the initial abundance

(#0), time C, the intrinsic rate of in-

crease A and the exponential function

4:

#C = #04
AC

It can also be used to model the abundance

of the population at any time given the initial abundance estimate.

Depending on the value of the rate of increase, the population

can grow exponentially. One example of exponential growth on

large mammal was demonstrated (Scheffer 1951) with the reindeer

(Rangifer tarandus, Linné 1758). The intrinsic rate of increase of the
population can also be expressed when no resource is limiting and

can be referred as A<0G compared to the observed intrinsic rate

of increase which can be defined as AA40; and the intrinsic rate of

increase under a stable age distribution ABC01;4 (Skalski, Ryding,

and Millspaugh 2010; Caughley and Birch 1971).

From � is the finite rate of increase express-

ing the proportional changes in abun-

dance from on year to the next (
#C+1

#C ).

To project the population size at any

time C the initial abundance#0 is also

used:

� =
#C+1

#C

#C+1 = #C�

#C = �C#0

the expression of the geometrical continuous time

populations model, which admitted that birth and deaths occurs

continuously, it is possible to represent the dynamic of populations

for which births and deaths are not continuous. This is the case
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for numerous animal species which present a breeding season and

unequalmortality levels through the year. Suchmodels are refereed

as geometrical discrete time populations models. The use of A as

instantaneous rate of increase is replaced by the use of � as finite

rate of increase. This rate expresses the proportional changes in

abundance as a multiplicative factor by which abundance changes

from one year to the next (Skalski, Ryding, and Millspaugh 2010).

As a proportional change, the rate � expresses the viability of

the population relatively to 1, reference value for a stationary

population (� = 1), growing population (� > 1) and declining

population (� < 1). Relationships between growth rates:

� = ' + 1

� = 4A

The way time is considered in the choice

of representation of population dynamics regarding geometric

growth determines the relationship between growth rates as A is

the intrinsic per capita growth rate, ' is the net discrete per capita

growth rate and � is the discrete per capita growth rate (J. D. Baker,

A. Westgate, and Eguchi 2010).

Logistic population growth models

The Logistic models forms:

3#C
3C

= A<0G × #C ×
(
1 − #C

 

)
#C+1 = #C + #C × (�<0G − 1)

(
1 − #C

 

)
#C+1 = #C + #C × (�<0G − 1)

(
1 −

(
#C
 

)�)

previously seen models admit that the population can

grow forever which is not the case in natural population due to sev-

eral factors such as predation, hunting, starvation or overcrowding

(Leopold 1933). Natural populations can also be limited in growth

due to a lack of resources and some environmental effects leading

the growth in logistic population growth (Krebs 1994). The access

to resources may be limited among organisms through population

density. This factor can be defined as a density-dependent factor.

Density-independent factors, on the other hand, have an effect on

population growth rates independently of the population size or

density. Density-dependent processes are important to take into

account, as they directly influence the maximum sustainable yield

value regarding fisheries and harvested species. The maximum

sustainable yield (MSY) is the highest theoretical equilibrium yield

that can be continuously taken from a stock under the average

environmental conditions (Schaefer 1954). The highest catch value

allows the population to sustain through somatic growth, spawn-

ing and recruitment (Tsikliras and Froese 2019). We will see that

this concept may be adapted to set up management plans for acci-

dentally harvested species. Density-dependence is an important

factor shaping the growth of animal populations, in particular

considering large mammals (Fowler 1981). The basis of the concept

is the relationship between instantaneous birth rate, instantaneous

death rate and abundance at a given time. When the population

size tends to increase, the instantaneous death rate increases too.

Assuming that resource are limited, the instantaneous birth rate

tends to decrease as abundance increases. The equilibrium between

both rates is obtained when the population attains the carrying
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capacity ( ) level which can be viewed as themaximumpopulation

size that a population can reach given its environment its resource

limits and associated pressures.

Figure 1.6: Relation between per
capita growth rate, abundance and
carrying capacity. When abundance

(N) is low, theper capita growth rate is

high enough to allow the population

to produce individuals and increase

abundance to the carrying capacity

which is the stable equilibrium point.

In the case of a population subject

to the Allee effect, a too low abun-

dance below a critical threshold is

associated with a decline in growth

rate. It is no longer high enough to

support mortality and the population

disappears.

From the link between those parameters, (Verhulst 1838)

created the familiar logistic population growth model assuming a

continuous time. From this model the discrete one was obtained

and allows to represent the dynamic of a population given density-

dependence with a discrete time stamp (Pearl 1925). Then, the

generalized logistic model was introduced taking into account the

rate (�) at which the population reaches its carrying capacity (J. D.

Baker, A. Westgate, and Eguchi 2010). Depending on the value of

this rate, thepopulation cangrowat a rate equal to that of a standard

logistic growth (� = 1), can growth more rapidly in an exponential

way close to the carrying capacity (� > 1), can fluctuates about

the carrying capacity (� ≥ 10) and can grow at a rate lower than

that of the standard logistic due to an anticipated effect of density

dependency on growth (� < 1) (Pella and Tomlinson 1969).

While Baseline Allee Effect model with  ∗

as the Allee threshold (Courchamp,

Clutton-Brock, and Grenfell 1999):

#C+1 = #C ×
(
1 + '<0G

(
1 − #C

 

)
×

(
#C
 ∗
− 1

))
density dependence is commonly seen as a limiting

factor for population growth, Warder Clyde Allee proposed in 1931

another view, that can have strong consequences for modelling

population dynamics, which he developed in his book: Allee et

al. 1949. Its premise is that some populations are affected by a

positive relationship between population growth rate and density

when they reach low levels of abundance which can lead to their
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extinction if the density of individuals is too low (Courchamp,

Clutton-Brock, andGrenfell 1999). If abundance is not high enough,

the reproduction or survival of the population may be impacted

in a negative way which leads to a decrease in the per capita

growth rate that can reaches negative values as it is depicted in

Figure 1.6. The Allee effect can also be refereed as the depensation,

positive density dependence (W. F. Morris et al. 2002) or Allee’s

principle (Odum and Barrett 1971). Factors that may lead to this

inverse density dependence at low density can be classified into

three types according to (Courchamp, Clutton-Brock, and Grenfell

1999) which has led to the recent emphasis on the importance of

this idea in modelling population dynamics (Skalski, Ryding, and

Millspaugh 2010). The first type of factor is genetic (i.e. genetic
inbreeding). It is characterized by a loss of heterozygoty that lead

to a decrease in fitness. The second type of factor is demographic

(i.e. demographic stochasticity). It is characterized for example by

sex-ratio fluctuations that lead to a low reproductive output (e.g.
Kakapo Strigops habroptilus, Gray 1845). The third type of factor is

interactive (i.e. facilitation or behavioural). It is characterized by less

interactions that are important for the survival of the population

‘(e.g. bluefin tunas Thunnus thynnus, Linné 1758) or the shortage
of receptive mates (e.g. Kakapo) and cooperative breeders (e.g.
African wild dogs Lycaon pictus, Temminck 1820) (Courchamp,

Clutton-Brock, and Grenfell 1999). As it is illustrated in Figure

1.6 Allee effect produces unstable equilibrium at low densities

and increases the probability of extinction. A strong Allee effect

is characterized when there is population density below which

the per capita growth rate. It is therefore dangerous to harvest

a population that may be sensitive to the Allee effect. It is also

possible that population growth models that do not consider Allee

effects underestimate the risk of extinction (Skalski, Ryding, and

Millspaugh 2010).

Age-Structured population growth models

These Matrix notations and models for

the Leslie 1945 matrix modelling ap-

proach:

nC+1
= LnC

#0

#1

#2

#3

 C+1

=


#0

#1

#2

#3

 C
×


�0 �1 �2 �3

(0 0 0 0

0 (1 0 0

0 0 (2 0


(1.1)

#0C+1
= #0C�0 + #1C�1 + #2C�2 + #3C�3

#1C+1 = #0C(0

#2C+1 = #1C(1

#3C+1 = #2C(2

population models are limited to study the influence

of specific age-specific demographic rates on growth rates and it

could be of interest to represent the dynamic of a population given

particular age or stage classification (Leslie 1945; Lefkovitch 1965).

The use of matrix population models allows to project the popula-

tion state given initial abundance or in terms of percentages which

is particularly useful for studying viability. Here only the Leslie

matrix will be discussed as this concept is part of two aspects of the

project. This matrix model reflects the dynamics of a unisex popu-

lation (usually females) independently of the density dependency

processes discussed earlier (Skalski, Ryding, and Millspaugh 2010;
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Leslie 1945). The conceptual model of this population dynamics

matrix model can be represented as follows:

Figure 1.7: Conceptual model a age-
based-matrixmodel. Individuals can
reach the maximum age of 3. Each

age class contributes to the renewal

of the population with its associated

fecundity rate �. Each individual ad-

vances in age in the population with

a probability equal to the age-specific

survival rate.

This population model involves two components to project

the number of females of a population through time that are the

number of females within each age-class and the probability for

female each age-class to both survive and produce a new female

in the population. These matrices are associated with eigenvectors

and eigenvalues which will not be discussed in detail as it is not

the purpose of this chapter but for more mathematical information

see Caswell 2000. They are key properties of populations that can

be represented by the matrix populations models. The asymptotic

population growth rate � corresponds to the dominant eigenvalue

and the stable age distribution is represented by the eigenvector.

Another interesting component of matrix population models are

obtained through perturbation analyses. Caswell 2000 explains

that the "results of perturbation analyses are sometimes more

interesting, more robust and more useful than the parameter

estimates themselves". The two common perturbation analyses

are the elasticity and the sensitivity analyses. They provide both

the proportional response of the growth rate to a proportional

perturbation in the vital rates and the magnitude of changes in the

growth rate with respect to each element of the matrix (J. D. Baker,

A. Westgate, and Eguchi 2010). These information are particularly

valuable in case of population management when it is necessary

to have information about the age-classes the most important to

manage in terms of the value of the growth rate.

Table 1.1 summarise important information about the mod-

els introduced here. Only those most relevant to the project are

presented. These models are of importance to assess the viabil-

ity of a population and have also been developed in the context

of exploitation of some populations (e.g. population of fishes or

whales). They therefore serve as a reference for the implementation

of management strategies. Both for populations that are exploited

voluntarily and for populations that are accidentally exploited.

Populationmatrixmodels that have an age-dependent struc-

ture need to be filledwith vital rates. To obtain these age-dependent

vital rates (survival and fecundity), it is necessary to monitor mam-

mal populations. Two categories of monitoring exist and only one
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is applicable to elusive populations.

Table 1.1: Examples of population dynamic models. Other exists but these are the main used in the project.

Model Equation Reference Chapter

Exponential #C+1 = #C�<0G Malthus, Winch, and P. James 1992 Chapter 4 in 4.9

Logistic #C+1 = #C + #C × (�<0G − 1)
(
1 − #C

 

)
Hutchinson 1978 -

Generalized logistic #C+1 = #C + #C × (�<0G − 1)
(
1 −

(
#C
 

)�)
Pella and Tomlinson 1969 Chapter 6 in 6.2

Why "elusive" species ?

The term elusive comes from the Latin elus, and is an adjective

meaning "difficult to find, define or achieve" (OxfordDictionary).

The term is used in this manuscript to refer to species that may

have one or more of the following characteristics: difficult to

track individually, sparsely distributed, for wich it is difficult to

estimate anthropogenic mortality and for which it is difficult to

implement management policies.

1.3 Estimation of life-history traits

Longitudinal monitoring to estimate vital rates

Quantifying the life history traits of a population is nowa-

daysmainly carried out using longitudinalmonitoring and capture-

recapture protocols (CMR; B. K. Williams, Nichols, and Conroy

2002). The study of life history traits (which can be described as life

history parameters) has become important since the end of the 20
th

century (Lebreton et al. 1992). This importance has materialised in

the desire and need to detect differences in life history traits be-

tween populations in order to study their regulation, structure and

viability (Stearns 1980; Noble and Slatyer 1980; Crawley and May

1987). These differences are thought to be the source of changes in

life history, through a modification of fitness in relation to survival

and fecundity (Manly 2013). While it is easier to estimate fecundity

in wild populations, survival remains a major component of life

history that is difficult to quantify (J. Clobert, Lebreton, and Allaine

1987). The importance of being able to follow each individual over

the long term in order to deduce the value of vital rates in relation

to survival seems to be an essential condition for achieving these

objectives (Lebreton et al. 1992). The history of survival analysis

modelling will not be detailed here. This will be done in the intro-

duction to Chapter 3, which is a chapter specifically dedicated to

survival analysis.
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Long-term individual monitoring can use different forms

of natural or artificial recognition methods. Longitudinal tracking

protocols involve both the recognition of living individuals (Lebre-

ton et al. 1992; Sandercock 2006) and dead individuals (Brownie

1985). For example, it is possible to follow individuals on the basis

of physical marks that distinguish them from one another in the

population (Castro and Rosa 2005; Wirsiig and Jefferson 1990).

This is the case for giraffes, which can be recognised individually

on the basis of their coat patterns (Berry and Bercovitch 2012).

Where individuals cannot be observed directly, camera traps can

be used to record the passage of individuals at points of interest

(O’Connell, Nichols, and Karanth 2011). These camera traps are

used to identify individuals of cryptic feline species such as the

snow leopard, lynx or Siberian tiger (Jackson et al. 2006; Can and

Togan 2009; T. M.Wang et al. 2014). Individual recognition can also

be performed in marine mammals. The recognition of individuals

is based on the shape of the tail fin and its patterns (e.g. humpback

whale and spermwhale), the shape of the dorsal fin (e.g. bottlenose
dolphin and killer whale) or by the recognition of specific callus

patterns (Right whales; Pace, Corkeron, and Kraus 2017). These

identifications of individuals in marine mammal populations are

made possible by longitudinal tracking protocols called "photo

identification". Sometimes it is not possible to identify a species on

the basis of its natural markings, but it is possible to easily access

individuals in a population and place artificial markings on them.

These artificial markings can be rings, collars, ear tags, radio trans-

mitters or bands. Ringing is widely used in population dynamics

studies of birds that may sometimes be accessible in colonies

(Busse and Meissner 2015). Tagging is also deployed in pinniped

species that are accessible in breeding colonies (Costa et al. 2010;

A. Henderson et al. 2020). Collars are preferred for small mammals

or certain ungulates. For the latter, the use of earmarks is com-

mon (Swenson et al. 1999). Collars can also be designed as radio

transmitters that are used to study both dispersal and survival

(Millspaugh and Marzluff 2001; G. C. White and Garrott 2012).

Finally, tags can also be used to collect demographic data when

individuals are dead. This is particularly the case for rings used in

monitoring programmes for hunted populations. These are known

as ringing recovery protocols: (Brownie 1985).

Longitudinal monitoring

Longitudinal monitoring involves

repeated observations of indi-

viduals through a period of

time. It can be perform using

Capture-Mark-Recapture, band

recovery and tagging protocols.

For cetaceans, the most common

longitudinal monitoring protocol

is photo-identification (Wirsiig

and Jefferson 1990). This monitor-

ing allows the vital rates of the

population to be obtained (Lebre-

ton et al. 1992) along with varia-

tions in vital rates and individual-

heterogeneity quantification (Ca-

mus and Lima 2002; Gimenez,

Cam, and Gaillard 2018).

This monitoring makes it possible to determine multiple

demographic parameters of the population (i.e. vital rates or life-
history traits) such as survival (Lebreton et al. 1992), dispersal rates

(Brownie et al. 1993), recruitment rate of new breeders (Clobert

1995), breeding frequency and transitions between breeding states

(Cam et al. 1998). The expansion of the use of CMRmonitoring has

made a considerable contribution to the quantification of many life

history traits (Lebreton et al. 1992). However, it is not possible to use
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this monitoring on all species. For elusive species, it is necessary

to use the old approach, combined with difficult assumptions, less

sophisticated analysis methods and basic estimators of population

life-history traits.

Figure 1.8: Exemples of possible individual-based long term monitorings.
A. Ear-tags.
B. Natural marks of rare animals observed thanks to camera traps.

C. Bird ringing.

D. Recovery of bands.

Figure 1.9: Exemples of possible individual-based long term monitorings for cetaceans.
E. Callosities on Right-Whales.

F. Caudal fin markings on Humpback whales.

G. Dorsal fin shape on bottlenose dolphins.

H. Dorsal fin shape and natural markings on killer whales.

Cross-sectional monitoring to estimate vital rates

Basically, cross-sectional monitoring has been used to de-

scribe the age distribution fromwhich life tables can be constructed

to estimate age-specific survival and mortality rates (Skalski, Ryd-

ing, and Millspaugh 2010; Gompertz 1825). The use of this type
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of monitoring is common in fisheries studies as it allows the age-

frequency distribution to be described. The age distribution of

a fish population is an essential piece of data that can provide

information on changes over time, how a stock responds to exploita-

tion and how it may recover from external disturbance (Jennings,

Reynolds, and S. C. Mills 1998; Greenstreet, Spence, and McMillan

1999). The age composition of a fish population can be determined

from otoliths, backbone and fin radii (Quist, Pegg, and DeVries

2012; Goldman et al. 2012; Carbonara and Follesa 2019), but also

from allometric age-length relationships (Westrheim and Ricker

1978; Ailloud and Hoenig 2019) using the age-length key which

may be subject to bias (Kimura 1977). The use of this cross-sectional

tracking scheme, especially from otolith ageing, is still common

in fisheries studies to obtain age composition and demographic

parameters (Durant et al. 2013).

Cross-sectional monitoring has his-

torically been widely used to moni-

tor fish stocks. It is still used today

to monitor fish populations and ex-

ploited stocks.

Cross-sectional monitoring

In contrast to long-term monitor-

ing of individuals, a population

can be monitored by means of

snapshots over a given period.

This type of monitoring is called

cross-sectional or transversal. For

example, the characteristics of a

few individuals in a population

will be collected at a given time.

From the data collected, an extrap-

olation will be made to the whole

population. It is from this type of

monitoring that the life tables are

constructed (Caughley 1966).

In the case of tetrapod populations, age composition (or

age distribution) is obtained by analysis of morphometric features

or even samples of biological material (Caughley et al. 1977). The

determination of the age of amphibians is generally done using

osteological techniques (Peabody 1961) whereas sauropsids are

generally aged according to their size (i.e. allometric relationship)

(Caughley et al. 1977). For some bird species (Fulmar, Shag, Red-

shank and Great Skua), it is possible to count the endosteal layers

of the tibia to determine the age of individuals (Klomp and Furness

1992). For turtles, age can be determined by the annuli method

on the carapace (Sexton 1959; Gibbons and Semlitsch 1982). For

mammals, the methods of age determination are varied. The erup-

tion of the teeth can be an indicator, particularly for bovine species

such as mouflons or equids (Garel et al. 2007), but also for sea

otters (Nicholson et al. 2020). Body size and size frequency classes

could also be an indicator of age (Klomp and Furness 1992). The

most widely used and effective method for obtaining a population

age distribution and creating the associated life table is the use

of biological material taken from dead animals (Caughley et al.

1977). The biological material used consists of teeth (Laws 1953;

Benjaminsen 1973), claws (R. B. Thomas et al. 1997) and horns (Geist

1966). The method (e.g. odontochronology) consists of counting the

number of growth rings (or groups of growth layers) that make

up the biological tissue. The age data obtained by this method is

called age-at-death data and the age distribution can be called the

age-at-death distribution. Classically, these data were obtained by

harvesting and recovering dead carcasses (Caughley 1966).

The process of obtaining vital rates associated with survival and

mortality from these data therefore constitutes a cross-sectional

monitoring of wild animal populations (Caughley 1966). Since

Deevey Jr (1947), this type of monitoring has been used to estimate

vital rate parameters and construct associated life tables. From
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these life tables, it is possible to provide age-specific vital rates to

inform population dynamics matrix models such as Leslie’s matrix

model (Leslie 1945). It is also possible to explore the covariation

of age-specific life-history traits to test certain life history theories

(Purvis and Harvey 1995).

Figure 1.10: Exemples of possible cross-sectional monitorings.
I. Length-age relation for reptiles from https://www.mcgeesswamptours.com/.
J. Otholits for fishes from Knopp et al. (2012).

K. Growth layer groups in tooth from Martin et al. (2011).

L. Endosteal layers in tibia for birds from Klomp and Furness (1992).

M. Claws growth layer groups from E. O. Ferreira, Loseto, and Ferguson (2011).

Preference for longitudinal
monitoring

Longitudinal monitoring is pre-

ferred for species that offer ade-

quate opportunities for longitudi-

nal studies.

However, the derivation of these rates is based on cross-

sectional monitoring, which itself is based on basic assumptions

that can be problematic (Caughley 1966). The most important as-

sumption to take into account in this type of monitoring is that the

age-at-death distribution obtained from the age-at-death data is

representative of the stationary age distribution of the population

(Caughley 1966). In other words, the sampled population must be

in a stationary state (i.e. neither increasing nor decreasing) and

there must be no selection bias of individuals at the time the data

set is constructed (Caughley 1966). One problem is that mammal

populations are rarely stationary in nature as they are in a con-

https://www.mcgeesswamptours.com/
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stant state of flux influenced by biotic and abiotic factors, which

are themselves in a state of flux (Szuwalski and Hollowed 2016).

Furthermore, when population dynamics studies are conducted, it

is precisely to determine whether the population is viable because

there is reason to believe that it is not (i.e. it is not stationary). The
impetus for conducting a population dynamics study is often at

odds with the basic assumption that must be made to conduct

the study. Cross-sectional monitoring is associated with strong

assumptions, unrepresentative data and the difficulty of trust-

ing life history trait estimates. It is mainly for these reasons that

cross-sectional monitoring has been abandoned in favour of lon-

gitudinal monitoring in species that offer adequate opportunities

for longitudinal studies. Although cross-sectional monitoring is

less expensive in terms of data collection (Seber 1965). In order to

provide the best possible information on the demographic rates of

these populations, it is necessary to carry outmethodological devel-

opments associated with their monitoring. In particular, statistical

developments through models integrating essential demographic

parameters (e.g. frailty). This work would allow more accurate

assessments of the viability of elusive mammal populations, taking

into account various covariates and random effects.

Stationary and Stable age distri-
butions

The concepts of stationary and

stable age distribution are both

related and different. If the popu-

lation growth rate is constant over

time, as are its fertility and sur-

vival rates, its agedistributionwill

eventually take a stable form. Age

frequencies will remain constant

over time. When a population is

stationary, the population growth

rate is equal to 1. Therefore, the

stationary age distribution is the

stable age distribution for which

the population remains constant

over time. A stationary popula-

tion necessarily has a stationary

and stable age distribution, but

a population with a stable age

distribution does not necessarily

have a stationary age distribution.

The stationary age distribution is

a special case of the stable age

distribution. (Caughley 1966).

Table 1.2: Pros and cons of both monitoring schemes.

Monitoring Strengths Weaknesses Key reference

Longitudinal

I Underlying processes are

highlighted

I Individual differences to

be highlighted

I Population growth rate

are estimated directly

I Costly monitoring

scheme

I May involve small sam-

ples

I Lebreton et

al. 1992

I Sandercock

2006

Cross-
Sectional

I Include large parts of the

population

I Allows to apply simple

growth models

I Not very costly com-

pared to longitudinal

I Does not highlight the

changes an individual

undergoes over the

course of its life

I Low representativeness

of the data if the time se-

ries is short

I Assumes the population

to be at stationary age dis-

tribution

I Caughley

1966

I Deevey Jr

1947
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Figure 1.11: Diagram of Bay of
Biscay location.
Picture from https://es.m.
wikipedia.org/wiki/Archivo:
Bay_of_Biscay_map.png

1.4 The case of the common dolphin
population in the North-East Atlantic ocean

The common dolphin is the most abundant andwidespread

odontocete cetacean species in the North-East Atlantic Ocean and

is associated with significant management issues (Peltier et al.

2021; Perrin 2018). It is a top predatory species in the North-East

Atlantic ecosystems, with a possible (i.e. no formal recognition )

keystone role in the Bay of Biscay (Corrales et al. 2022; Lassalle

et al. 2011). The Bay of Biscay (Margin-Figure 1.11) is a biologically

productive area of the North-East Atlantic associated with high

fishing activity, involving for example pair trawlers and larger scale

driftnets (between the Azores and Ireland) since 1986 (Peltier et al.

2021). The history of fisheries management in this area is closely

linked to the common dolphin. Several legislative initiatives related

to common dolphinmortality events in the area took place between

1985 and 2020 (Figure 1.12). As with other odontocete populations

worldwide, the main threat to the common dolphin population

in the waters of the North-East Atlantic, and in particular in the

Bay of Biscay, is bycatch (M. A. Hall 1996; Peltier et al. 2016; ICES

2019).

Figure 1.12: Main historical events in common dolphin bycatch management in the Bay of Biscay. DCF, Data Collection

Framework; EC, European Commission; UME, unusual mortality event.

From Peltier et al. 2021.

https://es.m.wikipedia.org/wiki/Archivo:Bay_of_Biscay_map.png
https://es.m.wikipedia.org/wiki/Archivo:Bay_of_Biscay_map.png
https://es.m.wikipedia.org/wiki/Archivo:Bay_of_Biscay_map.png
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Issues of the thesis project

It is necessary to assess the viability of the common dolphin

population and to quantify the main human pressures (i.e. bycatch)
on it in order to propose appropriate management objectives

with regard to the conservation objectives of European waters.

The common dolphin is defined here as an elusive species for

which it is almost impossible to track individuals longitudinally

through CMR or radiotagging protocols. Furthermore, despite the

programmes for observing incidental catches at sea, it is difficult

to quantify the actual number of common dolphins bycaughts

in the Bay of Biscay. It is therefore difficult to know whether the

number of dolphins removed is sustainable for the population,

given its demographic viability. A study should be designed to

make the best use of the cross-sectional analysis protocol to obtain

the population’s vital rates. This study should also make it possible

to use data from at-sea observers to quantify bycatch. Finally, it

should also allow the proposal of sustainable removal thresholds

that do not threaten the viability of the population.

1.5 Project outlines

Figure 1.13: Flowchart of the thesis project.
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The challenges of this thesis project are multiple and fall into two main categories. From

an applied research point of view, it is now necessary to produce demographic indicators for

small cetaceans in the North-East Atlantic and in particular for the common dolphin. These

demographic rates are of interest from the point of view of the management of this population as

they will provide information on its status in the context of the OSPAR Convention and the Marine

Strategy Framework Directive. Some life history traits have been partially estimated and biological

characteristics are already known but the need is still there. Secondly, given the apparent impact of

fishing on the population in terms of additional mortality, it is essential to quantify this pressure.

Finally, given the management issues related to the population, it is necessary to determine the

maximum number of removal that the population can sustain in the current state of knowledge and

by applying a precautionary principle. This limit constitutes a support point for public policies, in

close collaboration with the European Commission. This work is therefore closely linked to the

production of the ICES scientific expert groups’ opinions and is sometimes cited in the reports of

the working groups focused on the case of the North-East Atlantic common dolphin population.

This thesis project therefore has a very applied basis.

In my opinion, it is important to place this applied basis in a more fundamental context. This

recontextualisation is part of a desire to place the present work in the scientific history of the study of

population dynamics. I believe that this work has its place as a reflection on the problem of studying

the dynamics of elusive animal populations. It was therefore necessary to identify a methodological

gap in terms of cross-sectional analyses and to partially fill it. A new approach to sample collection

and vital rate modelling is proposed. A general discussion linking the work is also proposed.

The present manuscript summarises this three-year work in seven parts. The first part was the

general introduction.

Chapter 2 is a description of the important aspects related to the common dolphin. This

chapter is not intended for publication. It was written to provide an overview of the current state

of knowledge on common dolphin demography and associated monitoring and conservation

programmes.

Chapter 3 includes a description of survival analysis and a history of associated method-

ological developments. I then discuss the main problem identified and how we responded to it by

developing a new method for estimating survival that takes into account covariates and random

effects. This part was carried out during the first year of the project and was published: Rouby,

Ridoux, and Authier (2021). I presented this work at the poster session of theWorldMarineMammal

Conference 2019
∗
.

Chapter 4 is the central part of the manuscript, from the point of view of writing and organi-

sation of the project. It includes the acquisition of demographic data (age-at-death, reproductive-

status-at-death) after the definition of a sampling plan respecting carefully chosen criteria. It also

includes the analysis of these data using methods commonly accepted in the literature as well

as those developed in the framework of the project. The highlight of this work is the estimation

of the influence of several factors on the demographic rates of the North-East Atlantic common

dolphin population. I will present this work orally at the Society for Marine Mammal Conference

2021
†
. This part was carried out during the 3 years of the project and is currently being prepared for

publication.

∗ https://www.wmmconference.org/
† https://www.smmconference.org/

https://www.wmmconference.org/
https://www.smmconference.org/
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Chapter 5 corresponds to the quantification of the human impact on the dolphin population

through bycatch and to the explanation of bycatch by studying oceanography. The first part required

a methodological development but my greatest contribution was the use of this method with

an applied case. The strength of this approach is that it allows an estimate from biased bycatch

observation data. This work led to the publication of the development of the method: Authier2021a

and my contribution was essentially related to part of the writing of this manuscript. Concerning

the application, I was able to use this method on the dolphin case study. This work is published:

Rouby et al. (n.d.). This work was carried out in close collaboration with Ifremer (Institut Français de
Recherche pour l’Exploitation de la Mer), which provided the data and participated in the writing of

the article. This work was carried out during the second and third years of the project. I presented

it in the ICES working groups WGBYC and WGMME. I also presented it at the ICES workshop

WKMOMA.

The second part of the development of this chapter, concerning the influence of oceanography on

bycatch, is for me the most collaborative part. It was carried out as part of a Master 2 internship

that I co-supervised with the support of Matthieu Authier and Emilie Tew-Kaí from the Shom

(Service Hydrographique de la Marine Nationale) in Brest. The Shom provided us with oceanographic

model outputs allowing us to link the occurrence of mesoscale oceanographic structures to dolphin

mortality at sea. This work has been published as: Gilbert et al. (2021). I have chosen not to include

this section in its entirety as I was not at the heart of the data analysis. This part will serve as a basis

for introduction in Chapter 5. This work was carried out during the second year of the project.

Chapter 6, deals with the management and conservation aspects of the common dolphin

population. It includes the practical and conceptual use of the preliminary draft (including

demographic rates and numbers of dolphins caught) to produce tolerable bycatch thresholds on a

European scale. This part still needs to be refined in the analysis but is in preparation to be proposed

for publication. This work was carried out during the last 5 months of the thesis project. It is not

currently planned to valorise this work in the form of a conference.
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The common dolphin is a long-lived delphinid species that

presents important conservation challenges in European waters.

Individuals of this species appear to live on average up to 25 years

and produce between 3 and 8 pups per female during their lifetime

(Perrin 2018). In European waters, there is a resident population

that appears to number around 700,000 individuals (Hammond

et al. 2017). Vital rates are already available for this population,

including sexual maturity profiles and survival rates (Mannocci

et al. 2012; Murphy et al. 2009). These rates appear to show that

the population is not viable and will become extinct within 100

years. Since 1990, the number of dolphins found stranded on

European shores has increased significantly (Murphy, Pinn, and

Jepson 2013). In 2020, eighty percent of stranded dolphins showed

signs of bycatch (Dars et al. 2020) and it is estimated that between

3,000 and 5,000 dolphins are bycaught each year(Peltier et al.

2016). The state of this population is worrying with regard to the

conservation objectives set by the Habitats Directive and theMSFD

(Peltier et al. 2021; Murphy et al. 2021). The common dolphin

population is monitored both by aerial surveys and by collecting

biological data on stranded individuals. This chapter presents the

current state of knowledge on the North-East Atlantic common

dolphin population. It also provides a description of each entity or

instrument involved in the conservation of this population. Finally,

it presents the different monitoring schemes carried out on the

population.
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Figure 2.1: Common dolphin morphological recognition traits and morphological parameters.
Figure from the International Whaling Commission handbook https://wwhandbook.iwc.int/en/species/
common-dolphin

https://wwhandbook.iwc.int/en/species/common-dolphin
https://wwhandbook.iwc.int/en/species/common-dolphin
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Figure 2.2: Common dolphin
oceanic subspecies.
Figure from Perrin (2018), illustration

by Uko Gorter.

The common dolphin has undergone a recent change in

phylogenetic classification. Within the odontocetes, it belongs to

the family Delphinidae and the subfamily Delphininae. It belongs to
the genus Delphinus which is closely related to the genera Stenella,
Lagenorhynchus, Sousa, and Tursiops (Perrin 2018). Initially, two

species of common dolphins were considered. The short-beaked

common dolphin (Delphinus delphis) and the long-beaked common

dolphin (Delphinus capensis). Recent genetic studies have modified

the phylogeny of these species. Now, only one species of common

dolphin is recognised (Committee on Taxonomy 2017). Within this

species, there are 4 subspecies: the common dolphin (Delphinus del-
phis delphis), Eastern-North-Pacific long-beaked common dolphin

(Delphinus delphis bairdii), Black Sea common dolphin (Delphinus del-
phis ponticus) and Indo-Pacific common dolphin (Delphinus delphis
tropicalis) (Cunha et al. 2015; Margin-Figure 2.2).

The subspecies studied here

Throughout the manuscript and subsequent chapters, when

the term "common dolphin" is used, it will refer to the current

subspecies of common dolphin Delphinus delphis delphis and to

the former species considered in the classification as the short-

beaked common dolphin Delphinus delphis. The name common

dolphin (and its Latin name Delphinus delphis in figures) will be

used to designate this subspecies only and it will be the only

one studied in this project.

2.1 Distribution and biology

On a global scale

The common dolphin is a widely distributed odontocete

cetacean species with a known life cycle. Its distribution ranges

from tropical to temperate waters across the globe (Perrin 2018;

Figure 2.3). This species occupies both oceanic and continental shelf

habitats. It appears to exhibit seasonal distributional movements,

sometimes linked to changes in water temperature (Perrin 2018;

E. E. Henderson et al. 2014). Individuals may form groups ranging

in size from a few hundred to a thousand.

The common dolphin is a long-lived species, with a maximum

recorded lifespan of 30 years (Perrin 2018). It is an iteroparous

species with a calving interval of approximately 2-4 years. The

gestation period is estimated to be 10-12 months. Maximum length

is about 270cm for males, which are slightly longer than females.

Calves at birthmeasure 80-90cm. The life history traits of the species
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have common characteristics but are population dependent. In

Table 2.1, characteristics (including age at sexual maturity) are

presented for several common dolphin populations.

Figure 2.3: Global distribution of the common dolphin. The species is distributed in temperate and tropical waters. It is

distributed in several populations.

Table 2.1: World common dolphin populations features. This table summarises some important current knowledge about

the global populations of common dolphins.

Table from Murphy et al. (2021).

Area Climate Sample pe-
riod Mating period

Age at
sexual
maturity

Dataset

North-East Atlantic Temperate 1990-2006

May-September

(spring-summer)

8.22 years Murphy et al. (2009)

North-West Atlantic Temperate 1989-1998

July-August (sum-

mer)

8.33 years

A. J. Westgate and A. J. Read

(2007)

Tropical-East Pacific Tropical 1979-1993

Calve all year

round

7.8 years Danil and Chivers (2007)

North Pacific Temperate 1990-1991 May-June (spring) 8 years Ferrero and Walker (1995)

New Zealand Temperate 1992-2012

Primarily austral

summer

NA Institute of Zoology (2015)

South Africa Temperate 1969-1988 Austral summer 8-9 years Mendolia (1990)
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In the North East Atlantic and European waters

In European waters, the population appears to be abundant

and absent from some areas. The common dolphin population

appears to be distributed in both oceanic and continental shelf

waters. However, common dolphins are rarely recorded in the

Eastern Channel and North Sea. The highest densities and abun-

dances of animals are found on the continental shelf (Hammond

et al. 2017, 2013; Laran et al. 2017). The population in European

waters is currently estimated at 634,286 individuals (352,227 -

1,142,213) while 493,591 (342,094 - 718,593) individuals are esti-

mated in the Bay of Biscay (Hammond et al. 2017; high density

area: Figure 2.4). The history of abundance estimates is provided

in the Supplementary-Table 1.

Figure 2.4: Common dolphin den-
sity within the North-East Atlantic.
The density of common dolphins is

expressed as animals/km
2
. The high-

est densities are recorded for the con-

tinental shelf areas associated with

the Bay of Biscay. The Celtic Seas

and the oceanic part of the Bay of

Biscay also have high densities, as

well as the Spanish-Portuguese and

Galician coasts. The English Channel

and the North Sea, on the other hand,

have low densities. These estimates

are made in the framework of the

SCANS III monitoring programme.

Figure from Hammond et al. (2017).
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Figure 2.5: Common dolphin age-at-
death data. These age-at-death were

obtained on stranded dolphins. Data

are from Saavedra (2018). Data are

not published and do not have asso-

ciated survival estimates. However, it

is possible to estimate the survival,

mortality and viability of the popula-

tion based on the protocol detailed in

the study.

Some life history traits and demographic parameters are

known for this population. The studies highlight important demo-

graphic parameters such as the age distribution of the population,

the proportion of mature females at each age and even the survival

profile of females. It is only possible to monitor the population

cross-sectionally. Published examples of biological data are pro-

vided in Figure 2.6 but there are unpublished datasets such as the

one shown in the Margin-Figure 2.5. The maximum age recorded

in the population is 29-30 years and longevity appears to be around

20-25 years. The age at sexual maturity of females varies slightly

between studies but appears to average over 8 years (Mannocci

et al. 2012; Murphy et al. 2009).

Figure 2.6: Age at death and vital
rates data available for the popula-
tion. Three types of biodemographic

parameters are presented. The first

line is age-at-death. The second is sex-

ual maturity profiles of females. The

third is the estimated survivorship of

the population which is only avail-

able for study A.

Column A corresponds to the study

Mannocci et al. (2012).

Column B corresponds to the study

Murphy et al. (2009).

Figures are extracted from these stud-

ies.
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Figure 2.7: Commondolphin strand-
ings in France from 2016 to 2021.
Data from Observatoire Pelagis.

Figure 2.9: Projected population
trend. From the vital rates obtained

in their study, Mannocci et al. (2012)

projected the evolution of the popula-

tion from the growth rate estimated

by Leslie’s matrix model. It appears

that the population will become ex-

tinct within the next 100 years.

Figure from Mannocci et al. (2012).

1: whole NE Atlantic population.

Since the 1990s, an increasing number of common dolphins

have been found stranded on European seashores. Among the

European countries, France is the country with the highest number

of stranded common dolphins on its beaches (Figure 2.8). In

France, the number of individuals found is increasing almost

constantly, with a stranding record of 1298 individuals for the year

2020 (Margin-Figure 2.7; data provided by Observatoire Pelagis).
This phenomenon is notably characterised by Unusual Mortality

Events (UME) that are seasonal (Peltier et al. 2021). The majority

of dolphins stranded during the year are stranded in winter, from

January to April (Dars et al. 2020). A significant proportion of

stranded dolphins show evidence of capture in fishing gear. From

1990 to 2019, the number of stranded dolphins with evidence of

incidental capture was approximately 205± 177 whereas from 2016

to 2019 this number increases to 520 ± 172 (Peltier et al. 2021; Dars

et al. 2020). Examples of evidence of bycatch on stranded common

dolphins are provided in Figure 2.19 at the end of this chapter.

Figure 2.8: Commondolphin strand-
ing records in Europe from 2005 to
2016. Only three countries are rep-

resented as these are the ones with

the most strandings of common dol-

phins in Europe. France is the coun-

try with the most. It can be seen that

the trend has been upwards since the

early 2000s for all three countries, par-

ticularly France.

Figure from Murphy et al. (2021).

It is estimated that around 4,000 dolphins are incidentally

caught in fishing gear each year in the Bay of Biscay (Peltier et

al. 2016), which could pose a major threat to the viability of the

population. Bycatch pressure appears to have increased since the

late 1990s and is now a recurring pressure on the population (Peltier

et al. 2021). From 2016 to 2018, the number of incidental captures of

common dolphins has been estimated at between 5,000 and 10,000

(Peltier et al. 2020). This recurrent incidental capture pressure is a

point of concern for the viability of the population. The mortality

suffered by the population is in the order of 0.9% to 5.7% of its

total abundance each year
1
(Peltier et al. 2016). Mannocci et al.

(2012) projected its abundance over the next 100 years (after 2006)

using the vital rates depicted in Figure 2.6 panel A. It appears that

the population would not be viable. Data collected for population

projections, and to quantify the number of incidental catches in

absolute terms and relative to the total population abundance,

are obtained from population monitoring programmes. The main

types of monitoring associated with the common dolphin, as well

as the main legislations and its current conservation status, are
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2: Common dolphin as a species

is considered Least Concern on the

IUCN list and is included in Ap-

pendix II of CITES.

3: The Habitat Directive classifies

the North-East Atlantic population

as Unfavorable-inadequate.

presented in the following section.

Figure 2.10: Common dolphin by-
catch estimates from strandings. Es-
timation was done was made to cover

the time series from 1990 to 2016. It

was done using direct drift modelling

(black points, associated with the con-

fidence interval in grey bars), and

using reverse drift modelling (grey

polygon). These estimates use the dol-

phin’s drift trajectory corrected by the

probability of being buoyant (24%),

stranded (depending on drift condi-

tions) anddiscovered (95%).Drift con-

ditions are weather dependent and

are modelled by the meteo France

drift model MOTHY. For more infor-

mation on the method see Peltier et al.

(2016) from which the figure is taken.

2.2 Conservation and monitoring

In the North East Atlantic and European waters

The conservation status of the common dolphin differs

according to the instrument or regulation used. At the international

level and independently of populations, the species is currently

classified as being of least concern on the IUCN
2

Red List of

Threatened Species (Perrin 2018). Its international conservation

status is that of a protected species under the Convention on

International Trade in Endangered Species of Wild Fauna and

Flora (CITES), which has listed it in Appendix II (Perrin 2018;

CITES 2021). On a global scale, the species is therefore not listed as

threatened but as a protected species.

The conservation status of the population in European wa-

ters is less favourable and conservation objectives associated with

monitoring programmes have been set up on a European scale.

The Habitat Directive
3
(European Directive on the conservation

of natural habitats and of wild fauna and flora, 92/43/EEC) is an

instrument of European environmental legislation. The objective

of this instrument is to achieve a favourable conservation status

for listed species and habitats, including the common dolphin

(listed as a species in need of strict protection under Annex IV).

In 2007, the conservation status of the common dolphin popula-

tion was assessed as "Unknown". Since 2013, it is now assessed

as "Unfavourable-Inadequate" in European Atlantic waters and

"Unfavourable-Bad" within French waters (Murphy et al. 2021).
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4: Bycatch regulation (Regulation

no. 812/2004), now replaced by the

bycatch regulation (Regulation no.

2019/1241) defined monitoring and

bycatch mitigation schemes.

5: https://sih.ifremer.fr/

Ressources/ObsMer

6: https://www.

instituteforgovernment.

org.uk/explainers/

common-fisheries-policy

7: The MSFD sets the goal of good

environmental status for European

waters. This status is described by

descriptors whose state is informed

by criteria. Criteria of relevance to the

populationwill be detailed inChapter

4

8: The ICES Scientific Expert Group

advises governments on how to

achieve the conservation objectives of

the Habitats Directive and the MSFD.

In order to promote the conservation status of the common dol-

phin in European waters, the European Commission adopted in

2004 the Bycatch regulation
4

(Regulation no. 812/2004) which

encompasses requirements for bycatch monitoring schemes with

on-board observers schemes to be set up for vessels ≥15m (length),

and the implementation of pilot studies for vessels less than this

size. It also provides for the application of bycatch mitigation

measures using acoustic deterrent devices in areas and fisheries

that are either known or foreseen to have high levels of bycatch

(vessels ≥12m). This regulation is no longer in use and has been

replaced by the new bycatch regulation (Regulation no. 2019/1241).

It is within this framework of regulating catches and estimating

their value that the Observer programmes, such as "Obsmer"
5
,

have been set up. However, they are not dedicated to bycatch and

are carried out under the Direction Framework of the Common

Fishery Policy
6
. More details on this dataset and its use will be

provided in Chapter 5.

Data acquisition to achieve conservation objectives is also part of

the Marine Strategy Framework Directive(EU MSFD
7
; Directive

2008/56/EC). It establishes a framework within which Member

States shall take the necessary measures to achieve or maintain

"Good Environmental Status" (GES) of marine environment. This

European directive defines descriptors of good environmental

status of ecosystems. Within these descriptors, criteria are also

defined to enable the achievement of this good environmental

status. Among these criteria, we find, for example, the need for

biological indicators linked to the demography of the common

dolphin. All the descriptors and criteria important for the common

dolphin in terms of demography are detailed in Chapter 4.

In support of established conservation policies and conservation

objectives, international expert groups or agreements can operate.

The International Council for the Exploration of the Sea (ICES
8
) is

an Intergovernmental marine science organization which aims to

synthesise and coordinate scientific work to achieve the legislative

objectives set by the European Commission and provides science

advice to environmental ministries and international agencies

(such as OSPAR). ICES defines ecoregions (based on ecosystems)

and statistical areas (based on important fishing areas) (Figure 2.11).

With regard to the common dolphin population, ICES works on

its status mainly in two working groups. The first is the Working

Group on Marine Mammal Ecology (WGMME). The second is the

Working Group on Bycatch of Protected Species (WGBYC).

https://sih.ifremer.fr/Ressources/ObsMer
https://sih.ifremer.fr/Ressources/ObsMer
https://www.instituteforgovernment.org.uk/explainers/common-fisheries-policy
https://www.instituteforgovernment.org.uk/explainers/common-fisheries-policy
https://www.instituteforgovernment.org.uk/explainers/common-fisheries-policy
https://www.instituteforgovernment.org.uk/explainers/common-fisheries-policy
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Figure 2.11: Ecoregions and statistical areas defined by ICES within the OSPAR area of the North-East Atlantic. The
OSPAR area is divided by ICES into several ecoregions defined on the basis of biogeographic and oceanographic features and

existing political, social, economic, and management divisions. Another division is made by taking into account statistical

areas. These area are linked to ICES fishing areas are developed from historical links between an area and the collection of

fisheries statistics.

Figure from https://www.ices.dk/Pages/default.aspx.

Figure 2.12: ASCOBANS Marine
area. Originally, the area was

restricted to English Channel, North

Sea and Baltic Sea. From the 3

February of 2008, the area now takes

into account Bay of Biscay, Celtic seas

and offshore Portugal waters.

Figure from https://www.ascobans.
org/en/legalinstrument/
ascobans.

The Agreement on the Conservation of Small Cetaceans of

the Baltic, North East Atlantic, Irish and North Seas (ASCOBANS
9

) aims to promote the achievement of European conservation

objectives, inparticularwith regard to cetaceans, under the auspices

of the United Nations. It focuses on the achievement of cetacean-

related conservation objectives and provides Member States with

recommendations for achieving these objectives. The agreement

takes place within a defined area in European waters (Figure 2.12).

It iswithin the framework of this agreement that the limit of 1.7% for

total anthropogenic removal has been defined, using the harbour

porpoise (Phocoena phocoena, Linnaeus 1758) as a case study10 . On 30

August 2019, ASCOBANS proposed the Species Action Plan (SAP)

for the North-East Atlantic population of common dolphins. This

action plan sets targets to address the threats facing the population.

It includes a series of research,mitigation andmonitoring actions to

improve the conservation status of the population. The SAP seeks

to involve a variety of stakeholders, including national agencies,

https://www.ices.dk/Pages/default.aspx
https://www.ascobans.org/en/legalinstrument/ascobans
https://www.ascobans.org/en/legalinstrument/ascobans
https://www.ascobans.org/en/legalinstrument/ascobans
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9: ASCOBANS is an intergovernmen-

tal agreement focused on pressure

mitigation and monitoring of small

cetacean populations in Europeanwa-

ters.

10: https://www.ascobans.org/

en/species/threats/bycatch

Figure 2.13: OSPAR Maritime Area.
This area is divided into five Regions

for assessment purposes: Arctic Wa-

ters (I), Greater North Sea (II), Celtic

Seas (III), Bay of Biscay and Iberian

Coast (IV) and Wider Atlantic (V).

Figure from www.ospar.org

11: The OSPAR Convention has led to

the creation of the OSPAR Commis-

sion, which is involved in monitoring,

advising and setting legislative con-

straints on the actions of EU Member

States to achieve the conservation ob-

jectives of the EU waters.

12: https://oap.ospar.org/

en/ospar-assessments/

intermediate-assessment-2017/

Figure 2.14: Common dolphin sight-
ings from SCANS III surveys. Fig-
ure from Hammond et al. (2017).

intergovernmental organisations, non-governmental organisations

and regional bodies.

The Convention for the Protection of the Marine Environ-

ment of the North-East Atlantic
11

(OSPAR Convention) aims to

periodically assess the state of the marine environment, partly

in European waters. This convention originated in 1972 with the

Oslo convention.It has been ratified by 15 governments and the

European Union. The Convention entered into force on 25 March

1998. TheOSPARCommission provides a forum throughwhich the

16 contracting parties coordinate international cooperation on the

protection of the marine environment of the North-East Atlantic.

It shares common regulation and management of human activities

(except fisheries). It facilitates the coordinated implementation of

the MSFD, with the aim of achieving "Good Environmental Status"

in European waters. It sets out recommendations for achieving

the objectives of the Habitats Directive and the MSFD. In 2017,

OSPAR implemented the "OSPAR Intermediate Assessment 2017"
12

. This assessment aims at developing OSPAR’s knowledg of the

marine environment of the North-East Atlantic and its current

status. It provides an update of the 2010 assessment and introduces

some new indicators and assessment methodology. Within this

framework, five regions have been defined within a maritime area

(Margin-Figure 2.13).

In order to inform on the conservation status of small

cetaceans and to assess their status in the light of the objectives of

the Habitat Directive and the MSFD, a series of abundance surveys

have been carried out. These abundance surveys are referred to as

"Small Cetaceans in European Atlantic waters and the North Sea",

(SCANS surveys and CODA which is a complement to SCANS II).

These programmes take into account both aerial and ship-based

monitoring. The first one was carried out in 1994 under the name

SCANS (Hammond et al. 2002). Sampling was carried out mainly

by ship from 26 June to 3 August (summer) and did not involve

the Bay of Biscay. The next one was SCANS II in 2005 (Hammond

et al. 2013). Sampling included the Bay of Biscay continental shelf

and more extensive aerial monitoring from 27 June to 4 August

(Summer). In addition to SCANS II, the CODA programme was

carried out in 2007 to cover the non-continental part of European

waters. The latest monitoring programme is SCANS III, conducted

in 2016 (Hammond et al. 2017). This time, the continental shelf

was sampled almost exclusively by aircraft, while the oceanic part

was sampled by boat. Sightings of common dolphins within the

framework of this programme are presented in Margin-Figure 2.14

and are the data allowing to estimate their abundance and density

as presented in Figure 2.4 above. Sampling took place between 27

June and 4 August 2016 (Figure 2.15).

https://www.ascobans.org/en/species/threats/bycatch
https://www.ascobans.org/en/species/threats/bycatch
www.ospar.org
https://oap.ospar.org/en/ospar-assessments/intermediate-assessment-2017/
https://oap.ospar.org/en/ospar-assessments/intermediate-assessment-2017/
https://oap.ospar.org/en/ospar-assessments/intermediate-assessment-2017/
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Figure8.Areassurveyed,w ithonefforttransectlines,by S CAN S in1994 (topleft),S CAN S -IIin2005 (topright),
CO DA in2007(bottom left)andS CAN S -IIIin2016 (bottom right).

T herew eretw om ainreasonsforchoiceofsurvey platform in2016,thefirstofw hichw ascost.U nlikeS CAN S
andS CAN S -II,S CAN S -IIIw asnotsupportedby theEuropeanCom m issionL IFEprogram m eandfundingw as
lim iting.T w oshipsw ereavailablefrom projectpartnersbutadditionalsurvey platform sneededtobe
charteredtocoverthelargem ajority ofthesurvey area.Althoughthecostperflyinghourishigh,thecostper
km searchedisaboutfivetim eshigherforashipthananaircraftduedifferencesinsurvey speed.Detection
probability and,therefore,effectivestripw idthissm allerfrom anaircraftthanfrom aship,butaerialsurvey is
stillconsiderably cheaperthanshipsurvey.

T hesecondreasontofocusonaerialsurvey w asbecauseofconfidenceinthenow w ell-establisheddata
collectionandanalysism ethodology.T hetandem aircraftm ethoddevelopedforsurveyingharbourporpoisein
thefirstS CAN S survey in1994 (Hiby & L ovell1998)hasbeensupersededby them oreefficientcircle-back

S CAN S
1994

S CAN S -II
2005

CO DA
2007

S CAN S -III
2016

Figure 2.15: Sampling plans of the SCANS and CODA surveys. Transect solid lines are the covered effort. Blue areas were

surveyed by boat and pink areas were surveyed by planes. Campaigns made were conducted for SCANS in 1994 (topleft),

SCANS-II in 2005 (topright), CODA in 2007 (bottom left) and SCANS-III in 2016 (bottom right).

Figure from Hammond et al. (2017).



2 The common dolphin in the North East Atlantic 38

Table 2.2: Summary of tools, legislative instruments and organisations relevant to the conservation status of the North-
East Atlantic common dolphin population.

Instrument/Tool/Organization Type Year Application
scale

IUCN - International Union for Conservation of

Nature Red List of Threatened Species

Non Gou-

verne-

mental

Organiza-

tion

1964 Worldwide

ICES - The International Council for the Explo-

ration of the Sea

Intergovernmental

marine

science or-

ganization

1964

North-

Atlantic

CITES - Convention on International Trade in

Endangered Species of Wild Fauna and Flora

International

agreement

1979 Worldwide

ASCOBANS - Agreement on the Conservation of

Small Cetaceans of the Baltic, North East Atlantic,

Irish and North Seas

International

agreement

1991

European

waters

HD - Habitats Directive

European

Directive

1992

European

waters

OSPAR - Convention for the Protection of the Ma-

rine Environment of the North-East (Oslo-Paris)

International

legislative

instrument

1998

European

waters

Bycatch Regulation no. 812/2004a European

regulation

2004

European

waters

MSFD - Marine Strategy Framework Directive

European

Directive

2008

European

waters

CFP - Common Fisheries Policy

Fisheries

policy of the

European

Union

2014

European

waters

Bycatch Regulation no. 2019/1241 European

regulation

2019

European

waters

a
repealled in 2019
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Figure 2.16: SCANS-III and Ob-
SERVE surveys areas that approxi-
mate theNorth East Atlantic Assess-
mentUnit.OSPARRegionsdepict the

AU proposed by ICES (2014).

Figure from ICES (2021a).

Current management unit for the common dolphin in the
North-East Atlantic

To manage the common dolphin population, several man-

agement units have beenproposed in theNorth-EastAtlanticOcean

(ICES 2021a). On the basis of ecological tracers (stable isotopes,

fatty acids, metal tracers, stomach contains), two management

areas should be considered for the management of the common

dolphin with oceanic and neritic ecological stocks (Caurant et al.

2009; Lahaye et al. 2005). Based on the low genetic differentiation

throughout the North-East Atlantic, it is commonly admitted that

common dolphins can be managed as a single management area

(Murphy, Pinn, and Jepson 2013). In order to support the study

and conservation of the common dolphin in the area covered,

ICES WGBYC and OSPAR have defined the population as a single

management unit based on genetic analyses (Murphy et al. 2021;

ICES 2014, 2021a). The area of the proposed management unit

for North-East Atlantic common dolphins covers OSPAR Regions

II (Greater North Sea), III (Celtic Sea) and IV (Bay of Biscay and

Iberian coast) (Margin-Figure 2.16 regions along with SCANS III

and ObSERVE surveys blocks).

In France

The monitoring of the common dolphin population in

French waters is mainly carried out in twoways. The first approach

is a monitoring based on abundance surveys. In addition to the

SCANS campaigns presented above, the seasonal SAMM abun-

dance campaigns (Laran et al. 2017) were conducted (only in French

waters) between November 2001 and February 2012 for the winter

part and between May and August 2012 for the summer part (Fig-

ure 2.18). The objective of these campaigns is to explore seasonal

changes in the abundance of small cetaceans in French waters to

inform the Habitat Directive and the MSFD. These campaigns have

highlighted a seasonal change in abundance of common dolphins

in the Bay of Biscay. In winter, their abundance (estimated jointly

with the stripped dolphins) was estimated at 285,000 (95% CI:

174,000-481,000) individuals compared to 494,000 in summer (95%

CI: 342,000-719,000). These surveys provide information on bio-

logical indicators of abundance for common dolphins within the

MSFD.
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Figure 2.17: Sampling plans of the
SAMM surveys. Surveys were con-

ducted between November 2001 and

February 2012 (winter part) and be-

tweenMay andAugust 2012 (summer

part).

Figure from Laran et al. (2017).

Figure 2.18: Dr. Duguy Raymond.
Photo from https://www.
observatoire-pelagis.cnrs.
fr/dr-raymond-duguy/.

13: Link to a historical video on the

strandingof pilotwhales at "Ile d’Yeu"

in 1963 https://dai.ly/xp3zp7.

More informations on Dr.

Duguy Raymond in https:

//www.observatoire-pelagis.

cnrs.fr/dr-raymond-duguy/

The other type of monitoring carried out in France is the

monitoring of marine mammals strandings. This monitoring is car-

ried out by the french national stranding network ("Réseau National
Echouage") which covers the entire French coastline (metropolitan

France + DOM-TOM). This network was created in 1970 by Dr.

Duguy Raymond
13

and today consists of around 500 trained vol-

unteers. The French National Stranding Network is coordinated

by the Observatoire Pelagis (CNRS/La Rochelle University), man-

dated by the French Ministry in charge of the environment. The

observatory trains volunteers to collect samples according to a

strict and standardised protocol (Van Canneyt et al. 2015). When

a dolphin washes up on the beach, it is reported to the Pelagis

observatory (often by citizens). The observatory sends a volunteer

to the site to establish an initial diagnosis on the cause of death and

to take biological samples, which vary according to the animal’s

state of decomposition (Figure 2.20 and Figure 2.19 ). Stranding

reporting rates handled by the RNE are considered stable since the

1990s. The observed increases in strandings are therefore not due to

a difference in reporting over this period but to other factors such

as increased bycatch (Authier et al. 2014). The biological samples

collected in this project were collected by the RNE.

Wehave seen that the commondolphin population is subject

to major conservation issues in European waters. In particular,

there is a need for demographic data within the framework of the

MSFD, which must complement the abundance surveys carried

out. Demographic data on this population are already available,

including vital rates such as survivorship. However, survivorship

is obtained using survival analysis methods that are not very

flexible. In the next chapter, we will see a recent methodological

development, which allows us to obtain survivorship curves by

taking into account the effects of covariates and inter-individual

frailty.

https://www.observatoire-pelagis.cnrs.fr/dr-raymond-duguy/
https://www.observatoire-pelagis.cnrs.fr/dr-raymond-duguy/
https://www.observatoire-pelagis.cnrs.fr/dr-raymond-duguy/
https://dai.ly/xp3zp7
https://www.observatoire-pelagis.cnrs.fr/dr-raymond-duguy/
https://www.observatoire-pelagis.cnrs.fr/dr-raymond-duguy/
https://www.observatoire-pelagis.cnrs.fr/dr-raymond-duguy/
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Figure 2.19: External examinations of the common dolphin. The pictures show different cases of mortality assumed by

external examinations (which sometimes have to be confirmed on the basis of internal examinations or even biological

analyses in the case of pathologies).

1: Amputated tail (Bycatch evidence).

2: Cut pectoral fin (Bycatch evidence).

3: Rope hanging from the tail (Bycatch evidence).

4: Trace of fishing nets (Bycatch evidence).

5: Fractured rostrum (Possible bycatch evidence).

6: Pathological necrosis (Pathology).
7: Possible bacterial infection (Pathology).

8: Unknown cause with scoliosis on calf (Unknown).

For information purposes, in 2020 80% of stranded dolphins are due to bycatch (according to external reviews). 14% are

stranded without the cause being known. 3% from pathological reasons and 3% for unknown reasons. These percentages

vary slightly after internal review. To see more detailed data: rapportecouhage2020.
©Observatoire Pelagis.
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Figure 2.20: Influence of decomposition states on the demographic data collection and on bycatch estimates. The
collection of teeth and gonads is carried out to obtain biological data on the population and to estimate its vital rates in the

context of the MSFD (Mannocci et al. 2012). It is also possible to estimate the drift time of individuals based on their state.

This drift time is then corrected by the probability of floating, the probability of running aground and finally the probability

of being discovered. This correction makes it possible to estimate the number of dolphins captured by fishing gear each year

(Peltier et al. 2016).

©Observatoire Pelagis.
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Survival analyses are essential for estimating life-history

parameters and producing life tables which are then used in

the implementation of management strategies if required by the

population status. Where longitudinal studies (e.g. capture-mark-

recapture monitoring) are not feasible, the only data available may

be cross-sectional, for example in the case of marine mammal

strandings. Survival analysis deals with data on age-at-death (i.e.
time-to-event) and allows for the estimation of survival and hazard

rates assuming that the cross-sectional sample is representative.

Accounting for a bathtub-shaped hazard, as expected in wild

populations, has historically been difficult and has required specific

models. We identified a simple linear regression model with

individual frailty that can fit bathtub-shaped hazard, account for

covariates, allow for goodness-of-fit assessments, and give accurate

survival estimates in realistic settings. We first performed a Monte

Carlo study and simulated age-at-death data to assess the precision

of the estimates in relation to the sample size. We then applied

the framework to a handful of case studies drawn from published

studies of marine mammals, a group with many threatened and

data-deficient species. We found that our framework is flexible

and accurate in estimating survival with a sample size of 300. This

approach holds promise for obtaining important demographic

information on data-poor species.
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Survival analyses decision tree diagram. The decision tree focuses on cross-sectional survival analyses.

Published work

This chapter is associated with one publication:

Rouby, E., Ridoux, V. and Authier, M. Flexible parametric modeling of survival from age-at-

death data: A mixed linear regression framework. Population Ecology. 63:108–122. Doi:10.1002/

1438-390X.12069108.

10.1002/1438-390X.12069108
10.1002/1438-390X.12069108
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3.1 Introduction: About survival analyses

Minimising Conservation needs demography

which is logistically challenging.

human impacts on wildlife is a major challenge

in the Anthropocene, where human-induced pressures are both

geographically and temporally far-reaching, and have an acute

impact on biodiversity (Bongaarts 2019). Long-lived species are

particularly sensitive to these pressures, especially from a demo-

graphic point of view. Their demographic trajectory (e.g. extinction)
can also affect the functioning of ecosystems, especially in the case

of top predators (Beschta and Ripple 2009; Ritchie et al. 2012) since

they can act as keystone species for entire ecosystem (Heithaus

et al. 2008). Assessing the demographic viability of long-lived

species in the face of current and future pressures is necessary for

their proactive conservation and is sometimes used to complement

indicators of abundance status; but such an undertaking can be

hampered in practice by the logistical challenges of monitoring and

collecting relevant data at appropriate spatio-temporal scales.

The Cross-sectional monitoring may be

logistically easier than longitudi-

nal monitoring, depending on the

species.

classical method of assessing the viability of a pop-

ulation consists firstly of constructing a life table in which the

mortality and fertility rates of a cohort of individuals are given

at each (st)age of their life cycle (Caughley 1966). Knowledge of

mortality at each (st)age allows the study of associated hazards,

the estimation of vital rates, such as (cumulative) survival, and

the projection of the population trajectory over time using age or

stage matrix models (Leslie 1945; Lefkovitch 1965; Caswell 2000).

Historically, the data on age-at-death used to construct life tables

were obtained by cross-sectional monitoring (e.g. Gompertz 1825):

a sample of the population is taken at a specific time and the

observed age structure is assumed to be similar to that of a cohort

of individuals if we had been able to monitor them individually

from birth to death. This cross-sectional monitoring allows for a

quick demographic assessment (Margules and Austin 1990; Boyd,

Bowen, and Iverson 2010, pp. 126–127) whose accuracy, however,

relies on the assumption that the cross-sectional monitoring does

approximate a longitudinal monitoring.

Some definitions

Survivorship:. Fraction of the

population that is still alive at a

given age.

Age-specific Survival: Fraction

of the population of a given age

that is still alive at the next age.

Fecundity: Physiological maxi-

mum potential reproductive out-

put of an individual (usually fe-

male) over its lifetime.

Fertility: Current (actual) repro-
ductive performance of an indi-

vidual.

Hazard rate: age-specific mortal-

ity rate, or instantaneous proba-

bility of dying at time C + 3C given
that an individual has survived

until time C.

An essential process to observewhen studying demography,

regardless of the type of monitoring design, is survival. Survival is

an essential component of population demography as it contributes

strongly to the growth of a population and its life history, particu-

larly for large mammals such as cetaceans (Heppell, Caswell, and

Crowder 2000). Annual survival has been identified as more im-

portant than annual fecundity in shaping the fitness of species with

life spans greater than one year (Crone 2001). The study of survival

in a given population can be called "survival analysis". Historically,

survival analysis ranged from the collection of demographic data
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to statistical methodologies applied to characterise the time-to-

event process (e.g. time to death) and has been transposed into

ecology from epidemiology and industry (Kleinbaum and Klein

2010). The Survival is the essential component

that determines the value of the

growth rate of a population. The anal-

ysis and modelling of survival is very

important in demography.

time to events can also be considered as sequential while

characterising the time between several events (Skalski, Ryding,

and Millspaugh 2010). The two main frameworks for measuring

survival are annual survival (i.e. year-to-year frame) and survivor-

ship (i.e. birth-to-death frame). The latter is the most informative

and can be applied as a survivorship curve, or function, to an entire

cohort (Ferguson 2002). To measure survival, several modelling or

estimation methodologies have been developed, depending on the

monitoring design. In this chapter, I briefly review each modelling

and estimation approach that has been developed to measure

the survival of wildlife populations. In the case of longitudinal

monitoring, developments allow the effect of various variables

on vital rates to be quantified at the population and individual

level. Developments associated with cross-sectional monitoring

do not currently allow such flexibility. The review begins with the

approaches associated with longitudinal monitoring models, as

these are the preferred approaches for obtaining population vital

rates because of the less stringent underlying assumptions and

greater flexibility. Next, Several methods of survival analy-

sis exist. They depend mainly on the

type of monitoring (longitudinal or

cross-sectional). In the case of cross-

sectional monitoring, they depend on

the inclusion of modelling parame-

ters (non-parametric and parametric).

I review the estimation and modelling of

survival inherent in cross-sectional monitoring, approaches that re-

quire more restrictive and sometimes unrealistic assumptions (e.g.
a stationary age distribution of the sampled population; Caughley

1966). However, they are of interest for rapid demographic assess-

ment, for studies of populations in crisis (i.e.which paradoxically

may not satisfy the stationary age assumption) and are often the

only applicable methodologies for studying the demography of

mammalian populations.

The We have developed a parametric

approach based on the Reed (2011)

model which has the following ad-

vantages: inclusion of covariates, in-

clusion of random effects, evaluation

of goodness of fit and individual het-

erogeneity parameter.

methodological developments associated with estimat-

ing mammalian population survival from age-at-death data are

limited. They do not allow for easy estimation of covariates or

random effects and do not allow for easy comparison of the re-

sulting vital rate values. It would be interesting to develop a new

approach to survival estimation that overcomes these limitations.

There are two ways of estimating survival from age-at-death data

(for the sake of clarity, I do not discuss the Cox proportional hazard

model which allows the use of truncated data). The first estimation

method is called non-parametric. This method is mainly limited

in the case where the number of data is small. The second esti-

mation method is called parametric and is mainly limited by its

implementation and the impossibility of testing the factors and

comparing the quality of the estimates. It is in this context that

we have developed a new parametric flexible linear regression

approach to facilitate the estimation of survival in cross-sectionally

monitored populations. Our work is based on Reed’s model (Reed
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2011) which admits a bathtub-shaped hazard rate curve (i.e. rep-
resentative of the long-lived mammalian mortality pattern). We

believe that this approach is an important and innovative contri-

bution to the literature of cross-sectional survival analyses, and

thus to the study of associated population dynamics. Its strengths

are the consideration of the effect of covariates, the facilitation of

goodness-of-fit measurement, and the consideration of the effect

of random variables that can highlight key temporal processes in

relation to cohorts, as I will show in the Chapter 4.

3.2 Methodology: Designs and modelling

Figure 3.1: Lexis diagrams for each
monitoring. With the longitudinal

monitoring, an individual born in

2001 is monitored through each year

as it ages. With the cross-sectional

monitoring, an individual is sampled

in 2004 and its age (here 6 years) is

determined at the time of its death.

Survival models based on longitudinal monitoring

Longitudinal Longitudinal monitoring was essen-

tially a means of estimating abun-

dance. They were then used to es-

timate vital rates.

studies, in which individuals and cohorts are

monitored from birth to death (Figure 3.1 for the associated lexical

diagram) are, in wildlife ecology, a by-product of capture-recapture

studies. The initial motivation for the latter was the accurate

estimation of abundance in open populations when detectability

is less than perfect (Seber 1965; Cormack 1964; Jolly 1965). Models

(e.g. the Cormack-Jolly-Seber model) fitted to these life history data

can provide accurate estimates of survival that can be fed into

population matrix models (e.g. Fujiwara and Caswell 2001). Since

the 1980s, the focus of capture-recapture studies in wildlife ecology

shifted from abundance to survival estimation (Lebreton et al.

1992) and the inclusion of individual-level covariates, which has

paved the way for a better understanding of life history evolution

and natural selection in nature (Cam 2009). Models for estimating

survival (initially abundance) use either the recovery of live animals

("live recapture") or dead animals ("band recovery"). Some models

may also combine the two data sources (J. D. Baker, A. Westgate,

and Eguchi 2010).

The objective of capture-recapture modelling is to develop

probability-based models characterising the biological processes
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that shape the capture history data (B. K. Williams, Nichols, and

Conroy 2002). The common approach to each modelling mode is

to model the subsequent entries of an individual, after the initial

capture, as a function of parameters associated with both sampling

and actual population change (B. K. Williams, Nichols, and Conroy

2002). Survival probabilities are then estimated by focusing on the

loss of individuals within the population (Lebreton et al. 1992).

There Longitudinal survival analysis mod-

els can be distinguished in this

way: single-age model, multiple-age

model, multi-state model and inverse-

time model.

are several types of models, more or less complex. Here

is a brief review of them. The first type of survival model is the

single-age model. It considers a population in which individuals

are considered to have a single age. The model traditionally used

to estimate survival in this case is the Cormack-Jolly-Seber (CJS)

model (Seber 1965; Cormack 1964; Jolly 1965). With this model,

the only component of survival that can be estimated is apparent

survival. The multiple-age model is an extension of the single-age

model that allows capture and survival probabilities to vary with

time and age. The model that generalises the single-age model to

multiple-age modelling was developed by Pollock (Pollock 1981).

The multi-state modelling approach allows some stochasticity to

be incorporated between transition states. The states can be con-

sidered for example as different locations or phenotypes. This

modelling approach was developed to study transition states. It

was first introduced by Arnason (Arnason 1972). The inverse time

modelling approach developed by (Pollock, Hines, and Nichols

1984) allows the recruitment process to be deduced by considering

the recaptures in an inverse temporal order. All these approaches

use capture-recapture data from live animals. Approaches have

also been developed to use capture-recapture monitoring data in-

corporating the recapture of dead individuals. This is the case, for

example, with survival modelling based on band recoveries, which

is of interest for species that are harvested (Burnham 1993). A com-

mon feature of all thesemodelling approaches is that they are based

on the use of data obtained through longitudinal monitoring. They

require individuals and cohorts to be followed throughout their

lives. For specieswhere thismay be difficult, other approaches have

been developed. Approaches using the same data but taking into

account only certain life stages or even using only abundance data

have been developed to avoid the cost of long-term monitoring.

Survival models with longitudinal monitoring and
abundance data

From an applied conservation perspective, the obvious

drawback of capture-recapture studies is the time and man-power

required to collect the data, especially for long-lived species. E. R.

White, Nagy, and Gruber (2014) recently proposed a new de-

velopment that allows to avoid birth-to-death monitoring at the
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individual level. This Survivalmodels have been developed

to relay partly on longitudinal data

or to get rid of it and use abundance

data.

is a physiologically structured model with

age class as the structuring variable. Although the model is age-

structured, only the juvenile population is observed. From juvenile

mortality and adult fecundity, it is possible to infer adult mortality.

However, this requires monitoring the juvenile part of the whole

population in order to model the overall population dynamics.

An alternative to long-term individual monitoring for estimating

vital rates is the use of count data. This approach may involve

building an N-mixed model based on knowledge of individual

states. Zipkin et al. (2014) has proposed a development that allows

the data to be taken into account even if the individual stage is

unknown. Another way to obtain vital rates with count data, in the

form of time series, is to conduct an inverse modelling approach:

this method also has the advantage of considering state data at the

individual level (E. J. González, Martorell, and B. 2016). Although

these approaches are promising for elusive species, they remain

difficult to apply to highly mobile ones. The time lag between

data acquisition and the urgency of mitigation on conservation

decisions can be acute, suggesting an interest in cross-sectional

datawhich have the added advantage of being applicable to species

where individual identification is difficult (B. K. Williams, Nichols,

and Conroy 2002).

Survival models with cross-sectional monitoring

Long-lived Elusive species are impossible tomon-

itor on an individual basis and abun-

dance data can be very scarce. It

is therefore necessary to use age-at-

death data. In the case of marine

mammals, these are collected from

stranded individuals.

, mobile and elusive (weakly marked) species

are difficult to monitor longitudinally. This is particularly true

for species that live in a large and sometimes three-dimensional

space in the case of the marine environment. Instead, data on these

species can be collected through cross-sectional monitoring. One

or more samples are taken during a time series (snapshots; Figure

3.1). Sampling of the study population is carried out as described

in 1.3. Once age-at-death data have been collected, they can be used

to calculate the survival of the population. This calculation relies

heavily on modelling choices. Assuming that cross-sectional age-

at-death data are available and representative, ecologists are now

faced with other choices, such as non-parametric or parametric

modelling.

Non parametric modelling

The Non-parametric survival modelling

requires a large amount of data. It

does not allow to obtain survivorship

in the case of elusive species.

non-parametric modelling approach does not assume

any functional form of the survival curve. This approach allows

the raw observations (i.e. data) to dictate the shape of the survival

curve. Two non-parametric approaches are commonly used in

wildlife demography. The first was developed by E. L. Kaplan
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Figure 3.2: Example of Kaplan-
Meier survivorship curve.

and Meier (1958) and is referred to as the Kaplan-Meier estimator,

or product limit estimator. It consists of monitoring a cohort of

individuals, whether or not they entered the study at the same

time, and reporting the remaining number of individuals at each

age. A fictitious cohort can be reconstructed from the ages-at-death.

The first study to transpose this approach from epidemiology to

wildlife demography was conducted by Pollock et al. (1989). They

conclude that this estimator is flexible and useful inwildlife studies

and have optimised it to allow successive entries of individuals

in the survival estimate. This approach considers the maximum

survival ;(C) at time 0 (discrete time approach): ;(0) = 1.00. At each

age-at-death interval, the survivorship decreases to 0 until the last

animal of age G die: ;(G) = 0.00. The survivorship at each time C

can be estimated as follows with =;C = number of animals alive

(at risk) at time C and =3C = number of animals that died in the

interval between time C and C + 1:

;(C) = =;C − =3C
=;C

(3.1)

A limitation of this approach is that it performs poorly with small

amounts of data because the number of points on the survival

curve depends directly on the amount of data. If the number of

data points is small, the curve is not smooth and has an unreliable

stepwise appearance.

An alternative was developed by Nelson (1972) and Aalen (1978).

This approach is known as the Nelson-Aalen estimator. The sur-

vivorship is modified based on the cumulative hazard function.

The approach has better properties regarding small sample size.

The cumulative hazard function is constructed as detailed here

with =;G = number of animals alive (at risk) at age G and =3G =

number of animals that died in the interval between age G and

G + 1:

ℎ(C) =
C∑
G=0

=3G

=;G
(3.2)

The corresponding survivorship function at time C is:

;(C) = 4−ℎ(C) (3.3)

Despite its ability to accommodate smaller datasets, it is

also limited for the types of datasets we are interested in studying

the survival of animal populations. The use of these methods, in

particular the Kaplan-Meier method, appears to be more suitable

for describing "observed" survival and not estimated by modelling.

The use of a parametric modelling approach is more suitable with
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small samples to estimate survival and characterise the mortality

process of a fictitious cohort in a population over time (Skalski,

Ryding, and Millspaugh 2010). It has the advantage of providing

smoothing and summarising the data into a small number of

parameters. Even with a small sample size, parametric modelling

allows smooth survival to be estimated and parameters to be

compared (Kleinbaum and Klein 2010).

Parametric modelling

The Parametric survival modelling allows

the use of small data sets. But it re-

quires the definition of a type of mor-

tality curve.

parametric modelling approach requires the choice of

a shape for the mortality curve or hazard rate. The accuracy of the

approach depends primarily on the suitability of the shape of the

mortality curve for the species whose survival and mortality are to

be modelled. The challenge is to find a parsimonious model that

takes into account the available data without fitting the analysis

into a convenient but not necessarily realistic curve shape. Each

parametric model is associated with a probability density function

(i.e. pdf), a cumulative distribution function (i.e. cdf) and a sur-

vivorship function (i.e. ;(G)) associated with a hazard rate function

as follows : ℎ(G) = ?35 (G)
;(G) . Examples of survival models commonly

used with associated distribution is provided in Figure 3.3.

For Realistic parametric model for long-

lived mammals = bathtub shape mor-

tality or hazard rate curve.

long-lived animal species, a realistic model should pro-

vide the so-called "bathtub curve", which is characterised by high

juvenile mortality, followed by lower and rather constant adult

mortality and finally a late increase due to senescence (Siler 1979;

Choquet et al. 2011a). The hazard should decrease as the animal

adapts to its environment and becomes stronger, remain constant

in mid-life when the animal is in its prime, and increase with senes-

cence (Emlen 1970). Although there are models to accommodate

this bathtub pattern (Siler 1979; Heligman and Pollard 1980), they

can be difficult to fit (Saavedra 2018). Moreover, their goodness of

fit is hard to measure and compare. Finally, they do not allow for

testing the effect of various factors on survival and mortality.
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Figure 3.3: Survival parametric models commonly used. For each survival model and distribution, the cumulative survival

(survivorship l(x), the hazard rate curve and the age-specific survival (S(x)) are depicted.
a. Uniform distribution. Hazard mortality curve grows slowly and a little more at the end.

b. Exponential distribution. Hazard mortality curve remains constant over lifetime.

c. Weibull distribution. Hazard mortality curve increases after a short plateau at 0.

d. Gompertz distribution. Hazard mortality curve increases after a long plateau near 0.

e. Siler distribution. Hazard mortality curve is in U-shape or so called-Bathtub shape with a decrease, plateau and increase.

Figure from Skalski, Ryding, and Millspaugh 2010.
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Our parametric modelling approach

Our Reed’smodel can fit this hazard curve.

It can do so by including a parameter

for individual heterogeneity. We be-

lieve that thismodel can be integrated

into a parametric approach.

aim is to develop a parametric approach for the con-

struction of life tables in a data-poor context, with long-lived

vertebrate species in mind. We will first present a simple regres-

sion modelling framework for the analysis of age-at-death data

(with or without right censoring) that can accommodate mortal-

ity patterns such as constant, increasing/decreasing, unimodal

or bathtub-shaped. Importantly, this framework allows for the

transparent inclusion of individual-level covariates and random

effects. We then perform a Monte Carlo simulation study with

five biological scenarios to evaluate our framework, focusing on

the accurate estimation of survivorship and mortality. Finally, we

illustrate our methodology on a handful of real-life case studies,

focusing on marine mammals. This group includes many elusive

and long-lived species that are threatened (Avila, Kaschner, and

Dormann 2018), data-deficient (Parsons 2016) and difficult to study

with a longitudinal approach. The most common age-at-death

data for marine mammals are obtained from strandings (i.e. cross-
sectional monitoring). Teeth are collected from individuals found

dead on the shore and are then processed to allow the reading of

growth layer groups that are indicative of the age of the stranded

animal (Mannocci et al. 2012). The stranding filter may introduce

a selection bias of individuals between the natural population

and the age-at-death dataset (Barlow and Hohn 1984). However,

stranding samples are a source of age data from which vital rates

can be obtained (J. D. Baker, A. Westgate, and Eguchi 2010). In this

framework, several underlying assumptions are associated with

the developed approach:

Baseline assumptions (use of this parametric approach)

I 1. Each age-at-death is known and correctly recorded

I 2. The cohort is representative of the overall population

I 3. The fate of each individual is independent

I 4. The shape of the survivorship andmortality distribution

are known and well chosen to represent the life history of

the species

Definitions

Survival analysis deals with the analysis of the timing of

death (E. L. Kaplan and Meier 1958; Tanner and Wong 1984; T. G.

Clark et al. 2003; Lesaffre and Lawson 2012). We assume data H ≥ 0

to be time-to-event data, for example longevity, survival time or

age-at-death data. Such data can be collected from strandings of
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animals (that is marine animals that are washed ashore), or any

recovery of dead specimens (e.g. Lepus europaeus, Pallas 1778; Ovis
dalli, Nelson 1884) when aging is possible (e.g. from growth layer

groups). Let the index 8 denotes the 8th individual, and # the

sample size. The equation H8 ∼ D(�) reads as datum H8 follows

statistical distribution D of parameters � and with probability

density function 5 (H;�) and cumulative density function �(H;�) =
Pr(H ≤ C) =

∫ C

0

5 (H;�)dH.
The survival function ((C;�) gives the probability of being alive

at time C, that is Pr(H > C) = 1 − Pr(H ≤ C) = 1 − �(H;�). At the
population level, this quantity correspond to the fraction of the

population that is still alive at age G, that is cumulative survival

or simply survivorship. The hazard rate, or age-specific mortality

rate, is the instantaneous probability of dying at time C + dC given

that and individual 8 has survived until time C.

ℎ(C) = lim

dC→0

Pr(C ≤ H8 < C + dC; H8 > C)
dC

(3.4)

With parametric models, the hazard rate can be expressed

in terms of the probability density and survivorship functions:

ℎ(C;�) =
5 (C;�)
((C;�) , with ((C;�) > 0 (3.5)

Data simulation scenarios

We considered five biological scenarios (i.e. five different

life histories) corresponding to different patterns in survivorship

and the underlying hazard (Margin-Figure 3.4):

1. a unimodal distribution of age-at-death corresponding to a

unimodal hazard, whereby mortality risk increases in early

ages, peaks and decreases in late life;

2. a mixture of two hazards corresponding to either a unimodal

(a) or bimodal (b) distribution of age-at-death;

3. a bathtub-shaped hazard due to individual frailty, that is

individual-specific risk of mortality; and

4. a bathtub-shaped hazard with an additional bump in early

life due, for example, to an additional source of mortality.

Each scenario is associated to survivorship and hazard

functions (Figure 3.4).
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Figure 3.4: Biological scenarios con-
sidered in the Monte Carlo simula-
tion study.
1: low juvenile mortality, a high adult

mortality and no senescence.

2a: low juvenile mortality and a

higher adult mortality plateau.

2b: high juvenile mortality and a

lower adult mortality that decreases

in a linear fashion.

3: high juvenile mortality, a lower

adult mortality and senescence (bath-

tub shaped hazard).

4: high juvenile mortality and a high

adult mortality, with a transient dip

in mortality risk between these two

life-stages.

1: See SI Text 2 of https:

//esj-journals.onlinelibrary.

wiley.com/doi/10.1002/

1438-390X.12069. The next

supplementary material that will be

referred in margin notes will always

be available at this URL. To find the

supplementary material mentioned,

see this URL

Statistical Analysis of age-at-death data

We used parametric models M�
of age-at-death data H

to estimate hazard and survivorship rates. We assumed that the

exact timing of death is available, but our framework can easily

accommodate censoring (that is cases when death is known to

have occurred before or after measurement). Our framework con-

sists in modelling the logarithmic transform of H8 in a regression

framework (location-scale model

Parameters specification ofModel 3.6:

�: location parameter.

�: positive scale parameter.

/8 : individual independent standard

exponential deviates.

1

� : positive scale parameter and in-

dividual frailty (Kannisto 1991; Reed

2011) or persistent demographic het-

erogeneity sensu Cam, Aubry, and

Authier 2016.

log H8 = � + � × &8 −
/8

�
(3.6)

The choice of the statistical distribution for the residuals &8 de-
termines the shape of the underlying hazard rate. We considered

three different choices, each corresponding to a model
1
.

I M1: &8 ∼N(0, 1) and 1

� = 0 (� = +∞)

This model assumes a log-normal distribution for H8 , which

corresponds to a unimodal hazard curve.

I M2: &8 ∼ G(0, 1) and 1

� = 0 (� = +∞)

This model assumes a Gumbel distribution for the residuals

&8 , which corresponds to a Weibull distribution for H8 . It is

known as the Accelerated Failure Model. The hazard rate

is monotonic: it can be constant, increasing or decreasing

depending on the value of �.
I M3: &8 ∼N(0, 1) and 1

� > 0

This choice leads to assume a normal-Laplace distribution

for log H8 , which induces a flexible hazard curve depending

on the value of � (Reed 2011). In particular, the hazard can

be a bathtub-shaped, as expected for example for long-lived

species of vertebrates in the wild (Choquet et al. 2011a).

https://esj-journals.onlinelibrary.wiley.com/doi/10.1002/1438-390X.12069
https://esj-journals.onlinelibrary.wiley.com/doi/10.1002/1438-390X.12069
https://esj-journals.onlinelibrary.wiley.com/doi/10.1002/1438-390X.12069
https://esj-journals.onlinelibrary.wiley.com/doi/10.1002/1438-390X.12069
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2: See SI Text 2.

Model/Scenario 1 2a 2b 3 4

M1 + - - - -

M2 - - - - -

M3 - - - + -

Table 3.1:Designof theMonteCarlo
study. Model M2 acts as a negative

control as it was never used to sim-

ulate data. Scenarios 2a, 2b and 4

corresponds to data generated from

mixture models not included in the

set. They serve as tests of the perfor-

mance of our framework. Scenarios 1

and 3 act as positive control as they

correspond to data simulated under

models M1 and M3 respectively.

Our framework transcribed by the equation 3.6 3 a flexible

location-scale model and boils down to a generalized linear mixed

model (GLMM; Bolker et al. 2009) with a handful of parameters

� = (�, �, �) to accommodate a large diversity of survivorship

and hazard curves
2
. One attractive feature of this framework is

the seamless incorporation of ? individual-level covariates G8? in

equation 3.6 (Reed 2011):

log H8 = � +
?∑
9=1

�?G8? + � × &8 −
/8

�
(3.7)

An important restriction of our approach is that only time-

invariant individual-level covariates can be included. It is also

impossible to take into account changes in states within the life

history trajectory at the individual level. However this approach

covers interesting cases such as sex-differences in survival, differ-

ences due to geography or cause of mortality (that is comparing

different populations of the same species).

Monte Carlo study

Our aim is to carry aMonte Carlo study (e.g. T. P.Morris, I. R.

White, and Crowther 2019) to investigate whether our modelling

framework can provide accurate survivorship and hazard rate esti-

mates from age-at-death data.We considered 5 biological scenarios

to cover a diversity of realistic mortality patterns. For each scenario,

we simulated 100 datasets of sample size 100, 200, 300, 400, 500

and 1000 to provide recommendations on the minimum sample

size required for accurate estimation. Data simulation was carried

out in R version 3.6.0 (R Core Team 2019) using base functions such

as rnorm and rexp. Each simulated dataset was then analyzedwith

our framework that considered 3 parametric models. Crucially, we

considered scenarios for which the true model was not among the

set (Table 3.1). In other words, we assessed the performance of

our framework under the possibility that none of the candidate

models is correctly specified with respect to the data at hand. For

example M2 is a Weibull model, which is widely used in survival

analysis (Kleinbaum and Klein 2010) it is biologically unreason-

able for marine megafauna and top predators as a model over

their entire lifetime because it cannot accommodate the expected

bathtub-shape hazard.

Model fitting was done with software Stan version 2.18 (Carpenter

et al. 2017a) called from R via the library rstan (Stan Develop-

ment Team 2018). Three chains were run with a warm-up of 500

iterations, followed by an additional 1000 iterations. No thinning
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3: SI text 3 and Figure S1.

4: SI text 3 and Figure S2.

5: SI text 3.

was performed but the delta parameter of the NUTS algorithm

was increased from 0.80 to 0.95 to avoid divergent transitions and

the maximum tree depth increased to 15. Parameter convergence

was assumed when its '̂ statistics was lower than 1.10. Upon

convergence, the 3 chains were pooled to obtain a sample of ≈ 1000

values from the posterior distribution.

Model fit was assessed with the Widely Applicable Infor-

mation Criterion (WAIC, (2014)), computed with R package loo

(Vehtari, Gelman, and Gabry 2017). Survivorship estimates from

each model were computed from the posterior distribution of

parameters, and visually compared to the true survivorship curve

and a non-parametric (Kaplan-Meier) estimate. Because we carried

out a simulation study, the true survivorship curve was known and

could have been used to compute the Root Mean Squared Error

(RMSE). However, in practice, this is not the case and we chose

instead to compute RMSE with respect to the non-parametric

Kaplan-Meier survivorship estimates. The latter were thus as-

sumed to represent the best estimates available to researchers, and

the aim was to assess whether a parametric model could provide a

fit as good as that from a non-parametric approach. Parameters specification of equation

3.8:

(̂ ((C): Kaplan-Meier estimate of sur-

vivorship at age C.

(̂M(C): parametric model M over a

sequence of values of C.

RMSEM =

√
E

[
((̂ ((C) − (̂M(C))2

]
(3.8)

In order to assess model selection and model check, it is necessary

to determine if the models represents well the data. (Conn et al.

2018) recently reviewed some ways to proceed. We choose to do a

prior predictive check to test for adequacy between models and

time to event data
3
. We also did a posterior predictive check

4
to

see whereas data simulated through the fitted models are similar

to that observed from the (Barlow and Hohn 1984) dataset. The

comparison is done with both the true Kaplan-Meier survivorship

curve and the ones from posterior simulated datasets.
5

Our focus was on accurate estimation of survivorship, and

thus we assessed goodness-of-fit by comparing the expected mean

survivorship under each model to the observed Kaplan-Meier

estimates. This focus was in line with downstream use of such

estimates in matrix population models: here the salient statistics

wewant ourmodel to reproduce (Gelman 2003) is the survivorship

function.

Our study design is summarized in Table 1 and Figure 2. It

consisted in a comprehensive factorial design crossing (a) sample

size (100, 200, 300, 400, 500 and 1000), (b) mortality patterns (5

scenarios), (c) parametric models (3 models) and (d) individual

covariate inclusion. Two covariates (G1 , G2) were generated by

sampling from a Bernoulli distribution with probability 0.5. These
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covariates could represent for example sex or two sub-populations

in different geographic areas.

Applications

Weanalyzed real datasets frompublished case studies (Table

2) within our framework, and compared the estimated parametric

survivorship curves with the non-parametric Kaplan-Meier one.

All species are marine mammals except the spur-thighed tortoise

(Testudo graeca, Mertens 1946) which was included to compare our

approach with that of (Rodriguez-Caro et al. 2019) in a data-poor

context for conservation. It is important to precise that data from

(Rodriguez-Caro et al. 2019) were obtained from live animals,

still alive at the time of measurement (Sanz-Aguilar et al. 2011;

Rodrıguez-Caro et al. 2013). However, we used these data as if they

were age-at-death data and ignored right-censoring.

Figure 3.5: Monte Carlo study flowchart. We considered five biological scenarios, six different sample sizes for data, and

three models for analysis. For each combination, we assessed model fit and the accuracy of parameter estimates. Model

selection is done with Watanabe-Akaike information criterion (WAIC) and root-mean-square error (RMSE).

3.3 Results: Simulation study

Across all scenarios and sample size, parameter convergence

(assessed with '̂) was not equivalently reached depending on the

model and scenario
6
.M1 always converged very easily. In contrast,

M2 andM3 were not as good asM1 to convergewith 1000 iterations

(500 as warm up). More precisely, convergence forM3 was difficult
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7: Figure S5 to S10.for � given this configuration
7
. An increased in the number of

iterations per chains (here from 1000 to 2000) solved the problem.

Hazard rate estimation

Estimated hazard curves are shown in Figure 3.6 for each

combination of scenario, model and sample size. Models M1

and M3 were the best fitting ones in the first and third scenarios

respectively (i.e. positive control, Table 3.1): estimates were accurate

and precision increased with sample size. For scenarios 2a, 2b

and 4, all estimates were biased, and precision increased with

sample size. In contrast, modelM2 never provided accurate hazard

estimates (i.e negative control). The same results were obtained

when covariates were included.

Figure 3.6: Estimated hazard curves confidence intervals for each combination of scenarios (rows), models (columns), and

sample size (facets). Estimated confidence intervals are depicted in each panel and compared to the true hazard curves (in

black). Even-numbered scenarios (2a, 2b and 4) are on the left, and odd-numbered ones (1 and 3) on the right.
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8: Figure S5, SI Text 4 and Figure S11.

9: Figure S12.

10: SI Text 4 and Figure S13.

Survivorship estimation

Estimated cumulative survival curves are shown in Figure

3.7 for each combination of scenario,model and sample size. Across

all scenarios and sample sizes, estimates from model M3 were the

most accurate
8
. Precision increased with sample size. In particular,

survivorship rates estimated with M3 were very close to Kaplan-

Meier estimates for sample size ≥ 300. This sampling size also

provided a good confidence interval precision with a maximum

width of 0.04 % while estimating survivorship
9
. Predictive ability,

as measured with WAIC, was the greatest for model M3: it was

consistently ranked first across each combination of scenario and

sample size, even for scenario 1 where model M1 was the true

data-generating mechanism
10
.

Figure 3.7: Estimated survivorship confidence intervals for each combination of scenarios (rows), models (columns) and

sample size (facets). Estimated confidence intervals are depicted in each panel and compared to the truth (in black).

Even-numbered scenarios (2a, 2b and 4) are on the left, and odd-numbered ones (1 and 3) on the right.
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Covariate Effects

Covariate effect estimation is summarised on Figure 3.8

as a difference between survivorship rates. Model M2 could not

estimate difference in survivorship. Model M1 is only effective for

both scenario 1 and 2a. M3 could estimate accurately covariate

effects when the difference is expressed as an unimodal pattern (i.e.
scenario 1, 2a and 3). The precision of the estimated effect increased

with sample size for models M1 and M3. With small sample size,

sign errors on the effect of covariate was possible but disappeared

with sample size ≥ 300.

Figure 3.8: Estimated survivorship difference under each scenario. The covariate effect could correspond to that of sex

(e.g., x = 1 for females and x = 0 for males). Ten estimated difference curves are depicted in each panel and compared with

the truth.
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Case studies

Estimated survivorship curves from published dataset are

plotted against the Kaplan-Meier curves in Figure 3.9 for each

model. Model M3 was the most flexible: it provided the most accu-

rate estimates for each dataset. Uncertainty, as measured with 80%

credible intervals were narrower with model M3, and overlapped

most with Kaplan-Meier estimates. Model M3 consistently had the

lowest WAIC.

In the handful of case studies where covariates were available,

a similar pattern arose. Including covariate can be expected to

account for more variation in the data, and a lower WAIC. For

both M1 and M2, this was indeed the case. For M3 it was only

true with the (Murphy et al. 2012) dataset
11
. The estimated co-

variate effect for both (Barlow and Hohn 1984) and (Kesselring

et al. 2017) case studies is summarised on Figure 3.10.
12

Models

M1 and M3 both estimated a survivorship difference between each

covariate. As it is the case without covariates (Figure 3.9), the M3

curve fits the Kaplan-Meier estimate better. However, there is a

discrepancy between both, for each covariate. M3 is able to spot a

difference depending on covariate, but is not able to perfectly fit

the Kaplan-Meier estimate.
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Figure 3.9: Survivorship curves estimated from published data sets. Each subpanel corresponds to a case studies in Table

2. Data set size is represented horizontally. Panels are associated to the following data sets:

a. Murphy et al. 2012

b. Slooten 1991

c. Rodriguez-Caro et al. 2019

d. Murphy et al. 2009

e. Kesselring et al. 2017

f. Saavedra 2018
g. Barlow and Hohn 1984.
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Figure 3.10: Estimated survivorship difference for both case studies.



3 Studying survival 65

3.4 Discussion: Implications of this new
cross-sectional parametric approach

We assessed the ability of a simple linear mixed model

to estimate hazard and survivorship rates with cross-sectional

age-at-death data. We used Monte Carlo simulations to investi-

gate the accuracy and precision of estimates across a variety of

mortality patterns and several sample sizes. We compared the

performance of three different models and found one model, the

model M3, to be consistently better at predicting survival, even

when misspecified.

Age-at-death data and sampling bias

A To use age-at-death data, we assume

that the population is under a station-

ary age distribution which is rarely

the case in nature...

crucial but implicit assumption of the cross-sectional

approach to survival analysis is that the sample is representa-

tive of the population as a whole, particularly with regard to age

structure (Caughley 1966). This assumption relates to the dataset,

not to the modelling. The way in which the age-at-death data

are collected is therefore crucial in supporting this assumption.

Approximate protocols involving, for example, the recording of

dead carcasses, hunting bags or population censuses must meet

the representativity premise. However, it is possible that an im-

plicit process (e.g. bycatch) shapes the observed age frequency

(e.g. from stranded animals). In this case, it is necessary to explore

some potential age-dependent selection bias in the population

(Barlow and Hohn 1984). With stranding data, the assumption of

a stationary age distribution needs to be supported by ancillary

data, but ultimately it is likely to remain a working hypothesis

on which any cross-sectional methods will be based. In the case

of cetaceans, many species are not amenable to study with a lon-

gitudinal design, and strandings remain an important source of

information (e.g. Murphy et al. 2009), particularly demographic

information (Saavedra 2018; Ferguson, Stirling, and McLoughlin

2006). When longitudinal studies are not possible, there are very

limited options to obtain demographic information. In some cases,

a comparative approach may be possible where information on

species with similar life histories can be leveraged (Caswell et al.

1998; Hashimoto et al. 2013). This choice is essentially based on

the assumption of similarity between species. ... so we should use auxiliary data to

interpret results. But if age-at-death

data is the only source of data avail-

able, so it should be used whenever

possible.

Even if comparative

data are available, the ecological context may be too different to

justify this approach in some instances. Strandings may be the only

available source of data, and even if they are suspected to suffer

from some selection bias, a pragmatic approach to conservation

requires to use them (Boyd, Bowen, and Iverson 2010), keeping in
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mind the inherent limitations of these data.

Many We can inform conservation policies

and management strategies with de-

mographic parameters obtained from

age-at-death data.

conservation instruments specifically require the use

of the "best available science" (according to the Marine Strategy

Framework Directive EC 2008/56 in Europe). The operative ex-

pression "the best available science" can be broadly understood

as what lies at the intersection of state-of-the-art methods, good

data and accurate knowledge. In practice, there may be a hiatus

between the canonical approach that should be, and the pragmatic

one that can be pursued at the time conservation actions need to be

decided. A conclusion of a species being data-deficient often leads

to the doldrums with respect to conservation decisions (Parsons

2016). Likewise, themany uncertainties that can affect any scientific

studies can easily lead to inaction regarding the implementation of

conservation measures (Ascher 2004). It is because we are starkly

aware of these limitations that we carried out this study to identify

a pragmatic approach to estimate survivorship rates from age-at-

death data. Crucially, all the models we used are conditional of

the underlying sample being representative of the population it

is taken from. Granting this assumption, we identified a simple

model from (Reed 2011) to obtain accurate estimates.

Prediction Accuracy and Models’ Goodness of fit

Traditionally, The most commonly used models for

obtaining marine mammal survival

from age-at-death data are the Siler

and Heligman Pollard models.

estimating survivorship rates with cross-

sectional data was done with parametric models such as the

Siler or Heligman-Pollard models, and this is still the case for some

marine mammals (Mannocci et al. 2012; Siler 1979; Heligman and

Pollard 1980; Huang et al. 2012). These models aim at reproducing

a bathtub-shaped hazard curve, but need several parameters to do

so. Furthermore, they can be difficult to fit although new tools have

been developed to use these models (Saavedra 2018). A remaining

challenge with these models is to assess goodness of fit, to incorpo-

rate individual-level covariates and perform model selection. The

simple parametric form of (Reed 2011) for analyzing the logarithm

of age-at-death data provides a bathtub-shaped hazard with a

linear mixed model, the current workhorse of ecologists (Bolker

et al. 2009). Thesemodels can be used to obtain vi-

tal rates but their use is limited. Their

construction is not simple and they

do not allow for the estimation of vital

rates as a function of various factors.

This linear mixed modelling framework allows for a

seamless incorporation of covariates, and to use standard tools for

model selection and goodness-of-fit assessments. In other words,

modelM3 brings back survival analysis within the comfort zone of

ecologists. We harnessed the simplicity of (Reed 2011) to conduct

our Monte Carlo study, and found that the model suggested by

(Reed 2011), our model M3, was very accurate in predicting sur-

vivorship (i.e. it consistently had the lowest RMSE), even in cases

when it was not the true model behind the data
13

. This result
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is important as it suggests to start building model of increasing

complexity from M3 (as it is done after Chapter 4) and use tools

such as WAIC (Gelman, Hwang, and Vehtari 2014) to balance

model complexity with prediction accuracy.

From

Our approach correctly estimates sur-

vivorship with 300 age-at-death data

and correctly approximates hazard

with 500 age-at-death data.

our simulations, we can recommend a sample size of at

least 300 individuals to obtain accurate and precise estimates of

survivorship, from which age-specific survival estimates can be

derived
14

This sample size recommendation is practical and real-

istic (e.g. Mannocci et al. 2012; Murphy et al. 2009; Kesselring et al.

2017). This recommendation is mostly to obtain precise estimates,

but may be relaxed in some cases where only sparse data may be

available (data-poor context hereafter). Estimates from a simple

linear model with an individual frailty term, were accurate, if

imprecise, with a sample size as small as 100. The possibility to

use sparse data is critical as it can help conservation of elusive

species, such as marine mammals, many of which being classified

as data-deficient (Parsons 2016; Schipper et al. 2008). Some of

the case studies presented in this paper support this statement,

although, with so few data, including covariates in the model will

be difficult or will require great care (see for example Cox et al.

2019). Rodriguez-Caro et al. (2019) recently provided an approach

to estimate survival in data-poor settings using inverse modelling,

also to obtain accurate estimates of demographic rates. With the

latter, population matrix models can then be used to assess pop-

ulation dynamics and the fate of populations over time (Caswell

2000).

Hazard and Frailty

A The inter-individual frailty parame-

ter that allows the mortality curve

to have a bathtub shape should not

be interpreted alone. It is not yet a

biological indication in its own right.

linear mixed model can fit age-at-death data very well:

this ability comes for the individual frailty term,which corresponds

to an individual random effect in the mixed modelling framework.

Individual frailty in statistical models translate the empirical ob-

servation that two similar individuals (with respect to observable

features of their phenotypes) can nevertheless differ markedly in

their longevity (Cam, Aubry, and Authier 2016; Kannisto 1991). The

parametric form (i.e. exponential) for individual frailty gives extra

flexibility to the model, and can accommodate a bathtub-shaped

hazard curve (Reed 2011). However, in our simulations, we found

that estimating hazard rates was more difficult than estimating sur-

vivorship rates (Figures 3.6 & 3.7). Thus, even though we identified

a model (M3) for reliable and accurate estimation of survivorship,

the same model was less reliable with respect to hazard. In other

words, the individual frailty term in our model M3 should not be

over-interpreted, and is probably best seen as a statistical device

for robust estimation. Hazard estimation is a difficult statistical

problem (Watson and Leadbetter 1964), for which there are better
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tools available, especially non-parametric ones (see for example

Hanson and Jara 2013), than the simple parametric approach we

considered in this study. Non-parametric approaches to infer the

shape of the hazard curve are data-hungry: Hanson and Jara (2013)

use Bayesian non parametrics, which is better described as a model

with a massive number of parameters (Hoff 2013). The traditional

Kaplan-Meier approach is truly a non parametric approach but

it does not give access to the underlying hazard, and give rough

(that is, non-smooth; Figure 3.7) survivorship rates with small

sample size. In data-poor settings, parametric modelling remains

attractive because it has interpretable parameters (e.g. individual
frailty) and because these parameters can smooth out noise in data,

yielding more precise estimates if the model is at least approxi-

mately correct, or more pragmatically, if it is grounded in theory

(e.g. bathtub-shaped hazard for natural populations) and cannot be

rejected from a goodness-of-fit test. It is precisely in this data-poor

setting that we envision our parametric modelling approach to

be most useful. Because the approach boils down to linear mixed

effects modelling, great flexibility in model specification of ad-

ditional random effects (e.g. year effects, sex-specific frailties) is
possible provided there are enough data to offset the increase in

complexity.

Benefits and limits

We Our model performs well in case of

unimodal age-at-death distribution...

believe our approach is very valuable to estimate sur-

vivorship from sparse data but may be inadequate for bimodal

age-at-death data distribution. A bimodal distribution of age-at-

death data may be a sign of selection in data collection (Barlow

and Hohn 1984). Rather than consider the sampling as biased, our

approach can accommodate the selection phenomenon through

two ways. Firstly, it is possible to consider the selection bias as a

covariate in the study if one such covariate is available (e.g. By-
catch index). If no such covariate is available, it may be possible

to build a mixture of two models (e.g. M1 and M3) in order to

take into account an additional mortality on some age classes.

However, such a development requires to conduct its own sim-

ulation study which is beyond the scope of this study. Since our

approach is based on linear regression, it is straightforward to

expand the model (e.g. random year effects, mixtures) while us-

ing familiar and well established methods for model selection

(e.g.WAIC) and assessment of model fit (e.g. posterior predictive
checks, '2

statistics). These features are assets, and suggest that our

approach is complementary to existing ones (e.g. Saavedra 2018;

Siler 1979; Heligman and Pollard 1980) to estimate vital rates in

some data-poor species. On the basis of the size and morphology

of the animals, the largest can be defined as "megafauna" (Estes
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et al. 2016). Large animals, usually long-lived vertebrates, refereed

as "megafauna" are generally elusive. When associated with the

marine environment (referred as "marine megafauna") it may be

more difficult to obtain data and study these animals given their

living environment. This is particularly true for demographic data

and studies. Given their functional importance (Pimiento et al.

2020), there is a need to inform the biology and the demography

of these species. ... and can allow joint estimation of

fertility in a joint modelling approach.

The approach presented here may be of interest

to study the demography of marine megafauna, in particularly

marine mamals such as the common dolphin in the North-East

Atlantic. And this is what we will see in the next Chapter.
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The common dolphin is one of the most abundant and

widespread odontocetes in the world. This species is very common

in the Atlantic Ocean as it is found from the centre to the north

of the Atlantic. The North-East Atlantic population, distributed

from Gibraltar to Norway, is considered a management unit by the

OSPAR Commission. This species is a top predator in European

waters, supposedly a keystone species. The current status of this

population (and its future trend) is a key issue in the MSFD for

descriptors 1 and 4. Since 1997, the number of common dolphins

found stranded on European coasts, notably in France, has been

steadily increasing. Among these individuals, there is a high

proportion of individuals showing signs of capture in fishing nets.

Previous demographic studies have shown that this population

is not viable. To study its viability, sampling was carried out in

the conventional way (collection of all available data on age-at-

death and reproductive-status-at-death). The analysis of these data

was carried out using standard survival analysis methods. In the

previous chapter, we saw that it is possible to use a new approach

to survival analysis that allows more flexibility than conventional

methods. In this chapter, we will see how it is possible to combine

this new approach with a sampling procedure that has never

been used before to study the demography of a marine mammal

species from a cross-sectional monitoring. By combining these

two methods, we will see that it is possible to quantify more

precisely the vital rates of the North-East Atlantic common dolphin

population. It is also possible to highlight the effect of by-catch

pressure on this population from a demographic point of view.

Finally, it is also possible to highlight the presence of a cohort

effect showing a modification of the value of the vital rates during

the temporal period considered. The population does not seem

to be viable and its condition seems to have deteriorated over the

time period considered. Anthropogenic mortality pressure from

bycatch appears to have a negative effect on the survival of the

population. As the individuals used in this study are specific to the

Bay of Biscay, it is difficult to generalise the results to the OSPAR

management unit. However, the vital rates produced can inform

the MSFD descriptors.



4 North-East Atlantic common dolphin population viability 71

Flowchart of the study presented in this chapter.

Publication in prep.

This chapter is associated with one publication which is under preparation:

Rouby, E., Authier, M., Mauchamp, A., Mendez-Fernandez, P., Dabin, W., Thobois, J. and Ridoux,

V. North-East Atlantic common dolphin population viability and vital rates variations. In prep.
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4.1 Introduction: A need for demographic
knowledge

The common dolphin is one of the marine mammal species

assessed under the MSFD, in particular under descriptors 1 and

4 which include marine mammals (Table 4.1 for details of the de-

scriptors and their relevance to marine mammals; M. B. Santos and

Pierce 2015). This marine mammal species is found in all temperate

and tropical parts of the oceans (Perrin 2018). Individuals are organ-

ised into distinct populations, or stocks, which may be associated

with different management issues (Natoli et al. 2006; Amaral et al.

2012). The North-East Atlantic population is a population with

high conservation stakes today, particularly with regard to the

MSFD (European Parliament 2008), since it is the most abundant

cetacean species in European waters (Hammond et al. 2017). It

is important to conserve this population for the purposes of the

MSFD, but it is currently subject to high levels of extrinsic mortality

through bycatch (Murphy et al. 2021; Peltier et al. 2016) which can

impact on its viability (Mannocci et al. 2012).

Table 4.1: Summary of the MSFD descriptors and how they relate to the project. Each descriptor is summarised. For each,

its relevance to marine mammals is addressed. As well as the associated demographic need. For a more precise description

of the descriptors see M. B. Santos and Pierce (2015) or European Parliament (2008).

Descriptor Relevance for marine mammals

Need for marine mam-

mals demographic infor-

mation

1.Maintain biological diversity

Marine mammals is an important functional

group as marine megafauna and sometimes key-

stone species

Yes

2. Non-indigenous species Not addressed No

3. Populations of commercial fish/shellfish bio-

logically safe

Not addressed No

4. Elements of marine food webs occur at normal

abundance

All marine mammals in european waters are top

predators

Yes

5. Human-induced eutrophication is minimised Not addressed No

6. Sea-floor integrity maintained Not addressed No

7. Hydrographical conditions not unfavourable Not addressed No

8. Concentrations of contaminants

Due to their trophic position, marine mammals

bioaccumulate pollutants

No

9. Contaminants in fish and other seafood Not addressed No

10. Properties and quantities of marine litter do

not cause harm

Ingestion of plastics and entanglement in debris No

11. Introduction of energy, including underwater

noise, non-disruptive

Underwater noise can have a range of effects on

marine mammals

No

The MSFD descriptors are used to assess the status of the

population and are based on sets of criteria. Under the MSFD,

descriptor 1 requires the production of indicators of demographic

status to assess the viability of the common dolphin population in

the face of bycatch pressure (Benjamins et al. 2014). The aevaluation

of the achievement of the objectives set by the descriptors is

carried out on the basis of a set of criteria which constitute a
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1: See Table 4.2 for a schematic pre-

sentation of each criteria within the

descriptors relevant to marine mam-

mals and their need for demography

2: See Appendix Table 1 to find out

about surveys by campaign and by

season.

descriptor
1
. Within descriptor 1 in particular, the demography of

marine mammals (and therefore the common dolphin) occupies an

important place (European Parliament 2008). The only biological

indicators recognised to define the status of the population in the

North-East Atlantic (i.e. increasing, stabilising or decreasing) are

the abundance estimates obtained from aerial and boat surveys
2

(Hammond et al. 2017, 2013). Seasonal abundance estimates have

been collected on a smaller scale (Laran et al. 2017; Authier et al.

2018) but their purpose is rather to provide information on the

abundance of the common dolphin population on a seasonal basis.

Such abundance estimates are not sufficient to provide information

on the status and viability of the population, and the impact of

bycatch on its viability (Murphy et al. 2021; M. B. Santos and Pierce

2015). There is a need to produce demographic indicators (vital

rates) to better inform the management policy of the MSFD and

describe the status of the population (Murphy et al. 2021).

Demography is a more refined indicator than abundance

for determining the status of a population and an essential com-

plement in terms of management. The use of abundance data

to indicate the viability of a population is mainly based on ob-

served trends and the determination of depletion levels (B. L.

Taylor et al. 2007). In the context of bycatch pressures, demography

can be a supplementary indicator to abundance surveys to study

the anthropogenic demographic impact on the common dolphin

population (see A. J. Read, Drinker, and Northridge (2006) for a

broader discussion regarding marine mammals). Before detecting

a change in abundance, it is possible that the values of the life

history traits will change because their evolution depends on the

extrinsic pressures (e.g. bycatch) that the population is undergoing

(Stearns 2000). In the case of the common dolphin, the primary

pressure on the population seems to be strong, given the number

of individuals found stranded on the French seashore (Dars et al.

2020). Obtaining demographic data on this population appears

both essential from an applied point of view and interesting from

a more fundamental point of view in order to highlight possible

variations in the values of important vital rates associated with

survival and reproduction. The vital rates of the common dolphin

population have already been estimated, as well as the life tables,

and the population has been considered non-viable under current

bycatch pressures (Mannocci et al. 2012) but it is necessary to

complete these analyses.

Obtaining vital rates can be improved by using a more rep-

resentative sampling method and more flexible statistical methods.

Previous demographic work has provided age-at-death data using

all available biological material, as is usually done to study the

demography of odontocetes (Barlow and Hohn 1984). From these
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Table 4.2: Summary of descriptor criteria within which the production of demographic state indicators is required. See
European Parliament (2008) for a less schematic description and the detailed elements. The primary and secondary aspects

are not shown here for the sake of clarity. But the demographic issues appear as secondary.

Descriptor Criteria Need for demography

1. Maintain biological di-

versity

D1C1Themortality rate per species due to bycatch

is below the level that would pose a threat to the

species, so the long-term viability of the species is

assured

Yes through the use of

population growth mod-

els taking into account

removals and quantifica-

tion of the byctach effect

on vital rates

D1C2 Anthropogenic pressures do not adversely

affect the abundance of populations of the species

concerned, so that the long-term viability of these

populations is guaranteed

No

D1C3 The demographic characteristics (e.g. size
or age structure, sex distribution, fertility rates,

survival rates) of the species’ populations indicate

a healthypopulation, unaffectedby anthropogenic

pressures

Yes through the produc-

tion of life-tables and vi-

tal rates using new cross-

sectional methodologies

D1C4 The range of the species and, where ap-

propriate, their pattern of distribution within that

range, is consistent with prevailing physiographic,

geographic and climatic conditions

No

D1C5 The habitat for the species has the neces-

sary extent and condition to support the different

stages in the life history of the species

No

4. Elements of marine

food webs occur at nor-

mal abundance

D4C1 – Primary Diversity (species composition

and relative abundance) of the trophic guild is not

affected by anthropogenic pressures

No

D4C2 – Primary: The balance of total abundance
between trophic guilds is not affected by anthro-

pogenic pressures

No

D4C3 – Secondary The size distribution of indi-

viduals within a trophic guild is not affected by

anthropogenic pressures

No

D4C4–SecondaryTheproductivity of the trophic
guild is not affected by anthropogenic pressures

Yes through the use of

population growth mod-

els taking into account

anthropogenic pressures

data, vital rates were estimated using standard survival models

from the literature (Siler 1979). Sampling bias is poorly controlled

and it is difficult to identify variations in the estimated vital rates

and the effect of variables (e.g. cause of death, area or sex). We pro-

vide here a complementary and updated demographic estimates

which helps to fuel the debate on how to consider and study an

elusive marine mammal population such as the common dolphin

in the North-East Atlantic. In order to better control the bias in

the representativeness of the strandings, we performed a stratified

random sampling to select individuals (females and males). For

each individual, where possible, we obtained age-at-death data

using odontochronological methods on dental tissue. We then con-

structed another dataset of reproductive status from the analysis of

all available gonad samples for both males and females. The data
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Figure 4.1: Strandings records
on the Atlantic French seashore
recorded by the "Observatoire
Pelagis" between 1997 and 2021.
The number of stranded dolphins

has been increasing since 1997 with a

record number of strandings in 2020.

In the project presented, the time

series extends to part of 2019. The

whole of 2019 as well as 2020 and

2021 are presented to show the latest

stranding estimates.

Data from Observatoire

Pelagis website: https:
//www.observatoire-pelagis.
cnrs.fr/?lang=en

on age and reproductive-status-at-death range from 1997 to 2019.

From these data, we obtained vital rates associated with survival

and reproduction using a joint model (including survival and

reproduction). The survival part is based on the model construc-

tion presented in Chapter 3. The reproduction part is based on

an Accelerated Failure Time model construction. Vital rates were

estimated in three ways: without effect, with covariates (sex and

cause of death) and with random effect (years of death). Finally,

we filled a Leslie matrix model with the obtained vital rates to

obtain the population growth rate and to geometrically project its

evolution.

4.2 Methodology: Stratified random sampling
and Joint modelling

Themethodology developed in this study implies fivemajor

actions (or steps):

I 1. Define the sampling plan

I 2. Acquire data from biological samples

I 3. Estimate vital rates (with covariates and random effects)

I 4. Build life-tables

I 5. Project the fate of the population

Sampling of a stranded population

Amajor problem with randomly selecting individuals for

analysis from a stranded population is that representativeness bias

is not controlled. Random selection can add representativeness

bias to the already existing bias associated with the stranding filter.

Ideally, age and reproductive-status-at-death distributions should

be exactly the same between the stranded population and our

sample. This would allow us to avoid adding bias and to be sure

that the only bias associatedwith our results is due to the stranding

filter. One way to control for this selection bias is to implement a

stratified random sampling design. This is based on the choice of

important criteria defining strata within which random sampling

is carried out (Figure 4.2).

https://www.observatoire-pelagis.cnrs.fr/?lang=en
https://www.observatoire-pelagis.cnrs.fr/?lang=en
https://www.observatoire-pelagis.cnrs.fr/?lang=en
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Figure 4.2: Diagram of the stratified random sampling. In this figure, the stratified random sampling method is illustrated.

From the stranded population, each individual is assigned a value for the criteria of interest. These values are used to stratify

the individuals. Within each stratum, random sampling is then carried out. The sample is obtained. The strata presented

here and their associated criteria values are schematic. The number of strata is determined by the number of criteria values.

Figure 4.3: Map of all the stranded
common dolphins records from
1997 to 2021. It can be seen that all

strandings are recorded on the Bay

of Biscay but none are recorded in

the English-Channel.

Data from Observatoire

Pelagis website: https:
//www.observatoire-pelagis.
cnrs.fr/?lang=en

In order to maximise representativeness, a sampling design

must be defined that takes into account several criteria that can

influence the representativeness of demographic data. We used

a statistical sampling method used in various scientific fields (e.g
forestry ecology, polls surveys or psychology) that has never been

applied to study marine mammal demography from stranded in-

dividuals. The objective is to define a sampling plan that will allow

the selection of the most representative individuals of the stranded

population, from which biological samples will be obtained to

provide data on age and reproductive-status-at-death. The 3 main

steps (Figure 4.4) are as follows:

I 1. The first step is to define the need for representativeness.

On what basis to select individuals. To select the individuals,

we chose 5 criteria that can influence the distributions of

the demographic parameters. This selection is made in a

non-hierarchical way:

The first is length since length is an indicator of age and

reproductive status.

The second is year, since year can provide information on a

possible cohort effect or even a change in the value of vital

rates over time.

The third is sex since it can be an element influencing age-at-

death and it is essential to respect the proportions observed

in the stranded population.

The fourth is the cause of death because it seems necessary

to transcribe the mortality signal as observed in the field.

https://www.observatoire-pelagis.cnrs.fr/?lang=en
https://www.observatoire-pelagis.cnrs.fr/?lang=en
https://www.observatoire-pelagis.cnrs.fr/?lang=en
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Figure 4.4: Main steps in stratified
random sampling. This figure com-

plements the diagram. It describes the

important conceptual steps to recre-

ate the sampling protocol.

Examples of external examinations of stranded individuals

to determine the cause of death of the animal are described

Figure 2.19.

The fifth is the location that is not very important and can

be removed, but it is intended to select individuals stranded

all along the coast.

Having defined the criteria to be considered, it is necessary

to calculate their proportion within the stranded population.

The proportion of each criterion for the age-at-death dataset

can be seen in Figure 4.8.

I 2. Next comes the stratification step. For each stranded indi-

vidual recorded in the stranding database, a value for each

of the 5 criteria was assigned. Using the example in diagram

4.2, some individuals will have the following criteria values:

180-199cm, 2002, Male, Natural death, Department 17 while

others will have: 180-200cm, 2014, Female, Bycatch death,

French Department 17. These individuals share common

criteria but do not belong to the same stratum because they

differ by at least one criterion value. The stratification stage

consists of classifying all the individuals in the stranded pop-

ulation database into different strata to ensure inter-stratum

representativeness.

I 3. Finally, random selection within each stratum is used to

ensure intra-stratum representativeness. Individuals from

the stranding database are selected on the basis of their

criteria values but also on the availability of samples. In-

deed, it is not possible to obtain teeth and gonads from all

stranded individuals despite the existence of the National

Stranding Network ("Réseau National Echouage" in French).

Sample collection is dependent on the state of degradation

of the animal (Figure 2.20).

In summary, the list of individuals in the age-at-death

dataset is obtained by stratified random sampling. The list of

individuals in the reproductive-status-at-death dataset is obtained

by considering all available gonad samples.

Data acquisition through histology

Teeth: age-at-death dataset

The number of individuals with an age in the age at death

dataset is 642. The methodology used to determine the age of

an individual from its dental tissue involves a technique called
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Figure 4.6: Growth layer groups
(GLGs) in a common dolphin teeth.
Years are depicted with numbers and

neonatal line with "n". Photo from

Murphy and Rogan (2006).

odontochronology. This technique involves counting the annual

layers in the teeth resulting from the incrementation of cementum

and dentin in the dental tissue (Perrin and Myrick 1980). The

deposition of these layers is mainly due to seasonal phenomena

but other phenomena linked to the organism (stress) can cause the

appearance of accessory growth layers (Hohn 2009). One year of

life corresponds to 1 Growth layer Group (GLG) which consists of

an alternating light and dark layer. This technique is considered

valid for determining the age of common dolphins (Mannocci et al.

2012; Murphy et al. 2009).

The objective is to observe these growth layers. To do this, it is

necessary to treat the teeth. The first step was to decalcify the teeth.

Here the teeth were placed in a bath of concentrated DC3 acid.

The decalcification time ranged from 3 to 48 hours depending on

the size of the tooth. Then teeth have been cut using a freezing

microtome in a longitudinal section plan, a cut known as "dolphin

cut" (Bowen and Northridge 2010). For each individual, three

teeth were removed, all from the mid-left jaw. Six sections were

produced from each tooth for a total of 18 sections. These sections

were then stained. The staining was carried out with toluidine

blue (a frequently used stain) which allows the growth curves to

be highlighted (Bowen and Northridge 2010). The stained sections

were finally placed on slides for microscopic observation. Three

slides per individual were produced, each with 6 sections. An

example of the final product is available in Figure 4.5, which shows

the growth curves at the apex, middle and base of the tooth for

three individuals of different ages andwithout the sameproportion

of accessory striae.

Figure 4.5: Tooth sections from
three individuals in the age-at-
death dataset. For each individual

(a, b and c), Growth Layer Groups

and accessory striae can be seen. The

reading is done from the left or right

side of the tooth. The age can be read

on three areas for confirmation: the

apex (1), the middle (2) and the base

(3).

Two age determinations were made to construct the age-

at-death dataset. In each case, three readers were required. One
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of the readers was common to both periods, the trainer with the

most experience in age determination. For age determination that

occurred during the project, if the difference between readers

was less than 2 years, estimates were averaged. If the difference

was more or equal to 2 years, readers were discussing to reach a

consensus. If it was not possible, only age reading of the trainer

was taken into account. All readings were made without prior

knowledge of body length or sex.

Gonads: reproductive-status-at-death dataset

The number of individuals with age and reproductive status

in the reproductive status dataset is 240. For all the individuals,

age was also available. When the state of decomposition of the

animal allowed collection of the gonads, the left and right gonads

were sampled and preserved in 10% formalin with 10 volumes

of ethanol. Reproductive status was assessed for both males and

females. We also chose to consider males because the analytical

framework allows allows for the inclusion of covariates (Rouby,

Ridoux, and Authier 2021).

he size of themale testicles depends on the seasonwith an increased

size during the mating periods (May to September) (Evans and

Teilmann 2009). It is hypothesised that this size adaptation is

associatedwith spermatic competition (Murphy, Collet, and Rogan

2005). For this reason, macroscopic examination alone does not

allow the reproductive status of the male to be determined. We

sent the testicular samples to an independent histology laboratory

which provided us with testicular histological slides. From these

cross-sections, we determined the reproductive status based on the

signs of spermatogenesis, including spermatozoa in the tubules

and/or mature spermatozoa present in the epididymes (A. J.

Westgate and A. J. Read 2007; Figure 4.7).

Figure 4.7: Histological sections of
common dolphin gonads. The fe-

male gonads (ovaries) are indicated

by the letter f. De Graaf follicles can

be seen in the sections. The male go-

nads (testicles) are indicated by the

letter m. m.1: immature individual

with small underdeveloped seminif-

erous tubules and a relatively high de-

gree of interstitial tissue.m.2: Mature

but regressed testis. Small tubules

and high amount of interstitial tis-

sue.m.3: mature in production with

increased tubule size and few intersti-

tial tissues.m.4: higher enlargement

of the mature tubule showing signs

of spermatogenesis.

Black scale bar = 100 �m
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For females, maturity was determined from the ovarian

structures which are referred as corpus. Only the left ovary was

observed as it is usually larger than the right one and contains twice

as many corpus. The primary follicle, which contains an oocyte

embryo, develops into a secondary and then a tertiary follicle

before maturing into a "de Graaf" follicle. The oocyte is expelled

into the fallopian tube when the follicle reaches the "de Graaf"

stage. The follicle then deteriorates as a corpus luteum and finally

into a scar on the ovary (R. J. Harrison and Ridgwa 1971) which are

refereed to as corpus albicans (Figure 1 inAppendix 7.4). The concept

of persistent corpus albicans have been questioned for the common

dolphin and it is now assumed that it is not possible to estimate

the number of gestation based on the presence of corpus albicans
(Dabin et al. 2008). Table 4.3 summarises the determination of the

reproductive status of females based on histological observation.

Ovarian features Reproductive state
No mature follicle Immature

De Graaf follicle and no corpus albicans Pubscent

De Graaf follicle and one or some corpus albicans Resting mature

corpus luteumwith or without a fetus Pregnant

corpus luteum and productive mammary glands

Mature pregnant lactat-

ing

Table 4.3: Characteristics of the dif-
ferent reproductive stages.

The definition of pubescent status is possible for both sexes

and for several species of delphinids (Murphy, Collet, and Ro-

gan 2005; Goodall et al. 1997; Rosas and Monteiro-Filho 2002;

M. B. Santos et al. 2008). For females the age-at-first-reproduction

is commonly assumed when there is a corpus albicans (Slooten
1991). Females are assumed to be pregnant as soon as they reach

maturity (Mannocci et al. 2012) despite of the non-persistence of

ovarian scares (corpus albicans) for the common dolphin (Dabin

et al. 2008). Using pubescent status, we did not explore the age-

at-first-reproduction (AFR) and age-at-sexual-maturity (ASM) as

it is commonly done in the literature. We explored the access to

puberty. I think that this parameter is more sensitive to life history

changes. However, we still compute the proportion of sexually

mature females as it is commonly done in the literature in order

to better compare our observations with previous works on this

population.
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Figure 4.8: Comparisons of proportions of each criterion value for the stranding database and the two study datasets.
The stranding database is shown in yellow. The age-at-death dataset in dark blue. The reproductive-status-at-death dataset

in blue-green. Stratified random sampling allows for similar proportions between the age-at-death dataset and the stranding

database, including cause of death, years, size and sex. Within the reproductive-status-at-death dataset, there is a large

proportion of samples from the Biocet
a
program conducted in 2002. There is also a greater proportion of females than males,

contrary to what is seen in strandings. Individuals of 180-199cm also seem to be over-represented. The causes of death are

globally balanced but not representative of the stranding signal.

a
EU-funded BIOCET project (Bioaccumulation of persistent organic pollutants in small cetaceans in European waters:

transport pathways and impact on reproduction, EVK3-2000-00027). See Pierce et al. (2008) for a study within this program.
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3: Parametric model that assumes

that covariate accelerate or deceler-

ate the reaching of the event.

4: For technical details of conver-

gence and parameterisation see Ap-

pendix subsection 7.4

Table 4.4: Models specification.
Model 1 and 2 are not joint models.

Simple: a null effect, Cov: Covariate ef-

fect, Years: Random effect (joint mod-

elling on Years), Cor: Correlation be-

tween random effects, Trend: Trend

effect on random effects. WAIC and

LOOIC are depicted in Appendix Ta-

ble 1.

Model Specification Joint modelling

1 simple No

2 cov No

3 years Yes

4 years + cor Yes

5 cov + years Yes

6 cov + years + cor Yes

7 cov + years + trend Yes

8 cov + years + trend + cor Yes

Joint estimation of vital rates with a null effect, covariate
effect and random effect Cohort effect

The cohort effect is the proportion

of the observed outcome that is

due to the characteristics of the

cohort.

Here, the cohorts are annual and

have death as a common event.

The cohort effect captures the ef-

fect of the common characteristics

of individuals who died in the

same year on the estimated vital

rates.

Theprevious stepshaveprovideddata onage and reproductive-

status-at-death from which we can calculate vital rates. Usually,

these vital rates are calculated from separate models. The Siler

(1979) and Heligman and Pollard (1980) models are used to calcu-

late vital rates associated with survival (Saavedra 2018). Logistic

regression is used to calculate the vital rates associated with repro-

duction (Mannocci et al. 2012; Murphy et al. 2009). In the previous

chapter, I described a new approach to survival estimation based

on the Reed model (Reed 2011). We have developed a similar ap-

proach for estimating vital rates of reproduction by considering

an Accelerated Failure Time model
3
(AFT) model. Rather than

considering these models separately, we combined them into a

joint model.

Model selection

The estimation of the parameters of the twomodels is linked

by the presence of random effects related to the year of death of

the individuals. This random effect is analogous to a cohort effect

(see margin-box for a definition). We considered 8 increasingly

complex models. The first 2 do not involve the common cohort

effect (no year effect). For each model, we computed the Widely

Applicable Information Criterion (WAIC) and the Leave-One-Out

cross-validation Information Criterion (LOOIC) as they allows to

select the better model given the out-of-sample prediction (Vehtari,

Gelman, and Gabry 2017). The better model to use is the one

with the lowest WAIC or LOOIC. The selection given each model

complexity is detailed in Appendix Table 1
4
. According to both

WAIC and LOOIC, the better models were the 8 and the 7. From

the perspective of statistical parsimony we used the model 7 as it

is less complex than the 8 (no correlation between survival and

reproduction estimation).

We also used the approach commonly used in the literature

to estimate survival and reproduction of common dolphins (i.e.
Siler, Heligman-Pollard and logistic regression). I do not detail

here the functions related to these approaches, but I describe them

in Appendix 7.4. Only the models and functions associated to the

joint modelling approach will be detailed. Functions’ parameters

are estimated using a Bayesian framework. From the previously

obtained data, the times to the event (death or puberty) are used to

estimate the parameters of the models. These parameters are then

entered into each function to calculate vital rates. The details of
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the estimated vital rates and the associated models are provided

in Table 4.5:

Table 4.5: Vital rates information. For each important vital rate here, the mathematical notation, method of calculation and

inclusion or not in the Leslie matrix model are detailed. Only age-specific survival and fecundity rate (female offspring)

calculated from the joint modelling approach are used to inform the Leslie matrix. The fecundity rate is calculated using the

proportion of mature females obtained from the joint modelling approach. The latter takes into account the pubescent status

as a reference event.

Vital rate Notation Calculation

Use in the Leslie

matrix model

Survivorship l(x) Siler & Joint model: Equation 4.2 No

Age-specific survival rate S(x) Joint model: Equation 4.3 Yes

Hazard rate h(x)

Heligman-Pollard & Joint model:

Equation 4.4

No

Proportion of mature females

(with maturity status)

PM(x) Logistic Regression No

Proportion of mature females

(with pubescent status)

P(x) Equation 4.6 No

Fecundity rate from puberty fP(x) Equation 4.7 Yes

Although the approach involves jointmodelling, eachmodel

is detailed separately. The join is provided by the random variable

8C (cohort effect) which is an individual effect (8) related to the

year of death of the individual (C).

Survival part

The age-at-death data obtained from the stratified random

sampling are detailed in Figure 4.9. Each age within this data

distribution is used to inform the parameter G8C . Age-at-death

dataset from Mannocci et al. (2012) is also used to compare the

effect of sampling on the survivorship value since authors did

not perform stratified random sampling but used all available

age-at-death values.

The survival model is the following:

log G8C = � +
?∑
9=1

�?-8? + 1

C + � × &8 −
/8

�
(4.1)

It consists in modelling the logarithmic transform of G8
(which is the age-at-death for each individual 8) assuming a normal-

Laplace distribution for logxi where � is a location parameter; �
and

1

� are (positive) scale parameters; and /8 are independent

standard exponential deviates. The parameter
1

� quantifies indi-

vidual frailty (Kannisto 1991; Reed 2011) or persistent demographic

heterogeneity (Cam, Aubry, and Authier 2016). We specified the

following distribution for residuals &8 ∼N(0, 1) and 1

� > 0 which
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Figure 4.9: age-at-death data as an
age pyramid by sex. The maximum

age class is 21-22 years with some fe-

males of this age. The data seem to be

characterised by a low representation

of age groups 0-1, 0-2 and sometimes

7-8 and 8-9. Over-representation is

also possible for ages 9 to 14. For com-

parisons, see Chapter 2 with two age

distributions on the same population.

In total, there are 642 individuals.

5: the proportion of the population

that survive at least to age G.

6: the proportion of the population

at age G that reaches the age G + 1.

allows to accommodate a bathtub-shaped hazard rate curve which

is the pattern expected for long-lived species of vertebrates in the

wild (Choquet et al. 2011b). It is possible to incorpore ? individual-

level covariates -8? (such as sex or cause of death) and random

variables C (such as years). The superscript 1

C means that this is

the random effect associated with survival model.

The vital rates associated with the survival component

are:

I Survivorship ;(G)5 at age GwithΦ2 as the cumulative density

function of a standard normal distribution with Φ2 = 1 −Φ
(with Φ as the density function of a normal distribution):

To apply covariates and/or random

and/or trend effects it is on the inter-

cept �:

�1997 = � + 1997

;(G) = Φ2
(
log G − �

�

)
−

exp

(
�(log G − �) +

�2�2

2

)
×

Φ2

(
�� +

log G − �
�

) (4.2)

I Age-specific survival ((G)6 :

((G) = ;(G + 1)
;(G) (4.3)
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7: Instantaneous probability of dying

at time C+3C given that and individual

8 has survived until time C

I Hazard rate ℎ(G)7 with ' as the Mills ratio (' = Φ2

) ) which

is the ratio between the cumulative density function (Φ2)

and the probability density function of a standard normal

distribution ()) :

ℎ(G) =
�

G
×

'
(
�� + (log G−�)

�

)
'

(
(log G−�)

�

)
− '

(
�� + (log G−�)

�

) (4.4)

This approach is accurate to estimate survivorship with a

sample size of 300 while for hazard rate it is better with at least

500 individuals (Rouby, Ridoux, and Authier 2021).
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Figure 4.10: Distribution of reproductive status by age (regardless of sex). No immature individuals were founded after

11-12 years. Pubescent individuals are found from 2-3 years to 11-2 years of age with the largest proportion between 4 and 6

years. The first mature individuals are found at 4-5 years of age. For comparisons with other datasets from this population,

see Chapter 2. In total, there are 240 individuals.

The reproductive model is the following:

log G8C = � +
?∑
9=1

�?-8? + 2

C + � × &8 (4.5)

It if G8C ∼Weibull (, �)

log(G8C ) ∼ Gumbel (�, �) with  = 1

�
and � = 4−�

consists in modelling the logarithmic transform of xit

(which is age-at-death associated with a reproductive state) as-

suming a Weibull distribution for G8C and a standard Gumbel

distribution &8 ∼ �(0, 1) . The Weibull distribution used is a two-

parameter distribution:  is the shape parameter which describes

the distribution pattern of the risk of becoming sexually mature;

and �8 which is the scaling parameter defining the position of the
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distribution curve. Residuals &8 ∼ �(0, 1)which induces a Weibull

law.

It is possible to include ? individual-level covariates -8? (such as

sex or cause of death) and random variables. The random vari-

able 2

C is the cohort effect associated to the reproductive model.

Covariates inclusion allows to compute the proportion of ma-

ture females, which is the sex usually used in unisex animals

dynamic populations, without subseting the dataset and lose in-

formation. Three reproductive status (i.e.model censoring states)

are used to inform the model parameters estimation: Immature

(right-censored), Pubescent (not censored, the most informative)

and Mature (left-censored).

Vital rates associated with the reproductive component:

I Proportion of mature females %(G) at age G with  as the

shape parameter of the Weibull distribution ( = 1

� with

� as the standard deviation of the Gumbel distribution of

log(xit)) and � as the intercept of the Gumbel distribution:

%(G) = 1 −
©«4G?

©«−
©«

G

4G?
(
−�

1

�

) ª®®¬
1

� ª®®®¬
ª®®®¬ (4.6)
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Figure 4.11: Reproductive status of
females given four age-class inter-
val. The total number of female used

is about 91. For a comparison with

other dataset, see Chapter 2.

I Gestation rate �(G) at age G. The gestation rate was obtained

considering 4 age-class intervals (4-8, 9-13, 14-18 and 19-22)

as depicted in Figure 4.11.

Gestation rate before 4 years is equal to 0 since no female

was pregnant before 4 years. It is equal to 0.125 for 4-8 since

one of the 8 mature females of this age was pregnant. It is
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equal to 0.45 for 9-13 since 15 of the 37 mature females of this

age were pregnant. It is equal to 0.35 for 14-18 since 10 of the

29 mature females of this age were pregnant. And It is equal

to 0.30 for 19-22 since 5 of the 17 mature females of this age

were pregnant.

I Fertility rate 5%(G) at age G. The proportion ofmature females

(estimated with the pubescent status in the AFT modelling

framework) is multiplied by the gestation rate (divided by

two assuming a sex ratio at birth of 1:1) and multiplied by

the age-specific survival rate considering the transition to

the next age (G−1:

5%(G) = %(G) ×
(
�(G)

2

)
× (G−1 (4.7)

The proportion of mature individuals through the ages is

obtained considering both sexes. To compute fertility rate, we used

the proportion of mature females computed with the pubescent

status (through the covariate inclusion). It is more accurate to

use females for demographic modelling since it is considered as

the limiting sex in the population and it is easier to measure the

reproductive output than for males.

Leslie matrices and elasticities

The vital rates obtained above allow the construction of life

tables. The tables and their construction are detailed in the supple-

mentary material. Once vital rates have been obtained, including

age-specific survival ((G) and fecundity rates from pubescents

( 5%G ), a Leslie matrix model can be filled in to obtain the popu-

lation growth rate. This growth rate is then used in a geometric

population dynamics model.

The matrix population model is the following:



#0

#1

#2

#3

...

#24−1

#24

=+1

=



#0

#1

#2

#3

...

#24−1

#24

=
×



5%0
5%1

5%2
5%3

... 5%24−1
5%24

(0 0 0 0 ... 0 0

0 (1 0 0 ... 0 0

0 0 (2 0 ... 0 0

0 0 0 (3 ... 0 0

0 0 0 0 ... 0 0

0 0 0 0 ... (24−1 0


(4.8)

Vector # gives the number of individuals in each age-class

at time C and then at time C + 1. The previously estimated vital
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rates were combined into the matrix with the female age-specific

survival rate ((G) and the fertility rates from pubescents females

5%(G). Female vital rates were obtained by including covariates

without and with the random effect of year. The matrix model is

therefore relative to female only. Before age class 5, the gestation

rate is 0. No offspring are produced by females strictly under the

age of 5.

Figure 4.12: Conceptual model of the Female leslie matrix modelling approach. 24 age classes are modelled. After age

class 24, the females die, so there is no survival rate for this class. Before age class 5, the gestation rate is 0. No offspring are

produced by females strictly under the age of 5.

The population growth rate � was computed as the asymp-

totic growth rate of the Leslie matrix and allowed to project the

remaining population at time C (#(C)) taking into account the

initial abundance at time C0 (#(C0)). The population’s trajectory

was projected through 100 years, from 2020 to 2120.

#(C) = #(C0) × �C (4.9)

We also explored the relative changes in population’s

growth rate � caused by a proportional change in one of the

life cycle parameters, referred to as elasticities (de Kroon et al.

1986). The elasticities analysis may be used to improve and study

the management of long-lived species (Crouse, Crowder, and

Caswell 1987).

Baseline assumptions

I Stranded dolphin population is representative of the

living population (regarding demographic features).

I Age and reproductive-status-at-death are representative

of the stranded population.

I Each age-at-death is known and correctly reported.

I Each reproductive-status-at-death is known and correctly

reported.
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I Joint model is accurate to estimate vital rates and the

survival and fecundity patterns are congruent for the

species.

I The population growth geometrically and is not subject

to migration.

4.3 Results: Vital rates and population growth
rate

The first part of the results is related to the vital rates of

the population. In this part, the first result highlighted is the

comparison of survival estimates according to the sampling of

age-at-death data. The second result highlights the patterns of

survivorship and proportion of matures individuals without effect.

The third result highlights the survivorship and proportion of

matures individuals patterns with covariates. The fourth result

highlights the survivorship and proportion of matures individuals

patterns with random effects.

The second part of the result highlights the properties of the

matrix model used. The first result highlights the projection of

the evolution of the population (in percentage) without effect and

with random effect. There is no covariate because the projection

is always made from the sex covariate, to take into account the

females only. The second result shows the value of the elasticities

for survival and fecundity, by age and by year.

Common dolphin population vital rates

Survivorship difference according to sampling

We estimated survivorship from Mannocci et al. (2012)

dataset ("All age-at-death available" Figure 4.13) and the dataset

obtained in this project ("Stratified-random-sampling" Figure 4.13)

using Siler (1979) and Reed (2011) models. This was done with

the aim of testing the influence of stratified random sampling on

the estimation of survivorship. As a reminder, Mannocci et al.

(2012) did not use stratified random sampling. For the Mannocci

dataset, the survivorship estimated is equal to that estimated in

the Mannocci et al. (2012) study using the Siler model (Figure 4.13).

Using the Reed model, there is a gap from the 0 to the 12 age-class

(without taking into account the uncertainties). Then estimation

are consistent and nearly overlapping. For the dataset collected in

this study, both models estimated nearly the same survivorship

across all age-classes even if there is a limited gap between 0 and 4

years (≈ 0.25).
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Figure 4.13: Survivorship estimation for each age-class on the two dataset types with Reed and Siler models. The
estimation realised with the Siler model is displayed in black dashed line whereas the estimation using the Reed model

is displayed in black solid line. For the dataset built using all the age-at-death available (Mannocci et al. 2012), there is

a difference in survivorship estimates. This difference is much less marked, or even almost non-existent, for the dataset

constructed from the stratified-random-sampling.

Survivorship and Proportion of mature individuals with a null
effect

Figure 4.14: Survivorship estimated from the age-at-death dataset for each age-class. The blue dotted line corresponds to

the observed survivorship estimated from the Kaplan-Meier estimator. The black dashed line is made from the Reed model.

Uncertainty is displayed as the 80% uncertainty interval (i.e. Bayesian credibility interval).

The survivorship according to each age-class is highlighted

in Figure 4.14. Availability of data by age is displayed in rug line.

Observed survivorship from this data (obtained with Kaplan-

Meier estimator) is showed in blue points. The confidence interval

around the mean is a 80% confidence interval as it correspond to
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Figure 4.15: Proportion of mature
females along age-class obtained
through logistic regression. Black

dots are the observed proportion for

each age-class. The black solid line

is the model fit. Data showed a null

proportion of mature females from

0 to 4 years and a full proportion of

mature females from 11 to 21. From 5

to 11, the proportion increases but the

pattern in the data is noisy. Female

Age at Sexual Maturity (ASM) is of

7.36 years (e.g. 50% of the population

is estimated as mature).

the Bayesian credibility estimate. The confidence estimate is at its

widest value at 10 years admitted a survivorship uncertainty of 0.3.

From 0 to 10 years, the survivorship decreases from 1 to 0.25. It is

almost equal to 0 at 20 years. There is a gap between the observed

and the estimated survivorships from 3 to 8 years with an higher

value of estimated survivorship of about 0.05.

The proportion of mature females, estimated by the joint

model using pubescent status as a reference, according to each

age-class is highlighted in Figure 4.16. For comparison, the pro-

portion of mature females estimated by logistic regression from

the proportions of mature females at each age is shown in Margin-

Figure 4.15. In Figure 4.16, availability of data is displayed in rug

line. Black rugs are associated with immature and mature indi-

viduals (both sexes). Orange rugs are associated with pubescent

individuals (both sexes). Raw proportions of mature females are

displayed in both Figure 4.16 (grey dots) and Margin-Figure 4.15

(black dots). The estimated fitted curvewith theAccelerated Failure

Time (AFT) Weibull model is expressed as a dashed line. Like-

wise for survivorship, the 80% interval uncertainty around the

estimation is displayed in grey. The estimated ASM taking into

account the pubescent biological information through the AFT

approach is about 5.3 years. The maturity difference between the

two approaches is therefore about 2 years.

Figure 4.16: Proportion of mature females estimated with joint model for each age-class. The real data are displayed as

grey dots and the estimated proportion done with the AFT Weibull approach is displayed as black dashed line. The 80%

uncertainty around the mean estimated is displayed as a grey area.

Survivorship and Proportion of mature individuals with
Covariates

The effect of the two covariates (Bycatch and sex) on sur-

vivorship is presented in Figure 4.17 horizontal panel A. The

percentage of change between the two estimated survivorship
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Figure 4.17: Percentage change between survivorship and fertility patterns for each covariate being tested.
A: Effect of covariates on survivorship. The difference in survival between captured and uncaptured individuals increases

with age. It is about 15% at 10 years old and reaches 30% at 16 years old. Females seem to survive slightly better than males

at the end of their lives, particularly from the age of 16. Their survival is about 3% better at 22 years.

B: Effect of covariates on proportion of mature individuals. The proportion of mature individuals appears to be higher in the

younger age classes among the individuals caught. At 7 years of age, there are 2% more mature individuals. The females

also seem to mature faster than the males. At 8 years of age, females are 5% more mature than males.

profiles is expressed in percentage. For Bycatch (or cause of death),

the reference value is "Natural death". For sex, the reference value

is "Male". It can be seen that the difference between profiles is

more pronounced when the cause of death is taken into account in

comparison to sex. By focusing on the effect of bycatch, it appears

that the bycaughts individuals seem to survive less well than

non-bycaught ones for all ages. The difference between bycaught

and non-bycaught individuals in survivorship goes from 0 to 10%

from 0 to 8 years to 10 to 30% from 8 to 16 years.

The effect of the two covariates (Bycatch and sex) on the sexual

maturity attainment is presented in Figure 4.17 horizontal panel

B. The percentage of change between the two estimated sexual

maturity profiles are highlighted in the same way as before. It

can be seen that bycaught individuals reach sexual maturity more

quickly than non-bycaught ones. From the age of 13 to 14, however,

there is no longer any difference. Sex also seems to have an effect

on the estimation of the sexual maturity profile. Females seem to

mature more quickly than males.
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Survivorship and Proportion of mature individuals with
Random effects

Figure 4.18: Cohort effect on survivorship. The black dashed line corresponds to the mean survivorship. Each coloured

solid line of is a deviation around this mean (i.e. random effect) associated to a cohort.The cohorts share death as a common

event. For example, the 2017 cohort includes all individuals who died in 2017 regardless of age. This cohort is associated

with the lowest estimated survivorship. The highest estimated survivorship is for the 2002 cohort.

Figure 4.19: Cohort effect on proportion of mature females. The black dashed line corresponds to the mean proportion of

mature females. Each coloured solid line of is a deviation around this mean (i.e. random effect) associated to a cohort. The

cohorts share death as a common event. For example, the 2017 cohort includes all individuals who died in 2017 regardless of

age. This cohort is associated with the earliest Age of Sexual Maturity. The latest Age of Sexual Maturity is estimated for the

2002 cohort.



4 North-East Atlantic common dolphin population viability 94

Mean survivorship signal (dashed black line) and the de-

viation from this mean signal due to the random effect of the

years (coloured solid lines) are available in Figure 4.18. The year

associated with the highest survivorship is 2002 whereas the year

associatedwith the lowest survivorship profile is 2017. Years before

2007 show a profile with a higher survivorship than the mean

signal. After 2007, the survivorship was associated to lower values

with the lowest values recorded for recent years after 2016.

Mean proportion of mature idnviduals signal (dashed black line)

and the deviation from this mean signal due to the random effect

of the years (coloured solid lines) are available in Figure 4.19. The

year associated with the latest maturity (50 % of the population

estimated as mature) according to age is 2002. The year associated

with the earliest maturity according to age is 2017. Years from 2009

show a profile with a latest age-at-maturity than years after 2010

that show a profile with an earliest age-at-maturity.

Population growth rate and elasticities

The mean signal of the projected population abundance

trajectory (in percent) between 2020 and 2120 from the estimated

vital rates with the covariate "female" is presented in Figure 4.20.

The mean estimated growth rate is about 0.868 which correspond

to a population’s extinction within 40 to 50 years.
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Figure 4.20: Remaining population
from 2020 to 2120 given exponen-
tial geometric growth population
model. The asymptotic growth rate

is about 0.868. For a comparison with

previously made population projec-

tions on this population, see Chapter

2.

The deviations induced by the annual random effects from

the mean signal of the population abundance trajectory projection

are presented in Figure 4.21. The cohort effect (years of deaths)

deviations are displayed in colour likewise for survivorship and

proportion ofmature individuals. The yearwith the highest growth

rate is 2002 with � = 0.928 which corresponds to an extinction

within 70 to 80 years. 2017 is the year with the lowest growth

rate value (� = 0.848) which corresponds to an extinction within
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30-40 years. Years from 2012 show a faster extinction with much

less population remaining over time compared to the years before

2012.

Lambda = 0.928
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Figure 4.21: Cohort effect on pop-
ulation growth from 2020 to 2120.
The population model admits a expo-

nential geometric growth. The lowest

asymptotic growth rate is observed

for the 2017 cohort whereas the high-

est is observed for the 2002 cohort.

The mean proportional contribution to the growth rate, of

each age-class for both survival and reproduction are displayed in

Figure 4.22. For both facets, the mean signal is shown as a black

dashed line and the deviations from the mean signal due to the

random year effect are shown as solid coloured lines.

Regarding the survival component, the contribution decreases

along the lifetime. The estimated contribution is at his highest from

age 0 to 6 and then drops to 0 at age 22. From age 0 to 6, cohorts

from 1997 to 2008 are associated to a lower contribution compared

to the mean whereas years from 2015 to 2019 are associated with a

higher contribution. From age 7 to 22 cohorts from 1997 to 2008

are associated to a higher value compared to the mean whereas

cohorts from 2016 to 2019 are associated to a lower value for the

same age-class interval.

Regarding the reproductive component, the contribution

increases from age 1 to 8. The age-class which contributes the

most to population growth rate is the 8
Cℎ
. Then the estimated

contribution decreases up to the age-class 22. The contribution of

age classes before 6 is higher than the average for the years-of-death

cohorts after 2010 and lower for cohorts before 2010. Then, from

age 6 until age 10 cohorts with an higher value of contribution

than the mean are cohort from 2016 to 2019 with a difference peak

at year 8. These years are also associated to a lower contribution

compared to the mean signal from age 12 to to 22. For cohorts

before 2006 the contribution is lower than the mean from age 6 to

11. Then it is higher from age 12 to 22.
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Figure 4.22: Cohort effect on elasticities of age-specific fecundity (Reproduction) and survival rates (Survival). Black
dashed line corresponds to the mean signal and solid coloured lines correspond to the deviations around this mean signal.

The age class whose reproduction contributes most to the growth of the population is the 8-year-old age class. The age

classes whose survival contributes most to population growth are the younger age classes (0-6 years).

Age-specific survival rates are the vital rates that contribute most to the value of the growth rate (0.9 when adding up each

elasticity). age-specific fecundity rates contributes slightly (0.1 when summing each elasticity). The contribution appears to

be unequal across cohorts.

The 2017 cohort has the highest contribution to population growth from reproduction and survival of young age classes (3-8

for reproduction and 0-6 for survival). It is also the cohort whose reproduction and survival of adult year-classes (14 to 22

for reproduction and 10 to 20 for survival) contribute least to population growth. This pattern is reversed for the 1997 cohort.

4.4 Discussion: Important aspects and
implication of the study

We obtained age-at-death data for individuals (females

and males) selected by stratified random sampling. We obtained

reproductive-status-at-death data for all individuals (females and

males) for which we had gonad samples available.

We used these data to obtain vital rates associated with survival

and reproduction. The vital rates were obtained using a joint

modelling approach. This approach takes into account a random

effect common to both survival and reproduction, relating to the

year of death of each individual.

The vital rates that will be presented in this section are presented

according to the inclusion of: a null effect, a covariate effect and a

random year effect.

The rates obtained by this approach were used to inform a Leslie

matrix model. The values used are those for females (via the sex

covariate effect) without and with random year effect. Female

fecundity is obtained from modelling the attainment of puberty.

The value of the gestation rate induces a female offspring equal to

0 before 5 years.
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The growth rate obtained from the Lesliematrixwas used to project

the evolution of the population without and with random year

effect. The elasticity properties of the matrix(es) were calculated.

Representativeness bias and age distribution

The Strandings are probably biased re-

garding the juvenile and the older

senescent age-classes with fewer in-

dividuals than expected for a wild

population.

approach is basedona cross-sectionalmonitoringwhich

is fundamentally related to strong assumptions difficult to meet.

The most important to meet was addressed by (Caughley 1966)

which is the necessity for the population to be at a stationary age

distribution when using age-at-death recorded from strandings.

The stationary age distribution is an age distribution that induces a

stable population whose abundance does not increase or decrease

over time. This stationary age distribution is a special case of the

so-called stable age distribution (Caughley 1966). The stable age

distribution emerges when the birth and death rates are fixed

and the distribution of ages in a population are stable (Carey and

Roach 2020, p. 128). Our age-at-death dataset does not appear to

be representative of a so-called stable population for a delphinid

(Mannocci et al. 2012; Barlow and Hohn 1984). Since the stationary

age distribution (required as a baseline assumption) is a special

case of a stable age distribution, it is likely that our age-at-death

sample does not meet the baseline assumption.

The age classes that could be biased are the calves (0-2 years),

adult (8-12) and older-senescent (> 19 years) (Barlow and Hohn

1984; Stolen and Barlow 2003). The representation of juveniles

and older-senescent individuals may be influenced by drifting

processes. They may be less buoyant than adults (Peltier et al.

2012) It is therefore possible that they sink more easily. The under-

representation of calves in the dataset may also be explained by

a more rapid decomposition, greater vulnerability to predation,

scavenging, and lower detection probability of small-sized animals

(Stolen and Barlow 2003).

The Strandings are probably biased re-

garding the adults age-classes around

6 to 10 years with more individuals

than expected for a wild population.

Over-representation of adults in the age-at-death dataset may

be explained by three assumptions (Barlow and Hohn 1984):

I 1) Non stable age distribution resulting from a disturbance.

I 2) Inconsistent deposition of GLG during life.

I 3) Oversampling resulting from a filter before stranding.

The second assumption is unlikely to be possible. For common

dolphin it is commonly admitted thatGLGsdeposition is constantly

1 per year (Murphy and Rogan 2006). To validate or invalidate the

first assumption, much more age data would be needed. It would

be possible to see whether a change in representation for a given

age class is repeated in subsequent years as individuals advance

in age. In case of disturbance, it should propagates across years
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regarding age-class distribution (Barlow andHohn 1984). The third

assumption could be possible if we consider an overmortality of

these age classes due to the bycatch. As shown in Figure 4.17, the

age classes most likely to have a drop in reduced survivorship (Age

> 8 years) when the bycatch covariate is taken into account are also

those that would appear to be over-represented in the dataset. This

observation could support the validity of the third assumption.

To better accommodate the over-representation of adults and the

under-representation of calves, it might be interesting to use a

mixturemodel that allows to represent twohazard rate components

(Rouby, Ridoux, and Authier 2021). The first specific to calves. The

second specific to adults. Before testing this survival model, a

simulation study should be conducted.

Contribution of stratified random sampling approach

This The sampling plan seems essential to

minimise bias in estimating popula-

tion survival in cross-sectional analy-

sis.

study is thefirst to employa stratified random-sampling

framework while estimating the vital rates of a marine mammal

population from stranding data. Usually, demographic studies

from strandings use all age-at-death data available (Mannocci

et al. 2012; Barlow and Hohn 1984; Stolen and Barlow 2003). The

stratified random sampling is a way to satisfy both ecologist’s and

statistician’s requirements for the representative dataset (Roleček

et al. 2007). The advantage using this approach is that it allows to

maximises the probability of best representing the age structure

of the stranded population. It is important to match the stranding

signal as closely as possible on the basis of criteria (that shape

strata) influencing the demography and individual selection (such

as cause of death). Such an approach is commonly used in fisheries

studies (Holden and Raitt 1974; Cochran and William 1977; Lai

1993), forestry ecology (de Vries 1986) or human psychology and

social sciences for which it is important to correctly represent age

conditions in a population (Banerjee and Chaudhury 2010). As it is

shown in Figure 4.13 survivorship results can vary a lot depending

on the sample collected.

The sampling in the Mannocci et al. (2012) study was not

controlled and estimated survivorships may vary. The dataset

from (Mannocci et al. 2012) study were built using all the age-at-

death data available. As it was shown in Figure 4.13, the estimated

survivorship is not the same depending on the survival model

used (Siler or Reed). There is a gap between the two curves from

age 0 to about age 10. The dataset we built in this project was

constructed using stratified random sampling. The survivorship

estimates from this dataset are almost the same between the two

survival models. It is therefore possible that by not controlling for

sampling and taking all available age-at-death data, this reflects
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an additional bias that may influence the estimation of survival

models. In the case where sampling is controlled, the estimated

values are the same regardless of the models used. The stratified

random samplingmay help to reduce the sensitivity of the estimate

to the age distribution.

We think that it is essential to perform a stratified ran-

dom sampling (if sufficient data) in order to better represent the

stranding signal. We propose a three-steps framework to minimise

representativeness bias using strandings (also see Margin-Figure

4.4 and Diagram 4.2):

I 1)Define the need for representativeness by choosing relevant

criteria and calculate the proportion of each in the stranded

population

I 2) Stratify by assigning each individual a value for each

criterion

I 3) Random sample individuals within each stratum to match

proportions of the stranded population

This approach ensures that uncontrolled selection bias is not added

to the sample or is at least minimised. The representativeness bias

is therefore due solely to strandings.

Viability of the common dolphin population

Figure 4.23: Death origin of the
dolphins used in this study. The

blue dots represent the age-at-death

dataset. The red dots represent the

reproductive-status-at-death dataset.

The origin at death was obtained

by using the MOTHY inverse drift

model. The great majority of individ-

uals died on the continental shelf of

the Bay of Biscay.

The common dolphin population is currently considered as

a singlemanagement unit byOSPARwhosepopulation is panmictic

(Murphy et al. 2021). In principle, the vital rates produced in this

study should refer to the whole population (Benjamins et al. 2014).

The samples used here (age-at-death and reproductive-status-at-

death) were constructed from individuals stranded on the French

coast. For some, it was possible to trace their supposed origin

at the time of their death. This is achieved through the use of

inverse drift models (Peltier et al. 2016). Almost all the individuals
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Figure 4.24: Stage-specific elas-
ticities for mammal populations,
grouped by age at maturity and or-
deredby increasinggeneration time.
A. Age at first maturity = 1 yr; no ju-

venile stage. B. Age at first maturity

= 2 yr; fertility elasticity = juvenile

survival elasticity. C. Age at first ma-

turity >2 yr. This groups correspond

to species that exhibit a similar life

history as the common dolphin. With

delphinids in it andmarinemammals.

Fertility elasticities for those species

are almost equals to the one that we

founded for the common dolphin.

Figure from Heppell, Caswell, and

Crowder (2000).

died on the continental shelf of the Bay of Biscay (Figure 4.23).

This does not mean that they are uniquely tied to this area. But

it is a possibility to consider if we assume the hypothesis put

forward by Lahaye et al. (2005) and Caurant et al. (2009) which

have highlighted the possible existence of two stocks that are tied

to either the continental or the oceanic part of the Bay of Biscay. If

individuals were restricted to this part of European waters, then it

would be difficult to generalise the vital rates obtained at the scale

of the OSPAR management unit. Conversely, it would be possible

to use them to inform the descriptors of the MSFDwhich considers

parts of the population’s distributional range.

It is possible that the bycatch pressure on the population is

increasing and resulting in poorer survival. Since 2016, the number

of stranded dolphins including bycaught individuals has been

increasing almost constantly (Dars et al. 2020). The time series

data we have used takes into account the year 2017. This year was

marked by a very strong bycatch episode with a record number of

stranded individuals (which will be exceeded by 2019 and 2020).

This is the year in which survivorship is lowest, sexual maturity

is reached most quickly and the population growth rate is lowest.

It is therefore possible that the cohort effect observed is mainly

due to an increase in bycatch pressure on this population. To com-

pensate for this pressure, the population would tend to mature

and pubesce more quickly as it is suggested by the cohort effect.

The inclusion of the covariate "cause of death" may reinforce this

assumption. As shown in the Figure 4.17, bycaught individuals

survive less well that non bycaught ones and seem to mature more

quickly. The external mortality force exerted by humans through

bycatch could decrease the survival pattern of the common dolphin

and speed up sexual maturation at the population level. An other

interpretation of the survivorship difference between bycaught

individuals and non bycaughts is sampling bias. The survival

profile associated with bycaught individuals may be biased by the

over-representation of bycaught individuals in the sample. The

inclusion of the "cause of death" covariate would therefore limit

the bias introduced by bycatch in the survival analyses.

By looking at the elasticity properties of the Leslie matrices (Figure

4.22), reproduction contributes only for 10% of the growth rate

whereas survival contributes up to 90 %. This differential contribu-

tion is expected for a long-lived species like the common dolphin

(Heppell, Caswell, and Crowder 2000). See Margin-Figure 4.24

for a comparison with other mammals and delphinids. The low

contribution of reproduction to population growth (regardless of

cohort) could explain why, despite the reduction in reproductive

age, the growth rate is still decreasing.
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Predicted but not observed extinction

Mannocci et al. (2012) The most favourable growth rates we

have estimated are associated with

the earliest years (< 2005) and are

close to Mannocci et al. (2012) esti-

mates.

projected the trajectory of the common

dolphin population and predicted that the population would

become extinctwithin 100 years at an average growth rate� = 0.945.

The average growth rate that we estimated in this study is lower

with a value of � = 0.868. Considering this rate, the population

will go extinct within 50 years. This growth rate seems to vary

between cohorts as highlighted by the projections taking into

account random effects (Figure 4.21) but none of the years taken

into account is associated with a projection as favourable as that of

(Mannocci et al. 2012). Our time series covered years 1997 to 2019

whereas (Mannocci et al. 2012) used a time serie from 1972 to 2006.

The difference may be due to a different cohort effect between these

two time series. Different characteristics or pressures experienced

by our cohorts between 2007 and 2019. Considering our time serie,

the population’s state seems worst in the recent years (2010 to

2019) with a growth rate that decreases from 0.928 in 2002 to

0.848 in 2017. According The population should have been de-

clining for years, but that is not what

we are seeing. It is possible that this

is a sink population. This hypothesis

will be discussed in more detail in the

general discussion.

to our estimates and those of (Mannocci

et al. 2012), a decrease should be observed. However, this does not

seem to be the case according to the available abundance estimates

(Appendix Table 1). It is possible that the population from the Bay

of Biscay is a sink population receiving individuals from source

stocks.

The basic assumptionsmade in this studymay be unrealistic.

Six main assumptions were made to conduct the study. The first

assumption: "Stranded dolphin population is representative of the living
population" may be unrealistic and lead to a mismatch between the

growth rate obtained and the trend observed in the abundance

surveys. The demographic rates of the stranded population may

not be representative of the population at sea. Another baseline

assumption thatmay account for themismatch between the growth

rate obtained and the observed abundance is the last one: "The
population growth geometrically and is not subject to migration". This
assumption suggests that the population grows or decreases ge-

ometrically (here exponentially) depending on the value of the

growth rate. But the geometric population growth model used

does not take into account migration phenomena which could be

the cause of an apparent stationarity of the population in the Bay

of Biscay.
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The Common dolphin plays an important functional role in

Bay of Biscaymarine ecosystems as a top predator, but is threatened

by bycatch, i.e. the incidental capture of non-targeted species in

commercial and recreational fisheries. Bycatch has been increasing,

and has been associated with a large number of winter strandings

of dolphins on the FrenchAtlantic coast since at least 2017.However,

uncertainties around the true extent of common dolphin bycatch

and the fisheries involved have led to delays in the implementation

of mitigation measures. Current data collection on dolphin bycatch

in France is with non-dedicated observers deployed on vessels for

the purpose of national fisheries sampling programmes. These

data cannot be considered as representative of all fisheries bycatch.

This feature makes it difficult to use conventional ratio estimators,

as they require a truly random sample of the fishery by dedicated

observers. We applied a newly developed approach, regularised

multilevel regression with post-stratification, to estimate total

bycatch from unrepresentative samples and total fishing effort.

The latter is required for post-stratification and the former is

analysed in a Bayesian framework with multilevel regression

to regularize and better predict bycatch risk. We estimated the

number of dolphins bycaught for each week and ten ICES divisions

from 2004 to 2020 by jointly estimating the bycatch risk, haul

duration and the number of hauls per days at sea. The bycatch

risk in pair trawlers flying the French flag was the highest in

winter 2017 and 2019, and was associated with the longest haul

durations. ICES divisons 8.a and 8.b (shelf part of the Bay of

Biscay), were estimated to have the highest common dolphin

bycatch. Our results are consistent with independent estimates of

common dolphin bycatch from strandings. Ourmethod shows how

non-representative observer data can nevertheless be analysed to

estimate fishing duration, bycatch risk and, ultimately, the number

of bycaught dolphins. These weekly estimates improve current

knowledge on the nature of common dolphin bycatch and can

be used to inform management and policy decisions at a finer

spatio-temporal scale than has been possible to date. Our results

suggest that limiting haul duration, especially in winter, could

serve as an effective mitigation strategy.



5 Quantifying the bycatch 103

Published works

This chapter is associated with three publications. The first is included as part of the introduction.

The second is not included. The third constitutes the core of the chapter:

I 1. Gilbert, L., Rouby, E., Tew-Kaï, E., Spitz, J., Peltier, H., Quilfen, V. and Authier, M.

2021. Spatiotemporal models highlight influence of oceanographic conditions on common

dolphin bycatch risk in the Bay of Biscay. Marine Ecology Progress Series. 679:195-212.

Doi:https://doi.org/10.3354/meps13894

I 2. Authier, M., Rouby, E. and Macleod, K. 2021. Estimating cetacean bycatch from non-

representative samples (I): a simulation study with regularized multilevel regression and

post-stratification. Frontiers in Marine Science. 8:1459. Doi: https://doi.org/10.3389/

fmars.2021.719956

I 3. Rouby, E., Dubroca, L., Cloâtre, T., Demaneche, S., Genu, M., Macleod, K., Peltier, H.,

Ridoux, V. and Authier, M. .Estimating bycatch from non-representative samples (II): a

case study of Pair trawlers and common dolphins in the Bay of Biscay. 2022. Frontiers in

Marine Science. p:1946. Doi:https://doi.org/10.3389/fmars.2021.795942.

https://doi.org/10.3354/meps13894
https://doi.org/10.3389/fmars.2021.719956
https://doi.org/10.3389/fmars.2021.719956
https://doi.org/10.3389/fmars.2021.795942
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Figure 5.1: Ekman pumping. Hori-

zontal divergence of the integrated

Ekman transports gives rise to a verti-

cal velocity at the base of the Ekman

layer (i.e. "Ekman “pumping"):

A. Cyclonic winds drive upwelling

(Ekman suction).

B. Anticyclonic winds drive down-

welling (Ekman pumping).

Figure from Colling (2001). The book

Fieux (2019) also provides informa-

tion on this subject.

Figure 5.2: Drawings of fish impor-
tant to the feeding ecology of the
common dolphin.

5.1 Introduction: About the bycatch
phenomenon

Why does bycatch of common dolphins occur?

The structuring of multilevel trophic pelagic ecosystems

is influenced by the presence of submesoscale and mesoscale

oceanographic structures (Bakun 1997, 2006). These structures

correspond to oceanic fronts (i.e. the frontier between two water

masses of different density), upwellings (i.e. upward movement to

the ocean surface of deeper cold usually nutrient-rich waters) and

eddies (i.e. circular current of water). Upwellings contribute to the

enrichment of the water column with nutrients through different

processes, but regarding the eddies, it is the Ekman pump that is

involved (Margin-Figure 5.1). In the event of a cyclonic wind (for

the North Hemisphere) there will be a transfer of water from the

centre to the periphery of the eddy, which will lead to an upwelling

of cold water in the centre (Fieux 2019). Oceanic fronts support

the enrichment of water with nutrients by the same process by

allowing two different water masses to encounter and promote

the retention of nutrients in a given area. If they are sufficiently

stable over time, these structures allow the development of a

whole trophic chain from phytoplankton, to zooplankton, to fish

and finally to top-predators (Bakun 1997). Top predators, such as

delphinids, integrate ecological processes at all levels of the trophic

web through their dynamic distribution (Croll et al. 1998). A key

element of delphinids distribution is the availability of fish, which

is variable in space and time due to the oceanographic processes

discussed above (Hyrenbach, Forney, and Dayton 2000).

The commondolphin is a top predator of pelagic ecosystems

in the Bay of Biscay that feeds on a wide variety of fish species,

some of which are targeted by fisheries (Pusineri et al. 2007;

Meynier et al. 2008; Spitz et al. 2013), and whose presence depends

on oceanographic conditions. The main fish species involved in

dolphin-fisheries interactions are the sardine (Sardina pilchardus),
the anchovy (Engraulis encrasicolus) (both are prey to the dolphin)

and the seabass (Dicentrarchus labrax) (in trophic competition with

the dolphin; Spitz et al. 2013; Figure 5.4 for an overview of the

trophic chain). The latter species is targeted by the Pair trawlers

(Margin-Figure 5.5), a métiers (i.e. the combination of gear, target

species and fishing area) historically associated with bycatch of

common dolphin in the Bay of Biscay (Peltier et al. 2021; as well as

other fishing métiers). The occurrence of sea bass, and the fish on

which the dolphin feeds, is indirectly conditioned by the availability

of nutrients (such as phosphorus, nitrogen, potassium and iron).

Nutrients have an influence on the development of phytoplankton
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Figure 5.3: Scheme of pelagic pair
trawler net.
Figure from https://sng.ie/
fishing/pelagic-old/.

1: Service Hydrographique de la Ma-

rine Nationale: https://www.shom.

fr/

(Bakun 1997). The presence of phytoplankton (and the diversity of

species associated with it) influences the presence of zooplankton

that feed on phytoplankton (Lampert et al. 1986). If the persistence

and retention of nutrients are sufficient, then the development of

plankton will allow predators such as fish to feed (Beaugrand and

P. C. Reid 2003). Finally, large fish and dolphins feed on smaller

fish (Spitz et al. 2013) and pair trawlers target fish of commercial

interest (Peltier et al. 2021).

Figure 5.4: Diagram of trophic chain associated with common dolphin.

The proximal relationship between fish, dolphins and pair

trawlers could drive the spatio-temporal variability of the bycatch

pattern: fish distribution is notoriously variable in both space and

time (Erauskin-Extramiana et al. 2019) and is governed by many

factors from dynamic oceanographic conditions. Changes in local

distribution and abundance of prey species might be a substantial

driver of their simultaneous presence with common dolphins,

commercial predatory fish and fisheries in localized areas. In order

to investigate the link between oceanographic factors and dolphin

mortality at sea, we coupled biological data which are related

to reverse drift trajectories obtained from the bodies of stranded

dolphins with incidental capture evidence and environmental data

intrinsic to various physical processes at high and low frequency

obtained thanks to themodelling services of the Shom
1
(Gilbert et al.

2021). We built a mortality estimation model to study the influence

of sea surface temperature, turbulence force or eddy kinetic energy

(i.e. Eddies occurrence) and mean surface temperature gradient

(i.e. Frontal structures occurrence and intensity) over the years

2012 to 2018. Two seasons of mortality with dif-

ferent oceanographic processes were

highlighted:

Winter - Freshwater frontal struc-

tures.

Summer - Tidal frontal structures.

The winter and summer oceanographic processes

do not appear to be linked to the same mortality processes. In

winter, the Bay of Biscay environment is characterized by a seasonal

cross-shore (West to East) surface temperature gradient with lowest

temperature close to shore and intense frontal activity parallel

to the coast (North to South) (Yelekçi et al. 2017). These frontal

structures are freshwater fronts, correlated to the mixing of oceanic

https://sng.ie/fishing/pelagic-old/
https://sng.ie/fishing/pelagic-old/
https://www.shom.fr/
https://www.shom.fr/


5 Quantifying the bycatch 106

Figure 5.5: Seasonal variation in
themainhydrographic structures in
the Bay of Biscay. With: (1) winter

warm slope current, (2) swoddies, (3)

river plumes, (4) cold waters, (5) up-

wellings, (6) warm waters of Bay of

Biscay, (7) slope current, (8) tidal cur-

rents.

Figure from Koutsikopoulos and Le

Cann (1996).

2: https://www.ices.dk/Pages/

default.aspx

3: https://www.ices.dk/

community/groups/Pages/WGBYC.

aspx

4: The total bycatch Υ̂ of species (8)

by region (A) is estimated as the sum

of the observed specimens (H8) to ob-

served Days at Sea (G), time total fish-

ing Days at Sea (-) summed over

ICES areas (0) of interest:

Υ̂8A =

∑
H80A∑
G0A
×∑

-0A

waters and cold freshwater inputs from river plumes (Yelekçi

et al. 2017). Their location and time line concur with observed

patterns regarding bycatch mortality. Together with the effects

of the associated oceanographic variables on the mortality index,

results suggested these seasonal fronts may be targeted by both

fisheries and common dolphins as areas where fish aggregate,

thereby putting the latter at risk of bycatch by the former.

In July and August, the mesoscale dynamic activity of the Bay

of Biscay is rather different than in winter. In summer, there are

mainly fronts due to tidal flow (Yelekçi et al. 2017). Summer tidal

fronts are quite consistent from one year to the next because they

are correlated to a repetitive process (i.e. tides) (Yelekçi et al. 2017).

In summer, the main frontal activity is a seasonal tidal front, called

theUshant front, located offwestern Brittany (Yelekçi et al. 2017). Its

activity peaks in July and August (Yelekçi et al. 2017). The location

of this typical tidal frontal structure concurred with the location of

hot spots of fitted mortality index as well as with the location of

bycaught common dolphin strandings, mainly occurring on the

coast of the South Finistére region during the summer mortality

season.

These results suggest the influence of spatio-temporal

oceanographic processes on common dolphin bycatch mortal-

ity in the Bay of Biscay. But the relationship should not be over-

interpreted as themodel indirectly linked oceanographic processes

to common dolphin mortality. While this study aimed to explore

the "why" question, it is important to answer the "how much"

question. Especially in the context of the Habitat Directive and the

MSFD.

Bycatch observation and quantification

In France, the monitoring of cetacean bycatch in fisheries is

non-dedicated (Cornou et al. 2018) (observers are non-dedicated

to the bycatch observation), and the collected data are described as

non representative, which makes it difficult to estimate the bycatch

risk. The bycatch risk is the probability of catching at least one

dolphin in a haul. From the calculation of the bycatch risk, it is

possible to estimate the number of common dolphins bycaughts for

a given year in a given ICES
2
division. This estimation is carried

out mainly in the Working Group on Bycatch of Protected Species
3

(WGBYC). Traditionally, using the observer data, the way to quan-

tify the bycatch risk per Day at Sea (also refer as "bycatch rate" per

day at sea) is to use a ratio-based estimator. A day at sea is defined

as any continuous period of 24 hours (or part thereof) duringwhich

a vessel is present within a division and absent from port (Anony-

mous 2016). The number of bycaught dolphins is estimated
4
as the

https://www.ices.dk/Pages/default.aspx
https://www.ices.dk/Pages/default.aspx
https://www.ices.dk/community/groups/Pages/WGBYC.aspx
https://www.ices.dk/community/groups/Pages/WGBYC.aspx
https://www.ices.dk/community/groups/Pages/WGBYC.aspx
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5: http://www.meteorologie.eu.

org/mothy/

product of the ratio of the sum of observed bycaught individuals to

observed days at sea, times total fishing days at sea summed over

ICES division of interest (ICES 2019, p. 58). This It is impossible to use the classical

ratio-estimator approach on onboard

observer data to obtain the number

of dolphin bycaught at fine spatio-

temporal scales.

ratio-estimator is a

design-based approach of the estimation of bycatch and is referred

as a Bycatch risk Assessment (BRA) by WGBYC. The accuracy of

the approach is largely dependent on the representativeness of

sampling protocol (notably the observer scheme design). Due to

the low observer coverage, the non dedicated-sampling protocol,

the non-representativeness of observer dataset and the small num-

ber of hauls with few common dolphin bycatch, estimates based

on ratios appear unreliable (Babcock, Pikitch, and Hudson 2003;

Course 2021; Authier, Rouby, and Macleod 2021). An other way to

quantify bycatch is to use strandings (Peltier et al. 2016).

The Strandings are used to obtain the

number of dolphin bycaught on a

monthly basis. The estimation is done

by inverse drift modelling. ICES esti-

mates are currently made in this way.

use of strandings can be referred as model-based es-

timate since it implies a modelling-framework. Here it will be

referred to as "stranding-based" estimates to better flow with the

rest of the chapter, including the discussion. This approach is

based on the drift reconstruction trajectory of the stranded indi-

vidual using the MOTHY model
5
("Modéle Océanique de Transport

d’HYdrocarbures") from Méteo France. Then the estimated mortal-

ity in each year is corrected by the probability of being buoyant.

This correction allows to estimate the number of dead dolphins,

included those that sank and were not found ashore (Peltier et al.

2016). Using this approach, it is not possible to discriminate the

involvement of each fishing métier in the mortality of common

dolphins. To fill this gap, the use of observer data is very important,

even if biased. Some model-based recent improvements allows to

minimise the impact of the representativeness bias. For Stranding based estimates do not al-

low the number of catches permétiers
to be estimated on a fine spatial and

temporal scale.

example,

Luck et al. (2020) recently used a modelling framework to estimate

the corrected bycatch probability and then use the fishing effort

to extrapolate to the whole fishing fleet. Recently, Authier, Rouby,

andMacleod (2021) adapted the use of a the regularized multilevel

regression with post-stratification to infer more accurately bycatch

rates at finer spatio-temporal scale than it is actually done.

There We usedMultilevel Post-Stratification

to obtain the number of dolphins by-

caught by PTM on a weekly basis

from 2004 to 2020 in ten ICES divi-

sions. We also estimated the bycatch

risk, mean haul duration and number

of hauls per Day at Sea on the same

basis.

is a need to obtain bycatch estimates at a fine spatial

and temporal scale and to use data from at-sea observers. In

addition to estimates of the number of dolphins bycaught, estimates

must be made for the variables associated with bycatch. The spatial

and temporal scale must be fine enough to allow for inter- and

intra-annual differences within ICES divisions. In this chapter, I

present how we quantified the bycatch risk, haul duration, number

of hauls per Days at Sea and number of bycaught dolphins from

biased observer data . We quantified these parameters for each

week from 2004 to 2020 within 10 ICES division to better represent

variations in bycatch spatio-temporality using the approach of

(Authier, Rouby, and Macleod 2021). This study involves firstly

http://www.meteorologie.eu.org/mothy/
http://www.meteorologie.eu.org/mothy/
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6: Pair-Trawlers flying the French flag

are referred as "PTM" for the rest of

the manuscript.

7: https://sih.ifremer.fr/

Ressources/Obsmer

8: https://wwz.

ifremer.fr/sih_eng/

Debarquements-effort-de-peche/

Sacrois

9: https://wwz.ifremer.fr/

the analyse of historical bycatch monitoring data collected by

onboard observers (from 2004 to 2020) on pair trawlers flying the

French flag (hereafter called "PTM")
6
which is called Obsmer

7

("Observation des captures enmer"). This dataset is the one considered
as biased. From this dataset we estimated the bycatch risk, the haul

duration and the number of hauls per Day at Sea. Then, we used a

fishing effort dataset computed using the SACROIS algorithm
8
and

the median number of bycaught dolphin by haul to estimate the

number of bycaught dolphins per year and ICES divisions. Both

dataset were provided by IFREMER
9
("Institut Français de Recherche

pour l’Exploitation de la Mer"). After presenting the involved data

and the broad-lines of the applied methodology, I will compare

the estimates made in this study with those of the stranding-based

estimates.

5.2 Methodology: Quantify the bycatch
parameters

In this section, the methodology used to estimate bycatch

parameters (i.e. risk, duration and number of hauls) is detailed.

First, a review of the materials available to perform the analyses is

made. Then, a review of the methods is presented in outline.

Materials

ICES divisions, fisheries and study area

The North-East Atlantic ocean can be geographically di-

vided differently depending on the focus (for example focusing on

fisheries management or on ecosystems). ICES defines some ecore-

gions to refer to ecosystems in its ecosystem-based management

approach (EBM) and divisions to give an overview of the fisheries

related aspects in these ecoregions (ICES 2021b; Figure 2.11 in Page

34 Chapter 2).

The Bay of Biscay, the English Channel and part of the Celtic

seas are ecoregions associated to a high variety of fishing gears,

métiers and targeted species. These areas are associated with sub-

mesoscale and mesoscale oceanographic processes, such as eddies,

river plumes and tidal fronts, that enhance ecosystem productivity

and result in high availability of fishes, including commercial

species (e.g. European seabass Dicentrarchus labrax, Sardine Sardina
pilchardus or Anchovy Engraulis encrasicolus). Pelagic trawl fisheries,

as pair-trawlers, are active within all of these areas and mainly

target the anchovy, sardine, seabass and hake in divisions 8a and

8b (ICES 2020a). The study area for the estimation of common

https://sih.ifremer.fr/Ressources/Obsmer
https://sih.ifremer.fr/Ressources/Obsmer
https://wwz.ifremer.fr/sih_eng/Debarquements-effort-de-peche/Sacrois
https://wwz.ifremer.fr/sih_eng/Debarquements-effort-de-peche/Sacrois
https://wwz.ifremer.fr/sih_eng/Debarquements-effort-de-peche/Sacrois
https://wwz.ifremer.fr/sih_eng/Debarquements-effort-de-peche/Sacrois
https://wwz.ifremer.fr/
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Figure 5.6: Study area in the North-East Atlantic ocean, with ICES divisions overlayed.

10: Two dataet are used. Obsmer con-

tains the information about byctach

at the fine spatio temporal scale. It is

the biased dataset. SACROIS contains

the information about the true fishing

effort of PTMs from 2004 to 2020 on a

weekly basis. It is the population-level

data assumed as true.

dolphin bycatch by the PTM takes into account 10 ICES divisions

(Figure 5.6). Depending on the bathymetry, it is possible to classify

these divisions as oceanic or neritic. Divisions 7.d, 7.e, 7.f, 7.g, 7.h,

8.a, 8.b and 8.c are related to neritic ecosystems while division 7.j

and 8.d are related to oceanic ecosystems.

Datasets

Two main source of data
10

were used. The first source of

data that was used is a dataset called Obsmer. This dataset is

collected as part of an onboard observer program set up within the

Data Collection Framework of the Common Fisheries Policy and

carried out by IFREMER, under the supervision of the Directorate

of Fisheries and Aquaculture ("Direction des pêches maritimes et de
l’aquaculture", DPMA). Onboarding ObsMer observers’ primary

duty is to register the length and weight composition of catches.

Still, they have to report any bycatch if they witness such events.

Obsmer data on PTM covers 4, 484 hauls between 2004 and 2021,

of which 82 were associated with a bycatch event of at least 1 and

up to 50 common dolphins.

Obsmer provides the geographic position, timing, and du-
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Figure 5.7: Total weekly PTM fish-
ing effort in Days at Sea for each
year in division 27.8.a. The raw data

suggest significant inter-annual vari-

ation but a common pattern. Total ef-

fort appears to increase betweenweek

1 and week 28 before declining.

11: Obsmer provides the micro-scale

information while SACROIS provides

the macro-scale information.

ration of hauls. Although Obsmer is aiming at a coverage of 10%

and 5% of fishing effort for (level-3 métier) PTM for vessels of more

than 15 meters and less than 15 meters respectively. Effort is quite

low overall, ranging from 0.0 to 11% of Days at Sea (DaS; Table 5.1).

The number of observed hauls with at least one bycatch record is

very small: the yearly percentage of observed hauls with a bycatch

event never exceeded 4.5% and was 0 in nearly half of the surveyed

years. Obsmer data on PTM are an unrepresentative sample of

hauls, largely because allowing an observer remains largely at the

discretion of skippers (Babcock, Pikitch, and Hudson 2003; Benoît

and Allard 2009).

The second dataset provides monthly estimates of total

fishing effort in each division. This dataset is generated from the

algorithm SACROIS developed by Ifremer and integrates data from

Vessel Monitoring System, log-books and landing statistics (for

boats longer than 18 meters from 1
BC
of January 2004 and longer

than 15 meters from 1
BC
of January 2005; (Système d’Information

Halieutique 2017)). The SACROIS algorithm is interesting for two

main points: (1) it allows to correct errors that could exists in the

integrated dataset due to recording or collecting errors ; (2) it

reconstitutes métiers during fishing trip as there are not recorded

in logbooks nor fishmarket data (Cornou et al. 2018). The SACROIS

dataset provides the best available estimates of total effort, in Days

at Sea (DaS), between 2004 and 2020 (Table 5.1). There are also

refusals from skippers due to administrative and security reasons.

Skippers must apply for permission to take observers on board

and even if they decide to apply, permission may be refused for

safety reasons (e.g. not enough space or rails not high enough).

These two datasets
11

are complementary to address the

following challenge: is it possible to quantify bycatch parameters

(such as bycatch risk, haul duration, number of hauls and number

of dolphin bycaughts) from a non-representative sample ? The

sample Obsmer contains the information on marine mammal

bycatch at micro-level (i.e. on a haul resolution basis). This source

of data allows to estimate the bycatch parameters (Luck et al. 2020).

On the other hand, the fishing-vessels effort data from SACROIS

provides the spatialized effort data at the scale of the whole

fishing fleet (macro-level component). These population-level data

on effort allows the post-stratification of bycatch risk estimated

from observer data to obtain the number of bycaught dolphins at

the level of the whole fleet (Authier, Rouby, and Macleod 2021).

Descriptive statistics of both datasets are displayed in Table 5.1.

Used in tandem, both datasets allow using regularized multilevel

regression with post-stratification to estimate cetacean bycatch

from non-representative samples (Authier, Rouby, and Macleod

2021).
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Table 5.1: Descriptive statistics for Obsmer and SACROIS data displayed for each year.
The bycatch events observed seem to be recurrent since 2007. The year associated with the highest level of observed bycatch

is 2009 with 50 dolphins.

Total observer coverage of fishing effort is rarely more than 5%. The maximum PTM fishing effort covered in Days at Sea is

10.9% in 2008.

Dataset Obsmer SACROIS

Year Hauls Average
Dura-
tion
(hours)

Bycatch
events

Median
nb of
dol-
phins

Max. nb
of dol-
phins

DaS (Cover-
age %)

Total Effort
(DaS)

2004 4 2.80 0 - - 4 (0.0) 8 530

2005 5 4.26 0 - - 4 (0.0) 8 790

2006 122 4.62 0 - - 90 (1.1) 7 853

2007 727 3.89 6 1.5 5 401 (6.4) 6 305

2008 554 4.81 6 1.5 4 328 (10.9) 3 011

2009 464 5.50 20 2 50 326 (7.4) 4 413

2010 305 3.52 1 4 4 159 (3.5) 4 486

2011 173 3.99 2 3 3 86 (2.1) 4 001

2012 210 3.58 4 4 8 96 (2.4) 4 005

2013 128 3.81 2 5.5 9 75 (1.8) 4 192

2014 114 4.44 0 - - 78 (1.9) 4 136

2015 136 2.77 1 2 2 78 (1.7) 4 597

2016 156 4.75 5 3 10 106 (2.3) 4 603

2017 196 5.23 12 2 20 124 (2.6) 4 835

2018 184 3.85 1 1 1 102 (2.8) 3 613

2019 438 5.45 11 2 8 289 (7.4) 3 139

2020 123 3.69 2 2 3 70 (4.0) 1 686

Model likelihood

for duration

Specification

M6 gamma ICES division ×week × year

M5 log-normal ICES division ×week × year

M4 gamma ICES division +week × year

M3 log-normal ICES division +week × year

M2 gamma ICES division +week + year

M1 log-normal ICES division +week + year

Table 5.2: Models specification.

Methods

The modelling framework involved two steps. First, it is

necessary to both estimate the bycatch risk and the duration of

hauls for each haul 8, ICES division 9, week C and year :. Also, it is

possible to estimate the number of hauls per day at sea at the week,

division and year scale. This is done with the Obsmer dataset.

Then, it is necessary to rescale these estimations at the entire fleet

level to estimate the number of bycatch events and number of

bycaught dolphins for the same levels. This post-stratification is

done with the SACROIS dataset.

Estimations were carried out in a Bayesian framework using

programming language Stan (Carpenter et al. 2017b) called from R

v.4.0.1 (R Core Team 2020) with library Rstan (Stan Development

Team 2020). Stan uses Hamiltonian dynamics in Markov chain

Monte Carlo (MCMC) to sample values from the joint posterior

distribution (Carpenter et al. 2017b). Four chains were initialised

from diffuse random starting points and run for a total of 2, 000

iterations, discarding the first 1, 000 as warm-up. Default settings

for the No-U-Turn Sampler (NUTS) were changed to 0.99 for adapt

delta and 15 for max treedepth (Hoffman and Gelman 2014). We

fitted a total of 6 models of differing complexity (see Margin-Table

5.2 for specification and article inAppendix 7.4 formodel selection):

we compared models assuming either a gamma or a log-normal

likelihood for haul duration, and models assuming additive effects
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Figure 5.8: Diagram of bycatch risk
per weeks. This diagram shows how

sparse the data available on the col-

lection by observers is.

versus interactive effects of week, year and divisions. Model fitting

was carried out on the supercomputer facilities of the "Mésocen-

tre de calcul de Poitou Charentes (Université de Poitiers/ISAE-

ENSMA/La Rochelle Université)". Codes are available at https:

//gitlab.univ-lr.fr/mauthier/cdptmbycatch.

Modelling Bycatch risk, duration of hauls and number of hauls

The objective of this part of the modelling framework is to

model the bycatch risk and the haul duration at the haul level and

the number of hauls per day at sea using only the Obsmer dataset.

The problem with trying to estimate the value of these parameters

is that we do not know how to interpolate between the observed

points. Lets start with an example. In the Margin-Figure 5.8, we see

that we only have 6 data points (for weeks C = 3, 4, 10, 24, 46 and

53). This number is reduced to 4 for a given year : and is reduced

to 3 for a given division 9 in a given year : (Figure 5.10 to see the

data depletion associated with stratification). We do not know how

to fit a line between those points. And even less is known about

how to extend the estimation of these profiles beyond the weekly

scale to estimate by week for each year in each division. We only

have some observations at the haul level scale 8 for the bycatch

risk and the haul duration and we also have the number of hauls.

Obsmer data are sparse (Margin-Table 5.3) and the stratification of

these data increases sparseness (Figure 5.9).

Figure 5.9: Diagram of stratification.
This diagram shows the stratification

of the data. The dots represent trawl

hauls. Red dots are those with at least

one bycatch event. The blue dots are

those with no bycatch events. The

lines are stratified by week, division

and year.

To interpolate between the observed data points, we used

firstly a random walk and then Gaussian Process. See Görtler,

Kehlbeck, and Deussen (2019) for an interactive web-page expla-

nation of Gaussian Processes. The vector &&& aggregates the mean

weekly effects (on the linear predictor scale, e.g. logit scale for

https://gitlab.univ-lr.fr/mauthier/cdptmbycatch
https://gitlab.univ-lr.fr/mauthier/cdptmbycatch


5 Quantifying the bycatch 113

Haul (8)
Duration

(hours)

Bycatch Week (C) Year (:)
Division

(9)

1 1.5 No 2 1 2

2 5 Yes 2 1 2

3 5 No 5 10 8

Table 5.3: Dummy dataset to illus-
trate the typical sparseness in Ob-
smer data.

bycatch risk) which are modelled with a first order random walk

to ensure some smoothness in between-week variations (Figure

5.10; Authier, Rouby, and Macleod 2021).

Figure 5.10: Diagram of the estimation process. This diagram is based on the example of the bycatch risk. It could also be

based on the other two estimated parameters, which are: The Haul and the number of Hauls per Days at Sea.

The raw bycatch risk data are logistically transformed (logit function) in order to place the estimate on a continuous scale

and not between 0 and 1. Each data point corresponds to a haul. A first estimate of the risk in one year (week 1 to 53) is

modelled by a random walk of order 1.

The first stratification is performed and the value of each risk profile for each year : is estimated from a Gaussian process

whose mean is the previous weekly risk profile.

The second estimation then takes place and the value of the risk profile for each division 9 within each year : is estimated by

another Gaussian process whose mean is the previous Gaussian profile.

From the observed data points, it is possible to infer the

bycatch risk profile for each strata using a Bernoulli model (i.e.
logit scale; Figure 5.10). As it is depicted bellow on Equations 5.1,

the intercept of the fitted curve corresponds to &C and is equal to �.
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Figure 5.11: Diagram of the interac-
tion between the equations in the
estimation. The value of � gives the

intercept for the weekly risk profile.

The vector &&& corresponding to the

weekly risk profile.

This vector is themean estimate of the

first Gaussian process for each year :.

The estimate provides a risk profile

for each year �:�:�: .
From this annual vector, a final Gaus-

sian process takes it as an average to

estimate the profile of each division 9

within each year ::  9: 9: 9: .
The values of this vector are then used

to inform the estimation of the by-

catch parameters.

The first order random walk then allows to estimate the following

weekly value with a normal distribution: &C+1 ∼N(&C , �week) and
so on until the 53

A3
week.

From this overall profile (i.e. the vector &&&), a first Gaussian Process

allows to estimate the bycatch risk profile for year :, �:�:�: . Conceptu-
ally, the idea is to model �:�:�: as a deviation from the mean profile

&&&. This can be described as modelling a random effect except that

curves rather than scalars are being modelled here. The profile is

estimated with the Gaussian Process as follows: �:�:�: ∼ GP(&&&,Σ�)
with Σ� as the covariance matrix.

From this year-specific profile (i.e. the vector �:�:�:), a secondGaussian

Process allows to estimate the profile of  9: 9: 9: which depends on the

year : and on the division 9 (Figure 5.10). The profile is estimated

with the Gaussian Process as follows:  9: 9: 9: ∼ GP(�:�:�: ,Σ)with Σ

as the covariance matrix.
 9: 9: 9: ∼ GP(�:�:�: ,Σ)
�:�:�: ∼ GP(&&&,Σ�)
&C = � C = 1

&C+1 ∼N(&C , �week) C > 1

(5.1)

Simpler models without such interactions, and with only

additive effects, were also fitted to the data. The simplest model

included only additive random (unstructured) effects (dropping

the superscript for convenience):



 9:C 9:C 9:C = &C + �∗: + 
∗
9

∗
9

∗
9
∗
9
∼N(0, �division) ∀ 9

�∗
:
�∗
:
�∗
:
∼N

(
0, �year

)
∀ :

&C = � C = 1

&C+1 ∼N(�C , �week) C > 1

(5.2)

To simplify the equations, I did not include the superscripts

in the Equations 5.1 but there are three alphas 111
, 222

, 333
and three

deltas �1�1�1
, �1�1�1

, �1�1�1
. The superscript

1
refers to the bycatch risk, the

2

to the haul duration and the
3
to the number of hauls.

The Bycatch risk p9:C is modelled as follow with H8 9:C cor-

responding to bycatch event (0 or 1) of the 8th haul for each ICES

statistical division 9 in week C of year :. The occurrence of a bycatch

event is modelled as the logit transform of 1

9:C
in a binary outcome,

provided by the Bernoulli law. Depending on the bycatch risk, a
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Figure 5.12: Diagram of the devi-
ation when estimating the profile
of the parameter of interest. What

causes the profile to deviate is the

variance due to the year effect (�year)

and the variance due to the division

effect (�zone). These two variances are

included in the variance covariance

matrices Δ.

bycatch event can occur as:

H8 9:C ∼ Bernoulli

(
p9:C

)
∼ Bernoulli

(
logit

−1

(
1

9:C

))
(5.3)

The fishing duration 38 9:C at the haul level 8 is modelled for

the same levels 9:C with a Gamma distribution Gof shape param-

eter � and scale parameter

�

3̄9:C
. The parameter 3̄ 9:C is associated to

the second alpha as: 3̄ 9:C = 4
2

9:C
. This law allows the representation

of continuous non negative value which is appropriate for a fishing

duration. :

38 9:C ∼ G

(
�,

�

3̄ 9:C

)
∼ G

(
�,

�

4
2

9:C

) (5.4)

and the number of hauls = 9:C for the same levels 9:C per

Days at Sea DaS9:C is modelled assuming a zero-truncated Poisson

likelihood (by definition, a DaS implies at least one haul). The

parameter � 9:C is associated to the third alpha as: � 9:C = 4
3

9:C
. This

distribution allows the representation of non negative and non

null discrete events number which is appropriate for a number of

fishing hauls. :

= 9:C ∼ P+
(
DaS9:C × � 9:C

)
∼ P+

(
DaS9:C × 4

3

9:C

)
(5.5)

The smoothness in 9: 9: 9: and�:�:�: is controlledvia the covariance

matrices Σ and Σ� respectively as:



Σ = ΔΩΔ , Δ =


�zone 0 0

0

. . . 0

0 0 �zone


Σ� = Δ�ΩΔ� , Δ� =


�year 0 0

0

. . . 0

0 0 �year


(5.6)

Equations 5.1 and 5.6 allow to model an interaction between

week, year and division. The joint model defined in Equations 5.3,
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Figure 5.13: Diagram of autocorre-
lation independance. The omega-

covariance function admits indepen-

dence after 4 weeks.

5.4 and 5.5 includes a time-varying component at the week-scale

with an interaction with year and division.

As it is showed in Equation 5.6, there are two important

component to build the covariance matrix. The first is Δ which

corresponds to the variance matrix either for  (diagonal of �zone)

or for � (diagonal of �year). These � are controlling the magni-

tude of variations from a mean profile (Margin-Figure 5.12 for a

diagram).

The second isΩ, which is the correlation function between

the variance matrixes. It is the correlation between week C and

week C
′
. This function is a Matérn correlation function of order

3

2

and range parameter fixed to
3

2
as: Ω

(
C , C

′ )
=

(
1 + 2

√
3×3(C−C′)

3

)
×

exp− 2

√
3×3(C−C′)

2
where 3(C−C′) = |C−C′ | is the temporal distance (in

weeks) between weeks C and C
′
. The choice of the range parameter

induces a temporal correlation of 0.05 after 4weeks (Margin-Figure

5.13 and Figure 5.14; Authier, Rouby, and Macleod 2021).

Figure 5.14: Graphical representa-
tion of the assumed correlation ma-
trix Ω. The correlation is equal to 0

after 4 weeks.

The methodology is shown in the Directed Acyclic Graph

Figure 5.15 taking for example the bycatch risk estimation. We have

information about bycatch risk from the dataset Obsmer. From

the estimations of hyperparameters (notably � and �F44:) we can

estimate the others. Finally it is possible to fit the bycatch risk

profile (such as the haul duration and the number of hauls per Day

at Sea) with a Bernoulli model (as in equation 5.3).
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Figure 5.15: Directed Acyclic Graph of the methodology. The observed data are the basis of the statistical inference. Each

parameter can be a hyperparameter of the others. For example, � is a hyperparameter of the whole process while  is a

simple parameter. Each parameter, or hyperparameter, is estimated from the previous one and a small deviation � induced

by stratification.

Modelling assumptions

I 1. Bycatch risk, fishing duration and number of hauls per

Days at Sea may be correlated. The correlation is induced

at the week level via parameter .
I 2. There is a temporal Independence after 4 weeks.

Estimating the total number of hauls and bycatch events

The goal of this part of the modelling framework is to scale-

up the estimated bycatch risk and the haul duration at the haul

level and the number of hauls per day at sea at the fleet level using

the fishing effort dataset (Days at Sea). It allows to estimate the

total number of unobserved hauls N̂9:C and the number of bycatch

events
ˆ

Bycatch9:C for each week C, year : and division 9.

The number of unobserved hauls N9:C that happened in

ICES statistical division 9 in week C of year : can be estimated from

the number of observed DaS in Obsmer (DaS
Obsmer

9:C
) and from total

effort DaS
tot

9:C
(and accounting for zero-truncation):

N̂9:C =

ˆ� 9:C
1 − 4− ˆ�9:C

×
(
ˆ

DaS

tot

9:C −DaS
Obsmer

9:C

)
(5.7)
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12: While it is possible to spot bycatch

evidence as it is shown in Figure 2.19

in Chapter 2, it is very difficult to iden-

tify fishing gear involved. Sometimes

it is possible to see the mesh marks

of the net and assume the type of net.

But this remains very exploratory and

qualitative.

The total number of bycatch events in ICES statistical divi-

sion 9 in week C of year : is estimated as the sum of events observed

in Obsmer (Bycatch
Obsmer

9:C
) and the number of unobserved hauls

multiplied by bycatch risk ( ˆp9:C):

ˆ
Bycatch9:C = Bycatch

Obsmer

9:C
+ ˆN9:C × ˆp9:C (5.8)

Similarly, for each year, the number of common dolphins

bycaught in PTM can be estimated using the observed number of

bycaught dolphins inObsmer, the estimated number of unobserved

hauls (Eq. 5.7), bycatch risk and either the median number of

dolphins involved in a bycatch event (Table 5.1, or the grandmedian

of < = 2 for years with no observed bycatch event). We used the

median to attenuate the influence of some bycatch events involving

up to 50 dolphins (Table 5.1). These estimates are thereafter referred

to as model-based estimates.

Baseline assumption for post-stratification

The total fishing effort data are accurate.

Comparison with strandings

One difficulty while estimating the number of bycaught

dolphins is that it is difficult to ground-truth. The sample provided

by Obsmer, a non-dedicated observer scheme of marine mammal

bycatch, may not be representative of all bycatch. In addition it

provides very sparse data, with less than 100 observed events

over 17 years when strandings have reached several hundreds per

week in recent years (ICES 2020b) (for all causes of death). The

number of stranded common dolphins with evidence of bycatch

can be used to estimate the total bycatch mortality with reverse

drift modelling (Peltier et al. 2016) used in international working

groups (ICES 2020b). Reverse drift modelling corrects for at-sea

drift conditions, but cannot inform on which fishing gears was

responsible for bycatch
12
. Hence, strandings-based estimates are

considered here as total estimates of bycatch, and can be used

to partially ground-truth model-based estimates of bycatch by

PTM.

These model-based estimates use data independent from

strandings, but they should not exceed stranding-based estimates.

Secondly, whether model-estimates correlate with stranding-based

ones is of interest to shed light on the increased mortality reported

in the Bay of Biscay (Peltier et al. 2021). For each year we checked

the magnitude of model-based estimates against stranding-based

ones, and computed Pearson’s correlation coefficient between the
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two time-series at the month level. To account for drift, these

correlation were computed with and without a lag of 2 weeks

when aggregating model-based estimates at the month level.

5.3 Results: Estimation of variables and
number of dolphins bycaught

Bycatch risk, haul duration and number of hauls per
Days at Sea

Figure 5.16: Model-based estimates (posterior medians) regardless of division. Estimates were made for bycatch risk,

haul duration and number of hauls per DaS of pair-trawlers flying the French flag operating in the study area. Each colour

represents a different year (parameters  9:C in Eq. 5.1) and the dotted black line the yearly average (parameters &C in Eq. 5.1).

Haul duration, hauls per DaS and bycatch risk per haul

(Eqs. 5.7 and 5.8) were jointly estimated. Their temporal variations

are displayed on Figure 5.16 for each week between 2004 and 2020.

Haul duration was the highest in week 1 with a posterior median

estimate of 5.8 hours that decreased to 4.0 h in week 16, before

dropping to 2 h in week 24. Haul duration increased up to 3 hours

in week 32 and plateaued until the end of the year. Remarkable

years were 2008 and 2014 with the lowest haul durations estimated
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from week 1 to 24. Other remarkable years were 2017, 2019, and

2020 with the longest haul durations estimated from week 1 to 10.

In 2016, an increase in haul duration was estimated in week 48 (5 h

vs 3 h on average across years).

Bycatch risk was maximum in week 1 (around 0.1) and decreased

to almost 0 from week 8 onwards. 2017, 2019 and 2020 were

the years with the highest estimated bycatch risk in the first 8

weeks. In particular, risk was as high as 0.20 in 2017 for the first

four consecutive weeks of the year. Two years prior to 2012 were

associated with an increased risk between weeks 30 and 36. Year

2016 showed a rise in bycatch risk in week 48. The weeks in the

highest risk years were also those with the longest hauls. The

estimated number of hauls per DaS varied little from year to year,

but varied substantially within a year.

Figure 5.17: Temporal patterns for
division 27.8.a. The temporal pattern

is displayed for 4 variables: haul

duration (hours), bycatch events (n),

bycatch risk per haul (probability),

common dolphins bycaught (n).

The estimated haul duration is the

highest from week 1 to 20. The lowest

at week 24 and then it remains stable

from 32 to the end.

The estimated bycatch risk is highest

between weeks 1 and 8 and is highest

for years beyond 2016.

Figure 5.18: Temporal patterns
for division 27.8.b. The temporal

pattern is displayed for 4 variables:

haul duration (hours), bycatch

events (n), bycatch risk per haul

(probability), common dolphins

bycaught (n).

The estimated haul duration is the

highest from week 1 to 20. The lowest

at week 24 and then it remains stable

from 32 to the end.

The estimated bycatch risk is highest

between weeks 1 and 8 and is highest

for years beyond 2016 and the year

2012.
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There were noteworthy differences between divisions re-

garding bycatch risk (Figures 5.17 and 5.18). The overall signal was

similar to the one observed on Figure 5.16 with the highest risk

values estimated between weeks 1 and 8. Risk in 2017 and 2019 was

higher by a factor 5 in week 1 compared to other years. After week

8, this difference disappeared. With respect to divisions, division

8.a. was the one with the highest bycatch risk, with an estimate as

high as 0.50 in winter 2017 and 2019. For division 27.8.a, estimated

bycatch events were more numerous from week 1 to 8 with high

peaks for years > 2016. There was also a peak for year 2016 in

week 48. The estimated number of common dolphins presented

the same pattern as the number of bycatch events. For division

27.8.b, estimated bycatch events were more numerous from week 1

to 12 with a high peak for 2009 and 2012. There were two peaks for

2016, one in week 4 and one in week 10. The estimated number of

common dolphins presented the same pattern as the number of

bycatch events.

Number of Bycaught dolphins

Year Neritic 7 Neritic 8 Oceanic Total

2004 0 48 248 0 177 876 0 1 10 0 227 1134

2005 0 56 302 0 235 1101 0 2 15 0 293 1417

2006 0 77 378 0 208 923 0 0 3 0 286 1303

2007 15 45 102 0 29 111 1 2 8 16 77 219

2008 1 18 63 11 46 125 0 0 4 12 65 190

2009 10 94 248 172 315 568 0 1 6 183 412 820

2010 0 119 537 4 112 454 0 0 3 4 232 994

2011 9 128 359 0 61 270 0 1 7 9 191 635

2012 22 233 667 0 129 511 0 3 13 23 366 1190

2013 13 315 1086 0 105 442 0 5 25 13 426 1552

2014 0 33 158 0 50 224 0 0 3 0 84 384

2015 0 14 71 2 78 368 0 1 8 2 94 446

2016 0 15 76 55 255 852 0 0 3 55 270 929

2017 0 18 61 156 600 1355 0 0 1 156 618 1415

2018 0 2 15 1 31 147 0 0 2 1 35 163

2019 0 12 40 59 203 391 0 1 6 59 216 441

2020 0 6 27 4 50 159 0 0 5 4 57 190

Table 5.4: Model-based estimates of

common dolphin bycaught in PTM

in the study area. Divisions 7.j and

8.d are labelled ’Oceanic’, divisions

7.defgh are labelled ’Neritic 7’ and

divisions 8.abc are labelled ’Neritic

8’. Estimates (posterior median) are

reported with the lower and upper

bound of a 80% credibility interval

(Louis and Zeger 2009)

The estimated total number of bycaught dolphins for each

year is reported in Table 5.4. The study area was further divided

into three strata: a neritic stratum in ICES subarea 7 (divisions

7.defgh) and another in subarea 8 (division 8.abc); and an oceanic

stratum spanning subareas 7 and 8 (divisions 7.j and 8.d). Estimates

were the lowest in the oceanic stratum of the study area, and the

largest in the neritic stratum spanning ICES subarea 8. The largest

bycatch estimate was in 2017, with a posterior median of > 600

commondolphins bycaught in PTMoperating in the neritic stratum
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spanning ICES subarea 8. Therewere large between-year variations

in estimates, ranging from less than a hundred (in 2018) to more

than one thousand (in 2017). Uncertainties around model-based

estimates were also large.Weekly profiles for the estimated number

of common dolphins is also available for both divisions 8.a and

8.b in Figures 5.17 and 5.18.

Comparison and correlations with strandings

Figure 5.19: Comparison of model-based (orange solid line) and stranding-based estimates (dark violet solid line) of
common dolphin bycatch. Upper panel: raw estimates with uncertainty intervals (80% for model-based estimates and

95% for stranding-based estimates); middle panel: standardized (mean centered and unit variance) estimates. Bottom

panel: year-level and month-level (within each year) correlation were computed. At the within year (between month

level), correlations were computed with and without a two-weeks lag. Change in the magnitude of the Pearson correlation

coefficient is shown with an arrow.

Strandings data were used to estimate common dolphins

mortality due to fisheries (Peltier et al. 2016) for each month from

1990 to 2020. Stranding-based estimates aggregate mortality due

to all fisheries and do not distinguish between gears or métiers.

Nevertheless, we correlated stranding-based estimates with our

model-based estimates of mortality from PTM flying the French

flag within each year (Figure 5.19). Correlations were computed on

raw and standardized (mean centered and unit variance) values
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Figure 5.20: Simple diagram of by-
catch phenomenon components.

(Figure 5.19).

Model-based estimates of bycatch by PTM were always be-

low stranding-based estimates (which do not allow to disaggregate

by métiers) except for 2010 (Figure 5.19). In 2010, model-based and

stranding based estimates were 465 and 343 with a large overlap

in credibility interval. Correlations between the two time-series

were always positive. The estimated correlation decreases from

0.45 in 2004 to 0.35 in 2020 (profile without lag). The estimated

correlation decreases from 0.75 in 2004 to 0.5 in 2020 (profile with

lag; Figure 5.19). The temporal trend in within year correlation was

negative over the study period.

5.4 Discussion

Variations of bycatch risk and number of bycaught
dolphins

The estimatedbycatch risk pattern shows somevariations be-

tween and within years. This risk directly influences the estimated

number of bycaught dolphins which also displays some variations.

Here, a discussion about these variations for both components is

proposed.

Inter-Year variations

The variation of bycatch risk, and subsequently of the num-

ber of bycaught dolphins, between yearsmay be linked to ecological

factors. Bycatch can be viewed as the resultant of two components

that are the fishing activity and the dolphin presence (Margin-

Figure 5.20). The oceanographic processes may influence the two

components to enhance the encounter probability between fish-

ing engines such as PTM and common dolphins (Gilbert et al.

2021). The highest estimated bycatch risk values were reported

for the eight or ten first weeks of each year within each division

of the study area 5.16. We can speculate that the years associated

with a high bycatch risk were also those of notable spatial overlap

favoured by particular oceanographic processes. Fishing activities

and their operational conditions can also influence bycatch risk.

For example, the setting of quotas on particular fish may cause

operational changes in certain seasons. Market effects can also have

an impact on fishing activity. If a particular fish is too devalued,

it will no longer be targeted. These aspects will not be discussed

in detail here as they are multifactorial and are more a matter of

fisheries management.

Variations in the number of bycaught dolphins between years can
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also be explained by other factors than the bycatch risk. They are

model-based estimates obtained through the bycatch risk, total

fishing effort (Days at sea) and the median number of bycaught

dolphins per year. The two latter parameter may be the source of

the variation between years of the number of bycaught dolphins.

For example, the (posterior median) estimate is of > 600 dolphins

in 2017 and it downs to < 100 in 2018. Total effort in DaS in the

Bay of Biscay (divisions 8.a and 8.b) in the first ten weeks of 2017,

when bycatch risk was highest, is twice the value of total effort in

2018. The median number of dolphins involved in a bycatch event

is 2017 was also twice the number in 2018 (2 and 1 respectively,

Table 5.1). The bycatch risk being equal for the ten first weeks of

these two years, the estimate for 2017 is expected to be at least four

times that of 2018.

Variations The mortality trend obtained by the

model based approach seems to be

rather constant while the stranding

based trend seems to increase in re-

cent years. This suggests that the in-

crease in mortality estimated from

the strandings is not due to PTMs.

in the estimated number of bycaught dolphins through

the model-based approach can be related to the estimated number

of bycaught dolphins obtained from the strandings estimations.

Stranding records are an independent source of data for estimating

the number of bycaught dolphins (Peltier et al. 2016). Reverse

drift modelling allows to infer the death location of each stranded

dolphin showing bycatch evidence for each month between 1990

and 2020. Observed stranding numbers for each month can be

corrected by both stranding and buoyancy probabilities (Peltier

and Ridoux 2015). Reverse drift modelling cannot disaggregate

estimates by métiers or fisheries but it provides an independent

estimates of total mortality due to bycatch in the study area. The

bycatch mortality estimated for the PTM should be lower than

the total estimated from strandings. This was verified for all years

save for 2010, but uncertainties were large and credibility inter-

vals had a large overlap. By looking at the correlations between

estimated number of bycaught dolphins for the stranding-based

and the model-based approaches, it appeared that the correlations

were significant between the two estimated series, especially after

accounting for a lag due to drift (Figure 5.19). The The correlation between the two

trends is stronger when considering a

2-week delay in stranding-based esti-

mates. This correlation decreases over

the period considered. The contribu-

tion of PTMs to total bycatchmortality

may be lower than before.

magnitude of the

correlation decreased between 2005 and 2020. One interpretation

is that of a change in the relative contribution of PTM in total

dolphin mortality over time, with PTM having a smaller impact

on common dolphins in recent years compared to the 2000s.

Within-Year variations

For each year, the bycatch risk was estimated to be higher in

the winter part of the years (i.e.week 1 to 10). This pattern is largely

congruent with the pattern seen in strandings of common dolphins

in the Bay of Biscay (Dars et al. 2020). A limitation of stranding

data is that it does not allow to discriminate between fishing gears

(Peltier and Ridoux 2015). The Obsmer data in contrast included



5 Quantifying the bycatch 125

geolocalized bycatch events, with a spatial resolution at the level

of ICES divisions kept for analysis. For the PTMs flying the French

flag, we could identify divisions 8.a and 8.b from week 1 to 10 for

nearly each years as the ones with the highest risk of bycatch.

For each year, the number of bycaught dolphins can also be esti-

mated at the ICES division level for each year by the ICESWorking

Group on Bycatch (WGBYC). Using data collected by onboard

observers collected between 2005 and 2017, bycatch rates for ICES

divisions on the continental shelf of the Bay of Biscay were esti-

mated with ratio-estimators (ICES 2019). These estimates are not

produced at the week-level, but (ICES 2019) also identified divi-

sions 8.a and 8.b as the ones with the highest bycatch in mid-water

trawls for common dolphins over the period 2005-2017 (Page 120).

ICES (2019) estimated yearly rates ranging between 0.285 to 0.372

dolphins per DaS and warned against extrapolation given the low

observer coverage). Our The current ICES mortality estimates

do not make a fine spatial-temporal

distinction. Our approach allows this

distinction to be made for PTMs.

model-based approach overcomes this

limitation (Authier, Rouby, and Macleod 2021) and allowed to

identify, within each year, that weeks 2 to 6 were the ones with the

highest bycatch numbers for both divisions 8.a and 8.b. This results

were concomitant with the seasonal stranding pattern observed

each year on the French seashore (that is, winter strandings; Peltier

et al. 2013): around 80% of all common dolphin strandings on the

French Atlantic seashore is observed between the end of January

and the beginning of March.

A key feature of our model-based approach is how it lever-

ages correlations between bycatch risk, haul duration and number

of hauls per DaS (Figure 5.16). Some of the correlations are ex-

pected, such as the negative correlation between haul duration and

the number of hauls per DaS. If more hauls are performed in a Day

at Sea, so they are to be shorter and vice versa. However, average

haul duration is not constant within a year, with the variations

reflecting change in the commercial fish species targeted by PTM

at different time of the year. These variations at the week-level were

quite substantial, and were taken into account when estimating

bycatch in our model. There was a positive correlation between

haul duration and bycatch risk, with at least a two-fold increase in

the later when haul duration exceeds 5 hours (Figure 5.16). This

was particularly evident in weeks 1 to 5 in 2017 and 2019 and week

48 in 2016. The There seems to be a correlation be-

tween the fishing duration and the

bycatch risk with a threshold effect.

Beyond 5 hours of fishing, the bycatch

risk is greatly increased. Restricting

fishing duration may be a mitigating

measure.

latter was due to a single fishing trip with 5 hauls

that lasted > 10 hours, each of which resulted in a bycatch event.

We recommend, in light of the within-year pattern in haul duration

(Figure 5.16), to investigate management actions and mitigation

measures on limiting haul duration in winter to assess whether by-

catch may also be reduced. The ability of our approach to propose

more refined recommendations is a considerable advantage to

reduce the impact of bycatch on the common dolphin population.

However, it must be balanced against the fact that it has some
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Figure 5.21: Photo of Pinger used in
Bay of Biscay.
©Parc marin d’Iroise.

13: https://www.mer.gouv.fr/

protecting-cetaceans-annick-giradin-presents-7-commitments-made-french-state-fishermen-and

limitations.

Benefits and limitations of the method developed and
used

The case study presented in this chapter is based on the

application of the Authier, Rouby, and Macleod (2021) approach.

This approach was developed to deal with low quality on-board

observer data. A crucial assumption associated with this approach

is the availability of accurate fishing effort data to perform the

post-stratification step. The measure of effort chosen was the DaS,

according to the current practice of international working groups.

(e.g. ICES 2019). This guided the joint modelling of haul-level

risk, haul duration and average number of hauls per DaS. This

modelling choice has proved successful for PTM but cannot be

developed to the same extent for other métiers, in particular for

passive gears such as gillnets and trammelnets. In the latter case,

a better measure of towing effort is soak time which takes into

account the length and height of the net. This information can

be difficult to collect, making it difficult to obtain an accurate

measure of effort. This makes post-stratification difficult, but it is

essential for the application of the model-based approach. The

model developed for PTM may not necessarily transfer seamlessly

to other métiers.
Since 2021, PTM flying the French flag are required to use deterrent

acoustic devices (pingers
13
). If these devices are efficient to reduce

bycatch risk, thismay be taken into account in themodel, by adding

a covariate in Equation 5.3. This requires post-stratification with

the covariate using a fishing effort that explicitly takes the covariate

into account. Currently, the model can implicitly account for the

effect of pingers because it accounts for variations in bycatch risk

from year to year and within a year. The large-scale deployment

of pingers in 2021, if effective in reducing risk, will result in a

lower estimated risk than in previous years. In other words, the

model does not necessarily have to take into account all covariates

at the haul level, as long as the objective is prediction rather

than explanation (Authier, Rouby, and Macleod 2021). Explicit

consideration of the pinger effect is only necessary to make sense

of variations in risk between and within years, but not necessarily

to estimate these variations.

While Authier, Rouby, andMacleod (2021) concluded on increased

accuracy of using regularized multi-level regression with post-

stratification to estimate bycatch with observer data, they also

found that estimate precision was low. This was also the case in

this study (Table 5.4). A simple way to increase precision is to

include Electronic Remote Monitoring observations in Equations

5.7 and 5.8. Doing so would result in increased precision as a

https://www.mer.gouv.fr/protecting-cetaceans-annick-giradin-presents-7-commitments-made-french-state-fishermen-and
https://www.mer.gouv.fr/protecting-cetaceans-annick-giradin-presents-7-commitments-made-french-state-fishermen-and
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14: http://paris.

tribunal-administratif.fr/

content/download/172866/

1715763/version/1/file/1901535.

pdf

greater number of hauls (and possibly DaS) would be monitored.

Even if the estimate precision is low, it may provide a sufficient

precision to inform management procedures algorithms conjointly

to other data sources and biological indicators.

Implication for conservation

The large additional mortality due to anthropogenic activi-

ties on North-East Atlantic common dolphin population triggered

a dedicated working group on emergency measures in 2020: the

workshop on fisheries emergencies measures to minimize bycatch

of short-beaked common dolphins in the Bay of Biscay and harbour

porpoises in the Baltic Sea (WKEMBYC) took place remotely in

spring 2020 (ICES 2020b) and informed an ICES advice that same

year (ICES 2020c). This advice led to an infringement procedure

issued in July 2020 against France for failing its obligations under

the Habitats Directive which lists the common dolphin as a species

requiring full protection on its Annex IV. The same day, the Paris

Administrative Court of Justice condemned the French government

for failing to transpose and apply in a timely manner the disposi-

tions of theHabitatsDirective and of TechnicalMeasures regulating

fisheries
14
(in French). Following the unprecedented number of

strandings in 2017, a national working group with fishermen, their

representatives, government officials, Non-Gouvernmental Orga-

nizations and academics was initiated to address the bycatch issue

(Peltier et al. 2021). One recommended action was to improve esti-

mates of bycatch due to high-risk métiers, and to develop adequate

methodologies to analyse data from non-representative samples

(Authier, Rouby, and Macleod 2021). The present work reports

on a case study on PTM and operating for a large part in the Bay

of Biscay, and to a lesser extent in the Celtic seas. Model-based

estimates can (i) provide information on pressures on common

dolphins, as required by the MSFD (EU 2008/56); and (ii) take into

account the ICES recommendation to develop estimation methods

to make best use of data already collected to inform timely man-

agement (ICES 2020c). In the next chapter, we will see how it is

possible to combine both estimated number of bycaught dolphins

and demographic indicators to inform conservation algorithm and

provide adapted tolerable bycatch thresholds.

http://paris.tribunal-administratif.fr/content/download/172866/1715763/version/1/file/1901535.pdf
http://paris.tribunal-administratif.fr/content/download/172866/1715763/version/1/file/1901535.pdf
http://paris.tribunal-administratif.fr/content/download/172866/1715763/version/1/file/1901535.pdf
http://paris.tribunal-administratif.fr/content/download/172866/1715763/version/1/file/1901535.pdf
http://paris.tribunal-administratif.fr/content/download/172866/1715763/version/1/file/1901535.pdf
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The North-East Atlantic population of common dolphins is

affected by bycatch which threatens its viability. The status of the

population is of concern in relation to the conservation objectives

set by the Habitats Directive and the MSFD. The conservation

objectives are the basis for establishing management strategies.

These management strategies determine the thresholds beyond

which the conservation objectives will not be met. In the case of

the common dolphin population, these thresholds are those of

bycatch, or removals. The challenge is therefore to define man-

agement objectives that correspond to bycatch limits in order to

build management strategies that will allow the population to

achieve the conservation objectives. ASCOBANS has proposed

as an interim conservation objective "to restore and/or maintain

stocks/populations at 80% or more of carrying capacity". Based

on this objective, OMMEG proposed the following quantitative

conservation objective for marine mammals in European Waters:

"a population should be able to recover to or be maintained at 80%

of carrying capacity, with probability 0.8, within a 100-year period".

Appropriate management strategies must therefore be defined

to achieve this conservation objective for the common dolphin

population. In this chapter we will determine the appropriate

management objectives, i.e. the removal threshold. This study is

part of a Management Strategy Evaluation approach that takes

into account as much uncertainty as possible to provide relevant

threshold. This approach involves the implementation of an operat-

ing model based on a Pella-Tomlinson population dynamics and a

LeslieMatrix fed by estimated the vital rates in Chapter 4. A control

rule based on the removal limit algorithm is applied to define the

bycatch threshold at each time step during the 100 years simulated

in the management strategy evaluation. A performance statistic

is obtained at the end of the 100 simulated years. This statistical

indicator, coupled with the use of real data, will ultimately allow to

decide on the bycatch threshold to reach the OMMEG conservation

objective.

Publication in prep.

This chapter is associated with one publication:

Rouby, E. and Genu, M. Setting Bycatch thresholds for common

dolphin through Management Strategy Evaluation. In prep.



6 Conservation Biology and Management Procedures 129

Figure 6.1: Flowchart of the whole MSE and Application case approaches. MSE runs for 100 years and allows the

selection of a quantile. The application case runs for 1 year using real historical data and allows to obtain a distribution of

removals. The quantile selected in the previous MSE framework is applied on the distribution to select a removal value.
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Figure 6.2: Classical conservation
approach. The classical approach in-

volves 5 steps (A. J. Read 2010). This

approach is not proactive and may

lead to viability problems for dolphin

populations (Wade 1998).

1: PBR = 0.5 × Rmax ×Nmin × Fr

with Rmax as the maximum theoreti-

cal or estimated productivity rate of

the population, Nmin the minimum

population estimate in number of an-

imals and Fr the recovery factor.

2: For more information

on the MMPA: https:

//www.fws.gov/international/

laws-treaties-agreements/

us-conservation-laws/

marine-mammal-protection-act.

html

6.1 Introduction: Conservation biology and
Management procedure

In Chapter 5, we quantified the bycatch pressure exerted by

PTM on the common dolphin population. In Chapter 4, we have

seen that the bycatch pressure (any fishingmétier) seems to decrease

the survival within the population and to lead to a decline in its

growth rate. Bycatch is actually one of the major threats to marine

mammals (Avila, Kaschner, and Dormann 2018) particularly for

small-sized cetaceans (Reeves, McClellan, and Werner 2013; Gray

and Kennelly 2018; Brownell Jr et al. 2019; Rogan, A. J. Read, and

Berggren 2021) and is currently impacting the common dolphin

population (Peltier et al. 2016) to a point of non-viability (Mannocci

et al. 2012). The conservation of marine mammal populations

requires understanding and assessing the consequences of bycatch

(Wade et al. 2021). Two examples of unsuccessful conservation cases

associated to bycatch werementioned in General introduction Page

7 with both the Baĳi and the Vaquita and it is necessary to avoid

similar situations for other populations. To do so, it is necessary

to define conservation actions to promote the viability of marine

mammal populations, in our case the commondolphin.Abundance

indices are used to detect declines but once a decline is detected it

is often too late to prevent the population from going extinct or it

takes longer to recover to initial conservation status (Wade 1998;

Gerrodette 1987; Cooke 1994; R. Williams, A. Hall, and Winship

2008; Authier et al. 2020). This is a reactive approach that is not

precautionary (see Margin-Figure 6.2 for diagram; A. J. Read 2010).

The development and use of pro-active conservation tools is of

interest to prevent the extinction of theNorth-EastAtlantic common

dolphin population. An example of a pro-active conservation tool

is the Potential Biological Removal
1
(PBR) developed as part of the

implementation of the Marine Mammal Protection Act (MMPA)

(Wade 1998).

The MMPA is one of the pioneering texts in terms of manag-

ing marine mammal populations from a conservation perspective
2

and it defines clear conservation objective (hereafter CO). The

three CO retained by the MMPA are: 1) Maintain the population

above its Maximum Net Productivity Level (MNPL); 2) Allow the

population to recover close to its carrying capacity (K); 3) Allow

the population to recover considering a growth rate close to its

maximum possible (Wade 1998). MMPA defines clear quantitative

CO and lays out management objectives and remedial measures to

meet the CO. The quantitative CO for the MMPA is the following:

"a population will remain at, or recover to, its MNPL (typically

50% of the population’s carrying capacity), with 95% probability,

within a 100-year period.” In the case of European waters, there is

https://www.fws.gov/international/laws-treaties-agreements/us-conservation-laws/marine-mammal-protection-act.html
https://www.fws.gov/international/laws-treaties-agreements/us-conservation-laws/marine-mammal-protection-act.html
https://www.fws.gov/international/laws-treaties-agreements/us-conservation-laws/marine-mammal-protection-act.html
https://www.fws.gov/international/laws-treaties-agreements/us-conservation-laws/marine-mammal-protection-act.html
https://www.fws.gov/international/laws-treaties-agreements/us-conservation-laws/marine-mammal-protection-act.html
https://www.fws.gov/international/laws-treaties-agreements/us-conservation-laws/marine-mammal-protection-act.html
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3: Removals are bycaught dolphins

removed from the population.

a lack of both: 1) a legally-binding CO for marine mammals and 2)

management objectives with respect to human-induced mortality

(ICES 2020c; Rogan, A. J. Read, and Berggren 2021). No clear and

quantitative CO are defined regarding the impact of removals
3

on marine mammals population in European Waters. To address

this, ASCOBANS defined a fixed percentage of the abundance of

marinemammals population as a threshold to set the CO regarding

bycatch in European waters (as mentioned in Chapter 2 Page 35).

ASCOBANS passed two resolutions to set removal limit of marine

mammal populations:

I 1. "Unacceptable interactions" are, in the short-term, a total

anthropogenic removal above 1.7% of the best available

abundance estimate (Resolution 3.3 passed in 2000).

I 2. Bycatch reduction have to be reduced to less than 1% of

the best available population estimate as an intermediate

precautionary objective (Resolution 3.3 and Resolution 5.5

passed in 2006).

This In contrast to the USA, for which the

MMPA defines a clear CO, Europe

does not have a defined quantitative

CO despite the ASCOBANS resolu-

tions.OMMEGhas provided a quanti-

tative interpretation of the objectives

set by ASCOBANS.

fixed percentage abundance approach have been used by the

European Commission (EC) to assess the capacity of European

member states to achieve the "GoodEnvironmental Status" required

by the MSFD. This fixed percentage approach has the advantage

of being very simple in its use and easily understood. To apply it,

at least one abundance survey covering the area associated with

the population to be conserved and estimates of bycatch removals

is required. It remains limited for two main reasons: 1) Inability to

take into account life-history traits and 2)Does not take into account

potential errors and biases (Winship 2009). Abundance estimates

may not be synchronisedwith bycatch estimates, limiting proactive

conservation initiatives. A more conservative approach is to define

explicit bycatch thresholds as management objectives in relation

to quantitative CO. The OSPAR Marine Mammal Expert Group

(OMMEG) provided quantitative interpretation of the ASCOBANS

interim objective “to restore and/or maintain stocks/populations

to 80% or more of the carrying capacity” (ASCOBANS 2000). The

quantitative CO defined by OMMEG in European waters in the

context of the MSFD is the following: "a population should be

able to recover to or be maintained at 80% of carrying capacity,

with probability 0.8, within a 100-year period.". Explicit bycatch

thresholds can be produced in relation to this quantitative CO.

A Conservation and management ob-

jectives should not be confused. A

conservation objective is a goal to

be achieved. It does not change. A

management objective is a means to

achieve the conservation objective. It

is adaptable and can be reevaluated.

management strategy is an agreed-upon set of rules for

determining thresholds beyond which a CO runs the risk of not

being met with unacceptably high probability (Winship 2009;

Punt 2006; Bunnefeld, Hoshino, and Milner-Gulland 2011; I. C.

Kaplan et al. 2021). Management strategy defines management

objectives in the form of thresholds. Evaluating the relevance of

management strategies (Management Strategy Evaluation, MSE) to
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achieve COs is an issue that can be addressed through modelling

and simulations (Cooke 1994; Hilborn and Mangel 2013). MSE The application of a management ob-

jective (e.g. removal limit) is a man-

agement strategy. The management

objective is implemented through a

strategy. To assess the adequacy of

strategies, the MSE framework can

be used. This framework involves the

definition of an operational model

and a control rule.

requires generative models that generate (synthetic) data that

are similar to observed data and it also requires real currently

available data. Models associated with MSE are data-generating

mechanisms. They can simulate a population dynamic taking

into account removals effect (i.e. Bycatch effect) in addition to

natural processes such as density dependence. These models allow

scientists to assess the performance of management measures

in hypothetical scenarios in order to set efficient management

objectives. The management objectives will be assessed using

real observable and available data (i.e. abundance and bycatch

data with their uncertainties). Taking into account uncertainty at

several levels (e.g. underlying model, potential biases and observed

data) is of importance to measure the robustness of management

strategies and choose the better one. A good management strategy

should cover all aspects of management in accordance with pre-

specified objectives. The thresholds regarding conservation of

marine mammals are removal limits. A removal limit is an annual

maximum number of animals whose removal would not result

in excessive depletion of the population. MSE requires several

components, including (list from Genu et al. (2021)):

I 1. One or Several Unambiguous quantitative CO.

I 2. A data simulator (or operating model) to emulate the

dynamics of the marine mammal population and the effects

of anthropogenic activities on this population.

I 3. A control rule, whose computation accounts for the ex-

pected quantity and quality of observable data, to set a

removals limit beyond which the impact of human activities

runs the risk of failing the aforementioned CO.

I 4.Performancemetrics (or performance statistics), necessarily

context-dependent and reflecting the trade-off between the

potentially multiple CO defined previously.

These elements are necessary to project forward in time the pop-

ulation dynamics (i.e. the number of animals at each time step

according to population models operating within the data simu-

lator). For each management strategy the control rule is applied.

Finally the performance metrics are monitored and assessed with

respect to the CO. Items 1. and 4. should be agreed by all stakehold-

ers and scientists should not be expected to set the CO (Mangel et al.

1996). Items 2. and 3. are more relevant to scientists whose task is

to test a wide range of realistic scenarios in order to protect the

management strategy against uncertainties and potential biases in

the available data. MSE involves a tune via simulations. Tuning in

theMSE contextmeans to: find, with a large number of simulations,

parameter values of the control rule that meet the CO (Genu et al.



6 Conservation Biology and Management Procedures 133

2021).

There We used an MSE framework to con-

duct exploratory analyses to define

a removal limit (i.e.management ob-

jective) that meets the conservation

objective set by OMMEG.

is a need to produce sustainable bycatch thresholds

for the common dolphin population through an approach that

takes into account uncertainty by involving several types of data.

This approach should be part of a management strategy evaluation

process to enable the chosen bycatch limit to meet the conservation

objectives set by OMMEG in European waters. In this chapter we

will see the MSE procedure applied to the case of the common

dolphin in the Bay of Biscay. This application is made in order to

define bycatch thresholds for this population calculated according

to the achievement of the quantitative CO set by OMMEG from

the work of ASCOBANS. The work carried out in demography on

the common dolphin (Chapter 4) makes it possible to inform the

populationdynamicsmodel constituting the operatingmodel of the

procedure. The recent development by Genu et al. (2021) allows

for the calculation and redefinition of management objectives

during the process. In line with the steps outlined above, we will

start by choosing the CO for this population (OMMEG CO). Then

we will see the implementation of the operating model (Pella-

Tomlinson, General introduction Page 12). Then we will detail

the control rule (Removal Limit Algorithm, RLA) and finally the

choice of a performance statistic (Quantile that define removals).

These steps are described in the baseline scenario case (no bias

in abundance and bycatch estimates). We will then explain the

robustness trials that aim to measure the effectiveness of the

management strategies in achieving theCOwhenbias is introduced

(bias in abundance or bycatch estimates). After selecting the most

appropriate performance statistic for the common dolphin through

simulations, we will use this statistic to define a bycatch threshold.

This definition is based on the use of real data in the procedure. This

work was carried out in close collaboration with Mathieu Genu

whose role was to code all the analyses as part of the development

of the RLA package to implement the procedure described in

this chapter. This work is a preliminary analysis and does not yet

aim to give a limit. The work was carried out taking into account

the Bay of Biscay which does not correspond to the extent of the

management unit recognised for the common dolphin population.

This choice was made to allow the use of current data from the Bay

of Biscay and to start exploratory analyses. The following sections

present the method and preliminary results.



6 Conservation Biology and Management Procedures 134

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10 12 14 16 18 20 22 24
Age (Years)

A
ge

−
S

pe
ci

fic
 s

ur
vi

va
l S

(x
)

Figure 6.3: Age-specific survival
rates obtained taking into account
the constant effect on survival.

4: The constant effect (2) on estima-

tion is applied on the survival model

from Chapter 4 with a logarithmic

transform to be consistent with the

modelling of age-at-death G8C .

log G8C = (�+log 2)+�×&8−
/8
�

(6.1)

6.2 Methodology: Management Strategy
Evaluation (MSE)

Demographic adjustment to make the population
stationary

The vital rates obtained in Chapter 4 do not allow the

population to be viable (Figure 6.4 with constant effect = 0). To

enable it to be viable an adjustment on survival was made through

the adding of a constant. Several values were tested from 0.1

to 2.0 and the one that allows the population to be stationary

was 0.65 (Figure 6.4). This constant was then added in the joint

modelling
4
and allows the estimation of age-specific survival rates

(see Figure 6.3) that allow the population to be stationary. Using

age-specific survival rates without adjustment, the population

becomes extinct. The adjustment is made to obtain a stationary

population. The adjusted age-specific survival rates are assumed

to be representative of the natural survival of the population.
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Figure 6.4: Remaining population
over 100 years with constant effect
on survival. The constant effect was

applied to found the value for which

the population remains stationary.

With a survival intercept to which

is added a constant effect equal to

0.65, the population remains station-

ary over time. This effect is then

used in the estimation of the sur-

vival model to obtain the age-specific

survival rates of a stationary popula-

tion which will be used to inform the

Pella-Tomlinson population dynam-

ics model.

MSE base case scenario

Item 1. Choice of conservation objective

The conservation objective used here for the common dol-

phin population in the Bay of Biscay is that of OMMEG: "attain

or maintain the population at an abundance equal to 80% of its

carrying capacity (i.e. K) over 100 years with a probability of 80%"
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(OMMEG 2021), to be in line with ASCOBANS Resolutions 3.3 and

5.5.

Item 2. Operating model and Pella-Tomlinson population
dynamics

The operating model is the functional part of the Man-

agement Strategy Evaluation framework. The operating model

corresponds to the true-state of Nature, the state of our common

dolphin population that changes every year. The population’s state

is define through its abundance and its depletion level relative to

its carrying capacity. Changes are done through the arrival of new-

borns, the birth rate, the sex ratio, the proportion of the population

that is mature, the age-specific survival (and implicitly mortality)

that contributes to the removal of individuals and the removals

on the population due to bycatch. No migration is assumed and

taken into account.

The population model is age-aggregated with a maximum

lifespan for the common dolphin population set at 24 years. The

population model is based on a Pella-Tomlinson density depen-

dence process (Pella and Tomlinson 1969):

Nt+1 = Nt + rmax ×Nt ×
(
1 −

(
Nt

 

)�)
Parameters of Equation 6.2: Nt as the

abundance at time t, rmax as the max-

imum population growth rate,  as

the carrying capacity and � as the

shape parameter.

(6.2)

Here, the MNPL is determined by �. In the case of � = 1,

population dynamics is given by a logistic growth curve with

MNPL =
 
2
. The value of the birth rate at time C (1C) is density

dependent. Birth rate is the mean number of offspring per female

assuming a sex ratio of 1:1. For example, a birth rate of 0.5 signify

that each female produce 0.5 newborns per year. So 1 newborn is

produced every two years by each female. Birth rate at time C is

expressed as follows:

birth rateC = 1: + (1max − 1:) ×
(
1 −

(
#C

 

)�)
= 1: + (1max − 1:) ×

(
1 − (�C)�

) Birth rate (1C ) calculation on Equa-

tion 6.3 depends on the birth rate at

carrying capacity 1: , the maximum

birth rate 1<0G , the real simulated

population size at time C (#C ) and the

carrying capacity  . The depletion

level of the population is assumed

as:
#C
 and corresponds to the abun-

dance of the population expressed in

percentage of  .

(6.3)

The number of newborns in the population is the sum of the

product of the population birth rate 1C , the age-specific abundance

(#0C ) calculated with the age-specific survival and the age-specific

proportion of mature females"0C in the population.

newbornst =
∑

1C × #0C ×"0C (6.4)
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5: Interval for initial depletion levels

(% of K) are: (0.3, 0.4] ; (0.4, 0.5] ; (0.5,

0.6] ; (0.6, 0.7] ; (0.7, 0.8] ; (0.8, 0.9].

The population model updates the total abundance #C and

the age-specific abundance #0C within a time-step of 1 Year. Each

year the processes on the population dynamic are applied as:

I 1) Anthropogenic mortality is applied through bycatch re-

movals on each age-classes of the population.

I 2) Natural mortality is applied through the age-specific

survival rate on the population.

I 3) Animals reproduce through the age-specific fecundity rate

and the abundance of age-class 0 is populated.

I 4) Increment the time by one year.

Processes on the population are shown in Figure 6.5 in the

operating model block. The conceptual diagram of population

dynamics from the demography chapter (Chapter 4) is taken up

and adapted for the current study.

Since the initial depletion level of the population is un-

known, 6 initial depletion levels were simulated simultaneously.

The aim is to cover the population dynamics given several initial

depletion intervals
5
The populationmodel runs for 6 years. After 6

years, the first control rule (Removal Limit Algorithm) is applied.

Item 3. Control rule with the Removal Limit Algorithm

The control rule corresponds to the Removal Limit Algo-

rithm (RLA) which is expressed as follows:

RLAt = #̂C × A ×max(0, �C − IPL)

= #̂C × A ×max(0,
(
#C

 

)
− IPL)

Parameters of the Equation 6.5. '!�C
is the bycatch threshold at time C, A

is the population growth rate, �C is

the depletion level of the population

at time C and the IPL is the Internal

Protection Level.

(6.5)

RLAt is the outcome, the maximal tolerable threshold re-

movals that must be applied to the population in order to reach

the CO. It is a management objective that set the removals applied

each year on the operating model. It is reassessed each cycle of 6

years since every 6 years a survey campaign is simulated to fill in

the value of #̂C , the estimated abundance of the population (in the

base case scenario) .

The estimation of RLAt is carried out in a Bayesian framework. Its

posterior distribution is obtained from the estimate of the posterior

distribution of both �C and A (Genu et al. 2021). From the posterior

distribution of RLAt a value must be chosen. It is the tuning part

of the MSE. The tuning is a decision analysis. A quantile value

within the posterior distribution is chosen in accordance with

the achievement of the CO. A diagram illustrating the effect of

quantile choice is shown in Figure 6.6. The choice of quantile allows
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Figure 6.5: Diagram of theManagement Strategy Evaluation associated with common dolphin population. The diagram
shows both process (here blocks) that make up the Management Strategy Evaluation. The first is the operating model.

This process involves a population dynamic that runs every year for 100 years. The second is monitoring in relation to the

definition of the management strategy. Abundance monitoring is carried out every 6 years and bycatch monitoring every

year. For each 6-year cycle a new bycatch limit is defined.
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to set management objectives: the tolerable bycatch threshold is

calculated by choosing a quantile from the Equation 6.5.

Figure 6.6: Diagram of tuning. The
frequency of removals thresholds is

depicted as a posterior distribution.

The choice of quantile affects the def-

inition of the management objective.

Given the posterior distribution of

RLAt, a quantile value of 30% in-

volves a tolerable bycatch threshold

of 500 individuals per year. A quan-

tile value of 70% involves a tolerable

bycatch threshold of 2500 individuals

per year. The choice of the quantile

value therefore defines the manage-

ment objective. This choice is made

in order to achieve the CO.

One important element is the presence of the Internal Protec-

tion Limit (IPL). The IPL is set to 0.54 = 54% of  . If the abundance

of the population at time C, Nt < IPL, so RLAt = 0. This protection

is set in order to limit removals to 0 if the population is too much

depleted. One essential assumption of this part is that the removal

limit is always respected (in the base case scenario) for the 6 next

years.

The steps constituting the items of the operating model can

be completed with those of the control rule:

Operating model:

I 1) Anthropogenic mortality is applied through bycatch re-

movals on each age-class of the population.

I 2) Natural mortality is applied through the age-specific

survival rate on the population.

I 3) Animals reproduce through the age-specific fecundity rate

and the abundance of age-class 0 is populated.

I 4) Increment the time by one year.

Control rule:

I 5) From the estimated abundance and simulations estimate

the distribution of possible removals.

I 6) From this distribution, determine the value corresponding

to the quantile applied.

Item 4. Performance Statistic, Quantile for setting Removals

Originally, the Management Objective set by ASCOBANS

was translated by the OSPAR Expert Group on Marine Mammals

(OMMEG) into the following: After 100years, the depletion level

of the population should be equal to 80% of its carrying capacity
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6: See Chapter 2, Page 36 for infor-

mation about SCANS and CODA and

see Supplementary Chapter 7.4 on

page 201 for all abundance estimates.

with a probability of 80%. At the end of the simulated 100 years,

the depletion level of the population is established. If it is above

80%, the management strategy is assessed as viable. But it is

necessary to choose one. The choice is performed on quantiles.

The management strategy which is retained to be applied is the

one associated to the maximum value of quantile that allow to

reach the management objective. For example, if quantile 0.2 is

associated to a depletion of 90% after 100 years and the quantile

0.3 to a depletion of 82% after 100 years, the retained quantile

will be 0.3. Because it allows to reach the management objective

set by OMMEG under ASCOBANS. The selected quantile can

then be applied in the Management Strategy Application as it will

be depicted latter. Figure 6.1 summarises all the steps needed to

apply the MSE for the base case scenario which is the case where

we suppose that we can fully trust our abundance and bycatch

estimation data. However, it is not always necessarily the case. This

is why we can take into account some bias in these estimations.

Robustness trials

We Two robustness trials were per-

formed:

1) Over-estimation of dolphin esti-

mates by a half

2) Underestimation if bycatch esti-

mates by a factor of 3

These robustness trials are prelimi-

nary. Further trials need to be carried

out. The values have been set to ex-

plore the impact of bias on the final

result.

considered an abundance estimate bias and a bycatch

estimate bias in order to represent some cases when we can not

trust the data (abundance and bycatch) that we have. The interest

of using these bias scenarios in addition to the base case scenario

is that it allows to be more cautious while choosing a quantile to

perform the real case Application and finally obtain removal limit

threshold.

The first bias scenarios are based on the abundance estimate. As

depicted in Figure 6.1 and Diagram 6.5, an abundance estimate is

done every six years (simulating a SCANS campaign) and from

this abundance estimate, the new removal limit is set and and

revised six years later. We studied the case when abundance is

underestimated by half (e.g. 120,000 dolphins estimated instead of

240,000) and the case when abundance is overestimated by half

(e.g. 360,000 dolphins estimated instead of 240,000). We choose

this values since they cover the confidence interval of SCANS II +

CODA and SCANS III surveys
6
which is approximately equal to

0.4.

The second bias scenario is based on an underestimate of the

bycatch. The population model updates the abundance of each

age-class depending partly on bycatch removals which are carried

out on each age-class. If the management strategy is conducted

with the total abundance obtained from the population dynamic

model given a set of removals without bias (base case scenario),

the removal limit set during the management strategy will be

set according to the bycatch removals assumed as true. But it

is possible that we underestimate these bycatch removals and
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set inappropriate removal limit. To cover this scenario we set an

underestimation ratio of bycaught individuals equal to 3. In that

scenario, the estimated number of dolphins bycaught per year is

three times lower than the actual number.

Each of the two robustness trials considered here is intended

to illustrate the difference in the choice of quantiles at the end of the

analysis. They need to be complemented by other robustness trials

to cover several possible situations. The definition of robustness

trials is the last part of the MSE framework. Figure 6.1 shows the

MSE steps given the base case scenario but the same scheme is

applicable for the bias scenarios. After running the simulations

over 100 years, given several types of scenarios, we move on to

the final stage of this study. The interest of having carried out an

MSE approach is that a quantile value has been defined which

is adapted to the achievement of the Management objective and

which respects a precautionary principle without being totally

conservative.

Application on common dolphins in the Bay of Biscay

The The practical application is based

on the use of real historical data in

addition to the demographic data

used previously. The data used are

abundance estimates and bycatch es-

timates.

final step of the whole procedure is to apply the MSE

approach using real historical abundance and bycatch data. The

operating model is used once with the historical data. Then the

control rule is applied to obtain the posterior distribution of

possible removals. The performance statistic (quantile) selected

from the tuning in MSE base case scenario and robustness trials is

applied on the removals distributions to choose a bycatch threshold

(see Real case Application on Figure 6.1).

The abundance data that are used are related to the Bay

of Biscay. This scale is not representative of the common dolphin

management unit. We made this choice in order to start explor-

ing the analyses and setting up the approach. We also made this

choice on the basis of the available data for two reasons. First the

demographic rates that were obtained in the Chapter 4 were more

linked to individuals that are associated to the Bay of Biscay than

to the whole North-East Atlantic. It seems to me more accurate to

use a similar spatial scale. Secondly, bycatch estimates are obtained

from the analysis of drifting trajectories of stranded individuals.

Here again, the individuals are mainly associated with the Bay of

Biscay area. Thirdly, the management and conservation issues for

the common dolphin in the North-East Atlantic are mainly linked

to bycatch pressure in the Bay of Biscay. It is for these reasons that I

believe it is currently more appropriate to use the estimated abun-

dances in relation to the Bay of Biscay only. The tolerable bycatch

thresholds that will be obtained subsequently will therefore be

related to the Bay of Biscay "population". The abundance estimates
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7: ObSERVE is an aerial campaign

conducted in the Ireland’s EEZwhose

abundance surveys are not useful for

application in the Bay of Biscay. More

information on ObSERVE on https:

//www.gov.ie/en/publication/

12374-observe-programme/

8: The abundance data used are not

representative of the entire common

dolphin management unit. The re-

sults obtained at the end will not be

applicable to the management unit.

This choice was made to facilitate the

exploratory approach.

used for the applied case are obtained from three surveys that

represent two time points of abundance assessment separated by

about 10 years: SCANS II + CODA and SCANS III
7
. Abundances

were estimated from observation by plane and boat. Where Scans

III directly combines the two, SCANS II does not cover the whole

area and the CODA ship survey was needed to complete the es-

timates. Abundance estimates were made depending on areas

composed by "blocks" Figure 6.7.

SCANS II + CODA SCANS III + ObSERVE

Survey Platform:

Aerial

Ship

Both

Figure 6.7: Survey platform and sur-
vey blocks of abundance surveys
campaigns. SCANS I is not shown

here as it was not used to obtain the

abundances. Between campaigns, the

blocks sampled are different. A recal-

culation of the abundances was nec-

essary. This calculation was carried

out within the ICES divisions. It took

into account the density obtained in

each block and the surface of the ICES

division.

The blocks were not the same for the SCANS II + CODA and

SCANS III campaigns. Abundance
8
data are provided by blocks.

To allow for better cohesion we have recalculated the abundances

taking into account the ICES divisions. We recalculated the abun-

dances by multiplying the surface area of each ICES division by

the estimated common dolphin density for the campaigns SCANS

II + CODA and SCANS III (Figure 6.8).

Figure 6.8: Common dolphin abun-
dance used for this study depend-
ing on the ICES divisions. Abun-

dances were recalculated using both

ICES divisions specific surface and

the estimated density in the SCANS

II + CODA and SCANS III block.

The other historical data that was used to perform the Real

case Application was the historical bycatch estimate made from

the strandings between 1990 and 2020. Theoretically, it is possible

to use French pair trawlers (PTM) estimates that were produced in

https://www.gov.ie/en/publication/12374-observe-programme/
https://www.gov.ie/en/publication/12374-observe-programme/
https://www.gov.ie/en/publication/12374-observe-programme/
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Chapter 5. But the estimation would be made according to one of

all the fishing métiers operating in the Bay of Biscay. Other fishing

métiers than PTM could have an impact on common dolphin in

the Bay of Biscay. Within the French fishing fleet, gillnetters (GTR)

and gillnetters (GTR) may be associated with common dolphin

mortality in ICES divisions 8.a and 8.b. The approach used in

Chapter 5 is currently only applicable to PTM. In the meantime,

it is possible to use the estimates made from the strandings. To Theoretically it is possible to use the

estimates made in Chapter 5. For the

time being they only concern one fish-

ing métier and are therefore unusable.

estimate bycatch, only common dolphins with evidences of contact

with fishing nets were considered (Kuiken 1994) as well as the

common dolphins found stranded during multiple or unusual

mortality events related to fisheries. These multiple events are

defined when a high number of strandings occur in a restricted

area with a common cause of death. The threshold is defined at

30 cetaceans over 10 consecutive days recorded along a maximal

distance of 200km in the Bay of Biscay and 10 individuals per 10

days per 200km of coastline along the coast of the western English

Channel (Peltier et al. 2014). From the stranding location of the

dolphin, a deterministic drift trajectory is inferred by a reverse

drift model (developed by Méteo France) to determine its likely

area of death at sea. The area of death is included in a grid cell.

The number of dead dolphins in each cell is then corrected by the

cell-specific probability that a carcass from that cell washes ashore

(Peltier et al. 2013). The number of animals estimated dead at sea

is available in supplementary material.

Baseline Management Strategy Evaluation assumptions

I The vital rates estimated in Chapter 4 are representative

of those of the managed population.

I There is one closed and stationary population in the Bay

of Biscay.

I The Conservation Objective produced by OMMEG is

accepted by all parties and remains the same over the

100-year period considered.

I Abundance surveys are conducted every 6 years within

100 years.

I The Control rule used to produce the removals estimates

remains the same over the 100-year period considered.

6.3 Results

Results are first presented for Management Strategy Eval-

uation comparing the depletion trajectories obtained under each

quantile and each scenario. Then the population dynamic under
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the real case application and the removals threshold obtained are

presented.

Management Strategy Evaluation

Demographic dynamics of the base case scenario

Figure 6.9 presents the simulated estimated abundance

and associated applied bycatch (limit set by RLA + stochastic

variation) along time-line for the base case scenario depending

on each quantile. The value of depletion is estimated every year

for 100 years. Results were averaged for all initial depletion levels.

Only quantiles 0.6 to 0.8 are displayed because under 0.6 the CO

is always reached. For each quantile the estimated abundance

increases before reaching a plateau. The plateau is not reached

after the same number of years depending on the quantile. All

abundance estimation profiles are above the management objective

(80% of K) except for the quantile at 0.8. The quantile whose profile

is closest to the management objective is the one at 0.7.
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Figure 6.9: Base case scenario abundance and removals over years associated with quantiles. Only quantiles 0.6, 0.7, and

0.8 are depicted here. These are the most interesting to look at because it is at this point that the 80% threshold defined for K

is reached. All quantiles below 0.6 meet the objective after 100 years. Here it is the quantile at 0.7 that should be retained.

Because it is the one that best fits the conservation objective. It is associated with annual removals that fluctuate around 4100

at the end of the 100-year simulation.

Removals are also displayed. Their value increases as the

quantile increases with for example a maximum value of 3500 at

the 0.6 quantile and a maximum value of 4500 at the 0.8 quantile.

Likewise for the simulated estimated abundance, the profile shows

an increase and a plateau which is reached more quickly when



6 Conservation Biology and Management Procedures 144

the quantile is high. The estimated bycatch value is about 4000

dolphins with the quantile at 0.7 after 100 years.

Selection of the best quantile and associated removals
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Figure 6.10: Robustness trials deple-
tion levels for each quantile. When

we start the simulation, we do not

know the depletion state of the popu-

lation with respect to K. To cover this

uncertainty, 6 initial depletion levels

are simulated for each scenario and

quantile. In the base case, the quantile

to be retained is 0.7. In the case of the

underestimation of abundance by a

factor of 2, the quantile to be retained

is 0.5. In the case of an underestima-

tion of the bycatch by a factor of 3, the

quantile to be retained is 0.3.

The absence of curves for the last

quantiles of the robustness trials is

due to numerical problems.

As the initial depletion state of the population is not known,

several initial depletion states were simulated. For each scenario

(base case, underestimated abundance, underestimated bycatch),

six initial depletion states (from [0.3, 0.4] to [0.8, 0.9]) were sim-

ulated under seven quantiles (from 0.2 to 0.8). At the end of the

100-year time series, the performance of each management strategy

is assessed by comparing the value of each depletion curve to the

80% carrying capacity limit (Figure 6.10). The best 80% depletion

values for each initial state are presented over a period of 1 to

100 years. For the baseline scenario, the best quantile to select

based on the simulation is 0.7. This quantile value allows each

depletion curve to meet the management objective of 80% K. For

the underestimated abundance scenario, the best quantile to select
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is the quantile at 0.5. For the underestimated bycatch scenario, the

best quantile to select is the 0.3 quantile.

For each combination of quantile and scenario, it is possible

to calculate the value of removals as a percentage of K (Figure 6.11).

The resultingdistribution of removal for all time steps (independent

of the initial simulated depletion state) is summarised. The higher

the quantile, the higher the removal values. These removal values

are purely indicative and do not constitute the final result of the

approach.

Abundance/2Base case Bycatch/3

0.2 0.3 0.4 0.5 0.6 0.7 0.80.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.4

0.8

1.2

1.6

2.0

Quantile

R
em

ov
al

s 
(%

 o
f K

)

Figure 6.11: Removals to be applied
in percentage of K. Each level of re-

movals relatively to K are depicted

for each scenario and quantile. Lower

the quantile, lower the removals. The

scenario with the highest removals

is the base case. The scenario with

the lowest removals is the one that

includes a bycatch estimation bias.

Application on common dolphin population
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Figure 6.12: Final removals poste-
rior distribution. The posterior dis-

tribution obtained in the Real Appli-

cation case is depicted here. The max-

imum removal value is about 12500.

The minimum is about 0. The quan-

tiles that were obtained previously

in the MSE approach involving the

robustness trials allows to select re-

moval value in the distribution.

The previous exercise (management strategy evaluation)

aimed to obtain the quantile values for each scenario to achieve

the CO. The application case aims to produce a distribution of

removals using the actual data. The quantiles obtained previously

are used to define the removals to be applied from this distribution

(Figure 6.12). They range from 0 to approximately 13000 given
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the last abundance estimate. From this distribution (Figure 6.1

management application part to a representation of this step in

the framework.) it is possible to choose values given the quantiles

selected under the MSE. The quantiles obtained from the previous

MSE approach are presented as dashed color lines (Figure 6.12) and

associated removals are given in Table 6.1. The difference between

quantile at 50% and 70% is about a factor of 2 (approximately 2000

and 4000). The quantile at 30% is associated to the lowest number

of removals which is about 656 considering the last SCANS III

abundance survey estimation of common dolphins in the Bay of

Biscay.

Table 6.1: Removals to be applied. Here the removals that allows the population to reach the OMMEG CO are depicted.

The higher removal value is the one for the base case with 4163 removals per year. The mid removal value is the one for the

underestimated abundance with 2088 removals per year. The lower removal value is the one for the underestimated bycatch

with 656 removals per year. In order to be conservative and to be cautious with the population viability, the lowest removal

value should be kept. Here the yearly removals applied to the common dolphin population in the Bay of Biscay must not

exceed 656 individuals per year in order to reach the CO set by OMMEG.

Quantile Removals

30% 656
50% 2088

70% 4163

6.4 Discussion

The aim of the study is to define a tolerable removals (i.e.
bycatch) threshold (management objective) to achieve the conser-

vation objective defined by OMMEG based on the ASCOBANS

recommendations : allow the population to reach or maintain

an abundance level equal to 80% of its carrying capacity (i.e. K)
over 100 years with a probability of 80%. The implementation of

this management objective will then constitute the population

management strategy until the next abundance surveys.

For this purpose, demographic data were used considering an

adjustment on survival to obtain a stationary population. Then

the MSE procedure was applied involving the selection of the CO,

and the combined use of the operating model and the control rule

over a period of 100 years to obtain the performance statistic. Ac-

tual abundance and bycatch estimates were then used to compute

tolerable removal thresholds for the population given the latest

abundance estimates. The choice between these thresholds then

depends on the quantile selected from the MSE approach and the

robustness trials associated with the base case scenario.
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Conservation objective, operating model and control rule

The choice of an appropriate CO

The definition of a clear and justified CO conditions the

subsequent MSE approach. The CO is relative to K, the carrying

capacity of the environment for the population. In practice it is

impossible to know the exact value of this carrying capacity. But

knowing its exact value is not limiting. The order of magnitude of

the carrying capacity, however, is muchmore important. In the case

of the common dolphin population, it is more important to decide

between a carrying capacity in the tens, hundreds of thousands or

millions. It is at this level that the maximum abundance surveys

inform the CO. Defining the percentage threshold of this carrying

capacity to be achieved is a more general management consider-

ation. This definition directly determines the number of annual

tolerable bycatches in the population. The The exact value of K has little influ-

ence on the final estimate. It is the

order of magnitude of K that matters.

The choice of an appropriate CBmust

take this order of magnitude into ac-

count.

higher the percentage,

the lower the number of removals and vice versa. If the percentage
set is very high, e.g. 95% of K, then only the lowest quantile values

will achieve this CO (Figure 6.10). In this case, the tolerable number

of bycatches will be close to 0. It may be difficult to implement this

threshold in view of the socio-economic stakes of fishing in the Bay

of Biscay. If the percentage set is low, e.g. 50% of K, then the higher

quantile values will also achieve the CO. In this case the number

of bycatches may be very high. The management objective will do

little to limit fishing but may be dangerous to the viability of the

population. It is possible that the population will be too depleted

before the next abundance survey (6-year cycle) to redefine the

management objective. The population could also be subject to

an Allee effect that would cause its extinction beyond a given

abundance threshold. It could be interesting to implement an Allee

effect in the operating model to take this into account. This Allee

effect could be expressed as a probability of encounter between

males and females as an example. The question of how to define

an appropriate CO that takes into account the conservation of

populations and the management of human activities is a key issue

at the border of several disciplines.

Considerations on the Operating model

The MSE used here is based on multiple steps and funda-

mental assumptions. The operating model is based on the Leslie

population matrix model with a Pella-Tomlinson density depen-

dence for birth rates (Genu et al. 2021). The age-specific survival

rates used to fuel this model are those obtain for the common

dolphin population in the Chapter 4 adjusted to allow the popula-

tion to be stationary. This construction makes it possible to obtain
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9: mPBR is the modified PBR. It al-

lows the estimation of tolerable re-

movals thresholds taking into ac-

count the European conservation ob-

jective.

a population that does not decrease without the application of

bycatch. This adjustment is a strong assumption that does not go

hand in handwithwhat is obtained in terms of demography on this

population. The Lesliematrix populationmodel used here does not

admit explicitly immigration. This assumption is very restrictive

since the common dolphin population in the Bay of Biscay seems

not closed as the abundance surveys and demography suggest.

Control rule and importance of data provision

The main interest of this work is that it is the first to be done

with specific and locally determined demographic parameters on

this population. This age-specific structured model allows the use

of the RLA which is a possible control rule among others. Others

control rules that can be used in the MSE are the PBR and the

mPBR
9
. They did not require age-structured models but only

the abundance of the population. The PBR can be calculated as it

follows:

PBR = 0.5 × Rmax ×Nmin × Fr
Parameters of PBR: Rmax as the max-

imum theoretical or estimated pro-

ductivity rate of the population,Nmin

the minimum population estimate in

number of animals and Fr the recov-

ery factor.

(6.6)

From this control rule, a total of 4926 individuals per year

were estimated as the limit of removals for the population in

the whole North-East Atlantic area (ICES 2020b). The number of

estimated bycaught dolphins for recent years is higher than this

threshold. This thresholds is close to the one calculated here, in

the base case scenario, using the RLA for the Bay of Biscay. The

calculation of the PBR relies on the management objective of the

population reaching 50% of carrying capacity. This CO is the one

implemented by the MMPA. It does not corresponds to the CO

proposed by the OMMEG group using the interim objective from

ASCOBANS. The mPBR is suited for the ASCOBANSmanagement

objective and is associated to much lower bycatch thresholds with

a removal limit around 900 individuals. This limit is closer to

the estimation done using the RLA considering the scenario of a

bycatch underestimation.

The use of RLA is less conservative when the accuracy of

the data is higher and when there is more data. The removal limit

determined when using the RLA on the Bay of Biscay population

is close to that obtained from the PBR in the North East Atlantic. In

this case, the use of population-specific demographic data allows

for less conservatism. The use of the RLA in the framework of

robustness trials also shows this particularly in the case of bycatch.

In the base case scenario, bycatch estimates are assume to be

accurate. This may look like transparent bycatch declarations from

fisheries. In this case, the tolerable removals on the population
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Cause of death
Bycatch Other

Pathology Unknown

80%

14%
3%
3%

Figure 6.13: Cause of death for 2020.

10: As a reminder, 80% of individuals

are considered dead due to capture

in fishing nets on the basis of external

examinations in 2020 and 82% on the

basis of internal examinations.

of the Bay of Biscay is 4163 dolphins per year. In the case where

the number of catches is underestimated by 3, this limit is greatly

reduced by a factor of almost 7 (656 tolerable removals each year in

Bay of Biscay). Robustness trials in that case shows that knowledge

of bycatches makes it possible to be less conservative. It is therefore

in the interest of fisheries to communicate transparently on the

number of bycatches made per year.

Application of the Management Strategy

In the case of the common dolphin in the Bay of Biscay, the

most efficient management strategy to promote the sustainability

of the population (without completely closing the fisheries) seems

to be to set a limit of 656 bycatches per year. This threshold

is associated with an underestimate of bycaught dolphins by a

factor of 3. This scenario is extreme and other and less extreme

robustness trials should be tested in the future. Within this study,

this management objective seems to be the most precautionary

given the scenarios tested and the current data. The base case

scenario with a bycatch threshold of 4163 implies full confidence

(i.e. unbiased) in the abundance estimates, bycatch estimates and

in the demographic data in the operating model.

Bycatch estimates are currently made by modelling the reverse

drift of carcasses (with bycatch evidence) found stranded on the

seashore. It is difficult to be sure that these estimates are accurate.

For example, they may be overestimated. The overestimation may

be related to a possible misinterpretation of some bycatch evidence

in favour of an over-representation of bycaughts individuals
10
. This

hypothesis seems unlikely given that the evidence of incidental

captures is well characterised for common dolphins (see Figure 2.19

in Chapter 2). In France, the examination protocol is well defined

and applied by the members of the national stranding network.

But the scenario of overestimation of catches will be tested. The

scenario of underestimated catches foresees a maximum 656 catch

limit. If a catch limit were to be applied, it would be 656 individuals

per year. This is the lowest limit associated with the robustness

trials. It is the most conservative value. Taking this threshold into

account, the estimates we made in Chapter 5 are still below the

threshold. Except if we take into account the 80% limit of the

Bayesian uncertainty interval. But our estimates are for a single

fishing métiers (Table 6.2).

Bycatch estimates are above this threshold in the Bay of Bis-

cay, taking into account baseline stranding estimates. The current

level of mortality reflects the current management strategy for the

common dolphin population. This strategy involves the economics

of the fishery, the viability of the common dolphin population, the
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Year Model based (PTMs)

2004 −656 −429 +478

2005 −656 −363 +761

2006 −656 −370 +647

2007 −640 −579 −437

2008 −644 −591 −466

2009 −473 −244 +164

2010 −652 −424 +338

2011 −647 −465 −21

2012 −633 −290 +534

2013 −643 −230 +890

2014 −656 −572 +272

2015 −654 −562 −210

2016 −601 −386 −273

2017 −500 −38 +759

2018 −655 −621 −493

2019 −597 −440 −215

2020 −652 −599 −466

Table 6.2: Difference between the
threshold of 656 removals and es-
timated bycaught dolphins. Model

based estimates corresponds to the

Chapter 5 estimates with the 80

Bayesian Credibility Interval. Cells

are depicted in red if the difference is

in favour of an excess of the bycatch

threshold. Model based estimates are

made taking into account PTMs.

Figure 6.14: Diagram of qualita-
tive management strategy. Rather

than consider a quantitative man-

agement strategy, strategies may be

defined taking into account several

socio-economic variables. A. Strategy
which is more concerned with the

sustainability of the fishing economy.

B. Strategy which is more concerned

with the viability of dolphin and fish

populations.

viability of the target fish species, public opinion and the certainty

of estimates. In addition to these components, management effec-

tiveness is also taken into account. A qualitative representation of

the performance of these components for each management strat-

egy can be imagined ( Figure 6.14). This representation is adapted

from (Punt et al. 2016). The current management strategy in the

Bay of Biscay looks more like A. Despite ICES recommendations

to implement time-area closures of fisheries, the government has

chosen to favour the fishing economy. Public opinion is negatively

influenced by the reports and the action of NGOs on the subject.

If bycatch thresholds are defined and respected, then the man-

agement strategy could move from format A to format B. The

sustainability of the dolphin population would be better taken into

account, to the detriment of the fishing economy and in favour of

public opinion.

This chapter closes the analytical part of the manuscript. At

this stage we have explored different aspects:
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I Chapter 2 on page 26 : Description of the common dolphin,

its population in the North-East Atlantic, the associated

conservation issues and the monitoring carried out on this

population.

I Chapter 3 on page 43 : Development of a new survival

analysis approach that takes into account covariate and

random effects to estimate vital rates.

I Chapter 4 on page 70 : Estimation of vital rates for the

common dolphin population, within the framework of the

MSFD, which are estimated by taking into account various

covariate and random effects.

I Chapter 5 on page 102 : Explanation and quantification of the

bycatch phenomenon involving PTMs on a weekly, annual

and ICES divisional basis.

I Chapter 6 on page 128 : Establishment of a tolerable by-

catch threshold given the population’s demographic viability,

abundance, bycatch pressure and the CO set by OMMEG in

European waters.

The following part is a discussion presenting three aspects

related to this thesis. The first section deals with the general

approach of the project. The second section deals with the North-

East Atlantic common dolphin population. The third section deals

with the cross-sectional monitoring.
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7.1 Project approaches

Aspects related to the demographic study

This thesis project was carried out using demographic

approaches. The first approach was to develop a newmethodology

for estimating survival, based on the Reed model, from age-at-

death data. This approach is a useful contribution to the literature.

Its use implies the inclusion of an inter-individual frailty parameter.

In addition to allowing the modelling of a bathtub shape hazard

curve, the use of the frailty parameter allows heterogeneity within

the study population to be taken into account. It is difficult to

interpret this parameter on its own and it is more accurate to

consider it as a statistical device for robust estimation. However

Apossible improvement in the estima-

tion of survival is to take into account

two frailty parameters. One parame-

ter specific to the calf component and

the other specific to the non-calf com-

ponent. Such an improvement could

bemade throughamixturemodelling

approach.

it

may be possible to strengthen its biological interpretation. It would

be interesting to consider two inter-individual frailty parameters.

One associated with the calf component of the life history, the other

with the non-calf or juvenile-adult component. This would allow a

better representation of survival and mortality in the population,

taking into account the different frailties at different periods of life.

The survival estimation method is based on the use of age-at-death

data and it is difficult to know whether the estimated vital rates

(e.g. survivorship) are representative of those in the population. A

possible solution would be to have both longitudinal monitoring

data and age-at-death data for a population. Comparison To check the plausibility of the sur-

vival rates estimated by the statistical

approach, it would be interesting to

simulate both longitudinal andage-at-

death data and compare the survival

estimates.

of the

longitudinal survivorship profile with that obtained through the

cross-sectional survival approach would highlight the accuracy of

the survival estimates. A limitation of this comparison is that, if

there is a difference, the source of the difference cannot be defined.

Is it a difference due to sampling or a difference due to the statistical

approach or a combination of both? One way to compare would be

to simulate longitudinal data aswell as age-at-death data. Sampling

and bias control would be provided by the simulation study. Any

differences would be due solely to the statistical estimation of

survival.

To control for sampling bias, stratified random samplingwas useful.

The use of this sampling framework allowed for greater confidence

in the estimates of vital rates. When sampling in this way, the

survival profiles estimated by the Siler and Reed models were

almost identical. But this sampling scheme can only be used if
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Analysis Routine Ad hoc Never No reply Total

Female reproductive

status

11 7 1 6 25

Maturity state 10 7 1 7 25

Diet 9 10 0 6 25

Male reproductive

status

7 10 1 7 25

Age determination 3 13 3 6 25

Table 7.1: Frequency of analysis
from stranded animals performed
by European stranding networks.
Table from ICES (2021a).

there is a highly structured, centralised and coast-wide stranding

Network. The French national stranding network is one of the

most stable and unified stranding network in Europe. In Spain

there is no single, centralised stranding network. Spain has many

regional strandings networks along the mainland coast as well

as separate networks for each of the Canary Islands. Germany

has two stranding networks, while the Netherlands has four. Few

European countries have a single stranding network. For those

countries where this is the case, the network may not always be

stable or long established (Figure 7.1. The French national stranding

network has the advantage of being very reliable since the 1990s

in recording all strandings on the Atlantic coast (Authier et al.

2014). Of the 25 stranding networks operating in North-Atlantic

European waters, 11 routinely determine the reproductive status

of females and 7 on ad hoc basis. With regard to age determination,

data acquisition is variable since only 3 networks determine age

ias part of a routine analysis, while 13 do so on an ad hoc basis (see
Margin-Table 7.1). It may therefore be difficult to generalise this

sampling approach to the whole of the European level.

Figure 7.1: Period of activity of the networks that provided the starting date of their activity and the perceived stability
of effort over time (as indicated by the respondents of the WGMME questionnaire). Very few European countries exhibit

a unique and long-term stranding network. Island, United-Kingdom, Belgium and France have the most structured stranding

networks.

Figure from ICES (2021a).

The possibility of including covariate and random effects in

the analysis can provide a demographic indicator for the MSFD.

At present, the criteria associated with obtaining demographic

data for the MSFD descriptors are considered secondary. In other
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words, Member States’ efforts to fulfil the descriptors should

not focus on these criteria as a priority. Criteria Estimating vital rates taking into ac-

count random effects can be a new in-

dicator of demographic status within

the MSFD. This would help to iden-

tify the possibility of depletion before

it occurs.

associated with

obtaining abundance data, for example, are considered primary

criteria that can provide information on the viability of marine

mammal populations (including the common dolphin). In Chapter

4, we have seen that the viability of the population seems to have

deteriorated over the period of time considered (1997 to 2019).

The use of random effects taking into account the cohort effect

allowed us to identify possible differences in survivorship and age

at sexual maturity for females. These differences could be used

to develop an operational demographic indicator to immediately

inform the demographic criteria of the MSFD descriptors. This

indicator could take the form of a percentage difference in vital

rates between cohorts (Figure 7.2). Differences from a baseline

or mean profile could be reassessed every 6 years in each MSFD

cycle.
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Figure 7.2:Relativepercentagedifferenceof cohort vital rates around themeanprofile from1997-2019.Relativepercentage
difference in survivorship. From 2012, the survivorship of adults seems reduced compared to the mean survivorship over

the period.

Theuse of covariates also revealed apossible effect of bycatch

on vital rates. This effect is quantifiable and could also be a pressure

indicator for the demography of the common dolphin population

to inform theMSFD. The effect of various anthropogenic pressures,

such as pollutants, can be quantified at the demographic level

for this population. For these reasons, I think Demographic criteria are considered

secondary. They should be reviewed

as primary criteria. Demographic in-

formation for elusive marine mam-

mal species can provide more de-

tailed information on impacts and

viability.

that the criteria for

assessing the "Good Environmental Status" of European Waters

based on demography should not be considered secondary. Vital

rates are important for knowing the viability of the population

and it is now possible to quantify variations in the viability of the

population. Vital rates provide earlier information on whether the

viability of a population is impaired than abundance surveys. It is

possible to identify a risk of depletion before it is observed. These

criteria should be reviewed as primary criteria.

This demographic indicator could be used to fulfil the MSFD at the
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Figure 7.3: Diagram of Atlantis
model. Models blocks are depicted

such as relation between blocks. The

model takes into account the whole

ecosystem from the oceanography

to the top of marine foodweb and

human activities.

Figure from https://niwa.co.nz/
ecosystem-modelling-at-niwa/
atlantis-ecosystem-model.

sub-regional scale. The MSFD considers the evaluation of water

quality on a regional and sub-regional scale. For the common

dolphin, the regional scale is the "North-East Atlantic", while the

sub-regional scale is the "Bay of Biscay and Iberian Coast" and

"Celtic Seas". Using the individuals stranded on the shores of these

two sub-regions, an operational indicator could be produced to

inform the demography of the common dolphin within the two

sub-regions.

Aspects related to the conservation approach and
management issues

This The estimation of the number of an-

imals bycaught and associated vari-

ables makes it possible to valorise

biased observer data. These data pro-

vide fine-scale spatio-temporal esti-

mates. However, the use of this ap-

proach is limited by the availability of

an accurate fishing effort dataset and

sufficient bycatch observation data.

thesis project was carried out with the implementation

of a management approach. The management approach is based

in part on the use of bycatch estimates. The approach used in

Chapter 5 to quantify bycatch from on-board observer data shows

promise for using biased data. This approach can be used to

add value to data that already exists but are considered biased.

The ability to work with data that are considered biased should

not prevent the collection of more representative data. Although

promising for taking observation bias into account, the use of this

approach is currently limited to PTMs. To extend its use, it would

be necessary to be able to effectively calculate the fishing effort of

passive métiers such as gillnetters. The use of this approach in the

context of implementing management strategies currently seems

to be limited since it cannot be generalised to all fishing métiers.
On the other hand, it is interesting in terms of improving data

that are considered to be of little use by the research community

and providing information on the phenomenon of bycatch at

a fine scale. The use of the joint model also makes it possible

to highlight possible correlations or links between the various

estimated variables (e.g. fishing duration and bycatch risk).

The removal threshold produce through the MSE approach does

not include any socio-economic index as it is done for somefisheries

evaluation models such as the Atlantis model. The Atlantis model

includes all the components of marine ecosystems from physics to

human exploitation (Audzĳonyte et al. 2019; Figure 7.3). The use

of these complex models may be limited by their complexity. It can

be difficult to define the links between all parts of the model and

to understand how these parts interact. Analyses in the context of

an MSE incorporating RLA are already a complex task involving

many assumptions. For this reason, I think that the development of

more complex models may be interesting from a theoretical point

of view but not necessarily interesting from an applied point of

view. Discussions between stakeholders (fisheries, scientists and

decision-makers) are already difficult with regard to the bycatch

and removal threshold. In my opinion, we need to keep it simple

https://niwa.co.nz/ecosystem-modelling-at-niwa/atlantis-ecosystem-model
https://niwa.co.nz/ecosystem-modelling-at-niwa/atlantis-ecosystem-model
https://niwa.co.nz/ecosystem-modelling-at-niwa/atlantis-ecosystem-model
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1: Follow this link to see the full

procedure of the European Com-

mission: https://ec.europa.eu/

commission/presscorner/detail/

en/INF_20_1212

in order to facilitate understanding and decision making on the

strategy to be adopted. From Methods for estimating tolerable by-

catch rates should be kept simple, oth-

erwise they may not be understood

by all stakeholders andmay therefore

be difficult to apply.

a scientific point of view, this should

be reflected in the use of methodologies with limited complexity,

rapid applicability and low dependence on computing time, as

well as in the transparent availability of the methodologies used.

The common dolphin, an elusive species

The notion of elusive species covers both demographic and

management aspects. From a demographic point of view, these

are species for which it is difficult to obtain data and vital rates.

It is difficult to get an idea of the viability of the population on

the basis of vital rates. It is also a species whose conservation

is important in terms of the ecosystem balance (i.e. keystone)
and therefore in terms of international legislation, especially in

Europe. In Europe, the population is difficult to manage. Limited

demographic knowledge is a contributing factor (Murphy et al.

2021). But difficult management discussions between fisheries,

politicians, scientists and NGOs are also a contributing factor. Data

on bycatch of this species in French waters are also very limited.

The European Commission has set up an Infringement Procedure

against France in July 2020:

"The Commission is asking France, Spain and Sweden to im-
plement the measures required under the Habitats Directive (Council
Directive 92/43/EEC) and Common Fisheries Policy to avoid unsustain-
able by-catches of dolphin and porpoise species by fishing vessels. [...]
Despite well-documented evidence of these species being caught in fishing
gear, the problem persists. France, Spain and Sweden have not taken
sufficient action to monitor by-catches in their waters and by their fleets,
nor made full use of the possibilities that the Common Fisheries Policy
provides to comply with their obligation under the Habitats Directive and
protect these species. [...] As France, Spain and Sweden have not taken the
necessary steps to address these deficiencies, the Commission is sending
letters of formal notice to the three countries, which will have three months
to address the shortcomings raised. Otherwise, the Commission may
decide to send a reasoned opinion"1 .

One of the difficulties in monitoring this population is that

it is difficult to define and relate it to the OSPAR Management

Unit. The next section is a discussion of the definition of this

population.

https://ec.europa.eu/commission/presscorner/detail/en/INF_20_1212
https://ec.europa.eu/commission/presscorner/detail/en/INF_20_1212
https://ec.europa.eu/commission/presscorner/detail/en/INF_20_1212
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7.2 Definition of the North-East Atlantic
common dolphin population

Population migration and possible distributional
changes

Exchanges between stocks and management units

Animal Stocks can exchange individuals

through dynamic source (donor) and

sink (receiver) migration processes.

populations can exchange individuals through the

phenomenon of migration which may occur between different

stocks in the case of the common dolphin. Migration is composed

of immigration which is the arrival of new individuals, including

breeders, into the population, and emigration which is the final

departure of individuals from the population. Sometimes the flow

of individuals between two populations is not reciprocal. In this

case, we speak of a source population that provides individuals to

a sink population that receives them. This migration flux implies

that the ecological conditions are met. Firstly, there must be a high

production of individuals in the source population. Secondly, the

sink population must suffer a high loss of individuals (e.g. through
high extrinsicmortality) leaving vacant places to occupy the trophic

niche of the species. Thirdly, there must be a migration corridor

between the two populations with no geographical barrier.

Figure 7.4: Possible management units for the North-East Atlantic common dolphin. The current management unit

recognises a panmictic population by taking into account the Bay of Biscay, Iberian coast, Celtic seas and North sea. This

management unit could be divided into three separate units. It could also be extended to a larger scale, including much of

the North Atlantic.

Figures from Perrin (2018), ICES (2021a) and Caurant et al. (2009).

The There is an inconsistency between

the population projections and the

observed trend in abundance in the

Bay of Biscay and in the Management

Unit.

vital rates obtained in this project are not consistent

with the abundance estimates, which raises the question of the

definition of the management unit. The vital rates are associated

with a large majority of dolphins presumed dead on the Bay of

Biscay continental shelf. Population projections show extinction

in 50 years, as do the projections made by Mannocci et al. (2012).

The population status also appears to have deteriorated since 1997,

with an increasingly low growth rate. But these estimates are not

consistent with the observed trend in abundance. The population
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does not appear to be declining at the scale of the Bay of Biscay

and the management unit covering the Bay of Biscay, Iberian coast,

Celtic seas and North Sea. It The management unit may not be

fragmented enough. Several sub-

units should be defined as there may

be sink-source exchanges between

continental shelf stocks.

is possible that the Bay of Biscay shelf

is associated with a sink population that receives individuals from

other continental shelves (e.g. Iberia and Portugal) and Celtic seas.

In this case, it is possible that the currently recognised manage-

ment unit is too large and needs to be redrawn according to the

classification proposed by Caurant et al. (2009).

Another possibility is that the resulting vital rates are representa-

tive of the management unit recognised by OSPAR but that this

management unit receives external individual inputs allowing it to

be stationary. It is assumed that the population is not viable given

current estimates of bycatch numbers across the management unit

(ICES 2019). But the population abundance seems to be stationary

at the scale of the management unit (Hammond et al. 2017). The The management unit may not in-

clude the majority of the common

dolphin population. In this case, it

may not be large enough and should

be expanded to the North Atlantic

scale.

currently recognised management unit may not include the major-

ity of the common dolphin population. Migratory flows between

the currently recognised management unit and other stocks could

explain the stationarity of abundance. This hypothesis is difficult to

verify. But it is possible that the currently recognised management

unit is not the most appropriate one (Figure 7.4). On the one hand,

by omitting external migrations. On the other hand, by not being

sufficiently fragmented.

Figure 7.5: Common dolphin sightings from the SAMM surveys. SAMM surveys were conducted in Winter (November

17th 2011 to February 12th 2012) and Summer (May 16th to August 8th 2012). There were more common dolphins observed

in summer on the oceanic part of the Bay of Biscay than in winter.

Figure from (Laran et al. 2017)

It is difficult to have a precise idea of the distribution of the

commondolphinwithin themanagement unit but it is possible that

seasonal variations in abundance in the Bay of Biscay are linked to

source-sink dynamics. Abundance between summer and winter

on the slope and the oceanic part of the Bay of Biscay appears

to be different (Figure 7.5). The influx of individuals in summer
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Figure 7.6:Marine biologyStommel
Diagram. Emphasizes factors in ma-

rine biology, with an emphasis on

biological productivity, here labeled

"biomass variability".

Figure from Haury, McGowan, and

Wiebe (1978)

may be linked to the breeding season (Murphy et al. 2021, 2009;

Murphy, Collet, and Rogan 2005). These seasonal changes have

been identified by the Seasonal Abundance of Marine Mammals

(SAMM) surveys (Laran et al. 2017). Common dolphin sightings

are from winter (17 November 2011 to 12 February 2012) and

summer (16 May to 8 August 2012). The There seems to be a difference in

dolphin abundance between summer

and winter in the Bay of Biscay. This

difference mainly concerns the conti-

nental slope and the oceanic part of

the Bay of Biscay.

winter period sampled

mixes months of very low density (November-December) and

months of very high density (February) (unpublished data). In my

opinion, one main highlight of these surveys is that the oceanic

part of the Bay of Biscay may be subject to immigration during

Summer (reproduction period). The abundance of small-sized

delphinids (common dolphins and striped dolphins) in the Bay of

Biscay in Summer 2012 was estimated at 493,591 individuals (95%

CI: 342,000 - 719,000) whereas in winter 2011 it was estimated at

284,894 (95% CI: 174,000 - 481,000). It is possible that the difference

in abundance of individuals is due to the contribution of non-

resident individuals in the Bay of Biscay that come to breed in

summer. It is difficult to say whether some of these individuals

then remain in the Bay of Biscay to live there. It is also difficult to

know the sex and age of the individuals that might move.

Overall change in distribution

These seasonal movements could be nested within larger

spatio-temporal phenomena. Oceanographic processes are known

to be structured in space and time. One way to represent this struc-

ture is the Stommel diagram generally involves two dimensions

(space and time) but may involve a third (e.g. biomass). These rep-

resentations are initially used to characterise the spatio-temporal

phenomena of marine ecosystems (Haury, McGowan, and Wiebe

1978; Margin-Figure 7.6). These diagrams are useful for gaining

a better understanding of the spatio-temporal phenomena struc-

turing a system and their scales. They have also been applied to

characterise the development of the biosphere (Holling 1992) and

also the socio-ecological systems (Holling, Gunderson, and Lud-

wig 2002). I here provide a rough example of diagram that can be

used as an approximate representation (Figure 7.7). The advantage

of such a representation is that it allows the linking of different

potentially related phenomena that do not take place at the same

spatiotemporal scales. Here, it allows us to move from changes in

the life history of a resident population, which may be driven by

migration (when allocating resources for breeding or feeding), to

larger scale phenomena such as distributional changes.

The presence and residence of top predators is strongly

influenced by the presence of their prey. Low prey availability can
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Figure 7.7: Rough Stommel diagram
for common dolphin. This raw dia-

gram presents processes associated

with the population at three spatio-

temporal scales. The population can

be resident of the Oceanic or Shelf

parts for about two months. Individ-

uals may migrate within the Bay of

Biscay each year. The population may

change its distribution on a larger spa-

tial and temporal scale later. This dia-

gram is only a rough and conceptual

view and should not be considered

as completed.

influence the energy budget of the predator and ultimately influ-

ence its demography (MacLeod et al. 2007). The harbour porpoise

(Phocoena phocoena, Linnaeus 1758) is the smallest odontocete in

Europe with a length of about 1.5m and a weight of 50kg; it is also

found in the North-East Atlantic ocean. This species has a shorter

lifespan, a younger age at first reproduction and a shorter calving

interval. Because The viability of the predator pop-

ulation depends partly on its prey.

The harbour porpoise, for example, is

heavily dependent on sandeels in the

North Sea.

of its small size, the harbour porpoise cannot

survive long periods without feeding and almost dies after 3 days

without food (Kastelein et al. 1995). The harbour porpoise was

widespread in the North Sea and fed mainly on sandeels (genus

Hyperoplus). These fish species are essential to the ecosystems of

the North Sea (Greenstreet 1996). They are also essential for the sur-

vival of harbour porpoises in spring. This season is associated with

the coldest water temperatures in the North Sea, which requires a

high energy intake to maintain a stable internal body temperature

(Watts, Hansen, and Lavigne 1993). The presence of sandeels is

also crucial for the survival of weanlings that are about to take

their first food intakes.

Figure 7.8: Density of Harbour porpoise estimated from the SCANS and CODA campaigns. The time period under

consideration ranges from 1994 to 2016 with 3 main estimates. The density of harbour porpoises in the North-East Atlantic

appears to have possibly changed over the period. The population now seems to be denser in the Western Channel, Celtic

seas and Bay of Biscay than before.

Figures from Hammond et al. (2017, 2013).
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This The bottom-up of sandeels over har-

bour porpoises, combined with a de-

cline in the sandeels stock, may have

caused a change in the distribution of

harbour porpoises in the North-East

Atlantic.

type of ecological control is called "bottom-up" control.

Sandeels may induce bottom-up control on harbour porpoises. The

large fishing industry that developed during the 1980s contributed

to the decline of the sandeel stock in the North Sea (Furness 1999).

Furthermore, the recruitment of sandeels in the North Sea has

decreased since the 2000s, with a possible combined influence

of fishing and climate change (ICES 2006) through an impact on

plankton communities (Beaugrand et al. 2002, 2003; Frederiksen

et al. 2006). The decrease in sandeel stocks and quality has had

an impact on harbour porpoises, with greater starvation and

lower survival rates in the North Sea (MacLeod et al. 2007). It

is possible that this limited access to the resource has led to a

migration of harbour porpoise from the North Sea to adjacent

waters (Hammond et al. 2017, 2002, 1995).

Figure 7.9: Abundance estimates of
commondolphin by ICESdivisions.
The abundance estimates seems to be

slightly higher for SCANS III than for

SCANS II + CODA. Estimates from

Hammond et al. (2017).

It is possible that the common dolphin population is at a

stationary abundance throughout the Northeast Atlantic and that

the demographic rates estimated in this project are related to part

of the population sampled in the Bay of Biscay. There may be

more prey of interest available in the Bay of Biscay than in the past.

Fishing The demographic rates obtained in

the Bay of Biscay may not be repre-

sentative of the whole North-East At-

lantic. It is possible that bycatch pres-

sure is responsible for the observed

values.

mortality pressure in theBayof Biscaywouldbehigher than

in other parts of theNorth-East Atlantic, but population abundance

would be essentially stationary on a large scale. Abundance surveys

in the North-East Atlantic of SCANS II + CODA and SCANS III

seem to show that the abundance of the population is almost

stationary or perhaps increasing very slightly. Recent works by

Evans and Waggitt (2020) also supports an increasing trend in

abundance observed in the North-East Atlantic using Waggitt et al.

(2020). Recently, Astarloa et al. (2021) also highlighted a trend of

increasing abundance of common dolphin in the Bay of Biscay and

the correlation of this trend with environmental and biological
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variables using the Vector-Autoregressive Spatio-Temporal (VAST)

model (Thorson 2019). The authors point out that the increase

in estimated abundance is not necessarily a sign of a growing

population but may reflect migration from unsampled areas. The

correlation between common dolphin abundance and the North

Atlantic Oscillation Index, prey abundance and chlorophyll is

studied (Figure 7.10). Some correlations are highlighted but it is

difficult to attribute the possible change in distribution of common

dolphins to these variables. It is difficult to link variations in

abundance or changes in distribution of common dolphins to

environmental and prey data. This is mainly due to the scarcity of

data and the rare co-occurrence of the two predator-prey system

data in the large scales of the phenomena of interest (Gilbert et al.

2021; Astarloa et al. 2021).

Figure 7.10: Correlation between common dolphin abundance and ecosystem variables. Abundance estimates predicted

by the baseline spatio-temporal model (black line) and by the covariates-based model (with no random effects, colored line)

so that the contribution made by each variable (A–F) can be visualized.

Figure from Astarloa et al. (2021).



7 General Discussion 164

2: https://mcc.jrc.ec.europa.

eu/main/dev.py?N=19&O=118&

titre_chap=D1%20Biological%

20diversity

3: https://mcc.jrc.ec.europa.

eu/main/dev.py?N=22&O=133&

titre_page=&titre_chap=D4%

20Food%20webs

Abundance estimates: an incomplete indicator

Abundance is an indicator of interest to assess the "Good

Environmental Status" of marine European waters (European

Parliament 2008) but it may be incomplete to assess the viability

of megafauna populations. This indicator is considered to fulfil

Descriptor 1 (D1
2
) and Descriptor 4 (D4

3
). Abundance assessment

at the scale of a particular population is very instructive since

it provides an initial assessment of the population’s state (Laran

et al. 2017). At the scale of a community (e.g. cetaceans in the

Bay of Biscay) it can also inform the biodiversity state of the

cetaceans community which is an important aspect of the D4

criterion (Azzellino et al. 2014; Lauriano et al. 2014).

Figure 7.11: Percent of stocks within
four ranges of statistical power. Sta-
tistical power is the probability of

correctly rejecting the null hypoth-

esis that a population is not declin-

ing (i.e., one-tailed t-test) when the

stock is experiencing a precipitous

decline (50% over 15 yr). Results are

summarized for six categories of ma-

rine mammals: large whales, beaked

whales, dolphins and porpoises, pin-

nipeds on ice, pinnipeds on land, and

polar bears and sea otters.

Figure from (B. L. Taylor et al. 2007).

The ability to detect populationdeclines in abundance below

a critical threshold remains poor for manymarinemammal species.

Abundance trend cannot be effective in identifying populations at

risk because the statistical power to resolve abundance trends is

sometimes very low if the time series is sparse (B. L. Taylor et al.

2000). The statistical power to detect a precipitous decline through

abundance studieswas calculatedbyB. L. Taylor et al. (2007) (Figure

7.11). A Using abundance trends alone to de-

fine the status of small cetacean pop-

ulations can be dangerous due to low

statistical power.

precipitous decline is defined by the authors as a "decline of

50% over a 15-yr monitoring period". They justify this choice by the

fact that such a decline would lead to the classification of a stock as

"depleted" under the MMPA and as "vulnerable" or "endangered"

under the IUCN Red List guidelines (B. L. Taylor et al. 2007). In

Figure 7.11, we can see that the statistical power (probability of

correctly rejecting the null hypothesis that a population is not

declining) is very low for dolphins and porpoises population (the

common dolphin was not included in their analyses). These results

indicate that the use of abundance estimates to detect precipitous

declines is not appropriate for small cetacean populations.

https://mcc.jrc.ec.europa.eu/main/dev.py?N=19&O=118&titre_chap=D1%20Biological%20diversity
https://mcc.jrc.ec.europa.eu/main/dev.py?N=19&O=118&titre_chap=D1%20Biological%20diversity
https://mcc.jrc.ec.europa.eu/main/dev.py?N=19&O=118&titre_chap=D1%20Biological%20diversity
https://mcc.jrc.ec.europa.eu/main/dev.py?N=19&O=118&titre_chap=D1%20Biological%20diversity
https://mcc.jrc.ec.europa.eu/main/dev.py?N=22&O=133&titre_page=&titre_chap=D4%20Food%20webs
https://mcc.jrc.ec.europa.eu/main/dev.py?N=22&O=133&titre_page=&titre_chap=D4%20Food%20webs
https://mcc.jrc.ec.europa.eu/main/dev.py?N=22&O=133&titre_page=&titre_chap=D4%20Food%20webs
https://mcc.jrc.ec.europa.eu/main/dev.py?N=22&O=133&titre_page=&titre_chap=D4%20Food%20webs
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Figure 7.12: Aerial photograph of a
purse-seine set on a school of tuna
and dolphins. The purse-seine vessel
is deploying the net in a large cir-

cle around the entire school while a

skiff holds the end of the net in place.

In this photograph the net is not yet

closed; four speedboats are driving

in tight circles near the opening to

prevent the dolphins (and tuna) from

escaping.

Photo from Ballance et al. (2021).

Examples of delays between the onset of extrinsic mortality
and the implementation of management measures

Uncertainty in abundance indicators may limit the conser-

vation of small cetaceans affected by bycatch (B. L. Taylor et al.

2000). There may be a delay between the onset of pressure and

the implementation of management measures. This delay may

be detrimental to the viability of populations. Two examples will

follow to support this point.

Harbour porpoise in California

The The harbour porpoise in California

and the Tuna-Dolphin problem are

two representative examples of the

delay between the onset of depletion,

its recognition and the implementa-

tion of management measures.

first example concerns the harbour porpoise in Cali-

fornia. In the mid-1980s, an increasing number of porpoises were

found stranded on the shoreline, as well as an expansion of coastal

gillnet fishing in central California. These two observations led to

the assumption that the population was threatened by fishing. To

monitor this population, mortality was assessed by an observer

program and porpoise abundance was estimated by surveys and

back-calculation from fishing effort and mortality rates (B. L. Tay-

lor et al. 2000). Uncertainty in the parameters tended to make it

impossible to determine the level of depletion and the MNPL. The

MMPA was not able to conserve this species and its preservation

was achieved indirectly through fishery closures associated with

the capture of sea otters (B. L. Taylor et al. 2000). This example

shows that the mere availability of some abundance and bycatch

data does not allow the implementation of conservation measures

at the right time.

Tuna-Dolphin problem

The second example involves many steps over 60 years, en-

compassing many areas of expertise (biology, conservation policy,

legislation), media coverage and the creation of a label for con-

sumers (Supplementary-Figure 1). It is known as the "Tuna-Dolphin

Problem" and has recently been the subject of a review made by

Ballance et al. (2021). The history of this problem is extensive and is

provided in Appendix 7.4. In the East Pacific Ocean, large-bodied

yellowfin tuna (Thunnus albacares, Bonnaterre 1788) associate with

several species of dolphins such as the pantropical spotted (Stenella
attenuata, Gray 1846), the spinner (Stenella longirostris, Gray 1828)

and the short-beaked common dolphin. These dolphins interact

together with birds in a beneficial way (Scott et al. 2012; Ballance,

Pitman, and Reilly 1997). These associations are readily visible at

the surface and provide some indication to purse seine fisheries

targeting tuna. Purse-seine are deployed near dolphin schools,
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resulting in high levels of bycatch (Figure 7.12). All three dolphin

species were recognised as bycaught in the purse-seine Tuna fish-

ery (Perrin 1969; Figure 7.13). Catches were in the hundreds of

thousands between 1960 and 1995. Between 1995 and 2020, they

fell to around a thousand.

Figure 7.13: Estimated number of
dolphins killed annually in the east-
ern tropical Pacific tuna purse-seine
fishery. Total for all dolphins and sep-

arately for the stocks of the two dol-

phin species with the highest num-

ber killed. The inset graph has an ex-

panded vertical scale to show details

from 2000 to 2019 (change of scale on

the Y-axis).

Figure from Ballance et al. (2021).

The observation of bycatch numbers from 1960 to 1970, and

in particular the outcry over the magnitude of dolphin mortality,

prompted the establishment of the MMPA in 1972, which aims to

reduce bycatch mortality to a level close to zero. Given the degree

of uncertainty regarding the status of the population, numerous

data acquisition efforts have been made to justify its depleted

status. In total, "nine abundance surveys over 12 years, 17 years

of relative trend indices from data collected on the tuna vessels,

25 years of observer data on dolphin mortality rates in the fishery,

and 34 years of data on fishing effort" have been required. From

the first abundance estimate to the recognition of the depleted

status of the population, 23 years of inaction were reported (Wade

1994). By the late 1970s, it was clear that the dolphin mortality

was too high relatively to the populations abundances estimates.

However, it was only after sufficient data had been collected and

analytical methods developed, i.e. until 1993, that it was possible

to prove that the dolphin populations were reduced to 44% of its

total abundance (Wade 1993a,b). At this time, the populations were

declared depleted under the MMPA (depletion being defined as

stock abundance below 60% of carrying capacity; Ballance et al.

2021).

This example is similar to the case of the common dolphin

in the North-East Atlantic. There is currently uncertainty about the

true status of the population, given the abundance estimates and

the poor usability of on-board observer data. EAlthough we have

developed newmethods and provided new bycatch estimates from

a biased observer scheme, it is not possible to estimate the total
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bycatch mortality of the population due to the lack of adequate

data (and not because of a lack of methodology, e.g. see Chapter
5). Using only abundance estimates, observer programmes and

stranding mortality monitoring, it is possible that the mismatch

between the actual time of depletion and the recognised time of

depletion is dangerous for the viability of the population.

7.3 Population dynamics of elusive species

Life-history traits variations

Figure 7.14: raphical representation of predicted changes in optimal reproductive effort (RE) of a generalized life history.
RE is defined as the proportion of resources allocated to reproduction as opposed to investment in growth or survival.

The age at which RE increases from zero indicates age at maturity. The linearly increasing depiction of RE with age is

arbitrary, and plot A is the baseline iteroparous life history. Plots B–D give predictions for unregulated populations growing

exponentially after: (B) mortality increases only for older age classes (earlier age at maturity and higher RE at each age), (C)
mortality increases only for younger age classes (later age at maturity and lower RE at each age), and (D)mortality increases

uniformly across all ages (no change from baseline). Plots E and F give predictions for regulated populations subjected to

density dependence: the effect of a uniform increase in mortality when density dependence affects (E) only juveniles (note

the increase in RE over baseline and earlier age at maturity) vs. (F) all ages (no change from baseline).

Figure from Reznick, Bryant, and Bashey (2002).

We found a possible decrease in the age at sexual maturity

of females compared to the methodology commonly used in the

literature. The age at sexual maturity of females decreases by about

one year according to these results (8 to 7 years). Using the joint

model and random effects approach, it appeared that the age at

sexual maturity of females also appeared to decrease over the

period considered. It can be assumed that this possible change is

part of a life history optimisation (Ferriére and J. Clobert 1992).

Age at sexual maturity should respond differently depending on

the mortality experienced by the population and on the presence

of density-dependent mortality (Reznick, Bryant, and Bashey 2002;
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Figure 7.14). It The population may undergo a pro-

cess of variation in vital rates with

a shorter life history than before

(shorter life expectancy and advanced

reproduction).

is possible that increased adult mortality in the

population favours genotypes that reproduce earlier. This assump-

tion has also been made by Perrin, J. R. Henderson, et al.; Barlow;

Chivers and Myrick Jr for the North-East Pacific dolphins (Perrin,

J. R. Henderson, et al. 1979; Barlow 1989; Chivers and Myrick Jr

1993). The survivorship also seemed to decrease according to the

results of the joint modelling approach. There may be a link be-

tween age at sexual maturity of females and survivorship of adults.

This link could depend on the extrinsic mortality rate (Ricklefs

2010). It is possible that the extrinsic mortality experienced by

adults decreases their maximum potential longevity and thus their

age at sexual maturity.

Loss of interest in cross-sectional monitoring

Figure 7.15: Cumulative number of studies published prior to 27.07.2015 containing animal matrix population models
(MPMs). Some Important events in the development of animal MPMs: (a, b) applications of matrix population models

in demography, (f) nonlinear, density-dependent MPMs for animals, (g) sensitivity analysis for stage-classified MPMs

and calculation of selection gradients for animals, (i) calculation of the stochastic growth rate from an animal MPM, (k)
application of elasticity analysis to conservation biology and Life Table Response Experiment analysis, (n) presentation
of multistate mark–recapture methods for estimating stage-structured MPMs in animals, (o) development of MPM from

photograph identification data.

Figure from Salguero-Gómez et al. (2016).

Longitudinal monitoring is now favoured to study the de-

mography of long-lived megafauna species. Monitoring of these

species traditionaly used age-at-death data or hunting bags to

obtain vital rates (cross-sectional monitoring). The most important

assumption regarding these data is that the population must have

a stationary age-distribution (Caughley 1966). In the wild, this

assumption is rarely met (McCullough et al. 1994; Menkens and

Boyce 1993) and it is even more difficult to achieve it with the

large marine mammals whose strandings are used (Barlow and

Hohn 1984; Stolen and Barlow 2003). Demographic rates estimated

by cross-sectional monitoring may not be reliable in these cases.



7 General Discussion 169

Longitudinal monitoring (when feasible) and the associated analy-

ses,have therefore been favoured and have undergone significant

development. Since Longitudinal monitoring has been

favoured for the study of long-lived

megafauna species for which such

monitoring is feasible. The associ-

ated survival analyses have devel-

oped strongly since the 1990s and

longitudinal analysis is now a field of

statistical analysis in its own right.

the Cormack-Jolly-Seber (Seber 1965; Cormack

1964; Jolly 1965) approach, numerous developments in modelling

and sampling protocols have taken place (Lebreton et al. 1992).

The 1990s saw many developments in the use of CMR and radio

telemetry protocols to estimate survival rates (Lebreton, Pradel,

and J. Clobert 1993; Gaillard, Festa-Bianchet, and Yoccoz 1998).

Survival analyses based on longitudinal monitoring is now an

entire well developed scientific field in its own with a firm statistic

basis (Gaillard, Festa-Bianchet, and Yoccoz 1998) and can be used to

feed demographic databases such as COMADRE (Salguero-Gómez

et al. 2016; Figure 7.15).

Cross-sectional monitoring remains the most suitable ap-

proach for somemarinemegafauna species thatmay be elusive. It is

also the only possible approach for fish populations and exploited

stocks. For some species of marine megafauna, there is a lack of

demographic information (Heppell, Caswell, and Crowder 2000;

Moore and A. J. Read 2008) and it may be necessary to conduct

population viability analyses (W. F. Morris et al. 2002). For marine

mammals associatedwith bycatch, populationmanagers are tasked

to make decision (e.g. fisheries closures) despite a large amount of

uncertainty (Thompson et al. 2000; Harwood 2000). Since Cross-sectional monitoring has not

received the same attention from the

community. Despite the fact that it

is the only feasible monitoring for

elusive species and fish stocks.

the devel-

opment of Siler (1979) andHeligman and Pollard (1980) approaches,

there has been few methodological development associated with

cross-sectional monitoring. A recent improvement has been the

development of the package strandCet (Saavedra 2018) which is

interesting for taking into account additional mortality and the

treatment of sampling biased age classes (e.g. due to bycatch). A

question arises: why is the community so reluctant to produce vital

rates from cross-sectional monitoring?

The contribution of this project to cross-sectional approaches

Obtaining vital rates from cross-sectional monitoring of

long-lived megafauna species is limited by the lack of sampling

control and the limited possibility to measure variability in vital

rates (Gaillard, Festa-Bianchet, and Yoccoz 1998). One of the points

of this work was to partially address these limitations.

With regard to the first item, the use of stratified random sampling

is intended to allow for better control of the sampling. This control

takes place prior to the analysis of the data and aims to avoid

introducing additional uncontrolled bias.

The use of post-stratification to quantify human pressures (e.g.
bycatch) is also a type of correction. Here, it is carried out during

the analysis, in order to take into account possible biases in the
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representativeness of the data.This is of interest for elusive species,

such as the common dolphin, whose bycatch is not well informed.

The inclusion of covariates and random effects in the joint model

to quantify vital rates is also an improvement in approaches. With

this development it is possible to quantify the effect of different

factors on vital rates and to highlight variations at the population

level.

Application of the demographic approach to other
megafauna species

When available, age-at-death data should be used to their

fullest potential (Ferguson 2002). Here I propose an analytical and

a conceptual framework which incorporates important elements

of this thesis project (Figure 7.16). This diagram incorporates both

elements of the literature and elements developed within the

framework of the project for illustrative purpose.

Figure 7.16: Diagram of the proposed framework along with the example in our case. The steps are defined to allow for a

better consideration of representativeness bias. This framework is primarily a point of discussion and not definitive.
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Odontocete species

This framework is transposable to other odontocete species

and can serve different purposes depending on the problems

associatedwith the population. It is preferable that data be collected

by a stable and centralised stranding network. The more stable

the stranding network is over time and centralised, the longer and

more representative the period covered can be. This reduces the

bias associated with collecting stranded individuals.

Harbour porpoise in North-East Atlantic

Figure 7.17: Age-frequency distribution and sample sizes of female and male harbor porpoises sampled within the
North Sea MU and Celtic and Irish seas MU during the two time periods, 1990–1999 and 2000–2012. These data could

be analysed with our joint modelling approach. This would highlight possible differences in vital rates values depending on

area and/or sex.

Figure from Murphy et al. (2020)

The harbour porpoise is also a species for which there are

strong conservation issues in European waters (ICES 2020b). The

Baltic Sea population is now listed as critically endangered (Benke

et al. 2014). In the North-East Atlantic the Harbour population

is distributed from Norway to southern Spain. Two genetically

distinct stocks are recognised, the first in Spain, the second between

France and Norway (Fontaine et al. 2007). The population has been

divided into several management units based on genetic differenti-

ation but also on morphological differences (Evans and Teilmann

2009; JNCC 2015; Margin-Figure 7.18). However, it appears that

the overall population is subject to all types of pressure (Murphy

et al. 2020), notably primary (bycatch) (ICES 2020b), secondary
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Figure 7.18: Map showing Recom-
mendedManagementUnits forHar-
bour Porpoise in the ASCOBANS
Agreement Area and Environs.
Figure from Evans and Teilmann

(2009).

Figure 7.19: Hector’s dolphin draw
and distribution. Hector’s dolphins

are found along the east coast of the

South Island. They are found down

the West Coast to Jackson Bay and

Fiordland. On the south coast, two

bays east and west of Invercargill

have Hector’s dolphins.

Draw from https://
www.fisheries.noaa.gov/
species/hectors-dolphin.
Distribution from https:
//teara.govt.nz/en/map/4675/
distribution-of-hectors-and-mauis-dolphins.

(pollution disruption) (Murphy et al. 2015) and tertiary (noise

disturbance) (Brandt et al. 2011). It is also supposed that climate

change influences the physical condition of harbour porpoises

(Heide-Jørgensen et al. 2011). With regard to population trends,

declining trends have been observed in the Celtic and Irish Seas

(NAMMCO, IMR 2019).

Some biological parameters are well know for the overall pop-

ulation and the different stocks (e.g. age-at-death in Figure 7.17)

but there are still uncertainties about the population dynamics of

these stocks (Murphy et al. 2020). It could be of interest to apply

the framework used here to produce stock-specific population

rates (via covariates). This will also allow the identification of

possible changes in life history traits over time as a function of

stock to explore possible exchanges between sinks and sources. his

would help to refine and prioritise the management interest of the

different units recognised by the MSFD.

Hector’s dolphin

Dolphins of the genus Cephalorhynchus are distributed in

the Southern hemisphere in South-America, South Africa and

New Zealand. The Hectors’dolphin (Cephalorhynchus hectori, van
Beneden 1881) is the only species of this genus tto occur in New

Zealand waters (A. N. Baker 1978) has recently been estimated

to be around 15,000 individuals (Annex D 2017). The biological

parameters of this speciesweredeterminedwith anaverage lifespan

of 20 years and an age at sexual maturity between 6 and 9 years for

females (Slooten 1991). From the age distribution of the dolphins

obtained from standings, the survivorship of the population and

its growth rate were determined using the Siler model and a Leslie

matrix approach (Slooten and Lad 1991). The population appears

to have a low growth rate and entanglement in gillnet fisheries is

suspected to be an important source of additional mortality for

this population, as is predation by sharks (Dawson and Slooten

1993; Slooten, Fletcher, and B. L. Taylor 2000). A sub-species of

Hector’s dolphin, the Maui’s dolphin (Cephalorhynchus hectori maui,
Baker 2002) lives in the north of New Zealand (Margin-Figure

7.19). The population of this subspecies has fallen to about 60

individuals (C. S. Baker et al. 2016). It might be interesting to

use a similar methodology to that employed in this project on

the Hectors dolphin population. The population size of 15,000

individuals could provide enough strandings to achieve vital rates.

The advantage could be to use the long age-at-death data time

serie (without using only females samples) and discriminate the

impact of predation and bycatch on the value of survival rates as

covariate effect. The use of the year of stranding could be of interest

to identify a possible shift in life history-traits.

https://www.fisheries.noaa.gov/species/hectors-dolphin
https://www.fisheries.noaa.gov/species/hectors-dolphin
https://www.fisheries.noaa.gov/species/hectors-dolphin
https://teara.govt.nz/en/map/4675/distribution-of-hectors-and-mauis-dolphins
https://teara.govt.nz/en/map/4675/distribution-of-hectors-and-mauis-dolphins
https://teara.govt.nz/en/map/4675/distribution-of-hectors-and-mauis-dolphins
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Pink dolphin in colombia © Jaime

Rojo.

River dolphins

River and coastal dolphin populations can be monitored

both on the basis of individuals found stranded and from capture-

recapture programmes. It is the case for the population of Ir-

rawaddy dolphins (Orcaella brevirostris, Owen 1866) that lives in the

Mekong river (Cambodia) and is currently classified as Critically

Endangered by the IUCN (Beasley et al. 2013). It was possible

to conduct the two surveys and compare their results. Survival

rates were both estimated by a carcass recovery programme and

a capture-recapture programme. The authors concluded that the

comparison was interesting and provided more information on the

bias that could impact the survival estimate for the twomonitoring

(Beasley et al. 2013). Coastal dolphins species can be followed

through capture-recapture studies such as the Guiana dolphins

(Sotalia guianensis, van Beneden 1864) (Cantor et al. 2012). It could

be of interest to use age-at-death data to compare between the

estimates made through CMR monitorings and carcass recoveries

for similar species.

Mammal and/or megafauna species

The current challenges in terms of the biodiversity crisis

linked to direct anthropogenic impact or indirectly through climate

change, require a global cooperative effort to acquire biological data

(Urban et al. 2016). Vital rates are an important source of informa-

tion for understanding and predicting the effects of anthropogenic

impacts and climate change (Paniw et al. 2021). Demographic

databases are particularly interesting given the issues outlined

above and allow both sharing and a global effort to produce demo-

graphic indicators (Salguero-Gómez et al. 2016). These databases

also provide good sources of information for generating life history

knowledge and are important today in a context of digitisation of

ecology that requires good and reproducible research practices.

TheEuropeanwildboar (Sus scrofa, Linnaeus 1758) is studied
using several forms of monitoring (hunting bags, CMRmonitoring,

age or stage matrix models): (Sáaez-Royuela and Telleriia 1986;

Keuling et al. 2013; Massei et al. 2015). For this species, it might

be interesting to compare age-at-death estimates and individual

long-term monitoring.

The Arctic fox (Vulpes lagopus, Linnaeus 1758) is a mammalian

species for which little demographic information exists (Tanner-

feldt and Angerbjörn 1996; Meĳer, Norén, and Angerbjörn 2011).

The analysis of the teeth of this species allows the determination

of variations in their feeding ecology in addition to age (Ungar

et al. 2021). With the approach of this thesis, it would be possible
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Arctic fox ©Marco Gaiotti.

to link ecological variations and vital rates of threatened Arctic fox

populations.

Crocodilians are an order of sauropsids for which little informa-

tion is available on population trends. They may be sensitive to

pressures such as mercury contamination. The few demographic

studies focus mainly on theMississippi alligator (Alligator mississip-
piensis, Daudin 1802; D. Taylor andNeal 1984). Age is approximated

by body size (Hutton 1986; Eaton and Link 2011). Although it ap-

pears that age-based matrix models do not necessarily capture

the effect of factors on populations for crocodilians, it may be of

interest to provide baseline estimates of survival rates.

Some species are important to indigenous human populations. The

S’ami people depended on the presence of reindeer (Rangifer taran-
dus, Linnaeus 1758), which they partially domesticated. This is no

longer the case, but there is still a strong link between this people

and the presence of reindeer in the Arctic. Other peoples such as

the Inuit still hunt reindeer. This species seems to be impacted by

climate change: (Heggberget, Gaare, and Ball 2002; Moen 2008).

Recent progress has made it possible to determine the age at death

of this species (Van den Berg, Loonen, and Çakırlar 2021). It could

be interesting to link the survival of this species to variations in the

environment and food resources in order to better understand its

dynamics and to favour the conservation of the culture of certain

indigenous peoples.
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7.4 Conclusion and perspectives

This thesis project has provided a new and more flexible approach to survival modelling

based on linear regression. This approach allowed the inclusion of covariates and random effects.

It seems appropriate to model the survival of elusive species taking into account covariates and

random effects. This project allowed a new assessment of the common dolphin population in the

Bay of Biscay to be conducted. The stratified random sampling developed in the demographic

study allowed a better representation of the stranded population and avoided potential selection

biases that could affect the survival estimate. The survival modelling approach developed in the

project allowed the variation in vital rates over time to be modelled. It also highlighted the effect of

bycatch or sex. The associated population projections showed that the viability of the population has

potentially deteriorated over the time period considered. The viability of the population appears to

be strongly threatened by bycatch as an external mortality force. The multilevel regression with

post-stratification approach adapted to estimate bycatches allowed for the first time to use an

on-board observer dataset despite its known biases. It also provided an estimate of bycatch and

associated parameters at a spatial and temporal scale never achieved before for common dolphins in

the Bay of Biscay. Ultimately, the management strategy evaluation approach allows the combination

of demographic and bycatch estimates to define sustainable removal limits for the Bay of Biscay

common dolphin population. This is primarily a feasibility exercise as the study area considered

does not take into account the entire management unit currently recognised for the common dolphin.

This approach is the first to take into account several types of data specific to this population in order

to define management strategies with regard to the conservation objective proposed by OMMEG in

European waters.

This work is important from both a fundamental and an applied point of view. Elusive species

are defined in this project as species that may have one or more of the following characteristics:

difficult to monitor individually, sparsely distributed, difficult to estimate anthropogenic mortality

and difficult to implement management policies. The demographic approach developed in this

project is an interesting contribution to the literature on these species. It addresses some of the

issues inherent to cross-sectional monitoring and analyses. It shows that the sampling of individuals

is important to minimise bias in the estimation of vital rates. It provides a method for estimating

vital rates that allows the effect of different variables on vital rates to be estimated. It could be

very interesting to apply this modelling approach to other elusive species such as the harbour

porpoises in the North-East Atlantic. This population presents major conservation challenges. The

number of strandings seems to be sufficient for stratified random sampling. We also have long

time series that would allow us to test for variation in vital rates over time. The covariates to be

tested are also multiple. We have data on contamination by pollutants. We also have strandings

in several management units, which would allow us to highlight differences in viability between

populations.

The work carried out in this project is mainly associated with the Bay of Biscay. However,

the current management unit of the common dolphin is much larger and includes a large part

of European Atlantic waters. It is difficult to generalise the demographic results and removal

thresholds obtained in this project to the whole management unit. It might be interesting to apply

the project’s approach using further data covering more of the European coastline. But for the time

being, the demographic estimates produced can directly feed into the MSFD. It would even be

possible and interesting to revise the classification of demographic indicators within the framework

of the MSFD. The work carried out could provide an operational indicator that would make it
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possible to highlight an alteration in viability before it is translated into a depletion that could be

detected by abundance surveys.
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Figure 1: Estimated abundances of common dolphin and stripped dolphin for the SCANS II, CODA, SAMM and
SCANS III surveys. Abundances are provided by survey cruise, by block and by species. Table formatted by Olivier Van

Canneyt, Observatoire Pelagis.



Figure 2: Marine regions as identified by the European Marine Strategy Framework Directive. Figure from http:
//www.eea.europa.eu/about-us/countries-and-eionet/marine-regions.

http://www.eea.europa.eu/about-us/countries-and-eionet/marine-regions
http://www.eea.europa.eu/about-us/countries-and-eionet/marine-regions
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Abstract

Many long-lived vertebrate species are under threat in the Anthropocene, but

their conservation is hampered by a lack of demographic information to assess

population long-term viability. When longitudinal studies (e.g., Capture-Mark-

Recapture design) are not feasible, the only available data may be cross-sec-

tional, for example, stranding for marine mammals. Survival analysis deals

with age at death (i.e., time to event) data and allows to estimate survivorship

and hazard rates assuming that the cross-sectional sample is representative.

Accommodating a bathtub-shaped hazard, as expected in wild populations,

was historically difficult and required specific models. We identified a simple

linear regression model with individual frailty that can fit a bathtub-shaped

hazard, take into account covariates, allow goodness-of-fit assessments and

give accurate estimates of survivorship in realistic settings. We first conducted

a Monte Carlo study and simulated age at death data to assess the accuracy of

estimates with respect to sample size. Secondly, we applied this framework on

a handful of case studies from published studies on marine mammals, a group

with many threatened and data-deficient species. We found that our frame-

work is flexible and accurate to estimate survivorship with a sample size of

300. This approach is promising for obtaining important demographic infor-

mation on data-poor species.

KEYWORD S

age at death, Monte Carlo study, regression, survival analysis, survivorship

1 | INTRODUCTION

The protection and conservation of wildlife is a salient
challenge in the Anthropocene, where human-induced
pressures are both far-reaching in their geographic and
temporal scope, and acute in their impact on biodiversity
(Bongaarts, 2019). Long-lived species are particularly sen-
sitive to these pressures: they can act as sentinel species
for whole ecosystems (Heithaus, Frid, Wirsing, &
Worm, 2008). Their demographic trajectory (e.g., extinc-
tion) can also affect the functioning of ecosystems, espe-
cially in the case of top predators (Beschta &

Ripple, 2009; Ritchie et al., 2012). Assessing the
demographic viability of long-lived species in the face of
current and future pressures is required for their pro-
active conservation; but such an endeavor may be ham-
pered in practice because of logistical challenges in moni-
toring and collecting relevant data at the relevant
spatiotemporal scales.

The classical way to assess a populations viability is to
first construct a static life-table where mortality and
fecundity rates for a cohort of individuals are tallied at
each age/stage of their life cycle (Caughley, 1966).
Knowledge of mortality at each age/stage allows to
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investigate the associated hazards, estimate vital rates,
such as (cumulative) survival; and to project the popula-
tion trajectory forward in time using matrix models
(Caswell, 2001; Leslie, 1945). Historically, the age at
death data used to construct life-tables were cross-
sectional (e.g., Gompertz, 1825): a sample of the popula-
tion is taken at a specific time and the observed age struc-
ture is assumed similar to that of a cohort of individuals
had we been able to monitor them from birth to death.
This cross-sectional design allows for a rapid demo-
graphic assessment (Boyd, Bowen, & Iverson, 2010;
Margules & Austin, 1990, pp. 126–127.) whose accuracy
however hinges on the assumption that the cross-
sectional design approximates well a longitudinal one.

Longitudinal designs, whereby an individual is moni-
tored from birth to death are, in wildlife ecology, a
byproduct of capture-recapture studies. The initial moti-
vation for the latter was the accurate estimation of abun-
dance in open populations when detectability is less than
perfect (Cormack, 1964; Jolly, 1965; Seber, 1965). Models
(e.g., the Cormack-Jolly-Seber model) tailored for these
life history data can provide accurate estimates of sur-
vival that can be fed into matrix population models
(e.g., Fujiwara & Caswell, 2001). Since the 1980s, the
emphasis of capture-recapture studies in wildlife ecology
shifted from abundance to survival estimation (Lebreton,
Burnham, Clobert, & Anderson, 1992) and the inclusion
of individual-level covariates, which paved the way for a
better understanding of evolution and natural selection
in the wild (Cam, 2009). Concomitant with this change
in focus was the less frequent reporting of life-tables in
publications, an omission partly mitigated by the rise of
open online databases such as COMADRE/COMPADRE
(Salguero-Gómez et al., 2015; Salguero-Gómez et al.,
2016). From an applied perspective in conservation, the
obvious drawback of capture-recapture studies is the time
and manpower required to collect data, especially for
long-lived species. White, Nagy, and Gruber (2014)
recently proposed a new development that aims to avoid
birth to death monitor. From both juvenile mortality and
fecundity, it is possible to infer adult mortality. However,
it requires monitoring the juvenile part of the whole pop-
ulation in order to model the overall population dynam-
ics. The mismatch between the necessary delay in data
acquisition and the urgency of mitigation on conserva-
tion decisions can be acute, suggesting interest for cross-
sectional data that have the additional benefit of being
applicable on species where the identification of individ-
uals is difficult (Williams, Nichols, & Conroy, 2002). One
alternative to species identification, for vital rates estima-
tion, is the use of count data. This approach may involves
the building of an N-mixture model relying on the
individual-state knowledge. Zipkin et al. (2014) proposed

a development that allows taking into account data even
if the individual stage is unknown. Another way to
obtain vital rates with count data, as time-series, is to
conduct an inverse modeling approach: this method also
presents the advantage to consider individual-level state
data (González, Martorell, & Bolker, 2016). Even if these
approaches are promising for hard to monitor species,
they remain difficult to apply on some species, especially
very mobile ones.

Assuming that cross-sectional data on age at death
are available and representative, conservationists now
face some further choices, such as non-parametric (e.g.,
Kaplan–Meier survivorship curves; Clark, Bradburn,
Love, & Altman, 2003; Kaplan & Meier, 1958) versus
parametric modeling. The latter presents the advantage
to provide smoothing and to summarize the data in a
handful of parameters. This is small sample attractive:
non-parametric approaches such as the Kaplan–Meier
estimators (also known as Product Limit Estimators) for
survivorship is piecewise constant with discontinuities at
the time of death of individuals in the sample. While
assumption-lean, this estimator may yield from small
samples rough survivorship curves shaped like staircases
that can be difficult to compare. Even with little sample
size (i.e., few age at death data regarding the overall time
series length), parametric modeling aims to estimate
smooth survivorship and allow the statistical comparison
of parameters values (Kleinbaum & Klein, 2010). It is
important to notice that the estimation hinges on the cor-
rect specification of the underlying model. More realisti-
cally, the challenge is to find a parsimonious model that
will nevertheless accommodate the available data with-
out shoehorning the analysis into a convenient, but not
necessarily realistic, template. For long-lived animal spe-
cies, a realistic model should provide the so-called
bathtub-shaped curve whereby there is a high juvenile
mortality, followed by a lower and rather constant adult
mortality and, finally, a late increase due to senescence
(Choquet, Viallefont, Rouan, Gaanoun, & Gaillard, 2011;
Siler, 1979). Although there are models to accommodate
this bathtub pattern (Heligman & Pollard, 1980;
Siler, 1979), they can be difficult to fit (but see
Saavedra, 2018), their goodness of fit can be hard to mea-
sure; and they usually do not allow for the inclusion of
individual-level covariates such as sex.

Our aims are to investigate a parametric approach for
the construction of life-tables in a data-poor context, with
long-lived vertebrate species in mind. We will first present
a simple regression modeling framework for the analysis
of age at death data (with or without right-censoring) that
can accommodate mortality patterns such as constant,
increasing/decreasing, unimodal or bathtub-shaped.
Importantly, this framework allows the seamless inclusion
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of individual-level covariates. We then conduct a Monte
Carlo simulation study with five biological scenarios to
assess our framework, focusing on the accurate estimation
of survivorship and mortality. Finally, we illustrate our
methodology on a handful of real case studies, with a
focus on marine mammals. This group includes many elu-
sive and long-lived species that are threatened (Avila,
Kaschner, & Dormann, 2018), data-deficient (Parsons,
2016) and difficult to study with a longitudinal approach.
The most common age at death data for marine mammals
are obtained from strandings (i.e., cross-sectional monitor-
ing) which may be associated to selection biases. However,
stranding samples are a source of age data from which it is
possible to obtain vital rates.

2 | MATERIALS AND METHODS

2.1 | Definitions

Survival analysis deals with the analysis of the timing of
death (Clark et al., 2003; Kaplan & Meier, 1958; Lesaffre &
Lawson, 2012; Tanner & Wong, 1984). We assume data
y ≥ 0 to be time-to-event data, for example longevity, sur-
vival time or age at death data. Such data can be collected
from stranding of animals (that is marine animals that are
washed ashore), or any recovery of dead specimens
(e.g., Lepus europaeus, Pallas 1778; Ovis dalli, Nelson 1884)
when aging is possible (e.g., from teeth growth layers). Let
the index i denotes the ith individual, and N the sample
size. The equation yi �D θð Þ reads as datum yi follows sta-
tistical distribution D of parameters θ and with probabil-
ity density function f(y; θ) and cumulative density
function F y;θð Þ=Pr y≤ tð Þ= Ð t

0f y;θð Þdy.
The survival function S(t; θ) gives the probability of

being alive at time t, that is Pr(y > t) = 1 − Pr(y ≤ t) = 1
− F(y; θ). At the population level, this quantity corre-
spond to the fraction of the population that is still alive at
age t, that is cumulative survival or simply survivorship.
The hazard rate, or age-specific mortality rate, is the
instantaneous probability of dying at time t + dt given
that and individual i has survived until time t.

h tð Þ= lim
dt!0

Pr t≤ yi < t+dt;yi > tð Þ
dt

ð1Þ

With parametric models, the hazard rate can be
expressed in terms of the probability density and survi-
vorship functions:

h t;θð Þ= f t;θð Þ
S t;θð Þ ,withS t;θð Þ>0 ð2Þ

Estimation of the hazard rate function is the goal of
parametric survival analysis (Lesaffre & Lawson, 2012).

2.2 | Data simulation scenarios

We considered five biological scenarios corresponding to
different patterns in survivorship and the underlying haz-
ard (Figure 1, see Text S1):

1. A unimodal distribution of age at death
corresponding to a unimodal hazard, whereby mortality
risk increases in early ages, peaks and decreases in
late life.

2. A mixture of two hazards corresponding to either a
unimodal (a) or bimodal (b) distribution of age at death.

3. A bathtub-shaped hazard due to individual frailty,
that is individual-specific risk of mortality.

4. A bathtub-shaped hazard with an additional bump
in early life due, for example, to an additional source of
mortality.

Each scenario is associated to survivorship and haz-
ard functions (Figure 1).

2.3 | Statistical analysis of age at
death data

We used parametric models ℳ of age at death data y to
estimate hazard and survivorship rates (see Data S1 for
model code): the latter are especially of interest to conser-
vationists. We assumed that the exact timing of death is
available, but our framework can easily accommodate
censoring (that is cases when death is known to have
occurred before or after measurement). Our framework
consists in modeling the logarithmic transform of yi in a
regression framework (location-scale model):

logyi = μ+ σ × εi−
Zi

β ð3Þ

where μ is a location parameter; σ and 1
β are (positive)

scale parameters; and Zi are independent standard expo-
nential deviates. The parameter 1

β quantifies individual
frailty (Kannisto, 1991; Reed, 2011) or persistent demo-
graphic heterogeneity sensu Cam, Aubry, and
Authier (2016). The choice of the statistical distribution
for the residuals εi determines the shape of the underly-
ing hazard rate. We considered three different choices,
each corresponding to a model (see Text S2 for the associ-
ated survivorship and hazard functions).

• ℳ1: εi �N 0,1ð Þ and 1
β =0 (β = +∞)
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This model assumes a log-normal distribution for yi,
which corresponds to a unimodal hazard curve.

• ℳ2: εi �G 0,1ð Þ and 1
β =0 (β = +∞)

This model assumes a Gumbel distribution for the
residuals εi, which corresponds to a Weibull distribution
for yi. It is known as the Accelerated Failure Model. The
hazard rate is monotonic: it can be constant, increasing
or decreasing depending on the value of σ.

• ℳ3: εi �N 0,1ð Þ and 1
β >0

This choice leads to assume a normal-Laplace distri-
bution for logyi, which induces a flexible hazard curve
depending on the value of β (Reed, 2011). In particular,
the hazard can be a bathtub-shaped, as expected for
example for long-lived species of vertebrates in the wild
(Choquet et al., 2011).

Our framework given by Equation (3) is a flexible
location-scale model and boils down to a generalized
linear mixed model (GLMM; Bolker et al., 2009) with
a handful of parameters θ = (μ, σ, β) to accommodate
a large diversity of survivorship and hazard curves (see
Text S2 for equations). One attractive feature of this
framework is the seamless incorporation of p
individual-level covariates xip in Equation (3)
(Reed, 2011):

logyi = μ+
Xp
j=1

γpxip + σ × εi−
Zi

β ð4Þ

An important restriction of our approach is that
only time-invariant individual-level covariates can be
included. This covers however interesting cases such as
sex-differences in survival or differences due to geogra-
phy (that is comparing different populations of the same
species).

2.4 | Monte Carlo study

Our aim is to carry a Monte Carlo study (e.g., Morris,
White, & Crowther, 2019) to investigate whether our
modeling framework can provide accurate survivorship
estimates from age at death data. We considered five bio-
logical scenarios to cover a diversity of realistic mortality
patterns. For each scenario, we simulated 100 data sets of
sample size 100, 200, 300, 400, 500 and 1000 to provide
recommendations on the minimum sample size required
for accurate estimation. Data simulation was carried out
in R version 3.6.0 (R Core Team, 2019) using base

FIGURE 1 The five biological scenarios considered in the Monte Carlo simulation study. Scenario 1 corresponds to a low juvenile

mortality, a high adult mortality and no senescence. Scenario 2a corresponds to a low juvenile mortality and a higher adult mortality

plateau. Scenario 2b corresponds to a high juvenile mortality and a lower adult mortality that decreases in a linear fashion. Scenario

3 corresponds to a high juvenile mortality, a lower adult mortality and senescence (bathtub shaped hazard). Finally, Scenario 4 corresponds

to a high juvenile mortality and a high adult mortality, with a transient dip in mortality risk between these two life-stages
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functions such as rnorm and rexp. Each simulated data
set was then analyzed with our framework that consid-
ered three parametric models. Crucially, we considered
scenarios for which the true model was not among the
set (Table 1). In other words, we assessed the perfor-
mance of our framework under the possibility that none
of the candidate models is correctly specified with respect
to the data at hand. For example ℳ2 is a Weibull model,
which is widely used in survival analysis (Kleinbaum &
Klein, 2010) it is biologically unreasonable for marine
megafauna and top predators as a model over their
entirely lifetime because it cannot accommodate the
expected bathtub-shape hazard. Model fitting was done
with software Stan version 2.18 (Carpenter et al., 2017)
called from R via the library rstan (Stan Development
Team, 2018). Three chains were run with a warm-up of
500 iterations, followed by an additional 1000 iterations.
No thinning was performed but the delta parameter of
the NUTS algorithm was increased from 0.80 to 0.95 to
avoid divergent transitions and the maximum tree depth
increased to 15. Parameter convergence was assumed
when its R̂ statistics was lower than 1.10. Upon conver-
gence, the three chains were pooled to obtain a sample of
≈1000 values from the posterior distribution.

Model fit was assessed with the widely applicable
information criterion (WAIC, Gelman, Hwang, &
Vehtari, 2014), computed with R package loo (Vehtari,
Gelman, & Gabry, 2017). Survivorship estimates from
each model were computed from the posterior distribu-
tion of parameters, and visually compared to the true sur-
vivorship curve and a non-parametric (Kaplan–Meier)
estimate. Because we carried out a simulation study, the
true survivorship curve was known and could have been
used to compute the root-mean-squared error (RMSE).
However, in practice, this is not the case and we chose
instead to compute RMSE with respect to the non-
parametric Kaplan–Meier survivorship estimates. The lat-
ter were thus assumed to represent the best estimates

available to researchers, and the aim was to assess
whether a parametric model could provide a fit as good
as that from a non-parametric approach.

RMSEℳ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 ŜKS tð Þ− Ŝℳ tð Þ� �2h ir

ð5Þ

where ŜKS tð Þ is the Kaplan–Meier estimate of survivor-
ship at age t, Ŝℳ tð Þ is the corresponding estimate from
parametric model ℳ, and the expectation is taken over a
sequence of values of t.

In order to assess model selection and model check, it
is necessary to determine if the models represent well the
data. Conn, Johnson, Williams, Melin, and Hooten (2018)
recently reviewed some ways to proceed. We choose to
do a prior predictive check to test for adequacy between
models and time to event data (Text S3 and Figure S1).
We also did a posterior predictive check (Text S3 and
Figure S2) to see whereas data simulated through the
fitted models are similar to that observed from the Bar-
low and Hohn (1984) data set. The comparison is done
with both the true Kaplan–Meier survivorship curve and
the ones from posterior simulated data sets (Text S3).

Our focus was on accurate estimation of survivorship,
and thus we assessed goodness-of-fit by comparing the
expected mean survivorship under each model to the
observed Kaplan–Meier estimates. This focus was in line
with downstream use of such estimates in matrix popula-
tion models: here the salient statistics we want our model
to reproduce (Gelman, 2003) is the survivorship function.

Our study design is summarized in Table 1 and
Figure 2. It consisted in a comprehensive factorial design
crossing (a) sample size (100, 200, 300, 400, 500 and

TABLE 1 Design of the Monte Carlo study: model ℳ2 acts as

a negative control as it was never used to simulate data, hence it

should not be selected as the best model as it is misspecified

Model/scenario 1 2a 2b 3 4

ℳ1 + − − − −

ℳ2 − − − − −

ℳ3 − − − + −

Note: Likewise, scenarios 2a, 2b and 4 corresponds to data gener-
ated from mixture models not included in the set: they serve as tests
of the performance of our framework to obtain accurate estimates
with mispecified models. Finally, scenarios 1 and 3 act as positive
control as they correspond to data simulated under models ℳ1 and
ℳ3, respectively.

FIGURE 2 Monte Carlo study flowchart. We considered five

biological scenarios, six different sample sizes for data, and three models

for analysis. For each combination, we assessed model fit and the

accuracy of parameter estimates. Model selection is done with

Watanabe-Akaike information criterion (WAIC) and root-mean-square

error (RMSE) [Color figure can be viewed at wileyonlinelibrary.com]
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1000), (b) mortality patterns (five scenarios), (c) paramet-
ric models (three models) and (d) individual covariate
inclusion. Two covariates (x1, x2) were generated by sam-
pling from a Bernoulli distribution with probability 0.5.
These covariates could represent for example sex or two
sub-populations in different geographic areas.

2.5 | Applications

We analyzed real data sets from published case studies
(Table 2) within our framework, and compared the esti-
mated parametric survivorship curves with the non-
parametric Kaplan–Meier one. All species in Table 2 are
marine mammals except the spur-thighed tortoise (Tes-
tudo graeca, Mertens 1946) which was included to com-
pare our approach with that of Rodríguez-Caro
et al. (2019) in a data-poor context for conservation. It is
important to precise that data from Rodríguez-Caro
et al. (2019) were obtained from live animals, still alive at
the time of measurement (Rodríguez-Caro, Graciá,
Anadón, & Gimenez, 2013; Sanz-Aguilar et al., 2011).
However, we used these data as if they were age at death
data and ignored right-censoring.

3 | RESULTS

Across all scenarios and sample size, parameter conver-
gence (assessed with R̂ ) was not equivalently reached
depending on the model and scenario (see Figures S3 and
S4a). ℳ1 always converged very easily. In contrast, ℳ2

and ℳ3 were not as good as ℳ1 to converge with 1000
iterations (500 as warm up). More precisely, convergence
for ℳ3 was difficult for β given this configuration (see

Figures S5 to S10). An increased in the number of itera-
tions per chains (here from 1,000 to 2000) solved the
problem (Figure 3).

3.1 | Hazard rate estimation

Estimated hazard curves are shown in Figure 4 for each
combination of scenario, model and sample size. Models
ℳ1 and ℳ3 were the best fitting ones in the first and
third scenarios respectively (i.e., positive control, Table
1): estimates were accurate and precision increased with
sample size. For scenarios 2a, 2b and 4, all estimates were
biased, and precision increased with sample size
(Figure 3). In contrast, model ℳ2 never provided accu-
rate hazard estimates (i.e., negative control). The same
results were obtained when covariates were included (not
shown).

3.2 | Survivorship estimation

Estimated cumulative survival curves are shown in
Figure 5 for each combination of scenario, model and
sample size. Across all scenarios and sample sizes, esti-
mates from model ℳ3 were the most accurate (Figure 5,
see Text S4 and Figure S11 for RMSE results). Precision
increased with sample size. In particular, survivorship
rates estimated with ℳ3 were very close to Kaplan–Meier
estimates for sample size ≥300. This sampling size also
provided a good confidence interval precision with a
maximum width of 0.04% while estimating survivorship
(Figure S12). Predictive ability, as measured with WAIC,
was the greatest for model ℳ3: it was consistently ranked
first across each combination of scenario and sample size,

TABLE 2 Case studies

Data set Taxon Species
Sample
size Covariate

Murphy et al. (2012) Pinniped Monk seal (Monachus monachus, Hermann 1779) 28 Sex

Slooten (1991) Cetacean Hector's dolphin (Cephalorhynchus hectori, Van
Beneden 1881)

60 None

Rodríguez-Caro et al. (2019) Chelonian Spur-thighed tortoise 154 None

Murphy et al. (2009) Cetacean Common dolphin (Delphinus delphis, Linnaeus
1758)

515 None

Kesselring, Viquerat, Brehm, and
Siebert (2018)

Cetacean Harbor porpoise (Phocoena phocoena, Linnaeus
1758)

561 Area

Saavedra (2018) Cetacean Delphinidae 579 None

Barlow and Hohn (1984) Cetacean Pantropical spotted dolphin (Stenella attenuata,
Gray 1846)

1892 Sex

Note: Data sets were selected based on the availability of published (raw) data, species and sample size.
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even for scenario 1 where model ℳ1 was the true data-
generating mechanism (see Text S4 and Figure S13).

3.3 | Covariate effects

Covariate effect estimation is summarized on Figure 6 as
a difference between survivorship rates. Model ℳ2 could
not estimate difference in survivorship. Model ℳ1 is only
effective for both scenario 1 and 2a. ℳ3 could estimate
accurately covariate effects when the difference is
expressed as an unimodal pattern (i.e., scenario 1, 2a and
3). The precision of the estimated effect increased with
sample size for models ℳ1 and ℳ3. With small sample
size, sign errors on the effect of covariate was possible
but disappeared with sample size ≥300.

3.4 | Case studies

Estimated survivorship curves from published data sets
are plotted against the Kaplan–Meier curves in Figure 7
for each model. Model ℳ3 was the most flexible: it pro-
vided the most accurate estimates for each data set.
Uncertainty, as measured with 80% credible intervals

were narrower with model ℳ3, and overlapped most with
Kaplan–Meier estimates. Model ℳ3 consistently had the
lowest WAIC.

In the handful of case studies where covariates were
available (Table 2), a similar pattern arose. Including
covariate can be expected to account for more variation
in the data, and a lower WAIC. For both ℳ1 and ℳ2, this
was indeed the case. For ℳ3 it was only true with the
Murphy et al., 2012 data set (see Text S4 and Table S1).
The estimated covariate effect for both Barlow and
Hohn (1984) and Kesselring et al. (2018) case studies is
summarized on Figure 8 (see also Text 5). Models ℳ1

and ℳ3 both estimated a survivorship difference between
each covariate. As it is the case without covariates
(Figure 7), the ℳ3 curve fits the Kaplan–Meier estimate
better. However, there is a discrepancy between both, for
each covariate. ℳ3 is able to spot a difference depending
on covariate, but is not able to perfectly fit the Kaplan–
Meier estimate.

4 | DISCUSSION

We assessed the ability of a simple linear mixed model
to estimate hazard and survivorship rates with

FIGURE 3 Models parameters convergence assessment for each sampling size with n(warm-up) = 1000 iterations and a total of N =

2000 iterations [Color figure can be viewed at wileyonlinelibrary.com]
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cross-sectional age at death data. We used Monte Carlo
simulations to investigate the accuracy and precision of
estimates across a diversity of mortality patterns and sev-
eral sample sizes. We contrasted the performance of three
different models and found one model, the model ℳ3;
that was consistently better with respect to prediction of
survivorship, even when it was misspecified.

4.1 | Age at death data and sampling bias

A crucial but implicit assumption of the cross-sectional
approach to survival analysis is that the sample is repre-
sentative of the larger population, especially with respect
to age structure (Caughley, 1966). This assumption is on
the data set, not on the modeling. The way of collecting
age at death data is therefore determinant to support this
assumption. Transerval designs involving, for example,
recording of dead carcasses, hunting bags or population
census must match the representativity premise. How-
ever, it is possible that an implicit process (e.g., bycatch)

shapes the observed age frequency (e.g., from stranded
animals). In this case, it is necessary to explore some
potentials age-dependent selection biases in the popula-
tion (Barlow & Hohn, 1984). With stranding data, the sta-
tionary age distribution assumption needs to be
substantiated with auxiliary data, but ultimately, it is
likely to remain a working hypothesis on which any
cross-sectional method will lean on. In the case of ceta-
ceans, many species are not amenable to study with a
longitudinal design, and strandings remain an important
source of information (e.g., Murphy et al., 2009), and
demographic information in particular (Ferguson, Stir-
ling, & McLoughlin, 2006; Saavedra, 2018). When longi-
tudinal studies are not possible, there are very limited
options to obtain demographic information. In some
cases, a comparative approach may be possible where
information on species with similar life histories can be
leveraged (Caswell, Brault, Read, & Smith, 1998; Hashi-
moto, Shirakihara, Shirakihara, & Hiramatsu, 2013). This
choice relies crucially on the assumption of between-
species similarity. Even if comparative data are available,

FIGURE 4 Estimated hazard curves confidence intervals for each combination of scenarios (rows), models (columns), and sample size

(facets). Estimated confidence intervals are depicted in each panel and compared to the true hazard curves (in black). Even-numbered

scenarios (2a, 2b and 4) are on the left, and odd-numbered ones (1 and 3) on the right [Color figure can be viewed at wileyonlinelibrary.com]
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the ecological context may be too different to justify this
approach in some instances. Strandings may be the only
available source of data, and even if they are suspected to
suffer from some selection bias, a pragmatic approach to
conservation requires to use them (Boyd et al., 2010),
keeping in mind the inherent limitations of these data.

Many conservation instruments specifically requires
to use the best available science (e.g., the Marine Strategy
Framework Directive EC 2008/56 in Europe). The opera-
tive expression “the best available science” may be under-
stood broadly as what lies at the intersection of state-of-
the-art methods, good data and accurate knowledge. In
practice, there may be a hiatus between the canonical
approach that should be, and the pragmatic one that can
be pursued at the time conservation actions need to be
decided. A conclusion of a species being data-deficient
often leads to the doldrums with respect to conservation
decisions (Parsons, 2016). Likewise, the many uncer-
tainties that can affect any scientific studies can easily
lead to inactions (Ascher, 2004). It is because we are
starkly aware of these limitations that we carried out this
study to identify a pragmatic approach to estimate survi-
vorship rates from age at death data. Crucially, all the

models we used are conditional of the underlying sample
being representative of the population it is taken from.
Granting this assumption, we identified a simple model
from Reed (2011) to obtain accurate estimates.

4.2 | Prediction accuracy and models'
goodness of fit

Traditionally, estimating survivorship rates of marine
mammals with cross-sectional data was done with para-
metric models such as the Siler or Heligman-Pollard
models (Heligman & Pollard, 1980; Siler, 1979). These
models aim at reproducing a bathtub-shaped hazard
curve, but need several parameters to do so. Further-
more, they can be difficult to fit although new tools have
been developed to use these models (Saavedra, 2018). A
remaining challenge with these models is to assess good-
ness of fit, to incorporate individual-level covariates and
perform model selection. The simple parametric form of
Reed (2011) for analyzing the logarithm of age at death
data provides a bathtub-shaped hazard with a linear
mixed model, the current workhorse of ecologists (Bolker

FIGURE 5 Estimated survivorship confidence intervals for each combination of scenarios (rows), models (columns) and sample size

(facets). Estimated confidence intervals are depicted in each panel and compared to the truth (in black). Even-numbered scenarios (2a, 2b

and 4) are on the left, and odd-numbered ones (1 and 3) on the right [Color figure can be viewed at wileyonlinelibrary.com]
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et al., 2009). This linear mixed modeling framework
allows for a seamless incorporation of covariates, and to
use standard tools for model selection and goodness-of-
fit assessments. In other words, model ℳ3 brings back
survival analysis within the comfort zone of ecologists.
We harnessed the simplicity of Reed (2011) to conduct
our Monte Carlo study, and found that the model
suggested by Reed (2011), our model ℳ3, was very
accurate in predicting survivorship (i.e., it consistently
had the lowest RMSE), even in cases when it was not
the true model behind the data (see Text S6 to have
details about priors). This result is important as it sug-
gests to start building model of increasing complexity
from ℳ3 and use tools such as WAIC (Gelman
et al., 2014) to balance model complexity with predic-
tion accuracy.

From our simulations, we can recommend a sample
size of at least 300 individuals to obtain accurate and pre-
cise estimates of survivorship, from which age-specific
survival estimates can be derived (see Figure S14 for
parameters estimates). This sample size recommendation
is practical and realistic (e.g.. Kesselring et al., 2018;
Mannocci et al., 2012; Murphy et al., 2009). This recom-
mendation is mostly to obtain precise estimates, but may

be relaxed in some cases where only sparse data may be
available (data-poor context hereafter). Estimates from a
simple linear model with an individual frailty term, were
accurate, if imprecise, with a sample size as small as 100.
The possibility to use sparse data is critical as it can help
conservation of marine mammals, many of which being
classified as data-deficient (Parsons, 2016; Schipper
et al., 2008). Some of the cases studies presented in this
paper support this statement, although, with so few data,
including covariates in the model will be difficult or will
require great care (see, e.g., Cox, Authier, Orgeret,
Weimerskirch, and Guinet (2020)). Rodríguez-Caro
et al. (2019) recently provided an approach to estimate
survival in data-poor settings using inverse modeling,
also to obtain accurate estimates of demographic rates.
With the latter, population matrix models can then be
used to assess population dynamics and the fate of
populations over time (Caswell, 2001).

5 | HAZARD AND FRAILTY

A linear mixed model can fit age at death data very well:
this ability comes for the individual frailty term, which

FIGURE 6 Estimated survivorship difference ( Ŝℳ tð Þjx=1
� �

− Ŝℳ tð Þjx=0
� �

) under each scenario. The covariate effect could

correspond to that of sex (e.g., x = 1 for females and x = 0 for males). Ten estimated difference curves are depicted in each panel and

compared with the truth [Color figure can be viewed at wileyonlinelibrary.com]
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corresponds to an individual random effect in the mixed
modeling framework. Individual frailty in statistical
models translate the empirical observation that two simi-
lar individuals (with respect to observable features of
their phenotypes) can nevertheless differ markedly in
their longevity (Cam et al., 2016; Kannisto, 1991). The
parametric form (i.e., exponential) for individual frailty
gives extra flexibility to the model, and can accommodate
a bathtub-shaped hazard curve (Reed, 2011). However, in
our simulations, we found that estimating hazard rates
was more difficult than estimating survivorship rates
(Figures 3 and 4). Thus, even though we identified a
model (ℳ3) for reliable and accurate estimation of survi-
vorship, the same model was less reliable with respect to
hazard. In other words, the individual frailty term in our
model ℳ3 should not be over-interpreted, and is probably
best seen as a statistical device for robust estimation. Haz-
ard estimation is a difficult statistical problem (Watson &
Leadbetter, 1964), for which there are better tools avail-
able, especially non-parametric ones (see, e.g., Hanson &
Jara, 2013), than the simple parametric approach we con-
sidered in this study. Non-parametric approaches to infer

the shape of the hazard curve are data-hungry: Hanson
and Jara (2013) using Bayesian non-parametric, which is
better described as a model with a massive number of
parameters (Hoff, 2013). The traditional Kaplan–Meier
approach is truly a non-parametric approach but it does
not give access to the underlying hazard, and give rough
(i.e., non-smooth; Figure 5) survivorship rates with small
sample size. In data-poor settings, parametric modeling
remains attractive because it has interpretable parameters
(e.g., individual frailty) and because these parameters can
smooth out noise in data, yielding more precise estimates
if the model is at least approximately correct, or more
pragmatically, if it is grounded in theory (e.g., bathtub-
shaped hazard for natural populations) and cannot be
rejected from a goodness-of-fit test. It is precisely in this
data-poor setting that we envision our parametric model-
ing approach to be most useful. Because the approach
boils down to linear mixed effects modeling, great flexi-
bility in model specification of additional random effects
(e.g., year effects, sex-specific frailties) is possible pro-
vided there are enough data to offset the increase in
complexity.

FIGURE 7 Survivorship curves estimated from published data sets. Each subpanel corresponds to a case studies in Table 2. Data set

size is represented horizontally. Panels are associated to the following data sets: (a) Murphy et al., (2012); (b) Slooten, (1991); (c) Rodriguez-

Caro et al., (2019); (d) Murphy et al., (2009); (e) Kesserling et al., (2018); (f) Saavedra, (2018); (g) Barlow and Hohn, (1984) [Color figure can

be viewed at wileyonlinelibrary.com]

ROUBY ET AL. 11



6 | BENEFITS AND LIMITS

We believe our approach is very valuable to estimate sur-
vivorship from sparse data but may be inadequate for
bimodal age at death data distribution. A bimodal distri-
bution of age at death data may be a sign of selection in
data collection Barlow & Hohn, 1984. Rather than con-
sider the sampling as biased, our approach can accommo-
date the selection phenomenon through two ways.
Firstly, it is possible to consider the selection bias as a
covariate in the study if one such covariate is available
(e.g., Bycatch index). If no such covariate is available, it
may be possible to build a mixture of two models
(e.g., ℳ1 and ℳ3) in order to take into account an addi-
tional mortality on some age classes. However, such a
development requires to conduct its own simulation
study which is beyond the scope of this study. Since our
approach is based on linear regression, it is straightfor-
ward to expand the model (e.g., random year effects, mix-
tures) while using familiar and well-established methods

for model selection (e.g., WAIC) and assessment of model
fit (e.g., posterior predictive checks, R2 statistics). These
features are assets, and suggest that our approach is com-
plementary to existing ones (e.g., Heligman &
Pollard, 1980; Saavedra, 2018; Siler, 1979) to estimate
vital rates in some data-poor species.

7 | CONCLUSION

Survivorship and hazard estimation are the goals of sur-
vival analysis but they remain difficult to achieve, even
for some long-lived and charismatic vertebrate species
such as cetaceans. User-friendly modeling methods are of
primary interest to leverage the demographic information
available in sparse, but previous, data that field ecologists
have collected. We think that our framework can facili-
tate the difficult statistical problem of survival analysis in
data-poor context by providing ecologists with a flexible
method to obtain accurate survivorship estimates from

FIGURE 8 Estimated survivorship difference ( Ŝℳ tð Þjx=1
� �

− Ŝℳ tð Þjx=0
� �

) for both case studies [Color figure can be viewed at

wileyonlinelibrary.com]
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age at death data. A simple linear mixed-model can
accommodate various mortality patterns without drasti-
cally increasing the number of estimated model parame-
ters. All the methods developed to assess fit quality
within models can be applied since our framework is
based on a mixed linear regression approach. This frame-
work is also very convenient to deal with small sample
size. With as few as 100 data points, survivorship may be
estimated to conduct exploratory analysis. With 300 data
points, survivorship estimates can be precise enough to
build life-tables and project populations trajectories tak-
ing into account covariates. Covariate inclusion can allow
to distinguish different causes of mortality (e.g., pathol-
ogy, bycatch, collision and so on) and to quantify their
respective influence on survival. This is valuable when
the studied population is under various pressures as it
may allow to identify the most threatening ones, and to
design efficient and relevant conservation policies
accordingly.
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Appendix 3: Insights of the demographic
approach

Histology

Figure 1: Diagram of the ovulation process with the important stages of the corpuses.

Convergence

To estimate vital rates from from previously acquired data, we built 8 models combining

both a survival and a reproduction part. The survival part was built from (Rouby, Ridoux, and

Authier 2021) framework and the reproduction component was built from an Accelerated failure

time framework. The two components may share a part of the overall variance. Estimation was

carried out in a Bayesian framework using programming language Stan (Carpenter et al. 2017b)

called from R v.4.0.1 (R Core Team 2020) with library Rstan (Stan Development Team 2020). Stan

uses Hamiltonian dynamics in Markov chain Monte Carlo (MCMC) to sample values from the joint

posterior distribution (Carpenter et al. 2017b). Four chains were initialised from diffuse random

starting points and run for a total of 20, 000 iterations, discarding the first 10, 000 as warm-up.

Default settings for the No-U-Turn Sampler (NUTS) were changed to 0.90 for adapt delta and 15

for max treedepth (Hoffman and Gelman 2014).



Siler and Heligman-Pollard

Complementary to the use of this model, we also used the models of Siler (Siler 1979)

and Heligman-Pollard (Heligman and Pollard 1980) which are the conventional methods in cross-

sectional survival analysis on delphinids (Mannocci et al. 2012; Barlow and Hohn 1984; Stolen and

Barlow 2003; Barlow and Boveng 1991; Secchi and Fletcher 2004). The Siler model is a five-parameter

model (01, 11, 02, 03 and 13). Siler parameter estimations are realised using the Nelder & Mead

optimization function (Nelder and Mead 1965) method and optim function of the package stats

in R as detailed in the strandCet package (Saavedra 2018). The survivorship ;(G) and the total

mortality @(G) are expressed as the product of the three competing risks processes:

;(G) = ; 9(G) × ;2(G) × ;B(G) (1)

@(G) = @ 9(G) + @2(G) + @B(G) (2)

with the exponential decreasing risk due to the juveniles:

; 9(G) = 4G?
((
−01

11

)
×

(
1 − 4G? (−11 × G)

) )
(3)

@ 9(G) = 01 × 4G?(−11 × G) (4)

with the constant risk experienced by each age-class:

;2(G) = 4G?(−02 × G) (5)

@2(G) = 02 (6)

with the exponential risk due to senescent ages:

; 9(G) = 4G?
((
03

13

)
×

(
1 − 4G? (13 × G)

) )
(7)

@ 9(G) = 03 × 4G?(13 × G) (8)

The Heligman-Pollard model used here is suited to admit cetacean bycatch at age 0 as it is

explained in (Saavedra 2018). The mortality function at age G is expressed as it follows:

@(G) = �(G+�)2 +
(
� + � × 4G?

(
−�

(
;=

(
G

�

))
2

))
+ ��G

(1 + ��G) (9)



It considers three mortality components: the young mortality curve �(G+�)
2
, the "accident

hump" in adult life (for exemple due to bycatch) � × 4G?
(
−�

(
;=

(
G
�

) )
2

)
and the adult mortality

curve
��G

(1+��G) . The parameter � allows to control the starting point of the mortality curve, making

possible to represent bycatch at age 0.

Both Siler and Heligman-Pollard models were computed using the strandCet R package

and are used for comparison with the Reed survival model (Reed 2011). The use of Siler and

Heligman-Pollard is more consistent with the literature and acts here as a sensibility analysis on the

survival estimation for the common dolphin population.

We applied the Heligman-Pollard model on the dataset used in this study to compute

mortality depending on the three life-components detailed in (Heligman and Pollard 1980). By using

the methodology developed by (Saavedra 2018), it was possible to take into account a bycatch effect

on 0 age-class. The overall mortality curve showed an increasing mortality from 0 to 21 years (figure

2) with a "plateau" from 5 to 8 years. The hump from 0 to 6 is associated to the additional mortality

model component whereas the increasing along the lifetime is due to the senescent component of

the model.

Figure 2: Mortality estimation for each age-class realised with the Heligman-Pollard adaptation from the StrandCet
package that allows to take into account a bycatch effect on 0 age-class. The black solid line represents overall mortality.

The blue dashed line is the mortality part associated with senescent individuals. The green dashed line is the mortality

part due to juveniles. The red dotted line corresponds to the additional mortality part on the natural mortality. The white

circles corresponds to the observed mortality rates computed with the data.

Logistic regression for Age at Sexual Maturity

To be consistent with the literature, we also used a logistic regression approach to compute

the proportion of mature females and the age at sexual maturity (ASM) along the ages (Mannocci

et al. 2012; Murphy et al. 2009; Danil and Chivers 2007). The logistic regression was fitted using a

generalized linear model approach with the glm() function of the package stats on R. It is also

possible to use the dose.p() function of the package MASS on R to determine the ASM using the

previously fitted GLM.



Leslie Matrixes

Both Leslie matrixes and elasticities were computed using the demogR package on R. To

compute thematrix, we assumed a female population taking into account the age-specific cumulative

survival ;(G) (as it is detailed in the package options) and the age-specific fertility rates 5 (G). The
multiplier for fertility equals 1 (since all age-class are of length one) and the infant.class parameter

is equal to TRUE since there are three infant age-class.

Life-tables building

Life-tables are useful tools to explore the demographical strategy of a particular species

or of a population during its lifetime. We created North-East common dolphin life-tables on a

period-based approach (i.e. vertical life-tables). We built life-tables depending on each modelling

approach (i.e. simple; with covariate; with year effect). Here we present the basic structure of our

life-table approach.

For each age G, several rates are computed. The first rate to be computed is &G which is the

probability of dying between age G to G + 1: &G = 1 − ( ;G+1

;G
)with ;G as the survivorship rate to age G

(probability to reach the age G). From &G it is possible to compute �G which is the number dying in

the interval G to G + 1: �G = #G ×&G with #G the number of individuals alive in the middle of the

age class G. The number surviving to at least age G, !G , can be deducted as: !G = #G − �G . From !G
we can compute the total number of person-years lived by the cohort from age x until all members

of the cohort have died )G (i.e. the sum of !G from G onwards): )G =
∑∞
0=G !G . Finally, it is possible to

derive the life expectancy at age G: 4G as 4G =
)G
!G
. It is possible to add the age-specific fertility rates

obtained with pubescents 5%(G)which are used to build the Leslie-Matrix.

WAIC and LOOIC of models

Table 1:Model selection. Models are ordered in increasing order of WAIC (the smaller, the better the fit). B4 stands for

’standard error’.

Model Specification Joint modelling WAICB4 LOOICB4

8 cov + years + trend + cor Yes 73313 116916

7 cov + years + trend Yes 73013 115016

6 cov + years + cor Yes 78213 119516

5 cov + years Yes 78013 119416

4 years + cor Yes 78113 119216

3 years Yes 77713 119016

2 cov No 92214 130717

1 simple No 92514 131817
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1.  INTRODUCTION

Incidental catch, or bycatch (i.e. the undesired
catch of nontargeted species in fishing gear), repre-
sents the most potent and well-identified threat to
small cetaceans’ populations (Reeves et al. 2005).
Because they are long-lived species, cetaceans can-

not sustain high rates of depletion (Lewison et al.
2004, Mannocci et al. 2012). Bycatch has already led
populations or species to serious reduction (Reeves et
al. 2005, Brownell et al. 2019) or even extinction (Tur-
vey et al. 2007, Brownell et al. 2019), the vaquita por-
poise Phocoena sinus Norris and MacFarland, 1958
(Norris & MacFarland 1958) being a potentially immi-
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investigated the relationship between bycatch mortality and oceanographic processes. We as -
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of prey, creating areas prone to attract both common dolphins and fish targeted by fisheries. We
used 2 datasets from 2012 to 2019: oceanographic data resulting from a circulation model and
mortality data inferred from strandings. The latter allows location of mortality areas and quantifi-
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tions between short-beaked common dolphins and fisheries could have great conservation and
management value. Identified relationships with oceanographic covariates were complex, as
expected given the dynamic aspects of oceanographic processes, dolphins and fisheries distribu-
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common dolphin bycatch in the Bay of Biscay.
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nent example of the latter outcome (D’Agrosa et al.
2000, Jaramillo-Legorreta et al. 2007, 2019).

Short-beaked common dolphins Delphinus delphis
Linné, 1758 in the Bay of Biscay (northeast Atlantic)
have been subjected to potentially dangerous levels
of bycatch since the 1990s (see Murphy et al. 2019 for
a review). In France, the magnitude of bycatch is evi-
denced by high numbers of strandings of bycaught
dolphin carcasses on the Atlantic seaboard. Man-
nocci et al. (2012) estimated that with 1000 bycaught
individuals per year, the northeast Atlantic popula-
tion could be reduced by 20% in 30 yr and could
become extinct in a hundred. Still, the phenomenon
has be come more intense in the past decade. Since
2016, the number of strandings has increased every
year (http://seamap.env.duke.edu). Bycatch estimates
from strandings that occurred solely in the Bay of Bis-
cay have been above what the population of common
dolphins of the whole northeast Atlantic can theoret-
ically sustain (Mannocci et al. 2012, Peltier et al.
2016, ICES 2020). From January to April 2019 alone,
strandings suggested bycatch levels as high as 9500
individuals (95%CI: [6890; 14 200]) (Dars et al. 2019).

Stranding data can be complementary to data from
European observer programs and can provide rele-
vant information on cetacean bycatch (Peltier et al.
2016, IJsseldijk et al. 2020). In France, they have
been instrumental to estimate the magnitude of com-
mon dolphin bycatch in the Bay of Biscay (Peltier et
al. 2016) and to reveal a strong seasonality, with
increased mortality in winter months (January to
March) (Peltier et al. 2016, 2019, 2020,
Dars et al. 2019). From 2016 onward,
strandings of animals showing bycatch
evidence have risen in summer (July
and August), although to a lesser
extent than in winter (Dars et al. 2019).
Stranding data further made it possi-
ble to identify spatiotemporally vary-
ing mortality areas (as areas where
carcasses of by caught dolphins were
released from fishing boats) through
reverse drift modelling of carcasses
trajectories (Peltier & Ridoux 2015,
Peltier et al. 2016, 2021). In winter
months, most bycatch events likely
occur in the southern part of the conti-
nental shelf and slope (Peltier et al.
2016, 2020), resulting in strandings all
along the shore from the south of the
Finistère region to the border to Spain,
whereas in summer most carcasses
strand in southern Finistère (Fig. 1).

Finally, the bycatch pattern displays high interan-
nual variability, with different stranding levels and
associated bycatch level estimates from year to year
(Peltier et al. 2016).

Stranding data further revealed possible association
between bycatch events and common dolphin preys.
The reverse drift modelling of carcasses allowed the
identification of some potentially high-risk fisheries
and their caught fish species (Peltier et al. 2020, 2021).
The analysis of stomach content of by caught stranded
animals suggested that most dolphins were feeding
when death occurred. Moreover, some fish species
targeted by common dolphins (e.g. mackerel or sar-
dine) are also included in the diet of predatory fish
species of fisheries interest (e.g. hake or seabass)
(Spitz et al. 2013). Hence, changes in the local distri-
bution and abundance of prey species might be a
substantial driver of the co-occurrence of common
dolphins, commercial fish species and fisheries in
localized areas.

As marine mobile predators, cetaceans have a
dynamic distribution integrating ecological processes
across all levels of the trophic web (Croll et al. 1998,
Barlow et al. 2020). The proximal relationship be -
tween prey and predator could drive the spatiotem-
poral variability of the bycatch pattern: fish distribu-
tion is notoriously variable in both space and time
(Hyrenbach et al. 2000) and is governed by many
factors ranging from dynamic oceanographic condi-
tions to each species’ annual cycle. In this study, we
aimed at assessing the influence of oceanographic
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processes on bycatch of common dolphins in fish-
ing gear. We thus focused on the distal relationship
between marine predators and oceanographic pro-
cesses. We assumed oceanographic processes spatio -
temporally structure the availability and aggrega-
tion of prey, creating areas prone to attract common
dolphins and predatory fish targeted by fisheries
and consequently increase the bycatch risk. For in -
stance, meso and submesoscale processes such as
fronts (where 2 joined water masses differ by their
density), up welling or eddies enhance the enrich-
ment, concentration and retention of nutrients (Bakun
1996). These processes facilitate the development of
trophic networks, from phytoplankton to zooplank-
ton, to fish and finally, to apex predators (Bakun 1996,
2006).

Knowledge of oceanographic conditions is readily
available from either remote sensing or modelling.
This information is therefore commonly used to make
inferences about prey availability and species distri-
bution (Forney 2000, Becker et al. 2010, Best et al.
2012, Stephenson et al. 2020). Oceanographic data
have been previously used in the context of bycatch
studies, either to identify high risk areas through the
association of species distribution modelling and dis-
tribution of fishing effort (Žydelis et al. 2011, Murray
& Orphanides 2013, Di Tullio et al. 2015, Díaz López
et al. 2019) or to identify possible drivers of bycatch
events (Gardner et al. 2008, Cosandey-Godin et al.
2015, Hahlbeck et al. 2017, Scales et al. 2018).
Cosandey-Godin et al. (2015) suggested the forecast-
ing of high bycatch risk areas to identify mitigation
measures. We investigated relations between mortal-
ity of common dolphins in fishing gear and oceano-
graphic processes in the Bay of Biscay. Predicting
high bycatch areas was beyond the scope of this
paper, although it constitutes a promising venue for
further investigations.

This work capitalized on 2 sources of data: the
bycatch−mortality index inferred from strandings and
fine-scaled essential oceanographic variables (EOVs)
(García-Barón et al. 2020, Tew-Kai et al. 2020). We
selected physical variables significantly contributing
to the characterization of the ocean realm (Tew-Kai
et al. 2020). We used hierarchical Bayesian models to
account for spatiotemporal processes: bycatch mor-
tality areas, oceanographic processes, and common
dolphin and fisherie distributions are dynamic in
both space and time. The area of study was limited to
waters of the Bay of Biscay, with a small part of the
Celtic Sea (Fig. 1). After model fitting, we used out-
of-sample, 1-step-ahead prediction to predict bycatch
mortality in 2019 from oceanographic processes.

2.  MATERIALS AND METHODS

2.1.  Dolphin mortality index from stranding data

2.1.1.  Mortality index

For most bycatch events, no data or location at sea
is available. However, some bycatch events are
detectable from the stranding of common dolphins
presenting bycatch evidence (Kuiken 1994). To de -
termine the origin of carcasses, a reverse drift trajec-
tory can be computed with the drift prediction model
MOTHY (Modèle Océanique de Transport d’Hydro-
carbure, developed by Météo France; Daniel et al.
2002), integrating drift conditions and characteristics
of dolphins’ carcasses (see Peltier & Ridoux 2015,
Peltier et al. 2012). Reverse drift trajectories of by -
caught animals were used to compute a mortality
index (MI) to identify probable mortality areas and to
quantify the intensity of mortality events at sea in
space and time (Fig. 2).

From 2012 to 2019 stranding data, only carcasses
presenting bycatch evidence or which stranded dur-
ing an intense mortality event were selected. Intense
mortality events are when more than 30 dolphins
strand on 200 km of coastline within 10 d (Peltier et
al. 2016). We further selected carcasses with esti-
mated mortality windows up to 15 d (2384 out of
4544, i.e. 52%). For each carcass, a reverse drift tra-
jectory was calculated with MOTHY, with one point
every 10 h. Drift tracks were limited from 0 to 5 or from
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5 to 15 d depending on the mortality window esti-
mated from the decomposition state of the stranded
carcasses. The computation of the MI on a daily
basis, using a regular grid of 0.1° × 0.1° resolution
(i.e. approximately 26 nmiles2 or 89 km2) for the Bay
of Biscay, assumed an equal probability of bycatch
oc curring at each drift point. For a day d, a grid cell c
and a carcass i, MI was defined as follows:

(1)

The more a carcass stagnates in a grid cell, the
higher MI reflects a higher probability that death
occurred in that grid cell. For a given cell on a given
day, there could be reverse drift points associated with
several carcasses. The total MI for d and c was then:

(2)

The greater the number of carcasses that have
drifted through a grid cell, the higher its MI. Finally,
daily MIs were summed for each grid cell over each
month from 2012 to 2019 resulting in the following
spatial monthly MI, for month m and grid cell c (Fig. 2):

(3)

The total sum of MI over each month is equal to the
number of stranded dolphins included in the dataset.
In total, 1789 carcasses stranded all along the shore
of the Bay of Biscay (Fig. 1) were used for the present
study, with substantial seasonal and inter-annual
variations (Fig. 3). Monthly numbers are provided in
Supplement 1; www. int-res. com/ articles/ suppl/ m679
p195 _ supp/.

2.1.2.  Stranding probability

A wide range of factors lead a carcass to strand,
including buoyancy (the carcass must be floating) and
drift conditions (wind being one of the main drivers).
Consequently, not all carcasses of bycaught common
dolphins do strand (Peltier et al. 2016). Drift condi-
tions can sometimes keep carcasses at sea rather
than push them to the coast. Buoyancy of carcasses is
probably influenced by several parameters (i.e. depth
at which death occurred, buoyancy at time of death;
Moore et al. 2020) so that they may either sink or
float when they are released from fishing boats. The
calculated MI thus contained ‘false’ zeros, associated
to grid cells where conditions would not have led to
strandings if carcasses happened to drift through

them. Conversely, ‘true’ zeros were associated to
grid cells where conditions could have led drifting
carcasses to strand. To account for this, we systemat-
ically included stranding probability as a covariate in
all models. Stranding probabilities were estimated
from drifts of simulated dolphin carcasses with
MOTHY (Peltier et al. 2013, 2014, 2016). It was cal -
culated over 10 d periods and averaged over each
month. A conditional autoregressive (CAR) model
was then applied to the result to leverage spatial
dependence and smooth estimated probabilities. The
spatial resolution of estimated probabilities was
larger than that of MI (Fig. 4): each grid cell of the MI
grid was matched to its closer neighbour in the strand-
ing probability grid (using R package sf of Pebesma
2018). True zeros should be associated with high
stranding probabilities whereas false zeros should be
associated with low stranding probabilities.

2.2.  Oceanographic data

Monthly EOVs and derived variables were com-
puted from the 3-dimensional HYCOM numerical
model of the French Service Hydrographique et
Océanographique de la Marine (Shom). Based on the
original HYCOM model (Bleck 2002), it was set with
a number of numerical developments to optimize the
model for coastal zones (Pichon & Correard 2006,
Morel et al. 2008, Lahaye et al. 2011) and has already
been successfully used over the Bay of Biscay area
(e.g. Pichon et al. 2013). Hindcasts were calculated
hourly from 1 January 2012 to 31 December 2019 to
compute monthly EOVs and derived variables. EOVs
are outputs of the model (temperature, salinity, cur-
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rent), and derived variables have been calculated
from these EOVs. One EOV and 2 derived variables,
hereafter referred as oceanographic variables (OVs),
were integrated in this study: (1) the sea surface tem-
perature (sst), (2) the mean sea surface temperature
gradient (mean_sst_grad), quantifying the intensity
and wideness of thermal fronts, and (3) eddy kinetic
energy (eke), quantifying the turbulent component of
the residual (non-tidal) surface current. sst was cho-
sen for its strong seasonal component (Lambert et al.
2017) but also as it is commonly in tegrated in habitat
modelling of multiple marine taxa (Doniol-Valcroze
et al. 2007, Mellin et al. 2012, Hughes et al. 2014,
Castro et al. 2020). In addition, thermal fronts and
eddies have been identified as key structures for the
conservation of marine predators (Scales et al. 2014,
2018). Such interfaces might trigger bottom-up pro-
cesses. As nutrient mixing and retention in the photic
zone can boost primary productivity, interfaces like
fronts and eddies might attract apex predators
through a cascading effect from the lower trophic
levels to the highest ones (Bakun 1996, 2006, Scales
et al. 2014). This association was observed for several
marine predators (Nel et al. 2001, Doniol-Valcroze et
al. 2007, Bailey & Thompson, 2010, Miller et al. 2015,
Snyder et al. 2017) along with further associations
with bycatch events (Hahlbeck et al. 2017, Scales et
al. 2018). Moreover, the Bay of Biscay encompasses a

shelf area with complex dy namic
mesoscale processes following a sea-
sonal cycle (Yelekçi et al. 2017), and
we meant to integrate some of these
features in our analysis through the
dynamic variables eke and mean_ sst_
grad.

As the spatial resolution of the oceano-
graphic data was the nautical mile, it
was upscaled to match that of the MI.
All data can be visualized through maps
and histograms at http:// pelabox. univ-
lr. fr: 3838/ pelagis/ DdSeaByc/ (Tab: '1.
Data').

2.3.  Spatiotemporal modelling
framework

Our goal was to elucidate if oceano-
graphic conditions were associated with
bycatch of common dolphins in fishing
gear with statistical modelling. We
considered a general set up MI ~ OVs
where MI is the response variable

whose variations are to be correlated with OVs, with
linear effects for covariates.

2.3.1.  Spatial and temporal considerations

Common dolphin bycatch — and stranding of ani-
mals showing bycatch evidence — is a seasonal phe-
nomenon in the Bay of Biscay (Dars et al. 2019, ICES
2020). The mortality signal, defined here as the num-
ber of stranded common dolphin showing bycatch ev-
idence, is higher in January to March (winter) and in
July and August (summer) but is lower in between
(Fig. 3). Oceanographic conditions also follow a sea-
sonal cycle with different dynamics in winter and
summer and transition regimes in between (Yelekçi
2017). Our exploratory analysis (not shown here) sug-
gested that the relationship between the re sponse vari-
able and oceanographic covariates varies across
months. Hence, we chose to fit one model per month
to get a climatology over the study period. Each
monthly model gathered data for the corresponding
month from 2012 to 2019, resulting in 12 models (from
January to December). A similar approach was used
in Foravanti et al. (2021). This climatological approach
had the advantage of reducing computational cost.

The relation between OVs and MI in one given
month can vary from one year to the next, for in -
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Fig. 4. Stranding probability in March 2018, estimated from simulated drifts of
common dolphins, then smoothed with conditional autoregressive (CAR) model 
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stance because of a timelag in cyclic phenomena
(Huret et al. 2018) or because of singular climatic
events. The dynamic of mesoscale processes is com-
plex in the Bay of Biscay (Yelekçi 2017). Singular
phenomena could be especially attractive for preys
of dolphins and predatory fish targeted by fish-
eries depending on their extent, their duration and
their time of occurrence. The effect of OVs on
bycatch risk (and thus on MI) must be varying in
time, as suggested by the intensification in strand-
ings from 2016 (Dars et al. 2019). This led us to
consider annually varying co efficients for OVs (i.e.
random slopes). We further added an annually vary-
ing intercept (random intercept) to account for dif-
ferent annual levels of by catch. Using random slopes
amounts to considering an interaction with year:
time-series of the effect of OVs on MI for each month
and each year were an output from models over the
study period.

Generalized linear models (GLM) and generalized
additive models (GAM) usually assume all relevant
covariates have been included in the model (Zuur et
al. 2007a,b). This assumption is unrealistic in most
cases, and omitted variables may result in a residual
de pendence that, if not accounted for, may result in
misleading inferences (Legendre et al. 2002, Valcu &
Kempenaers 2010). Omitted variables bias may man-
ifest in residual autocorrelation, either temporal, spa-
tial, or both. Because there was one model per
month, the time lag between each ‘measurement’
was 11 mo, and we assumed no temporal autocorre-
lation. Yet, spatial autocorrelation, if not taken into
account, could suggest spurious correlations with
OVs. Consequently, all models included explicitly
a spatial component in addition to the (implicitly
spatial) OVs.

2.3.2.  Hierarchical Bayesian framework and 
Gaussian random field

We used a hierarchical Bayesian framework as
they are adapted to the modelling of complex spatial
or spatiotemporal phenomena (Cosandey-Godin et
al. 2015, Martínez-Minaya et al. 2018). Including a
spatial random effect, e.g. with a Gaussian random
field (GRF), is straightforward (Blangiardo et al. 2013,
Cosandey-Godin et al. 2015). The GRF, indexed on
each grid cell, is a stochastic process that will gather
all the spatially implicit information in the data that
are not accounted for by other model components, in
our case oceanographic covariates (Cosandey-Godin
et al. 2015). To model this random field, we chose a

CAR process (Besag et al. 1991, Besag & Kooperberg
1995) based on the notion of nearest neighbours (the
so-called first law of geography: ‘Everything is
related to everything else, but near things are more
related than distant things’; Tobler 1970, p. 236). For
the vector of grid cells (η1, η2, ..., ηn, here n = 3487) it
can be written as follows:

(4)

where ni is the number of neighbours for grid cell i
and τ is a precision parameter. i ~ j means that the 2
grid cells i and j are neighbours.

2.3.3.  Model set up

MI was first transformed to log(MI + 1) and then
modelled by a Gaussian distribution with an identity
link function. The spatial CAR process was consid-
ered constant over years, so that there would be one
spatial field per month. The stranding probability
(SP) was always included as a covariate with a linear
effect. For oceanographic variables effects and for
the intercept, we included the possibility for the coef-
ficients to vary from one year to the next by specify-
ing a Gaussian random (independent and identically
distributed) effect on years (random slopes). For an
overview of our monthly model, we had for the
response variable MI in year t and grid cell c, with
oceanographic covariates X:

(5)

where N defines the normal distribution of location
parameter πc,t and scale parameter σ, Id is the iden-
tity link function, γ the coefficient associated with SP,
β0,t the intercept for year t, βj,t the annual coefficient
of covariate Xj,c,t at cell c in year t and ηc the spatial
effect associated to grid cell c, which is assumed to
result from a CAR model. Finally, c,t are unstruc-
tured errors, i.e. residuals. Parameters estimated in
the linear predictor, i.e. γ, β0,t, βj,t, ηc and c,t consti-
tute the latent field. They are assumed to follow
Gaussian distributions (Rue et al. 2009). These
parameters depend on a vector of hyperparameters
θ that are not necessarily Gaussian (Rue et al. 2009).
In this manner, the monthly model defined in (Eq. 5)
is a latent Gaussian model (LGM) (Rue et al. 2009). It
presents a spatial component (ηc) along with annual
components (β0,t and βj,t).
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2.3.4.  Inference with integrated nested Laplace
approximations (INLA)

Inference for such complex spatial models is
computationally demanding and requires approx-
imation to be fully scalable with a large amount
of data. For a large dataset with 3487 grid cells
observed 8 times (i.e. years) per analysis, i.e.
27 896 observations per month, classical methods
like Markov Chain Monte Carlo may be prohibi-
tively slow (Blangiardo et al. 2013). We used INLA,
which offers a very efficient alternative giving
fast and reasonable estimations (Rue et al. 2009).
Especially adapted to LGMs, this algorithm uses
a combination of analytical approximations and
numerical integration for the inference of poste-
rior marginals and likelihood, which greatly re -
duce computational demand while being extremely
accurate (Rue et al. 2009, Moraga 2019). Inference
with INLA was carried out with the R-INLA pack-
age in R statistical software v4.0.2 (R Core Team
2020).

Before model fitting, all oceanographic vari-
ables were standardized (mean-centered and scaled
to unity), and eke and mean_sst_grad were log-
transformed to account for skewness and strict
positivity. Weakly informative priors were chosen
so that estimations would mostly be driven by the
data (Gabry et al. 2019). Fitted and predicted val-
ues that were negative after back transformation
were set to zero.

2.3.5.  Model selection

All possible combinations of the different effects
and covariates were tested, with the SP systemati-
cally included as a confounding factor (list of tested
models is provided in Supplement 2). The first
combinations were the simplest models with only
linear effects for oceanographic covariates (i.e. in
Eq. 5, βj replaces βj,t) and no spatial field (8 possi-
bilities with the null model). Second, coefficients
were allowed to vary between years for oceano-
graphic covariates (7 possibilities) with random
slopes. Finally, the CAR process was added, with
and without oceanographic covariates, considering
strict linear effects or annual random slopes (15
possibilities). The 30th model was the more com-
plex, defined in Eq. (5), where j ∈ [1,3] and Xj are
thus sst, eke or mean_sst_grad. Model selection
was conducted using the Wanatabe Akaike infor-
mation criterion (WAIC) (Watanabe 2010). WAIC

gives an approximation of the out-of-sample pre-
dictive accuracy using the in-sample data (Gelman
et al. 2014).

2.3.6.  Model checking

The coefficient of determination R2 for each
monthly model was computed. R2 is the proportion of
variance in the response variable accounted for by
explanatory variables (Johnson 2014). We appropor-
tioned the total variance to different model compo-
nents, i.e. spatial or annual, and assessed their re -
spective contributions. For random slopes models,
some variance components depend on observations
(Johnson 2014). For instance, the variance of βsst,t,
coefficient of variable sst on year t, depends on val-
ues of sst during year t. We used the matrix formula
(11) of Johnson (2014); see Supplement 3 for further
details.

Finally, we assessed the predictive power of mod-
els, first by conducting out-of-sample cross-validation
(CV), then by testing different prediction scenarios.
While the dataset was complete from 2012 to 2018,
for 2019 only values of oceanographic variables were
given to get predictions of MI for this year. As the
intercept and covariates coefficients were estimated
annually, there was an index associated to each year.
For the CV procedure, we considered 2019 as a new
year (predicted from the posterior distribution) and
attributed to this year a new and unique index. In
addition, we tested different repetition scenarios
(RS): instead of attributing a new index to year 2019
and consider it as a new sample, we considered 2019
as a repetition of a previous year by attributing to
2019 its index. This way, all model components fitted
during the ‘repeated’ year were used (covariates’
coefficients, effect of the stranding probability, spa-
tial CAR process) for the prediction of MI in 2019,
still considering 2019’s oceanographic conditions. We
tested all 7 possibilities, i.e. we considered 2019 as a
repetition of 2012, then of 2013, 2014, 2015, 2016,
2017 and 2018. Then, we confronted the predicted
total mortality for 2019 to 2019’s total mortality from
the dataset (never seen by the models). We also com-
puted a root mean squared error (RMSE) per RS and
for the CV, based on the monthly differences be -
tween predicted and observed (from strandings) total
monthly mortality. With these repetition scenarios,
we aimed at addressing whether oceanographic con-
ditions of past years affected bycatch mortality risk in
the same way and could predict the observed mortal-
ity in 2019.
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3.  RESULTS

3.1.  Model selection

For most months, the most complex model detailed
in formula (Eq. 5) had the smallest WAIC values
(table with WAIC of all tested models provided in
Supplement 4). It included a CAR process, year-
varying intercepts and year-varying slopes for the 3
covariates sst, eke and mean_sst_grad. In May, June
and November the model with the smallest WAIC val-
ues excluded eke and for September sst was excluded.
However, the difference in WAIC between these
models and the most complex one selected for other
months was small (relative difference of 0.01, 0.03,
0.1, 0.06% in May, June, September and November,
respectively). Hence, we chose to keep the most com-
plex model with all 3 covariates for all months to facil-
itate comparison of results over the 12 months.

3.2.  Oceanographic covariates effects on the MI

Slope estimates of the effect of sst, eke and
mean_sst_grad on spatiotemporal MIs were precise
with tight credible intervals (see http:// pelabox. univ-
lr. fr:3838/pelagis/DdSeaByc/; Tab: '2. Results 2.1.'.
There were no estimates for year 2019 as this year
was not used in model fitting but in out-of-sample,

1-step-ahead cross-validation and predictions. Over-
all, effects were more intense in the winter season,
from January to March (Fig. 5). They were close
to zero for the rest of the year, except in July and
August for 2016, 2017 and 2018 for eke and
mean_sst_grad. The winter variation pattern of the
effect of eke and mean_sst_grad was different every
year. Their effect on MI was sometimes positive and
sometimes negative, depending on years. In July and
August, however, the effect of these 2 covariates
was consistent from 2016 to 2018. It was negative
for eke and positive for mean_sst_grad. The winter
variation pattern of the effect of sst was consistent
be tween years, with interannual differences in its
intensity. It switched sign from one month to the
next, for most years. In summer, the effect of sst was
close to zero, except in 2017, when it was slightly
negative. For all 3 covariates, 2017 emerged as a
singular year.

The intercept was estimated as a mean level of MI
with OVs being set at their mean values (given that
they were standardized, that is mean-centered). It
was greater in winter, with mostly positive values in
January and February but negative values in March,
except in 2017, when it was positive for all 3 months
(Fig. 5). Its pattern of variation was more or less con-
sistent over the study period, with differences in its
intensity. In summer, the intercept was slightly posi-
tive only in 2016 and 2017.
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Fig. 5. Means estimates from the 12 separated monthly models of intercepts and coefficients of oceanographic covariates, for
each month and each year. Spatiotemporal monthly models were inferred with integrated nested Laplace approximations 
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3.3.  Variance partitioning

The computation of R2 allowed us to differentiate
the contribution of the different model components to
integrate MI variations (Fig. 6). The annual compo-
nent included annual coefficients of covariates (ran-
dom slopes) along with annual intercepts. The spatial
component was the CAR process whose contribution
in variance showed little between-month variation.
The residual component included what was not ac-
counted for by either of the 2 precedent components.
In total, models better accounted for MI variations
from January to April, the annual component being
the most contributive component on this period. From
January to March, 21 to 25% of the variance were ac-
counted for by annual and spatial components. A rise
in the annual component contribution in July and in
the spatial component contribution in August resulted
in a rise in the overall variance accounted for these
2 months. Afterward, most of the variations of MI
were integrated in residuals. Note that, using formula
(11) of Johnson (2014), co variances between com-
ponents were included: some negative covariances
terms explain that contributions of the 3 components
naïvely sum to more than 100% for some months.

3.4.  CV and predictions of 2019 mortality with
repetition scenarios

For CV, 1-step-ahead prediction was performed.
Each monthly model was calibrated on 2012−2018
data, so MI data from 2019 was not used
in model fitting. 2019 oceanographic
data were thus used for prediction,
taking between-year variations into ac-
count. The total monthly MI of the data-
set (observed) for 2019 fell within the
confidence interval of total monthly pre-
dicted values, for both the winter and
the summer mortality periods (Fig. 7).
Total mean predicted values were be-
low observed ones. In addition, 2019
was assumed as a repetition of each year
between 2012 and 2018 (RS), to high-
light if past oceanographic influences
could predict ob served mortality in 2019.
Among the 7 RS, observed values of to-
tal monthly mortality of 2019 during the
winter mortality period was within (or
close to) confidence intervals of pre-
dicted values for 2 RS, when 2019 was
considered as a repetition of 2013 (RS

2019 = 2013) and as a repetition of 2017 (RS 2019 =
2017) (Fig. 7). For RS of other years, predicted values
and confidence intervals were lower than observed
monthly mortality, from January to March. The sum-
mer mortality season was not reproduced by the mod-
els for RS of years before 2016. Overall, 2017 RS
showed the lowest RMSE and gave the best prediction
of 2019 monthly mortality levels (Table 1). RMSE for
CV was below RMSE of RS of years 2012 and 2015
and close to that of 2018.

Additional results such as maps of fitted or pre-
dicted values and maps of the estimated spatial ef -
fects are available at http://pelabox.univ-lr.fr:3838/
pelagis/ DdSeaByc/ (Tab: '2. Results') for all 12 months.
A temporal series of total monthly mortality of fitted val-
ues and ob served values are provided in Fig. A1 in the
Appendix.

4.  DISCUSSION

We assumed bycatch risk could be correlated to the
proximal relationship between the dynamic distribu-
tion of common dolphins, commercial predatory fish
species targeted by fisheries and that of their com-
mon prey species, the latter being partially driven by
oceanographic processes. Spatiotemporal informa-
tion on at-sea bycatch mortality, fisheries, dolphins
and fish prey species distribution is not easily acces-
sible to study this proximal relationship. Thus, we
used proxies, a mortality index inferred from strand-
ings and oceanographic descriptors, to study the dis-
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Fig. 6. For each of the 12 spatiotemporal monthly models inferred with inte-
grated nested Laplace approximations (INLA), proportion (transformed with a
square root) of variance accounted for by each model component. Residual:
residual component; Spatial: spatial component (defined by a Gaussian random 

field); Annual: annual intercepts and coefficients of covariates
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tal relationship between common dolphin bycatch
and oceanographic processes. We mobilized 8 yr of
stranding data (from 2012 to 2019) and explored spa-
tial and temporal links between basal and apex
nodes of the trophic network, from oceanographic
processes to short-beaked common dolphins (and
fisheries). We fitted a series of 12 spatiotemporal
monthly models that included 3 oceanographic vari-
ables as covariates potentially contributing to the
spatiotemporal structuring of bycatch risk of common
dolphins in the Bay of Biscay. Results provided first
insights into how the intensity of common dolphin
bycatch in the Bay of Biscay might be modulated by
key seasonal and dynamic oceanographic features.

4.1.  Two seasons of mortality, two different 
underlying processes

Strandings highlight 2 seasons of high bycatch mor-
tality in the Bay of Biscay: a main one from January to
March and another (only observed from 2016 onward)
in July and August (Fig. 3). Results reflected different
patterns for these 2 mortality seasons, suggesting dif-
ferences between the underlying phenomena leading
to bycatch mortality. Outside these seasons, the ex-
planatory power of oceanographic processes was very
limited, and the effect of OVs on the mortality index
was close to zero. Thus, it seems that OVs seasonally
affect bycatch risk and should not be considered as
season-invariant drivers of by catch mortality.

4.1.1.  Winter high mortality season, from January 
to March

The annual component, including OVs, accounted
for most variations in bycatch risk during the winter
mortality season (Fig. 6), suggesting a substantial in-
fluence of the oceanographic processes. Moreover,
January, February and March were the months when
OVs had the strongest effects on bycatch risk (Fig. 5).
Depending on OVs, their effects (i.e. monthly estimated
linear coefficients) showed different inter-annual pat-
terns. The month-to-month effect of sea surface tem-
perature was the only one to be consistent from one
year to the next. Sea surface temperature partially
drives the distribution and seasonal migrations of mul-
tiple marine taxa, from small pelagic fish (Lanz et al.
2009, Hughes et al. 2014,) to bigger fish (Hahlbeck et
al. 2017) and high-level predators (Weltz et al. 2013).
In the Bay of Biscay, the influence of sea surface tem-
perature affects the distribution of identified prey

species of common dolphins and commercial preda-
tory fish species (Spitz et al. 2013), such as anchovies
and sardines (Planque et al. 2007, Petitgas et al. 2014,
Politikos et al. 2015). Therefore, a correlation between
mortality and sea surface temperature can be ex-
pected if the underlying mechanisms are linked to
preys of both common dolphins and commercial fish
species targeted by fisheries. The effects of the mean
temperature gradient and eddy kinetic energy were
of the same magnitude as that of sea surface tempera-
ture but presented high inter-annual variations. Mean
temperature gradient quantifies the intensity and
wideness of thermal fronts, whereas eddy kinetic en-
ergy is associated with turbulent surface features
such as eddies. Because they were averaged over
each month, they should refer to relatively persistent
structures. In winter, the Bay of Biscay environment is
characterized by a seasonal cross-shore (west to east)
surface temperature gradient with lowest temperature
close to shore and intense frontal activity parallel to
the coast (north to south) (Yelekçi et al. 2017). These
frontal structures are freshwater fronts, correlated
with the mixing of oceanic waters and cold freshwater
inputs from river plumes (Yelekçi et al. 2017). Their
location and timeline concur with observed patterns
regarding bycatch mortality: during winter months,
strandings were from all the Atlantic coast (http://
seamap. env. duke. edu), and high mortality areas were
previously identified on the continental shelf (Peltier
et al. 2021). Moreover, most of highest MI values were
located offshore of the coast from the south of the Fin-
istère region to the south French border (not shown,
see http://pelabox.univ-lr.fr:3838/pelagis/DdSeaByc/;
Tab: '1. Data'), especially in 2017 when strandings
were the more numerous over the 2012 to 2018 period.
Together with the effects of the associated OVs on the
MI, results suggested these seasonal fronts may be
targeted by both fisheries and common dolphins as
areas where fish aggregate, thereby putting the latter
at risk of bycatch by the former.

4.1.2.  Summer high mortality season in July
and August

July and August were the only 2 other months when
OVs accounted for a non-negligable fraction of varia-
tions in bycatch mortality (Fig. 6). The amount of total
explained variance accounted for by OVs (included in
the annual component) was more limited compared to
the winter mortality season and was below the contri-
bution of the CAR process. This could suggest that,
during this summer season, other drivers (currently
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omitted in the model) might drive mortality risk. How-
ever, this was expected as strandings are at least one
order of magnitude lower in summer and only be -
came substantial from 2016 on ward. Nevertheless,
different patterns emerged re garding the effects of
oceanographic covariates. Conversely to the winter
season, the sea surface temperature coefficient was
close to zero for all years, and the effects of mean tem-
perature gradient and eddy kinetic energy on the MI
were, respectively, quite consistent for all 3 years when
a summer mortality peak was observed (2016, 2017,
2018). For these 3 years and in July and August, the
effect of the mean temperature gradient was slightly
positive, meaning that thermal fronts were associated
with higher MI and that of eddy kinetic energy was
slightly negative, meaning that bycatch mortality
probably occurred in low turbulence waters. In July
and August, the mesoscale dynamic activity of the
Bay of Biscay is rather different than in winter. In win-
ter, the frontal activity in the Bay of Biscay is domi-
nated by freshwater fronts resulting from input of cold
freshwater from rivers whereas in summer, there are
mainly fronts due to tidal flow (Yelekçi 2017). Winter
freshwater fronts display more spatiotemporal vari-
ability (on a given year and interannually) as they are
directly correlated to river flows (Yelekçi et al. 2017).
Summer tidal fronts are conversely quite consistent
from one year to the next because they are correlated
to a repetitive process (i.e. tides) (Yelekçi et al. 2017).
During summer, the main frontal activity is a seasonal
tidal front, called the Ushant Front, and it is located in
front of the French Finistère region (Yelekçi et al.
2017). Its activity peaks in July and August (Yelekçi et
al. 2017). Turbulent components of surface currents
are relatively low around this structure (not shown,
see http://pelabox.univ-lr.fr:3838/ pelagis/ DdSeaByc/;
Tab: '1. Data'), except at its most northern part. Again,
the location of this typical frontal structure con-
curred with the location of hot spots of fitted MI as
well as with the location of bycaught common dol-
phin strandings, mainly occurring on the coast of the
south Finistère region during the summer mortality
season (http:// seamap.env.duke.edu).

4.1.3.  Other drivers of seasonal differences

The distribution of common dolphins in the Bay
of Biscay differs between seasons (Laran et al. 2017).
In winter, they are more numerous on the shelf,
whereas in summer they are mainly distributed on
the shelf break. This probably results in spatial dif-
ferences in the local abundance of common dolphin

between seasons, directly affecting bycatch risk.
Seasonal differences in bycatch-induced mortality
may further be linked to annual biological cycles of
common dolphins and fish. The calving and mating
season of short-beaked common dolphins of the
northeast Atlantic is from April to September, with a
likely peak of activity in July and August (Murphy et
al. 2005, 2009). Feeding strategies and movement
patterns of dolphins differ during those periods, re -
sulting in a different response to oceanographic pro-
cesses. This could also be true with respect to dol-
phins’ preys, many of which present an annual
biological cycle. As for the fisheries, they might like-
wise change their searching strategies, or their fish-
ing gear, depending on the season and target spe-
cies. The fishing effort and fishing targeted areas
also likely differ between seasons (ICES 2020). A
combination of those parameters might affect the dif-
ference between the 2 seasons regarding patterns of
oceanographic variables effects on bycatch mortality.

Although the mechanisms were different between
winter and summer mortality seasons, an influence of
oceanographic processes and especially seasonal
thermal front structures was highlighted for the 2
seasons of mortality. The association between marine
predator and thermal fronts was shown and studied
elsewhere (Doniol-Valcroze et al. 2007, Gannier &
Praca 2007, Cox et al. 2018, Scales et al. 2018), and
thermal fronts were identified as priority conserva-
tion areas for marine megafauna (Scales et al. 2014).
If correlations are complex and not straightforward,
this study still provides first hints of an association
between short-beaked common dolphins and this
type of mesoscale frontal structure in the Bay of Bis-
cay, likely linked to bycatch mortality.

4.2.  Between-month variations

For all 3 oceanographic covariates, in winter, inter-
pretation is further complicated as their effects on the
mortality index often switched sign from one month
to the next. From a statistical point of view, there
could be 2 reasons for this. First, because we con-
ducted different models for each month, there is no
dependence between consecutive months. This could
be improved by putting additional model structure
such as a first order random walk for example. How-
ever, this would also substantially increase the com-
putational burden, multiplying the number of obser-
vations (3487 spatial cells ‘observed’ once per month
and per year, so 334 752 observations for the com-
plete dataset). Second, it is likely that the effect of
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oceanographic processes on the mortality of dolphins
due to bycatch is not linear or additive. Non-linear
relationships with environmental covariates are rou-
tinely evidenced in marine species distribution mod-
elling (Forney 2000, Stoner et al. 2001, Tew Kai &
Marsac 2010) and fisheries (Maury et al. 2001, Walsh
& Kleiber 2001, Zagaglia et al. 2004) or even bycatch
studies (Žydelis et al. 2011, Di Tullio et al. 2015,
Hahlbeck et al. 2017). Given the extra complexity of
our response variable, it is quite conceivable that the
influence of oceanographic features on short-beaked
common dolphins bycatch is not linear. Combined
with the fact that oceanographic processes might
have different effects depending on their location
and timing of appearance (that might vary from
month to month), it could explain changes in signs of
mean monthly coefficients of the oceanographic co -
variates. Again, relaxing the linear assumption would
be possible with, for example, functional regression,
but is beyond the scope of the present study.

There could also be ecological reasons for these
between month variations. The winter oceanographic
dynamics of the Bay of Biscay is characterized by
high-frequency processes with rapid changes, some-
times within a month. Changes in the sign of OVs
effects on the MI could be due to dynamic processes
affecting common dolphins and fisheries interactions.
The possibility that the effect of OVs could change
from one month to the next motivated the use of ran-
dom slopes. Taking thermal fronts as an example:
these can aggregate preys of both common dolphins
and predatory fish and do not necessarily increase
bycatch risk. If fronts are quite wide and persistent,
they could be wide enough so that they could attract
fisheries on, say, their shore side and common dol-
phin on their seaside: spatial overlap be tween com-
mon dolphins and fisheries would be limited. How-
ever, if thermal fronts are very spatially localized,
then spatial overlap between common dolphin and
fisheries could be substantial, and bycatch risk would
be higher. Yet, the frontal dynamics in the Bay of Bis-
cay shows seasonal and interannual variability (Ye -
lekçi et al. 2017). The width and intensity of thermal
fronts can therefore vary from one month to the next
(and for a given month, from one year to the next),
which may also explain fickle statistical relationships.

4.3.  The bycatch mortality of 2019: 
a predictable event?

Bycatch mortality in 2019 was the highest ever
observed on the French Atlantic coast (Peltier et al.

2019), exceeding 2017 levels that were also unprece-
dented at that time. Still, crossvalidation results sug-
gested it was statistically predictable as the observed
monthly mortality tally from the dataset was within
the confidence interval of the prediction (Fig. 7). Fur-
thermore, results of the repetition scenarios showed
how 2019’s mortality was possibly due to circum-
stances already met in the past, either related to
oceanographic conditions, or to other component
included in models through the spatial process. The
MI in 2019 was more accurately predicted when 2019
was considered as a repetition of 2013 and 2017
(Table 1, Fig. 7). For RS 2019 = 2017, the observed
monthly mortality of 2019 was close to predicted val-
ues from oceanographic covariates (in 2019) and past
relationships with OVs, both for winter and summer
mortality seasons. As mentioned above, bycatch mor-
tality in 2017 was also unprecedented at that time as
an all-high record. 2017 indeed stands out as a singu-
lar year regarding the effect of all 3 covariates on
bycatch risk (Fig. 5). This suggests maybe singular
oceanographic phenomena in 2017 that were espe-
cially conductive of bycatch events, phenomena
which recurred in 2019. A more surprising result was
the remarkable good prediction made for winter
months, when 2019 was considered as a repetition of
2013 (RS 2019 = 2013). Observed mortality in 2013
from the dataset was 156 individuals (as fresher
stranded carcasses showing bycatch evidence or
stranded during an intense mortality event, see Sec-
tion 2), whereas it was 317 in 2017 and 413 in 2019,
through January, February and March. However, the
observed mortality in January 2013 was close to that
of January 2017 (Fig. 3) and was the second highest
value for this month in the study period. In addition,
mean coefficient estimates of eke and sst were part of
the highest from 2012 to 2018. In January, the mean
coefficient estimate of mean_sst_grad in 2013 was
close to the mean coefficient estimate in 2017. In Jan-
uary, the mean effect of the mean temperature gradi-
ent was also the same in 2013 and in 2017. Despite
the lower levels of observed mortality in 2013, it
seems that winter oceanographic conditions in
2013, 2017 and 2019 favored common dolphin and
fishery interactions, with an intensifying trend over
the years. Given the complexity of our results regard-
ing oceanographic covariate effects on bycatch risk
(with inter-annual and between-month variations),
the ad ditional value of repetition scenarios was to
highlight whether similar associations occurred in
different years.

Overall, these results showed that, from a statisti-
cal point of view, with few oceanographic covariates,
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the unprecedented bycatch mortality of 2019 was at
the very least unsurprising as the pattern observed in
2019 could be accurately predicted from 2012−2018
data. This highlights how gaining knowledge about
environmental influences on interactions between
short-beaked common dolphins and fisheries could
have great conservation and management value
(Scales et al. 2018). In this study, we adopted a mod-
elling approach to determine whether bycatch mor-
tality can be explained by oceanographic processes.
However, with evidenced oceanographic influences
on bycatch incidence, a similar analysis could be de -
signed to forecast potential hotspots of mortality. The
modelling approach would have to be different, as
explanatory and predictive modelling are distinct
and are associated with different ‘modelling paths’
(Shmueli 2010). For example, other sources of envi-
ronmental data, available in a smaller timeframe,
might have to be considered for near real-time pre-
diction. Remote sensing could be an option, as it is
already used in the support of fisheries activities
(Santos 2000). The forecasting of high mortality zones
might make it possible to define dynamic time−area
closures for fisheries (Cosandey-Godin et al. 2015),
which represent a promising tool to reduce bycatch
pressure on the common dolphin population while
limiting the economic impact (Dunn et al. 2011, Max -
well et al. 2015, Hazen et al. 2018). In this regard, fur-
ther studies modelling the dynamic distribution of

areas of co-occurrence of both short-beaked common
dolphins and fisheries in the Bay of Biscay would be
highly valuable for the conservation of this population.

4.4.  Limitations and prospects for improvement

Several limitations can be imposed regarding the
present work and results. First of all, strandings give
only minimal estimations of bycatch-caused mortal-
ity. Some carcasses may never strand, and some oth-
ers strand in advanced states of decomposition that
do not allow their examination nor the identification
of the cause of death of the animals. Moreover, due to
the reverse drift modelling, the MI is associated with
an uncertainty that is difficult to measure completely.
Peltier et al. (2012) quantified the average distance
between observed stranding locations of animals that
were tagged when released from fishing boats and
stranding locations predicted with MOTHY (27.1 ±
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Fig. 7. Prediction for 2019. Monthly total mean mortality index from the dataset ('Observed MI') and from fitted values ('Pre-
dicted MI') for 2019 resulting from the 12 spatiotemporal models inferred with integrated nested Laplace approximations
(INLA), with (1) a cross-validation (CV) procedure, i.e. the mortality index was predicted from previous years data and from
values of oceanographic covariates for 2019 (2) repetition scenarios (RS), analogous to the latter except 2019 was considered 

as a repetition of a previous year of the study period. Grey dotted lines: 95%CI of fitted values

CV RS
2019 2012 2013 2014 2015 2016 2017 2018

RMSE 48.4 51.2 32.8 43.6 54.2 45.0 30.1 48.1

Table 1. Root mean squared error (RMSE) for cross-validation 
(CV) and repetition scenarios (RS)
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24.5 km), which is accurate enough for practical pur-
poses. Yet, there is no estimate of uncertainty associ-
ated with drift points as no information is available
on where dolphins died. Developing the reverse
modelling approach, on which the MI depends, was
precisely motivated by infering high-probability at-
sea mortality areas (Peltier & Ridoux 2015, Peltier et
al. 2020).

The spatial scale for the present analysis (approxi-
mately 89 km−2) was coarse compared to that of OVs.
This coarse resolution required upscaling for OVs,
which could have smoothed out too many high fre-
quency processes such as fronts and eddies. It is thus
possible that the relationship between the MI and
OVs was weakened, impacting the results concerning
oceanographic coefficients and explanatory power.
The association between the MI and oceanographic
variables is likely scale dependent as are associa-
tions between oceanographic covariates and marine
top predators’ distribution and foraging (Logerwell &
Hargreaves 1996, Fauchald et al. 2000, Pinaud &
Weimerskirch 2005, Pirotta et al. 2014). The link of
interest here could be detectable at a specific spatial
scale and not at another, and for high frequency pro-
cesses the scale could be relatively small. Getting
mortality data at a finer scale (and defining the spa-
tial uncertainty associated with the reverse drift
modelling) would then improve our understanding of
the physical and ecological processes at stake.

Lastly, the models we developed for this study ac -
counted for a low proportion of variance of the MI
(25% at the highest, in February). This limits the
range for interpretation, especially for months when
this proportion was below 10%. This was expected:
we aimed at quantifying links that are, at best, indi-
rect between OVs and a marine top predator. Many
trophic levels might be involved in the relationships
of interest here, from phytoplankton to zooplankton
and fish, each of these levels being influenced by
several environmental and physiological factors.
Moreover, the response variable we used is only a
proxy of realized bycatch risk. Nonetheless, models
performed well enough to reproduce annual patterns
of total monthly MI from 2012 to 2018 (Appendix).
Models performed better for the winter season with
increased mortality and to a lesser extent for the sum-
mer mortality season, which were of particular inter-
est regarding the seasonal pattern of bycatch. The
CV results finally confirmed the acceptable perform-
ance of our models, suggesting an association be -
tween chosen oceanographic variables and bycatch-
induced mortality of common dolphins in the Bay of
Biscay.

This association should not be over-interpreted:
relationships highlighted here are not straightfor-
ward, and they have been highlighted only for a few
months, and not for all years. The limited explana-
tory power of the oceanographic covariates even for
months when bycatch mortality was relatively high
suggests that bycatch risk in the Bay of Biscay may
be influenced by other non-environmental factors,
e.g. characteristics of fisheries like the type of fishing
gear used, the overall fishing effort or the timeline of
the fishing operation (day or night). There were no
significant changes in the pattern of the relationship
between oceanographic processes and bycatch risk
that could help explain the rise in bycatch observed
from 2016 onward. This further suggests an influence
of additional factors not considered in the present
study. This rise of bycatch could be associated with a
change in the distribution of common dolphins in the
Bay of Biscay or a change in fishing practices. Bycatch
risk is likely affected by a mix of different factors,
oceanographic processes being one among others.

5.  CONCLUSIONS

This study demonstrated the relevance of strand-
ing data and modelled OVs from coastal operational
oceanography to better understand this intense by -
catch phenomenon which causes a serious threat to
the short-beaked common dolphin population of
the northeast Atlantic (Peltier et al. 2016, Murphy
et al. 2019). The need to explicitly integrate spatial
and temporal dimensions for such complex interac-
tions was justified: our results effectively highlighted
the spatiotemporal influences of structuring oceano-
graphic processes on the risk of common dolphin
bycatch in the Bay of Biscay. However, the underly-
ing mechanisms remain unclear, and the relationship
between environmental characteristics and dolphin
bycatch must not be overinterpreted, as our model
only indirectly links OVs with dolphin bycatch. Be -
cause of the dynamic aspects of both structuring
oceanographic processes and dolphin and fishery
distributions, further research focusing on smaller
time scales is needed. For instance, extreme strand-
ing events are observed on a weekly timeframe
(Peltier et al. 2020), suggesting short periods of in -
tense interactions between dolphins and fisheries, so
a similar analysis on a weekly timeframe and focusing
on these events might be more informative. Further-
more, we showed that the pattern of seasonal by -
catch events can be directly inferred from past data
on strandings and oceanographic conditions. This
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highlights the value of establishing functional rela-
tionships to eventually identify adapted and accept-
able management measures to ensure both the long-
term conservation of the population of short-beaked
common dolphins of the Bay of Biscay and fisheries
activities.
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(INLA), from 2012 to 2018. Grey dotted lines: sum of the 0.025 (lower bound) and 0.975 (upper bound) quantiles of fitted values
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Bycatch, the non-intentional capture or killing of non-target species in commercial or

recreational fisheries, is a world wide threat to protected, endangered or threatened

species (PETS) of marine megafauna. Obtaining accurate bycatch estimates of PETS

is challenging: the only data available may come from non-dedicated schemes, and may

not be representative of the whole fisheries effort. We investigated, with simulated data, a

model-based approach for estimating PETS bycatch from non-representative samples.

We leveraged recent development in the statistical analysis of surveys, namely regularized

multilevel regression with post-stratification, to infer total bycatch under realistic scenarios

of data sampling such as under-sampling or over-sampling when PETS bycatch risk is

high. Post-stratification is a survey technique to re-align the sample with the population

and addresses the problem of non-representative samples. Post-stratification requires to

sub-divide a population of interest into potentially hundreds of cells corresponding to the

cross-classification of important attributes. Multilevel regression accommodate this data

structure, and the statistical technique of regularization can be used to predict for each of

these hundreds of cells. We illustrated these statistical ideas by modeling bycatch risk for

each week within a year with as few as a handful of observed PETS bycatch events. The

model-based approach led to improvements, under mild assumptions, both in terms of

accuracy and precision of estimates and was more robust to non-representative samples

compared to more design-based methods currently in use. In our simulations, there was

no detrimental effects of using the model-based even when sampling was representative.

Estimating PETS bycatch ideally requires dedicated observer schemes and adequate

coverage of fisheries effort. We showed how amodel-based approach combining sparse

data typical of PETS bycatch and recent methodological developments can help when

both dedicated observer schemes and adequate coverage are challenging to implement.

Keywords: marine megafauna, conservation, modeling, statistics, Bayesian, anthropogenic removals
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1. INTRODUCTION

Bycatch, the non-intentional capture or killing of non-target
species in commercial or recreational fisheries, is a world wide
threat to protected, endangered or threatened species (PETS) of
marine megafauna (Gray and Kennelly, 2018), including seabirds
(Martin et al., 2019), elasmobranchs (Pacoureau et al., 2021)
and cetaceans (Avila et al., 2018). Bycatch in fishing gears, such
as gillnets, is currently driving some small cetacean species
to extinction (Brownell et al., 2019; Jaramillo-Legorreta et al.,
2019). The European Commission recently issued infringement
procedures against several Members States for failing to correctly
transpose some provisions of European environmental law
(the Habitats Directive, Council Directive 92/43/EEC), in
particular the obligations related to the establishment of a
coherent monitoring scheme of cetacean bycatch1. The Data
Collection Framework (DCF) provides a common framework
in the European Union (EU) to collect, manage, and share
data within the fisheries sector (Anonymous, 2019a). The
Framework indicates that the Commission shall establish a
Multi-Annual Union Programme (EU-MAP) for the collection
and management of fisheries data which should be inclusive of
data that allows the assessment of fisheries’ impact on marine
ecosystems. With respect to PETS (including cetaceans), the
collection of high quality data usually requires a dedicated
sampling scheme and methodology, and is generally different
from those applied under the DCF (Stransky and Sala, 2019):
“EU MAP remains not well-suited for the dedicated monitoring
of rare and protected bycatch in high-risk fisheries since its
main focus is the statistically-sound random sampling of all
commercial fisheries (Ulrich and Doerner, 2021, p. 126).” In
practice, the introduction of any programme on PETS bycatch
under the DCF may be met with caution because of its perceived
potential to disrupt data collection for fisheries management
(Stransky and Sala, 2019). This perception implicitly relegates
PETS bycatch as a side issue for fishery management rather than
an integral part of it. It may explain the usually poor quality of
bycatch data on PETS (ICES, 2020a).

Recent EU legislation (Regulation 2019/1241), referred to as
the Technical Measures Regulation (TMR), requires Members
States to collect scientific data on cetacean bycatch for the
following métiers: pelagic trawls (single and pair), bottom-
set gillnets and entangling nets; and high-opening trawls
(Anonymous, 2019b). Unlike its predecessor (Council Regulation
EC No. 812/2004), this Regulation does not require the
establishment of dedicated observer schemes for cetacean
bycatch data collection (Dolman et al., 2020). Furthermore,
only vessels of an overall length of 15 m or more are to be
monitored, but these represent a small fraction of the European
fleet (less than 10% in 2019)2. This vessel length criterion
introduces bias in the bycatch monitoring data as the sample of
vessels larger than 15 m is almost certainly dissimilar to smaller

1https://ec.europa.eu/info/news/july-infringements-package-commission-

moves-against-member-states-not-respecting-eu-energy-rules-2019-jul-26_en
2https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=fish_fleet_alt&

lang=en

vessels. Even within the sample of vessels that are monitored,
pragmatic considerations can complicate sampling. For example,
in the United States, observer sampling trips are allocated
first by region, port, and month, then randomly to vessels of
particular categories within those monthly and spatial strata
(ICES, 2009). Random allocation of observers to vessels follows
sound statistical methodology and increases the likelihood of
collecting unbiased data (Babcock and Pikitch, 2003). In France,
observer days are allocated by port and by month for each
fishery, but the exact vessel allocation is then negotiated and
left at the discretion of skippers (ICES, 2009). Allocation is no
longer random as skippers may only accept observers when
cetacean bycatch risk is low (Benoît and Allard, 2009). Non-
random allocation means potential bias in the collected data for
monitoring bycatch as the sub-sample of skippers accepting an
observer may be very different from skippers refusing to do so
(Babcock and Pikitch, 2003).

One pragmatic solution bypassing observers is to mandate
skippers to self-declare the non-intentional capture or killing
of any PETS, as already required under the DCF (Anonymous,
2019a). In France, a national law from 2011 mandate fisheries to
declare (without fear of prosecution) the bycatch of any cetacean
species, but this law remained largely unknown to French
fishermen until late 2019 (Cloâtre, 2020). In general, self-reported
PETS bycatch data are sub-optimal as they may be heavily biased,
non-representative (ICES, 2009) and typically provide poor
information on which to base management decisions (National
Marine Fisheries Service, 2004). Once again, the set of skippers
who choose to declare bycatch may differ markedly from those
who do not: for example the former take the extra time required
to fill logbooks and thus provide accurate data while the latter do
not. If this behavior is correlated to other attributes, e.g., a more
acute awareness of threats to PETS resulting in practices that
tend to minimize impact on PETS, data collected from skippers
reporting bycatch would not be representative. There may also
be an element of skippers genuinely forgetting to log PETS
bycatch in the bustle of the fishing operation but this is random
and unlikely to introduce bias. In addition, ground-truthing, for
example with remote-electronic monitoring (REM; Course et al.,
2020), would be required in order to ensure the quality and
accuracy of self-reported data before their statistical analyses.

Another hurdle, of the statistical kind, with cetacean bycatch
is the low frequency of these events. Assuming that implementing
a representative sampling program were feasible, if bycatch is
a rare event (Komoroske and Lewison, 2015), then few events
would be observed for realistic sampling effort (Babcock and
Pikitch, 2003; ICES, 2009). This paucity of observed event means
a large uncertainty in statistical estimates: with a bycatch rate of
the order of 0.01 event per fishing operation, a sample size of
1,100 observed operations would be required to obtain, in the
best case scenario (no bias, statistical independence, etc.), the US
recommended coefficient of variation of 30% (National Marine
Fisheries Service, 2005, 2016; ICES, 2009; Carretta and Moore,
2014). The amount of observer coverage needed to reach this
precision depends on fishery size and trip duration (Babcock
and Pikitch, 2003). In practice, the sampling error depends
on the overall design of the survey, of which the sample size
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is only one factor: for example a larger sample size could be
needed if there are large “skipper-effects” as the same vessels
would contribute fishing operations, and these would not be
statistically independent. With a small sample size, uncertainty
may be so large as to prevent using estimates altogether, even if
one were to assume no bias in the data (Babcock and Pikitch,
2003). Given this challenge and the lack of uptake of dedicated
monitoring programmes of cetacean bycatch in Europe over the
last decade or more (Sala et al., 2019), it would appear prudent
to seek methods of analysis that can handle the few and non-
representative data available to robustly estimate bycatch rates.

The problem of having non-representative samples to carry
out statistical analyses is ancient (Hansen and Hurwitz, 1946)
and widespread: it pops up inmany applied disciplines, including
election forecasting (Wang et al., 2015; Kiewiet De Jonge et al.,
2018), political sciences (Lax and Phillips, 2009; Zahorski, 2020),
social sciences (Halsny, 2020), addiction studies (Rhem et al.,
2020) or epidemiology (Zhang et al., 2014; Downes et al., 2018).
In these disciplines, there are also intrinsic limits on improving
the representativeness of sampling. For example, in polling, non-
response rates can be above 90% (Forsberg, 2020). In other
cases, some populations of interest may be hard to reach (Rhem
et al., 2020), or answers may not be honest (St. John et al.,
2014). Challenges lie in the accurate estimation of quantities
of scientific interest (e.g., the true magnitude of bycatch in
a fishery; Babcock and Pikitch, 2003) with the construction
of statistical weights that can calibrate a non-representative
survey sample to the population targets. Such weights are
implicit with simple random sampling where each unit in a
population has the same, non-nil, probability of being included
in the sample. When inclusion probabilities differ between units,
weights inversely proportional to the former can be used to adjust
the sample. However, constructing survey weights is in general
more elaborate than using inverse probabilities of selection in the
sample (Gelman, 2007). Model-based approaches, and multilevel
regression modeling with post-stratification in particular, has
become an attractive alternative to weighting to adjust non-
representative samples (Gelman, 2007).

Multilevel regression modeling allows researchers to
summarize how predictions of an outcome of scientific interest
vary across statistical units defined by a set of attributes or
covariates (Gelman et al., 2021, p. 4): for example bycatch events
are a binary outcome at the fishing operation level (a unit)
associated with attributes, such as date-time, location, gears and
vessels (e.g., Palka and Rossman, 2001). Post-stratification is a
standard technique to generalize inferences from a sample to the
population by adjusting for known discrepancies between the
former and the latter. Post-stratification is a form of adjustment
whereby statistical units are sorted out according to an auxiliary
variable (hereafter a stratum) after completion of data collection;
stratum-level effects (i.e., effects within each stratum or cell) are
then estimated, and finally averaged with weights proportional
to stratum size to obtain the population-level estimate. Post-
stratification differs from blocking as the latter is done before
data collection to ensure balance and representativeness at the
design stage. Post-stratification is a post hoc statistical adjustment
done at the analysis stage: it can remove bias, but at the price

of an increased variance of estimates. Lennert et al. (1994)
provided an early example of model-based estimates of bycatch
with post-stratification.

In small samples post-stratification can degrade estimate
precision, especially if the number of strata is large as each
stratum will typically include very few data, or even not a single
datum (the so-called “small-area” problem). In practice, adequate
post-stratification may require handling hundreds of cells (the
crossing of several attributes; e.g., week by statistical area by
gears). Some predictions for each cell may be too noisy, especially
if there are sparse or no data for that particular combination
of attributes. Multilevel regression can offer a solution as it
borrows strength from similar units to improve and stabilize
(i.e., regularize) these predictions (Cam, 2012). In other words,
multilevel regression allows an efficient use of a sparse sample
to estimate the outcome of interest within each cell, even if
these cells are very numerous (e.g., several hundreds). The key
insight of combining multilevel regression modeling with post-
stratification is thus: even if observations are not a representative
sample of the population of interest, it may be possible to
construct a regression model to first predict unobserved cases,
and then post-stratify to average the fitted regression model’s
predictions over the population of interest (Gelman et al., 2021,
p. 313). Good predictions may be obtained with regularization
by means of multilevel models with structured priors (including
so called “random-effects” models). The latter can increase
precision by inducing shrinkage of parameter estimates across
similar post-stratification cells, where similarity is encoded in the
model specification (e.g., by using random effects that assume
exchangeability). The amount of shrinkage, or partial-pooling
across cells, is model-based and thus data-driven. However,
in order to be able to leverage the information in the data,
some model structure on the parameters of interest is necessary
hence the need for structured priors. Relying on a model rather
than just empirical means of the response variable addresses
the bias-variance problem intrinsic to having a large number
of cells in post-stratification, and leverages the large toolbox of
regression-based models.

Technically, when data arise as signal plus noise, overfitting
occurs when a regression model captures too much of the
noise compared to the signal; that is in using an ill-conditioned
(unstable) model that will provide an excellent in-sample fit
but make poor out-of-sample predictions (Authier et al., 2017b;
George and Ročková, 2021). Overfitting may result when using
richly parametrized models without using adequate estimation
methods such as regularization to stabilize parameter estimates
and buffer them against noise (Gelman et al., 2021, p. 459–460).
Weakly-informative priors in a Bayesian framework regularize
the estimation of the large number of parameters that may be
present in a multilevel model. Multilevel modeling takes into
account complex data structures with structured prior models
for batches of parameters; the simplest example are so-called
“random effects” whereby a common (Gaussian) distribution
centered on zero and with an unknown variance to be estimated
for data is assumed for a group of parameters; for example
years or sites (Cam, 2012). This common distribution for the
parameters is a priormodel, and thismodel for parametersmeans
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that the latter are not independently estimated but in tandem
according to the postulated prior model. For example, Sims et al.
(2008) used amodel-based approach to obtain spatially smoothed
estimates of bycatch in a gillnet fishery. Spatial-smoothing (also
known as “small-area estimation”; Fay and Herriot, 1979) was
used to stabilize estimated bycatch rates by using a Conditional
Autoregressive prior model that leverages information from
spatial neighbors to improve the prediction at a specific location.
Prior models add some soft constraints to the overall model
and these constraints are very useful in data sparse settings to
mitigate variance and bias in predictions. In other words, these
prior models represent additional assumptions about the data,
assumptions, which if approximately correct, add information in
the analyses and increase the precision and stability of predictions
at the cost of a usually small estimation bias. Introducing bias
to reduce variance is a common statistical technique known as
shrinkage or regularization (George and Ročková, 2021).

Regularized multilevel regression with post-stratification is
thus the combination of several important ideas to obtain
accurate predictions (Gao et al., 2019). First, post-stratification
is a survey technique to re-align the sample with the population
and addresses the problem of non-representative samples. In
practice, post-stratification requires to sub-divide the population
of interest into many cells corresponding to the combination
of important attributes. Multilevel regression can be used to
accommodate all these cells in a single model, but the problem
has now moved to how to obtain useful estimates for all these
cells, which can number in the several hundreds. Regularization
solves this estimation problem: it introduces model-driven bias
in statistical estimates in order to stabilize them. These new
developments in the statistical analysis of non-representative
samples may help in obtaining a better quantification of bycatch
rates and numbers. Our aim is to assess with simulations,
the potential of regularized multilevel regression with post-
stratification for analyzing already collected bycatch data, with
the full knowledge that these data are non-representative and
biased in several respects. These biases in sampling are manifold
(see above): bias may be due to regulation exempting certain
vessels (e.g., no monitoring for vessels smaller than 15 m);
to non-dedicated observers or because sampling is driven for
other purposes than bycatch monitoring of PETS (commercial
discards, stock assessment); or in the case of dedicated schemes,
to over-sampling a few “cooperative” skippers or focusing
sampling in métiers with the highest or lowest bycatch risk. Our
focus will be narrower, honing in on specific sampling scenarios
whereby observer coverage is correlated to bycatch risk. In other
words, we will assess the potential of regularized multilevel
regression with post-stratification to estimate accurately bycatch
numbers with samples preferentially collected either during low-
or high-bycatch risk periods. Our investigation is largely framed
from our knowledge on small cetacean bycatch in European
waters, such as short-beaked common dolphin (Delphinus
delphis, lower observer coverage when bycatch risk is higher)
in the Bay of Biscay (Peltier et al., 2021) or harbor porpoises
(Phocoena phocoena, higher observer coverage when bycatch
risk is higher) in the Celtic Seas (Tregenza et al., 1997). In
the remainder, we first introduce methods and notations to

detail the proposed model to perform multilevel regression
with post-stratification with bycatch data, using dolphins as
an example. Next, we explain our data simulation scenarios
and how we emulate non-representative sampling. We then
compare the results (i.e., estimates of bycatch) from the proposed
modeling approach with those from the method currently used
by the working group on bycatch of protected species from
the International Council for the Exploration of the Sea (ICES
WGBYC) before concluding on some recommendations for
future investigations.

2. MATERIALS AND METHODS

We carried out Monte Carlo simulations to assess the ability
of regularized multilevel regression with post-stratification to
estimate bycatch risk and bycatch numbers from representative
and non-representative samples. ICES WGBYC collate data
through an annual call from dedicated and DCF surveys
collecting data on the bycatch of PETS through onboard
observers or REM. These surveys may be qualified as “design-
based” in the sense that, ideally, a representative coverage of
fisheries would be sought in order to scale up the observed sample
to the whole population using ratio-estimators. There are many
caveats around the use of these ratio-estimators as EUMAP is not
well-suited for monitoring PETS bycatch (Ulrich and Doerner,
2021). Given these shortcomings in the collection of bycatch data
under EU MAP, the data available to ICES WGBYC are unlikely
to be representative of fisheries of interest but nevertheless, ratio-
estimators are used as part of a Bycatch Risk Approach (BRA)
to identify relative risk of bycatch across species and metiers
(ICES, 2018). Cetacean bycatch observer programmes may aim
at achieving a pre-specified precision for bycatch rates (with a
coefficient of variations less than 30%; National Marine Fisheries
Service, 2005, 2016; ICES, 2009; Carretta and Moore, 2014).
Achieving this is very difficult in practice, and a given coverage
of effort deployed by the total fleet is, instead, aimed at: for
example 10% (5%) for pair-trawlers (level-3 métier PTM) larger
(smaller) than 15 m in France. Data from onboard observer
programmes are then used to estimate total bycatch using ratio
estimators (Lennert et al., 1994; Julian and Beeson, 1998; Amandè
et al., 2012) and the bootstrap or a classical approach (Clopper-
Pearson) for uncertainty quantification (ICES, 2018, p. 57). We
used an approach similar to that of WGBYC (hereafter referred
to as a “design-based” approach) as a benchmark to compare
against results from regularized multilevel regression with post-
stratification. We honed in on the accurate estimation of the
number of bycatch events for a complete fleet. We assume that
information on the total effort deployed by a fleet operating
in a spatial domain are available and measured without error.
This assumption is necessary to scale estimates from the sample
to the population. We also assumed that there are no false-
negatives in the sample, that is no bycatch event went unrecorded
by onboard observers (assuming thereby a dedicated observer
programme). These two assumptions are customary with ratio
estimators, whether design- or model-based, and do not deviate
from current norms. We assume however that these population
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data on total effort can be disaggregated at a finer temporal scale
in order to post-stratify on calendar weeks. This assumption
of accurate measurement of effort at the week-level is crucial
for post-stratification.

2.1. Notations
The logit transform maps a quantity p ∈]0, 1[ to the real line:

logit(p) = log
(

p
1−p

)

. Its inverse is denoted by logit−1(x) =
1

1+e−x (sometimes called the “expit” transform). Let yijkl denote
the ith fishing operation of vessel j in week k of year l, with
yijkl = 1 if a bycatch event occurs and 0 otherwise:

yijkl ∼ Bernoulli
(

pjkl = logit−1 (µ + βkl + αj
)

)

(1)

where pjkl is the product of the probability of a bycatch
event occurring and the probability of dolphin presence. This
unconditional probability pjkl, or “bycatch risk” hereafter, is not
indexed by i: although there may be several fishing operations
of vessel j in week k of year l, the risk is assumed constant over
these. Bycatch risk is a function of several parameters (on a logit
scale): µ is the intercept (overall risk), αj ∼ N(0, σvessel) are
(unstructured, normal random effects) vessel-effects accounting
for heterogeneity (e.g., “fishing style” of skippers); and βkl are
time effects, modeled with a Gaussian Process. A Gaussian
process is written as GP(m, c) where m and c are the mean and
covariance functions respectively (Gelman et al., 2014, p. 501).
The Gaussian Process prior on the vector of week effects in year l,
β l, defines this vector as a random function for which the values
at any week 1, . . . , k, . . . ,w are drawn form a w-multivariate
normal distribution:

β1l, . . . ,βwl ∼ N
((

m(1), . . . ,m(w)
)

,�
)

(2)

with mean m and covariance �. The function c specifies the
covariance between any 2 weeks k and k′, with � an w × w
covariance matrix with element �

(

k, k′
)

= c(k, k′). A Matérn

covariance function of order 3
2 and range parameter fixed

to 3
2 was assumed: c

(

k, k′
)

= σ 2
year ×

(

1+ 2
√
3×d(k−k′)

3

)

×

exp− 2
√
3×d(k−k′)

2 , where d(k − k′) is the temporal distance (in
weeks) between weeks k and k′. The distance function was the
absolute difference between calendar weeks within the same year:
d(k−k′) = |k−k′|. The choice of theMatérn covariance function
translate an assumption of smoothness in the temporal profile of
bycatch risk: bycatch risk is assumed to change gradually across
weeks, with no abrupt increase or decrease. The range parameter
is fixed and not estimated from data. This choice represents an
additional assumption whereby the temporal correlation is 0.05
after 4 weeks corresponding to temporal independence after a
month. This choice is to some extent arbitrary and represents an
additional assumption. In theory, the range parameter could also
be estimated from data but we assumed a data sparse setting with
limited information (more so with Bernoulli data) to estimate
this parameter.

The mean function m of the Gaussian process was modeled
(on a logit scale) with a first order random walk, which was

evaluated at specific values k∈[1,...,w] corresponding to week
number within a year:











(

m(1), . . . ,m(w)
)

= (ε1, . . . , εw)

εk = 0 k = 1

εk+1 ∼ N (εk, σweek) k > 1

(3)

The order of the random walk prior was assumed fixed at
1 and not estimated from data. This prior choice smooths
the first order differences between adjacent elements of ε and
represents an additional assumption, mainly to limit the number
of parameters to estimate from the typically sparse data on
bycatch. A random walk was chosen as an effective way to reveal
the shape of the average risk profile without specifying a family of
parametric curves.

The model in Equation (1) is a decomposition of bycatch
risk into a time-varying component (at the week-scale, Equation
3; and with an interaction with year, Equation 2) and time-
invariant component which can be interpreted as fishing-style
effects whereby some skippers may have consistent practices that
increase or decrease bycatch risk. Importantly, bycatch risk is
modeled here with no attempt tomodel dolphin presence directly
as relevant data to do so may be missing in the general case.
Bycatch risk is thus to be estimated for each week of a year, and
each of these weeks represent de facto a stratum. In any applied
case, additional factors, such as statistical area, may need to be
included in Equation (1) for improved realism. For simplicity,
we did not consider space in simulations, and solely focused
on time.

2.2. Data Simulation
To test the ability of model 1 to estimate bycatch risk, data were
simulated (Figure 1).

1. Bycatch probability conditional on dolphin presence was
constant and set to 0.3, that is roughly one fishing operation
out of 3 generates a bycatch event when dolphins are present
(corresponding to a high risk fishery, e.g., the trawl fishery in
the Bay of Biscay).

2. Dolphin presence is seasonal (loosely inspired from the
observed pattern of common dolphin in the Bay of Biscay
where abundance is higher closer to the coasts in winter; Laran
et al., 2017): it peaks at the beginning and end of the year, but
quickly drops to 0 for roughly 2 thirds of a year.

3. A fishery of 20 vessels is operating all year round, with an
overall activity rate of 80% each week (that is, for any week,
20× 80

100 = 16 vessels are fishing). Each fishing day (5 days per
week), on average 2.3 fishing operations are carried out. The
expected total number of fishing operations for a year is 5 ×
52× 2.3× 16 ≈ 10,000. These values were loosely taken from
an exploratory analysis of onboard observer data collected on
PTM flying the French flag. During each of these operations,
a bycatch event may occur depending on dolphin presence at
the time and on a skipper-specific risk factor (drawn randomly

from a normal distribution with scale parameter set to
log(2)
3 to

induce moderate heterogeneity on a logit scale; Authier et al.,
2017a).
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FIGURE 1 | Inputs for data simulation. Top: bycatch probability if dolphins are present during a fishing operation. Middle: dolphin presence during a year. Bottom:

Probability for a skipper to accept an observer onboard. Left: sampling is unbiased; Middle column: sampling is biased downwards (under-sampling). Right:

sampling is biased upwards (over-sampling). Each line corresponds to one of the 100 data simulations that were carried out. The y-axis is on a square-root scale to

better visualize small values.

4. Observers are accepted onboard vessels either with a constant

probability of 0.05 corresponding to a coverage of 5% of
all fishing operations (unbiased sampling scenario) or with

a probability that covaries with dolphin presence (biased

sampling scenarios). In the latter case, realized coverage is
a random variable. With under-sampling, the bulk of the

observer data is collected when bycatch risk (the product of

dolphin presence and bycatch probability) is nil (Figure 1).
With over-sampling, the bulk of the observer data is collected

when bycatch risk is high but no data are collected when the

risk is nil (Figure 1).
5. In a year, the number of fishing operations is ≈ 10,000,

and the number of bycatch events ≈ 300, which yields a
rate of ≈ 3%. This rate is not large, but is not extremely
rare either.

Bycatch events were simulated for each fishing operations during
a day when an observer was present from a Bernoulli distribution
according to the product of bycatch probability given dolphin
presence and dolphin presence probability for that day. If
no observer was present, no data were recorded. The data-
generating mechanism used a parametric function for dolphin
presence probability and was different from the statistical model
used to analyzed the data (see https://gitlab.univ-lr.fr/mauthier/
regularized_bycatch). For each sampling scenario, 100 datasets
were generated for 1, 5, 10, or 15 years. All data simulations
were carried out in R v.4.0.1 (R Core Team, 2020). When
simulating only 1 year of data, Equation (2) is not necessary as
there is no between-year variation to estimate: the model can be
simplified with the omission of β l. Our Monte Carlo study had
a comprehensive factorial design crossing (a) sampling regime
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(either unbiased or not) and (b) sample size as controlled with the
number of years for which the observer programme was assumed
to have been in operation.

2.3. Estimation
Estimation of the parameters of model 1 from simulated data
was carried out in a Bayesian framework using programming
language Stan (Carpenter et al., 2017) called from R v.4.0.1
(R Core Team, 2020) with library Rstan (Stan Development
Team, 2020). Stan uses Hamiltonian dynamics in Markov chain
Monte Carlo (MCMC) to sample values from the joint posterior
distribution (Carpenter et al., 2017). Weakly-informative priors

were used for regularization:



















µ ∼ N(0,
3

2
)

prop ∼ D(1, 1, 1)

σtotal ∼ GG( 1
2
,
1

2
,
log 2

10
)

where D() denotes the Dirichlet distribution for modeling
proportions (such that

∑3
i=1 propi = 1) and GG() the Gamma-

Gamma distribution for scale parameters (Griffin and Brown,
2017; Pérez et al., 2017). With this simplex parametrization,
chosen to improve mixing and ease estimation with Monte Carlo
methods (He et al., 2007), the several variance components of

the model were:











σ 2
vessel

= σ 2
total

× prop1
σ 2
week

= σ 2
total

× prop2
σ 2
year = σ 2

total
× prop3

These priors are weakly-informative (Gabry et al., 2019): the prior
for the intercept covers the whole interval between 0 and 1 on
the probability scale but is informative on the logit scale. The
prior for the scale (square-root of the variance) is heavy tailed and

has a median set to
log 10
2 (Griffin and Brown, 2017; Pérez et al.,

2017), which translate an assumption about the plausible range
of variations in bycatch risk spanning a priori two full order of
magnitude from one tenth to a ten-fold increase compared to the
mean bycatch rate. Thirty random realizations from our choice of
priors are depicted on Figure 2: the whole interval between 0 and
1 is covered, and between-week variations can be large or small.

For each simulated dataset, four chains were initialized from
diffuse random starting points (Carpenter et al., 2017, p. 20)
and run for a total of 1,000 iterations, discarding the first
500 as warm-up. Default settings for the No-U-Turn Sampler
(NUTS) were changed to 0.99 for adapt delta and 15
for max treedepth (Hoffman and Gelman, 2014). NUTS
uses Hamiltonian Dynamics in MCMC and typically requires
shorter runs than other MCMC algorithms both to reach
convergence and to obtain an equivalent Effective Sample Size
from the posterior (Hoffman and Gelman, 2014; Monnahan
et al., 2017). Parameter convergence was assessed using the R̂
statistics (Vehtari et al., 2019) and assumed if R̂ < 1.025. Upon
diagnosing convergence of all parameters, a combined sample of
4×500 = 2, 000MCMC values were obtained to approximate the

joint posterior distribution. Let µ̂[m], β̂
[m]
kl , σ̂

[m]
vessel

denote the mth
MCMC sample for parametersµ,βkl and σvessel. Bycatch risk p̂j∗kl
for a randomly chosen vessel j∗ operating in week k of year l was
computed from the mth MCMC draw from the joint posterior

distribution as:

p̂
[m]
j∗kl = logit−1

(

µ̂[m] + β̂
[m]
kl + α̂

[m]
j∗

)

(4)

where α̂
[m]
j∗ ∼ N(0, σ̂

[m]
vessel

). This predicted bycatch risk

incorporates between-vessel variability, that is it takes into
account the fishing style of skippers. The predicted risk (on a

logit scale) for a random chosen skipper is α̂
[m]
j∗ and was drawn

from the posterior predictive distribution: not all skippers may be
observed in the sample, and but the subset of skippers that accept
an observer can be used to estimate a between-skipper variance
in bycatch risk. In practice, the number of fishing operations
carried out in the course of a week in a year by individual
skippers is unknown, although the aggregated number of fishing
operationsmay be known. If totals by skippers were available, and
all skippers had been sampled, it would be more efficient to use
skipper-specific estimated risk, but we did not assume that this
would necessarily be the case.

The total number of bycatch events, Tbycatch was estimated as
the average over the 2,000 MCMC draws from the posterior:

T̂model−based bycatch = 1

2000

2000
∑

m=1

(nyear
∑

l=1

nweek
∑

k=1

p̂
[m]
j∗kl × Nkl

)

(5)

where Nkl is the total number of fishing operations that
took place is week k of year l. The total number of strata
for post-stratification was nyear × nweek, with a maximum of
15 × 52 = 780 cells. Highest Posterior Density credible
intervals at the 80% level were computed with function
HPDinterval from package coda (Plummer et al., 2006) for
uncertainty evaluation. Equation (5) is an instance of a ratio-
estimator with post-stratification, except that it uses model-
based estimates of bycatch risk. This model-based approach
regularizes estimates with partial pooling (Gelman and Shalizi,
2013): the variance of estimates is greatly reduced by introducing
some bias with structured priors (Gao et al., 2019). Our results
were benchmarked against an approach similar to that of
ICES WGBYC whereby total number of bycatch events was
estimated1 as:

T̂design−based bycatch =
nyear
∑

l=1

(

p̄l ×
nweek
∑

k=1

Nkl

)

(6)

where p̄l is the average bycatch risk estimated as the mean
from the observed sample in year l. Confidence intervals at
the 95% level were computed using either the bootstrap or the
Clopper-Pearson approach as customary in ICES WGBYC. Both
were considered as the Clopper-Pearson approach is known
for being more conservative: it produces confidence intervals
that above the nominal level (i.e., wider than necessary) but
generates non-nil confidence intervals even if no bycatch has
been observed (Northridge et al., 2019). In practice, ICES
WGBYC often pooled several years to stabilize the estimate
of p̄ (e.g., ICES 2018, p. 57–58; Carretta and Moore, 2014):
Equation (6) translate an ideal case that is rarely met in practice.
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FIGURE 2 | Prior predictive checks sensu (Gabry et al., 2019). Bycatch risk (pijkl in Equation 1) is depicted: 30 random realizations from the priors are depicted.

ICES WGBYC usually works on bycatch rates (in number of
PETS per unit effort), not bycatch risk. We focused on risk for
simplicity, but scaling bycatch risk to a rate is straightforward
by multiplying with the average number of PETS bycaught in
a bycatch event. Dolphin presence was seasonal in the data-
generating mechanism for simulations: pitching a method that
can explicitly accommodate such seasonality against one that
does not may be viewed as knocking down a strawman. However,
current estimates of PETS bycatch in Europe are stratified by
flag, ICES statistical areas, and métiers but not by season (e.g.,
Table 2 p. 17 in ICES 2019; Northridge et al., 2019, p. 27).
The comparison remains relevant and topical as it matches
current practices.

3. RESULTS

Convergence across all simulations and scenarios was assumed
to be reached, with all R̂ < 1.025, for all parameters. For each
simulation, chains were combined in a single sample of 2,000

values to approximate the joint posterior distribution of the
model defined by Equations (1), (2), and (3).

3.1. Design- vs. Model-Based Approach
Comparing the design- and model-based approach was done
with simulating 1 year of data. When data sampling was
unbiased, both the design- and model-based approach were able
to recover the true number of bycatch events (Figure 3; Table 1).
Estimates of bycatch events were statistically unbiased but their
precision low with a (frequentist 95%) confidence or (Bayesian
80%) credible interval (CI) as large as 100% of the point estimate
(Table 1), as could be expected with only 15 bycatch events were
recorded on average by onboard observers (Table 1).With under-
sampling, design-based estimates were negatively biased (that
is, they were under-estimates) whereas model-based estimates
were still unbiased on average (Figure 3; Table 1). With over-
sampling, design-based estimates were positively biased (that is,
they were over-estimates) but so were model-based estimates,
although bias was 5 times smaller (Figure 3; Table 1). In all
cases, coverage was 100% but largely as a result of low precision:
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FIGURE 3 | Violin plot of bias in point estimates of total bycatch events. Left: data sampling was unbiased and all methods yielded statistically unbiased estimates.

Middle: Under-sampling scenario: only the model-based approach was accurate. Right: Over-sampling scenario: both the design- and model-based approaches

were biased upwards. Violin plots are based on 100 simulations.

TABLE 1 | Statistical properties of estimates from the design- and model-based approach.

Method Uncertainty Data nyears Bias Coverage Width of CI nobs

sampling (%) (%) (%)

Design-based Bootstrap Unbiased 1 3.5 100.0 102.5 15

Design-based Clopper-Pearson Unbiased 1 3.5 100.0 115.0 15

Model-based Bayesian Unbiased 1 3.6 100.0 120.4 15

Design-based Bootstrap Under- 1 −83.5 100.0 195.0 5

Design-based Clopper-Pearson Under- 1 −83.5 100.0 259.6 5

Model-based Bayesian Under- 1 3.0 100.0 204.3 5

Design-based Bootstrap Over- 1 121.0 100.0 46.1 63

Design-based Clopper-Pearson Over- 1 121.0 100.0 50.1 63

Model-based Bayesian Over- 1 22.1 100.0 78.6 63

One year of data was simulated a 100 times. Bias of point estimate, coverage of (frequentist 95%) confidence or (Bayesian 80%) credible interval (CI) and precision (as CI width relative to
the point estimate) are reported. The last column indicates the average number of bycatch events (nobs = E

[

∑

ijk yijk
]

) that were recorded by onboard observers during data sampling.
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precision was very low with CI spanning some 200% of the
point estimate for the unbiased and under-sampling scenarios.
This low precision was the result of having to work with as
few as 5 observed bycatch events on average (Table 1). Precision
improved with over-sampling, but was still as high as 50% of
the point (over-)estimate. The model-based approach was well-
calibrated in both the unbiased and under-sampling scenarios
(Figure 4): model-based estimates were on average equal to the
truth whereas this was only the case with design-based estimates
when sampling was unbiased. In addition, the model-based
approach was able to recover the temporal profile of bycatch risk
(Figure 5) in these two scenarios, but with an increased accuracy
and precision if sampling was unbiased. In the over-sampling
scenario, both the design- and model-based approaches were not
well -calibrated (Figure 4) and the model-based approach over-
estimated bycatch risk when no data were collected (Figures 1, 5).

3.2. Model-Based Approach With Several
Years of Data
With several years of data, the model-based approach was able
to yield nearly unbiased estimates: the bias was smaller than
3 bycatch events when sampling was unbiased, but as large
as 10 (on average) with biased sampling and 3 years of data.
The precision of estimates improved with several years of data,
as expected with larger sample size. Precision of model-based
estimates with over-sampling were already acceptable with 3
years of data: an 80% credible interval width of 50% corresponds

to a coefficient of variation of
50

2.5
≈ 20% assuming a normal

distribution for the posterior. Themodel-based approach allowed
to obtain estimates at the weekly scale (Figure 6): these estimates
were approximately unbiased in the unbiased and over-sampling
scenarios, but were biased for the under-sampling scenario. In
that latter case, the bias was correlated with the temporal pattern
used to simulate dolphin presence (Figure 1): it was the largest
when dolphin presence was at its highest but positive at the
beginning of a year and negative at the end of the same year. Both
biases were greatly attenuated with increased sample size.

4. DISCUSSION

Using Monte-Carlo simulations, we investigated the statistical
properties of a model-based approach, regularized multilevel
regression with post-stratification, to estimate the total number
of bycatch events in a fishery operating year-round. Simulations
were broadly informed from the case of common dolphins and
pair-trawlers in the Bay of Biscay and from harbor porpoises
and set-gillnets in Celtic Seas. A salient feature of simulations
was biased sampling with observers being preferentially accepted
onboard when bycatch risk was either high or low. Data
simulations in that latter case, which is the most realistic one
in the Bay of Biscay (Peltier et al., 2016), resulted in as few
as 5 observed bycatch events per year on average (Tables 1, 2).
This aligns with the ubiquitous description of small cetacean
bycatch being a rarely observed event. It was nevertheless possible
to fit a regularized multilevel regression model on these data.
Importantly, estimates from this model-based approach were

statistically less biased than the design-based estimates when
sampling was biased. Model-based estimates were, however,
imprecise but this is largely to be expected (Amandè et al.,
2012), especially with as few as 5 observed bycatch events per
year. The design-based approach was also imprecise, even in
the unbiased data sampling scenario of 5% coverage of the
fleet, which is not reached in practice (Anonymous, 2016; ICES,
2020b). The design-based approach was very sensitive to how
data were collected: this approach severely under- or over-
estimated bycatch when sampling was biased, whereas themodel-
based approachwas still well-calibrated with under-sampling, but
not with over-sampling (Figure 4).

Biases in onboard observer data are pervasive and widely
acknowledged (Babcock and Pikitch, 2003; Benoît and Allard,
2009; Peltier et al., 2016). Enforcing coverage as required to
achieve a pre-specified precision in estimates can be challenging
in practice. For example, in 2016, France only achieved a
coverage rate less than 2% for most métiers and concluded on
the impossibility of scaling-up observed bycatch rates to the
whole fleet (Anonymous, 2016, p. 24). There were, however, 9
bycatch events of common dolphins in pair-trawlers targeting
European hake (Merluccius merluccius). From these numbers,
bycatch was described a “rare” event (Anonymous 2016, p.
23). Such a conclusion would be warranted if sampling were
representative, in which case the design-based estimate could be
used, even though its precision would still be very low. On the
other hand, with under-sampling, this conclusion is misleading
as our simulations further illustrated: although only 5 bycatch
events were observed on average (Figure 4), the true number
of bycatch events was on average 60 times larger (Figure 4). In
our simulations, the true bycatch rate was on average ≈ 3% over
a year, which is not rare, but not frequent either. Moreover,
interviews with French skippers deploying trawls or gillnets in
the Bay of Biscay revealed that more than 80% of respondents
declared to having experienced at least one small cetacean
bycatch event in a year (Cloâtre, 2020). Such a large proportion
contradicts the idea of common dolphin bycatch being a rare
event in the Bay of Biscay, but rather suggest severe biases
in onboard observer data that result in the rare reporting of
bycatch events, rather than a rarity of events per se. The common
dolphin in the Bay of Biscay illustrates how under-sampling
may distort the perception of bycatch as a very rare event
when it can, in fact, be widespread. This is a catch-22 situation
whereby cetacean bycatch is described as a rare event because
it is rarely reported, and this perceived rarity may serve to
argue against ambitious dedicated monitoring programmes out
of cost-effective considerations, thereby preventing to dispel the
initial misconception.

Finding an optimal sampling plan for fisheries with rare
bycatch events is a long standing problem (ICES, 2009). Several
strategies have been attempted: for example in the United
States, one strategy is “pulsed sampling” whereby a particular
fishery or métier is very heavily sampled for a short period
of time in order to maximize the chance for observers to
record any bycatch that might occur (ICES, 2009). This pulsed
sampling strategy corresponds to our over-sampling scenario
wherein monitoring effort is positively correlated with bycatch
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FIGURE 4 | Regression lines of point estimates against the true number of bycatch events, showing the calibration of the design- and model-based approach. The

x-axis shows the true number of bycatch events across 100 simulations, spanning between 150 and 400 events. The red dotted line shows the identity line, i.e., no

bias. Left: data sampling was unbiased and all methods yielded statistically unbiased estimates. Middle: Under-sampling scenario: only the model-based approach

was well-calibrated. Right: Over-sampling scenario: both the design- and model-based approaches were not calibrated to the truth.

risk. Under this scenario, the absence of any sampling at all
when bycatch risk was low was detrimental to the accurate
estimation of bycatch events with our model. Model-based
estimates were, however, less biased than design-based estimates.
Arguably, this comparison is somewhat artificial as a correct
comparison would use all the available information and uses
estimators that are season-specific to account for under-sampling
when bycatch risk is low if such a period is known to the
investigator. Notwithstanding this shortcoming, model-based
estimates represented an improvement and allowed to infer
the bycatch risk profile accurately, especially with several years
of data.

We showed with our Monte-Carlo simulations that
regularized multilevel regression with post-stratification can
nevertheless be used to analyze bycatch data despite concerns
about non-representative sampling. Model-based approaches
(Palka and Rossman, 2001), with post-stratification (Lennert

et al., 1994), or machine learning (Carretta et al., 2017), or
multilevel regression (Sims et al., 2008; Martin et al., 2015) have
previously been used to estimate bycatch rates. Traditional,
design-based, ratio estimates are biased if sampling is biased;
imprecise if observer coverage is low (as is the usual case in
the North East Atlantic; see for example Figure 14, p. 114 in
ICES, 2020b); and volatile if bycatch events are only observed
occasionally (Carretta et al., 2017). The traditional remedy to
stabilize estimates and improve precision is to bypass year-
specific estimation and pool several years together (Carretta and
Moore, 2014; ICES, 2018). This pragmatic solution improves
precision but does not address the problem of biased sampling.
It also introduces estimation bias for any year-specific estimates
by pooling completely several years in order to stabilize the
variance of estimates (ICES, 2009, p. 36): any between-year
differences are thus ignored in order to obtain a better precision
of estimates. It is a reasonable approach in practice, but one
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FIGURE 5 | Estimated temporal pattern in mean bycatch risk from the model-based approach. Left: data sampling was unbiased. Middle: Under-sampling. Right:

Over-sampling. The model-based approach recovered the correct pattern overall, but overestimated risk in the over-sampling scenarios when risk was, in fact, nil but

no data were collected.

that can be improved. Model-based approaches offer a trade-off
between no-pooling (keeping all years separate) and complete-
pooling with a third option: partial pooling or regularization
(Gelman and Shalizi, 2013). Regularization is a general term
for statistical procedures that give more stable estimates. Our
model-based approach achieves regularization by leveraging,
via a structured prior model (Equations 2 and 3, see section 2),
the within-year information at the weekly scale. The result were
more stable and accurate annual bycatch estimates at the cost
of some modeling assumptions and weakly-informative priors.
Importantly, weekly estimates could also be obtained with our
model-based approach.

Our model-based approach is semi-parametric as it uses a
random walk prior to learn from the data the weekly pattern
in bycatch risk. This prior is also ensuring some smoothness
in the temporal risk profile as it translates an assumption on
the correlation between 2 consecutive weeks. This random walk

model remains simple as the order is fixed to 1. We further
expanded this model to allow for between-years variation in the
weekly risk profile with a Gaussian Process prior (Neal, 1998;
Goldin and Purse, 2016). Importantly, these two prior choices
(a random walk and a Gaussian Process prior) add structure
to the model and help in leveraging the information present in
the sparse data typical of onboard observer programmes. Even
when with over-sampling, these choices were not detrimental
as model-based estimates were statistically unbiased and precise
with 3 years of data (Table 2). The explicit consideration
of time effects is key to mitigate bias in sampling. In our
simulations, dolphin presence was caricaturally seasonal, and
observers could be preferentially allowed on fishing vessels when
dolphins were less or more likely to be present (Figure 1). Our
model was still able to provide statistically unbiased estimates
of bycatch in those scenarios, although these estimates were
very imprecise with under-sampling. However, they were not
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FIGURE 6 | Box plots of bias (in number of estimated bycatch events compared to the truth) in the weekly model-based estimates of bycatch events. Left: data

sampling was unbiased. Middle: Under-sampling. Right: Over-sampling. Each row corresponds to data simulated for a different number of years.

more imprecise than the traditional (but biased) design-based
estimates (Table 1) if 80% credible interval were used. In addition
to being unbiased, these estimates could also reveal with accuracy
the temporal risk profile (Figure 5). It is important to keep in
mind here that our model is different from the data-generating
model used in simulating data: our results were not simply
an instance of using a true model, which is impossible in
practice as a model is by definition a simplification used to
capture the salient features of a phenomenon. Our model had
some shortcomings: for example, bias increased with 3 years
of data compared to 1 year for the under-sampling scenario
(contrast Tables 1, 2). This increased bias (toward the prior
model) was the result of partial pooling but came with a gain
in precision as evidenced in the width of credible intervals. The
bias progressively wore off with more years of data, illustrating
thereby the attractiveness of partial pooling and structured
priors to regularize estimates (Gelman and Shalizi, 2013; Gao
et al., 2019). The gain in reducing bias in estimates and

increasing their precision was most evident with over-sampling
(Tables 1, 2).

Our model could also provide weekly bycatch estimates which
were largely unbiased except in the under-sampling scenario
where a positive and negative bias remained at the beginning
and end of a year respectively, even with 15 years of data
(Figure 6). With under-sampling, few observed bycatch events
can be collected by design because observers are very unlikely
to be accepted on board by skippers. Weekly estimates were
too high at the beginning of a year but too low at the end,
but this somewhat canceled out at the year-level. There was
still a slight overestimation bias resulting from our choice of a
non-symmetric pattern for dolphin presence and a symmetric
pattern for biased coverage: observing bycatch events at the end
of a year was comparatively more difficult than at the beginning
of a year because overlap between a non-nil coverage and
dolphin presence was smaller at the end of year (Figure 1). These
shortcomings illustrate that a model-based approach should
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TABLE 2 | Statistical properties of estimates from the model-based approach.

Method Uncertainty Data nyears Bias Coverage Width of CI nobs

sampling (bycatch events) (%) (%)

Model-based Bayesian Unbiased 3 3.0 100.0 91.1 45

Model-based Bayesian Unbiased 5 2.1 100.0 76.3 75

Model-based Bayesian Unbiased 10 1.1 100.0 59.1 150

Model-based Bayesian Unbiased 15 1.9 100.0 50.9 225

Model-based Bayesian Under- 3 10.0 100.0 164.6 15

Model-based Bayesian Under- 5 6.4 100.0 142.0 25

Model-based Bayesian Under- 10 8.3 100.0 112.9 50

Model-based Bayesian Under- 15 5.3 100.0 97.8 75

Model-based Bayesian Over- 3 7.4 100.0 53.2 63

Model-based Bayesian Over- 5 4.8 100.0 42.6 126

Model-based Bayesian Over- 10 3.5 100.0 32.6 630

Model-based Bayesian Over- 15 3.3 100.0 27.7 756

Several years of data were simulated a 100 times. Bias of point estimate (in number of bycatch events), coverage of (Bayesian 80%) credible interval (CI) and precision (as CI width
relative to the point estimate) are reported. The last column indicates the average number of bycatch events (nobs = E

[

∑

ijkl yijkl
]

) that were recorded by onboard observers during data
sampling.

be tailored to the context of the study, and we designed our
simulations largely from our knowledge on the common dolphin
in the Bay of Biscay. However, the framework of regularized
multilevel regression with post-stratification is very flexible and
we believe our proposed model has large potential for generality
as it simply translates a decomposition of bycatch risk into a
smooth time-varying and (unstructured) time-invariant effects.
The model can easily be made more complex, data permitting, to
accommodate spatial effects with, for example, a Besag-type prior
(Sims et al., 2008; Morris et al., 2019).

Several important assumptions are structurally built into
our model: in particular, a first order random was assumed
for the mean function of the Gaussian Process prior, with no
attempt to estimate from data the correlation parameter (e.g.,
using an AR(1) prior instead). The choice of a first order
random walk was not aiming at uncovering the true data-
mechanism: our aim were to reveal a temporal pattern in
bycatch risk from sparse data using a flexible, yet parsimonious
approach. This was particularly true in the under-sampling
scenario where few bycatch events could be observed in any
given year of simulated data. In the other scenarios, other
choices than the first order random walk could be considered
as more data are collected. We also assumed that the range
parameter of the covariance function in the Gaussian Process
prior for week effects was known and such that bycatch risk
was temporally uncorrelated after 4 weeks. Fixing the range
parameter is usually not recommended but was motivated by
consideration of the data-to-parameter ratio, and computation
convenience. Bycatch data are binary and can be sparse:
these two features underscore how little information may be
available. In this context, limiting the number of parameters
to estimate can be justified on pragmatic consideration. The
model we are proposing is parameter-rich, but some structure
are assumed on these parameters in the form of the prior
used. These priors represent choices from the analyst and

may be reconsidered and tested, data permitting. There was
some evidence that bycatch risk was under-smoothed in the
over-sampling scenario which resulted in an over-estimation
of bycatch risk (Figure 5, rightmost panel). Model expansion
is seamless with Stan (Gabry et al., 2019), and the above
mentioned parameters could be estimated, rather than fixed,
with adequate data. Despite somewhat arbitrary prior and
modeling choices, our model provided more accurate estimates
of bycatch numbers and bycatch risk in under- and over-
sampling scenarios. This satisfactory predictive ability points to
another important limitation.

Our model is phenomenological, i.e., it is agnostic of
the causes behind the temporal variations in bycatch risk.
Bycatch risk is the product of dolphin presence and bycatch
probability given presence (the latter was constant in our
simulations). The model only estimates this product of
two probabilities and thus cannot disentangle them without
other sources of data. This limitation seems inconsequential
in our simulations for the aim of accurate estimation of
the total number of bycatch events as interest lies in the
effects of causes (how much bycatch?) rather than in the
causes of effects (why bycatch occurred?). A straightforward
model expansion (as pointed out by a reviewer) would be
the consideration of p vessel-level covariates (z1j, . . . , zpj) in
Equation (1):

αj ∼ N
( p
∑

b=1

(

ξb × zjb
)

, σvessel

)

(7)

Candidate covariates such as vessel length or gear-attributes (e.g.,
mesh size) could be incorporated in the analysis to improve
the exchangeability assumption on vessel-effects. An obvious
covariate to consider for detecting self-selection of skippers into
observer programme participation is to include whether a skipper
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has ever accepted an observer, or the number of times it did so in
the past: a negative regression coefficient could be interpreted as
voluntary skippers having an intrinsically lower risk of bycatch.
Including skipper-level covariates could reduce the between-
skipper variance σ 2

vessel
, and improve ultimately precision of

bycatch estimates. Consideration of other distributions than the
normal (e.g., a skew-normal, or a Student-t distribution with a
fixed degree of freedom) would be straightforward with Stan
but is probably worthwhile only with large enough amount of
data for all practical purposes (McCulloch and Neuhaus, 2011).

An important assumption underlying accurate estimation is
that the information on the total effort must also be accurate
and available at the scale of weeks for post-stratification. This
assumption is crucial to scale-up estimates from the (potentially
biased) sample to the population, but it does not necessarily
hold with fisheries effort as the latter is more often estimated
rather than measured directly (Julian and Beeson, 1998; ICES,
2018, 2020b). Here we assumed that the total number of fishing
operations (e.g., number of tows for trawls; Tremblay-Boyer
and Berkenbusch, 2020) are available as auxiliary information
for post-stratification. This assumption about the availability of
disaggregated data stems from the explicit consideration of time
as an important predictor of variations in bycatch risk. This
assumption is necessary for using post-stratification to align
the sample with the population targets but may be difficult to
meet in practice. Currently, ICES WGBYC uses in its BRA a
coarse, but admittedly comparable proxy across fisheries and
countries to quantify fishing effort, namely days at sea (ICES,
2019). A day at sea is any continuous period of 24 h (or
part thereof) during which a vessel is present within an area
and absent from port (Anonymous, 2019a). Importantly, this
definition is not at the level of a fishing operation, and effort
thus quantified is already aggregated at a level above that at
which bycatch data are collected. This coarsening of fisheries
effort data is fundamentally a measurement problem, and one
that modeling should not be expected to remedy easily. BRA uses
an estimate of total fishing effort for the fisheries of concern in a
specific region, together with some estimate of likely or possible
bycatch rates that might apply for the species of concern, in
order to evaluate whether or not the total bycatch in that area
might be a conservation issue. A regularizedmultilevel regression
model could be used to obtain estimates of bycatch rates to
be used in BRA. Post-stratification could also be attempted
using the coarse days at sea proxy for effort, and thus our
framework could be adapted to match the requirements of
ICES WGBYC.

Assuming that our framework were to be adopted to
produce bycatch estimates, how would both fisheries and Non-
Governmental Organizations (NGOs) react given the salience
of bycatch as a policy issue in Europe? Such a prospective
question inevitably entails some speculations (as with all “what-
if ” questions), but may nevertheless bring some insights as
highlighted by a reviewer. Within Europe, the conservation
reference currently available for assessing bycatch is that
established under the Agreement on the Conservation of Small
Cetaceans of the Baltic, North East Atlantic, Irish and North
Seas. The agreement has the conservation objective to minimize

anthropogenic removals of harbor porpoises (and other small-
sized cetaceans), and to restore and/or maintain population
depletion to/at 80% or more of the carrying capacity in each
assessment unit (ASCOBANS, 2000; ICES, 2020c). Methods for
setting conservation reference points were agreed in March 2021
at the meeting of the Biodiversity Committee of the Olso-Paris
Regional Sea Convention. This committee adopted the use of
the Removals Limit Algorithm for harbor porpoises in the North
Sea assessment unit and a modified Potential Biological Removal
(Wade, 1998) for common dolphins in the North-East Atlantic
(Genu et al.)3. Accurate bycatch estimates will be needed for
assessment against these reference points. However, fisheries may
challenge the accuracy of estimates precisely because they will
result from a new statistical model. While a healthy skepticism
is warranted, and model improvements are certainly possible,
it must be kept in mind that our model only addresses the
issue of having a correlation between observer coverage and
bycatch risk, and does so with some assumptions. There would
remain many biases to be addressed in bycatch data (Babcock
and Pikitch, 2003), and many of them would be best addressed
with a proper random allocation of professional observers to
vessels (that is better design and better measurement). A purely
model-based solution can be brittle (Sarewitz, 1999), and may
lead to displacement of the problem of bycatch assessment to a
never-ending problem of model improvement that would delay
any corrective measures or decision (Rayner, 2012). Model-based
estimates offer a pragmatic approach to the analysis of already
collected data, but should not deflect from improving survey
design where possible. Assuming that model-based estimates
would be endorsed by a fishery industry, NGOs could challenge
in court any reference point that is not zero for PETS, since by
definition, it ought to be zero. The Habitats Directive requires
strict protection and prohibits “all forms of deliberate capture
or killing” (emphasis added) of all species listed on its Annex
IV which includes all cetacean species. The Court of Justice of
the European Union has consistently ruled that the adjective
“deliberate” is to be understood in the sense of “conscious
acceptance of consequences” (Trouwborst and Somsen, 2019): in
other words, using knowingly a gear that may potentially catch
a protected species contravenes the Habitat Directives. What will
eventually play out remains to be seen, but strongly hinges on
how polarized the bycatch issue is. As scientists, our duty remains
to provide the best available evidence on bycatch and to outline
all management actions and their consequences in light of this
evidence (Pielke, 2007). Our model is unlikely to change bycatch
management in France in the near term: both fisheries and NGOs
are at loggerheads, vying for public and official support. They
are building constituencies and advertising unyielding positions
in diverse medias: we content that a legal confrontation at a
national or supra-national level is extremely likely and probably
being prepared. We nevertheless think our model, by making
use of data already collected within the DCF framework and by
encouraging further, ideally dedicated, monitoring; can be part of

3Genu, M., Gilles, A., Hammond, P., Macleod, K., Paillé, J., Paradinas, I. A., et al.

(in preparation). Evaluating strategies for managing anthropogenic mortality on

marine mammals: an R Implementation with the Package RLA.
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a messy solution to the wicked problem (Frame, 2008) of dolphin
bycatch in the medium to long term, once the gavel hits and the
dust settles.

5. CONCLUSION

We investigated with simulations the ability of multilevel
regularized regression with post-stratification to estimate
cetacean bycatch for observer programmes when coverage is
correlated to bycatch risk. Our aims were to provide a first
investigation on model-based estimates obtained from samples
preferentially collected either during low- or high-bycatch risk
periods. The unbiased sampling case is unrealistic (Babcock and
Pikitch, 2003): biased sampling, either under-sampling or over-
sampling (ICES, 2009), may be the general case. We considered
both of these cases, under quite extreme scenarios whereby data
collection was highly correlated with bycatch risk, resulting in
either very few observed events with under-sampling, and a large
number of observed events with over-sampling. In both cases,
multilevel regularized regression with post-stratification was able
to produce nearly unbiased bycatch estimates with as few as 5
observed events data. With only 1 year of data, precision was low,
especially with under-sampling, and there was some estimation
bias with over-sampling one. These results stemmed from the
extreme scenarios we considered but illustrate nevertheless
that a model cannot be expected to solve all the deficiencies of
data collection and measurement. Good measurement is key
for accurate estimation and our results actually re-emphasize
the importance of design. However, they also show that a good
data collection design and an adequate modeling framework
are synergistic and allow to extract a lot of information for
sparse data. Assuming a normal distribution for the bycatch
estimates (which is not necessary as the posterior is available,
but the following are back-of-the-envelope calculations to be
used for deriving heuristics), a 80% Bayesian CI width divided
by 2.5 gives an idea of the associated coefficient of variation:
the model-based approach can yield a coefficient of variation of
50% with as few as 15 observed events if sampling is unbiased.
With under-sampling, one would need 10 years of data (under
our data simulation schemes) to obtain the same precision. This
re-iterates the need to (i) have dedicated observer schemes, (ii)
ensure adequate observer coverage and (iii) use a model-based
approach tailored to extract as much information as possible
from sparse data, as the first two points are very difficult to live
up to in practice.

The key assumptions behind regularized multilevel regression
with post-stratification in our simulations are that bycatch risk
changes smoothly through time and that accurate data on the
number of fishing operations at the same temporal scale are
available (e.g., number of tows for trawls; Tremblay-Boyer and
Berkenbusch, 2020). When both assumptions can be reasonably
entertained, we showed how a model-based approach using
recent methodological developments is attractive, irrespective
of how data were collected. A further asset of the explicit
consideration of a temporal scale is that it may help in
pinpointing more precisely windows of heightened risk in order

to target adequate mitigation measures (e.g., spatio-temporal
closures). The framework of multilevel modeling is very flexible
and can accommodate spatial effects, etc., data permitting.
Regularization will, in general, be needed to mitigate data
sparsity and leverage partial pooling in order to obtain stable
estimates of bycatch. Given the satisfactory performance of
regularized multilevel regression with post-stratification in our
simulations, we recommend further investigations using this
technique to estimate bycatch rate and numbers from both
representative or non-representative samples. The modeling
choices we made (e.g., a first order random walk for the mean
function, or fixing the range parameter in the covariance function
of the Gaussian Process prior) are not prescriptive, and other
choices of prior models for parameters should be investigated.
Investigations should be tailored to the context, and modeling
choices motivated by the latter: given the complexity of PETS
bycatch, a one-size-fits-all solution is unlikely. A re-analysis of
> 15 years of observer data on common dolphin bycatch in pair
trawlers flying the French flag is currently underway (Rouby et
al.)4 in order to obtain better bycatch estimates that could be
further used to estimate conservation reference points in order
to better manage this fishery in the long run (Cooke, 1999; Punt
et al., 2021).
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Marine megafauna plays an important functional role in marine ecosystems as top

predators but are threatened by a wide range of anthropogenic activities. Bycatch, the

incidental capture of non-targeted species in commercial and recreational fisheries, is of

particular concern for small cetacean species, such as dolphins and porpoises. In the

North-East Atlantic, common dolphin (Delphinus delphis, Linné 1758) bycatch has been

increasing and associated with large numbers of animals stranding during winter on the

French Atlantic seashore since at least 2017. However, uncertainties around the true

magnitude of common dolphin bycatch and the fisheries involved have led to delays in

the implementation of mitigation measures. Current data collection on dolphin bycatch

in France is with non-dedicated observers deployed on vessels for the purpose of

national fisheries sampling programmes. These data cannot be assumed representative

of the whole fisheries’ bycatch events. This feature makes it difficult to use classic ratio

estimators since they require a truly randomised sample of the fishery by dedicated

observers. We applied a newly developed approach, regularised multilevel regression

with post-stratification, to estimate total bycatch from unrepresentative samples and total

fishing effort. The latter is needed for post-stratification and the former is analysed in a

Bayesian framework with multilevel regression to regularise and better predict bycatch

risk. We estimated the number of bycaught dolphins for each week and 10 International

Council for the Exploration of the Sea (ICES) divisions from 2004 to 2020 by estimating

jointly bycatch risk, haul duration, and the number of hauls per days at sea (DaS). Bycatch

risk in pair trawlers flying the French flag was the highest in winter 2017 and 2019 and

was associated with the longest haul durations. ICES divisions 8.a and 8.b (shelf part

of the Bay of Biscay) were estimated to have the highest common dolphin bycatch.

Our results were consistent with independent estimates of common dolphin bycatch

from strandings. Our method show cases how non-representative observer data can

nevertheless be analysed to estimate fishing duration, bycatch risk and, ultimately, the
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number of bycaught dolphins. These weekly-estimates improve upon current knowledge

of the nature of common dolphin bycatch and can be used to inform management and

policy decisions at a finer spatio-temporal scale than has been possible to date. Our

results suggest that limiting haul duration, especially in winter, could serve as an effective

mitigation strategy.

Keywords: additional mortality, anthropogenic activities, modelling, non-representative samples, conservation,

small cetaceans, fisheries, post-stratification

1. INTRODUCTION

Over the last 50 years, the conservation status of cetaceans
has been deteriorating (Brownell et al., 2019). Over 80 species
of cetaceans occur worldwide and bycatch, the non-intentional
capture or killing of non-target species in commercial or
recreational fisheries (Hall, 1996; Davies et al., 2009), remains
a threat, especially to small-sized species (Scarff, 1977; Read
et al., 2006; Avila et al., 2018; Anderson et al., 2020). Success
stories in small cetacean conservation are the exception rather
than the rule (e.g., Bessesen, 2018). Both Rogan et al. (2021)
and Bearzi and Reeves (2021) opined of institutional failures
to conserve cetaceans in European Waters in spite of current
legislation (for example, the Habitats Directive, the Marine
Strategy Framework Directive) or regional agreements such as
the Agreement on the Conservation of Small Cetaceans of the
Baltic and North Seas (ASCOBANS, see Table 1 for acronyms;
ICES, 2020c). Over 20 species of small cetaceans have been
registered in the North-East Atlantic, with roughly half of which
occurring regularly (Course, 2021). Because of their slow life
histories and their limited potential rates of increase, small
cetaceans are particularly at risk of decline when anthropogenic
activities induce additional mortality on populations (Read,
2008). Anthropogenic activities and their cumulative impacts
can take a heavy toll on populations. Common species may
disappear, such as short-beaked common dolphins (Delphinus
delphis, hereafter called common dolphins) in the Adriatic Sea
(Bearzi and Reeves, 2021), or are under many threats, e.g., in the
Bay of Biscay (García-Baron et al., 2019; Murphy et al., 2021).

In 2013, the common dolphin’s conservation status in the
European Marine Atlantic, as assessed under Article 17 of the
Habitats Directive, was “Unfavourable–Inadequate” because of
fishery bycatch (Murphy et al., 2021). Common dolphin bycatch
in the Bay of Biscay, in particular, has attracted a lot of media
coverage since 2017 in international outlets1 andmotivated (with
bycatch of Harbour porpoise Phocoena phocoena in the Baltic
Sea) a special request of Non-Governmental Organisations to
the European Commission in 2019. The International Council
for the Exploration of the Sea (ICES) advised in 2020, for the
common dolphin in the Bay of Biscay, a combination of temporal
closures of all métiers (i.e the combination of gear, target species,
and fishing area) of concern and application of pingers on pair
trawlers to mitigate bycatch outside of the period of closure
(ICES, 2020b). Temporal closures, restricted to winter months in

1https://www.nytimes.com/2019/05/02/world/europe/france-dolphins-fishing.
html

TABLE 1 | List of acronyms.

Acronym Meaning

ASCOBANS Agreement on the Conservation of Small Cetaceans of the

Baltic, North East Atlantic, Irish and North Seas

DCF Data collection framework

DPMA “Direction des pêches maritimes et de l’aquaculture”

GNS Gillnetters

GTR Gill trammel netters

ICES International Council for the Exploration of the Sea

Ifremer Institut Français de Recherche pour l’Exploitation de la Mer

ObsMer Observation des captures en Mer (French national observer

scheme for monitoring fisheries)

PBR Potential Biological Removal

PTM Pair trawlers

PTB Bottom pair trawlers

VAST Vector-Autoregressive Spatio-Temporal

WGBYC ICES Working Group on Bycatch of Protected Species

WKEMBYC ICES Workshop on fisheries Emergency Measures to

minimise BYCatch of short-beaked common dolphins in the

Bay of Biscay and harbor porpoise in the Baltic Sea

which strandings of common dolphins with evidence of bycatch
have increased in recent years (ICES, 2020d), could have been
implemented as emergency measures under the provisions of the
Common Fisheries Policy. For 2021, France instead required the
mandatory use of acoustic repulsive devices (pingers) on all pair
trawlers flying the French Flag (code métier Pair trawlers and
hereafter referred to as PTM) operating in the Bay of Biscay2, a
technical mitigationmeasure whose efficiency was found wanting
(Ulrich and Doerner, 2021). This decision against the advice
of ICES was motivated by a lack of knowledge on common
dolphins, including its abundance at the level of the whole
North-East Atlantic (the currently recognised management unit:
Murphy et al., 2013) and the extent of bycatch. The issue of
managing uncomfortable knowledge through interpretation of
scientific uncertainty can be raised (Schweder, 2000; Rayner,
2012); yet it should not eclipse that there are genuine difficulties
in estimating accurately the true magnitude and the extent of
bycatch of small cetaceans (Moore et al., 2021).

Several types of fishing gear are known to cause cetacean
bycatch: drift nets, set gill, trammel nets, both pair and single
midwater trawls, and some demersal trawls (Rogan and Mackey,

2https://www.mer.gouv.fr/protecting-cetaceans-annick-giradin-presents-7-
commitments-made-french-state-fishermen-and
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2007; Fernández-Contreras et al., 2010; Peltier et al., 2016).
Accurate quantification of bycatch rates by fishing gears or
métiers remains a challenging endeavour (Babcock et al., 2003;
ICES, 2019). Traditionally, bycatch data are collected by onboard
observers monitoring fishing operations and recording the
unwanted catch of non-commercial species (Course, 2021).
Ratio estimators, based on the number of observed hauls
with bycatch over the total number of monitored hauls, are
used (Alverson et al., 1994; page 18) but are plagued by
large uncertainties due to low coverage and the usual small
number of hauls with small cetacean bycatch (Babcock et al.,
2003; Authier et al., 2021; Course, 2021). It may also happen
that some bycatch events may not be reported by non-
dedicated observers since they may drive observations for other
purposes than report bycatch (e.g., commercial discards or
stock assessments). A critical assumption behind the use of
such ratio-estimators is that of a representative sample: this
assumption is difficult to sustain unless monitoring is dedicated
to marine mammals, and allocation of observers to fishing vessels
is truly randomised (that is, not at the discretion of skippers).
Even if we are willing to assume representative sampling, if
coverage is low, the main challenge remains to extrapolate
from sample to the whole fisheries. In France, monitoring of
cetacean bycatch in fisheries is non-dedicated (Cornou et al.,
2018), and the collected data are described as non-representative
of the bycatch events, preventing the use of ratio-estimators
(Anonymous, 2016; page 24).

This non-dedicated nature and the sparseness of the bycatch
data complicates the use of state-of-the-art spatio-temporal
models such as Vector-Autoregressive Spatio-Temporal (VAST)
(Thorson, 2019). This framework accommodates density-
dependence, spatial and temporal scales to estimate biomass
or abundance or presence of a species (Thorson et al., 2015).
Spatio-temporal models are also used tomodel the co-occurrence
of commercial and bycaught species, allowing the estimate of
bycatch risk with time-varying spatial effects (Ward et al., 2015).
These types of model-based approaches methodologies allow
modelling spatial and temporal auto-correlation through the use
of Gaussian process priors. It is difficult to transfer a priori the
same model-based structure to analyse small cetacean bycatch.
Models such as VAST capitalise on the availability of catch data
that are collected as part of fisheries monitoring. In contrast,
bycatch monitoring is not as developed or efficiently enforced in
many fisheries in Europe (ICES, 2019, 2020a; Sala et al., 2019),
and bycatch data are typical of low quality and unrepresentative
(Authier et al., 2021). In Europe, fisheries monitoring is carried
out under the Data Collection Framework (DCF) but “remains
not well-suited for the dedicated monitoring of rare and
protected bycatch in high-risk fisheries since its main focus is the
statistically-sound random sampling of all commercial fisheries”
(Ulrich and Doerner, 2021). Because of these data quality issues,
Authier et al. (2021) conducted a simulation study to gauge the
potential of investigating recent methods for the analysis of non-
representative samples (for a recent example of a model-based
approach to estimate bycatch, refer to Luck et al., 2020) in the
context of small cetacean bycatch: they concluded the potential of
regularised multilevel regression with post-stratification to infer

more accurately bycatch rates (although uncertainties remained
large). The approach of Authier et al. (2021) also makes use of
Gaussian process priors but does not necessarily assume that a
large dataset has been collected.

We analysed historical bycatch monitoring data collected
by onboard observers (from 2004 to 2020) on PTM, a métier
historically associated with high levels of dolphin bycatch
in the Bay of Biscay (ICES, 2019; Murphy et al., 2021).
Leveraging recent modelling developments (see companion
article; Authier et al., 2021), we jointly estimated bycatch risk,
haul duration, and number of hauls per days at sea (DaS)
from an updated and revised observer dataset on common
dolphin bycatch. The modelling procedure accounts for the
sparseness of the bycatch incident dataset and the low observer
coverage through constraints. This type of constraint (which
can be viewed as some sort of penalisation) is also called
regularisation. We used structured priors, such as Gaussian
processes, to achieve regularisation and leverage the within-year
information at the weekly scale (inducing correlation between
some weeks). Structured priors allow inducing some spatial- or
temporal-dependency between so called random-effects whereas
unstructured priors do not induce such dependency (but both
assume exchangeability). Importantly, we used this model-based
approach to disaggregate bycatch risk at the level of calendar
weeks in order to document within-year variations. Estimates
were summed over a whole year to investigate between-year
variations in the number of bycaught dolphins. We compared
these model-based estimates with strandings, both within- and
between-years. Finally, we concluded with recommendations on
conservation and mitigation.

2. MATERIALS AND METHODS

2.1. Materials
2.1.1. Study Division
The study area (Figure 1) encompasses 10 ICES divisions within
area 27: it includes the Bay of Biscay, the English Channel,
and part of the Celtic seas. These zones are associated with
submesoscale and mesoscale oceanographic processes, such as
eddies and upwelling, that enhance ecosystem productivity and
result in high availability of fishes, including commercial species
(e.g., European seabass Dicentrarchus labrax, Sardine Sardina
pilchardus or Anchovy Engraulis encrasicolus). Each division can
roughly be classified as oceanic or neritic: divisions 7.d, 7.e, 7.f,
7.g, 7.h, 8.a, 8.b, and 8.c are related to neritic ecosystems while
divisions 7.j, and 8.d are related to oceanic ecosystems.

2.1.2. Data Sources
Two main sources of data were used. The first dataset, called
ObsMer3 (”Observation des captures en Mer”), is collected as
part of an onboard observer program set up within the Data
Collection Framework of the Common Fisheries Policy. The
ObsMer program is carried out by Ifremer (“Institut Français de
Recherche pour l’Exploitation de la Mer”), under the supervision
of the Directorate of Fisheries and Aquaculture (“Direction

3https://sih.Ifremer.fr/Ressources/ObsMer
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FIGURE 1 | Study area in the North-East Atlantic ocean, with ICES divisions

overlayed.

des pêches maritimes et de l’aquaculture,” DPMA). ObsMer
observers’ primary duty is to register the length and weight
composition of catches. Still, they have to report any bycatch
event if they witness such events. ObsMer data on PTM cover
4, 484 hauls between 2004 and 2021, of which 82 were associated
with a bycatch event of at least 1 and up to 50 common dolphins.
ObsMer provides, among other information, the geographic
position, timing, and duration of hauls. Although ObsMer is
aiming at a coverage of 10 and 5% of fishing effort for (level-3
métier) PTM for vessels of more than 15 m and less than 15 m,
respectively, these figures are rarely, if ever, reached in practice:
accepting onboard observers remains entirely at the discretion
of skippers. The effort is quite low overall, ranging from 0 to
11% of Days at Sea (DaS) (Table 2). A DaS is any continuous
period of 24 h (or part thereof) during which a vessel is present
within an area and absent from the port (Anonymous, 2019).
The number of observed hauls with at least one bycatch record
is very small because the yearly percentage of observed hauls
with a bycatch event never exceeded 4.5% and was 0 in nearly
half of the surveyed years. ObsMer data on pair-trawlers are an
unrepresentative sample of hauls, largely because allowing an
observer remains largely at the discretion of skippers (Babcock
et al., 2003; Benoît and Allard, 2009).

The second dataset provides monthly estimates of total fishing
effort in each division. This dataset is generated from the
algorithm SACROIS developed by Ifremer and integrates data
from Vessel Monitoring System, log-books, and landing statistics
(for boats longer than 18m from January 1, 2004, and longer than
15 m from January 1, 2005; Système d’Information Halieutique,
2017). SACROIS aims at (1) correcting errors that could exists in
the integrated dataset due to recording or collecting errors and

(2) reconstitute métiers during the fishing trip as they are not
recorded in logbooks or fish market data (Cornou et al., 2018).
The SACROIS dataset provides the best available estimates of
total effort, in DaS, between 2004 and 2020 (Table 2). There are
also refusals from skippers due to administrative and security
reasons. Skippers must file an application for authorisation to
embark observers and even if they decide to file, the authorisation
may be declined due to security reasons (e.g., not enough room
or rails not high enough).

These two datasets are complementary for our purposes:
ObsMer provides micro-level data on marine mammal bycatch
at the resolution of hauls. From these data, bycatch risk may be
estimated (Luck et al., 2020). Fishing trips effort data, on the
other hand, are macro-level: they provide spatialised effort data
at the scale of a whole fishing fleet. These population-level data
on effort allows the post-stratification of bycatch risk estimated
from observer data to obtain the number of bycaught dolphins
(Authier et al., 2021). Descriptive statistics of both datasets
are displayed in Table 2. Used in tandem, both datasets allow
using regularised multilevel regression with post-stratification
to estimate cetacean bycatch from non-representative samples
(Authier et al., 2021).

Estimates were finally compared to strandings along the
French Atlantic seaboard. The French Stranding Network,
founded in the 1970s, is dedicated to the monitoring of marine
mammal strandings along the shores of France (mainland and
overseas). Around 400 trained volunteers are currently taking an
active part in the network. These volunteers make the complete
coverage of French coastlines possible. Standardised training of
volunteers by permanent Observatoire Pelagis staff, which takes
place two times a year, ensure the homogeneity, comparability,
and standardisation of data collection procedures in the field.
Observatoire Pelagis is mandated by the French Ministry of
Ecology to train and deliver authorisation to handle carcasses of
marine mammals (which are all protected species under national
law). It also collates the data and analyse it to inform on the status
of marine mammal populations. Stranding data for the period
2004–2020 were used. Only common dolphins found with lesions
diagnostic of bycatch in fishing gear were considered (Kuiken,
1994) as well as those stranded during multiple stranding events,
or “unusual mortality events” related to lesions diagnostic of
bycatch. Multiple stranding events were defined as high numbers
of strandings occurring in a restricted area with a common cause
of death. The threshold was defined at 30 cetaceans over 10
consecutive days recorded along a maximal distance of 200 km
in the Bay of Biscay, and 10 individuals per 10 days per 200 km
of coastline along the coast of the western Channel (Peltier et al.,
2014). Reverse drift modelling uses a deterministic drift model
developed byMeteo France (Peltier et al., 2012) to reconstruct the
trajectory of every stranded common dolphin from its stranding
location to its likely area of death at sea. The number of dead
stranded animals in each cell is then corrected by the cell-
specific probability of being stranded (Peltier et al., 2016). These
probabilities were estimated by numerical experiment in which
the drift of carcasses in the study area was simulated in order to
assess with which frequency they would reach a coastline (Peltier
and Ridoux, 2015).
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TABLE 2 | Descriptive statistics for Observation des captures en Mer (ObsMer) and SACROIS data displayed for each year.

Dataset ObsMer SACROIS

Year Hauls Average Duration (hours) Bycatch events Median nb of dolphins Max. nb of dolphins DaS (Coverage %) Total Effort (DaS)

2004 4 2.80 0 - - 4 (0.0) 8 530

2005 5 4.26 0 - - 4 (0.0) 8 790

2006 122 4.62 0 - - 90 (1.1) 7 853

2007 727 3.89 6 1.5 5 401 (6.4) 6 305

2008 554 4.81 6 1.5 4 328 (10.9) 3 011

2009 464 5.50 20 2 50 326 (7.4) 4 413

2010 305 3.52 1 4 4 159 (3.5) 4 486

2011 173 3.99 2 3 3 86 (2.1) 4 001

2012 210 3.58 4 4 8 96 (2.4) 4 005

2013 128 3.81 2 5.5 9 75 (1.8) 4 192

2014 114 4.44 0 - - 78 (1.9) 4 136

2015 136 2.77 1 2 2 78 (1.7) 4 597

2016 156 4.75 5 3 10 106 (2.3) 4 603

2017 196 5.23 12 2 20 124 (2.6) 4 835

2018 184 3.85 1 1 1 102 (2.8) 3 613

2019 438 5.45 11 2 8 289 (7.4) 3 139

2020 123 3.69 2 2 3 70 (4.0) 1 686

2.2. Methods
2.2.1. Modelling Bycatch Risk and Duration of Hauls
Observation des captures en Mer data allow both bycatch
risk and haul duration to be modelled. The two may be
correlated as a longer towing time may result in an increased
likelihood of bycatch, all else being equal. Bycatch risk is
defined at the level of a haul. Hauls can differ in duration as
skippers may target different commercial species at different
times of the year. However, the population-level data on effort
is aggregated and available as DaS, the metric currently used
in international fora (e.g., ICES Working Group on BYCatch,
WGBYC). The number of hauls per DaS was also modelled
from the ObsMer dataset in order to scale up bycatch risk per
haul by the number of hauls per DaS. We modelled jointly
bycatch risk, fishing duration of hauls, and the number of
hauls per DaS of pair-trawlers flying the French flag at the
week-level for each year between 2004 and 2020 (Table 2)
and each ICES division (Figure 1). The goal of the approach
is to model bycatch rates at the weekly scale for each year
within each ICES division using a simple autoregressive model.
To smooth the fluctuations of estimated bycatch rates in
weekly estimates we constrained estimation using Gaussian
Process structured priors. These priors allow (i) to estimate
an average bycatch risk profile at the weekly scale and
from this weekly average, (ii) to estimate year- and division-
level deviations.

2.2.2. Notations
Let N (d, s) denote a normal distribution of location parameter d
and scale parameter s. Let G(a, b) denote a gamma distribution of

scale parameter a and rate parameter b. LetLN (d, s) denote a log-
normal distribution of location parameter d and scale parameter
s. The gamma and the log-normal distribution are used and
compared to model the likelihood of the haul duration since they
assume a positive continuous distribution. These distribution
laws are appropriate modelling choices for positively skewed data
with a constant coefficient of variation. Let GP(m, c) denote a
Gaussian process of mean function m and covariance function
c. A Gaussian Process is a prior distribution on a function
f in which, for any vector x = (x1, . . . , xn), f (x) is drawn
from a n−dimensional normal distribution with mean m(x)
and covariance matrix depending only on the distances of the
point x from each other (Gelman et al., 2021, page 465). In the
following, we will drop the x and write in a shorthand manner
θ ∼ GP (m, S) to mean that the vector θ of n parameters
has a Gaussian process prior and follows a multivariate normal
distribution whose mean vector m is equal to m(x) and whose
covariance matrix S is defined for any pairs (x, x′) as S

(

x, x′
)

=
c(x, x′), where c is the covariance function of the Gaussian
process prior.

2.2.3. Joint Modelling Approach
Let i denotes the ith haul (fishing operation) happening in ICES
statistical division j in week t of year k. Let yijkt , dijkt , and njkt
denote, respectively, bycatch event (0 or 1), fishing duration (in
hours, dijkt > 0), and the number of hauls per DaSjkt . Bycatch
risk pjkt is estimated from

yijkt ∼ Bernoulli
(

pjkt = logit−1
(

α1
jkt

))

(1)
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To account for strict positivity, fishing duration is modelled
either with a Gamma or a log-normal likelihood:

dijkt ∼ G
(

β ,
β

d̄jkt

)

(2a)

dijkt ∼ LN
(

d̄jkt , σ
)

(2b)

The number of hauls per DaS is modelled assuming a zero-
truncated Poisson likelihood:

njkt ∼ P+ (DaSjkt × λjkt
)

(3)

Parameters d̄jkt = e
α2
jkt and λjkt = e

α3
jkt are rates. The

linear predictors αjk are vectors of week-level parameters related
to ICES division j and year k (dropping the superscript for
convenience):



















αjk ∼ GP (δk,6division)

δk ∼ GP
(

ǫ,6year
)

ǫt = µ t = 1

ǫt+1 ∼ N (εt , σweek) t > 1

(4)

Parameter µ is the intercept. The vector ǫ aggregates the mean
weekly effects (on the linear predictor scale) which are modelled
with a first-order random walk to ensure some smoothness in
between-week variations (Authier et al., 2021). The vector δk

are year-specific deviations from the mean weekly pattern ǫ.
The vector αjk are division-specific deviations from the mean
yearly pattern δk. Smoothness in αjk and δk is controlled via the
covariance matrices 6division = 1division�1division and 6year =
1year�1year.Matrices6. have dimensions nweek×nweek (53×53).
These covariance matrices are decomposed into a product of a
diagonal matrix 1. (of dimension 53 × 53) with the common
scale parameter on the diagonal, and a correlation matrix � (of
dimension 53× 53; Chen and Dunson, 2003):

1. =















σ. 0 . . . 0 0
0 σ. . . . 0 0
...

...
. . .

...
...

0 0 . . . σ. 0
0 0 . . . 0 σ.















(5)

� = �

(

t, t
′
)

is a matrix with the correlation between week t

and week t
′
of dimensions nweek × nweek (53 × 53). A Matérn

correlation function of order ν = 3
2 and range parameter fixed

to ρ = 3
2 was assumed: �

(

t, t
′
)

=
(

1+ 2
√
3×d(t−t

′
)

3

)

×

exp− 2
√
3×d(t−t

′
)

2 where d(t − t
′
) = |t − t

′ | is the temporal

distance (in weeks) between weeks t and t
′
. The choice of the

range parameter induces a temporal correlation of 0.05 after 4
weeks (that is, temporal independence after a month; Authier
et al., 2021). The correlation matrix � is assumed known and
is depicted in Figure 2. Equations 4 and 5 allow modelling an

FIGURE 2 | Graphical representation of the assumed correlation matrix �.

interaction between week, year, and division. The joint model
defined in Equations (1), (2a), and (3) includes a time-varying
component at the week-scale with interaction with year and
division.

Simpler models without such interactions, and with only
additive effects, were also fitted to the data. The simplest model
included only additive random (unstructured) effects (dropping
the superscript for convenience):































αjkt = ǫt + δ∗
k
+ α∗

j

α∗
j ∼ N (0, σdivision) ∀ j

δ∗
k
∼ N

(

0, σyear
)

∀ k

ǫt = µ t = 1

ǫt+1 ∼ N (εt , σweek) t > 1

(6)

Models are multilevel, accommodating week-, year-, and
division-level variations. They also use structured priors such
as Gaussian processes or random walks to regularise estimation
(Gao et al., 2019). More information on these models, and
on applying (regularised) multilevel regression with post-
stratification in the context of estimating bycatch, are detailed by
Authier et al. (2021). Estimation was carried out in a Bayesian
framework using programming language Stan (Carpenter
et al., 2017) called from R v.4.0.1 (R Core Team, 2020) with
library Rstan (Stan Development Team, 2020). Stan uses
Hamiltonian dynamics in Markov chain Monte Carlo (MCMC)
to sample values from the joint posterior distribution (Carpenter
et al., 2017). Four chains were initialised from diffuse random
starting points and run for a total of 2, 000 iterations, discarding
the first 1, 000 as a warm-up. Default settings for the No-U-
Turn Sampler (NUTS) were changed to 0.99 for adapt delta
and 15 for max treedepth (Hoffman and Gelman, 2014).
Priors are reported in Table 3. We fitted a total of 6 models of
differing complexity (Table 4): we compared models assuming
either gamma or a log-normal likelihood for haul duration,
and models assuming additive effects vs. interactive effects of
the week, year, and divisions. Model fitting was carried out
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TABLE 3 | Prior specifications.

Parameter Specification Response

variable

Meaning

µ ∼ N (0, 1
2 ) Bycatch risk Intercept (on linear predictor

scale).

prop ∼ D(1, 1, 1) Variance partitioning

proportions

σtotal ∼ GG( 12 , 1
2 ,

log 10
2 ) Total variability (on linear

predictor scale)

σweek = σtotal
√

prop1 Week-level variability

σyear = σtotal
√

prop2 Year-level variability

σdivision = σtotal
√

prop3 Division-level variability

µ ∼ N (0, 5) Fishing duration Intercept (on linear predictor

scale).

prop ∼ D(1, 1, 1) Variance partitioning

proportions

σtotal ∼ GG( 12 , 1
2 ,

log 2
3 ) Total variability (on linear

predictor scale)

σweek = σtotal
√

prop1 Week-level variability

σyear = σtotal
√

prop2 Year-level variability

σdivision = σtotal
√

prop3 Division-level variability

µ ∼ N (0, 5) Haul numbers Intercept (on linear predictor

scale).

prop ∼ D(1, 1, 1) Variance partitioning

proportions

σtotal ∼ GG( 12 , 1
2 ,

log 2
2 ) per Days Total variability (on linear

predictor scale)

σweek = σtotal
√

prop1 Week-level variability

σyear = σtotal
√

prop2 at Sea Year-level variability

σdivision = σtotal
√

prop3 Division-level variability

ρ 3
2 All Range of Matérn correlation

function

ν 3
2 Smoothness of Matérn

correlation function

D() denotes the Dirichlet distribution for modelling proportions (such that
∑3

l=1 propl = 1)

and GG() the Gamma-Gamma distribution for scale parameters (Griffin and Brown, 2017;

Pérez et al., 2017).

on the supercomputer facilities of the “Mésocentre de calcul
de Poitou Charentes (Université de Poitiers/ISAE-ENSMA/La
Rochelle Université).” Codes are available at https://gitlab.univ-
lr.fr/mauthier/cdptmbycatch. For confidentiality reasons, the
actual dataset cannot be shared: a synthetic dataset, generated by
predicting from the posterior distribution, is provided instead.

2.2.4. Estimating the Total Number of Hauls and

Bycatch Events
The number of unobserved hauls Njkt that happened in ICES
statistical division j in week t of year k can be estimated from the
number of observed DaS in ObsMer (DaSObsMer

jkt ) and from total

effort DaStotjkt (and accounting for zero-truncation):

N̂jkt =
ˆλjkt

1− e−
ˆλjkt

×
(

DaStotjkt − DaSObsMer
jkt

)

(7)

The total number of bycatch events in ICES statistical division
j in week t of year k is estimated as the sum of events observed

in ObsMer (BycatchObsMer
jkt ) and the number of unobserved hauls

multiplied by bycatch risk ( ˆpjkt):

ˆBycatchjkt = BycatchObsMer
jkt + ˆNjkt × ˆpjkt (8)

Similarly, for each year, the number of common dolphins
bycaught in pair-trawlers can be estimated using the observed
number of bycaught dolphins in ObsMer, the estimated number
of unobserved hauls (Equation 7), bycatch risk, and either the
median number of dolphins involved in a bycatch event (Table 2,
or the grand median of m = 2 for years with no observed
bycatch event). We used the median to attenuate the influence of
some bycatch events involving up to 50 dolphins (Table 2). These
estimates are thereafter referred to as model-based estimates.

2.3. Comparing Model-Based Estimates
With Strandings
The sample provided by ObsMer, a non-dedicated observer
scheme of marine mammal bycatch, may not be representative
of all bycatch. In addition, it provides very sparse data, with less
than 100 observed events over 17 years (Table 4) when strandings
have reached several hundred per week in recent years (ICES,
2020d) (for all causes of death). Despite this, the weekly pattern
of bycatch risk provided by ObsMer roughly matches that of
strandings, with an increase in winter (Figure 3). Despite this
rough match, the ObsMer data also suggest a heightened risk in
summer, especially in the 2000s, whereas strandings suggest such
an increased risk in very recent years (Peltier et al., 2021).

The number of stranded common dolphins with evidence of
bycatch can be used to estimate the total bycatch mortality with
reverse drift modelling (Peltier et al., 2016). These stranding-
based estimates are now used in international working groups
(ICES, 2020d). Reverse drift modelling corrects for at-sea drifting
conditions, but cannot inform on which fishing gears were
responsible for bycatch. Hence, strandings-based estimates are
total estimates of bycatch and can be compared to model
and observation based estimates of bycatch by French pair-
trawlers. These model-based estimates use data independent
from strandings, but they should not exceed stranding-based
estimates. Second, whether model-estimates correlate with
strandings-based ones is of interest to shed light on the increased
mortality witnessed in the Bay of Biscay (Peltier et al., 2021). For
each year, we checked the magnitude of model-based estimates
against stranding-based ones and computed Pearson’s correlation
coefficient between the two time-series at the month level. To
account for drift, these correlations were computed with and
without a lag of 2 weeks when aggregating model-based estimates
at the month level.

3. RESULTS

We built and compared six models (Table 4). Convergence was
reached for all parameters with all R̂ < 1.05. Model M6

had the lowest WAIC and was selected as the best model for
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TABLE 4 | Model selection.

Model Likelihood for duration Specification WÂICse 1
WÂIC

Computation time (h)

M6 Gamma ICES division × week × year 18, 265169 0 50

M5 Log-normal ICES division × week × year 18, 746185 481 47

M4 Gamma ICES division + week × year 19, 065151 800 10

M3 Log-normal ICES division + week × year 19, 475167 1, 210 11

M2 Gamma ICES division + week + year 21, 553133 3, 288 4

M1 Log-normal ICES division + week + year 21, 886148 3, 621 3

Models are ordered in increasing order of WÂIC (the smaller, the better the fit). se stands for “standard error”.

FIGURE 3 | Model-based estimates (posterior medians) of bycatch risk, haul duration, and number of hauls per Days at Sea (DaS) of pair-trawlers (PTM) flying the

French flag operating in the study area. Each colour represents a different year (parameters αjkt in Equation 4) and the dotted black line the yearly average (parameters

ǫt in Equation 4).

further inferences. Model M6 included an interaction between
week, year, and ICES division (Equations 4 and 5). All codes
to fit models are available at https://gitlab.univ-lr.fr/mauthier/
cdptmbycatch.

3.1. Bycatch Risk, Haul Duration, and Haul
Number Per DaS
Haul duration, hauls per DaS, and bycatch risk per
haul (Equations 7 and 8) were jointly estimated. Their
temporal variations are displayed in Figure 3 for each
week between 2004 and 2020. Haul duration was the

highest in week 1 with a posterior median estimate of
5.8 h that decreased to 4.0 h in week 16, before dropping
to 2 h in week 24. Haul duration increased up to 3
h in week 32 and plateaued until the end of the year.
Remarkable years were 2017, 2019, and 2020 with the
longest haul durations estimated from week 1 to 10.
From week 10 onwards, years before 2012 displayed some
variations in haul duration. In particular, duration was
consistently smaller in 2004. In 2016, an increase in haul
duration was estimated in week 48 (5 vs. 3 h on average
across years).
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Bycatch risk was maximum in week 1 (around 0.1) and
decreased to almost 0 from week 8 onwards. 2017, 2019, and
2020 were the years with the highest estimated bycatch risk in
the first 8 weeks. In particular, the risk was as high as 0.20 in 2017
for the first four consecutive years of the year. Two years prior
to 2012 were associated with an increased risk between weeks
30 and 36. The year 2016 showed a rise in bycatch risk in week
48. Bycatch risk and haul duration were positively correlated
with weeks in years associated with the highest risk and also
having the longest haul duration. Numbers of hauls per DaS were
negatively correlated with weeks with longer haul duration. There
was little variation across years in numbers of hauls per DaS, but
substantial within year variations.

Spatial variations in bycatch risk and haul duration are
available as supplementary information. There were noteworthy
differences between divisions regarding bycatch risk (see
supplementary information). The overall signal was similar to the
one observed in Figure 3 with the highest risk values estimated
between weeks 1 and 8. Risk in 2017 and 2019 was higher by
a factor of 5 in week 1 compared to other years. After week 8,
this difference disappeared. With respect to divisions, division
8.a. was the one with the highest bycatch risk, with an estimate
as high as 0.50 in winter 2017 and 2019.

3.2. Number of Bycaught Dolphins
The estimated total number of bycaught dolphins for each year is
reported in Table 5. The study area was further divided into three
strata: a neretic stratum in ICES subarea 7 (divisions 7.defgh) and
another in subarea 8 (divisions 8.abc); and an oceanic stratum
spanning subareas 7 and 8 (divisions 7.j and 8.d). Estimates were
the lowest in the oceanic stratum of the study area and the largest
in the neretic stratum spanning ICES subarea 8. The largest

bycatch estimate was in 2017, with a posterior median of > 600
common dolphins bycaught in PTM operating in the neretic
stratum spanning ICES subarea 8. There were large between-
year variations in estimates, ranging from less than a hundred (in
2018) tomore than one thousand (in 2017). Uncertainties around
model-based estimates were also large.

3.3. Comparison and Correlations With
Strandings
Strandings data were used to estimate common dolphins
mortality due to fisheries following method described in Peltier
et al. (2016) for each month from 1990 to 2020. Stranding-
based estimates aggregate mortality due to all fisheries and
do not distinguish between gears or métiers. Nevertheless,
we correlated stranding-based estimates with our model-based
estimates of mortality from PTM flying the French flag both
between years (Figure 4) and within each year (Figure 4).
For yearly estimates, correlations were computed on raw
and standardised (mean centered and unit variance) values
(Figure 4). Model-based estimates of bycatch by PTM were
always below stranding-based estimates (which do not allow
to disaggregate by métiers) save for 2010 (Figure 4). In 2010,
model-based and stranding based estimates were 465 and 343,
respectively, with a large overlap in credibility interval. At
the year level, the Pearson correlation between stranding-based
and model-based estimates was 0.25. Yearly variations between
the two time series were more in phase from 2015 onwards
(Figure 4). At the within year (betweenmonth) level, correlations
between the two time-series were always positive. These within
year correlations generally increased by 47% (median) when
model-based estimates were aggregated by month with a lag

TABLE 5 | Model-based estimates of common dolphin bycaught in PTM in the study area.

Year Neretic 7 Neretic 8 Oceanic Total

2004 048248 0177876 0110 02271134

2005 056302 02351101 0215 02931417

2006 077378 0208923 003 02861303

2007 1545102 029111 128 1677219

2008 11863 1146125 004 1265190

2009 1094248 172315568 016 183412820

2010 0119537 4112454 003 4232994

2011 9128359 061270 017 9191635

2012 22233667 0129511 0313 233661190

2013 133151086 0105442 0525 134261552

2014 033158 050224 003 084384

2015 01471 278368 018 294446

2016 01576 55255852 003 55270929

2017 01861 1566001355 001 1566181415

2018 0215 131147 002 135163

2019 01240 59203391 016 59216441

2020 0627 450159 005 457190

Divisions 7.j and 8.d are labelled “Oceanic,” divisions 7.defgh are labelled “Neritic 7,” and divisions 8.abc are labelled “Neritic 8.” Estimates (posterior median) are reported with the lower

and upper bound of a 80% credibility interval (Louis and Zeger, 2009).
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FIGURE 4 | Comparison of model-based (orange solid line) and stranding-based estimates (dark violet solid line) of common dolphin bycatch. Upper: Raw estimates

with uncertainty intervals (80% for model-based estimates and 95% for stranding-based estimates); Middle: standardised (mean centred and unit variance)

estimates. Bottom: Year-level and month-level (within each year) correlations were computed. At the within year (between month level), correlations were computed

with and without 2-weeks lag. Change in the magnitude of the Pearson correlation coefficient is shown with an arrow.

of 2 weeks to account for drift (Figure 4). The temporal
trend in within year correlation was negative over the study
period.

4. DISCUSSION

From a non-representative sample of bycatch events of common
dolphins collected over more than 15 years, we estimated bycatch
risk and number of dolphins bycaught in PTM. Leveraging
recent methodological developments in the analysis of non-
representative samples (Gao et al., 2019; Authier et al., 2021),
we built a joint model of bycatch risk, haul duration, and haul
number per DaS to investigate changes within and between years
in common dolphin bycatch. The years 2017 and 2019 were
associated with the highest bycatch risk and the longest haul
duration in winter.

4.1. Within-Year Variations in Bycatch Risk
Weuncovered the within-year pattern in bycatch risk of common
dolphins. Bycatch risk is the highest in winter, during the first
weeks of a calendar year. This pattern is largely congruent with
the pattern seen in strandings of common dolphins in the Bay
of Biscay (Gilbert et al., 2021). Both stranding and observer data,
which are independent, identified 2017 and 2019 as years with
the highest risk of bycatch (Gilbert et al., 2021; Peltier et al.,
2021). A limitation of stranding data is how the location of
bycatch events must be inferred with reverse drift modelling
(Peltier and Ridoux, 2015). TheObsMer data in contrast included
geolocalised bycatch events, with a spatial resolution at the level
of ICES divisions kept for analysis. Despite this coarse resolution,
we could identify divisions 8.a and 8.b as the ones with the highest
risk of bycatch by PTM.

The ICES Working Group on Bycatch (WGBYC) estimate
bycatch of protected species, including common dolphins, in the
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North East Atlantic. Using data collected by onboard observers
collected between 2005 and 2017, bycatch rates for ICES divisions
on the continental shelf of the Bay of Biscay were estimated with
ratio estimators (ICES, 2019). These estimates are not produced
at the week level, but ICES (2019) also identified divisions 8.a
and 8.b as the ones with the highest of bycatch in midwater
trawls for common dolphins over the period 2005–2017 (p. 61).
ICES (2019) estimated yearly rates ranging between 0.285 and
0.372 dolphins per DaS and warned against extrapolation given
the low observer coverage (p. 61). Our model-based approach
overcomes this limitation (Authier et al., 2021) and was able
to identify, within each year, that weeks 3 to 5 were the ones
with the highest bycatch numbers for both divisions 8.a and
8.b. These results were concomitant with the seasonal stranding
pattern observed each year on the French seashore (that is, winter
strandings; Gilbert et al., 2021): around 80% of all common
dolphin strandings on the French Atlantic seashore is observed
between the end of January and the beginning of April.

A key feature of our model-based approach is how it leverages
correlations between bycatch risk, haul duration, and number of
hauls per DaS (Figure 3). Some of the correlations are expected,
such as the negative correlation between haul duration and the
number of hauls per DaS. However, average haul duration is not
constant within a year, with the variations reflecting the change in
the commercial fish species targeted by PTM at different time of
the year. These variations at the week-level were quite substantial
and were taken into account when estimating bycatch in our
model. There was a positive correlation between haul duration
and a bycatch risk, with at least a two-fold increase in the later
when haul duration exceeds 5 h (Figure 3). This was particularly
evident in weeks 1 to 5 in 2017 and 2019 and week 48 in 2016. The
latter was due to a single fishing trip with 5 hauls that lasted > 10
h, each of which resulted in a bycatch event. We recommend,
in light of the within-year pattern in haul duration (Figure 3),
to investigate management actions and mitigation measures on
limiting haul duration in winter to assess whether bycatch may
also be reduced.

Another possible mitigation measure is to manage common
dolphin interactions with PTM with spatio-temporal closures
(and acoustic repulsive devices such as pingers) during the first
week of a year, when bycatch is the highest. Such measures
were explored by WKEMBYC (ICES, 2020d) to reduce bycatch
mortality across several scenarios. The performance of each
scenario was assessed with the Potential Biological Removal
(Wade, 1998), bycatch reduction rate, and fishing effort reduction
rate. WKEMBYC (ICES, 2020d) defined an efficiency score by
the ratio between the latter two rates. This efficiency score is a
trade-off between the expected bycatch reduction and the cost
for the fishing industry (without direct economic consideration).
WKEMBYC (ICES, 2020d) identified one scenario (scenario L)
wherein 2 months closure from mid January to mid March
for all fishing métier (and the use of pingers for “Bottom pair
trawlers” (PTB) and PTM the rest of the year) was efficient.
This scenario appears as a good compromise between bycatch
reduction and a reduced cost for the industry. Another efficient
scenario (scenario N) involves a 3-month closure from January
to March and another 1 month from mid July to mid August

for all métier (and the use of pingers for PTB and PTM
the rest of year). This scenario can achieve the highest level
of bycatch reduction but incurs a high cost to the industry.
However, scenarios considered by WKEMBYC are emergency
measures meant to reduce punctually common dolphin bycatch.
Systematic spatio-temporal closures, which are usually not
favoured by the fisheries, were not considered and remained
to be explored. In contrast, mitigation measures relying on the
large scale deployment of acoustic repulsive devices and the
development of new such devices are underway (e.g., in the
CetAMBICion project4).

4.2. Between-Year Variations in Bycatch
Risk
There were large between-year variations in model-based
estimates of common dolphin bycatch in the study area. To
some extent, these variations were explained by other factors
than bycatch risk. For example, the (posterior median) estimate
is >600 dolphins in 2017 down to <100 in 2018. The total
effort in DaS in the Bay of Biscay (divisions 8.a and 8.b) in the
first 10 weeks of 2017, when bycatch risk was highest, is two
times the value of total effort in 2018. The median number of
dolphins involved in a bycatch event in 2017 was also two times
the number in 2018 (2 and 1, respectively, Table 2). All else
being equal, the estimate for 2017 is expected to be at least four
times that of 2018. A further improvement of the model-based
approach is to jointly model the number of dolphins involved in
a bycatch event. This improvement will require accomodating a
large overdispersion, but there were however less than 100 such
events in the dataset and we chose to use the median. This is a
cautionary choice since the median is less sensitive to the few
events for more than 10 dolphins. The uncertainty in the median
number of dolphins involved in a bycatch event is currently
ignored: incorporating it in future development will further
widen credibility intervals (which are already large; Authier
et al., 2021). Thus, the model-based estimates are conservative
estimates of bycatch by PTM.

Bycatch risk was also very variable between years: the large
between-year variations may be due to ecological factors. Bycatch
risk results from both fisheries activity within a particular
division at a particular time and dolphin presence. The highest
bycatch risk values were estimated for the 8 or 10 first weeks
of each year within each division of the study area (Figure 3).
Astarloa et al. (2021) found evidence of an increased abundance
of common dolphins in the Bay of Biscay in recent years but
weak correlations with biological and oceanographic variables,
such as chlorophyll a concentration or sea surface temperature.
ICES divisions 8.a and 8.b cover the continental shelf parts of
the Bay of Biscay (Figure 1). These neritic divisions are witness
to sub-mesoscale oceanographic processes and nutrient offloads
from the Gironde estuary. Gilbert et al., 2021 correlated eddies
and frontal structures with common dolphin mortality areas at
sea in the Bay of Biscay (although these authors also concluded
that oceanographic accounted for a small fraction of the overall
variance in stranding numbers). In winter, the Bay of Biscay

4https://www.cetambicion-project.eu/
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environment is characterised by a seasonal cross-shore (West to
East) surface temperature gradient with the lowest temperature
close to shore and intense frontal activity parallel to the coast
(North to South) (Yelekçi et al., 2017). These frontal structures
are freshwater fronts, correlated to the mixing of oceanic waters
and cold freshwater inputs from river plumes (Yelekçi et al.,
2017). These seasonal fronts may be targeted by both fisheries
and common dolphins as areas where fish aggregate, thereby
putting the latter at risk of bycatch by the former. In July and
August, the mesoscale dynamic activity of the Bay of Biscay is
rather different than in winter. In summer, there are mainly
fronts due to tidal flow (Yelekçi et al., 2017). Summer tidal
fronts are quite consistent from 1 year to the next because
they are correlated to a repetitive process (i.e., tides) (Yelekçi
et al., 2017). During summer, the main frontal activity is a
seasonal tidal front, called the Ushant Front and located in
front of the French Finistère county (Yelekçi et al., 2017). Its
activity peaks in July and August (Yelekçi et al., 2017). We can
speculate that the years associated with a high bycatch risk were
also those when oceanographic processes favouring the spatial
overlap (mediated by fish species; Spitz et al., 2013; Astarloa
et al., 2021) between fisheries and common dolphins were
particularly operant.

Stranding records are an independent source of data for
estimating the number of bycaught dolphins (Peltier et al., 2016).
Reverse drift modelling allows the death location of each stranded
dolphin showing bycatch evidence for each month between
1990 and 2020 to be inferred. Observed stranding tallies for
each month can be corrected for both stranding and buoyancy
probabilities (Peltier and Ridoux, 2015). Reverse drift modelling
cannot disaggregate estimates by métiers or fisheries but provides
an independent estimates of total mortality due to bycatch in
the study area: bycatch mortality due to PTM should be lower
than the total estimated from strandings. This was verified for all
years save for 2010, but uncertainties were large and credibility
intervals had a large overlap. While the correlation between
model-based and stranding-based estimates was modest at the
year level, it was larger at the within-year level, especially after
accounting for a lag due to drift (Figure 4). The magnitude of the
within-year correlation decreased between 2005 and 2020. One
interpretation is that of a change in the relative contribution of
PTM in total dolphin mortality over time, with PTM having a
lesser impact on common dolphins in recent years compared to
the 2000s.

4.3. Limitations and Improvements
The model used to estimate the bycatch of common dolphins
in PTM has been developed to address the issue of non-
representative sampling (Authier et al., 2021). It relies on a post-
stratification step that requires accurate effort data at the scale of
the whole fleet. The effort measurement retained was that of DaS
as in international working groups (e.g., ICES WGBYC; ICES,
2019). Leveraging this important piece of information required
the joint modelling of risk at the haul level, haul duration, and
that of the average number of hauls per DaS. This modelling
choice proved successful for PTM but need not be so for other
métiers, in particular for passive gears such as gillnets and

setnets. In the later case, a better measure of effort at haul level
is soak time, taking into account net length and height, and
possible mesh size. These pieces of information may be difficult
to collect and retrospectively obtain for post-stratification. Any
method seeking to scale up a sample from onboard observer
to the whole fleet must confront the difficult issue of accurate
measurement and quantification of effort. The model developed
for PTM may not necessarily transfer seamlessly to other
gears or métiers.

Since 2021, PTM flying the French flag are required to use
deterrent acoustic devices (pingers5). If these devices are efficient
to reduce bycatch risk, this may be taken into account in the
model, by adding a covariate in Equation (1). Doing so requires
on the other hand to post-stratify on that covariate, which is
likely to be a major hurdle. Ignoring the deployment of pingers
need not be problematic as the model allows for between- and
within-year variations in bycatch risk. Large-scale deployment of
pingers in 2021, if effective in reducing risk, will manifest itself
in an estimated risk lower compared to previous years. In other
words, the model does not have to necessarily take into account
all haul-level covariates as long as the aim is prediction rather
than explanation (Authier et al., 2021). Taking explicitly into
account the pinger effect is only required to make sense of the
between- and within-year variations in risk, but not necessarily
to estimate those variations.

While Authier et al. (2021) concluded on increased accuracy
of using regularisedmulti-level regression with post-stratification
to estimate bycatch with observer data, they also found that
estimated precision was low. This was also the case in this study
(Table 5). A simple way to increase precision is to include self-
declared positive bycatch events from fishermen in Equation (7)
and (8). Doing so provides a strong incentive for compliance
on self-declaration and would result in increased precision as a
greater number of hauls (and possibly DaS) would be monitored.
Ultimately, full compliance would render modelling moot as
bycatch would be perfectly known, if all events were properly
recorded (e.g., with Electronic Remote Monitoring) or reported
systematically and accurately in logbooks.

4.4. Implications for Common Dolphin
Conservation
The common dolphin is one of the most abundant delphinid
species within the North-East Atlantic (Hammond et al., 2021).
This species may be described as a “keystone species” and
an “umbrella species” considering its ecological importance
(Murphy et al., 2021). The large additional mortality due to
anthropogenic activities on this species triggered a dedicated
working group on emergency measures in 2020: the workshop
on fisheries emergencies measures to minimise bycatch of
short-beaked common dolphins in the Bay of Biscay and
harbour porpoises in the Baltic Sea (WKEMBYC) took place
remotely in spring 2020 (ICES, 2020d) and informed an ICES
advice that same year (ICES, 2020c). This advice led to an
infringement procedure issued in July 2020 against France for

5https://www.mer.gouv.fr/protecting-cetaceans-annick-giradin-presents-7-
commitments-made-french-state-fishermen-and
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failing its obligations under the Habitats Directive, which lists
the common dolphin as a species requiring full protection
on its Annex IV. The same day, the Paris Administrative
Court of Justice condemned the French government for failing
to transpose and apply in a timely manner the dispositions
of the Habitats Directive and Technical Measures regulating
fisheries6 (in French). Following the unprecedented number of
strandings in 2017, a national working group with fishermen,
their representatives, government officials, Non-Governmental
Organizations, and academics was initiated to address the
bycatch issue (Peltier et al., 2021). One recommended action was
to improve estimates of bycatch due to high-risk métiers, and
to develop adequate methodologies to analyse data from non-
representative samples (Authier et al., 2021). The present work
reports on a case study on PTM and operating for a large part
in the Bay of Biscay, and to a lesser extent in the Celtic seas.
The model-based estimates (i) can inform on pressures acting on
common dolphins as required by theMarine Strategy Framework
Directive (EU 2008/56) and (ii) heed ICES recommendation to
develop estimation methods to make the best use of already
collected data to inform management in a timely manner (ICES,
2020c).

Using a Potential Biological Removal (PBR) approach (Wade,
1998), ICES (2020d) estimated a removal limit of common
dolphin for the whole North-East Atlantic of 4, 926 individuals.
An annual bycatch no greater than PBR would allow the
population of common dolphins to recover to or be maintained
at or above 50% of carrying capacity with a probability of 0.95
(Wade et al., 2021). This conservation objective is, however,
different from the ASCOBANS interim objective “to restore
and/or maintain stocks/populations to 80% or more of the
carrying capacity.” Genu et al. (this issue) tuned a modified
PBR to a quantitative interpretation of the ASCOBANS interim
objective: “a population should be able to recover to or
be maintained at 80% of carrying capacity, with probability
0.8, within a 100-year period.” The removals limit computed
using the modified PBR was down to 985 animals (that
is, one fifth of PBR; Genu et al., this issue): in 2017, the
estimated bycatch due to PTM and operating the Bay of Biscay
amounted to more than 60% of this limit (Table 5). In recent
years, the estimated contribution of this métier relative to
the modified PBR remained large according to our results.
Other fishing métiers could potentially impact the common
dolphins in the Bay of Biscay resulting in mortality exceeding
the threshold inferred by both modified and non-modified PBR.
Regarding vessels flying the French flag, gill trammel netters
(GTR), gillnetters (GNS), and pair trawlers were potentially
associated with common dolphin mortality in ICES divisions
8.a and 8.b for different years (regarding the co-occurrence of
mortality and fishing effort) (Peltier et al., 2021). Estimating
the contribution of each métiers to overall mortality remains
a difficult endeavor. Regarding the PBR removals limit used in
WKEMBYC (ICES, 2020d), the overall mortality considering all
the fishing métiers exceed PBR, notably from 2016 to 2019, years

6http://paris.tribunal-administratif.fr/content/download/172866/1715763/
version/1/file/1901535.pdf

associated with the suspected highest contribution for themétiers
listed above.

5. CONCLUSION

We have provided a case study on estimating bycatch of common
dolphins by PTM and operating in the Bay of Biscay from a
non-representative sample of bycatch events collected by non-
dedicated onboard observers. Leveraging recent methodological
developments in statistical modelling, we have illustrated how to
use imperfect but currently available data to informmanagement.
Our contribution thus heeds two recent recommendations: to
use adequate estimation methods on existing data and to gauge
the resulting estimates against threshold values for incidental
bycatch, tuned to relevant conservation objectives. We evidenced
a substantial contribution of PTM to common dolphin bycatch
in the Bay of Biscay, especially in 2017. Considering the entire
time series and the correlations with the estimates made from
strandings, it is possible that other métiers than PTM were
associated with bycatch, especially in recent years. Currently,
the mainmitigationmeasures recommended are spatio-temporal
closures and the widespread use of acoustic deterrent devices
on PTM/OTM and PTB to repel dolphins (ICES, 2020b).
Spatio-temporal closures were not implemented in 2021 but
systematic and mandatory deployment of pingers on trawls
were7. Relevant to management in broadening the scope of
potential measures is the evidenced correlation between bycatch
risk and haul duration: further studies should investigate limiting
haul duration (for example, below 5 h) as a complementary
mitigation strategy, especially in winter.
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Appendix 5: Tuna-Dolphin problem history

Figure 1: History of the Tuna-Dolphin problem in the North-East Pacific Ocean. Figure from Ballance et al. (2021).







Dynamique des populations d'espèces élusives :  

Le cas du dauphin commun dans l'océan Atlantique Nord-Est 

 
Résumé : 

 

Les espèces élusives sont difficiles à suivre individuellement et il est difficile d'estimer leur mortalité ce qui 

freine la mise en place de politiques de gestion. En tant qu’espèce élusive, le dauphin commun, Delphinus 

delphis présente des enjeux de conservation importants. La population Atlantique Nord-Est est affectée par les 

captures accidentelles qui menacent sa viabilité. Les informations démographiques sur cette population sont 

insuffisantes et notre compréhension de la structure spatio-temporelle des captures ne permet pas de fixer des 

objectifs de gestion appropriés. Ce projet vise à déterminer le statut actuel de la population au regard des 

objectifs de conservation Européens. Premièrement, une approche flexible d'estimation des taux vitaux a été 

développée afin de mettre en évidence les variations temporelles et les effets de covariables en tenant compte de 

l'hétérogénéité individuelle. Ensuite, l'utilisation de cette méthode, combinée à un suivi transversal, nous a 

permis de mettre en évidence les variations temporelles des taux vitaux de la population et l'impact des captures 

sur sa démographie. La population n'est pas viable et son taux de croissance semble s'être détérioré depuis le 

milieu des années 2000. Troisièmement, en utilisant les données biaisées d’observateurs embarqués, le nombre 

de captures accidentelles a été quantifié sur une base hebdomadaire pour dix divisions CIEM sur seize ans. 

Quatrièmement, les taux vitaux obtenus combinés aux estimations de captures permettent de produire des seuils 

de captures soutenables. Cette évaluation a été effectué par une approche d'évaluation de stratégies de gestion en 

accord avec l'objectif de conservation européen. 

 

Mots clés : démographie, mammifères marins, mégafaune, dynamique des populations, captures accidentelles, 

gestion, statistiques Bayésiennes, suivi transversal, âge à la mort, biologie de la conservation, échouages.  

 

Population dynamics of elusive species:  

The case of the common dolphin in the North-East Atlantic Ocean 

 
Summary : 

 

Elusive species are notoriously difficult to monitor individually and therefore it is difficult to estimate their 

anthropogenic mortality and to implement management policies. As an elusive species, the common 

dolphin, Delphinus delphis is a good example of these conservation challenges. The North-East Atlantic 

population is affected by bycatch that threatens its viability. However, demographic information on this 

population is very limited and our understanding of the spatio-temporal structure and dynamics of bycatch is 

insufficient to set appropriate management objectives. This project aims to determine the current status of this 

common dolphin population with regard to conservation objectives in European waters with a focus on the Bay 

of Biscay. First a flexible vital rates estimation approach has been developed in order to highlight variations in 

vital rates over time and the effects of covariates while taking into account individual heterogeneity. Second, 

using such a methodological approach through a cross-sectional monitoring, allowed us to highlight both the 

temporal variations of the population vital rates and the impact of bycatch on the common dolphin population 

demography. The population is not viable and the population growth rate seems to have deteriorated since the 

mid 2000's. Third, using biased data from on-board observers, the number of incidental catches on a weekly 

basis was quantified for ten ICES sub-area over sixteen years. Fourth, the resulting vital rates combined with 

bycatch estimates finally allowed the production of sustainable bycatch thresholds through a Management 

Strategy Evaluation approach in line with the European conservation objective. 

 

Keywords: demography, marine mammals, megafauna, population dynamics, bycatch, management, Bayesian 

statistics, cross-sectional monitoring, age-at-death, conservation biology, strandings. 
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