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Abstract

Numerous industrial optimization problems are concerned with complex systems and have
no explicit analytical formulation, that is they are blackbox optimization problems. They
may be mixed, namely involve different types of variables (continuous and discrete), and
comprise many constraints that must be satisfied. In addition, the objective and constraint
blackbox functions may be computationally expensive to evaluate.

In this thesis, we investigate solution methods for such challenging problems, i.e con-
strained mixed-variable blackbox optimization problems involving computationally expen-
sive functions.

As the use of derivatives is impractical, problems of this form are commonly tack-
led using derivative-free approaches such as evolutionary algorithms, direct search and
surrogate-based methods.

We investigate the performance of such deterministic and stochastic methods in the
context of blackbox optimization, including a finite element test case designed for our
research purposes. In particular, the performance of the ORTHOMADS instantiation of the
direct search MADS algorithm is analyzed on continuous and mixed-integer optimization
problems from the literature.

We also propose a new blackbox optimization algorithm, called BOA, based on sur-
rogate approximations. It proceeds in two phases, the first of which focuses on finding a
feasible solution, while the second one iteratively improves the objective value of the best
feasible solution found. Experiments on instances stemming from the literature and ap-
plications from the automotive industry are reported. They namely include results of our
algorithm considering different types of surrogates and comparisons with ORTHOMADS.
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Résumé

Bon nombre de problèmes d’optimisation rencontrés dans l’industrie font appel à des sys-
tèmes complexes et n’ont pas de formulation analytique explicite : ce sont des problèmes
d’optimisation de type boîte noire (ou blackbox en anglais). Ils peuvent être dits “mixtes”,
auquel cas ils impliquent des variables de différentes natures (continues et discrètes), et
avoir de nombreuses contraintes à satisfaire. De plus, les évaluations de l’objectif et des
contraintes peuvent être numériquement coûteuses.

Dans cette thèse, nous étudions des méthodes de résolution de tels problèmes complexes,
à savoir des problèmes d’optimisation boîte noire avec contraintes et variables mixtes, pour
lesquels les évaluations des fonctions sont très coûteuses en temps de calcul.

Puisque l’utilisation de dérivées n’est pas envisageable, ce type de problèmes est géné-
ralement abordé par des approches sans dérivées comme les algorithmes évolutionnaires,
les méthodes de recherche directe et les approches basées sur des métamodèles.

Nous étudions les performances de telles méthodes déterministes et stochastiques dans
le cadre de l’optimisation boîte noire, y compris sur un cas test en éléments finis que nous
avons conçu. En particulier, nous évaluons les performances de la variante ORTHOMADS

de l’algorithme de recherche directe MADS sur des problèmes d’optimisation continus et à
variables mixtes issus de la littérature.

Nous proposons également une nouvelle méthode d’optimisation boîte noire, nommée
BOA, basée sur des approximations par métamodèles. Elle comporte deux phases dont la
première vise à trouver un point réalisable tandis que la seconde améliore itérativement
la valeur de l’objectif de la meilleure solution réalisable trouvée. Nous décrivons des expé-
riences utilisant des instances de la littérature et des applications de l’industrie automobile.
Elles incluent des tests de notre algorithme avec différents types de métamodèles, ainsi que
des comparaisons avec ORTHOMADS.
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Résumé long

L’optimisation des structures est un incontournable dans de nombreuses industries, en
particulier dans le secteur automobile. Celui-ci est très concurrentiel et connaît un dur-
cissement des normes en matière de réduction des émissions de CO2, ce qui se traduit
notamment par un objectif d’allègement des véhicules. La réduction des coûts de produc-
tion fait également partie des objectifs majeurs, surtout avec le développement de nouvelles
technologies embarquées et l’électrification des véhicules.

L’atteinte de ces objectifs nécessite l’introduction de nouveaux leviers d’optimisation et
la possibilité de traiter des variables de différentes natures. En effet, un problème-type d’op-
timisation paramétrique rencontré dans l’industrie automobile comprend des paramètres
de forme continus, des épaisseurs de tôles discrètes et des matériaux qui sont des variables
de catégorie. De tels problèmes sont alors dits “mixtes”.

En outre, les quantités intervenant dans ces problèmes d’optimisation proviennent de
simulations numériques par éléments finis qui peuvent être particulièrement coûteuses en
termes de temps de calcul et de mémoire requise. Leur formulation analytique n’étant pas
connue, ces problèmes sont de type boîte noire (ou blackbox en anglais) et l’utilisation de
dérivées n’est pas envisageable. D’autres part, la tenue des prestations du véhicule doit être
prise en compte, ce qui s’exprime par la présence de nombreuses contraintes à satisfaire
dans le problème d’optimisation.

En l’absence de dérivées, des approches comme les algorithmes évolutionnaires et les
méthodes de recherche directe sont classiquement utilisées. Cependant, les algorithmes
d’optimisation sans dérivées pouvant résoudre le type de problèmes considérés sont rares
et ils requièrent souvent de nombreuses évaluations des fonctions. L’utilisation de méta-
modèles permet souvent une réduction du coût numérique de l’optimisation.

Dans cette thèse, nous étudions des méthodes de résolution de tels problèmes complexes,
à savoir des problèmes d’optimisation boîte noire avec contraintes et variables mixtes, pour
lesquels les évaluations des fonctions sont très coûteuses en temps de calcul. Tout d’abord,
nous étudions les performances de méthodes déterministes et stochastiques dans le cadre
de l’optimisation boîte noire.

En effet, des algorithmes d’optimisation de la librairie SciPy en Python sont testés sur
des problèmes continus de la littérature et disponibles à travers la plateforme COCO, dédiée
à la comparaison d’algorithmes en optimisation boîte noire. En particulier, l’efficacité de
l’algorithme SLSQP, qui utilise des approximations quadratiques et linéaires, a été mise en
lumière.

En outre, les performances de la variante ORTHOMADS de l’algorithme MADS sont



vi

évaluées sur des problèmes d’optimisation continus et à variables mixtes issus de la litté-
rature. Il s’agit d’un algorithme de recherche directe couramment utilisé en optimisation
boîte noire et dont les itérations s’effectuent sur un treillis. Il comporte deux phases dont
la première, optionnelle, effectue une recherche globale tandis que la seconde correspond
à une recherche locale autour de l’itéré courant. Le type de direction ORTHO N+1 NEG s’est
révélé performant sur les deux familles de problèmes utilisées tandis que les directions
ORTHO 2N et ORTHO N+1 QUAD se sont montrées efficaces en particulier sur les problèmes
continus et à variables mixtes, respectivement. Comparativement à d’autres méthodes, les
résultats ont montré un avantage de l’algorithme ORTHOMADS pour les problèmes d’op-
timisation continus de petite dimension et les problèmes continus multimodaux. Sur les
problèmes à variables mixtes, ORTHOMADS figure parmi les meilleurs algorithmes et est
particulièrement compétitif pour des budgets d’évaluations limités.

Les études de comparaisons incluent également la conception et l’implémentation d’un
cas test en éléments finis, représentant une structure métallique soumise à une force. Trois
problèmes d’optimisation boîte noire à variables mixtes ont été résolus, impliquant une
contrainte de déplacement sur un nœud du maillage. Les expériences ont été menées avec
ORTHOMADS et deux algorithmes évolutionnaires : CMA-ES et NSGA-II. Les résultats
montrent une efficacité de l’algorithme ORTHOMADS, notamment dans la minimisation du
coût et de la souplesse de la structure considérée. Concernant les autres méthodes testées,
CMA-ES est souvent moins coûteux en termes de nombres d’appels à la boîte noire que
NSGA-II et concurrence ORTHOMADS pour de grands budgets d’évaluations.

Enfin, nous proposons une nouvelle méthode d’optimisation boîte noire basée sur des
approximations par métamodèles et appelée BOA (pour Blackbox Optimization Algorithm).
Elle comporte deux phases dont la première vise à trouver un point réalisable tandis que
la seconde améliore itérativement la valeur de l’objectif de la meilleure solution réalisable
trouvée. Une extension de l’algorithme lorsque la parallélisation des évaluations est pos-
sible est également présentée. Nous décrivons des expériences utilisant des instances de la
littérature et des applications de l’industrie automobile, toutes possédant des contraintes
d’inégalité. Des tests utilisant quatre types de modèles de krigeage, des modèles RBF et
des modèles MARS dans BOA sont décrits et ces deux derniers types de métamodèles ont
généralement obtenu les meilleurs résultats. Les modèles MARS étaient cependant numé-
riquement plus longs à construire. En comparaison avec deux variantes de l’algorithme
ORTHOMADS assistées par des RBF et du krigeage, BOA avec des modèles RBF s’est
montré globalement plus performant pour des budgets restreints.
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1
Introduction

1.1 Context of the study

Numerical simulation has become a staple in many industrial fields and is used in place
or together with physical experiments for diverse reasons including financial ones. Indeed,
an experimentation can require the purchase of equipment, the availability of an area with
the required conditions for the tests and human resources for the supervision. Besides, the
equipment may be altered or even destroyed, in which case it needs to be replaced for each
new trial run. Thus, the resources involved can represent substantial expenses.

Another argument to boost the use of numerical simulations is safety since the real-
ization of a physical experiment often requires human intervention which can comprise a
risky procedure. Hence, using simulations makes experiments safer for engineers.

Moreover, computer simulations have eased the design optimization of complex systems
thanks to algorithms and the need to solve real-world optimization problems involving
computer code is in constant growth since decades.

There are several types of simulations. In particular, the partial differential equations
modelling physical phenomena are traditionally solved by finite element (FE) simulations.
The FE approach discretizes a complex system into a finite number of subregions called
elements, where ordinal differential equations are solved. This discretization in elements
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constitutes a mesh.
When a computer code is used to compute the outputs of a function of an optimiza-

tion problem, no explicit formulation is generally available. A function that can be called
without knowledge of its formulation is called a blackbox and the resolution of such opti-
mization problems lies in the frames of blackbox optimization (BBO) and derivative-free
optimization (DFO). BBO refers to the optimization of blackbox functions in particular
whereas DFO is a bit more general and focuses on optimization techniques that do not use
any derivative information.

In industry, physical, industrial or regulation obligations often have to be satisfied and
are expressed as constraint functions of the optimization problems. These constraints are
also often blackbox functions, computed from computer simulations.

Finally, real-world optimization problems may involve different types of variables and
the computing time can be significant. All these specificities require the use of optimization
algorithms that can handle constraints and mixed types of variables while giving reasonable
good solutions with limited evaluation budgets. The automotive industry is an illustrative
field where such challenges are encountered.

1.2 Motivation

The motivation to solve mixed-variable optimization problems under constraints in the
frame of this PhD arises from the problems encountered in the automotive group Stellantis.
The automotive industry is a very competitive sector subject to different challenges.

First, the evolving and often more restrictive regulations force the optimizers to be agile
and farsighted. In particular, global warming is a more and more concerning issue caused
by the emissions of greenhouse gases in the atmosphere and, notably, carbon dioxide. In
this respect, automotive vehicles are imposed maximal allowed CO2 emissions that are
decreasing with years. In order to reduce its environmental impact and meet the different
regulations, Stellantis has committed to a reduction of its consumption, especially by
decreasing the weights of its vehicles.

Furthermore, an increase of the costs is induced by the development of new embed-
ded technologies, such as advanced driver assistance systems and power trains, but also
the electrification of the vehicles or the need of greater mileage capacities. Besides, the
negotiation of prices has become less practicable with the grouping of suppliers.

As a result, numerical optimization is commonly used at Stellantis as a decision mak-
ing tool to enhance the performance of the vehicles, such as crashworthiness or acoustic
comfort, while respecting regulations and maintaining reasonable production costs. The
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optimization occurs at different phases of the vehicle design process and uses FE models of
the body-in-white (BIW) structure, that is the skeleton of the vehicle. The numerical costs
are an important aspect to take into account in the optimization as the FE simulations
are time-consuming.

As an optimal balance between weight and cost reductions is sought, the introduction
of new optimization levers seems necessary. Until recent years, the choice of the material
of each part of the BIW was set before any optimization phase and according to historical
reasons, experience or intuitions of the experts or physical experiments. Besides, alternative
parts were not integrated in the optimization either. Adding materials as design variables
and taking into account design alternatives in the optimization problem can lead to lighter
configurations and lower costs.

Indeed, the mass needed to meet the demanded performance of a part with a certain
material may be reduced by using another one. In addition, a different choice of material
could make a reinforcement optional and, thus, reduce the total mass of the vehicle, and
possibly the cost. An example is presented in Figure 1.1 showing the possible removal
of the right reinforcement of the instrument panel support of the vehicle. Moreover, the
inclusion of design alternatives makes the range of possible configurations wider.

(a) Right reinforcement (purple part) (b) Absence of the right reinforcement

Figure 1.1: Finite element model of the right reinforcement of the instrument panel support
(source: Stellantis).

Furthermore, the allowed thicknesses of the materials take discrete values for manu-
facturing and financial reasons and are considered continuous in the optimization process.
They are rounded to the closest admissible discrete values after each iteration of the solver
used. Hence, considering an optimization algorithm that can directly handle discrete vari-
ables could accelerate the convergence.

Finally, among the algorithms often used for the optimization at Stellantis are evolu-
tionary algorithms. However, the latter often need numerous function evaluations to give a
good approximation of the solution. Since the last decade, surrogate models such as kriging
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are also used in the automotive industry to predict computationally expensive outputs. As
an example, kriging is used in [Binois, 2015] for Bayesian multi-objective optimization ap-
plied to an automotive crashworthiness problem. The construction of substitute functions
can however be expensive when dealing with high dimensions so they have to be cleverly
used. Thus, as the number of calls to the FE models has to be restricted, possessing a
method designed for limited evaluation budgets would be of great interest.

1.3 Design optimization of a vehicle

The design optimization of a vehicle is done on the BIW structure from FE models. The
general BBO problem can be written as follows:

min
x∈X

f(x)

s.t. gj(x) ≤ 0,∀j ∈ J
(1.1)

where f is the objective function to minimize, typically the weight of the structure, (gj)j∈J
are the constraint functions representing the different services to conform to, with J a
finite set of integer indices, and X ⊂ Rn is a closed bounded subspace. We consider
that f and (gj)j∈J are expensive blackbox functions and all the constraints are assumed
quantifiable. The formulation of Equation (1.1) is general and also takes into account
maximization problems since it is equivalent to minimizing the opposite of the objective.
Further formulations with explicit handling of discrete variables are considered in this
manuscript.

Several types of optimization studies are performed on the BIW. The latter represents
the core structure of the vehicle and mainly consists of sheet metals. An example of BIW
is depicted in Figure 1.2.

Figure 1.2: Body in white of an automotive vehicle (source: Car Bench).
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The design of the BIW is essential since it has to support all the other parts of the
vehicle and impacts most of its performances. Besides, it is the heaviest part of the vehicle,
which makes it a good candidate for weight reduction. Numerical optimization methods
were successfully applied to the BIW in [Genest, 2016] on a crashworthiness problem with
gradients approximations of the conception parameters and in [Maliki, 2016] on reliability-
based design problems from the automotive industry.

The types of optimization performed on a BIW can be classified into two families
that are conceptual and sharp optimization. They have to take into account the required
specifications on the vehicles.

1.3.1 Sharp optimization

Sharp optimization includes size and shape optimizations and is used for fine-tuning the
geometry of the structure.

First, size optimization consists in minimizing the key morphing parameters of a com-
puter aided design (CAD) like the width of a sheet metal, the angle between two parts or
a bend radius for instance. It is often used in industry and presented in Figure 1.3 for the
thickness optimization on a truss structure. At Stellantis, size optimization is done to find
optimal thicknesses for each part of the BIW structure.

Figure 1.3: Size optimization (source: [Gebisa and Lemu, 2017]).

Shape optimization, depicted in Figure 1.4, is commonly used on structures that are
subject to high concentrations of stresses. The latter are therefore evenly distributed
during the optimization to prevent breakage. Shape optimization modifies the existing
geometry by looking for the optimal displacement field for each node of the FE mesh. It
optimizes the parameters characterizing the shape of structural parts such as heights or
radii. Examples can be found in [Allaire et al., 2014] where a new approach for shape
derivatives is introduced and shape optimization is applied to 2-dimensional cantilevers.

1.3.2 Conceptual optimization

Conceptual optimization gathers topology, free-size and free-shape optimizations.
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(a) Initial shape (b) Intermediate shape (c) Final shape

Figure 1.4: Shape optimization (source: ALTAIR).

Topology optimization is a well-known technique used by engineers for the allocation
of mass on a structure and is illustrated in Figure 1.5 on a two-dimensional cantilever. It
enables to generate optimal forms that can be easily manufactured and allows alterations
such as the creation of holes in the structure. For each part, it solves a constrained
minimization problem in a fixed volume.

(a) Initial topology (b) Evolved topology

Figure 1.5: Topology optimization (source: Shape Optimization Group at CMAP).

Regarding free-size optimization, it is employed to continuously distribute thicknesses
of every element of the FE mesh of the structure and enables to identify local reinforcements
for example. It is depicted in Figure 1.6 where the colours indicate where additional mass
is allocated.

Finally, free-shape optimization is used by design engineers to generate innovative
shapes and stamping. Similarly as shape optimization, free-shape optimization is used
to deal with structures subject to high concentrations of stresses but offers more flexibility
than shape optimization as one can target specific areas for stress reduction and where
new geometries are generated. Unlike topology optimization, free-shape optimization does
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Figure 1.6: Free-size optimization (source: Stellantis).

not change the topology of the structure: holes can be modified but not created. An ex-
ample of free-shape optimization result is presented in Figure 1.7 where the non-blue areas
represent new generated stamping.

Figure 1.7: Free-shape optimization (source: Stellantis).

1.3.3 Required specifications

Before reaching the production phase, a vehicle has to respect numerous specifications.
The latter first deal with the state regulations that can concern safety requirements for
the passengers and the neighbourhood of the car, environmental issues and possible dis-
turbances. Internal requirements from the company also have to be taken into account,
treating for example the driving comfort of the customers.

The specifications to respect are also computed using the FE models and deal with
three main performances: stiffness, crashworthiness and acoustic aspects. Indeed, there
are essential mechanical constraints, reversal constraints that treat the case where the
vehicle is reversed, static performance, vibro-acoustic comfort and constraints ensuring
some resistance to different impact cases.

Different load cases are used to evaluate the resistance to an impact and they focus on
different parts of the vehicle. The main types of crash studies concern side, lateral and
frontal impacts. The latter are the most dangerous kind of impact for the passengers. The
simulations consider crash cases with poles, barriers and pedestrians. A low-speed crash
is also considered for the reparability of the vehicle. Some examples of crash tests are
depicted in Figure 1.8.
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(a) Frontal impact (b) Lateral barrier impact (c) Lateral pole impact

Figure 1.8: Crash tests on an automobile vehicle (source: Euro NCAP).

1.4 Key challenges

The optimization problems considered involve functions that are not explicitly known since,
for instance, the physical constraints and the weight are computed from FE simulations.
Hence, each constraint is treated as a blackbox and no derivative is available.

The optimization focuses on specific perimeters of the vehicle implying more than 20

variables related to about 10 parts of the vehicle. The problems are considered as medium-
to large-dimensional BBO problems.

Moreover, querying a model is expensive, taking about 20 minutes for a stiffness com-
putation and approximately 12 hours for a crash calculation. Numerous iterations are thus
not conceivable in an industrial frame where the solution is desired in a limited time.

Furthermore, typical size optimization problems met at Stellantis are highly constrained
as they can involve more than a hundred of constraints.

In order to add new optimization levers in the size optimization, different types of
variables have to be taken into account. Indeed, size optimization can involve continuous
shape parameters such as beam length or bend radius, the thicknesses of the parts take
discrete admissible values, the consideration of optional parts involves binary parameters
and integrating the choice of materials as optimization variables adds categorical inputs
as there is no ordering between materials. Yet, mixed-variable solvers are rare and often
computationally greedy.

This PhD aims at designing a new constrained blackbox optimization algorithm capable
of handling mixed types of variables and providing a considered good solution within a
restricted number of blackbox evaluations.

1.5 Organization of the thesis

In order to meet the research objectives of this PhD and considering the complexity of the
problem, the strategy was to proceed gradually. Thus, solvers were first considered in an
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unconstrained blackbox optimization context. To do so, optimization problems stemming
from the literature were used to benchmark methods in continuous and mixed-integer con-
texts. Moreover, given the important times of the FE calculations, a small FE model was
designed with the idea of possessing a finite element blackbox enabling quick comparisons
of algorithms. Eventually, the main contribution of this PhD is the design of a surrogate-
based method to solve constrained mixed-variable blackbox optimization problems within
restricted evaluation budgets. The thesis manuscript is organized as follows.

Chapter 2 presents a review of the main DFO strategies for solving continuous and
mixed-variable blackbox optimization problems. In particular, classical derivative-free ap-
proaches are presented and surrogate-based optimization is introduced. Moreover, methods
for dealing with mixed variables are mentioned.

In Chapter 3, methods from the open-source Python library SciPy are benchmarked
on continuous unconstrained optimization problems from the literature (the latter are
naturally considered as blackbox functions).

Then, continuous and mixed-integer problems from the literature are used in Chapter 4
to evaluate variants of ORTHOMADS, which is a direct search algorithm. The considered
best variants are compared to heuristic and non-heuristic methods.

The FE model developed is presented in Chapter 5 and used to compare three DFO
methods on different constrained optimization problems.

Chapter 6 presents a new derivative-free surrogate-based algorithm called BOA, for
Blackbox Optimization Algorithm, designed for solving expensive blackbox optimization
problems with general inequality constraints and mixed variables. The method is used
with different types of surrogate models on problems stemming from the literature and
applications from the automotive industry, and is compared with two surrogate-assisted
variants of ORTHOMADS.

Finally, Chapter 7 outlines the core contributions of this thesis and summarizes the
principle results. Tracks for future works are also presented.

Notation

Let S be a real subspace, S+ denotes its nonnegative values, S∗ means that 0 is removed
and S∗+ stands for the strictly positive values of S. Besides, N (m,C) denotes a multi-
variate normal distribution with mean vector m and covariance matrix C and E stands
for an expected value. Let a be a real value, ⌊a⌋ (respectively ⌈a⌉) designates the highest
(respectively smallest) integer b such that b ≤ a (respectively b ≥ a). The cardinality of a
set I is indicated as ∣I ∣. Furthermore, we use ∥ ⋅ ∥ for the Euclidean norm. Finally, f̂ is
used to denote a surrogate model of a real-valued function f .



10 Introduction



2
Literature review

2.1 Overview

In order to solve a continuous optimization problem, gradient-based and gradient-free
methods exist. However, in a BBO problem such as Equation (1.1), the derivability is
unknown as the objective and constraints involved are blackbox functions: they have no
analytical formulations and can only be queried from inputs to return output values. Given
the expensive computational costs of the functions we consider in this thesis, computing
finite differences approximations is not conceivable either. Thus, the resolution of Equa-
tion (1.1) goes through derivative-free methods.

The increasing need to solve real-world optimization problems and problems with
nonexistent or practically unusable derivatives have engendered a fast development of these
methods.

There are several families of DFO techniques and in this chapter we will classify them in
two subgroups that are classical DFO methods and model-based methods. The first family
gathers direct search methods and other approaches such as simplex-based methods and
heuristics. They originally use only true evaluations of the functions in the optimization
process, which is specifically limiting in case of numerically costly functions.

11
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Differently, model-based methods solve the optimization problem with surrogate ap-
proximations and perform parsimonious evaluations of the expensive functions. Yet, the
construction of a model can be challenging with the risk of overfitting noisy functions or
the surrogate could be too approximate to capture the trends of a function if it is built
from few evaluations. Attention has also to be payed on the cost related to building the
models, in particular when the dimension of the problem increases.

However, these two types of DFO techniques are less and less separate since surrogates
are increasingly used also in classical DFO methods to assist the optimization, making
them surrogate-assisted methods.

In this chapter, we will first describe optimization methods that are not necessarily
designed for mixed variables or constraints. The specific handling of such features is
discussed in Section 2.5.

2.2 A few words on gradient-based optimization

Before presenting DFO methods, we propose a quick reminder of optimization based on
derivatives. For a differentiable function f , the gradient at x = [x1, . . . , xn]⊺, where n ∈ N∗ is
the dimension, is defined as the vector of partial derivatives with respect to each component:

∇f(x) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂f
∂x1
(x)

∂f
∂x2
(x)

⋯
∂f
∂xn
(x)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.1)

As the gradient gives information about the variations of the function, it is fundamental
in an optimization context and it should always be used if it is easily available. Indeed, for
x∗ a local minimizer of f , the first order optimality condition writes: ∇f(x∗) = 0. Solving
this equation gives all critical points of f including all local and global optima. If the
gradient is itself differentiable, the Hessian of f at x is defined as:

∇
2f(x) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2f
∂x2

1
(x) ∂2f

∂x1∂x2
(x) . . . ∂2f

∂x1∂xn
(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x2

2
(x) . . . ∂2f

∂x2∂xn
(x)

⋱

∂2f
∂xn∂x1

(x) ∂2f
∂xn∂x2

(x) ∂2f
∂x2

n
(x)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.2)

The second order necessary and sufficient optimality conditions add that, for x∗ satisfying
the first order necessary optimality condition, if ∇2f(x∗) is positive definite then f(x∗) is



2.3 Classical derivative-free methods 13

a local minimum, and that if x∗ is a local minimizer then ∇2f(x∗) is positive semi-definite.
These optimality conditions are useful to investigate and recognize a local optimum,

sometimes global when the function is known to be convex for instance. Newton-type
methods, that are iterative linesearch methods, are commonly used in this context and
give access to rates of convergence. Many publications deal with this kind of methods and,
in particular, a good reference is the book of [Ortega and Rheinboldt, 2000].

When the Hessian is unavailable or computationally expensive, derivations called quasi-
Newton methods use second-order approximations. Among the most known is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [Nocedal and Wright, 2006] that uses gradi-
ent information to iteratively update an approximation of the inverse Hessian that does
not need any matrix inversion. In BFGS, the search direction pk at iteration k is computed
as:

pk = −Bk∇f(xk), (2.3)

where xk is the kth iterate and Bk approximates the inverse Hessian at xk with a recursive
formula.

The Limited-memory BFGS (L-BFGS), described in [Nocedal, 1980], is based on BFGS
recursion for the approximation of the inverse Hessian but uses only a limited number of
the past updates. It is particularly suited for high-dimensional problems.

Adaptations of gradient-based methods to DFO exist. In [Powell, 1964], a method for
finding the minimizer of a continuous optimization problem without use of derivatives is
introduced. Powell’s method may be considered as a derivative-free version of the conjugate
gradient method [Hestenes and Stiefel, 1952]. Indeed, at each iteration k, it performs
N ∈ N∗ linesearch steps along conjugate directions D = {d1, d2, . . . , dN} and the new iterate

is computed as xk = xk−1 +
N

∑
i=1

αidi with {αi, i = 1, . . . ,N} a real subset. The direction

of best decrease is then removed from the set D while the direction corresponding to the

linear combination
N

∑
i=1

αidi is added as new search direction. The procedure is repeated

until a stopping criterion, such as the decrease of the objective function, is satisfied.

2.3 Classical derivative-free methods

Derivative-free optimization dates back to the work of [Fermi and Metropolis, 1952] intro-
ducing the coordinate search algorithm and later developed with simplex-based methods.
Classical derivative-free techniques gather several kinds of optimization methods, including
simplex-based methods, direct search algorithms and population-based approaches.

It can be noted that here we distinguish direct search and simplex-based methods.



14 Literature review

The latter can be considered as part of the first type but simplex-based methods have the
particularity that they use simplices and we describe them in a separate section.

2.3.1 Simplex-based methods

As their name indicates, simplex-based methods use simplices in their optimization proce-
dures. In a space of dimension n ∈ N∗, a simplex is a convex polytope which has (n + 1)
vertices. As examples, in dimension 1, it is simply a segment defined by two points and in
two dimensions, it is a triangle. Simplex-based methods use transformations of simplices
to replace one or several vertices of a simplex by points with better function values.

The simplex-based method of [Spendley et al., 1962] proceeds of reflections of the worst
point of the simplex, that is the point with the greatest function value, with respect to
the centroid of the remaining points, or shifts all but the best vertex in its direction. An
extension of this method is the Nelder-Mead (NM) simplex method which is, undoubtedly,
the most popular and used simplex-based method. It is a heuristic method introduced by
[Nelder and Mead, 1965] for local unconstrained optimization.

The NM algorithm is iterative and starts with a non-degenerated simplex whose ver-
tices are evaluated. The worst point with respect to the objective value is identified and
geometric transformations are applied to attempt to replace it with a better point. Indeed,
reflections, expansions and contractions of the simplex occur to identify a new one for the
next iteration.

The reflection of the worst point is applied with respect to the centroid of the points of
the simplex except the worst one. If the new point is better than the second worst point,
the worst point is replaced by its reflection. If the reflection is better than all points of
the simplex, an expansion point is computed and if it is better than the reflection, then it
replaces the worst point. When the reflection point is worse than the second worst point,
an outside contraction is processed if the reflection point is better than the worst point,
otherwise an inside contraction occurs. In case these transformations do not come up with
a better point, a contraction of the simplex preserving only the best point is applied. The
procedure is described in Algorithm 1 for the minimization of a real-valued function f and
illustrations of a NM procedure are available in Figure 2.1.

An adaptation of the NM method that adjusts the parameters of the algorithm accord-
ing to the dimension of the problem is introduced in [Gao and Han, 2012]. It is convenient
for treating high-dimensional problems.

The classical NM method does not always converge to a stationary point even for rel-
atively simple functions like twice differentiable convex functions. The problem of [McK-
innon, 1998] using a continuously differentiable function is one of the examples showing
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Algorithm 1: The Nelder-Mead simplex method
1 Initialize a non-degenerated simplex {x1, x2, . . . , xn+1}
2 Initialize parameters γr > 0, γe > 1, γoc ∈ (0,1), γic ∈ (−1,0) and γs ∈ (0,1)
3 while a stopping condition is not satisfied do
4 Rename the vertices x1, x2, . . . , xn+1 of the simplex such that

f(x1) ≤ f(x2) ≤ ⋅ ⋅ ⋅ ≤ f(xn+1)
5 Compute the centroid of all vertices but the worst point: xc =

1
n ∑

n
k=1 xk

6 Compute a reflection of the worst point: xr = xc + γr(xc − xn+1)
7 Evaluate f(xc)
8 if f(x1) ≤ f(xr) < f(xn) // Reflection

9 then
10 xn+1 ← xr

11 else if f(xr) < f(x1) // Expansion

12 then
13 Compute the expansion point: xe = xc + γe(xc − xn+1)
14 Evaluate f(xe)
15 if f(xe) < f(xr) then
16 xn+1 ← xe

17 else
18 xn+1 ← xr

19 else if f(xn) ≤ f(xr) < f(xn+1) // Outside contraction

20 then
21 Compute outside contraction point: xoc = xc + γoc(xc − xn+1)
22 Evaluate f(xoc)
23 if f(xoc) < f(xr) then
24 xn+1 ← xoc

25 else
26 xn+1 ← xr

27 else if f(xn+1) ≤ f(xr) // Inside contraction

28 then
29 Compute inside contraction point: xic = xc + γic(xc − xn+1)
30 Evaluate f(xic)
31 if f(xic) < f(xn+1) then
32 xn+1 ← xic

33 else
// Shrink

34 Evaluate f on S = {x1 + γs(xk − x1)}k=2,...,n+1
35 Replace vertices x2 to xn+1 by the points of S
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Figure 2.1: Iterations of the Nelder-Mead method where the current simplex is yellow and
the chosen next one is magenta. The worst point to replace is represented by a red dot.

that the method can be stuck in a non-stationary point. However, modifications of the
algorithm were proposed to deal with this issue.

Indeed, [Kelley, 1999] proposes a sufficient decrease criterion based on an approximation
of the gradient, that is to be satisfied at every iteration. For smooth functions, if this
condition is satisfied at each iteration, then the method is guaranteed to converge to a
stationary point. For iterations that do not respect the criterion, a restart of the simplex
is applied, creating a smaller one with orthogonal edges based on the sufficient decrease
condition.

A simplex-based method also using reflections, contractions and expansions is intro-
duced in [Tseng, 1999]. It differs from the NM method in several aspects as the acceptance
of a new vertex in the simplex is based on some fortified-descend criteria or the fact that
more than one vertices can be chosen for possible improvement. The global convergence
of the method is proven for continuously differentiable functions under some assumptions.
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2.3.2 Direct search methods

Direct search methods seem to have been introduced in the 1950’s [Fermi and Metropolis,
1952] in the context of unconstrained optimization and later in the 1960’s with [Hooke and
Jeeves, 1961] from where the expression direct search originates. At the time, they were
justified using geometric intuition more than mathematics, and convergence proofs were
not available. In fact, the interest for global convergence proofs started with the Armijo-
Goldstein-Wolfe conditions [Armijo, 1966, Wolfe, 1969, Goldstein, 2013] introduced later
for the global convergence proof of the steepest descent method [Cauchy, 1847].

Referring to [Hooke and Jeeves, 1961], a direct search is a method that directs the opti-
mization by sequentially evaluating points according to a certain strategy and proceeding
to comparisons with a considered current best point. The comparisons use only function
values and no derivative. More generally, [Wright, 1996] describes a direct search as a
method using only function evaluations and that does not approximate derivatives.

Direct search methods are widely used in BBO, partly due to the simplicity of the main
principle, the wide application possibilities and the fact that many direct search methods
exhibit convergence proofs.

A first type of direct search techniques are pattern search methods that perform pattern
moves on a lattice. They include the coordinate search (CS) [Fermi and Metropolis, 1952]
on a grid defined by the coordinate directions. The algorithm starts with an initial guess
that it tries to improve. To do so, if n ∈ N∗ is the dimension of the problem, it iteratively
evaluates the 2n neighbours of the incumbent on the grid along the coordinate directions
and their opposites. If these evaluations come up with a better point in terms of objective
function value, the incumbent is replaced by the best point. Otherwise, the grid size is
reduced and the new neighbours on the grid are evaluated and compared to the incumbent.
The procedure is repeated at each iteration until a stopping condition is met.

The generalized pattern search (GPS) method is introduced in [Torczon, 1997] and
allows more variety in the selection of the search directions than CS. Indeed, GPS uses
search directions that positively span Rn to evaluate new candidate points on a lattice and
these directions are not the same at each iteration.

The algorithm first performs a global exploration, called the search phase, where points
can be evaluated anywhere on the mesh. This step can use a heuristic method for instance
or a model of the function. The evaluations try to replace the current incumbent by a
better point. If the search does not manage to do so, a second phase corresponding to a
local exploitation, and called the poll, is performed in which points are evaluated in the
vicinity of the current best point and towards positive spanning directions, still on the
mesh.
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Let D = {d1, d2, . . . , d∣D∣} denote a finite set of directions of Rn. The positive span of D
is defined as:

pspan(D) =
⎧⎪⎪
⎨
⎪⎪⎩

∣D∣
∑
k=1

λkdk, λk ≥ 0

⎫⎪⎪
⎬
⎪⎪⎭

. (2.4)

By definition, D positively spans pspan(D). In particular, if pspan(D) = Rn, D consists of
positive spanning directions of Rn. Using positive spanning directions offers the guaranty
that at least one of them is a descent direction. If either the search or the poll finds a
better point, the iteration is qualified as successful and the mesh size can be increased.
Otherwise, the iteration is unsuccessful and the size of the mesh is reduced at the next
iteration. The procedure is repeated until a stopping condition is met.

A generalization of GPS is the generating set search (GSS) [Kolda et al., 2003] that
has a stronger condition to consider an evaluation as successful. Indeed, an iteration k is
successful if a sufficient decrease condition f(xk) < f(xk−1) − ρ(δk) is satisfied, where ρ is
a continuous decreasing forcing function and δk is the mesh size parameter.

Other methods use adaptive sets of search directions. It is the case of the well-known
Mesh Adaptive Direct Search (MADS) [Abramson et al., 2009b, Audet and Dennis, Jr.,
2006, Audet and Dennis, Jr., 2009]. The latter is a generalization of GPS but which
introduces a frame parameter in the poll step of the algorithm and uses variable sets of
search directions. MADS also proceeds to a global search and a local poll step when the
search phase is unsuccessful, and evaluates candidate points on a mesh.

At iteration k, the mesh Mk is determined by the current iterate xk, a mesh parameter
size δk > 0 and a matrix D whose columns consist of p ∈ N∗ positive spanning directions
such that:

Mk ∶= {xk + δkDy ∶ y ∈ Np
}, (2.5)

where the columns of D form a positive spanning set {D1,D2, . . . ,Dp}.

The candidate points evaluated in the poll belong to a frame Fk that has a radius of
∆k > 0 called the poll size parameter. The frame is defined as follows:

Fk ∶= {x ∈Mk ∶ ∥x − xk∥∞ ≤∆kb}, (2.6)

where b =max{∥d∥∞, d ∈ D} and D ⊂ {D1,D2, . . . ,Dp} is a finite set of poll directions. The
latter are updated at every iteration and are such that their union over iterations becomes
asymptotically dense in Rn.

In case of a successful iteration, both mesh and frame size parameters are increased,
otherwise they are decreased. It is well noted that the mesh size is more severely decreased
than the frame size and, as a result, the choice of a candidate point in the poll becomes
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more flexible with unsuccessful iterations. Usually, δk =min{∆k,∆
2
k}.

Under some assumptions, including bounded level sets of the objective function, MADS
globally converges to a stationary point as proven in [Audet and Dennis, Jr., 2006] for
constrained continuous optimization problems but also in the case of mixed variables, as
shown in [Abramson et al., 2009a]. The convergence relies on the poll step of the algorithm.

The MADS procedure is described in Algorithm 2. This description of the algorithm is
taken from [Dahito et al., 2021] and inspired from [Audet and Hare, 2017]. Instantiations of
MADS are available in the Nonlinear Optimization with the MADS algorithm (NOMAD)
open-source software [Audet et al., 2022b].

Algorithm 2: The mesh adaptive direct search (MADS)
1 Initialize k = 0, x0 ∈ Rn, D ∈ Rn×p, ∆0 > 0, τ ∈ (0,1) ∩Q, ϵstop > 0
2 1. Update δk =min{∆k,∆

2
k}

3 2. Search
4 If f(x) < f(xk) for x ∈ Sk then xk+1 ← x, ∆k+1 ← τ−1∆k and go to 4
5 Else go to 3
6 3. Poll
7 Select Dk,∆k

such that Pk ∶= {xk + δkd ∶ d ∈ Dk,∆k
} ⊂ Fk

8 If f(x) < f(xk) for x ∈ Pk then xk+1 ← x, ∆k+1 ← τ−1∆k and go to 4
9 Else xk+1 ← xk and ∆k+1 ← τ∆k

10 4. Termination
11 If ∆k+1 ≥ ϵstop then k ← k + 1 and go to 1
12 Else stop

DIRECT [Jones et al., 1993], standing for dividing rectangles and also referring to direct
search, is a deterministic derivative-free technique used for solving expensive mixed-variable
BBO problems and which exhibits global convergence properties. It is an extension of the
one-dimensional Shubert’s method. The search occurs in the hyperrectangle defined by the
bounds of the optimization problem and scaled to be a unit hypercube. This hypercube is
iteratively trisected in hyperrectangles, the centers of which are evaluated and potentially
optimal hyperrectangles are chosen. It is well noticed that only the centre points are
evaluated.

The modification of [Jones, 2001] performs the subdivision on a single long side instead
of all long sides. In an unconstrained case, one or several hyperrectangles possessing the
lowest function value, one of the biggest hyperrectangles and the lower-right part of a
convex hull, is chosen for the trisection and evaluations of the centers of the new formed
rectangles. The convex hull is calculated from a set of dots on the graph representing the
objective values of the centers of the hyperrectangles according to the distance between
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centers and vertices. The algorithm balances between local and global search approaches
thanks to a weighting parameter on the center-vertex distance and acting on the choice of
potentially optimal rectangles.

A pseudo-code of the procedure in the constrained case is described in Algorithm 3
and inspired from [Jones, 2001]. The distance between the centre of a hyperrectangle r

and the vertices of the hyperrectangle is denoted dr. Let f and {gj , j = 1,2, . . . ,m} be
the objective and constraint functions, respectively, with m ∈ N the number of inequality
constraints. The rate of change is defined as

hr(f
∗
) ∶=

max(fr−f∗,0)+∑m
j=1 cj max(grj ,0)

dr
, (2.7)

where fr and grj are respectively the objective value and the jth constraint value in the
centre of rectangle r, f∗ is the global minimum of the function f and cj is a real coefficient
associated to the constraint j ∈ {1,2, . . . ,m}. In practice, f∗ is a certain real value satisfying
f∗ ≤ fmin − ϵ with ϵ > 0 and fmin the minimum objective value computed so far in the
algorithm. The parameters s0 and {sj , j = 1,2, . . . ,m} represent the sum of observed rates
of change for respectively the objective and the m constraints, and are updated at each
iteration. The number of splits along the direction i is denoted ti with i ∈ {1,2, . . . , n}.
Let xmid stand for the centre of a parent hyperrectangle, xleft and xright are respectively
the centers of the left and right child hyperrectangles.

In the unconstrained case, the global convergence to a global optimum is ensured
when the function is continuous in its neighbourhood. In [Finkel and Kelley, 2006], the
algorithm is proven to converge to a Karush-Kuhn-Tucker (KKT) point. The convergence
is also ensured, under some assumptions, for constrained optimization problems. For such
problems, [Jones, 2001] considers an auxiliary function that gathers the objective and
constraints (but is not a penalty function) and, if the current best point is infeasible, the
hyperrectangles that minimize a rate of change are chosen for the next iteration.

2.3.3 Heuristic global search methods

In the context of a restricted number of function evaluations, heuristic techniques can be
used to speed up the search of a solution. They generally provide good approximations
in the resolution of an optimization problem. However, a heuristic may be specifically
designed for a given problem, in which case it highly depends on it. Besides, this type of
methods provide no convergence guarantee to an optimum. Meta-heuristic methods are a
subclass of heuristics commonly used to tackle generic problems and that gathers several
families of techniques, including evolutionary algorithms.
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Algorithm 3: The dividing rectangles (DIRECT) algorithm
1 Initialize the scaled hypercube r and evaluate its centre xc
2 Initialize xmin ← xc and fmin ← f(xc)
3 Initialize sj ← 0, j = 0,1, . . . ,m
4 ti ← 0, i = 1,2, . . . , n
5 while the maximum evaluation budget is not reached do
6 Compute cj ←

s0
max(sj ,10−30) , j = 1,2, . . . ,m

7 if no feasible point was found then
8 Select the hyperrectangle minimizing the rate of change hr(f

∗) required to
bring the weighted sum of the constraint violations to 0

9 else
10 identify the hyperrectangles contributing to the lower envelope of the

functions hr(f
∗)

11 S denotes the set of chosen hyperrectangles
12 Choose a rectangle r from S
13 Identify the long side with the smallest ti value (and smallest index if there are

several possibilities)
14 if a left child exists then
15 Trisects r along dimension i
16 Evaluate the centers of the new hyperrectangles formed
17 ti ← ti + 1

18 Update the best candidate xmin and its objective value fmin

19 if the maximum evaluation budget is not reached then
20 Evaluate the midpoint of the left third
21 Update xmin and fmin

22 if the maximum evaluation budget is not reached then
23 Evaluate the midpoint of the right third
24 Update xmin and fmin

25 s0 ← s0 +∑
right
child=left

∣f(xchild)−f(xmid)∣
∥xchild−xmid∥

26 sj ← sj +∑
right
child=left

∣gj(xchild)−gj(xmid)∣
∥xchild−xmid∥

27 If the problem has only integer variables, identify hyperrectangle children that
are singletons and discard them.

28 S ← S ∖ {r}
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Simulated annealing

Simulated annealing (SA) is an iterative meta-heuristic inspired from metallurgy and that
has been successfully used in BBO. Annealing is a technique that consists in sequentially
heating and slowly cooling a material to improve its ductility.

[Metropolis et al., 1953] proposed the SA optimization method using a modified Monte
Carlo algorithm to simulate the cooling process and the different thermodynamic equilib-
rium states of annealing. In [Kirkpatrick et al., 1983], SA was suggested for combinatorial
problems before being adapted to problems with continuous variables in [Bélisle et al.,
1993].

Let xk be the incumbent at iteration k ∈ N. From xk, the Metropolis algorithm uses a
Monte Carlo type algorithm to generate a new candidate point x̃, that can be seen as a new
state of the material in the annealing process. The latter is evaluated with the objective
function, representing the energy of the material, and accepted if the value is better than
that of the incumbent. Otherwise, it is accepted with the following probability:

p(x̃∣xk) = exp (−
f(x̃)−f(xk)

Tk
) , (2.8)

where Tk is a temperature parameter. The decreasing sequence {Tk}k=0,1,..., that converges
to 0, is called the cooling schedule and enables the algorithm to escape from local optima.
The sequence commonly starts with a high temperature value to favour exploration. In-
deed, this allows SA to accept worse points with a higher probability.

Evolutionary algorithms

Evolutionary algorithms (EAs) were developed in the 1950’s and 1960’s to solve engineering
optimization problems. They are stochastic iterative methods that take their inspiration
from nature and, in particular, from Darwin’s evolution theories. In an EA, the components
of a point are chromosomes, the points are called individuals and a set of individuals is
referred to as a population. An offspring of λ ∈ N∗ individuals is generated from a parent
population with µ ∈ N∗ individuals.

The selection of the parents is said to be elitist if the best points from both parents
and offspring are considered, in which case it is called a plus selection and referred to as
(λ + µ)-selection. If only the best points of the offspring are considered, it is a comma
selection denoted (λ,µ)-selection and the algorithm is non-elitist.

EAs do not need any assumption about the function to optimize. However, many
function evaluations are often needed, in particular when the dimension of the problem is
high, and they provide no guarantee on the quality of the solution.
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There are several types of EAs, among them are notably genetic algorithms (GAs) and
evolution strategies (ESs). The main principle of an EA is to apply genetic operators to a
parent population in order to create an offspring population that can be, in turn, selected
at the next iteration to be among the new parents. Different types of selections occur
according to the methods, they can be random or based on comparisons from a fitness
function for instance. Among often used genetic operators are mutations and crossovers
which we describe hereafter. The steps followed by an EA are summarized in Algorithm 4.

Algorithm 4: Main steps of an evolutionary algorithm
1 Initialize a first population P
2 Evaluate the individuals of P with the objective and constraint functions
3 while a stopping condition is not satisfied do
4 From P, select a parent population P̃
5 Generate an offspring by applying genetic operators on the individuals of P̃

// e.g. crossovers and mutations

6 Replace the individuals of P̃ contained in P by their offspring
7 Evaluate the new individuals of P

Mutations are used in EAs to create diversity by perturbing some variables, which can
avoid premature convergence to a local solution. There are varieties of mutation operators
and here we give an overview with a few examples for binary-coded variables and real-coded
ones.

On binary-coded variables, a binary mutation can be used. It creates a child by flipping
the bits (from 0 to 1 or 1 to 0) of an individual with a certain probability defined for each
variable. Similarly, a mirror mutation replaces the value of a variable by its mirror with
respect to the middle of its feasible domain interval.

Some mutations swap variables like the swap mutation that swaps two chosen variables
while scramble mutation permutes several of them. In inversion mutation, a subset of
variables is mirrored: the first of the list takes the value of the last and so on.

For real values, real mutation randomly changes genes by other values in their boundary
intervals.

Uniform mutation randomly chooses a variable and assigns it a value chosen uniformly
as random in its bounds.

Non-uniform mutation is an adaptive operator that reduces the divergence from the
original individuals as the generations increase. Thus, close to an optimum, the mutation
has little change on an individual.
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Boundary mutation randomly assigns a boundary value to randomly chosen variable.
Power mutation and polynomial mutation respectively use a power and polynomial

distribution. With power mutation one can control the diversity of the population thanks
to a parameter.

Finally, Gaussian mutation uses the Gaussian error function and either adds or removes
a random normal-distributed quantity to each variable.

Crossovers are used as recombination operators. Similarly to mutations, there exist
different types of crossover operators and many of them are based on binary encoding. As
most known GAs use two parents to create two children, we mainly talk about this case
but the generalization to more parents and more or less children is possible. [Umbarkar
and Sheth, 2015] gives a summary of the existing crossover operators used in GAs and
[Kora and Yadlapalli, 2017] gives the principal ones with a focus on the resolution of the
famous travelling salesman problem.

Children can inherit equally, that is with same probability, from both parents: with
uniform crossover, each variable has the same probability to be chosen for a child and a
second child is the complementary of its fellow. A variant is half uniform crossover where
only half of the differing variables can be swapped.

k−points crossover is another type. For single-point crossover, a point between two
chromosomes is randomly selected and, from it, all the following variables are exchanged
between parents. In the case of k ∈ N∗ points, these ones are randomly selected and
the parents are combined between these points. In other words, single-point crossover is
successively applied at each crossover point.

Single-point crossover is applied in shuffle crossover after a random shuffle of some
variables for both parents. After that, the shuffled features take their original values back.

In reduced surrogate crossover, a point is randomly selected among the locations of the
variables where the parents differ. This operation is done only if there are at least two
varying variables between the parents.

In elitist crossover, the selection and crossover phases are combined. Indeed, the whole
population is randomly shuffled before any parent selection. Then, from a couple of parents,
two vectors are computed from a crossover. The two best of the four are selected as
offspring.

Finally, simulated binary crossover [Deb and Agrawal, 1995] was created for real-coded
variables with the idea of preserving the properties of 1−point crossover. Indeed, it pre-
serves the average values of the individuals before and after the operation. Let β be a
spread factor following a certain distribution, x(1) and x(2) respectively the same variables
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of two parents numbered 1 and 2 such that x(2) > x(1), and y(1) and y(2) respectively the
corresponding variables of the two children 1 and 2. The offspring is created from the
parents as follows:

y(1) = 1
2(x

(1)
+ x(2) − β(x(2) − x(1))) and y(2) = 1

2(x
(1)
+ x(2) + β(x(2) − x(1))). (2.9)

Genetic algorithms were originally introduced by [Bremermann, 1958] and later pop-
ularized by [Holland, 1975] and [Golberg, 1989]. GAs are a kind of EAs used in many
contexts including signal processing and recurrent neural networks. They use crossover
and mutation operators to generate offspring.

The nondominated sorting genetic algorithm (NSGA-II) [Deb et al., 2002] is among
the most famous GAs and was initially designed for solving continuous multi-objective
optimization problems. In NSGA-II, a dominance order is used to prioritize the global
population in nondominated sub-populations (or fronts). Consider an unconstrained opti-
mization problem with α ∈ N∗ objective functions f1, f2, . . . , fα. For two distinct points
x and x̃, x dominates x̃ (denoted x ≺ x̃) if and only if fi(x) ≤ fi(x̃),∀i = 1, . . . , α and at
least one of these inequalities is strict. If these inequalities hold but none of them is strict,
that is x and x̃ have the same function values, they are equivalent The notation ⪯ includes
the equivalence case.

Two rankings are performed in the algorithm. The first-order ranking is based on the
nondominated sorting that ranks the individuals according to their dominance in the ob-
jective space. Indeed, the nondominated points are identified and given a non-domination
rank of zero. They are then temporarily discounted from the population in order to iden-
tify a new set of nondominated points that are assigned a non-domination rank equal to
that of the previous nondominated set plus 1. The points are discounted from the popu-
lation and the process is repeated until each point of the population belongs to a relative
nondominated front and is allocated a non-domination rank.

The second-order ranking is based on the crowding distance that is an indicator of the
density of each point in each nondominated front. To compute the crowding distance, the
individuals of a front are ranked for each objective (fk(x(1)) ≤ fk(x(2)) ≤ . . . ≤ fk(x(N)), k =
1, . . . , α) and the neighbours of each point in each objective space are identified. The points
on the extremities (x(1) and x(N)) are given infinite distance values. For each x(i) with
i ∈ {2, . . . ,N − 1}, the following distance value is computed:

fk(x(i+1))−fk(x(i−1))
fmax
k
−fmin

k

, (2.10)

where fmax
k and fmin

k are respectively the maximum and minimum of fk. The crowding
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distance of a point x in a front corresponds to the sum of its distance values for all
objectives, and we denote it c(x). The points on each side of a considered one form a
cuboid around the sample point and the crowding distance corresponds to the mean value
of the length of an edge of the cuboid. A crowding-comparison operator ≺n is used for the
second-order ranking. A point x dominates another point x̃ with respect to the crowding-
comparison operator, that is x ≺n x̃, if and only if either x ≺ x̃ or x and x̃ have the same
domination rank and c(x) > c(x̃). Thus, in the same front, the less crowded points are
preferred.

NSGA-II is a modification of the nondominated sorting genetic algorithm (NSGA) that
performs two rankings. The first one is a ranking selection method based on the domination
rank. The second one ranks the points of a same front using a niche method. This method
is rarely used in practice because it is strongly dependent to a sharing parameter, that is
used to know the proximity between two points, and has an expensive complexity. NSGA-II
uses the crowded-comparison operator in place of the sharing function approach of NSGA.

For optimization problems with relaxable and quantifiable constraints, NSGA-II uses a
binary tournament selection, or constraint dominance, that ranks the individuals according
to their constraint violations and objective values. Three cases can be considered to define
the constraint dominance between two points:

1. If only one of them is feasible, the latter dominates the infeasible one

2. If they are both infeasible, the solution with the lowest constraint violation is domi-
nating

3. If both are feasible, the classical dominance applies.

Hence, the lower the constraint violation, the better the rank, and for equal constraint
violations, the classical nondominated sorting is used. The procedure of the NSGA-II
algorithm can be described as in Algorithm 5.

Initially binary-coded, the extension to continuous variables was introduced by [Bethke,
1980], using an approximate binary decomposition. Several modifications of the algorithm
exist, such as ϵ-NSGA-II. The parameter ϵ > 0 is a user-defined precision for each objective.
A grid of size ϵ is generated in the objective space and the nondominated sorting is based
on blocks of the grid. The evaluated points are stored in sorted archives, the firsts of which
are ϵ-nondominated points.

Although NSGA-II is a multi-objective solver, it can be adapted for single-objective op-
timization problems. Indeed, for an unconstrained single-objective minimization problem,
the dominance criterion is simply the natural ordering between the objective values. If the
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Algorithm 5: The nondominated sorting genetic algorithm (NSGA-II)
1 Initialize a parent population size parameter N ∈ N∗
2 Determine an initial population P0 of M ≥ N individuals
3 Evaluate the individuals of P with the α objective and β constraint functions
4 P ← P0
5 while a stopping condition is not satisfied do
6 Determine the relative constraint nondominated fronts (F1,F2, . . .) from P

// Fast nondominated sorting

7 S ← ∅ // Set of selected (parent) points

8 l ← 1
9 while ∣S ∣ + ∣Fl∣ ≤ N do

10 S ← S ∪Fl

11 l ← l + 1

12 if ∣S ∣ < N // Crowding distance

13 then
14 Compute the crowding distance of each individual of Fl

15 Sort Fl in descending order using the crowding-comparison operator ≺n
Add the best (N − ∣S ∣) points of the sorting to S

16 Apply crossovers and mutations to S to generate an offspring Q
17 Evaluate the individuals of Q with the objective and constraint functions

P ← P ∪Q // Add the offspring to the global population

problem is constrained, constrained-dominance is still used and thus feasible solutions are
preferred.

Other ways of handling constraints in tNSGA-II are also available. An example is the
approach of [Ray et al., 2001] that performs three types of nondominated sorting. The first
one uses the objective functions, the second one is based on the constraint violations and
the third one is a combination of objectives and constraints. No penalization parameter is
necessary as the criteria are compared separately.

Evolution strategies were initially developed in the 1960’s for parameter optimization
of complex systems. ESs represent a class of EAs that mimics the principles of organic
evolution and use only mutations as genetic operators to generate offspring. They were
developed by [Rechenberg, 1973] and [Schwefel, 1981], and use the comma and plus selec-
tions.

The (1 + 1)-ES is probably among the simplest ESs. At each iteration, the algorithm
generates a single offspring by applying a mutation operator on a parent and the best
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candidate between the parent and the offspring is kept for the next generation. [Rechen-
berg, 1973] introduced the one fifth success rule with the main idea of keeping the success
probability of the iterations to roughly 1

5 . This rule was applied by [Kern et al., 2004] to
the (1+1)-ES: if the ratio of the iterations that come up with an offspring better than the
parent over all the iterations is greater than 1

5 , the variance of the sampling distribution
is increased, otherwise it is decreased.

Among the biggest advances in EAs is the development of auto-adaptive techniques
to update the mutation parameters. The idea of adaptive variance is employed in the
Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES) [Hansen and Auger,
2014] that is a state-of-the-art ES which deterministically adapts the covariance matrix of
the sampling distribution. This meta-heuristic minimizes a continuous function f .

Let N (m,C) denote a normal distribution of mean vector m and covariance matrix
C. It can be represented by the ellipsoid x⊺C−1x = 1, the main axes of which are the
eigenvectors of C and the square roots of their lengths are the associated eigenvalues.
CMA-ES iteratively samples its populations from multivariate normal distributions whose
parameters are updated with rank-based selection, recombination and cumulation.

The main idea behind the updates of the covariance matrices is to approach the contour
lines of the objective function making use of the information from previously evaluated
points. This is similar to an approximation of the inverse Hessian matrix in a quasi-Newton
method.

At the generation g, the (µ/µw, λ)-CMA-ES proceeds to an independent sampling of
λ ∈ N∗ individuals x

(g)
1 , . . . , x

(g)
λ . Each individual of the next generation is updated such

that:
x
(g+1)
k ∼m(g) + σ(g)N (0,C(g)),∀k = 1, . . . , λ, (2.11)

where m(g), σ(g) and C(g) are respectively the mean, the step size and the covariance
matrix at generation g.

Let {x(g)1∶λ , x
(g)
2∶λ , . . . , x

(g)
λ∶λ} be the points of the population at generation g, sorted such

that f(x
(g)
1∶λ) ≤ f(x

(g)
2∶λ) ≤ . . . ≤ f(x

(g)
λ∶λ), the mean of the next generation is updated using

the µ ≤ λ best points as follows:

m(g+1) =
µ

∑
i=1

wix
(g)
i∶λ , (2.12)

where wi, i = 1, . . . , µ are positive recombination weights such that w1 ≥ w2 ≥ . . . ,≥ wµ.
If these weights sum to one, this convex combination lies in the convex hull of the µ best
points.
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The step size is updated following what is called a cumulative step size adaptation:

σ(g) = σ(g−1) exp( cσdσ (
∥p(g)σ ∥

Ex∼N(0,I)∥x∥ − 1)) , (2.13)

where cσ and dσ are constant parameters and p(g) is the evolution path. The latter is
defined as a sequence of successive steps over a number of generations. If the selection is
biased, making the norm of the evolution path smaller or greater than Ex∼N (0,I)∥x∥, the
step size is decreased or increased, respectively.

The covariance matrix is updated as follows:

C(g+1) = (1 − c1 − cµ
µ

∑
i=1

wi)C
(g)
+ c1p

(g)
σ p(g)⊺σ + cµ

µ

∑
i=1

wiy
(g)
i∶λ y

(g)⊺
i∶λ , (2.14)

where 0 < c1 < 1, 0 < cµ < 1−c1 and y
(g)
i∶λ =

x
(g)
i∶λ −m

(g)

σ(g)
, i = 1, . . . , µ. The term p

(g)
σ p

(g)⊺
σ is called

the rank-one update and uses cumulative information from the past generations whereas

the rank-µ update term
µ

∑
i=1

wiy
(g)
i∶λ y

(g)⊺
i∶λ uses only information of the current population.

With these updates based on the best points from the population and using the in-
formation of previous generations, the probability to sample points in promising areas
increases with the iterations.

Other widely used EAs include Differential Evolution (DE) [Storn and Price, 1997], a
meta-heuristic algorithm designed for continuous optimization but that provides no guar-
antee of optimality. In DE, a trial point is generated by combining the current best point
with other individuals chosen randomly in the population. The trial vector is then sequen-
tially filled with parameters from itself or the incumbent and the best individual between
the incumbent and the created vector is chosen.

The ant colony optimization (ACO) [Dorigo, 1992] was originally designed for com-
binatorial optimization problems, such as the travelling salesman problem. The method
is stochastic and inspired from the behaviour of ants looking for food. When ants find
food, they go back to the nest by leaving pheromones that will be detected by other ants.
The exchange of information is local since the insects need to be close to the pheromones
to access the information. As the shortest paths will be more used, the concentration of
pheromones will be higher on these paths, thus also attracting more ants.

Particle swarm optimization (PSO) was introduced in [Kennedy and Eberhart, 1995]
and [Eberhart and Kennedy, 1995]. It is a stochastic archive-based EA also commonly used
that takes its inspiration from social learning. In PSO, an individual is called a particle
and a population is a swarm. Each particle is given a location and a velocity and evolves
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according to its local best point, that is the best candidate it visited, and to the best
solution encountered by the algorithm so far.

This section described deterministic and stochastic methods that directly query the
functions involved in the optimization problem. Other methods try to limit the number of
function calls by using models that predict the interesting outcomes: they are model-based
methods.

2.4 Model-based methods

Most global optimization approaches use numerous function evaluations, which is not prac-
ticable when dealing with numerically expensive functions. In order to save expensive
evaluations or accelerate the convergence of a method, substitutes of the functions can be
constructed. The interest for approximation techniques has notably increased in the past
two decades.

A surrogate is a model of a system that shares similarities with it but is simpler and
cheaper to evaluate. Other names used to refer to surrogates include surrogate models,
metamodels, response surfaces, or response surface models. However, the designations
using the expression response surface are sometimes specifically employed for local poly-
nomial approximations.

In order to build a surrogate of a function, data has to be provided: a design of
experiments (DOE) is first set and consists of N ∈ N∗ sampled points {x1, . . . , xN} in
the design space that are evaluated with the true function. There exist numerous DOE
techniques and [Giunta et al., 2003] gives a summary of the principle ones.

The use of surrogates can be classified according to two main purposes. First, they
can aim at reproducing the most accurately as possible a behaviour in order to be used
in place of the corresponding real system: it is called emulation. The other major use is
in the framework of optimization with the goal of identifying promising areas where the
optima of the optimization problem lie.

In this section, we describe some well-known surrogate models including polynomial re-
gression models, radial basis functions, kriging models and multivariate adaptive regression
splines.

We focus on the use of metamodels for optimization but also present a few comparison
studies in the context of emulation as they give an insight of the quality of the most known
surrogate techniques.
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2.4.1 Main types of surrogate models

There exist multiple metamodelling techniques and we present some of them that are com-
monly used. Radial basis functions, kriging models and multivariate adaptive regression
splines will also be considered in our research work to be presented in Chapter 6.

Polynomial response surface models

Polynomial response surfaces have long been favoured for function approximations. They
were first introduced in [Box and Wilson, 1992] and later in [Myers et al., 2016] and in the
context of neural networks [Hajela and Berke, 1992]. A polynomial response surface model
(RSM) approximates a function f with a polynomial of degree m ∈ N using least squares
regression. Among the advantages is the possession of a C∞ estimate.

Let n denote the dimension of the variable space and x(1), . . . , x(N) be points where
the function values are known, that is the DOE. If n = 1, an m-degree polynomial approx-
imation of f at a new point x can be written as:

p(x) =
m

∑
k=0

akx
k, (2.15)

where a = (a0, . . . , am)
⊺ solves

minimize
a∈Rm+1

1
2∥Φa − y∥

2. (2.16)

In Equation (2.16), y = (f(x(1)), . . . , f(x(N)))⊺ is the vector of outputs at x(1), . . . , x(N),
and Φ is the Vandermonde matrix:

Φ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 x(1) (x(1))2 . . . (x(1))m

1 x(2) (x(2))2 . . . (x(2))m

⋯ ⋯ ⋯ ⋯ ⋯

1 x(N) (x(N))2 . . . (x(N))m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.17)

Polynomial RSMs are well suited for low-dimensional problems, low-modality problems
or when the information is cheap to get. However, for high dimensions, it can be hard to
get enough data to build high-order polynomials. A quadratic polynomial is often used as,
in many cases where the function is computationally expensive, it is a good approximation
that is relatively cheap to build. Indeed, (n+1)(n+2)2 points are needed to construct a
quadratic approximation.

For n ∈ N ∖ {0,1}, if m = 2, a quadratic response surface of f at x = (x1, . . . , xn)
⊺ ∈ Rn



32 Literature review

is:

p(x) = a0 +
n

∑
i=1

aixi +
n−1
∑
i=1

n

∑
j=i+1

aijxixj +
n

∑
i=1

aiix
2
i , (2.18)

where a = (a1, . . . , an, a12, a13, . . . , a(n−1)n, a11, a22, . . . , ann)
⊺ solves Equation (2.16) with

Φ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 x
(1)
1 . . . x

(1)
n x

(1)
1 x

(1)
2 . . . x

(1)
n−1x

(1)
n (x

(1)
1 )

2
. . . (x

(1)
n )

2

1 x
(2)
1 . . . x

(2)
n x

(2)
1 x

(2)
2 . . . x

(2)
n−1x

(2)
n (x

(2)
1 )

2
. . . (x

(2)
n )

2

⋯ ⋯ . . . ⋯ ⋯ . . . ⋯ ⋯ . . . ⋯

1 x
(N)
1 . . . x

(N)
n x

(N)
1 x

(N)
2 . . . x

(N)
n−1x

(N)
n (x

(N)
1 )

2
. . . (x

(N)
n )

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.19)

Radial basis functions

Radial basis functions (RBF) [Hardy, 1971] are interpolating models that use radially
symmetric functions. The latter are such that they depend only on the distance between
the input variable and some fixed centre point. The norm commonly used to build RBF
models in an optimization framework is the Euclidean norm. Let f ∶ Rn → R be an
expensive real function, with n ∈ N∗. Let x ∈ Rn be a point where the function has
not been evaluated, an RBF approximation of f(x) is built as a weighted sum of basis
functions:

s(x) =
N

∑
i=1

ωiϕ(∥x − c
(i)
∥), (2.20)

where ϕ(∥x − c(i)∥) are the basis functions evaluations, {c(i), i = 1, . . . ,N} are the N ∈ N∗

basis function centres and {wi, i = 1, . . . ,N} are real weights that can be easily estimated
by interpolation or least squares. Additional terms such as polynomials can be added to the
RBF formulation to increase its flexibility. Examples of traditional fixed and parametric
basis functions types are given below:

• linear ϕ ∶ r ↦ r

• cubic ϕ ∶ r ↦ r3

• thin plate spline ϕ ∶ r ↦ r2ln(r)

• Gaussian ϕ ∶ r ↦ e−
r2

2σ2

• multi-quadric ϕ ∶ r ↦ (r2 + σ2)
1
2

• inverse multi-quadric ϕ ∶ r ↦ (r2 + σ2)
−12 .
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Kriging models

Originally developed by [Krige, 1951], kriging models are well-known interpolation surro-
gates that build approximations of functions by reducing the mean squared error. In the
variant of [Sacks et al., 1989], that is commonly used, the approximations lie on Gaussian
processes.

Let f ∶ Rn → R be an expensive real function, with n ∈ N∗, and let x ∈ Rn be a point
where the function has not been evaluated. In kriging, the function value at x is considered
as the realization of a normally distributed random variable:

Y (x) = µ(x) +Z(x), (2.21)

where µ(x) is the deterministic approximation of the mean and Z is a Gaussian process
of mean 0.

The assumption made on the deterministic mean gives three types of kriging. Indeed,
the kriging model is simple if the mean is a known constant value µ. If the mean is constant
but unknown, the kriging model is ordinary, in which case the mean is often assigned the
mean value of the approximations. Finally, the model is universal if the deterministic
mean is a linear combination of basis regression functions depending on x.

The covariance of this Gaussian process Z at two points x and x̃ can be written as
follows:

Cov(Z(x), Z(x̃)) = σ2R(∥x − x̃∥),

where σ2 is the variance and R is a correlation function.
There exist different families of correlation functions and below are some well-known

examples:

• Gaussian R ∶ τ ↦ e−
τ2

2θ2

• exponential R ∶ τ ↦ e−
∣τ ∣
θ

• Matérn 3/2 R ∶ τ ↦ (1 +
√
3∣τ ∣
θ )e

−
√
3∣τ ∣
θ

• Matérn 5/2 R ∶ τ ↦ (1 +
√
5∣τ ∣
θ +

√
5τ2

3θ2
)e−

√
5∣τ ∣
θ ,

where θ is a parameter of the correlation models.
The maximization of the likelihood function of the observed data, and often the log

of the likelihood function, enables to determine the deterministic mean, the variance and
the parameter θ. As a global optimization problem has to be solved to identify the model
parameters, kriging is rarely used for high dimensions.
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In an optimization context, kriging can be used with a merit function such as the
expected improvement (EI) [Močkus, 1975, Jones et al., 1998] and an enrichment strategy.
Let {x(1), . . . , x(N)} be the N ∈ N∗ points of the DOE where the function values are known.
The improvement function is defined as follows:

I(x) ∶=max
x∈Rn
(Ymin − Y (x),0) ,

where Ymin = min(f(x(i)), i = 1, . . . ,N). The EI is the expectation of the improvement
function and its maximization gives expected promising points to evaluate as it reduces
both the uncertainty of the model and the objective function. Once evaluated, these points
can be used to enrich the kriging model until convergence to an optimal value.

Multivariate adaptive regression spline

Introduced in [Friedman, 1991], multivariate adaptive regression spline (MARS) is a sur-
rogate model using piecewise linear regression models to capture the non-linearities of a
function. The model builds regression models on disjoint subregions of the variable space.
The points on the boundaries of the subregions are called knots. A MARS model approx-
imation of a real function at a point x ∈ Rn, where n ∈ N∗ is the dimension of the variable
space, can be written as follows:

s(x) = α0 +
M

∑
m=1

αmBm(x), (2.22)

where {Bm}Mm=1 are M ∈ N∗ maximum linearly independent interaction basis functions, α0

is the mean of the responses, also called the intercept coefficient, and αm is the coefficient
associated to the mth basis function. The basis functions are univariate and defined as the
product of at least two truncated linear functions, also called hinge functions. The latter
are equal to linear functions on bounded subregions defined by knot locations, and equal
to zero elsewhere.

Consider a hinge basis function H and call xi its unidimensional variable, with i ∈

{1, . . . , n}, H can be formulated as follows:

H(xi) =max(0, xi − k) or H(xi) =max(0, k − xi), (2.23)

where k is its respective knot location. The mth interaction basis function is defined as a
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product of hinge functions:

Bm(x) =
Lm

∏
l=1

max(0, sml(xi(m,l) − kml)), (2.24)

where Lm ∈ N∗ is the number of truncated linear functions, sml = ±1, xi(m,l) is the ith input
variable corresponding to the lth hinge function in the mth basis function and kml is the
knot corresponding to xi(m,l).

A numerically more stable variant, called BMARS and introduced in [Bakin et al.,
2000], replaces the truncated linear functions by second-order B-splines.

A few more surrogate techniques

Other metamodels exist such as artificial neural network (ANN) [McCulloch and Pitts,
1988, Broomhead and Lowe, 1988] where nonlinear functions, referred to as neurons, are
connected by a certain architecture. ANNs are commonly represented using a diagram of
multiple layers with weighted connections between nodes. The input variables are repre-
sented by the nodes of the first layer while those of the last layer constitute the predicted
outputs. Although ANNs can model complex systems, training them is computationally
expensive.

Support vector regression (SVR) derives from the theory of support vector machines
introduced in [Vapnik, 1995]. In the context of optimization, it can be considered as an
extension of RBF as it has a similar formulation. The model uses a tolerance corresponding
to an allowed deviation from a target value and the complexity of the model is reduced
by solving a constrained convex quadratic optimization problem. SVR is used for low-
dimensional problems due to the cost of training the model.

Polynomial chaos expansions are described in [Xiu and Karniadakis, 2002] and con-
sider the outputs of a function as random. The function values are approximated using
polynomials of multivariate random variables that are orthogonal to the distribution of the
random variables.

Finally, a moving least-squares (MLS) model [Lancaster and Salkauskas, 1981, Levin,
1998] is a kind of weighted least-squares that is computationally more intensive than a
basic least-squares regression or a weighted least-squares. It can be seen as a compromise
between regression and interpolation.
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2.4.2 Surrogates in the context of emulation

Multiple scientific papers focus on emulation and perform quality comparisons of different
surrogate models, mostly on continuous problems.

In [Kianifar and Campean, 2020], RBF, kriging and polynomial RSM, declined in a
total of 11 models, are used to emulate 18 literature functions of dimensions between 2

and 20. The accuracy, robustness and efficiency of each model is respectively measured
with the normalized root mean squared error, its variance and the computational time
needed to build the model. The results exhibit a globally higher accuracy, robustness and
efficiency of the kriging models, except on low-order non-linearity functions when the size
of the DOE is small. In the latter case, polynomials are performing better than the other
surrogates compared.

Two linear models, two splines, a kriging model, an ANN, an SVR and random forests
are compared in [Villa-Vialaneix et al., 2012] on a corn cultivation application study. Tests
are performed according to increasing dataset sizes: eight DOE sizes from 100 to ≈ 15000.
The qualities of the metamodels are evaluated for N2O prediction and for N leaching
prediction according to four measures that are the R2 coefficient, the mean squared error
(MSE) but also the standard deviation of the squared error (SE) and the maximum value
of the SE. Splines and kriging based methods have the best results with small and medium
training datasets while ANN, SVR and random forests demonstrate the best performance
with large DOEs.

The efficiencies of kriging and SVR surrogates are also evaluated in [Moustapha et al.,
2018] using isotropic and anisotropic kernels. The latter are isotropic if they assume a single
parameter for all directions whereas they are said to be anisotropic if a parameter is defined
for each dimension. L1 and L2 penalizations are also applied to SVR. Comparisons are
performed with increasing training datasets sizes on three continuous nonlinear functions
of dimensions 2, 5 and 20 and on FE structure forming and crashworthiness models of
dimensions 21 and 5, respectively. The quality measures used are the normalized MSE,
the normalized average absolute error and the normalized maximum absolute error. The
results show improved qualities of the models by introducing anisotropy. The anisotropic
L2-SVR with the Matérn kernels appears to be the most effective surrogate.

[Forsberg and Nilsson, 2005] compares Kriging and polynomial models on two design
problems of dimension 2 and a 5-dimensional crashworthiness problem. With respect to
the root mean squared error, kriging shows better outcomes but the linear and quadratic
models better filter noise.

RBF, polynomial, kriging and MARS models are investigated in [Jin et al., 2001]
using the R2 coefficient. They consider 13 nonlinear mathematical problems of dimensions
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lower than 16 and a 14-dimensional vehicle handling problem. RBF appears as the most
competitive on most of the problems.

2.4.3 Surrogate-based optimization

Since recent years, the use of surrogates in optimization is a hot topic in DFO. According
to the metamodels used, classical optimization methods using derivatives can be applied
to the models. When surrogates are plugged in an optimization algorithm to guide the
optimization, we talk about a surrogate-assisted method. If the main structure of the
algorithm is based on the use of surrogates, we refer to it as a surrogate-based algorithm.
A classical optimization method using true evaluations can be employed inside a surrogate-
based method to solve subproblems defined by the cheap metamodels. In that case, the
true evaluations of the classical method correspond in fact to surrogate evaluations for the
original optimization problem.

In surrogate-based optimization (SBO), metamodels are used to predict the expensive
outcomes of the objective and/or constraint functions and, thus, guide the search of an op-
timum using parsimonious evaluations of the expensive functions. Surrogates can be static
(or non-adaptive), that is they do not evolve during the optimization process. However,
most of the time in SBO, they are updated when new sample points are evaluated with
the expensive functions, in which case they can be qualified as dynamic (or adaptive). An
insight on SBO is given for instance in [Han and Zhang, 2012] and [Booker et al., 1999].

Multiple papers like [Wang and Shan, 2006] and [Forrester and Keane, 2009] review
the principal types of surrogates used for optimization. Some focus on specific applications
such as groundwater modelling appears in [Asher et al., 2015].

We present below the generic process followed by a surrogate-based algorithm using
dynamic metamodels:

1. [Initialization] Generate an initial DOE and evaluate the expensive functions at
each of its points. Use these evaluations to determine initial surrogates approximating
the objective and constraint functions.

2. [Sample point(s) generation] Determine a restricted set of points S on which
to evaluate the blackbox functions with a selection procedure involving the current
surrogates.

3. [Sample point(s) evaluation(s)] Evaluate each point of S with the expensive
functions.
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4. [Surrogate update] Update the surrogates using all the available evaluations, and
return to Step 2 until some stopping criterion is satisfied.

These different steps can be implemented in various ways and examples are presented
in [Vu et al., 2017] and [Müller, 2016].

In an optimization context, the capability of a model to identify promising areas and
to drive the algorithm towards the optimum of an optimization problem should prevail
over the global accuracy of the surrogate. In this sens, surrogates do not have to be true
approximations of the functions.

2.4.4 Some model-based methods

We present some optimization methods that use metamodels and separate them in two
families that are local model-based methods and global model-based methods.

Local model-based methods

Local surrogates try to approach the function as accurately as possible in the neighbour-
hood of some fixed point. The closer one gets to this point and the more accurate is the
approximation. Local model-based methods include algorithms based on Taylor series, of-
ten quadratic approximations. The latter are for instance used by quasi-Newton linesearch
methods that build a local quadratic model at each iteration such that the surrogate gra-
dient and the true gradient match (see [Nocedal and Wright, 2006] for more information).

The sequential least-squares programming (SLSQP) method developed in [Kraft, 1988]
solves constrained optimization problems by approximating the objective function with
a quadratic model and the constraints with linear models. It internally makes use of a
quasi-Newton method and approximates the Hessian of the objective using BFGS update
formula.

Trust-region methods also use local models: they build a local quadratic model of a
function to minimize and the model is supposed to be a good approximation in a defined
area of radius ∆ > 0, called the trust region. They iteratively minimize the quadratic
model under a maximum norm constraint of the solution equal to ∆. The aim is to find a
new stepsize in a descent direction of the function to update the current iterate (see [Conn
et al., 2000] for more details on trust-region methods).

The trust-region-based adaptive RBF interpolation algorithm (TARBF) developed in
[Liu et al., 2021] is a trust-region method using RBF models for the resolution of real-world
engineering optimization problems. TARBF divides the optimization problem into a series
of trust-region subproblems defined by cubic RBF approximations with linear polynomial
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tails. The subproblems are solved by the sequential quadratic programming (SQP) solver
of the SciPy library [Jones et al., 2001] to find the iterates of the algorithm. An adaptive
online normalization is applied to objective and constraint values to improve the accuracy
of the model within the trust region. The size of the trust region is adjusted at every
iteration according to four factors: the size of the current trust region, the location of the
design variable in the trust region and global design space, the history of the movement
of each design variable, and the iteration point vector. Thus, the trust region is resized
according to current and past information to balance between exploration and exploitation.
The DOE consists of three parts. First, points are randomly generated from a maxmin
stochastic sampling (MSS) strategy inside the trust region and with a minimum distance
constraint between the points. Second, an extended-box selection (EBS) strategy selects
previous points located in a neighbourhood of 1.4 time the size of the trust region of the
current starting point. Half of these points are alternatives to new points required in the
current iteration. Finally, points close to the current starting point but located out of the
extended box are selected by the global intelligence selection (GIS) strategy.

Another example of trust-region algorithm using RBF models is the optimization by
radial basis interpolation in trust regions (ORBIT) algorithm [Wild et al., 2008]. Its
extension to constrained optimization, called CONORBIT, is developed in [Regis and Wild,
2017]. CONORBIT selects points in the trust region of the current best point to build
RBF models of the objective and constraints. The minimization of a local subproblem
defined by the surrogates and including a margin on the RBF constraints gives the next
sample point to evaluate with the original expensive functions.

Another example of local-based method is the constrained optimization by linear ap-
proximation (COBYLA) algorithm developed in [Powell, 1994] and that performs linear
approximations of the objective and constraint functions. The method iteratively solves
linear programming optimization problems and adapts a stepsize that is, in particular,
decreased if the new candidate point is not better with respect to the original problem.

Global model-based methods

Global model-based methods are used for global optimization and use surrogates that
do not necessary try to be accurate models. Used in an optimization context, a global
surrogate aims at avoiding expensive evaluations by identifying promising regions of the
search space where evaluations with the original function should be performed.

Among global RBF-based methods is the constrained optimization by radial basis func-
tion interpolation (COBRA) algorithm developed in [Regis, 2014]. The method is designed
for solving global continuous constrained BBO problems where the evaluations of some
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blackbox functions are computationally expensive. To do that, the first phase of the algo-
rithm is to seek a feasible point by iteratively solving the following optimization problem:

min
x∈X

m

∑
j=1

max(0, ĝj(x))
2

s.t. ĝj(x) + ϵ ≤ 0, j = 1, . . . ,m

ρ −min
y∈P
∥x − y∥ ≤ 0,

(2.25)

where X is a closed bounded domain, f̂ and {ĝj , j = 1, . . . ,m} are RBF models of the
objective and constraints, respectively, m ∈ N denotes the number of constraints, ϵ and ρ

are positive real values and P is the set of DOE points that have been evaluated with the
blackbox functions.

Once a feasible solution with respect to the original optimization problem is found,
COBRA enters a second phase iteratively solving the following optimization problem:

min
x∈X

f̂(x)

s.t. ĝj(x) + ϵ ≤ 0, j = 1, . . . ,m,

ρ −min
y∈P
∥x − y∥ ≤ 0,

(2.26)

where the notations are common to Equation (2.25).

The gradient-based fmincon function of MATLAB is used for the resolution of these
problems. At each iteration, the solution of Equation (2.25) or Equation (2.26) (according
to the phase) is evaluated with the blackbox functions and used to update the surrogates
for the next iteration.

The best solution of COBRA is updated at each iteration. In the first phase, it is
defined as the solution with the smallest number of violated constraints or, in case of
equality, the one with the lower maximum of the constraint violations. In the second
phase of the algorithm, a new evaluated point becomes the best if it is feasible and its
objective value is strictly better than that of the best point so far.

The parameter ρ corresponds to a minimum distance requirement to already evaluated
points and is updated at each iteration following a cycle of finite discrete values. The
margin ϵ is fixed in the first phase. In the second phase, after Tfeas ∈ N∗ consecutive
iterations where the candidate solutions were feasible, ϵ is reduced whereas it is increased
after Tinfeas ∈ N∗ iterations that return infeasible points.

The difficulty of finding a feasible point and the sensitivity to the parameterization are
respectively tackled by the variants COBRA-R [Koch et al., 2014] and SACOBRA [Bagheri
et al., 2017].
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Other RBF-based methods include the constrained local metric stochastic RBF (Con-
strLMSRBF), introduced in [Regis, 2011], that is a heuristic RBF-based algorithm. In
ConstrLMSRBF, points are randomly generated, usually from a Gaussian distribution
around the incumbent. Using the RBF models of the objective and constraint functions,
among the points with the minimum number of predicted constraint violations, a point
is chosen according to its predicted objective value and its distance to already evaluated
points. After evaluation with the expensive functions, this new point is used to update
the best solution of the algorithm and the RBF models. As the method requires an ini-
tial feasible point, an extended ConstrLMSRBF is presented in the same paper describing
COBRA and deals with this issue by introducing a two-phase approach similar to what is
done in COBRA.

Kriging is also commonly used in global surrogate-based methods, in particular in the
efficient global optimization (EGO) method that is very popular. In order to determine
the next points for the expensive evaluations, one classically seeks the minimizers of the
surrogates. However, unless the initial DOE consists of numerous well-spread points, the
first surrogates may not yield to good predictions. As kriging provides the variance at every
point, so a measure of the uncertainty of the model, the main idea of EGO is to balance
the search between the minimization purpose and the reduction of the uncertainty. To do
so, call f the function to minimize whose kriging model was built, the algorithm uses the
EI (introduced in Section 2.4.1) defined as follows:

EI(x) ∶= σ(x)(uϕ(u) +Φ(u)), (2.27)

where σ(x) is the variance at a point x, ϕ and Φ are the standard Gaussian cumulative
distribution function and probability density function, respectively. The variable u is
defined as:

u =
fmin−f̂(x)

σ(x) , (2.28)

where fmin is the minimum function value observed so far and f̂(x) is the kriging prediction
of f(x). By iteratively maximizing the EI, the algorithm selects points that are likely
to yield to improvements and those in regions with high uncertainties. The solution of
this maximization problem is evaluated with the expensive function and used to enrich the
kriging model at each iteration. An enrichment procedure of EGO is depicted in Figure 2.2.

There are extensions of EGO to handle constraints such as SuperEGO [Sasena et al.,
2002] that uses a penalized EI. The methods SEGOKPLS(+K) [Bouhlel et al., 2018] are
extensions of SuperEGO to high dimensions that use kriging with partial least squares.
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Figure 2.2: Enrichment of a kriging model f̂ of a function f using EGO. The curves of
f̂ ±σ are represented, where σ is the variance, as well as the DOE points, the mean of the
model µ, the normalized expected improvement (EI) and its maximum (EImax).

2.5 Mixed-variable constrained optimization

The review of DFO methods presented in [Rios and V., 2013] highlights the fact that
most DFO methods handle only continuous variables. However, in real-world optimization
problems, variables can be of different natures. Moreover, not all the optimization methods
presented so far in this thesis can handle the presence of general inequality constraints in
the optimization problem. In this section we focus on mixed variables and constraints and
give examples of methods for handling such features.

2.5.1 Dealing with mixed variables

An optimization problem can involve four main types of variables. The most used is the
continuous type that stands for variables that can take any real value in a considered do-
main. The latter can be bounded or not. In an automotive context, examples of continuous
parameters are geometric parameters such as lengths, radii or angles.

Apart from continuous variables, there are also discrete variables. The latter can take
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values in a countable set of real values that can be ordered. This nature of inputs include,
among others, binary numbers, integers and granular variables [Audet et al., 2019]. The
latter are real values with controlled numbers of decimals and which are regularly spaced.
Hence, integers are a specific case of granular variables with a granularity of 1. As an
example, in an automotive vehicle context, the allowed thicknesses for the sheet metal of
a part take discrete values that depend on the material and are set by the metallurgists.
Other thicknesses are theoretically possible but at a way more expensive cost. At Stellantis,
thicknesses are defined in granular discrete sets with a granularity of 5 ⋅ 10−2 millimetres.

Categorical variables represent another type. As their name indicates, they refer to
categories and are therefore not ordered. This type of inputs are usually represented using
discrete values, often integers but with no ordering between them. A variable standing
for the choice of a material among several ones is a good example of categorical variable.
Indeed, let A and B stand for two different materials. Then, defining a continuous material
model between them for the feasible material domain and which would enable to choose
another material as a combination of A and B, is not possible. There is no natural ordering
between them. In this case, a relative order can however be established by considering
inner properties like the Young’s modulus. For instance many parts of the BIW structure
are steels following an elasto-plastic law. Here are some coefficients that characterize the
behaviour of such steels: E1 = 210000MPa, ν1 = 0.3, α1 = 270, b1 = 440, n1 = 0.720 and
E2 = 210000MPa, ν2 = 0.3, α2 = 400, b2 = 670, n2 = 0.870. For i ∈ {1,2}, Ei denotes the
Young’s modulus of steel i, νi is the Poisson’s ratio, αi stands for the plastic yield stress,
bi is the plastic hardening parameter and ni denotes the plastic hardening exponent.

Finally, there are meta variables [Audet et al., 2022a] that stand for variables that may
affect the dimension of the problem or its number of acting constraints, that are those
defining the feasible set. An example is a variable indicating the presence or the absence
of an optional part of a vehicle: if the part is not considered, the related variables such as
the thickness or the type of material do not intervene in the optimization problem.

Few DFO methods deal with other than continuous variables. The review of [Rios and
V., 2013] comprises, in particular, the NOMAD solver that handles continuous, integer and
granular variables. The solver also integrates the handling of categorical inputs thanks to
an extended poll step that is only performed if the classical poll on all but categorical
variables does not yield to a better point. However, the neighbourhoods of the categorical
variables have to be provided by the user.

Another direct search method already mentioned and handling mixed types of variables
is DIRECT. The method is, however, not effective in high dimensions: it is designed for
problems with a maximum of 20 variables.
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Some EAs have also been adapted for discrete variables. A mixed-integer version
CMA-ES is mentioned in [Tušar et al., 2019] and consists basically in rounding the integer
components of the generated points. An ACO designed for mixed-variable optimization
problems, called ACOMV is presented in [Liao et al., 2014], handling also categorical vari-
ables, but is not well-suited for problems with computationally expensive functions.

Discrete variables are considered in the constrained discrete optimization using response
surfaces (CONDOR) algorithm introduced in [Regis, 2020]. It is a surrogate-based method
for high-dimensional discrete BBO problems. CONDOR uses RBF approximations of the
objective and constraint blackbox functions and performs various perturbations of the
incumbent to find a better point.

Integer constrained expensive BBO problems are handled by SO-I (standing for surro-
gate optimization - integer) presented in [Müller et al., 2014]. It also uses RBF models and
finds a feasible point by iteratively minimizing the sum of predicted constraint violations.
When a feasible point is found, the method iteratively solves a penalty augmented objec-
tive function. At each iteration, a new point is evaluated with the blackbox functions to
enrich the models.

The mixed-integer surrogate optimization (MISO) framework is introduced in [Müller,
2016] for the resolution of mixed-integer unconstrained expensive BBO problems. It uses
RBF surrogates and implements different sampling strategies

Another RBF-based method handling mixed-integer variables but also constraints is
SO-MI (standing for surrogate optimization - mixed-integer), developed in [Müller et al.,
2013]. The method needs the presence of a feasible point in the initial DOE and models
a penalty augmented objective function to evaluate four points at each iteration. These
points are selected from four groups generated by random perturbations of the variables
and uniform random points generations. The best point of each group is chosen according
to two criteria relative to the surrogate predictions and the distance to already evaluated
points. SO-MI is asymptotically complete, that is it converges to a global optimum with
probability one.

The MARSOPT algorithm developed in [Martinez et al., 2017] aims at globally opti-
mizing non-convex piecewise linear MARS models subject to constraints involving linear
regression and piecewise linear MARS models. It uses branch-and-bound for the optimiza-
tion of the model and a Pareto evaluation procedure is proposed as a measure for quality
and robustness of surrogates, even in the absence of an enrichment strategy, that is no
additional point than the initial DOE is evaluated with the true functions.

A final example is the global optimization with surrogate approximation of constraints
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(GOSAC) method [Müller and Woodbury, 2017] for the resolution of mixed-integer prob-
lems with expensive constraints and a cheap objective. Cubic RBF models of every con-
straints are used to predict the feasibility of new sample points. GOSAC considers “QRSK”
constraints, meaning quantifiable, relaxable, simulation and known. These assumptions in-
volve that the simulation model will not crash. The cheap objective is also supposed to
be computable separately from the constraints. The algorithm proceeds in two phases,
the first of which seeks a feasible point by fitting RBF models to the constraints and op-
timizing an unconstrained multi-objective subproblem defined by the constraints. Points
that are too close to already evaluated points are discarded and, from the remaining set
of solutions, the one with the smallest constraint violation is evaluated with the expensive
constraints. The process is repeated until a feasible solution is found. Then, the second
phase consists in improving this point by solving an auxiliary problem with the original
objective and the surrogates of the constraints. If the solution of this subproblem is too
close to the incumbent, the new incumbent is chosen to maximize the minimum allowed
distance to the already evaluated points.

2.5.2 Handling general inequality constraints

A lot of real-world optimization problems are subject to constraints and the latter can be
classified using the taxonomy of [Le Digabel and Wild, 2015].

In many cases, the constraints of an optimization problem are quantifiable and, thus,
enable the quantification of the degree of feasibility or violation. Let (gj)j∈J be ∣J ∣ con-
straint functions of a BBO problem with J a finite set of integer indices, such that the
jth constraint is satisfied if gj(x) ≤ 0. A simple measure of quantifiable violation of this
constraint is max(0, gj(x)). Note that for a feasible point, this violation is equal to 0.

Another measure is the constraint violation function h using the sum of squared viola-
tions and defined as follows:

h(x) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∑
j∈J

max(0, gj(x))
2 if x ∈ X

∞ otherwise,
(2.29)

where X ⊆ Rn is the search space, n ∈ N∗ being the dimension of the problem. The function
h is nonnegative and h(x) = 0 if and only if x is a feasible point with respect to (gj)j∈J .
For points out of the search space, h takes infinite values.

Sometimes, however, constraints do not give numerical values but only the information
of whether the constraint is satisfied or not: they are nonquantifiable. Such outputs can
however be represented as binaries.
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Constraints are called unrelaxable if they must be satisfied to get meaningful outputs,
and relaxable otherwise.

Others, called hidden constraints, may not be known in advance, unlike known con-
straints. Hidden constraints are not rare in BBO. They refer to internal requirements of
the oracle that are not explicitly known to the solver. An example is the query of an FE
model: although a design point is feasible with respect to the known constraints of the
optimization problem, the simulation can fail (or crash) due, for instance, to numerical
noise or divergence in the FE resolutions caused by different meshing.

Finally, a priori constraints refer to constraints whose feasibility can be determined
without a simulation and are opposed to simulation-based constraints which require the
run of a simulation to assess their feasibility.

Among the main methods used to deal with relaxable and quantifiable inequality con-
straints are penalty, filter and barrier methods that we describe below.

Penalty methods

Penalty methods are popular to handle constraints. They consist in integrating the con-
straint violations in the objective of the optimization problem using weights. The penalized
problem is unconstrained, its objective is equal to the original one for feasible points but
adds (or removes for a maximization problem) a penalty for infeasible points. For an
objective f to minimize, an example of penalized objective is:

f(x) + µh(x), (2.30)

where µ is a positive penalization coefficient and h is defined as in Equation (2.29). Adding
penalization terms can however introduce severe slope changes in the objective function
and can be misleading for the optimization solver or bring numerical instability for high
values. Moreover, there is no general rule about how to choose penalization coefficients.

The augmented Lagrangian method is similar to a penalty method but also adds a
term that mimics the Lagrange multipliers. It was originally designed in [Hestenes, 1969,
Powell, 1969] to handle equality constraints but was generalized to inequality constraints
in [Rockafellar, 1973] by transforming each inequality gj ≤ 0 to the equality gj +zj = 0 with
zj ≥ 0 a slack variable.

For an optimization problem of the form of Equation (1.1), the augmented Lagrangian
function is defined as follows:

fL(x) ∶= f(x) +
∣J ∣
∑
j=1

ϕ(gj(x), γj , µ), (2.31)
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where (γj)j∈J are estimates of the Lagrange multipliers and µ > 0 is a penalty coefficient.
The function ϕ is defined as follows:

ϕ(gj(x), γj , µ) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

− γjgj(x) +
µ
2 g

2
j (x) if gj(x) ≤

γj
µ

−
γ2
j

2µ otherwise.
(2.32)

This method is for instance used to handle inequality constraints in EAs such as the aug-
mented Lagrangian version of CMA-ES (AL-CMA-ES) presented in [Dufossé and Hansen,
2021].

Filter methods

Filter methods can be used for constrained optimization. The principle is to treat the
constraint violation as another objective to minimize. Thus, a bi-objective minimization
problem is considered where the first objective is the original objective f of the problem
and the second one is h or any nonnegative function representing the constraint violation.

In order to emphasize the constraints satisfaction, the authors of [Fletcher et al., 2002a,
Fletcher and Leyffer, 2002, Fletcher et al., 2002b] use feasibility restoration steps. Such a
step occurs when an iterate is not accepted by the current filter. A restoration phase focuses
on iteratively reducing the constraint violation until a feasible iterate of the considered
subproblem is computed. Their work has inspired a filter method presented in [Audet and
Dennis Jr, 2004], used in pattern search algorithms and that we describe hereafter.

The algorithm uses a maximum allowed constraint violation value hmax. A filter F is
defined as a finite set of infeasible points where no point strictly dominates another one
with respect to the two objectives (the original one and the constraint violation function).
Let fmin stand for the minimum feasible value of f found so far. A point x is filtered if
one of these three conditions is satisfied:

1. h(x) = 0 and f(x) ≥ fmin

2. x is infeasible and h(x) ≥ hmax

3. h(x) > 0 and there exists x̄ ∈ F such that x̄ ⪯ x.

At each iteration of the method, after the evaluations of new candidate points, the
filtered points are rejected and the unfiltered infeasible points are added to F . An iteration
is considered successful if unfiltered points are found.
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Barrier methods

A barrier method solves an unconstrained optimization problem minimizing a modified
objective function. The latter assigns high or infinite values to points belonging to a
certain infeasibility region.

Let Ω be the feasible domain of the optimization problem minimizing the objective f ,
the extreme barrier (EB) method [Audet and Dennis, Jr., 2006] uses the extreme barrier
function:

fΩ(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

f(x) if x ∈ Ω

∞ otherwise.
(2.33)

This function is used in place of the original objective in the optimization process such
that all infeasible points are rejected.

The EB method can be used only if a feasible point is already known. To cope with
this requirement, a two-phase barrier method considers two unconstrained optimization
problems: it first minimizes the constraint violation function and then minimizes the EB
function if the solution of the first optimization problem is feasible. Bound and hidden
constraints can be handled using an EB approach.

Another kind of barrier method is the progressive barrier (PB) whose main idea is to
exclude points with high constraint violations. It uses the constraint violation function of
Equation (2.29) and is less severe than the EB. Similarly to the filter method presented
above, a maximum allowed constraint violation hmax is used to reject points. This threshold
is initialized at ∞, and is updated in a nonincreasing way at each iteration. The minimum
possible value of hmax is 0 and this case corresponds to an EB approach.

Candidate points in a PB are ranked according to a nondominated sorting explained
hereafter. For x and x̄ two points of X , call Ω the feasible domain of the optimization
problem, x dominates x̄ in the PB (we write x ≺h x̄) if and only if one of these conditions
is satisfied:

1. x ∈ Ω, x̄ ∈ Ω and f(x) < f(x̄)

2. x ∈ Ω and x̄ ∈ X ∖Ω

3. x ∈ X ∖Ω, x̄ ∈ X ∖Ω and the inequalities f(x) ≤ f(x̄) and h(x) ≤ h(x̄) hold with at
least one strict inequality.

Hence, feasible points are always preferred to infeasible ones and both the objective
and the constraint violation function are considered when dealing with infeasible points.
The progressive barrier can be applied for relaxable constraints, namely those that do not
lead to failures or aberrant outputs of the blackbox.
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There are other types of barrier methods like the logarithmic barrier method. For
quantifiable constraints, it uses the following barrier function:

flog(x) ∶= f(x) −
1
t

∣J ∣
∑
j=1

log(−gj(x)), (2.34)

where t is a positive parameter, (gj)j∈J are the constraints and J is a finite set of integer
indices. This function, that is defined only for strictly feasible points, is sequentially
minimized with increasing values of t.
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3
Performance evaluations of continuous algorithms

in a BBO context

3.1 Motivation

In order to solve a blackbox optimization problem such as Equation (1.1), it is important to
first inquire existing methods before deciding which one to use. To help with this decision,
some tools have been developed to compare the performance of algorithms. In particular,
data profiles [Moré and Wild, 2009] are frequently used in DFO and BBO to benchmark
algorithms: they show, given some precision or target value, the fraction of problems solved
by an algorithm according to the number of function evaluations. There also exist suites
of academic test problems: although the latter are treated as blackbox functions, they are
analytically known, which is an advantage to understand the behaviour of an algorithm.
There are also available industrial problems but they are rare.

Assessing the performance of the solvers is essential as it provides information on the
solutions quality when the dimension of the problem increases or on particular groups of
problems for instance. In particular, testing them on well-understood problems helps in
identifying advantages and drawbacks for future improvements and developments of new
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methods. Benchmark studies also highlight how the performance of particular implemen-
tations evolve over time.

As real-world optimization problems are often complex, involving for instance blackbox
functions, mixed variables or multiple inequality constraints, the working plan is to oper-
ate gradually in the challenges. This chapter describes the benchmark study introduced
in [Varelas and Dahito, 2019] that makes use of a free benchmarking platform briefly pre-
sented in the next section. The experiments use eight multivariate local solvers and an
evolutionary global algorithm that are compared on unconstrained continuous instances
from the literature used as blackbox functions.

The problems addressed in this chapter can be written as:

min
x∈X

f(x), (3.1)

where f is a continuous real blackbox function and X is a closed bounded domain of Rn

with n ∈ N∗ the dimension of the problem.

3.2 The COCO platform

The comparing continuous optimizers (COCO) platform, described in [Hansen et al., 2021],
is a framework enabling easy benchmark studies of blackbox solvers. It provides several
suites of standard well-known test problems and some less regular variants. The test
suites include, among others, the bbob suite of standard continuous functions, bbob-noisy
consisting of functions with different types and levels of noise, bbob-largescale with
functions in high dimensions and the bbob-mixint suite of mixed-integer problems. In
this chapter, we focus on the bbob continuous test suite.

3.2.1 The continuous bbob testbed

The bbob suite [Finck et al., 2009] of COCO comprises 24 continuous functions from the
literature, all available in six dimensions: 2,3,5,10,20 and 40. Each function is declined
in 15 instances that are obtained by applying transformations in variable and objective
space on the raw functions. There can be for example rotations, translations or nonlinear
transformations. The objective is to obtain less regular and non-trivial variants since real-
world problems are expected to have irregularities. This makes a total of 24×15×6 = 2160
available instances in the bbob benchmark suite.

The instances are treated as blackbox functions used in an unconstrained optimization
context and are classified in five groups: separable, moderate, ill-conditioned, multimodal
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weakly structured and multimodal with global structure. Let n stand for the dimension of
the problem, all functions are known to have their global optima in [−5,5]n.

3.2.2 Performance measures

Among the various tools available for algorithm comparison, COCO notably provides em-
pirical cumulative distribution functions (ECDF) plots for every dimension aggregated on
all functions, but also for each function or by function group. They show the empirical
runtime distributions that are computed as the number of function evaluations to reach
given function target values, divided by the dimension.

A function target value is defined as ft = f
∗ +∆f , where f∗ is the minimum value of a

function f and ∆f is a target precision. In the bbob suite, COCO sets 51 target values and
the latter are chosen to be evenly log-spaced between 10−8 and 102. The corresponding
target precision are denoted ∆ft, t = 1, . . . ,51.

The ordinate axis of an ECDF plot ranges between 0 and 1, indicating the success rate,
that is the fraction of problems solved. Hence, when all targets (including the smallest one
10−8) are reached by an algorithm, its ECDF curve reaches the highest ordinate axis that
is 1.

The average runtime (aRT), used in the figures and tables, is computed over all relevant
trials as the number of function evaluations executed during each trial while the best
function value did not reach a given function target value ft, summed over all trials and
divided by the number of trials that actually reached ft [Price, 1997, Hansen et al., 2012].

The statistical significance of the results is evaluated in COCO using the rank-sum test
for a given target ∆ft. For each trial of an algorithm, it uses either the number of needed
function evaluations to reach ∆ft (inverted and multiplied by −1), or, if the target was not
reached, the best ∆f -value achieved, measured only up to the smallest number of overall
function evaluations for any unsuccessful trial under consideration.

Crosses appear on ECDF and indicate the end of the experiment, usually when the
maximum evaluation budget is reached. After a cross, COCO uses simulated restarts to
give an estimation of the runtimes of the unsuccessful runs, meaning those that did not
yield to a function value at least equal to 10−8.

The ECDF plots also hold a curve labelled best 2009. The latter corresponds to an
artificial solver used as a reference and whose data1 comes from the BBOB-2009 workshop
comparing 31 solvers. The best 2009 curve shows the performance as if an artificial solver
knew at every iteration what a function looked like.

1https://coco.gforge.inria.fr/doku.php?id=bbob-2009-results

https://coco.gforge.inria.fr/doku.php?id=bbob-2009-results
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3.3 Benchmarking multivariate solvers

In this section, a variety of solvers either in a blackbox setting or in a gradient based
setting with approximations of the gradients is benchmarked. In particular, multivari-
ate optimization solvers from the Python SciPy2 library are compared, under default or
modified parameter settings.

A similar study for a previous version of the library, that benchmarked six solvers of
the library under default parameters has been presented in [Baudiš, 2014], where the Basin
Hopping [Wales and Doye, 1997] restart strategy was used within each independent restart.
It is useful to compare, though, how particular implementations of such methods evolved
and improved over time.

In this study we follow a policy where independent restarts are applied when the cor-
responding termination criteria are met, until a given budget of function evaluations is
exhausted. Based on a preliminary investigation, we choose proper parameter settings and
termination conditions for some algorithms such that their performance is not deteriorated.

The contribution in comparison to [Baudiš, 2014] is threefold: for the common bench-
marked solvers, we compare the different parameter settings and restart policies. Further-
more, complete data sets for all dimensions are included (in [Baudiš, 2014] the results were
restricted to dimensions 2, 5 and 20) and three additional solvers are benchmarked, as well
as the adaptation of the Nelder-Mead method to high dimensions.

3.3.1 Considered algorithms

The following algorithms were benchmarked, where a star indicates those included in
[Baudiš, 2014] as described above: Nelder-Mead∗, adaptive Nelder-Mead, Powell∗, BFGS∗,
L-BFGS-B∗, conjugate gradient∗, truncated Newton, differential evolution, COBYLA and
SLSQP∗

The NM method, its adaptive version for high dimensions, Powell’s conjugate direction
method, BFGS, DE, COBYLA and SLSQP were presented in Chapter 2. The three first
methods are respectively denoted “Nelder-Mead”, “adapt-Nelder-Mead”, and “Powell” in
the graphs.

L-BFGS-B [Liu and Nocedal, 1989] is the modification of L-BFGS, described in Sec-
tion 2.2, to handle box constraints. Thus, it is also based on BFGS recursion for the
approximation of the inverse Hessian.

The nonlinear conjugate gradient algorithm by Polak and Ribiere [Nocedal and Wright,
2006] is an extension of the Newton CG method to non-quadratic functions. At iteration

2SciPy version 1.2.1
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k ∈ N, it computes a step length αk to approximate a minimizer of the objective f in a
search direction pk. A residual is computed as rk ∶= ∇f(xk) and its norm is used as a
stopping criterion. Only the first derivatives are used in this method that is designated by
“CG” in the graphs.

Finally, the truncated Newton algorithm [Nash, 1984, Nocedal and Wright, 2006] uses
the Newton CG method with box constraints. It is denoted by “TNC” in the plots.

3.3.2 Preliminary experiments

In order to identify proper settings prior to the performance comparison of all solvers,
experimentation was performed separately up to some extent, concerning in most, but not
all, cases the termination tolerances in search and objective space.

The tolerance in objective values, defined by the parameter ftol, is investigated for the
quasi Newton L-BFGS-B algorithm for high dimensional optimization. In SciPy, ftol is set
to 10−8 by default. Experiments show that reducing this tolerance can be of advantage, in
particular for ill-conditioned functions and for the Attractive Sector function, as presented
in Figure 3.1 and Figure 3.2. This performance improvement becomes more significant
with increasing dimension.
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Figure 3.1: Empirical cumulative distribution of simulated (bootstrapped) runtimes, mea-
sured in number of function evaluations, divided by dimension (FEvals/DIM) for the 51
targets 10[−8,...,2] of the ill-conditioned separable Ellipsoid and Discus functions in dimen-
sion 20 for L-BFGS-B. The lines correspond to different values of f -tolerance for termina-
tion.

More importantly, the maximum number of variable metric corrections for the Hessian
approximation has to be set carefully. The default value is 10 and experiments showed
performance improvement for increasing values up to 2 ⋅n, n being the problem dimension,
as illustrated in Figure 3.3.
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Figure 3.2: Empirical cumulative distribution of simulated (bootstrapped) runtimes, mea-
sured in number of function evaluations, divided by dimension (FEvals/DIM) for the 51
targets 10[−8,...,2] of the Attractive Sector function in dimensions 5 and 20 for L-BFGS-B.
The lines correspond to different values of f -tolerance for termination.
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Figure 3.3: Empirical cumulative distribution of simulated (bootstrapped) runtimes, mea-
sured in number of function evaluations, divided by dimension (FEvals/DIM) for the 51
targets 10[−8,...,2] of the ill-conditioned separable Ellipsoid function in dimensions 10 and
20 for L-BFGS-B. The lines correspond to different values of maximum number of variable
metric corrections for the Hessian approximation.

Furthermore, the effect of decreasing the step length for the finite difference approx-
imation of the gradient was investigated to some extent: decreasing the default value of
this parameter (10−8) can improve the performance on particular functions, such as the El-
lipsoid, while it shows worse success ratio on others. A more detailed study was presented
in [Blelly et al., 2018]

For Powell’s algorithm, decreasing ftol also turned out to be beneficial. Besides,
different settings of the termination tolerance in the variable space xtol were evaluated.
The values tested are in the set {10−2,10−3,10−5,10−6}, the default one being 10−4. Values
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larger than the default one typically can make the solver faster only for the easiest targets,
while smaller values can show an improved success rate for high budgets.

SLSQP has been tested for different values of ftol in {10−6,10−9,10−12,10−15}. Same
as L-BFGS-B and Powell’s algorithm, it was sensitive to this parameter, with advantages
when ftol decreases.

3.3.3 Experimental procedure

As preliminary experiments show that reducing the tolerance in function values is beneficial
to L-BFGS-B, in our experimentation it was set to the float machine precision3 for very
high accuracy. Also based on these experiments, the maximum number of variable metric
corrections for the Hessian approximation was set to 2 ⋅n, n being the problem dimension.
Besides, the step length for the finite difference approximations of the gradients was kept
at its default value, that is 10−8.

For the modified Powell’s conjugate direction algorithm, the tolerance in function values
ftol was set to 10−15 and that of the variable space xtol was kept at the defaults value
10−4. The parameter ftol of SLSQP was set to 10−15 in the performance comparison. The
NM simplex method is tested both in its default setting and with adaptation of parameters
to the dimensionality of the problem, controlled by the adaptive flag.

The truncated Newton algorithm requires an estimation of the optimal f value. Since
it always lies in [−1000,1000] [Finck et al., 2009] and in accordance to the blackbox setting
where no prior information is available for the function, we set this value to −1000. The
original BFGS, the conjugate gradient algorithm by Polak and Ribiere, DE as well as
COBYLA are benchmarked in their default setting.

In cases where the solver supported constraint handling, no constraints were applied.
Finally, the maximum iterations were set to values large enough (wherever applicable), in
order to avoid termination before convergence.

All solvers were run on the bbob testbed with restarts for a maximum budget of 105 ⋅n
function evaluations (at minimum, for solvers that did not support a termination callback
such as COBYLA). For all runs, the initial point was chosen uniformly at random in
[−4,4]n and with the function value evaluated at this point. In the special case of DE
where no initial point is given, the domain bounds were set to [−5,5]n.

3Equal to 2.220446049250313 ⋅ 10−16
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3.3.4 CPU timing

The Python code was run on several multicore machines (not exclusively) with different
number of cores. The time per function evaluation, measured in 10−5 seconds, for different
dimensions along with the corresponding processor type is presented in Table 3.1.

Algorithm Processor Type 2-D 3-D 5-D 10-D 20-D 40-D

Nelder-Mead
Intel(R) Xeon(R)
CPU E5-2667 v3

@ 3.20GHz
2.2 2.3 2.4 2.9 3.5 5.0

Adaptive
Nelder-Mead

Intel(R) Xeon(R)
CPU E5-2667 v3

@ 3.20GHz
2.1 2.1 2.2 2.6 3.3 4.8

Powell
Intel Core

Haswell, no TSX
@ 2.29GHz

2.1 2.5 2.4 2.5 2.9 4.0

BFGS
Intel(R) Xeon(R)
CPU E5-2667 v3

@ 3.20GHz
2.7 2.7 2.6 2.7 3.3 5.2

L-BFGS-B
Intel(R) Xeon(R)

CPU X5650
@ 2.67GHz

2.9 2.3 2.1 2.3 3.1 5.4

Conjugate
Gradient

Intel(R) Xeon(R)
CPU E5-2667 v3

@ 3.20GHz
2.2 1.9 1.4 1.3 1.9 3.8

Truncated
Newton

Intel(R) Xeon(R)
CPU E5-2683 v4

@ 2.10GHz
1.4 1.4 2.5 2.0 2.8 5.0

Differential
Evolution

Intel(R) Xeon(R)
CPU X5650
@ 2.67GHz

8.4 8.4 8.5 9.3 11.0 14.0

COBYLA
Intel Core

Haswell, no TSX
@ 2.29GHz

0.51 0.53 0.65 0.96 2.1 8.2

SLSQP
Intel Core

Haswell, no TSX
@ 2.29GHz

2.0 1.9 1.8 2.1 1.9 2.2

Table 3.1: CPU timing per function evaluation for all algorithms considered in dimensions
2, 3, 5, 10, 20 and 40.
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3.3.5 Results

Results from experiments according to [Hansen et al., 2016b] and [Hansen et al., 2016a]
on the benchmark functions are presented in Figures 3.4 and 3.5 for some functions re-
spectively in dimensions 5 and 20. For these dimensions, the ECDF plots for the group
of multimodal functions with adequate global structure are illustrated in Figure 3.6 and
aggregated results over all functions are depicted in Figure 3.7. Other plots showing the
average running time for all dimensions and ECDF graphs for each function, for each
function group and aggregated over all functions in dimensions 5 and 20 are available in
Appendix A. The experiments were performed with COCO version 2.3, the plots were
produced with version 2.3. The solvers benchmarked in [Baudiš, 2014] are denoted by a
prefix “B-” in the corresponding name and the data were obtained by the data archive that
COCO provides.
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Figure 3.4: Empirical cumulative distribution of simulated (bootstrapped) runtimes, mea-
sured in number of function evaluations, divided by dimension (FEvals/DIM) for the 51
targets 10[−8,...,2] in dimension 5.

3.3.6 Observations

Aggregated results over all 24 functions of the suite are depicted in Figure 3.7 for dimensions
5 and 20 and show the effectiveness of SLSQP. In dimension 5, it has the highest success
rate for a budget range [18 ⋅ n,800 ⋅ n] while in dimension 20, it dominates all solvers up
to ∼ 1400 ⋅ n function evaluations, after which it is outperformed by L-BFGS-B.
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Figure 3.5: Empirical cumulative distribution of simulated (bootstrapped) runtimes, mea-
sured in number of function evaluations, divided by dimension (FEvals/DIM) for the 51
targets 10[−8,...,2] in dimension 20.

It is interesting to see the performance difference of SLSQP and B-SLSQP in unimodal
functions such as the separable Ellipsoid function: in dimension 5, the runtimes are almost
equal for the easiest targets and then SLSQP is faster by an increasing factor, until termi-
nation criteria start to become effective, as depicted in Figure 3.4. Performance differences
between the early and recent implementation of SciPy, which are not due to the different
parameter setting or restart policy of [Baudiš, 2014], are also observed for BFGS and NM,
showing an improvement of the library implementation.

BFGS show better performance than L-BFGS-B for some functions in all dimensions,
as it is the case for the Sphere, Linear Slope, original and rotated Rosenbrock and Bent
Cigar functions. Overall, the picture is more diverse: BFGS has same or higher success rate
in the budget ranges [25 ⋅n,125 ⋅n] and [50 ⋅n,400 ⋅n] for dimensions 5 and 20 respectively,
while the runtimes always differ by less than a factor of 4.
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Figure 3.6: Empirical cumulative distribution of simulated (bootstrapped) runtimes, mea-
sured in number of function evaluations, divided by dimension (FEvals/DIM) for the 51
targets 10[−8,...,2] for multimodal functions with adequate global structure in dimensions 5
and 20.
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Figure 3.7: Empirical cumulative distribution of simulated (bootstrapped) runtimes, mea-
sured in number of function evaluations, divided by dimension (FEvals/DIM) for the 51
targets 10[−8,...,2], aggregated over all functions in dimensions 5 and 20.

For the NM method, adaptation of parameters is crucial. Without this option, the
algorithm is deteriorated as the dimension increases. In dimension 20, the smallest target
values for the Sphere function are not reached while in the aggregated ECDF the method
is dominated by all other solvers and for all budgets.

It is interesting that COBYLA, that is based simply on linear interpolation, often
achieves better performance for the fraction of easiest targets than all other solvers e.g.
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for the Sharp Ridge and Sum of Different Powers functions in dimension 20, even outper-
forming the virtual best solver of BBOB 2009 for small budgets, as illustrates Figure 3.5.
More remarkable is the performance on the multimodal Gallagher and Katsuura functions
in dimension 20, where it is one of the most effective methods.

Finally, as shows Figure 3.6, DE shows the best performance among the other (local)
solvers for the group of multimodal functions with adequate global structure, where also
the Basin Hopping policy is of advantage. Even though the effectiveness of DE weakens
with increasing dimension, it maintains the highest success rate in this function group.



4
Performance evaluations of continuous and

mixed-integer algorithms

4.1 Motivation

Given the growing number of algorithms to deal with BBO problems, the choice of the most
adapted method for solving a specific problem still remains complex. The MADS algorithm
is commonly used in BBO and was therefore considered in this thesis. The algorithm is
derived in several instantiations available in the NOMAD software that enables to choose
between different numbers and types of poll directions.

In particular, the ORTHOMADS algorithm is the default MADS instantiation used in
NOMAD and was introduced in [Abramson et al., 2009b]. It consists in using orthogonal
directions in the poll step of MADS. It is compared to the initial LTMADS, where the poll
directions are generated from a random lower triangular matrix, and to GPS algorithm on
45 problems from the literature. They show that MADS outperforms GPS and that the
instantiation ORTHOMADS competes with LTMADS and has the advantage that its poll
directions cover better the variable space.

The ORTHOMADS algorithm presents variants in the poll directions of the method. To
our knowledge, the performance of these different variants has not been discussed in the

63
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literature before. Our purpose is to explore this aspect by performing experiments with
the ORTHOMADS variants.

This chapter presents the benchmark study of [Dahito et al., 2021] and plots for analyses
are available at the following link: https://github.com/DahitoMA/ResultsOrthoMADS.

Our contributions are first the evaluations of the ORTHOMADS variants on continuous
and mixed-integer optimization problems. Besides, the contribution of the search phase is
studied. Two from the best variants of ORTHOMADS are identified on each of the used
testbeds and their performance is compared with other algorithms including heuristic and
non-heuristic techniques. The problems addressed are of the form:

min
x∈X

f(x), (4.1)

where X is a closed bounded domain of either Rn or Rc ×Zi with c and i respectively the
number of continuous and integer variables. n = c + i is the dimension of the problem and
f is a blackbox function.

4.2 Related work

The performance of MADS is evaluated in several papers. As examples, a broad comparison
of twenty two implementations of DFO algorithms for solving box-constrained optimization
problems is performed in [Rios and V., 2013]. The methods are compared with each
other according to different criteria. They use a set of 502 problems that are categorized
according to their convexity (convex or nonconvex), smoothness (smooth or non-smooth)
and dimensions between 1 and 300. The algorithms tested include local-search methods
such as MADS through NOMAD version 3.3 and global-search methods such as the new
unconstrained optimization algorithm (NEWUOA) [Powell, 2006], that uses trust regions,
and CMA-ES.

NOMAD is used in [Regis, 2014] with a DACE surrogate and compared with other local
and global surrogate-based approaches in the context of constrained blackbox optimization
on an automotive optimization problem and twenty two test problems.

Simulation optimization deals with problems where at least some of the objective or
constraints come from stochastic simulations. A review of algorithms to solve simulation
optimization problems is presented in [Amaran et al., 2014], among which the NOMAD
software. However, this paper does not compare them due to a lack of standard comparison
tools and large-enough testbeds in this optimization branch.

Finally, in [Audet et al., 2008], the MADS algorithm is used to optimize the treatment

https://github.com/DahitoMA/ResultsOrthoMADS
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process of spent potliners in the production of aluminum. The problem is formalized as
a 7−dimensional non-linear blackbox problem with 4 inequality constraints. In particular,
three strategies are compared using absolute displacements, relative displacements and the
latter with a global Latin hypercube sampling search. They show that the use of scaling
is particularly beneficial on the considered chemical application.

4.3 The variants of ORTHOMADS

MADS, described in Section 2.3.2, is an iterative direct local search method that relies
on a mesh and proceeds in two phases that are the search and the poll. It has two main
instantiations called ORTHOMADS and LTMADS, the latter being the first developed.
Both variants are implemented in the NOMAD software but as ORTHOMADS is to be
preferred for its coverage property in the variable space, it was used for the experiments
of this thesis with NOMAD version 3.9.1.

The NOMAD implementation of ORTHOMADS provides 6 variants of the algorithm
according to the number of directions used in the poll or according to the way that the
last poll direction is computed. They are listed below.

ORTHO N + 1 NEG computes n + 1 directions among which n are orthogonal and the
(n + 1)th direction is the opposite sum of the n first ones.

ORTHO N + 1 UNI computes n + 1 directions among which n are orthogonal and the
(n + 1)th direction is generated from a uniform distribution.

ORTHO N + 1 QUAD computes n + 1 directions among which n are orthogonal and the
(n + 1)th direction is generated from the minimization of a local quadratic model of the
objective.

ORTHO 2N computes 2n directions that are orthogonal. More precisely each direction is
orthogonal to 2n − 2 directions and collinear with the remaining one.

ORTHO 1 uses only one direction in the poll.

ORTHO 2 uses two opposite directions in the poll.

In the plots, the variants are respectively denoted by Neg, Uni, Quad, 2N, 1 and 2.

4.4 Test of the variants of ORTHOMADS

In this section, we try to identify potentially better direction types of ORTHOMADS and
investigate the contribution of the search phase.
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4.4.1 Experimental setup

In order to test the performance of the different variants of ORTHOMADS, the COCO
platform was employed and, in particular, the bbob and bbob-mixint suites of problems
were used. The continuous bbob testbed was described in Section 3.2.

The mixed-integer suite of problems bbob-mixint [Tušar et al., 2019] derives the bbob

and bbob-largescale [Varelas et al., 2018] problems by imposing integer constraints on
some variables. It consists of the 24 functions of bbob available in 15 instances and in
dimensions 5, 10, 20, 40, 80 and 160. The target precisions defined for this suite are
identical to those of bbob, that are 51 values between 10−8 and 102.

In both suites, only problems that have a dimension lower than or equal to 20 are used.
This limit in the dimensions has two main reasons: the first one is the computational
cost required for the experiments and the second one is that, with the perspective of
solving real-world optimization problems, 20 is already a high dimension in this expensive
blackbox context. Only the first five instances of each function were used, that is a total
of respectively 600 and 360 problems used from bbob and bbob-mixint, respectively. A
maximal function evaluation budget of 2 × 103 × n was set, with n being the dimension of
the considered problem.

To see the contribution of the search phase, the experiments on the variants were
divided in two subgroups: the first one using the default search of ORTHOMADS and the
second one where the search phase is disabled. The latter is obtained by setting the four
parameters NM_SEARCH, VNS_SEARCH, SPECULATIVE_SEARCH and MODEL_SEARCH of NOMAD
to the value no. In the plots, the label NoSrch is used when the search is turned off. The
search notably includes the use of a quadratic model and of the N-M method. The minimal
mesh size was set to 10−11.

Experiments were run with restarts allowed for unsolved problems when the evaluation
budget is not reached. This may happen due to internal stopping criteria of the solvers. The
initial points used are suggested by the method initial_solution_proposal() available
in COCO.

4.4.2 Performance on continuous problems

As said previously, the contribution of the search phase was studied. The results aggregated
on all functions in dimensions 5,10 and 20 on the bbob suite are depicted on Figure 4.1.
They show that enabling the search step in NOMAD generally leads to an equivalent or
higher performance of the variants and this improvement can be important. Besides, using
one or two directions with or without search is often far from being competitive with the
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other variants. In particular, 1 NoSrch is often the worst or among the worsts, except on
Discus which is an ill-conditioned quadratic function, where it competes with the variants
that do not use the search. As mentioned in Section 4.1, the plots depicting the results
described in this chapter are available online.
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Figure 4.1: ECDF plots: the variants of ORTHOMADS with and without the search step
on the bbob problems. Results aggregated on all functions in dimensions 5, 10 and 20.

Looking at the results aggregated on all functions for ORTHO 2N, ORTHO N + 1 NEG, ORTHO
N + 1 QUAD and ORTHO N + 1 UNI, the search increases the success rate from nearly 70%,
55% and 40% up to 90%, 80% and 65% respectively in dimensions 2, 3 and 5, as shown
in Figure 4.1a for dimension 5. From dimension 10, the advantage of the search decreases
and the performance of ORTHO N + 1 UNI visibly stands out from the other three variants
mentioned above since it decreases with or without the search, as illustrated in Figures 4.1b
and 4.1c.

Focusing on some families of functions, Neg NoSrch seems slightly less impacted than
the other NoSrch variants by the increase of the dimension. On ill-conditioned problems,
the variants using search are more sensitive to the increase of the dimension.

Considering multimodal functions with adequate global structure, 2N NoSrch solves
15% more problems than the other NoSrch variants in 2D. In this dimension, the variants
using search have a better success rate than the best 2009 up to a budget of 200 function
evaluations. From 10D, all curves are rather flat: all ORTHOMADS variants tend to a local
optimum.

With increasing dimension, Neg is competitive or better than the others on multimodal
problems without global structure, followed by 2N. In particular, in dimension 20 both
variants are competitive and outperform the remaining variants that use search on the
Gallagher’s Gaussian 101−me peaks function, and Neg outperforms them with a gap of
more than 20% in their success rate on the Gallagher’s Gaussian 21−hi peaks function
which is also ill-conditioned.
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Since Neg and 2N are often among the best variants on the considered problems and
have an advantage on some multimodal weakly structured functions, they are chosen for
comparison with other solvers.

4.4.3 Performance on mixed-integer problems

The experiments performed on the mixed-integer problems also show a similar or improved
performance of the ORTHOMADS variants when the search step is enabled in NOMAD, as
illustrated in Figure 4.2 in dimensions 5, 10 and 20. Looking at Figure 4.2a for instance,
in the given budget of 2 ⋅ 103 ⋅ n, the variant denoted as 2 solves 75% of the problems in
dimension 5 against 42% for 2 NoSrch.

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

1 NoSrch
2 NoSrch
2
1
Quad NoSr
Uni NoSrc
Neg NoSrc
Neg
Quad
Uni
2N
2N NoSrchbbob-mixint f1-f24, 5-D

51 targets: 100..1e-08
5 instances

v2.4

(a) 5D

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

1 NoSrch
2 NoSrch
1
2
Uni NoSrc
Uni
Quad NoSr
2N NoSrch
Neg
Neg NoSrc
2N
Quadbbob-mixint f1-f24, 10-D

51 targets: 100..1e-08
5 instances

v2.4

(b) 10D

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

1 NoSrch
2 NoSrch
1
2
Uni NoSrc
Uni
Quad NoSr
Neg
2N NoSrch
Quad
2N
Neg NoSrcbbob-mixint f1-f24, 20-D

51 targets: 100..1e-08
5 instances

v2.4

(c) 20D

Figure 4.2: ECDF plots: the variants of ORTHOMADS with and without the search step
on the bbob-mixint problems. Results aggregated on all functions in dimensions 5,10 and
20.

However, it is not always the case: the only use of the poll directions is sometimes
favourable. It is notably the case on the Schwefel function in dimension 20 where the
curve Neg NoSrch solves 43% of the problems, which is the highest success rate when the
search and non-search settings are compared together.

When the search is disabled, ORTHO 2N seems preferable in small dimension, namely here
in dimension 5 as presented in Figure 4.2a. In this dimension, it is sometimes the only
variant that solves all the instances of a function in the given budget: it is the case for the
step-ellipsoidal function, the two Rosenbrock functions (original and rotated), the Schaffer
functions, and the Schwefel function. It also solves all the separable functions in dimension
5 and can therefore solve the different types of problems. Although the difference is less
noticeable with the search step enabled, this variant is still a good choice, especially on
multimodal problems with adequate global structure.

On the whole, looking at Figure 4.2, ORTHO 1 and ORTHO 2 solve less problems than
the other variants and the gap in performance with the other direction types increases
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with the dimension, whether using the search phase or not. Although the use of the
search helps solving some functions in low dimension such as the sphere or linear slope
functions in dimension 5, both variants perform poorly in dimension 20 on second-order
separable functions, even if the search enables the solution of linear slope which is a linear
function. Among these two variants, using 2 poll directions also seems better than only
one, especially in dimension 10 where ORTHO 2 solves more than 23% and 40% of problems
respectively without and with use of search, against 16% and 31% for ORTHO 1 as presented
in Figure 4.2b.

Among the four remaining variants, ORTHO N + 1 UNI reaches equivalent or less targets
than the others whether considering the setting where the search is available or when only
the poll directions are used, as depicted in Figure 4.2. In particular, in dimension 5, the
four variants using more than n + 1 poll directions solve more than 85% of the separable
problems with or without search. But when the dimension increases, ORTHO N + 1 UNI has
a disadvantage on the Rastrigin functions where the use of the search does not noticeably
help the convergence of the algorithm.

Focusing on the different function types, no algorithm among the variants ORTHO 2N,
ORTHO N + 1 NEG and ORTHO N + 1 QUAD seem to particularly outperform the others in di-
mensions 10 and 20. A higher success rate is however noticeable on multimodal weakly
structured problems with search available for ORTHO N + 1 NEG in comparison with ORTHO

N + 1 QUAD and for the latter in comparison with ORTHO 2N. Besides, Neg reaches more
targets on problems with low or moderate conditioning. For these reasons, ORTHO N + 1 NEG

was chosen for comparison with other solvers. Besides, the mentioned slight advantage
of ORTHO N + 1 QUAD over ORTHO 2N, its equivalent or better performance on separable and
ill-conditioned functions compared with the latter variant, makes it a good second choice
to represent ORTHOMADS.

4.5 Comparison of ORTHOMADS with other solvers

The previous experiments showed the advantage of using the search step in ORTHOMADS

to speed up convergence. They also revealed the effectiveness of some variants that are used
here for comparisons with other algorithms on the continuous and mixed-integer suites.

4.5.1 Compared algorithms

Apart from ORTHOMADS, the other algorithms used for comparison on bbob are first, three
deterministic algorithms: the quasi-Newton BFGS method, the quadratic model-based
NEWUOA and the adaptive NM method. Stochastic methods are also used among which
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a random search (RS) algorithm [Brooks, 1958] and three population-based algorithms: a
surrogate-assisted CMA-ES, DE and PSO.

In order to perform algorithm comparisons on bbob-mixint, data from four stochastic
methods were collected: RS, the mixed-integer variant of CMA-ES, DE and the tree-
structured parzen estimator (TPE) [Bergstra et al., 2011] that is a stochastic model-based
technique.

NEWUOA is the Powell’s model-based algorithm for DFO. It is a trust-region method
that uses sequential quadratic interpolation models to solve unconstrained derivative-free
problems.

RS is a stochastic iterative method that performs a random selection of candidates: at
each iteration, a random point is sampled and the best between this trial point and the
incumbent is kept.

TPE is an iterative model-based method for hyperparameter optimization. It sequen-
tially builds a probabilistic model from already evaluated hyperparameters sets in order
to suggest a new set of hyperparameters to evaluate on a score function that is to be
minimized.

BFGS, the adaptive NM method, CMA-ES, DE and PSO were described in Chapter 2.

4.5.2 Parameter setting

To compare the considered best variants of ORTHOMADS with other methods, the 15

instances of each function were used and the maximal function evaluation budget was
increased to 105 ⋅ n, with n being the dimension.

For the bbob problems, the data used for BFGS, DE and the adaptive N-M method
comes from the experiments of [Varelas and Dahito, 2019]. CMA-ES was tested in [Hansen,
2019], the data of NEWUOA is from [Ros, 2009], the one of PSO is from [El-Abd and
Kamel, 2009] and RS results come from [Brockhoff and Hansen, 2019]. The comparison
data of CMA-ES, DE, RS and TPE used on the bbob-mixint suite comes from the exper-
iments of [Tušar et al., 2019]. All are accessible from the data archives of COCO with the
cocopp.archives.bbob and cocopp.archives.bbob_mixint methods.

Performance on continuous problems

Figures 4.3 and 4.4 show the ECDF plots comparing the methods on the different function
types and on all functions, respectively in dimensions 5 and 20 on the continuous suite.
Compared with BFGS, CMA-ES, DE, the adaptive N-M method, NEWUOA, PSO and
RS, ORTHOMADS often performs in the average for medium and high dimensions. For
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small dimensions 2 and 3, it is however among the most competitive.
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Figure 4.3: ECDF plots: comparison of the two variants ORTHO 2N and ORTHO N + 1 NEG of
ORTHOMADS with BFGS, NEWUOA, adaptive N-M, RS, CMA-ES, DE and PSO on the
bbob problems. Results aggregated on the function types and on all functions in dimension
5.

Considering the results aggregated on all functions and splitting them over all targets
according to the function evaluations, they can be divided in three parts. The first one
consists of very limited budgets (about 20 ⋅ n) where NEWUOA competes with or outper-
forms the others. After that, BFGS becomes the best for an average budget and CMA-ES
outperforms the latter for high evaluation budgets (above the order of 102 ⋅n), as shown in
Figures 4.3f and 4.4f. The obtained performance restricted to a low budget is an important
feature relevant to many applications for which each function evaluation may last hours or
even days.

On multimodal problems with adequate structure, there is a noticeable gap between
the performance of CMA-ES, which is the best algorithm on this kind of problems, and
the other algorithms as shown by Figures 4.3d and 4.4d. ORTHOMADS performs the best
in the remaining methods and competes with CMA-ES for low budgets. It is even the best
method up to a budget of 103 ⋅ n in dimensions 2 and 3 while it competes with CMA-ES
in higher dimensions for budgets lower than the order of 102 ⋅ n.

RS is often the worse algorithm to use on the considered problems.



72 Performance evaluations of continuous and mixed-integer algorithms

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RS-5-init
DE-scipy-
adapt-Nel
BFGS-scip
NEWUOA
PSO
Neg
2N
CMA-ES  2
best 2009bbob f1-f5, 20-D

51 targets: 100..1e-08
15 instances

v2.4

(a) Separable

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RS-5-init
PSO
adapt-Nel
BFGS-scip
NEWUOA
2N
Neg
DE-scipy-
CMA-ES  2
best 2009bbob f6-f9, 20-D

51 targets: 100..1e-08
15 instances

v2.4

(b) Moderately conditioned

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RS-5-init
PSO
DE-scipy-
Neg
2N
adapt-Nel
BFGS-scip
NEWUOA
CMA-ES  2
best 2009bbob f10-f14, 20-D

51 targets: 100..1e-08
15 instances

v2.4

(c) Ill-conditioned

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

adapt-Nel
BFGS-scip
RS-5-init
NEWUOA
PSO
2N
Neg
DE-scipy-
CMA-ES  2
best 2009bbob f15-f19, 20-D

51 targets: 100..1e-08
15 instances

v2.4

(d) Multimodal

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RS-5-init
PSO
DE-scipy-
BFGS-scip
adapt-Nel
NEWUOA
Neg
2N
CMA-ES  2
best 2009bbob f20-f24, 20-D

51 targets: 100..1e-08
15 instances

v2.4

(e) Weakly structured

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs
RS-5-init
PSO
adapt-Nel
DE-scipy-
Neg
BFGS-scip
2N
NEWUOA
CMA-ES  2
best 2009bbob f1-f24, 20-D

51 targets: 100..1e-08
15 instances

v2.4

(f) All functions

Figure 4.4: ECDF plots: comparison of the two variants ORTHO 2N and ORTHO N + 1 NEG of
ORTHOMADS with BFGS, NEWUOA, adaptive N-M, RS, CMA-ES, DE and PSO on the
bbob problems. Results aggregated on the function types and on all functions in dimension
20.

4.5.3 Performance on mixed-integer problems

Figures 4.5 and 4.6 show the ECDF plots comparing the methods on the different function
types and on all functions, respectively in dimensions 5 and 20 on the mixed-integer suite.
The comparisons of NEG and QUAD with CMA-ES, DE, RS and TPE show an overall advan-
tage of these ORTHOMADS variants over the other methods. A gap is especially visible on
separable and ill-conditioned problems, respectively depicted in Figures 4.5a and 4.6a and
Figures 4.5c and 4.6c in dimensions 5 and 20, but also on moderately conditioned problems
as shown in Figures 4.5b and 4.6b in dimensions 5 and 20.

On multimodal problems with global structure, ORTHOMADS is to prefer only in small
dimensions: from dimension 10 its performance highly deteriorates and CMA-ES and DE
seem to be better choices. On multimodal weakly structured functions, the advantages of
ORTHOMADS compared to the others emerge when the dimension increases.

Although the performance of all methods decreases with increasing dimensions, the
ORTHOMADS algorithm seems less sensitive to that. For instance, for a budget of 102 ⋅n,
it reaches 15% more targets than CMA-ES and TPE that are the second best algorithms
for this budget. In dimension 20, this gap increases to 18% for CMA-ES and 25% for TPE.
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Figure 4.5: ECDF plots: comparison of the two variants ORTHO N + 1 NEG and ORTHO N + 1

QUAD of ORTHOMADS with RS, CMA-ES, DE and TPE on the bbob-mixint problems.
Results aggregated on the function types and on all functions in dimension 5.
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Figure 4.6: ECDF plots: comparison of the two variants ORTHO N + 1 NEG and ORTHO N + 1

QUAD of ORTHOMADS with RS, CMA-ES, DE and TPE on the bbob-mixint problems.
Results aggregated on the function types and on all functions in dimension 20.
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On the overall picture, presented in Figures 4.5f and 4.6f, RS performs poorly. The
budget allocated to TPE, which is only 102 ⋅ n, is way smaller than the ones allocated to
the other methods. In this limited budget, TPE competes with CMA-ES in dimension
5 and is better or competitive with DE in dimensions 10 and 20. The latter competes
with ORTHOMADS after a budget in the order of 103 ⋅ n. Thus, after 5 ⋅ 103 function
evaluations, only DE competes with ORTHOMADS in dimension 5 where both methods
reach 70% of function-target pairs. Finally, CMA-ES competes with ORTHOMADS when
the budget approaches 104 ⋅n function evaluations. Hence, restricted budgets seem to favour
the direct local search method while expensive budgets favour the evolutionary algorithms
CMA-ES and DE.

4.6 Final remarks

This chapter investigates the performance of the different poll direction types available in
ORTHOMADS on continuous and mixed-integer problems from the literature in a blackbox
context. On these two types of problems, ORTHO N + 1 NEG competes with or outperforms
the other variants of the algorithm whereas using only 1 or 2 directions is often far from
being competitive.

On the continuous functions considered, the best poll direction types identified are
ORTHO N + 1 NEG and ORTHO 2N, especially on multimodal weakly structured problems.
ORTHOMADS is advantageous in small dimensions and achieves mean results for medium
and high dimensions compared to the other algorithms. It also performs well on multimodal
problems with global structure where it competes with CMA-ES for limited budgets.

For very limited budgets, the trust-region method NEWUOA is favourable on contin-
uous problems, followed by the linesearch method BFGS for a medium budget and finally
the evolutionary algorithm CMA-ES for a high budget.

The results on the mixed-integer suite show that, among the poll direction types,
ORTHO 2N is preferable in small dimension. Otherwise, ORTHO N + 1 NEG and ORTHO N + 1

QUAD are among the best direction types. Comparing them to other methods show that
ORTHOMADS often outperforms the compared algorithms and seems more resilient to the
increase of the dimension. For limited budgets, ORTHOMADS seems a good choice among
the other considered algorithms to solve unconstrained mixed-integer blackbox problems.
This is notably interesting regarding real-world application problems and, in particular, the
mixed-integer optimization problems of Stellantis, where the number of allowed blackbox
evaluations is often limited to a few hundreds. In the latter case, the variables are typically
the thicknesses of the sheet metals, considered as continuous, and the materials that are
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categorical variables encoded as integers.
Finally, studying the contribution of the search step of ORTHOMADS shows that dis-

abling it generally leads to a deteriorated performance of the algorithm. Indeed, the de-
fault search sequentially executes a N-M search and a quadratic model search that enable
a global exploration and accelerate the convergence. However, this effect softens when the
dimension increases.
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5
Design of a finite element test case

5.1 Motivation

In view of the important running times of the FE models used in the automotive industry,
the design of a simple test case was considered. The aim is to possess a FE blackbox imple-
mentation enabling quick benchmarking of algorithms and comparisons within reasonable
times.

In order to be an interesting instance regarding real-world optimization problems tar-
geted, the model should possess some specific features. First, the number of variables
should be large enough for the automotive context. Besides, it must compute outputs
that are usable for the definition of a constrained blackbox optimization problem, that are
objective and constraints. Moreover, to respond to the original purpose of its design, the
FE model is expected to be cheap to compute compared to the expensive real-world FE
simulations. Finally, the presence of different types of variables would be an asset for the
introduction of new optimization levers.

77
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5.2 Description of the test case

5.2.1 The truss structure

The test case designed is a truss structure depicted in Figure 5.1. It consists of thirteen bars
(numbered from 1 to 13) of square sections, connected by eight nodes (numbered from 1 to
8). Let x and y denote respectively the abscissa and ordinate axes of a Cartesian coordinate
system, each node has two degrees of freedom corresponding to the displacements in the
x and y axes. Each bar is implemented as an element of the FE model. Horizontal and
vertical bars (i.e. elements 1, 2, 3, 4, 6, 7, 9, 11 and 13) have a length of 0.25m while
the length of diagonal elements (5, 8, 10 and 12) is 0.25 ⋅

√
2m. The truss is subject to a

vertical force Fy3 = 10
4N on node 3 while the extreme nodes 1 and 5 are clamped.

Figure 5.1: Truss structure subject to a vertical load on node 3 while nodes 1 and 5 are
clamped.

5.2.2 Considered optimization problems

The section width of each element is an optimization variable, as well as the material.
While the width can be chosen continuously between 0.01m and 0.05m, the available
materials for each bar are chosen among aluminum, magnesium, steel and titanium. They
are represented either as categorical variables represented in {1, ..,4} or as discrete variables
through the corresponding Young’s modulus. The latter is a coefficient characterizing the
elasticity of a material.

The ordering of the categorical variables was done so that there is no apparent relation-
ship between them, and the Young’s moduli were chosen for the discrete setting because
they are the only essential material characterization that intervene in the FE code and
they reflect differences in the mechanical behaviours of the materials.

Three quantities are chosen as possible objectives for the minimization problems on
the structure: the weight, the cost and the compliance. Thus, the structure is expected to
be as light, cheap and stiff as possible.
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To compute them, in addition to the Young’s moduli, the costs per weight and the den-
sities are needed. Their values were chosen using the mineral info1 website and Wikipedia2.
The Young’s moduli, the mass costs and the densities are described in Table 5.1.

Young’s modulus (106Pa) Mass cost (€/kg) Density (103 kg/m3)
Aluminum 69 1.46 2.70
Magnesium 45 1.88 1.75

Steel 200 0.50 7.85
Titanium 105 3.60 4.50

Table 5.1: Young’s moduli, mass costs and densities of the materials of the truss.

The optimization variable is denoted by z in this chapter to avoid any confusion with
the abscissa axis. As the variables of each problem are the materials and the thicknesses of
the elements, the dimension is then 26, that is two variables per element. The optimization
variables can be depicted as z = [m1,m2, . . . ,m13, t1, t2, . . . , t13], with mi the discrete value
(including in the categorical setting) representing the material of element i, and ti the
thickness of element i with i ∈ {1, ..,13}. The displacement of node 3, computed from
the FE code, is used as a constraint. The corresponding limit value comes from the
displacements engendered when the structure is entirely made up of aluminum and when
all elements are given the allowed minimum thickness of 0.01m. The optimization problems
can be expressed as follows:

min
z∈R26

weight(z) z = [m1, . . . ,m13, t1, . . . , t13]

or cost(z)

or compliance(z)

subject to

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∣uy3(z)∣ ≤ uy3,max

z1∶13 ∈ {Aluminum, Magnesium, Titanium, Steel}
z14∶26 ∈ [0.01,0.05] (m),

(5.1)

where uy3(z) stands for the displacement of node 3 in the y axis. Let j and k be two
integer values in {1, . . . ,13} such that j ≤ k, the notation zj∶k refers to the component
variables of z from index j to k included.

1https://www.mineralinfo.fr
2https://fr.wikipedia.org/wiki/Masse_volumique

https://www.mineralinfo.fr
https://fr.wikipedia.org/wiki/Masse_volumique
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The analytical formulas for the objectives are defined as follows:

Cost =
13

∑
i=1

Ci × ρi × (ti)
2
×Li

Weight =
13

∑
i=1

ρi × (ti)
2
×Li

Compliance = FTU = Fy3 × uy3,

where Ci, ρi, ti and Li are respectively the mass cost, the density, the thickness and
the length of element i ∈ {1, . . . ,13}, F = [Fx1, Fy1, . . . , Fx8, Fy8]

T is the vector of applied
forces in the x and y axes at every node and consists of zeros everywhere except for the
coordinate of Fy3 and U = [ux1, uy1, . . . , ux8, uy8]

T stands for the vector of displacements
along x and y at every node.

It is well noted that although the formulations of the cost and weight are known,
they are treated as blackbox objectives. Moreover, F and U are computed from the FE
simulation of the truss so the compliance and the displacement constraint are real blackbox
functions. Computing theses quantities is computationally cheap as it takes only a fraction
of a second. The code is available at: https://github.com/DahitoMA/FE_TRUSS.

5.3 Preliminary numerical experiments

5.3.1 Considered algorithms and setups

Once the simple model is created and the optimization problems defined, the next goal is
to select and test some existing DFO algorithms in order to compare their performance and
identify their strengths and weaknesses for the purpose of developing the desired algorithm.

To do this, NSGA-II, CMA-ES and MADS have been selected. NSGA-II was chosen as
a reference benchmark tool since it is one of the best-known GAs. The choice of CMA-ES
comes from the fact that it is the state-of-the-art EA. Finally, MADS was selected as a
popular direct search algorithm.

The Platypus library3 version 1.0.2 implemented in Python has been used to test
NSGA-II, the version 3.0.4 of CMA-ES comes from the Python Git repository4 and MADS
was tested using the NOMAD software5 version 3.9.1. In particular, the ORTHOMADS

instantiation of MADS was used with the direction type set to ORTHO N+1 NEG.

3https://github.com/Project-Platypus/Platypus
4https://github.com/CMA-ES/pycma
5https://github.com/bbopt/nomad

https://github.com/DahitoMA/FE_TRUSS
https://github.com/Project-Platypus/Platypus
https://github.com/CMA-ES/pycma
https://github.com/bbopt/nomad
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While the handling of nonlinear inequality constraints is inner to NSGA-II and MADS,
a penalty method has been used for CMA-ES. Let c(z) = max(0, g(z)) be the constraint
violation with g(z) ≤ 0 the nonlinear inequality constraint (i.e. the vertical displacement
constraint). If f denotes the objective function, the penalized function f̄ to minimize has
been chosen of the form: f̄(z) = f(z) + α ⋅ c(z)2, with α ∈ R. In order to choose the value
of α, several numerical experiments were performed. Eventually, α = 109 has been set.
Experimentally noticing that the constraint violations were lower than 10−2, for numerical
reasons, f̄ was coded as follows: f̄(z) = f(z) + 105 ⋅ (c(z) ⋅ 102)2.

Since NSGA-II and CMA-ES are stochastic meta-heuristics, there is a variance between
two successive runs of the same algorithm even starting from the same initial populations.
Consequently, for each experiment, 20 runs were launched for both methods to better
evaluate their performance. Since the setting of MADS is deterministic in our experiments,
with the seed set at 0, only one run of this method is performed.

In what follows we report on preliminary computational studies related to the imple-
mentation of evolutionary algorithms, summarizing the main outcomes.

5.3.2 Testing initial populations in NSGA-II and CMA-ES

Let npop ∈ N∗ be the size of the population of the EA considered. In NSGA-II, the algorithm
usually directly starts with npop individuals while in CMA-ES only one point, which is the
mean of the initial population, and the covariance matrix are commonly given and the
algorithm generates itself the initial population. The initialization setup of the population
can influence the convergence of an EA.

Experiments on cost minimization were performed to see the importance of the initial-
ization. To do this, both methods were tested in their common initialization procedures
and with that of the other method. Indeed, NSGA-II and CMA-ES were tested with ini-
tial populations chosen uniformly as random in the admissible domain but also with initial
populations generated by CMA-ES from a given mean chosen uniformly as random.

In both cases, the population size is set to 26, that is the number of variables, and
1000 iterations were performed for each run. Materials are treated as integer variables
represented by their Young’s moduli in NSGA-II and as real variables brought back to the
closest feasible values at each iteration in CMA-ES.

The evolution of the best costs according to the evaluations in both initialization set-
tings are depicted in Figure 5.2 and Figure 5.3 for NSGA-II and CMA-ES, respectively.
Left figures focus on the medians of the runs while right ones highlight the quartiles of the
runs. The best candidate is defined as the point minimizing the constraint. If there exist
several of them, it is the one with the smallest objective value.
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While giving the population generated by CMA-ES to NSGA-II disadvantages the
latter, it has no or few effect to give npop random initial points to CMA-ES. Indeed, after
the first phase where NSGA-II looks for a feasible solution, the decreasing phase observed
on the median plots starts after around 300 function evaluations when using the population
generated by CMA-ES, that is 10 times greater than when starting the algorithm with a
random initial population. Besides, it increases the variance between runs. An explanation
is that the population generated by CMA-ES is less diverse and this seems important in
NSGA-II even with the ranking based on the crowding distance.

Figure 5.2: Best costs according to the evaluations for 20 runs of NSGA-II from a random
initial mean (violet) and with 26 initial individuals (red). The medians of the runs (left)
and the quartiles (right) are represented with thick lines.

Figure 5.3: Best costs according to the evaluations for 20 runs of CMA-ES from a random
initial mean (blue) and with 26 initial individuals (green). The medians of the runs (left)
and the quartiles (right) are represented with thick lines.

5.3.3 Testing the encoding in NSGA-II

In NSGA-II, it can be specified whether the variables are real or integer and appropriate
genetic operators are then used.
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As materials can be differently represented and since their Young’s modulii have big
and heterogeneous gaps (in the order of 106Pa), it seemed interesting to look if NSGA-
II behaves the same for different integer scales of this parameter. Here we test different
encoding of materials to observe a potential discrepancy.

Experiments were launched with the Young’s moduli either in {69 ⋅ 106,45 ⋅ 106,105 ⋅
106,200 ⋅ 106}, in {69,45,105,200} or in {1,2,3,4}. The populations were initialized uni-
formly as random in the admissible set and with a size of 26. Besides, 1000 population
generations are performed.

The evolution of the best costs according to function evaluations is depicted in Fig-
ure 5.4 for the 20 runs of each material setting tested. The medians and the quartiles of
the runs are also represented.

Figure 5.4: Best costs according to the evaluations for 20 runs of NSGA-II using Young’s
moduli as integers in {69 ⋅106,45 ⋅106,105 ⋅106,200 ⋅106} (red), in {69,45,105,200} (green)
and in {1,2,3,4} (violet). The medians of the runs (left) and the quartiles (right) are
represented with thick lines.

The observations are that, considering the original values of the Young’s moduli or
dividing them by 106 does not seem to have much effect.

The three variants have roughly the same convergence speed. The difference is rather
in the first part of the graphs where NSGA-II is more or less fast to reach the feasible
region. This induces a difference in the number of function evaluations.

Besides, using categorical variables for materials in NSGA-II decreases the variance
between runs. Indeed, all the runs for this variant seem to converge to the same cost,
which means that it reduces the probability to end up in different configurations from a
run to another.
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Figure 5.5: Best costs according to the evaluations for 20 runs of NSGA-II with npop = 26
(red) and and the default npop = 100 (violet). The medians of the runs (left) and the
quartiles (right) are represented with thick lines.

Figure 5.6: Best costs according to the evaluations for 20 runs of CMA-ES with npop = 26
(blue) and the default npop = 13 (light blue). The medians of the runs (left) and the
quartiles (right) are represented with thick lines.

5.3.4 Testing the population size

Both NSGA-II and CMA-ES implementations have default population sizes. In NSGA-II,
npop = 100 by default while it is equal to (4 + ⌊3 ⋅ log(n)⌋) in CMA-ES, that is 13 for the
considered problems. In these experiments, the default population size is tested for each
method, as well as a size of 26 for the population, corresponding to the number of variables.

An initial mean is randomly selected for CMA-ES while a random population is given
to NSGA-II. Materials are treated as categorical and 1000 population generations are
performed for each of the 20 runs for each variant of an algorithm.

Figures 5.5 and 5.6 depict the evolution of the best costs according to the evaluations in
both settings for NSGA-II and CMA-ES, respectively. A slight advantage is observed when
NSGA-II uses populations of 26 individuals as the decrease in objective values starts with
lower numbers of evaluations and the convergence occurs sooner. Regarding CMA-ES, the
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medians of the runs show an advantage for the smallest population size. The discrepancy
in runs is however greater when using 13 individuals and there is at least one run that
does not converge to the same cost than the others. On the contrary, the quartiles are very
close when the population size equals 26 and all runs seem to converge to the same value.

5.4 Numerical experiments

5.4.1 Parameter setting

In this section, NSGA-II, CMA-ES and MADS are used to optimize the three BBO prob-
lems defined in Equation (5.1), that are minimizing the cost, the weight and the compliance
of the truss, all subject to a displacement constraint.

For each optimization, 20 runs are performed for the stochastic methods and 1 run
for MADS. The type of variable can be specified in MADS, whether it is real, integer,
categorical or even periodic. For integer variables, the mesh is adapted accordingly with
a minimum mesh size of 1. For these experiments, materials are treated as unordered
integers for all methods but the extended poll is not used in MADS. The reason of this
choice is to avoid the definition of neighbours for each material and the fact that materials
would be treated only in the extended poll of the algorithm. Moreover, in that manner,
no assumption is done on the ordering of the materials.

The population size is set to 26 for the EAs with an initial mean and an initial popu-
lation generated uniformly as random for CMA-ES and NSGA-II, respectively. MADS is
initialized with a point also chosen uniformly as random in the admissible domain. The
minimum mesh size of MADS is set to 10−11 and the direction type is still ORTHO N+1 NEG.

In these experiments, although the code is written in Python, an external system call
to NOMAD is employed. As this slows down the resolution of the problems, a maximum
of 4000 blackbox evaluations is set for all methods. The plots of MADS are presented only
from evaluation 26 to be consistent with those of the EAs used.

5.4.2 Cost optimization

The results for the optimization of the cost of the truss are depicted in Figure 5.7 for
the function values and Figure 5.8 presents the evolution of the best constraint violations.
Comparing the two EAs, CMA-ES globally competes with NSGA-II and performs better
than the latter at the end of the optimization as the median converges slightly faster.
Observing the quartiles, there are less discrepancies in its runs compared to NSGA-II.
This advantage for materials defined in {1,2,3,4} is however slight. Regarding MADS,
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the algorithm outperforms the other methods in the considered evaluation budget and it
competes with CMA-ES in the last thousand evaluations.

Figure 5.7: Best cost values according to the evaluations for 20 runs of NSGA-II and
CMA-ES and 1 run of MADS. The medians of the runs (left) and the quartiles (right) are
represented with thick lines.

Figure 5.8: Best constraint violations in cost optimization according to the evaluations for
20 runs of NSGA-II and CMA-ES and 1 run of MADS. The medians of the runs (left) and
the quartiles (right) are represented with thick lines.

5.4.3 Weight optimization

The results for weight optimization are presented in Figure 5.9 for the evolution of the best
weights while Figure 5.10 shows the best constraint violations according to the evaluations.

CMA-ES and NSGA-II compete up to a budget of about 103 blackbox evaluations, with
a slight advantage of NSGA-II. After this budget, CMA-ES globally converges to better
solutions. MADS has the fastest convergence and outperforms the two EAs up to 2 ⋅ 103

evaluations. After this limit, CMA-ES achieves slightly better solutions.
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Figure 5.9: Best weight values according to the evaluations for 20 runs of NSGA-II and
CMA-ES and 1 run of MADS. The medians of the runs (left) and the quartiles (right) are
represented with thick lines.

Figure 5.10: Best constraint violations in weight optimization according to the evaluations
for 20 runs of NSGA-II and CMA-ES and 1 run of MADS. The medians of the runs (left)
and the quartiles (right) are represented with thick lines.

5.4.4 Compliance optimization

The best compliance values according to the evaluations are presented in Figure 5.11 while
Figure 5.12 plots the best constraint violations according to the evaluations. It can be
noticed that the curve corresponding to MADS stops sooner than the others. This is due
to the minimum mesh size stopping condition that was satisfied.

Here also, MADS performs better and has a faster convergence than CMA-ES and
NSGA-II up to a budget of 103 blackbox evaluations and after that it competes with
CMA-ES. The latter performs similarly than NSGA-II before converging to a solution.
Due to the non-deterministic aspect, all runs of each EA used do not converge to the same
solutions.
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Figure 5.11: Best compliance values according to the evaluations for 20 runs of NSGA-II
and CMA-ES and 1 run of MADS. The medians of the runs (left) and the quartiles (right)
are represented with thick lines.

Figure 5.12: Best constraint violations in compliance optimization according to the evalu-
ations for 20 runs of NSGA-II and CMA-ES and 1 run of MADS. The medians of the runs
(left) and the quartiles (right) are represented with thick lines.

First, the minimization of the compliance may seem trivial. Unlike minimizing the
global cost of the truss, which depends also on the weights, or minimizing the global
weight that needs to take into account the displacement constraint, the minimum compli-
ance should engender minimum displacement of the nodes and, thus, make the constraint
inactive. For this optimization problem, we were expecting an all-steel configuration with
the maximum thicknesses for all elements.

However, the optimal truss configuration found by MADS is different and depicted in
Figure 5.13, where the colour of a bar indicates its material while the thickness of the
line shows how thick it is. Indeed, the thickness range has been divided in four equal
intervals to represent thin, medium thin, medium thick and thick bars. The minimum
compliance within the evaluation budget is 241.421344N.m and corresponds to a structure
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with mainly still and magnesium and an aluminum bar. The compliance value obtained is
smaller than the compliance of an all-steel truss with the upper-bound thicknesses, that is
241.421356N.m.

Figure 5.13: Load case (left) and solution of MADS for compliance optimization (right).

In fact, each FE bar that is not clamped can rotate freely at each node and move in the
2-dimensional plan defined by (x, y). For a clamped node, there is no degree of freedom.
Besides, the elements of the truss do not receive any shearing stress so they can only be
subject to normal stresses.

The formula of the compliance of the whole structure has also to be considered. As
the vertical force applied on node 3 is constant, the compliance only depends on the
displacement engendered at this node in the y axis. Considering these facts, when applying
Fy3, the horizontal elements (1, 2, 3 and 4) cannot affect uy3. The latter depends on how
much element 11 can be retained. To do so, elements 5, 6, 7, 8, 10 , 11 and 12 have to
be stiff enough, which explains why there are in steel with thick thicknesses. Actually, the
materials of the other elements have little impact on the objective.

5.5 Final remarks

In this section, optimization problems minimizing the cost, the weight and the compliance
of a FE truss structure were solved with NSGA-II, CMA-ES and MADS. The prelimi-
nary experiments conducted show that a diverse initial population is needed for NSGA-II
whereas it seems to have very few effects on the performance of CMA-ES.

Furthermore, while the default population size leads to a slightly worse performance in
NSGA-II, it enables a slightly faster convergence of CMA-ES but with a larger variance in
the runs. Moreover, the categorical setting of the materials is preferable for NSGA-II.

Finally, considering a categorical setting of materials for the three methods, MADS has
a faster convergence and finds the best solutions for compliance and cost optimizations.
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CMA-ES competes with MADS after about 2 ⋅103 blackbox evaluations, which is huge for a
BBO context. Moreover, CMA-ES globally converges sooner than NSGA-II and to better
solutions.



6
Design of a surrogate-based method

6.1 Motivation

As this thesis deals with optimization problems that involve expensive computer simula-
tions, the evaluation budgets for the resolutions are limited. Classical DFO approaches
like direct search methods and EAs, in particular, require numerous blackbox calls to get
considered good solutions. SBO is a promising optimization branch that enables to reduce
the optimization cost by using surrogate models to choose the candidate points for the
expensive evaluations.

Furthermore, most DFO methods are not designed for mixed variables and even less
DFO algorithms deal with expensive BBO problems involving both mixed types of variables
and general inequality constraints. Besides, the implementations of such algorithms are
rarely available.

Considering these facts, the design of a new surrogate-based approach was considered
to treat structural design optimization concerns raised by the multinational automotive
manufacturing corporation Stellantis. They can be translated into a general form of con-
strained blackbox optimization problems. The work presented in this chapter is intended
to be submitted to a journal and the corresponding code will be available.

91
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6.2 Considered blackbox optimization problems

In this work, we consider mixed-variable constrained blackbox optimization problems in-
volving both an objective and constraint functions that are computationally costly to
evaluate. Such problems may be formulated as follows:

min
x∈X

f(x)

s.t. gj(x) ≤ 0, ∀j ∈ J,

xi ∈ R, ∀i ∈ C,

xi ∈ Z, ∀i ∈ I,

xi ∈ Di, ∀i ∈D,

(P)

where

• (C, I,D) is a partition of the indices of the variables into the subsets of indices
corresponding to the continuous, integer and discrete variables, respectively, such
that C ∪ I ∪D ∶= {1,2, . . . , n} and n is the dimension of the problem,

• Di is a finite set of ordered real values, for all i ∈D,

• X ∶= {x ∈ Rn, li ≤ xi ≤ ui,∀i ∈ C ∪ I ∪D} is the admissible subset, where li, ui are the
lower and upper bounds of each component xi of x,

• f ∶ X → R is the objective function to minimize,

• gj ∶ X → R, ∀j ∈ J are the constraint functions, with J a finite index set.

It is assumed that all or part of the functions f and (gj)j∈J are blackbox functions and
their evaluations at any given point demand important computational resources in terms
of time and/or memory requirements. Besides, the constraints (gj)j∈J are considered
quantifiable and the presence of hidden constraints is envisaged.

Solving this kind of problems is more and more requested as it can have decisive impacts,
for instance in reducing greenhouse gases emissions or improving system performance.

In what follows, by one evaluation at some given point x we mean the computation of
the objective and all the constraints at this point. Besides, we assume that all the functions
(objective and constraints) are deterministic and without noise.
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6.3 Description of the proposed algorithm

This section presents a Blackbox Optimization Algorithm, called BOA, through its structure
and main features.

6.3.1 The overall layout of BOA

The surrogate-based subproblems considered

As is usually the case in constrained BBO algorithms not requiring an initial feasible
solution in the inputs, the proposed method is made up of two phases and its layout is
described in Algorithm 6.

In the first phase, denoted by “Phase I”, a feasible solution is sought. Differently from
what is usually done, we minimize the sum of squared constraint violations added with a
fraction of the original objective function. Let f̂ and (ĝj)j∈J denote surrogate functions
of the objective and constraint functions, respectively. In order to raise the chance of
producing truly feasible points, the constraints ĝj(x) + ϵj ≤ 0 are added. A minimum
distance to evaluated points is also added to favour exploration. Given that the original
functions in (P) are expensive, we work with their surrogates. Thus, the first phase aims
at solving:

min
x∈X

∑j∈J max(0, ĝj(x))
2 + λf̂(x)

s.t. ĝj(x) + ϵj ≤ 0, ∀j ∈ J,

dmin −min
y∈P
∥x − y∥ ≤ 0,

(OBJλ,ϵ
PhaseI)

where λ and (ϵj)j∈J stand for some nonnegative scalar values, dmin is a positive value
and P is the set of points that have been evaluated with the real blackbox functions f

and (gj)j∈J . In our solution procedure, λ and (ϵj)j∈J are iteratively updated inside each
iteration so that the “leading” term of the objective in (OBJλ,ϵ

PhaseI) is the first one, that is
the sum of squared constraint violations. By adding a fraction of the original objective we
aim at favouring the search of better feasible solutions, in terms of the original objective.

As long as the solution is predicted infeasible for the original blackbox problem and
there is a considered reasonable decrease of the constraint violations predictions, this sub-
problem is iteratively solved with updated λ and (ϵj)j∈J . Otherwise, the solution is eval-
uated with the blackbox functions and used to update the surrogates. The whole process
is repeated until a feasible solution is found.

The surrogate-based subproblem is solved with an external algorithm and finding a
feasible point may not be guaranteed. In case the output solution does not respect the
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constraints of (OBJλ,ϵ
PhaseI), it is not evaluated and the problem is relaxed to find another

solution to evaluate. The first relaxation consists in multiplying all (ϵj)j∈J by −1. Indeed,
the harder a constraint is and the bigger is the corresponding slack so, by taking the
opposite, the corresponding surrogate constraint in (OBJλ,ϵ

PhaseI) becomes easier to satisfy.
Thus, the first relaxation corresponds to:

min
x∈X

∑j∈J max(0, ĝj(x))
2 + λf̂(x)

s.t. ĝj(x) − ϵj ≤ 0, ∀j ∈ J,

dmin −min
y∈P
∥x − y∥ ≤ 0.

(OBJλ,−ϵ
PhaseI)

In case the latter formulation still leads to an infeasible solution (with regards to
the surrogate formulation), we focus on the distance criterion by keeping it as the only
constraint. However, the constraints satisfaction is still considered through the objective
of the subproblem. Hence, the second relaxation can be written as follows:

min
x∈X

∑j∈J max(0, ĝj(x))
2 + λf̂(x)

s.t. dmin −min
y∈P
∥x − y∥ ≤ 0.

(OBJλ)

As soon as a feasible solution of the original problem (P) is found, “Phase II” starts.
In the latter, the goal is to improve the objective value of the best feasible solution. We
aim at solving:

min
x∈X

f̂(x)

s.t. ĝj(x) + ϵj ≤ 0, ∀j ∈ J,

dmin −min
y∈P
∥x − y∥ ≤ 0.

(OBJ ϵ
PhaseII)

Remark that the feasible region of this problem may be empty. Similarly to the first
phase, (OBJ ϵ

PhaseII) is solved iteratively and relaxed in case its solution is infeasible. The
first relaxation uses the opposite values of (ϵj)j∈J and, thus, minimizes:

min
x∈X

f̂(x)

s.t. ĝj(x) − ϵj ≤ 0, ∀j ∈ J,

dmin −min
y∈P
∥x − y∥ ≤ 0.

(OBJ−ϵPhaseII)

In case the solution is still infeasible, only the distance constraint is kept. However,
in order to take into account the constraints of the original problem, the sum of squared
constraint violations is added to the objective. This second relaxation of Phase II solves
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(OBJλ) with λ equals 1: we denote this relaxation problem (OBJ1). Unlike the first
phase, (ϵj)j∈J are updated only once per iteration and this is done with respect to the true
constraints values (and not the surrogate predictions).

Algorithm 6 describes the general layout of BOA and calls Algorithms 7 and 8 that rep-
resent Phase I and Phase II, respectively. The latter update the slacks using Algorithm 9.

Algorithm 6: BOA
1 Initialize phase number: phase← 1
2 Initialize slacks: ϵmax > 0, ϵj ← 0,∀j ∈ J

3 Initialize slack factors: σinc > 1, σdec ← 1
σinc

, ρ ∈ (0,1), kfeas ∈ N∗

4 Initialize distance parameters: γ ≥ 0, ∆ = {d1, d2, . . . , d∣∆∣} ⊂ R∗+, ν ∈ {1,2, . . . , ∣∆∣}
5 dmin ←max{γ, dν ⋅min(ui − li,∀i ∈ C ∪ I ∪D)}
6 Determine a set P0 ⊂ X of p0 (≤ Nmax) points
7 Evaluate the functions f , (gj)j∈J at each point in P0
8 Initialize xbest

9 Initialize hbest ← ∑j∈J max (0, gj(xbest))
2, P ← P0

10 if maxj∈J gj(xbest) ≤ 0 then
11 phase← 2 // xbest is a feasible point in P

12 Update xbest with Algorithm 8 // BOA-Phase II

13 else
14 Update xbest, phase with Algorithm 7 // BOA-Phase I

15 if phase = 2 then
16 Update xbest with Algorithm 8 // BOA-Phase II

Parameters update

The slacks (ϵj)j∈J are computed according to the predicted (in Phase I) or real constraints
values (in Phase II). After kfeas ∈ N∗+ successive satisfactions of the constraint j ∈ J , the
corresponding slack is decreased whereas it is increased as soon as the constraint is not
satisfied, with respect to the real or predicted values depending on the phase. By waiting
before decreasing a slack, we want to make sure that the satisfaction of (ĝj(x) + ϵj) is
“robust/reliable”. The increase of ϵj is done such that its value is between a fraction
of the violation of constraint j and an upper bound ϵmax. The procedure is detailed in
Algorithm 9. The construction of the surrogates is based on input and output values that
are scaled in [0,1], which explains the truncation made on Line 6 of Algorithm 9. However,
it should be noted that the surrogate prediction of a point that does not belong to the
DOE is not guaranteed to be between 0 and 1.
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Algorithm 7: BOA-Phase I
1 Given phase, xbest, hbest, P, Nmax, ∆, ν, γ, dmin, ϵmax, ϵj ,∀j ∈ J
2 Initialize κj ← 0,∀j ∈ J , threshold ∈ (0,1), λ0 ∈ (0,1)
3 while phase = 1 and ∣P ∣ < Nmax do
4 From P, build surrogate functions f̂ , (ĝj)j∈J
5 Initialize dec_lambda← true, λ← λ0

6 x̂← Solve (OBJλ,ϵ
PhaseI) // Compute a solution x̂ of (OBJλ,ϵ

PhaseI)

7 Evaluate f̂(x̂), (ĝj(x̂))j∈J
8 ĥ← ∑j∈J max (0, ĝj(x̂))

2

/* If x̂ not feasible w.r.t. the surrogate constraints ĝj (x̂) ≤ 0 for all j ∈ J,

try to improve constraint satisfaction reducing λ and adjusting slacks

(ϵj)j∈J */

9 while maxj∈J ĝj (x̂) > 0 and dec_lambda is true do
10 λ← 1

2 min (λ,maxj∈J ĝj (x̂))
11 Update ϵj , κj ,∀j ∈ J with Algorithm 9 and the predicted constraints values

(ĝj(x̂))j∈J
12 x̂← Solve (OBJλ,ϵ

PhaseI)

13 Evaluate f̂(x̂), (ĝj(x̂))j∈J
14 ĥold ← ĥ

15 ĥ← ∑j∈J max (0, ĝj(x̂))
2

16 if ĥold − ĥ < threshold then
17 dec_lambda← false

18 if dmin −miny∈P (∥x̂ − y∥) > 0 or maxj∈J (ĝj(x) + ϵj) > 0 then
19 x̂← Solve (OBJλ,−ϵ

PhaseI) // Relax all ϵj in -ϵj

20 if dmin −miny∈P (∥x̂ − y∥) > 0 or maxj∈J (ĝj(x) + ϵj) > 0 then
21 x̂← Solve (OBJλ)

22 Evaluate f(x̂), (gj(x̂))j∈J
23 hold ← hbest
24 Update xbest

25 hbest ← ∑j∈J max (0, gj(xbest))
2, P ← P ∪ {x̂}

26 if ∣P ∣ ≥ 0.9 ⋅Nmax then
27 if hbest > 0.95 ⋅ hold then
28 dmin ←max (γ, 12 ⋅min(d1, dmin))

29 else
30 if hbest > 0.95 ⋅ hold then
31 ν ←max(1, ν − 1)

32 else
33 ν ←min(∣∆∣, ν + 1)

34 dmin ←max (γ, dν ⋅min(ui − li,∀i ∈ C ∪ I ∪D))

35 if maxj∈J gj (x̂) ≤ 0 then
36 phase← 2 // x̂ is feasible
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Algorithm 8: BOA-Phase II
1 Given xbest, hbest, P, Nmax, ∆, ν, γ, dmin, ϵmax, ϵj ,∀j ∈ J
2 Initialize κj ← 0,∀j ∈ J
3 while ∣P ∣ < Nmax do
4 fold ← f(xbest)

5 From P, build surrogate functions f̂ , (ĝj)j∈J
6 x̂← Solve (OBJ ϵ

PhaseII)

7 if dmin −miny∈P (∥x̂ − y∥) > 0 or maxj∈J (ĝj(x) + ϵj) > 0 then
8 x̂← Solve (OBJ−ϵPhaseII) // Relax all ϵj in -ϵj
9 if dmin −miny∈P (∥x̂ − y∥) > 0 or maxj∈J (ĝj(x) + ϵj) > 0 then

10 x̂← Solve (OBJ1) // Solve (OBJλ
) with λ = 1

11 Evaluate f(x̂), (gj(x̂))j∈J
12 Update xbest, P ← P ∪ {x̂}
13 Update ϵj , κj ,∀j ∈ J with Algorithm 9 and the real constraints values

(gj(x̂))j∈J
14 if ∣P ∣ ≥ 0.9 ⋅Nmax then
15 if f(xbest) > 0.95 ⋅ fold then
16 dmin ←max (γ, 12 ⋅min(d1, dmin))

17 else
18 if f(xbest) > 0.95 ⋅ fold then
19 ν ←max(1, ν − 1)

20 else
21 ν ←min(∣∆∣, ν + 1)

22 dmin ←max (γ, dν ⋅min(ui − li,∀i ∈ C ∪ I ∪D))

Algorithm 9: BOA-Update ϵ, κ
1 Given σinc, σdec, ρ, kfeas, ϵmax, ϵj , κj ,∀j ∈ J
2 Given g̃j(x̂),∀j ∈ J // Predicted or real constraints values at x̂.

3 for each j ∈ J do
4 if g̃j (x̂) > 0 then
5 κj ← 0 // Reset feasibility counter.

6 g̃trunc ←min (1, g̃j (x̂))
7 ϵj ←min (max (σinc ⋅ ϵj ;ρ ⋅ g̃trunc) , ϵmax) // Increase ϵj.

8 else
9 κj ← κj + 1

10 if κj ≥ kfeas then
11 ϵj ← σdec ⋅ ϵj // Decrease ϵj.

12 Return ϵj , κj ,∀j ∈ J
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The minimum distance parameter dmin is updated after every iteration in both phases
according to the quality of the new evaluated point. It is set according to the minimum
edge length of X , an ordered finite set of positive values ∆ = {d1, d2, . . . , d∣∆∣} and a lower
bound γ. The latter depends on the nature of the variables: it is equal to 0 when there
is at least one continuous variable and, otherwise, to the positive minimum gap between
distinct admissible discrete or integer values.

Let ν ∈ {1,2, . . . , ∣∆∣} be the index of the chosen value from ∆, dmin is initialized as
max{γ, dν ⋅min(ui−li,∀i ∈ C∪I∪D)}. The minimum distance is updated at each iteration:
it can be increased to enforce exploration after a considered good improving in feasibility,
and decreased otherwise to enable local exploitation. This is simply done by increasing or
decreasing ν. In order to refine the solution of (P), lower values of dmin are allowed after
a ratio of the evaluation budget. The maximum number of function evaluations allowed is
denoted by Nmax.

The best point xbest (Line 8 of Algorithm 6, Line 24 of Algorithm 7 and Line 12 of
Algorithm 8) is defined in P as the one (or one of those) minimizing the sum of the squared
constraint violations if all points are infeasible, otherwise among the feasible points in P,
it is the one (or one of those) minimizing the objective value.

6.3.2 Distinctive features of BOA

BOA shares similarities with several surrogate-based BBO solvers like COBRA. The latter
also performs a two-phase optimization where the first part aims at finding a feasible
candidate. However both methods differ in many aspects. We point out some of them
hereafter.

COBRA is based on RBF interpolations and reported results in [Regis, 2014] only
make use of this surrogate, unlike the proposed method for which we report experiments
with different types of surrogates. Besides, the distance parameter is adapted in BOA
according to the quality of the solution found at each iteration. The resolutions of the
subproblems are also different. COBRA handles continuous variables only and uses the
MATLAB function fmincon that employs a SQP method. BOA is designed for problems
involving discrete variables and our implementation uses the direct search solver NOMAD.
Furthermore, the best iterate xbest of the first phase of BOA is chosen directly based on the
sum of squared constraint violations instead of the number or maximum of the constraint
violations. As other distinctive features, BOA updates its slacks already in Phase I and
they are decreased as soon as the corresponding (predicted or original) constraints are not
satisfied.

Differently from other methods such as SO-MI or CONDOR, the proposed method
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does not require an initial feasible solution. We solve an auxiliary problem to determine
a candidate point whereas CONDOR proceeds to different types of perturbations of the
currently best solution, taking into account integrality constraints. At each iteration, SO-
MI evaluates 4 candidates that are chosen from 4 groups. Each group is generated by
random perturbations of the variables and uniform random points generations.

6.3.3 Adaptation of BOA to parallel evaluations

The classical BOA algorithm described conducts sequential evaluations of the blackbox.
However, when the expensive optimization problem and the calculation resources enable
parallel evaluations, it may be interesting to adapt the method by taking advantage of
the parallelization and, hopefully, considerably reduce the total computational time. As
an example, typical size optimization problems encountered at Stellantis are solved by
proceeding to an order of 25 parallel evaluations of the finite element models. With this
in mind, an extension of BOA to deal with parallel evaluations was designed.

Let B ∈ N∗ stands for the number of allowed parallel calls to the blackbox. Apart from
the initial DOE, the points evaluated in BOA come from the resolution of a surrogate
subproblem. The idea now is to solve a batch of B subproblems where originally only one
was solved in BOA, which leads to B points {x̂(1), . . . , x̂(B)} to evaluate with the expensive
functions at each iteration. The subproblems can be solved in parallel or sequentially as
they only involve surrogate calls which are assumed computationally negligible compared
to the real blackbox evaluations. Thus, Lines 9 to 21 of Algorithm 7 and Lines 6 to 10 of
Algorithm 8 are executed B times per iteration of the respective algorithm.

To do this, for each resolution b of a batch, a slack ϵbj is declined for each constraint
in each resolution of the batch, with an associated decrease counter κbj , for all (b, j) ∈
{1,2, . . . ,B} × {1,2, . . . , ∣J ∣}, as well as there is a parameter λb for each subproblem of the
batch in Phase I. The second phase of BOA starts as soon as one feasible point with respect
to the real blackbox is found.

All candidates examined by the subproblem solver during an iteration are stored and
sorted according to a lexicographic order of (∑j∈J max (0, ĝj(x))

2, f̂(x)). With this sorting,
feasible points are preferred to infeasible ones, and lower objective values and constraint
violations of the feasible and infeasible points respectively are favoured. Let P̂b denote the
points considered during the bth resolution of a batch of subproblems, with b ∈ {1,2, . . . ,B},
and let V = ∪Bb=1P̂b be the union of the B sets of candidate points. Let us assume that V is
sorted according to the above lexicographic order. The points {x̂(1), . . . , x̂(B)} to evaluate
with the expensive functions are iteratively selected from V such that the distance to the
set of evaluated points P and to the already selected points is greater than dmin. This
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distance is halved until we actually get B points for the parallel evaluations. This enables
to not consider duplicate or very close points, and to favour exploration.

When a starting point is needed by an algorithm to solve a subproblem, as it is the
case for MADS for instance, B points are chosen from the set of already evaluated points
P, considering two measures. The first one is defined by the following application:

φ ∶ x↦

⎧⎪⎪
⎨
⎪⎪⎩

f(x) if gj(x) ≤ 0,∀j ∈ J
fmax +∑j∈J max (0, gj(x))

2 if ∃j ∈ {1,2, . . . , ∣J ∣}, gj(x) > 0,

where fmax is the highest feasible objective value so far. The second criterion is the distance
to the other evaluated points, that is to be maximized. Hence, the points of P are ranked
in non-dominated sets according to the measures (φ(x),−miny∈P∖{x}(∥x − y∥)), similarly
to NSGA-II: the sorting is iteratively done, removing the already chosen points, until B
points are selected.

The respect of the evaluation budget is controlled before the parallel evaluations: if
the remaining allowed number of blackbox calls is lower than the batch size B, then the
latter is updated to (Nmax− ∣P ∣) and only this number of points is chosen for the expensive
evaluations.

6.3.4 Description of the components of BOA

Initial DOE

As is very often the case in surrogate based BBO methods present in the literature, the
DOE method we use for our experiments is a symmetric Latin Hypercube Design (SLHD)
[Ye et al., 2000]. It is a variant of the space filling Latin hypercube sampling developed by
[McKay et al., 2000].

By default, the algorithm starts with a DOE of rank (n + 1) and consisting of (n + 1)
SLHD points possibly supplemented with random points to satisfy the rank condition.
The rank is also used in MISO for the starting points generation as it guarantees a unique
setting for the RBF parameters.

Considered surrogate models

In this study, we consider radial basis functions, kriging models and MARS models that
have shown good performance in the literature. These surrogates are described in Sec-
tion 2.4.1.

As mentioned in Section 2.4.2, RBF is compared to other surrogate models in [Jin
et al., 2001] and exhibit an overall best performance regarding, among others, accuracy,
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robustness and efficiency. On a high-dimensional automotive benchmark problem, the
authors of [Regis, 2011] conclude that the methods using RBF are performing better than
other methods including a kriging-based NOMAD and a sequential quadratic programming
algorithm. The work of [Müller and Shoemaker, 2014] investigates the influence of the
surrogate type and the sampling strategy used in the resolution of expensive blackbox
optimization problems subject to box constraints. The study notably includes cubic RBF,
Gaussian kriging models and MARS models. The results on 15 continuous problems show
that the ensembles including the cubic RBF often outperform those that do not use this
type of surrogate. Gaussian processes are also commonly used, for instance in the work of
[Kianifar and Campean, 2020] comparing also RBF and polynomial surrogates and where
they show a globally better performance. In [Villa-Vialaneix et al., 2012], splines and
kriging based methods exhibit the best results with small and medium training datasets
on a corn cultivation application study.

Constraint handling

Slack factors are used in BOA to manage constraint satisfaction. The motivation behind
this comes from [Regis, 2014] where conducted preliminary experiments exhibited solutions
of the subproblems at the boundaries, where the surrogates are not accurate. As a result,
in many cases these points were infeasible with respect to the true blackbox constraints.
Although the subproblem formulation of the second phase is common, BOA considers the
objective function already in the first phase through its parameter λ and introduces the
slacks (ϵj)j∈J for each constraint also in this phase. The update of the slacks also differs
as they are updated independently for each constraint in BOA. In this way, a distinction
is made between the constraints that are often or easily satisfied and the ones that are
often violated. Hence, better solutions are expected by avoiding the pitfall of handling an
important slack due to few constraints that are often violated and of staying far away the
border of easily satisfied constraints. Besides, the increase of an ϵj occurs as soon as the
corresponding surrogate constraint is violated.

Blackbox crash handling

In real-world application problems, a blackbox may not give outputs for all inputs. As an
example, the simulation of a finite element model may crash due to divergence in solving
the underlying differential equations. This often results in a “NaN” output. In order to
deal with this kind of hidden constraints, the non-real outputs are set to infinity. This
way, the corresponding points are added to the set of already evaluated points to avoid
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duplicate evaluations and points in their close vicinity, i.e. in the ball of radius dmin, are
not considered. However, these candidates are not used in the construction of the models
in order to not affect the model by making assumptions on their neighbourhoods.

Discrete variables handling

Inside NOMAD, discrete variables are treated as integers. Indeed, although integer and
granular variables have a specific handling in NOMAD, there is no direct way to treat
general discrete variables in the solver. However, the original variables are considered for
each call of a surrogate or a blackbox. Hence, the true distances are considered to build
the models.

6.4 Considered optimization problems

For the experiments, we consider instances derived from the literature and two automotive
applications from Stellantis. All of them have inequality constraints (between 1 and 91)
and can be considered medium to high dimensional in DFO as they have more than 10

variables.

6.4.1 Instances from the literature

The first set of instances consists of 19 constrained problems stemming from the literature,
among which some are classical analytical problems and others are derived from applica-
tions. Table 6.1 gives a description of these problems in terms of numbers and types of
variables, and the source papers.

We use three instances from the well-known G-problems benchmark collection and
derivations of two of them. Indeed, among the three integer problems taken from [Müller
et al., 2014], the problems I1 and I3 are derived from the problem G01. The problem
I2 is the hmittelman problem from the MINLPLib1 library. A derivation of G07 called
MD2 with mixed variables, including discrete ones, is used and its formulation comes from
[Crélot et al., 2017]. Applications about car side impact and stepped cantilever beam,
respectively named MD3 and MD4 in our experiments, are also used.

Four problems that have mixed continuous and integer variables are taken from [Müller
et al., 2013] and three of them derive from applications.

Among problems arisen from applications, six of them (C4, C5, C6, MI5, MI6 and
MD1) come from a real-world benchmark suite introduced in [Kumar et al., 2020].

1https://www.minlplib.org/index.html

https://www.minlplib.org/index.html
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problem n ∣C ∣ ∣I ∣ ∣D∣ ∣J ∣

C1 [Floudas and Pardalos, 1990] 13 13 0 0 9
C2 [Hock and Schittkowski, 1980] 10 10 0 0 8

C3 [Himmelblau, 1972] 15 15 0 0 1
C4 [Paul, 1987, Pant et al., 2009, Kumar et al., 2020] 14 14 0 0 15
C5 [Grandhi and Venkayya, 1988, Kumar et al., 2020] 10 10 0 0 3

C6 [Wang et al., 2018, Kumar et al., 2020] 30 30 0 0 91
I1 [Floudas and Pardalos, 1990, Müller et al., 2014] 13 0 13 0 9

I2 [Bussieck et al., 2003, Müller et al., 2014] 16 0 16 0 7
I3 [Floudas and Pardalos, 1990, Müller et al., 2014] 13 0 13 0 9
MI1 [Berman and Ashrafi, 1993, Müller et al., 2013] 11 7 4 0 7

MI2 [Yuan et al., 1988, Müller et al., 2013] 11 7 4 0 13
MI3 [Kuo et al., 2001, Müller et al., 2013] 10 5 5 0 3
MI4 [Kuo et al., 2001, Müller et al., 2013] 10 5 5 0 3

MI5 [Grossmann and Sargent, 1979, Kumar et al., 2020] 10 7 3 0 10
MI6 [Gupta et al., 2007, Kumar et al., 2020] 10 9 1 0 9

MD1 [Yokota et al., 1998, Kumar et al., 2020] 22 0 8 14 86
MD2 [Hock and Schittkowski, 1980, Crélot et al., 2017] 10 2 2 6 8

MD3 [Gu et al., 2001, Gandomi et al., 2011] 11 9 0 2 10
MD4 [Thanedar and Vanderplaats, 1995, Gandomi et al., 2011] 10 4 2 4 11

Table 6.1: Problems from the literature described with the dimension n, the number
of continuous ∣C ∣, integer ∣I ∣ and discrete ∣D∣ variables, respectively, and the number of
inequality constraints ∣J ∣.

6.4.2 Applications from Stellantis

In addition to the 19 problems from the literature, we use two instances encountered at
Stellantis for some of the experiments. Table 6.2 gives descriptions of these problems.

problem n ∣C ∣ ∣I ∣ ∣D∣ ∣J ∣

RSMLateralCrash 34 0 10 24 24
LateralCrash 48 0 3 45 64

Table 6.2: Application problems from Stellantis described with the dimension n, the num-
ber of continuous ∣C ∣, integer ∣I ∣ and discrete ∣D∣ variables, respectively, and the number
of inequality constraints ∣J ∣.

Vehicle pole lateral crash

The first instance, called RSMLateralCrash, is a model of a pole lateral crash study, built
from about 800 sample points. It is considered as representative of the expensive finite
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element model and was used at Stellantis in the optimization process for faster experiments.
Each call to the model takes less than a minute. The abbreviation RSM stands for response
surface model. The optimization problem considered aims at minimizing the mass of a
basket of parts in the battery area of the vehicle. It is a constrained mixed-variable problem
with 24 inequality constraints that represent performance features to satisfy, among which
deceleration, stress and displacement. There are 34 variables which correspond to the
choice of the materials of 10 parts of the vehicle, treated as integers according to some
ranking based on the material properties, and the thicknesses of 25 parts, that are granular
variables. The materials considered are different steel grades. Details on the variable
bounds and granularities are given in Table 6.3. For instance, x11 allows values between 1

and 4 with a granularity of 0.05, so its admissible values belong to {1,1.05,1.1, . . . ,4}.

variable lower bound granularity upper bound
1 to 10 1 1 10
11 to 18 1 0.05 4
19 to 34 1 0.05 2.5

Table 6.3: Variable bounds and granularities for RSMLateralCrash.

Vehicle barrier lateral crash

The second problem, denoted LateralCrash, uses an expensive FE simulation of a barrier
lateral crash that takes more than 12 hours at each call. The optimization problem is
similar to the first one, minimizing the mass of a bench of parts of the vehicle, and has
64 inequality constraints. There are 48 variables, among which 3 steel grades choices and
45 granular thicknesses. Table 6.4 gives details on the bounds and granularity of each
variable. The 48th variable allows negative values because it intervenes in a formula for
the thickness computation of the corresponding part.
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variable lower bound granularity upper bound
1 1 1 2

2 to 3 1 1 3
4 to 5 1.2 0.1 2
6 to 9 2 0.1 6.5

10 0.6 0.05 1.1
11 0.6 0.05 1.1

12 to 16 0.6 0.05 1.15
17 to 18 0.6 0.05 1.2

19 0.6 0.05 1.3
20 to 21 0.6 0.05 1.35

22 0.6 0.05 1.4
23 to 24 0.6 0.05 1.6

25 0.65 0.05 1.65
26 to 27 0.75 0.05 1.75
28 to 37 0.8 0.05 1.8

38 0.85 0.05 1.35
39 0.95 0.05 1.45
40 1.1 0.05 2.1
41 1.3 0.05 1.8
42 1.4 0.05 2.4

43 to 44 1.5 0.05 2.5
45 1.6 0.05 2.6
46 1.9 0.05 2.9
47 2 0.05 3
48 -0.1 0.05 0.1

Table 6.4: Variable bounds and granularities for LateralCrash.

6.5 General experimental setting

The surrogate models used in BOA are built on variables and objective values that are
scaled in [0,1]. The constraints values are scaled in [−1,0] for violated constraints and
in [0,1] for satisfied ones. Similarly as performed in SO-MI, truncations are applied to
the output values in order to avoid high variations of the surrogate values. Once the
number of evaluated points is greater than twice the initial DOE size, the positive and
negative constraints values are truncated to the median of the positive and the median
of the negative constraints values respectively. Unlike what is done in SO-MI, only the
feasible objective values are truncated to their median once the number of feasible points
evaluated is greater than twice the initial DOE size.

In order to lead numerical experiments, some parameters of BOA had to be set, in
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particular ϵmax, σinc, ρ, kfeas, threshold and dmin. To do this, a sensitivity analysis based
on an experimental design of 27 points was performed, including 16 Plackett-Burman
designs with foldover, that is with the complementary plan.

The Plackett-Burman technique [Plackett and Burman, 1946] is an experimental design
used to identify the most influential parameters on some outputs and it can be seen as an
economical factorial design. It is based on Hadamard matrix, that is a square matrix H

consisting of 1 and −1 values and such that HH⊺ = dI, where d ∈ N∗ is the dimension of H
and I is the identity matrix. The parameters are considered as independent variables and
their interactions are assumed negligible. The cardinality of a Plackett-Burman design
set is the smallest multiple of 4 greater than the number of inputs, and the settings to
test contain points on the boundaries of the parameters ranges, that are minimum and
maximum admissible values.

The 16 Plackett-Burman designs are added with 10 points from a space-filling algorithm
and one point which corresponds to the middle of the considered bounds of the parameters.
The modeFRONTIER2 software was used to generate the experimental design. It also
provides statistical analysis tools such as correlation matrices and t-Student analyses.

For each point, five runs of BOA with cubic RBF were performed on three literature
problems from the G-problems collection. Two of them are continuous and correspond to
the problems G07 and G18, that have respectively 10 and 9 variables, and the third one
is the variant of G06 where the 2 variables are imposed to be integers. The maximum
number of blackbox evaluations was set to 200 for the analyses. The statistical outputs
observed were relative to the number of feasible runs, the number of evaluations used to
leave Phase I (i.e. to find a first feasible solution) and the best feasible objective values
after each phase of BOA.

The statistical significance of the results was evaluated using Student’s t-tests with a
p-value of 0.1 as well as surrogate analyses to set the values of the influential parameters.

In practice, we initialize the parameters as follows: ϵmax = 10
−3, σinc = 1.1, ρ = 0.5 and

kfeas = max(⌈2 ⋅
√
n⌉, ⌈2 ⋅

√
∣J ∣⌉), threshold = 10−1. For the distance parameter setting, we

choose ∆ = {5⋅10−4,10−3,5⋅10−3,10−2,5⋅10−2,10−1} and dmin is initialized using dν = 5⋅10
−3.

Our implementation of BOA uses MATLAB R2020b and the subproblems of the algo-
rithm are solved using the MATLAB version of NOMAD v3.9.1 with the option ORTHO N+1

NEG. The latter showed good performance in Chapter 4 compared with the other direction
types of ORTHOMADS both on continuous and mixed-integer optimization problems.

Two sets of experiments are considered with different evaluation budgets. The first one
aims, in the one hand, at comparing different types of surrogate models and, on the other,

2https://engineering.esteco.com/modefrontier/

https://engineering.esteco.com/modefrontier/
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at investigating the contribution of the parameter λ in Phase I. The second set is given a
higher budget and compares BOA with NOMAD on the problems from the literature and
on the instances from Stellantis.

In the presentation of the results, we denote the types of surrogates cubic RBF, MARS,
and the four kinds of kriging (Gaussian, exponential, Matérn 3/2 and Matérn 5/2) as
follows: R, M, KG, KE, K3 and K5, respectively.

In this study, we focus on cubic basis functions added with a polynomial tail. The con-
struction of the RBF surrogates borrows from the dedicated part of the code of MISO that
we adapted to our algorithm. MARS models are constructed using the ARESLab3 MAT-
LAB toolbox [Jekabsons, 2011]. Finally, Gaussian and exponential kriging models are built
thanks to the DACE4 MATLAB toolbox [Lophaven et al., 2002]. We implemented the cor-
relation functions Matérn 3/2 and Matérn 5/2 embedded in the DACE framework. When
applicable, the parameterization of the surrogates stems from preliminary experiments.

6.6 Medium-budget experiments

In the first experiments, the performance of several implementations of BOA is evaluated
on 30 runs performed, starting from different DOEs that are although common to all im-
plementations, and with a blackbox evaluation budget of 200. Each subproblem resolution
inside BOA is done by NOMAD with a maximum of 25 ⋅n surrogate function evaluations.
The performance is evaluated according to different measures starting with the number of
runs out of the 30 launched that ended up with a feasible solution. The other measures
used consider only the feasible runs and are the mean number of evaluations used to leave
Phase I, the mean objective values after Phase I and Phase II, and the minimum feasible
objective value found over all runs. Comparisons are done using the 19 problems from the
literature.

6.6.1 Comparisons of surrogate models

Firstly, cubic RBF, MARS and 4 types of kriging (Gaussian, exponential, Matérn 3/2
and Matérn 5/2) are compared inside BOA. Tables 6.5, 6.6, 6.7 and 6.8 summarize the
results for each family of problems, respectively on continuous, integer, mixed-integer and
mixed-variable problems. We distinguish mixed-integer problems that have continuous
and integer variables from mixed-variable problems that have discrete variables other than

3http://www.cs.rtu.lv/jekabsons/regression.html
4https://www.omicron.dk/dace.html

http://www.cs.rtu.lv/jekabsons/regression.html
https://www.omicron.dk/dace.html
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integers. In the names of the columns, “Pb” stands for the problem name and S for the
type of surrogate model.

We first consider problems MD1 and C6 as there are not feasible results for all surrogates
on these instances. Problem MD1, whose ratio of the feasible region is less than 10−4, is
considered difficult to solve by [Kumar et al., 2020]. Indeed, the results show that kriging
models hardly find feasible solutions on this problem, only the one using Matérn 3/2
manages to find one. MARS has the best results on MD1 regarding all the considered
performance measures. On C6, MARS was stopped due to long computational times.
Moreover, globally longer computational times seem to be needed for the construction of
MARS models. While kriging models performed badly on MD1, they have the best mean
objective values on C6 and, especially, the use of Matérn 3/2 gives the best mean objective
values at the end of the optimization. Cubic RBF also exhibit good results on this problem
and reaches the minimum feasible objective value among the surrogates.

On the other 17 problems, MARS followed by cubic RBF finds the highest number of
feasible runs. These surrogates also globally reach the best qualities in solutions. It can be
noted that MARS finds the global optimum on the 30 runs on I1, and so does cubic RBF on
I2. On the contrary, considering each family of problems, exponential kriging reaches the
lowest numbers of feasible runs. The difference with the other kriging types is especially
noticeable on the integer problems I1 and I3 where it finds only 4 and 3 feasible runs
respectively, whereas most runs are feasible for the others. Moreover, this kind of kriging
globally finds the worst mean feasible objective values on mixed-integer and mixed-discrete
problems.

6.6.2 Investigations on λ

The parameter λ is used in the surrogate subproblem (OBJλ,ϵ
PhaseI) to take into account

the objective value in the first phase of BOA. The introduction of this parameter is a
special feature of our algorithm by comparison with the other existing methods. The
effects of λ are investigated by comparing the performance of the proposed method when
the parameter is classically used and when it equals 0 during all the optimization. To do
so, cubic RBF models are considered in BOA as this type of model outperformed most of
the others in the experiments of Section 6.6.1 and it is computationally less expensive than
MARS.

The same performance measures are used and presented in Table 6.9 for the 19 problems
from the literature. In the surrogate column entitled S, “Rλ=0” indicates the cubic RBF-
based BOA that does not use λ.

Considering all problems except MD1, both variants are globally equivalent regarding
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Pb S #F N (I) σN(I) f (I) f (II) σf(II) f
(II)
min

C1

R 24 85.29 66.64 -9.05 -9.94 3.29 -14.81
M 30 78.87 43.85 -10.13 -14.01 0.76 -14.96
KG 30 55.27 34.63 -3.81 -11.93 3.24 -15.00
KE 16 73.56 43.17 -3.99 -13.92 1.97 -15.00
K3 30 47.13 27.13 -2.93 -14.86 0.33 -15.00
K5 30 47.13 29.39 -1.79 -14.49 1.07 -15.00

C2

R 30 38.07 10.88 126.93 26.09 1.01 24.94
M 30 44.37 14.61 211.78 33.44 5.10 28.37
KG 30 32.87 7.18 239.72 26.80 1.22 25.02
KE 30 39.37 23.22 515.70 59.44 32.64 30.27
K3 30 31.47 6.37 344.95 27.31 1.38 25.42
K5 30 29.37 6.07 296.91 27.07 1.29 25.06

C3

R 30 43.87 17.12 1482.38 175.64 107.12 61.32
M 30 49.93 19.23 4936.40 316.14 289.76 65.75
KG 30 68.27 19.60 4783.45 463.37 421.21 101.59
KE 30 71.73 27.78 8983.71 2312.13 2140.65 384.51
K3 30 56.73 13.06 4068.69 690.08 1310.29 144.48
K5 30 60.67 15.41 4507.89 436.88 240.44 66.50

C4

R 20 140.95 34.23 100220.25 99202.03 422055.30 32.71
M 30 111.10 28.55 9722.38 4091.61 3709.92 6.76
KG 21 115.43 33.49 1271738.01 154861.04 258460.79 15.10
KE 10 89.30 14.13 1686509.88 123967.71 206323.43 2275.04
K3 29 119.59 34.41 1003787.88 166552.78 289010.56 92.54
K5 25 126.12 35.38 1312627.27 612411.72 1916379.73 32.10

C5

R 30 29.07 7.28 684.60 552.03 5.78 537.53
M 30 23.80 6.57 883.09 569.58 17.49 548.18
KG 30 20.40 5.04 857.74 547.44 3.58 541.68
KE 30 20.10 4.60 871.21 562.82 11.49 548.02
K3 30 21.67 6.63 831.20 556.14 15.98 542.45
K5 30 20.77 5.79 831.13 554.01 10.56 541.79

C6

R 30 57.63 8.24 -4467.56 -5292.86 220.87 -5674.37
M(∗) - - - - - - -
KG 30 52.23 7.54 -4583.62 -5307.92 231.72 -5598.43
KE 30 52.63 5.68 -4530.97 -5298.64 143.72 -5601.75
K3 30 52.30 4.70 -4510.78 -5371.81 171.01 -5663.18
K5 30 53.07 5.85 -4563.47 -5325.31 171.15 -5657.87

Table 6.5: Results on continuous problems for each surrogate type: number of feasible runs
#F , mean number of function evaluations to reach a feasible solution N I , its standard
deviation σN(I) , mean first feasible objective value f (I), mean best feasible objective value
f (II), its standard deviation σf(II) and minimum feasible objective value f

(II)
min on the 30

runs. A star (∗) indicates that the experiment was stopped due to long computational
times.
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Pb S #F N (I) σN(I) f (I) f (II) σf(II) f
(II)
min

I1

R 30 32.20 15.58 -11.27 -14.17 1.29 -15.00
M 30 37.00 14.20 -12.93 -15.00 0.00 -15.00
KG 30 34.97 16.61 -4.73 -11.00 2.44 -15.00
KE 4 114.00 73.87 -8.25 -10.75 1.50 -12.00
K3 26 37.65 28.83 -5.35 -11.35 2.23 -15.00
K5 26 32.50 15.30 -5.15 -11.00 2.40 -15.00

I2

R 30 34.20 4.84 20.67 13.00 0.00 13.00
M 30 54.57 25.39 20.30 15.97 3.67 13.00
KG 30 49.33 18.53 33.57 18.50 10.96 13.00
KE 30 45.47 21.83 29.07 17.07 7.07 13.00
K3 30 47.90 31.25 26.63 16.17 7.05 13.00
K5 30 47.87 25.91 30.67 18.57 10.99 13.00

I3

R 30 39.40 28.96 -43507.57 -49971.70 109.17 -50128.00
M 30 83.23 35.00 -44050.30 -50143.50 67.54 -50200.00
KG 30 39.07 14.63 -36306.83 -50186.27 15.38 -50200.00
KE 3 161.67 7.02 -49958.00 -50064.00 84.11 -50159.00
K3 29 45.48 8.91 -38440.90 -50183.41 20.83 -50200.00
K5 30 38.20 8.67 -37572.90 -50180.93 23.44 -50200.00

Table 6.6: Results on integer problems for each surrogate type: number of feasible runs
#F , mean number of function evaluations to reach a feasible solution N I , its standard
deviation σN(I) , mean first feasible objective value f (I), mean best feasible objective value
f (II), its standard deviation σf(II) and minimum feasible objective value f

(II)
min on the 30

runs.

the number of feasible runs. The use of λ generally leads to more evaluations spent in
Phase I but the objective values when exiting Phase I and Phase II are globally better, as
well as the minimum feasible objective values among all runs. There can be a considerable
difference in the quality of the solution as shown on problem C4: the mean objective value
of the traditional BOA is almost 3 times better than the variant that does not use λ.

Nevertheless, on two of the three integer problems tested, although the objective values
after Phase I are better when λ is used, there are slight advantages at the end of the
optimization when λ = 0. The problems concerned are alterations of the same problem
and only their bounds differ. This explains why the algorithm behaves similarly on them.
The effect of λ on these instances may be specific to the problems. Besides, the number of
evaluations spent in Phase I for I1 and I3 is higher in the traditional BOA and, therefore,
there are less evaluations left in Phase II for improving the solutions.

On MD1, the variant that does not use the tested parameter was stopped because the
experiment was computationally too long. The use of λ seems to help in the optimization
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Pb S #F N (I) σN(I) f (I) f (II) σf(II) f
(II)
min

MI1

R 30 20.97 2.66 -0.19 -0.91 0.04 -0.94
M 30 22.83 3.06 -0.31 -0.93 0.03 -0.94
KG 30 29.10 12.29 -0.25 -0.92 0.05 -0.95
KE 30 25.17 7.66 -0.33 -0.91 0.05 -0.94
K3 30 27.27 9.05 -0.37 -0.92 0.03 -0.95
K5 30 27.57 5.78 -0.33 -0.91 0.05 -0.95

MI2

R 30 19.90 4.37 14.81 5.90 0.31 4.73
M 30 23.53 9.50 13.07 5.80 0.23 4.59
KG 30 29.57 9.41 10.42 6.23 0.62 4.58
KE 26 52.73 40.01 10.70 8.04 1.61 5.83
K3 30 27.73 9.74 11.23 6.62 0.74 5.82
K5 30 31.47 9.22 9.14 6.27 0.55 5.15

MI3

R 30 37.20 14.41 -0.95 -0.99968 0.00021 -0.99988
M 30 38.63 14.09 -0.54 -0.99813 0.00188 -0.99975
KG 30 51.03 35.79 -0.88 -0.99928 0.00133 -0.99985
KE 23 49.35 32.23 -0.83 -0.99916 0.00151 -0.99980
K3 27 32.89 20.27 -0.83 -0.99944 0.00051 -0.99988
K5 24 30.08 13.43 -0.87 -0.99931 0.00146 -0.99984

MI4

R 30 41.10 10.16 -0.96 -0.99949 0.00034 -0.99998
M 30 35.57 14.01 -0.72 -0.99928 0.00073 -0.99991
KG 26 48.65 35.01 -0.69 -0.99734 0.01200 -0.99999
KE 18 62.94 49.88 -0.81 -0.99592 0.01091 -0.99999
K3 28 49.00 33.75 -0.75 -0.99812 0.00418 -0.99998
K5 25 37.76 31.27 -0.70 -0.99889 0.00145 -0.99999

MI5

R 30 30.47 9.70 99190.66 61782.15 5174.17 58558.89
M 30 21.93 8.19 149128.59 64093.16 4638.25 56576.26
KG 30 35.07 12.10 112865.34 60907.19 3614.95 58652.64
KE 30 31.47 8.84 108068.20 63041.05 7340.51 58710.03
K3 30 29.80 9.66 100686.43 60248.08 3424.47 58632.38
K5 30 28.17 7.94 112179.49 59898.48 2883.39 58597.03

MI6

R 30 22.83 3.71 23547.31 16989.35 29.34 16959.62
M 30 22.13 7.77 24184.04 17094.23 674.18 16959.18
KG 30 23.73 4.99 21710.40 16966.08 11.31 16958.33
KE 30 25.07 6.48 24557.69 18279.88 2095.08 16958.69
K3 30 23.10 5.09 25701.99 16972.69 19.42 16958.55
K5 30 23.90 6.38 23463.35 16967.75 15.35 16958.31

Table 6.7: Results on mixed-integer problems for each surrogate type: number of feasible
runs #F , mean number of function evaluations to reach a feasible solution N I , its standard
deviation σN(I) , mean first feasible objective value f (I), mean best feasible objective value
f (II), its standard deviation σf(II) and minimum feasible objective value f

(II)
min on the 30

runs.



112 Design of a surrogate-based method

of this hard problem.
These results comfort on the utility of λ in the problem formulation of Phase I. It

globally leads to better results and can lead to a faster optimization.

Pb S #F N (I) σN(I) f (I) f (II) σf(II) f
(II)
min

MD1

R 9 157.00 28.34 113.17 106.98 32.57 67.49
M 16 142.63 25.71 73.69 73.23 19.87 52.96
KG 0 - - - - - -
KE 0 - - - - - -
K3 1 186.00 0.00 73.10 67.28 0.00 67.28
K5 0 - - - - - -

MD2

R 30 31.97 7.84 210.93 33.06 4.89 31.43
M 30 28.20 7.45 451.54 35.37 2.51 32.53
KG 30 30.10 11.76 415.25 40.81 22.31 31.53
KE 27 33.67 23.56 638.59 93.34 67.74 32.72
K3 30 29.93 20.31 288.77 43.11 22.07 31.49
K5 30 27.57 12.43 309.46 36.24 8.75 31.44

MD3

R 30 27.43 9.61 27.36 23.78 0.58 23.57
M 30 32.53 10.33 28.43 23.73 0.16 23.59
KG 30 28.57 11.07 29.67 23.79 0.30 23.58
KE 30 25.30 6.44 31.31 24.41 0.71 23.58
K3 30 25.70 5.75 30.33 23.89 0.41 23.58
K5 30 23.73 5.45 30.56 23.90 0.45 23.57

MD4

R 30 19.17 2.68 79543.73 66962.58 1766.70 64430.08
M 30 17.20 1.30 89018.46 65948.35 1407.97 64414.72
KG 30 23.17 6.58 90982.70 67213.17 1819.30 64358.21
KE 30 22.63 5.53 86514.34 68573.29 2655.00 64478.30
K3 30 20.93 4.56 88296.62 67347.29 2218.25 64392.13
K5 30 21.83 4.76 85685.56 67467.49 1753.36 64425.09

Table 6.8: Results on mixed-variable problems for each surrogate type: number of feasible
runs #F , mean number of function evaluations to reach a feasible solution N I , its standard
deviation σN(I) , mean first feasible objective value f (I), mean best feasible objective value
f (II), its standard deviation σf(II) and minimum feasible objective value f

(II)
min on the 30

runs.
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Pb S #F N (I) σN(I) f (I) f (II) σf(II) f
(II)
min

C1 R 24 85.29 66.64 -9.05 -9.94 3.29 -14.81
Rλ=0 30 21.50 1.80 -3.71 -8.87 4.08 -14.95

C2 R 30 38.07 10.88 126.93 26.09 1.01 24.94
Rλ=0 30 38.40 9.57 1231.45 26.10 0.81 24.85

C3 R 30 43.87 17.12 1482.38 175.64 107.12 61.32
Rλ=0 30 34.80 7.85 14444.98 198.63 130.02 57.50

C4 R 20 140.95 34.23 100220.25 99202.03 422055.30 32.71
Rλ=0 19 121.95 47.99 949918.50 283360.89 658017.50 200.87

C5 R 30 29.07 7.28 684.60 552.03 5.78 537.53
Rλ=0 30 17.73 1.20 897.62 552.66 5.22 542.38

C6 R 30 57.63 8.24 -4467.56 -5292.86 220.87 -5674.37
Rλ=0 30 57.73 10.25 -4530.51 -5306.63 174.03 -5713.49

I1 R 30 32.20 15.58 -11.27 -14.17 1.29 -15.00
Rλ=0 30 23.03 5.62 -3.63 -14.50 0.86 -15.00

I2 R 30 34.20 4.84 20.67 13.00 0.00 13.00
Rλ=0 30 34.10 6.83 24.57 13.00 0.00 13.00

I3 R 30 39.40 28.96 -43507.57 -49971.70 109.17 -50128.00
Rλ=0 30 35.20 18.25 -23134.57 -50018.80 120.62 -50199.00

MI1 R 30 20.97 2.66 -0.19 -0.91 0.04 -0.94
Rλ=0 30 19.27 1.53 -0.10 -0.91 0.03 -0.95

MI2 R 30 19.90 4.37 14.81 5.90 0.31 4.73
Rλ=0 30 22.90 5.00 14.45 6.03 0.44 4.76

MI3 R 30 37.20 14.41 -0.95 -0.99968 0.00021 -0.99988
Rλ=0 30 22.17 4.78 -0.11 -0.99966 0.00022 -0.99987

MI4 R 30 41.10 10.16 -0.96 -0.99949 0.00034 -0.99998
Rλ=0 30 21.97 4.91 -0.47 -0.99958 0.00046 -0.99996

MI5 R 30 30.47 9.70 99190.66 61782.15 5174.17 58558.89
Rλ=0 30 19.23 2.27 166354.88 61734.22 5538.20 58545.80

MI6 R 30 22.83 3.71 23547.31 16989.35 29.34 16959.62
Rλ=0 30 25.30 7.37 34421.18 16984.71 37.35 16959.44

MD1 R 9 157.00 28.34 113.17 106.98 32.57 67.49
R(∗)λ=0 - - - - - - -

MD2 R 30 31.97 7.84 210.93 33.06 4.89 31.43
Rλ=0 30 33.20 9.28 1654.05 33.78 5.51 31.47

MD3 R 30 27.43 9.61 27.36 23.78 0.58 23.57
Rλ=0 30 19.27 1.66 36.19 23.64 0.10 23.54

MD4 R 30 19.17 2.68 79543.73 66962.58 1766.70 64430.08
Rλ=0 30 17.23 1.28 98682.65 66789.78 1800.28 64392.92

Table 6.9: Results on all problems for RBF surrogate with and without λ: number of
feasible runs #F , mean number of function evaluations to reach a feasible solution N I ,
its standard deviation σN(I) , mean first feasible objective value f (I), mean best feasible
objective value f (II), its standard deviation σf(II) and minimum feasible objective value

f
(II)
min on the 30 runs. A star (∗) indicates that the experiment was stopped due to long

computational times.
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6.7 Large-budget experiments

In Section 6.6.1, MARS and cubic RBF exhibited the best results. However, as the con-
struction of MARS models is computationally more expensive, cubic RBF is chosen for the
larger budget experiments.

BOA used with cubic RBF surrogates is compared with two surrogate-assisted variants
of NOMAD. To do so, cubic RBF and Gaussian kriging models are given to NOMAD
v3.9.1 as external surrogates and are updated after each blackbox evaluation. Each run of
NOMAD is given as starting point the first point of the initial DOE used for BOA, that is
the first point of the SLHD.

The truncation to the median is applied to NOMAD for the surrogate construction:
it is applied to the constraints after 2 ⋅ (n + 1) blackbox evaluations, and to the feasible
objective values when the number of feasible points evaluated is greater than 2 ⋅ (n + 1).

It is well noticed that external surrogates are not employed in NOMAD when it is used
inside BOA since the subproblem tackled are already based on models of the blackbox
functions.

In the following experiments, the blackbox evaluation budget is set at 400 and each
subproblem resolution of BOA uses a maximum of 100 ⋅n surrogate evaluations. We denote
BR the cubic RBF-based BOA and, respectively, NR and NK the NOMAD variants assisted
with cubic RBF and Gaussian kriging.

6.7.1 Algorithm comparisons on benchmark problems

The first experiments with the larger evaluation budget are performed using the problems
from the literature.

Table 6.10 presents the results on 18 of the problems as the two NOMAD variants did
not find any feasible run on MD1 and BOA was stopped on this problem due to a long
computational time (subsequent to the increase of the budget). BOA finds more feasible
solutions on the continuous, integer and mixed-discrete problems and is equivalent to both
variants of NOMAD on the problems with mixed continuous and discrete variables. There
is, in particular, an important gap on the application problem MD4 on which all BOA runs
are feasible against only 2 for NOMAD.

It is well noticed that on C1 the methods using cubic RBF models perform less than
the kriging-based NOMAD regarding the number of feasible runs, suggesting that kriging
captures better the complexity of this instance. Comparing the RBF-based methods on
this problem, the results show on a similar number of feasible runs that BOA uses less
blackbox evaluations to find the first feasible solution and the latter has on average a
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better objective value, which is interesting for restricted evaluation budgets. The best
solution from all runs on C1 was found by BOA.

Pb A #F N (I) σN(I) f (I) f (II) σf(II) f
(II)
min

C1
BR 18 113.61 115.73 -9.89 -10.09 3.59 -14.99
NR 19 177.68 94.39 -4.27 -11.95 2.15 -14.06
NK 27 211.19 88.39 -3.69 -10.72 2.86 -14.53

C2
BR 30 45.80 19.10 52.68 24.82 0.71 24.33
NR 30 177.77 63.63 926.49 101.51 103.95 30.72
NK 30 181.70 61.52 630.81 78.06 54.80 31.91

C3
BR 30 61.70 40.51 1079.54 105.30 105.20 47.57
NR 30 139.03 69.43 6662.72 1748.93 2573.30 76.16
NK 29 146.28 70.25 7874.00 2526.50 3282.22 62.99

C4
BR 25 186.00 71.53 5006.10 3877.70 4147.88 6.62
NR 7 295.43 73.70 1480.99 1031.72 2637.85 0.38
NK 10 245.70 108.96 42649.96 6679.82 16668.94 0.74

C5
BR 30 50.20 29.37 613.29 530.77 3.75 525.62
NR 30 21.10 15.55 1040.14 619.79 50.90 557.09
NK 30 21.43 15.62 1042.35 609.03 38.15 550.50

C6
BR 30 55.77 9.77 -4435.25 -5407.09 148.44 -5642.83
NR 30 56.83 51.49 -4587.86 -5425.54 124.31 -5770.14
NK 30 42.90 33.29 -4634.85 -5457.70 144.14 -5825.52

I1
BR 30 27.97 9.28 -12.17 -14.80 0.61 -15.00
NR 22 220.36 110.92 -6.73 -14.18 1.74 -15.00
NK 23 208.09 108.30 -6.96 -14.04 1.58 -15.00

I2
BR 30 36.93 10.94 19.90 13.00 0.00 13.00
NR 30 84.60 66.00 20.27 13.20 0.76 13.00
NK 30 75.93 57.12 20.80 13.20 0.76 13.00

I3
BR 30 36.03 33.46 -44120.83 -50046.83 102.62 -50199.00
NR 23 198.96 91.48 -41986.39 -50067.00 253.23 -50200.00
NK 25 231.76 80.64 -42354.84 -49622.92 1992.40 -50200.00

MI1
BR 30 22.47 4.75 -0.31 -0.90 0.05 -0.94
NR 30 5.87 6.01 -0.09 -0.83 0.06 -0.92
NK 30 5.63 5.02 -0.10 -0.85 0.06 -0.92

Continued on next page
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Continued from previous page
Pb A #F N (I) σN(I) f (I) f (II) σf(II) f

(II)
min

MI2
BR 30 29.47 49.03 14.84 6.10 0.58 5.54
NR 30 54.93 24.36 14.01 6.49 1.02 4.64
NK 30 59.47 28.51 12.71 5.74 0.66 4.63

MI3
BR 29 60.62 32.88 -0.98 -0.99970 0.00017 -0.99988
NR 30 18.57 16.78 -0.06 -0.99917 0.00063 -0.99983
NK 30 23.30 30.99 -0.11 -0.99914 0.00058 -0.99977

MI4
BR 30 56.33 36.63 -0.93 -0.99917 0.00065 -0.99998
NR 30 12.70 0.53 -0.46 -0.99996 0.00004 -0.99999
NK 30 12.70 0.53 -0.46 -0.99996 0.00005 -0.99999

MI5
BR 30 55.53 24.46 73176.52 62192.92 5320.47 58505.73
NR 30 92.50 53.86 133934.17 76819.02 10584.92 54844.21
NK 30 97.77 71.98 143147.70 75466.98 10945.25 56623.22

MI6
BR 30 28.37 23.97 19714.63 16984.42 26.82 16958.23
NR 30 47.43 24.64 27051.55 17042.98 144.22 16959.28
NK 30 52.13 35.88 30589.19 17021.32 106.00 16962.30

MD2
BR 30 29.90 7.90 142.64 32.02 2.29 31.42
NR 30 147.83 58.26 1035.47 85.38 64.41 35.16
NK 30 157.53 55.40 872.32 90.61 107.76 35.58

MD3
BR 30 38.97 18.51 24.86 23.62 0.09 23.53
NR 30 28.30 27.12 32.62 24.56 0.96 23.60
NK 30 26.87 22.60 33.90 24.32 0.62 23.67

MD4
BR 30 22.80 7.13 75047.08 66812.74 2040.08 64335.74
NR 2 62.00 2.83 97030.00 70671.61 1229.81 69802.00
NK 2 126.50 16.26 75033.07 66892.43 836.45 66300.98

Table 6.10: Results on 18 problems for BOA with RBF, NOMAD with RBF and NOMAD
with KG: number of feasible runs #F , mean number of function evaluations to reach a
feasible solution N I , its standard deviation σN(I) , mean first feasible objective value f (I),
mean best feasible objective value f (II), its standard deviation σf(II) and minimum feasible

objective value f
(II)
min on the 30 runs.

On more than half of the problems, BOA uses less function evaluations to find a first
feasible candidate solution and the latter is on average better than the ones found by the
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two variants of NOMAD.

6.7.2 Algorithm comparisons on RSMLateralCrash

The methods tested in Section 6.7.1 are used on the RSM-based lateral crash study from
Stellantis with parallel and sequential evaluations.

Parallel evaluations

In order to reduce the total computational time of the optimization, the parallel version
of BOA is used. For the same reason, block evaluations are allowed in both variants of
NOMAD. The maximum number of parallel blackbox evaluations is set at 25 in BOA and
NOMAD, and two runs are performed for each method.

It is well noticed that BOA performs the maximum number of parallel blackbox evalu-
ations allowed at each iteration, and possibly less only at the last evaluation to not exceed
the evaluation budget. Differently, NOMAD does not use the whole parallelization capac-
ity at every iteration and can exceed the evaluation budget at its last iteration. Possible
extra evaluations are not considered in the analyses.

Figures 6.1 and 6.2 present the evolution of the best feasible objective values for each
method during the first and second run, respectively. The results are also summarized in
Table 6.11 for each run. The number of blackbox evaluations to reach a feasible solution
(N (I)) is computed as the number of expensive evaluations performed at the end of the
batch to which the feasible point belongs to.

Comparing the parallel methods, during the first run, NOMAD uses less evaluations
to find a feasible solution, as shown in the lines of “run 1” of Table 6.11. This is partly
due to the fact that BOA does not start with a single point but with a DOE consisting of
only infeasible points. Nonetheless, a gap in the objective values is observed on Figure 6.1
when BOA finds its first feasible solution: 0.051 against 0.054 and 0.053 for NOMAD with
RBF and kriging, respectively. During the last fourth of the evaluations, the RBF-assisted
NOMAD performs better than BOA.

Considering now the second run presented on Figure 6.2 and in the lines corresponding
to “run 2” in Table 6.11, there are clear gaps in the performance of the three solvers.
The kriging-assisted NOMAD is effective in finding a feasible solution and performs better
than the RBF-assisted NOMAD. The latter is outperformed by the other methods. BOA
outperforms the surrogate-assisted NOMAD solvers as soon as it finds a feasible solution.

In both runs, although the plots corresponding to BOA start with a clear advantage
on the objective value, the decrease seems globally slower than in NOMAD.
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Figure 6.1: Evolution of the best feasible objective values of RSMLateralCrash according
to the number of evaluations for “run 1” of parallel BOA with cubic RBF (B(p)

R ), parallel
NOMAD with cubic RBF (N(p)

R ) and parallel NOMAD with Gaussian kriging (N(p)
K ).

Figure 6.2: Evolution of the best feasible objective values of RSMLateralCrash according
to the number of evaluations for “run 2” of parallel BOA with cubic RBF (B(p)

R ), parallel
NOMAD with cubic RBF (N(p)

R ) and parallel NOMAD with Gaussian kriging (N(p)
K ).
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Run S N (I) f (I) f (II)

B(p)
R 152 0.051 0.050

N(p)
R 71 0.054 0.0491

N(p)
K 114 0.054 0.051

B(p)
R 127 0.050 0.050

N(p)
R 207 0.057 0.0552

N(p)
K 54 0.058 0.051

Table 6.11: Results for each run on RSMLateralCrash for parallel BOA with RBF (B(p)
R ),

parallel NOMAD with cubic RBF (N(p)
R ) and parallel NOMAD with Gaussian kriging

(N(p)
K ): number of function evaluations to reach a feasible solution N I , first feasible objec-

tive value f (I) and best feasible objective value f (II).

Sequential evaluations

In order to see how parallelization affects the performance of the algorithms, one run with
the classical sequential versions was also performed for each of them. The comparison of
the three methods is depicted in Figure 6.3 for the evolution of the best feasible objective
values and summarized in Table 6.12. The results of NOMAD are identical to those of the
case using the block evaluation option. Thus, the parallelization does not seem to affect
the performance of NOMAD on this problem. The situation is different for BOA whose
internal strategy is modified to deal with simultaneous blackbox calls. In this setting, BOA
outperforms NOMAD and both the first and best feasible solutions of BOA have better
objective values than those found by the two variants of NOMAD.

S N (I) f (I) f (II)

BR 97 0.047 0.047
NR 71 0.054 0.049
NK 114 0.054 0.051

Table 6.12: Results for one run on RSMLateralCrash for BOA with cubic RBF (BR),
NOMAD with cubic RBF (NR) and NOMAD with Gaussian kriging (NK): number of
function evaluations to reach a feasible solution N I , first feasible objective value f (I) and
best feasible objective value f (II).

Focusing on BOA, Figure 6.4 depicts the results for one run of the classical sequential
version of BOA used with cubic RBF compared with its parallel version. The sequential
version needs less evaluations to leave Phase I and the feasible objective value of the best
candidate is better than in the parallel version. Thus, the parallel resolution of the sub-
problems reduces the performance of the algorithm. This is partly due to a higher quality
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Figure 6.3: Evolution of the best feasible objective values of RSMLateralCrash according
to the number of evaluations for one run of BOA with cubic RBF (BR), NOMAD with
cubic RBF (NR) and NOMAD with Gaussian kriging (NK).

of the surrogate in the sequential strategy where it is updated after each expensive evalu-
ation. On this optimization problem where the costs of the blackbox calls are significantly
shortened as it uses surrogates instead of the expensive finite element simulations, the
total computational time was however reduced by two days thanks to the use of parallel
evaluations (from approximately 9 to 7 calculation days).

6.7.3 Algorithm comparisons on LateralCrash

The parallel version of BOA using cubic RBF is tested on the lateral crash design problem
from Stellantis. This problem is computationally very expensive as it makes use of finite
element simulations of the vehicle and each call takes more than 12 hours. As a solution
is commonly desired in a time window of two weeks, assuming that the time needed by a
solver to generate a new candidate point is negligible, only a maximum of 28 evaluations
are possible in a sequential mode, hence the need to evaluate candidate solutions in parallel.
Furthermore, failures are frequently observed in vehicle simulations, which constitutes an
additional challenge.

One run of parallel BOA is performed starting from an initial DOE that consists of 72
infeasible points generated with the same strategy used in the previous experiments. To
cope with the long computational times, the maximum number of surrogate evaluations
for each subproblem resolution is set to 50 ⋅n and block surrogate evaluations of maximum
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Figure 6.4: Evolution of the best feasible objective values of RSMLateralCrash according
to the number of evaluations for one run of BOA with cubic RBF (BR) and the parallel
version (B(p)

R ).

50 points are allowed. The capacity of parallel blackbox evaluations is kept at 25.
The evolution of the best feasible objective values is presented in Figure 6.5 and Ta-

ble 6.13 summarizes the results. The best solution of the initial DOE corresponds to an
infeasible mass of 90.017kg and a best sum of squared constraint violations of 1.553 ⋅ 105.
A feasible solution is found after 222 blackbox evaluations and the best feasible mass ob-
tained at the end of the evaluation budget is 75.719kg. Hence, despite the difficulty of
this mixed-discrete problem with 48 variables and 64 inequality constraints, parallel BOA
reached a feasible solution after only 6 iterations. Indeed, the algorithm first evaluates the
initial DOE before entering any phase, so 222−72 = 150 expensive evaluations are actually
performed during Phase I, which corresponds to 6 batches of blackbox evaluations. More-
over, it is well noticed that 31 failures of the blackbox occurred during the optimization
but they did not stop BOA as its design comprises the handling of such hidden constraints.

S N (I) f (I) f (II)

B(p)
R 222 75.998 75.719

Table 6.13: Results for one run on LateralCrash for parallel BOA with RBF (B(p)
R ): number

of function evaluations to reach a feasible solution N I , first feasible objective value f (I)

and best feasible objective value f (II).
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Figure 6.5: Evolution of the best feasible objective values of LateralCrash according to the
number of evaluations for one run of parallel BOA with RBF (B(p)

R ).

6.8 Final remarks

This chapter presents a new surrogate-based generic method for solving expensive con-
strained blackbox optimization problems with mixed variables. The developed algorithm,
entitled BOA, is flexible in terms of the type of models used or the solver used on its
subproblems, and does not need feasible initial points thanks to its two-phase structure.

An extension of BOA for parallel evaluations is also described for real-world applications
where launching batches of evaluations is essential to expect a reasonably good solution in
a restricted time.

The results for different numerical experiments have been presented, using constrained
optimization problems with more than 10 variables and up to 48. First comparisons of six
kinds of surrogate models used for the subproblems of BOA are performed on 19 problems
from the literature, including applications. They exhibit globally better performance of
MARS and cubic RBF in terms of mean number of evaluations to reach a feasible solution
and quality of the solution. In practice, the construction of MARS models is however
computationally longer. Among the kriging types tested, the use of exponential correlation
functions seems unfavourable in the presence of discrete variables.

Other experiments investigate the parameter λ that takes into account the objective
value in the search of a feasible candidate solution. Comparing cubic RBF-based BOA
with and without λ shows generally lower objective values at the end of Phase I when the
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parameter is used but more evaluations are performed in this phase of the algorithm. In
general, however, the solution obtained at the end of the optimization is still better with
λ.

Then, BOA using cubic RBF is compared with two surrogate-assisted NOMAD variants
and using a higher evaluation budget. The results on the literature problems show an
equivalent ability of the three methods to find feasible solutions on mixed-discrete problems
and a higher performance of BOA on the other types of problems. Regarding the quality of
the solution, BOA globally finds lower objective values than the RBF- and kriging-assisted
NOMAD. These methods are also tested on two automotive problems encountered at
Stellantis.

On the response surface-based pole lateral crash problem, two runs are performed using
parallel versions of each solver. They show that the first feasible solutions found by BOA
have better objective values than the current best solutions of NOMAD variants at the
corresponding number of evaluations. However, the number of evaluations used to find a
feasible solution is better for at least one of the two NOMAD variants. On the final solutions
identified, BOA is competitive or better than NOMAD. Comparing sequential and parallel
versions of the three solvers on one run, the performance of NOMAD is unchanged whereas
BOA outperforms its parallel extension both on the number of evaluations used in Phase
I and on the best solution found.

Furthermore, BOA using parallel evaluations and cubic RBF was successfully applied to
a real-world high-dimensional optimization problem from the automotive group Stellantis.
Starting from an infeasible DOE, the optimization reached a feasible solution in 6 iterations
only and successfully managed the failures of the blackbox.

As a summary, this study exhibits an efficiency of the first phase of BOA in finding good
feasible solutions and shows advantages of the method in a context of restricted evaluation
budgets, which is often the case in industry. It can be considered as a relevant method
for solving real-world expensive blackbox optimization problems with mixed variables and
inequality constraints.
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7
Conclusion and future challenges

7.1 Conclusion

This thesis explores some deterministic and stochastic optimization methods in a blackbox
context for purposes of solving real-world blackbox optimization problems with constraints
and mixed variables and where the functions involved are computationally expensive. Such
complex problems are notably encountered in the automotive industry.

The first contributions are the benchmark of derivative-free and gradient-based opti-
mization methods of the SciPy library of Python, published in [Varelas and Dahito, 2019].
The experiments on the continuous bbob suite of COCO show effectiveness of SLSQP on
the whole testbed and of the differential evolution algorithm on multimodal functions with
adequate global structure. Moreover, adaptations of the parameters of the Nelder-Mead
method seem necessary in high dimensions. Improvements are also observed for some
methods compared to their previous implementations in SciPy.

As second contribution, the performance of the ORTHOMADS instantiation of the well-
known MADS algorithm is evaluated in [Dahito et al., 2021]. The experiments comparing
different poll direction types of the method exhibit the effectiveness of the setting ORTHO

N+1 NEG on both continuous and mixed-integer optimization problems from the literature.
The variants ORTHO 2N and ORTHO N+1 QUAD also show good performance respectively on

125
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the continuous and mixed-integer instances.

Compared with other deterministic and stochastic methods, while ORTHOMADS shows
advantages mainly in small dimensions on continuous problems and on continuous multi-
modal problems with global structure, the algorithm is globally effective on mixed-integer
instances and is particularly competitive for limited budgets.

Other experiments evaluating the contribution of the search phase of the algorithm
show that its use is advantageous for the performance of the algorithm on both testbeds.

A third contribution is the design and implementation of a finite element test case
representing a clamped truss subject to a force applied on one of its nodes. Optimization
problems minimizing the weight, the cost and the compliance of the structure were solved
using ORTHOMADS, CMA-ES and NSGA-II. Mixed optimization problems are considered
with, in particular, continuous thicknesses and categorical materials. The results show the
effectiveness of ORTHOMADS especially for cost and compliance optimizations. Globally,
CMA-ES needs less blackbox evaluations than NSGA-II to approach a good solution and
competes with ORTHOMADS after large evaluation budgets.

A final contribution of this thesis is the design and implementation of a surrogate-based
algorithm, called BOA, that enables the use of different types of metamodels. BOA is a
two-phase algorithm designed for expensive blackbox optimization problems with mixed
variables and inequality constraints. It first seeks a feasible solution of the problem by
iteratively solving subproblems defined by surrogates of the blackbox functions while the
second phase aims at improving the objective value of the best solution so far. The al-
gorithm takes into account the possibility of failures of the blackbox evaluations as it
commonly occurs in real-world optimization problems requiring numerical simulations.

Experiments were performed on considered medium- to large-dimensional instances
from the literature but also engineering applications, all with inequality constraints. The
comparisons of BOA with RBF, kriging with different correlation functions and MARS
show globally better performance of RBF and MARS, although the latter is computation-
ally more intensive. Compared with a RBF- and a kriging-assisted ORTHOMADS, the
performance of BOA used with RBF is similar to that of ORTHOMADS in the search of
a feasible solution on mixed-discrete instances. BOA is globally better to find a feasible
solution with a good objective value and is especially competitive for restricted budgets.

Finally, in order to take advantage of possible parallelization of the blackbox calls, an
extension of the algorithm to parallelization is also presented. It is used on two applica-
tion problems from the automotive industry and also shows the effectiveness of BOA for
restricted evaluation budgets.
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7.2 Future challenges

The research performed in this thesis mainly assumes that all objective and constraint
functions are expensive to evaluate. However, for some real-world optimization problems,
only some of the functions are expensive to query. In the automotive industry in particular,
the objective functions are often cheap to get: computing the weight or the cost of some
parts on a body in white usually takes a few minutes, which is negligible in comparison
to the common 12 hours needed to evaluate crash outputs. A separate handling of cheap
functions, by using only their true evaluations for instance, may improve the resolutions
of such optimization problems. The evaluations of the objective and constraint functions
are however often performed simultaneously so this has to be taken into account.

This thesis also presents the derivative-free algorithm BOA, whose main parameters
were set based on statistical analyses. Further experiments are considered to optimize
some parameters such as the type and size of the DOE used, the choice of initial points
considered for the resolutions of the subproblems, the solver used for their resolutions or
the stopping condition of phase I.

Furthermore, a better decrease of the objective value should be possible with improve-
ments of the second phase of the algorithm, for instance by considering alternative formu-
lations of the corresponding subproblem.

Moreover, different types of surrogate models were considered in BOA and works on
ensembles of surrogates exist in the literature. As each kind of surrogate can be preferable
in some contexts, exploring ensembles of surrogates in BOA would be beneficial. One
could consider for instance, to switch from a surrogate to another based on the predicted
accuracy of the model or the predicted improvement of the solution.

Equality constraints can be treated in the algorithm by turning them into two inequality
constraints with a small margin but this may not be optimal. Thus, a specific handling of
equality constraints would be interesting.

A specific handling of categorical variables is also envisaged, notably through the type
of norm employed in the algorithm.

Finally, the presence of noise is a matter for future work, as well as the identification
of convex areas, thanks to convex underestimators for instance, to locate the minima of
the functions.
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Figure A1: Average running time (aRT in number of function evaluations as log10 value),
divided by dimension for target function value 10−8 versus dimension. Slanted grid lines
indicate quadratic scaling with the dimension. Different symbols correspond to different
algorithms given in the legend of f1 and f24. Light symbols give the maximum number
of function evaluations from the longest trial divided by dimension. Black stars indicate
a statistically better result compared to all other algorithms with p < 0.01 and Bonferroni
correction number of dimensions (six). Legend: ○: B-BFGS, ♢: B-CG, ⋆: B-L-BFGS-B,
▽: B-Nelder-Mead, 9: B-Powell, △: B-SLSQP, D: BFGS, (: CG, +: COBYLA, ◇: DE,
◁: L-BFGS-B, ▽: Nelder-Mead, ⋆: Powell, ◻: SLSQP, ♢: TNC, △: adapt-Nelder-Mead
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Figure A2: Empirical cumulative distribution of simulated (bootstrapped) runtimes,
measured in number of objective function evaluations, divided by dimension (FEvals/DIM)
for the 51 targets 10[−8,...,2] in dimension 5.
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Figure A3: Empirical cumulative distribution of simulated (bootstrapped) runtimes,
measured in number of objective function evaluations, divided by dimension (FEvals/DIM)
for the 51 targets 10[−8,...,2] in dimension 20.
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Figure A4: Empirical cumulative distribution of simulated (bootstrapped) runtimes,
measured in number of function evaluations, divided by dimension (FEvals/DIM) for the
51 targets 10[−8,...,2] for all functions and subgroups in dimension 5.
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Titre : Optimisation boîte noire sous contraintes et en variables mixtes avec des applications dans l’industrie
automobile

Mots clés : optimisation boîte noire, optimisation sans dérivées, variables mixtes, optimisation sous
contraintes

Résumé : Bon nombre de problèmes d’optimisa-
tion rencontrés dans l’industrie font appel à des sys-
tèmes complexes et n’ont pas de formulation ana-
lytique explicite: ce sont des problèmes d’optimisa-
tion de type boîte noire (ou blackbox en anglais). Ils
peuvent être dits “mixtes”, auquel cas ils impliquent
des variables de différentes natures (continues et dis-
crètes), et avoir de nombreuses contraintes à sa-
tisfaire. De plus, les évaluations de l’objectif et des
contraintes peuvent être numériquement coûteuses.
Dans cette thèse, nous étudions des méthodes de ré-
solution de tels problèmes complexes, à savoir des
problèmes d’optimisation boîte noire avec contraintes
et variables mixtes, pour lesquels les évaluations des
fonctions sont très coûteuses en temps de calcul.
Puisque l’utilisation de dérivées n’est pas envisa-
geable, ce type de problèmes est généralement
abordé par des approches sans dérivées comme
les algorithmes évolutionnaires, les méthodes de re-
cherche directe et les approches basées sur des mé-
tamodèles.

Nous étudions les performances de telles méthodes
déterministes et stochastiques dans le cadre de l’op-
timisation boîte noire, y compris sur un cas test en
éléments finis que nous avons conçu. En particu-
lier, nous évaluons les performances de la variante
ORTHOMADS de l’algorithme de recherche directe
MADS sur des problèmes d’optimisation continus et
à variables mixtes issus de la littérature.
Nous proposons également une nouvelle méthode
d’optimisation boîte noire, nommée BOA, basée sur
des approximations par métamodèles. Elle comporte
deux phases dont la première vise à trouver un
point réalisable tandis que la seconde améliore ité-
rativement la valeur de l’objectif de la meilleure so-
lution réalisable trouvée. Nous décrivons des expé-
riences utilisant des instances de la littérature et des
applications de l’industrie automobile. Elles incluent
des tests de notre algorithme avec différents types
de métamodèles, ainsi que des comparaisons avec
ORTHOMADS.

Title : Constrained mixed-variable blackbox optimization with applications in the automotive industry

Keywords : blackbox optimization, derivative-free optimization, mixed variables, constrained optimization

Abstract : Numerous industrial optimization pro-
blems are concerned with complex systems and have
no explicit analytical formulation, that is they are
blackbox optimization problems. They may be mixed,
namely involve different types of variables (conti-
nuous and discrete), and comprise many constraints
that must be satisfied. In addition, the objective and
constraint blackbox functions may be computationally
expensive to evaluate.
In this thesis, we investigate solution methods for such
challenging problems, i.e constrained mixed-variable
blackbox optimization problems involving computatio-
nally expensive functions.
As the use of derivatives is impractical, problems of
this form are commonly tackled using derivative-free
approaches such as evolutionary algorithms, direct
search and surrogate-based methods.
We investigate the performance of such determinis-

tic and stochastic methods in the context of blackbox
optimization, including a finite element test case de-
signed for our research purposes. In particular, the
performance of the ORTHOMADS instantiation of the
direct search MADS algorithm is analyzed on conti-
nuous and mixed-integer optimization problems from
the literature.
We also propose a new blackbox optimization algo-
rithm, called BOA, based on surrogate approxima-
tions. It proceeds in two phases, the first of which
focuses on finding a feasible solution, while the se-
cond one iteratively improves the objective value of
the best feasible solution found. Experiments on ins-
tances stemming from the literature and applications
from the automotive industry are reported. They na-
mely include results of our algorithm considering
different types of surrogates and comparisons with
ORTHOMADS.
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