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Résumé étendu

Le problème de la restauration d’une image à partir d’une version dégradée, floutée et
bruitée, de celle-ci se pose dans de nombreux cadres applicatifs, tels que la microscopie,
l’imagerie médicale et l’astronomie. La restauration non aveugle s’apparente à l’inversion
d’un système linéaire, lié à l’opérateur de flou, en présence de mesures bruitées. Une
simple inversion matricielle semble fournir une approche de résolution triviale, mais
dans la plupart des cas, elle implique de calculer l’inverse d’une matrice de très grande
dimension, mal conditionnée voir non carrée, et quand il existe, le résultat de l’inversion
directe est rarement satisfaisant. Dans le cas de la restauration aveugle, le problème est
encore plus compliqué puisque l’opérateur de flou est lui aussi inconnu, et on observe que
l’image dégradée à partir de laquelle l’image et le flou sont à estimer. De nombreuses
approches ont été proposées pour la restauration d’image. Par exemple, les méthodes
traditionnelles basées sur des approches d’optimisation, minimisant une fonction de coût
appropriée par un algorithme d’optimisation itératif adapté. Ces approches sont fiables
et montrent des résultats satisfaisant. Cependant, un réglage fin des hyper-paramètres de
la fonction de coût (e.g., paramètre de régularisation) peut être fastidieux. Récemment,
des approches dites supervisées basées sur l’apprentissage profond ont été proposées pour
la restauration d’images. Elles reposent sur des modèles non-linéaires complexes dont
les paramètres sont appris à partir de bases de données d’images. Ces méthodes sont
flexibles et peuvent arriver à d’excellents résultats pourvu que la base de données soit
de qualité et de dimension suffisante. De plus, malgré leur complexité, ces approches
peuvent être implémentées efficacement sur des cartes GPU, grâce à des environnements
de programmation adaptés (e.g., PyTorch). En plus du point mentionné ci-dessus lié à
l’importance de la base de données, un autre inconvénient est le manque d’interprétabilité
de ces méthodes. Enfin, aussi bien les techniques d’optimisation ou d’apprentissage,
fournissent généralement une estimation ponctuelle de la solution. En particulier, elles
permettent rarement d’extraire des statistiques d’ordre supérieur, et donc ne peuvent pas
quantifier l’incertitude sur le résultat obtenu.
Dans cette thèse, nous considérons une troisième famille d’approche, appelée l’approche
bayésienne, pour traiter le problème de restauration d’image. Par rapport aux méthodes
mentionnées précédemment, le cadre bayésien considère les paramètres recherchés
(image/noyau dans notre cas) comme des grandeurs aléatoires plutôt que déterministes.
L’objectif devient l’estimation de leur distribution a posteriori, sachant les données ob-
servées (i.e., l’image dégradée). L’application du cadre bayésien présente deux avantages
principaux. Tout d’abord, la statistique du bruit, et des informations sur a priori sur les
grandeurs inconnues peuvent être prises en compte explicitement, via la formule de Bayes.
Deuxièmement, étant donné que toute la distribution a posteriori est estimée, il est facile
d’obtenir n’importe quel moment, tels que la moyenne et la covariance, ou un intervalle de
confiance pour une prise de décision ultérieure.
Néanmoins, une tâche complexe réside dans la mise en oeuvre de l’approche bayési-
enne, à savoir le calcul de la distribution a posteriori. En effet, dans la plupart des
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formulations bayésiennes pour la restauration d’image, la constante de normalisation de
cette distribution ne peut pas être calculée analytiquement même si le modèle a priori
et le modèle d’observation sont simples (e.g., modèles gaussiens). De nombreuses
méthodes algorithmiques ont été envisagées pour fournir une bonne approximation de la
distribution a posteriori recherchée. Dans cette thèse, nous apportons des contributions à
cette problématique, dans le cadre de deux problèmes issus de la restauration d’images
: (i) l’identification de flou non stationnaire, (ii) la déconvolution aveugle. Pour le
premier problème, nous proposons une approche de simulation stochastique, de type
filtrage particulaire (Chapitre 3). Pour le second problème, nous proposons une méthode
d’approximation par technique bayésienne variationnelle (Chapitre 4). Puis nous en pro-
posons une version supervisée via une technique de déroulement de réseaux de neurones
(Chapitre 5). Nos propositions méthodologiques sont étayées par un grand nombre de
résultats numériques, impliquant des modèles de flou et bruit variés. Les contributions
détaillées de chaque chapitre sont décrites ci-après.

Chapitre 3: Approche de filtrage particulaire pour l’identification de flou variant
spatialement

Les images produites par des instruments optiques souffrent souvent de flou causé par
la diffraction de la lumière ou le mouvement de l’objet. La présence du flou provoque
la propagation d’une source ponctuelle infinitésimale dans l’image acquise définissant
la “Point Spread Fonction” (PSF). Lorsque la PSF est inconnue, on peut recourir à une
stratégie de déconvolution aveugle pour restorer l’image. Une autre approche consiste
d’abord à identifier le flou puis à l’éliminer de l’image dégradée par une stratégie de
restauration non aveugle. Cette méthode demande une bonne précision pour l’estimation
de la PSF, qui peut être atteinte efficacement par une étape préalable d’acquisition d’objets
normalisés et calibrés, tels que des microbilles sphériques fluorescentes en microscopie
ou des diagrammes de résolution pour l’étalonnage de l’appareil photo numérique.
L’identification de la PSF est typiquement formulé sous la forme des moindres carrés.
En plus de servir pour la phase de restauration d’image, la PSF identifiée peut également
être utilisée pour ajuster un modèle paramétrique (souvent non linéaire) afin déterminer
les caractéristiques d’un système optique. Dans la plupart des scénarios réalistes, un
modèle de PSF stationnaire n’est pas adapté en raison de la profondeur de champ, du
mouvement des objets ou de la caméra, d’abérrations optiques anisotropes de la lentille,
ou de la turbulence atmosphérique. De telles sources de dégradation d’image donnent
lieu à ce que l’on appelle flou variable spatialement. L’identification de la PSF dans
ce contexte nécessite d’estimer une carte de plusieurs PSFs, décrivant le noyau de flou
à chaque emplacement du plan optique. Dans ce chapitre, nous abordons ce problème
de l’estimation bayésienne des paramètres d’une PSF variable spatialement à partir
d’acquisitions d’images calibrées. Nous considérons un modèle séquentiel paramétrique
pour la carte des PSFs qui suppose des faibles variations entre les PSFs agissant sur
des régions voisines de l’image. Nous formulons un modèle d’espace d’états où chaque
pas de temps correspond à un emplacement de patch dans l’image. Nous adoptons
une approche probabiliste visant à produire la distribution a posteriori des paramètres
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inconnus. Cela nous permet de traiter l’incertitude de manière systématique et l’inclusion
de connaissances a priori sur les inconnues. En conséquence, nous sommes en mesure
non seulement de fournir des mesures d’incertitude sur les paramètres à estimer, mais
aussi de propager cette incertitude à des tâches où ces paramètres estimés sont utilisés (ici,
la tâche de restauration). Dans notre approche, la densité de probabilité a priori fonction
(pdf) des paramètres prend une structure markovienne, ce qui nous permet d’exploiter
des approches d’inférence existantes pour l’inférence séquentielle. Les récursions
bayésiennes obtenues ne donnent pas lieu à des formes explicites et nous recourons au
filtrage particulaire (“particle filtering”, PF) pour une résolution approchée du problème
d’inférence. Nous commençons par la méthode classique bootstrap PF (BPF). Le BPF
parvient à obtenir des résultats satisfaisants dans certains de nos exemples mais il présente
certaines lacunes, par exemple dans des scénarios avec un faible bruit d’observation
où se pose un problème de dégénérescence des particules. Nous proposons donc une
nouvelle méthode appelée GIAnPF (“Generalized Interacting Annealed PF”). GIAnPF
gère la dégénérescence des particules en considérant une séquence de distributions
intermédiaires, qui sont des versions “recuites” de la distribution de filtrage initiale. Nous
démontrons la bonne performance de l’algorithme proposé ainsi que sa robustesse à travers
plusieurs expériences numériques, incluant trois formes différentes de flous paramétriques
variables spatialement. Nous illustrons en Figure 1 les résultats d’identification obtenus
par différentes méthodes à partir d’acquisitions simulées sur une image de microscopie
décomposée en 64 patchs et avec un écart-type de bruit égal à 10−2. Sur cet exemple, les
deux méthodes BPF et GIAnPF basée sur la méthodologie PF, fournissent de meilleurs
résultats visuels, que les autres approches. De plus, en terme quantitatif, notre méthode
GIAnPF atteint une plus faible erreur, au sens de la métrique RMSE. Nous avons
également illustré la validité des estimations obtenues, et l’interêt de la quantification
d’incertitude, pour résoudre des problèmes de restauration d’image. Le travail présenté
dans ce chapitre a fait l’objet de deux publications [Huang et al. 2019, Huang et al. 2021a].

Chapitre 4: Approche bayésienne variationnelle pour la déconvolution aveugle

Nous considérons le problème de déconvolution aveugle, où une image floutée
et bruitée doit être restaurée sans connaissance du modèle de flou. Nous proposons
dans ce chapitre un algorithme bayésien varationnel visant à fournir une approximation
optimale (au sens de la divergence de Kullback-Leibler) de la distribution a posteriori
des paramètres à estimer (ici, l’image, le flou, et des hyper-paramètres du modèle). Nous
supposons la PSF stationnaire, et satisfaisant une contrainte d’égalité linéaire (e.g., somme
à un, symmétrie axiale). Nous adoptons de plus un modèle a priori de type SAR sur
la PSF, dont la moyenne est définie à l’avance, et une régularisation de type variation
totale sur l’image. Nous cherchons ensuite à minimiser la divergence de Kullback-Leibler
(KL) entre la distribution a posteriori obtenue et un modèle séparable (de type “champs
moyens”) de celle-ci, par un algorithme de minimisation alternée. Même dans le cas d’un
bruit gaussien, la mise à jour n’a pas une forme explicite et nous proposons donc d’adopter
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Original NP NP+

IS BPF GIAnPF

Figure 1: Noyaux originaux et estimés avec les méthodes d’optimisation NP, NP+, et les méthodes
d’échantillonnage IS, BPF, GIAnPF. La métrique RMSE (Relative Mean Square Error) vaut, respectivement,
0.2117, 0.1756, 0.1258, 0.1246 et 0.0680. Ce résultat est extrait de la publication [Huang et al. 2021a].

une stratégie d’augmentation de données inspirée des méthodes semi-quadratiques en
optimisation. Nous obtenons alors l’algorithme VBA (variational Bayesian algorithm),
dont nous donnons une première forme adaptée à un bruit gaussien, puis une extension de
celui-ci à un modèle de bruit plus général. L’algorithme obtenu est rapide et performant.
Néanmoins, des tests préliminaires ont montrés une grande sensibilité des résultats au
réglage d’hyper-paramètres tels que le poids de la régularisation sur le noyau, et la variance
du bruit. Cela nous conduit à la contribution suivante, présentée dans le prochain chapitre.

Chapitre 5: Algorithme VBA supervisé par déroulement profond (“deep un-
rolling”)

Nous considérons ici le problème de déconvolution aveugle dans le cas d’un bruit
gaussien. Nous proposons l’algorithme unfoldedVBA, qui applique le paradigme du
déroulement profond, à l’approche VBA décrite dans le chapitre précédent. Les itéra-
tions VBA sont intégrées à une architecture de réseau neuronal profond, chaque itération
devenant une couche du réseau. Cela permet (i) d’apprendre les hyperparamètres (en par-
ticulier, le niveau de bruit) de VBA de manière automatique et supervisée, (ii) d’améliorer
la qualité des résultats en entraînant le modèle avec une fonction de coût liée à la métrique
de qualité d’image, (iii) de mettre en oeuvre la méthode en tirant pleinement parti des
ressources GPU disponibles, et donc de considérablement réduire le temps de restauration
d’image pendant la phase de test. Contrairement aux méthodes standard d’apprentissage
profond pour la déconvolution aveugle, notre méthode est l’interprétable, grâce à la tech-
nique de déroulement. Soulignons que les méthodes bayésiennes variationnelles ont déjà
été employées dans un contexte d’apprentissage profond. Notamment, ce sont des méth-
odes standards pour l’entrainement des auto-encodeurs variationnels, et des réseaux de neu-
rones bayésiens. Cependant, à notre connaissance, notre travail est le premier à étudier le



Contents vii

déroulement profond d’une technique bayésienne variationnelle. En complément des itéra-
tions VBA déroulées, nous intégrons à notre architecture des couches supplémentaires,
permettant d’apprendre les hyper-paramètres et d’améliorer la qualité de l’image en sor-
tie via un post-traitement. L’architecture complète est présentée en Figure 2, pour le cas
d’images en niveaux de gris et couleur. Nous montrons la supériorité de notre approche
par rapport à l’état de l’art sur plusieurs jeux de données, impliquant des flous variés (e.g.,
gaussien, mouvement). Nous montrons dans la Figure 3 un exemple de restauration pour
une image couleur dégradée par un flou de focus. Nous voyons que l’approche proposée
permet d’améliorer la qualité visuelle et quantitative de l’image restaurée, par rapport à
l’algorithme initial VBA. Les contributions des chapitres 4 et 5 ont fait l’objet de la publi-
cation [Huang et al. 2021b].
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Figure 2: Architecture proposée pour la déconvolution aveugle, dans le cas d’images en niveaux de gris
(haut) et couleur (bas).
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Dégradée Originale VBA Méthode proposée
MSE= 0.0293 MSE = 0.0046

Figure 3: Image dégradée, image/flou originaux, et résultats d’estimation par VBA et par la méthode VBA
déroulée proposée. Nous indiquons la valeur de la métrique MSE (Mean Square Error) pour les deux résultats.
Cet exemple est extrait de [Huang et al. 2021b].



Abstract/Résumé

Abstract

Image deblurring is an essential image restoration problem arising in several fields from as-
tronomy to medical science. It amounts to restoring an image from a degraded, blurry and
noisy, version of it. Bayesian image deblurring seeks for the posterior distribution of the
image (and blur kernel, when unknown) given an observation model and some prior knowl-
edge on the unknowns. Closed form for the posterior distribution can rarely be computed
analytically, so Bayesian approximation tools are deployed to derive an estimation of it.
This thesis brings novel contributions in that topic, by introducing novel Bayesian methods
for tackling two important scenarios of image deblurring problems. First, we are interested
in the so-called blur identification problem, of estimating spatially varying blur kernels
given a clean image and its degraded version. We construct a probabilistic state-space
model accounting for the smoothness among the neighboring blur kernels, and propose a
novel algorithm based on bootstrap PF (BPF) to sample weighted particles, and thus con-
struct the sought posterior distribution. Numerical experiments on various spatially-variant
blur maps and images illustrate the benefits and good stability of our approach. Second, we
focus on the blind image deblurring problem of jointly estimating the image and blur ker-
nel given the blurry noisy image. We adopt the variational Bayesian approach, to build an
appropriate approximation of the posterior distribution. We introduce majorization steps to
maintain closed form updates even for non conjugate priors and non-Gaussian noise. This
yields the variational Bayesian algorithm (VBA). We then propose to unfold VBA over
neural network layers, following the recently introduced deep unrolling paradigm. This
yields the unfolded VBA, benefiting from reduced parameter tuning, fast computations on
GPU architecture, and improved quantitative restoration results. The superiority of un-
folded VBA over state-of-the-art blind deblurring techniques is illustrated on three datasets
involving color/grayscale natural images and various blur shapes.

Résumé

La déconvolution d’image est un problème essentiel de restauration d’image qui se pose
dans plusieurs domaines allant de l’astronomie à la médecine. Cela consiste à restituer
une image à partir d’une version dégradée, floue et bruitée de celle-ci. La déconvolu-
tion d’image dans un cadre bayésien s’intéresse à rechercher la distribution postérieure de
l’image (et du flou, lorsqu’il est inconnu) étant donné un modèle d’observation et des con-
naissances préalables sur les inconnues. La forme explicite de la distribution postérieure
peut rarement être calculée analytiquement, de sorte que des outils d’approximation bayési-
enne sont déployés pour en obtenir une estimation. Cette thèse apporte de nouvelles contri-
butions dans ce domaine, en introduisant de nouvelles méthodes bayésiennes pour aborder
deux scénarios importants de déconvolution d’image. Tout d’abord, nous nous intéres-
sons au problème d’identification du flou, consistant à estimer des noyaux de flou variant
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spatialement étant donné une image originale et sa version dégradée. Nous construisons
un modèle d’espace d’état probabiliste tenant compte de la régularité entre les noyaux de
flou voisins et proposons un nouvel algorithme basé sur le filtrage de particules bootstrap
pour échantillonner des particules pondérées, et ainsi construire la distribution postérieure
recherchée. Des expériences numériques sur divers exemples de flou spatialement variants
illustrent les avantages et la stabilité de notre approche. Ensuite, nous nous concentrons
sur le problème de déconvolution aveugle d’image, consistant à estimer conjointement
l’image et le noyau de convolution à partir d’une image bruitée et floue. Nous adoptons
une approche bayésienne variationnelle, pour construire une approximation appropriée de
la distribution postérieure. Nous introduisons des étapes de majoration pour permettre des
mises à jour explicites des variables même pour des a prioris non conjugués et un bruit
non gaussien. Cela donne l’algorithme bayésien variationnel. Nous proposons ensuite de
dérouler cet algorithme sur des couches de réseaux de neurones, en suivant le paradigme de
déroulement profond récemment introduit dans la littérature. L’algorithme obtenue béné-
ficie d’un nombre réduit de paramètres à régler, d’une exécution rapide sur carte GPU et
fournit des meilleurs résultats de restauration. La supériorité du la méthode est illustrée
sur trois jeux de données impliquant des images naturelles en couleur ou niveaux de gris et
diverses formes de flous.
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(a,b) real interval excluding a and b
s scalars will be denoted by lowercase letters
v vectors will be denoted by lowercase bold letters
M matrices will be denoted by uppercase bold letters
M> transportation of the matrix M
M−1 inverse of the matrix M
trace(M) trace of the matrix M
Im square identity matrix in Rm×m

vi i−th entry of the vector v
Mi, j element in i−th row and j−th column of the matrix M
|s| absolute value of the scalar s
|M| determinant of the matrix M
||v|| `2 norm of the vector v
||M|| `2 norm of the matrix M
diag(M) vector composed of the diagonal entries of the matrix M
Diag(v) diagonal matrix whose entries are given by the vector v
δ f (v)

δvi
functional derivatives of the function f with respect to vi

∂ f (v)
∂vi

partial derivatives of the function f with respect to vi

ln natural logarithm
exp natural exponential
KL( f ||g) Kullback Leibler divergence between functions f and g
xt the state of x at time step t
x(i)t the i−th sample of the state of x at time step t
p(x) prior distribution of x
p(x|y) conditional distribution of x given y
Ex( f (x)) expectation of the function f (x) with respect to p(x)
Ex|y( f (x)) expectation of the function f (x) with respect to p(x|y)
U([a,b]) uniform distribution over the interval [a,b]
N (µ,Σ) Gaussian distribution with mean vector µ and covariance matrix Σ

N[a,b](µ,Σ) truncated Gaussian distribution with mean vector µ and covariance matrix
Σ in the support [a,b]
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1.1 Motivation

The problem of restoring an image from a degraded, blurred and noisy version thereof
arises in many application frameworks, such as microscopy, medical imaging and astron-
omy. Non-blind image deblurring reads as a linear inverse problem requiring to invert the
effect of a blur operator, in the presence of noisy measurements. Simple (pseudo)inversion
of the blur degradation operator might seem as an appealing solution approach, but in most
cases it involves computing the inverse of a very high-dimensional, ill-conditioned or even
non-square matrix, and whenever it exists, the result of the direct inversion is rarely sat-
isfactory. In the case of blind restoration, the problem is even more complicated since
the blur operator is also unknown, and we observe that the degraded image from which
the image and the blur are to be estimated. Many approaches have been proposed for
image restoration. Traditional methods rely on optimization approaches, minimizing an
appropriate cost function by a suitable iterative optimization algorithm. These approaches
are reliable and demonstrate satisfactory results. However, finetuning the hyperparame-
ters of the cost function (e.g., regularization parameter) or of the optimization solver (e.g.,
stepsize) can be tedious. Supervised approaches based on deep learning have also been
proposed for image restoration. They rely on complex nonlinear models whose parameters
are learned from image databases. These methods are flexible and can achieve excellent
results assuming a training database of sufficient quality and size. Despite their inherent
model complexity, these approaches can be implemented efficiently on GPU cards, thanks
to suitable programming environments (for example, PyTorch). In addition to requiring
large database, another disadvantage is the lack of interpretation of these methods. Both
optimization and learning techniques generally offer a point estimate of the solution. In
particular, they rarely allow to extract higher order statistics, and therefore cannot quantify
the uncertainty on the result obtained.
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In this thesis, we consider a third family of approaches, called the Bayesian approach,
to deal with the image restoration problem. Compared to the methods mentioned previ-
ously, the Bayesian framework considers the sought parameters (image/blur in our case) as
random quantities rather than deterministic ones. The goal becomes the estimation of their
distribution a posteriori, given the observed data (i.e., the degraded image). The application
of the Bayesian framework has two main advantages. First of all, the noise statistic and a
priori information on the unknown quantities can be taken into account explicitly, via the
Bayes’ formula. Second, since the entire a posteriori distribution is estimated, it is easy to
obtain any moment, such as the mean and covariance, or a confidence interval for further
decision making.

Nevertheless, a complex task lies in the implementation of the Bayesian approach,
namely the calculation of the a posteriori distribution. Indeed, in most Bayesian formula-
tions for image restoration, the normalization constant of this distribution cannot be ana-
lytically computed even if the model a priori and the observation model are simple (e.g.,
Gaussian models). Many algorithmic methods have been considered to provide a good ap-
proximation of the desired a posteriori distribution. In this thesis, we make contributions
to this question, in the context of two problems arising from image restoration, namely (i)
non-stationary blur identification, and (ii) blind deconvolution. For the first problem, we
propose a sequential stochastic simulation approach based on the particle filtering frame-
work (Chapter 3). For the second problem, we propose an approximation method through
a variational Bayesian technique (Chapter 4). Then we build a supervised version of this
method using a neural network unfolding methodology (Chapter 5). Our methodologi-
cal contributions are supported by a large number of numerical results, involving various
models of blur and noise. The detailed contributions of each chapter are described below.

1.2 Main contributions

Chapter 3: Particle filtering method for space-varying blur identification

Images produced by optical instruments often suffer from blur caused by light diffraction
or object motion. The presence of the blur causes the spread of an infinitesimal point source
in the acquired image defining the “Point Spread Function” (PSF). When the PSF is un-
known, a blind deconvolution strategy can be used to restore the image. Another approach
is to firstly identify the blur and then remove it from the degraded image by a non-blind
restoration strategy. This method requires good precision for the estimation of the PSF.
This can be effectively achieved by a prior step of acquiring standardized and calibrated
objects, such as fluorescent spherical microbeads in microscopy or resolution diagrams for
calibration of digital cameras. The identification of the PSF is typically formulated as a
(constrained) least squares minimization problem. The identified PSF can be further used
to fit a parametric model (often nonlinear) to determine the characteristics of an optical sys-
tem. In most realistic scenarios, a stationary PSF model is not suitable due to depth of field,
object or camera movement, anisotropic optical aberrations of the lens, or atmospheric tur-
bulence. Such sources of image degradation give rise to so-called spatially variant blur.
Identifying the PSF in such context requires estimating a map of several PSFs, describing
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the blur kernel at each location in the optical plane. In this chapter, we address the prob-
lem of the Bayesian estimation of the parameters of a spatially variant PSF from calibrated
image acquisitions. We consider a parametric sequential model for the map of PSFs which
assumes small variations between PSFs acting on neighboring regions of the image. We
formulate a state-space model where each time step corresponds to a patch location in the
image. We adopt a probabilistic approach aiming to produce the a posteriori distribution
of the unknown parameters. This allows us to deal with uncertainty in a systematic way
as well as the introduction of a priori knowledge about the unknowns. Consequently, we
are able not only to provide measures of uncertainty on the parameters to be estimated,
but also to propagate this uncertainty to tasks where these estimated parameters are used
(here, the restoration task). In our approach, the probability density a priori function of
the parameters takes a Markovian structure, which allows us to exploit existing inference
approaches for sequential inference. The Bayesian recursions obtained do not give rise to
explicit forms and we resort to particle filtering (PF) for an approximate resolution of the
inference problem. We start with the classic method bootstrap PF (BPF). BPF manages to
reach satisfactory results in some of our examples but it has some shortcomings, for exam-
ple it fails in scenarios with low observation noise where a problem of particle degeneracy
arises. We therefore propose a new method called Generalized Interacting Annealed PF
(GIAnPF). GIAnPF handles particle degeneracy by considering a sequence of intermediate
distributions, which are “annealed” versions of the initial filtering distribution. We demon-
strate the good performance of the proposed algorithm as well as its robustness through
several numerical experiments, including three different forms of spatially variable para-
metric fuzziness. We also illustrate the validity of the estimates obtained, and the interest
of uncertainty quantification, to solve image restoration problems.

Chapter 4: Variational Bayesian algorithm for blind image deconvolution un-
der Gaussian and non-Gaussian noise

We consider the problem of blind deconvolution, where a blurred and noisy image must be
restored without assuming the knowledge of the blur kernel. We propose in this chapter a
variational Bayesian algorithm aiming to provide an optimal approximation (in the sense
of the Kullback-Leibler divergence) of the a posteriori distribution of the parameters to be
estimated (here, the image, the blur, and hyperparameters of the model). We assume the
PSF is stationary and satisfies a linear equality constraint (e.g., sum-to-one, axial symme-
try). We also adopt an a priori model of the SAR type on the PSF, whose mean is defined in
advance, and a total-variation (TV) regularization on the image. We then seek to minimize
the Kullback-Leibler (KL) divergence between the a posteriori distribution obtained and a
separable model (of the “mean field” type) of it, by an alternating minimization algorithm.
Even in the simpler case of Gaussian noise, the updates do not have closed forms and we
therefore propose a data augmentation strategy inspired by semi-quadratic methods used in
optimization. This yields our algorithm VBA (variational Bayesian algorithm), for which
we give a first form adapted to a Gaussian noise, then an extension of it to a more gen-
eral noise model. The algorithm obtained is fast and efficient. Nevertheless, preliminary
tests have shown its high sensitivity to the tuning of hyperparameters such as the weight
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of the regularization on the kernel, and the variance of the noise. This leads us to our next
contribution, presented in the next chapter.

Chapter 5: Unrolled variational Bayesian algorithm for blind image deconvo-
lution

We focus here on the blind image deconvolution problem in the case of Gaussian noise.
We propose the unfoldedVBA algorithm, which applies the deep unfolding paradigm, to
the VBA approach described in the previous chapter. VBA iterations are embedded into
a deep neural network architecture, with each iteration becoming a layer of the network.
This allows (i) to learn the hyperparameters (in particular, the noise level) of VBA in an au-
tomatic and supervised way, (ii) to improve the quality of the results by training the model
with a cost function linked to the metric image quality, and (iii) to implement the method
by taking advantage of the available GPU resources, and therefore to considerably reduce
the image restoration time during the test phase. Unlike standard deep learning methods for
blind deconvolution, our method is interpretable, thanks to the unrolling paradigm. Note
that variational Bayesian methods have already been used in a deep learning context. In
particular, they are standard methods for training variational auto-encoders, and Bayesian
neural networks. However, to our knowledge, our work is the first to investigate the deep
unrolling of a variational Bayesian technique. In addition to the VBA layers, we integrate
additional layers into our architecture, allowing us to learn the hyperparameters and to im-
prove again the quality of the output image via post-processing. We show the superiority of
our approach compared to the state-of-the-art on several datasets, involving various blurs
(e.g., Gaussian blurs, real-world motion blurs), and grayscale/color natural images.

1.3 Publications

Journal papers

• Y. Huang, E. Chouzenoux and V. Elvira. Probabilistic Modeling and Inference for
Sequential Space-Varying Blur Identification. IEEE Transactions on Computational
Imaging, vol. 7, pages 531–546, 2021. [Huang et al. 2021a]

• Y. Huang, E. Chouzenoux and J.-C. Pesquet. Unrolled Variational Bayesian Al-
gorithm for Image Blind Deconvolution. In major revisions in IEEE Transac-
tions on Image Processing, 2022. https://arxiv.org/abs/2110.07202
[Huang et al. 2021b]

Conference papers

• Y. Huang, E. Chouzenoux and V. Elvira. Particle Filtering for Online Space-Varying
Blur Identification. In Proceedings of the IEEE International Workshop on Com-
putational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2019), pages
544–548, Le Gosier, Guadeloupe, French West Indies, 2019. [Huang et al. 2019]

https://arxiv.org/abs/2110.07202
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Invited talks

• Particle Filtering for Online Space-Varying Blur Identification. Journées Imagerie
Optique Non Conventionnelle (JIONC 2019), Institut Langevin, Paris, 18 March
2019.

• Particle Filtering for Online Space-Varying Blur Identification. SigMA seminar,
CRIStAL, Lille, 21 February 2022.

Softwares

• Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution (PyTorch
implementation). https://github.com/yunshihuang/unfoldedVBA.

1.4 Outline

• Chapter 1 presents the motivation and context of our research, and introduces our
contributions.

• Chapter 2 gives an introduction to the field of image restoration, with a specific
focus on Bayesian techniques.

• Chapter 3 presents our first contribution, that is the proposition of a sequential
particle filtering algorithm for the probabilistic identification of the parameters of
spatially-variant blurs.

• Chapter 4 introduces our second contribution, that is the construction of two varia-
tional Bayesian algorithms, to deal with image blind deconvolution problems under
Gaussian and non-Gaussian noises.

• Chapter 5 states our third contribution, which is the introduction of the unrolling
paradigm within the VBA method proposed in the previous chapter, and its experi-
mental validation onto various datasets of blind image deblurring.

• Chapter 6 concludes the thesis and raises some perspectives.

https://github.com/yunshihuang/unfoldedVBA
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The so-called Bayesian approach in statistical analysis is based on Bayes’ rule.
The main advantage of Bayesian approach is that instead of deriving only point es-
timate of unknowns like other methods (e.g., optimization-based), it provides a full
distribution and thus yields, for instance, uncertainty quantification of the estimation
[Jeffreys 1939, Robert et al. 2009, Mattei 2020]. Bayesian methods have been applied to
different problems related to image processing. The rest of this chapter is organized as
follows. In Section 2.1, we introduce the Bayesian paradigm, and provide typical Bayesian
formulations encountered in image restoration. In Section 2.2 and Section 2.3, we review
two main classes of Bayesian inference methods (static and dynamic ones) respectively,
which will be at the core of this thesis developments. In Section 2.4, we conclude this
chapter.

2.1 Bayesian framework for imaging science

2.1.1 Bayesian paradigm

In the field of statistical inference, there are two mainstreams called frequen-
tist [Bailer-Jones 2017] and Bayesian [Bernardo & Smith 1994, Gelman et al. 2004,
Robert 2007] statistics. For some unknown parameters to be estimated, the frequentist
approach assumes them to be fixed and uses only the information from the current experi-
ment. The Bayesian or probabilistic approach allows to quantify the uncertainty and to in-
corporate prior information. We first review some basic concepts of Bayesian approaches.
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Let Θ be the collection of unknown parameters to be estimated, and y the given data. Both
of them are random variables, thus we can get access to the posterior distribution of the
unknowns p(Θ|y) according to the Bayes’ rule, given the likelihood p(y|Θ) and the prior
distribution p(Θ) as follows:

p(Θ|y) = p(Θ)p(y|Θ)

p(y)
. (2.1)

Hereabove,

p(y) =
∫

p(Θ)p(y|Θ)dΘ (2.2)

is the marginal density of the variable Θ and can be seen as a normalization constant of
p(Θ|y). This means that we have the proportionality relation:

p(Θ|y) ∝ p(Θ)p(y|Θ). (2.3)

Eq. (2.3) is especially useful since in most cases the constant (2.2) cannot be computed
analytically.

2.1.2 MAP/MMSE estimator

Let us review some popular point-wise estimators. Since the exact value of the parameter
Θ is unknown, we need to resort to estimation methods. The relevant maximum likelihood
estimate (MLE) estimator is derived as

Θ̂MLE = argmaxΘ p(y|Θ), (2.4)

by obtaining the estimate of the unknown parameters Θ only based on the observation
model p(y|Θ). Moreover, if we have access to the prior distribution p(Θ), we can then
estimate it by the posterior distribution p(Θ|y).
When maximizing this posterior distribution p(Θ|y), we obtain the maximum a posteriori
(MAP) estimator,

Θ̂MAP = argmaxΘ p(Θ|y). (2.5)

Note that if the prior distribution, p(Θ), is chosen as uniform, the MAP estimator coincides
with the MLE estimator since

Θ̂MAP = argmaxΘ p(Θ|y)
= argmaxΘ p(y|Θ)p(Θ). (2.6)

Equivalently,

Θ̂MAP = argminΘ (− ln p(y|Θ)− ln p(Θ)) . (2.7)

However, the closed-form solution is intractable in most applications, so we resort to iter-
ative optimization methods to compute the estimator numerically.
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On the other hand, we can also choose to minimize the mean square error between the
estimation Θ̂ and the true value Θ,

Θ̂MMSE = argminΘ EΘ[(Θ̂−Θ)2]. (2.8)

Thus the Bayesian estimator is the mean of the posterior distribution of Θ,

Θ̂MMSE = EΘ|y(Θ) =
∫

Θp(Θ|y)dΘ. (2.9)

This posterior mean estimator is often called minimum mean squared error (MMSE) es-
timator of the parameter Θ. Note that if the posterior distribution is Gaussian, these two
Bayesian estimators coincide since the mean and the mode of a normal distribution are
identical. However, in most cases, as soon as the posterior distribution is not symmetric,
MAP estimator and MMSE estimator would give different results. In general, both MAP
estimator and MMSE estimator are point estimates instead of Bayes estimators unless Θ is
discrete variable, which also demand a credible interval for the estimation. In conclusion,
this shortage of point-wise estimators forces to find alternative Bayesian approaches with
the ability to provide the uncertainty of the unknown parameters.

2.1.3 Image restoration

Image restoration is a key problematic of the field of computer vision. Blur is a
main cause of image degradation that commonly appears during the process of acqui-
sition of the images due to many reasons such as camera shake [Fergus et al. 2006],
fast moving of the object [Rozumnyi et al. 2021], and out of focus of the object
[Chan & Nguyen 2011]. Undoubtedly, the blur deteriorates valuable image information
[Shi et al. 2014], thus image deblurring becomes a hot topic in many areas, for example,
astronomical imaging [Murtagh et al. 2007], microscopy [Holmes et al. 2006] and medical
imaging [Michailovich & Tannenbaum 2007], where the images are usually required to be
in high quality. We display some examples of images degraded by different kinds of blurs
in Fig. 2.1.

On top of blur degradation, images also suffer from noise coming from the sensor
[Boyat & Joshi 2013], for example, the popular additive Gaussian noise [Russo 2003]
is a side effect of sensor heat. The salt and pepper noise [Alqadi 2018], also known as
impulse noise [Jayamanmadharao et al. 2010], is caused by sharp and sudden disturbances
in the image signal. Poisson noise [Bertero et al. 2009] appears because of the effects
of electromagnetic waves. Multiplicative speckle noise [Guadalupe Sanchez et al. 2012]
is present in low level luminance images such as ultrasound images. We display some
examples of images corrupted by different kinds of noise in Fig. 2.2.

In image deblurring (also called image deconvolution), given a degraded, blurred, and
noisy image, the goal is to restore a clean image along with an estimation of corresponding
blur kernel (if the latter is unknown). Mathematically, the observation model is defined as
follows:

y = H̃x̃+n, (2.10)



10 Chapter 2. Background

a) Original image b) Degraded image with c) Degraded image with
Gaussian blur uniform blur

d) Degraded image with e) Degraded image with f) Degraded image with
defocus blur motion blur disk blur

Figure 2.1: Examples of images degraded by different blurs.

where y ∈ RN is the degraded image that is observed; x̃ ∈ RN is the clean image to be
restored; n ∈ RN corresponds to some additive random noise (more sophisticated noise
models could arise, see [Marnissi et al. 2017, Dupe et al. 2008]); and H̃ ∈ RN×N is a
linear operator related to the blur kernel h̃ ∈ RM. According to whether the blur kernel
is known or unknown, one can divide the image restoration problem into two different
categories: non-blind image deconvolution or blind image deconvolution. In the former
case, the blur kernel is known and the image must be restored given the blurry noisy
image and the blur kernel [Marnissi et al. 2017, Sun et al. 2014, Schuler et al. 2013].
As for the blind deconvolution problem, one needs to restore the image and esti-
mate the blur kernel given the observed degraded image [Kundur & Hatzinakos 1996,
Huang et al. 2021a, Likas & Galatsanos 2004]. Let us make a special focus on this
problem that will be at the core of our thesis. There are mainly two approaches to
tackle image blind deconvolution. The first one is called sequential identification pro-
cess [Huang et al. 2021a, Carasso 2001] where the blur kernel is derived first through
some kernel estimation methods applied on calibrated images, then non-blind image
deconvolution is conducted to restore the image using the previously approximated blur
kernel. This problem will be investigated in Chapter 3. A second method is the joint
estimation approach [Babacan et al. 2009, Ren et al. 2020], which estimates the image
and blur kernel simultaneously. Since this inverse problem is severely ill-posed, an infinite
number of combinations of the pairs (H,x) might exist. This demands to adopt suitable
prior assumptions on the sought image and on the sought blur kernel. We will tackle this
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a) Original image b) Degraded image with
Gaussian noise

c) Degraded image with d) Degraded image with
salt and pepper noise speckle noise

Figure 2.2: Examples of images degraded by different noises.

problem in Chapters 4 and 5.

In Chapter 3 of this thesis, we will focus on the blur identification problem. This
amounts to identifying an estimate ĥ of an original blur kernel h̃, the given y, and the
original image x. In the case of stationary blur, the observation model is

y = Xh̃+n, (2.11)

where X is the suitable block Toeplitz matrix related to the original image x, and n models
some noise. In calibration, it is useful to introduce a parametric model for the blur kernel
depending on unknown parameters Θ,

h̃ = h(Θ̃). (2.12)

The goal is thus to find estimate for Θ̃ given the knowledge of the pair (x,y). In Chapter 3,
we will consider the more challenging case of a spatially-variant blur, requiring the
estimation of a set of some parameters Θt , associated to image positions t = 1, · · · ,T . A
complete review of the state-of-the-art for this problem will be provided in Chapter 3.

In Chapter 4 and 5, we focus on the joint image blind deconvolution problem. Given
the observation model (2.10), we seek for an estimate (x̂, ĥ) of the pair of variables
(x̃, h̃) given y. Following a Bayesian approach, our target is to find an entire distribution
describing the sought parameters (i.e., image, kernel, hyperparameters). Many approaches
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have been proposed to solve this task, a complete review will be provided in Chapter 4.

For both calibration and blind deconvolution problems, a key aspect is the definition
of suitable priors for the unknowns. One can impose smoothness on the image by ap-
plying total-variation (TV) [Marnissi et al. 2017, Babacan et al. 2009] or simultaneous au-
toregressive (SAR) prior [Tzikas et al. 2009, Shi et al. 2017]. For specific images such as
US images, one can rely on a sparsity prior [Zhao et al. 2016, Besson et al. 2017]. For the
blur kernel, it is usually assumed to satisfy a normalization constraint (e.g., sum-to-one)
[Zhou et al. 2015] to avoid the scaling ambiguity, as well as a non-negativity constraint
[Mateos et al. 2016]. Sometimes, for special shapes of blurs, symmetry might be also as-
sumed, i.e., the values of the blur are symmetrical according to the anti-diagonal line of 2D
blur kernel, as shown in Fig. 2.3. The estimation of spatially-variant blurs can also benefit
from priors accounting for their smooth variations in the image space [Denis et al. 2015].

a) Gaussian blur b) Uniform blur c) Defocus blur

Figure 2.3: Three examples of blurs that follow the diagonal symmetry.

2.2 Bayesian inference methods

In the following, we review two families of algorithms that perform approximate
Bayesian inference, namely variational Bayesian algorithms (Section 2.2.1) and im-
portance sampling (Section 2.2.2). Let us point out that another important family
of methods are Markov chain Monte Carlo (MCMC) methods that approximate the
target distribution by relying on Markov chain theory and Monte Carlo integration
[Robert & Casella 2004, Gamerman & Lopes 2006, Robert et al. 2018]. We refer the
reader to [Pustelnik et al. 2016] for a review of the usage of these techniques in the field
of image restoration. Examples of applications in the context of image deblurring can be
found in [Marnissi et al. 2020, Marnissi et al. 2018].

2.2.1 Variational Bayesian algorithm

The variational Bayesian algorithm (VBA) attempts to find a more tractable approximation
p(Θ) of the unknown distribution p(Θ|y). This is a powerful tool especially when we want
to marginalize the unknowns without explicitly computing them because the involved in-
tegral is intractable. The variational Bayesian paradigm mainly has two advantages, first
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it provides us an analytical approximation of the posterior distribution of the unknowns.
Secondly it enables us to get access to the high-order moments of the unknowns that al-
lows us to obtain the uncertainty of the estimation, which is essentially important for a
Bayesian method. Many applications of variational Bayesian principle have been aris-
ing to solve image deblurring problems [Marnissi et al. 2017, Likas & Galatsanos 2004,
Babacan et al. 2009, Zheng et al. 2015c]. Among different types of approximation, mean
field approximation is the most used one that makes use of a factorized structure of q(Θ)

to approximate the posterior distribution,

p(Θ|y)≈ q(Θ) =
R

∏
r=1

qr(Θr), (2.13)

with R being the number of factorized unknowns in the set of Θ. Then, one searches for
a distribution q(Θ) with form (2.13) that approximates the posterior distribution p(Θ|y)
[Blei et al. 2017]. The quality of the approximation is evaluated using the Kullback-Leibler
(KL) divergence, defined as

KL(q(Θ)||p(Θ|y)) =
∫

q(Θ) ln
(

q(Θ)

p(Θ|y)

)
dΘ (2.14)

where the equality only holds when q(Θ) = p(Θ|y). It is a non-symmetric measure of
the difference between the target posterior distribution and its approximation. The optimal
distribution q(Θ) is the one that minimizes the KL divergence. One can show that the
solution of each qr(Θr) minimizing the KL divergence reads,

qr(Θr) ∝ exp
(
< ln p(Θ,y)>∏i6=r qi(Θi)

)
. (2.15)

The so-called VBA consists in alternating over the updates of the factors qr, using the
expression (2.15), while keeping others unchanged. An application of this methodology to
image blind deconvolution will be presented in Chapters 4 and 5.

2.2.2 Importance sampling and adaptive importance sampling

Importance sampling (IS) is a Monte Carlo methodology for the approximation of in-
tractable integrals [Robert & Casella 2004, Liu 2004]. While IS is a useful approximation
technique in many settings, here we focus again on the Bayesian inference problem. Fol-
lowing the already defined notation, the posterior distribution is

p(Θ|y) = p(y|Θ)p(Θ)

p(y)
∝ π(Θ), (2.16)

where π(Θ) = p(y|Θ)p(Θ) and p(y) =
∫

π(Θ)dΘ is a constant. In many applications, we
are interested in computing a moment w.r.t. the posterior distribution,

I = EΘ|y[g(Θ)] =
∫

g(Θ)p(Θ|y)dΘ (2.17)

=
1

p(y)

∫
g(Θ)π(Θ)dΘ, (2.18)
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where g is any integrable function w.r.t. p(Θ|y). However, Eq. (2.18) cannot be computed,
since in most cases, this integral is intractable and p(y) is also not available.
IS [Elvira & Martino 2021] is a family of methods that generate samples from the so-called
proposal or importance distribution and assign each sample with an importance weight,
accounting for the mismatch between target and proposal distributions. The main differ-
ence between this approach and direct Monte Carlo sampling is that, in IS, the particle
approximation of the distribution is composed of weighted Dirac masses. The standard IS
algorithm is shown in Table. 2.1.

Table 2.1: IS algorithm

1. Draw M i.i.d. samples from the importance distribution q(Θ),

Θ
(m) ∼ q(Θ), m = 1, · · · ,M (2.19)

2. Compute the associated importance weights

w(m) =
π(Θ(m))

q(Θ(m))
, m = 1, · · · ,M (2.20)

and compute the normalized weights over all the samples,

w(m) =
w(m)

∑
M
i=1 w(i)

, m = 1, · · · ,M (2.21)

3. Output: It provides M weighted particles {Θ(m),w(m)}M
m=1 for the approximation of the posterior

distribution.

IS methods allow for the approximation of the expectation above via the self-
normalized importance sampling (SNIS) estimator,

Ĩ =
M

∑
m=1

w(m)g(Θ(m)). (2.22)

IS-based methods are powerful approximation techniques, but their performance strongly
relies on the choice of the proposal distribution. Therefore, many approaches are proposed
in order to tackle this challenge. One alternative is the usage of several proposals, un-
der the so-called multiple IS (MIS) methodology [Elvira et al. 2015, Elvira et al. 2016a,
Sbert et al. 2018, Elvira et al. 2019b]. Adaptive importance sampling (AIS) goes one step
further and consists in iteratively adapting a set of proposals (see [Bugallo et al. 2017]
for a review). One of the main families of adaptive importance sampling meth-
ods is the population Monte Carlo (PMC) algorithms [Iba 2001, Cappé et al. 2004,
Cappé et al. 2008, Elvira et al. 2017a, Elvira et al. 2017b]. In PMC, the location parame-
ters of the proposals are adapted following resampling-based schemes. Few PMC methods
adapt also the scale parameters, e.g., O-PMC [Elvira & Chouzenoux 2022]. Other fami-
lies of AIS methods include the moment-matching AMIS algorithm [Cornuet et al. 2012,
El-Laham et al. 2019b, El-Laham et al. 2019a] or the layered AIS algorithm (e.g., LAIS
[Martino et al. 2017b, Martino et al. 2017a, Mousavi et al. 2021]).
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As a result, AIS methods can approximate the expectation of any function g(·) as

Ĩt =
t

∑
τ=1

M

∑
m=1

ρ
(m)
τ g(Θ(m)

τ ). (2.23)

where

ρ
(n)
t =

w(n)
t

∑
t
τ=1 ∑

M
m=1 w(m)

τ

, t = 1, · · · ,T,n = 1, · · · ,M. (2.24)

Note that this estimator re-normalizes all importance weights over iterations. Other
alternatives for combining the partial estimators of each iteration are provided in
[Nguyen et al. 2015] and [Cappé et al. 2008].

2.3 Sequential Bayesian inference

In this section, we address the Bayesian inference problem in state-space models, a class
of probabilistic models that allow for sequential processing of the observations. In the
following, we describe this class of models and particle filtering (PF), a family of Monte
Carlo methods for the approximation of posterior distributions in this setting.

2.3.1 State-space models

State-space models (SSMs) allow to describe dynamic systems that evolve over time/space.
More precisely, a general probabilistic SSM is given by

θ0 ∼ p(θ0), (2.25)

θt ∼ p(θt |θt−1), (2.26)

yt ∼ p(yt |θt), (2.27)

where θt ∈Rn is the state at time step t and yt ∈Rm is the observation, t = 1, · · · ,T ; p(θ0)

is the prior distribution of the hidden state θ0 at the initial time step t = 0; p(θt |θt−1) is
the state model, and p(yt |θt) is the observation model given the current state. The three
equations above are in general parametric, and the model parameters are either known or
estimated through point-wise estimators [Chouzenoux & Elvira 2020] or via probabilistic
techniques [Andrieu et al. 2010].

The sequence of states {θ0,θ1, · · · ,θT} is unknown, but can be estimated through the
observations {y1,y2, · · · ,yT}. Using the Bayes’ rule, we can compute the full joint poste-
rior distribution of all the states given all the observations as follows:

p(θ0:T |y1:T ) =
p(y1:T |θ0:T )p(θ0:T )

p(y1:T )
, (2.28)

where p(θ0:T ) is the prior distribution, p(y1:T |θ0:T ) is the likelihood distribution of the
observation model and p(y1:T ) is the normalization constant defined as

p(y1:T ) =
∫

p(y1:T |θ0:T )p(θ0:T )dθ0:T . (2.29)
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The previous problem is called the smoothing problem and requires batch processing
of all observations. The main disadvantage of the full posterior approach in (2.28) is that
(a) we have to reprocess all other observations when we obtain a new observation, and
(b) the dimension of the inferential problem grows with t. Since computing the full joint
posterior distribution at all time steps is computationally expensive and unnecessary in
real-time applications, we consider building the sequence of the so-called filtering posterior
distributions instead, defined as

p(θt |y1:t), t = 1, · · · ,T, (2.30)

which describes the marginal distribution of the current state θt given all the observations
up to time t, y1:t = {y1, · · · ,yt}. In SSMs, the efficient and sequential computation of those
filtering distributions is a problem of key importance, allowing to compute as well integrals
of the form,

I =
∫

g(θt)p(θt |y1:t)dθt , (2.31)

where g(·) : Rn→ Rm is an arbitrary function.

2.3.2 Particle filtering

The computation of these filtering distributions is called the optimal Bayesian filtering
problem. Unfortunately, for most realistic state-space models, these distributions cannot
be obtained analytically, thus we resort to their approximations. PFs, also called sequential
Monte Carlo (SMC) methods, are Monte Carlo algorithms that are well suited for approx-
imate Bayesian inference in SSMs. PFs are based on IS, reviewed in Chapter 3, and they
approximate the distributions (and integrals) of interest through weighted particles. Ta-
ble 2.2 describes the bootstrap PF (BPF) algorithm, the most standard and widely used PF.
Step 2(a) describes the simulation of the particles and Step 2(b) details the computation of
the normalized weights. While not being essential, Step 2(c) implements a resampling step
that attenuates the particle degeneracy problem (see for instance [Djurić et al. 2003]).
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Table 2.2: BPF algorithm

1. Initialization. Draw M i.i.d. samples, {θ(m)
0 }

M
m=1 from the prior p(θ0).

2. Filtering step. For t = 1, ...,T :

(a) Simulate
θ
(m)
t ∼ p(θt |θ

(m)
t−1), m = 1, ...,M (2.32)

(b) Compute the normalized weights by

w(m)
t ∝ p(yt |θ

(m)
t ,Xt), m = 1, ...,M (2.33)

(c) Resample M times from {θ(m)
t }M

m=1 with associated probabilities {w(m)
t }M

m=1, i.e., for m =

1, ...,M, let θ(m)
t = θ

( j)
t with probability w( j)

t , j = 1, ...,M

3. Output: The filtering step provides M weighted particles {θ(m)
t ,w(m)

t }M
m=1 at each t, for the ap-

proximation of the filtering distribution.

As a result of the BPF, for each time step t, we can approximate the filtering distribution
p(θt |y1:t) by the M generated particles (θ

(m)
t )1≤m≤M and associated normalized weights

(w(m)
t )1≤m≤M computed in Step 2(a)-(b) as follows:

p(θt |y1:t)≈
M

∑
m=1

w(m)
t δ (θt −θ

(m)
t ). (2.34)

Then, the approximation of the expectation of any arbitrary function g(·) is

E[g(θt)|y1:t ]≈
M

∑
m=1

w(m)
t g(θ(m)

t ). (2.35)

For example, we can compute the mean and the second order moment of the posterior
distribution by taking g(θ) as θ and θ2, respectively.

The BPF is just an instance of particle filtering, but many other filters have been
proposed. For instance, auxiliary particle filters (APFs) were originally proposed
[Pitt & Shephard 1999] and have gained popularity in the last years due to their flexi-
bility to implicitly adapt the multiple importance sampling proposals [Klaas et al. 2005,
Elvira et al. 2018a, Elvira et al. 2019a, Branchini & Elvira 2021]. Also, multiple PFs
[Djurić et al. 2007], Gaussian PFs [Kotecha & Djurić 2003], and Rao-Blackwellized PFs
[Särkkä et al. 2007] have shown to provide superior performance in several applications.
In all cases, the performance of the filter depends on the number of particles, M. The
adaptation of M has been recently proven to be essential to attain successful approxima-
tions in challenging problems [Elvira et al. 2016b, Elvira et al. 2021]. Finally, note that
the filtering problem is challenging whenever the observations are very informative, which
leads to a steep or peaky likelihood. In order to attenuate this issue, [Deutscher et al. 2000]
proposed an annealed particle filter by performing one annealing run at each time step. An-
other related work is [Gall et al. 2005], which combines a PF and the interacting annealing
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algorithm. The application of this methodology to the problem of blur identification will
be presented in Chapter 3.

2.4 Conclusion

In this chapter, we have provided an overview of the Bayesian paradigm and introduced
an inference problem of interest in the field of image restoration. Then we have described
two main classes of Bayesian inference strategies, namely static and dynamic ones, and the
main methods for each of these classes. This thesis will mostly focus on VBA and BPF
strategies. Our goal is to bring novel methodological contributions in these two methods,
so as to derive efficient Bayesian-based strategies for solving two major problems of image
restoration, namely blur identification and blind deconvolution.
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3.1 Introduction

Images produced by optical instruments often suffer from blur caused by light diffrac-
tion or object motion. The presence of the blur provokes an infinitesimal point-
source to be spread in the acquired image defining the so-called Point Spread Func-
tion (PSF). When the PSF is unknown, one can resort to a blind deconvolution strategy
[Levin et al. 2011, Carasso 2001, Kenig et al. 2010, Reeves & Mersereau 1992] to jointly
retrieve the image and blur. Another approach consists in first identifying the blur
and then removing it from the degraded images using a non-blind restoration strat-
egy [Pustelnik et al. 2016, Berisha & Nagy 2014]. This demands a good accuracy for
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the PSF estimation, which can be efficiently reached by a preliminary acquisition step
of normalized and calibrated objects, such as fluorescent spherical microbeads in mi-
croscopy [Kirshner et al. 2012b, Hortholary et al. 2021] or resolution charts in digital cam-
era calibration [Mannan & Langer 2016, Bell et al. 2016]. The PSF identification prob-
lem is typically formulated as a least-squares one [Tezaur et al. 2015, Mourya 2016].
On top of serving for image restoration purposes, the identified PSF can also be fit-
ted into a parametric non-linear model in order to determine characteristics of the
optical system [Anthony & Granick 2009, Chouzenoux et al. 2019, Kirshner et al. 2012a,
Xue & Blu 2014]. In most realistic scenarios, the stationary PSF model is not suitable
due to extended depth of field [Trouvé et al. 2011, Zhang et al. 2016], moving objects or
cameras [Zhe et al. 2014, Zhang & Hirakawa 2016], anisotropic optical lens aberrations
[Jezierska et al. 2018], or atmospheric turbulence [Li et al. 2007, Schmitz et al. 2020,
Chimitt & Chan 2020]. Such image degradation sources give rise to a so-called spatially
variant blur [Chakrabarti et al. 2010, Hirsch et al. 2010]. The PSF identification then re-
quires the recovery of a PSF map, describing the blur kernel at each location of the spatial
plane [Tezaur et al. 2015].
In this chapter, we address the problem of estimating in a sequential manner the parame-
ters of spatially variant PSFs from calibrated image acquisitions. We consider a flexible
piecewise constant parametric model for the space-varying PSF map that allows us to de-
scribe smooth variations among PSFs acting on neighbor regions. We formulate a state-
space model where each time step corresponds to a different patch location. We adopt a
probabilistic approach, aiming at producing posterior distributions of the unknowns. The
probabilistic approach allows for dealing with the uncertainty in a systematic manner and
the inclusion of prior knowledge about the unknowns. As a consequence, we are able not
only to provide uncertainty measures on the unknown parameters, but also to propagate
this uncertainty to useful tasks where those estimated parameters are used (e.g., in deblur-
ring). In our approach, the prior probability density function (pdf) of the parameters has a
Markovian structure, which allows us to inherit existing inference approaches for the se-
quential inference. Note that more complicated local dependencies could be modeled, e.g.,
via Markov random fields, at the expense of losing the aforementioned simplicity in the in-
ference task. Our flexible formulation includes the consideration of potential non-standard
observation and transition models. More precisely, we can operate virtually with any non-
linear and non-Gaussian model. Due to the intractability of the Bayesian recursions, we
resort to PF for an approximate inference solution. We start by considering existing PF
methods, such as the well-known BPF [Gordon et al. 1993]. While the BPF can obtain ad-
equate results in some models, it presents some deficiencies, for instance in scenarios with
low observation noise, where the peaky likelihood challenges the diversity among particles
(see for instance [Djurić et al. 2003] about the particle degeneracy problem). Due to these
limitations, we propose a new PF method that we call Generalized Interacting Annealed
PF (GIAnPF). The new PF tackles the particle degeneracy by considering a sequence of
intermediate distributions, that are annealed versions of the filtering distribution. The con-
sidered sequential Bayesian framework provides us with three key advantages, namely (i)
low computational cost and limited memory load due to a sequential processing; (ii) a flex-
ible choice of the state-space models that enables us to consider non-linear relations and
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non-Gaussian noise; and (iii) a measure of statistical uncertainty on the estimated parame-
ters of kernels. The sequential approach can be exploited to build online implementations
in applications involving very large scale images available in batches. Dealing with the
image in a sequential manner also alleviates the need of large memory capacity, since the
information of previously processed patches does not need to be stored.
We demonstrate the good performance of the proposed approach as well as its robust-
ness through several sets of numerical experiments for three representative parametric blur
shapes. We also illustrate the validity of the resulting estimations, to solve image restora-
tion problems.
The rest of Chapter 3 is organized as follows. Section 3.2 introduces the problem of spa-
tially variant blur identification. We review the literature around this topic and discuss the
construction of parametric blur models. Section 3.3 presents the state-space models for
parametric PSF estimation and proposes our algorithm for Bayesian inference. Section 3.4
shows abundant experimental validation, and Section 3.5 closes the section with some final
remarks.

3.2 Problem statement

Let us assume the clean image is x ∈ RN and its corresponding blurred and noisy image
y ∈ RN that is corrupted by spatially variant blur and noise with given level. Each pair of
image x,y ∈ RN are decomposed into a partition of T patches (xt)

T
t=1 ∈ RP, PT = N, and

(yt)
T
t=1 ∈ RP. We assume that each patch of the observed image is given by:

yt = Xtht +nt . (3.1)

Hereabove, yt ∈ RP represents the blurry noisy patch, ht ∈ RL is the blur kernel to
be estimated at patch t, and nt ∈ RP models an additive noise. Moreover, Xt ∈ RP×L

is a suitable matrix related to the blur of a patch t of original image x. The model
in Eq. (3.1) identifies with the PSF-interpolation model from [Denis et al. 2015, Eq.
(22)], where the interpolation strategy depends on the choice made for Xt (see also
[Hadj et al. 2014, Hirsch et al. 2010]). In all our practical experiments, for simplic-
ity and complexity reasons, we will adopt the piecewise constant PSF model from
[Denis et al. 2015, Eq.20], that is the order 0 (i.e., nearest neighbor) PSF-interpolation
model. Note that several other strategies are available for modeling the space-varying blur
operator, for instance in [Escande & Weiss 2015, Denis et al. 2015, Sroubek et al. 2016,
Hirsch et al. 2010, Nagy et al. 2004], with various modeling accuracy and computational
costs. Our choice in Eq. (3.1) is particularly well suited for fast blur identification due
to the separability over patches. This model was also considered in [Bar et al. 2007,
Hadj et al. 2014, Mourya 2016, Tezaur et al. 2015].
In many practical situations, a prior over the blur shape is available. It is thus convenient
to introduce a parametric model for those blur kernels, with the advantage of reducing the
number of unknowns to estimate in the blur identification task. Each kernel is then assumed
to read:

ht = h(ρt), t = 1, . . . ,T (3.2)
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where h is a known function, not depending on t, that describes the general shape of the
kernels, specified by parameters (ρt)

T
t=1 ∈ RK , with K ≥ 1 typically much lower than L.

In this section, we focus on the problem of sequential parametric blur estimation, which
amounts to retrieve, for every t = 1, . . . ,T , an estimate for ρt , given the knowledge of the
past and present observations (Xi,yi)

t
i=1 and the function h(·).The main underlying as-

sumption in our approach is the smooth variation of the kernel shape parameters when pro-
gressing sequentially along the patch indexes t = 1, . . . ,T (see discussion in Section 3.3.2
about patch ordering). Therefore, our approach is particularly well suited for space-varying
blurs arising from optical aberrations (e.g., phase aberration [Schuler et al. 2012], atmo-
spheric aberration [Chimitt & Chan 2020]), and smooth motion (e.g., camera motion blur
[Šorel & Flusser 2008]). One can also refer to the smooth varying PSF maps used as il-
lustrative examples in [Escande & Weiss 2015, Denis et al. 2015]. As described in Sec-
tion 3.3, the spatial dependence is encoded in the transition density among consecutive
patches, which acts as a prior pdf. We note that, as it is often the case in Bayesian in-
ference, vague enough priors are usually adequate particularly when enough informative
observations are available. In contrast, this section does not cover PSF maps with abrupt
changes, such as those considered in [Zhe et al. 2014, Trouvé et al. 2011]. As we will
show below, we exploit the similarity of kernels that are spatially close during the infer-
ence/estimation task. More precisely, unlike in other approaches, here the data of one patch
is implicitly used to better estimate the parameter of other patches, which explains the good
performance of the proposed modeling and methodology.

3.2.1 Related literature and contributions

The problem of space-varying blur identification has been widely studied in the literature of
image processing. It is important to distinguish two types of approaches. First, there exists
a bunch of methods, for performing image deblurring in the presence of an unknown space-
varying blur degradation, thus corresponding to blind image restoration [Zhang et al. 2016,
Hadj et al. 2014, Chakrabarti et al. 2010, Zhang & Hirakawa 2016] in the case of motion
blur. We also refer the reader to the recent work [Alam et al. 2019] for a review on
this topic. Let us also mention [Hirsch et al. 2010] for the case of multi-frame blind
image restoration. Most of these methods are focused on the restoration task, and
not on the quantitative estimation of the blur map itself. This is at the exception of
[Zhang et al. 2016, Chakrabarti et al. 2010, Zhang & Hirakawa 2016], that jointly restore
the image and a piecewise-constant map, obtained through a segmentation-based strategy,
describing the non-stationary blur effects. Though image restoration is a problem of high
interest, in certain applications such as microscopy or astronomical imaging, an accurate
qualitative and quantitative knowledge of the blur effects is key for a better understand-
ing and improving (e.g., through calibration) of the imaging device [Jezierska et al. 2018,
Schmitz et al. 2020, Pankajakshan et al. 2012, Lefort et al. 2020]. For performing blur
identification, it is necessary to make structural assumptions on the blur map to be es-
timated. For e.g., [Trouvé et al. 2011] assumes a finite set of candidate defocus blurs,
to be tested in each location of the image, or [Rajagopalan & Chaudhuri 1999] consid-
ers parametric blurs depending only on a single parameter. The blur estimation can also
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be facilitated by making use of a calibrated image (e.g., fluorescent bead in microscopy,
distant star in astronomical imaging) in order to reduce the ill-posedness of the identi-
fication problem. When the PSF is stationary, and no parametric model of it is fur-
ther assumed, its estimation from calibrated image acquisition can be easily solved by
a penalized least-squared algorithm (see for instance [Chouzenoux & Pesquet 2017] for
an efficient method in the case of large size images). The problem raised in this case
is similar to the one arising in high dynamic range image fusion, for which wavelet-
based methods have shown their efficiency [Tico & Pulli 2009, Tico et al. 2010]. If, ad-
ditionally, a parametric model of the PSF is available, non-linear least squares method,
such as Levenberg-Macquart [Kirshner et al. 2012a], or more recent proximity-based al-
gorithms [Chouzenoux et al. 2019], can be employed for estimating directly the sought
parameters. However, when PSF is non stationary, the accurate identification of its shift-
variant evolution becomes much more challenging to resolve, even when the image is cal-
ibrated (i.e., known). This problem is typically addressed using optimization-based meth-
ods [Tezaur et al. 2015, Mourya 2016]. We also refer the reader to [Schmitz et al. 2020]
and references therein, for a review of the problem and recent insights, in the particular
context of astronomical imaging. In the aforementioned works, no parametric model of the
PSF was assumed though it is highlighted in [Schmitz et al. 2020] as a promising research
direction. Moreover, most available techniques address the problem in a batch manner,
requiring the loading of the full image before the starting of the identification process,
which can be at the price of a high memory cost in high resolution imaging or even incom-
patible with an on-the-fly image acquisition (e.g., satellite imaging). Furthermore, up to
our knowledge, no Bayesian-based techniques have been proposed so far, so that available
strategies provide only point-wise estimators for the PSF field. We conclude this state-
of-the-art review by emphasizing that several works exploit the smooth variability of the
PSFs within the field of view, with the aim to reduce the cost of the non-stationary blur
operator [Denis et al. 2015, Escande & Weiss 2015] or to perform PSF field interpolation
[Ngolé Mboula & Starck 2017, Chen et al. 2005].
In this chapter, we propose a Bayesian sampling method, for the identification of
parametrized space-varying blurs in the context of calibrated images. Our contribution
is threefold: (i) the particle filtering strategy employed for sampling leads to a sequential
and fast estimation result; (ii) the proposed method is versatile and easily adapted to diverse
parametric blur shapes; and (iii) the Bayesian framework allows us to provide a posterior
estimation, including uncertainty quantification, for the PSF map parameters.

3.2.2 Relevant parametric PSF models

The general model of Eq. (3.2) enables to encompass various blur shapes. Hereafter,
we present three interesting classes of parametric blur models, that will be used thereby
in the experiments of this chapter. To simplify the notation, let us ignore the subscript
for patch t in this subsection. Without loss of generality, we consider kernels with square
support parametrized by a grid with length

√
L (assumed to be an odd integer), centered and

regularly spaced, denoted G = {−
√

L−1
2 ,−

√
L−1
2 +1, . . . ,0,1, . . . ,

√
L−1
2 }. The blur shape is

determined by the values of a given function h(c1,c2) for (c1,c2) ∈ G2. Otherwise stated,
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(c1,c2) are the (signed) distances, in pixels, from the origin (i.e., the center position of
the squared kernel) in the horizontal and vertical axis, respectively. The vector h(ρ) ∈ RL

is then simply deduced by ordering the entries of matrix [h(c1,c2;ρ)](c1,c2)∈G2 ∈ R
√

L×
√

L,
following the lexicographic order1.

Generalized Gaussian blur space-varying generalized Gaussian blur shapes have been
employed for instance in [Liu et al. 2021b] in the context of out-of-focus image deblur-
ring. Such blur is parametrized by ρ = (θ ,s) with θ ∈ R and s = (s1,s2) ∈ (0,+∞)2 the
orientation and width parameters, respectively. The parametric model then reads:

(∀(c1,c2) ∈ G2), h(c1,c2;ρ) = λ exp
(
−1

2
([c1 c2]Σ

−1(θ ,s)[c1 c2]
>)p

α p

)
, (3.3)

with p > 0 and α > 0 the power and the scale of generalized Gaussian model, respectively,
and λ the normalization constant reads

λ =
p

πΓ( 1
p)2

1
p α

1

|Σ(θ ,s)| 12
, (3.4)

where Γ(·) is the Gamma function. The support size is:

smax =
√

L
(

2α(−2ln(a))1/p
)−1/2

. (3.5)

Moreover,

Σ(θ ,s) = Rθ

[
s2

1 0
0 s2

2

]
R>θ (3.6)

with Rθ ∈ R2×2 the rotation matrix defined by the orientation angle θ ,

Rθ =

[
cosθ −sinθ

sinθ cosθ

]
. (3.7)

We can ensure that the kernel value in its support corner is less or equal than ah(0,0;ρ),
for some a∈ (0,1), as soon as s1 ≤ smax, s2 ≤ smax with smax given in (3.5) above. Note that
when p=α = 1 in (3.3), we recover the common Gaussian blur model, used for instance in
fluorescence microscopy in [Zhang et al. 2007]. An example is displayed in Fig. 3.1(left).

Defocus blur Defocus space-varying blurs have been considered for example in
[Trouvé-Peloux et al. 2018] in the context of depth estimation in digital camera images.
Defocus blur kernel can be parametrized by ρ = (θ ,s) with θ ∈ R and s ∈ (0,+∞)2. The
parametric model is,

(∀(c1,c2) ∈ G2), h(c1,c2;ρ) =

{
λ if (c1,c2) ∈ C(θ ,s)
0 otherwise

, (3.8)

1The lexicographic ordered vector associated to a matrix
[

a b
c d

]
is the column vector [a b c d]>.
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with the normalization constant λ defined as

λ = πs1s2L. (3.9)

The support size is:

smax = maxG =

√
L−1
2

. (3.10)

and the elliptical domain:

C(θ ,s) =
{
(c1,c2) ∈ G2 such that

(c1 cosθ + c2 sinθ)2

s2
1

+
(c1 sinθ − c2 cosθ)2

s2
2

≤ 1
}
. (3.11)

The latter can easily be ensured to be included into the kernel support, under the condition
that s1 ≤ smax, s2 ≤ smax with smax given above. An example of such blur is displayed in
Fig. 3.1(middle).

Skew-normal blur The skew-normal blur shape [Azzalini & Valle 1996] was first con-
sidered in [Hansen & Jensen 2008] to build synthetic image deblurring problems. Its abil-
ity for modeling shift-variant PSFs in real digital imaging sensors was then illustrated
in [Simpkins & Stevenson 2014]. This blur model depends of five positive parameters
ρ= (s1,s2,w,α1,α2), as follows:

(∀(c1,c2) ∈ G2),h(c1,c2;ρ) = λexp

(
−1

2

[
γ1

γ2

]>
S−1(w)

[
γ1

γ2

])
×
∫

α1γ1+α2γ2

−∞

exp
(
−z2

2

)
dz,

(3.12)

where

γ1 =
c1

s1
, γ2 =

c2

s2
, S(w) =

[
1 w
w 1

]
, (3.13)

and the normalization constant λ is given by,

λ =
2

(2π)
3
2 |S(w)| 12

. (3.14)

The support size is:

smax =

√
L

2
√
− ln(a)

. (3.15)

As shown in [Azzalini & Valle 1996, Eq. (2.4)], parameters (w,α1,α2) must ensure that
the matrix below is positive definite: 1 w−δ1δ2

(1−δ 2
1 )

1
2 (1−δ 2

2 )
1
2

w−δ1δ2

(1−δ 2
1 )

1
2 (1−δ 2

2 )
1
2

1

 . (3.16)
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which amounts to satisfying the following technical conditions:

δ1δ2−
√

(1−δ 2
1 )(1−δ 2

2 )< w < δ1δ2 +
√
(1−δ 2

1 )(1−δ 2
2 ),

α1 =
δ1−δ2w√

(1−w2)(1−w2−δ 2
1 −δ 2

2 +2δ1δ2w)
, (3.17)

α2 =
δ2−δ1w√

(1−w2)(1−w2−δ 2
1 −δ 2

2 +2δ1δ2w)
,

for some (δ1,δ2) ∈ (−1,1)2. Hereagain, the maximal proportion a ∈ (0,1) reached on the
corner of the kernel support can be imposed by setting s1 and s2 no greater than smax given
in (3.15) above. The skew-normal blur reduces to the Gaussian blur when α1 = α2 = 0.
An example is displayed in Fig. 3.1(right).

Figure 3.1: (left) Gaussian blur with θ = 0,s = [0.2;0.1]
√

L,α = 1, p = 1 and L = 152 ; (middle) defocus
blur with θ = 0,s = [0.2;0.1]

√
L and L = 252; (right) skew-normal blur with s1 = 0.15

√
L,s2 = 0.15

√
L,w =

0,α1 = 1.5,α2 = 1.5 and L = 152.

3.3 Space-varying blurs modeling and inference

In this section, we first present our novel modeling approach for space-varying blur maps
based on state-space models. We describe the standard BPF for inference in such mod-
els. After pointing the limitations of the BPF in this context, we propose the GIAnPF.
Finally, we discuss the properties of GIAnPF and the connections with other methods of
the literature.

3.3.1 State-space modeling for blur identification

We start by considering a generative SSM, where the hidden state represents the hidden
(hence unknown) parameters of the variant PSFs. This generative modeling allows for
a systematic Bayesian estimation of the unknown parameters, which are considered hid-
den states in the SSM literature [Särkkä 2013]. It allows to explicitly model the spatial
smoothness of the PSF field. For example, the variation among neighbor patches can be
a small rotation and change of width (see hereafter for a discussion regarding the order of
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the patches). Let us consider a state-space model given by

p(ρ0), (3.18)

p(ρt |ρt−1), (3.19)

p(yt |ρt ,Xt), (3.20)

for t = 1, ...,T , where p(ρ0) is the prior distribution, p(ρt |ρt−1) is the transition model that
generates the patch parameters t given the previous patch t−1, and p(yt |ρt ,Xt) is the ob-
servation model of patch t (that can be seen as the likelihood function when yt is observed).
The goal is to approximate probabilistically and sequentially the unknown parameters ρt

for each patch t given subsets of data {Xt ,yt}T
t=1. In particular, one can obtain the so-called

filtering posterior distribution p(ρt |X1:t ,y1:t), i.e., the posterior on ρt conditioning on all
data up to t.

3.3.2 Patch ordering for a sequential processing

The proposed approach requires setting the order in which the data will be sequentially
processed. The parameters of consecutively processed patches must keep certain similarity
in such a way the spatial information can be exploited. The underlying assumption in our
approach is that the blurs affecting consecutive patches in the sequence have similar shape
parameters. Otherwise stating, the parameters of the blurs should not change abruptly
when going from patch t to patch t−1. Smooth PSF maps can then be identified, as soon
as consecutive patches are spatially close. This is actually not the case if the patches are
numbered naively following the lexicographic order, as illustrated in Figure 3.2(left). More
suitable ordering must be adopted. If no additional structural assumption is available on
the PSF map, we would suggest the zig-zag order, reminiscent from the one used in DCT-
based image compression [Rabbani & Jones 1991] (Fig. 3.2(middle)). Circular blur maps,
as those modeling phase aberrations ([Denis et al. 2015, Sec.3.4],[Schuler et al. 2012,
Simpkins & Stevenson 2014],[Mourya 2016, Chap.4]), would be identified better by us-
ing a spiral ordering (Fig. 3.2(right)). Phase aberrations (and thus, the PSF width) tend to
increase when getting further from the center. The spiral ordering is thus more suitable as
it implicitly promotes changes of the PSF parameters depending mostly on the distance to
the image center. The spiral ordering will be retained in most experiments of the section.

Figure 3.2: Patch ordering (in the case of 4× 4 structure): (left) lexicographic ; (middle) zig-zag ; (right)
spiral.
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The smooth variations between consecutive kernels can be easily encoded using a
Gaussian distribution for p(ρt |ρt−1). In order to ensure that the sampled blurs do not
have degenerate shapes, range constraints can furthermore be enforced on some parameters
(e.g., strict positivity for the width parameter, bounded PSF support), simply by consider-
ing truncated Gaussian distributions (see more details in Section 3.4). Note that it would
be also possible to learn an optimal pattern to scan/process the data. Intuitively, the mod-
eling/inference results of our proposed method would benefit for finding an order where
consecutive kernels would be as similar as possible. This could be done for instance by
first running a fast (but inaccurate) optimization-based strategy to choose the ordering in
which the SSM would be constructed.

3.3.3 Bayesian inference in SSMs through particle filtering

Linear-Gaussian state-space models are often used since they allow for closed-form fil-
tering and smoothing distributions via the well-known Kalman filter (KF) [Kalman 1960].
However, in this section we focus on more complex models which broadens the flexibility
and applicability of our approach. Unfortunately, in these models the targeted pdf are in-
tractable and approximations are required. Extensions of the KF exist, e.g., the extended
Kalman filter (EKF) or the unscented Kalman filter (UKF) although they can greatly devi-
ate from the true solution when the model is heavily non-linear non-Gaussian. In order to
tackle these limitations, we consider an approach based on Monte Carlo approximations,
and in particular on PF [Gordon et al. 1993].
We start by considering the BPF in Table 3.1, the first and arguably the most relevant PF
[Gordon et al. 1993]. The BPF departs by simulating M samples (or particles) from the
prior distribution. Then, for each patch t, it simulates M particles {ρ(m)

t }M
m=1 from the

transition model by conditioning on the previous particles (Step 2a). Then, normalized
importance weights are computed as the evaluation of the likelihood at each ρ

(m)
t in such a

way all weights sum up to one (Step 2b). A resampling step is performed (Step 2d) in order
to avoid particle degeneracy (see more details in [Tiancheng et al. 2015]). As a result, the
BPF approximates the filtering posterior distribution p(ρt |X1:t ,y1:t) for each patch t from
the set of M weighted particles {ρ(m)

t ,w(m)
t }M

m=1.
Note that other existing PFs can be also used in this problem, e.g., the APFs
[Pitt & Shephard 2001, Elvira et al. 2018a, Elvira et al. 2019a] or the Rao-Blackwellized
PF [Djurić et al. 2003, Doucet & Johansen 2009, Särkkä 2013]. The research on PF has
been very active in the last decade, and new PFs have been proposed in order to overcome
existing challenges.
In the specific application we tackle here, we are facing the well-known particle degener-
acy problem, appearing due to very informative observations (hence, peaky likelihood). In
particular, typical suitable parametric PSF models are very sensitive w.r.t. some of their
parameters and the variance of the observation noise can be relatively low. Particle degen-
eracy refers to the (undesirable) effect where few particles (or even only one) remain after
the resampling step. This reduces the diversity of the particle approximation and endan-
gers the estimation of the blur parameters in the following patches. In the next section, we
present a new PF that addresses the shortcomings of off-the-shelf PFs in such challenging
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Table 3.1: BPF algorithm for space-varying blur identification.

1. Initialization. Draw M i.i.d. samples, {ρ(m)
0 }

M
m=1 from the prior p(ρ0).

2. Filtering step. For t = 1, ...,T :

(a) Simulate
ρ
(m)
t ∼ p(ρt |ρ

(m)
t−1), m = 1, ...,M (3.21)

(b) Compute the normalized weights by

w(m)
t ∝ p(yt |ρ

(m)
t ,Xt), m = 1, ...,M. (3.22)

(c) Resample M times from {ρ(m)
t }M

m=1 with associated probabilities {w(m)
t }M

m=1, i.e., for m =

1, ...,M, let ρ(m)
t = ρ

( j)
t with probability w( j)

t , j = 1, ...,M

3. Output: The filtering step provides M weighted particles {ρ(m)
t ,w(m)

t }M
m=1 at each t, for the ap-

proximation of the filtering distribution.

scenario.

3.3.4 GIAnPF

In this section we propose the novel GIAnPF algorithm. It implements an annealing mecha-
nism (see for instance [Neal 2001]) that overcomes the aforementioned limitations. Instead
of directly approximating the targeted distribution, a sequence of modified distributions is
considered. In such way, the algorithm starts by considering a more convenient distribution
(i.e., sufficiently spread) while the last distribution is the true posterior of interest (in our
case, the filtering distribution).
The GIAnPF algorithm is described in Table 3.2. It starts by simulating M particles from
the prior distribution in Step 1. However, unlike in the BPF or the APF, GIAnPF consid-
ers a sequence of Q intermediate steps in the processing of the data at each patch t. In
the prediction step, M particles of the previous annealing layer {ρ(m)

t,Q+1}M
m=1 are generated

from the transition model by conditioning on the particles at time t − 1 (Step 2a). Con-
sidering a sequence 0 = βQ+1 < βQ < · · · < β1 < β0 = 1 and starting from q = Q with a
relatively small βQ, we first compute the weights by evaluating the tempered likelihood at
ρ
(m)
t,q+1 (Step 2b), then each particle is resampled from the whole set of M particles with

probability equal to the associated normalized weights (Step 2c). Finally, the new set of
particles is simulated according to a transition kernel (Step 2d). We perform one step of
Metropolis-Hastings (M-H) algorithm to sample from the transition kernel Tt,q+1(·) with
proposalN (·,κ2

q+1I), where κ2
q+1 is the variance of the kernel [Robert & Casella 2004], as

it is common in sequential Monte Carlo samplers [Del Moral et al. 2006]. Note that in the
last step, with q= 0, the exponent is β0 = 1, and therefore the M-H targets the true posterior
pdf of the kernel parameters, which ensures the invariance of the particle approximation.
Rationale and parameter selection. The rationale of GIAnPF is as follows. The first ex-
ponent, βQ, is chosen in such a way the targeted distribution is a sufficiently flattened ver-
sion of the likelihood. Then, for each annealing layer q = Q, . . . ,1, a larger βq−1 than the
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Table 3.2: Generalized Interacting Annealed PF for space-varying blur identification.

1. Initialization. Draw M i.i.d. samples, {ρ(m)
0,0 }

M
m=1 from the prior p(ρ0). Set Q ∈ N.

2. Bayesian recursion. For t = 1, ...,T :

a) Propagate the particles as

ρ
(m)
t,Q+1 ∼ p(ρt,Q+1|ρ

(m)
t−1,0), m = 1, ...,M (3.23)

For q = Q,Q−1, . . . ,0,

b) Compute the normalized tempered weights as:

ξ
(m)

∝ p(yt |ρ
(m)
t,q+1,Xt)

βq−βq+1 , m = 1, . . . ,M (3.24)

where 0 = βQ+1 < βQ < · · ·< β1 < β0 = 1
c) resample

ρ
(m)
t,q+1 = ρ

( j)
t,q+1,with probability ξ

( j),

for each m = 1, ...,M
d) sample as

ρ
(m)
t,q ∼ Tt,q+1(ρ

(m)
t,q+1), m = 1, . . . ,M (3.25)

3. Output: At each t, we provide a set of M unweighted particles {ρ(m)
t,0 }

M
m=1, for the approximation

of the filtering distribution.

previous one is adopted so that the likelihood used when evaluating the weights becomes
increasingly closer to the original one. The final particles at this time step t, {ρ(m)

t,0 }M
m=1, are

then those used for the approximation of the filtering distribution.
This annealing procedure is especially helpful when the likelihood varies a lot among the
particles, so that only few particles would have been chosen if the exact likelihood was
used to do the sampling. In Step 2b), we compute the tempered weights to deal with the
particle degeneracy problem. In Step 2c), the particle ρ

(m)
t,q+1 is resampled from the set of

simulated particles, {ρ( j)
t,q+1}M

j=1, with associated probabilities {ξ ( j)}M
j=1. In Step 2d), we

apply one step of the M-H to the re-sampled particles, to ensure that the particle approx-
imation converges to the true targeted distribution (i.e., without the tempering exponent).
Note that GIAnPF can be seen as a generalized version of the BPF, since it contains this
algorithm as particular case when we set Q = 0 and the M-H iteration (Step 2d) is avoided,
i.e., with κq+1 = 0.
Connections to the literature. The GIAnPF connects with several algorithms in the liter-
ature. As stated above, it can be seen as a generalization of the BPF [Gordon et al. 1993].
It also holds clear links with annealing schemes such as [Neal 2001, Deutscher et al. 2000,
Filippone 2014, Ulker et al. 2011]. In the context of PF, [Liu et al. 2021b] conducts inter-
acting MCMC sampling procedure with the particles obtained from the BPF as the starting
point. In [Madapura & Li 2007], the authors incorporate the annealing strategy within a
Rao-Blackwellised Particle Filter and update the sample size using Kullback-Leibler Di-
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vergence transformation. The algorithm proposed in [Gall et al. 2005] also bears some
similarities with GIAnPF in its use of an annealing scheme in a PF. However, unlike in
[Gall et al. 2005], our proposed method keeps closer ties to the standard BPF by modify-
ing the sampling/weighting and adding an M-H update, which allows the particle approx-
imation to converge to the filtering distribution with M (for any value of Q), and hence
constructing consistent estimators of the sought intractable integrals.

3.4 Experimental results

3.4.1 Construction of an experimental database

We first describe the experimental database. It is composed of a set of several pairs of
clean/degraded images associated to various choices for the patch decomposition, shift
variant blur maps, and noise levels.

3.4.1.1 Images

We consider three images of size N = 512×512 (displayed in Fig. 3.4), namely, Chart,
Cells, and Hubble. These are representative images of calibrated objects (e.g., resolu-
tion charts, fluorescent beads and distant stars) typically used to estimate spatially variant
blur parameters. In all our experiments, patches of size 64× 64 are used and the blurry
noisy version y is generated following Eqs. (3.1)-(3.2), using i.i.d. zero-mean Gaussian
noise with standard deviation σn > 0, so that p(yt |ρt) =N (Xth(ρt),σ

2
n I).

3.4.1.2 Shift-variant blur maps

Five realistic space-varying blur maps, associated to the three blur shapes presented in
Section 3.2.2, are constructed. To this aim, we take inspiration from the examples provided
in [Escande & Weiss 2015, Fig.8], [Berisha & Nagy 2014, Fig.7], [Berisha & Nagy 2014,
Fig.7] and [Simpkins & Stevenson 2014, Fig.4]. In most of our models, we will consider
the existence of an optical center for the device, and that the blur width/orientation depends
on the relative position of the patch with respect to this center. Instead of considering
deterministic maps, as in the aforementioned works, we include some randomized settings
in the expressions so as to simulate more realistic scenarios of an optical device whose
effect on the image may slightly vary with respect to external conditions (temperature,
laser power, planarity of the disposal). For a pre-specified abscissa-ordinate system in
the 2D image plan, we denote, for a given patch t, ot = (o1,t ,o2,t) the coordinates of the
patch center, ô = (ô1, ô2) the coordinates of the chosen optical center of the device, and
`t = ‖ot − ô‖ the Euclidian distance between both. The associated parameters, gathered
in vector ρt , are defined as follows, for the five considered models. Figure 3.3 displays
examples of three realizations of each of those, illustrating the variability among patches,
and also among different realizations for the same model.
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Map 1 We assume Gaussian blurs, with size L = 152, with width and orientation param-
eters st and θt at each patch t. We opt for the spiral patch ordering and we set, for every
t,

θt = arctan
(

o1,t − ô1

o2,t − ô2

)
+ εt , (3.26)

where εt ∼N (π

2 ,σ
2
ε ),

s1,t = δ1,t`t , s2,t = δ2,t`t . (3.27)

where δ1,t ∼ U([δ1,min,δ1,max]),δ2,t ∼ U([δ2,min,δ2,max]) with
(σε ,δ1,min,δ1,max,δ2,min,δ2,max) positive scalars.

Map 2 We consider Gaussian blurs with size L = 152 with width and orientation pa-
rameters st and θt at each patch t. We use the spiral patch ordering and, for every t, we
set

θt = arctan
(

o1,t − ô1

o2,t − ô2

)
+ εt , (3.28)

where εt ∼N (π

2 ,σ
2
ε ), {

s1,t =
1
8(δ1,t |o1,t − ô1|+1)

s2,t =
1
8(δ2,t |o2,t − ô2|+1)

(3.29)

with δ1,t ∼U([δ1,min,δ1,max]),δ2,t ∼U([δ2,min,δ2,max]) and (σε ,δ1,min,δ1,max,δ2,min,δ2,max)

some positive scalars.

Map 3 We consider Gaussian blurs with size L = 152 with width and orientation parame-
ters st and θt at each patch t. The patches are ordered in lexicographic order and, for every
t, we set

θt ∼ U([0,
π

8
]), (3.30)

and {
s1,t =

1
8(δ1,t −o1,t),

s2,t =
1

15(δ2,t −o2,t),
(3.31)

where δ1,t ∼ U([δ1,min,δ1,max]),δ2,t ∼ U([δ2,min,δ2,max]), and (δ1,min,δ1,max,δ2,min,δ2,max)

are some positive scalars.

Map 4 We assume blurs with defocus shape, with size L = 252 parametrized by width
and orientation parameters st and θt at each patch t. We order the patches in lexicographic
order and, for every t, we set

θt ∼ U([0,
π

8
]), (3.32)
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and {
s1,t =

1
3(δ1,t −o1,t),

s2,t =
1
6(δ2,t −o2,t),

(3.33)

with δ1,t ∼ U([δ1,min,δ1,max]),δ2,t ∼ U([δ2,min,δ2,max]), and (δ1,min,δ1,max,δ2,min,δ2,max)

some positive scalars.

Map 5 We specify here a generative model for the particular case of the skew-normal
blur, with size L= 152, with the aim to mimic the shift-variant blur map that was considered
in the experiments of [Simpkins & Stevenson 2014]. We order the patches in spiral order
and we set

ωt = sign
(

o1,t − ô1

o2,t − ô2

)(
1−2

∣∣|o1,t − ô1|− |o2,t − ô2|
∣∣) . (3.34)

We then create a shift-variant map with skew normal shapes of parameters

s1,t =
1
3(|o2,t − ô2|+ 1

2)(`t +
1
5)+δ1,t ,

s2,t =
1
3(|o1,t − ô1|+ 1

2)(`t +
1
5)+δ2,t ,

wt =
7
5 ωt`t +δ3,t ,

α1,t = δ4,t(1− `t),

α2,t = δ5,t(1− `t),

(3.35)

with δ1,t ∼ U([0,δ1,max]), δ2,t ∼ U([0,δ2,max]), δ3,t ∼ U([0,δ3,max]),
δ4,t ∼ U([δ4,min,δ4,max]), δ5,t ∼ U([δ5,min,δ5,max]), where
(δ1,max,δ2,max,δ3,max,δ4,min,δ4,max,δ5,min,δ5,max) are positive scalars.

Table 3.3 shows the settings for the realistic blur maps considered in Section 3.4.1.2.

Blur maps Parameters
Map 1 σε = 0.01,δ1,min = 0.595,δ1,max = 0.605,

δ2,min = 0.295,δ2,max = 0.305
Map 2 σε = 0.01,δ1,min = 2.95,δ1,max = 3.05,

δ2,min = 2.95,δ2,max = 3.05
Map 3 δ1,min = 2.45,δ1,max = 2.55,

δ2,min = 1.95,δ2,max = 2.05
Map 4 δ1,min = 1.45,δ1,max = 1.55,

δ2,min = 1.45,δ2,max = 1.55
Map 5 δ1,max = 0.01,δ2,max = 0.01,δ3,max = 0.1,

δ4,min = 1.5,δ4,max = 2,δ5,min = 2,δ5,max = 2.5

Table 3.3: Numerical settings for the generation of the experimental shift-variant blur maps.
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3.4.1.3 Quantitative comparison methodology

We will run several experiments of blur map estimation, using BPF and GIAnPF methods,
both on toy examples and on our realistic dataset. Table 3.4 lists the transition models
assumed when running BPF and GIAnPF, where N[smin,smax](st−1,σ

2
s ) denotes a truncated

normal distribution, i.e., the pdf is proportional to a normal pdf with mean st−1 and vari-
ance σ2

s in the support [smin,smax], and 0 otherwise. More precisely, Model A will be

Parameters settings

M
od

el
A


θt ∼N (θt−1,σ

2
θ
)

s1,t ∼N[smin,smax ](st−1,σ
2
s )

s2,t ∼N[smin,smax ](st−1,σ
2
s )

smin = 10−2, smax set as in
(3.5).

M
od

el
B


θt ∼N (θt−1,σ

2
θ
)

s1,t ∼N[smin,smax ](st−1,σ
2
s )

s2,t ∼N[smin,smax ](st−1,σ
2
s )

smin = 4 · 10−2, smax as in
(3.10).

M
od

el
C



s1,t ∼N[smin,smax ](st−1,σ
2
s )

s2,t ∼N[smin,smax ](st−1,σ
2
s )

w∼N[wmin,wmax ](st−1,σ
2
w)

α1,t ∼N[αmin,αmax](st−1,σ
2
α )

α2,t ∼N[αmin,αmax](st−1,σ
2
α )

smin = 5 · 10−2, smax as
in (3.15), {wmin,wmax} =
{−0.9,0.9},
{αmin,αmax} = {0.5,2},
so that (3.17) holds.

Table 3.4: Considered transitions models as in Eq. (3.19).

employed to retrieve Gaussian blur maps (e.g., those resulting from Maps 1, 2 and 3),
Model B to retrieve defocus blur maps (e.g., in case of Map 4) and Model C to estimate
skew normal blur maps (e.g., Map 5). The upper bounds smax defined are used, to preserve
consistency of the estimated shapes with the considered blur support width L. An analysis
of robustness to the setting for L will be presented in Section 3.4.4.4. In order to quantify
the gain of exploiting the spatial structure of the problem, we will compare the filtering
pdf approximated by BPF and GIAnPF algorithms, and the posterior distribution that only
considers the data corresponding to each patch independently. In the latter case, we use IS
[Elvira et al. 2019b] to approximate the intractable posterior. Note that both PF and IS have
a comparable computational complexity per sample/particle, while PF allows to exploit the
information of previously processed data (i.e., patches), due to an implicit sequential IS
structure. We also perform comparisons with two optimization-based methods considering
non-parametric models for the kernels. In the so-called NP formulation, the kernels (ht)

T
t=1

are estimated by minimizing a least-squares function under simplex and smoothness con-
straints, in a fully parallel manner for each patch t. We also compared with a more sophis-
ticated non-parametric formulation where we included, in addition to the NP cost function,
the total-variation based spatial regularization among kernels of neighboring patches from
[Mourya 2016, Chap.4], yielding NP+ method. Note that both resulting constrained con-
vex minimization problems are solved with the FISTA algorithm [Beck & Teboulle 2009].
In all experiments, the relative mean squared error (RMSE) of blur kernel (RMSEh) av-
eraged over patches is used to evaluate the numerical performance of the blur estimation,
i.e., RMSEh = 1

T ∑
T
t=1
||ht−ht ||2
||ht ||2 with ht and ht the original kernels and the estimators re-
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spectively at patch t. For methods providing a posterior estimation (i.e., BPF, GIAnPF and
IS), we calculate ht = h(ρt) with ρt the mean estimator of the unknown parameters, while
for NP and NP+, ht is directly the solution to the optimization problem, in patch t. We
also include the standard deviation as well as the 95% credible interval of the estimators
of BPF, GIAnPF and IS methods, to evaluate the statistical accuracy of the results. All
the presented results are averaged over 100 random runs, and all the hyperparameters are
tuned so as to minimize the RMSE (averaged over 5 random trials). The best results will be
marked in bold cases in the tables. The numerical experiments are conducted in a Matlab
environment on a computer with an Xeon(R) W-2135 processor (3.7 GHz clock frequency)
and 12 GB of RAM.

3.4.2 Validation of the proposed method

We first discuss the settings and properties of the proposed method in an illustrative toy
synthetic example. Our tests are conducted on the image Chart decomposed into T = 64
patches, and corrupted by skew-normal blurs whose parameters (ρt)

T
t=1 are generated fol-

lowing the transition model C, with (σs,σw,σα) = (10−1,2 ·10−1,10−1) and, except other-
wise stated, a noise standard deviation σn = 0.05. The blur parameter estimations are then
conducted with BPF and GIAnPF, assuming transition Model C with known hyperparam-
eters.

Setting particle and layer numbers The BPF method, as well as the proposed GIAnPF
method, requires the setting of the number of particles. For GIAnPF, the number of layers
Q plays also a role. This is necessary to reach a compromise between a precise target re-
construction and a reasonable computational time, for setting those parameters. We display
in Fig. 3.5 the averaged RMSE on 100 runs with respect to the computational time, for dif-
ferent settings of the parameters of BPF and GIAnPF. The associated values for the param-
eters (βq)0≤q≤Q are chosen on a logarithmic grid between 1 and 10−2, and βQ+1 = 0. For
a given number of particles M, the GIAnPF algorithm always generates a better approx-
imation of the unknown blurs than BPF, although at the expense of a slightly increased.
Note that, for the same time budget, GIAnPF outperforms BPF. In all the upcoming exper-
iments, we will set M = 3000 for BPF, IS, and Q = 2 and M = 500 for GIAnPF, so that
they have comparable time requirement.

Alleviating the particle degeneracy One of the advantages of the novel GIAnPF method
is the promotion of the diversity among the particles. In Fig. 3.6, we display the normalized
effective sample size (NESS), computed as NESS = 1

M ∑
M
m=1 w(m)

t
, where w(m)

t are the nor-

malized weights (i.e., 0 ≤ NESS ≤ 1). We average the effective sample size (ESS) (see
[Kong 1992, Kong et al. 1994, Elvira et al. 2018b]) over 100 runs and all the patches, di-
vided by the corresponding number of particles M, for various level of noise σn. The results
are also averaged over 10 independent generations of the data. It can be seen that GIAnPF
algorithm has higher NESS, thus preserves much more diversity in the particles for all an-
alyzed noise levels. Similarly, Fig. 3.7 displays, for the same experiment, the RMSE of the
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blur estimate using the mean of the approximate posterior of each filter. We can see that a
larger diversity (larger NESS) translates into a smaller error.

3.4.3 Comparative performance on the experimental database

In this section, we compare the performance of GIAnPF and other approaches in different
scenarios arising from our experimental database.

Quantitative performance Table 3.6 displays the RMSEh obtained when estimating ker-
nels of Maps 1 to 5, from observations of Cells image, degraded by two noise levels,
namely σn = 0.01 and σn = 0.05. Illustrative examples of results are also provided in
Figure 3.8. In all the Bayesian methods, we display the blur maps resulting from kernel pa-
rameters equal to the MMSE estimator, i.e., the mean of the posterior distribution given the
available data. The methods IS and NP, which do not exploit the spatial smoothness among
neighboring kernels, reach the worst performance. A visual inspection of Figure 3.8 con-
firms this result. Among the spatially regularized methods, i.e., NP+, BPF and GIAnPF,
the former is still far from reaching the quality of estimation of two latter methods though
it improves over NP. Such behavior is expected as BPF and GIAnPF incorporate explicit
knowledge about the parametric shape of the blur, leading to less diversity and thus less
error in the restored blur maps. This can be seen in Figure 3.8. An analysis of the sen-
sitivity of the methods over an error in the assumed parametric shape will be discussed
in Section 3.4.4.1. In all cases presented in Table 3.6, the proposed method GIAnPF per-
forms similarly or better than the standard BPF. The benefits from the annealing procedure
are particularly noticeable in the case of σn = 0.01. This improved performance can be
explained by the annealed approach of GIAnPF, which is particularly effective when the
posterior pdf of the parameters has the probability mass concentrated in small regions of
the space, as it happens with low values of σn (due to a peaky likelihood).

Complexity comparison We perform a scalability analysis of the different methods, by
applying those to the estimation of Map 5 blur map, from resized versions of the large
scale aerial image from [Chouzenoux & Pesquet 2017]. The same hyperparameter settings
as in Table 3.6 were used. In Table 3.5, we report the averaged computational time over
10 random trials. For IS and NP, that are fully separable methods onto patches, we also
report the time per patch, that could be reached using parallel implementation on T cores.
Both of these methods benefit from fast complexity cost assuming parallel processing of
the patches. It is worthy to notice that the cost per patch of NP still increases for the
largest images, probably due to memory saturation issues, while IS has a constant time
requirement per patch. However, despite their rapidity, let us recall that the qualitative re-
sults for both these methods were rather poor on our experiments. The complexity burden
dramatically increases for the regularized optimization-based method NP+. In the latter,
the data is processed in a batch way. Parallelization over patches for this method is not
straightforward, up to our knowledge, due to the non-separable structure of the underlying
optimization problem. In contrast, the complexity of the proposed method stays very rea-
sonable even for the largest image example, though involving the probabilistic estimation
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Image size N = 2562 N = 5122 N = 10242 N = 20482

Patches T = 16 T = 64 T = 256 T = 1024

NP 36.16 (2.26) 135.5 (2.11) 4987 (19.48) 82273 (80.34)
NP+ 35.80 127.3 4473 71913
IS 5.21 (0.32) 21.85 (0.34) 91.29 (0.36) 374.7 (0.37)
BPF 5.09 20.15 85.53 345.4
GIAnPF 4.67 19.03 78.81 329.9

Table 3.5: Averaged computational time in seconds, for the different methods, in the case
of Map 5 (i.e., L = 225 and K = 5) applied to various images of size N, decomposed
into T patches. Time per patch is also reported for IS and NP, as they process patches
independently.

of T ×K = 5120 parameters. As in the previous experiment, BPF and GIAnPF again show
a similar computational cost.

Stability to the noise level We display in Fig. 3.9 a comparison of the RMSEh reached by
the methods, when estimating kernels from observations degraded by increasing noise level
σn. One can observe that NP and NP+ performance rapidly deteriorates when the noise
increases. In contrast, IS, BPF and GIAnPF perform in a relatively stable way. Moreover,
the proposed GIAnPF method again outperforms the other competitors. As expected, its
superiority over the standard BPF is less visible as σn becomes higher, since GIAnPF is
particularly dedicated to problems with peaky likelihoods, which arise when the noise level
is low.

3.4.4 Robustness analysis

In practical contexts, it is frequent that the assumed parametric PSF model is erroneous
(e.g., over-simplified with wrong support size) and/or that the calibrated image is only
partially known (e.g., in digital camera imaging, a noisy non-blurry version can be acquired
using short exposure settings). Furthermore, the noise level in the blurred image is usually
estimated and not known with perfect accuracy. It is thus of main importance to quantify
the robustness of our method to such model mismatch. To this aim, we conducted four
experiments, aiming at reproducing different realistic scenarios of imperfect knowledge of
the acquisition model. Except if specified otherwise, in all the examples of this section,
we used the image Cells. The degraded image is obtained by applying the space-varying
Gaussian blur Map 1, and then adding a noise with level equals to σn = 0.05.

3.4.4.1 Choice of the parametric blur model

We first evaluated the influence of a mismatch between the assumed blur shape, and its
actual one. We ran the different methods assuming instead a generalized Gaussian blur
shape with different powers p, where p = 1 corresponds to the ground truth. The retrieved
average RMSEh of BPF, GIAnPF, IS when taking different values for p are displayed in
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Fig. 3.10. We also displayed the results of NP and NP+ approaches, that remain unchanged
since no parametric model for the kernels is considered in those methods. As expected, the
best performance are obtained for the correct p = 1 setting. More interestingly, we can
observe that, even if a wrong parametric model is adopted, i.e., using p 6= 1, our proposed
method GIAnPF still performs better than its competitors, and in particular the non para-
metric method NP+, for a wide range of values for p.

3.4.4.2 Noisy calibrated image

In the previous experiments, we assumed that the original image x is known in
a perfect manner. However, in reality, it is commonly not the case. Here, we
consider the situation when only a noisy version of x is provided in the estima-
tion process, denoted x̃ = x + w where w is an additive Gaussian noise follows
N (0,σ2

x I). Eleven different levels for the noise on x are considered, namely σx =

{0,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.10}. Note that this range of values
covers from low noise level values (where traditionally the particle-based filters strug-
gle to operate due to the mass being concentrated in small regions; see for instance
[Del Moral et al. 2006]) to relatively large noise values (which makes the inference less
accurate). We display in Fig. 3.11 the averaged RMSE over 10 noisy realizations for each
σx, for the different approaches. The improvement of our proposed method GIAnPF with
respect to BPF is more significant at low noise level, since particle degeneracy mostly arises
in such context. Moreover, Fig. 3.11 shows that GIAnPF still outperforms its competitors
when the noise level on x increases.

3.4.4.3 Setting of noise level

In the previous analysis, the exact observation noise variance σn was assumed to be known
and applied explicitly in our blur identification method. In more realistic situations, such
noise level would have to be learned, leading to an estimate σ̂n. We ran the different
blur identification methods for the five different values σ̂n = {0.01,0.025,0.05,0.07,0.1}
(recall that the true observation noise level here is σn = 0.05). Note that the optimization-
based methods are not sensitive to such change, so that the results for NP and NP+ are
unchanged. We display in Fig. 3.12 the average RMSE, for the different values for σ̂n. We
can notice that GIAnPF gives the best performance even when the noise level is poorly
estimated. As expected, it reaches minimal mean and variance values when the ground
truth noise level is used in the estimation process.

3.4.4.4 Setting of kernel size

In blur estimation, especially when the blur is non-stationary, a challenge lies in the set-
ting a priori, of the kernel support width L. In this experiment we propose to assess the
different approaches in the case where an erroneous L is assumed. In particular, we es-
timate the blur from the image Cells, when it is degraded by Map 1, and a noise level
σn = 0.05. We run the different methods/models, by setting the size for the kernel width as
L ∈ {5,7,9,11,13,15,19,23,27}, while the groundtruth is L = 15. All the true/estimated
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kernels have been extended to the largest tested size L = 27 by zero-padding, to allow valid
computation of estimation errors. We display in Fig. 3.13 the obtained RMSE values. One
can notice that all methods have stable estimation error, as long as the assumed L is greater
or equal to L, which is indeed expected. In contrast, when L < L, the results deteriorate for
all methods. We observe that the GIAnPF method outperforms its competitors in almost
all tested values for L.

3.4.5 Image restoration

We conclude this experimental section by illustrating the ability of the obtained kernel es-
timates to lead to satisfying and interpretable image restoration results. We assume that we
have access to a pair (x,y) of clean/degraded version of a given calibrated image. We focus
on the estimation of blurs resulting from our synthetic blurred maps, and then the use of
those results for the restoration of several non-calibrated images. Through this example,
we also illustrate and discuss the advantage of providing probabilistic blur estimates.
We consider the image Chart, and its degraded version corrupted by the space-varying
Map 4 with T = 64 and noise with standard deviation σn = 0.1. We ran GIAnPF method
and NP+ approaches, identified as the two best blur identification procedures in the pre-
vious section. As shown in Fig. 3.14(left), we then perform the restoration of a set of
four natural images2, from their degraded version in Fig. 3.14(right), following the same
blur model, and noise level σx = 0, 0.01, 0.05 and 0.1. The restoration is performed in a
non-blind manner, by making use of the fast majorize-minimize memory-gradient (3MG)
algorithm from [Chouzenoux et al. 2013], that was recently adapted to the problem of im-
age retrieval under shift-varying blur [Cadoni et al. 2016, Chalvidal & Chouzenoux 2020].
Note that the variational formulation adopted in 3MG is very similar to the one in
[Denis et al. 2015]. The regularization parameters of 3MG are finetuned so as to maximize
SNRx = 20log10

(
||x||
||x−x̂||

)
, with x the original image, and x̂ the restored one. We present

the results in Table 3.7, in terms of SNRx between x and the restored images obtained with
the blur estimates of either GIAnPF or NP+. In the case of GIAnPF, we ran the restoration
with 100 samples from the estimated posterior distribution of the blur maps, for a single
run of GIAnPF, which allows us to compute the mean and the 95% confidence intervals
for both image quality metrics. In Fig. 3.15(left), we show the mean of the pixel-wise
squared error between the true kernel and these 100 samples obtained from the posterior
distribution. This metric, called Bayesian mean squared error (MSE), allows to assess the
uncertainty of GIAnPF on each kernel estimate. One can identify patches with larger es-
timation errors, corresponding to flat zones in the Chart images, thus making the blur
estimation less accurate. In contrast, the patches localized in zones with significant content
(sharp edges, in particular) benefit from very good estimation quality for the associated blur
(pixel-wise error lower than 10−6). Standard deviation is shown in Fig. 3.15(right), illus-
trating that the estimated distribution is more spread for difficult patches, while it is rather
peaky for the patches that are better estimated. One can see from Table 3.7 that GIAnPF
outperforms NP+ in almost all examples, with up to 0.4 improvement in signal-to-noise

2http://sipi.usc.edu/database/

http://sipi.usc.edu/database/
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ratio (SNR) score. Examples of visual results obtained from a given GIAnPF sample, are
also displayed in Fig. 3.14(right).
We then illustrate the usefulness of the probabilistic estimation with associated uncertainty
quantification that GIAnPF provides, for the image restoration task. Specifically, we focus
on the restoration of Boat image degraded by Map 4 and no noise (i.e., σx = 0). We dis-
play in Fig. 3.16(left) the uncertainty quantification, defined as the standard deviation per
pixel of the 100 restored images, obtained using the 100 samples from the estimated pos-
terior of the blur maps, in a single run of GIAnPF. This uncertainty map can be compared
with Fig. 3.16(right). The latter displays the mean square error map, obtained by averaging
the results of 100 restorations performed with the MMSE estimator of the kernel param-
eters (mean of the approximated posterior), obtained by 100 different independent runs
of GIAnPF. It is noticeable that our probabilistic approach with the inference performed
by GIAnPF; is able to quantify large uncertainty (see Fig. 3.16(left)) in areas where the
squared errors are also large (see Fig. 3.16(right)). Let us point out that the uncertainty map
from Fig. 3.16(left), is obtained without the need of processing the data multiple times, and
does not require the knowledge of the original boat image.

3.5 Conclusion

This chapter addressed the estimation of the PSF parameters for spatially-varying blurs
from calibrated image acquisitions. We proposed an original statistical modeling of the
problem, accounting for the spatial dependency among neighboring kernels, and we ap-
plied a sequential Bayesian inference technique in this context. In order to alleviate the
particle degeneracy problem brought by the BPF in some cases, we also proposed a new
sampling method called the GIAnPF. Our results in different scenarios illustrated the good
performance of the approach, including a useful uncertainty quantification. The novel ap-
proach opens many possibilities beyond this work. For instance, different noise distri-
butions could be immediately used. Moreover, other state-space models, not necessarily
Markovian, could be considered. These perspectives will be discussed thoroughly in Chap-
ter 6.
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Figure 3.3: Three realizations (from left to right) of the space-varying blur Maps 1 to 5 (from top to bottom).
Each column displays one realization from the generative model. One can notice that, for each given row (i.e.,
blur map), the three images displayed share the same global aspect (e.g., circular map in rows 1, 2 or 5) with
some slight variability, for instance in the blur kernel widths and orientations.
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Figure 3.4: Test images Chart, Cells and Hubble.
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Figure 3.5: RMSEh with respect to computational time for BPF and GIAnPF, using different settings of
(M,Q).
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Figure 3.6: Normalized effective sample size (NESS) for BPF (blue) and GIAnPF (red) for various noise
level σn of the blurry noisy image.
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Figure 3.7: RMSE in the blur estimation for BPF (blue) and GIAnPF (red) for various noise level σn of the
blurry noisy image.
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Figure 3.8: Original kernels and identification results using Cells image with T = 64 patches and σn =

0.01. From top to bottom : original kernels, restored kernels with NP, NP+, IS, BPF, GIAnPF.
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Noise level Noise level

σn = 0.01 σn = 0.05

M
ap

1

NP 0.2117 0.3209

NP+ 0.1756 0.2543

IS
0.1258 (0.0129) 0.3339 (0.0157)

0.1057-0.1545 0.3056-0.3620

BPF
0.1246 (0.0080) 0.1964 (0.0204)

0.1109-0.1446 0.1696-0.2646

GIAnPF
0.0680 (0.0065) 0.1564 (0.0122)

0.0578-0.0837 0.1347-0.1858

M
ap

2

NP 0.2474 0.2381

NP+ 0.1383 0.1385

IS
0.1653 (0.0072) 0.1653 (0.0072)

0.1471-0.1768 0.1471-0.1768

BPF
0.0917 (0.0093) 0.1246 (0.0143)

0.0812-0.1211 0.1026-0.1661

GIAnPF
0.0452 (0.0044) 0.1169 (0.0077)

0.0375-0.0549 0.1026-0.1307

M
ap

3

NP 0.1905 0.2723

NP+ 0.1480 0.1608

IS
0.1380 (0.0128) 0.4089 (0.0194)

0.1143-0.1626 0.3717-0.4503

BPF
0.0968 (0.0049) 0.1854 (0.0550)

0.0897-0.1063 0.1145-0.3611

GIAnPF
0.0396 (0.0034) 0.1288 (0.0114)

0.0345-0.0486 0.1116-0.1544

M
ap

4

NP 0.3263 0.4286

NP+ 0.2988 0.3772

IS
0.2746 (0.0187) 0.5554 (0.0204)

0.2443-0.3185 0.5208-0.6021

BPF
0.1360 (0.0098) 0.2847 (0.0236)

0.1174-0.1584 0.2459-0.3411

GIAnPF
0.0701 (0.0089) 0.2640 (0.0100)

0.0521-0.0860 0.2449-0.2833

M
ap

5

NP 0.1830 0.3578

NP+ 0.1415 0.2428

IS
0.1331 (0.0066) 0.1852 (0.0079)

0.1198-0.1469 0.1247-0.1407

BPF
0.0910 (0.0067) 0.1332 (0.0043)

0.0799-0.1066 0.1247-0.1407

GIAnPF
0.0688 (0.0075) 0.1322 (0.0061)

0.0587-0.0880 0.1214-0.1470

Table 3.6: RMSEh for NP, NP+, IS, BPF, GIAnPF. Cells image blurred by space-varying kernels
generated following Maps 1-5.
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Figure 3.9: Mean/variance of the RMSEh reached by the different methods. Hubble image blurred by
space-varying kernels generated following Map 5 and three different values for σn.
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Figure 3.10: Mean/variance of the RMSEh with the different methods assuming different powers within the
generalized Gaussian blur shape (the ground truth is p = 1).
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Figure 3.11: Mean/variance of the RMSEh reached by the different methods, for various noise level σx
deteriorating the input calibrated image.

0.01 0.025 0.05 0.07 0.1

0.15

0.2

0.25

0.3

0.35

R
M

S
E

h

NP

NP
+

IS

BPF

GIAnPF

Figure 3.12: Mean/variance of the RMSEh reached by the different methods, when using an erroneous noise
level estimate σ̂n (the ground truth is σn = 0.05).
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Figure 3.13: Mean/variance of the RMSE for various kernel support width L (ground truth
size: L = 15).

Image σx NP+ GIAnPF

Boat
0 20.1051 20.5247[20.3207-20.7045]

0.01 18.8952 18.0044 [17.8957-18.1138]

0.05 17.9529 17.9610[17.9485-17.9714]

0.1 17.2432 17.2755 [17.2674-17.2848]

Goldhill
0 20.7009 20.9611[20.6529-21.1522]

0.01 19.1551 20.2494 [20.1838-20.3108]

0.05 18.9202 18.9990[18.9728-19.0205]

0.1 18.2412 18.3510 [18.3356-18.3630]

Plane
0 23.2597 23.6970 [23.5257-23.8888]

0.01 22.1416 21.8859 [21.7679-21.9899]

0.05 20.4632 20.5290[20.5132-20.5487]

0.1 19.6010 19.6535 [19.6445-19.6654]

Cameraman
0 20.4253 20.4839 [19.7894-20.9030]

0.01 19.3293 19.8935 [19.7158-20.0245]

0.05 18.3764 18.6403 [18.5687-18.6794]

0.1 17.4996 17.7183 [17.6861-17.7376]

Table 3.7: SNRx values of restored images using estimated blur derived from NP+ and
GIAnPF applied on the calibrated image Chart.
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Figure 3.14: (left) Original images ; (middle) blurry noisy versions with σn = 0.01 ; (right) example of
restored image using the mean blur estimate from one run of GIAnPF.
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Figure 3.15: Results of 100 samples from the posterior obtained with single run of GIAnPF
when applied to image Chart degraded by Map 4 and σn = 0.1: (left) log10 of the pixel-
wise mean squared error over the 100 samples. (right) log10 of the pixel-wise standard
deviation over the 100 samples.
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Figure 3.16: Uncertainty quantification vs error in the estimation of the kernels by GIAnPF
on the image boat ; (left) log10 of the pixel-wise standard deviation of the restored image,
when using 100 samples from the posterior of the blur parameters, approximated by a
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4.1 Introduction

Image blind deconvolution problem arises in many fields of image processing such
as astronomy [Murtagh et al. 2007], biology [Holmes et al. 2006] and medical imaging
[Michailovich & Tannenbaum 2007]. Given a degraded, blurred and noisy image, the aim
is to restore a clean image along with an estimate of the blur kernel. Blind deconvolu-
tion is a severely ill-posed problem as there exists an infinite number of pairs (image/blur)
that lead to the same observed image. Blind deconvolution methods available in literature
adopt either a sequential identification process [Carasso 2001], or a joint estimation ap-
proach [Levin et al. 2009]. In the former, the blur kernel is identified first, possibly through
a calibration step [Bell et al. 2016, Huang et al. 2021a, Chouzenoux et al. 2019]. Then the
unknown image is inferred using a non-blind image restoration method. This approach was
the one considered in our Chapter 3. In the latter, the blur kernel and unknown image are
simultaneously estimated. This joint approach is retained in this chapter, and Chapter 5.
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Since the problem of joint estimation is highly ill-posed, it is mandatory to incorporate
prior knowledge on the sought unknowns. The retained prior strongly influences the choice
for the solver. Let us distinguish two main classes of joint blind deconvolution approaches.
A first option consists of formulating the problem as the minimization of a cost function
gathering a data fidelity term (e.g., least-squares discrepancy) and penalties/constraints
acting on the image and kernel variables. In such a way, it is quite standard to im-
pose normalization and sparsity enhancing constraints on the kernel coefficients to avoid
scale ambiguity inherent to the blind deconvolution model [Komodakis & Paragios 2012,
Kotera et al. 2013, Krishnan et al. 2011]. One can also easily impose the smoothness of
the image, by adopting total-variation based regularization [Chan & Wong 1998]. Sev-
eral other efficient choices have been proposed in the literature, along with suitable iter-
ative optimization methods to solve the resulting problems [Levin 2006, Shan et al. 2008,
Joshi et al. 2008, Abboud et al. 2019, Bolte et al. 2010, Liu et al. 2021a]. The main ad-
vantage of this family of methods is probably its flexibility. But this comes at the price
of heavy parameter tuning. The second option is to resort to a Bayesian formulation to
express the model and a priori knowledge on the variables. The estimates are then de-
fined from the estimation of the moments (typically, the mean) of a posterior distribu-
tion given the observed data and prior. As this typically involves the evaluation of in-
tractable integrals, sampling [Robert & Casella 2004, Luengo et al. 2020] or approxima-
tion [Evans & Swartz 1995] strategies are used. MCMC methods have been widely used
for blind deconvolution involving 1D sparse signals [Rosec et al. 2003, Ge et al. 2011,
Kail et al. 2012], but it is up to our knowledge scarcely employed in large-scale prob-
lems [Bishop et al. 2008], probably for computational time reasons. Another family of
approach consists in adopting the so-called variational Bayesian approximation paradigm
[Fox & Roberts 2012, Blei et al. 2017, Zheng et al. 2015a, Gharsalli et al. 2012]. Then, a
simpler (usually separable) approximation to the posterior is built through the minimization
of a suitable divergence. This approach leads to fast Bayesian-based algorithms, whose
great performance has been assessed in the context of non-blind [Marnissi et al. 2017,
Zheng et al. 2015b] and blind [Babacan et al. 2009] image restoration. Bayesian-based
techniques usually require less parameters than optimization-based ones. Moreover, they
can provide higher-order moments estimates, such as covariance matrices, which are of
high interest for assessing probabilistically the uncertainty of the results. However, dealing
with complex noise models and priors in such methods may be tricky, and the algorithms
may be quite computationally heavy, hereagain with hyperparameters to be tuned.

A recent trend is to insert optimization-based steps in Bayesian sam-
pling/approximation methods for a more versatile modality and faster computations.
See, for example, [Marnissi et al. 2017, Pereyra et al. 2016, Marnissi et al. 2020] for
applications of such ideas in the context of large-scale image processing. Following this
strategy, in this chapter, we introduce an algorithm called VBA, based on the Bayesian
variational strategy (see Section 2.2.1), enhanced by optimization-based ideas inherited
from [Marnissi et al. 2017], with the advantages to cope with a large set of priors on the
kernel and the image, and to present a reduced computational cost. The rest of Chapter 4
is organized as follows. In Section 4.2, we introduce the image degradation model and
introduce our Bayesian modeling, and provide the background for deriving our algorithm.
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Section 4.3 explicitly describes the iterative updates of the proposed VBA in the case of
Gaussian noise. Section 4.4 explicitly describes the iterative updates of the proposed VBA
in the case of non-Gaussian noise. Section 4.5 concludes this chapter. The next Chapter 5
will be dedicated to the extension of VBA using the deep unrolling paradigm, and to the
numerical experiments.

4.2 Problem statement

4.2.1 Observation model

We focus on the restoration of an original image x̃ ∈ RN , from a degraded version of it
y ∈ RN , related to x̃ according to the following model:

(∀i ∈ {1, ...,N}) yi =D([H̃x̃]i). (4.1)

Hereabove, n ∈ RN models some additive random perturbation on the observation. More-
over, H̃ ∈ RN×N is a linear operator modeling the effect of a blur kernel h̃ ∈ RM. D(·) is
a noise model that may depend on the data available. In the following paragraphs, we’ll
discuss the case of Gaussian noise and non-Gaussian noise respectively.
In this work, we focus on the generalized blind deconvolution problem where the matrix
associated with a given kernel h = [h1, . . . ,hM]> reads

H =
M

∑
m=1

hmSm, (4.2)

with {S1, . . . ,SM} is a set of M known sparse N ×N real-valued matrices. This model
allows to retrieve the standard image deblurring model, as a special case when H identifies
with a 2D discrete convolution matrix with suitable padding. The considered problem
amounts to retrieving an estimate (x̂, ĥ) of the pair of variables (x̃, h̃) given y. Due to the
ill-posedness of this inverse problem, assumptions are required on the sought image / kernel
and on the noise statistics to reach satisfying results. Furthermore, we introduce a linear
equality constraint on the blur kernel estimate h. A general expression of such a constraint
is as follows:

h = Tz+ t, (4.3)

where T = (Tm,p)1≤m≤M,1≤p≤P ∈ RM×P is a matrix of rank P ∈ {1, . . . ,M} and t =

[t1, . . . , tM]> ∈RM is some vector of predefined constants. Vector z = [z1, . . . ,zP]
> ∈RP be-

comes the new unknown of the problem, along with the image x. A typical linear equality
constraint in such context is the sum-to-one constraint, i.e., ∑

M
m=1 hm = 1. Other examples

will be provided in the experimental Section 5.2. We can thus rewrite (4.2) as

H =
P

∑
p=1

zpKp +K0 =H(z), (4.4)

with

(∀p ∈ {1, . . . ,P}) Kp =
M

∑
m=1

Tm,pSm ∈ RN×N , (4.5)
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and

K0 =
M

∑
m=1

tmSm ∈ RN×N . (4.6)

4.2.2 Hierarchical Bayesian Modeling

Let us now introduce the hierarchical Bayesian model on which our VBA method will be
grounded.

4.2.2.1 Likelihood

First, we express the likelihood p(y|x,z) of the observed data, given the unknowns (x,z).
In general case, the likelihood can be expressed as follows:

p(y|x,z) ∝ exp

[
−

N

∑
i=1

φi([Hx]i;yi)

]
= exp

[
−

N

∑
i=1

φi ([H(z)x]i ;yi)

]
. (4.7)

According to different noise models D(·), φi can have various forms (see
[Marnissi et al. 2017, Tab I] for examples). For instance, it reduces to a least square func-
tion in the case of additive Gaussian noise.

4.2.2.2 Prior

As already mentioned, it is necessary to incorporate suitable prior knowledge on the sought
quantities to limit the problem ill-posedness. We here consider a wide range of sparsity
enhancing prior for the image x, by adopting the generic model,

p(x|γ) ∝ γ
N
2κ exp

(
− γ

J

∑
j=1
||D jx||2κ

)
, (4.8)

with κ ∈ (0,1] a scale parameter and (D j)1≤ j≤J ∈ (RS×N)J both assumed to be known. For
instance, an isotropic total variation prior is obtained by setting κ = 1/2, S = 2, J = N and
for every j ∈ {1, . . . ,N}, D jx = [[∇hx] j, [∇

vx] j] ∈ R2 gathers the horizontal and vertical
gradients of x at pixel j. Other relevant choices are discussed in [Marnissi et al. 2017].
Hereabove, γ > 0 is a regularization hyperparameter that we incorporate in our hierarchical
model. We assume a Gamma distribution on γ ,

p(γ) ∝ γ
α−1 exp(−ηγ), (4.9)

where α ≥ 0 and η ≥ 0 are the (known) shape and inverse scale parameters of the Gamma
distribution. Such choice for the hyperparameter is rather standard in the context of
Bayesian image restoration.
Regarding the blur h, we adopt the so-called SAR model, successfully used for Bayesian-
based blind deconvolution in [Babacan et al. 2009]. The model relies on the following
Gaussian model,

p(h|ξ ) ∝ ξ
M
2 exp

(
− ξ

2
||A(h−m)||2

)
, (4.10)
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where A ∈ RQ×M with Q ∈ N \ {0} denotes a matrix of rank M. m ∈ RM is the mean of
the underlying Gaussian distribution, and ξ > 0 is such that ξ A>A is its inverse covariance
matrix. If h follows this distribution, the projection of h onto the affine space defined by
(4.3) is also Gaussian as well as the vector z associated with each projected vector. More
precisely, z follows a Gaussian distibution with mean µ= T−1(m− t) and covariance ma-
trix ξ−1T−1(A>A)−1(T−1)> where T−1 is the left inverse of T, i.e., T−1 = (T>T)−1T>.
This yields the following prior for the variable of interest z:

p(z|ξ ) ∝ ξ
P
2 exp

(
− ξ

2
(z−µ)>L(z−µ)

)
, (4.11)

where L = T>T(T>
(
A>A)−1T

)−1T>T. We will consider (L,µ) to be predefined by the
user, so as to be adapted to the sought properties of the blur kernel to estimate. The hyper-
parameter ξ will be learned during a training phase, as we will explain in Section 5.1.

4.2.2.3 Hierarchical model

Let us assume that (x,γ) and z are mutually independent. According to Bayes formula, the
posterior distribution of the unknowns Θ = (x,z,γ) given the observed data y is defined as

p(Θ|y) ∝ p(y|x,z)p(x|γ)p(z|ξ )p(γ), (4.12)

where the four factors on the right side have been defined above.

4.2.3 Variational Bayesian Inference

The Bayesian inference paradigm seeks for solving the blind restoration problem through
the exploration of the posterior p(Θ|y). Typically, one would be interested in the posterior
mean, its covariance, or its modes (i.e., maxima). Let us make (4.12) explicit:

p(Θ|y) ∝ exp

(
−γ

J

∑
j=1
||D jx||2κ −

N

∑
i=1

φi ([H(z)x]i ;yi)

)

× γ
N
2κ
+α−1 exp(−ηγ)ξ

P
2 exp

(
− ξ

2
(z−µ)>L(z−µ)

)
. (4.13)

Unfortunately, neither p(Θ|y), nor its moments (e.g., mean, covariance), nor its mode posi-
tions have a closed form. In particular p(y), which acts as a normalization constant, cannot
be calculated analytically. We thus resort to the variational Bayesian framework, intro-
duced in Section 2.2.1, to approximate this distribution by a more tractable one, denoted
by q(Θ), for which the estimators are easier to compute. The approximation is computed
with the aim to minimize the KL divergence between the target posterior and its approxi-
mation, which amounts to determining

qopt(Θ) = argminq KL(q(Θ)||p(Θ|y)),

= argminq

∫
q(Θ)ln

(
q(Θ)

p(Θ|y)

)
dΘ, (4.14)
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where the equality holds only when q(Θ) = p(Θ|y). In order to make the solution of the
above minimization problem tractable, a typical strategy is to make use of a so-called mean
field approximation of the posterior, combined with an alternating minimization procedure,
which yields to the so-called VBA. More specifically, we consider the following factoriza-
tion:

q(Θ) = qX(x)qZ(z)qΓ(γ). (4.15)

Due to the intricate form of the chosen prior on the image and of the likelihood (in the case
of non-Gaussian noise), we introduce extra approximation steps, relying on a majoration-
minimization (MM) strategy, reminiscent from [Marnissi et al. 2017]. In addition, we pro-
pose a strategy to reduce the time complexity of VBA, so as to deal with medium to large
size images. In Section 4.3 and 4.4, we describe our developments in the case of Gaussian
and non-Gaussian noises, respectively. As we will emphasize, even for the simplest case
of Gaussian noise, the method requires the setting of two cumbersome hyperparameters,
namely the regularization weight ξ and the noise level denoted β . In Chapter 5.1, we
will show how to unroll the VBA method as a neural network structure, so as to learn the
parameters (ξ ,β ) in a supervised fashion. All the numerical experiments are reported in
Chapter 5.1.

4.3 Case of Gaussian noise

Let us first focus on the resolution of the inverse problem (4.1) when D(·) models additive
Gaussian noise. First, we reformulate the observation model as

y = H̃x̃+n. (4.16)

We then express the corresponding likelihood p(y|x,z) of the observed data, given the
unknowns (x,z). Since the noise is assumed to be Gaussian distributed, the likelihood can
be expressed as follows:

p(y|x,z) = β
N
2 exp

(
−β

2
||y−H(z)x||2

)
, (4.17)

where we recall that β denotes the inverse of the noise variance. In the sequel, we will
assume that n is a realization of an additive Gaussian noise with zero mean and standard
deviation σ . In the remainder of the section, it will be convenient to set β = σ−2.
We now describe our proposed implementation of the VBA when applied to the approxi-
mation to the posterior in (4.13). We first present an MM-based procedure to handle the
complicated form of the prior term on variable x. Then, we give the explicit expressions of
the updates performed in the alternating minimization method.

4.3.1 MM-based approximation

Let us focus on the prior term in (4.8). This distribution is difficult to deal with as soon as
κ is different from 1 (in which case a Gaussian distribution is retrieved). We thus propose
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to construct a surrogate for the prior on x. We use the tangent inequality for concave
functions, which yields the following majorant function for the `κ -function with κ ∈ (0,1]:

(∀u > 0)(∀v≥ 0) vκ ≤ (1−κ)uκ +κuκ−1v. (4.18)

Let us introduce the vector of auxiliary positive variables λ=(λ j)1≤ j≤J . From the previous
inequality, we then deduce the following majorant function for the negative logarithm of
the prior distribution:

(∀x ∈ RN) γ

J

∑
j=1
||D jx||2κ ≤

J

∑
j=1

Fj(D jx,λ j;γ), (4.19)

where, for every j ∈ {1, . . . ,J},

Fj(D jx,λ j;γ) = γ
κ||D jx||2 +(1−κ)λ j

λ
1−κ

j
. (4.20)

This majorant function can be understood as a Gaussian lower bound on the prior distri-
bution on x, which will appear more tractable in the VBA implementation. We will also
show that the update of the auxiliary variables remains rather simple, thus not impacting
the complexity of the whole procedure.
In a nutshell, using (4.13), and (4.19), we obtain the following inequality:

p(Θ|y)≥F(Θ|y;λ) (4.21)

where the lower bound on the posterior distribution is

F(Θ|y;λ) =Cγ
N
2κ exp

(
−β

2
||y−H(z)x||2−F(x,λ;γ)

)
p(γ)p(z|ξ ). (4.22)

Hereabove we have introduced the shorter notation

F(x,λ;γ) =
J

∑
j=1

Fj(D jx,λ j;γ), (4.23)

and C is a multiplicative constant independent from Θ. Inequality (4.21) leads to the fol-
lowing majorization of the KL divergence involved in (4.14):

KL(q(Θ)||p(Θ|y))≤KL(q(Θ)||F(Θ|y;λ)). (4.24)

By minimizing the upper bound in (4.24) with respect to λ, we can keep it as tight as
possible, so as to guarantee the good performance of the VBA. To summarize, we propose
to solve Problem (4.14) through the following four iterative steps:

1. Minimizing KL(q(Θ)||F(Θ|y;λ)) w.r.t. qX(x).

2. Minimizing the upper bound KL(q(Θ)||F(Θ|y;λ)) in (4.24) w.r.t. qZ(z).

3. Update the auxiliary variables (λ j)1≤ j≤J to minimize KL(q(Θ)||F(Θ|y;λ)).

4. Minimizing KL(q(Θ)||F(Θ|y;λ)) w.r.t. qΓ(γ).

Subsequently, at a given iteration k of the proposed algorithm, the corresponding estimated
variables will be indexed by k.
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4.3.2 VBA updates

Let us now describe the four steps of the proposed VBA, starting from a given iteration
k associated with the current approximated distributions qk

X(x),q
k
Z(z), and qk

Γ
(γ), and the

auxiliary parameter estimate λk. We also denote by (xk,zk,γk) the estimates of the means
of qk

X, qk
Z, and qk

Γ
, and (Ck

x,C
k
z) the covariance estimates for qk

X and qk
Z.

4.3.2.1 Update of qX(x)

By definition,

qk+1
X (x) = argminqX

KL(qX(x)qk
Γ(γ)q

k
Z(z)||F(Θ|y;λk)). (4.25)

The standard solution provided by (2.15) remains valid, by replacing the joint distribution
by a lower bound chosen proportional to F(Θ|y;λk):

qk+1
x (x) ∝ exp

(
< lnF(x,z,γ | y;λk)>qk

Γ
(γ),qk

Z(z)

)
∝ exp

(∫ ∫
lnF(x,z,γ | y;λk)qk

Γ(γ)q
k
Z(z)dγdz

)
. (4.26)

By decomposing the different terms and using (4.4),

qk+1
x (x) ∝exp

{
−1

2
x>
(

β

(
Eqk

Z(z)
(H)>Eqk

Z(z)
(H)+

P

∑
p=1

P

∑
q=1

e>p covqk
Z(z)

(z)eqK>p Kq

)
+2Eqk

Γ
(γ)(γ)D

>
Λ

kD

)
x+βx>Eqk

Z(z)
(H)>y

}
(4.27)

where

Eqk
Z(z)

(H) =
P

∑
p=1

e>p Eqk
Z(z)

(z)Kp +K0, (4.28)

D = [D>1 , . . . ,D
>
J ]
>, (4.29)

Λk is the block diagonal matrix whose diagonal elements are (κ(λ k
j )

κ−1IS)1≤ j≤J , and
(e1, . . . ,eP) is the canonical basis of RP. We thus obtain a Gaussian distribution:

qk+1
X (x) =N (x; x̌k+1, Čx

k+1
), (4.30)

parametrized by

(Čx
k+1

)−1 = β

(
(Hk)>Hk +

P

∑
p=1

P

∑
q=1

e>p Ck
zeqK>p Kq

)
+2γkDTΛkD, (4.31)

x̌k+1 = β Čx
k+1

(Hk)>y, (4.32)

with Hk =H(zk).
In image restoration applications, dimension N can be rather large (typically greater than
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106 variables), so that the storage of the full covariance matrix Čx
k+1

is neither desirable
nor usually possible. We thus propose to resort to a diagonal approximation to this matrix
when required, so that the update finally reads:

qk+1
X (x) =N (x;xk+1,Ck+1

x ), (4.33)

with

Ck+1
x = Diag

(
δ

k+1
x

)
(4.34)

xk+1 = CG
(
(Čx

k+1
)−1,β (Hk)>y

)
, (4.35)

where δ k+1
x ∈ RN is the vector of the inverses of the diagonal elements of (Čx

k+1
)−1, and

CG(A,b) denotes the application of a linear conjugate gradient solver to the linear system
Ax=b.

4.3.2.2 Update of qZ(z)

According to the VBA principle,

qk+1
Z (z) = argminqZ

KL(qk+1
X (x)qk

Γ(γ)qZ(z)||F(Θ|y;λk)). (4.36)

Using (2.15) and the previously introduced bound F(Θ | y;λk), we have

qk+1
Z (z) ∝ exp

(∫ ∫
lnF(x,z,γ | y;λk)qk

Γ(γ)q
k+1
X (x)dγdx

)
. (4.37)

Replacing the involved quantities by their expression yields

qk+1
Z (z) ∝ exp

{
−1

2
z>
(

βBk+1 +ξ L
)

z+ z>
(

βak+1 +ξ Lµ
)}

, (4.38)

where ak+1 = (ak+1
p )1≤p≤P ∈ RP and Bk+1 = (Bk+1

p,q )1≤p,q≤P ∈ RP×P are such that, for
every (p,q) ∈ {1, . . . ,P}2,

ak+1
p =Eqk+1

X (x)(x)
>K>p y−Eqk+1

X
(x>K>p K0x)

= (xk+1)>K>p y−Bk+1
p,0 , (4.39)

Bk+1
p,q = Eqk+1

X
(x>K>p Kqx)

= trace
(

KpCk+1
x K>q

)
+(xk+1)>K>p Kqxk+1 (4.40)

with

Bk+1
p,0 = Eqk+1

X
(x>K>p K0x)

= trace
(

KpCk+1
x K>0

)
+(xk+1)>K>p K0xk+1. (4.41)



60 Chapter 4. Variational Bayesian algorithm for image blind deconvolution

Thus, the update for the distribution qZ reads

qk+1
Z (z) =N (z;zk+1,Ck+1

z ), (4.42)

with

(Ck+1
z )−1 = βBk+1 +ξ L, (4.43)

zk+1 = Ck+1
z

(
βak+1 +ξ Lµ

)
. (4.44)

4.3.2.3 Update of λ

Let us now express the update of the auxiliary variable. We aim at finding

λk+1 = argminλKL(qk+1
X (x)qk

Γ(γ)q
k+1
Z (z)||F(Θ|y;λ)). (4.45)

This amounts to finding, for every j ∈ {1, . . . ,J},

λ
k+1
j = argminλ j∈[0,+∞)

∫
qk+1

X (x)qk
Γ(γ)q

k+1
Z (z)× log

qk+1
X (x)qk

Γ
(γ)qk+1

Z (z)
F(Θ|y,λ)

dΘ,

= argminλ j∈[0,+∞)

J

∑
j=1

∫ ∫
qk+1

X (x)qk
Γ(γ)×Fj(D jx,λ j;γ)dxdγ,

= argminλ j∈[0,+∞)

κEqk+1
x (x)

[
||D jx||2

]
+(1−κ)λ j

λ
1−κ

j
. (4.46)

The explicit solution to the above minimization problem yields the following update:

λ
k+1
j = Eqk+1

x (x)
[
||D jx||2

]
= ||D jxk+1||2 + trace

(
D>j D jCk+1

x

)
. (4.47)

4.3.2.4 Update of qΓ(γ)

Finally, the update related to the hyperparameter γ is expressed as

qk+1
Γ

(γ) = argminqΓ
KL(qk+1

X (x)qΓ(γ)qk+1
Z (z)||F(Θ|y;λk+1)). (4.48)

Using (2.15), we have

qk+1
Γ

(γ) ∝ exp

(∫ ∫
lnF(x,z,γ | y;λk+1)×qk+1

X (x)qk+1
Z (z)dxdz

)
. (4.49)

The above integral has the following closed form expression:

qk+1
Γ

(γ) ∝ γ
N
2κ
+α−1 exp(−ηγ)× exp

(
−γ

J

∑
j=1

κ Eqk+1
x (x)

[
||D jx||2

]
+(1−κ)λ k+1

j

(λ k+1
j )1−κ

)
.

(4.50)
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It thus follows from (4.47) that the update of qΓ is

qk+1
Γ

(γ) = Γ(d,bk+1), (4.51)

that is the Gamma distribution with parameters

d =
N
2κ

+α, bk+1 =
J

∑
j=1

(λ k+1
j )κ +η . (4.52)

The mean of qk+1
Γ

is finally given by

γ
k+1 =

d
bk+1 . (4.53)

Note that parameter d is not iteration dependent and can thus be precomputed from the
beginning of the VBA.

4.3.3 Overview of VBA with Gaussian noise

Algorithm 1 provides a summary of the resulting VBA for solving the blind deconvolution
problem introduced in Section 4.2 under Gaussian noise. We also specify our initializa-
tion strategy. More practical details about the latter will be discussed in the experimental
Section 5.2. As a result, the optimal posterior distributions for both variables x and z will
be approximated as Gaussian distributions, while the one for hyperparameter γ is approxi-
mated by a Gamma distribution. In particular, after K iterations, it is direct to extract from
VBA outputs an estimate for the posterior mean of the image and the kernel, through vari-
able xK and TzK + t. The associated covariance matrices are given by CK

x and TCK
z T>.

These matrices can be useful to perform uncertainty quantification of the results. The VBA
also allows us to estimate easily the hyperparameter γ involved in the image prior.

Algorithm 1 VBA approach for image blind deconvolution under Gaussian noise

Initialization. Set hyperparameters (ξ ,β ,α,η). Define initial values for (x0,C0
x,z0,C0

z).
Compute λ0 and γ0 using (4.47) and (4.53), respectively.

Iterative steps. For k = 0,1, . . . ,K:
1: Update the mean xk+1 and the covariance matrix Ck+1

x of qk+1
X (x) using (4.34)-(4.35).

2: Update the mean zk+1 and the covariance matrix Ck+1
z of qk+1

Z (z) using (4.43)-(4.44).
3: Update λ

k+1
j using (4.47), for every j ∈ {1, . . . ,J}.

4: Update the mean γk+1 of qk+1
Γ

(γ) using (4.52)-(4.53).

4.4 Case of non-Gaussian noise

In this section, we extend our implementation of the VBA when the noise degrading the
image is non-Gaussian. We can still adopt the MM-based approximation for the prior term
on variable x. The novelty here is to also apply an MM-based strategy to approximate the
likelihood, which becomes more difficult for non-Gaussian noise. We detail below this new
approximation, and give the explicit expressions of the updates performed in the resulting
VBA.
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4.4.1 MM-based approximation

4.4.1.1 Likelihood

Let us present our majorizing strategy to cope with the non-Gaussian noise case. Sim-
ilarly as in [Marnissi et al. 2017, Ass.III.1], we assume that the noise model leads to a
likelihood in (4.7) such that, for every i ∈ {1, · · · ,N}, φi is differentiable on R and there
exists µi(yi) > 0 such that the function defined by v 7→ v2

2 −
φi(v;yi)
µi(yi)

in convex on R. This
assumption is satisfied when, for every i ∈ {1, · · · ,N}, φi is βi(yi)-Lipschitz differentiable.
Examples of useful functions and noise models satisfying this assumption were displayed
in [Marnissi et al. 2017, Tab.1]. It is worthy to note that functions (φi)1≤i≤N , and thus the
parameters (µi(yi))1≤i≤N implicitly account for the noise level present in the image.

For every i ∈ {1, · · · ,N} and v ∈ R, let us define the following function:

ςi(v;yi) = sup
t∈R

(
−1

2
(v− t)2 +

φi(t;yi)

µi(yi)

)
. (4.54)

Then, according to [Marnissi et al. 2017, Prop.III.1], for every i ∈ {1, · · · ,N},

(v ∈ R) φi(v;yi) = inf
wi∈R

Ti(v,wi;yi) (4.55)

where, for every v ∈ R,

Ti(v,wi;yi) = µi(yi)

(
1
2
(v−wi)

2 + ςi(wi;yi)

)
. (4.56)

Moreover, the unique minimizer of wi 7→ Ti(v,wi;yi) reads

ŵi(v) = v− 1
µi(yi)

φ
′
i (v;yi). (4.57)

This leads to construct an upper bound for the likelihood function.

(∀x ∈ RN) φ(x,y) = infw∈RN T (x,z,w;y)

= infw∈RN

N

∑
i=1

Ti ([H(z)x]i ,wi;yi) (4.58)

with

(∀i ∈ {1, ..,N}) Ti(v,wi;yi) = µi(yi)

(
1
2
(v−wi)

2 + ςi(wi;yi)

)
(4.59)

and ςi defined in (4.54). Using (4.13), and (4.58), we obtain the following inequality:

p(Θ|y)≥F(Θ|y;w,λ) (4.60)

where the lower bound on the posterior distribution is

F(Θ|y;w,λ) =Cγ
N
2κ exp(−T (x,z,w;y)−F(x,λ;γ)) p(γ)p(z|ξ ), (4.61)
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using again the notation (4.23). Inequality (4.60) leads to the majorization

KL(q(Θ)||p(Θ|y))≤KL(q(Θ)||F(Θ|y;w,λ)). (4.62)

By minimizing the upper bound in (4.62) with respect to λ and w, we can keep it as tight as
possible, so as to guarantee the good performance of the VBA. As we aforementioned, the
other steps of VBA remain the same as in the Gaussian case. To summarize, we propose to
solve Problem (4.14) through the following five iterative steps:

1. Minimizing the upper bound KL(q(Θ)||F(Θ|y;w,λ)) w.r.t. qX(x).

2. Minimizing the upper bound KL(q(Θ)||F(Θ|y;w,λ)) w.r.t. qZ(z).

3. Update the auxiliary variables (wi)1≤i≤N to minimize KL(q(Θ)||F(Θ|y;w,λ)).

4. Update the auxiliary variables (λ j)1≤ j≤J to minimize KL(q(Θ)||F(Θ|y;w,λ)).

5. Minimizing the upper bound KL(q(Θ)||F(Θ|y;w,λ)) w.r.t. qΓ(γ).

At a given iteration k of the proposed algorithm, the corresponding estimated variables will
be indexed by k.

4.4.2 VBA updates

Let us now describe the steps of the proposed VBA, starting from a given iteration k associ-
ated with the current approximated distributions qk

X(x),q
k
Z(z), and qk

Γ
(γ), and the auxiliary

parameters λk and wk. We also denote by (xk,zk,γk) the estimates of the means of qk
X, qk

Z,
and qk

Γ
, and (Ck

x,C
k
z) the covariance estimates for qk

X and qk
Z.

4.4.2.1 Update of qX(x)

By definition,

qk+1
X (x) = argminqX

KL(qX(x)qk
Γ(γ)q

k
Z(z)||F(Θ|y;wk,λk)). (4.63)

Once again, we can use the solution provided by (2.15), by replacing the joint distribution
by a lower bound chosen proportional to F(Θ|y;wk,λk):

qk+1
x (x) ∝ exp

(
< lnF(x,z,γ | y;wk,λk)>qk

Γ
(γ),qk

Z(z)

)
∝ exp

(∫ ∫
lnF(x,z,γ | y;wk,λk)qk

Γ(γ)q
k
Z(z)dγdz

)
. (4.64)

By decomposing the different terms and using (4.4),

qk+1
x (x)

∝ exp

{
−1

2
x>
(
Eqk

Z(z)
(H)>Diag(µ(y))Eqk

Z(z)
(H)+

P

∑
p=1

P

∑
q=1

e>p covqk
Z(z)

(z)eqK>p Diag(µ(y))Kq

+2Eqk
Γ
(γ)(γ)D

>
Λ

kD

)
x+x>Eqk

Z(z)
(H)>u

}
(4.65)
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where

Eqk
Z(z)

(H) =
P

∑
p=1

e>p Eqk
Z(z)

(z)Kp +K0, (4.66)

D = [D>1 , . . . ,D
>
J ]
>, (4.67)

Λk is the block diagonal matrix whose diagonal elements are (κ(λ k
j )

κ−1IS)1≤ j≤J , and
(e1, . . . ,eP) is the canonical basis of RP. µ(y) = [µ1(y1), ...,µN(yN)]

>, u is a N×1 vector
whose i−th component is given by ui = µi(yi)wk

i . We thus obtain a Gaussian distribution:

qk+1
X (x) =N (x; x̌k+1, Čx

k+1
), (4.68)

parametrized by

(Čx
k+1

)−1 = (Hk)>Diag(µ(y))Hk +
P

∑
p=1

P

∑
q=1

e>p Ck
zeqK>p Diag(µ(y))Kq +2γkDTΛkD,

(4.69)

x̌k+1 = Čx
k+1

(Hk)>u, (4.70)

with Hk =H(zk).
Hereagain, we propose to resort to a diagonal approximation to this matrix when required,
so that the update finally reads:

qk+1
X (x) =N (x;xk+1,Ck+1

x ), (4.71)

with

Ck+1
x = Diag

(
δ

k+1
x

)
(4.72)

xk+1 = CG
(
(Čx

k+1
)−1,(Hk)>u

)
, (4.73)

where δ k+1
x ∈ RN is the vector of the inverses of the diagonal elements of (Čx

k+1
)−1.

4.4.2.2 Update of qZ(z)

According to the VBA principle,

qk+1
Z (z) = argminqZ

KL(qk+1
X (x)qk

Γ(γ)qZ(z)||F(Θ|y;wk,λk)). (4.74)

Using the VBA optimality condition (2.15) and the previously introduced bound F(Θ |
y;wk,λk), we have

qk+1
Z (z) ∝ exp

(∫ ∫
lnF(x,z,γ | y;wk,λk)qk

Γ(γ)q
k+1
X (x)dγdx

)
. (4.75)

Replacing the involved quantities by their expression yields

qk+1
Z (z) ∝ exp

{
−1

2
z>
(

Bk+1 +ξ L
)

z+ z>
(

ak+1 +ξ Lµ
)}

, (4.76)
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where ak+1 = (ak+1
p )1≤p≤P ∈ RP and Bk+1 = (Bk+1

p,q )1≤p,q≤P ∈ RP×P are such that, for
every (p,q) ∈ {1, . . . ,P}2,

ak+1
p =Eqk+1

X (x)(x)
>K>p u−Eqk+1

X
(x>K>p Diag(µ(y))K0x)

= (xk+1)>K>p u−Bk+1
p,0 , (4.77)

Bk+1
p,q = Eqk+1

X
(x>K>p Diag(µ(y))Kqx)

= trace
(

Diag(µ(y))KpCk+1
x K>q

)
+(xk+1)>K>p Diag(µ(y))Kqxk+1 (4.78)

with

Bk+1
p,0 = Eqk+1

X
(x>K>p Diag(µ(y))K0x)

= trace
(

Diag(µ(y))KpCk+1
x K>0

)
+(xk+1)>K>p Diag(µ(y))K0xk+1. (4.79)

Thus, the update for the distribution qZ reads

qk+1
Z (z) =N (z;zk+1,Ck+1

z ), (4.80)

with

(Ck+1
z )−1 = Bk+1 +ξ L, (4.81)

zk+1 = Ck+1
z

(
ak+1 +ξ Lµ

)
. (4.82)

4.4.2.3 Update of w

Let us now express the update of the auxiliary variable w. We aim at finding

wk+1 = argminwKL(qk+1
X (x)qk

Γ(γ)q
k+1
Z (z)||F(Θ|y;w,λk)). (4.83)

which leads to

wk+1 = argminw

∫
qk+1

X (x)qk
Γ(γ)q

k+1
Z (z)× ln

qk+1
X (x)qk

Γ
(γ)qk+1

Z (z)
L(Θ|y;w,λk)

dΘ (4.84)

= argminw

∫
qk+1

X (x)qk
Γ(γ)q

k+1
Z (z)

(
−lnL(Θ|y;w,λk)

)
dΘ (4.85)

= argminw

∫
qk+1

X (x)qk+1
Z (z)

N

∑
i=1

Ti([Hx]i,wi;yi)dxdz (4.86)

= argminw

∫
qk+1

X (x)qk+1
Z (z)

N

∑
i=1

Ti([H(z)x]i,wi;yi)dxdz (4.87)

= argminw

∫
qk+1

X (x)qk+1
Z (z)

N

∑
i=1

Ti

([(
P

∑
p=1

zpKp +K0

)
x

]
i

,wi;yi

)
dxdz. (4.88)

(4.89)
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It follows that, for every i ∈ {1, . . . ,N},

wk+1
i = argminwi

Ti

([
Hk+1xk+1

]
i
,wi;yi

)
(4.90)

=
[
Hk+1xk+1

]
i
− 1

µi(yi)
φ
′
i

([
Hk+1xk+1

]
i
;yi

)
. (4.91)

4.4.2.4 Update of λ

Let us now express the update of the auxiliary variable λ. We aim at finding

λk+1 = argminλKL(qk+1
X (x)qk

Γ(γ)q
k+1
Z (z)||F(Θ|y;wk+1,λ)). (4.92)

This amounts to finding, for every j ∈ {1, . . . ,J},

λ
k+1
j = argminλ j∈[0,+∞)

∫
qk+1

X (x)qk
Γ(γ)q

k+1
Z (z)× log

qk+1
X (x)qk

Γ
(γ)qk+1

Z (z)
F(Θ|y,wk+1,λ)

dΘ,

= argminλ j∈[0,+∞)

J

∑
j=1

∫ ∫
qk+1

X (x)qk
Γ(γ)×Fj(D jx,λ j;γ)dxdγ,

= argminλ j∈[0,+∞)

κEqk+1
x (x)

[
||D jx||2

]
+(1−κ)λ j

λ
1−κ

j
. (4.93)

The explicit solution to the above minimization problem yields the following update:

λ
k+1
j = Eqk+1

x (x)
[
||D jx||2

]
= ||D jxk+1||2 + trace

(
D>j D jCk+1

x

)
. (4.94)

4.4.2.5 Update of qΓ(γ)

Finally, the update related to the hyperparameter γ is expressed as

qk+1
Γ

(γ) = argminqΓ
KL(qk+1

X (x)qΓ(γ)qk+1
Z (z)||F(Θ|y;wk+1,λk+1)). (4.95)

Using (2.15), we have

qk+1
Γ

(γ) ∝ exp

(∫ ∫
lnF(x,z,γ | y;wk+1,λk+1)×qk+1

X (x)qk+1
Z (z)dxdz

)
. (4.96)

The above integral has the following closed form expression:

qk+1
Γ

(γ) ∝ γ
N
2κ
+α−1 exp(−ηγ)× exp

(
−γ

J

∑
j=1

κ Eqk+1
x (x)

[
||D jx||2

]
+(1−κ)λ k+1

j

(λ k+1
j )1−κ

)
.

(4.97)

It thus follows from (4.94) that the update of qΓ is

qk+1
Γ

(γ) = Γ(d,bk+1), (4.98)
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that is the Gamma distribution with parameters

d =
N
2κ

+α, bk+1 =
J

∑
j=1

(λ k+1
j )κ +η . (4.99)

The mean of qk+1
Γ

is finally given by

γ
k+1 =

d
bk+1 . (4.100)

4.4.3 Overview of VBA with non-Gaussian noise

Algorithm 2 provides a summary of the resulting VBA for solving the blind deconvolution
problem introduced in Section 4 under non-Gaussian noise. As a result, the optimal poste-
rior distributions for both variables x and z will be approximated as Gaussian distributions,
while the one for hyperparameter γ is approximated by a Gamma distribution. We also
provide the update formula for the hyperparameter w.

Algorithm 2 VBA approach for image blind deconvolution under non-Gaussian noise

Initialization. Set hyperparameters (ξ ,α,η). Define initial values for (x0,C0
x,z0,C0

z).
Compute λ0, γ0 and w0 using (4.94), (4.100) and (4.91), respectively.

Iterative steps. For k = 0,1, . . . ,K:
1: Update the mean xk+1 and the covariance matrix Ck+1

x of qk+1
X (x) using (4.72)-(4.73).

2: Update the mean zk+1 and the covariance matrix Ck+1
z of qk+1

Z (z) using (4.81)-(4.82).
3: Update wk+1

i using (4.91), for every i ∈ {1, . . . ,N}.
4: Update λ

k+1
j using (4.94), for every j ∈ {1, . . . ,J}.

5: Update the mean γk+1 of qk+1
Γ

(γ) using (4.99)-(4.100).

4.5 Conclusion

In this chapter, we showed how to address the image blind deblurring problem through
the variational Bayesian paradigm. We introduced a general hierarchical Bayesian model
involving suitable priors for the image and the kernel. We introduced majorant functions to
allow closed-form updates for each variables, for both Gaussian and non-Gaussian noises.
Nonetheless, our preliminary experiments showed that it appears difficult to find an effi-
cient manner to estimate the hyperparameter ξ , as this value highly fluctuates from one
image/kernel pair to the other so that a simple prior modeling does not appear obvious.
Moreover, in both considered noise settings, our VBA requires the knowledge of the noise
level, through β (in Gaussian case) or (µi(yi))1≤i≤N (in non-Gaussian case). This is lim-
iting, and one might prefer to have this quantity estimated in an automatic manner. We
thus propose in the next chapter, to resort to a supervised learning strategy to learn both ξ

and β along the iterates of VBA, in the spirit of recent works [Bertocchi et al. 2019] on the
unrolling (also called unfolding) of iterative algorithms.
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In Chapter 4, we address the problem of blind image deconvolution using the varia-
tional Bayesian strategy. This strategy, as well as the references cited in the introduction of
Chapter 4, belong to the class of traditional restoration methods. They rely on explicit and
explainable steps, grounded on solid optimization/Bayesian methodological tools. This
somewhat contrasts with the recent trend in image restoration relying on the deep neu-
ral network machinery. The use of deep learning for image deblurring only goes back to
the last decade [Kupyn et al. 2018, Dong et al. 2016, Albluwi et al. 2018]. These methods
rely on the deep learning methodology. More precisely, a supervised learning strategy is
adopted to learn (implicitly) some prior information on the image/kernel from a so-called
training set. A highly non-linear and multi-layers architecture is built, and its parameters
(i.e., neuron weights) are estimated by back-propagation to minimize a given loss function
associated with the task at hand (e.g., image visual quality). Several recent works pro-
pose neural network architectures dedicated to the problem of image blind deconvolution.
Let us mention DeblurGAN [Kupyn et al. 2018], based on conditional generative adver-
sarial networks and a multi-component loss function, SRCNN [Dong et al. 2016] and its
extended version, DBSRCNN [Albluwi et al. 2018], relying on a convolutional neural net-
work (CNN) architecture. SelfDeblur [Ren et al. 2020] combines an optimization-based
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method with two generative networks for modeling deep priors on image and blur ker-
nel, respectively. Other image deblurring problems have been studied using neural net-
work techniques, for example [Wen et al. 2021] presents an unsupervised method based on
multi-adversarial CycleGAN [Zhu et al. 2017] for high-resolution image generation, and
[Mohan et al. 2021] proposes a dynamic scene deblurring method for unconstrained dual-
lens (DL) cameras. Most of these methods are supervised. They can perform quite well,
as long as the training set is large and representative enough. Moreover, they are well
suited to GPU-based implementation. However, they have traditionally suffered from lack
of interpretability and robustness [Bietti et al. 2018].

Both traditional (optimization/Bayesian) approaches and deep learning methods are
able to provide good performance. For most traditional image restoration methods, the
common important challenge is the (hyper)parameter tuning. The parameters can arise
from the model itself (e.g., prior weight, noise level) or from the resolution method (e.g.,
algorithm stepsize). Several strategies are available, based on empirical search, or more ad-
vanced statistical tools. However, these methods are often time-consuming without guaran-
teed success. While for deep learning methods, they lack theoretical guarantee and some-
times they demand numerous trials to find an optimal network structure. An emerging set
of methods, in the field of inverse problems in signal/image processing, performs algorithm
unrolling [Monga et al. 2021]. An iterative method (e.g., an optimization algorithm) is un-
rolled as layers of a neural network. The reduced set of parameters of this network are learnt
by supervised training. Promising results have been obtained in the context of image decon-
volution in [Li et al. 2020, Bertocchi et al. 2019, Pesquet et al. 2021, Galinier et al. 2020],
as well as other image restoration applications [Zhang et al. 2020]. One key advan-
tage is that cumbersome parameter tuning can be avoided, by simply embedding the
sought parameters into the network and learning them at training phase. Theoretical
results assessing the stability and robustness of unrolling techniques can be found in
[Pesquet et al. 2021, Combettes & Pesquet 2020, Chouzenoux et al. 2021]. These meth-
ods are also closely related to plug-and-play techniques where a trained neural network is
employed as the denoiser [Pesquet et al. 2021, Sun et al. 2021, Zhang et al. 2021]. Deep
unrolling can also be combined with a bilevel optimization framework, still with the aim
for efficient hyperparameter learning (see [Crockett & Fessler 2022] for a recent survey).

In this chapter, we propose a novel approach for blind image deconvolution, that aims
at gathering the best of the aforementioned methods. To be specific, we apply the unrolling
paradigm to the algorithm presented in Chapter 4. We focus here on the case of Gaussian
noise only. We create a deep neural network architecture, where VBA iterations proposed
in Section 4.3 are integrated as layers. This allows us to (i) learn the hyperparameters (in
particular, the noise level) of VBA in an automatic supervised fashion, (ii) improve further
the quality of the results by choosing a dedicated loss in the training phase, and (iii) im-
plement the method by taking full advantage of possible GPU resources, thus considerably
reducing the processing time during the test phase. In contrast to standard deep learning
methods for blind deconvolution, all these benefits come along with a preservation of the
interpretability of the method, thanks to the unrolling technique. Let us emphasize that
variational Bayesian methods often appear in deep learning context. Indeed, they are back-
bones of variational autoencoders [Kingma & Welling 2014] and also constitute methods
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of choice for training Bayesian neural networks [Jospin et al. 2020]. However, up to our
knowledge, our work is the first to investigate the unrolling of a variational Bayesian tech-
nique. The rest of Chapter 5 is organized as follows. The unrolling of VBA is presented in
Section 5.1. Numerical results, including comparisons with various methods (in particular,
our algorithm from Section 4.3), are presented in Section 5.2. Section 5.3 concludes this
chapter.

5.1 Deep unrolled architecture

5.1.1 Overview

We introduce a supervised learning strategy to estimate the hyperparameter ξ and the
inverse of the noise variance β , that are required to run VBA from Section 4.3. We
adopt the so-called unrolling (or unfolding) methodology [Monga et al. 2021]. The idea
is to view each iteration of an iterative algorithm as one layer of a neural network struc-
ture. Each layer can be parametrized by some quantities that are learned from a train-
ing database so as to minimize a task-oriented loss function. The advantage of the un-
rolling approach is threefold: (i) each layer mimics one iteration of the algorithm and
thus it is highly interpretable, (ii) the choice of the loss is directly related to the task
at the end, which is beneficial for the quality of the results, (iii) once trained, the net-
work can be applied easily and rapidly on a large set of test data without any further
tuning. In particular, its implementation can make use of GPU-accelerated frameworks.
Several recent examples in the field of image processing have shown the benefits of un-
rolling [Gilton et al. 2021, Li et al. 2021, Tolooshams et al. 2021, Nan et al. 2020] when
compared to standard black-box deep learning techniques or more classical restoration
methods based on Bayesian or optimization tools. Let us in particular mention the works
[Li et al. 2020, Li et al. 2019] for the application of unrolling in the context of blind image
restoration.
Let us now specify the unrolling procedure in the context of VBA. Let K > 0 be the num-
ber of iterations of the VBA described in Algorithm 1, thus corresponding to K layers of
a neural network architecture. Iteration k ∈ {0, . . . ,K− 1} of our unrolled VBA can be
conceptually expressed as

(xk+1,Ck+1
x ,zk+1,Ck+1

z ,λk+1,γk+1)

=A(xk,Ck
x,z

k,Ck
z,λ

k,γk,ξ k,β k). (5.1)

The initialization procedure for (x0,C0
x,z0,C0

z ,λ
0,γ0) is detailed in Algorithm 1. For k ∈

{0, . . . ,K−1}, the expressions of (xk+1,Ck+1
x ,zk+1,Ck+1

z ,γk+1,λk+1) as a function of the
input arguments of A(·) are given respectively by (4.72)-(4.73), (4.81)-(4.82), (4.94), and
(4.99)-(4.100). Furthermore, (ξ k,β k)0≤k≤K−1 are now learned, instead of being constant
and preset by the user. This leads to the unfoldedVBA architecture depicted in Fig. 5.1,
which can be summarized into the composition of K layers LK−1 ◦ · · · ◦L0. Each layer Lk

with k ∈ {0, . . . ,K−1} is made of three main blocks, that are two neural networks, namely
NNk

σ and NNk
ξ
, and the core VBA block A(·). There remains to specify our strategy for

building the two inner networks, with the aim to learn (ξ k,β k)0≤k≤K−1.
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Figure 5.1: Architecture of unfoldedVBA network.

5.1.2 Learning hyperparameter ξ

For every k ∈ {0, ...,K−1}, neural network NNk
ξ

takes as input the current kernel estimate
hk = Tzk + t and delivers ξ k as an output. The architecture of the neural network is shown
in Fig. 5.2. Note that the Softplus function, defined as

(∀x ∈ R) Softplus(x) = ln(1+ exp(x)), (5.2)

is used as a last layer, in order to enforce the strict positivity of the output hyperparameter
ξ k.
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Figure 5.2: Neural network architecture NNk
ξ

for estimating ξ k, for k ∈ {0, ...,K−1}.

5.1.3 Learning noise parameter β

When the noise parameter β is unknown, it might be useful to include a procedure to learn
it automatically, again in a supervised fashion. In this case, we propose to introduce simple
nonlinear mappings such that, for every k ∈ {0, . . . ,K−1},

σ
k = NNk

σ (y) = Softplus(ρk)σ̂(y)+Softplus(τk), (5.3)



5.1. Deep unrolled architecture 73

and β k = (σ k)−2. Hereabove, y is the observed degraded image, from which we deduce
the wavelet-based variance estimator (also used in [Bertocchi et al. 2019]),

σ̂(y) =
median(|WHy|)

0.6745
, (5.4)

where |WHy| gathers the absolute value of the diagonal coefficients of the first level Haar
wavelet decomposition of the degraded image y. Moreover, (ρk,τk)0≤k≤K−1 are two scalar
parameters to be learned during the training phase.

5.1.4 Complete architecture

We now present our complete blind deconvolution architecture for grayscale images and
color images in Fig. 5.3. First, let us notice that VBA and its unrolled variant is designed for
grayscale images. We thus generalized the architecture from Fig. 5.3(top), to process color
images. To this end, we first transform the input RGB image to its YUV representation,
which takes human perception into consideration. The network NNk

σ is first applied to the
luminance part yY of the image. After applying the unfoldedVBA network (see Fig. 5.1),
we obtain zVBA and xVBA as outputs. The latter is a restored version of the luminance
channel. The remaining (U,V) color channels are simply obtained by median filtering of
(yU ,yV ). Both architectures in Fig. 5.3 additionally involve post-processing layers. More
precisely, we first include a linear layer so as to encode the linear transformation (4.3), and
then deduce the estimated blur kernel ĥ. Second, we also allow a post-processing layer Lpp

acting on the image, so as to reduce possible residual artifacts, finally yielding x̂. In the
case of color images, the post-processing is applied on the RGB representation to avoid
chromatic artifacts.

5.1.5 Training procedure

The training of both proposed architectures from Fig. 5.3 requires to define a loss func-
tion, measuring the discrepancy between the output (x̂, ĥ) and the ground truth (x,h), that
we denote hereafter by `(x̂, ĥ,x,h). In the blind deconvolution application, one can for
instance consider a loss function related to the error reconstruction on the kernel, or to the
image quality, or a combination of both. Two training procedures will be distinguished and
discussed in our experimental section, namely:
Greedy training The parameters of the unfolded VBA are learned in a greedy fashion so
as to minimize the kernel reconstruction error at each layer. Then, the post-processing net-
work is learned in a second step, so as to maximize an image quality metric such as the
structural similarity index measure (SSIM) [Wang et al. 2004].
End-to-end training The parameters of the complete architecture are learned end-to-end
so as to maximize the image quality metric.
Whatever the chosen training procedure, it is necessary to make use of a back-propagation
step, that is to differentiate the loss function with respect to all the parameters of the net-
work. Most operations involved in Fig. 5.3 can be differentiated efficiently using stan-
dard auto-differentiation tools. However, we observed in our experiments that it is benefi-
cial (and sometimes even necessary) for a stable training phase to avoid using such tools
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for differentiating the VBA layer A(·) involved in Fig. 5.1. In practice, we used the ex-
plicit expressions for the partial derivatives of it. Note that we followed the approach from
[Charlier et al. 2021] to obtain the expression of the derivatives for the CG solver.
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Figure 5.3: Proposed blind image restoration pipeline for grayscale (top) and color (bottom) images.

5.2 Experimental results

5.2.1 Problem formulation and settings

5.2.1.1 Problem overview

We focus on the resolution of the blind image deconvolution problem, where x̃ ∈ RN is an
original image, either grayscale or colored one. We come back to the model presented in
Section 4.2.1, where the linear operator H̃ ∈ RN×N models the application of a blur kernel
h̃ ∈ RM to the image. The noise n is assumed to be an additive white Gaussian noise with
zero mean and standard deviation σ . In the case of color images, we assume that the same
kernel, and the same noise level, is applied to each of the three RGB channels.

5.2.1.2 Datasets

Let us introduce the three datasets used to train and test our network, and compare our
approach with state-of-the-art techniques. In all the cases, the training set is made of
100 images from the COCO training set. The validation set contains 40 images from
the BSD500 validation set. For Dataset 1 and Dataset 2, the test set consists of 30
images from the Flickr30 test set. For Dataset 3, we adopted the same testing strategy
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as in [Ren et al. 2020], using the 4 images from [Levin et al. 2009]. Each image is
center-cropped using a window of size N = 256×256. Each original image x̃ is associated
to a degraded version of it, y, built from Model (4.1). Various blur kernels and noise levels
are used, as detailed hereafter.
Dataset 1: All involved images are converted in grayscale. Each image of the database
is blurred with 10 randomly generated Gaussian blurs, and then corrupted by additive
noise. Thus in total, we have 1000 (= 100× 10) training images, 400 (= 40× 10)
validation images, and 300 (= 30× 10) test images for Dataset 1. The Gaussian blurs
are of size 9× 9. Two of them are isotropic with standard deviation randomly generated
following a uniform law within [0.2,0.4]. Eight of them are anisotropic with orientation
either π/4 or 3π/4 (with equal probability) and vertical/horizontal widths (i.e., standard
deviations of the 2D Gaussian shape) uniformly drawn within [0.15,0.4]. On this dataset,
the noise standard deviation is set to σ = 0.01, and assumed to be known (so that blocks
(NNk

σ )1≤k≤K of our architecture are overlooked).
Dataset 2: All the images are then colored ones. We degraded each of them with 15
different blurs, namely 10 Gaussian blurs (simulated using the same procedure as above),
two uniform blurs with width 5× 5 and 7× 7 pixels, and 3 out-of-focus blurs. For
the latter, the vertical and horizontal widths are set randomly within [0.2,0.5], and the
orientation is either π/4 or 3π/4 (with equal probability). Furthermore, for each blurred
image, zero-mean Gaussian noise is added, with standard deviation σ randomly chosen,
with uniform distribution over [0.005,0.05]. The noise level is not assumed to be known
and is estimated using the proposed NNσ architecture. In total, we have 1500 (= 100×15)
training images, 600 (= 40× 15) validation images, and 450 (= 30× 15) test images, on
this dataset. Examples of blurs involved in Dataset 2 are depicted in Fig. 5.4.
Dataset 3: All the images are converted in grayscale. We degraded each of them with 8
different real-world motion blurs from1 [Levin et al. 2009]. As the kernels have different
sizes ranging from 13×13 to 27×27, we pad them with 0 values, so to reach a common
large size of 27× 27. For each blurred image, zero-mean Gaussian noise is added,
with standard deviation σ randomly chosen, following a uniform distribution within
[5× 10−6,5× 10−5]. The noise level is not assumed to be known and is estimated using
the proposed NNσ architecture. In total, we have 800 (= 100× 8) training images, 320
(= 40× 8) validation images, and 32 (= 4× 8) test images, on this dataset. The motion
blurs involved in Dataset 3 are illustrated in Fig. 5.5.

5.2.1.3 VBA settings

Different settings are adopted for the implementation of the VBA step on each dataset, that
we specified hereafter. For all considered datasets, we seek for kernels whose entries sat-
isfy a sum-to-one constraint. For the datasets involving synthetic blurs (namely, Dataset 1
and Dataset 2), we impose additionally an axial symmetry along the main diagonal axis. In
all cases, the constraints can be easily translated into the affine constraint (4.3). For Dataset

1https://webee.technion.ac.il/people/anat.levin/

https://webee.technion.ac.il/people/anat.levin/
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Figure 5.4: Examples of blur kernels used to construct Dataset 2.

Figure 5.5: Motion blur kernels from Dataset 3.

1 and Dataset 2, the degree of freedom of the kernel model is equal to P = (
√

M+1)
√

M
2 −1,

while we have P = M−1 for Dataset 3. Regarding the choice of the blur prior, hereagain,
a distinction is made between the first two scenarios and the last one. The synthetic blurs
from Dataset 1 and Dataset 2 are either very smooth (e.g., Gaussian blurs) or present large
constant areas (e.g., defocus blurs). In order to incorporate such prior knowledge, for both
these datasets, A ∈ R(2M+1)×M is set to the matrix that computes the horizontal and verti-
cal differences between pixels, augmented with an additional first row corresponding to an
averaging operation, i.e., [1, . . . ,1]/M. This choice allows us to promote smooth variations
in the kernels, while satisfying the required full column rank assumption on A. A constant
vector with entries equal to 1

M is set for the prior mean m. In contrast, the motion blurs of
Dataset 3 depicted in Fig. 5.5 present complex shapes, with no specific property on their
gradient. We thus simply set A to the identity matrix in the prior, while a rough estimation
of the blur obtained from 2 [Kotera et al. 2013] is used for m. Matrices (D j)1≤ j≤J and pa-
rameter κ , involved in (4.8), are set in such a way that the chosen prior on the image yields
an isotropic total-variation regularization (see our comment in Section 4.2.2.2). We must
now specify the initialization for VBA iterates/layers. Our initial guess x0 for the image
is the degraded one. The associated covariance matrix C0

x is initialized using the identity
matrix. For Dataset 1 and Dataset 2, the blur is initialized with a 5× 5 uniform kernel,

2http://zoi.utia.cas.cz/deconv_sparsegrad

http://zoi.utia.cas.cz/deconv_sparsegrad
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from which we deduce the corresponding z0, while we use the prior mean for initializing
the method for Dataset 3. In all VBA experiments, the covariance matrix C0

z is set to a
multiple of identity matrix. As the blurs involved in the Dataset 3 are of large size, a di-
agonal approximation of Ck

z is used in (4.69) so as to cope with memory saturation issues.
A similar strategy was adopted for instance in [Marnissi et al. 2017] and was not observed
to yield any degradation of the resulting quality. The hyperparameters (α,η) involved in
the prior law on parameter γ are set to zero in practice which is equivalent to impose a
non-informative Jeffrey improper prior. Finally, the conjugate gradient solver used for the
update of the image is run over 10 iterations which appears sufficient to reach practical
stability. The solver is initialized with the degraded image.

5.2.1.4 Training specifications

We present results obtained by adopting the two training strategies described in Sec-
tion 5.1.5. For the greedy training, we make use of the mean squared error on the estimated
kernel, as a loss function for the unfoldedVBA layers, defined as `(x̂, ĥ, x̃, h̃) = ‖h̃− ĥ‖2.
The SSIM loss ([Wang et al. 2004]), between the output image x̂ and the ground truth
x̃ is used to train the post-processing layer Lpp. For the end-to-end training, we use
again SSIM between x̂ and x̃. We use warm initialization for end-to-end training, that
is we initialize with the weights learnt during the greedy training phase, associated with
a weight decay procedure. ADAM optimizer, with mini-batch size equal to 10, is used
for all the training procedures. Its parameters such as learning rate (lr), weight decay
(wd) and epochs number are finetuned, so as to obtain stable performance on each val-
idation set. The number of layers K (i.e., number of VBA iterations) is set during the
greedy training, and kept the same for the end-to-end training. In practice, we increase
K as long as a significant decrease in the averaged MSE over the training set was ob-
served. We specify in Table 5.1 all the retained settings. The train/validation/test phase
are conducted with a code implemented in Pytorch (version 1.7.0) under Python (ver-
sion 3.6.10) environment, and run on an Nvidia DGX wokstation using one Tesla V100
SXM2 GPU (1290 MHz frequency, 32GB of RAM). Our code is made available at
https://github.com/yunshihuang/unfoldedVBA.

5.2.1.5 Comparison to other methods

The proposed method is compared to several blind deconvolution approaches available in
the literature:
Optimization-based methods: We first evaluate the VBA described in Section 4.3, in the
favorable situation where the noise level σ is assumed to be known, and parameter ξ is
finetuned empirically (see more details hereafter). VBA is run until reaching practical con-
vergence, i.e., when the relative squared distance between two consecutive image iterates
gets lower than 10−5. We also test two optimization-based approaches for blind deconvo-
lution. The first one is called deconv2D. It makes use of the proximal alternating algorithm
from [Bolte et al. 2010], to minimize a least-squares data fidelity term combined with var-
ious priors, namely total variation and positivity constraint on the image, sum-to-one and

https://github.com/yunshihuang/unfoldedVBA
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Dataset 1 Dataset 2 Dataset 3

G
re

ed
y

tr
ai

ni
ng

UnfoldedVBA

K = 6, epoch = 10 K = 21, epoch = 10 K = 10, epoch = 10

lr = 5×10−3 lr = 5×10−3 (for L0) lr = 10−4 (for L0)

lr = 10−3 (for other layers) lr = 10−3 (for other layers)
Post-processing Lpp

U-net Residual network U-net

[Ronneberger et al. 2015]
[Bertocchi et al. 2019,
Fig.4]

[Ronneberger et al. 2015]

epoch = 30, lr = 10−3 epoch = 200, lr = 10−3 epoch = 200, lr = 10−3

E
nd

-t
o-

en
d

tr
ai

ni
ng

K = 6 K = 21 K = 10

epoch = 6 epoch = 6 epoch = 6

lr = 5×10−5 lr = 5×10−5 lr = 5×10−5

wd = 10−4 wd = 10−4 wd = 10−4

Table 5.1: Settings for the training phases in our experiments

quadratic constraint on the kernel. This method is implemented in Matlab, and inherits
some of the software accelerations discussed in [Abboud et al. 2019] for blind video de-
convolution. The second competitor in this category is the blinddeconv approach 3 from
[Krishnan et al. 2011]. For the sake of fair comparisons, for both datasets, we finetune the
hyperparameters of these three methods on 40% of the training set and apply an average
of the found values on the test set. Moreover, following the use of these three methods,
we perform a non-blind deconvolution step BM3D-DEB 4 [Lebrun 2012], which uses their
respective estimated blur kernel to restore the image.
Deep learning methods: We perform comparisons with three recent deep learning ar-
chitectures for blind deconvolution. SelfDeblur 5 [Ren et al. 2020] is an unsupervised
approach able to jointly perform the image restoration and kernel estimation tasks. DB-
SRCNN 6 [Albluwi et al. 2018] and DeblurGAN 7 [Kupyn et al. 2018] are two supervised
deep learning techniques. In contrast with SelfDeblur, they both only provide the esti-
mated image, but do not estimate the kernel. Both these methods have been retrained on
each of our datasets, using the same settings as in their initial implementation. More-
over, we adapted DBSRCNN to color images using the same pipeline as for our method,
that is applying DBSRCNN on the luminance channel while simply nonlinearly filtering
the chrominance ones. Finally, the kernels provided as outputs of the SelfDeblur method
are normalized as a post-processing step to satisfy the sum-to-one constraint, to make the
comparisons more faithful.

3Matlab code: https://dilipkay.wordpress.com/blind-deconvolution/
4Matlab code: https://webpages.tuni.fi/foi/GCF-BM3D/index.html#ref_

software
5Python/Pytorch code: https://github.com/csdwren/SelfDeblur
6Python/Pytorch code: https://github.com/Fatma-ALbluwi/DBSRCNN
7Python/Pytorch (training) and Matlab C-mex (testing) codes: https://github.com/

KupynOrest/DeblurGAN

https://dilipkay.wordpress.com/blind-deconvolution/
https://webpages.tuni.fi/foi/GCF-BM3D/index.html##ref_software
https://webpages.tuni.fi/foi/GCF-BM3D/index.html##ref_software
https://github.com/csdwren/SelfDeblur
https://github.com/Fatma-ALbluwi/DBSRCNN
https://github.com/KupynOrest/DeblurGAN
https://github.com/KupynOrest/DeblurGAN
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5.2.1.6 Evaluation metrics

All the methods are evaluated in terms of their performance on the blur kernel estimation
(when available) and on the image restoration. Different metrics are used. For the blur
kernels, we evaluate (i) the MSE, (ii) the so-called H∞ error defined as the `∞ norm of
the difference between the 2D discrete Fourier coefficients (with suitable padding) of the
estimated and of the true kernel, and (iii) the mean absolute error (MAE) defined as the
`1 norm of the difference between h̃ and ĥ. For evaluating the image quality, we com-
pute (i) the SSIM, (ii) the peak-signal-to-noise ratio (PSNR), and (iii) the PieAPP value
[Prashnani et al. 2018], between the estimated image x̂ and the ground truth x̃.

5.2.2 Experimental results

5.2.2.1 Dataset 1

In Tables 5.2 and 5.3, we report the results of kernel estimation and image restoration,
computed on the test set, using the different methods. As could be expected, the greedy
approach tends to give more weight to the kernel quality than the end-to-end training. Our
two training approaches yield great performance, when compared to all the other tested
approaches. One can notice that the VBA with finetuned value for ξ performs quite well,
showing the validity of our Bayesian formulation. The proposed unrolled VBA technique
allows us to avoid a manual tuning of this parameter, and further increases the resulting
quality. This is a direct outcome of the supervised training procedure aiming at maxi-
mizing quality scores, and also to the introduction of a post-processing step on the images.
DBSRCNN has a good performance in terms of image restoration in this dataset. However,
it is not capable of estimating the blur kernel, which might be useful for various applica-
tions. We display two examples of results in Fig 5.7, extracted from our test set. One can
notice, by visual inspection of these results, the high quality of the restored images. No
artifacts can be observed, which is confirmed by a low average value of the PieAPP index
on the test set. Moreover, the kernels are generally estimated quite accurately, as shown
by the low MSE score and the good retrieval of their general structure. In the few cases
when the unfolded VBA algorithm fails to give a perfect recovery of the blur kernel as in
Fig. 5.7(bottom), the estimation is still accurate enough to yield a good recovery of the
image whatever greedy training or end-to-end training is used. One can also notice that
our method tends to provide better contrasted images, compared to its closest competitor
in the image restoration task that is DBSRCNN. We display in Fig. 5.6(left) the evolution
of the SSIM loss during the end-to-end training of the proposed architecture, showing the
increase of the loss, then its stabilization, for both training and validation set, thus confirm-
ing an appropriate setting of ADAM optimizer parameters. Finally, Table 5.4(left) displays
the average test time for each methods, that is the computational time required to restore
one example of the dataset, once the method is finetuned/trained. We displayed CPU time
for a fair comparison between methods, for codes ran on a Dell workstation equipped with
an Xeon(R) W-2135 processor (3.7 GHz clock frequency and 12 GB of RAM). GPU time
is also indicated when available. The fastest method is DBSRCNN, though we must em-
phasize that, in contrast with all the other methods based on Matlab/Python softwares,
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Method MSE H∞ error MAE

VBA 0.0017 (0.0022) 0.1674 (0.1003) 0.0472 (0.0317)

deconv2D 0.0025 (0.0035) 0.1483 (0.1037) 0.0489 (0.0395)

blinddeconv 0.0013 (0.0011) 0.1553 (0.0660) 0.0417 (0.0203)

SelfDeblur 0.0143 (0.0181) 0.3253 (0.1105) 0.1350 (0.0663)

Proposed (greedy) 0.0008 (0.0012) 0.1165 (0.0677) 0.0281 (0.0168)

Proposed (end-to-end) 0.0009 (0.0013) 0.1188 (0.0672) 0.0289 (0.0170)

Table 5.2: Quantitative assessment of the restored kernels. Mean (standard deviation) values computed over
the test sets of Dataset 1.

Method SSIM PSNR PieAPP

Blurred 0.6542 (0.1072) 22.2254 (2.3779) 4.1794 (0.9005)

VBA 0.7603 (0.0814) 23.7332 (2.5672) 1.5109 (0.6184)

deconv2D 0.7668 (0.0912) 24.5970 (2.8656) 1.9289 (0.4959)

blinddeconv 0.7528 (0.0963) 23.9347 (2.4299) 1.9170 (0.6630)

SelfDeblur 0.6948 (0.1006) 22.2704 (2.1255) 3.3178 (0.7291)

DBSRCNN 0.7780 (0.0895) 24.9561 (2.9800) 1.5959 (0.6463)

DeblurGAN 0.6613 (0.0731) 22.4388 (2.4074) 1.8937 (0.7630)

Proposed (greedy) 0.7945 (0.0890) 24.7093 (2.9351) 1.4047 (0.6437)

Proposed (end-to-end) 0.7989 (0.0886) 24.6638 (3.0711) 1.1976 (0.5433)

Table 5.3: Quantitative assessment of the restored images. Mean (standard deviation) values computed over
the test sets of Dataset 1.

DBSRCNN makes use of an optimized C implementation, for its test phase on CPU. De-
blurGAN is also very fast, but the resulting quality was quite poor in our experiments. Our
method reaches a reasonable computational time on CPU. It becomes quite competitive
when making use of GPU implementation, as the unrolled architecture is well suited for
that purpose. This allows to drop the test time per image to few seconds, making it advan-
tageous, with the addition benefit of better quality results in average, and of an available
kernel estimate.
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Figure 5.6: Evolution of SSIM loss along epochs of end-to-end training phase, averaged either on training
or on validation sets of Dataset 1 (left) and Dataset 2 (right).
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Method Dataset 1 Dataset 2 Dataset 3

VBA 153s (15s) 156s (18s) 606s (62s)

deconv2D 16s 19s 333s

blinddeconv 19s 22s 188s

SelfDeblur 452s (51s) 455s (55s) 2232s (279s)

DBSRCNN 1s 2s 1s

DeblurGAN 2s (1s) 3s (2s) 2s (1s)

Proposed 36s (4s) 113s (12s) 286s (31s)

Table 5.4: Average test time per image, using CPU (resp. GPU).

5.2.2.2 Dataset 2

The results of kernel estimation and image restoration on Dataset 2 using the various meth-
ods are shown in Tables 5.5 and 5.6, respectively. This dataset is more challenging, as
it includes color images, various blur shapes, and various noise levels. The latter are not
assumed to be known anymore. Hereagain, we can observe that the greedy training yields
the best performance in terms of kernel estimation for the three considered metrics. In con-
trast, end-to-end training tends to favor the restored image quality while still providing a
good kernel quality compared to other methods. In this more complicated context, standard
VBA does not perform very well, as setting ξ becomes tedious for such an heterogeneous
dataset. Let us note that the noise level is assumed to be known for this particular method,
putting it in a quite favorable situation, compared to the other competitors, including our
proposed approach. DBSRCNN provides again a good image recovery, but our proposed
approach still outperforms it for both SSIM and PieAPP metrics. We display two examples
of restoration in Fig 5.8, when the sought blur is uniform, and out-of-focus, respectively.
Such blur shapes are challenging and the MSE on the estimated blur might appear not ex-
cellent. Nevertheless, our method remains the best among the compared ones. The visual
quality of the image generated by the proposed method is also very satisfying. We display
in Fig. 5.6(right) the evolution of the SSIM loss during the end-to-end training, witnessing
the absence of any overfitting issue. Moreover, we present in Fig 5.9 the evolution of the
MSE loss on the kernel estimate, along the K = 21 layers of the architecture trained in
an end-to-end manner. The MSE was averaged on test set examples associated to either
Gaussian or out-of-focus blurs, respectively. These plots show that, for our choice of K
(finetuned on the validation set), the MSE values are close to minimal. Larger K implied
an increase of memory and training time, while not necessarily improving the results qual-
ity. One can also notice more fluctuations in the case of out-of-focus blur, which turns
out to be more challenging to restore. A similar curve was obtained for uniform blurs,
not shown by lack of space. Finally, Table 5.4(right) presents the average test time of the
different methods. Again, our method appears competitive in terms of running time.
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Method MSE H∞ error MAE

VBA 0.0148 (0.0139) 0.4492 (0.1638) 0.1339 (0.0627)

deconv2D 0.0099 (0.0160) 0.2796 (0.1692) 0.0869 (0.0576)

blinddeconv 0.0245 (0.0264) 0.3113 (0.1409) 0.1596 (0.1106)

SelfDeblur 0.4336 (0.3188) 0.8720 (0.2774) 0.6975 (0.3047)

Proposed (greedy) 0.0037 (0.0079) 0.1888 (0.1061) 0.0570 (0.0414)

Proposed (end-to-end) 0.0039 (0.0079) 0.1960 (0.1056) 0.0588 (0.0411)

Table 5.5: Quantitative assessment of the restored kernels. Mean (standard deviation) values computed over
the test sets of Dataset 2.

Method SSIM PSNR PieAPP

Blurred 0.5427 (0.1150) 21.7994 (2.1679) 4.2378 (0.8539)

VBA 0.4024 (0.1571) 16.0371 (4.1798) 2.4218 (0.5545)

deconv2D 0.6880 (0.1065) 23.1940 (2.8986) 2.2245 (0.6721)

blinddeconv 0.6961 (0.1034) 23.2663 (2.7229) 2.3259 (0.8080)

SelfDeblur 0.5107 (0.1305) 19.9943 (2.1467) 5.9269 (1.4066)

DBSRCNN 0.6948 (0.1688) 23.6041 (4.2073) 1.9474 (0.7171)

DeblurGAN 0.3370 (0.0740) 17.2781 (1.2909) 3.6581 (1.0040)

Proposed (greedy) 0.7454 (0.1015) 23.2169 (2.4442) 1.7250 (0.5324)

Proposed (end-to-end) 0.7518 (0.1025) 23.5631 (2.5959) 1.7681 (0.5502)

Table 5.6: Quantitative assessment of the restored images. Mean (standard deviation) values computed over
the test sets of Dataset 2.

5.2.2.3 Dataset 3

The results of kernel estimation and image restoration on Dataset 3 using the various meth-
ods are shown in Tables 5.7 and 5.8, respectively. The level of complexity of the blind
deconvolution task again increases compared to the former experiments, as the blurs are of
larger size and have less smooth kernel. The noise level also has to be estimated. Regard-
ing the performance of kernel estimation, we can observe that the best performance are
reached by the optimization-based method blinddeconv, followed closely by our method.
SelfDeblur and deconv2D are slightly behind, in terms of quantitative metrics. Regarding
the image restoration, the results are more contrasted. Hereagain, the proposed method
with end-to-end training gives the best performance regarding the quality of the restored
image, and at the same time keeps the quality of blur kernel estimation compared to greedy
training. The standard VBA procedure reaches rather fair quality on this dataset. We
must howewer point out that, as for Dataset 2, this method was run under the simplifying
assumption that the noise level is known. Both deep learning methods DBSRCNN and
DeblurGAN fail to recover a good image quality. We display two examples of restora-
tion in Fig 5.10 where the sought kernels correspond to two different motion blurs from
the dataset. We can notice that most of the methods struggle in the estimation of the blur
kernel. Although SelfDeblur yields fairly good results according to a visual inspection,
this method seems to suffer from a shift ambiguity, typical in blind deconvolution, which
explains its rather limited quantitative scores compared to the other methods. As for the
image quality, our proposed method is the most satisfying visually, which is aligned with
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Method MSE H∞ error MAE

VBA 0.0376 (0.0206) 0.6817 (0.2969) 0.2518 (0.0898)

deconv2D 0.0592 (0.0162) 1.0446 (0.3027) 0.2753 (0.0457)

blinddeconv 0.0303 (0.0085) 0.6249 (0.2088) 0.2119 (0.0583)

SelfDeblur 0.0500 (0.0260) 0.7362 (0.3044) 0.2522 (0.0926)

Proposed (greedy) 0.0320 (0.0159) 0.6564 (0.2918) 0.2189 (0.0697)

Proposed (end-to-end) 0.0321 (0.0160) 0.6583 (0.2930) 0.2197 (0.0701)

Table 5.7: Quantitative assessment of the restored kernels. Mean (standard deviation) values computed over
the test sets of Dataset 3.

Method SSIM PSNR PieAPP

Blurred 0.5830 (0.1500) 21.1404 (2.8626) 3.4647 (0.6608)

VBA 0.7344 (0.1242) 24.3958 (3.0088) 1.7028 (0.4914)

deconv2D 0.5440 (0.1422) 20.4229 (2.6241) 2.2811 (0.6407)

blinddeconv 0.4847 (0.1669) 16.0690 (2.7140) 0.6957 (0.5241)

SelfDeblur 0.7381 (0.1897) 24.3973 (4.6249) 0.6893 (0.3982)

DBSRCNN 0.5327 (0.1111) 19.7017 (2.2976) 2.3438 (0.5672)

DeblurGAN 0.5536 (0.1727) 21.0929 (3.2151) 2.3692 (0.7155)

Proposed (greedy) 0.9197 (0.0353) 29.5730 (1.9817) 0.1778 (0.2408)

Proposed (end-to-end) 0.9295 (0.0342) 31.0749 (2.0658) 0.2227 (0.2309)

Table 5.8: Quantitative assessment of the restored images. Mean (standard deviation) values computed over
the test sets of Dataset 3.

its best PieAPP score by far among all the methods. We display in Fig. 5.11(left) the evo-
lution of the SSIM loss during the end-to-end training. The evolution of the MSE loss on
the kernel estimate is displayed in Fig. 5.11(right), across the K = 10 layers of the architec-
ture trained in an end-to-end manner. Slight fluctuations can be observed compared to the
plots obtained for both synthetic blur datasets, which shows the high challenge of estimat-
ing such complex motion blur kernels. Table 5.4(right) displays the average test time for
each methods. With the exception of DBSRCNN and DeblurGAN (but yielding rather low
quality results), all the methods see their computational time increasing, compared to the
other two datasets. This is directly related to the increase of the blur kernel size. This be-
ing said, the computational time for our proposed method remains competitive, especially
when making use of GPU.

5.3 Conclusion

This chapter proposed a novel method for blind image deconvolution that combines the
variational Bayesian algorithm from Chapter 4 with a neural network architecture. Our ex-
periments illustrated the excellent performance of this method on three datasets, compris-
ing grayscale and color images, and degraded with various synthetic and real-world kernel
types. Compared to state-of-the-art variational and deep learning approaches, our method
delivered a more accurate estimation of both the image and the blur kernels. It also included
an automatic noise estimation step, so that it required little hyperparameter tuning, com-
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pared to its counterpart from Chapter 4. The proposed method is very competitive in terms
of computational time during the test phase, while showing similar train time to its deep
learning competitors. The main core of the proposed architecture is highly interpretable,
as it implements unrolled iterates of a well sounded Bayesian-based blind deconvolution
method. As a byproduct, it also outputs estimates for the covariance matrices of both sought
quantities (image/kernel). This information could be of interest for uncertainty quantifica-
tion and model selection tasks (see for instance [Huang et al. 2021a, Repetti et al. 2019]).
More generally, our work demonstrates that unrolling VBA algorithms constitute a promis-
ing research direction for solving challenging problems arising in Data Science.
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Degraded Original VBA deconv2D blinddeconv
MSE = 0.0010 MSE = 0.0016 MSE = 5.3788×10−4

PieAPP = 4.7468 PieAPP = 1.6914 PieAPP = 2.7365 PieAPP = 1.7290

SelfDeblur DBSRCNN DeblurGAN proposed (greedy) proposed (end-to-end)
MSE = 0.0165 MSE = 1.2555×10−4 MSE =1.1817×10−4

PieAPP = 4.1130 PieAPP = 1.8130 PieAPP = 1.9762 PieAPP = 1.2950 PieAPP = 1.2088

Degraded Original VBA deconv2D blinddeconv
MSE = 0.0054 MSE = 0.0058 MSE = 0.0040

PieAPP = 3.4024 PieAPP = 1.6356 PieAPP = 1.9079 PieAPP = 1.8397

SelfDeblur DBSRCNN DeblurGAN proposed (greedy) proposed (end-to-end)
MSE = 0.0063 MSE = 0.0035 MSE = 0.0034

PieAPP = 2.5108 PieAPP = 1.4002 PieAPP = 1.5206 PieAPP = 1.3922 PieAPP =1.2468

Figure 5.7: Ground-truth image/blur, degraded image, restored images (with PieAPP index) and estimated
blurs (with MSE score) when available, for various methods, on two examples in the test set of Dataset 1.



86
Chapter 5. Deep unrolled variational Bayesian algorithm for image blind

deconvolution

Degraded Original VBA deconv2D blinddeconv
MSE = 0.0115 MSE = 0.0190 MSE = 0.0075

PieAPP = 3.8507 PieAPP = 0.8278 PieAPP = 1.6273 PieAPP = 1.0216

SelfDeblur DBSRCNN DeblurGAN proposed (greedy) proposed (end-to-end)
MSE = 0.0569 MSE = 0.0015 MSE = 0.0020

PieAPP = 8.1479 PieAPP = 1.2058 PieAPP = 2.6971 PieAPP = 1.2793 PieAPP = 1.1663

Degraded Original VBA deconv2D blinddeconv
MSE= 0.0293 MSE = 0.0184 MSE = 0.0388

PieAPP = 2.8997 PieAPP = 1.3625 PieAPP = 1.0608 PieAPP = 1.0318

SelfDeblur DBSRCNN DeblurGAN proposed (greedy) proposed (end-to-end)
MSE = 0.8708 MSE = 0.0049 MSE = 0.0046

PieAPP = 2.0619 PieAPP = 0.8841 PieAPP = 2.7761 PieAPP = 0.7790 PieAPP = 0.6987

Figure 5.8: Ground-truth image/blur, degraded image, restored images (with PieAPP index) and estimated
blurs (with MSE score) when available, for various methods, on two examples in the test set of Dataset 2.
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Figure 5.9: MSE loss along the layers for proposed method using end-to-end training. Average over Dataset
2 test examples involving either Gaussian (left), or out-of-focus (right) blur shapes.
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Degraded Original VBA deconv2D blinddeconv
MSE = 0.0159 MSE = 0.0395 MSE = 0.0180

PieAPP = 2.7830 PieAPP = 1.7104 PieAPP = 1.7413 PieAPP = 0.3684

SelfDeblur DBSRCNN DeblurGAN proposed (greedy) proposed (end-to-end)
MSE = 0.0347 MSE = 0.0136 MSE = 0.0136

PieAPP = 0.6488 PieAPP = 1.5126 PieAPP = 1.5677 PieAPP = 0.1076 PieAPP = 0.0783

Degraded Original VBA deconv2D blinddeconv
MSE = 0.0670 MSE = 0.0637 MSE = 0.0360

PieAPP = 3.6171 PieAPP = 2.0992 PieAPP = 2.2295 PieAPP = 0.1794

SelfDeblur DBSRCNN DeblurGAN proposed (greedy) proposed (end-to-end)
MSE = 0.0741 MSE = 0.0505 MSE = 0.0506

PieAPP = 0.2927 PieAPP = 2.9507 PieAPP = 2.9864 PieAPP = 0.0333 PieAPP = 0.0996

Figure 5.10: Ground-truth image/blur, degraded image, restored images (with PieAPP index) and estimated
blurs (with MSE score) when available, for various methods, on two examples in the test set of Dataset 3.
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Figure 5.11: (left) Evolution of SSIM loss along epochs of end-to-end training phase, averaged either on

training or on validation sets of Dataset 3. (right) MSE loss along the layers for proposed method using

end-to-end training. Average over Dataset 3 test examples involving motion blur shapes.
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Image deblurring is a challenging problem common to several areas from astronomy,
biology, medical science to embedded camera systems. It becomes even more severe when
the blur is unknown and/or spatially-variant. Most state-of-the-art deblurring methods, in-
cluding traditional optimization-based methods and more recent deep learning strategies,
rely on deterministic models and tools, providing point-wise image estimates. In contrast,
in this thesis, we focus on image restoration methods relying on the Bayesian framework.
The image degradation model, the priors and the resolution tools become probabilistic.
The estimates are defined from the estimation of the moments (typically, the mean) of a
posterior distribution given the observed data and prior. Higher order moments (typically,
the covariance) can also be exhibited, allowing to quantify uncertainty about the estimates.
Bayesian approaches are thus very appealing. However, they typically involve the eval-
uation of intractable integrals. This can be overcome through the use of sampling or ap-
proximation strategies. Among available Bayesian techniques, few can efficiently tackle
large scale image deblurring problems involving complex (e.g., spatially-variant) blurs and
non-Gaussian noise. Moreover, hyperparameter tuning can be cumbersome. This PhD the-
sis has brought novel contributions to these challenges by proposing advances along two
classes of Bayesian methods, namely particle filtering and variational Bayesian algorithms.

6.1 Contributions

6.1.1 Chapter 3: A new BPF approach for spatially-variant PSFs identifica-
tion

We addressed the problem of spatially-variant PSFs identification from calibrated images.
We formulated a state-space model to describe the space-varying PSF map, accounting for
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the spatial dependency among PSFs of the neighboring regions. We then proposed the
algorithm GIAnPF, relying on the BPF paradigm, to solve the blur identification task in a
probabilistic manner. Our algorithm implements an annealing mechanism to overcome the
limitations of traditional BPF. The validity of the proposed method has been validated on
numerous examples involving various shapes of blur kernels and PSF maps. This work let
to the publications [Huang et al. 2019, Huang et al. 2021a].

6.1.2 Chapter 4: Novel VBA methods for blind image deconvolution

In [Marnissi et al. 2017], an efficient VBA strategy was proposed to tackle the case of
non-blind image deconvolution. In this chapter, we proposed an extension of this method-
ology to solve the problem of blind image deconvolution. We introduced a generic linear
equality constraints (e.g., sum-to-one) and a SAR prior on the unknown kernel. We then
showed how to build suitable majorizing approximations of the original complicated pos-
terior distribution, so as to yield a VBA method with simple updates while preserving its
versatility. We provided two algorithms, respectively for addressing the case of Gaussian
and non-Gaussian noise.

6.1.3 Chapter 5: Unrolled VBA for blind image deconvolution

Preliminary tests on the algorithms proposed in Chapter 4 showed high sensitivity to some
hyperparameters. In particular, the parameter related to the kernel prior distribution is
cumbersome to set. Moreover, the algorithms both require the knowledge of the noise
level at hand. Finally, although reasonably good restoration results have been achieved, the
methods were still far from the quality of some recent deep-learning methods. To address
this challenge, we built an unrolling strategy where the iterations of VBA are recast as
layers of neural network (NN) structures. The unrolling paradigm allowed to propose a
supervised training approach where the NN parameters are learned so as to maximize image
and kernel quality metrics. On top of solving the hyperparameter tuning problem, unrolling
also led to fast algorithms amenable to implementations on GPU tools. Two unfolded VBA
architectures have been proposed, able to process grayscale or color images, as well as to
estimate the noise level. Our experiments on three datasets showed the superiority of our
approach compared to several approaches from the state-of-the-art.

6.2 Perspectives

Our work raises several short and long term research paths that we list in this section.

6.2.1 Chapter 3

In this chapter, a BPF method has been proposed for spatially-variant blur identification.
Several perspectives are foreseen, that we list herebelow, ranked from shorter term to longer
term and open problems.
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• Although our method is rather versatile to the noise and evolutionary laws assumed in
our state-space model, we only tested it in scenarios involving Gaussian (or truncated
Gaussian) laws. A first short-term perspective is thus to perform a more extensive
numerical analysis, to cope with more sophisticated laws.

• Real-data experiments would certainly enforce the impact of this work. We did pre-
liminary attempts, but we faced the issue of a mismatch between the piecewise con-
stant spatially-variant blur degradation model considered in our approach, and the
blur actually occurring in real-world data. Adapting our method to more realistic
spatially-variant models (see [Denis et al. 2015, Escande & Weiss 2015]) would be
an interesting path.

• Among realistic scenarios, we have considered the extension and applica-
tion of our approach to the problem of blur calibration in radio interferome-
try [Birdi et al. 2020]. Discussions on this topic have been initiated this year with
Dr. A. Repetti from Heriot-Watt University, Edinburgh. The main challenges are (i)
the very large scale of the data, (ii) the complex-valued acquisitions in the Fourier
domain, and (iii) the construction of a suitable SSM mimicking the neighboring in-
teractions between the blur parameters.

• The robustness experiment considered in Section 3.4.4.2 is actually reminiscent from
the image fusion problem [Tico & Pulli 2009]. In this inverse problem, one observes
a pair of images, one being degraded with high noise level but no blur, the other
being blurry and noisy with low level noise. The goal is to provide an estimation of
the original image, jointly with the blur identification. Such problem arises typically
in satellite imaging and in digital camera sensing, when pairs of short/long exposure
images of the same scene can be acquired. Mapping such problem within our frame-
work would require to include in our observation model the noise degradation of the
image. Then, our idea would be to solve the resulting problem in an alternating fash-
ion, using our GIAnPF for the blur identification step, while an optimization-based
(e.g., total least squares) strategy would be employed to estimate, in a point-wise
fashion, the original image.

• The main weakness of the model considered in Chapter 3 is that it is unidimensional.
An important direction for future work is thus its extension to a multidimensional
SSM to better encompass the variations among the PSFs. The increase of the di-
mensionality in the evolution equation of SSM is a challenging topic, as it requires
to define suitable Markovian structures to preserve somewhat the causality relation-
ships and thus to keep a sequential modeling/inference. A promising idea that we did
not pursue by lack of time is to rely on 2D hidden Markov models as the ones de-
scribed in [Champagnat et al. 1998]. The inference could be performed using tools
described in [Lindsten & Schön 2013].
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6.2.2 Chapters 4 and 5

• A first short-term goal is to extend the experiments from Chapter 5 to an example
involving non-Gaussian noise, as it was done in the work by [Marnissi et al. 2017].
The VBA method in that case has been described in Chapter 4, but our numerical
experiments on that algorithm stayed incomplete and were thus not reported in the
manuscript. The extension of the unrolled architecture to the non-Gaussian case
would also be an interesting avenue for short-term research.

• Another natural extension of these chapters is to tackle a real-world application. To
that end, we are starting a collaboration with Dr. Nora Ouzir (CentraleSupélec), for
extending and applying our method to the blind deconvolution of ultrasound imag-
ing. This requires several changes in the noise and prior models, leading to a new
structure for the unfolded VBA approach. We obtained promising preliminary re-
sults, and are confident that we will be able to finalize a publication on that topic by
the end of the year.

• Our contributions in Chapter 4 would gain impact if they were assessed by theoretical
convergence analysis results. Specifically, we would be interested in analyzing the
convergence properties of VBA iterations, using recent results from the field of fixed
point analysis [Combettes & Pesquet 2021]. To conduct such study, we would go
back to simpler settings, such as non-blind image deblurring under Gaussian noise.
Despite the high interest of this topic, the convergence properties of VBA schemes
have been scarcely studied in the literature, and we believe that the analysis tools
might be now mature enough to start this ambitious topic.

• Deep unrolled architectures are promoted as being easier to study theoreti-
cally. In particular, stability to noise in the NN inputs/parameters can be stud-
ied [Combettes & Pesquet 2020, Bertocchi et al. 2019]. Then, it would be very in-
teresting to perform such analysis to the proposed architectures from Chapter 5.
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[Djurić et al. 2003] P. M. Djurić, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F.
Bugallo and J. Míguez. Particle Filtering. IEEE Signal Processing Magazine,
vol. 20, no. 5, pages 19–38, 2003. (Cited on pages 16, 20 and 28.)
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