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Estimation and control of urban road
traffic with communicating vehicles

présenté par
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Université Gustave Eiffel / Cosys / Grettia

Soutenue le 15 septembre 2022 devant le Jury composé de:
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Short summary

This thesis adresses the topic of estimation and control of urban road
traffic. The goal is to improve the conditions and the consequences of road
traffic on the economical and ecological domains, on a short, mid and long
term perspectives.

Concerning the estimation of road traffic, we present a method for the
estimation of traffic state at road junctions controlled with traffic lights. We
assume mixed traffic where a proportion of vehicles are equipped with com-
munication resources. The estimation of road traffic state uses information
given by communicating vehicles. The method proposed is built upon a pre-
viously published method which was applied to estimate the traffic in the
case where roads are composed of one lane. In this thesis, we consider the
case where roads are composed of two lanes and three lanes, and it is shown
that these solutions can address the general case, where roads are composed
of any number of lanes. The geometry of the road junction is assumed to
be known, as well as its connections between incoming and outgoing lanes
and roads. Using the location data provided by the communicating vehicles,
first, we estimate some primary parameters including the penetration ratio
of the probe vehicles, as well as the arrival rates of vehicles (equipped and
non-equipped) per lane by introducing the assignment onto the lanes. Sec-
ond, estimations of the queue length of the multiple-lanes road, without and
with the additional information provided by the location of the communi-
cating vehicles in the queue, are given. The proposed models are illustrated
and discussed with numerical simulations.

Concerning the control of road traffic, first, a semi-decentralized ap-
proach for urban traffic control, based on the TUC (Traffic responsive Urban
Control) strategy, is presented. We assume that the control is centralized as
in the TUC strategy, but a contention time window inside the cycle time is
introduced, where the traffic light is yellow for all the directions, and where
antagonistic phases alternate a priority rule. The idea of introducing this
time window is to reduce the red time inside the cycle, and by that, increase
the capacity of the network junctions. In practice, the priority rule could be
applied using vehicle to vehicle (v2v) communications. The vehicles having
the priority pass almost normally through the junction, while the others
reduce their speed and yield the way. A model for the dynamics and the
control of such a system is given. The model is still formulated as a linear
quadratic problem, for which the feedback control is derived analytically
and off-line, and applied in real time. The model is implemented using the
Simulation of Urban MObility (SUMO) tool in a small regular (american-
like) network configuration. The results are presented and compared to the
classical TUC strategy.
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Second, we present a new algorithm for urban traffic light control with
mixed traffic (communicating and non communicating vehicles) and mixed
infrastructure (equipped and unequipped junctions) which explicits the im-
plementation of the contention time window of the semi-decentralized con-
trol. We call equipped junction here a junction with a traffic light signal
(TLS) controlled by a road side unit (RSU). On such a junction, the RSU
manifests its connectedness to equipped vehicles by broadcasting its com-
munication address and geographical coordinates. The RSU builds a map
of communicating vehicles approaching and leaving the junction. The al-
gorithm allows the RSU to select a traffic phase, based on the built map.
The selected traffic phase is applied by the TLS; and both equipped and
unequipped vehicles must respect it. The traffic management is in feedback
on the traffic demand of communicating vehicles. The vehicular traffic as
well as the communications are simulated. The two simulations are com-
bined in a closed loop with visualization and monitoring interfaces. Several
indicators on vehicular traffic (mean travel time, ended vehicles) and IEEE
802.11p communication performances (end-to-end delay, throughput) are
derived and illustrated in three dimension maps. The traffic control is then
extended to an urban road network where the number of equipped junctions
are also varied. Other indicators are shown for road traffic performances in
the road network case, where high gains are experienced in the simulation
results.
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Résumé court

Cette thèse aborde le thème de l’estimation et du contrôle du trafic
routier urbain. L’objectif est d’améliorer les conditions et les conséquences
du trafic routier sur les domaines économiques et écologiques, sur des per-
spectives à court, moyen et long terme.

Concernant l’estimation du trafic routier, nous présentons une méthode
d’estimation du trafic aux carrefours contrôlés par des feux tricolores. L’estima-
tion du trafic routier utilise les informations fournies par les véhicules com-
municants, dont le taux de pénétration est variable. La méthode proposée
est basée sur une méthode précédemment publiée qui a été appliquée pour
estimer le trafic dans le cas où les routes sont composées d’une voie. Dans
cette thèse, nous considérons le cas où les routes sont composées de plusieurs
voies. La géométrie de la jonction routière est supposée connue, ainsi que
ses connexions entre les voies entrantes et les routes sortantes. A partir
des données de localisation fournies par les véhicules communicants, dans
un premier temps, des paramètres primaires sont estimés, dont le taux de
pénétration des véhicules connectés, ainsi que les taux d’arrivée des véhicules
par voie, en introduisant l’affectation sur les voies. Deuxièmement, des esti-
mations des longueurs des files d’attente de la route à voies multiples, sans
et avec les informations fournies par la localisation des véhicules commu-
nicants, sont dérivées. Le modèle proposé est discuté et illustré avec des
simulations numériques.

Concernant le contrôle du trafic routier, nous présentons premièrement
une approche semi-décentralisée pour le contrôle du trafic urbain, basée sur
la stratégie TUC (Traffic Urban Control). Nous supposons que le contrôle
est centralisé comme dans la stratégie TUC, mais avec l’introduction d’une
fenêtre temporelle concurrente à l’intérieur du temps de cycle, où le feu
est jaune pour toutes les directions, et où les phases antagonistes alter-
nent une règle de priorité. Pendant la fenêtre temporelle concurrente, les
véhicules prioritaires passent presque normalement le carrefour, tandis que
les autres réduisent leur vitesse et cèdent le passage. Le modèle pour la dy-
namique et le contrôle d’un tel système est dérivé. Le modèle est toujours
formulé comme un problème linéaire quadratique, pour lequel le contrôle par
rétroaction est dérivé analytiquement et hors ligne, et appliqué en temps réel.
Le modèle est implémenté à l’aide de l’outil Simulation of Urban MObility
(SUMO) dans une petite configuration de réseau régulier. Les résultats
sont présentés et comparés à la stratégie TUC classique. Deuxièmement,
nous présentons un nouvel algorithme pour le contrôle des feux de circu-
lation avec trafic mixte (véhicules communicants et non communicants)
et infrastructure mixte (jonctions équipées et non équipées) qui explicite
l’implémentation de la fenêtre temporelle concurrente du contrôle semi-
décentralisé. On appelle carrefour équipé, un carrefour avec feu tricolore
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piloté par une borne communicante. La borne construit une carte des
véhicules communicants approchant et sortant de la jonction. Une phase de
trafic est sélectionnée en fonction de la carte construite. La phase de trafic
sélectionnée est appliquée par le feu. La gestion du trafic est en rétroaction
sur la demande de trafic des véhicules communicants. La circulation des
véhicules ainsi que les communications sont simulées. Plusieurs indicateurs
sur le trafic véhiculaire (temps de trajet moyen, véhicules servis) et les per-
formances de communication IEEE 802.11p (délai, débit) sont dérivés. Le
contrôle du trafic est étendu à un réseau routier urbain où le nombre de
carrefours équipés est variable. D’autres indicateurs sont présentés pour les
performances du trafic routier dans le cas du réseau routier, où des gains
élevés sont constatés dans les résultats de simulation.
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Summary

Transportation systems enable the mobility of goods and people. The de-
sign of efficient transportation systems with a satisfactory quality of service
is a major challenge for our modern societies. Indeed, transportation sys-
tems are complex systems whose design extends over the long term (several
decades), and whose effects are lasting and significant. Among the effects of
transportation systems, we distinguish effects at the individual or societal
scales. Mobility, movement, are immutable characteristics of reality, and
the stakes of transportation systems concern the economy, the ecology, the
public health. Transportation systems include transportation demand, the
need for mobility, and transportation supply, the service enabling mobility.
There is an imbalance when demand exceeds supply, and then congestion
occurs. Nowadays, the economic consequences of congestion are major. For
example, in the United States, in 2020, the time spent during transportation
was estimated to 4.3 billion hours. In the same year, 3.8 billion liters of fuel
were used. Gaseous emissions associated with transportation represented 18
millions of tons. The limits of mobility demand are very high, which explains
why congestion occurs. On the other hand, the transportation supply is lim-
ited. Building new roads requires significant amounts of time and money.
In the city, space is limited and increasing the supply of transportation is
difficult. Consequently, regulating transportation systems in order to limit
imbalances is simpler than increasing transportation supply. The regulation
of road traffic can be done for example with the guidance of vehicles, the
adequate control of traffic lights, the application of adequate public policies,
etc.

New information and communication technologies allow vehicles to com-
municate, to be localized, and to be automated. Wireless communication
is based on communication protocols specific to vehicular communication
networks, or not specific. Among vehicle localization systems, GPS satellite
localization is common, but other techniques are possible. Finally, the au-
tomation of vehicle driving makes it possible to open up new perspectives
in terms of traffic control mechanisms, since each vehicle can become an
actuator of the regulatory mechanism. The concept of Intelligent Trans-
portation Systems (ITS) proposes to use these new technologies in order
to regulate transportation systems, and improve their efficiency in relation
with societal issues. Vehicles communicating their GPS position wirelessly
can improve road traffic. In order to regulate road traffic, traffic models are
needed. They rely on the knowledge of traffic state, which is given by traffic
estimation models. This thesis deals with the estimation and control of road
traffic with communicating vehicles.

Traditionally, the estimation of road traffic used input data provided by
fixed sensors, placed next to, or on the roadway. Communicating vehicles
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can be used as mobile road traffic sensors to estimate travel times and queue
lengths. With these mobile sensors, new traffic estimation methods are be-
ing developed. A distinction is made between deterministic and stochastic
methods. This thesis proposes to extend a stochastic method from the lit-
erature, in order to estimate various parameters of urban traffic in the case
of multi-lane roads. This method first published by Comert et al. in 2009
uses the probability distribution calculation of queue lengths. These prob-
ability distributions are conditioned by the information of the number of
communicating vehicles present in the queue, as well as the information of
the position of the last communicating vehicle in the queue. The length of
the queue is estimated with the expectation of this probability distribution.
It is shown that the queue length estimation only depends on the position
of the last communicating vehicle. In subsequent articles, the authors add
the estimation of primary parameters such as the penetration ratio of com-
municating vehicles, the arrival rate. The case where a residual queue is
present at the start of a red light is also considered.

Note that GPS localization systems are not accurate enough to detect
the lateral position of vehicles on a multi-lane road : it is not possible to
determine on which lane a vehicle is located. Thus, it is not possible to
duplicate the existing methods for one-lane roads, to the case of multi-lane
roads. This thesis proposes to generalize the estimation of road traffic with
communicating vehicles to the case of multi-lane roads. The part of the
thesis on traffic estimation is composed of two articles, one of which studies
the case of roads formed by two lanes and the other, the case of roads formed
by three lanes. It is shown that the method is general and that the case
where three-lane roads are considered also makes it possible to solve the case
of roads with a greater number of lanes. Thus, the thesis proposes a general
traffic estimation method for roads composed of any number of lanes.

It is assumed that the proportion of communicating vehicles is variable,
and that the transportation demand is low or moderate, so that the vehi-
cle arrival process can be modeled by a Poisson process. The topology of
the intersection is also assumed to be known, in particular the connections
between the incoming lanes and the roads leaving the intersection. The
turn ratios of the vehicles are assumed to be known. One method for esti-
mating turn ratios is to track the direction where communicating vehicles
are heading as they exit the intersection. We propose a vehicle assignment
model on the different lanes where the hypothesis considers that the queues
per lane tend to balance each other, as much as possible. Two estimators
of the penetration ratio of communicating vehicles are proposed, and their
performances evaluated in simulation. The total vehicle arrival rate, as well
as the arrival rate for each lane, are formulated analytically in dependence
on the vehicle assignment model established previously. Assuming that the
arrival process is modeled by a Poisson process, a formulation of the prob-
ability distribution of queue lengths is given. This formulation depends on
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the arrival rate per lane, and on the red time, and does not use the infor-
mation communicated by the communicating vehicles. An estimator of the
number of communicating vehicles present on each lane is proposed. Three
other formulations of the probability distribution of queue lengths are ana-
lyzed. These are conditional probabilities on the position of the last vehicle
connected as well as on the total number of vehicles connected on the multi-
lane road. One of the formulations uses the estimator of the number of
communicating vehicles present on each lane.

The assumptions are discussed using several simulation tools. First, the
simulation results are produced by a bi-directional simulator combining mi-
croscopic road traffic simulator and discrete event communication simulator.
The simulation of bi-directional communicating vehicles is characterized by
a simulation of road traffic which depends on the simulation of the com-
munication, and conversely, by the simulation of the communication which
depends on the simulation of road traffic. Microscopic road traffic and com-
munication simulators interact with each other in real time. Second, in
order to overcome the defaults of the assignment model of the road traf-
fic microscopic simulator, simulations are carried out with a discrete-event
communication simulator. The vehicles are represented by communication
packets. Each vehicle is assigned to a queue associated with one of the lanes
of the road. The traffic light extracts vehicles from the queues at the satura-
tion rate during the green light phase. The simulation results show that the
model can represent the cases of imbalance between the queue lengths on
the different lanes. Various performance indicators show the improvement
in the estimation of the queue lengths when using the location data com-
municated by the communicating vehicles. As expected, the performance
of the estimators is increased with the increase in the penetration ratio of
communicating vehicles.

The estimation of the road traffic enables the control of the road traffic.
In this thesis, two contributions to the theory of road traffic control are
presented. The first contribution extends one method of the literature, the
Traffic Urban Control (TUC). TUC is a centralized traffic control that can
be applied in real time on large road networks, including in the case of high
demand and congestion. A simple model considers the dynamics of queues
on each road in the network, which depends on the duration of the green light
phase. An optimization method seeks to minimize a criterion depending on
the number of vehicles present on each road, and on the duration of the green
lights. The solution of the optimization problem comes down to solving the
Riccati equation, which gives the optimal control as a function of the traffic
state on each road.

A contribution to this TUC control is made in this thesis. A new phase
of the traffic light managing the intersection is proposed. During this phase,
the communicating vehicles cooperate with each other with wireless inter-
vehicle communication, in order to cross the junction. This time window
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introduces a concurrent access space, where vehicles compete with each other
to cross the intersection while avoiding collisions. The formulation of the
TUC control, which takes into account such a time window is given. The
new control introduces a time window where access control is distributed,
resulting in a semi-decentralized control. Performance evaluations of the
new semi-decentralized control with microscopic road traffic simulation tool
are carried out. The scenario uses an American-style, grid-like road net-
work. The concurrency time window is implemented with the simulator
with a parameter that represents the conflict between vehicles. The Riccati
equation is solved off-line and traffic light control is applied in real time to
the various intersections. In this scenario, the simulation results show that
the new semi-decentralized control can resolve congestion faster than the
centralized TUC control. The results show the sensitivity of the control on
the parameter representing the conflict between the vehicles. The choice of
this parameter could be the subject of further studies.

We then propose a traffic light control algorithm using vehicle to in-
frastructure communication and which could implement the contention time
window of the semi-decentralized control. This algorithm assumes that some
of the vehicles are equipped with wireless communication and localization
capabilities. Some traffic lights are associated with a wireless road side unit,
which allow communication between vehicles and the infrastructure. The
connected traffic light builds a dynamic virtual map of the intersection using
the trajectories of communicating vehicles. Then, the traffic light chooses a
traffic phase according to the state of the map of the intersection. Once the
signaling phase is applied, communicating and non communicating vehicles
respect the control. The algorithm is implemented in a simulator of commu-
nicating vehicles using the WAVE communication architecture based on the
IEEE 802.11p protocol. Bi-directional VEINS simulation implements road
traffic dependence on communication, as well as communication dependence
on vehicle mobility. A performance study is done on the same grid road net-
work used for the semi-decentralized control simulation. In this scenario, the
performance of the algorithm is evaluated for the communication protocol
as well as for the transport of vehicles.

The thesis proposes a comprehensive approach to the estimation and
control of road traffic. The proposed traffic estimation model and the
semi-decentralized traffic control assume that a proportion of vehicles are
equipped with localization systems and wireless communication. The road
traffic estimation model generalizes a method proposed by Comert et al.,
while the road traffic control generalizes the method Traffic Urban Control
(TUC). A traffic light control algorithm which uses communication between
vehicles and infrastructure shows how to implement the contention window
of the semi-decentralized control. The simulations allow the study of the per-
formances of the proposed methods. The simulation studies use microscopic
traffic simulator and communication simulator. Bi-directional simulation of
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road traffic and communication is also used to evaluate the proposed meth-
ods. The results show the relevance of the assumptions and models, since
gains are observed compared to conventional methods. Transportation de-
mand is assumed to be moderate and the case where the demand is high
could be the subject of further work.
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Résumé

Les systèmes de transport permettent la mobilité des biens et des per-
sonnes. La conception de systèmes de transport efficaces et à la qualité du
service rendu satisfaisante est un enjeu majeur de nos sociétés modernes.
En effet, les systèmes de transport sont des systèmes complexes dont la con-
ception s’étend sur le temps long (plusieurs dizaines d’années), et dont les
effets sont durables, et significatifs. Parmi les effets des systèmes de trans-
ports, on distingue les effets à l’échelle de l’individu ou de la société. La
mobilité, le mouvement, sont des caractéristiques immuables du réel, et les
enjeux sont économiques, écologiques, sanitaires. Les systèmes de trans-
port comportent une demande en transport, le besoin de mobilité, et une
offre de transport, le service permettant la mobilité. Il y a un déséquilibre
lorsque la demande excède l’offre, et alors la congestion se manifeste. De
nos jours, les conséquences économiques de la congestion sont majeures. Par
exemple, aux États-Unis, en 2020, le temps passé dans les transports était
estimé à 4.3 milliards d’heures. La même année, 3.8 milliards de litres de
carburant étaient utilisés. Les émissions gazeuses associées au transport
représentaient 18 millions de tonnes. Les limites de la demande de mo-
bilité sont très élevées ce qui explique que la congestion se manifeste. En
revanche, l’offre de transport est limitée. Construire de nouvelles routes
nécessite des quantités de temps et d’argent importantes. En ville, l’espace
est limité et augmenter l’offre de transport est difficile. En conséquence,
réguler les systèmes de transport afin de limiter les déséquilibres, est plus
simple qu’augmenter l’offre de transport. La régulation du trafic routier
peut se faire par exemple avec le guidage des véhicules, le contrôle adéquat
des feux de circulation, l’application de politiques publiques adéquates, etc.

Les nouvelles technologies de l’information et de la communication per-
mettent aux véhicules de communiquer, d’être localisés, et d’être automa-
tisés. La communication sans fils repose sur des protocoles de commu-
nication spécifiques aux réseaux de communication véhiculaires, ou non
spécifiques. Parmi les systèmes de localisation des véhicules, la localisa-
tion satellitaire GPS est commune, mais d’autres techniques sont possi-
bles. Enfin, l’automatisation de la conduite des véhicules permet d’ouvrir de
nouvelles perspectives quant aux mécanismes de contrôle du trafic, puisque
chaque véhicule peut devenir actionneur du mécanisme de régulation. Le
concept de Systèmes de Transports Intelligents (STI) propose d’utiliser ces
nouvelles technologies afin de réguler les systèmes de transport et d’améliorer
leur efficacité en rapport avec les enjeux sociétaux. Les véhicules commu-
niquant leur position GPS sans fils, peuvent permettre l’amélioration du
trafic routier. Afin de réguler le trafic routier, des modèles de trafic sont
nécessaires. Ils s’appuient sur une connaissance de l’état du trafic, qui est
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donnée par des modèles d’estimation du trafic. Cette thèse a pour sujet
l’estimation et le contrôle du trafic routier avec des véhicules communicants.

Traditionnellement, l’estimation du trafic routier utilisait des données
d’entrée fournies par des capteurs fixes, placés à côté, ou sur la chaussée.
Les véhicules connectés peuvent être utilisés comme capteurs mobiles du
trafic routier afin d’estimer des temps de parcours, des longueurs de files
d’attente. Avec ces capteurs mobiles, de nouvelles méthodes d’estimation
du trafic sont mises au point. On distingue les méthodes déterministes et
stochastiques. Cette thèse propose d’étendre une méthode stochastique de
la littérature, pour estimer divers paramètres du trafic urbain dans le cas
des routes à plusieurs voies. Cette méthode publiée pour la première fois
par Comert et al. en 2009 utilise le calcul de distribution de probabilités des
longueurs de files d’attente. Ces distributions de probabilités sont condi-
tionnées par l’information du nombre de véhicules connectés présents dans
la file d’attente, ainsi que l’information de la position du dernier véhicule
connecté dans la file d’attente. La longueur de la file d’attente est es-
timée avec l’espérance de cette distribution de probabilité. Il est démontré
que l’estimation de la longueur de file d’attente ne dépend que de la posi-
tion du dernier véhicule connecté. Dans des articles ultérieurs, les auteurs
ajoutent l’estimation de paramètres primaires comme le taux d’équipement
de véhicules connectés, le débit d’arrivée. Le cas où une file d’attente
résiduelle est présente en début de feu rouge, est également considéré.

On remarque que les systèmes de localisation GPS ne sont pas suffisam-
ment précis pour détecter la position latérale des véhicules sur une route
multi-voies : on ne peut pas déterminer sur quelle voie un véhicule est posi-
tionné. Ainsi, il n’est pas possible de dupliquer les méthodes existantes pour
les routes à une voie, au cas des routes multi-voies. Cette thèse propose de
généraliser l’estimation du trafic routier avec des véhicules communicants
au cas des routes multi-voies. La partie de la thèse sur l’estimation du trafic
est composée de deux articles, dont l’un étudie le cas des routes formées de
deux voies et l’autre, le cas des routes formées de trois voies. On démontre
par la suite que la méthode est générale et que le cas où l’on considère des
routes à trois voies permet aussi de résoudre le cas des routes à nombre de
voies supérieur. Ainsi, la thèse propose une méthode générale d’estimation
du trafic pour les routes composées d’un nombre de voies quelconque.

On suppose que la proportion de véhicules connectés est variable, et
que la demande en transport est faible ou modérée afin que le processus
d’arrivée des véhicules puisse être modélisé par un processus de Poisson.
Sont également supposées connues la topologie de l’intersection, avec no-
tamment les connections entre les voies entrantes et les routes sortantes
de l’intersection. Les pourcentages directionnels des véhicules sont sup-
posés connus. Une méthode pour estimer les pourcentages directionnels
consiste à suivre la direction que prennent les véhicules connectés à la
sortie de l’intersection. On propose un modèle d’affectation des véhicules
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sur les différentes voies où l’hypothèse considère que les files d’attente par
voie tendent à s’équilibrer autant que possible. Deux estimateurs du taux
d’équipement des véhicules connectés sont proposés et leurs performances
évaluées en simulation. Le débit total d’arrivée des véhicules, ainsi que le
débit d’arrivée pour chaque voie est formulé analytiquement en dépendance
du modèle d’affectation des véhicules établi précédemment. En supposant
que le processus d’arrivée est modélisé par un processus de Poisson, une for-
mulation de la distribution de probabilité des longueurs de files d’attente est
donnée. Cette formulation dépend du débit d’arrivée par voie et du temps
de feu rouge, et n’utilise pas l’information communiquée par les véhicules
connectés. On propose un estimateur du nombre de véhicules connectés
présents sur chacune des voies. Trois autres formulations de cette distribu-
tion de probabilité des longueurs de files d’attente sont analysées. Ce sont
des probabilités conditionnelles sur la position du dernier véhicule connecté
ainsi que sur le nombre total de véhicules connectés sur la route multi-voies.
L’une des formulations utilise l’estimateur du nombre de véhicules connectés
présents sur chaque voie.

Les hypothèses sont discutées au moyen de plusieurs outils de simula-
tion. Premièrement, les résultats de simulation sont produits par une sim-
ulation bi-directionelle associant simulateur microscopique de trafic routier
et simulateur de communication à évènements discrets. La simulation des
véhicules connectés bi-directionelle se caractérise par une simulation de trafic
routier qui dépend de la simulation de la communication, et inversement,
par la simulation de la communication qui dépend de la simulation du trafic
routier. Les simulations de trafic routier microscopique et de la communi-
cation interagissent l’une avec l’autre en temps réel. Deuxièmement, afin
de s’affranchir du modèle d’affectation du simulateur de trafic routier mi-
croscopique, des simulations sont réalisées avec un simulateur de communi-
cation à évènements discrets. Les véhicules sont alors représentés par des
paquets de communication. Chaque véhicule est affecté à une file d’attente
associée à une des voies de la route. Le feu de circulation extrait au débit
de saturation les véhicules des files d’attente pendant la phase de feu vert.
Les résultats de simulation montrent que le modèle peut représenter les
cas de déséquilibre entre les longueurs de files d’attente sur les différentes
voies. Différents indicateurs de performances montrent l’amélioration de
l’estimation des longueurs de files d’attente lorsque sont utilisées les données
de localisation communiquées par les véhicules connectés. Comme attendu,
les performances des estimateurs sont augmentées avec la croissance du taux
d’équipement des véhicules connectés.

L’estimation du trafic routier permet la régulation du trafic routier. Dans
cette thèse, on présente deux contributions à la théorie du contrôle routier.
La première contribution consiste à étendre la méthode de la littérature
Traffic Urban Control (TUC). TUC est un contrôle du trafic centralisé qui
peut être appliqué en temps réel sur de vastes réseaux routiers, y compris
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en cas de forte demande et de congestion. Un modèle simple considère la
dynamique des files d’attente sur chaque route du réseau, qui dépend de
la durée de la phase de feu vert. Une méthode d’optimisation cherche à
minimiser un critère fonction du nombre de véhicules présents sur chaque
route, et de la durée des feux verts. La solution du problème d’optimisation
revient à résoudre l’équation de Riccati, qui donne le contrôle optimal en
fonction d’une mesure de l’état du trafic sur chaque route.

Une contribution à ce contrôle TUC est apportée dans cette thèse. On
propose une nouvelle phase du feu de signalisation gérant l’intersection. Du-
rant cette phase, les véhicules connectés coopèrent entre eux avec de la com-
munication inter véhiculaires sans fils, pour traverser le carrefour. Cette
fenêtre temporelle introduit un espace d’accès concurrent, où les véhicules
concourent entre eux à traverser le carrefour tout en évitant les collisions.
La formulation du contrôle TUC qui prend en compte une telle fenêtre tem-
porelle est donnée. Le nouveau contrôle introduit une fenêtre temporelle où
le contrôle d’accès est distribué, ce qui donne un contrôle semi-décentralisé.
Des évaluations de performances du nouveau contrôle semi-décentralisé avec
des outils simulations de trafic microscopique sont réalisées. Le scénario
utilise un réseau routier de type américain, en forme de grille. La fenêtre
temporelle d’accès concurrent est implémentée avec le simulateur avec un
paramètre qui représente le conflit entre les véhicules. L’équation de Riccati
est résolue hors ligne et le contrôle des feux appliqué en temps réel sur les
diverses intersections. Dans ce scénario, les résultats de simulation montrent
que le nouveau contrôle semi-décentralisé peut résorber la congestion plus
rapidement que le contrôle centralisé TUC. Les résultats montrent la sensi-
bilité du contrôle au paramètre représentant le conflit entre les véhicules, et
dont le choix pourrait faire l’objet d’études ultérieures.

On propose dans un second temps un algorithme de contrôle des feux util-
isant la communication véhicule-infrastructure et qui pourrait implémenter
la fenêtre temporelle concurrente du contrôle semi-décentralisé. Cet algo-
rithme suppose qu’une partie des véhicules est équipée de systèmes de com-
munication sans fils et de localisation. Certains feux de signalisation sont
associés à une borne de communication sans fils, et permettent une commu-
nication entre les véhicules et l’infrastructure. Le feu de signalisation con-
necté construit une carte virtuelle dynamique de l’intersection en utilisant les
trajectoires des véhicules connectés. Ensuite, le feu de signalisation choisit
une phase de trafic en fonction de l’état de la carte de l’intersection. Une fois
la phase de signalisation appliquée, les véhicules connectés et non connectés
respectent le contrôle. L’algorithme est implémenté dans un simulateur de
véhicules communiquants utilisant l’architecture de communication WAVE
basée sur le protocole IEEE 802.11p. La simulation bi-directionelle VEINS
implémente la dépendance du trafic routier en fonction de la communication
ainsi que la dépendance de la communication en fonction de la mobilité des
véhicules. Une étude de performances est réalisée sur le même réseau routier
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en forme de grille utilisé pour la simulation du contrôle semi-décentralisé.
Dans ce scénario, les performances de l’algorithme sont déclinées pour le
protocole de communication ainsi que pour le transport des véhicules.

La thèse propose une approche complète de l’estimation et la régulation
du trafic routier. Le modèle d’estimation du trafic et le contrôle routier
semi-décentralisé proposés supposent qu’une proportion des véhicules est
équipée de systèmes de localisation et communique en réseau sans fils. Le
modèle d’estimation du trafic routier généralise une méthode proposée par
Comert et al. tandis que le contrôle du trafic routier généralise la méthode
de la littérature Traffic Urban Control (TUC). Un algorithme de contrôle
des feux utilisant la communication entre véhicules et infrastructure montre
comment implémenter le contrôle semi-décentralisé. Les simulations permet-
tent l’étude des performances des méthodes proposées et utilisent simulateur
de trafic microscopique et simulateur de communication. La simulation bi-
directionelle du trafic routier et de la communication est également utilisée
pour évaluer les méthodes proposées. Les résultats montrent la pertinence
des hypothèses et des modèles puisque des gains sont constatés par rapport
aux méthodes classiques. La demande en transport est supposée modérée
et le cas où la demande est forte pourrait faire l’objet de travaux ultérieurs.
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Chapter 1

Introduction and state of the
art

1.1 Introduction

1.1.1 Context and stakes of road traffic science

In this document, we propose models, methods and algorithms which have
the potential to improve the road traffic transportation conditions. Road
traffic transportation is a major concern in the cities nowadays and its eco-
nomical and ecological costs are critical in our societies. For example, in
2020, Schrank et al. [125] have estimated the travel delay in the USA to 4.3
billion hours. The same year, the fuel wasted was estimated to 1.7 billion
gallons, the gas emission to 18 million tons and the congestion cost to 101
billion of dollars. In addition, the number of people living in the cities tends
to increase and the perspective is a growing demand for transportation. In-
deed, in 2014, 53% of the world population lived in the cities and a growth
of 14% is expected by 2050 [101]. It is clearly shown that the cost of the
transportation has severe impacts on road traffic conditions but also ma-
jor consequences on the environmental, economical and social fields [130].
Among the effects of transportation systems, we cite the pollutants emitted
by the road traffic, the noise, the energy consumption needed to move the
vehicles, all having important consequences on the ecological health of the
planet, for today and the future. The ecological effects of transportation
systems are often balanced with their economical stakes. At first glance,
the fast economical growth may seem contradictory with the ecological sus-
tainability needs on a long term perspective. Indeed, the transportation
systems enable the offer of mobility services to the society for a multitude of
needs which range a wide bandwidth of motivations. By crossing different
domains, by addressing various problems, by responding to various motiva-
tions and by implying various protagonists, the transportation systems are
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complex and central to our modern societies, and the stakes are high.
We define the transportation demand as the need for mobility. The need

for mobility raises many important questions and problems for the society
and the individual. The economical and ecological problems exposed above
may increase in the future due to the persistence of the demand and its
evolutions. The transportation demand is an important factor of the trans-
portation systems. The demand can be modeled with the static four step
travel model [107]. During the generation phase, the four step model de-
termines the number of trips. The trip generation phase distributes origins
with destinations; coupled with the generation phase, it assigns a number
of trips to any origin-destination pair. The result of this phase is an origin-
destination matrix. The mode choice phase assigns the number of trips per
origin-destination pair to a mode of tranportation (road, public mass tran-
sit, pedestrians, etc...). Finally, the route assignment phase determines the
choice of the route for each particular mode according to various principles
of equilibrium. The four step level model is widely used for determining the
transportation forecasts since the 1950’s.

On another hand, the transportation supply is the mobility service which
can be offered to the users. It depends on the capacity of the roads and the
capacity of the vehicles. Congestions occur when the transportation demand
exceeds the supply. Improving service by expanding the supply and building
new roads is costly, time consuming and frequently not possible in the cities.
Some decades are needed to build new road infrastructures, because the pro-
cess involves the planification, tactical and operational levels. Furthermore,
in the cities, the place available to build new road infrastructures is reduced
and very costly. This is why optimizing the actual road network by road
traffic management is an interesting alternative. For example, controlling
road traffic with new traffic lights algorithms has the potential to improve
the transportation system efficiency.

The properties of the equilibrium between the demand and the supply
are managed within various processes targeting different horizons of time.
A planification process estimates the long term needs of the users. Planifi-
cation studies for the estimation of the long term demand are based on low
frequency data, i.e. the studies are scarcely repeated, for example every 4-5
years for the city of Lyon [41]. On a medium horizon of time, the tactical
level of transportation systems management validates the adequation be-
tween the supply and the demand. The tactical level updates the variables
control of the transportation system every 1-2 year. Finally, the operational
level is applied on very short horizons of time (or in real time) to ensure the
daily functionality of the transportation system [17]. For example, concern-
ing the road traffic, the operational level adjusts the timings of the traffic
lights based on real time data input.

With the new communication technologies such as smartphones and
communicating vehicles, the transportation demand can be measured with
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greater accuracy than before and the users become more demanding on the
quality of the service provided by the transportation systems [161]. The
space time granularity and the amount of data given by communicating ve-
hicles are some orders of magnitude higher than before, and the big data era
is promised to flourish in the future. For example, in 2025, it is estimated
that 463 exabytes (an exabyte is 1018 bytes) of data will be exchanged per
day. For reference, the total number of words pronounced by humanity un-
til today is estimated to 5 exabytes [41]. The big data era represents an
opportunity to improve the transportation systems.

In order to improve road traffic conditions and road traffic effects on the
individual, social, environmental and economical fields, we need to manage
the road traffic. The road traffic management relies on traffic models. The
models can be dynamic and depend on an observation process; through the
observation process, we get experimental data used into the modeling and
understanding process. Furthermore, this observation process will give input
data to the control process which uses the model in order to attain desirable
road traffic conditions and road traffic effects. Among the three processes
which are observing, modeling, controlling, we see that observing the road
traffic can not be neglected. A good observation of the road traffic will
allow a better understanding of it; hence, better control decisions towards
the desired road traffic states could be taken. In the meantime, minimizing
the errors in the road traffic observation will lead to less undesired road
traffic conditions and effects. The quality and efficiency of the transportation
models rely on the input data.

1.1.2 Intelligent Transportation Systems (ITS)

Input data is needed for the estimation and the control of road traffic. Sen-
sors are designed to provide these data and throughout history different
kinds of sensors were functionally convenient. In the state of the art section,
we will review the different technologies of sensors used since the beginning
of road monitoring until today. We distinguish between fixed sensors and
mobile sensors. An example of fixed sensor is a magnetic loop placed on
the road, or a video camera placed next to the road. An example of mobile
sensors are modern vehicles used to travel : connected and automated ve-
hicles (CAVs). A probe vehicle is a vehicle equipped with localization and
communication capabilities. A connected and automated vehicle (CAV) is
a probe vehicle which is partially or fully automated in the transportation
service it renders to its users.

The National Highway Traffic Safety Administration defines 6 levels of
automation for the driving task, starting from level 0 which is manual driving
up to level 5 which is fully automated driving [5]. Road traffic will include
CAVs; furthermore, the penetration ratio of CAVs in the road traffic is ex-
pected to increase in the future [113]. Gradually, vehicles will communicate
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with other vehicles or devices in Vehicular Ad Hoc Networks (VANETs) [38].
VANETs is a category of Mobile Ad Hoc Networks (MANET) composed of
communicating vehicles which use radio transceivers to provide ubiquitous
connectivity between vehicles and the road infrastructure. The VANETS
communication architectures are various and we distinguish vehicle to ve-
hicle (V2V), vehicle to infrastructure (V2I), vehicle to pedestrians (V2P),
vehicle to anything (V2X), and infrastructure to infrastructure (I2I) [38]
categories.

V2V enables direct or multi-hop communication between moving vehi-
cles without the need for a fixed infrastructure. V2I enables communication
between moving vehicles and a fixed infrastructure such as road side units,
cellular base stations, or access points. V2P enables communication between
moving vehicles and vulnerable users such as pedestrians or cyclists. V2X
combines V2V and V2I multi hop architectures and extends the communi-
cation network composed of both moving vehicles and infrastructure. I2I
enables communication between different infrastructure units such as road
side units (RSU) or backbone networks.

The wireless communication technologies can be divided into the tradi-
tional and vehicular communication technologies [31]. Concerning the tradi-
tional technologies, we distinguish WIFI [82], WIMAX [55], Bluetooth [19],
Zigbee [129], Infrared [104] and Millimeter Waves [23] communication pro-
tocols. Each protocol has a unique application space determined by its
properties like the radio range, the battery life, the communication rate. Al-
though the traditional communication protocols can be used for VANETS,
specific communication protocols are existing. Among the specific vehicular
communication protocols, we refer to dedicated short range communication
(DSRC) like WAVE communication stack [68], ETSI-5G [45] and CALM
protocols [84]. Intelligent Transportation Systems (ITS) [36] use commu-
nication, data processing, control technologies in order to improve the ef-
ficiency of the transportation systems by reducing the congestion, the gas
emissions and the various induced costs for the society or the individual. The
large amount of data provided by the connected vehicles [8] has the potential
to improve the accuracy of the estimation, the efficiency of the control, the
safety, and the ecological footprint of the Intelligent Transportation Systems.

Various applications of ITS are considered, which can be divided into
safety, efficiency and comfort applications. Concerning the safety applica-
tions, we distinguish between collision warning systems, safe distance warn-
ing road obstacle warning, cooperative driving, intersection collision warn-
ing, and lane changing assistance [15] [153] [60] [85] [137] [30]. The safety
applications are demanding short communication delays and robust commu-
nication links because the stakes are high as they concern the health of the
individuals. The efficiency applications aim at improving the road traffic
conditions and emissions by using VANETS for road traffic management.
The application range is addressing “smart traffic lights, variable speed lim-
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its, parking management, traveler information systems” [43]. The efficiency
application of VANETs is the main topic of this thesis where contributions
to urban road traffic estimation and control are proposed. Finally, comfort
and entertainment applications tend to increase the services to the drivers
and passengers such as multimedia entertainment, in order to make them
enjoy the travel [89].

Connected vehicles can send their trajectories data to another vehicle or
to the infrastructure. It is an opportunity to use probe vehicles as mobile
sensors in order to monitor road traffic state. Combined with models, this
information sent by probe vehicles can be used to estimate road traffic state
and conditions.

1.1.3 Assumptions and tools

This thesis proposes models for the estimation and control of road traffic.
“Mathematical modeling of the dynamics of a complex system is done by
determining or identifying a dynamic system describing its evolution.” [52].
Road traffic models can be divided as deterministic or stochastic depending
on whether there is an uncertainty, discrete or continuous depending on the
types of the variables involved, linear or non linear depending on the type of
algebra, etc. Road traffic can also be represented as queueing networks such
as in the backpressure control algorithm [65]. In this thesis, we consider for
the estimation of the road traffic that some queues are formed at junctions
controlled by traffic lights. The main purpose is to estimate the length of
the queues. Concerning the road traffic control, models can be divided into
the macroscopic, microscopic and mesoscopic models according to the scale
of the phenomena observed. Macroscopic models consider large aggregation
of vehicles and their global behaviour, although microscopic models con-
sider individual vehicles. The hybrid mesoscopic models consider individual
vehicles and the behaviour of their global aggregation [37]. The variables
describing the traffic are different among the three kinds of models. Among
the macroscopic variables there are the car density, the car flow, the average
speed. Among the microscopic variables concerning the individual vehicles,
there are the individual car speed, the space car headway, the relative speed,
the car acceleration, the driver behaviour, etc.

We also notice that the road traffic models depend on whether the road
traffic is on a highway or in an urban center. In the case of the urban road
traffic, there are some particularities such that the frequent presence of traffic
lights and junctions, although in the case of highways, ramp metering, tolls,
or varying speed limits are distinctive properties. In this thesis, based on a
road traffic model, we consider urban road traffic estimation and control.

The society needs experimental tools in order to study the VANETS
and ITS, and some simulation frameworks enable numerical studies of such
vehicular communication systems. As we do not have experimental data,
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simulation studies to evaluate and discuss the performances of the contribu-
tions, have been used. Simulation studies were conducted with Veins frame-
work [131] which combines the microscopic road traffic simulator SUMO [86]
and the communication simulator OMNET++ [142]. This framework en-
ables the simulation of VANETS by coupling a road traffic and a commu-
nication simulator in a bidirectional way. With this kind of coupling, the
communication simulation depends on the mobility of the communicating
nodes, and the vehicular mobility depends on the communication between
the vehicles. iTETRIS is the other framework [124] (less frequently used
than VEINS) which aims at simulating VANETS : it combines road traffic
SUMO and the NS3 communication [121] simulators.

The main assumptions of this thesis are the presence of probe vehicles
with a varying penetration ratio. The GPS localization system of the probe
vehicles is assumed to be not accurate enough to enable the assignment of
probe vehicles onto the lanes, i.e. we can not know on which lane the probe
vehicles are located. This is a critical point especially for the estimation
of road traffic since this prevents from using existing methods from the
literature. This GPS inaccuracy is the reason why a contribution to existing
methods can be proposed, by addressing the case where roads are composed
of many lanes. Concerning the control of the road traffic, it is assumed
that the queue lengths are inferior to the road length and that the vehicles
cooperate with V2V communication in order to pass the junction during
contention time windows. A possible implementation of the contention time
window is detailed in the last chapter of this document.

1.1.4 Outline and contributions

After the introduction which has presented the context and stakes of road
traffic, we present here the organization of the manuscript. In section 1.2.1,
we give a literature review of methods which use the data given by the sen-
sors in order to estimate road traffic state. The methods rely on the type of
input data. Historical methods were using fixed sensor data (section 1.2.1.1)
although new methods use mobile sensors data (section 1.2.1.2). The his-
torical methods are reviewed in section 1.2.1.3. Among the new methods
using connected vehicles data (section 1.2.1.4), we distinguish between de-
terministic and stochastic methods.

We detail in part II methods which enable the estimation of the road
traffic with probe vehicles in the context of ITS. As a contribution to the
state of the art on the estimation of road traffic state, this thesis extends
a stochastic method published by Comert and Cetin [28] in 2009. Comert
and Cetin have addressed the estimation of road traffic state in the case of
roads composed of one lane. The objective of part II is to consider roads
which are composed of many lanes. The part is composed of two articles
published in 2021 [111] and 2022 [112]. This part addresses the case where
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roads are composed of two lanes in chapter 2, and the general case where
the roads are composed of any number of lanes in chapter 3.

On another hand, based on the road traffic state measurements and esti-
mations, road traffic control can be used in order to improve the experience
of transportation, either from a global or individual point of view. One
interesting way of controlling road traffic is by controlling the traffic light
signals which manage road junctions. We distinguish several methods for
controlling the traffic with traffic lights signals : fixed time, planning based,
and signal vehicle coupled controls. By using probe vehicles as sensor input,
these new methods improve traffic light control algorithms and the trans-
portation system efficiency. In this thesis, two methods for controlling road
traffic lights with the data given by probe vehicles, are proposed. These
methods build upon existing centralized and distributed control methods
and are the material for part III. The parameters of the traffic light (cy-
cle time, phase specification, etc.) can be fixed, or controlled in response to
measurements of the road traffic in an adaptive way. In section 1.2.2, a liter-
ature review on road traffic control by using traffic lights is given. Different
fields are reviewed. We consider actuated traffic signal in section 1.2.2.1,
where the traffic light timings are set in response to road traffic state. Com-
pared to actuated traffic light control, planning based traffic signal control
(section 1.2.2.2) introduces some prediction on the future road traffic state.
Vehicles form platoons and the identification of such groups of vehicles can
lead to better traffic light controls. Platoon based traffic signal control (sec-
tion 1.2.2.3) uses the identification or the formation of platoons of vehicles
in order to optimize the timings of the traffic light. Giving priority to buses
is also an option to improve the average delay per passenger. Transit pri-
ority control (section 1.2.2.4) sets the timings of the traffic light by giving
the priority to public transit. Finally, coordinated control (section 1.2.2.5)
which couples the control of the traffic light and the control of the connected
and automated vehicles is reviewed.

In part III, two published conference papers which address the control of
traffic light problem are given. In chapter 4, a conference paper [53] extends
a centralized approach (the Traffic Urban Control method [33, 35, 34]) by
introducing some contention window where the vehicles communicate with
each other to pass the junction. In chapter 5, a conference paper [139] details
how such a contention window could be implemented with communicating
vehicles. Finally, we conclude in part IV by summarizing the work and
giving perspectives.

The list of the publications included in this thesis is given below.

� Chapter 2 : ©2021 IEEE. Reprinted, with permission, from Cyril
Nguyen Van Phu and Nadir Farhi. Estimation of urban traffic state
with probe vehicles. IEEE Transactions on Intelligent Transportation
Systems, 22(5):2797–2808, 2021
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� Chapter 3 : ©2022 IEEE. Reprinted, with permission, from Cyril
Nguyen Van Phu and Nadir Farhi. Estimation of road traffic state
at a multilanes controlled junction. IEEE Transactions on Intelligent
Transportation Systems, pages 1–0, 2022

� Chapter 4 : Nadir Farhi, Cyril Nguyen Van Phu, Mouna Amir, Habib
Haj-Salem, and Jean-Patrick Lebacque. A semi-decentralized control
strategy for urban traffic. Transportation Research Procedia, 10:41–
50, 2015. 18th Euro Working Group on Transportation, EWGT 2015,
14-16 July 2015, Delft, The Netherlands

� Chapter 5 : ©2017 IEEE. Reprinted, with permission, from Cyril Nguyen
Van Phu, Nadir Farhi, Habib Haj-Salem, and Jean-Patrick Lebacque.
A vehicle-to-infrastructure communication based algorithm for urban
traffic control. In 2017 5th IEEE International Conference on Mod-
els and Technologies for Intelligent Transportation Systems (MT-ITS),
pages 651–656, 2017

Excepted for chapter 4 (semi-decentralized control) which is the result of
an equilibrated collaborative effort, Cyril Nguyen Van Phu is the main con-
tributor to the mathematical and modeling parts as well as the simulation
parts, for all the chapters. Concerning chapter 4, Cyril Nguyen Van Phu
has done the simulation program and experiments, and contributed to the
algorithm implementing the time window, while Nadir Farhi has done the
theoretical part, especially the dynamics of the linear quadratic regulator.

1.2 State of the art

1.2.1 Estimation of road traffic

The estimation of road traffic state depends on the type of the input data.
Various sensors exist which can be classified as fixed or mobile sensors. For
each type of sensors, the methods differ. Historically, methods were using
fixed point detectors although in the future, connected vehicles are promising
new paradigms for estimating road traffic state. In this review, the main
categories of sensors and the associated methods to estimate road traffic
state are described. We distinguish between fixed and mobile sensors, and
between the associated historical methods and contemporary methods.

1.2.1.1 Sensing road traffic with fixed sensors

Intrusive sensors (placed on the road) Traditionally, road traffic was
observed from the outside by fixed sensors which can be classified as intrusive
or non intrusive. “The intrusive methods basically consist of a data recorder
and a sensor placing on or in the road.”, say Leduc et al. [90]. Among the
intrusive sensors, Leduc et al. [90] cite :
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� Pneumatic road tubes which use the principle of air pressure change
in order to detect vehicles passing over the tube.

� Piezoelectric sensors which convert mechanical energy (induced by the
mechanical deformation when a vehicle is passing over the sensor) into
electrical energy. This kind of sensor can measure weight and speed.

� Magnetic loops which generate a magnetic field. When a car is passing
over the sensor, the magnetic field is modified. This kind of equipment
has been widely deployed over the last decades, even if its costs can
be expensive.

Non intrusive sensors (placed out of the road) Non intrusive sensors
are placed out of the road. Among the non intrusive sensors, the authors
of [90] cite :

� Manual counting using count boards and paper.

� Passive and active infra-red sensors. It is said in [90] that “the pres-
ence, speed and type of vehicles are detected based on the infrared
energy radiating from the detection area. The main drawbacks are
the performance during bad weather, and limited lane coverage.”

� Passive magnetic : these sensors are placed next to the road bed. A
passive magnetic field detects the vehicles passing on the road.

� Microwave radar which use the Doppler effect principle. These sensors
can detect the speed of the vehicles and count them.

� Ultrasonic and passive acoustic sensors which use the time-to-travel
of the acoustic wave between the sensor and the vehicles. They are
placed next to the road. These sensors can detect the speed of the
vehicles and count them.

� Video image detection which use video camera and image processing
techniques in order to count the vehicles, estimate queue lengths at
junctions, detect vehicle types.

These intrusive and non intrusive sensors are monitoring road traffic from
the outside since these sensors are usually not moving and do not participate
directly to the transportation of goods or passengers.

1.2.1.2 Sensing road traffic with probe vehicles

Using probe vehicles as mobile sensors, road traffic can be observed from
the inside. The localization and communication techniques used by such
vehicles are variable.
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Localization techniques using GPS localization system are the most de-
ployed. It is also possible to use cellular mobile phones of the passengers
and triangulation techniques, in order to detect the localization of vehicles.
In this case the accuracy is very low, around 300m. The algorithms involved
are sophisticated, but there is a huge number of devices available [90]. Ac-
cess to cellular mobile phones is restricted to few entities and companies,
which face privacy issues.

Different communication techniques can be used by the vehicles. Each
of these communication techniques has specific communication range and
connectivity properties. Beside cellular communication, short range com-
munication such as the IEEE 802.11p protocol [78] has emerged as standard
communication protocol. On top of IEEE 802.11p protocol, higher com-
munication layers such as WAVE [2] or ETSI ITS-G5 [45] standards for in-
ter vehicular communication (IVC) complete the communication landscape.
Within this framework, a connected vehicle can communicate with another
vehicle (V2V), the infrastructure (V2I), or any other device such as mobile
phones (V2X).

1.2.1.3 Estimation of road traffic state with fixed sensors (histor-
ical approaches)

In this section, we provide an overview of the main historical approaches
that have been used to estimate queue lengths. Although the potential of
fixed point detectors is declining, magnetic loops are still very used today.
Hence, the approaches which rely on fixed point detectors can be categorized
as historical approaches. The historical approaches rely on the modeling of
the car arrivals as well as the dynamics of the queuing process, and we
distinguish in this section between the cases where the overflow queue is
taken into account, or not.

Concerning the undersaturated traffic demand where the overflow queue
is not considered, in 1936, Adams [4] was one of the first to propose that
the Poisson process probability model describes the inter-arrival times of
cars at a road junction. Experimental measurements of the arrivals of cars
at a road junction have confirmed the adequacy of modeling cars arrivals
as a Poisson process random series. In 1955, Beckmann et al. [13] gave an
analytic formulation of the mean queue size of vehicles waiting at a stop
sign or at a traffic light with fixed cycle. The authors assumed that the cars
arrivals at the road junction is following a binomial process. The authors
consider a junction with two incoming roads : a minor and a major road.
In the case of a stop sign at the road junction, the time gaps where vehicles
of the minor road can cross the junction are considered as green times, as
opposed to the red times where the time gaps are not long enough for the
vehicles to cross the junction. The authors assumed that there is no overflow
queue : at the beginning of the green time, the queue has cleared such
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that the queue does not grow indefinitely and an equilibrium is established.
Addressing the various cases involved with these assumptions, mathematical
expressions of the mean queue size at any time point were given by the
authors. In 1968, McNeil [108] extended the approach from Beckmann et al.
by giving an analytic formulation of the mean delay for vehicles waiting at a
traffic light in the case of more general arrivals distributions (including the
simple Poisson process). However, McNeil’s solution needs the formulation
of the average overflow queue which is not easy to estimate and which he
gives only a close upper bound.

In this paragraph, we review the methods which take into account the
cases where the overflow queue is also considered. In 1958, Webster [148]
gave results for the estimation of the queue length at signalized junctions.
Its estimations are done using random input flows for the saturated and
unsaturated cases, with the additional information of the signal timings and
delays induced when vehicles cross the considered arterial. The objective
was to determine the delay at the road junction; in order to achieve this
goal, the estimation of the queue length at the traffic light was performed.
The mathematical expression of the delay was computed to fit numerical
simulations using the knowledge of the inflows. In 1968, Miller [110] gave an
expression of the average overflow queue, in the case of undersaturated traf-
fic demands (i.e. when the arrival flow exceeds the intersection capacity). In
1980, Akcelic [7] extended the work of Miller to the cases of oversaturated
traffic demands (i.e. when the arrival flow exceeds the intersection capac-
ity). Among the input-output class of methods, Viti and Van Zuylen [145]
present a probabilistic model for the estimation of queue lengths at signal-
ized junctions, which can capture spillback and gridlock phenomena. Viti
and Van Zuylen propose to establish a probabilistic model to estimate queue
lengths and delays at junctions which relax some common assumptions made
by former works. For this purpose they use Markov chains theory and “the
specification of the input demand and service rates within a cycle in terms of
probability distributions, and an initial queue state.” They derive the back
of the queue expression and validate their results with VISSIM microscopic
traffic simulator. In the similar way, by using input output methods, in 2008,
Vigos et al. [143] used at least three loop detectors combined with a Kalman
filter in order to produce estimates on the number of vehicles driving on a
signalized link. In 2009, Liu et al. [102] took advantage of shockwave traffic
theory, combined with fixed detector and signal timings data input, in order
to estimate queue lengths. They also consider the case of congested arterials,
when the detector is not able to sense vehicle arrivals (since the detector is
located in the queue in this case). Their method relies on the identification
of break points which are times where traffic conditions change with discon-
tinuity. Their research team has implemented their method in the field; a
firm has also implemented and evaluated their method. The authors state
that “It is very clear that the proposed models successfully describe queue
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forming and discharging processes.”.

1.2.1.4 Estimation of road traffic state with probe vehicles

With the introduction of probe vehicles, new methods have been published
which use the information from the mobile sensors (i.e. probe vehicles).
The data provided by these mobile sensors are quite different in their na-
ture from the data provided by fixed sensors. With probe vehicles, we get
data concerning individual sample vehicles trajectories, rather than global
information on traffic state at a fixed location. This difference in the na-
ture of the information furnished, raises the opportunity to develop new
methods for queue length estimation. In the following paragraphs, we give
an overview of the methods that have been developed upon the informa-
tion given by these new mobile sensors, namely, probe vehicles. In [67],
the authors provide a timely survey on traffic information collection and
state estimation methods published in the last decade, which use the data
provided by connected and automated vehicles (CAVs). They classify the
different traffic observation methods which use CAVs data by distinguish-
ing between deterministic and stochastic approaches. In this paragraph the
same outline is applied.

Estimation of queue lengths with probe vehicles : determinis-
tic approaches In this paragraph, the deterministic methods to estimate
queue lengths using probe vehicles are reviewed. Among the methods based
on shockwave theory, Ramezani and Geroliminis [118] expose a method to
estimate queue lengths with probe vehicles as the single source of informa-
tion. Position and instantaneous speed of probe vehicles are the input data
of their method. Their method relaxes some common assumptions made
in the literature, such as the knowledge of signal timings or arrival process
distribution. The shockwave theory based on LWR model is the key model
used in their queue length estimation method.

In [10], Ban et al. used intersection travel times in order to estimate
queue lengths and delays at junctions. These intersection travel times are
measured when probe vehicles cross virtual trip lines (VTL), located up-
stream and downstream relatively to the intersection. The benefits of using
intersection travel times are : respect the privacy of the users, the flexibil-
ity in defining the virtual trip lines (as they are virtual locations), and the
pliancy which enables other sensor inputs such as Bluetooth Mac address
matching, and other travel times collection systems. The authors intro-
duced “the concept of Queue Rear No-delay Arrival Time which is related
to the non-smoothness of queuing delay patterns and queue length changes.”
Queue Rear No-delay Arrival Time is a time unit measurement and enables
computation of the minimum and maximum queue lengths in a cycle. Then,
the authors assume that the queue length is linear between these two critical
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points, which allows them to finally conclude for the queue length estimation
during a cycle.

In 2015, Tiaprasert et al. [136] proposed to estimate the queue length at
a road junction with probe vehicles. Their method does not need the knowl-
edge of the traffic light timing neither of the arrival process. In addition, the
method is useful both for undersaturated and saturated volumes of traffic
demands. The speed of probe vehicles is used as data input and this enables
to bound the queue length with a minimum and a maximum. The least
mean square error algorithm is then used to give an estimate between these
two bounds. In order to correct the estimation error done in the case of low
penetration ratio of probe vehicles, the authors filter the queue length data.
They discriminate low and high frequencies in the queue length estimation,
which are respectively assumed to be the signal and the noise. The authors
have used the Discrete Wavelet Transform (DWT) method for denoising the
queue length data.

In 2011, Cheng et al. [22] proposed to identify critical points in the queu-
ing process with a dedicated algorithm. The critical points are related to
the queue formation and dissipation. In the time-space coordinates, critical
points may relate to points when a vehicle decelerate because of the red
signal, a vehicle stops and joins the queue, a vehicle accelerates because of
a green light, a vehicles slows down because of a discharging queue. In their
work, the authors filter negligible critical points and focus on four categories
of critical points. Using shockwave theory and the critical points, the signal
timings of the traffic light and different queue length estimates are formu-
lated. The promising results are discussed based on the evaluation of the
work done with three data sets.

In 2018, Yin et al. [159] proposed a similar method than [22] : they
identify critical points in the time space coordinates. The knowledge of
these critical points combined with shockwave theory gives an estimation
of the queue length. The queue length estimation is finally processed with
kalman filtering. They have tested their method on simulated and real
world data. “The proposed method is tested in both real-world case and
simulation scenarios, and the MAE/MAPE of the maximum queue length
is 18.3 m/11.2% in real-world situation at a penetration rate of 7.4%.”

In 2017, Li et al. [93] proposed a method which estimates queue lengths
without the common assumptions which are the knowledge of the signal
timings, the arrival patterns and the penetration ratio of probe vehicles.
Their method is also based on the shockwave theory. Compared to the
method from Ramezani and Geroliminis [118], Li et al. [93] method proves
to be more robust and more accurate.

Estimation of road traffic state with probe vehicles : stochastic
approaches In addition to the deterministic approaches to estimate the
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queue lengths with probe vehicles, we review in this section the stochastic
methods. In 2013, Hao et al. [71] define a vehicle index as “the position of
vehicles in the departure process of the cycle”. That paper has proposed a
method for estimating these vehicle indices which are described as a basic
and primordial information that can be provided by probe vehicles. For
example, knowing the index of a vehicle gives its position in the queue.
With the intent of solving some privacy issues, their method relies only on
intersection travel times as input data. They derive the intersection travel
times from the arrival time and departure time of probe vehicles into virtual
areas (Virtual Trip Lines, VTL) respectively upstream and downstream the
intersection. They model the arrival process as a time-dependent Poisson
process; they use a log-normal distribution to model the departure headways
for every vehicle index. In this framework, the authors use a Bayesian
Network in order to estimate vehicle indices.

Vehicle indices are some basic information that can be used as input data
for estimating queue length at junctions. Indeed in 2014, Hao et al. [70] have
naturally pursued their work on vehicle indices with the estimation of queue
lengths at intersections. They classify traffic states in three main cases, each
case being subdivided into two or three sub-cases. Then, using as input data
the intersection travel times and the vehicle indices, as determined in their
former 2013 paper, they estimate queue lengths using a stochastic model
based on Bayes theorem. The method is evaluated with field experiment
data and produces results described as “ best estimates when compared to
the linear fitting method (Ban et al., 2011) and queue location method (Hao
et al., in press) developed previously in the literature, especially in term of
the success rate.”.

In 2009, Comert and Cetin [28] proposed a method for the estimation
of queue length using the location data provided by probe vehicles. They
have assumed that probe vehicles indices are available as input data. The
results are presented for an isolated intersection and undersaturated traffic
flow input. Assuming that the probability distribution of the queue length
is given, they compute a conditional probability distribution of the queue
length, knowing the locations of the probe vehicles in the queue. They show
that for the 1-lane case, the location of the last probe vehicle in the queue
is the only one needed. The estimation of the queue length is performed
by computing the expectation of this conditional probability. Comert and
Cetin introduce the error random variable which is the difference between the
queue length and its estimated. They derive an analytic formulation of the
variance of the error, depending on the penetration ratio of probe vehicles.
Furthermore, numerical analyses are performed, where the arrival processes
models and arrival processes intensities are varied. The results show that
obviously the error diminishes as p increases and that “the percentage error
relative to the mean decreases significantly for p values larger than 10%.”
This work “appears to be the first attempt to formulate the problem of
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estimating the queue length from probe vehicle data.”
In 2011, Comert and Cetin [25] have continued their work by using the

time when the last probe vehicle joins the queue. With this new data given
by probe vehicles, they have proposed an estimation of the queue length as-
suming Poisson process arrivals. They have given analytical formulations of
the variance of the error in estimating the queue length, depending on time
joining and location of the last probe vehicle for the case with no overflow
queue. In the case where the overflow queue is considered, the analytical
formulation of the variance of the error requires the marginal distribution of
the overflow queue as input. The authors give an approximation for this the
marginal distribution of the overflow queue and discuss their mathematical
formulations with simulation results. They also have analyzed “the rela-
tionship between the percentage of probe vehicles p and the accuracy of the
estimates.”.

In 2013, Comert [26] derived queue length, last probe location and
queue joining times probability distributions, with or without overflow queue
(residual queue at the end of the red time). Mean and variance for the queue
length estimators are given. It is shown that these estimators depend on
probe proportion, red duration and arrival process properties. In addition,
a simple estimator for the probe vehicles proportion has been proposed.

In 2016, Comert [27] goes a step further by studying the cases with un-
known probe proportions and unknown arrival rates. He gives analytical
formulations for these primary parameters (proportions of probe vehicles
and arrival rate), as well as various queue length estimators with or with-
out overflow queue. Derivation of its estimators errors are also given, and
numerical analysis performed with VISSIM microscopic simulator are pre-
sented.

In 2017, Zheng and Liu [164] estimated traffic volumes for low penetra-
tion ratio of equipped vehicles. The method proposed to use as input data
“vehicle trajectories approaching to an intersection as well as traffic signal
status”. The trajectories of equipped vehicles are used to detect if a probe
vehicle has stopped at the traffic light and its stopping position. With these
information, the arrival rate is estimated and bounds for this arrival rate
are given. Zheng and Liu have used for their estimation a time dependent
Poisson arrival process and the Expectation Maximization (EM) algorithm.
They have tested their method with data sets from an experiment where
around 2800 probe vehicles were deployed in the city of Ann Arbor, and
from data provided by commercial navigation service in China.

Many methods require the knowledge of the penetration ratio of probe
vehicles and of the queue length distribution. In 2021, Zhao et al. [163]
propose a maximum likelihood estimation method for the estimation of
these two primary parameters. They solve the estimation problem with
the expectation-maximization algorithm. Their validation results show that
these parameters can be estimated accurately.
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In order to predict traffic flow, Lv et al. [105] used a data driven machine
learning method : the stacked auto encoders model combined with the data
provided by 15000 individual detectors deployed across California. The au-
thors declare : “Thus, the effectiveness of the SAE method for traffic flow
prediction is promising and manifested.”

1.2.2 Road traffic signal control with connected and auto-
mated vehicles

The estimation of road traffic state is an input to road traffic control and
management. In [67], Guo et al. give a survey on road traffic control using
connected and automated vehicles. This review is completed with recent
papers, and with the same organization for the state of the art on urban
road traffic control using traffic lights. The control of traffic light signal can
be organized in five paragraphs :

� actuated signal control, where the traffic light control adapts in real
time to traffic conditions but does not predict traffic state in a future
horizon of time

� planning based signal control, which introduces some prediction on the
road traffic state

� platoon based traffic signal control focuses on the identification of pla-
toons of vehicles in order to improve the efficiency of the traffic light
control

� transit priority control aims at setting the traffic light timings in a
manner which favours public transit (buses)

� signal coupled control is a relatively new topic where trajectories of
connected and automated vehicles are controlled in a coordinated man-
ner with the traffic light signal

The methods generally tend to solve an optimization problem where a
disutility function such as the average vehicle delay should be minimized.
Some regular trade offs involve distributed versus centralized approach, iso-
lated junction versus arterial control. The penetration ratio of connected
and automated vehicles can be a variable, or fixed at 100%. The road traffic
simulators are microscopic simulators among SUMO, VISSIM, AIMSUN.
In the next paragraphs, the state of the art of traffic light control with
connected and automated vehicles according to these highlights is reviewed.

1.2.2.1 Actuated traffic signal control

In actuated traffic signal control, the parameters of the traffic light are set
in response to the road traffic state changes. This kind of control performs
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better than fixed time traffic light control since it adapts in real time to
the road traffic conditions. Historically, the input data was given by loop
detectors located at a fixed point on the incoming road of the junction. With
probe vehicles, new methods solve the defaults of the fixed point location of
the measurements. Indeed, with probe vehicles, the measurements are the
trajectories of individual vehicles, which enable new controls. Compared to
planning based traffic signal control, actuated traffic signal control does not
predict road traffic demand in a future time horizon.

In 2016, Day and Bullock [32] have investigated the use of probe vehicles
as a substitute for loop detectors. In their study, they have varied the
penetration ratio of probe vehicles. By doing this, they first have studied
road traffic state measurement given some probe vehicles penetration ratio.
Then, they have applied this estimation of the arrivals to control traffic
lights on a corridor. The authors have shown that “acceptable performance
was obtained even at relatively low values of p.”

In 2013, Goodall et al. [61] have proposed an algorithm which adjusts
the timings of a traffic light using trajectories input from probe vehicles.
The algorithm minimizes an objective function which is computed with mi-
croscopic simulation. The authors have tested their algorithm on a road
test network composed of four intersections. The authors have declared
that “The algorithm showed much greater improvements during unexpected
demands”.

In 2007, Gradinescu et al. [64] have proposed a system which uses ded-
icated short range communication between vehicles and infrastructure in
order to control the traffic light of a junction. The authors have developed a
simulator which couples microscopic road traffic and communication simula-
tors in order to evaluate the performance of their system. The performances
have proven to have “clear benefits compared to adaptive systems based on
sensors or cameras.”

In 2014, Kari et al. [83] have proposed an adaptive traffic light control
strategy based on the data sent by probe vehicles. Their algorithm is a multi
agent algorithm which aims at minimizing some criteria computed with the
queue lengths data at the traffic light. They have evaluated their work
with SUMO [86] and they have shown that compared to control strategies
based on point detectors, “the proposed strategy exhibits significant savings
of 4-61% in reducing travel time and 2-32% in reducing system-wide fuel
economy for the varied demand scenario. The results clearly demonstrate
the robustness of system to significant variation in traffic demand.”

In 2015, Wu et al. [152] have formulated the intersection management
problem with connected vehicles as a variant of the classic mutual exclusion
problem. They have proposed to solve the new variant of the mutual exclu-
sion problem with two different algorithms : one centralized and the other
distributed. Finally, the authors have declared that “performance evalu-
ation by simulations shows that our algorithms can handle various traffic
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cases very well, with very little message cost.”

In 2016, Younes and Boukerche [11] have proposed two algorithms which
use information given by connected vehicles in order to control traffic light
at an isolated junction and to control traffic lights on a corridor. They
have used ns-2 communication simulator and SUMO microscopic road traffic
simulator in order to evaluate the performances of their algorithms. They
have shown that the throughput is increased by 30% on a junction and by
70% on an arterial street.

To conclude, actuated traffic signal control can take advantage of the
trajectories data provided by connected vehicles compared to the historical
point detectors. The timings parameters of the traffic light at an isolated
junction can be adjusted in real time to adapt to the road traffic demand.
Some papers have also addressed the arterial case where a serie of traffic
lights is synchronized. However, actuated traffic light signal control does
not address the road traffic state prediction for a future time.

1.2.2.2 Planning based traffic signal control

In planning based traffic signal control, road traffic at an individual vehi-
cle level is predicted on a future time horizon in order to set the timings
parameters of the traffic lights. We distinguish centralized and distributed
systems. Among the historical centralized systems, we cite SCOOT [77, 18],
SCATS [103], RHODES [74], MOTION [20], and TUC [33]. For historical
distributed responsive urban traffic controls, we cite UTOPIA [39], PRO-
DYN [46], OPAC [58].

In 2013, Lee et al. [91] have proposed an algorithm to control traffic light
signal at an isolated junction using cumulative travel time input data. The
cumulative travel time is estimated at various equipment penetration ratios
with Kalman filtering. The phases of the traffic light are set according to
this cumulative travel time estimation. The authors have evaluated their
algorithm under various traffic demand levels. The authors declare “that at
least 30% market penetration rates are needed to realize the benefits of the
CTR algorithm.”.

In 2015, Feng et al. [54] have proposed an algorithm which enables real
time adaptive phase allocation in a connected vehicles environment. The
problem is formulated as a two layers optimization problem. The data in-
put is given by a prediction of the arrivals of vehicles, both connected and
not connected. They have evaluated their method on a real world intersec-
tion using VISSIM simulator. “Results showed that the proposed algorithm
reduced total delay significantly under high penetration rates and was com-
parable to actuated control under low penetration rates.”

In 2016, Chen and Sun [21] have proposed “an adaptive control method
for urban isolated signalized intersection”. Based on the estimation of the
vehicle arrivals with an upstream detector, they have solved an optimization
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problem with dynamic programming. The results show that their algorithm
outperforms a fixed time control. They plan to incorporate the use of data
given by connected vehicles in the future.

In 2019, Li and Ban [94] have formulated the traffic light signal opti-
mization setting as a mixed integer non linear program. They have assumed
that all the vehicles are connected vehicles (100% penetration ratio) which
send by broadcast their trajectory data. Then, they have approximated the
problem as a dynamic programming formulation and have solved the prob-
lem using a branch and bound method. Compared with another solver, the
authors have noticed that their model is more favorable when dealing with
large scale problems.

Planning based traffic signal control can be extended from the case of
an isolated junction to the case of an arterial road. In 2017, Beak et al. [12]
provide two algorithms respectively for the control of an isolated junction in
a connected vehicles environment and also for the control of an arterial. At
the junction level, dynamic programming is used to solve the green time al-
location problem although a mixed integer linear program adjusts the offsets
at the corridor level. Their model was evaluated with VISSIM simulator in
comparison to a coordinated actuated signal control. The results indicate
that their model reduces the delay and the number of stops on a corridor

Concerning the distributed control strategies, in 2017, Islam and Ha-
jbabaie [81] have proposed a solution to the distributed coordinated problem
for the network signal control in a connected vehicles environment. They
have assumed that all the vehicles are connected and that the junctions
can share information. The optimization problem consists in maximizing
the throughput and penalizing the queue lengths. By using a decentral-
ized approach, the complexity of the optimization problem is significantly
reduced. The authors have used VISSIM road traffic simulator to compare
their method with a coordinated fixed time and a coordinated actuated sig-
nal setting. The results show that the throughput is increased and the travel
times are decreased in all the cases which were studied.

In 2020, Islam et al. [80] have extended their previous work by proposing
two algorithms. In addition to connected vehicles, the authors have assumed
the presence of a fixed point detector. By using the fixed point detector and
a car following model, the first algorithm estimates the trajectories of un-
equipped vehicles. The second algorithm provides estimates of the vehicular
occupancy on network links. Each junction controller solves an optimization
problem coordinated with adjacent junctions in a distributed strategy. Ex-
tensive simulation results confirm the relevance of this distributed approach.

In 2020, Rafter et al. [116] have also proposed a distributed method which
uses a combination of data given by a fixed point detector and connected
vehicles in order to control traffic lights. The method proposed by Rafter
et al. can adapt to environment with a low penetration ratio of connected
vehicles. They have also tested their control strategy with a framework



44 CHAPTER 1. INTRODUCTION AND STATE OF THE ART

which is using the city of Birmingham as testbed. Their algorithm was
proven to be robust in cases of heavy demand and non ideal communication
environments.

Among the distributed control strategies, we cite the backpressure rout-
ing algorithm [150] [66] which was initially designed for the communication
networks. The pressure is defined as the current flow rate of the traffic
movement, weighted by the difference between the number of vehicles on
the two traffic movements from the considered and the following junctions.
The algorithm computes the pressure for each phase and selects the phase
with the highest pressure. The system needs only the information from the
adjacent junction. It has been proven that the maximum throughput is
achieved at a network level with this distributed algorithm.

In conclusion, planning based traffic signal control introduces the pre-
diction of road traffic state in a future horizon, which may improve the
performance of the control. However, as the optimization problem tends to
get more complex, the computation costs can be significant and penalize
the method. Distributed control strategies help to reduce the cost of such
planning based control such as in the backpressure algorithm which has been
proven to reach the maximum network throughput.

1.2.2.3 Platoon based traffic signal control

Similarly to planning based control, platoon based traffic signal control needs
a prediction of road traffic conditions. Platoons are groups of vehicles which
can pass the junction at the same time, increasing the traffic throughput.
Traditionally, platoons were detected with fixed location sensors such as
in [77, 18] but with connected vehicles, the platoons can be recognized or
formed with more accuracy.

In 2017, Lioris et al. [100] have considered the case where platoon for-
mation is supported by inter vehicular communication and adaptive cruise
control (ACC), that would reduce the headway which separates following ve-
hicles. In their paper, it is considered that all vehicles would be connected
vehicles. Within this framework, the authors have shown that platoon for-
mation enabled by connected vehicles can increase the junction capacity by
multiplying the saturation flows rates by a factor 2 or 3. The authors have
analyzed this proposition with simulation on a road network composed of
16 junctions and they have shown that without changing the control, the
signalized road network can handle a traffic demand multiplied by a factor
2 or 3.

In 2013, Pandit et al. [114] have addressed the isolated junction control
problem with connected vehicles. With the help of the trajectories data
sent by wireless communication, vehicles are grouped into equal sized pla-
toons. Then, the authors apply to the platoons an algorithm referred as
oldest job first (OJF) in order to minimize the average delay for vehicles
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crossing the junction. The authors have evaluated their algorithm with sim-
ulation coupling SUMO road traffic microscopic simulator and OMNET++
communication simulator. They have tested their algorithm with various
arrival rates and penetration ratio of connected vehicles. It was shown that
their algorithm reduces the delay for light and medium traffic demands, and
performs the same as an actuated traffic signal control under heavy demand.

Although Pandit et al. [114] have addressed the isolated junction case,
in 2012, He et al.[72] have proposed a formulation to minimize the delay of
platoons of vehicles crossing an arterial. They have assumed a connected ve-
hicles environment. Connected vehicles are representing a proportion of the
road traffic vehicles and the model proposed by the authors, combined with
the exchanged data, enable to recognize platoons of vehicles. The objective
is to minimize the total delay of vehicles crossing the arterial, with respect
to constraints such as the strategy to coordinate the platoons passing along
the different junctions, or platoon splitting when needed. The optimization
problem is formulated as a mixed integer linear program with a rolling hori-
zon. The authors have evaluated their work with VISSIM simulator and
have shown that their algorithm significantly reduces the delays, both for
undersaturated and oversaturated demands.

In 2018, Liang et al. [95] have shown that grouping vehicles into platoons
can also reduce the computational cost of the various control strategies. In
their work, they assume a mixed traffic composed of autonomous, connected
and unequipped vehicles. After grouping the vehicles into platoons, a traffic
signal optimization is performed in order to reduce the vehicles delay. A
control strategy of the trajectory of the lead autonomous vehicles of the
platoons has also been proposed in order to reduce the number of stop
maneuvers. The simulation results have shown that the performances of the
algorithm increase with the penetration ratio of equipped vehicles, until the
fleet is composed of 40% of connected and automated vehicles.

In 2011, Xie et al. [154] have proposed a scheduling algorithm in order to
control road network in real time. The data given by sensors is used to group
vehicles into platoons and anticipated queues. Based on the information
given by the junctions of the road network, the self scheduling algorithm
performs a choice between the decision of extending or terminating the green
phase. The algorithm tends to favour “green waves” along arterials in the
road network. The authors have implemented their work within SUMO road
traffic microscopic simulator and they have compared it with a pretimed plan
and two adaptive strategies with the best results.

In 2020, Yao et al. [158] have proposed a dynamic platoon dispersion
model in order to predict the arrival times of connected vehicles. The au-
thors have formulated the signal setting problem as an optimization prob-
lem where the average vehicle delay should be minimized. They have solved
the optimization problem with a genetic algorithm which enables real time
adaptive control. Successful simulation experiments were performed with
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VISSIM simulator for various penetration ratios of connected vehicles.

In 2020, Liang et al. [96] have developed a method to optimize the phase
durations and sequences of traffic lights at isolated junctions. They use
the data given by some vehicles which are communicating their trajectories
wirelessly. With this information, platoons of vehicles (connected and not
connected) are identified in the traffic stream. The optimization problem
consists in minimizing the average delay of all vehicles. In order to solve this
optimization problem, the authors use various heuristics such as tree search,
genetic algorithms in order to reduce the computational time required.

1.2.2.4 Transit priority control

Transit priority control is a special case of planning based control where the
priority is given to transit vehicles, in the context of multi modal traffic.
As giving the priority to transit vehicles can affect the traffic of individual
vehicles, the question of avoiding the decrease in the utility cost of individual
vehicles was addressed. For example, in 2000, Balke et al. [9] have addressed
the transit priority control problem, assuming that the buses can send their
GPS location to a controller every second. The priority is given to the bus
by extending the green time, add an extra green phase or return to the
green phase earlier. The authors have performed simulation studies with
hardware-in-the-loop to evaluate their concept. It was proven that their
method decreases significantly the bus travel time with only minor increases
in the individual vehicles travel times.

In 2009, Ekeila et al. [42] have addressed the problem assuming that
there are “a check-in detector located 50 m from the approach stop line and
a check-out detector placed at the stop line.” These sensors combined with
an arrival time prediction model and a strategy to avoid stops of transit
vehicles, have enabled the study of a control which can adapt itself in real
time to road traffic and transit conditions. The authors have evaluated
their work with VISSIM simulator and have shown that their algorithm
outperforms conventional transit signal priority controls for reducing transit
trip travel time.

In 2007, Liao and Davis [97] consider vehicles communicating with ded-
icated short-range communication (DSRC) 802.11p protocol to develop an
adaptive signal priority strategy. The buses communicate with the signal
controller (V2I communication) in order to request the priority. After hav-
ing estimated the arrivals of the buses, a strategy to control the traffic light
signal has been proposed in order to extend the green time or truncate the
red time. The authors have performed a simulation study on an avenue of
the city of Chicago with AIMSUN microscopic road traffic simulator which
has confirmed the relevance of the algorithm.

It is noticeable that the benefit gained in an upstream junction can be
wasted in subsequent junctions in the case where there is no coordination



1.2. STATE OF THE ART 47

between the traffic signals. Hence, in 2015, Hu et al. [76] have considered
the transit priority control over a corridor in order to coordinate successive
signalized intersections. They have formulated the problem as a binary
mixed integer linear program solved by branch and bound method. The
objective was to minimize per person delay. The transit priority control is
granted only if the bus is behind schedule and if the control causes no extra
delay. Their research has been successfully evaluated with analytical and
microscopic simulation studies on four scenarios.

In 2016, Wu et al. [151] do not take into account corridors, but they have
included in their approach the bus holding time at stations and bus speed in
addition to signal timings control. They aim at minimizing the total delay,
including bus delay and delay of other vehicles nearby the junction. They
have assumed that only the buses are equipped with communication capa-
bilities. Experimental results confirm the minimal consequences on general
traffic and that the proposed method is significant compared with no priority
and signal priority strategies.

In 2019, Yang et al. [157] have used transit priority control to minimize
total delay of all passengers in a connected environment. The algorithm is
designed to coordinate with the bus stops and the bus schedule. The algo-
rithm activates the priority control only if it is optimal from a system point
of view. The authors have performed a sensitivity analysis and they have
shown that their algorithm is robust relatively to bus occupancy, location
of bus stops and dwell time information.

In 2015, Zeng et al. [162] include the vehicles speed and location in-
formation sent by wireless communication to compute vehicle arrivals. By
adding the on board passenger information, their model computes the delay
for every vehicle passing the junction. Hence, the basis for the optimization
problem was proven to be more accurate.

In order to improve the effectiveness of such transit priority control
strategies, one direction of research concerns the conflicting priority requests
scheduling. In 2012, Zlatkovic et al. [165] have shown that the first come
first served policy is not the best solution and can even perform worse than
a control with no priority. The authors have proposed an algorithm which
helps resolve the problem of conflicting priority requests. They have tested
their proposal with VISSIM micro simulator which gave promising results
without negative impact on vehicular traffic. Another problem concerns the
concurrent objectives between priority transit control and actuated signal
controls. In 2014, He et al. [73] have addressed this problem in the context
of V2I communication. They have formulated the problem as a mixed inte-
ger linear program whith an objective function which favours signal priority
coordination. Their method also enables the management of conflicting pri-
ority requests. Simulation experiments have shown that the proposed control
model can reduce the delay, especially in the case of congested traffic condi-
tions. Another way to improve the performances of transit priority control
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is by changing the speed and dwell times of buses, which was proposed in
2014 by Seredynski and Khadraoui [127]. This idea introduces us to signal
vehicle coupled control which considers the vehicles and traffic signals in an
interdependent way.

1.2.2.5 Signal vehicle coupled control (SVCC)

In the actuated and planning based traffic signal control, strategies set the
traffic light parameters in real time in response to road traffic conditions.
However, the traffic light control and the control of connected and automated
vehicles by adjusting their speeds and trajectories, could also be addressed
in a coordinated way. This possibility is enhanced by the automation and
communication technologies embedded in the vehicles. For example, in 2014,
Guler et al. [79] have proposed an algorithm assuming that a percentage of
vehicles composing the traffic are connected and autonomous vehicles. The
algorithm optimizes an objective function by enumerating the sequences of
cars crossing the junction. They have shown that with autonomous vehi-
cles, the traffic light signal could change quicker than when relying on the
driver reaction. This would improve the performances and decrease a disu-
tility function such as the delay. In 2017, Sun et al. [132] maximize the
capacity of the road junction by grouping automated vehicles into platoons
and assigning vehicles to their optimal lanes. Despite their method is lim-
ited to theoretical analysis because of the absence of a sufficient amount
of automated vehicles, their method does not need 100% of connected and
automated vehicles. In 2017, Xu et al. [155] have proposed a cooperative
method between traffic light and vehicles. The coordination of signal timings
with vehicle engine power and brake management enables the improvement
of the transportation efficiency on one side, as well as fuel consumption on
the other side. In 2016, Yang et al. [156] extend the work by Guler et al. [79]
by integrating trajectory design for the vehicles and by reducing the delay
and stops. The authors have also replaced the initial enumeration method
by a branch and bound method in order to search the optimal departure se-
quence and the optimal speed of vehicles. In addition, the authors have used
a Kalman filter to reduce the impact of measurement errors. In 2018, Yu et
al. [160] have formulated the problem of dependently setting the traffic light
signal and the speeds of vehicles as a mixed integer linear problem. The
traffic light timings, the trajectories, the lane changing maneuvers and the
grouping of vehicles into platoons were considered. Their method demon-
strates advantages compared to actuated and planning based traffic light
controls with improvements in the junction capacity, vehicles delay and fuel
consumption. We can see with this short review that although signal vehicle
coupled control is promising, it is a new topic with open perspectives.
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This part is built upon two journal papers [111] [112] in the IEEE Trans-
actions on Intelligent Transportation Systems journal. Cyril Nguyen Van
Phu is the main author of these two papers which adress road traffic state
estimation at a controlled junction using probe vehicles. This part builds
upon a method published by Comert and Cetin in 2009 [28] to consider the
case where the roads are composed of multiple lanes.
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Estimation of urban traffic state with
probe vehicles

2.1 Abstract

This paper presents a method to estimate urban traffic state with commu-
nicating vehicles. Vehicles moving on the links of the urban road network
form queues at the traffic lights. It is assumed that a proportion of vehi-
cles are equipped with localization and communication capabilities, namely
probe vehicles. First, a method for the estimation of the penetration ratio
of probe vehicles, as well as the vehicles arrival rate on a link, is proposed.
Moreover, it is shown that turn ratios at each junction can be estimated.
Second, assuming that the turn ratios at each junction are given, an estima-
tion of the queue lengths on a 2-lanes link, by extending a 1-lane existing
method, is given. The extension introduces vehicles assignment onto the
lanes. Third, based on this approach, control laws for the traffic light and
for the assignment of the arriving vehicles onto the lane queues, are proposed.
Finally, numerical simulations are conducted with Veins framework that bi-
directionally couples microscopic road traffic and communication simulators.
The propositions are illustrated and discussed with the simulation results.

2.2 Introduction

2.2.1 State of the art

Different techniques are traditionally used to measure road traffic param-
eters; for example we can cite inductive loops or video cameras. There is
nowadays an infrastructure-less technique to estimate traffic flow parameters
such as queue lengths : GPS localization system coupled with communicat-
ing vehicles, namely probe vehicles. This kind of equipment penetration
ratio is increasing and does not need heavy set up.

Probe vehicles were historically studied for measuring travel times [99].
They also helped to estimate penetration ratio and arrival rate of vehicles
(equipped and non equipped) on a link. For example, the author of [27]
derived these estimations from the estimation of queue lengths at junctions,
queue lengths being estimated using the information provided by the probe
vehicles. Thus, we can see that in order to characterize urban road traffic
state and its primary parameters such as arrival rates or penetration ratio,
estimating queue lengths at junctions is an important step. Furthermore,
Varaiya [140] has modeled a road network as “a controlled store-and-forward
(SF) queuing network” and proposed an algorithm to control this network
of queues. Indeed, minimizing delays and waiting times can be done by
minimizing queue lengths at junctions controlled with traffic light signals.
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Hence, queue length estimation is a major measurement input data, used to
control traffic light signals, and so transportation road networks.

Concerning queue lengths, in 1963, Miller [109] found an approximation
of the average queue length at junctions. More recently, the authors of [117]
used shockwave theory to refine queue length estimation. Some works also
proposed to use probability distribution of the queues [75]. Other works
used Markov chains to model the dynamics of queue lengths [144]. The
authors of [28] and [128] have addressed the queue length estimation with
probe vehicles by proposing a probabilistic analytical model. In [28], the au-
thors have estimated queue length in under-saturated traffic conditions, with
the “a priori knowledge of the marginal distribution of the queue length”
and using “the location information of the last probe vehicle in the queue“.
The authors of [128] have proposed a method to estimate the queue length,
the incoming arrival rate, and the output flow, on a m-lanes link (m ≥ 2).
The estimations are given for low or saturated demand with no requirement
of information concerning the timings of the traffic light signal. In [128],
all the lanes are assumed to be balanced (i.e. cars share the lanes of the
link without any preference). Therefore, all the lanes would have the same
length. In [164], the authors estimate arrival rate for low penetration ra-
tio of equipped vehicles. The method proposed in [164] uses as input data
“vehicle trajectories approaching to an intersection as well as traffic signal
status”. The trajectories of equipped vehicles are used to detect if a probe
vehicle has stopped at the traffic light and its stopping position. With these
information, the arrival rate is estimated and bounds for this arrival rate
are given. In [135], the authors proposed another method. They have lower-
bounded the queue length by “the location of the last stopped connected
vehicle” and upper-bounded it, when the bound exists, by the location of
the “closest moving connected vehicle”. Once bounded, the queue length
is estimated using the least-mean-square-error method and the noise is fil-
tered using discrete wavelet transform. In 2015, the authors of [92] have
addressed the two lanes case by combining discriminant models “based on
time occupancy rates and impulse memories” from detectors. The propor-
tions of total traffic volume in each lane are estimated with Kalman filter.
In 2018, the authors of [123] have also addressed the two lanes case. They
have measured “individual probe vehicles’ shockwave speed”. Then the lane
each probe is moving on, is determined by discriminating the two lanes with
data clustering methods. They have shown that a bivariate mixture model
clustering gives the best results. Shockwave theory and LWR (Lighthill,
Whitham and Richards) model [98, 120] refine the queue length estimation.

2.2.2 Paper contribution and organization

We present here an extension of an existing method that uses probe vehi-
cles for the estimation of urban traffic state, including penetration ratio of
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communicating vehicles, vehicular arrival rates, as well as the queue lengths
of an urban link. The extension considers the general case where different
destinations can be associated to the lanes, which produces different arrival
rates to each lane of the urban link. We propose here to estimate the joint
probability distribution of all the queue lengths of the urban link, instead
of estimating only one queue length for the link, as done in [128, 164]. This
distinction of the lane queues improves the estimation of the number of cars
on the queues. Moreover, it gives the possibility to control the flows of each
queue separately, and then ameliorates the traffic control on the junction.
In addition control laws for balancing the queue lengths in a multi-lane link
are proposed. The method considers here a link of two lanes. The ideas
presented in this particular case could be adapted in order to address the
general case (m-lanes, with m > 2). Furthermore, the method proposed
here could be used and extended in a decentralized manner to the network
case because of the low computational effort needed for the one link case.
The estimators and the control laws proposed here would permit to per-
form multi-level urban traffic control, as initiated in [115] (local control)
and in [53] (semi-decentralized control).

In section 2.2 an introduction with the related works is given. In sec-
tion 2.3 the problem statement and the notations are described. In sec-
tion 2.4 estimators of traffic state parameters are proposed : penetration
ratio of probe vehicles, vehicles arrival rate (subsection 2.4.1), and queue
lengths in the case of two incoming lanes (subsection 2.4.2). The method
estimates queue lengths at junctions with two lanes incoming roads, under
the hypothesis of under-saturated traffic (moderate/low demand without
overflow queue). It is also assumed that the GPS localization system is not
able to determine which lane a vehicle is moving on because of a typically
five meters accuracy [138]. The analytic model proposed in [28] is extended
to the two-lanes case by introducing a vehicle assignment model onto the
lanes. In subsection 2.4.3, a control of the traffic light and an optimal as-
signment of the vehicles onto the lanes is given, in order to balance the two
lanes queue lengths. In section 2.5, numerical simulations are conducted
with Veins framework [131] which bi-directionally couples microscopic road
traffic and communication simulators. Finally, section 2.6 concludes the
article.

2.3 Problem statement

In this section we describe the main assumptions of our work and the nota-
tions used.
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2.3.1 Assumptions

2.3.1.1 Road network topology

We consider a road network composed of junctions controlled by traffic light
signals, and links between junctions. It is assumed that all the incoming
and outgoing links to/from a signalized junction have maximum two lanes.
It is assumed that the geometry of the road network is known. A typical
junction is represented on Fig. 2.1. It is also assumed that the timings of
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Figure 2.1: A signalized junction of the road network.

the traffic light signal are known, and specially the red times.

2.3.1.2 Traffic demand

It is assumed that the travel demand is exogenous, which means that the
demand is located only at the entry links of the network. It is assumed
that the vehicles arrive onto each link l under a Poisson process of rate λl.
We consider in this paper the low/moderate demand case where the Poisson
arrival assumption is valid. In [27] the author discusses the Poisson arrivals
assumption and recalls that this assumption is commonly used to describe
arrivals at isolated intersections, specially in the case of low/moderate de-
mand with no overflow queue. The vehicles form queues at junctions. Since
it is assumed Poisson arrivals, we consider that the queues are empty at the
beginning of each red time (no overflow queue).

2.3.1.3 Probe vehicles

It is assumed that a ratio p (with 0 ≤ p ≤ 1) of vehicles are equipped with
localization and communication systems and we name them probe vehicles.
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The probe vehicles send their positions and speeds to a road side unit (RSU)
coupled with the traffic light signal of the junction. It is assumed that the
transmit power of the communication system embedded in every vehicle is
strong enough, and that the sensitivity of the RSU is accurate enough, such
that the RSU can detect every vehicle in every incoming or outgoing link of
its associated junction. We consider the case where the localization system
embedded in the vehicles is not accurate enough to discriminate the lane
the vehicle is moving on.

2.3.1.4 Turn ratios

Fig. 2.2 represents the queues we consider, on a link of the road network.
Probe vehicles are represented by full rectangles and unequipped vehicles

Mt=8

Nt=6

L
p

t=6

λ
n

λ
m

Full rectangles are equipped vehicles

Empty rectangles are unequipped vehicles

λ
nm

αλ
nm

(1-α)λ
nm

λ
 
=

+

+

Lane M is the left lane and lane N is the right lane

Figure 2.2: Queues in 2-lanes incoming link. Vehicles that can choose both
lanes are assigned onto lane M with probability α and onto lane N with
probability (1− α).

are represented by empty rectangles. Some vehicles are necessarily assigned
to the queue on lane N (they turn right) and other vehicles are necessarily
assigned to the queue on lane M (they turn left). Vehicles going straight
can choose both lanes. It is assumed that a ratio α (with 0 ≤ α ≤ 1) of such
vehicles going straight will choose the queue on lane M . So, on a 2-lanes
link, it is assumed that the main flow λ is composed of three flows :

1. the flow with arrival rate λn which is necessarily assigned to lane N
(vehicles turning right).

2. the flow with arrival rate λm which is necessarily assigned to lane M
(vehicles turning left).

3. the flow with arrival rate λnm which can be assigned to both lanes N
or M (vehicles going straight).

We consider that these three flows are independent and identically dis-
tributed (iid) stochastic arrivals, each one being a Poisson process. It is
supposed that a fraction α (with 0 ≤ α ≤ 1) of the flow λnm is assigned to
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lane M and the complement (1−α) of this same flow λnm is assigned to lane
N . As denoted in TABLE 2.1, At is the random variable representing the
assignment onto the two lanes. It is assumed that At is following a Bernoulli
law such that P (At = 1) = α and P (At = 0) = 1−α. Thus, E(At) = α. We
define :

µN (t) := rN (t)(λn + (1− α)λnm) (2.1)

µM (t) := rM (t)(λm + αλnm) (2.2)

It will be shown later in Proposition 1 that µN (t) and µM (t) represent
the average arrival rate multiplied by the red duration on respectively lane
N and lane M .

Also, it is assumed that the turn ratios are given. Indeed, it is easy
to measure the turn ratios as following : the RSU detects all the probe
vehicles in its radio range area. This is because the probe vehicles embed
WAVE (Wireless Access in Vehicular Environments) [2] on OBU (on board
unit). In [2], the basic safety messages (BSM) broadcast periodically the
location and speed of probe vehicles. This is a default feature which is also
implemented as a basic function in VEINS simulator [131] which was used
in this paper. So, if we know at time t the location of each probe vehicle
on a given link and its unique identifier, it is enough to look at a time
t + tx (tx being a time shift), where those vehicles are located. With this
method, it is possible to estimate the turn ratios ln, lm and lnm which are
the proportions of the main flow λ on the incoming link that respectively
turn right, left or go straight. We note : λn = lnλ, λm = lmλ, λnm = lnmλ,
with ln + lm + lnm = 1. It is assumed that ln, lm, and lnm are given.

2.3.2 Notations

We will use the notations of TABLE 2.1.

2.4 Traffic state estimation

2.4.1 Primary parameters estimation

In this section, we give a method for the estimation of the primary traffic
parameters p and λ. It is assumed that every probe vehicle in the RSU radio
range area is assigned to an incoming or outgoing link to/from the junction.
Thus, the total number of incoming probe vehicles xp(t) in a given link to
the junction is known.

We consider vehicles i moving at speed vi(t) and at a distance ρi(t)
(depending on time t) from the traffic light. Let us consider the following
definition.
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Name Definition

LV the average vehicle length
GV the minimum distance gap between vehicles
R the total red time in one cycle
rN (t) the time since the beginning of the red phase for

lane N (it is 0 if we are not in red phase at time
t), 0 ≤ rN (t) ≤ R.

rM (t) the time since the beginning of the red phase for
lane M (it is 0 if we are not in red phase at time
t), 0 ≤ rM (t) ≤ R.

λn, λm,λnm the average arrival rate in vehicles/second for
vehicles that respectively turn right, left or go
straight.

λ = λn + λm + λnm the total arrival rate for the incoming link in
vehicles/second.

ln, lm, lnm the proportions (turning ratios) of the main flow
λ on the incoming link that respectively turn
right, left or go straight, with λn = lnλ, λm =
lmλ, λnm = lnmλ

x(t) the total number of vehicles on all the lanes of
the considered link at time t.

xp(t) the number of probe vehicles on all the lanes of
the considered link at time t.

p, 0 ≤ p ≤ 1 the penetration ratio of probe vehicles.
N t the total number of vehicles in the queue at time

t and lane N. In this paper, N t is assumed to be
a random variable.

M t the total number of vehicles in the queue at time
t and lane M. In this paper, M t is assumed to
be a random variable.

At the assignment of a vehicle entering the edge at
time t. At = 1 if the vehicle is assigned on lane
M and At = 0 if it is assigned on lane N. At is
assumed to be a random variable.

Ltp the location (in number of vehicles) of the last
probe in the queue, namely the last connected
vehicle, at time t. Ltp is assumed to be a random
variable, taking value lp.

N t
p the total number of probe vehicles in the queue

at time t and lane N.
M t
p the total number of probe vehicles in the queue

at time t and lane M.
cp the total number of probe vehicles in all the

lanes and all the queues at time t.

Table 2.1: Notations
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Definition 1. For a given threshold car-speed v∗ and a given threshold car-
distance ρ∗ to the junction, the vehicles queue Q = Q(t, v∗, ρ∗) is defined by
Q = {i, vi < v∗ and ρi < ρ∗}.

ρ∗ is useful because if the queue would exceed the bound ρ∗, we could
know that the assumption of low/moderate demand is not adequate. Fur-
thermore, ρ∗ is less than the edge length, so the queue keeps bounded. We
then denote by Qp the subset of Q that includes only probe vehicles, Qp ⊂ Q.
The total number of probes cp in the queue is given by the cardinal (number
of elements) of the set Qp. It is assumed mixed vehicles (equipped and non
equipped) with an average vehicle length LV and minimum distance gap
GV between vehicles. ρ0 denotes the offset distance from the RSU to the
stop line of the traffic light signal. lp the last probe location in the unit of
”number of vehicles“ is computed as follows. We have :

max
i∈Qp

(ρi) = ρ0 + lpLV + (lp − 1)GV (2.3)

Then,

lp = [(max
i∈Qp

(ρi)− ρ0 +GV )/(LV +GV )] (2.4)

where [·] denotes the round operator to the nearest integer.

Given cp, lp, Comert [27] has derived many estimators for p, one of them
being cp/lp, which is biased for p < 1. We follow here the same idea and
propose a variation of the estimator of p. For the one lane case, we propose:

p̂ = (cp − 1)/(lp − 1), for lp > 1 (2.5)

We have : N t = lp + 1/p− 1, where 1/p− 1 represents the average backlog
of the queue behind the last probe. Then p̂ = cp/N

t = cp/(lp + 1/p − 1).
Moreover, by following the same arguments of the proof in [27], it is easy to
check that this estimator is unbiased for every p, i.e. E(p̂) = p,∀p, 0 ≤ p ≤ 1.

For two lanes, we introduce :
κ := min(µn, µm)/max(µn, µm). κ depends only on turn ratios but not on
the arrival rate for the link, because κ is a ratio.

κ =
min(rN (t)(ln + (1− α)lnm), rM (t)(lm + αlnm))

max(rN (t)(ln + (1− α)lnm), rM (t)(lm + αlnm))
(2.6)

We consider queue lengths on lanes N and M respectively equal to n and
m. We propose :

p̂ =
cp

n+m
(2.7)

By the way, in our case, the length n of queue N can be estimated with
the number of arrivals on lane N during rN (t) which is µn. As µn + µm =
max(µn, µm) + min(µn, µm) and by estimating max(µn, µm) = lp + 1/p− 1,
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where 1/p− 1 represents the backlog of the queue behind the last probe, we
can write :

µn + µm = max(µn, µm)

(
1 +

min(µn, µm)

max(µn, µm)

)
(2.8)

µn + µm = (lp + 1/p− 1)(1 + κ) (2.9)

We introduce cκ = cp/(1 + κ) and replace (2.9) in (2.7). Finally, we get the
following equation :

p̂ =
cκ

lp + (1− p)/p
(2.10)

Hence, solving in p̂, by putting p = p̂ :

p̂ = (cκ − 1)/(lp − 1), for lp > 1 and cp > 1 (2.11)

which extends (4.7) for the case of two lanes. Similarly, we can check that
this estimator for two lanes is unbiased, by following again the same argu-
ments as in [27]. In Appendix 2.7, another method to compute p̂ based on the
calculus of an unbiased estimator gives the same result than formula (2.11).

The vehicles arrival rate λ is computed with formula (2.12) by simply
accumulating probe vehicles on the entire radio range area of the RSU during
red time, and using x̂ = xp/p. λ should be computed when all the lanes of
the considered link have a red light at the traffic light. This is formulated as
following, where t0 is the starting time for the red light on both lanes and
t1 is the time after which the set of the two lanes are not at red light.

λ̂ =
xp(t1)− xp(t0)

p(t1 − t0)
(2.12)

2.4.2 Queue length estimation

Once p and λ are estimated with probe vehicles, the traffic state estimation
(queue lengths) can be refined. In this section, the queue lengths associated
to all the lanes on a link of the road network are estimated. A model that
uses vehicular assignment onto the lanes, for links composed of two incoming
lanes, is proposed. In a first step, an analytical probability distribution
formulation of the queue lengths, without using the information from the
probe vehicles, will be presented. Then, the information provided by the
probe vehicles is used : while generalizing the work for 1-lane road done
in [28] to the 2-lanes case, the analytical formulation is refined. We recall
here that we can not directly detect the lanes on which the probe vehicles
are moving because of insufficient accuracy of GPS localization system [138],
which makes the problem not obvious.
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2.4.2.1 Distribution probability law of the 2-lanes without having
the information provided by the probes

First, we propose an estimation of the probability distribution P (N t =
n,M t = M) without having any information from the probe vehicles.

Proposition 1.

P (N t = n,M t = m) =
µN (t)ne−µN (t)

n!

µM (t)me−µM (t)

m!
(2.13)

Proof. The Poisson process of rate λnm common to the two lanes is sub-
divided. The common arrival of rate λnm is splitted with probability α to
lane M and probability (1 − α) to lane N . The two produced flows are
independent random flows each one following Poisson process of parameters
respectively αλnm for the flow assigned to lane M and (1 − α)λnm for the
flow assigned to lane N . Furthermore, the splitted Poisson processes are
independent; see subdividing Poisson process in reference [57].

By combination, arrivals on lane N is the sum of two independent Pois-
son processes. Using the stationary property of Poisson processes, we can
show that the number of arrivals in [0, rN (t)] on lane N is a Poisson process
of parameter µN . Similarly, the number of arrivals on lane M in [0, rM (t)]
is a Poisson process of parameter µM . As these two arrival flows on lanes
N and M are independent, then the bivariate distribution probability law
of the two queue lengths is the product of two Poisson Law of parameters
µN and µM .

2.4.2.2 Distribution probability law of the 2-lanes queue lengths
with the information provided by the probe vehicles

We present here the conditional probability law of the two queue lengths,
taking into consideration the information provided by the probe vehicles,
specially the location of the last probe lp and the total number of probes
in the two lanes queues cp. N t

p and M t
p are the number of probe vehicles

respectively on the lane N and on the lane M , at time t.

Proposition 2.

� If lp ≤ max(n,m) and cp ≤ n+m, then

P (N t = n,M t = m|Ltp = lp, N
t
p +M t

p = cp) =(
lp−1+min(lp,n,m)

cp−1

)
(1− p)n+mP (N t = n,M t = m)∑

j,k≥0
subject to

max(j,k)≥lp
j+k≥cp

(
lp−1+min(lp,j,k)

cp−1

)
(1− p)j+kP (N t = j,M t = k)

.
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� Otherwise,
P (N t = n,M t = m|Ltp = lp, N

t
p +M t

p = cp) = 0.

Proof. By Bayes’ rule we have

P (N t = n,M t = m|Ltp = lp, N
t
p +M t

p = cp) =

P (N t = n,M t = m,Ltp = lp, N
t
p +M t

p = cp)

P (Ltp = lp, N t
p +M t

p = cp)
(2.14)

Then the numerator in (2.14) is written

P (N t = n,M t = m,Ltp = lp, N
t
p +M t

p = cp) =

P (Ltp = lp|N t
p +M t

p = cp, N
t = n,M t = m)

P (N t
p +M t

p = cp|N t = n,M t = m)

P (N t = n,M t = m) (2.15)

We have

� P (Ltp = lp|N t
p +M t

p = cp, N
t = n,M t = m) =(

lp−1+min(lp,n,m)
cp−1

)
/
(
n+m
cp

)
.

� P (N t
p +M t

p = cp|N t = n,M t = m) =(
n+m
cp

)
pcp(1− p)n+m−cp .

For the calculus of P (Ltp = lp|N t
p + M t

p = cp, N
t = n,M t = m), we

followed the same ideas as those of section 3 in [28]. Indeed, we will use
the example of Fig. 2.2 where lp = 6, M t = 8, N t = 6 and cp = 7. The
probability is then computed by selecting the total number of events where
Lp = lp = 6 divided by the sample space. The sample space, which is
composed of all the last probe possible locations is given by

(
n+m
cp

)
=
(

14
7

)
.

For Lp = lp = 6 we must have all the probes in the preceding locations. The
event space has a number of events corresponding to choosing (cp − 1) = 6
probes among lp−1+min(lp, n,m) = 6−1+6 = 11 positions available. Here,

the event space has a total number of elements given by
(
lp−1+min(lp,n,m)

cp−1

)
=(

11
6

)
. This is why :

P (Ltp = lp|N t
p +M t

p = cp, N
t = n,M t = m) =(

lp − 1 + min(lp, n,m)

cp − 1

)
/

(
n+m

cp

)
(2.16)

For the calculus of P (N t
p +M t

p = cp|N t = n,M t = m) we have cp probe
vehicles among n + m total vehicles. The probability for a vehicle to be
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a probe vehicle is p and the probability to be unequipped is (1 − p). The
configurations considered in this case are cp vehicles equipped and (n+m−
cp) vehicles unequipped. The number of combinations of such configurations
is
(
n+m
cp

)
. This is why :

P (N t
p +M t

p = cp|N t = n,M t = m) = (
n+m

cp

)
pcp(1− p)n+m−cp (2.17)

So the numerator in (2.14) is given by :

P (N t = n,M t = m,Ltp = lp, N
t
p +M t

p = cp) =(
lp − 1 + min(lp, n,m)

cp − 1

)
pcp(1− p)n+m−cp

P (N t = n,M t = m)

The denominator in (2.14) is the marginal distribution probability of P (N t =
j,M t = k, Lp = lp, N

t
p+M t

p = cp) on (j, k). Therefore, the ideas to compute
this probability are the same as the ideas used to compute the numerator
of (2.14). We notice that the last probe position (in the unit number of vehi-
cles) is necessarily less than or equal to the maximum of the queue lengths,
since the last probe is necessarily in one of the two lanes queues. Similarly,
the total number of probes cp is less than or equal to the total number of
vehicles in the queues, since the probes are in the queues. Therefore, we can
write :

P (Ltp = lp, N
t
p +M t

p = cp) =∑
j,k≥0

max(j,k)≥lp
j+k≥cp

P (N t = j,M t = k, Lp = lp, N
t
p +M t

p = cp).

2.4.2.3 Estimators

The distribution probability law of the couple (N t,M t) is known; see Propo-
sition 2. As, E(N t,M t) = (E(N t),E(M t)), one way to estimate the two
queue lengths is to derive each queue length separately from the couple,
by computing the expectation of N t and M t separately. We propose the
following estimator for queue length on lane N :

E(N t|Ltp = lp, N
t
p +M t

p = cp) =∑
n≥0

n
∑
k≥0

P (N t = n,M t = k|Ltp = lp, N
t
p +M t

p = cp) (2.18)
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Similarly for the queue length on lane M , we have :

E(M t|Ltp = lp, N
t
p +M t

p = cp) =∑
m≥0

m
∑
j≥0

P (N t = j,M t = m|Ltp = lp, N
t
p +M t

p = cp) (2.19)

2.4.3 Traffic light control and optimal assignment of vehicles
onto the lanes

We are interested here in the equilibration of the two queue lengths with
respect to the two parameters α and r̄ := rN/rM . We exclude here the
case rN = rM = 0 where both lanes have green light, and where no queue
is formed by assumption; and therefore, the assignment onto the queues is
meaningless. We use notations E(α,rN )(N

t) := E(N t) and E(α,rM )(M
t) :=

E(M t) in order to emphasize the dependence of these two expectations on
the parameters α, rN and rM . Let us now define f(α, r̄) as follows.

f(α, r̄) := |E(α,rN )(N
t)− E(α,rM )(M

t)|/E(α,rN )(N
t)

= |µN − µM |/µN

= λ|rN (ln+(1−α)lnm)−rM (lm+αlnm)|
λrN (ln+(1−α)lnm)

= |r̄(ln+(1−α)lnm)−(lm+αlnm)|
r̄(ln+(1−α)lnm) .

f(α, r̄) is the relative difference between the two queue lengths. It is
assumed that the two queue lengths tend to equilibrate. The minimiza-
tion of f(α, r̄) with respect to the two parameters α and r̄ represents the
equilibration of the two queue lengths. Let us use the notations.

r∗(α) := arg min
r̄
f(α, r̄). (2.20)

α∗(r̄) := arg min
α
f(α, r̄). (2.21)

Proposition 3 and Proposition 4 below determines r∗(α) and α∗(r̄) re-
spectively.

Proposition 3. ∀α ∈ [0, 1], r∗(α) = lm+αlnm
ln+(1−α)lnm

, and f(α, r∗(α)) = 0.

Proof. ∀α ∈ [0, 1], r̄ = r̄0 = lm+αlnm
ln+(1−α)lnm

implies

E(α,rN )(N
t) = rN (λn + (1− α)λnm)

= (rM r̄)(λn + (1− α)λnm)
= rM (r̄0(λn + (1− α)λnm))
= rM (λm + αλnm) = E(α,rM )(M

t).

Therefore, f(α, r̄0) = 0. Thus, r∗(α) = r̄0 = lm+αlnm
ln+(1−α)lnm

.
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Proposition 4. ∀r̄ ≥ 0,

α∗(r̄) = max

(
0,min

(
1,
r̄ln + r̄lnm − lm
lnm(r̄ + 1)

))
.

Moreover, if r̄ ∈ I := [ lm
ln+lnm

, lm+lnm
ln

], then

α∗(r̄) =
r̄ln + r̄lnm − lm
lnm(r̄ + 1)

, and f(α∗(r̄), r̄) = 0.

Proof. For any r̄ ≥ 0, α∗(r̄) is simply the argument of the minimization
of f(α, r̄) with respect to α, projected into the interval [0, 1]. In the case
where r̄ ∈ I := [ lm

ln+lnm
, lm+lnm

ln
], we can easily check that the constraint

α∗(r̄) ∈ [0, 1] is not activated, and then we do not need to project into the
interval [0, 1]. Moreover, in this case, α∗(r̄) cancels f(α, r̄).

We notice here that the calculus of the optimal assignment proportion
α∗(r̄) of the vehicles going straight onto the lanes is done in deterministic at
the macroscopic level (proportion of vehicular flow). The realization of the
optimal assignment proportion α∗(r̄) is done randomly at the microscopic
level : every vehicle going straight is randomly assigned to the the lanes
M and N with probabilities α and (1 − α) respectively, assuming that the
vehicles going straight that can choose both lanes will choose the shortest
queue. By equilibrating the two queues with r∗(α) or α∗(r̄), spill-back onto
the links of the network can be avoided, and by that the risk of congestion
is reduced. For example, the optimal r∗(α) given in Proposition 3 can be
taken into account as an additional constraint in the optimization problem
of the traffic light split on every intersection, in such a way that the opti-
mal traffic light setting will automatically balance the queue lengths on the
incoming links of the intersections, which should help to avoid spill-back at
the network level.

2.5 Simulation results, examples and discussion

We present in this section the results of numerical simulations conducted
with Veins framework [131] which combines the microscopic road traffic
simulator SUMO [86] and the communication simulator OMNET++ [142].
The road network is one simple junction with links composed of two in-
coming lanes described in Fig. 2.1. The junction is controlled by a traffic
light with a cycle duration of 90 s. The traffic demand is coming from West
towards East, North and South. We vary the arrival rates and turn ratios
depending on the scenarios, as we mentioned in TABLE 2.2. The messages
used to detect the location of the vehicles are the Basic Safety Messages
(BSM) that are sent in broadcast by every probe vehicle. Given the road
network topology and the data provided by the probe vehicles, it is known
on which incoming/outgoing link each probe vehicle is located.
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2.5.1 Primary parameters estimation
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Figure 2.3: Estimated penetration ratio p for a one lane incoming link,
depending on penetration ratio for various demand scenarios. The arrival
demand levels (λ) are given in (vehicles/s). Simulated time = 40 min.

In this part, we illustrate estimation of primary parameters proposed in
section 2.4.1. Simulations are conducted for various arrival rates, each one
being represented by one color as detailed on Fig. 2.3 2.4 2.5. Based on the
penetration ratio given as an input of the simulation, SUMO simulator pro-
duces random samples of communicating vehicles, which form the input data
for the various estimators. Fig. 2.3 represents the estimated penetration ra-
tio p̂, given by formula (4.7), associated in this figure to the real penetration
ratio p, in the case of an incoming link of one lane. Fig. 2.4 represents the
estimated penetration ratio p̂, given by formula (2.11), associated in this
figure to the real penetration ratio p, in the case of an incoming link of two
lanes. Ideally, p̂ = p, forming a line of slope 1 drawn in discontinuous black
on the figure.

Fig. 2.5 represents arrival rate estimated as given by formula (2.12) of
section 2.4.1 in the case of an incoming link of two lanes for κ = 0.5. We
can see here that the estimation is better when p gets higher. As there are
more data and as the arrival rate is higher, the estimation of arrival rate is
more accurate.
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Figure 2.4: Estimated penetration ratio p for a two lanes incoming link,
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demand levels (λ) are given in (vehicles/s). Simulated time = 40 min. κ =
0.5.
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time = 40 min. κ = 0.5.
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2.5.2 Probability distributions

In this part, we illustrate the probability distribution queue lengths as pro-
posed in section 2.4.2. It is assumed that the demand is coming from the
West of the junction as described in TABLE 2.2 with rN = rM i.e. r̄ = 1.

These different scenarios include different possibilities concerning the
demand such as : symmetric (Scenario S3) or asymmetric arrivals (sce-
narios S1, S2, S4, S5). The arrival demand λn, λm and λnm is varied
and we derive the optimal α∗(1) by Proposition 4. The values α∗(1) =
[0.1, 0.25, 0.5, 0.75, 0.9] derived with Proposition 4, represent the assump-
tion that the queues tend to equilibrate as much as possible. The cases
where r̄ 6= 1 are not considered.

Scenario S1 S2 S3 S4 S5

α∗ 0.1 0.25 0.5 0.75 0.9

λnm 125 100 50 100 125
λm 200 125 200 75 100
λn 100 75 200 125 200

Arrival rates Amount of vehicles for 1200 s

Table 2.2: Demand for different scenarios (simulated time=1200 s) and for
rN = rM

2.5.2.1 Example: probability distribution of the two queues lanes
without and with the information provided by the probe
vehicles

We draw on top of Fig. 2.6 the probability distribution law P (N t,M t)
(Proposition 1), and on bottom of Fig. 2.6 the conditional probability distri-
bution law P (N t,M t|Lp, Np +Mp) (Proposition 2 ) for scenario of Fig. 2.6.
On top of Fig. 2.6, we can see that the total number of vehicles in the queue
is estimated to (N t = 6,M t = 4), for a total of 10 vehicles in the queue.
There is an asymmetry in the distribution probability law because of the
asymmetric demand and because the common flow is not strong enough to
equilibrate the two queue lanes. We can see on bottom of Fig. 2.6 that
the conditional distribution clearly discriminates the two queue lengths and
keeps track of the asymmetry. In this case, the parameters are p = 0.55,
cp = 8, lp = 9. We compute κ = 0.75. Following the same ideas as above, we
have p̂ = (8/1.75−1)/(9−1) = 0.45. It is probable that there are not many
cars behind lp, maybe 1 vehicle. Therefore, as lp = 9, the biggest lane should
contain around 10 vehicles. Given the asymmetry of the distribution law
P (N t,M t), the conditional probability P (N t,M t|Lp, Np + Mp) will favour
the lane with the highest arrival rate (lane N). Then the queue on lane M
should contain very few vehicles and will be around the same lane length
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estimation as in the top figure. In this example, the conditional distribution
probability calculus emphasizes the asymmetry of the two lanes.

2.5.2.2 Results for the scenarios of TABLE 2.2

For each scenario we measure the maximum and average queue lengths as
estimated by SUMO microscopic road traffic simulator. Different seeds for
the random number generator of the simulators have been used, taking the
average value for TABLE 2.3 and 2.4. We notice that SUMO queue length
is measured in such a way that any vehicle with a speed greater than 0.1
m/s is not considered in the queue. p ∈ [0, 1] is varied for each scenario and
we compute :

� MAE(P2):=the mean absolute error between the estimated queue lengths
as given by the estimator based on Proposition 2 and SUMO queue
lengths on a subset of the data.

� MAE(P1):=the mean absolute error between the estimated queue lengths
as given by N̂ = µn, M̂ = µm (Proposition 1) and SUMO queue
lengths on a subset of the data.

� MAE(lp):=the mean absolute error between the estimated queue lengths
as given by max(N̂ , M̂) = lp and min(N̂ , M̂) = κlp, for the queue
lengths N and M, and SUMO queue lengths on a subset of the data.

The results for the scenarios of TABLE 2.2 in TABLE 2.3 and TABLE 2.4
are given here. We comment and emphasize some tendencies on the results.
We notice on these tables that the error is decreasing as p tends to 1 : Propo-
sition 2 is getting more accurate as more data is given in input. Even if the
estimator based on lp (MAE(lp)) is getting more accurate as p increases, the
performances of the estimator based on Proposition 2 are generally better.
Furthermore, if we compare MAE(P1) and MAE(P2) we notice that the
performances of Proposition 2 based estimator are in general more accurate
than the ones of the other estimators, especially when p increases. Finally,
MAE(lp) gives in general less accurate results than the estimators based on
Propositions 1 and 2. 1.

The main source of difference between our estimations and SUMO queue
lengths is the assignment model. Indeed, drivers do not always choose the
shortest queue for their assignment in SUMO. In fact, in SUMO, there is
a kind of thresholds on the difference between the queue lengths, beyond

1A significant source of error for this model is the fact that the estimation is done
in real numbers, while the measured number of vehicles is done in integer ones. In the
general case, the error due to discretization is about 0.5 vehicles. This is very big in the
cases where the queue length is small, in particular at the beginning of the red time. If for
example, the queue length is 0.5 vehicles in average, then we have 100% error, due only
to the discretization.
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Results
Scenarios

S1 S2 S3 S4 S5

Average SUMO 3.54 3.21 4.33 3.21 4.77
Queue Length

Max SUMO 10.07 10.07 14.12 9.71 15.95
Queue Length

p = 0.05 MAE(P2) 1.59 1.11 1.38 1.19 1.84
MAE(P1) 1.40 1.14 1.45 1.20 1.97
MAE(lp) 3.91 3.71 4.38 3.71 5.61

p = 0.10 MAE(P2) 1.51 1.02 1.29 1.12 1.75
MAE(P1) 1.40 1.14 1.45 1.20 1.97
MAE(lp) 2.01 2.28 1.96 2.13 2.60

p = 0.15 MAE(P2) 1.52 1.04 1.28 1.06 1.58
MAE(P1) 1.40 1.14 1.45 1.20 1.97
MAE(lp) 1.77 1.52 1.64 1.53 1.95

p = 0.20 MAE(P2) 1.47 0.96 1.20 0.98 1.43
MAE(P1) 1.40 1.14 1.45 1.20 1.97
MAE(lp) 1.85 1.28 1.40 1.16 1.44

p = 0.50 MAE(P2) 1.47 0.80 0.98 0.79 1.10
MAE(P1) 1.40 1.14 1.45 1.20 1.97
MAE(lp) 2.33 1.14 1.24 0.99 0.89

p = 0.70 MAE(P2) 1.33 0.73 0.93 0.70 1.13
MAE(P1) 1.40 1.14 1.45 1.20 1.97
MAE(lp) 2.48 1.25 1.30 0.97 0.90

p = 0.90 MAE(P2) 1.10 0.74 0.97 0.70 1.21
MAE(P1) 1.40 1.14 1.45 1.20 1.97
MAE(lp) 2.62 1.39 1.39 1.04 0.95

Table 2.3: Results in the unit ”number of vehicles“ for queue on lane N,
estimated vs SUMO queue length.
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Results
Scenarios

S1 S2 S3 S4 S5

Average SUMO 4.79 3.39 4.20 2.89 3.84
Queue Length

Max SUMO 15.22 9.71 14.11 8.61 12.28
Queue Length

p = 0.05 MAE(P2) 1.98 1.24 1.39 1.26 1.36
MAE(P1) 2.02 1.25 1.35 1.22 1.30
MAE(lp) 5.71 3.94 4.27 3.23 4.22

p = 0.10 MAE(P2) 1.89 1.17 1.30 1.25 1.37
MAE(P1) 2.02 1.25 1.37 1.22 1.30
MAE(lp) 2.81 2.53 1.93 1.88 1.93

p = 0.15 MAE(P2) 1.68 1.09 1.22 1.20 1.29
MAE(P1) 2.02 1.25 1.37 1.22 1.30
MAE(lp) 1.94 1.54 1.45 1.44 1.68

p = 0.20 MAE(P2) 1.55 1.05 1.19 1.12 1.28
MAE(P1) 2.02 1.25 1.37 1.22 1.30
MAE(lp) 1.54 1.25 1.33 1.20 1.58

p = 0.50 MAE(P2) 1.14 0.90 1.03 0.89 1.23
MAE(P1) 2.02 1.25 1.37 1.22 1.30
MAE(lp) 0.89 1.15 1.41 1.30 2.00

p = 0.70 MAE(P2) 1.23 0.82 0.96 0.77 1.14
MAE(P1) 2.02 1.25 1.37 1.22 1.30
MAE(lp) 0.96 1.13 1.44 1.40 2.16

p = 0.90 MAE(P2) 1.28 0.80 0.91 0.72 1.00
MAE(P1) 2.02 1.25 1.37 1.22 1.30
MAE(lp) 0.96 1.19 1.56 1.50 2.30

Table 2.4: Results in the unit ”number of vehicles“ for queue on lane M,
estimated vs SUMO queue length.
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which drivers choose the shortest queue. Moreover, the drivers do not have
the same behavior, i.e. the choice is stochastic, i.e. the probability of taking
the shortest queue increases with the threshold on the difference on the
queue lengths. Another source of uncertainty and error is the variance of
the arrival flows. Indeed, estimation of the queue length takes into account
the average arrival flow λ, but in the simulation there is a variance of the
time arrivals, which is then retrieved as an error of measurement.

We give for information the order of magnitude of the following indicator:
MAPE(P2,R):=the mean percentage absolute error between the estimated
queue lengths as given by the estimator based on Proposition 2 and SUMO
queue lengths on a subset of the data, at the end of the red time. Indeed,
taking into account the MAPE at the beginning of the red time is meaning-
less (since the queues are not formed yet). This indicator rather emphasizes
the difference between our assignment model α∗ and SUMO assignment
model. This indicators varies between around 10% to 30% depending on
the penetration ratio and the simulation scenarios. The assignment model
of Proposition 4 is different from the SUMO assignment model. The estima-
tions of the queue lengths given by Propositions 1 2 rely on the assignment
model of Proposition 4. However, rather than using the assignment model of
Proposition 4, the simulations were performed with the SUMO assignment
model, which can then introduce some inconsistencies in the results.

In Fig. 2.7 and Fig. 2.8 we give the two lanes queue lengths in the scenario
S4 where rN = rM . We estimate queue lengths for rN > 0 and rM > 0. We
notice that the estimation is more accurate as p gets higher.

2.5.3 Traffic light control and vehicles assignment onto the
lanes

In this part, symmetric demand is assumed, λn = λm = λnm = 0.17 vehi-
cles/second. It is assumed that the traffic light cycle includes a phase of 8
seconds, where green light is given to lane M , while red light is given to lane
N . Hence, the red duration on lanes N and M are different : rN 6= rM ,
r̄ 6= 1. It is also assumed that α = α∗(r̄) given by Proposition 4.

On Fig. 2.9 we draw r̄ in blue and α∗(r̄) in green depending on time. At
the beginning of the cycle, the red is only for the lane N . The lane M is at
this time with green light. Then, the two red lights are simply increasing
as a line of slope 1. Starting from 20 seconds, r̄ ∈ I and α∗(r̄) = 1. This
is because all the vehicles are assigned to lane M which is the shortest
queue (we recall it was at green light until then). Then, α∗(r̄) decreases
slowly to reach approximately 0.6 which means that the two queue lengths
are more equilibrated as the red durations on lanes N and M are getting
less different. We notice that α∗(r̄) would tend to 1/2 if the red time goes
to infinity, because symmetric demand is assumed. Concerning the ratio
of red lights r̄ = rn/rm, it is representing how the difference in the red
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Figure 2.8: Queue lengths estimator as given by Proposition 2, for varying
p = 0.2, p = 0.7 and lane M, r̄ = 1
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lights durations is decreasing as time is going on. r̄ decrease is due to a
constant offset (corresponding to the duration where lane M is at green
light while lane N is at red light) which becomes less significant as the red
light durations are increasing. We notice that r̄ would tend to 1 if the red
time goes to infinity.

The interval I = [ λm
λn+λnm

, λm+λnm
λn

] as a function of λnm is represented
on Fig. 2.10. We recall that if r̄ ∈ I, then 0 < α∗(r̄) < 1, and in this case the
common flow of vehicles can be splitted into two sub flows, i.e. the common
flow is shared between the two lanes. We notice on Fig. 2.10 that as the
common flow λnm gets higher, the interval I gets larger. Therefore, as the
common flow λnm gets higher, there is more freedom to assign the vehicles
onto a lane or another.

2.5.4 Communication network performances

Some information on the communication network performances measured
in simulation are given here. The communication performances are not dis-
turbing the estimation of the queue lengths. As the order of magnitude of the
end-to-end-delay 2 is very low (around 0.2 ms), no significant consequence
on the queue length estimation application is expected, as it could happen
in scenarios where more vehicles would communicate, and cause significant
delays such as described in [115].

2.6 Conclusion and perspectives

In this paper, we have proposed a method for the estimation of urban traffic
state. Estimations for the penetration ratio of probe vehicles and for the ve-
hicles arrival rate, on any link of the road network, are given. Knowing the
arrival rate of the incoming flow and its composition, the joint probability
distribution of the queue lengths in the case of two lanes link is computed.
For this purpose, a simple assignment model of vehicles onto the lanes has
been proposed. In addition, the probability distribution of the queue lengths
with the information provided by the probe vehicles is given. A control of
the traffic light has been proposed in order to balance the queues of the two
lanes. Moreover, a formula for computing the optimal assignment of the
vehicles onto the lanes has been proposed. Numerical simulations have been
conducted with Veins framework, and the work presented here has been
evaluated. Road traffic control could benefit from the queue length estima-
tions presented in the present paper, in order to improve travel conditions.
The ideas given in this paper could be extended to a link of any number of
lanes.

2The end-to-end delay is a communication indicator of performance that measures the
delay from the time a message is sent from a communicating vehicle until the time it is
received by the receiver (in our case the receiver is the RSU).
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2.7 Appendix : Calculus of the bias of p estimator

We consider queue lengths on lanes N and M respectively equal to n and
m. We propose :

p̂ =
cp

n+m
(2.22)

By the way, in our case, the length n of queue N can be estimated with
the number of arrivals on lane N during rN (t) which is µn. As µn + µm =
max(µn, µm) + min(µn, µm) and by estimating max(µn, µm) = lp + ic/p,
where 0 ≤ ic ≤ 1 and ic/p represents the backlog of the queue (unequipped
vehicles following lp). We want to determine 0 ≤ ic ≤ 1 and compute p̂ such
that the estimation of p is without bias. We can write :

µn + µm = max(µn, µm)

(
1 +

min(µn, µm)

max(µn, µm)

)
(2.23)

µn + µm = (lp + ic/p)(1 + κ) (2.24)

We introduce cκ = cp/(1 + κ) and replace (2.24) in (2.22). Finally, we get
the following equation :

p̂ =
cκ

lp + ic/p
(2.25)

p̂ = (cκ − ic)/lp (2.26)

We know from [27] how to compute the expectation of p̂ and we follow the
same ideas below :

P (Ltp = lp, N
t
p +M t

p = cp) = P (N t
p +M t

p = cp|Ltp = lp)

P (Ltp = lp)

(2.27)

P (Ltp = lp, N
t
p +M t

p = cp) =

(
lp − 1 + min(lp, n,m)

cp − 1

)
pcp−1(1− p)lp−1+min(lp,n,m)P (Ltp = lp)

(2.28)

E(
cp/(1 + κ)− ic

lp
) =

∑
lp≥1

lp−1+min(lp,n,m)∑
cp=1

cp/(1 + κ)− ic
lp(

lp − 1 + min(lp, n,m)

cp − 1

)
pcp−1(1− p)lp−1+min(lp,n,m)P (Ltp = lp)

(2.29)
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=
∑
lp≥1

1

lp(1 + κ)

lp−1+min(lp,n,m)∑
cp=1

(cp − 1 + 1− ic(1 + κ))

(
lp − 1 + min(lp, n,m)

cp − 1

)
pcp−1(1− p)lp−1+min(lp,n,m)P (Ltp = lp)

(2.30)

To derive the next equation we use two arguments :

� the expectation of a binomial probability distribution law E(B(nx, p)) =
nxp with nx = lp − 1 + min(lp, n,m) in our case.

� and the formula of Newton (a+b)mx =
∑mx

k=0

(
mx

k

)
akbmx−k, with a = p

and b = 1− p in our case.

E(
cp/(1 + κ)− ic

lp
) =

∑
lp≥1

1

lp(1 + κ)

(p(lp − 1 + min(lp, n,m)) + 1− ic(1 + κ))

P (Ltp = lp)

(2.31)

We replace min(lp, n,m) = κmax(lp, n,m) = κ(lp + ic/p) :

E(
cp/(1 + κ)− ic

lp
) =

∑
lp≥1

1

lp(1 + κ)
(p(lp − 1 + κ(lp + ic/p))+

1− ic(1 + κ))

P (Ltp = lp)

(2.32)

E(
cp/(1 + κ)− ic

lp
) =

p

1 + κ
E(
lp − 1

lp
) +

pκ

1 + κ
+

icκ

1 + κ
E(

1

lp
) +

1− ic(1 + κ)

1 + κ
E(

1

lp
)

(2.33)

E(
cp/(1 + κ)− ic

lp
) = p+

E( 1
lp

)

1 + κ
(1− p− ic) (2.34)

To get an estimator without bias, we write :

E(
cp/(1 + κ)− ic

lp
) = p (2.35)
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Solving this equation gives :

ic = 1− p (2.36)

Finally, we replace ic in (2.26) :

p̂ =
cκ − (1− p)

lp
(2.37)

p̂ =
cκ − 1

lp − 1
(2.38)
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Estimation of road traffic state at a
multi-lanes controlled junction

3.1 Abstract

We present in this paper a method for the estimation of traffic state at road
junctions controlled with traffic lights. We assume mixed traffic where a pro-
portion of vehicles are equipped with communication resources. The estima-
tion of road traffic state uses information given by communicating vehicles.
The method proposed is built upon a previously published method which
was applied to estimate the traffic in the case where roads are composed of
two lanes. In this paper, we consider the case where roads are composed
of three lanes and we show that this solution can address the general case,
where roads are composed of any number of lanes. The geometry of the
road junction is assumed to be known, as well as its connections between
incoming and outgoing lanes and roads. Using the location data provided
by the communicating vehicles, first, we estimate some primary parameters
including the penetration ratio of the probe vehicles, as well as the arrival
rates of vehicles (equipped and non-equipped) per lane by introducing the
assignment onto the lanes. Second, we give estimations of the queue length
of the 3-lane road, without and with the additional information provided
by the location of the communicating vehicles in the queue. The proposed
model is discussed and illustrated with numerical simulations.

3.2 Introduction and state of the art

3.2.1 Introduction

Limited capacities of roads and junctions, combined with traffic demand,
determine the road traffic conditions experimented by the users in daily
life. Road traffic can then be modeled by shared resources systems such as
queuing systems, as it has been done for example in [140], where the max
pressure algorithm adapted to road traffic is presented. In order to improve
road traffic conditions experimented by the users, there is the possibility to
control road traffic by guiding the users in the network, or by controlling
the traffic lights to reduce the delays. However, controlling the road traffic
needs an information on the state of the traffic. In particular, concerning
the road traffic state we are interested in the queue lengths at the junctions.

Nowadays, road traffic can be probed from the inside with communi-
cating vehicles equipped with localization capabilities. A probe vehicle is a
vehicle which uses wireless communication to send information to another
vehicle (vehicle to vehicle V2V), the infrastructure (vehicle to infrastruc-
ture V2I) or to any other device (V2X). The data provided by these mobile
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sensors are quite different in their nature from the data provided by fixed
sensors. With probe vehicles, we get data concerning individual sample ve-
hicles trajectories, rather than global information on traffic state at a fixed
location. This difference in the nature of the information furnished, raises
the opportunity to develop new methods for queue length estimation. For
example, in [27] a stochastic method has been proposed to evaluate road
traffic parameters like the queue lengths with probe vehicles. In [111], we
have presented a method to estimate road traffic state at controlled junctions
for the two-lanes roads which extended the method in [27].

In the present paper, we aim at generalizing the method published
in [111] to roads composed of any number of lanes. This includes estimating
road traffic primary parameters such as the penetration ratio of equipped
vehicles, the arrival rate of vehicles and the queue lengths per lane at the
junction. These estimations are enabled by the introduction of the assign-
ment of vehicles onto the lanes.

The outline of the paper is as follows : after the introduction 3.2.1, a brief
state of the art concerning the estimation of road traffic in subsection 3.2.2
is given. In section 3.3 the problem and the notations used in the paper
as well as the main estimation model, are introduced. In subsection 3.3.1
we introduce the assignment onto the lanes in order to balance the queues
as much as possible and derive primary parameters such as the penetration
ratio of equipped vehicles, the arrival rate of vehicles per lane, the total
arrival rate of vehicles, the probability distribution of the queue lengths per
lane. In subsection 3.3.2, we give three different probability distributions
for the queue lengths on a three-lane road. By computing the expectations
for these probability distributions, the queue lengths at the traffic light are
estimated. The method presented in the present paper is general for any
number of lanes. We show in section 3.3.3 that the estimation of the queue
lengths of three-lane roads is sufficient to address the general n-lane roads
case. In section 3.4, we perform some numerical simulations that we have
conducted with Omnet++ [142], a discrete event simulator, and analyze the
results. Section 3.5 concludes the article.

3.2.2 State of the art

3.2.2.1 Road traffic estimation with fixed sensors (historical ap-
proaches)

Historically, the estimation of road traffic state was done using sensors placed
at fixed locations, such as magnetic loops, piezoelectric sensors or video
cameras [90]. Among these approaches with fixed sensors, some estimations
of the queue length and of the delay of vehicles at a traffic light have been
given in [13] [148] [108] [110] [7]. These papers give analytic formulations for
the under-saturated and over-saturated (i.e. when the arrival flow exceeds
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the intersection capacity) cases. Among the input-output class of methods,
we also cite [145] where a probabilistic model for the estimation of queue
lengths at signalized junctions, which can capture spillback and gridlock
phenomena, is presented. In 2009, the authors of [102] take advantage of
shockwave traffic theory, combined with fixed detector and signal timings
data input, in order to estimate queue lengths.

3.2.2.2 Road traffic estimation with probe vehicles

In this paragraph, we give an overview of the methods that have been devel-
oped upon the information given by these new mobile sensors, namely, probe
vehicles. In [67], the authors provide a timely survey on traffic information
collection and state estimation methods published in the last decade, which
use the data provided by connected and automated vehicles (CAVs). They
classify the different traffic observation methods which use CAVs data by
distinguishing between deterministic and stochastic approaches. The same
outline is used here.

Among the deterministic approaches, the authors of [118] expose a method
to estimate queue lengths with probe vehicles as the single source of infor-
mation. Position and instantaneous speed of probe vehicles are the input
data of their method. The latter relaxes some common assumptions made
in the literature, such as the knowledge of signal timings or arrival process
distribution. The shockwave theory based on first order traffic models is the
key model used in their queue length estimation method. In [10], Ban et al.
use intersection travel times in order to estimate queue lengths and delays at
junctions. These intersection travel times are measured when probe vehicles
cross virtual trip lines (VTL), located upstream and downstream relatively
to the intersection. The benefits of using intersection travel times are : re-
spect the privacy of the users, the flexibility in defining the virtual trip lines
(as they are virtual locations), and the pliancy which enables other sen-
sor inputs such as Bluetooth Mac address matching, and other travel times
collection systems.

Among the stochastic approaches, the authors of [71] define a vehicle
index as “the position of vehicles in the departure process of the cycle”.
That paper has proposed a method for estimating these vehicle indices which
are described as a basic and primordial information that can be provided
by probe vehicles. For example, knowing the index of a vehicle gives its
position in the queue. With the intent of solving some privacy issues, their
method relies only on intersection travel times as input data. They derive the
intersection travel times from the arrival time and departure time of probe
vehicles into virtual areas (Virtual Trip Lines, VTL) respectively upstream
and downstream the intersection. They model the arrival process as a time-
dependent Poisson process; and use a log-normal distribution to model the
departure headways for every vehicle index. In this framework, the authors
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use a Bayesian Network in order to estimate vehicle indices.
Vehicle indices are some basic information that can be used as input data

for estimating queue length at junctions. Indeed in 2014, Hao et al. [70] have
naturally pursued their work on vehicle indices with the estimation of queue
lengths at intersections. Using as input data the intersection travel times
and the vehicle indices, as determined in their former 2013 paper, they
estimate queue lengths using a stochastic model based on Bayes theorem.

In 2009, Comert and Cetin [28] have proposed a method for the estima-
tion of queue length using the data provided by probe vehicles. They have
assumed that probe vehicles indices are available as input data. Assuming
that the probability distribution of the queue length is given, they compute
a conditional probability distribution of the queue length, knowing the loca-
tions of the probe vehicles in the queue. They show that for the 1-lane case,
the location of the last probe vehicle in the queue is the only one needed.
The authors of [28] have also derived the variance of the estimator. Further-
more, numerical analysis are performed, where the arrival processes models
and arrival processes intensities are varied. This work “appears to be the
first attempt to formulate the problem of estimating the queue length from
probe vehicle data.”

In 2013, Comert [26] derives queue length, last probe location and queue
joining times probability distributions, with or without overflow queue (resid-
ual queue at the end of the red time). Mean and variance for the queue
length estimators are given. It has been shown that the estimators depend
on probe proportion, red duration and arrival process properties.

In 2016, Comert [27] goes a step further by studying the cases with un-
known probe proportions and unknown arrival rates. He gives analytical
formulations for these primary parameters (proportions of probe vehicles
and arrival rate), as well as various queue length estimators with or without
overflow queue. Derivation of the estimation errors are also given, and nu-
merical analysis performed with VISSIM microscopic simulator have been
presented.

In 2017, Zheng and Liu [164] estimated traffic volumes for low penetra-
tion ratio of equipped vehicles. The method proposed uses as input data
“vehicle trajectories approaching to an intersection as well as traffic signal
status”. The trajectories of equipped vehicles are used to detect if a probe
vehicle has stopped at the traffic light and its stopping position. With these
information, the arrival rate is estimated and bounds for this arrival rate
are given. Zheng and Liu have used for their estimation a time dependent
Poisson arrival process and the Expectation Maximization (EM) algorithm.
They have tested their method with data sets from an experiment where
around 2800 probe vehicles were deployed in the city of Ann Arbor, and from
data provided by commercial navigation service in China. Machine learning
methods have also been used in order to predict traffic flow; for example,
Lv et al. [105] used a data driven machine learning method : the stacked
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autoencoders model is combined with the data provided by 15000 individual
detectors deployed across California in order to predict traffic conditions. In
2021, Zhao et al. [163] have proposed a method based on maximum likeli-
hood algorithm in order to estimate the penetration ratio of probe vehicles
as well as the distribution of queue lengths. The expectation-maximization
algorithm is used to solve the problem formulated as maximum likelihood.
The accuracy of the estimation results shows the relevance of their method.
We also refer to the work by Tang et al. published in 2021 [134] in which
the authors propose a method for the estimation of queue lengths using
license plate recognition detectors. The authors introduce in their paper
a lane based estimation of queue lengths which gives promising simulation
and empirical results. Although the work by Tang et al. [134] is not using
probe vehicles location as input data, it is addressing the multi lanes case
combined with shockwave or input output methods.

3.2.3 Assumptions and main contributions

For the roads composed of many lanes, it is not accurate to use the model
proposed by Comert [28] [26] [27]. This is because the shortest lanes would
be equated to the longest lanes, which obviously is false, in particular in the
case of unbalanced demands on the various lanes. Controls of the traffic light
which are lane based would be inaccurate by not differentiating between the
lanes. In the present paper, we generalize the method presented in [111]
which estimates road traffic state at controlled junctions for the two-lane
roads, to the case where roads are composed of any number of lanes. These
methods are based on existing works published in [28] [26] [27] which were
addressing the roads composed of one lane. To our knowledge, the present
work and our previous paper [111] are the first works to extend the papers
by Comert and Cetin [28] [26] [27] to the multi lanes case. In addition
to this generalization, we give methods to estimate the number of probe
vehicles per lane as well as a new estimator for the penetration ratio of
probe vehicles. Based on these estimates, we also give a new analytical
formulation for estimating the queue length per lane (Proposition 3).

The main assumptions of this article are the following :

� a proportion p of vehicles are equipped with wireless communication
and localization capabilities, namely probe vehicles. The probe ve-
hicles send their GPS localization to a road side unit using wireless
communication. The penetration ratio p of probe vehicles is considered
as a variable in the present paper.

� the traffic demand is low or moderate such that we can assume that
the arrivals are following a Poisson process. Hence it is supposed that
there is no overflow queue : the queues are cleared at the beginning of
the red time.
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� it is assumed that in average the queues tend to balance among the
different lanes under the constraints of the vehicle assignments onto
the lanes, with respect to their destinations.

� the GPS localization of vehicles is not accurate enough to distinguish
on which lane a probe vehicle is located. This assumption relies on the
fact that the accuracy of GPS localization is such that we can assign
a vehicle with 95% probability within a radius of 7.8m [63] although
the width of a lane is 3.7m in the USA.

3.3 Road traffic state estimation

The notations used in the present paper are described in TABLE 3.1; see also
Fig. 3.1. We consider a road junction composed of a number of incoming
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Full rectangles represent vehicles 
equipped with localization and 
communication resources.

Empty rectangles represent vehicles not 
equipped with localization and 
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λ
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b
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and lane i
c
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λ
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+

+

X
p
=9.

Figure 3.1: Vehicles queue at a controlled junction, in a three-lanes incoming
road.

roads, one of them having three lanes, and d outgoing roads of any number
of lanes, controlled by a traffic light. The vehicles come from an origin lane
i ∈ O = {i; i = ia, ib, ic} (where ia, ib, ic denote the three origin lanes) of the
3-lanes incoming road; and go to a destination road j ∈ D := {j; j = 1..d}.
We label the incoming vehicles by index k ∈ N∗ without taking into account
their arrival order. Then, we introduce the two families Ok and Dk, k ∈ N∗
of random variables. Ok takes its values in O, such that Ok = i if vehicle k
comes from origin lane i. Dk takes its values in D, such that Dk = j if vehicle
k goes to destination road j. We assume that the probability that a vehicle k
comes from incoming lane i ∈ O and goes to outgoing road j, is the same for
all the vehicles k ∈ N∗. Hence, we introduce the family of boolean random
variables Wij , i ∈ O, j ∈ D such that Wij = 1 if a vehicle k comes from the
origin lane Ok = i and goes to destination road Dk = j; and 0 otherwise.
We will denote wij := P (Wij = 1), and W := (wij)i∈O;j∈D the matrix with
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Name Definition

R the total red time in one cycle
ra(t), rb(t), rc(t) the time since the beginning of the red phase for re-

spectively lane ia, ib, or ic (it is 0 if we are not in red
phase at time t), 0 ≤ ra(t), rb(t), rc(t) ≤ R.

λa, λb, λc the average arrival rate in vehicles/second respectively
on lane ia, ib and ic.

λ = λa + λb + λc the total arrival rate for the incoming link in vehi-
cles/second.

X(t) the number of vehicles queuing on all the lanes, of the
considered link at time t.

Xp(t) the number of communicating vehicles queuing on all
the lanes of the considered link at time t.

Y (t) the number of vehicles (queuing and not queuing) of
the considered link at time t.

Yp(t) the number of communicating vehicles (queuing and
not queuing) on all the lanes of the considered link at
time t.

p, 0 ≤ p ≤ 1 the penetration ratio of probe vehicles.
A, B, C the number of vehicles in the queue at time t and

respectively lane ia, ib, or ic. In this paper, A, B, C
are assumed to be random variables.

(Ap, âp), (Bp, b̂p), (Cp, ĉp) the number of probe vehicles in the queue, and its
estimate, at time t and respectively at lane ia, ib, or
ic. In this paper, Ap, Bp, Cp are assumed to be random
variables.

M the location (in number of vehicles) of the last probe
in the queue, namely the last connected vehicle, at
time t. M is assumed to be a random variable, taking
value m.

L the incoming lane ia, ib, or ic, of the last connected
vehicle, at time t. L is assumed to be a random vari-
able.

Ok Ok = i if a vehicle k is located on an incoming lane
i = ia, ib, ic. Ok is considered a random variable.

Dk Dk = j if a vehicle k is located on an outgoing road
j = 1, 2, .., d. Dk is considered a random variable.

Wij Wij is a random variable. Wij = 1 if a vehicle k comes
from the origin lane i and goes to a destination road
j, such that Ok = i and Dk = j; Wij = 0 otherwise.
We have the following notation : P (Wij = 1) = wij .

W = (wij)i=ia,ib,ic;j=1..d W is the matrix with three lines and d columns which
represents the vehicles assignment from the incoming
lanes to the outgoing roads.

qsat the saturation rate (exit rate) of roads outgoing from
the junction

tk,je the exit time of the junction of a probe vehicle k on
an outgoing road j

π(k, µi) = µki e
−µi/k! the Poisson probability mass function of parameter µi

Table 3.1: Notations
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three lines and d columns which represents the vehicles assignment from the
incoming lanes to the outgoing roads, and the assignment weight given to
each couple (incoming lane, destination road).

3.3.1 Primary parameters

In this section, we determine the penetration ratio p of equipped vehicles,
the total arrival rate λ of vehicles, the matrix W , and the arrival rates λi
per incoming lane.

3.3.1.1 Estimation model for the penetration ratio p

We will now estimate the penetration ratio p of probe vehicles. In [111], we
have introduced the ratio κ = minµi/maxµi and demonstrated that for the
two lanes case and under the conditions of taking respectively the maximum
and minimum queue lengths measurements as : lp+ 1/p−1, κ(lp+ 1/p−1),

the estimator p̂ =
Xp/(1+κ)−1

m−1 is unbiased. However, these two queue lengths
estimations are not given usually as measurements and we can not take
κ as an average value because it will introduce some bias. This is why
we propose another estimator for the penetration ratio p of probe vehicles
which can be applied more easily in real life situations. The number of
probe vehicles in an incoming road n is denoted by Xp(n). Hence, the total
number of probe vehicles in the queues of all incoming roads is

∑
nXp(n)

where the index n of the sum represents an incoming road. We denote tk,je
the exit time of a probe vehicle k on an outgoing road j during the green
time. Considering one outgoing road j, the last probe vehicle going out to
this road is located at qsat × maxk{tk,je } position (in number of vehicles)
where qsat is the saturation rate (exit rate) of vehicles per unit of time.
Considering the vehicles waiting in the queue, we can virtually rearrange
their order such that they are placed in the order they are going out of the
junction. Notice that changing the order of vehicles does not change their
total number. The following formula gives the estimation of p where the
index of the sum n represents an incoming road and the index of the sum j
represents an outgoing road.

p̂ =

∑
nXp(n)

qsat
∑

j maxk{tk,je }
(3.1)

The numerator of equation (3.1) is computed during the red time and the
denominator during the green time.

3.3.1.2 Estimation model for the total arrival rate λ

λ can be estimated as follows :

λ̂ =
Yp(R)− Yp(0)

pR
(3.2)
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Yp represents the number of probe vehicles on the considered incoming road
and R is the total red time.

3.3.1.3 Estimation model for the matrix W

The matrix W is used to calibrate the assignment model, by equilibrating
the queue lengths among the three lanes ia, ib, ic. The first step is to
determine the matrix W . The probability that a vehicle k is coming from
lane i is equal to wi =

∑
j wij . We have 0 ≤ wi ≤ 1 and

∑
iwi = 1. The

objective is to find the optimal assignment matrix W which equilibrates the
ratios of inflows over the three lanes of the incoming road. The ideal case is
:

∀i,
∑
j

wij = 1/3 (3.3)

Therefore, in order to equilibrate the inflows over the three incoming lanes
we propose to minimize the difference (

∑
j wij − 1/3) for all i = 1, 2, 3. We

denote W̄ := (w11, ..., w1d, w21, ..., w2d, w31, ..., w3d) and v = (1/3, 1/3, 1/3).
We denote λ̄j the proportion of the arrival rate λ of vehicles going to the
outgoing road j. The w̃ij = 0 represent the information given by the topol-
ogy of the road junction, specifically the incoming lanes and outgoing roads
which are not connected. The constraints are :∑

ij

wij = 1 (3.4)

∑
i

wij = ρj := λ̄j/λ, ∀j (3.5)

w̃ij = 0 (3.6)

0 ≤ wij ≤ 1 (3.7)

Note that, since the turn ratios ρj are fixed such that
∑

j ρj = 1, then the
constraint (3.4) is automatically satisfied. The constraints (3.5) and (3.6)
are linear and can be written as follows :

ĀW̄ = b̄ (3.8)

where

Ā =

(
Id Id Id

B

)
,

and b̄ = (ρ1, ..., ρd, 0, ..., 0), with Id the d × d identity matrix, and B the
matrix satisfying BW̄ = w̃.

For the criterion, we define the 3× (3d) matrix L such that :

(w1, w2, w3) =

∑
j

w1j ,
∑
j

w2j ,
∑
j

w3j

 = LW̄ . (3.9)
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The objective function is :

min
W̄

(LW̄ − v)′(LW̄ − v) (3.10)

This can be written as :

min
W̄

W̄ ′QW̄ − 2(v′L)W̄ (3.11)

where Q = L′L. Finally, the minimization problem can be written as :

min
W̄

W̄ ′QW̄ − 2(v′L)W̄

ĀW̄ = b̄ (3.12)

0 ≤ wij ≤ 1

The problem (3.12) is convex since the criterion is quadratic and the con-
straints are linear. Therefore, first order conditions of optimization are
necessary and sufficient to solve this problem. Practically, an off-the-shelf
optimization library provided with Octave software [40] is used to solve this
problem. Then, W̄ (and then the matrix W ) is derived, given the turn ratios
as input.

3.3.1.4 Estimation of the arrival rates per lane λi

The arrival rates λi per incoming lane i in one cycle are given as follows :

λi = λ
∑
j

wij = λwi (3.13)

(λi)i=ia,ib,ic represents the arrival rate of vehicles in the queue, respectively
on lane i = ia, ib, ic. This will enable to determine the probability distribu-
tion of queue lengths per lane in Proposition 5.

3.3.2 Traffic state estimation for roads composed of three
lanes

In this section, we propose three probability distributions for the queue
lengths. The expectation of these probability distributions are used as esti-
mators. Proposition 5 gives the probability distribution without the infor-
mation given by the probe vehicles but using the matrix W, especially the
arrival rates per lane λi. Proposition 6 refines Proposition 5 by adding the
information given by the probe vehicles. It is an extension of a previously
published result [111]. In Proposition 7, we use the estimation of probe
vehicles per lane to give another estimator.

We denote µi the stock of vehicles waiting in the queue of lane i at time
t :

µi = λiri(t)
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We denote π(k, µi) the Poisson probability mass function of parameter µi.

π(k, µi) =
µki e
−µi

k!
, ∀i

Under the assumption of an arrival process of vehicles represented by a
Poisson process of rate λ = λa +λb +λc, we have the following proposition :

Proposition 5.

P (A = a,B = b, C = c) = π(a, µa)π(b, µb)π(c, µc)

Proof. The Poisson process of rate λ is subdivided into three independent
Poisson processes of rate λa, λb, λc with probability respectively λa/λ, λb/λ,
λc/λ. By subdividing the main Poisson process of parameter λ with these
probabilities, we get three Poisson processes of parameter λ(λi/λ) = λi
for each lane i. Furthermore, the three Poisson processes are independent.
Concerning the subdividing of a Poisson process, see reference [57]. Because
of the stationary increment property of a Poisson process, the expected
number of vehicles queuing on lane i at time ri(t) is λiri(t) = µi.

Knowing the location of the last probe vehicle into the queue and the
total number of probe vehicles in the queue, the estimation of the queue
lengths can be refined :

Proposition 6.
If m ≤ max(a, b, c) and xp ≤ a+ b+ c, then :

P (A = a,B = b, C = c|M = m,Xp = xp) =

σa,b,c(1− p)a+b+cP (A = a,B = b, C = c)∑
j,k,l≥0

subject to
m≤max(j,k,l)
xp≤j+k+l

σj,k,l(1− p)j+k+lP (A = j, B = k,C = l)
.

Otherwise,
P (A = a,B = b, C = c|M = m,Xp = xp) = 0.
where we define :

σj,k,l :=

(
m− 1 + min(m, j, k, l) + mid(j, k, l)

xp − 1

)
and mid(j, k, l) := (j + k + l)−min(j, k, l)−max(j, k, l)

Proof. The proof given in [111] for the Proposition 2 can be directly applied
to the present case, with minor changes.
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We now propose to compute the estimation of the queues by adding
the information of matrix W which summarizes the knowledge of the des-
tinations of the probe vehicles at the road junction. Hence, we propose to
compute for lane ia

pA(a) = P (A = a|M = m,Ap = âp)

given the estimated number Ap = âp of probe vehicles on lane ia and the
location of the last probe in the queues. First, we will give estimations of
the number of probe vehicles per lane Ap = âp in order to compute pA(a).
We have :

Ap =
∑
k

1ak ,

where

1ak :=

{
1 if vehicle k comes from lane ia

0 otherwise

Then,

E(Ap) =
∑
k

E(1ak)

=
∑
k

P (Ok = ia)

=
∑
k,j

P (Ok = ia|Dk = j)P (Dk = j)

where Dk is observed. Then, P (Dk = jk) = 1 for the vehicle k after it
has crossed the junction and has gone through an outgoing road jk and
P (Dk = j) = 0 otherwise, for j 6= jk.

We have :
E(Ap) =

∑
k

P (Ok = ia|Dk = jk) (3.14)

E(Bp) =
∑
k

P (Ok = ib|Dk = jk)

E(Cp) =
∑
k

P (Ok = ic|Dk = jk)

We propose to estimate the number of probe vehicles on lanes ia, ib, ic by
respectively : âp = [E(Ap)], b̂p = [E(Bp)], ĉp = [E(Cp)], where [x] denotes
rounding x to the nearest integer.

Now we propose to compute pA(a) the queue length probability distri-
bution on lane ia with the information provided by the estimation of probe
vehicles on lane ia (âp) and the location of the last probe vehicle on all the
lanes (m). The following proposition is also true for the other lanes by just
inverting the lane ia with ib or ic.
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Proposition 7.
if ap ≥ 1,m ≥ 1, a ≥ ap, then pA(a) =(

λa
(
m−1
âp−1

)
+ λbS

m,âp
µb

(
a
âp

)
+ λcS

m,âp
µc

(
a
âp

))
(1− p)aπ(a, µa)∑

n≥ap

(
λa
(
m−1
âp−1

)
+ λbS

m,âp
µb

(
n
âp

)
+ λcS

m,âp
µc

(
n
âp

))
(1− p)nπ(n, µa)

if ap = 0, then pA(a) =
(1− p)aπ(a, µa)∑
n≥0(1− p)nπ(n, µa)

if a < ap or m < ap, then pA(a) = 0

where we define :

Sm,νµ :=
∑

j≤k,k≥max(m,ν)

(
m− 1

j − 1

)
pj(1− p)k−jπ(k, µ)

Proof. By Bayes’ theorem, we have :

pA(a) =
P (A = a,M = m,Ap = âp)

P (M = m,Ap = âp)
(3.15)

The numerator can be written :

P (A = a,M = m,Ap = âp) =

P (M = m|Ap = âp, A = a)P (A = a,Ap = âp) (3.16)

Bayes theorem implies that :

P (A = a,Ap = âp) = P (Ap = âp|A = a)P (A = a) (3.17)

So, we can write the second term of equation (3.16) as :

P (A = a,Ap = âp) =

(
a

âp

)
pâp(1− p)a−âpP (A = a) (3.18)

Concerning the first term of the product in equation (3.16), we use the
marginal distribution on the random variable L, and we can write :

P (M = m|Ap = âp, A = a) =

P (M = m,L = ia|Ap = âp, A = a)+

P (M = m,L = ib|Ap = âp, A = a)+

P (M = m,L = ic|Ap = âp, A = a) (3.19)

Let us detail the first term of equation (3.19), in the case where i = ia.
Concerning P (M = m,L = ia|Ap = âp, A = a), we recall the arguments
given in [28] which are : “The sample space for the experiment is the possible
combinations of choosing âp probe vehicles from a vehicles, which is equal
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to
(
a
âp

)
. The number of elements in the event space is equal to the number

of possible placements of the remaining probe vehicles, other than the one
at position m, into the previous slots since m is fixed.”, which is

(
m−1
âp−1

)
. As

the last probe should be on lane ia with probability λa/λ, we write :

P (M = m,L = ia|Ap = âp, A = a) =
λa
λ

(
m−1
âp−1

)(
a
âp

) (3.20)

In addition, we have :

P (M = m,L = ib|Ap = âp, A = a) =

P (M = m,B ≥ max(m, âp), L = ib|Ap = âp, A = a)

P (B ≥ max(m, âp)|M = m,L = ib, Ap = âp, A = a)
(3.21)

Since P (B ≥ max(m, âp)|M = m,L = ib, Ap = âp, A = a) = 1, we write :

P (M = m,L = ib|Ap = âp, A = a) =

P (M = m,B ≥ max(m, âp), L = ib|Ap = âp, A = a) (3.22)

We also have :

P (M = m,B ≥ max(m, âp), L = ib) =

P (M = m,B ≥ max(m, âp), L = ib|Ap = âp, A = a)

P (Ap = âp, A = a|M = m,B ≥ max(m, âp), L = ib)

× P (Ap = âp, A = a) (3.23)

and because P (Ap = âp, A = a|M = m,B ≥ max(m, âp), L = ib) = P (Ap =
âp, A = a) we can write :

P (M = m,L = ib|Ap = âp, A = a) =

P (M = m,B ≥ max(m, âp), L = ib) (3.24)

By computing the marginal distribution probability on Bp, we have :

P (M = m,B ≥ max(m, âp), L = ib) =∑
bp,b≥max(m,âp)

P (M = m,L = ib|Bp = b̂p, B = b)×

P (Bp = b̂p, B = b) (3.25)

P (M = m,B ≥ max(m, âp), L = ib) =∑
bp≤b,b≥max(m,âp)

λb
λ

(m−1
b̂p−1

)( b
b̂p

) ( b
b̂p

)
pb̂p(1− p)b−b̂pP (B = b) (3.26)
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P (M = m,B ≥ max(m, âp), L = ib) =∑
bp≤b,b≥max(m,âp)

λb
λ

(
m− 1

b̂p − 1

)
pb̂p(1− p)b−b̂pP (B = b) (3.27)

We define the variable Sm,νµ :

Sm,νµ :=
∑

j≤k,k≥max(m,ν)

(
m− 1

j − 1

)
pj(1− p)k−jπ(k, µ)

Then, we can write :

P (M = m,B ≥ max(m, âp), L = ib) =
λb
λ
S
m,âp
µb (3.28)

Similarly,

P (M = m,C ≥ max(m, âp), L = ic) =
λc
λ
S
m,âp
µc (3.29)

Finally,

P (M = m|Ap = âp, A = a) =

λa
λ

(
m−1
âp−1

)(
a
âp

) +
λbS

m,âp
µb

λ
+
λcS

m,âp
µc

λ
(3.30)

Hence, the numerator can be written as :

P (A = a,M = m,Ap = âp) =(
λa
λ

(
m−1
âp−1

)(
a
âp

) +
λbS

m,âp
µb

λ
+
λcS

m,âp
µc

λ

)
×(

a

âp

)
pâp(1− p)a−âpP (A = a) (3.31)

Using the marginal distribution and some simplifications, we can write in
conclusion that :

pA(a) = (
λa
(
m−1
âp−1

)
+ λbS

m,âp
µb

(
a
âp

)
+ λcS

m,âp
µc

(
a
âp

))
(1− p)aπ(a, µa)∑

n≥ap

(
λa
(
m−1
âp−1

)
+ λbS

m,âp
µb

(
n
âp

)
+ λcS

m,âp
µc

(
n
âp

))
(1− p)nπ(n, µa)
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Probe vehicles per lane
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Figure 3.2: Summary of the estimation process
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In Fig.3.2, the process of the road traffic estimation is summarized.
Based on the trajectories of the probe vehicles, the turn ratios and the
penetration ratio of probe vehicles are estimated. The assignment matrix
W is derived as the solution of an optimization problem which tends to equi-
librate the queues per lane as much as possible. The total vehicles arrival
rate estimation combined with the assignment matrix W gives the vehicles
arrival rate per lane. On another hand, the number of probe vehicles per
lane is estimated with the assignment matrix W and the trajectories of the
probe vehicles. Proposition 5 is derived from the vehicles arrival rate per
lane. Proposition 6 is extending Proposition 5 while using the information
given by the probe vehicles. Finally, Proposition 7 uses the estimated num-
ber of probe vehicles per lane combined with the information given by the
probe vehicles, in order to estimate the queue length distribution probability
per lane.

3.3.3 Application to roads composed of any number of lanes

The method proposed for the three propositions can be generalized easily
to roads composed of an any number of lanes. However, we give in this
section insights into the n-lane roads case and we demonstrate that the 3-
lanes roads case is enough to address the general case. Indeed, with the
accuracy of the GPS localization system nowadays, we can assign a vehicle
with 95% probability within a radius of 7.8m, as it is written in [63] : “the
government commits to broadcasting the GPS signal in space with a global
average user range error (URE) of ≤ 7.8m (25.6 ft.), with 95% probability.”.

As the standard lane width in the United States is 3.7m, any vehicle
located on a lane can be assigned to a virtual three-lane road. All the
virtual roads composed of successive three lanes are enumerated given the
topology of the road junction. The virtual roads can overlap such that a
lane can be in many virtual roads. The estimation of a queue length for a
lane which is present only in a single virtual 3-lane road is straightforward
with the method exposed. For the other lanes, which are represented in
many virtual roads, we can take the average of the estimation done in each
of the virtual roads. By taking the average of the queue length estimations
for a given lane, on the set of all the virtual roads, we counterbalance the
inaccuracy due to the estimation of Ap = âp, Bp = b̂p, Cp = ĉp. Indeed, we
recall that these variables are function of the expected values : âp = [E(Ap)],

b̂p = [E(Bp)], ĉp = [E(Cp)].
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3.4 Numerical experiments

3.4.1 Estimation of the primary parameters

In this section, the model is discussed with simulation results. The simu-
lation model is implemented with Omnet++ [142]. In the Omnet++ im-
plementation, we represent each vehicle with one packet. A packet contains
basic information such as the arrival and exit times, the destination, and
whether the vehicle is a probe vehicle or not. Packets arrive as a Poisson ar-
rival process of rate λ, i.e. the inter-arrival times between packets follow an
exponential distribution probability law. The packets (vehicles) are assigned
to the queue in accordance with matrix W and their destination, and are
extracted from each queue by a traffic light at a given saturation rate dur-
ing the green time. In [111], we have developed an implementation within
Veins framework [131] which combines a road traffic simulator (SUMO [86])
and a communication simulator (Omnet++). We used to combine SUMO
microscopic road traffic simulator to represent the dynamics of the vehicles
and Omnet++ to simulate the communication between the vehicles and the
infrastructure which is a Road Side Unit (RSU) in our case. The difference
between the two implementations is the assignment model, which is not the
same in SUMO and in our model. In the Omnet++ implementation, the
assignment simulation model corresponds accurately with our theoretical
assignment model. But in the SUMO implementation, the simulation as-
signment model is the SUMO lane changing model [44]. This is why in the
present paper we use a simulation model using Omnet++ exclusively.

We consider a symmetric and an asymmetric scenarios for the simulation.
For both scenarios, there are three outgoing roads. In both cases, the topol-
ogy of the road junction is as follows : if a vehicle turns left, it must be on
the left lane; if it turns right, it must be on the right lane; if it goes straight,
it can be on any of the three lanes. So we have w̃21 = w̃31 = w̃13 = w̃23 = 0;
see section 3.3.1. The matrix W in the two scenarios is the result of the op-
timization problem given in (3.12) with the constraints (3.6) on the variable
w̃ given by the junction topology.

Scenario S1 The turn ratios for the symmetric scenario S1 are (ρ1, ρ2, ρ3) =
(0.1, 0.8, 0.1). The total arrival rate λ = 0.75 vehicles/second. Then the op-
timization problem (3.12) gives the matrix W given in TABLE 3.2. We
observe that this scenario S1 is symmetric, because the incoming lanes are
balanced : wia = wib = wic = 1/3.

Scenario S2 The turn ratios for the asymmetric scenario S2 are (ρ1, ρ2, ρ3) =
(0.7, 0.15, 0.15). The total arrival rate λ = 0.5 vehicles/second. Then the
optimization problem (3.12) gives the matrix W given in TABLE 3.3. The
scenario S2 is asymmetric since wia 6= wib and wia 6= wic . In Fig. 3.3 is
displayed the penetration ratio estimator proposed in section 3.3.1. The

estimator p̂ =
∑

nXp(n)

qsat
∑

j maxk{tk,je }
generalizes the estimators proposed in [27] to
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Symmetric scenario S1 Destination
wiIncoming lane 1 2 3

ia 0.1 0.23 0 1/3
ib 0 0.33 0 1/3
ic 0 0.23 0.1 1/3

ρj 0.1 0.8 0.1

Table 3.2: Matrix W for the symmetric scenario. Total arrival rate=0.75
vehicles/second.

Asymmetric scenario S2 Destination
wiIncoming lane 1 2 3

ia 0.7 0 0 0.7
ib 0 0.15 0 0.15
ic 0 0 0.15 0.15

ρj 0.7 0.15 0.15

Table 3.3: Matrix W for the asymmetric scenario. Total arrival rate=0.5
vehicles/second.

the multi-lanes case. We observe on Fig. 3.3 that for p > 0.15 the estimation
error is very low compared to the case p < 0.15.
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Figure 3.3: Penetration ratio estimator. Simulated time=25 hours.

In Fig. 3.4, the mean absolute error of various estimators for computing
Ap, Bp, Cp are shown. The first estimator is the one which estimates the
number of probes per incoming lane, based on the destination road of each
probe vehicle. For example, with this estimator we will assume that all the
vehicles that have turned right came from the right lane. We will denote
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this estimator as E0. With E0, we write :

âp = [
∑
k

P (Dk = j1)] (3.32)

b̂p = [
∑
k

P (Dk = j2)] (3.33)

ĉp = [
∑
k

P (Dk = j3)] (3.34)

A more realistic estimator, E1 which is based on Equation (3.14) is recalled
here :

âp = [
∑
k

P (Ok = ia|Dk = jk)] (3.35)

b̂p = [
∑
k

P (Ok = ib|Dk = jk)] (3.36)

ĉp = [
∑
k

P (Ok = ic|Dk = jk)] (3.37)

We notice in Fig. 3.4 that the estimator E1 performs better than the es-
timator E0. The estimation error for E1 is at maximum around 1 vehicle,
although it can be around 3 vehicles for E0. This is because with the estima-
tor E1, the matrix W is used to enhance the estimator E0 which estimates
probe vehicles per lane based on the counting of probe vehicles per destina-
tion. We notice also that estimation error for E0 increases linearly with the
penetration ratio p while the estimation error for E1 is clearly sub linear.

3.4.2 Road traffic state estimation

In this section we evaluate the queue length estimations as given by the
expectations of the probability distributions of Propositions 5,6 and 7. We
notice that Proposition 6 is extending the work by Comert [28] to the multi
lanes case.
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Figure 3.4: Mean absolute error for âp, b̂p, ĉp and estimators E0, E1, aver-
aged over 10 replications. Simulated time = 10 hours, asymmetric scenario.
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Figure 3.5: Mean absolute error for queue lengths on lanes ia, ib and ic, with
Propositions 1, 2, 3. m means estimating the queue length with Â = B̂ =
Ĉ = m the last probe location. Simulated time = 2.5 hours and symmetric
scenario.
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Figure 3.6: Mean absolute error for queue lengths on lanes ia, ib and ic, with
Propositions 1, 2, 3. m means estimating the queue length with Â = B̂ =
Ĉ = m the last probe location. Simulated time = 2.5 hours and asymmetric
scenario.
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In Fig. 3.5 and Fig. 3.6, we compare the mean absolute error between
the queue lengths and their estimated values with the different propositions
respectively for scenario S1 and S2. We notice on Fig. 3.5 that the estimator
m performs quite well for high penetration ratios, because we consider here
the symmetric scenario. On the other hand, we notice on Fig. 3.5 that the
estimator m is not accurate for low penetration ratios even in this symmetric
scenario. We notice also that Proposition 6 and Proposition 7 perform better
than Proposition 5 because we add some information to the estimations. In
addition, we notice that all the estimators increase their accuracy as the
penetration ratio of probe vehicles increases.

Let us now look at the simulation results of the asymmetric scenario.
We notice on Fig. 3.6 that although the estimator m performs quite well on
lane ia, it is not true for lanes ib and ic because the demand is asymmetric.
The estimator m is not an option for lanes ib and ic. On another hand,
Proposition 6 and Proposition 7 perform better than Proposition 5 for the all
the lanes. Proposition 6 performs better than Proposition 7 for the longest
lane ia although for the lanes ib and ic Proposition 7 is more accurate than
Proposition 6.

3.5 Conclusion and perspectives

A method to estimate the road traffic state at a multi-lanes road junction
has been proposed. We have given an estimator for the penetration ratio of
communicating vehicles as well as the arrival rate of vehicles. Based on the
assumption that the queues tend to balance, an assignment matrix which
gives the probabilities that a vehicle comes from an origin lane and goes to a
destination road, has been derived. An existing method for road traffic state
estimation on 2-lane roads has been extended to the case where roads are
composed of any number of lanes. Three estimators for the queue lengths
at the road junction have been proposed. The model was implemented with
a discrete event simulator where vehicles are represented by packets. Nu-
merical experiments allow to discuss the propositions and confirm that the
model performs good especially for the asymmetric traffic demand scenar-
ios. Concerning the future works regarding the present paper, we notice that
the road traffic demand was assumed to be moderate or low such that the
arrival process can be considered as a Poisson process. A future work could
be to address the case of high traffic demand by taking into consideration
the overflow queue. On another hand, it seems relevant to have assumed
that the vehicles tend to choose the lane with the shortest queue although it
lacks real assignment data to confirm this assumption. Finally, even if the
GPS localization system becomes more accurate, there will be a need for
robust models which can take into account inacurracies on the localization
of probe vehicles.
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Control of urban road traffic
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This part is built upon two conference papers [53] [139] from 2015 and
2017. It deals with control of urban road traffic with communicating vehi-
cles. In chapter 4, a conference paper [53] extends a centralized approach
(the Traffic Urban Control method [33, 35, 34]) by introducing some con-
tention window where the vehicles communicate with each other to pass
the junction. In chapter 5, a conference paper [139] details how such a
contention window could be implemented with communicating vehicles.
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A semi-decentralized control strategy for
urban traffic

4.1 Abstract

We present in this article a semi-decentralized approach for urban traffic
control, based on the TUC (Traffic responsive Urban Control) strategy. We
assume that the control is centralized as in the TUC strategy, but we in-
troduce a contention time window inside the cycle time, where antagonistic
stages alternate a priority rule. The priority rule is set by applying green
colours for given stages and yellow colours for antagonistic ones, in such a
way that the stages with green colour have priority over the ones with yellow
colour. The idea of introducing this time window is to reduce the red time
inside the cycle, and by that, increase the capacity of the network junc-
tions. In practice, the priority rule could be applied using vehicle-to-vehicle
(v2v) or vehicle-to-infrastructure (v2i) communications. The vehicles hav-
ing the priority pass almost normally through the junction, while the others
reduce their speed and yield the way. We propose a model for the dynamics
and the control of such a system. The model is still formulated as a linear
quadratic problem, for which the feedback control law is calculated off-line,
and applied in real time. The model is implemented using the Simulation
of Urban MObility (SUMO) tool in a small regular (American-like) network
configuration. The results are presented and compared to the classical TUC
strategy.

4.2 Introduction

Recent advances in information and communication technologies improve
vehicular traffic in urban road networks by enabling the development of
innovative urban traffic control strategies. While the traffic control in urban
road networks is still done by setting traffic lights, intelligent transportation
systems (ITS) are being tested in many cities. Various agents in the road
network will be able to communicate from vehicle to vehicle (V2V) or from
vehicle to infrastructure (V2I) for example. Big data sets, with different
levels of information (microscopic, macroscopic) will be processed in real
time and adaptive control strategies will be applied. The whole process of
urban traffic control needs to be redefined in order to take into account this
development.

Several levels of information are distinguished in the big amounts of data
that are made available by ITS. The whole information cannot be optimally
exploited with a unique centralized or distributed traffic control system. A
multi-level control system needs to be developed in order to optimally use
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each level of information for the corresponding control level. Macroscopic
information could be transmitted to the centralized controller, while the
microscopic one could be used by the local controller, which should operate
in a short time horizon, compared to the high-level controller. Multi-level
control schemes have been recently proposed; see for example[119, 141].
In [119], the control uses macroscopic fundamental diagrams (MFD) [59, 29,
49, 50, 51, 47, 48].

Using traffic lights, the main urban traffic parameters are: phase specifi-
cation, split, cycle time, and offset. Fixed time urban traffic control (UTC)
strategies appeared in the 1950s with coordination of signals that optimizes
the offsets. These strategies use historic datasets, and therefore, are unable
to adjust to changing conditions. The most well-developed and widely used
UTC system is TRANSYT [122]. With advances in detection, communi-
cation, data processing, and control strategies, traffic responsive UTC sys-
tems appeared, where centralized and distributed systems are distinguished.
Among the main centralized ones, we cite SCOOT [77, 18], SCATS [103],
RHODES [74], MOTION [20], and TUC [33]. For distributed responsive
UTC, we cite UTOPIA [39], PRODYN [46], OPAC [58]. Other UTC sys-
tems define an intermediate level of centralization.

Traffic responsive UTC systems use feedback controls on the state of the
traffic and permit, by that, to meet traffic demand. Moreover, the control
may be set in such a way to be robust, in the sense that it responds rapidly to
disruptions. Furthermore, such controls are automatically adaptive to works
and operations, and so installation and maintenance costs are reduced.

We propose in this article an extension of the traffic responsive urban
control strategy TUC (Traffic Urban Control) [33, 35, 34]. Our extension
introduces a kind of decentralization in the optimization of the right of way
assignment. We introduce a contention time window inside the cycle time,
where antagonistic stages alternate a priority rule. The priority rule is set by
applying green colours for given stages and yellow colours for antagonistic
ones, in such a way that the stages with green colour have priority over the
ones with yellow colour. A TUC-based centralized control determines the
optimal split of green, red and yellow lights at the level of every junction.
A decentralized system manages the traffic of antagonistic stages during
the yellow signal, taking into account the characteristics of each junction.
By doing this, we aim to reduce the red time inside the cycle, increase the
capacity of the network, and reduce users’ delays. The traffic management
during the yellow times would be realized based on vehicle to vehicle (v2v)
and/or vehicle to infrastructure (v2i) communications.

We present in this article preliminary results of this semi-decentralization
on a small American-like city. The results demonstrate the efficiency of this
extension with respect to the classical TUC control. On a selected scenario
of traffic demand, we show that the semi-decentralized TUC controls better
the traffic, in the sense that it is able to respond efficiently and rapidly to
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congestion.

4.3 A short review of TUC

Figure 4.1: Academic example explaining the TUC strategy.

TUC [33, 35, 34] is a coordinated control strategy based on a store-
and-forward approach. It can be implemented for large-scale networks, in
real time, even under saturated traffic conditions. The split control part of
TUC varies the green-stage durations of all stages at all the junctions of an
urban network around given nominal values, and under a simplified traffic
dynamics. The objective is to avoid oversaturations and spillbacks of link
queues. In order to briefly explain the approach, let us consider the small
network of Figure 4.1, with the following notations.

c cycle time duration, in seconds.
k discrete time integer index, corresponding to a duration of kc sec.
xi(k) number of cars on link i at discrete time k.
x̄i constant nominal number of cars on link i.
∆xi(k) = xi(k)− x̄i.
si saturation flow on link i.
gi(k) green time duration for link i during the kth cycle.
ḡi constant nominal green time duration for the stream coming

from link i.
∆gi(k) = gi(k)− ḡi.
ui(k) = (gi(k)/c)si average outflow from link i during the kth cycle.
di(k) arrival demand flow to link i at discrete time k.
d̄i constant nominal arrival demand flow to link i.
∆di(k) = di(k)− d̄i.
αij turning movement ratio from link i to link j

The definition of ui(k) assumes sufficient demand on link i. Note that the
oscillations of vehicle queues in the links due to green/red communications,
and the effect of offset for consecutive junctions cannot be described by the
model.
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According to Figure 4.1, the number of cars on link 1 is updated as
follows.

x1(k + 1) = x1(k) + d1(k) + α21s2g2(k) + α31s3g3(k)− s1g1(k). (4.1)

Then, by introducing the nominal amounts, and by using vectorial no-
tations, we get :

∆x(k + 1) = ∆x(k) +B∆g(k) +D∆d(k), (4.2)

where B and D are matrices built basing on the dynamics (4.1) written on
the whole network.

Assuming that the variations of the arrival demand flows on every link
inside the cycle time sum to zero, we get the following linear system :

∆x(k + 1) = ∆x(k) +B∆g(k), (4.3)

Bounds for minimum green times and maximum storage capacity of links
must also be considered.

The criterion is the following, where λ is a discount factor, and where
an infinite time horizon is considered.

J = min
∆g

1

2

+∞∑
k=0

1

(1 + λ)k
(
‖∆x(k)‖2Q + ‖∆g(k)‖2R

)
, (4.4)

where Q and R are non-negative definite, diagonal weighting matrices. The
first term on (4.4) aims to minimize the risk of oversaturation and the spill-
back of link queues, while the second term is used to influence the magnitude
of the control.

The control bounds are treated externally of the LQ problem solving.
The solution for such problems consists in solving an algebraic Riccati equa-
tion, which then leads to the following optimum feedback control where L
is the gain matrix :

g(k) = ḡ − Lx(k). (4.5)

Considering the following linear system with A = I and criterion4.4, we
have :

∆x(k + 1) = A∆x(k) +B∆g(k), (4.6)

We refer to [33, 35, 34] [16] for taking into account the discounting factor
1

1+λ . P is the solution of the following algebraic Riccati equation :

P = Ā′PĀ− Ā′PB(R+B′PB)−1B′PĀ+Q (4.7)

where Ā = 1√
1+λ

A. The matrix L is given by :

L = (R+B′PB)−1B′PA (4.8)

P is computed by solving the Riccati equation off line with a Python library.
Matrix L is computed numerically in dependence on P .



120 CHAPTER 4. SEMI-DECENTRALIZED CONTROL

4.4 Semi-decentralization

The model we present here is an extension of the classical model presented
above. Instead of considering only green and red time durations in a cycle
time (in addition to the lost time, which we consider implicit here and for
which we assign the orange colour), we also consider yellow time durations.
The objective here is to reduce the red time duration. To do that, we divide
this duration into two time periods : red and yellow. By that, when a stage
is assigned a red or a yellow time, the antagonistic stage is assigned a green
time.

Figure 4.2: The cycle time in the classical model, and in the new model. G:
green, R: red, Y: yellow.

Figure 4.3: The cycle time in the new model.

We notice here that our model is an extension of the classical TUC
model, because it is sufficient to set the yellow times to zero to get the
classical model.

In order to explain the model, let us consider junction A of example of
Figure 4.1. Only two stages can be considered here, each of them with only
one stream. One stage is associated to link 2 and the other to link 3. In
this case, and in the classical TUC model, at every cycle k, we only have
one independent control variable on that junction, which is the green or
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red duration of any of the two streams. All the other time durations are
dependent variables. We consider g2(k): the green time duration for link
2 as the independent control variable, then the dependent variables can be
easily obtained as follows :

� r2(k) = c− g2(k) : red duration for link 2

� g3(k) = r2(k) : green duration for link 3

� r3(k) = g2(k) : red duration for link 3

By considering yellow time durations, we need to choose three indepen-
dent control variables, among six variables. For example the following three
independent control variables can be considered.

� g2(k) : green time duration for link 2

� y2(k) : yellow time duration for link 2

� y3(k) : yellow time duration for link 3

The other three dependent control variables are given as follows (see fig-
ure 2):

� r2(k) = c− g2(k)− y2(k) : red time duration for link 2

� r3(k) = g2(k)− y3(k) : red time duration for link 3

� g3(k) = c− g2(k) : green time duration for link 3

4.4.1 The dynamics

Let us consider the following additional notations.

� qmax
J : capacity (maximum flow) of junction J .

� Qij(k) : total flow going from link i to link j during the kth cycle.

� Qouti : total flow exiting from link i during the kth cycle.

� γJ : friction coefficient on junction J , with 0 ≤ γ ≤ 1.

We write the traffic dynamics on link 1 of Figure 4.1 with the new control
model.

x1(k + 1) = x1(k) + d1(k) +Q21(k) +Q31(k)−Qout1 (k),

with Q21(k), Q31(k) and Qout1 (k) given in (4.9)-(4.11), where we introduce a
new parameter γJ (for junction J) which we call here a friction coefficient,
and which expresses the bother between vehicles entering into the junction
from antagonistic stages during the contention time window. For example,
in (4.9), the flows of vehicles going from link 2 to link 1 during different time
durations of the kth cycle are given as follows.



122 CHAPTER 4. SEMI-DECENTRALIZED CONTROL

� During r3(k) = g2(k)−y3(k), the flow is α21s2(g2(k)−y3(k)), as usual.

� During y3(k), the flow is α21s2y3(k) as usual, but multiplied by the
friction coefficient γA between the streams coming from link 2 (with
green time) and link 3 (with yellow time), since the local control is
activated with a priority rule setting. Link 2 has priority over link 3
during this time period.

� During r2(k), the flow is zero.

� During y2(k), the stream coming from link 3 has priority over the one
coming from link 2. Therefore, the whole junction capacity qmax

A y2(k)
is used by the stream of link 3, and the remaining capacity qmax

A y2(k)−
s3y2(k) is used by link 2. This flow is also multiplied by the coefficient
friction γA since the two streams pass through junction A during the
same time period.

Q21(k) = α21s2(g2(k)− y3(k))

+ γAα21s2y3(k) + γA(qmax
A y2(k)− s3y2(k)). (4.9)

Q31(k) = α31s3(c− g2(k)− y2(k))

+ γAα31s3y2(k) + γA(qmax
A y3(k)− s2y3(k)). (4.10)

Qout1 (k) = s1(g1(k)− y6(k))

+ γBs1y6(k) + γB(qmax
B y1(k)− s6y1(k)). (4.11)

The dynamics (4.9)-(4.11) are still linear on the variables xi, gi and yi.
We notice here that the dynamics are written with only independent con-
trols. As it has already been explained above, on junction A, for example,
the independent controls are g2, y2 and y3. As in the classical TUC model,
we consider nominal demands d̄i, nominal numbers of cars x̄i and nominal
independent controls ḡi and ȳi. The choices of x̄ and ḡ can be done by the
same way as in the classical TUC model. One way to choose ȳ is to take
ȳi = c− ḡi. This is equivalent to say that the nominal red time is zero. This
choice can also be dependent on the junction design. Then it is very easy to
derive a linear dynamics similar to (4.3). For the criterion we take exactly
the one of (4.4), written with the new (independent) control variables ∆gi.
Again, a linear quadratic problem is obtained, and the optimal control is
derived by solving a Riccati equation as in the classical TUC model.

4.5 Numerical example

In this section, we apply the control model presented above, on a small
regular (American-like) network of four horizontal and four vertical roads,
with alternated directions, as shown in Figure 4.4.
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For the saturation flow values, we take the recommended ones in urban
networks (si = 1800veh./h,∀i, as shown in Table 4.2), without corrective
factors; see for example [24]. To compute the optimal cycle, we consider here
a fixed cycle time that we approximate to 60 seconds, using the Webster
Method [147]: c = (1.5T + 5)/(1 − Y ), where T is the total lost time per
cycle, Y is the junction load. The cycle time is then projected onto the
interval [40s, 90s].

4.5.1 Model implementation and Simulation Tools

We used SUMO, see for example [14], and its interface TRACI [149] to
simulate and implement the model. The source code has been written in
Python. The main tasks were :

� build the network topology and the demand using SUMO tools and
original configuration files.

� design an algorithm and the source code architecture that enable the
construction of the B matrix in equation (4.3).

� implement the contention time window and the associated priority
rule.

� solve a Riccati equation, and at every cycle, measure the state, and
apply the control on the traffic light signals.

� analyze the simulation data outputs, including state and control vec-
tors, by rendering graphical results.

The time contention window is implemented as follows. On a given
junction, and inside such contention time window, we consider first vehicles
in incoming approaches. We compute the distances from those vehicles to
the junction. In order to avoid conflicts, at a given time in the time window,
if the distance to the junction, of the first vehicle on the link with yellow
stage, is less than a given constant distance m, and if the distance to the
junction, of the first vehicle on a link with green antagonistic stage, is less
than a given constant distance M , we slow down the first vehicle on the link
with yellow stage.

In general, the vehicles moving on an approach with a green stage (pri-
ority approach) pass through the junctions without checking for the antag-
onistic approaches. However, the vehicles moving on the approaches with
yellow stages slow down at a distance m to the junction, to check if there is
any vehicle coming from an antagonistic approach with green stage.

In the numerical example we consider in this article, we chose m = 15
meters and M = 50 meters. Our choice takes into account the reaction time
of the drivers in SUMO, and also the simulation step length.
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We plan to implement this conflict management using a communication
simulator, for example the Network Simulator [106].

Figure 4.4: Regular network example.

4.5.2 Network configuration

We discuss here, the configuration of the network of Figure 4.4. In this
network, circuits are formed. We distinguish two types of circuits. The
central circuit in which vehicles turn in the anticlockwise direction, and
the other four circuits in which vehicles move in the clockwise direction.
As already shown in [51, 48], the car-densities on the circuits of links are
determinant in the stage transition of a vehicular network. Indeed, if a
circuit is full of vehicles, then a deadlock occurs and spreads on the network.

In the network we consider here, the central circuit (which we call here
the main circuit) is critical compared to the other four circuits, (which we
call here the secondary circuits). Indeed, the secondary circuits have exits
that are not constrained by any output supply, and they are closer to the
borders.

In case of congestion, we need to clear out vehicles from the main circuit
in order to improve the traffic, so that the number of vehicles we take out
is bigger than the one we take into the circuit. Hence, for that circuit,
the controller needs to favour the vehicles coming from the left side at the
level of the four junctions around the main circuit. For example, if we take
symmetric turn ratios, half of vehicles leaving the approaches are likely to
leave the circuits, while the other half of vehicles are likely to remain in the
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circuit. However, when the way is given to the vehicles coming from the
right (with respect to the junction), half of those vehicles are likely to enter
to the circuit, while the other half is likely to not enter to the circuit. For
the secondary circuits, in case of congestion, the control shall favour vehicles
coming from the right side links at the level of the junctions associated to
those circuits, in order to clear them out.

The four junctions of the main circuit are shared with other secondary
circuits. We think that the control needs to foster the evacuation of the
main circuit with respect to the secondary circuits. Therefore, the control
should favour the vehicles coming from the left side approaches to the main
circuit.

4.5.3 Preliminary results

We present in this section the preliminary results we obtained. For the
traffic demand, we took the scenario of Table 4.1 with symmetric turning
ratios as input. The origins and destinations are predefined. In this scenario,
we have some traffic demand inside the network. This permits us to attain
saturated and congested stages. In the other side, the traffic demand from
and towards the central zone is low comparing to that from and towards the
boundary zones. This choice makes the states of the traffic controllable in
the central zone of the network.

Table 4.1: The traffic demand.

Central zone Other zones

Central zone 0 40 (veh / h)
Other zones 40 (veh / h) 250 (veh / h)

The other parameters are given in Table 4.2, where

� r is a positive scalar such that Q = I and R = rI, with I the associated
identity matrix,

� gi−min is the minimal green time duration on link i,

� li is the length of link i.

Table 4.2: The values of other parameters.

r λ x̄i si ḡi gi−min c li αij
0.5 0.1 10.5 veh 1800 veh/h 30 s 4 s 60 s 300 m 0.5

In Figure 4.5, we give the state of the traffic at the final time of sim-
ulation. The evolution over time of the running vehicles in the network is
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Figure 4.5: The state of the traffic at the end of simulation. The colours of
vehicles correspond to their speed (green: high speed, red: low speed). On
the left side: Centralized TUC. On the right side: semi-centralized TUC.

given on Figure 4.6, where we compare the classical TUC control with our
semi-decentralized control by varying the value of the friction parameter γ
in {0.3, 0.5, 0.7}. We see that with our semi-decentralized control, the car-
density is limited in order to optimize the capacity of the network. The best
result is obtained with γ = 0.3.

In Figure 4.6, we also compare the two controls in terms of the cumulated
ended cars through the time, and in terms of the average travel time of
cars in the network. We see clearly that our control improves the whole
capacity of the network. Indeed a congestion appeared at a time around
1000 seconds. We observe that as long as the simulation runs, the two
controls clear the congestion, but the semi-decentralized control do it very
rapidly compared to the centralized one. We see clearly that the difference
between the number of running vehicles decreases over time, but, even at
the final time of simulation (which is 6 hours here), this difference is still
important. Figure 4.5 tells clearly that the state of the traffic with the two
controls is different (fluid with the decentralized control, and saturated with
the centralized one). These results are confirmed by Figure 4.6, where we
compare the running and the ended vehicles, as well as the average travel
time of the cars through the network.

In Figure 4.7, we give the results of simulation for the semi-decentralized
control. We show on the first row the time-average number of vehicles in the
circuits of the network. On the second (resp. third) row of that figure, we
show the control (in terms of durations of the green, yellow and red times)
for the approaches coming from the left side (resp. right side) of the circuit
junctions. The left side column of the figure corresponds to the main circuit
(the circuit of the central zone), while the right side column corresponds to
the secondary circuits (the circuits on the boundary of the network).

We observe on the first row of Figure 4.7 that the main circuit is more
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Figure 4.6: Comparison of the classical TUC with the semi-decentralized
TUC in terms of the number of running vehicles on the network, the flow
of ended vehicles, and the average travel time through the network, respec-
tively, in function of time.
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Figure 4.7: Semi-decentralized TUC. The control in terms of the traffic light
times into the cycle time, through the simulation time, on different zones
(center and boundaries), and for approaches coming from left and right sides.
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cleared out than the secondary circuits. This observation confirms our in-
tuition given above. We see in the second and third rows of Figure 4.7 that
the control frees the approaches coming from the left side of the junctions’
main circuit and limits the flow on the antagonistic approaches of the same
circuit, while it does the opposite for the secondary circuits.

Figure 4.7 shows another important result, which is that the yellow time
is almost fully used (i.e. the red time is almost zero) in the case of free traffic
flow, while the red time appears with important values in case of congestion.
This result is very important because it confirms the importance that the
activation as well as the duration of the local control (the contention time
window with yellow times) are both controlled by the centralized control,
which optimizes them in function of the state of the traffic in the network.

4.6 Preliminary conclusions

We presented in this article a TUC-based approach for the control of urban
traffic. By defining a time contention window inside the time cycle, we
introduced a little of decentralization of the control. We have implemented
and simulated the new control on a small American-like network. The traffic
has been simulated using the Simulation of Urban MObility tool while the
control has been implemented with Python. We are aware that we need more
investigations in order to validate our assertions. For that we will improve
the implementation of our control by better managing the contention time
window, in particular using communication network simulators. On this
small network, we showed that our approach is effective in terms of many
parameters including the total network capacity as well as the average travel
time. Another important result we obtained is the confirmation that the
centralized control optimizes the activation as well as the duration of the
decentralized control (the contention time window) in function of the state
of the traffic in the network.
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A vehicle-to-infrastructure communication
based algorithm for urban traffic control

5.1 Abstract

We present in this paper a new algorithm for urban traffic light control with
mixed traffic (communicating and non communicating vehicles) and mixed
infrastructure (equipped and unequipped junctions). We call equipped junc-
tion here a junction with a traffic light signal (TLS) controlled by a road
side unit (RSU). On such a junction, the RSU manifests its connectedness to
equipped vehicles by broadcasting its communication address and geograph-
ical coordinates. The RSU builds a map of connected vehicles approaching
and leaving the junction. The algorithm allows the RSU to select a traf-
fic phase, based on the built map. The selected traffic phase is applied by
the TLS; and both equipped and unequipped vehicles must respect it. The
traffic management is in feedback on the traffic demand of communicating
vehicles. We simulated the vehicular traffic as well as the communications.
The two simulations are combined in a closed loop with visualization and
monitoring interfaces. Several indicators on vehicular traffic (mean travel
time, ended vehicles) and IEEE 802.11p communication performances (end-
to-end delay, throughput) are derived and illustrated in three dimension
maps. We then extended the traffic control to an urban road network where
we also varied the number of equipped junctions. Other indicators are shown
for road traffic performances in the road network case, where high gains are
experienced in the simulation results.

5.2 Introduction

5.2.1 Introduction

Penetration rate of communicating vehicles is expected to increase in the
next years. Compared to in-road detectors and video sensors, a wireless road
side unit (RSU) can collect more detailed vehicle data such as location, speed
and acceleration rate, more than once a second, on some hundred meters
range and probably at lower cost [56]. This new amount of high resolution
data provided by V2X communication enables new traffic signal controls.
We present a new reactive algorithm based on V2I communications using
WAVE/IEEE 802.11p protocol. Simulation for road traffic and communi-
cation networking has been conducted using VEINS framework [131]. This
simulation framework led to a performance study of both road traffic and
communication protocols. We show that the gain in road traffic performance
is significant most of the time, especially in the case of a high penetration
rate for vehicles and junctions.
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5.2.2 State of the art

In the field of traffic signal control based on vehicular communication, several
approaches have been developed in the few last years [62] : over-saturation
algorithms which tend to avoid blockages by using V2I communication, gap-
out algorithms which terminate the phase green if no vehicle is detected dur-
ing a gap-out time, and platoon based algorithms which use vehicle cluster-
ing to provide acyclic timing plans. Some other approaches tend to minimize
cumulative delays.

In [6], a dynamic gap-out algorithm has been presented. Total vehicu-
lar delays are minimized and the optimization determines “phase sequence,
phase green times, and gap-out times (both dynamic and regular gap-outs).”
In [88], a reactive control based on VANET communication is detailed. Dif-
ferent weights are assigned to vehicles depending on their distance to the
junction. A timing plan is then computed and applied using these weights.

Some papers have finely evaluated performances of WAVE/IEEE 802.11.p
protocols [146], some of them comparing pros and cons of WAVE and alter-
natives such as LTE [69]. Coupling road traffic and communication simula-
tors have recently been achieved in VEINS [131]. We also report ITETRIS
[87] and VSimRTI [126] that declare successful coupled simulation, even if
we haven’t been in measure to evaluate these last two softwares in detail.
However, in the case of road traffic control applications, we did not see com-
munication performance studies with specialized communication simulators.

5.2.3 Paper organization

We aimed in this paper to propose a new traffic light control algorithm, based
on V2I communication and evaluated with a fine grained and extended sim-
ulation tool, VEINS [131]. We modified VEINS in order to include TCP/IP
support over IEEE 802.11p. We present some performance indicators of the
WAVE protocol stack in the scenario of this new kind of road traffic control.
This paper is organized in four parts. In part 5.2, it has been provided
the global context and state of the art in the field of connected traffic light
signal control. In part 5.3, a new algorithm is presented for road traffic
control. Then simulation scenarios and results are shown for one junction
and for a small American like road network in part 5.4. In part 5.5 we open
perspectives to future works.

5.3 Connected traffic light signal control

5.3.1 Algorithm description

In this section we describe a new local control algorithm. This control
makes some hypothesis on vehicles and infrastructure and is composed of
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the following subtasks : building a map, electing a vehicle and actuating the
TLS.

5.3.1.1 Assumptions

We use the terminology described in [56]. We assume that some junctions of
the road network are equipped with traffic light signals (TLS) with communi-
cation capabilities. In our case the communication protocol is IEEE 802.11p
coupled with the Internet Protocol version 4 (IPv4) and the Transmission
Control Protocol (TCP). TCP adds transport services to IEEE 802.11.p,
such as a reliable and ordered delivery of byte streams [133]. It is used in
conjunction with IP which provides network routing services. Hence, we
suppose that some TLS are able to communicate with the TCP/IP proto-
cols over IEEE 802.11p and we consider it as an Intersection Agent (IA).
Similarly, we suppose that some cars are equipped with the same communi-
cation capabilities and are also able to localize themselves, for example with
GPS modules which provide in addition global time synchronization. We
call them equipped vehicles or Vehicle Agents (VA) [56].

5.3.1.2 Dynamic Maps

With such capabilities, the IA can build a map of the connected vehicles
coming and leaving the junction. Similarly each vehicle agent (VA) builds
a map of the IAs approaching or leaving it in its communication range. To
achieve this, we designed and programmed a map module in OMNET++
[142]. For the map of the vehicles, the coordinates system is relative to the
earth. Instead, for the map of the IAs, the coordinates system is relative to
the concerned vehicle position. This change of coordinates enables the use
of the same module for IAs map and vehicles map. The maps are dynamic;
they are updated periodically each time a message is received for the IA,
and triggered on timer for the vehicles. Map’s data that are older than a
given time, named here map module length, are cleared.

An IA signals itself by broadcasting its IP address and coordinates via
UDP protocol. Once the IA announced, the vehicles equipped with UDP
client build a local map of all the IAs in their communication range. These
vehicles then elect the closest IA approaching. So, the vehicles know their
relative positions to the closest junction approaching, without need for com-
munication with the IA anymore. Once close to the elected junction, the
vehicles open a TCP connection with the IA.

After the TCP connection with the elected IA is established, all vehi-
cles approaching the junction send periodically their position to the IA, each
message being timestamped, with a time period named here position send interval.
These vehicles data received by the IA enable the build of a map indexed
by a unique vehicle identifier, described in Table 5.1. Among the different
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fields of the map, we notice the state of the vehicle (approaching or leaving
the junction) which is computed using the positions of vehicles and TLS.

Table 5.1: The IA and vehicle map module

unique vehicle identifier

c
the IA to car TCP connection

identifier

T
the trajectory which is

an ordered map of couples (time, coordinates)

lst
the last time the vehicle data
has been received by the IA

fst
the first time the vehicle data
has been received by the IA

r
the radius is the distance the car is

to the approaching junction

cos θ the car position is defined by its radius to the TLS and
sin θ the angle this radius is from the (x) axis

s
the state of the car

whether the car is coming or leaving the junction

5.3.1.3 Election

We say the road state and a given junction map are synchronized when all ve-
hicles in the junction map have been detected in the lastmap module timeout
seconds. Periodically, every election interval time and when the junction
map is synchronized, the IA computes the lead vehicles on the approaching
edges. In our case, we suppose that the junctions have only two incoming
edges, each edge having one lane. So there can be two lead vehicles maxi-
mum in our case. See Fig. 5.1. The two incoming edge priorities alternate
every cycle duration/2, where cycle duration is the duration of the TLS
periodic program. A vehicle among lead vehicles from incoming edges is
elected with the Algorithm 1. If the Algorithm 1 runs successfully, the IA
sends a message to the elected vehicle. Otherwise the RSU will try to elect
a vehicle after a election interval time.

5.3.1.4 Action

The elected vehicle has now the power to set the TLS to a favorable
state, which is green light for the edge on which it is moving and red light for
other edges. To do this, the elected vehicle sends a message to the IA with its
established TCP connection. We set a minimum and a maximum duration
for a given TLS state : min state duration and max state duration. If no
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Figure 5.1: The lead vehicles

Algorithm 1: Vehicle Election

1 function Elect (p, v, dp, dv, dmin, α)
Input :

� p is the identifier of the lead vehicle on the prioritized edge, and it is
None if no vehicle is detected on the prioritized edge

� v is the identifier of the lead vehicle on the non prioritized edge, and
it is None if no vehicle is detected on the non prioritized edge

� dp represents the distance p is to the junction, in case p 6= None,

� dv represents the distance v is to the junction, in case v 6= None,

� dmin > 0 is the minimum distance to consider a vehicle close to the
junction,

� α > 1 is a coefficient to ponderate the minimum distance.

Output: p or v.
2 if (p 6= None and v 6= None and dp > αdmin and dv < dmin) or

(p == None and v 6= None and dv < dmin) then
3 elected = v;
4 else
5 elected = p;
6 return elected;
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state switch has happened during max state duration time, the state of the
TLS is automatically changed. Similarly, the state of the TLS must remain
the same for at least min state duration. With the min state duration we
ensure stability. With the max state duration we ensure dynamics of the
states and avoid blockages of the TLS. As we set max state duration =
cycle duration/2, if no vehicle is connected near a junction, then the as-
sociated TLS will follow an open loop cyclic program with cycle duration
period. Once the connected vehicles know they are leaving the junction
(with GPS and local map but not with communication means), they discon-
nect after they reach a given distance away from the junction.

The process starts again for the next junction and so on.

5.3.2 Properties of the algorithm

5.3.2.1 Property 1

The local control is safe because the control is done by means of a TLS
which never gives green light simultaneously to antagonistic phases.

5.3.2.2 Property 2

It is not necessary for a vehicle to be equipped to pass the junction.

5.3.2.3 Property 3

As the control tends to minimize delays for equipped vehicles, communicat-
ing equipments of vehicles are encouraged. Indeed, even if equipped vehicles
are favoured, all vehicles benefit from the control. As the control presents
gains for the road traffic, communicating equipments of junctions are en-
couraged.

5.3.2.4 Property 4

When no vehicle is equipped near an equipped junction, themax state duration
for a state induces that the TLS runs half time red and half time green light.
It is equivalent to a simple open loop cyclic TLS program.

5.3.3 Implementation

We used VEINS Framework [131] which includes SUMO [86] as microscopic
traffic simulator and OMNET++ [142] as communication network simula-
tor. We modified and extended VEINS Framework in order to get TCP/IP
support over IEEE 802.11p. To do this, “inet” models and Veins framework
have been integrated and connected together.

Some application modules have been written : map, car, road side unit,
TCP client and server, UDP client and server applications, which implement
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Figure 5.2: The IEEE WAVE protocols stack [3]

the algorithm described above. Commands to control the TLS states have
been added. The MAC1609 module of VEINS framework module has been
modified to connect TCP/IP to IEEE 802.11p layers.

5.4 Simulation results

We simulated a few runs with different seeds, each run being reproducible.
We present statistical results for the road network case with 20 different
simulations and preliminary results (one typical run) for the one junction
case.

5.4.1 One Junction with connected TLS

5.4.1.1 Scenario for one junc-
tion

We used the following road network,
composed of one junction, with one
lane incoming edges of 300 m length.
We varied the demand which is the
number of vehicles (uniformally in-
serted in time) per lane per hour. For
each of this traffic demand, we varied
the ratio of equipped vehicles with on
board unit (OBU).

The total simulation time is 600 s. For the communication and the con-
trol algorithm, the main parameters are described in Table 5.2.
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Table 5.2: Main parameters for the communication and road traffic control.
Other parameters are VEINS defaults ones.

Parameter name Parameter value

vehicle TCP position send interval 500 ms

UDP broadcasting interval 500 ms

IA election interval 500 ms

cycle duration 90 s

max state duration 45 s

min state duration 8 s

map module timeout 2 s

map module length 5 s

dmin 100 m

α 2

MAC 1609 use service channel true

MAC 1609 bitrate 27 Mbps

MAC 1609 carrier frequency 5.890× 109 Hz

transmit power 1 mW

application message payload 30 bytes

transceiver sensitivity −89 dBm

5.4.1.2 Simulation measurements

For the communication we have measured the mean TCP end-to-end
delay, TCP throughput on RSU (Road Side Unit) and the amount of TCP
application data sent divided by the total simulation time. We define the
simulation indicator mean TCP end-to-end delay as the sum of all packet
delays divided by the number of packets exchanged. The throughput on RSU
is the sum of TCP application packet (successfully received) sizes divided
by the simulation time. A given number of communicating hosts may be
the result of different combinations of a demand multiplied by a ratio of
equipped vehicles. For example, 100% equipped vehicles of 100 vehicles in
total, gives the same number as 10% equipped vehicles of a total of 1000
vehicles.

In Figure 5.3 we can see that the amount of TCP application data sent
by the nodes increases as the mean vehicle speed decreases. We assume
that as the mean vehicle speed is low, the communicating vehicles remain
connected longer, and then they send more messages.

In Figure 5.4, we see that the mean TCP end-to-end delay can be as high
as 0.8s when vehicle speed is low (about 8m/s). We know from Figure 5.3
that there are more data sent by the nodes when mean speed is low. We
suppose that as there are more messages sent in case of low speeds, the mean
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TCP end-to-end delay will be higher.
The order of magnitudes of end-to-end delay is similar to the ones ex-

posed in [69]. Clearly, in Figure 5.5, the throughput on RSU is increasing
linearly with the number of communicating vehicles.
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Figure 5.3: Amount of TCP application data sent divided by the total sim-
ulation time (bit/s)

For the road traffic, we measured the ratio of the ended vehicles by
the inserted vehicles, and the mean travel time. We observe on Figure 5.6
that the ratio of the ended vehicles by the inserted vehicles increases when
the demand decreases and the ratio of equipped vehicles increases. For a
given ratio of equipped vehicles, as the road traffic demand increases, the
ratio of the ended vehicles by the inserted vehicles decreases. For a given
demand, this ratio increases with the number of equipped vehicles.

In Figure 5.7, for a given demand, the mean total travel time (for both
equipped and non equipped vehicles) decreases as the number of equipped
vehicles increases. This should encourage the spreading of vehicle communi-
cation capabilities. For a fixed demand, the difference in travel time between
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the worst and the best cases for a total distance of 600 m, may be as high
as 20 seconds.
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Figure 5.6: Ratio of ended vehicles by inserted vehicles at 600s simulation
time

For the actuator, we define the mean action interval as the mean time
interval between two consecutive changes of traffic lights state. We observe
in Figure 5.8 that the traffic light state is stable for high traffic demand
combined with a high equipped vehicle penetration rate. This minimizes
the total yellow time of the traffic light, and then maximizes the junction
capacity. For a low demand combined with a high equipped vehicle pene-
tration rate, the control is more reactive.

5.4.2 Traffic control at the road network level

5.4.2.1 Scenario for the road network

We consider here an American like network with 16 junctions and 40 edges
of length 500 m each. This is the same network considered in [53], where



144 CHAPTER 5. V2I TRAFFIC CONTROL ALGORITHM

Demand (vehicles/hour/lane) 300
400

500
600

700
800

900
1000

1100
1200

1300

R
at

io
 o

f v
eh

ic
le

s 
eq

ui
pp

ed
 w

ith
 O

B
U

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

z

55
60

65

70

75

80

85

90

Mean travel time (s)

60

70

80

90

Figure 5.7: Mean Travel Time for equipped vehicles (s)



5.4. SIMULATION RESULTS 145

D
em

an
d 

(v
eh

ic
le

s/
ho

ur
/la

ne
)

300

400

500
600

700
800
900
1000
1100
1200
1300

Ratio of vehicles equipped with OBU0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

z
15

20

25

30

35

40

Mean action interval (s)

15

20

25

30

35

40

Figure 5.8: Mean action interval (s) for a cycle duration of 90 s.



146 CHAPTER 5. V2I TRAFFIC CONTROL ALGORITHM

centralized and decentralized road traffic controls have been combined. Each
edge has one lane. We varied the number of equipped junctions : 25%, 50%,
100%; and the penetration rate of equipped vehicles : 20%, 50%, 80%. We
defined nine zones in the network. The simulated time is 1800 s and the
communication parameters are the same as in the “one junction” scenario.

Figure 5.9: Regular network example.

Table 5.3: The traffic demand for the first 900 s.

Origins
Destinations

Center zone Each other zone

Center zone 0 10 (veh)

Each other zone 15 (veh) 15 (veh)

Table 5.4: The traffic demand for the last 900 s.

Origins
Destinations

Center zone Each other zone

Center zone 0 10 (veh)

Each other zone 20 (veh) 20 (veh)

We used SUMO “origin and destination edges instead of a complete list
of edges. In this case the simulation performs fastest-path routing based
on the traffic conditions found in the network at the time of departure/flow
begin.”[1]. The road traffic demand is given in Tables 5.3 and 5.4.
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5.4.2.2 Simulation results

Table 5.5: Ended vehicles in a scenario with the traffic demand of tables
III and IV. Simulated time = 1800 s. Mean and standard deviation for 20
simulation runs.

Equipped junctions

Ended Penetration rate

0% 20% 50% 80%

25% 1373±19 1470±33 1507±18 1484±19
(0±0)% (+7.1±2.5)% (+9.8±2.4)% (+8.1±1.9)%

50% 1373 ±19 1499±49 1583±19 1571±20
(0±0) % (+9.2±3.4)% (+15.3±1.9)% (+14.5±2.3) %

100% 1373±19 1281±151 1805±49 1877±29
(0±0)% (-6.7±11.2)% (+31.5±4.1)% (+36.7±2.8)%

Table 5.6: Running vehicles in a scenario with the traffic demand of tables
III and IV. Simulated time = 1800 s. Mean and standard deviation for 20
simulation runs.

Equipped junctions

Running Penetration rate

0% 20% 50% 80%

25% 954±16 842±32 817±18 848±21
(0±0%) (-11.8±3.5%) (-14.4±2.7%) (-11.2±2.4%)

50% 954±16 835±36 764±17 778±21
(0±0%) (-12.4±3.8%) (-19.9±2.1%) (-18.4±2.5%)

100% 954±16 962±80 583±43 517±27
(0±0%) (+0.9±8.7%) (-38.9±4.7%) (-45.8±2.9%)

Table 5.7: Mean Travel Time (s) in a scenario with the traffic demand of
tables III and IV. Simulated time = 1800 s. Mean and standard deviation
for 20 simulation runs.

Equipped junctions

MTT(s) Penetration rate

0% 20% 50% 80%

25% 413.9±1.8 381.9±4.3 376.0±3.1 380.0±3.4
(0±0%) (-7.7±1.1%) (-9.2±0.8%) (-8.2±0.9%)

50% 413.9±1.8 381.8±15.2 355.6±5.0 354.9±4.5
(0±0%) (-7.8±3.8%) (-14.1±1.5%) (-14.2±1.2%)

100% 413.9±1.8 399.6±30.6 302.0±6.9 281.2±4.6
(0±0%) (-3.4±7.4%) (-27.0±1.7%) (-32.1±1.2%)

We present the simultion results in Tables 5.5 5.6 5.7. We compare our
algorithm with an open loop fixed cycle TLS program, where the same cycle
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time is considered in both cases. Mean and standard deviations are reported
in each cell of Tables 5.5 5.6 5.7. In brackets, the mean and standard
deviations are reported in percentage. This open loop cyclic control can
also be achieved with zero communicating vehicles in our algorithm. The
gain of our algorithm in terms of ended vehicles can be very high, as much
as 30%. The gain in running vehicles can be as high as 40% and the gain in
mean travel time can reach 30%.

We observe that when the penetration rate is 20% and when all junctions
are equipped, the algorithm is not efficient. We suppose that as there are
less vehicles communicating, less vehicles manage to connect in time (before
having passed the junction). It then could be possible that the TLS map is
not a good image of the real traffic. This could explain why the cycles of
the TLS are not globally adequate. When all junctions are equipped, this
can even be globally disturbing because of a lack of centralized coordination.
By combining accurate estimation of the road traffic and V2I control, this
phenonemon could be analyzed more deeply and potentially cleared.

5.5 Conclusions

We presented a new V2I based TLS control algorithm, with its design, im-
plementation and performance study for communication and road traffic.
Compared to an open loop cyclic TLS program, we showed that the pre-
sented algorithm features high gains in most of the configurations. However,
in few cases, where low penetration rate for vehicles is combined with high
ratio of equipped junctions, it seems that the algorithm is not efficient and
produces some losses. A hypothesis for this phenomenon has been proposed.
Future works could benefit from a mix of microscopic and macroscopic road
traffic controls, based on vehicular communication networking.
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5.6 Conclusion

The stakes of road traffic range the economical, ecological, public health, and
leisure domains. Intelligent transportation Systems (ITS) use the wireless
connectivity of communicating and automated vehicles in order to improve
road traffic conditions relatively to the stakes for the society and the individ-
ual. In this thesis, we have addressed the topic of estimation and regulation
of urban road traffic. A literature review covering the main approaches used
for road traffic estimation and regulation has been given. Based on the state
of the art of this topic, we have proposed some models and algorithms for the
estimation and control of urban road traffic in presence of communicating
and/or automated vehicles. The thesis contributions on the estimation of
urban road traffic are mainly based on the probability theory, while the the-
sis contributions on road traffic regulation are based on the control theory.
To counterbalance the lack of experimental data for discussing the assump-
tions and models, simulation studies were performed by implementing the
models in various communication and road traffic simulation frameworks.

Concerning the estimation of road traffic, two articles addressing the
case of multi lanes roads at an urban controlled junction have been pro-
posed. These papers are built upon an existing method which uses prob-
abilistic models feeded by information provided by probe vehicles. This
existing model is addressing the roads composed of one lane. However, in
the case of unbalanced traffic demand over the multiple lanes, this exist-
ing model is inaccurate. This argument justifies the proposed work on the
estimation of road traffic. We have considered a multi lanes road where
vehicles arrive, form queues at the traffic light and then pass the junction.
The purpose was to estimate the queue lengths on every lane, as well as
other parameters such as the penetration ratio of equipped vehicles and the
arrival rate of vehicles. For the estimation of road traffic, it is assumed low
or moderate traffic demand, which ensures that the vehicle arrivals can be
modeled as a Poisson process. It is also assumed that the queues at the
traffic light are cleared at the beginning of the red time. Because of the
inaccuracy of GPS systems, the probe vehicles cannot be assigned to a lane
with confidence. Therefore, it was necessary to extend the existing method,
which was the purpose of the thesis contribution. By letting the method
robust to the GPS localization accuracy, the method adds new benefits to
the existing one. As real traffic assignment data is not available, simulation
studies have been performed. The simulation studies presented in this doc-
ument use a discrete event simulator framework, sometimes coupled with
a microscopic road traffic simulator. The coupling of communication and
road traffic simulators (the VEINS framework) is enhancing a modern way
to get experimental results on Vehicular Ad Hoc Networks. The results of
the estimation methods show clearly the necessity to distinguish the vari-
ous queues on a multi lanes road, especially when the demand among the
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queues is not balanced. As a perspective to these methods, considering the
case where there is a residual queue at the beginning of the red light, i.e.
the moderate or high traffic demand case, would be interesting. Testing and
refining the assignment model proposed could also be an interesting sequel
to this thesis.

On another hand, based on the new potentials raised by communicat-
ing vehicles, two control strategies of the traffic lights in urban road net-
works have been proposed. The first strategy considers a semi-decentralized
control which is extending a centralized approach (Urban Traffic Control
algorithm) by introducing some contention window in the traffic light cy-
cle, where vehicles communicate to pass the junction. Second, an algorithm
which ensures the contention window efficiency has also been proposed to
explicit the concurrency of passing through the junction. A mix traffic with
communicating and non communicating vehicles is assumed. The penetra-
tion ratio of communicating vehicles is variable. The vehicles form queues at
the traffic light and it was assumed that the queue lengths are inferior to the
road length. Performances studies have been conducted for this algorithm,
using the simulation framework VEINS which combines road traffic and
communication simulators. The results show good performance of the con-
trol which can avoid congestion in some high demand simulated scenarios.
The results depend on a parameter which represents the junction capacity
loss when vehicles communicate to pass the junction. Further studies on
this parameter could benefit to the method tuning. Other perspectives to
these control methods could be to study their performances on larger net-
works and even in real applications. Validation of these methods on real
road networks would make the application practical and useful compared to
theoretical analyses.

In conclusion, this thesis proposes many contributions to the estimation
and control of road traffic, with reasonable and explicit assumptions, which
have been discussed through simulation studies. The development of these
approaches is included in the general process of optimization of mix traffic
(with communicating vehicles and traditional ones) which is an important
phase of the near future, preceding a full automated road traffic. The sim-
ulation results show the relevance of the assumptions and of the methods
developed. In particular, the refinement of the road traffic estimation for the
multi lanes roads enables better regulation of urban road traffic. This type
of methods will improve traffic estimation and optimization in urban road
networks. In addition to improving the road traffic conditions that users ex-
periment, the work presented in this thesis could benefit to the economical
and ecological fields. It is important to keep in mind that the transportation
systems are connected to domains that matter, on the mid and long terms.
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5.7 Implications and consequences

The part of this thesis which deals with the estimation of road traffic has
introduced an assignment model of vehicles onto the various lanes. This
assignment model could be used in other road traffic fields such as lane
assignment models. In our case, this assignment model is the basis for esti-
mating the penetration ratio of communicating vehicles, the arrival rates of
vehicles per lane and the queue lengths probability distributions per lane.
This thesis has also proven that increasing the accuracy of the estimation
of queue lengths in the cities, is particularly significant in the cases of im-
balanced queues. We recall that this case of imbalance is coming from the
combination of the junction topology and traffic demand properties. With
this greater accuracy, the regulation of the traffic would lead to better per-
formances which is valuable because the transition between a fluid and con-
gested road traffic is very sensitive to both road traffic input data and road
traffic control.

Concerning the road traffic control, the main contribution was the ex-
tension of the Traffic Urban Control (TUC) (centralized control) by the
introduction of a concurrency time window where vehicles communicate in
order to pass the junction (local control) which results in a semi decen-
tralized control. The local control gives a practical solution for controlling
traffic lights given the presence of communicating vehicles. Combined with
the TUC control, it results in a ready made solution which enhances the
state of the art strategies, in terms of performances, to avoid congestions
in the cities. In order to apply this findings, it would be adequate to test
the assumptions and evaluate the strategies both in simulation and in the
field. This recalls us that transportation research matters for the society
with its various and important stakes and application fields. By proposing
contributions to the state of the art both in the estimation and control of
urban road traffic, this thesis could contribute to enhance the conditions of
transportation systems experienced by the individuals and the society on
the mid and long terms.
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Université Lumière-Lyon II, 2002.

[18] R.D. Bretherton, Wood K., and Bowen G.T. Scoot -version 4. In
Proceedings of the 9th international conference on Road Transport In-
formation and Control, 1998.

[19] Walter Bronzi, Raphael Frank, German Castignani, and Thomas En-
gel. Bluetooth low energy performance and robustness analysis for
inter-vehicular communications. Ad Hoc Networks, 37:76–86, 2016.

[20] F. Busch. Traffic telematics in urban and regional environments. In
Proceedings of the Intertraffic Conference. Amsterdam, 1996.

[21] Shukai Chen and Daniel Jian Sun. An improved adaptive signal control
method for isolated signalized intersection based on dynamic program-
ming. IEEE Intelligent Transportation Systems Magazine, 8(4):4–14,
2016.

[22] Yang Cheng, Xiao Qin, Jing Jin, Bin Ran, and Jason Anderson.
Cycle-by-Cycle Queue Length Estimation for Signalized Intersections
Using Sampled Trajectory Data. Transportation Research Record,
2257(1):87–94, January 2011. Publisher: SAGE Publications Inc.



BIBLIOGRAPHY 157

[23] Junil Choi, Vutha Va, Nuria Gonzalez-Prelcic, Robert Daniels, Chan-
dra R Bhat, and Robert W Heath. Millimeter-wave vehicular commu-
nication to support massive automotive sensing. IEEE Communica-
tions Magazine, 54(12):160–167, 2016.

[24] S. Cohen. Ingénierie du trafic routier: Elément de théorie du trafic et
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