
HAL Id: tel-03957284
https://theses.hal.science/tel-03957284

Submitted on 26 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A novel efficient time series deep learning approach
using classification, prediction and reinforcement :

energy and telecom use case
Aicha Dridi

To cite this version:
Aicha Dridi. A novel efficient time series deep learning approach using classification, prediction and
reinforcement : energy and telecom use case. Artificial Intelligence [cs.AI]. Institut Polytechnique de
Paris, 2022. English. �NNT : 2022IPPAS010�. �tel-03957284�

https://theses.hal.science/tel-03957284
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
2I

P
PA

S
01

0

A novel efficient time series deep
Learning Approach using Classification,

Prediction and reinforcement: Energy
and Telecom use case

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Télécom SudParis

École doctorale n◦626 Ecole Doctorale de l’Institut Polytechnique de
Paris (EDIPParis)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Paris, le 28 Novembre 2022, par

AICHA DRIDI

Composition du Jury :

Marcelo Dias de Amorim
Directeur de Recherche, NPA Sorbonne Université - LIP6 Rapporteur

Président

Enrico Natalizio
Professeur des universités, LORIA, Campus Scientifique Rapporteur

Florence Ossart
Professeure des universités, en génie électrique, Sorbonne
Université Examinatrice

Yvon Gourhant
R&D at France Telecom Examinateur

Ghislain Agoua
Ingénieur de recherche et Data Scientist chez EDF R&D Examinateur

Hossam AFIFI
Professeur, Télécom SudParis (SAMOVAR) Directeur de thèse

Hassine Moungla
Professeur, Institut Mines-Télécom, Université Paris Descartes Co-encadrant de thèse

Jordi BADOSA
Ingénieur de recherche, École Polytechnique (LMD) Invité

Co-encadrant de thèse

iii

INSTITUT POLYTECHNIQUE DE PARIS

Abstract
Télécom SudParis

Docteur de l’Institut Polytechnique de Paris

A novel efficient time series deep Learning Approach using Classification,
Prediction and reinforcement: Energy and Telecom use case

by Aicha DRIDI

.

HHTTPS://WWW.IP-PARIS.FR/
https://telecom-sudparis.eu

iv

A time series is mathematically defined as a series of data indexed by time.
It could be seen as a finite sequence (x1,x2,. . . xn) of length n. Time series cover
many real-life phenomena and can be found in many fields. Indeed, it can
be a song, the evolution of the electricity consumption of a building or a city,
or even the growth of the purchase prices of properties. The work carried
out throughout this thesis aims to propose new approaches to treat time se-
ries. The first objective is to obtain high-precision predictions. The second
is to extract as much information as possible to apply mechanisms such as
anomaly detection. Finally, we aim to integrate the obtained results in a tool
for optimization and this using deep learning methods.

Indeed, during all the work we have faced several data of diverse nature
in the form of time series. This data type is constantly increasing due to the
proliferation of tools allowing us to collect and store it.Therefore, time series
are at the heart of our thesis.

During the thesis, we dealt with electrical data, cellular data, and Global
Positioning System (GPS) taxi tracks.

The electrical data is divided into consumption and production data. The
treated consumption data comes from two different buildings. The first build-
ing is an incubator. The incubator is divided into 7 zones. For each zone, we
have consumption data and the incubator’s overall consumption. For the
first two zones we also have consumption data categorized by type of con-
sumption (critical, delayable and comfort).

The second building is a student dorm. The data collected from this build-
ing comes from the ground floor, floors 1 to 6, the boiler room and overall
incoming power. Regarding the production data, it is collected from a pho-
tovoltaic panel installation.

The second set of data processed are the cellular traces. They are present
in the form of CDR (Call Detail Records) data sets. We dealt with two dif-
ferent CDRs the first CDR contains information on various Base stations in
Milan, Italy. The second CDR contains information on various Base stations
established in Dakar, Senegal. Every time an interaction between the sub-
scriber and the infrastructure of mobile networks occurs, it is collected and
stored in the dataset. The interactions are received/issued calls, SMS, or the
Internet. This information is time-stamped based on the interaction.

The third dataset contains traces of taxi mobility in Rome, Italy. It includes
the GPS coordinates (Latitude and Longitude) of approximately 320 taxis col-
lected over 30 days. The time information processed is the hour, minute, and
second, not the entire date.

The work proposed in this thesis is divided as follows:

v

First, I reviewed annd analyzed advanced data analysis and artificial in-
telligence methods in-depth. We chose the more adequate to process the dif-
ferent data categories in our possession. Indeed, with these methods, I could
extract the most relevant information.

Since the nature of the three data sets is not the same, we had to adapt the
applied processing .

The first studied method was classification since the need for quickly
arose. We studied several classification methods based on neural networks
to determine the most suitable for our data. For electrical data, we identi-
fied two objectives. One was to categorize the type of consumption, and the
second was to determine the category of the building according to the con-
sumption habits. For the second dataset, the objective was to determine the
daily profile of the base stations. For the third dataset, we didn’t apply the
classification. There was no need due to the data’s nature and the applica-
tion’s future needs.

The second studied method was forecasting. We started by applying sev-
eral prediction methods on the different datasets. After the various experi-
mentations it was found that the Dense Long Short-Term Memory (DLSTM)
provided the best prediction result in terms of performance metrics.

Several predictions have been made, namely, the energy consumption for
the two buildings studied during our Ph.D. The prediction of a particular
type of consumption. We also varied the forecasted period from the next
hour to the next day. In the same way for the production, we predicted the
future production of the photovoltaic panels located in the study area with
predictions ranging from 1 hour to 24 hours.

Regarding cellular data, we applied several prediction methods to deter-
mine the future load of a base station. This information is a very important
since it will subsequently allow network operators to adapt their infrastruc-
tures to demand. Similarly, to the energy predictions, predicting the load of
the base station goes from forecasting the next one hour to the next day.

Dealing with the GPS tracks of taxis in Rome was a little different since
the study’s purpose was exclusively to predict the next four GPS coordinates
of the trajectory to be taken by the taxi.

In the next part of the thesis, we mainly concentrate on the first and sec-
ond datasets (energy prosumption and cellular data). What makes us mainly
concentrate on the energy and cellular data is our intimate conviction that
they are highly correlated. Studying the cellular data will allow us to iden-
tify the profile of a specific geographical zone. Thus, it will permit us to
determine the energy consumption habits of that particular zone since the
energy conception is highly dependent on the human presence.

We started by exploring more extensive applications for the processed
datasets. We investigated first the semantic compression for the energy data
to avoid over-transmission using LoRa networks.

vi

The second investigated method responds to an essential problem which
is felt despite the abundance and the increase in data quantity, these data can
be erroneous or even lost or suffer from noise. We respond to this problem
by proposing using a method called Transfer Learning.

We also explored anomaly detection in cellular networks. We used the
result of base station load predictions to develop a mechanism capable of de-
tecting anomalies with an adaptative threshold.

Our last contribution is divided into two parts:
The first aims to develop and implement a solution to manage the con-

sumption of buildings powered by renewable resources (prosumption of re-
newable energy). The approach integrates the proposed model to perform
the prediction in a tool based on deep neural networks and reinforcement
learning to allow the dynamic optimization of energy resources (adequacy
of supply and demand).

The second allows the deployment of a drone to support a base station in
distress. We studied several methodologies present in the literature that we
compared to our approach to support the effectiveness of our tool.

For the energy management use case, we started by defining various sce-
narios. We then created an optimization model for each use case. We re-
solved the different optimization problems using CPLEX then investigated
two heuristic approaches. The first is called Bin Packing and the second
is called Rule-Based. The last used approach we examined is a machine
learning-based approach. We proposed using two different methods: the
first is Q-Learning based and the second is a deep learning approach.

We only studied one use case regarding cellular anomaly management
and drone deployment. We defined an optimization model that we resolved.
We then used a reinforcement learning approach to deal with drone deploy-
ment.

Even if in this work we did not have the opportunity to combine the infor-
mation related to the processing of the two datasets, we had the opportunity
to study each dataset individually.

vii

INSTITUT POLYTECHNIQUE DE PARIS

Résumé
Télécom SudParis

Docteur de l’Institut Polytechnique de Paris

Une nouvelle approche d’apprentissage en profondeur efficace pour le
traitement des séries Temporelles utilisant la classification, la prédiction

et le renforcement : Cas d’utilisations Energie et télécommunications

par Aicha DRIDI

HHTTPS://WWW.IP-PARIS.FR/
https://telecom-sudparis.eu

viii

. Une série chronologique est mathématiquement définie comme une
série de données indexées par le temps. Il peut être vu comme une suite finie
(x1,x2,. . . xn) de longueur n. Les séries temporelles couvrent un large éventail
de phénomènes réels et peuvent être trouvées dans de nombreux domaines.
En effet, il peut s’agir d’une chanson, de l’évolution de la consommation
électrique d’un immeuble ou d’une ville, ou encore de l’évolution des prix
d’achat des biens.

Les travaux menés tout au long de cette thèse visent à proposer de nou-
velles approches pour traiter les séries temporelles. Le premier objectif est
d’obtenir des prédictions de haute précision. Puis d’extraire le maximum
d’informations pour appliquer des mécanismes tels que la détection d’anomalies.
Enfin, nous visons à intégrer les résultats obtenus dans un outil d’optimisation
et ceci en utilisant des méthodes d’apprentissage profond. Par conséquent,
les séries temporelles sont au cœur de notre thèse. En effet, au cours de tous
les travaux menés nous avons été confrontés à plusieurs données de nature
diverse sous forme de séries temporelles. Ce type de données est en con-
stante augmentation en raison de la multiplication des outils permettant de
les collecter et de les stocker.

Le premier jeu de données que nous avons rencontré est formé de don-
nées électriques. Ces données sont divisées en données de consommation et
de production. Les données de consommation traitées proviennent de deux
bâtiments différents. Le premier bâtiment est un incubateur. L’incubateur
est divisé en 7 zones. Pour chaque zone, nous disposer des données de con-
sommation et de la consommation globale de l’incubateur. Pour les deux
premières zones, nous avons également des données de consommation caté-
gorisés par type de consommation (critique, programmable et confort). Le
second bâtiment est un dortoir pour étudiants. Les données recueillies dont
les données de consommation du rez-de-chaussée, des étages 1 à 6, de la
chaufferie et la puissance globale entrante. Concernant les données de pro-
duction, elles sont collectées à partir d’une installation de panneaux pho-
tovoltaïques. Ces informations sont horodatées avec une granularité de 30
minutes.

Le deuxième ensemble de données traitées sont les traces cellulaires. Ils se
présentent sous la forme d’ensembles de données CDR (Call Detail Records).
Nous avons traité deux CDR différents, le premier CDR contient des infor-
mations sur diverses stations de base situées à Milan, en Italie. Le deuxième
CDR contient des informations sur diverses stations de base établies à Dakar,
au Sénégal. Chaque fois qu’une interaction entre l’abonné et l’infrastructure
des réseaux mobiles se produit, elle est collectée et stockée dans l’ensemble
de données. Les interactions sont des appels reçus/émis, des SMS ou Inter-
net. Ces informations sont horodatées en fonction de l’interaction.

Le troisième ensemble de données contient des traces de la mobilité des

ix

taxis à Rome, en Italie. Il comprend les coordonnées GPS (Latitude et Longi-
tude) d’environ 320 taxis collectés sur 30 jours. Les informations temporelles
traitées sont l’heure, la minute et la seconde et non la date entière.

Le travail proposé dans cette thèse se décompose comme suit :

Tout d’abord, j’ai fait une étude approfondie des outils avancés d’analyse
de données et d’intelligence artificielle. Nous avons choisi le plus adéquat
pour traiter les différents types de données qui étaient en notre possession.
En effet, avec ces méthodes, j’ai pu extraire les informations les plus perti-
nentes. La nature des trois jeux de données n’étant pas la même, nous avons
dû adapter les traitements appliqués.

La première méthode étudiée est la classification puisque le besoin s’est
rapidement fait sentir, nous avons étudié plusieurs méthodes de classifica-
tion basées sur les réseaux de neurones afin de déterminer la plus adaptée à
nos données. Nous avons par la suite appliqué ces méthodes de classification
aux deux premiers jeux de données. Pour le troisième ensemble de données,
nous n’avons pas appliqué la classification. Cela n’était pas nécessaire en
raison de la nature des données et des besoins futurs de l’application.

Pour les données électriques, nous avons identifié deux objectifs. L’un
était de catégoriser le type de consommation, et le second était de déterminer
la catégorie du bâtiment en fonction des habitudes de consommation. Con-
cernant le deuxième jeu de données, l’objectif était de déterminer le profil
quotidien des stations de base.

La deuxième méthode étudiée est la prédiction. Nous avons commencé
par appliquer plusieurs méthodes de prédiction sur les différents jeux de
données. Après les différentes expérimentations, il a été constaté que Dense
Long Short Term Memory (DLSTM) fournissait le meilleur résultat de pré-
diction en termes de mesures de performance. Plusieurs prédictions ont été
faites, à savoir la prédiction de la consommation d’énergie pour les deux bâti-
ments étudiés au cours de notre doctorat. La prédiction d’un type particulier
de consommation. Nous avons également varié la période de prévision qui
va de l’heure suivante au jour suivant. De la même manière pour la produc-
tion, nous avons prédit la production future des panneaux photovoltaïques
situés dans la zone d’étude avec des prévisions allant de 1 heure à 24 heures.

Concernant les données cellulaires, nous avons appliqué plusieurs méth-
odes de prédiction pour déterminer la charge future d’une station de base.
Cette information est une mesure très importante puisqu’elle permettra en-
suite aux opérateurs de réseaux d’adapter leurs infrastructures à la demande.
Comme pour les prévisions d’énergie, la prévision de la charge de la station
de base va de la prévision de l’heure suivante au jour suivant.

Le traitement des traces GPS des taxis à Rome était un peu différent puisque
le but de l’étude était exclusivement de prédire les quatre prochaines coor-
données GPS de la trajectoire à suivre par le taxi.

x

Pour ce qui est de la suite de notre travail, nous nous sommes principale-
ment concentrés sur les deux premiers jeux de données (prosomation élec-
trique et cellulaire). Ce qui nous pousse à axer notre étude sur les données
énergétiques et cellulaires, c’est notre intime conviction qu’elles sont forte-
ment corrélées. L’étude des données cellulaires nous permettra d’identifier
le profil d’une zone géographique précise. Ainsi, cela nous permettra de
déterminer les habitudes de consommation énergétique de cette zone partic-
ulière puisque la consommation énergétique est fortement dépendante de la
présence humaine.

Nous avons ensuite étudié des applications plus étendues pour les jeux de
données traités : La première application est la compression sémantique des
données d’énergie pour éviter la sur-transmission des données en utilisant le
réseau LoRa.

La seconde application étudiée répond à un problème essentiel qui se
fait sentir malgré l’abondance et l’augmentation de la quantité de données,
ces données peuvent être erronées voire perdues ou souffrir de bruit. Nous
répondons à cette problématique en proposant l’utilisation d’une méthode
appelée Transfer Learning. La troisième application consiste en la mise en
place d’un mécanisme de détection d’anomalie et ceci en utilisant le résultat
des prédictions de charge des stations de base et un seuil adaptatif.

Notre dernière contribution est divisée en deux parties:
La première a pour objectif de développer et de mettre en place une solu-

tion permettant de gérer la consommation des bâtiments alimentés en ressources
renouvelables (prosommation d’énergie renouvelable). La démarche con-
siste à intégrer le modèle proposé pour effectuer la prédiction dans un outil
basé sur les réseaux de neurones profonds et l’apprentissage par renforce-
ment pour permettre l’optimisation dynamique des ressources énergétiques
(adéquation de l’offre et de la demande).

La seconde permet le déploiement d’un drone afin de prendre en charge
une station de base en détresse. Nous avons étudié plusieurs méthodolo-
gies présentes dans la littérature que nous avons comparées à notre approche
pour soutenir l’efficacité de notre outil.

Pour le cas d’utilisation de la gestion de l’énergie, nous avons commencé
par définir différents scénarios. Nous avons ensuite créé un modèle d’optimisation
pour chaque cas d’utilisation. Nous avons résolu les différents problèmes
d’optimisation à l’aide de CPLEX puis nous avons étudié deux approches
heuristiques. La première s’appelle Bin Packing et la seconde s’appelle Rule-
Based. La dernière approche utilisée que nous avons examinée est une ap-
proche basée sur l’apprentissage automatique. Nous avons proposé l’utilisation
de deux méthodes différentes : la première est basée sur le Q-Learning et la
seconde est une approche d’apprentissage en profondeur.

Concernant la gestion des anomalies cellulaires et le déploiement de drones,
nous n’avons étudié qu’un seul cas d’utilisation. Nous avons défini un mod-
èle d’optimisation que nous avons résolu. Nous avons ensuite utilisé une
approche d’apprentissage par renforcement pour gérer le déploiement de

xi

drones.

Même si dans ce travail nous n’avons pas eu l’opportunité de combiner
les informations liées au traitement des deux jeux de données, nous avons eu
l’occasion d’étudier en profondeur chaque jeu de données individuellement.

xiii

Acknowledgements

I would like to thank the people who have directly or indirectly supported
me and contributed to my work during the years of my Ph.D studies.

First, I would like to express my sincere gratitude to my supervisor and
thesis director Prof. Hossam Afifi. His knowledge and expertise have guided
me through my research. I was blessed to have the opportunity to work and
learn with him.

I thank my co-supervisors Dr. Hassine Moungla and Dr. Jordi Badosa for
their informed advice motivation, dedication, and patience.

Besides, Iwould like to thank the jury members for accepting my invita-
tion. I am particularly honored by their presence. I thank the reviewers Prof.
Marcelo Dias de Amorim and Prof. Enrico Natalazio for their insightful com-
ments and helpful feedback.

I also thank the examiners Prof. Florence Ossart, Ghislain Agoua, and
and Yvon Gourhant for their time and flexibility.

My next thanks are addressed to all my colleagues from from Telecom
SudParis, and all the colleagues that I met and had to work with for our joint
work in our shared office,

Last but certainly not least, I would like to thank my parents, brothers
and husband. Thank you for your continued support, and unconditional
love. No words can express my appreciation and gratitude. Love you so
much.

I would also like to thank my friends ...

This work was supported by the DATAIA Institute, it is a product of re-
search made in collaboration between Télécom SudParis and the Laboratoire
de Météorologie Dynamique, and the Laboratoire Génie Electrique et Elec-
tronique de Paris

This work benefited from the support of the Energy4Climate Interdisci-
plinary Center (E4C) of IP Paris and Ecole des Ponts ParisTech. It was sup-
ported by 3rd Programme d’Investissements d’Avenir [ANR-18-EUR-0006-
02].

https://telecom-sudparis.eu
https://www.lmd.jussieu.fr/
https://www.lmd.jussieu.fr/
https://www.geeps.centralesupelec.fr/
https://www.geeps.centralesupelec.fr/

xv

Contents

Abstract iii

Abstract iii

Résumé viii

Acknowledgements xiii

1 General Introduction 1
1.1 Research issues . 1
1.2 Context and problem formulation 4
1.3 Contributions . 5
1.4 Structure of the thesis . 7

2 Proposed architecture For Time Series Analysis 9
2.1 Introduction . 9
2.2 Time Series Classification . 9

2.2.1 Related work . 10
2.2.2 Classification Algorithms 10
2.2.3 Performance results for classification 14

2.3 Time Series Forecasting . 15
2.3.1 Related work . 15
2.3.2 Prediction Algorithms 16
2.3.3 The proposed error functions 20
2.3.4 Hyperprametrisation . 21
2.3.5 Prediction algorithms comparison and choice 24
2.3.6 Implementation of native LSTM on ships 25

2.4 Proposed architecture . 25
2.4.1 Related work classification aware prediction 25
2.4.2 Classification aware Prediction 25

2.5 Applications . 26
2.5.1 Time Series collection 26
2.5.2 Data Colletion architecture 27
2.5.3 Micro Grid . 29
2.5.4 Cellular networks . 35
2.5.5 Public Transportation 40

2.6 Discussion . 42
2.7 Conclusion . 42

xvi

3 A Deeper Time-series Analysis of the selected applications 45
3.1 Introduction . 45
3.2 Semantic compression . 45

3.2.1 Introduction . 45
3.2.2 Related work . 46
3.2.3 Proposed method . 47
3.2.4 Performance analysis . 48

3.3 From Lack of data to Transfer Learning solution 50
3.3.1 Introduction . 50
3.3.2 Related work . 50
3.3.3 Transfer learning Architecture 51
3.3.4 Cellular network application 53
3.3.5 Discussion . 56

3.4 Anomaly detection . 58
3.4.1 Introduction . 58
3.4.2 Related work . 59
3.4.3 Adaptive Range-based LSTM Prediction Scheme 61
3.4.4 Spatio-Temporal Anomaly Detection Mechanism (STAD) 64

3.5 Conclusion . 71

4 Resource Management and optimization Algorithm 75
4.1 Introduction . 75

4.1.1 Related work . 76
4.2 Energy Use case . 79

4.2.1 Context and problem definition 79
4.2.2 Uses cases . 82
4.2.3 Exact Resolution . 83
4.2.4 Heuristic Resolution . 85
4.2.5 Machine Learning Method 88
4.2.6 Performance results for Resource management 93

4.3 Cellular network Use case . 100
4.3.1 Related work . 101

4.4 Modeling and ILP optimization of the Quality of Service . . . 102
4.4.1 Network Model and architecture 102
4.4.2 ILP Optimization . 103

4.5 Reinforcement Learning Approach 105
4.5.1 Results and discussion 108
4.5.2 From Deep LSTM to Transformers 109

4.6 Conclusion . 111

5 Conclusion and Perspectives 113
5.1 Conclusions . 113
5.2 Perspectives . 115

Bibliography 117

xvii

List of Figures

1.1 the main functional AI areas . 2

2.1 A simple decision tree classifier 12
2.2 Architecture of a three-layer MLP neural network 13
2.3 Convolutional neural network diagram 14
2.4 Efficiency of classification algorithms 15
2.5 One Step Prediction of CDR and Energy using SVR 17
2.6 Recurrent neural network diagram 17
2.7 The LSTM cell . 19
2.8 The GRU cell . 20
2.9 Multivariate LSTM prediction 23
2.10 UniVariate LSTM prediction . 23
2.11 Shift step or prediction window 24
2.12 The proposed architecture . 26
2.13 Data collection system actors 28
2.14 One day energy consumption/production 30
2.15 One week energy consumption with classification for two zones 31
2.16 One month energy consumption student dorm, for the 1-6 floors,

the ground floor and the heating 31
2.17 One month energy consumption seven zones/total energy con-

sumption . 32
2.18 energy consumption prediction with 30 min granularity input

data . 32
2.19 energy consumption prediction with one hour granularity in-

put data . 33
2.20 energy consumption prediction with one hour granularity in-

put data . 34
2.21 One day energy consumption/production 35
2.22 Critical energy consumption prediction with one hour granu-

larity input data . 35
2.23 Critical energy consumption prediction with one hour granu-

larity input data . 36
2.24 Critical energy consumption prediction with one hour granu-

larity input data . 36
2.25 Internet load activity from 20th to 30th Nov. in the three cells . 37
2.26 Internet load activity from 20th to 30th Dec. in the three cells . 37
2.27 Classification results visualization over Milan Map 39
2.28 Forecasted trajectories using DLSTM & DGRU 42

3.1 The different steps of the proposed prediction approach 48

xviii

3.2 Transfer learning architecture 52
3.3 The pertinence of transfer learning use with One hour granu-

larity prediction . 54
3.4 Improvement via transfer learning with 10 minutes granular-

ity prediction . 55
3.5 IntraClass Transfer Learning 56
3.6 InterClass TL: downtown to university 57
3.7 InterClass TL: university to night life 58
3.8 System topology . 62
3.9 General flow diagram for the algorithm 63
3.10 Network load for storage capacity = 35% and capacity =10%. . 64
3.11 STAD: Spatio-Temporal anomaly detection framework scheme 65
3.12 Duomo square: evolution of numbers of calls) 66
3.13 Examples of Dakar anomalies: the top figure gives an example

of a Friday anomaly (red curve) and its previous workdays’
normal data (blue curves). The bottom figure shows examples
of BS anomalies on February 5th (red curve) and other normal
data from Tuesdays. 68

3.14 Comparison between the predicted values of SVR and LSTM
for Dakar dataset . 69

3.15 Temporal Anomaly detection result for the SanSiro testbed . . 70
3.16 Temporal Friday Anomaly detection results for the Dakar testbed 72

4.1 A Micro Grid Architecture . 80
4.2 Microgrid management system Architecture 80
4.3 Bin Packing Problems . 86
4.4 RL interaction . 91
4.5 First Case CPLEX Resolution for one day 94
4.6 Second Case Rule-Based Resolution for one day 95
4.7 Comparison CPLEX and Rule-Based First Case Resolution . . 95
4.8 Comparison CPLEX and Rule-Based Second Case Resolution . 95
4.9 Performance evaluation of Q-learning algorithm 96
4.10 DL vs RL predicted action for one day: Predicted Use of Bat-

tery and Predicted Buy from the grid 98
4.11 DL vs RL predicted action for one day: Predicted Store and

Predicted use of solar energy 98
4.12 First case LSTM resolution . 99
4.13 Second case LSTM resolution 99
4.14 Third case LSTM resolution . 99
4.15 Fourth case LSTM resolution 100
4.16 QoS Management architecture 103
4.17 Finite automate for one day . 107
4.18 General flow diagram for the proposed algorithm 107
4.19 Reward and Penalties for 5000 iterations 108
4.20 Reward and Penalties for 5000 iterations 109
4.21 Encoder-decoder sequence to sequence model 111
4.22 Third case LSTM resolution . 111

xix

List of Tables

2.1 Metaparameters Choice . 21
2.2 Comparisons of prediction methods in terms of processing units 22
2.3 Impact of the shift step on the prediction accuracy. 24
2.4 Efficiency of deep prediction algorithms 24
2.5 Obtained measures for each trajectory for mean square error

(MSE) and root mean square error (RMSE) in the test phase. . 41

3.1 Comparison (10 epochs, 3 steps per epoch and 30 neurons) of
RNN, LSTM and GRU neural network sizes 49

3.2 Neural network sizes with different configurations 49
3.3 Efficiency of transfer Learning with one hour granularity . . . 54
3.4 Improvement via transfer Learning with 10 minutes granularity 55
3.5 Efficiency of Intra Class Transfer Learning algorithms (univer-

sity) . 56
3.6 InterClass results (downtown to university) 57
3.7 InterClass TL between university and night life classes 58
3.8 Metrics comparison . 69
3.9 . 69

4.1 Variables and definition . 82
4.2 Comparison between LSTM and Q-Learning execution Time . 97
4.3 Accuracy of daily predicted actions LSTM vs Q-Learning . . . 97
4.4 Accuracy of daily predicted actions 99
4.5 KPI performance for First case LSTM resolution 99
4.6 KPI performance for Second case LSTM resolution 100
4.7 KPI performance for Third case LSTM resolution 100
4.8 KPI performance for Fourth case LSTM resolution 100
4.9 Notations per cell . 104
4.10 Q-Learning execution Time . 108
4.11 Q-Learning mean values . 109

xxi

List of Abbreviations

3G Third Generation
4G Fourth Generation
5G Fifth Generation
ACDTW Adaptive Constrained Dynamic Time Warping
ALSTM Attention LSTM
API Application Programming Interfaces
ARFIMA AutoRegressive Fractionally Integrated Moving Average
ARIMA Autoregressive Integrated Moving Average
BE Comfort Energy
BLSTM Bidirectional LSTM
BP Bin Packing
BS Base Station
CE Critical Energy
CDR Call Detail Records
CEEMDAN Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
CNN Convolutional Neural Network
CONV Convolution layer
CPU Central Processing Unit
D4D Data for Development
DDOS Distributed Denial Of Service
DDPG Deep Deterministic Policy Gradients
DE Delayed Energy
DER Distributed Energy Resources
DFTS Direct Future Time Series forecast
DGRU Dense GRU
DLSTM Dense Long Short-Term Memory
DQN Deep Q-Network
DRL Deep RL
DTC Decision Tree Classification
DTW Dynamic Time Warping
E4C) Energy4Climate
ECG ElectroCardioGram
EMS Energy Management System
ESS Energy Storage System
FC Fully Connected
FCN Fully Convolutional Networks
GPS Global Positioning System
GPU Graphics Processing Unit
GRU Gated Recurrent Unit

xxii

HVAC Heating, Ventilation, and Air Conditioning
IETF Internet Engineering Task Force
ILP Integer Linear Programming
IoT Internet of Things
KNN K-Nearest Neighbours
KPI Key Performance Indicators
LMD Laboratoire de Métérologie Dynamique
LORA Long Range Radio
LPA Local Procrustes Analysis
LR Logistic Regression
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MAS multiagent system
MDP Markov Decision Process
MG MicroGrid
ML Machine Learning
MLP Multi Layer Perceptron
MPEG Moving Picture Experts Group
MRI Magnetic Resonance Imaging
MSE Mean Square Error
MVNO Mobile Virtual Network Operators
NB Naïve Bayes
NSE Nash–Sutcliffe Efficiency
PG Policy gradient
POOL Pooling layer
PPO Proximal Policy Optimization
PSO Particle Swarm Optimization
PV Photovoltaic Panels
QoE Quality of experience
QoS Quality of service
RB Rule Based
ReLU Rectified Linear Units
ResNet Residual Networks
RF Randon Forest
RL Reinforcement Learning
RMSE Root Mean Square Error
RNN Recurrent Neural Network
SMS Short Message Service
SoC State of Charge
STAD Spatio-Temporal Anomaly Detection
SVM Support Vector Machine
SVR Support Vector Regression
TATP Time-Alignment of Time Point forecast
TL Transfer Learning
TSC Time Series Classification
URL Uniform Resource Locator
UTC Universal Time Coordinated

xxiii

XML Extensible Markup Language

1

Chapter 1

General Introduction

1.1 Research issues

It was in the 1940s that the mathematician Norbert Wiener launched the sci-
ence of the functioning of the human mind, which he called cybernetics. The
idea is to model the mind as a black box but this was not conclusive. Two
approaches to AI emerged in the 1940s: connectionism and cognitivism. The
first aims to reproduce the inner workings of the human brain in a machine.
Researchers invent the formal neuron, the first mathematical model of the
neuron. For the second, he endorses the hypothesis that thought is analo-
gous to an information processing process. Thought is described there at
an abstract level, it is a manipulation of symbols that is independent of the
material medium.

It was in 1950 that the notion of artificial intelligence(AI) was born thanks
to the mathematician Alan Turing. In his book Computing Machinery and
Intelligence, he evokes the possibility of introducing a form of intelligence
to machines. Alan Turing devised a test known today as the Turing test to
answer his existential question: "Can a machine think". The proposed test
aims to estimate a machine’s ability to imitate human conversation. To do
this, a subject will interact blindly with another human, and with a machine
programmed to formulate sensible answers. After 5 minutes of conversation,
the man must succeed in determining which of his two interlocutors is the
AI.

In this game of imitations, the objective of the machine is not to answer
questions correctly, but to answer in the most human way possible by deceiv-
ing the human interlocutor by answering. If the subject can determine exactly
if it is a machine then the machine has not passed the test otherwise accord-
ing to Alan Turing the machine can be considered intelligent. Although the
relevance of the Turing test is still questioned, researchers still use it.

In 1956, Marvin Lee Minsky, an American scientist, defined artificial in-
telligence as: "The construction of computer programs which engage in tasks
which are, for the time being, performed more satisfactorily by human be-
ings, because they require high-level mental processes such as: perceptual
learning, memory organization and critical reasoning."

ELIZA is the first Artificial Intelligence program to pass the Turing test in
1966. This program could analyze a text and search for keywords to respond

2 Chapter 1. General Introduction

coherently to its interlocutor. The program convinced several of its interlocu-
tors that he was a real person. The second IA Parry program passed the test
in 1972. This program mimicked the behavior of a paranoid schizophrenic
person, and in more than 52% of cases the psychiatrists believed they were
talking to a real human being.

AI is made up of several branches that have developed over the years.
The following figure 1.1 shows the different branches that make it up. Each
branch aims to solve a problem that arises. The beauty of AI is found in
the crossing of these branches. For instance, machine learning models can
be used to solve problems related to voice, whether it is its generation or
transcription.

FIGURE 1.1: the main functional AI areas

Despite the rise of AI, and the various promises that have been made
such as mass machine translation or even developing a computer capable of
beating the world chess champion, in less than ten years. Unfortunately, they
could not be held because the computers of the time were unable to store or
process information efficiently. These factors have held back the quest for
artificial intelligence for several years.

Artificial intelligence has succeeded in taking a new step. Thanks to, the
emergence of graphics processors in the 2010s provides the computing power
needed to train neural networks. And, the availability of very large correctly
annotated databases allowing for finer learning.

Two main approaches to AI:

• The first is symbolic programming, culminating in the 1980s with the
development of expert systems. It is a tool capable of reproducing the
cognitive mechanisms of an expert in a particular field. The problem is
that with such systems, you have to start from scratch when develop-
ing a new model: precise and written rules are by nature very difficult
or even impossible to generalize from one problem to another (for ex-
ample, passing from voice recognition to medical diagnosis).

• The second is machine learning which is an approach inspired by the
brain. In this case, we program a general model, but the computer ad-
justs the model’s parameters using the data that we provide. This is
the most popular approach these days. Some of these models are very

1.1. Research issues 3

close to statistical methods, but the most famous are inspired by neuro-
science: they are called artificial neural networks. In the following, we
will mainly focus on this approach. Machine learning relies on math-
ematical and statistical approaches to allow computers to learn from
data, improving their performance in solving tasks without being ex-
plicitly programmed for each one.

Machine learning algorithms can be categorized according to the learning
mode they employ:

• Supervised learning

• Unsupervised learning

• Semi-supervised learning

• Reinforcement learning

• Transfer learning

Over the past few years, science and technology have evolved to finally
enable massive parallel computations and expand the horizon of deep learn-
ing. Deep learning is a subset of machine learning that employs artificial
neural networks to emulate the human brain’s learning process.

The main difference between machine learning algorithms and deep learn-
ing is that the first one generally needs human correction when they get
something wrong. In contrast, the second can improve their results through
repetition without human intervention. Deep learning algorithm usually re-
quires big data sets that include various data.

Deep neural networks have proved effective and achieve high accuracy
in many application domains. For these reasons, they are one of the most
widely employed machine learning methods to solve problems dealing with
various data types. AlphaGo [1] program is one of the more famous deep
learning algorithms. AlphaGo aims to build a computer Go agent capable
of beating the best human player. The inventors of AlphaGo started by pre-
senting the program to several games of Go to learn the mechanics. Then it
started playing against different versions of itself thousands of times, learn-
ing from its mistakes after each match.

Various research applied deep neural networks for different other appli-
cations. It could be used for image recognition. [2], Real-Time Object Detec-
tion.

In [3], the authors present YOLO, a new approach to object detection.
They frame object detection as a regression problem to spatially separated
bounding boxes and associated class probabilities.

Another application is natural language processing [4]. In this paper, the
author presents a new network architecture, the Transformer, based exclu-
sively on attention mechanisms, dispensing with repetition and convolutions

4 Chapter 1. General Introduction

entirely. They tested the model on an English-to-French translation task and
an English-to-German translation task.

Another application is the generative modeling problem [5], where the
authors propose a new framework for evaluating productive models via an
adversarial process.

In [6], the authors initially formulated time series forecasting problem
along with its mathematical fundamentals. Then, they applied the most
common deep learning architectures currently successfully predicting time
series, highlighting their advantages and limitations. In the rest of our work,
we mainly focused on using deep learning to process time series from differ-
ent fields.

1.2 Context and problem formulation

The massive growth of sensors (Temperature sensor, Humidity Sensor, Ac-
celerometer, Position Sensor) and mobile devices (smartphones, tablets, wear-
able devices, and mobile phones subscribers) increases the generated data
explosively. There will be hundreds of billions of connected devices with the
emergence of the Fifth Generation of Cellular Network Technology (5G) [7].

Due to that emergence, the Internet of Things (IoT) applications have been
growing and revolutionizing many aspects of human society in the past four
decades. These expanding applications also generate big data that can be
gathered and managed.

Nevertheless, this rapid growth may impact the existing structures and
lead to anomalies. These anomalies may result from different failures de-
pending on the use area.

Considering the Power Grid domain, a broken power substation can some-
times produce sudden energy network blackouts, taking the complete area’s
power offline. Other types of failures may occur with the grid domain. Sig-
nificantly, when using alternative power (renewable energy sources), sudden
weather changes will impact production and lead to a lack of energy since it
is highly dependent on weather conditions.

Sometimes, an over-demand and lousy planning can also create a lack of
capacity. Some other failures are due to security issues. Three major black-
outs occurred in 2003. The first one was On 14 August 2003 [8]. A blackout
happened between Canada and the U.S., affecting approximately 50 million
people in eight U.S. states and two Canadian provinces. The second occurred
on 23 September 2003 and unfolded in the Swedish/Danish system, and the
last arrived in continental Europe on 28 September. This blackout resulted in
a complete loss of power throughout Italy.

Depending on the use case failure, different causes could be identified. If
we analyse the network failures causes, five leading are pointed out:

• Resource failure may result from an accident and/or natural disaster.

• Hardware failure: A hardware component failure

1.3. Contributions 5

• Hard Drive Failures: Could result on incompatible Firmware Upgrades
or Patches

• Software Failures: A configuration file can go missing or become cor-
rupted, or an expired license

• Security Failures: The most commonly used attack is the Distributed
Denial Of Service (DDOS), where the cybercriminals aim to cause an
outage

For electrical and cellular networks, overconsumption can lead to an anomaly.

The energy sector is currently facing significant structural changes and
challenges: the uses of electricity are constantly increasing (a generalization
of air conditioning and electric vehicles), and climate issues require an in-
crease in the share of renewable energies in production (solar and wind).
Adapting energy consumption behavior to the available resource is a com-
plex problem since we need to identify consumer habits. The increase in the
use of cellular networks allows us to study the human presence in a given
place according to a specific base station to predict their behavior and, thus,
energy consumption.

1.3 Contributions

The work carried out in this thesis aims to present an architecture capa-
ble of processing various time series and interacting with a system based
on these time series. Throughout this work, we have used five-time series
datasets from three domains: Energy, Telecom, and GPS tracking.

The first dataset we encountered is made up of consumption data. The
processed consumption data comes from two different buildings. The first
building is an incubator, and the second is a student dormitory.

The second set of data is production data. They are collected from an
installation of photovoltaic panels.

The third and fourth datasets processed are cellular traces. They come
from CDR (Call Detail Records) data sets. We have dealt with two differ-
ent CDRs; the first CDR contains information about various base stations in
Milan, Italy. The second CDR contains information on various base stations
established in Dakar, Senegal.

The fifth dataset contains traces of taxi mobility in Rome, Italy. It includes
the GPS coordinates (Latitude and Longitude) of approximately 320 taxis col-
lected over 30 days.

During our thesis, we faced various problems, which we can classify into
two main themes.

• Time series processing

• Integration in an optimization tool

6 Chapter 1. General Introduction

We tried to respond to various questions in the first theme:

• How to obtain quality predictions (data not having the same pattern)?

• How to transmit a large volume of data via low-speed networks?

• How to acquire good predictions with an incomplete dataset?

• How to detect an anomaly?

As for the second theme, we mainly tried to answer the following two ques-
tions:

• How to make several actors cooperate?

• Which optimization approach to choosing?

To respond to the various issues, we have proposed several contributions.

Our first contribution is proposing a method that allows us to obtain qual-
ity predictions. We applied this algorithm to the datasets cited above. To do
this, we started by studying the state of the art of the different techniques in
detail and compared their results to choose the appropriate solution for our
needs. The results obtained pushed us to combine a phase of classification
the first time and a stage of prediction the second time.

Secondly, we were interested in more in-depth applications that allow us
to exploit the results of our predictions. To respond to how to transmit a
large volume of data via low-speed networks? We proposed the semantic
compression technique based on the prediction that we applied to our first
dataset. Semantic compression aims to find a solution to sending a large vol-
ume of data when the transmission support does not allow it.

Then we proposed the use of Transfer Learning. We applied this method
to our third dataset to answer two problems the first is the lack of data, and
the second is the personalization. This contribution allowed us to respond
to the third question, "How to acquire good predictions with an incomplete
dataset?".

Anomaly detection is a vast topic. We were interested in detecting anoma-
lies in cellular networks, so we studied it for the cellular domain by exploit-
ing the third and fourth datasets. We first proposed an adaptive threshold
and a spatiotemporal method to detect anomalies.

The last contribution is the proposition of a resource management and op-
timization algorithm. It was applied to two use cases. The first application is
the deployment of an energy management system. The second application is
applied to the cellular network domain, where we manage the drone deploy-
ment in case of an overload on a specific cell which generates the Base Station
Failure. We imagined different scenarios we solved using various methods
(Bin Packing, Rule-Based, Q-learning, LSTM, and exact resolution).

1.4. Structure of the thesis 7

1.4 Structure of the thesis

This thesis is structured as follow.
Chapter 2 presents the proposed architecture to deal with time series anal-

ysis, classification, and forecasting. We show some of the time series collec-
tion states of the art. Then we focus on the energy use case by collecting con-
sumption data from the student dorm. After that, we introduced the time
series classification with some related work, a comparison between the three
main algorithms, and a presentation of some performances. We moved then
to Time series forecasting, where we presented the various studied algorithm
and how we set the hyperparameters. We finally show in this chapter some
results according to the different applications that we made.

Chapter 3 presents some more profound applications to our architecture.
We start by investigating the possibility of making semantic compression so
that we don’t need to send all the collected data. We also examined a tech-
nique called Transfer Learning to deal with erroneous or lost data. And fi-
nally, we used our prediction results to determine the mean daily load for
base stations. This prediction permits us to fix adaptative thresholds to de-
tect eventual anomalies. We also proposed a spatiotemporal method to detect
anomalies.

Chapter 4 describes the proposed resource management and optimization
algorithm. We first investigate the energy use case. We started by defining
multiple scenarios we resolved with exact, heuristic, and machine-learning
solutions. We then studied the cellular use case, where we identified a sce-
nario. After that, we fixed it using the exact resolution and two machine-
learning methods.

Finally, in the chapter (Chapter 5), we conclude the thesis by providing an
overview of our contributions and present possible extensions to the work
we realized.

9

Chapter 2

Proposed architecture For Time
Series Analysis

2.1 Introduction

The need for integrating mechanisms for data analysis and exploitation is in-
creasingly felt. The volume of data transferred mandates us to implement an
intelligent tool to manage it. Moreover, the existing infrastructures (electrical
and cellular) are increasingly suffering from various phenomena (climatic
changes, increasing users demands...). Considering the Cellular infrastruc-
ture since the development of 3G, 4G, and 5G, the amount of collected and
shared data all over the day is increasing, leading to anomalies. The same is
true for electrical infrastructures. Since the customers’ demand is increasing,
an anomaly could lead to an interruption.

In this chapter, we are proposing an architecture for time series analy-
sis. We will go from the collection of the data for the electrical use case to
the application of machine learning methods. The applied machine learning
techniques presented in this chapter are classification and forecasting. For
each process, we will start by exposing a brief state of the art of the existing
schemes. We will then disclose the compared algorithms. After that, we will
reveal our proposed method with the obtained results. Finally, we will show
the obtained results for each method applied to various data sets.

2.2 Time Series Classification

With the development of machine learning, various applications are possible.
Classification is one of them. Classification is a general task that can be useful
across many subject-matter domains and applications.

In supervised learning, where the used dataset is labeled, the main infer-
ence of classification is identifying the category to which a new item belongs
based on a training dataset of data containing observations (or instances)
whose classes are known. In other words, the goal is to identify a time series
coming from one of the possible sources or predefined groups using labeled
training data.

It has been shown that classification is accurate to detect not only the car-
bon footprint produced by household devices [9] but also to detect disease
using electrocardiogram data [10].

10 Chapter 2. Proposed architecture For Time Series Analysis

2.2.1 Related work

Several methods to classify time series data were suggested in the litera-
ture. Some research focuses on applying the Randon Forest (RF) to data like
MODIS time series. MODIS is a consistent spatial and temporal comparison
of vegetation canopy greenness, a composite property of leaf area, chloro-
phyll, and canopy structure. RF was used in this study to classify crop type,
which is essential for food safety and industries [11].

In another work, [12], the authors suggested an architecture called "Incep-
tionTime," a novel deep learning ensemble for time series classification (TSC).
The proposed model comprises five distinct Inception networks (deep neural
networks) with an architectural design consisting of repeating components
referred to as Inception modules. It contains two different residual blocks.
Each block comprises three Inception modules rather than traditional fully
convolutional layers initialized randomly).

Zhiguang Wang et. al [13] compared different neural network approaches
to classify time series. It has been shown that regarding the used bench-
marks, the fully convolutional networks (FCN) and the residual networks
(ResNet) achieved the best re

In [14], authors proposed and compared the suggested model Long Short
Term Memory LSTM-FCNs and Attention LSTM-FCN (ALSTM-FCN) to state-
of-the-art models. LSTM-FNC and ALSTM-FCN were tested on all 85 UCR
(currently the largest publicly available repository for TSC) time series bench-
marks. Results show that LSTM-FCNs can expand FCN models by improv-
ing their performance. However, the ALSTM-FCN could not achieve the
same performance as the LSTM-FCN on some of the used datasets.

Authors in [15] proposed using a semi-supervised algorithm when the
set of labeled examples available is limited. They tested their algorithm on
different datasets (ECG Dataset, handwritten the document, Yoga Dataset).

Huanhuan Li and al., [16] proposed an adaptive constrained dynamic
time warping (ACDTW) to classify time series. They suggested two penal-
ties to increase the accuracy of the similarity measure within two-time series.
The results confirm that ACDTW produces better than four state-of-the-art
algorithms on the UCR time series archive.

This section presents some of the investigated classification algorithms
in the literature. In the following paragraphs, we will introduce some time
series classification algorithms and the methodology chosen to select the al-
gorithm we will use in our architecture. Time series classification has been
applied to various domains, agriculture, food safety, handwritten...

2.2.2 Classification Algorithms

In this section, we will introduce two main categories of time series classifi-
cation algorithms:

• Linear Models

– Support Vector Machines

2.2. Time Series Classification 11

– Logistic Regression

• Non-linear Models

– K-Nearest Neighbours

– Naïve Bayes

– Decision Tree Classification

– Random Forest Classification

Support Vector Machine (SVM)

Support Vector Machines (SVM) are supervised machine learning models
that solve mathematical discrimination and regression problems. The prin-
ciple of SVMs consists in reducing a classification or discrimination problem
to a hyperplane (feature space) in which the data is separated into several
classes whose boundary is furthest from the data points. The concept of
boundary implies that the information is linearly separable. We propose to
use SVM with linear kernels to classify multidimensional time-series datasets.
The SVM classification layer is added before the recurrent neural network ar-
chitecture to improve the deep learning performance model.[17]

Logistic Regression (RL)

It is a powerful supervised Machine Learning (ML) algorithm used for binary
classification problems (when the target is categorical) [18]. It is a statistical
model for studying the relationships between a set of qualitative variables,
Xi, and a qualitative variable, Y. It is a generalized linear model using a lo-
gistic function as a link function[19]. RL can be used for classification and
class probability estimation because it is linked to logistic data distribution.
It takes a linear combination of features and applies a nonlinear sigmoidal
function to them. The most commonly used approach is to have one binary
output variable. However, we can observe in some cases multiple classes
outputs (multinomial logistic regression) [20].

K-Nearest Neighbours (KNN)

kNN is a standard classification algorithm that relies exclusively on the choice
of the classification metric. It is "non-parametric" (only k must be fixed) and
is based only on training data [21]. It is a distance-based classifier, and the
metric used to determine class membership is the Euclidean distance. To
estimate the output associated with a new input x, the k nearest neighbors
method considers (in an identical way) the k training samples whose infor-
mation is closest to the new input x, according to a distance to be defined.
KNN can be adapted for time series using the dynamic time warping (DTW)
metric distance [22].

12 Chapter 2. Proposed architecture For Time Series Analysis

Naïve Bayes (NB)

Bayes’ theorem is based on conditional probabilities: "What is the probability
that an event will occur knowing that another event has already occurred."
[23] In real applications of Naive Bayes, the Outcome is calculated based on
several variables that make the calculation complex. To avoid making com-
plex calculations, one approach is to consider these variables independently.
This is a strong assumption. Generally, the predictor variables are related to
each other. The term “naive” comes from the fact that we assume this inde-
pendence of the variables [24].

Naive Bayes classifiers are well used in many real-world situations, such
as document classification and spam filtering.

Decision Tree Classification (DTC)

DTC is used as a Supervised Learning technique in both continuous and cat-
egorical problems [25]. It is a decision support tool representing a set of
choices in the graphical form of a tree. The different possible decisions are
located at the branches’ ends (the tree’s " leaves ") and are reached according
to decisions made at each stage. Given data of attributes and their classes,
a decision tree produces a sequence of rules that can be used to classify the
data [26].

0

FIGURE 2.1: A simple decision tree classifier

Random Forest Classification

The “random forest” algorithm was proposed by Leo Breiman and Adèle
Cutler in 2001 [27]. In its most classic form, it performs parallel learning
on multiple randomly constructed decision trees trained on different subsets
of data. The ideal number of trees, which can go up to several hundred or
even more, is an important parameter: it is very variable and depends on the
problem. Concretely, each tree of the random forest is trained on a random
subset of data according to the principle of bagging, with a random subset
of features (variable characteristics of the data) according to the principle of
“random projections.” The predictions are then averaged when the data is
quantitative or used for voting for qualitative data, in the case of classifica-
tion trees [28]. RF requires little data pre-processing.

2.2. Time Series Classification 13

Multi Layer Perceptron (MLP)

MLP is a type of feed-forward artificial neural network. They are neural net-
work models that work as universal approximators. They can approximate
any continuous function. MLPs are formed of neurons called perceptions.
A perceptron is a single-neuron model precursor to more extensive neural
networks. A perceptron receives n features as input (x = x1,x2,. . . xn), and
each element is associated with a weight. Input features must be numeric.
So, non-numeric input features must be converted to numeric ones to use a
perceptron [29]. MLP combines several neurons into at least three layers: an
input, hidden, and output layer. The input layer receives the input signal
to be processed. The output layer performs the prediction or classification
tasks. The real computational engine of the MLP is the arbitrary number of
hidden layers placed between the input and output layers [30]. MLP is a su-
pervised learning algorithm that is based on back-propagation techniques.

FIGURE 2.2: Architecture of a three-layer MLP neural network

Convolutional Neural Network (CNN)

CNCNN is a Deep Learning algorithm that can take in an input image, assign
importance (learnable weights and biases) to various aspects/objects in the
picture, and be able to differentiate one from the other [31]. Generally, the
architecture of a Convolutional Neural Network is composed of [32]:

• Convolution layer (CONV): The role of this first layer is to analyze the
images provided as input and to detect the presence of a set of features.

• Pooling layer (POOL): receives as input the feature maps formed at the
output of the convolution layer, and its role is to reduce the size of the
images while preserving their most essential characteristics.

• The ReLU (Rectified Linear Units) activation layer: This layer replaces
all negative values received as inputs with zeros.

14 Chapter 2. Proposed architecture For Time Series Analysis

• Fully Connected (FC) layer: These layers are placed at the end of the
CNN architecture and are fully connected to all output neurons. Af-
ter receiving an input vector, the FC layer successively applies a linear
combination and then an activation function with the final aim of clas-
sifying the input image. Finally, it returns as output a vector of size d
corresponding to the number of classes in which each component rep-
resents the probability for the image input to belong to a class.

Fig 2.3 shows the different layers with the interaction between them.

FIGURE 2.3: Convolutional neural network diagram

2.2.3 Performance results for classification

Classification uses two years of data for different energy classes. As it can
be deduced from Fig. 2.4, we have compared the classification efficiency of
a convolutional neural network, multilayer perceptron, and support vector
machines [33]. We can see that the MLP outperforms the two other methods.
One could think that CNN would give better results, but since it needs much
more data to converge, training stops too early before reaching a good tuning
of its weights.

2.3. Time Series Forecasting 15

FIGURE 2.4: Efficiency of classification algorithms

2.3 Time Series Forecasting

Time series prediction is a relatively mature technology, which has already
proven itself since it dates back to the 80s (even if there are more recent tech-
niques based on deep learning). Using current and historical data helps cre-
ate hypotheses and predictions about future events. The forecast allows for
the real-time alignment of supply and demand but also applies a posteriori
as a management tool. Prediction or forecasting can be helpful across many
domains and applications.

2.3.1 Related work

We find various approaches to deal with time series prediction in the litera-
ture. Using statistical algorithms, authors in [34] applied naïve and random
walk AutoRegressive Fractionally Integrated Moving Average (ARFIMA) and
Exponential Smoothing Method + Box-Cox Transformation + ARMA (BATS)
methods to predict the monthly temperature and rain precipitation. Results
show that ARFIMA and BATS models are the most accurate considering Root
Mean Square Error (RMSE) and Nash–Sutcliffe Efficiency (NSE).

In [35], the author used Support Vector Regression (SVR) to predict the fu-
ture load of a Base Station (BS) so that we can dynamically detect anomalies.
The objective is to decide when to allocate/free resources.

AKDI et al. [36] compared two different neural network paradigms: The
autoregressive integrated moving average (ARIMA) and the harmonic re-
gression model, to predict the daily electrical energy consumption. If the
data include a periodic component, the harmonic regression model will give
better results.

In [37], authors used two Recurrent Neural Networks (RNN): time-alignment
of time point forecast (TATP) and direct future time series forecast (DFTS) to

16 Chapter 2. Proposed architecture For Time Series Analysis

predict prices of agricultural products. The result shows that TATP has better
accuracy.

[38] use the building’s characteristics, monthly electricity, and gas bills to
predict energy consumption.

In another work [39], authors try to find the impact of human occupancy
(presence) on energy consumption behaviors.

In [40], authors proposed a forecasting model using the Bayesian network
and dynamic programming principles.

Cao et al. [41] combined the complete ensemble empirical mode decom-
position with adaptive noise (CEEMDAN) with the Long Short Term Mem-
ory (LSTM) to predict the stock market price. They compared their model
with several models, including LSTM, Support Vector Machine (SVM), CEEMDAN-
SVM, CEEMDAN-Multi-Layer Perceptron (MLP), and CEEMDAN-LSTM on
the same dataset. They concluded that the proposed model CEEMDAN-
LSTM outperformed the proposed model according to the following error
measures Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and
Mean Absolute Percentage Error (MAPE). These performance measures are
the most widely used to identify and compare the reliability of such algo-
rithms, and hence they will be used hereafter.

It is important to note that classification and prediction are usually ap-
plied together. It is essential to recall that both techniques are necessary for
any general wide-scale time series analysis tool.

2.3.2 Prediction Algorithms

Support Vector Regression (SVR)

SVR is a compoment of SVM. The Support Vector Regression (SVR) uses the
same ideas as the SVM for classification, with a few differences. For SVR,
a result is an actual number. The nature of the output made it difficult to
forecast the information, which has infinite possibilities. A margin of error
(epsilon) is defined in the case of regression as an approximate estimate for
the SVM. SVR is more complex. It is considered a baseline for prediction.
Support Vector Regression (SVR) is an effective machine learning technique
that can be used in time-series analyses [17]. It is among the best ”off-the-
shelf” supervised learning algorithms.

We show in Fig. 2.5 the actual and the prediction values in two differ-
ent time series contexts. On the left, we offer the application of SVR on 5G
cellular data, while on the right, we apply the same algorithm to the energy
consumption dataset.

2.3. Time Series Forecasting 17

(A) CDR prediction (B) Energy consumption prediction

FIGURE 2.5: One Step Prediction of CDR and Energy using SVR

Recurrent Neural Networks

Various research works have been carried out on forecasting time series in
diverse areas. RNN is a class of artificial neural networks where each neuron
in the network is sequentially connected to a predecessor, and a follower [42].

FIGURE 2.6: Recurrent neural network diagram

Fig 2.6 shows a one-unit recurrent neural network connecting the input
and output of the network. On the right is the "unfolded" version of the
structure. RNN is a class of neural networks that can ’memorize’ sequences
based on history [43, 44]. RNN formulation could be of the following form:
Let X = (x1, ..., xt) be the input sequence, Y = (y1, ..., yt) the output vector
sequence and hidden state of the memory cell. H = (h1, ..., ht) .

ht = H(Whxxt + Whhht−1 + bh) (2.1)

pt = Whyyt−1 + by (2.2)

Where:
H is a nonlinear activation function that keeps neuron output bound to a spe-
cific interval. Whx,Why, Whh respectively corresponds to the weight between

18 Chapter 2. Proposed architecture For Time Series Analysis

the input and hidden layer, the hidden and output layer and hidden layers,
by and bh symbolize the bias vectors for the output and hidden layers.

Long Short-Term Memory (LSTM)

Even if RNN generates excellent results, it suffers from a problem caused
by the retro-propagation in time, also called the vanishing gradient problem.
LSTM was proposed in 1997 to surmount this problem [45]. The LSTM com-
prises three layers: Input, Hidden, and Output Layer [46]. It is constituted of
memory blocks with self-loops. Each memory block is composed of special
multiplicative units called gates.

The memory blocks handle the flow of information within the network
with the help of three gates. The input and forget gates both work on the
state of cells. The role of the input gate is to selectively record new informa-
tion into the cell state. At the same time, forget-gate is aimed at selectively
forgetting information that is no longer required for LSTM understanding.
The output gate is responsible for picking helpful information about the cur-
rent cell state and dispensing it as an output.

The LSTM learns to keep only pertinent information to make predictions.
This is achieved during the retro-propagation (training phase) [47]. Figure
2.7 represents the structure of LSTM blocks. A single LSTM cell’s operation
is represented by equations 2.3 to 2.8.

it = σ(Wixxt + Whhht−1 + Wicct−1 + bi) (2.3)

ft = σ(W f xxt + Whhht−1 + W f cct−1 + b f) (2.4)

ot = σ(Woxxt + Whhht−1 + Wocct−1 + bo) (2.5)

u = tanh(Wuxxt + Whhht−1 + Wuct−1 + bu) (2.6)

ct = ft ∗ ct−1 + it ∗ g(Wcxxt + Whhht−1 + Wccct−1 + bc) (2.7)

ht = ot ∗ h(ct) (2.8)

Where:
σ(x) =

1
1 + ex (2.9)

Equations are essential to understand retro-propagation. The it, ft, ot, u, ct, σ
respectively correspond to the input gates, the forget gates, the output gates,
the update signal, the memory cells, and the sigmoid activation function.
Output is derived concerning the expected value (label). The Weights are
recalculated until the error is minimized (gradient descent).

2.3. Time Series Forecasting 19

FIGURE 2.7: The LSTM cell

We can find in the literature different variants of the LSTM. We can cite
the following:

Multiplicative LSTM : It was introduced in [48] as a recurrent neural net-
work architecture for sequence modeling that combines the long short-term
memory (LSTM) and multiplicative recurrent neural network (mRNN) ar-
chitectures. The mRNN and LSTM architectures can be connected by adding
connections from the mRNN’s intermediate state mt to each gating unit in
the LSTM. Since then, the mLSTM has been categorized as a high-profile,
state-of-the-art achievement in natural language processing.

LSTMs With Attention : Attention is the idea of freeing the encoder-decoder
architecture from the fixed-length internal representation [49]. This is achieved
by keeping the intermediate outputs from the encoder LSTM from each step
of the input sequence and training the model to learn to pay selective atten-
tion to these inputs and relate them to items in the output sequence.

Bidirectional Long Short-Term Memory (BLSTM): Bidirectional LSTM is
just putting two independent RNNs together [50]. This structure allows
the networks to have both backward and forward information about the se-
quence at every time step.

Dense LSTM : DLSTM is an LSTM network to which we added a dense
layer. The dense layer is where each neuron is connected to all the neurons
from the next layer [51].

20 Chapter 2. Proposed architecture For Time Series Analysis

Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) is another implementation of RNN. It was pro-
posed in 2014 by Cho et al.[52]. The main difference between GRU and LSTM
is that it’s easier to implement and compute. The GRU is constituted of two
gates. An update gate z decides how much the block updates its activation
or content. Similarly to the forget gate on LSTM, a reset gate r allows a block
to ignore the previously computed state.

FIGURE 2.8: The GRU cell

A single GRU cell’s operation is represented by equations 2.10 to 2.13

zt = σ(Wxzxt + Whzht−1 + bz) (2.10)

rt = σ(Wxrxt + Whrht−1 + br) (2.11)

h̃t = tanh(Wxhxt + Whh(rt ⊙ ht−1) + bh) (2.12)

ht = (1 − zt)⊙ ht−1 + zt ⊙ h̃t (2.13)

The zt, rt, h̃t, tanh, ht, respectively, correspond to the update gate, reset
gates, candidate hidden layer values, activation function, and hidden layer
values at time t.

2.3.3 The proposed error functions

Error function calculations are made in two different phases. The first one
is the back-propagation evaluation produced while we train the neural net-
work. The NN compares the output value to the actual output that we want
to reach (called the label) and backpropagate this error from the last cell to
the first one by a set of recursive mathematical equations.

Once the training phase is done, we pass to the evaluation phase or testing
phase to observe the efficiency of our neural network prediction. During this
step, we will use the error function described in equations 2.14 to 2.16 that

2.3. Time Series Forecasting 21

gives the respective formulas for RMSE, MSE, and R2. These formulas are
going to be used to evaluate our proposed prediction solution.

RMSE=(1
n ∑n

i=1(Pi−P̂i)
2)1/2 (2.14)

MSE= 1
n ∑n

i=1(Pi−P̂i)
2 (2.15)

R2=1− SSE
SSI (2.16)

Where:
SSE=∑n

i=1(Pi−P̂i)
2 (2.17)

and,
SST=∑n

i=1(Pi−P̄i)
2 (2.18)

Where:
Pi, P̂i, P̄i, n, are respectively the actual, predicted, mean value and the number
of samples.

2.3.4 Hyperprametrisation

Before training a neural network, the first step is determining the best meta
parameters to apply to the neural network during the learning phase. Meta
parameters are the number of neurons, the number of the hidden layer, the
number of iterations, and the batch size... We trained our model using differ-
ent inputs to choose the most accurate ones related to our predictions.

The results were evaluated using metrics such as Root Mean Square Error
(RMSE) and the Mean Absolute Error (MAE).

We varied the batch size, neuron number, number of layers, and number
of iterations. We then compared the values of error metrics for each config-
uration. Table 2.1 shows the steps of choosing the best meta parameters for
our learning algorithms. For each variable to predict, we varied the differ-
ent meta parameters to determine the most accurate for making the optimal
prédictions.

TABLE 2.1: Metaparameters Choice

Config batch size N°neurons N° layers N° iterations MSE RMSE R2
1 64 100 6 200 0.011 0.105 10.690
2 64 100 6 4000 0.003 0.057 5.582
3 100 100 4 4000 0.006 0.076 0.129
4 100 100 6 4000 0.003 0.053 0.493
5 100 100 6 6000 0.003 0.056 0.497
6 256 100 6 4000 0.004 0.057 0.361

22 Chapter 2. Proposed architecture For Time Series Analysis

CPU vs GPU

In this section, we evaluate the processing acceleration depending on whether
it is running on the CPU or GPU.

TABLE 2.2: Comparisons of prediction methods in terms of pro-
cessing units

Hardware
Approach GRU LSTM SVR

CPU 1418.81s 1288.62s 17.75s
GPU 853.99s 820.41s 16.42s

In Tab. 2.2, we compare the above prediction methods in terms of compu-
tational load. We see that the GPU-enabled hardware accelerates processing
of deep recurrent neural networks such as LSTM and GRU architectures.

Uni-variate and multi-variate Prediction

Time series prediction can be classified into two categories: univariate and
multivariate. It corresponds to a scenario with one or many inputs and one
output or many inputs and many outputs. As an example of univariate, one
could feed the input type with inputs such as hour, day, temperature, and the
output as the daily energy consumption. For example, for multivariate, we
can imagine that we want to predict several outcomes such as daily energy
consumption, human presence, and renewable energy production. Il will be
shown in the next part that uni-variate (many to one) labeling gives better
prediction results for preciseness.

The original dataset is a multivariate time series that contains multiple
features. The features are decomposed into seven zones. In this case, we
are considering the following four input features (Zone1_red, Zone1_yellow,
Zone1_green, and Air Temperature(C)). Each color represents a consumption
type (critic, delayed, and comfort consumption).

The considered input features are enhanced by the day of the week, the
hour of the day, and the minute of the hour to have an accurate predic-
tion. We show how these features vary across time in Fig. 2.9. Then, we
adopted the LSTM forecasting approach with a multi-step prediction model
setup since it outperforms the abovementioned methods. The model learns
to predict a range of future values (many to many) from each consumption
type. Our model’s training data consists of observations over the past 24
hours. Then the model learns to predict the next 24 hours for the three types
of consumption.

In Fig. 2.10, we have restricted the number of features in the original
dataset to one. In the following figures, we only predict the Zone1_red con-
sumption (a building zone with only the critic energy consumption). The
result shows that LSTM reports better accuracy with univariate time series
than multivariate time series.

2.3. Time Series Forecasting 23

FIGURE 2.9: Multivariate LSTM prediction

FIGURE 2.10: UniVariate LSTM prediction

Varying the shift step

Time series prediction uses RNN techniques to predict future events. Events
are univariate/multivariate observations that vary over time. Observations
(e.g., in the MicroGrid dataset) are recorded every 60 minutes. This means
that a single day will contain 24 observations.

Time series prediction interval affects the prediction precision. Logically,
the larger the prediction interval is, the less precise it will be. During the data
processing, we define the desired number of observations to predict. In other
words, the shift step is the prediction window or the number of observations
we aim to predict. Fig. 2.11 details how we deal with the input and labels.

Moreover, we have assessed the impact of the number of target values
(steps) that can be predicted. In the following table 2.3, we show the varied-
steps prediction using LSTM and the impacts on the chosen KPI. Results
show that a single-step prediction outperforms the multi-step prediction model.
In the single-step setup, the LSTM model learns to predict a single point (not

24 Chapter 2. Proposed architecture For Time Series Analysis

FIGURE 2.11: Shift step or prediction window

a sequence as before) in the future based on some history provided. The
considered data set is composed of different entries. It describes the energy
consumption of a building divided into different zones. In this dataset, en-
ergy consumption is classified into critical, delayed, and comfort.

TABLE 2.3: Impact of the shift step on the prediction accuracy.

Shift
Consumption MSE RMSE MAE MAPE R2

Critical Consumption 1 hour 0.004 0.062 0.043 6.276 0.361
Critical Consumption 24 hours 0.004 0.065 0.047 6.799 0.290
Delayable Consumption 1 hour 0.027 0.164 0.099 inf 0.437
Delayable Consumption 24 hours 0.039 0.197 0.117 inf 0.226
Comfort Consumption 1 hour 0.002 0.048 0.034 393.658 0.106
Comfort Consumption 24 hours 0.039 0.197 0.117 inf 0.226

2.3.5 Prediction algorithms comparison and choice

In Tab. 3.3, we compare the prediction accuracy of the time series forecasting
approaches (LSTM, GRU, and SVR) in terms of different KPIs such as Mean
Squared Errors (MSE), Root MSE, and R2. Results show that LSTM outper-
forms GRU and SVR, while the latter is still valid for small and medium
datasets.

TABLE 2.4: Efficiency of deep prediction algorithms

KPI
Approach GRU LSTM SVR

MSE 0.007 0.006 0.0175
RMSE 0.076 0.063 0.073
R2 0.911 0.918 -10.1753

2.4. Proposed architecture 25

2.3.6 Implementation of native LSTM on ships

In a collaborative work, [53], an LSTM algorithm was embarked onto an elec-
tronic device. The devices used for this experiment are STM32L476 [54] as
measurement and calculation device, which generates prediction data and
compares it to measurements, Semtech’s SX1276MB1MAS [55] as LoRa trans-
mission board, and STM32 Nucleo Expansion Board [56] to measure the en-
ergy consumption of LoRaWAN transmissions.

The data sets we used are occupancy data of cellular base stations for the
1st data set and power consumption of a smart building for the 2nd one,
in the function of the time. The LSTM network was implemented in C and
embarked the LSTM network directly on the sensor.

2.4 Proposed architecture

Since in our work, we are dealing with various time series from different
applications, and we need to differentiate between them, we decided to com-
bine the classification methods and the prediction one in our proposed tool.
As it will be shown, we believe that combining a classification and prediction
model minimizes the squared errors, which leads to more accurate predic-
tions. Moreover, we have shown that using machine learning prediction to
make multivariate prediction leads to worse results.

2.4.1 Related work classification aware prediction

Wang et al. [57] applied the CNN-LSTM to analyze emotions using input
text. Tae-Young Ki and Sung-Bae Cho [58] used a similar approach to fore-
casting energy consumption. They compared the proposed method with lin-
ear regression model (LR), random forest (RF), decision tree (DT), regression,
and multilayer perceptron (MLP). The proposed method achieved the lowest
MSE score by 10_fold cross-validation experiments.

Ullah et al. [59] used CNN models with BLSTM and applied them to
video processing, particularly to recognize human actions. The author in,
[60] The authors have reviewed some deep learning methods and the work
done with them. They also confirm that employing deep learning in the time-
series analysis is better than the previously existing statistical techniques.

This chapter compares the use of prediction algorithms for time series
and classification algorithms for time series. Also, Oh et al.[61] combined
CNN and LSTM and applied them to the medical field to accurately detect
arrhythmia in the ECG. We decided to combine those methods so that we
could obtain better results.

2.4.2 Classification aware Prediction

As it was justified in the performance section, our architecture is based on
MLP and LSTM. The combination of MLP and LSTM is very powerful in

26 Chapter 2. Proposed architecture For Time Series Analysis

leveraging the Spatiotemporal features (the type of consumption and the tar-
get values) for prediction.

FIGURE 2.12: The proposed architecture

2.5 Applications

2.5.1 Time Series collection

Time series data are one of the most common types of collected data. It is
a collection of observations obtained through repeated measurements over
time. To track changes over time, we use these successive measurements.
Time series data are also known as time-stamped data. A time series can be
taken on any variable that changes over time. It is everywhere since time is
a constituent of everything that is observable.

Moreover, with the increase in the deployment of measurement tools, sen-
sors and systems are constantly emitting a continuous stream of time series
data. This has generated new needs like the need to store this data, the need
to store compressed data without losing information, the need to offer a bet-
ter quality of service/experience (QoS/QoE), and many others... The prolif-
eration of data provides new opportunities, to name some of them:

• Tracking hourly, daily, or weekly weather data

• Tracking the energy produced with renewable sources

• Tracking the energy consumption

• Traking the mobility

• Tracking the intrusion detection

• Tracking changes in application performance

• Tracking the trend in financial markets

With the different applications that time series offer, we can identify factors
influencing certain variables from period to period. We can also see how a
given load, security, or monetary variable changes over time. We could also
use classification and forecasting methods.

2.5. Applications 27

Our thesis is part of the Peper project, which aims to offer the microgrid
an efficient energy management system. The efficient management of a mi-
crogrid is based on predicting the behavior of the different actors: producers
and consumers. We can thus envision a system where the equilibrium in real-
time is no longer provided only by the modulation of production but also by
the adjustment of the demand, thus making the consumer a central actor.

Therefore, the project’s objective is to gather data on the different actors,
exploit learning techniques and Deep Learning to develop classification and
forecasting algorithms for production and consumption and establish collab-
oration between the different actors. In other words, the goal is to find a way
to make production, consumption, and storage cooperate to use renewable
energies better.

The success of this project depends on data collection: indeed, it is es-
sential to collect electricity consumption, electricity production, and meteo-
rological data since renewable production strongly depends on it.

The Laboratoire de Métérologie Dynamique (LMD) provides us with con-
sumption data from a startup incubator in Ecole Polytechnique and meteo-
rological data and production information from photovoltaic panel installa-
tions. Since it was essential for the project to collect consumption data from
different building types, an electricity consumption collection system in a
student dorm was carried out.

Energy consumption monitoring precisely measures the consumption of
different electric devices at different scales. It goes from high-power indus-
trial plants to small buildings. The goal is two-fold:

• Cyclic monitoring for potential energy consumption analysis, manage-
ment, and reduction

• Outlier early detection

2.5.2 Data Colletion architecture

In this subsection, we will describe the different elements that interact to col-
lect energy consumption information from the student dorm and build a scal-
able data-sensing architecture. Fig. 2.13 describes the data collection system.
An energy monitoring and supervision tool were installed in a student dorm.
The chosen solution is EGauge [62].

28 Chapter 2. Proposed architecture For Time Series Analysis

FIGURE 2.13: Data collection system actors

EGauge 47536

EGauge is an energy monitoring and supervision system. This connected
sensor can measure many values: voltage, current, frequency... and cal-
culate the powers. The box directly recovers the voltage values. EGauge
has 15 ports that can each accommodate a current transformer. Ammeters
were therefore connected to each port to measure the alternating current of a
phase. Since the residence is wired in three-phase, the powers of 5 “classes”
could be recovered: ground floor, floors 1-3, floors 4-6, boiler room, and over-
all incoming power. An Ethernet cable connection then connects the EGauge
box to the network locally and configures it. Through the graphical interface,
the sensor and registers are configured. The records are the values retrieved
by EGauge and will be stored in its internal memory.

Egauge makes a measurement every second that will then be stored in
its internal memory. A granularity system is defined by default: the device
stores one measure per second for the last hour then performs a one-point
compression per minute for the previous year and one point per 15min for
the last years. The egauge offers an XML API that allows us to retrieve regis-
tered data in XML format. We can request information from the EGauge by
indicating a query after the URL corresponding to the eGauge. There are two
types of possible requests:

• Instantaneous query

• Stored data query

Collecting data every second generates a considerable amount of data that
cannot be stored in a conventional database. The storage API retrieves every
5 minutes the values of registers in XML tree form and stores the information
in an InfluxDB database. The storage API runs continuously on a server to
avoid noise or blank data from appearing in the stored data.

2.5. Applications 29

InfluxDB [63] is a non-SQL database specializing in storing time series.
It can handle a lot of data without too much writing and reading time. In-
fluxDB has a nano-second accurate timestamp by default and makes it easy
to make time queries.

Bokeh [64] is a Python library for creating interactive visualizations for
modern web browsers. It helps build beautiful graphics, ranging from sim-
ple plots to complex dashboards with streaming datasets. Finally, Bokeh is
the graphical interface for displaying the data stored in influxDB. All the col-
lected data from the student dorm will be based on this architecture.

2.5.3 Micro Grid

Classification in energy consumption is essential since we have several kinds
of buildings (residential, businesses, industries...). We will focus on three
classes of energy consumption: critical, programmable, and comfort. They
correspond to different electric device types that may or may not be pro-
grammed during time intervals. A microgrid is a three-tier energy implant
with buildings consuming energy, renewable facilities generating power, and
storage means. The objective of a microgrid is to achieve optimization by
matching at best energy consumption with energy harvesting. The storage
plays a buffer role in network optimization.

Data set description

We possess for some data (consumption of the incubator and production of
PV panels) more than three years of stored data and more than one year and
a half of consumption data for the student dorm. We are considering ac-
tual consumption data collected from buildings (an incubator and a student
dorm) and exact production data collected from photovoltaic panels. Various
information concerning consumption are available:

• Date and time (in UTC)

• Heating

• Cooling

• Plugs usage

Likewise, for production, various information are available:

• Date and time (in UTC)

• Global_Solar_Flux

• Measured Power at Maximum PowerPoint

Fig. 2.14 shows an example of one-day energy consumption and prediction.
The chosen granularity for our experimentation is one hour.

30 Chapter 2. Proposed architecture For Time Series Analysis

FIGURE 2.14: One day energy consumption/production

Energy classification

In our work, we used the classification method to distinguish between dif-
ferent energy production types and the kind of buildings.

We extensively used the MLP to classify energy consumption since we
categorized them into three distinct categories. Critical energy consumption
(CE) is the first category, which corresponds to the vital user demand. This
kind of demand needs to be served without delay (in analogy with real-time
applications in the data network QoS). Here, in our dataset, this corresponds
to appliances such as ventilation and data centers.

The second category is the delayed energy (DE) consumption demand
(like variable bit rate in computer networks) that could be served later (in
the dataset, it corresponds to heating and air conditioning...). This kind of
demand could be delayed in time.

The last energy category is the demand for comfort energy (BE). It corre-
sponds to the best effort in computer networks. This demand could be served
anytime during the day, on the condition you have the necessary resources.
Otherwise, this type of demand may not be assured.

The second utilization distinguishes between the startup incubator and
the student dorm building’s consumption. In fact, due to their difference in
use. One will mainly consume during the day, while for the second one, the
consumption peak will mainly occur at night.

2.5. Applications 31

(A) First Zone (B) Second Zone

FIGURE 2.15: One week energy consumption with classifica-
tion for two zones

FIGURE 2.16: One month energy consumption student dorm,
for the 1-6 floors, the ground floor and the heating

Energy Prediction

We studied the effects of univariate and multivariate rédiction on energy
consumption. We also examined the impact of varying the shift step on
prediction accuracy. Concerning the MicroGrid application, we made var-
ious predictions. The various consumption categories are studied as the total
consumption of both buildings. The first studied predictions are the energy
consumption demand. The second one is the energy produced with photo-
voltaic panels.

Different granularities have been investigated. We considered time series
with one-hour granularity and time series with 10 minutes granularity. This
means that we have an observation every 10 min or every hour.

The difference is when we need to make a one-day-ahead prediction with
the first granularity, we will only need to predict 24 observations, while in
the second case, we will need to predict 144 observations. Although it seems
trivial, it affects the time and size of the NN performance.

32 Chapter 2. Proposed architecture For Time Series Analysis

FIGURE 2.17: One month energy consumption seven
zones/total energy consumption

Results

In this section, we will expose some energy prediction results.
We use the energy consumption datasets with 30 minutes and one-hour

granularity to train our neural network to predict the next 30 minutes, 1 hour,
6 hours, 24 hours, and five days’ energy consumption. Fig 2.18 presents the
prediction results using 30 minutes of granularity as input. In the next Fig.
2.18a, the blue curve represents the actual data, while the green represents
the next 30 minutes of energy consumption. The calculated MSE is equal to
0.005, and the RMSE is equal to 0.067. In the next Fig. 2.18b, we are predicting

(A) 30 Minutes energy consumption real vs pre-
dicted with LSTM

(B) 24 Hour energy consumption real vs predicted
with LSTM

FIGURE 2.18: energy consumption prediction with 30 min
granularity input data

the total energy consumption. The blue curve describes the actual data, and
the green represents the predicted energy consumption. The calculated MSE
is 0.010, and the RMSE is equal to 0.100.

2.5. Applications 33

Fig. 2.19 and Fig 2.20 present the results of predictions using one-hour
granularity as input for the training phase of the neural network. We are
predicting one-hour energy consumption in the next Fig. 2.19a. The blue
curve describes the real data, and the green represents the predicted energy
consumption. The calculated MSE is equal to 0.009, and the RMSE is equal
to 0.095

(A) One Hour energy consumption real vs predicted
with LSTM

(B) 6 Hour energy consumption real vs predicted
with LSTM

FIGURE 2.19: energy consumption prediction with one hour
granularity input data

In the next Fig. 2.19b, we are predicting 6-hour energy consumption. The
blue curve describes the real data, and the green represents the predicted
energy consumption. The calculated MSE is 0.009, and the RMSE is equal to
0.097.

We predict one-day energy consumption in the next Fig. 2.20a. The blue
curve describes the real data, and the green represents the predicted energy
consumption. The calculated MSE is 0.011, and the RMSE is equal to 0.103.

We predict five days of energy consumption in the next Fig. 2.20b. The
blue curve describes the real data, and the green represents the expected en-
ergy consumption. The calculated MSE is 0.014, and the RMSE is equal to
0.117.

The more the prediction will be over time, the worse the KPI will be.
However, compared to the state of art, these performance measures remain,
to our knowledge, very good.

In Fig. 2.21, we are predicting the energy produced with photo voltaic
panels for the first zone a day ahead. The different values for MSE, RMSE,
MAE, and R2 are 0.019, 0.137, 0.083, and 0.717. The blue curve describes the
real data, and the orange represents the predicted energy production.

Fig. 2.22 presents the results of predictions using one-hour granularity as
input for the training phase of the neural network. We are predicting one-
hour critical energy consumption in the next Fig. 2.22a. The blue curve

34 Chapter 2. Proposed architecture For Time Series Analysis

(A) 24 Hour energy consumption real vs predicted
with LSTM

(B) 5 Days energy consumption real vs predicted
with LSTM

FIGURE 2.20: energy consumption prediction with one hour
granularity input data

describes the real data, and the green represents the predicted energy con-
sumption. The calculated MSE is equal to 0.004, and the RMSE is equal to
0.062.

The Fig. 2.22b, we are predicting one day’s critical energy consumption.
The calculated MSE is equal to 0.004, and the RMSE is equal to 0.065.

Fig. 2.23 presents the results of predictions using one-hour granularity as
input for the training phase of the neural network.

We are predicting one-hour delayable energy consumption in the next
Fig. 2.23a. The blue curve describes the real data, and the green represents
the predicted energy consumption. The calculated MSE equals 0.027, and the
RMSE equals 0.164.

The Fig. 2.23b, we are predicting one day of delayable energy consump-
tion. The calculated MSE is equal to 0.039, and the RMSE is equal to 0.197.

Fig. 2.24 presents the results of predictions using one-hour granularity as
input for the training phase of the neural network.

We predict one-hour comfort energy consumption in the next Fig. 2.24a.
The calculated MSE equals 0.002, and the RMSE equals 0.048. The blue curve
describes the real data, and the green represents the predicted energy con-
sumption.

We are predicting one-day comfort energy consumption in Fig. 2.24b. The
calculated MSE is equal to 0.039, and the RMSE is equal to 0.197.

2.5. Applications 35

FIGURE 2.21: One day energy consumption/production

(A) One Hour critical energy consumption real vs
predicted with LSTM

(B) One day ahead Critical energy consumption real
vs predicted with LSTM

FIGURE 2.22: Critical energy consumption prediction with one
hour granularity input data

2.5.4 Cellular networks

We started by extensively treating Call Detail Records (CDR) time series.
They represent mobile cellular connections concerning time and cell Ids. Ham-
mami et al.[65] succeeded in classifying them into three categories of com-
portment depending on the district. Dany [66] also did classification-based
following features. The work was further extended to detect anomalies on
such cellular networks.

An essential requirement of those CDR traces is the capacity to detect fu-
ture traffic. But we can’t use the same prediction algorithms to detect traffic
for all cells since it depends on the district comportment, as explained be-
fore, for building energy classification. We first have to classify so that the
neural network can later make the best predictions with differently trained
weights. We can also classify the traffic category per cell Id and apply the
same reasoning.

36 Chapter 2. Proposed architecture For Time Series Analysis

(A) One Hour critical energy consumption real vs
predicted with LSTM

(B) One day ahead Critical energy consumption real
vs predicted with LSTM

FIGURE 2.23: Critical energy consumption prediction with one
hour granularity input data

(A) One Hour critical energy consumption real vs
predicted with LSTM

(B) One day ahead Critical energy consumption real
vs predicted with LSTM

FIGURE 2.24: Critical energy consumption prediction with one
hour granularity input data

Dataset Description

In our work, we used two distinct CDR datasets. The first one is the call detail
records provided by Telecom Italia as part of the big data challenge context
[67]. It is a rich and open multi-source aggregation of telecommunications,
weather, news, social networks, and electricity data.

This dataset contains over 319 million user-activity records for 10,000 squares
having a 235m × 235m size spread across Milan, Italy. The records are two
months from November 1st, 2013, to January 1st, 2014, and divided into 10-
minute timestamps. Personal users’ data are removed to preserve privacy.

Hence, the raw data contains five user-specific activity features: incom-
ing and outgoing SMS, incoming and outgoing calls, Internet usage, and ge-
ographical location (Cell ID).

2.5. Applications 37

In our study, we select three zones in Milan city, and we study people’s
Internet activity.

- Duomo: is the downtown (city center) and presented by cell ID= 5060

- Bocconi: is a private university located at zone having cell ID=4259

- Navigli: is a touristic district known also by night life and its cell ID=4456

The internet activity in these cells is depicted in Fig.2.25 and Fig. 2.26.
It is clear that in the last weekend of November 2013 (24th-25th), the traffic
load decreased at the university and increased in Duomo square, one of the
most attractive touristic places in Milan. Furthermore, end-of-year festivities
present some anomalous patterns that occurred during the last week of the
year (Christmas celebrations; 24th-25th December (Fig. 2.b)) in all cells. An-
other annotated anomalous traffic activity is detected at the university from
20th Dec. 2013 correlates with the end of the year vacations.

��
���
����

�� �� �� �� �� �� �	 �
 ��

����

���

���

���

����

����

����

����

��
��
��
��
��
��
�

����� ������� �������

FIGURE 2.25: Internet load activity from 20th to 30th Nov. in the
three cells

��
���
����

�� �� �� �� �� �� �	 �
 ��

�����

�

���

���

���

	��

����

����

����

�
��
��
��
��
��
�

����� ������� �������

FIGURE 2.26: Internet load activity from 20th to 30th Dec. in the
three cells

The second data set is extracted from the D4D-Senegal challenge project
[68]. This dataset collects call detail records of phone calls and SMSs of about
9 million users during 2013.

38 Chapter 2. Proposed architecture For Time Series Analysis

It is divided into three components: the first set contains the antenna-to-
antenna traffic for 1,666 antennas hourly. The second set includes one year
of coarse-grained mobility data at district levels. The third set contains fine-
grained mobility data on a rolling 2-week basis for a year with bandicoot be-
havioral indicators at individual levels for about 300,000 randomly sampled
users.

We extracted from the last set the information allowing us to monitor the
instant number of users in each cell and, thus, estimate the instant BS load (or
users’ occupancy) for the whole day. Unlike the previous dataset, D4D CDRs
set provides user communication information at a fine-grained space scale,
i.e., at each base station instead of geographic square aggregation. Hence, we
can monitor each cell apart and detect network outliers precisely.

We extracted from these CDRs the times-series data corresponding to
Dakar city, which describes the daily evolution of user occupancy within a
BS.[69]

- Friday noon use-case: is an abnormal decrease of consumption during
some hours. The time_series dataset used to validate our framework
with this testbed contains almost 17,000 data points, of which 5,760 are
anomalous.

- Tuesday the 5th of February use-case: is a sudden decrease in user con-
sumption at night due to a technical problem. The data set used for
validation contains almost 43,000 data points, of which 720 are anoma-
lous.

Base Station Profile Classification

We conducted extensive studies on the classification of cellular communica-
tion and energy patterns. The methods used were based on convolutional
networks, multi-layer perceptrons, support vector machines, and other ad-
vanced statistical tools. The results point out that these algorithms give quite
close classifications. The choice of the best algorithm depends on several pa-
rameters, including the amount of available data to train the algorithm and
the duration of training.

The internet activity in these cells is depicted in Fig.2.25. These three cells
represent three different classes of behaviors and will be used for classifica-
tion.

We can see from the figure that each cell has a repeated different behavior
than the other two. The first cell experiences heavy traffic with peaks in the
afternoon corresponding to business hours and users commuting into and
from the city center. Activity is relatively stable all week.

The second cell has a very characteristic pattern with quasi-shutdown
during weekends. This is typical behavior for academic locations. The third
also has its particular pattern. It is characterized by a very late activity that
almost catches the rise of the first class.

2.5. Applications 39

Those behaviors depend on many factors and differ, in our case, on the
location of the time series collection. We deal here with cellular communi-
cations. It was proved that the behavior of data/call consumption presents
two important facts:

• the location of the cell gives a good idea of the expected consumption
pattern

• the patterns are different and should be treated distinctly when we ap-
ply prediction and regression algorithms.

From these observations stems the necessity to classify cells. Based on the
previous section presenting the dataset, it comes out from our case study that
three classes would cover most of the behaviors in a sizeable capital-grade
city such as Milan. The classes group similar behaviors, but the intensity of
the connections is not a parameter of choice. All cells are normalized to focus
only on the pattern shape.

So we adjusted the analysis on the three classes as explained before. To
know why we can stop at three categories or define more, statistical and sub-
jective methods were developed in [70].

We use a Convolutional Neural Network of One Dimension (CNN-1D)
to classify the cells in the city. This network comprises two convolutions,
two pooling layers, and one dense flattening layer to output three classes in
the form of a Softmax probability. Here, we restrict our study to one input
feature: the internet traffic for individual cells. Classification is important
for operators and network providers as it eases planning, the study of key
performance indicators, and targeted marketing. Classification and transfer
learning provide an excellent couple to enhance cellular network manage-
ment.

FIGURE 2.27: Classification results visualization over Milan
Map

Figure 2.27 shows the results for classifying 81 cells according to the pre-
viously defined three classes [71]. The red spots present the downtown city

40 Chapter 2. Proposed architecture For Time Series Analysis

class, which corresponds to Duomo. The green positions represent the uni-
versities according to the used dataset Bocconi. And the blue points corre-
spond to tourist districts, also known as nightlife districts, represented by
Navigli. As mentioned, a deep analysis of classification patterns could be
found in [66].

Base Station Load Prediction

Concerning the cellular application, we made various predictions. The first
studied predictions are the load of a determined base station in Milan.

Different granularities have been investigated. We considered time series
with one-hour granularity and time series with 10 minutes granularity.

We also predicted the load of the base station in Dakar city. We choose
one BS. and train the neural network on the historical data.

2.5.5 Public Transportation

Prediction is not restricted to 1D data. It could be used for multi-dimensional
time series. The route is an example of a 2D dataset. We try our LSTM net-
work to this kind of data.

Dataset Description

We use six months of taxi traffic traces in Rome (Italy), where each day con-
tains approximately 70000 different vehicle trajectories. From this data set,
we analyze the trip lengths. Trips are periodically sampled by GPS, giving
a good approximation of the trip trajectory. Each trip is truncated to 20 GPS
points with time. That is why in our learning method, we describe trips by
a 20x3 dimensional array, each position represented by the user’s latitude,
longitude, and time.

The goal is to use the above-described RNNs to make future predictions
of the trip directions and durations. Once this information is generated from
the neural network, it is easy to feed it to the vehicular models that will eval-
uate the necessary energy for traction and comfort in those driving condi-
tions. Although weather conditions are known and can give us the required
comfort energies for different driver profiles, the driving styles are missing
(calculations can be made for other driver profiles).

Trajectory Prediction

From the dataset, we could analyze the trip lengths. GPS periodically sam-
ples trips, but the recorded time stamps are not periodic, probably due to
some phenomena like jitter. Nevertheless, it gives a good approximation of
the trip description. We call a "hop" each time a base station records a user.

For each car trajectory, we keep 20 hops that define the trip. Each jump is
identified by time, latitude, and longitude.

As explained, data are presented as time series to the neural network. We
build a neural network consisting of several cells. Each cell hosts several

2.5. Applications 41

hundreds of hidden layers. The output of the RNN is concatenated into one
or several dense layers to improve the precision.

In the presented work [72], we decided to shift our data by four steps.
Given the current position, the ML algorithm must predict the successive
four positions of the car during the trip. The prediction contains 3 phases:

• In the training phase, if the input layer contains the ten first values of
one trip, the label will include the ten values shifted by 4.

• In the test step, the ML algorithm will predict the four following val-
ues of the trip based on the input layer. If the shift step increases, the
algorithm’s performance will decrease or need more training.

• The last step consists of normalizing the data because NNs work better
on values between -1 and 1.

Since the data is not a typical periodic waveform but rather a route shape,
we highlight the graphical GPS representation of predicted routes compared
to real ones for several algorithms. In the next section, we present the results
of predicting four trajectories using Dense Long Short Term Memory and
Dense Gated Recurrent Units.

Results

Table 2.5 gives the results for several taxi routes in Rome (from 1 to 4) and
compares LSTM to GRU.

GRU LSTM
Route MSE RMSE MSE RMSE
1 0.00011 0.01056 0.00002 0.00435
2 0.00011 0.01029 0.00006 0.00797
3 0.00015 0.01242 0.00003 0.00504
4 0.00009 0.00973 0.00008 0.00871

TABLE 2.5: Obtained measures for each trajectory for mean
square error (MSE) and root mean square error (RMSE) in the

test phase.

The results obtained in table 2.5 are comparable. Among the four trajec-
tories, LSTM has less MSE and RMSE than GRU. Hence, LSTM gives better
results in route predictions. For example, for trajectory 1, the MSE and RMSE
of GRU are 0.00011 and 0.01056, respectively. However, the MSE and the
RMSE of LSTM are equal to 0.00002 and 0.00435, respectively.

Figure 2.28 presents the obtained route predictions with the application
of Dense LTSM (Blue curves) and Dense GRU (Green curves) and the actual
taxi route in the test phase (Orange curve). It is clear that LSTM is very close
to real traces in all the routes, and GRU stays farther to real traces in all the
courses and especially in trajectory 1 (Figure 2.28a) and trajectory 2 (Figure

42 Chapter 2. Proposed architecture For Time Series Analysis

(A) trajectory 1 (B) trajectory 2

(C) trajectory 3 (D) trajectory 4

FIGURE 2.28: Forecasted trajectories using DLSTM & DGRU

2.28b) and trajectory 3 (Figure 2.28c). We confirm these results with the val-
ues of RMSE obtained for these trajectories. On the other side, we notice a
smaller LSTM RMSE value for 2.28a and in 2.28c. It is equal to 0.01056 and
0.00504, respectively.

In Figure 2.28d, it is clear that LSTM outperforms GRU, but both curves
are close to real traces. This is because the values of RMSE and MSE are
also very close. We notice the MSE of LSTM is 0.00009, and GRU is 0.00008.
In addition, the RMSE is equal to 0.00973 for GRU and 0.00871 For LSTM.
We conclude that LSTM gives better results than GRU. The predictions, in
general, are very pertinent compared to the real information.

2.6 Discussion

We evaluated our proposed methodology in three different application fields.
First, we evaluated various meta-parameters to choose the more accurate
one. After that, we applied our prediction algorithm and evaluated the re-
sults based on multiple error metrics.

2.7 Conclusion

We presented in this chapter our proposed architecture For Time Series Anal-
ysis. Since we want to propose a general methodology for time series, we
applied our method to three different time series types.

We started by studying the use of classification to categorize the time se-
ries. We began by identifying the most used one. Then we compared their

2.7. Conclusion 43

performances according to our data sets. This classification allows us to bet-
ter choose the recurrent neural network for predictions.

After that, we studied time series forecasting. We compared using three
algorithms: SVR, GRU, and LSTM. Our experimentation showed that LSTM
performs better than the two others. GRU is, however, faster in the training
process.

Then we described how we collect one kind of time series. Sensors were
installed in a student dorm building, allowing us to expand our database of
electricity consumption.

Finally, we showed some results for each studied time series data.
To our knowledge, these published contributions were among the first to

apply NN to time series.

45

Chapter 3

A Deeper Time-series Analysis of
the selected applications

3.1 Introduction

In this chapter, we exploit a more advanced feature that can be found in
RNN, and we propose novel applications that can benefit from RNN charac-
teristics. The first application is semantic compression, where we emphasize
the need to compress and only transmit relevant information using a partic-
ular network: LORA. The second application is transfer learning. We will
show the efficiency of this method while dealing with the lack of data and
data personalizing. The last application described in this chapter is anomaly
detection.

3.2 Semantic compression

Data compression is now a very mature subject. Globally, we find data com-
pression for storage reduction and transmission in general. The venue of
modern video transmission introduced lossy compression based on quanti-
zation. Here, the idea is to adjust transmitted values to fixed thresholds to
reduce compression states. One can refer to [73] for details.

Prediction can be considered as a compression means. The system, re-
garded as a black box, works as follows: When an input is entered, the next k
values are output. Several modern regression techniques exist (mainly sup-
port vector families and neural networks). We focus on recurrent neural net-
works for their high performance in prediction.

3.2.1 Introduction

LORA networks represent a good candidate for IoT data transfer. They scale
well, provide new naming techniques, and do not consume large amounts of
energy. Yet, they need to offer sufficient bandwidth for a large panel of IoT
devices, especially regular time-based sensing devices such as power con-
sumption, temperature, pollution sensors, etc.

Our experience with a medium-scale power sensing deployment in ad-
ministrative premises has shown that the main issue in this deployment was
the communication part. The link between many sensing devices and the

46 Chapter 3. A Deeper Time-series Analysis of the selected applications

backend has been a real issue. Although it was easy to lay down sensors and
small embedded PCs, deploying a specific LAN or a WiFi network for such a
purpose was difficult (both technically and administratively). Cellular con-
nections can be a good solution, but they would cost too much. So our left
choice was to use a cheap Long Range (LORA) connection.

LORA has a significant bottleneck in its limited bandwidth. LORA groups
in Internet Engineering Task Force (IETF) work intensively to provide com-
pression mechanisms on the protocol to make it more efficient. This work is
great for our problem but needs to solve the dilemma of sending megabytes
of data daily.

Data compression is now a very mature subject. Globally, we find data
compression for storage reduction and transmission in general. The venue of
modern video transmission (MPEG) introduced lossy compression based on
quantization. Here, the idea is to adjust transmitted values to fixed thresh-
olds to reduce compression states. One can refer to [73] for details.

Prediction can be considered as a lossy compression means. The system,
considered a black box, works as follows: Several modern regression tech-
niques exist (mainly support vector families and neural networks). We focus
on recurrent neural networks for their high performance in prediction. When
an input is entered, the following k values are output.

3.2.2 Related work

We investigate using the neural networks prediction technique as a substitute
for classical compression. The idea is a corollary of the successful usage of
recurrent neural networks in prediction. Since these tools provide an excel-
lent way to make time-series predictions, we could use the same configured
network to replace data transmission. So instead of sending raw data from
the IoT sensor, we train a neural network in the IoT neighborhood and only
send its weights. On the other side, when an abnormal situation is detected
in the generated data, it is directly sent as an outlier. This will not constitute
an overhead in bandwidth as it is usually a rare event.

In [74], authors propose adding machine learning techniques at the edge
device to perform low-power transmission through LORA. They propose
sending only the final output via LORA.

In [75], authors propose a method to determine offloading and transmis-
sion strategies that are better for directly sending fragmented packets of raw
data or sending the extracted feature vector or the final output of deep learn-
ing networks, considering different operational performance metrics.

In another work, [53], the authors aim to study LORAWAN traffic com-
pression, precisely its data payload, using a machine learning-based com-
pression scheme. A deep LSTM algorithm was developed and integrated
into a small, constrained hardware system that allows efficient compression
while keeping the user within a reasonable error margin. The authors built
an experimental test bed to check the capabilities of the onboarding LSTM
algorithm on-sensor to forecast data, achieve dual prediction, and eventually
compress data traffic and save energy.

3.2. Semantic compression 47

Classical compression approaches based on dictionaries or entropy cod-
ing have been adapted to IoT, like [76], where a specific dictionary is created
for different data depending on their change frequency.

When the IPv6 protocol conveys data, the draft gives pretty good com-
pression results. LORA research groups in IETF [77] have recently proposed
a header compression mechanism for LORA. We are involved in this work as
well, and we consider that header compression for LORA, in general, will be
beneficial to all kinds of transmission, whether using our semantic compres-
sion technique or not.

3.2.3 Proposed method

IoT data collection requires a large bandwidth for its transmission. We pro-
pose hence to divide the data collection process into two parts.

In Fig. 4.3, we show the main stages of the new architecture. First, we go
through data collection from the sensor network. Then, the dataset is used
locally in the gateway for the training [78].

The resulting prediction is then compared to the newly collected data. If
there is a significant difference, the collected data varies enormously com-
pared to the predefined threshold the system will detect an outlier. The
value will be sent over the LORA network to permit the reconstitution of
the dataset with the anomalies.

Training output is a set of weights described above and a periodic sample
of the raw IoT data. Combining the raw data as a seed and the neural net-
work will mimic the time series with a tiny error (hence the semantic name
compression). They can be re-trained frequently if the time series change.

The figure shows data coming from sensors and inputs. The inputs corre-
spond to the context information used for prediction. Here, we have the day
of the week, minute of day, season, inside temperature, and outside temper-
ature. The inputs are as important as the data.

Outlier Detection and IoT over LORA transmission

The prediction helps in the outlier detection process. Outliers help detect
failures and recommend parameter tuning to avoid the malfunctioning of
the IoT. The idea is that we have a variable threshold making an envelope on
the predicted signal. When the real value measured at the sensor overpasses
this threshold, it is considered an outlier and sent directly over LORA as an
alarm.

Transmission and data restitution

The IoT over LORA transmission part is straightforward [79]. A burst con-
taining the exact (i.e., optimal) neural network weights is sent periodically
with a timed sample of the raw data.

We can additionally use the LORA header compression draft for more
performance. In the real deployment of the proposed model, outliers or

48 Chapter 3. A Deeper Time-series Analysis of the selected applications

FIGURE 3.1: The different steps of the proposed prediction ap-
proach

anomalies are detected separately and sent with a different tag for immediate
treatment. Moreover, depending on the capacity of the LORA messages, the
maximum amount of information about the time series is sent.

The received weights are reloaded into a python program consisting of
the same neural network as the training one. The output is generated based
on inputs (typically the day of the week, temperature, and time of the day)
and very rare data samples. The output, in our case, is a predicted consumed
power for the input parameters presented to the test neural network. It is
considered a semantic compression since the difference between the gener-
ated data at the sensor and the one restituted is equal to the training error.
Data is rarely sent over the network, mainly its neural network representa-
tion.

In [53], A deep LSTM algorithm was developed in collaborative work and
integrated into small, constrained hardware. The result shows that training
a neural network locally can efficiently minimize the traffic while preventing
non-relevant transmissions with a significant impact on energy consumption.
We observed the effect of the neural network size and the decision threshold
on the compression ratio and the MAPE. The system allows efficient com-
pression while keeping the user within a reasonable error margin. It can be
customized depending on precision and compression trade-off requirements.
This work is continuing today to test smaller IoT.

3.2.4 Performance analysis

This part analyzes the proposed methodology’s performance through its steps.
As mentioned, RNN networks are not used frequently and have been re-
placed by other methods that perform better. We use basic RNN, LSTM, and
GRU as compression candidates. We noticed that GRU has smaller weights
as it presents fewer gates for the same configuration as an LSTM network.
However, LSTM gives much more precise prediction and hence better data
restitution.

The neural network weight size for each prediction technique is presented
in Table 3.1, where we observe that the GRU produces notably smaller sizes.
Recall that the edge gateway sends only the compressed (e.g., using the zip

3.2. Semantic compression 49

Prediction model NN weight size MSE
Simple RNN 19.8 kB 0.0403
LSTM 30.6 kB 0.0406
GRU 27 KB 0.0714

TABLE 3.1: Comparison (10 epochs, 3 steps per epoch and 30
neurons) of RNN, LSTM and GRU neural network sizes

function) neural network weights. The table shows that in this kind of time
series, RNN has a small Mean Square Error compared to LSTM and GRU.
GRU is the best in compression size and training time but with a higher resti-
tution error.

Moreover, in Tab. 3.2, we show different results of the neural network size
before and after the online training process. The experiments show that be-
fore the training step, the most influencing meta parameter on the neural net-
work size is the number of neural network layers. After the training step, the
neural network size will increase according to the number of iterations per
epoch. While testing the various neural network configurations trained with
several meta parameters, we noticed that the configuration (conf16) gave the
best results. According to the proposed key performance indicators, Mean
Squared Error (MSE), Root MSE (RMSE), and Mean Absolute Error (MAE).

TABLE 3.2: Neural network sizes with different configurations

Id Nb
of
neu-
rons

Layer iter Size-B-
Training
(KB)

Size-
A-
Training
(KB)

MSE RMSE MAE

1 1 1 10 194 197 0.894 0.946 0.921
2 1 1 100 194 222 0.236 0.486 0.478
3 1 2 100 327 354 0.154 0.392 0.339
4 5 2 100 327 354 0.066 0.256 0.203
5 5 5 100 725 753 0.073 0.27 0.214
6 10 5 100 725 753 0.059 0.244 0.186
7 100 5 100 731 759 0.017 0.13 0.086
8 100 10 100 1401 1429 0.021 0.146 0.101
9 100 10 1000 1401 1677 0.005 0.07 0.053
10 1000 10 500 1419 1557 0.004 0.067 0.052
11 1000 10 4000 1419 2539 0.003 0.055 0.042
12 100 100 100 13579 13606 0.02 0.143 0.099
13 100 100 1000 13579 13855 0.009 0.093 0.068
14 500 100 100 13755 13783 0.01 0.101 0.075
15 100 10 4000 1401 2521 0.004 0.062 0.044
16 100 10 6000 1401 3084 0.003 0.053 0.039

50 Chapter 3. A Deeper Time-series Analysis of the selected applications

LORA bottleneck

Finally, LORA bandwidth remains the most critical parameter in the com-
pression process. LORA will limit the amount of data that can be sent peri-
odically. Hence, it dictates raw data transmission frequency, kind, and size
of neural networks. LORA bandwidth varies from one operator to the other.
The more frequently we train the network, the more we will require band-
width to send new weights. As for outliers, it is not a transmission bottleneck
since an anomaly, by definition, is a rare event.

3.3 From Lack of data to Transfer Learning solu-
tion

3.3.1 Introduction

Transfer Learning (TL) [80] is a crucial method for industrializing neural net-
works. In short, a trained neural network is a set of interconnected specific
neurons and their collection of weights.

If we want a large-scale integration of these architectures in our daily life,
we need quickly adapt their usage to our specific context. However, complete
training is known to be time-consuming and requires excellent artisanal skills
to build and design the best architecture with its meta parameters. Transfer
learning is a second-stage re-training procedure that does not require much
time or skills as the network is already specified.

As an elementary example, if one buys an intelligent vacuum cleaner. It
could be already trained for primary movement sequences but needs a fast
re-training (or transfer) for a particular new apartment. This section focuses
on time series representing key performance indicators (KPI) in modern cel-
lular networks, particularly edge networks. We study the adequacy and ad-
vantage of using this technique to improve classification and prediction.

3.3.2 Related work

In [81], the authors propose to use transfer learning to improve prediction.
They use convolutional networks for that purpose and train on several datasets.
Their main contribution is introducing the Dynamic Time Wrapping tech-
nique to help predict. First, we claim that time series best deal with Recur-
rent Neural Networks (RNNs) rather than CNN’s. Then, we propose using
CNN in the classification rather than the DTW in our work. As we previ-
ously proved, DTW gives worse classification results than classical statistical
tools (SVM) [82] and hence even worse compared to CNN.

In [83], authors utilize transfer learning to classify the images of magnetic
Resonance Imaging (MRI) so that they could detect and classify the subject
having dementia. They used a fine-tuning pre-trained convolutional net-
work, AlexNet. The algorithm presented encouraging results by giving the

3.3. From Lack of data to Transfer Learning solution 51

best overall accuracy of 92.85% for multi-class classification of un-segmented
images.

[84] presents a study on bi-LSTM to apply transfer learning on time se-
ries. This work is closer to our proposal but does not include classification.
Moreover, context and RNN are entirely different.

Authors in [85] used TL for driver behavior modeling. They combined the
dynamic time warping (DTW) and local Procrustes analysis (LPA). Sufficient
data for every driver are not available. DTW discovered the relation within
the datasets for several drivers. And LPA transfers the data in the historical
dataset to the dataset of the target driver.

In [86], a study uses small amounts of data and benefits from transfer
learning techniques to detect misogynous tweets. The approach has some
approximate similarities with the first part of our architecture. However, it
is targeted at natural language analysis and pattern recognition, which is not
in our scope of action. Also, its objective, detecting tweets, does not match
our goals.

In [87], since data acquisition is a challenging problem for Vehicular Ad-
Hoc Networks, the authors proposed a Q-learning technique to make the
collecting operation more reactive.

In another study, authors [88] adopted the Transfer Learning procedure
for the automatic detection of the Coronavirus disease. The used dataset
contained X-ray images from patients with typical bacterial pneumonia, es-
tablished Covid-19 disease, and ordinary incidents. The results show that the
proposed approach may have notable effects on the automatic discovery of
features from X-rays related to the diagnosis of Covid-19.

3.3.3 Transfer learning Architecture

This technique is getting a tremendous natural interest in the artificial intelli-
gence domain for many reasons. First, it is the way to deploy, on a vast scale,
all kinds of neural networks. The idea is to outsource neural networks that
have been trained in labs but need personalizing for the new application user.
So a quick tuning would be ideal, and this is precisely what transfer learn-
ing does. Second, in many cases, we have unequal sets of data. Suppose we
succeed in starting training with a considerable amount of data to sculpt the
main neural network parameter shapes and tune the resulting weights with
a smaller set of data. In that case, this helps in many situations, especially in
the telecommunication domain.

Finally, One could need an ’Anytime computing’ system that can be stopped
and retrained later. This is also a feature of our architecture. We will explain
all these techniques by applying them to a real telecommunication dataset.
In the subsequent paragraphs, we describe our transfer learning architecture
for time series. We explain how transfer learning is used in two applications:
Shortage of data and personalizing. Then we detail the core dataset used for
our neural network architecture training and testing.

The architecture shown in Figure 3.2 is composed of three blocks—the
first consists of classifying the datasets for a better prediction. Classification

52 Chapter 3. A Deeper Time-series Analysis of the selected applications

FIGURE 3.2: Transfer learning architecture

is commented on later. The second block consists of a recurrent network
trained with a complete and valid dataset. We restrict the work to Deep
LSTM, but other networks could be used.

The third part is proper transfer learning. It is based on the initially
trained network and a new target network where knowledge will be trans-
ferred. So we have two neural networks in the architecture: an original and
a target (depicted as training and trained in the figure) [71].

Shortage of training data

The first use of transfer learning in our context is necessary when the dataset
corresponding to the cell where we want to make predictions is not sufficient
or erroneous. A simple example of such a situation is an operator of any kind
that has installed a new facility. There is a need to start the prediction process
to calibrate key performance indicators, but more data must be collected.
Also, one can imagine that we want to begin anomaly detection on that new
facility, but we did not yet get enough data.

So we start training a neural network on an original dataset (see Fig. 4.16).
It should be complete but not necessarily correspond to the same class as the
targeted new facility dataset. We use Long Short Term Memory with deep
layers (D-LSTM) for all the transfer learning processes.

When the training process ends with a satisfactory mean square error (or
any other error metric), we start the ’transfer.’ This process consists of taking
the original network’s trained weights and using them as a start for subse-
quent training that will use the small amount of available data. The final
result, as it will be shown in the performance section, is sufficient to start the
required procedures.

3.3. From Lack of data to Transfer Learning solution 53

From a generic neural network to a personalized one

Personalizing neural networks is the second usage of transfer learning in the
time series context. Artificial intelligence is penetrating all the fields in ev-
eryday life. Logically, we cannot expect that professionals will be capable of
training every neural network in the world... So, a transfer of learning would
be a desirable solution. The scenario here is to ’prepare’ the neural network
for behavior that we believe to be close to the target usage. Then an addi-
tional short training would help personalize the resulting system and make
it fit the new usage perfectly.

3.3.4 Cellular network application

We consider the call detail records provided by Telecom Italia as part of the
big data challenge contest. In this section, we assess the use of transfer learn-
ing according to the following error metrics: Mean Square Error (MSE), Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), and R squared
(R2).

We will start by examining the use of transfer learning when there is a lack
of data by making predictions using two granularity measures (10 minutes
and 1 hour). Then, we will investigate the contribution of data specificity by
dealing with transfer learning upon data from different and same classes.

We used the classification result defined in the previous section 2.5.4 where
we classified 81 cells in Milan city. The result of this classification is used in
the choice of cells for the TL.

Shortage of data

This series of tests demonstrates the benefits of transfer learning when the
target cell has insufficient data for proper prediction training. The evaluation
procedure led here is as follows:

• In this use case, we suppose there is a shortage of data for a particular
cell that belongs to a specific class, which means we do not have enough
data to train a neural network efficiently.

• First, we classify our data set so that we can distinguish between the
different cells and to which class they belong.

• Once we identified a cell with sufficient data information that belongs
to the same class as the target cell.

• We train the first neural network with data from this cell. Then we get
its weight

• We create a new data set that combines the two cells’ information.

• We re-train a second network after restoring the weight with two months
of data composed from two different cells (same class and target cell)

54 Chapter 3. A Deeper Time-series Analysis of the selected applications

TABLE 3.3: Efficiency of transfer Learning with one hour gran-
ularity

Metric
Approach With TL Without TL

MSE 0.003 0.018
RMSE 0.053 0.134
MAE 0.040 0.104

R2 0.774 0.598

• We train another network with one month of data derived from the
target cell.

• We compare two granularities: 1 hour and 10 minutes.

We compared the predicted amount of data provided by the algorithm using
transfer learning (orange curve) and the predicted amount of data provided
by the second trained network (green curve) (Fig. 3.3 and Fig. 3.4). The
corresponding precise error tables are: 3.3 and 3.4.

FIGURE 3.3: The pertinence of transfer learning use with One
hour granularity prediction

Data personalizing

We describe hereafter transfer learning performance for two cases:

• IntraClass is when we use datasets from the same class (recall from
the previous sections that a class groups cells with similar behavior) to
transfer the learning

3.3. From Lack of data to Transfer Learning solution 55

FIGURE 3.4: Improvement via transfer learning with 10 min-
utes granularity prediction

TABLE 3.4: Improvement via transfer Learning with 10 minutes
granularity

KPI
Approach With TL Without TL

MSE 0.003 0.012
RMSE 0.054 0.108
MAE 0.035 0.086

R2 0.699 0.612

• InterClass is the process of transferring learning between two different
classes

The adopted process is as follows. We start training the original network
with a two-month dataset for a given cell in a given class. The second step
consists in making the transfer learning to predict data for a new cell (we call
the target cell), either IntraClass or InterClass.

We mimic the lack of training data during transfer learning to show the
benefits of our transfer learning architecture on prediction for the target cell.
We vary the percentage of the training data for the target cells from 10% to
40% of the total period (it consists of two months of traces).

Figure 3.5 presents the results of transfer learning using two cells that
belong to the same class. In table 3.5, we compare the prediction accuracy in
terms of different error metrics. The results are compared to the blue curve
representing the real values. The higher the percentage of target training
data, the better the results will be. The error results are summarized in table
3.5.

56 Chapter 3. A Deeper Time-series Analysis of the selected applications

FIGURE 3.5: IntraClass Transfer Learning

TABLE 3.5: Efficiency of Intra Class Transfer Learning algo-
rithms (university)

KPI
Class 10% 20% 30% 40%

MSE 0.007 0.004 0.003 0.002
RMSE 0.081 0.061 0.053 0.046
MAE 0.065 0.049 0.040 0.038

R2 0.690 0.733 0.774 0.859

Figure 3.6 presents transfer learning results using two cells belonging to
different classes (here, downtown versus universities behaviors). Similarly,
we vary the percentage of the used dataset during transfer learning from 10%
to 40%. In table 3.6, we compare the prediction accuracy in different error
metrics. We have the same conclusion as the previous test. The error results
are summarized in table 3.6. We can see that our architecture improves the
prediction even between different classes.

Figure 3.7 presents transfer learning results using two new cells belong-
ing to different classes (university to nightlife). In table 3.7, we compare the
prediction accuracy in terms of different error functions. Results improve
proportionally with the data amount of the target cell. When the data size
of the cell is small, using data from a cell that belongs to the same class will
provide a better prediction.

3.3.5 Discussion

We can conclude from the above tests that transfer learning is of great utility
for the two proposed applications: personalizing and shortage of data. The
error tables confirm the importance of classification in the architecture. We

3.3. From Lack of data to Transfer Learning solution 57

FIGURE 3.6: InterClass TL: downtown to university

TABLE 3.6: InterClass results (downtown to university)

KPI
Class 10% 20% 30% 40%

MSE 0.073 0.004 0.004 0.002
RMSE 0.270 0.061 0.060 0.045
MAE 0.214 0.049 0.052 0.033

R2 -0.629 0.594 0.550 0.747

can make transfer learning between classes to omit classification at the bot-
tom line. But, it is still better to transfer the learning to the same class rather
than to different classes.

58 Chapter 3. A Deeper Time-series Analysis of the selected applications

FIGURE 3.7: InterClass TL: university to night life

TABLE 3.7: InterClass TL between university and night life
classes

Metric
Class 10% 20% 30% 40%

MSE 0.011 0.004 0.003 0.002
RMSE 0.103 0.060 0.052 0.047
MAE 0.092 0.043 0.041 0.036

R2 -0.751 0.431 0.752 0.826

3.4 Anomaly detection

3.4.1 Introduction

Anomaly detection, or outlier detection, in network management, has be-
come of greater interest due to the rise in sensitive new applications in many
fields, such as medicine, economics, energy, telecommunications, etc. Data
mining techniques that have been recently developed can help process large
volumes of datasets in a scalable and low-complexity manner compared to
old classical statistical methods. Data mining combined with artificial intel-
ligence assists in designing very efficient detection algorithms. Thus, many
promising applications can be revisited, especially for detecting outliers.

In the past decade, notable general system failures have occurred in sig-
nificant telecommunications operators. In July 2012, Orange Telecom, the
official national French operator, suffered a severe breakdown that left 26
million subscribers unable to make calls, send or receive texts, or use data
services for approximately 9 hours. The failure also affected the Orange Mo-
bile Virtual Network Operators (MVNOs) and the interconnection with other
network operators. Due to the lack of adequate management tools that can

3.4. Anomaly detection 59

rapidly detect this kind of anomaly, the operator could not avoid the blackout
in its network or even mitigate its impact. As a result, they were forced to de-
ploy more resources to fix the failure, adding extra costs to their subscribers’
dissatisfaction. Investigations showed that an earlier update of a software
stack was the origin of this blackout. The anomaly had not been notified by
any alarm signal (it was probably identified as a true positive alarm).

From this incident and many others, it is recommended to upgrade the
management and alarm systems with efficient automated techniques that, by
analyzing real-time traces, can detect on-the-fly network anomalies. These
tools can also help the operators to monitor their infrastructures and manage
their networks more accurately. Strengthened by their learning capabilities,
they avoid the lengthy and fastidious hand work to build evolving traffic
profiles.

Network outlier detection techniques aim to automatically identify and
detect abnormal and anomalous patterns which differ from the expected be-
havior or may present a local deviation from the standard data. In our con-
tribution, we address the problem of detecting outliers within radio access
networks.

The exponential growth of mobile devices and mobile phone subscribers
has massively increased data generation, which in turn causes the creation of
several spatiotemporal bandwidth consumption profiles. [35], [89].

In essence, next-generation cellular systems and cognitive networks in-
troduce more flexible techniques to react better to these profiles. However,
network operators’ primary issue is handling and detecting sudden and local
abnormal behavior within the network. Whether it is a sharp peak of users’
demands (which occurs during mass events, for example), a brief abnormal
decrease, or even a non-common daily data consumption pattern.

The first anomaly type needs a fast reaction to guarantee network re-
silience and service survivability avoiding user rejections. In contrast, the
second one may be due to some technical issues of the network infrastructure
that need to be repaired instantly. These anomalies are also time-dependent
and need geographic identification and temporal detection of the time inter-
val in which they occur with high precision.

3.4.2 Related work

Mobile operators aim to provide many services, including classical voice
calls, video gaming, social networking, health care, transport, etc. Hence,
providing the best QoS is challenging and requires higher bandwidth, lower
latency, and higher speed.

Outliers in a cellular network may occur due to issues such as low cov-
erage areas, sleeping cells, overloading of traffic, etc. They can be linked to
unusual events such as social crowding, periodic colossal traffic jams, or un-
planned events. Deploying specific cellular facilities for such rare occasions
is not an economically viable solution. Yet, operators must cope with this
phenomenon and enforce their quality of services (QoS) contracts concern-
ing their clients.

60 Chapter 3. A Deeper Time-series Analysis of the selected applications

Many mobile network management tasks run autonomously without hu-
man intervention. This is because of the evolution of automation and arti-
ficial intelligence tools. Hence, detecting issues in the network and solving
them become automatic and dynamic without including expert knowledge.
New paradigms are introduced in the literature to ease network management
tasks. Most proposed schemes employ key performance indicators (KPIs) or
machine learning techniques.

The authors in [90] presented an unsupervised clustering technique based
on key performance indicators (KPIs). Another anomaly detection frame-
work for KPI time-series data was proposed in [91]. It executes machine-
learning regression analysis to detect anomalies.

Reference [92] proposed a spatio-temporal online anomaly detection tool
based on Support Vector Machines (SVM) and Support Vector Regression
(SVR) to identify regions of interest and detect anomalies. Then, work in [93]
also presents a spatiotemporal mathematical model for IoT devices. These
approaches applied big data analytics on call detail records (CDRs) datasets.

Hussain et al. [94] applied a semi-supervised machine learning algorithm
to detect the anomalies in one-hour data. In [95], they proposed a framework
that preprocesses user activities from a real CDRs dataset to create an image-
like volume fed to a deep CNN (Convolutional Neural Network) model. In
[96], a combination of drones, satellites, and cellular networks is proposed.
The paper studies using competitive markets to select the kind of bearer to
use. It does not study outlier treatment, nor does it say how different concur-
rent QoS flows are handled.

The previous studies utilized various traditional machine-learning tech-
niques for outlier detection in a cellular network. Furthermore, some schemes
need to provide online anomaly detection, nor do they analyze and diagnose
the causes of anomalies. In general, the diagnosis is a complex task and re-
quires good knowledge of the network architecture and services.

More extensive analysis shows that many techniques address different
problem formulations of outlier detection. Most of the existing research fo-
cuses on one of the following problem formulation[69]:

- Sequence-Based approach: consists of detecting anomalous sequences
from a dataset of test sequences.

- Subsequence-Based approach: intends to identify anomalous subsequences
within a huge sequence.

- Pattern-based approach: detects patterns in a test sequence with anoma-
lous frequency of occurrence.

- Contextual anomaly detection approach: detects a group of points or
periods that are anomalous regarding their normal behavior.

In this scope, we propose an unsupervised anomaly detection framework
that learns autonomously from the network traffic. Detects anomalies in
real-time and then executes optimization algorithms for the QoS manage-
ment and a Spatiotemporal anomaly detection mechanism. The objective is

3.4. Anomaly detection 61

to minimize network outages and system downtime with the least amount
of human intervention.

3.4.3 Adaptive Range-based LSTM Prediction Scheme

We presents in this section a framework based on the data analysis concept to
automate the management of resources in cellular networks. Three processes
are defined: identifying and detecting anomalies, analyzing the causes, and
triggering adequate recovery actions.

First, the proposed solution executes Deep Learning algorithms to fore-
cast the normal behavior of the network and defines dynamic thresholds.
Second, it identifies cells with peak demands and raises alarms if the mea-
sured real-time data exceeds the threshold values. Third, we define QoS op-
timization methods to proceed with suitable design for resource allocation
and fault detection and avoidance.

In essence, we propose heuristics for QoS management that initiate the
deployment of the minimal number of required UAVs (Unmanned Aerial
Vehicles) as flying base stations to collect extra data in cells presenting peaks.

In order to optimize network resources, it is essential to detect and suc-
cessfully remove the anomalies. We consider in our study a real-time-series
dataset that we present earlier: CDRs (Call Detail Records) of Milan city. Per-
sonal users’ data are removed to preserve privacy. Hence, the raw data con-
tains five user-specific activity features: incoming and outgoing SMS, incom-
ing and outgoing calls, Internet usage, and geographical location (Cell ID).

The internet activity in these cells is depicted in Fig.2.26. It is clear that
in the last weekend of November 2013 (24th-25th), the traffic load decreased
at the university and increased in Duomo square, one of the most attractive
touristic places in Milan. Furthermore, end-of-year festivities present some
anomalous patterns that occurred during the last week of the year (Christmas
celebrations; 24th-25th December (Fig. 2.b)) in all cells. Another annotated
anomalous traffic activity is detected at the university from 20th Dec. 2013
correlates with the end of the year vacations.

Network model

Typically, mobile users’ activities are different at a particular time and cell.
The global view of the proposed framework architecture is illustrated in Fig-
ure 3.8. We consider a centralized cellular infrastructure composed of a co-
ordinator base station and base stations (eNodeB). The anomaly detection is
distributed where each eNodeB executes the LSTM (Long Short-Term Mem-
ory) prediction algorithm, analyzes the CDRs in real-time, and finally calcu-
lates required resources for the QoS management if an anomaly is occurred
(depicted by red color).

Upon detection of the abnormal cell(s), each BS communicates the anoma-
lous cell ID(s) with the coordinator to initiate remedial actions by launching
the deployment of Unmanned Aerial Vehicles (UAVs) having a mission of
collecting data in overloaded cells. Using UAVs as flying base stations is an

62 Chapter 3. A Deeper Time-series Analysis of the selected applications

emerging solution to support the cellular network because of their mobility,
flexibility, and adaptive altitude [97].

Coordiantor

Server colocated
with eNodeB

Anomalous Cell

FIGURE 3.8: System topology

Adaptive anomaly detection solution

The anomaly detection solution executes LSTM to train and predict the in-
ternet load on each cell. The input data is the set of daily evolution of each
user for the presented cell. Figure 3.9 shows the main steps of the dynamic
anomaly detection framework, which runs in real-time and compares the in-
coming sample to the predicted values calculated in the training phase by
the LSTM (Long Short-Term Memory).

In essence, the system takes the time-series data as input and then pre-
dicts the normal values of users’ activity in each cell. The outputs are the
minimum and the maximum thresholds of expected values. An alarm is
generated if the measured real-time network load is higher or lower than the
predicted threshold load values. Once an anomaly is detected, the diagnosis
could be automatically triggered. In fact, the QoS management heuristics are
executed, and the required number of drones is calculated based on the opti-
mization scheme. Finally, these values are communicated to the coordinator
in order to perform the management solution.

We also evaluated our adaptive anomaly detection on a particular event:
a protest in the center of Milan. We added semi-synthetic protesting data to
the CDR dataset [98]. During a protest in the center of Milan, the amount
of uploaded data (photos, videos) to social media could cause sudden con-
gestion to the cellular network and then decrease its quality of service. The

3.4. Anomaly detection 63

FIGURE 3.9: General flow diagram for the algorithm

prediction model is applied to calculate the typical load of each terrestrial
base station as a function of time. Based on this prediction model, we define
the minimum (Min) and the maximum (Max) acceptable threshold values.

The real-time collected data generated by users’ demand is then com-
pared to these predicted values (Min-Max). An anomalous time interval is
detected if measured real-time data is lower or higher than the appropriate
tolerance thresholds. Hence, the terrestrial base stations may fail to handle
all connected users because of the congestion within the cell and conduct to a
malfunction in the infrastructure. For this reason, we are proposing an auto-
mated platform that allows network operators to detect anomalous network
cells and launches the deployment of drones to collect data in overloaded
cells. The objective is to improve the network’s quality of service (QoS)[99].

Experiments

We define a QoS scenario with Two Traffic classes and a limited buffer: The
first class is real-time/critical traffic, which is served without delay and cor-
responds in our dataset to cellular calls. The second is a variable bit rate
demand that could be served after buffering. The dataset corresponds to
SMS and IoT data. In this section, we are going to focus on the second traffic
category.

In fact, data from this class may be delayed using a smoothing buffer.
However, the delay should not exceed τ time slots. If cellular bandwidth is
available, buffered data can be served on a first-come, first-serve basis. How-
ever, if the maximum buffering delay is reached while there is insufficient
cellular capacity, drones will be dispatched to provide the required service
and meet the maximum delay requirements.

Figure 3.10 presents the network’s anomalous behavior for one of these
six cells when adding the semi-synthetic protesting data. We study the im-
pact of the data capacity storage or NRT data and vary the percentage of
protesting data. We consider 30% (Figure 3.11), 60% (Figure 3.10b) and 80%
(Figure 3.10c) of network traffic. Red curves present the range: Min and Max

64 Chapter 3. A Deeper Time-series Analysis of the selected applications

0 2 4 6 8 10 12 14 16 18 20 22 24
Time Interval (hour)

1

2

3

4

5

6

A
m

o
u
n
t

o
f

D
a
ta

 (
K

b
it

s)

1e9 Protesting data= 30%

 Storage Capacity= 10%

Storage Capacity=35%

Min_Max thresholds

(A) Protesting data=30%

0 2 4 6 8 10 12 14 16 18 20 22 24
Time Interval (hour)

1

2

3

4

5

6

7

A
m

o
u
n
t

o
f

D
a
ta

 (
K

b
it

s)

1e9 Protesting data= 60%

 Storage Capacity= 10%

Storage Capacity=35%

Min_Max thresholds

(B) Protesting data=60%

0 2 4 6 8 10 12 14 16 18 20 22 24
Time Interval (hour)

1

2

3

4

5

6

7

8

A
m

o
u
n
t

o
f

D
a
ta

 (
K

b
it

s)

1e9 Protesting data= 80%

 Storage Capacity= 10%

Storage Capacity=35%

Min_Max thresholds

(C) Protesting data=80%

FIGURE 3.10: Network load for storage capacity = 35% and ca-
pacity =10%.

threshold values of normal traffic calculated based on the LSTM algorithm.
Blue and green curves illustrate real-time network load when fixing the stor-
age capacity to 10% and to 35%, respectively.

It is clear that the extra data does not significantly impact the network,
with 30% of users’ demand for both cases of storage capacity. In essence, we
depict an overrated data peak (between 5 PM and 6 PM in Figure 3.11). These
load peaks impact the radio channel occupancy causing the anomalies. They
are detected if the real-time network load is higher than the maximum value
of the predicted data. When the users’ demand increases to 60%, we still
have the same load peak as the first scenario but with a higher amplitude.

We notice another smaller peak detected between 1 PM and 2 PM. This
peak is more important with 10% of capacity storage. This is because data is
sent in real-time to the network. However, in the case of 35%, data is stored
on the smartphone. Finally, when protesting data reaches 80% of data, the
cellular network is seriously impacted in both cases. Indeed, the streaming
data causes three peaks (around 9 AM, 2 PM, and 6 PM) with different de-
grees, but the most important load peak is between 5 PM and 6 PM, where
the global data traffic is nearly double compared to the common network
measurements.

3.4.4 Spatio-Temporal Anomaly Detection Mechanism (STAD)

Spatio-temporal data is extremely common in many problem settings where
collecting data from various spatial locations for the nature of the problem
is important. Outlier analysis is an important research area in data mining
and machine learning communities. The main objective of this method is to
detect outliers in cellular networks using a hybrid deep learning framework
composed of two components and evaluated using real datasets of Call De-
tail Records (CDRs)[69].

We continued and enhanced the work in collaboration, and this section
presents the contribution that we have made to work. In [70], a large part
of the thesis deals with anomaly detection in TS. The author has extensively
used tools based on support vector machines and older mechanisms.

The framework learns spatial and temporal contexts separately and uses
those representations to identify spatiotemporal anomalies. It is a double-
stage technique that allows network operators to detect spatial and temporal

3.4. Anomaly detection 65

anomalies. Based on the One-Class SVM (OCSVM) algorithm, the first stage
can detect the cells presenting an anomaly, thus its geographical location. The
second stage has two alternative solutions based on Long Short Term Mem-
ory (LTSM) and Support Vector Regression (SVR) prediction algorithms.

The first component is a set of machine learning classifiers to extract the
spatial context from the input datasets. The second component includes sev-
eral prediction tools, including deep learning, that are trained to predict the
temporal context from the same datasets.

FIGURE 3.11: STAD: Spatio-Temporal anomaly detection
framework scheme

We used two datasets in our experiments: the Telecom-Italia dataset. We
focus in our performance study on two use-case testbed studies:

- San Siro stadium use-case represents an anomalous consumption peak
for some hours during the weekends. The time-series dataset used for
validation contains 4,320 data points, of which 72 are anomalous. We
discovered some abnormal behaviors within the geographical square
where the San Siro stadium is located. In fact, these anomalies consist
of a considerable increase in users’ network activity with a time-limited
peak of SMSs, calls, or even Internet packets.

- The end-of-year festivities use-case contains anomalous patterns that
occurred during the last week of the year (from Christmas to New
Year’s eve). The dataset used for this use case contains a time series of
users’ activity in Duomo square, one of Milan’s most attractive touristic
places. The dataset comprises almost 42,000 data points, of which 5,184

66 Chapter 3. A Deeper Time-series Analysis of the selected applications

are anomalous. We discovered another type of anomaly is related to
New Year’s eve, with a brief peak of network activities during the first
hour of 2014 and during the 1st of January with a decrease of network
activities throughout the day. Figure 3.12 depicts the number of calls
during November (top figure), December, and the 1st of January 2014
(bottom figure) in the touristic Duomo square. We notice clearly from
these two figures the anomalous call amount patterns that occurred on
the days mentioned and highlighted with red curves.

FIGURE 3.12: Duomo square: evolution of numbers of calls)

The second dataset is extracted from the D4D-Senegal challenge project [68].
This dataset collects call detail records of phone calls and SMSs of about 9
million users during 2013. It is divided into three components: the first set
contains the antenna-to-antenna traffic for 1,666 antennas hourly. The second
set contains one year of coarse-grained mobility data at district levels. The
third set contains fine-grained mobility data on a rolling 2-week basis for
a year with bandicoot behavioral indicators at individual levels for about
300,000 randomly sampled users.

We extracted from the last set the information allowing us to monitor the
instant number of users in each cell and, thus, estimate the instant BS load (or
users’ occupancy) for the whole day. Unlike the previous dataset, D4D CDRs
set provides user communication information at a fine-grained space scale,
i.e., at each base station instead of geographic square aggregation. Hence, we
can monitor each cell apart and detect network outliers precisely.

As with the Italia Telecom data, we extracted from these CDRs the times-
series data corresponding to Dakar city, which describes the daily evolution

3.4. Anomaly detection 67

of user occupancy within a BS. As with the Milan data-set use-case, we also
focus here on two use-case testbed studies:

- Friday noon use-case: is an anomalous decrease of consumption during
some hours. The time_series dataset used to validate our framework
with this testbed contains almost 17,000 data points, of which 5,760 are
anomalous.

- Tuesday the 5th of February use-case: is a sudden decrease in user con-
sumption at night due to a technical problem. The dataset used for
validation contains almost 43,000 data points, of which 720 are anoma-
lous.

The study is more refined for the Dakar use case since the dataset is more
important. Figure 3.13 presents some examples of Dakar outlier patterns.
A local decrease of user numbers in the cell is noticed for some BSs, which
corresponds to one hour, usually between 12 PM and 1 PM(top red curve
in figure 3.13). Compared to other days (top blue curves in figure 9), these
untypical behaviors usually occur on Fridays. Thus, we consider workday
data, except Fridays, to train our first stage part, which allows us to detect
these types of outliers automatically.

Another type of anomaly (bottom graph of figure 3.13) is detected by the
proposed algorithm. We noticed that on Tuesday, February 5th, the BS activ-
ity decreased heavily between 10 PM and 11 PM; this was the same for all
BSs installed in Dakar. Otherwise, this sudden decrease is neither present on
days of the same week nor other Tuesdays. This type of anomaly may oc-
cur due to technical incidents in the network equipment or electricity issues.
This anomaly is detected by training our model with the history of Tuesdays’
data before February 5th.

Temporal anomaly detection results

In this section, we evaluate STAD’s second stage, which is temporal anomaly
detection based on SVR and LSTM.

The training procedure is based on calculating the difference between
training data and predicted data. This step can be evaluated with several
metrics. The most known are: The Root Mean Square Error (RMSE), Mean
Square Error (MSE), and R2. Consequently, in our work [33], we compared
these error evaluation methods when training algorithms with given datasets.
The outcome of the training evaluation for LSTM and SVR is studied. It is
seen that MSE is better (see Table 3.8). We also decided to maintain MSE for
the classification to have a homogeneous approach.

As explained before, SVR can be advantageous in the case of small amounts
of data because of the use of support vectors. However, compared to recur-
rent neural networks, the general result shows that LSTM architecture over-
comes SVR.

Fig. 3.14 presents the predicted values of SVR and LSTM for the Dakar
Dataset. Our LSTM architecture gives better prediction values than SVR. For

68 Chapter 3. A Deeper Time-series Analysis of the selected applications

FIGURE 3.13: Examples of Dakar anomalies: the top figure
gives an example of a Friday anomaly (red curve) and its pre-
vious workdays’ normal data (blue curves). The bottom figure
shows examples of BS anomalies on February 5th (red curve)

and other normal data from Tuesdays.

3.4. Anomaly detection 69

TABLE 3.8: Metrics comparison

KPI/Algorithms LSTM SVR
MSE 0.006 0.0175
RMSE 0.063 0.073
R2 0.918 -10.1753

this reason, we define the dynamic thresholds based on the LSTM predicted
values. It is clear that the predicted values of LSTM are closer to the real data
than the SVR predicted values. The difference in the MSE values calculated
over the regression is given hereafter:

TABLE 3.9

Algorithm/MSE Value
SVR MSE 0.03799
LSTM MSE 0.01397

FIGURE 3.14: Comparison between the predicted values of SVR
and LSTM for Dakar dataset

Figures 3.15 and 3.16 present the comparison results of temporal anomaly
detection for both datasets, the Milan and Dakar cellular networks. Green
curves present the range: MIN and MAX predicted threshold values calcu-
lated by the LSTM algorithm. The red curves illustrate the real-time network
call load. The outliers are detected if the real-time network traffic is higher or
lower than the predicted data’s maximum or minimum values, respectively.

Figure 3.15 shows some abnormal patterns in the San Siro network activ-
ity. We noticed from these figures that the anomalous time-interval behavior

70 Chapter 3. A Deeper Time-series Analysis of the selected applications

0 5 10 15 20 25
Time (Hour)

0

20

40

60

80

100

120

140

Ca
ll
Lo
ad

Anomaly results on November 9th (Serie A match)
SVR Predicted Load
ARIMA Predicted Load
Real Load
LSTM Predicted Load
LSTM Min_Max thresholds

(A) Anomaly results on November 9th (Serie A match)

0 5 10 15 20 25
Time (Hour)

0

50

100

150

200

250

Ca
ll

Lo
ad

Anomaly results on November 15th (FIFA match day)
SVR Predicted Load
ARIMA Predicted Load
Real Load
LSTM Predicted Load
LSTM Min_Max thresholds

(B) Anomaly results on November 9th (Serie A match)

0 5 10 15 20 25
Time (Hour)

0

20

40

60

80

100

120

140

Ca
ll
Lo
ad

Anomaly results on December 1st (Serie A match)
SVR Predicted Load
ARIMA Predicted Load
Real Load
LSTM Predicted Load
LSTM Min_Max thresholds

(C) Anomaly results on December 1st (Serie A match)

FIGURE 3.15: Temporal Anomaly detection result for the San-
Siro testbed

detected by the SVR and LSTM is synchronized with the untypical peak of
network activity. At the same time, the ARIMA-based model is less accurate.

3.5. Conclusion 71

It is clear that LSTM detects the outlier before other algorithms. In Figure
3.15.a 3.15.b and 3.15.c, we noticed that the ARIMA-based model reports a
false anomaly around 10 PM, contrary to SVR and LSTM, due to their over-
rated time-series prediction at this time-stamp. The call load peak is detected
between 5 PM and 10 PM in Figure 3.15.a 3.15.b and between 11 AM and
6 PM in figure 3.15.c. It corresponds to the time of the football matches in
the San-Siro stadium. In addition, in figure 3.15.b, we depict that the peak is
more important on the FIFA match day and that the ARIMA model starts sig-
naling the anomalous pattern before its exact occurring time, while the SVR
and LSTM are well synchronized. The load peak impacts the radio channel
occupancy, thus causing anomalies.

Figure 3.16 presents some examples of Dakar’s Friday anomalies. We can
clearly notice that the detected anomalous time interval is synchronized with
the time and the duration when the abnormal decrease of BS users’ occu-
pancy occurred. In figure 3.16.c, the detected temporal anomaly takes longer
than on other days (usually for almost one hour) and covers the daily activity
time. This is because of a special event in that area which caused a sudden
decrease in users.

On the other hand, the ARIMA-based model fails to detect the anomalous
time window for all examples. Instead of detecting the drastic decrease of cell
load occurring between 1 PM and 4 PM, it detected two false anomalies: the
first around 11 AM and the second around 5 PM. However, it is clear that
LSTM and SVR detect the anomaly because the network call load is lower
than the predicted values. Then, LSTM gives better results than SVR.

We conclude from these results that the number of subscribers impacts the
normal traffic cellular network and drastically impacts the network in some
configurations. In fact, it can affect the radio channel occupancy and cause
anomalies (case of the San_Siro stadium). This study allows network oper-
ators to detect anomalous behavior with a dynamic and adaptive algorithm
to improve the network’s quality of service (QoS).

3.5 Conclusion

In this chapter, we exploit a more advanced feature that can be found in
RNN, and we propose novel applications that can benefit from RNN charac-
teristics. We have proposed deep-learning techniques. (specifically recurrent
neural networks) to learn data patterns emanating from typical IoT devices.
In a LORA context, with very low available bandwidth, our method helps
in drastically reducing raw IoT data transmission and replacing it with the
learned neural network parameters (weights).

Weights and periodic samples are sent to the cloud network through LORA,
and data is reproduced using the reverse process. As IoT devices can be used
to detect anomalies, we adopt a similar neural network to make outlier de-
tection. An alarm is directly sent over LORA in that situation.

We then proposed a novel transfer learning architecture for time series
prediction in modern cellular networks. Intra-class and inter-class transfer

72 Chapter 3. A Deeper Time-series Analysis of the selected applications

0 5 10 15 20 25
Time (Hour)

0

200

400

600

800

1000

1200

1400

1600

Ca
ll
Lo
ad

Anomaly results on January 18th
SVR Predicted Load
ARIMA Predicted Load
Real Load
LSTM Predicted Load
LSTM Min_Max thresholds

(A) Anomaly results on January 18th

0 5 10 15 20 25
Time (Hour)

0

200

400

600

800

1000

1200

1400

1600

Ca
ll
Lo
ad

Anomaly results on February 8th
SVR Predicted Load
ARIMA Predicted Load
Real Load
LSTM Predicted Load
LSTM Min_Max thresholds

(B) Anomaly results on February 8th

0 5 10 15 20 25
Time (Hour)

0

200

400

600

800

1000

1200

1400

1600

Ca
ll

Lo
ad

Anomaly results on March 1st
SVR Predicted Load
ARIMA Predicted Load
Real Load
LSTM Predicted Load
LSTM Min_Max thresholds

(C) Anomaly results on March 1st

FIGURE 3.16: Temporal Friday Anomaly detection results for
the Dakar testbed

learning is applied to those cells in two case studies. The first is when there is
a shortage of training data. The second corresponds to the will to personalize

3.5. Conclusion 73

prediction on new networks based on legacy prediction tools. We show that
the architecture gives excellent results for predicting traffic load in both cases.

Since network anomalies or outliers are abnormal behaviors that occur
suddenly, affecting the performance of mobile networks and causing consid-
erable losses to cellular operators. We proposed a hybrid framework was
proposed to detect Spatiotemporal anomalies of multi-variate datasets in an
unsupervised way. The proposed anomaly detection framework can be ap-
plied to any dataset of users’ activity times series.

In fact, it provides automatic and online detection of network anomalies
to prevent the issues mentioned above and allows network operators to mon-
itor their infrastructure. The aim is to help them to cope with new challenges
in next-generation networks. The STAD framework is executed in two stages
and learns temporal and spatial contexts separately and uses those repre-
sentations to identify spatiotemporal anomalies. The first component is an
OCSVM classifier to extract the spatial context from a given dataset. The
second component is the range-based LSTM and SVR machine learning al-
gorithms which are trained to remove temporal anomalies.

75

Chapter 4

Resource Management and
optimization Algorithm

4.1 Introduction

The progress in the Internet of Things (IoT) and mobile communications ap-
plications produce extensive data that can be collected and managed. Fur-
thermore, resource administration and management dilemmas are omnipresent:
in power systems, cellular networks, quality of service (QoS), and many oth-
ers. In this chapter, we investigate the automation of energy management
as the first case and the automatic assistance of a drone to a base station in
distress as the second case.

The need to study this automation of electrical resources is mainly due to
evident economic and ecological issues. The growing interest in green ener-
gies, the implementation, and the use of renewable energy resources (Photo-
voltaic Panels (PV), wind turbines, and hydroelectric power) are becoming
urgent.

These renewable energy resources require the design of mechanisms that
will allow better management and waste reduction. In the following, we will
mainly be interested in the energy produced with the photovoltaic panels
with data in our possession emanating from a real deployed microgrid pow-
ered by solar panels. We propose a novel neural network method for man-
aging microgrids in this work. The investigated microgrid is composed of a
group of buildings (2 different consumers) that integrate renewable energy
production (producers) and batteries (energy storage systems).

We will describe it in more detail in the next part. Abundant information
is required to implement an efficient/optimal energy management system
(EMS) in a microgrid. The first requirement is the predicted energy consump-
tion that depends on the building and the user’s habits.

For the energy storage system, the needed information concerns the ca-
pacity of the batteries, the current state of charge (SoC), and the predicted
SoC. The third important information required by an EMS is the predicted
energy produced by PV panels. It is highly dependent on weather condi-
tions and production and faces a lot of variations.

The architecture of cellular networks demands high levels of optimization
to prevent network anomalies from happening. Out-of-range communica-
tions, obstacles, unusual human presence, etc., typically cause irregularities.

76 Chapter 4. Resource Management and optimization Algorithm

Because this is one of the most critical issues that can pose service degra-
dation and directly affect the different network functionalities, it is a central
problem that we target in the second part of this chapter.

We need to use sophisticated prediction models and optimization meth-
ods to find the best management strategy. For a microgrid, the proposed
model is based on a novel neural network approach that optimizes electric-
ity usage while assuring customer comfort [100].

For that purpose, we introduced different use cases with various objec-
tive functions and constraints with incremental complexity. We first resolved
initial use cases with Integer Linear Programming (ILP). Other more com-
plex problems require a heuristic resolution like the Rule-Based Resolution
because they are non-linear. Then we propose the use of machine learning
models. The first one is the QLearning approach[101]. The second is a recur-
rent neural network that is then trained with those results and replaces the
above two methods as a reinforcement learning system.

The second proposed deep learning solution does not follow the general
reinforcement trend using state/action/reward exploration. In this method,
we are using a classical deep recurrent neural network. The long-short-term
gates will catch the relation between optimal states, actions, and rewards.
The heart of our solution resides in learning ’good actions’ directly rather
than exploring a considerable space of potential solutions, eventually con-
verging (as most deep RL methods do).

Regarding the second use case, we propose to use UAVs on an on-demand
basis for offloading base stations to provide services to connected devices.
We first suggest an optimal model aiming to maximize the data collection
by considering the UAV battery [102]. Then we define a deep reinforcement
learning environment based on two techniques: Q-learning and LSTM. They
learn the optimal model. After that, we present a comparison study for both
proposed approaches based on real cellular network datasets, where we an-
alyze the exactness and convergence times.

4.1.1 Related work

In this chapter, we investigate 1) the prediction of consumption and renew-
able energy production and 2) the response to the need to serve the demands
of end-users.

In [103], the authors are treating how to handle and support all mobile
service users with various Quality of Service (QoS) requirements. For that
purpose, they are dealing with splitting the network into slices from differ-
ent properties to provide heterogeneous network demands. They also study
the impact of the slicing by using a deep reinforcement learning (DRL) al-
gorithm on the speed of content of user demands. Since the problem of re-
source management is omnipresent in different disciplines but uses the same
approaches, we will focus on resource management for the microgrid.

The authors in [104] proposed a (DRL) algorithm for indoor and home
hot water temperature regulators, aiming to decrease energy consumption

4.1. Introduction 77

by optimizing the usage of PV energy production. In [105], the authors pro-
posed a demand response method to minimize energy utilization from peak
periods when the electricity price is higher to off-peak periods when the elec-
tricity price is low.

A Q-Learning method is developed to deal with the dynamic electricity
prices and different power consumption without compromising the users’
comfort. The author also used fuzzy reasoning to model human thinking
and evaluate the random action the agent could take as a reward function.
Furthermore, an optimized Reinforcement Learning method combined with
a Decision Tree method has been proposed in [106]. The aim is to let the
agent learn how to manage the power dispatch efficiently into a microgrid
environment simulated for a long time.

Hepeng et al. [107] propose a home energy management method based
on DRL for optimal scheduling of home appliances. They started by formu-
lating the home energy management problem as a Markov Decision Process
(MDP) regarding the randomness of real-time electricity prices and residents’
activities. The chosen policy was Proximal Policy Optimization (PPO) which
determines the optimal DR scheduling strategy.

As extensively explained in [108], the Reinforcement Learning technique
(RL) aims to optimize systems that react to situations by finding heuristi-
cally a set of optimal actions for different possible states of the environment
to maximize an objective. State-Action-Reward is the general nomination of
this family of methods. Further, deep reinforcement learning brings conti-
nuity to RL when states are continuous or too large to be solved quickly by
RL.

[109] The authors conceived an optimal energy management algorithm
based on deep deterministic policy gradients (DDPGs). The proposed model
provides the optimal scheduling decisions for Energy Storage Systems (ESS)
charging/discharging power and heating, ventilation, and air conditioning
systems (HVAC) input power based on the current information.

In [104], a deep reinforcement learning (DRL) algorithm for indoor and
residential hot water temperature control is developed, intending to reduce
energy consumption while optimizing the usage of renewable energy pro-
duction. In another work, [110], authors review the use of reinforcement
learning for demand response applications in the smart grid. They presented
various RL applications. For deep RL, several neural networks have been tai-
lored to reproduce the weight matrix of the system. They have been utilized
to control diverse energy systems such as electric vehicles, HVAC systems,
smart appliances, or batteries.

Deep Q-Network (DQN) and Policy gradient (PG) [111] are the primary
roots from which a large set of derived algorithms have been proposed. With-
out going too much into a survey of such methods, it is essential to state the
main differences between all these techniques and hence introduce our new
solution:

• ILP techniques give the optimal solution. However, one quickly reaches
limitations: 1 - related to the resolution time, 2 - related to solving prob-
lems that can soon become non-linear.

78 Chapter 4. Resource Management and optimization Algorithm

• ILP techniques use a solver for each new dataset. They hence take time
and cost money. It comes with a license.

• Deep RL is a heuristic system that can quickly solve problems faster
than exact solvers.

• Deep RL methods [112] require a large amount of data to set the weights
of the system.

The International Electrotechnical Commission in the standard IEC 61970,
related to EMS application program interface in power systems management
defines an EMS as “a computer system comprising a software platform pro-
viding basic support services and a set of applications providing the func-
tionality needed for the effective operation of electrical generation and trans-
mission facilities to assure adequate security of energy supply at minimum
cost” [113].

Two market strategies are proposed and solved using the sequential quadratic
programming method. In [114], The authors try to optimize the Microgrid
(MG) performance during interconnected operations. Luu Ngoc An et al.
in [115] suggested dynamic programming to optimize the process of a grid-
connected MG.

The main objectives are reducing the electricity supplier’s selling cost
and battery aging cost. [116] describes the different methods used by the
EMS. They classified them into Classical methods (linear and nonlinear pro-
gramming, dynamic programming, Rule-Based methods), meta-heuristic ap-
proaches (genetic and swarm optimization), Artificial intelligent methods,
Stochastic and robust programming approaches, and model predictive con-
trol.

The authors [117] propose a home energy management optimization strat-
egy based on deep Q-learning (DQN) and double deep Q-learning (DDQN)
to perform the scheduling of home energy appliances. Results are compared
with those of Particle Swarm Optimization (PSO) to validate the performance
of the proposed algorithm. Results show that the DDQN is more appropriate
for minimizing the cost in a HEMS.

Bin Xu et al. [118] integrated a Q-learning algorithm in the energy man-
agement system for parallel hybrid electric vehicles. The conducted study
aims to determine which factors (learning experience selection, number of
states selection, states and action discretization, and exploration and exploita-
tion) are the most influential in an RL system. The results showed that the
learning experience selection and state/ action discretization had a higher
impact on the vehicle fuel economy.

Authors in [119] developed a decentralized multiagent system (MASs) for
a grid-connected microgrid (MG). They studied electrical and thermal energy
flows and a variety of distributed energy resources (DERs) using the RL al-
gorithm to optimize the performance of MG and each autonomous agent. As
a result, MASs with DRL have shown elastic management while examining
consumer consumption and diminished operating cost.

In [120], authors implemented a new variant of reinforcement learning
(RL) method Dyna, namely Dyna-H, for energy management of a series of

4.2. Energy Use case 79

hybrid electric tracked vehicles. Results show that Dyna-H realizes faster
training speed and lower fuel consumption than traditional DQL. Reinforce-
ment learning needs a lot of data and a lot of computational time [121, 112].
Moreover, too much reinforcement learning can lead to an overload of states,
leading to solutions that will not converge. Furthermore, more studies need
to be conducted on the impact of state actions and rewards on the environ-
ment.

Elena Mocanu et al. [122] studied the use of deep reinforcement learning
using two methods, Deep Q-learning and Deep Policy Gradient. The objec-
tive is to complete the online optimization of schedules for building energy
management systems. The result shows that Deep Policy Gradient performs
better than Q-learning to make online scheduling.

Authors in [123] developed a Robust Data Predictive Control framework
for Energy Management System (RDPC-EMS). They started by predicting
the electricity price using the Outlier-Robust Extreme Learning Machine(OR-
ELM). Then, the local controller executes the energy scheduled to maintain
the MG supply-demand balance.

After implementing some of these techniques, we have found several
common difficulties in adapting to our context: huge exploration time (some-
times even, we don’t converge at all). Need of large datasets.

The difficulty we face in this contribution comes from two simultaneous
problems: First, Mixed Integer Linear Programming (MILP) methods cannot
be used in an IIoT environment as explained above (Time and cost). Sec-
ond, RL using Q-learning, DQN, or PG require a lot of data and considerable
training intervals that cannot be available in real life. So the reinforcement
learning that we target learns from good experience rather than exploiting a
vast (almost infinite) space of state/actions/rewards.

4.2 Energy Use case

4.2.1 Context and problem definition

We are considering different actors of a microgrid that need to collaborate.
These actors are the Consumers (Buildings, Houses...), the Renewable Re-
sources Producers (Photovoltaic panels, wind turbines...), The Electricity Sup-
plier, and the Storage System (Battey, Electric Vehicles...). The used architec-
ture is described in Fig. 4.1. It is implemented in two buildings in the Institut
Polytechnique de Paris (Drahi building and U4 Evry student dorm). A set of
solar panels and batteries are installed on the top of the Drahi building.

The collected data architecture is described in 2.5.1. It consists of the de-
tailed consumption (separate consumption categories are measured by IoT
devices and sent to a gateway each second) and the produced energy from
the photovoltaic panels. The database used to store the multi-variate col-
lected data is InfluxDB. This database is a non-SQL database specialized in
the storage of time series. We used Bokeh as a graphical interface to display
and manipulate stored data. We extract the needed information from the
database and save it into a Comma-separated values (CSV) file.

80 Chapter 4. Resource Management and optimization Algorithm

FIGURE 4.1: A Micro Grid Architecture

In our EMS, we have many options. One could want to minimize energy
costs, optimize consumer demands, etc... So we naturally have many cases
for energy management. The output of our EMS consists of a set of actions
that will be applied to the different devices on the system. Depending on
the inputs, adequate action will be done according to the various defined
variables in table 4.1. The operations could be done on different devices. The
EMS could apply the action, use solar production or store the extra produced
energy in the batteries.

FIGURE 4.2: Microgrid management system Architecture

Figure 4.2 shows the proposed microGrid renewable energy architecture
and uses targeting to minimize the purchasing power from the electricity
supplier. Consequently, the purpose is to diminish the quantity of energy

4.2. Energy Use case 81

procured from the grid and avoid the battery’s solicitation to prolong its life-
time. Therefore, at an instant t, we are dealing with three parameters: the
consumption, the production of renewable energies, and the battery’s state
of charge. We are considering an infinite battery size where the extra energy
generated needs to be stored. Our objective is to serve the energy demand
privileging the use of solar production then, the battery, and finally, the grid
supplier.

We want to find at each instant which action we need to apply to our
environment. Three different methodologies are compared in this chapter
to achieve the defined objective: the Exact resolution, a heuristic resolution,
and a machine learning method. For that purpose, we are considering real
consumption data collected from the two buildings in the Institute Polytech-
nique de Paris and real production data collected from Photovoltaic Panels.

The processed data is spread over more than three years. Various features
concerning the consumption are available: Date and time (in UTC), weather
forecast, the total consumption per zone, etc. Likewise, for production, vari-
ous information is available Date and time (in UTC), Global_Solar_Flux, and
Measured Power at Maximum Power Point. We have several granularity lev-
els, among which we can cite 1 second, 10 min, 30 min, and one hour. The
chosen granularity for our experimentation is one hour.

In Table 4.1, we describe the different variables and their definition.

82 Chapter 4. Resource Management and optimization Algorithm

TABLE 4.1: Variables and definition

Variable Definition
ET

t Total energy that needs service in time
slot [t-1,t)

EC
t Critical energy that needs service in

time slot [t-1,t)
ED

t Delayed energy that needs service in
time slot [t-1,t)

Pt Produced energy at time slot [t-1,t)
Bt Estimated Energy in the Battery at

time slot [t-1,t)
Gt Estimated energy drawn from the

grid at time slot [t-1,t)
Dt Total estimated demand of delayed

traffic in slot t
Rt Delayed traffic that has reached its

time limit.
Mt Total delayed traffic generated in [t-

τ, t)
EST Total energy saved per day
αt Binary, Using Battery energy action.
βt Binary, Using grid energy action.
γt Binary, Storing the extra energy to

battery action.
ρt Binary, Using solar energy action.
θt Binary, satisfy Dt action.
aTot Total actions performed after Tot.

slots
τ How many instant that delayed pre-

dicted energy consumption can be
shifted

4.2.2 Uses cases

Four different use cases were explored. In the first one, we consider only one
energy demand class. The main idea is to use renewable energy production
as much as possible. In fact, the purchase from the energy supplier is penal-
ized. We also aim to minimize the use of batteries both at consumption and
storage levels. In the second use case, we are considering only one energy
consumption type, but this time we aim to store the extra produced energy
in the batteries.

For example, in the first case, if we need to serve 5kwh at 10 AM and
we produce 6kwh, the extra 1kwh will not be stored, unlike the second case,
where this excess production will be held.

4.2. Energy Use case 83

In the third case, we categorize energy consumption into delayable and
critical. The critical demand needs to be served without any delay. In this
case, the delayable request could be served later within any time limit. While
in the fourth case, the delayed demand could not exceed a specific time τ.

4.2.3 Exact Resolution

We start with a simple algorithm and progressively get more complex. Since
they are intended to run in IIoT distributed microcontrollers, it makes sense
to have incremental complexity adapted to different hardware product lines.

Case One

Model Explanation The first case tries to minimize actions in the EMS. The
goal is not only to reduce the amount of energy bought from the grid but also
to avoid solicitation of the battery to extend its lifetime.

We are considering the energy demand entirety at an instant t. The actions
are:

• Using the Battery

• Buying from the electricity supplier

• Using the produced energy at that time t.

Our objective is to minimize the total actions performed to serve the energy
demand after T time slot. We have decided to penalize the purchase action β
since we aspire to have a self-sufficient network grid. Equation (4.1) ensures
that at each time slot t one action will be equal to 1. Eq. (4.2-4.4) guarantees
that we are allowed to execute only one action. The State of Charge of the
battery is updated for each time slot in equation (4.5) and depends on the
anterior values of α, β, and ρ. Equation (4.6) assures that we will complete
the Total energy that needs service in time slot ET

t . Equation (4.7) determines
the amount of energy bought from the energy supplier at each time slot.

Minimize : atot=∑T
t=1 αt+penality∗βt+ρt

subject to:
αt+βt+ρt==1 (4.1)

αt∗βt==0 (4.2)

αt∗ρt==0 (4.3)

βt∗ρt==0 (4.4)

Bt=Bt−1+(1−ρt−1)Pt−1−αt−1ET
t−1 (4.5)

αtBt+ρtPt>=(1−βt)ET
t (4.6)

Gt=βt∗ET
t (4.7)

84 Chapter 4. Resource Management and optimization Algorithm

Case two

Model Explanation The difference between the first and second scenarios
comes from the will to store any extra renewable energy that exceeds the
total energy required at time t. For that purpose, we introduced a new binary
variable gamma that will equal one if The production exceeds the demand.
Equation (4.9) stipulates that this difference should be positive, and equation
(4.8) stores this extra energy in the battery. Note that the case when this
difference is negative is considered in both scenarios by ρ. In fact, if ρ is
equal to 0 for both equations (4.8) and (4.9), this difference will be zero.

Minimize : atot=∑T
t=1 αt+penality∗βt+advantage∗γt+ρt

subject to: (4.1), (4.2), (4.3), (4.4), (4.6) and (4.7):

Bt=Bt−1+(1−ρt−1)Pt−1+γt−1(Pt−1−ET
t−1)−αt−1(ET

t−1) (4.8)

γt∗(Pt−ET
t)>=0 (4.9)

We intend to minimize the energy bought from the electricity supplier for the
third and fourth cases.

Case three

Model Explanation We categorized the energy consumption demand in
previous work [124]. We identified the first category as the critical energy
demand (CE) and the second as the delayed energy demand (DE). The CE
demand is the real-time demand that we cannot delay over time. The DE is
the demand that we can serve later without any time limit. The distinction
between the first two cases and the last two cases is the considered energy
demand that needs to be served at an instant t.

We introduced a new binary θ, equal to 1 if we satisfy the total estimated
demand of delayed energy in time slot t. Equation (4.10) updates the State of
Charge (SOC) of the battery. Equation (4.25) ensures that at an instant t, we
will serve the Critical Energy (EC

t) that needs service in this time slot. Equa-
tion (4.26) defines the amount of energy that we need to buy from the energy
supplier to satisfy the CE demand for a specific time slot. Equation (4.13)
stipulates that the difference between the production and the CE should be
positive. Equation (4.14) and (4.15) explain when θt must be equal to 1. The
update of DD

t is made according to equation (4.16).

Minimize : GT=∑T
t=1 Gt

subject to: (4.1), (4.2), (4.3) and (4.4):

Bt=Bt−1+(1−ρt−1)Pt−1+γt−1(Pt−1−EC
t−1)−αt−1(EC

t−1)−θt−1∗DD
t−1 (4.10)

αtBt+ρtPt>=(1−βt)EC
t (4.11)

4.2. Energy Use case 85

Gt=βt∗EC
t (4.12)

γt∗(Pt−EC
t)>=0 (4.13)

Gt+Bt+Pt−EC
t −θtDD

t >=0 (4.14)

Gt>=0 (4.15)

DD
t =(1−θt−1)∗DD

t−1+ED
t (4.16)

Case Four

Model Explanation The DE, in this case, can now be shifted only for the τ
time step. After the DE achieves its limit τ, it will be considered CE demand,
which needs to be served at that time slot t. The update of the battery is
calculated by the equation (4.29). If equation (4.30) and (4.31) are satisfied
then θt can be equal to 1. The update of DD

t is made in equation (4.32). We
introduce two new variables. Mt is used to keep track of the DE that arrived
in the [t− τ, t] equation (4.21). While Rt is higher or equal to the total delayed
demand, DD

t , less the demand in Mt and the delayed demand that reached
its limit ED

t−τ as evaluated by equation (4.23).

Minimize : GT=∑T
t=1 Gt

subject to: (4.1), (4.2), (4.3), (4.4), (4.25), (4.26), (4.13) and (4.15):

Bt=Bt−1+(1−ρt−1)Pt−1+γt−1(Pt−1−EC
t−1)−αt−1(EC

t−1)−RD
t−1−θt−1∗DD

t−1 (4.17)

Gt+Bt+Pt−EC
t −RD

t −θt(DD
t −RD

t)>=0 (4.18)

DD
t =(1−θt−1)(DD

t−1−RD
t−1)+ED

t (4.19)

RD
t >=0 (4.20)

Mt=∑t
i=t−τ ED

i (4.21)

RD
t <=ED

t−τ (4.22)

RD
t >=DD

t −(Mt−ED
t−τ) (4.23)

4.2.4 Heuristic Resolution

Bin Packing

The bin packing problem involves storing objects with a minimum number
of boxes. The classic problem is defined in one dimension, but there are many
variants in two or three dimensions [125].

We are considering the bins that will contain the elements that require
placement. We chose it only because it gives an optimal solution. Algorithm
1 is based on the Bin Packing (BP) problem, particularly the heuristic First-
Fit. In our case, the bins will be the produced energy, and the elements to
place are the energy consumption demand. The policy of the First-Fit is to

86 Chapter 4. Resource Management and optimization Algorithm

FIGURE 4.3: Bin Packing Problems

browse elements and bins one by one and place the first element in the first
suitable bin.

Since the production is variable, the size of our bins will vary as a function
of time, so we will be using a Variable Size Bin Packing VSBP [126]. The major
limitation of the BP family is that it does not meet time constraints. In fact, in
1, we describe how the heuristic First-Fit deals with the energy demand and
place it in the bin.

The algorithm will store the old SoC of the battery and the produced en-
ergy in the new bin and try to serve the demand with that bin. If more is
needed, it will pass to the next one. The algo2 presents the use of the First-Fit
heuristic while considering the third case. In this case, the BP will start with
serving the critical demand. Once done, it will serve the delayed one if there
is still enough energy in the bin. Dealing with the time-dependent problem,
BP is not the best solution, even if it could offer good performance since it
does not meet time constraints.

Algorithm 1 Energy Management Algorithm without classification using
FirstFit heuristic for BinPacking : EMAWCFF
1: Input:ET

t , Pt, Bt length (ET
t), length (Pt)

2: Output: Gt,Bt, atot
3: Store harvesting energy in the Battery
4: Increment atot
5:
6: while length (ET

t) do
7:
8: if ET

t ≤ Bt then
9: Raise Place Object
10: Update Bt
11: Increment atot
12:
13: else
14: check next bin
15: Increment atot (penalty)
16: end if
17:
18: end while

4.2. Energy Use case 87

Algorithm 2 Energy Management Algorithm with classification using
FirstFit heuristic for BinPacking
1: Input:EC

t , ED
t , Pt, Bt length (ET

t), length (Pt)
2: Output: Gt,Bt, atot
3:
4: while Critic Energy Demand do
5: EMAWCFF(Ec

t , Pt, Bt length (ET
t), length(Pt)

6:
7: end while
8:
9: while Delayed Energy Demand do
10: EMAWCFF(ED

t , Pt, Bt length (ET
t), length (Pt)

11:
12: end while

Rule Based

Rule-based systems provide the computational mechanisms found in most
expert systems. These production rules, in many cases, allow a straightfor-
ward encoding of expertise about a particular domain, often as the situa-
tion–action pairs where the IF part of the rule specifies aspects of a concern
leading to one or more actions as described in the THEN portion [127].

The main idea of a rule-based system is to capture the knowledge of a
human expert in a specialized domain and embody it within a computer
system. A rule-based system uses rules as the knowledge representation.
These rules are coded into the system in the form of if-then-else statements.
Hence, the rules are encoded knowledge. Sometimes, rule-based systems
are compared to fake intelligence because of the missing learning capability
[128].

In this section, we are presenting the developed Rule-Based algorithm for
the different defined use cases. We chose to rewrite the above ILP problems
in a Rule-Based method since ILP cannot be solved with CPLEX for large
datasets and because the last case is non-linear.

Algorithm 3 First case Rule-Based Energy Management Algorithm:FEMA
1: Input: ET

t , Pt, B0, G0
2: Output: alpha, beta, rho,Gt,Bt, atot
3: Update the SoC of the Battery
4:
5: if Et ≤ PT

t then
6: Raise action consume
7: Increment atot
8: return 0,0,1,0,Bt , atot
9:
10: else if Et ≤ Bt then
11: Raise action use Battery
12: Increment atot
13: return 1,0,0,0,Bt , atot
14:
15: else
16: Raise action Buy
17: Gt = ET

t
18: Increment atot
19: return 0,1,0,Gt,Bt , atot
20: end if

The second algorithm for energy management will consider the overex-
tended production and store it in the battery as an action.

88 Chapter 4. Resource Management and optimization Algorithm

Algorithm 4 Second case Rule-Based Energy Management Algo-
rithm:SEMA
1: Input: ET

t , Pt, B0, G0
2: Output: alpha, beta, gamma, rho,Gt,Bt, atot
3: Update the SoC of the Battery
4:
5: if Et < PT

t then
6: Raise action consume
7: Raise action store
8: Increment atot
9: return 0,0,1,1,0,Bt , atot
10:
11: else if Et == PT

t then
12: Raise action consume
13: Increment atot
14: return 0,0,0,1,0,Bt , atot
15:
16: else if Et ≤ Bt then
17: Raise action use Battery
18: Increment atot
19: return 1,0,0,0,Bt , atot
20:
21: else
22: Raise action Buy
23: Gt = ET

t
24: Increment atot
25: return 0,1,0,0,Gt,Bt , atot
26: end if

The third Algorithm will consider two categories of consumption and
will serve them according to their nature and depending on the existing re-
sources.

For the last algorithm, LEMA, we introduced the notion of the deadline
to the delayed demand. For example, one could imagine a water heating
system or an air conditioner that can be delayed to start later in time but not
indefinitely to prevent degradation of the user’s comfort.

Rule-based systems face different dilemmas. Rule-based systems also
cause other problems. For example, it’s challenging to add rules without in-
troducing contradicting rules. The maintenance of these systems then often
becomes too time-consuming and costly. That’s generally the showstopper
for rule-based systems and usually the point where learning systems get into
the game.

4.2.5 Machine Learning Method

Since machine learning methods perform well when dealing with optimiza-
tion problems, we decided to implement two different types of recurrent neu-
ral strategies to solve our use cases.

QLearning

Reinforcement learning (RL) is a branch of machine learning that presents an
interaction between an agent and the environment, as shown in Figure 4.4. It
gives the agent the ability to learn to take action as a function of the reward.
The environment is usually assumed stationary, and the state contains the
necessary information to determine the best action to perform in the current

4.2. Energy Use case 89

Algorithm 5 Third case Rule-Based Energy Management Algorithm:TEMA
1: Input: EC

t ,ED
t , Pt, B0, G0, D0

2: Output: alpha, beta, gamma, rho,theta, Gt,Bt, atot, Dt
3: Update the SoC of the Battery
4: Update the Total demand of delayed traffic in slot t
5:
6: if EC

t < PT
t then

7: if Dt < PT
t -EC

t then
8: Raise action Satisfy Dt
9: Increment atot
10: return 0,0,1,1,1,0,Bt , atot,Dt
11: Raise action consume
12: Raise action store
13: Increment atot
14: return 0,0,1,1,0,0,Bt , atot,Dt
15:
16: else if Et == PT

t then
17: Raise action consume
18: Increment atot
19: return 0,0,0,1,0,0,Bt , atot,Dt
20:
21: else if Et ≤ Bt then
22: if Dt < PT

t then
23: Raise action Satisfy Dt
24: Increment atot
25: return 1,0,0,0,1,0,Bt , atot,Dt
26: Raise action use Battery
27: Increment atot
28: return 1,0,0,0,0,0,Bt , atot,Dt
29:
30: else
31: Raise action Buy
32: Increment atot
33: Gt = ET

t
34: return 0,1,0,0,0,Gt,Bt , atot,Dt
35: end if

state. Rewards are calculated based on the environment response to actions
taken by the agent. The interaction between the agent and its environment
defines the mapping state/best action.

In this work, our goal is to design a learning agent able to optimally con-
trol the microGrid. We define the tuple (S, A, R) where S, A, and R are the
set states, the set of actions, and the reward function, respectively. In the
following, we present the different elements of the RL approach.

- States: The state contains all the information to choose the best action,
which is decisive in the performance. In our context, available solar
power output and consumer load are the variables defining the dy-
namic environment. Furthermore, the level of the battery charge and
the grid level must also be considered. In fact, we define the state space
based on 4 variables: The energy consumption C, the grid G, the bat-
tery level B, and the production P. The energy consumption and the
production are inputs; however, the battery level and the grid are cal-
culated based on the chosen action.

- Actions: The chosen action defines the next states. The action space
considered in this context is:

. ’B’: Using the Battery

. ’S’: Storing extra energy on the Battery

90 Chapter 4. Resource Management and optimization Algorithm

Algorithm 6 Fourth case Rule-Based Energy Management Algo-
rithm:LEMA
1: Input: EC

t ,ED
t , Pt, B0, G0, τ

2: Output: alpha, beta, gamma, rho,theta, Gt,Bt, atot
3:
4: for i in lenght (EC

t) do
5: Update the Soof the Battery
6:
7: if EC

t [i] < PT
t [i] then

8: Raise action consume
9: Raise action store
10: Update Pt[i]
11: Increment atot
12: return 0,0,1,1,0,0,Bt , atot
13:
14: else if Et[i] == PT

t [i] then
15: Raise action consume
16: Update Pt[i]
17: Increment atot[i]
18: return 0,0,0,1,0,0,Bt , atot
19:
20: else if Et[i] ≤ Bt[i] then
21: Raise action use Battery
22: Update Pt[i]
23: Increment atot[i]
24: return 1,0,0,0,0,0,Bt , atot
25:
26: else
27: Raise action Buy
28: Update Pt[i]
29: Increment atot[i]
30: Gt[i] = ET

t [i]
31: return 0,1,0,0,0,Gt,Bt , atot,Dt
32: end if
33:
34: if i > τ then
35: if ED

t [i-τ] < Pt[i] then
36: Update Pt[i]
37: theta = 1
38: forj in range(i-τ,i)
39: ifED

t [j + 1] < Pt[i] then
40: Update Pt[i]
41: ED

t [j+1] = 0
42: rho = 1
43: else if ED

t [i-τ] < B[i]-alpha[i]*EC
t [i] then

44: Update Bt[i]
45: forj in range(i-τ,i)
46: ifED

t [j + 1] < Pt[i] then
47: Update Pt[i]
48: ED

t [j+1] = 0
49: rho = 1
50: else
51: beta[i] = 1
52: Update Gt[i]
53: forj in range(i-τ,i)
54: ifED

t [j + 1] < Pt[i] then
55: Update Pt[i]
56: ED

t [j+1] = 0
57: rho = 1
58: end if
59: end if
60: end for

. ’G’: Buying grid energy

. ’P’: Using the solar-produced energy

For example, if the agent’s decision is ′S′, the battery capacity will be
impacted. An hourly action automatically brings the agent in the next

4.2. Energy Use case 91

FIGURE 4.4: RL interaction

hour for a new decision.

- Reward function: The reward function is the utility the agent receives
for performing the right action. It is defined as optimizing energy con-
sumption and storing the overproduction, then minimizing the entire
system’s operational costs. The reward is presented by a binary value
and calculated based on the Chosen action. Since the battery cannot be
charged and discharged simultaneously, only one of these actions can
be selected and performed at anytime step t.

- Q-Learning Algorithm: In [129] a comparison between DQN (Deep Q-
Network) and QL (Q-Learning) was made. Results showed that QL
leads to better results, and that’s why we consider the Q-learning Al-
gorithm, which is a model-free reinforcement learning where the agent
explores the environment to find optimal action-selection policy [130].

In essence, the agent needs to know what the states are and what pos-
sible actions are available for each state. It does not need to have any
model of the environment. Essentially, the outcome of applying an ac-
tion to a state depends only on the current action and state. The algo-
rithm defines the optimal policy that assigns a probability distribution
to each state on the set of actions. The estimated probability is called
Q-Value and is updated based on the received reward after each action.

The reward formalizes how good it is for the agent to emit a specific
action in a given state, considering the optimization of the objective
function. It is positive if the agent chooses the right action and negative
otherwise. In our case, the optimal policy is a deterministic mapping
from the set of states to the set of actions: in each state, there is one best
action. Finally, the states are visited infinitely often, and the Q-values
are continuously updated till the algorithm becomes convergent.

92 Chapter 4. Resource Management and optimization Algorithm

Another key concept is the Q-Learning table, which presents states by
randomly initialized actions. Then each cell is updated through train-
ing. In fact, as the agent interacts with its environment, it updates the
Q values and learns the optimal policy’s Q value. Initially, the agent
tries various actions and explores the set of actions, and as it learns, it
focuses more and more on the best actions using the "greedy method."

Finally, we will repeat this treatment for many episodes going from the
initial state to a terminal state until the learning agent converges toward
a good policy.

LSTM

The second used algorithm to deal with the EMS is the LSTM network
to train the reinforcement part. RNN is the most appropriate family
of NN in our case as it keeps excellent short and long-term memories
of events and can correlate them. The DRL architecture is based on a
Dense LSTM model. The NN model is composed of LSTM enriched
with the ’Dense’ property. We add at the end of this RNN one deep
layer (fully connected neuron layers), resulting in a complex mathemat-
ical architecture that gives much better results than before [131] [21].

The LSTM is composed of 100 neurons and four layers, the number
of iterations performed is 4000, and the used optimizer is ADAM. The
inputs of the neural networks consist of the different consumption and
production data on one hour basis. Since LSTM is a supervised learning
algorithm, we will need to feed it with inputs and labels.

The label sets used for backpropagation are the results of the optimiza-
tion models (daily vectors of α(t), β(t), etc...) referenced as "Optimal_ILP_action"
in the inputs of the algorithm.During the learning phase, the first step
is to analyze the consumption and production data and determine if
there is any erroneous or missing data. Data is normalized and split
into train and test (70 %, 30 %). After training, we test with one-third
of the three-year dataset in our possession to evaluate the preciseness
of the actions taken.

So if we summarize the difference between our approach and a clas-
sical RL mechanism: First, we directly learn the optimal actions cal-
culated from the model (here it is a Rule-Based Algorithm), whereas
the other RL needs to explore all the space, including wrong actions.
Second, RNNs have an excellent memory of the correlation between
subsequent actions, while plain RL cannot do so. We need to use more
complex deep RL architectures to get close to an RNN, such as Duelling
architectures.

4.2. Energy Use case 93

4.2.6 Performance results for Resource management

In this section, we evaluate the resolution of the four use cases for en-
ergy management defined beforehand. We first comment on the results
obtained with the ILP resolution. Then the use of the Rule-Based pol-
icy, and finally, the use of reinforcement learning. Mainly, we use the
following error metrics: mean squared error (MSE), root mean squared
error (RMSE), R squared (R2), as well as the percentage of correct action
per day.

The main idea presented in this section is how good the performance
of LSTM on the predicted actions is. Even if calculating energy saving
is not the primary objective of this work, we added an energy-saving
parameter. In the previous submitted work, we compared the use of
different methods of Bin Packing, Rule-Based, and Q-learning for the
Energy Management System. We also compared the quality of the cho-
sen action for each of the mentioned methods. The principal purpose of
this work is to use the acquired information from the exact resolution
as input so that we can mimic the exploitation phase of the traditional
DRL algorithm.

Since DRL will pass through 2 steps, the first one being the exploration
and the second the exploitation, in which it will use the information
it learns during the first phase. We intended to emulate this phase by
passing the results of the exact resolution as labels of the LSTM algo-
rithm. The percentage of saved energy for one day is equal to 73.8%.
The calculation is done according to the following equation:

EST=(∑ ET
t −∑ Gt)/sumET

t (4.24)

Exact resolution

Fig. 4.5 shows the result of solving the first case using CPLEX. This
Figure describes the results when varying the battery capacities from
15kwh, 33kwh, 99kwh, and 150kwh to infinite while resolving the first
case with the ILP optimization. We can see the optimal results evalu-
ated by CPLEX. 4.5a gives the minimum set of actions found, and 4.5c
shows the necessary energy bought from the grid. Fig. 4.5a shows the
result from 0 to 23, a day with a granularity of 1 hour. It is the first
iteration, with an initial SoC for the battery equal to 10kwh.

The difference between the different battery capacities will be visible
in the long term. The number of actions will be incremented for each
action carried out. In this case, an action can be (store in the battery, use
production or buy from the supplier) the purchase is penalized. The
more we perform the purchase action, the higher the number of actions
will be.

The relation between the number of actions and the battery capacity is
the capability of the latter to store to minimize the purchase. We need

94 Chapter 4. Resource Management and optimization Algorithm

to choose a battery capacity that is adequate for production and needs
and not that it is incredibly high. In this case, the number of actions
required is more significant when the battery capacity is infinite due to
priority order over the choice of action. The first action to be performed
is the Use of the production. The 2nd is the Storage of the battery, then
the Use of the battery, and finally, purchase from the supplier.

Since the battery capacity is one of the variables to consider when defin-
ing the ILP problem, the battery capacity will influence the CPLEX res-
olution and the priority of the actions to be taken. For this reason, in
Fig 4.5b, the SoC of the battery when the capacity is 99 kWh is higher
between the time intervals of 5 to 10 when the capacity is 150 kWh .
What should be noted is that Figures 4.5 (a, b, c) deal with the first case,
either we stock or use production.

As the battery capacity will influence the action to be taken, at time
point 6 to meet the objective function and satisfy the order of priority
of actions, the buy action has been taken. As for the rest of the capac-
ities, another action was chosen. Since curve 4.c presents the Cumu-
lative amount of energy bought, the curve representing the battery’s
infinite capacity will be greater than the other curves between intervals
5 and 15. Subsequently, we notice that the cumulative amount of en-
ergy bought will be lower for batteries with a capacity of 150 kWh and
infinite.

4.5b describes the state of charge of the battery.

(A) Cumulative action (B) Cumulative SoC of the battery(C) Cumulative amount of energy
bought

FIGURE 4.5: First Case CPLEX Resolution for one day

Rule-Based

Similarly, we evaluate Rule-Based algorithms on the predicted dataset.
Fig. 4.6 describes the results of varying the battery capacities from
15kwh, 33kwh, 99kwh, and 150kwh to infinite while resolving the sec-
ond case with Rule-Based algorithms. We made simulations using the
Rule-Based algorithm and obtained the result that deals with the four
defined use cases. We varied the battery capacities for each use case
from 15 kWh to infinite then. Then we plotted the results for the cu-
mulative actions, cumulative SoC of the battery, and the cumulative
amount of energy bought. The second case results are shown in Fig.
4.6.

4.2. Energy Use case 95

(A) Cumulative action (B) Cumulative SoC of the battery(C) Cumulative amount of energy
bought

FIGURE 4.6: Second Case Rule-Based Resolution for one day

Exact resolution versus Rule-Based

We plot Fig. 4.7 and 4.8 to show that exact ILP and Rule-Based do not
give very far optimal results. For the Rule-based approach, the system
uses the produced energy and doesn’t store it in the battery. For this
reason, the SoC during the whole time interval is almost zero. Since
the production is at its highest from interval 5, the Cumulative amount
of energy bought for the Rule-Based will be lower than for the CPLEX
resolution. Thus, it is an incentive to develop less stringent Rule-Based
algorithms instead of using limiting ILP solvers.

(A) Cumulative action (B) Cumulative SoC of the battery(C) Cumulative amount of energy
bought

FIGURE 4.7: Comparison CPLEX and Rule-Based First Case
Resolution

(A) Cumulative action (B) Cumulative SoC of the battery(C) Cumulative amount of energy
bought

FIGURE 4.8: Comparison CPLEX and Rule-Based Second Case
Resolution

RL evaluation

Results of Q-Learning Approach To measure the performance of the
Q-learning algorithm, we consider 6000 episodes. An episode is pre-
sented in 24 hours, namely 24 epochs (or steps). In Fig. 4.9, we present

96 Chapter 4. Resource Management and optimization Algorithm

(A) Reward (B) Penalties

FIGURE 4.9: Performance evaluation of Q-learning algorithm

the performance of the Q-Learning algorithm. Fig 4.9a plots the cu-
mulative reward as a function of the number of epochs. It is clear that
initially, the agent explores the environment and commits errors. When
it has explored enough, it can act wisely, maximizing the rewards when
taking the best actions. However, in this case, the algorithm has prob-
ably not reached the optimal policy to provide good enough decisions
to manage the energy system. More time is needed to learn, and then,
the larger the reward means the agent is doing the right thing.

In Fig. 4.9b, we evaluate our agents according to the average number of
penalties per episode. The penalties decrease when the agent chooses
the wrong action. The smaller the number, the better the performance
of our agent. Ideally, we would like this metric to be zero or very close
to zero. In essence, a higher average reward would mean that the agent
understood and made the right decisions with minor penalties. How-
ever, in our case, the agent takes so much time to learn, and both curves
start to converge when the number of episodes reaches 100.

Deep Learning vs Q-learning In this section, we will present the dif-
ferent results while comparing the two proposed approaches: Deep
Learning and Q-Learning. In Table 4.2, we compare the execution time
for both LSTM and QLearning. For this comparison, we used one year
of consumption and production data. We then varied the number of
iterations from 5 to 100.

The obtained results show that the execution time of LSTM is less im-
portant than the execution time for Q-Learning. In fact, for 100 iter-
ations, LSTM will complete the training step in 17.16 seconds, while
it would take more than 75 hours for Q-Learning. This is because the
Q-learning computes all the Q-values at each episode (the Q-table con-
tains 27962 states), and the neural network training requires processing
too.

Table 4.3 shows the percentage of each correct action for both LSMT
and Q-Learning. We used one-year data to calculate these percentages.
For the LSTM, we used the predicted action. While For Q-learning, we
used the last obtained Q-table.

4.2. Energy Use case 97

TABLE 4.2: Comparison between LSTM and Q-Learning execu-
tion Time

Algorithm
Iterations 5 10 50 100

LSTM 4.18s 4.96s 10.74s 17.16s
Q-learning 48mn 2h15mn 28h07mn 75h.11mn

We started by determining the percentage accuracy for one day for each
action (Use Battery, Buy from the Grid, Store in the Battery and use
Solar Production). Then we calculated the average percentage for the
entire test period. It appears that LSTM provides better results than
Q-Learning. The worst rate for LSTM is 80.59% of correct predicted ac-
tions (Action using the Battery), while the best for Q-Learning is 69.8%
of chosen actions (Action buying from the Grid).

TABLE 4.3: Accuracy of daily predicted actions LSTM vs Q-
Learning

Percentage
Algorithm LSTM QLearning

Action Using Battery 80.59% 39.27%
Action Buying from the Grid 81.08% 69.8%
Action Storing in the Battery 95.36% 57.55%

Action Using the solar Production 95.35% 57.06%

In this section, the study will be done over one random weekday during
one year. It is 18 June 2019. We compared the chosen action for each
proposed approach in figures 4.10 and 4.11.

In figure 4.10a, we are showing the predicted use of Battery action.
The rule-based results are in green, the LSTM is in Indian red, and
the Q-Learning is in blue. The light brown color shows when the ac-
tion performed by the Rule-Based and LSTM match precisely. For the
Q-Learning, the results match from 06:00 to 16:00. We can observe the
three different colors when there is a time shift in action decisions. 4.10b
shows the Predicted action Buy from the grid with LSTM vs. Q-learning
vs. RB.

Figure 4.11 presents the results of the predicted actions for storing in the
Battery and using the solar energy produced. 4.11a shows the Predicted
action Store in the Battery obtained with RB, LSTM, and Q-learning in
green, Indian red, and blue, respectively. While 4.11b shows the pre-
dicted action. Use Solar Production with LSTM, Rule-Based, and Q-
Learning. Each time the value is equal to one, we will apply an action.
For example, at 12:00, both LSTM and RB predicted that we would store
in the Battery and use the solar production since we have an extra pro-
duction compared to the consumption.

98 Chapter 4. Resource Management and optimization Algorithm

(A) Predicted Use of Battery Action
LSTM vs Qlearning vs RB

(B) Predicted Buy from the grid Action
LSTM vs Qlearning vs RB

FIGURE 4.10: DL vs RL predicted action for one day: Predicted
Use of Battery and Predicted Buy from the grid

(A) Predicted Store in the Battery Action
LSTM vs Qlearning vs RB

(B) Predicted Use Solar Production Ac-
tion LSTM vs Qlearning vs RB

FIGURE 4.11: DL vs RL predicted action for one day: Predicted
Store and Predicted use of solar energy

LSTM results The last figures go from 4.12 to 4.15. It concerns the re-
inforcement part. We respectively compare predicted actions with real
optimal actions from the test dataset for a) Use battery action, b) grid
usage, c) battery storage action, and d) solar usage. The orchid color
shows when the actions are exactly matching. The blue color represents
the real optimal action, and the coral color depicts the predicted action.
We can observe the blue and coral colors when there is a small-time
shift in action decisions.

Tab. 4.5 to 4.8 give respective error metrics for the learning phase. But
the most important result is summarized in Tab. 4.7. We can see the
mean daily accuracy of the different actions in all use cases. The exact
resolution chooses the correct action for a specific day at a well-defined
time. For each use case, we compared the action resulting from the pre-
diction algorithm to the action provided by the exact resolution. We
then made a daily average over the entire data set. We consider that
these results are excellent since they globally vary between 80 and 95
% except for only one action (theta). Furthermore, the Q-learning algo-
rithm is slower than the LSTM. Tab. 4.2 shows the execution time for
both LSTM and Q-learning.

4.2. Energy Use case 99

TABLE 4.4: Accuracy of daily predicted actions

%
Use Case Case 1 Case 2 Case 3 Case 4

percentage Alpha 90.51% 80.59% 80.51% 80.23%
percentage Beta 90.46% 81.08% 80.93% 79.99%

percentage Gamma - 95.36% 95.40% 95.11%
percentage Rho 95.34% 95.35% 95.39% 93.58%
percentage Teta - - 66.8% 89.39%

TABLE 4.5: KPI performance for First case LSTM resolution

Action
KPI MSE RMSE R2

Alpha 0.053 0.23 0.37
Beta 0.054 0.23 0.77
Rho 0.005 0.07 0.98

(A) Predicted Use
Battery Action Pre-

diction vs Real

(B) Predicted Buy
Action vs Real

(C) Predicted Use
Solar Action Predic-

tion vs Real

(D) Predicted Bat-
tery SoC vs Real

(E) Predicted
amount of energy
bought from the

grid vs Real

FIGURE 4.12: First case LSTM resolution

(A) Predicted Use
Battery Action vs

Real

(B) Predicted Buy Ac-
tion vs Real

(C) Predicted Store
Action vs Real

(D) Predicted Use So-
lar Action vs Real

FIGURE 4.13: Second case LSTM resolution

(A) Predicted Use
battery Action vs

Real

(B) Predicted Buy
Action vs Real

(C) Predicted Store
Action vs Real

(D) Predicted Use
solar Action vs Real

(E) Predicted Satis-
faction Dt Action vs

Real

FIGURE 4.14: Third case LSTM resolution

100 Chapter 4. Resource Management and optimization Algorithm

TABLE 4.6: KPI performance for Second case LSTM resolution

Action
KPI MSE RMSE R2

Alpha 0.16 0.40 0.25
Beta 0.16 0.39 -6.08

Gamma 0.005 0.07 0.976
Rho 0.005 0.07 0.976

TABLE 4.7: KPI performance for Third case LSTM resolution

Action
KPI MSE RMSE R2

Alpha 0.16 0.40 0.25
Beta 0.15 0.39 -6.08

Gamma 0.004 0.066 0.978
Rho 0.004 0.067 0.977
Teta 0.29 0.53 0.0

TABLE 4.8: KPI performance for Fourth case LSTM resolution

Action
KPI MSE RMSE R2

Alpha 0.167 0.40 0.285
Beta 0.17 0.41 0.24

Gamma 0.007 0.08 0.965
Rho 0.022 0.14 0.903
Teta 0.064 0.25 0.729

(A) Predicted Use
battery Action vs

Real

(B) Predicted Buy
Action vs Real

(C) Predicted Store
Action vs Real

(D) Predicted Use
solar Action vs Real

(E) Predicted Satis-
faction Dt Action vs

Real

FIGURE 4.15: Fourth case LSTM resolution

4.3 Cellular network Use case

The management of the increase in Internet of things (IoT) network de-
vices and applications [132],[133] requires massive optimization algo-
rithm processing and high resource capacities. On the other hand, a
serious will to reduce the carbon footprint of IT in general pushes net-
work operators to find alternatives to massive computing tools in order
to replace them with more nature-friendly approaches. Machine learn-
ing (ML) algorithms, as we are using through reinforcement, constitute

4.3. Cellular network Use case 101

a general method that, when well trained, efficiently replaces such mas-
sive model evaluators and network simulators.

So, instead of simulating the network behaviors for each new configu-
ration or optimizing the parameters for each new user profile, a rein-
forcement learning algorithm will learn the model and provide results
for any further configuration without requiring repetitive evaluations.
The trained ML is hence considered a good model approximator.

Of course, any machine learning approach will require an initial train-
ing process that consumes energy and CPU, and this is one main inter-
est in our work. But training is done once, and model execution is then
straightforward with minimal energy consumption.

The architecture of cellular networks demands high levels of optimiza-
tion to prevent network anomalies. Out-of-range communications, ob-
stacles, unusual human presence, etc., typically cause anomalies. Be-
cause this is the most important issue that can pose service degradation
and directly affect the different network functionalities, it is a central
problem we target to solve in this work.

In the same context, the unmanned aerial vehicles (UAV) [134, 135]
have achieved a high development in different fields, especially in net-
working offloading [136] by the appearance of interesting architectures
1 and solutions for both navigation and communications that can be in-
tegrated with mobile networks to provide alternative solutions in case
of disconnection or network problems.

In this section, we propose to use UAVs on an on-demand basis for of-
floading base stations to provide services to connected devices. We first
propose an optimal model that aims to maximize the data collection by
taking into account the UAV battery. Then we define a deep reinforce-
ment learning environment based on two techniques: Q-learning and
LSTM. They learn the optimal model. After that, we present a compari-
son study for both proposed approaches based on real cellular network
datasets, where we analyze the exactness and convergence times.

4.3.1 Related work

In this section, we present the relevant studies in the area of UAV-
assisted new network generations.

Pakrooh et al. [137] highlight UAV services for mobile devices and IoT
systems. The UAVs serve IoT communication, processing of generated
data, etc. However, the UAV navigation mechanism is not studied in
this work.

In [138], the author introduced an architecture for orchestrating and
managing 5G and beyond networks that operate over a heterogeneous

1European project 5G! Drone

102 Chapter 4. Resource Management and optimization Algorithm

infrastructure with UAVs’ aid. The approach introduces UAVs as a ser-
vice for mission-critical with challenging 5G connectivity. They collect
and process heterogeneous data from different sources while improv-
ing network connectivity. However, the overall architecture needed to
include the trajectory planning of UAVs, which is necessary for real
platforms.

Demir et al. [139] proposed UAV deployment in V2X communication
field. They tackle the energy-efficient deployment problem of UAVs
as mobile RSUs while considering vehicle users latency ad back-haul
link capacity constraints and assuring efficient power control of vehicle
users.

In [140], authors introduced Software Defined Networking (SDN) as
the control plane that manages UAVs, legacy vehicles, and MEC servers.
Then, they proposed an SDN-enabled UAV-assisted computation of-
floading optimization framework for vehicular networks to minimize
the system vehicle computing tasks cost. Indeed, UAVs are deployed to
reduce the MEC server’s load and minimize vehicle-to-MEC network
latency. The safety applications to clarify the practical interest of the
proposed solution is not studied in this work.

4.4 Modeling and ILP optimization of the Qual-
ity of Service

This section presents a simple network architecture and the ILP (Integer
Linear Programming) optimization model. It can be easily complexi-
fied with more details that will be discussed at the end of the section
[102].

4.4.1 Network Model and architecture

We consider the (CDRs) Call Detail Records published as a part of the
Big Data Challenge launched by Telecom Italia in 2014.

The architecture of the proposed model is presented in figure 4.16. We
consider a centralized cellular infrastructure composed of a coordinator
base station and base stations (BS). Generally, mobile users’ activities
are different at a particular time and cell. When detecting an anomaly
(presented in chapter 3) [141], and [142]), each BS communicates the
predicted anomalous cell ID(s) with the coordinator to initiate remedial
actions. The coordinator launched Unmanned Aerial Vehicles (UAVs)
with the mission of collecting data in overloaded cells. We concentrate
on drone actions. We define four actions: send a drone to the damaged
cell, commit offloading, return the drone to the charging station, and
idle.

4.4. Modeling and ILP optimization of the Quality of Service 103

The main block is based on the ILP optimization model and will be
replaced by the reinforcement learning approach. The inputs to the
model are the CDR data, the usual load of each terrestrial base sta-
tion, and the characteristics of the drones to be deployed. The output is
the actions on drones: deploy and eventually backhauling. We use the
terms backhauling or offloading with the same meaning.

FIGURE 4.16: QoS Management architecture

4.4.2 ILP Optimization

Below, we formulate the ILP [143] optimization problem governing the
studied use case where we aim to afford adequate QoS to applications.
In Table 4.9, we describe the different variables used to define the model
that we aspire to solve.

104 Chapter 4. Resource Management and optimization Algorithm

TABLE 4.9: Notations per cell

Notation Description
Cy(t) Capacity of the base station y dur-

ing slot t (maximum amount of
data that can be served with the BS
in the time slot)

A(t) The user total demands in the case
of anomaly

B(t) The user demand that need to
be served with the drone: Back-
hauling

Dx(t) The battery capacity of the drone x
at time slot t

D The maximum charge of the drone
battery.

D Minimum State-of-charge (SoC) of
the drone.

Eb(t) The energy consumed by the drone
when performing backhauling ac-
tion at time slot t

Es(t) The energy consumed by the drone
when performing send action at
time slot t

αt Binary, sending the Drone
βt Binary, making the backhauling ac-

tion
γt Binary, return action
ρt return action
κt Binary, Drone is charging (state)
Cmax Int, number of Cells
Nmax Int, Max number of drones

We try to serve the bandwidth demand first with cellular capacities. We
have in our possession information concerning the users’ demand per
hour. If more than the BS capacity is needed, that means that we are
facing an anomaly. In this case, we have to deploy a drone to support
the areas in need during the required number of time slots. If no han-
dover [144] is possible and the drone is not sent, the client will suffer a
bad QoS and instability [145].

The examined use case is a simplistic outlier emergency coverage sce-
nario without any distinction of traffic types. When an anomaly occurs,
it is due to an unexpected traffic profile. The process is done for 24
hours based on outlier prediction.

The objective function proposed here is maximizing the backhauling
and hence minimizing the dropped data.

4.5. Reinforcement Learning Approach 105

Maximize : bDrone=∑T
t=1 β×(A(t)−C(t))

subject to:
αt + βt + γt + ρt = 1 (4.25)

αt ∗ βt = 0 , αt ∗γt = 0 , αt ∗ ρt = 0 , βt ∗γt = 0 , βt ∗ ρt = 0 , γt ∗ ρt = 0
(4.26)

D(t) = D(t − 1)− βt × Eb(t)− αt × Es(t)− γt × Es(t) (4.27)

i f (γt) then (κt+1 == 1) (4.28)

i f (κt + anomalyt+1 ≥ 2) then (αt+1 == 1) (4.29)

i f (anomalyt − κt) == 1 then (βt == 1) (4.30)

i f (anomalyt == 0) then ρt == 1 (4.31)

i f (κt+1 == 0) then (γt == 1) (4.32)

Eqs.4.25 and 4.26 ensure that at a time step t, only one action could
be applied. Eq. 4.27 allows the update of the state of charge of the
drone battery depending on the actions carried out. Eq. 4.28 means
that κ is 1 (return to charging station) in case the drone is doing a return
operation. Eq. 4.29 indicates that α is performed if there is a predicted
anomaly. Eq. 4.30 indicates when we can make backhauling. 4.31 tells
when there is an idle state, and 4.32 triggers the return action. This code
is run with CPLEX (academic version) and is downloadable on the 4th
author’s webpage.

4.5 Reinforcement Learning Approach

ILP gives an optimal solution for problems if we correctly represent the
case of the study. However, it is not without a non-trivial computation
cost and time. Also, it has to be run anytime a minimal change hap-
pens to the dataset. This engenders a waste of energy and resources.
The idea we present here is to implement an environment describing
our use case and make a machine learning system learn the actions to
perform for such a problem. The method used is called reinforcement
learning. It is a branch of machine learning, and the algorithms we will
use are called Q-Learning and deep reinforcement.

Many advantages will emanate from this approach, like much less con-
sumed energy and CPU resources and building a quite simple autonomous

106 Chapter 4. Resource Management and optimization Algorithm

optimization tool that can be embedded in small devices. Another sig-
nificant result will be the possibility of adapting the NN to changing
conditions in the system. The main idea behind reinforcement learning
is that it is represented as an agent that will interact with the environ-
ment. The overall result looks like a ’black box system’ that behaves
like the required solver.

States identify the environment. In this work, our goal is to design
a learning agent able to optimally control the drone to maximize the
backhauling in case of an outlier. The agent will take action and, ac-
cording to the result, will receive some reward. We defined the various
elements needed by our reinforcement learning algorithm.

– State: The identified state space is composed of four variables.
The first one is the time of the day. The second one is if there is an
anomaly or not. The third one is the state of charge of the drone,
and the last one is to indicate if the drone is in the charging sta-
tion or is deployed. The time and anomaly are inputs. However,
the battery level of the drone and the drone location is calculated
based on the chosen action.

– Action: The chosen action defines the following states. The action
space considered in this context is:

* Send: The agent will send the drone to assist the BS.

* Backhauling: The drone is already deployed and will serve
the over-demand.

* Charge: The agent will send the drone back to the charging
station.

* Idle: The agent will not make any order to the drone. The
drone will stay in stationary mode.

– Reward: When performing the correct action, the agent will re-
ceive a reward. It is defined as optimizing drone usage while
maximizing cellular coverage. A binary value presents the re-
ward. After each action, the reward will be calculated.

Fig. 4.17 shows the finite automate with the different states and actions.
The reward isn’t present in this figure since we assume that the agent is
taking the optimal action and that the reward is maximal here. For one
day and one hour, granularity if the agent makes only optimal actions,
the reward will equal 24.

If we consider t = 2, our state is as follows [2,1,80,0], which means that
there is an anomaly, the drone battery is equal to 80%, and the drone is
deployed. The optimal action, in this case, is backhauling.

Fig.4.18 describes the internal update of the state according to the cho-
sen action. The first check is if there is an anomaly, then we need to

4.5. Reinforcement Learning Approach 107

FIGURE 4.17: Finite automate for one day

verify whether there is enough battery in the drone and if it is already
deployed. Since we are dealing with only one base station, in this case,
the drone location is important information to apply the right action.
Once we apply adequate action, we need to calculate the updated drone
capacity and location. In our studied use case, we assumed that when
applying the send action, we need to update the battery drone by sub-
tracting 20% of the battery State of Charge (SoC). And while we apply
the backhauling action, we deduct 15% of the battery SoC.

The reinforcement learning algorithm, specifically the Q-Learning, is
applied to the defined environment. The first step is the exploration
phase. First, a Q-Learning table is initialized randomly. It presents
the states and actions. The algorithm defines the optimal policy that
assigns a probability distribution to each state on the set of actions. The
estimated probability is called Q-Value. Through the training, the Q-
Learning will explore the various possible actions and update the Q
values based on the received reward after each action. Then it will learn
the Q value of the optimal policy. This step is called the exploitation
phase. Finally, we will repeat this treatment for many episodes.

FIGURE 4.18: General flow diagram for the proposed algorithm

108 Chapter 4. Resource Management and optimization Algorithm

4.5.1 Results and discussion

In this section, we present the performance results of the Q-learning
approach.

Execution Time

We tested our environment and our algorithm using as input a single
day and the entire dataset, which is two months. We subsequently per-
formed several resolutions by varying the number of iterations from
100,500,1000,5000 and 10000. We then calculated the execution time for
each iteration. For one day, as seen in Tab. 4.10, the execution time
is exponential. It goes from 0.32mn to 668.55 mn for respectively 100
and 10000 iterations. The used server has the following characteris-
tics: 32 Go of RAM, two processors, Intel(R) Xeon(R) CPU E5-2620 v3
@ 2.40GHz, with a 15360 KB cache size.

TABLE 4.10: Q-Learning execution Time

Iterations
Input data One day Two months

100 0.32mn 668.77mn
500 2.51mn -

1000 6.37mn -
5000 152.24mn -

10000 668.55mn -

Fig. 4.19 shows the results of the obtained rewards and Penalties for
5000 iterations. The rewards oscillate from 0 to 14, and the penalties
oscillate from 10 to 24. For one day, the sum of Penalties and reward is
equal to 24 since we are training and testing for 24 hours, and we can
apply one action per hour. The highest obtained reward is 14, which
is represented by the red point for iterations 263, 3570, 4422, and 4589,
respectively.

FIGURE 4.19: Reward and Penalties for 5000 iterations

4.5. Reinforcement Learning Approach 109

Fig. 4.20 presents a part of the result, and this in order to have an un-
derstandable insight. We can observe the results of iterations 8800 to
10000. In this simulation, we are also training and testing for a period
of one day. The highest obtained reward in this resolution is equal to
17. The red point for iteration 8861 represents it. The reward oscillates
from 1 to 17, and the penalties from 7 and 23.

FIGURE 4.20: Reward and Penalties for 5000 iterations

Other results with 100 iterations using the entire data-set correspond
to 2 months (November and December). We have 1464 entrees 24 ×
61. Since each entry corresponds to an hour, we can apply action that
we can have under optimal circumstances 1664 reward. The highest
obtained reward in this resolution is equal to 272. It is received in 6
iterations. The reward oscillates from 167 to 272, and the penalties from
1192 and 1297.

TABLE 4.11: Q-Learning mean values

data iteration Rewards Penalty
One day 1000 10.7% 89.3%
One day 10000 31.45% 68.55%
61 days 100 14.76% 85.24%

4.5.2 From Deep LSTM to Transformers

Q-learning is slow to converge and requires very long periods of train-
ing. In general, we think that it should be enriched with more brilliant
exploration steps to avoid going into unnecessary states. This is not a
good point if we compare it to the exact ILP. The second approach is to
learn from the results obtained by CPLEX. The idea is to build a neu-
ral network set of weights as fast as possible by learning the minimum
number of results from the ILP. Then, we execute the neural network
(NN) on new data and see the rewards. Q learning does not need an

110 Chapter 4. Resource Management and optimization Algorithm

evaluated ILP model but needs the development of the environment
instead. Deep learning needs something to learn from, so it requires an
initial set of good results. So both RL solutions have good points.

Deep LSTM First, our choice goes to a hybrid LSTM network with
six cells and 100 hidden layers, completed by a dense layer at the out-
put. Inputs for the NN are anomalies and time taken in the ILP over
the training set (2/3 of the two months of CDRs). The training labels
correspond to the chosen action.

Since the results were not satisfying, we decided to move to transform-
ers and evaluate them in our use case.

LSTM Transformers LSTM Transformers was initially introduced in
[4]. LSTM, Transformer is an architecture for transforming one sequence
into another with the help of two parts (Encoder and Decoder). The En-
coder is on the left, and the Decoder is on the right see Fig. 4.21. Both
Encoder and Decoder are composed of modules that can be stacked on
top of each other multiple times. The model is constituted of three-part
[146]:

– Encoder : A stack of several recurrent units (LSTM or GRU cells
for better performance) where each accepts a single element of the
input sequence, collects information for that element, and propa-
gates it forward.

– Encoder Vector : This is the final hidden state produced from the
encoder part of the model. This vector aims to encapsulate the
information for all input elements in order to help the decoder
make accurate predictions. It acts as the initial hidden state of the
decoder part of the model.

– Decoder: A stack of several recurrent units where each predicts
an output yt at a time step t. Each recurrent unit accepts a hidden
state from the previous unit and produces an output as well as its
own hidden state.

Results The results give an approximate score of 80% of good actions
over the small training interval we use (2 months of total data). A Mean
Square Error of 0.04 is obtained. In Fig.4.22, we can see that Deep LSTM
very finely follows CPLEX actions. Alpha (when the drone is sent) and
Beta (backhauling) are shown, and the results are, in our sense, excel-
lent. Figure 4.22 presents the results of predicted actions with LSTM,
Q-learning, and CPLEX.

We have compared two RL techniques to enforce a simple process of
sending a drone forth and back to offload an anomalous cell. The pro-
cess that is evaluated is very simple. It could be increased with more

4.6. Conclusion 111

FIGURE 4.21: Encoder-decoder sequence to sequence model

(A) Predicted send drone Ac-
tion vs Qlearning vs Real

(B) Predicted backhauling
Action vs Qlearning vs Real

(C) Predicted charging drone
Action vs Qlearning vs Real

FIGURE 4.22: Third case LSTM resolution

NP-hard conditions, such as a number of anomalous cells that are su-
perior to the number of drones and different quality of service require-
ments in different cells. However, adding such constraints first renders
the ILP problem to solve very large, and it may not be possible to solve
at all.

Also, when increased, the Q-learning model requires considerable time
to converge as it is a blind trial process exploring all the states of the Q
table. The only stable process here is the deep neural network. It learns
quite fast, and the MSE converges very fast. It could be improved with
a different Sequence to Sequence or transformer LSTM architecture.

4.6 Conclusion

We designed a deep reinforcement learning algorithm to manage two
systems (energy and cellular). It differs from the state-of-the-art ap-
proaches as the state/action/reward approach is replaced with a recur-
rent ’on policy’ system. It is adapted to several use cases that optimize
energy management for buildings that host a microgrid and do not re-
quire large datasets or long training times. Three steps are presented to
calculate the final neural network weights.

112 Chapter 4. Resource Management and optimization Algorithm

First, we use deep LSTM to obtain the daily consumption and solar
production prediction. Second, ILP models or Rule-Based algorithms
are solved to calculate optimal actions for the predicted data. Third, we
train a second deep LSTM with the optimal samples evaluated by the
models. Results show that the reinforcement system makes excellent
decisions that reach 95 % exactness compared to the optimal test set
and independently from the complexity of the use case.

We used the same methodology for the cellular use case. We started
by using DLSTM to obtain the daily load of a base station. These pre-
dictions are used to detect if an anomaly occurs. Once an abnormal
behavior is detected, we resolve the sending drone problem to support
the base station using ILP, Reinforcement, and DLSTM.

The first problem encountered in this work was model representation
with ILP. It would be nice to have easier methods or tools that facili-
tate those formulations. The second problem faced was the long execu-
tion time of Q-learning. Finally, identifying the neural network’s meta
parameters and what relevant information to introduce constituted a
challenging task.

113

Chapter 5

Conclusion and Perspectives

5.1 Conclusions

The prominent matter of the thesis revolves around the analysis of real-
time serial datasets and the management and optimization of resources.
We investigated five time-series datasets from various resources.

The first concerns energy consumption data from two buildings, The
first is a startup incubator, and the second is a student dorm build-
ing. The second dataset details the photovoltaic panels’ energy produc-
tion. The third and the fourth datasets consist of CDRs metadata that
contains detailed information about the exchanges (call in/out, SMS
in/out, and internet usage) with the cellular networks. Orange Senegal
provided the first CDRs dataset as part of the D4D challenge dataset.
Telecom Italia provided the second dataset as part of the big data chal-
lenge. Finally, the last dataset contains traces of taxi mobility in Rome,
Italy. It includes GPS traces of trajectories taken by the taxis.

Various information is joined to those data sets. We can cite the tem-
poral information as the first information. The second one is specific
to the geographical information of the third, fourth, and fifth datasets.
We studied these datasets to propose time series data analysis and ex-
ploitation tools. The different extracted information has been used not
only to validate the proposed classification and prediction algorithms
but also to enhance renewable energy usage according to demand and
network resource management.

Since these datasets are massive, we started by applying data analy-
sis techniques to clean the dataset and extract the relevant knowledge.
The second application was the use of advanced tools such as Machine
learning algorithms.

– We applied in a first-place classification algorithm to two use cases
(Cellular and Energy). For the cellular dataset, we have done a
spatial classification. In fact, for each base station, according to the

114 Chapter 5. Conclusion and Perspectives

daily traffic, we identified different classes. We then used the 1D-
CNN to classify the different base stations and the cell to which
they belong. We used an MLP to make a time series classifica-
tion for the energy use case. We categorized the types of energy
consumption into three classes (Critical, Delayable, and comfort).
Then the MLP guesses to which type the input belongs.

– In the second place, the problem that we faced and tried to solve
is we could predict with high accuracy the future values of the
time series data sets? This thesis addresses this issue by providing
an in-depth study of various machine learning algorithms (SVR,
LSTM, GRU, DLSTM). The results proved the high efficiency of
the DLSTM prediction model. We evaluated our model on the
five datasets. For the first one, we predicted the energy consump-
tion of the buildings. We used the second dataset to train our
model on predicting photovoltaic production. The third and the
fourth datasets were used to train the DLSTM to predict the fu-
ture base station network load. Using the last dataset, we trained
our neural network model to predict the taxis’ trajectory in Rome.

– Since the classification and the prediction alone do not respond
to all our requirements and do not perform well when applied
to a large dataset with multivariate predictions. We combine the
classification and the prediction algorithms. Our architecture is
based on MLP and LSTM for the first two datasets and composed
of CNN-1d and LSTM for the second one for the sake of predic-
tion.

In the third chapter, we exploit a more advanced feature that can be
found in RNN, and we propose novel applications that can benefit from
RNN characteristics.

– The first studied application is semantic compression, where we
emphasize the need to compress and only transmit relevant infor-
mation using a particular network: LORA.

– The second studied application is transfer learning. We showed
the efficiency of this method in two cases. The first one deals with
the lack of data and the second one is data personalizing.

– The last application described in this chapter is anomaly detec-
tion, which is highly dependent on the work carried out in the
first chapter. In fact, to detect the anomalies, we compare the ac-
tual behavior with a dynamic threshold determined with the pre-
dicted normal behavior.

5.2. Perspectives 115

The fourth chapter was dedicated to developing resource Management
and optimization Algorithms. Two use cases were studied. The first re-
lates to energy, where we aim to develop an autonomous energy man-
agement system. We designed a deep reinforcement learning algo-
rithm to manage energy systems. It differs from the state-of-the-art ap-
proaches as the state/action/reward technique is replaced with a recur-
rent ’on policy’ system. It is adapted to several use cases that optimize
energy management for buildings that host a microgrid and do not re-
quire large datasets or long training times. Three steps are presented to
calculate the final neural network weights. First, we use deep LSTM to
obtain the daily consumption and solar production prediction. Second,
ILP models or Rule-Based algorithms are solved to calculate optimal
actions for the predicted data. Third, we present a QLearning model,
and finally, we train a second deep LSTM with the optimal samples
evaluated by the models.

The second one is the cellular network, where we propose to use UAVs
on an on-demand basis for offloading base stations to provide services
to connected devices. Hence, the goal is to improve the network’s ser-
vice quality. Then, we present the ILP formulation and two RL models.
In the first, a Q-learning technique is used where the agent interacts
with an environment and makes decisions considering the same objec-
tive function. A real dataset has validated the proposed solution. It
helps network operators to efficiently manage their infrastructure and
allows them to implement self-organized and autonomous networks
that can face a plethora of unexpected data. A second deep learning
model, the LSTM transformers, is studied for future use. It is based on
deep LSTM networks. It learns faster than Q learning and reaches 80%
of good actions.

To conclude this work, we remind you that we investigated various
time series datasets to propose a general architecture to deal with TS.
The proposed methodology allows us to apply classification and pre-
diction methods to the available datasets. The results helped us exploit
new approaches like transfer learning or anomaly detection to integrate
them after that into dynamic resource management and optimization
algorithm.

5.2 Perspectives

From the work carried out during the Ph.D., several major lines of fu-
ture work are available:

– Test our proposed solution to other time series datasets

116 Chapter 5. Conclusion and Perspectives

– Embark the LSTM algorithm onto smaller IoT

– Possibility to introduce a non-cyclical component to anomaly de-
tection

– The presented algorithms in the fourth chapter could be integrated
with an emulator to benefit from a real battery behavior, and they
could be used in a different context: for QoS planning in an edge
cloud RAN resource management system.

– Apply other deep Reinforcement techniques such as DQN or pol-
icy gradient to compare it with our algorithm and apply these
methods to other reinforcement problems such as quality of ser-
vice enforcement in cellular systems, drone deployment, and edge
caching devices.

– Develop a lightweight reinforcement neural network to deploy on
LORA micro-controllers.

117

Bibliography

[1] Steffen Hölldobler, Sibylle Möhle, and Anna Tigunova. “Lessons
Learned from AlphaGo.” In: YSIP. 2017, pp. 92–101.

[2] Kaiming He et al. “Deep residual learning for image recogni-
tion”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 770–778.

[3] Joseph Redmon and Anelia Angelova. “Real-time grasp detec-
tion using convolutional neural networks”. In: 2015 IEEE inter-
national conference on robotics and automation (ICRA). IEEE. 2015,
pp. 1316–1322.

[4] Ashish Vaswani et al. “Attention is all you need”. In: Advances
in neural information processing systems 30 (2017).

[5] Ian Goodfellow et al. “Generative adversarial networks”. In: Com-
munications of the ACM 63.11 (2020), pp. 139–144.

[6] José F Torres et al. “Deep learning for time series forecasting: a
survey”. In: Big Data 9.1 (2021), pp. 3–21.

[7] Jeffrey Andrews et al. “What will 5G be?” In: Selected Areas in
Communications, IEEE Journal on 32 (May 2014). DOI: 10.1109/
JSAC.2014.2328098.

[8] Pouyan Pourbeik, Prabha S Kundur, and Carson W Taylor. “The
anatomy of a power grid blackout-root causes and dynamics of
recent major blackouts”. In: IEEE Power and Energy Magazine 4.5
(2006), pp. 22–29.

[9] Jason Lines et al. “Classification of household devices by elec-
tricity usage profiles”. In: International conference on intelligent
data engineering and automated learning. Springer. 2011, pp. 403–
412.

[10] Robert Thomas Olszewski. Generalized feature extraction for struc-
tural pattern recognition in time-series data. Carnegie Mellon Uni-
versity, 2001.

[11] Pengyu Hao et al. “Feature selection of time series MODIS data
for early crop classification using random forest: A case study in
Kansas, USA”. In: Remote Sensing 7.5 (2015), pp. 5347–5369.

[12] Hassan Ismail Fawaz et al. “Inceptiontime: Finding alexnet for
time series classification”. In: Data Mining and Knowledge Discov-
ery 34.6 (2020), pp. 1936–1962.

https://doi.org/10.1109/JSAC.2014.2328098
https://doi.org/10.1109/JSAC.2014.2328098

118 Bibliography

[13] Zhiguang Wang, Weizhong Yan, and Tim Oates. “Time series
classification from scratch with deep neural networks: A strong
baseline”. In: 2017 International joint conference on neural networks
(IJCNN). IEEE. 2017, pp. 1578–1585.

[14] F. Karim et al. “LSTM Fully Convolutional Networks for Time
Series Classification”. In: IEEE Access 6 (2018), pp. 1662–1669.
DOI: 10.1109/ACCESS.2017.2779939.

[15] Li Wei and Eamonn Keogh. “Semi-supervised time series clas-
sification”. In: Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining. 2006, pp. 748–
753.

[16] Huanhuan Li et al. “Adaptively constrained dynamic time warp-
ing for time series classification and clustering”. In: Information
Sciences 534 (2020), pp. 97–116.

[17] Seif Eddine Hammami. “Dynamic network resources optimiza-
tion based on machine learning and cellular data mining”. PhD
thesis. Evry, Institut national des télécommunications, 2018.

[18] https://www.sciencedirect.com/topics/computer-science/
logistic-regression.

[19] https://datascientest.com/regression-logistique-quest-
ce-que-cest.

[20] Aleksandra Bartosik and Hannes Whittingham. “Evaluating safety
and toxicity”. In: The Era of Artificial Intelligence, Machine Learn-
ing, and Data Science in the Pharmaceutical Industry. Elsevier, 2021,
pp. 119–137.

[21] https://dataanalyticspost.com/Lexique/k-nearest-neighbours/.

[22] Stefan Oehmcke, Oliver Zielinski, and Oliver Kramer. “kNN en-
sembles with penalized DTW for multivariate time series impu-
tation”. In: 2016 International Joint Conference on Neural Networks
(IJCNN). IEEE. 2016, pp. 2774–2781.

[23] Glenn Shafer. “Conditional probability”. In: International Statis-
tical Review/Revue Internationale de Statistique (1985), pp. 261–275.

[24] https://mrmint.fr/naive-bayes-classifier.

[25] https://medium.com/swlh/decision- trees- classifier-
aba3c53e14b9.

[26] Richa Sharma, Aniruddha Ghosh, and PK Joshi. “Decision tree
approach for classification of remotely sensed satellite data us-
ing open source support”. In: Journal of Earth System Science 122.5
(2013), pp. 1237–1247.

[27] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001),
pp. 5–32.

https://doi.org/10.1109/ACCESS.2017.2779939
https://www.sciencedirect.com/topics/computer-science/logistic-regression
https://www.sciencedirect.com/topics/computer-science/logistic-regression
https://datascientest.com/regression-logistique-quest-ce-que-cest
https://datascientest.com/regression-logistique-quest-ce-que-cest
https://dataanalyticspost.com/Lexique/k-nearest-neighbours/
https://mrmint.fr/naive-bayes-classifier
https://medium.com/swlh/decision-trees-classifier-aba3c53e14b9
https://medium.com/swlh/decision-trees-classifier-aba3c53e14b9

Bibliography 119

[28] Adele Cutler, D Richard Cutler, and John R Stevens. “Random
forests”. In: Ensemble machine learning. Springer, 2012, pp. 157–
175.

[29] Tim Menzies et al. Sharing data and models in software engineering.
Morgan Kaufmann, 2014.

[30] S Abirami and P Chitra. “Energy-efficient edge based real-time
healthcare support system”. In: Advances in Computers. Vol. 117.
1. Elsevier, 2020, pp. 339–368.

[31] Keiron O’Shea and Ryan Nash. “An introduction to convolu-
tional neural networks”. In: arXiv preprint arXiv:1511.08458 (2015).

[32] https://datascientest.com/convolutional-neural-network.

[33] Aicha Dridi et al. “An artificial intelligence approach for time
series next generation applications”. In: ICC 2020-2020 IEEE In-
ternational Conference on Communications (ICC). IEEE. 2020, pp. 1–
6.

[34] Georgia Papacharalampous, Hristos Tyralis, and Demetris Kout-
soyiannis. “Predictability of monthly temperature and precipita-
tion using automatic time series forecasting methods”. In: Acta
Geophysica 66.4 (2018), pp. 807–831.

[35] Seif Eddine Hammami et al. “Network planning tool based on
network classification and load prediction”. In: 2016 IEEE Wire-
less Communications and Networking Conference. IEEE. 2016, pp. 1–
6.

[36] Yılmaz Akdi, Elif Gölveren, and Yasin Okkaoğlu. “Daily electri-
cal energy consumption: Periodicity, harmonic regression method
and forecasting”. In: Energy 191 (2020), p. 116524.

[37] Koichi Kurumatani. “Time series forecasting of agricultural prod-
uct prices based on recurrent neural networks and its evaluation
method”. In: SN Applied Sciences 2.8 (2020), pp. 1–17.

[38] J. Kolter and Joseph Ferreira. A Large-Scale Study on Predicting
and Contextualizing Building Energy Usage. 2011. URL: https://
www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3759.

[39] Claudio Martani et al. “ENERNET: Studying the dynamic re-
lationship between building occupancy and energy consump-
tion”. In: Energy and Buildings 47 (2012), pp. 584 –591. ISSN: 0378-
7788. DOI: https://doi.org/10.1016/j.enbuild.2011.12.037.
URL: http://www.sciencedirect.com/science/article/pii/
S0378778811006566.

[40] Shailendra Singh and Abdulsalam Yassine. “Big data mining of
energy time series for behavioral analytics and energy consump-
tion forecasting”. In: Energies 11.2 (2018), p. 452.

https://datascientest.com/convolutional-neural-network
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3759
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3759
https://doi.org/https://doi.org/10.1016/j.enbuild.2011.12.037
http://www.sciencedirect.com/science/article/pii/S0378778811006566
http://www.sciencedirect.com/science/article/pii/S0378778811006566

120 Bibliography

[41] Jian Cao, Zhi Li, and Jian Li. “Financial time series forecasting
model based on CEEMDAN and LSTM”. In: Physica A: Statistical
Mechanics and its Applications 519 (2019), pp. 127–139.

[42] Ah Chung Tsoi. “Recurrent neural network architectures: an overview”.
In: International School on Neural Networks, Initiated by IIASS and
EMFCSC. Springer. 1997, pp. 1–26.

[43] https : / / www . ibm . com / cloud / learn / recurrent - neural -
networks.

[44] https://datascientest.com/recurrent-neural-network.

[45] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term mem-
ory”. In: Neural computation 9.8 (1997), pp. 1735–1780.

[46] Zheng Zhao et al. “LSTM network: a deep learning approach for
short-term traffic forecast”. In: IET Intelligent Transport Systems
(2017).

[47] https://blog.octo.com/les-reseaux-de-neurones-recurrents-
des-rnn-simples-aux-lstm/.

[48] Ben Krause et al. “Multiplicative LSTM for sequence modelling”.
In: arXiv preprint arXiv:1609.07959 (2016).

[49] Wendong Zheng et al. “Understanding the property of long term
memory for the LSTM with attention mechanism”. In: Proceed-
ings of the 30th ACM International Conference on Information &
Knowledge Management. 2021, pp. 2708–2717.

[50] Fardin Syed, Riccardo Di Sipio, and Pekka Sinervo. “Bidirec-
tional Long Short-Term Memory (BLSTM) neural networks for
reconstruction of top-quark pair decay kinematics”. In: arXiv
preprint arXiv:1909.01144 (2019).

[51] Jin Zhang et al. “Data augmentation and dense-LSTM for hu-
man activity recognition using WiFi signal”. In: IEEE Internet of
Things Journal 8.6 (2020), pp. 4628–4641.

[52] Kyunghyun Cho et al. “Learning phrase representations using
RNN encoder-decoder for statistical machine translation”. In:
arXiv preprint arXiv:1406.1078 (2014).

[53] Antoine Bernard et al. “Embedding ML algorithms onto LP-
WAN sensors for compressed communications”. In: 2021 IEEE
32nd Annual International Symposium on Personal, Indoor and Mo-
bile Radio Communications (PIMRC). IEEE. 2021, pp. 1539–1545.

[54] STM32L476 Microcontroller. https://www.st.com/en/microcontrollers-
microprocessors/stm32l476rg.html. 2021.

[55] Semtech’s SX1276MB1MAS. https://www.semtech.com/products/
wireless-rf/lora-transceivers/sx1276mb1mas. 2021.

https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://datascientest.com/recurrent-neural-network
https://blog.octo.com/les-reseaux-de-neurones-recurrents-des-rnn-simples-aux-lstm/
https://blog.octo.com/les-reseaux-de-neurones-recurrents-des-rnn-simples-aux-lstm/
https://www.st.com/en/microcontrollers-microprocessors/stm32l476rg.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l476rg.html
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1276mb1mas
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1276mb1mas

Bibliography 121

[56] STM32 Nucleo Expansion Board. https://www.st.com/content/
st_com/en/products/evaluation-tools/product-evaluation-
tools/stm32-nucleo-expansion-boards/x-nucleo-lpm01a.
html. 2021.

[57] Jin Wang et al. “Dimensional sentiment analysis using a regional
CNN-LSTM model”. In: Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Pa-
pers). 2016, pp. 225–230.

[58] Tae-Young Kim and Sung-Bae Cho. “Predicting Residential En-
ergy Consumption using CNN-LSTM Neural Networks”. In: En-
ergy (2019).

[59] Amin Ullah et al. “Action recognition in video sequences using
deep bi-directional LSTM with CNN features”. In: IEEE Access 6
(2017), pp. 1155–1166.

[60] John Cristian Borges Gamboa. “Deep learning for time-series
analysis”. In: arXiv preprint arXiv:1701.01887 (2017).

[61] Shu Lih Oh et al. “Automated diagnosis of arrhythmia using
combination of CNN and LSTM techniques with variable length
heart beats”. In: Computers in biology and medicine 102 (2018),
pp. 278–287.

[62] https://www.egauge.net/.

[63] https://www.influxdata.com/.

[64] https://bokeh.org/.

[65] S. E. Hammami et al. “Network planning tool based on network
classification and load prediction”. In: 2016 IEEE Wireless Com-
munications and Networking Conference. 2016, pp. 1–6. DOI: 10.
1109/WCNC.2016.7565166.

[66] Danny Qiu et al. “Classifying Urban Fabrics into Mobile Call Ac-
tivity with Supervised Machine Learning”. In: 2021 International
Wireless Communications and Mobile Computing (IWCMC). IEEE.
2021, pp. 1948–1953.

[67] Telecom Italia. Telecom Italia Big Data Challenge. (2015): https://
http://www.telecomitalia.com/tit/en/bigdatachallenge.
html. (Visited on 11/20/2016).

[68] Orange. D4D Challenge: https://http://www.d4d.orange.com.
(Visited on 04/10/2017).

[69] Aicha Dridi et al. “STAD: Spatio-temporal anomaly detection
mechanism for mobile network management”. In: IEEE Trans-
actions on Network and Service Management 18.1 (2020), pp. 894–
906.

[70] Seifeddine Hammami. “Dynamic network resources optimiza-
tion based on machine learning and cellular data mining”. In:
2018. URL: http://www.theses.fr/2018TELE0015.

https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/stm32-nucleo-expansion-boards/x-nucleo-lpm01a.html
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/stm32-nucleo-expansion-boards/x-nucleo-lpm01a.html
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/stm32-nucleo-expansion-boards/x-nucleo-lpm01a.html
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/stm32-nucleo-expansion-boards/x-nucleo-lpm01a.html
https://www.egauge.net/
https://www.influxdata.com/
https://bokeh.org/
https://doi.org/10.1109/WCNC.2016.7565166
https://doi.org/10.1109/WCNC.2016.7565166
https:// http://www.telecomitalia.com/tit/en/bigdatachallenge.html
https:// http://www.telecomitalia.com/tit/en/bigdatachallenge.html
https:// http://www.telecomitalia.com/tit/en/bigdatachallenge.html
https:// http://www.d4d.orange.com
http://www.theses.fr/2018TELE0015

122 Bibliography

[71] Aicha Dridi et al. “Transfer learning for classification and pre-
diction of time series for next generation networks”. In: ICC 2021-
IEEE International Conference on Communications. IEEE. 2021, pp. 1–
6.

[72] Mohammed Laroui et al. “Energy management for electric ve-
hicles in smart cities: a deep learning approach”. In: 2019 15th
International Wireless Communications & Mobile Computing Con-
ference (IWCMC). IEEE. 2019, pp. 2080–2085.

[73] Bryan E Usevitch. “A tutorial on modern lossy wavelet image
compression: foundations of JPEG 2000”. In: IEEE signal process-
ing magazine 18.5 (2001), pp. 22–35.

[74] V. M. Suresh et al. “Powering the IoT through embedded ma-
chine learning and LoRa”. In: 2018 IEEE 4th World Forum on In-
ternet of Things (WF-IoT). 2018, pp. 349–354. DOI: 10.1109/WF-
IoT.2018.8355177.

[75] Jiheon Kang and Doo-Seop Eom. “Offloading and Transmission
Strategies for IoT Edge Devices and Networks”. In: Sensors 19
(Feb. 2019), p. 835. DOI: 10.3390/s19040835.

[76] K. MATSUDA and M. KUBOTA. “Compound Compression Method
for Gathering Traffic of IoT/CPS Data”. In: 2019 IEEE 5th World
Forum on Internet of Things (WF-IoT). 2019. DOI: 10.1109/WF-
IoT.2019.8767326.

[77] Gimenez Petrov. “Internet-Draft SCHC-over-LoRaWAN”. In: In-
ternet Engineering Task Force. 2019.

[78] Aicha Dridi et al. “Deep learning semantic compression: Iot sup-
port over lora use case”. In: 2019 2nd IEEE Middle East and North
Africa COMMunications Conference (MENACOMM). IEEE. 2019,
pp. 1–6.

[79] Bastien Mainaud, Vincent Gauthier, and Hossam Afifi. “Coop-
erative communication for wireless sensors network: a mac pro-
tocol solution”. In: 2008 1st IFIP Wireless Days. IEEE. 2008, pp. 1–
5.

[80] S. J. Pan and Q. Yang. “A Survey on Transfer Learning”. In:
IEEE Transactions on Knowledge and Data Engineering 22.10 (2010),
pp. 1345–1359. DOI: 10.1109/TKDE.2009.191.

[81] H. Ismail Fawaz et al. “Transfer learning for time series classi-
fication”. In: 2018 IEEE International Conference on Big Data (Big
Data). 2018, pp. 1367–1376. DOI: 10.1109/BigData.2018.8621990.

[82] S. E. Hammami et al. “Network planning tool based on network
classification and load prediction”. In: 2016 IEEE Wireless Com-
munications and Networking Conference. 2016, pp. 1–6. DOI: 10.
1109/WCNC.2016.7565166.

https://doi.org/10.1109/WF-IoT.2018.8355177
https://doi.org/10.1109/WF-IoT.2018.8355177
https://doi.org/10.3390/s19040835
https://doi.org/10.1109/WF-IoT.2019.8767326
https://doi.org/10.1109/WF-IoT.2019.8767326
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/BigData.2018.8621990
https://doi.org/10.1109/WCNC.2016.7565166
https://doi.org/10.1109/WCNC.2016.7565166

Bibliography 123

[83] Muazzam Maqsood et al. “Transfer learning assisted classifica-
tion and detection of Alzheimer’s disease stages using 3D MRI
scans”. In: Sensors 19.11 (2019), p. 2645.

[84] Avi Bleiweiss. “LSTM Neural Networks for Transfer Learning
in Online Moderation of Abuse Context”. In: 2018. URL: http:
//www.insticc.org.

[85] Chao Lu et al. “Transfer Learning for Driver Model Adapta-
tion in Lane-Changing Scenarios Using Manifold Alignment”.
In: IEEE Transactions on Intelligent Transportation Systems (2019).

[86] Md Abul Bashar, Richi Nayak, and Nicolas Suzor. “Regularis-
ing LSTM classifier by transfer learning for detecting misogynis-
tic tweets with small training set”. In: Knowledge and Information
Systems 62.10 (2020), pp. 4029–4054.

[87] Ahmed Soua and Hossam Afifi. “Adaptive data collection pro-
tocol using reinforcement learning for VANETs”. In: 2013 9th In-
ternational Wireless Communications and Mobile Computing Confer-
ence (IWCMC). IEEE. 2013, pp. 1040–1045.

[88] Ioannis D Apostolopoulos and Tzani A Mpesiana. “Covid-19:
automatic detection from x-ray images utilizing transfer learn-
ing with convolutional neural networks”. In: Physical and Engi-
neering Sciences in Medicine (2020), p. 1.

[89] Cherifa Boucetta et al. “Adaptive Range-based Anomaly Detec-
tion in Drone-assisted Cellular Networks”. In: IWCMC. IEEE.
2019, pp. 1239–1244.

[90] Samira Rezaei et al. “Automatic fault detection and diagnosis in
cellular networks using operations support systems data”. In:
IEEE/IFIP NOMS. 2016.

[91] Jun Wu et al. “CellPAD: Detecting performance anomalies in cel-
lular networks via regression analysis”. In: 2018 IFIP Networking
Conference (IFIP Networking) and Workshops. IEEE. 2018, pp. 1–9.

[92] Seif Eddine Hammami, Hassine Moungla, and Hossam Afifi.
“Proactive Anomaly Detection Model for eHealth-Enabled Data
in Next Generation Cellular Networks”. In: IEEE ICC. 2018.

[93] Mohammad Gharbieh et al. “Spatiotemporal stochastic model-
ing of IoT enabled cellular networks: Scalability and stability
analysis”. In: IEEE Trans. Commun. (2017).

[94] Bilal Hussain, Du Qinghe, and Ren Pinyi. “Deep Learning-Based
Big Data-Assisted Anomaly Detection in Cellular Networks”.
In: Dec. 2018.

[95] Bilal Hussain et al. “Artificial Intelligence-powered Mobile Edge
Computing-based Anomaly Detection in Cellular Networks”.
In: IEEE Transactions on Industrial Informatics (Nov. 2019), pp. 1551–
3203. DOI: 10.1109/TII.2019.2953201.

http://www.insticc.org
http://www.insticc.org
https://doi.org/10.1109/TII.2019.2953201

124 Bibliography

[96] Y. Hu, M. Chen, and W. Saad. “Joint Access and Backhaul Re-
source Management in Satellite-Drone Networks: A Competi-
tive Market Approach”. In: IEEE Transactions on Wireless Com-
munications (2020), pp. 1–1.

[97] Fatima Bousbaa et al. “GeoUAVs: A new geocast routing pro-
tocol for fleet of UAVs”. In: Computer Communications 149 (Oct.
2019), pp. 259–269. DOI: 10.1016/j.comcom.2019.10.026.

[98] Cherifa Boucetta et al. “Optimizing drone deployment for cellu-
lar communication coverage during crowded events”. In: MIL-
COM 2019-2019 IEEE Military Communications Conference (MIL-
COM). IEEE. 2019, pp. 622–627.

[99] Chérifa Boucetta et al. “Heuristic Optimization Algorithms for
QoS Management in UAV Assisted Cellular Networks”. In: GLOBE-
COM 2020-2020 IEEE Global Communications Conference. IEEE.
2020, pp. 01–06.

[100] Aicha Dridi et al. “A Novel Deep Reinforcement Approach for
IIoT Microgrid Energy Management Systems”. In: IEEE Transac-
tions on Green Communications and Networking 6.1 (2021), pp. 148–
159.

[101] Aicha Dridi et al. “Deep Recurrent Learning versus Q-Learning
for Energy Management Systems in Next Generation Network”.
In: 2021 IEEE Global Communications Conference (GLOBECOM).
IEEE. 2021, pp. 1–6.

[102] Aicha Dridi et al. “Reinforcement Learning Vs ILP Optimiza-
tion in IoT support of Drone assisted Cellular Networks”. In:
ICC 2022-IEEE International Conference on Communications. IEEE.
2022, pp. 4589–4594.

[103] Aysun Aslan, Gülce Bal, and Cenk Toker. “Dynamic Resource
Management in Next Generation Networks based on Deep Q
Learning”. In: 2020 28th Signal Processing and Communications
Applications Conference (SIU). IEEE. 2020, pp. 1–4.

[104] Paulo Lissa et al. “Deep reinforcement learning for home en-
ergy management system control”. In: Energy and AI 3 (2021),
p. 100043.

[105] Fayiz Alfaverh, Mouloud Denai, and Yichuang Sun. “Demand
response strategy based on reinforcement learning and fuzzy
reasoning for home energy management”. In: IEEE Access 8 (2020),
pp. 39310–39321.

[106] Tanguy Levent et al. “Energy Management for Microgrids: a Re-
inforcement Learning Approach”. In: ISGT-Europe 2019 - IEEE
PES Innovative Smart Grid Technologies Europe. Bucharest, France:
IEEE, Sept. 2019, pp. 1–5. DOI: 10 . 1109 / ISGTEurope . 2019 .
8905538. URL: https : / / hal . archives - ouvertes . fr / hal -
02382232.

https://doi.org/10.1016/j.comcom.2019.10.026
https://doi.org/10.1109/ISGTEurope.2019.8905538
https://doi.org/10.1109/ISGTEurope.2019.8905538
https://hal.archives-ouvertes.fr/hal-02382232
https://hal.archives-ouvertes.fr/hal-02382232

Bibliography 125

[107] Hepeng Li, Zhiqiang Wan, and Haibo He. “A Deep Reinforce-
ment Learning Based Approach for Home Energy Management
System”. In: 2020 IEEE Power & Energy Society Innovative Smart
Grid Technologies Conference (ISGT). IEEE. 2020, pp. 1–5.

[108] R. Sutton. “Reinforcement Learning: An Introduction - Stanford
University”. In: ().

[109] Liang Yu et al. “Deep reinforcement learning for smart home en-
ergy management”. In: IEEE Internet of Things Journal 7.4 (2019),
pp. 2751–2762.

[110] José R Vázquez-Canteli and Zoltán Nagy. “Reinforcement learn-
ing for demand response: A review of algorithms and modeling
techniques”. In: Applied energy 235 (2019), pp. 1072–1089.

[111] Mohit Sewak. “Deep Q Network (DQN), Double DQN, and Du-
eling DQN”. In: 2019.

[112] Matin Farhoumandi, Quan Zhou, and Mohammad Shahideh-
pour. “A review of machine learning applications in IoT-integrated
modern power systems”. In: The Electricity Journal 34.1 (2021),
p. 106879.

[113] “IEC61970: Energy management system application program in-
terface (EMS-API). IEC; 2005.” In: ().

[114] A. G. Tsikalakis and N. D. Hatziargyriou. “Centralized control
for optimizing microgrids operation”. In: 2011 IEEE Power and
Energy Society General Meeting. 2011, pp. 1–8. DOI: 10.1109/PES.
2011.6039737.

[115] Luu Ngoc An and Tran Quoc-Tuan. “Optimal energy manage-
ment for grid connected microgrid by using dynamic program-
ming method”. In: 2015 IEEE Power Energy Society General Meet-
ing. 2015, pp. 1–5. DOI: 10.1109/PESGM.2015.7286094.

[116] Muhammad Fahad Zia, Elhoussin Elbouchikhi, and Mohamed
Benbouzid. “Microgrids energy management systems: A critical
review on methods, solutions, and prospects”. In: Applied energy
222 (2018), pp. 1033–1055.

[117] Yuankun Liu, Dongxia Zhang, and Hoay Beng Gooi. “Optimiza-
tion strategy based on deep reinforcement learning for home en-
ergy management”. In: CSEE Journal of Power and Energy Systems
6.3 (2020), pp. 572–582.

[118] Bin Xu et al. “Parametric study on reinforcement learning opti-
mized energy management strategy for a hybrid electric vehi-
cle”. In: Applied Energy 259 (2020), p. 114200.

[119] Esmat Samadi, Ali Badri, and Reza Ebrahimpour. “Decentral-
ized multi-agent based energy management of microgrid us-
ing reinforcement learning”. In: International Journal of Electrical
Power & Energy Systems 122 (2020), p. 106211.

https://doi.org/10.1109/PES.2011.6039737
https://doi.org/10.1109/PES.2011.6039737
https://doi.org/10.1109/PESGM.2015.7286094

126 Bibliography

[120] Guodong Du et al. “Deep reinforcement learning based energy
management for a hybrid electric vehicle”. In: Energy 201 (2020),
p. 117591.

[121] Daeil Lee, Awwal Mohammed Arigi, and Jonghyun Kim. “Algo-
rithm for Autonomous Power-Increase Operation Using Deep
Reinforcement Learning and a Rule-Based System”. In: IEEE Ac-
cess 8 (2020), pp. 196727–196746. DOI: 10.1109/ACCESS.2020.
3034218.

[122] Elena Mocanu et al. “On-line building energy optimization us-
ing deep reinforcement learning”. In: IEEE transactions on smart
grid 10.4 (2018), pp. 3698–3708.

[123] I. Brahmia et al. “Robust Data Predictive Control Framework for
Smart Multi-Microgrid Energy Dispatch Considering Electricity
Market Uncertainty”. In: IEEE Access 9 (2021), pp. 32390–32404.
DOI: 10.1109/ACCESS.2021.3060315.

[124] Aicha Dridi et al. “Machine Learning Application to Priority
Scheduling in Smart Microgrids”. In: 2020 International Wireless
Communications and Mobile Computing (IWCMC). IEEE. 2020, pp. 1695–
1700.

[125] Joseph El Hayek. “Le problème de bin-packing en deux-dimensions,
le cas non-orienté: résolution approchée et bornes inférieures.”
PhD thesis. Université de Technologie de Compiègne, 2006.

[126] Shi Sha et al. “A thermal-balanced variable-sized-bin-packing
approach for energy efficient multi-core real-time scheduling”.
In: Proceedings of the on Great Lakes Symposium on VLSI 2017. 2017,
pp. 257–262.

[127] Dennis Binu and BR Rajakumar. Artificial Intelligence in Data Min-
ing: Theories and Applications. Academic Press, 2021.

[128] https : / / www . tricentis . com / artificial - intelligence -
software-testing/ai-approaches-rule-based-testing-vs-
learning/.

[129] Mohammed Laroui et al. “SO-VMEC: Service offloading in vir-
tual mobile edge computing using deep reinforcement learn-
ing”. In: Transactions on Emerging Telecommunications Technologies
(), e4211.

[130] Richard S Sutton and Andrew G. Barto. “Reinforcement Learn-
ing: An introduction”. In: London, England, 2015, pp. 1–398.

[131] Haşim Sak, Andrew Senior, and Françoise Beaufays. “Long short-
term memory recurrent neural network architectures for large
scale acoustic modeling”. In: Fifteenth annual conference of the in-
ternational speech communication association. 2014.

[132] Ala Al-Fuqaha et al. “Internet of things: A survey on enabling
technologies, protocols, and applications”. In: IEEE communica-
tions surveys & tutorials 17.4 (2015), pp. 2347–2376.

https://doi.org/10.1109/ACCESS.2020.3034218
https://doi.org/10.1109/ACCESS.2020.3034218
https://doi.org/10.1109/ACCESS.2021.3060315
https://www.tricentis.com/artificial-intelligence-software-testing/ai-approaches-rule-based-testing-vs-learning/
https://www.tricentis.com/artificial-intelligence-software-testing/ai-approaches-rule-based-testing-vs-learning/
https://www.tricentis.com/artificial-intelligence-software-testing/ai-approaches-rule-based-testing-vs-learning/

Bibliography 127

[133] Moungla B.Nour. “Internet of Things Mobility Over Information-
Centric/Named-Data Networking”. In: in IEEE Internet Comput-
ing, vol. 24, no. 1, pp. 14–24, 1 Jan.–Feb. 2020, doi: 10.1109/MIC.2019.2963187.

[134] Mohammed Laroui et al. “Autonomous UAV Aided Vehicular
Edge Computing for Service Offering”. In: IEEE Global Commu-
nications Conference (GLOBECOM). 2021, pp. 1–6.

[135] Rohit Chaurasia and Vandana Mohindru. “Unmanned Aerial
Vehicle (UAV): A Comprehensive Survey”. In: Unmanned Aerial
Vehicles for Internet of Things (IoT) Concepts, Techniques, and Appli-
cations (2021), pp. 1–27.

[136] Nader S Labib et al. “The Rise of Drones in Internet of Things:
A Survey on the Evolution, Prospects and Challenges of Un-
manned Aerial Vehicles”. In: IEEE Access 9 (2021), pp. 115466–
115487.

[137] Rambod Pakrooh and Ali Bohlooli. “A Survey on Unmanned
Aerial Vehicles-Assisted Internet of Things: A Service-Oriented
Classification”. In: Wireless Personal Communications (2021), pp. 1–
35.

[138] Cristiano Bonato Both et al. “System Intelligence for UAV-Based
Mission Critical with Challenging 5G/B5G Connectivity”. In:
arXiv e-prints (2021), arXiv–2102.

[139] Uygar Demir, Cenk Toker, and Özgür Ekici. “Energy-efficient
deployment of uav in v2x network considering latency and back-
haul issues”. In: IEEE International Black Sea Conference on Com-
munications and Networking (BlackSeaCom). 2020, pp. 1–6.

[140] Liang Zhao et al. “A Novel Cost Optimization Strategy for SDN-
Enabled UAV-Assisted Vehicular Computation Offloading”. In:
IEEE Transactions on Intelligent Transportation Systems (2020).

[141] Cherifa Boucetta et al. “Adaptive Range-based Anomaly Detec-
tion in Drone-assisted Cellular Networks”. In: (2019), pp. 1239–
1244. DOI: 10.1109/IWCMC.2019.8766446.

[142] Chérifa Boucetta et al. “Heuristic Optimization Algorithms for
QoS Management in UAV Assisted Cellular Networks”. In: (2020),
pp. 01–06. DOI: 10.1109/GLOBECOM42002.2020.9322243.

[143] Hatem Ibn-Khedher et al. “OPAC: An optimal placement algo-
rithm for virtual CDN”. In: Computer Networks 120 (2017), pp. 12–
27. ISSN: 1389-1286. DOI: https://doi.org/10.1016/j.comnet.
2017.04.009. URL: https://www.sciencedirect.com/science/
article/pii/S1389128617301391.

[144] Kaouthar SETHOM and Hossam AFIFI. “Requirements and adap-
tation solutions for transparent handover between wifi and blue-
tooth”. In: ICC 2004 (2004 IEEE International Conference on Com-
munications). 2004.

https://doi.org/10.1109/IWCMC.2019.8766446
https://doi.org/10.1109/GLOBECOM42002.2020.9322243
https://doi.org/https://doi.org/10.1016/j.comnet.2017.04.009
https://doi.org/https://doi.org/10.1016/j.comnet.2017.04.009
https://www.sciencedirect.com/science/article/pii/S1389128617301391
https://www.sciencedirect.com/science/article/pii/S1389128617301391

128 Bibliography

[145] Mohammed Laroui et al. “Driving path stability in VANETs”.
In: 2018 IEEE Global Communications Conference (GLOBECOM).
IEEE. 2018, pp. 1–6.

[146] https://towardsdatascience.com/understanding-encoder-
decoder-sequence-to-sequence-model-679e04af4346.

https://towardsdatascience.com/understanding-encoder-decoder-sequence-to-sequence-model-679e04af4346
https://towardsdatascience.com/understanding-encoder-decoder-sequence-to-sequence-model-679e04af4346

Titre : Une nouvelle approche d’apprentissage en profondeur efficace pour le traitement des séries
Temporelles utilisant la classification, la prédiction et le renforcement : Cas d’utilisations Energie et
télécommunications

Mots clés : Séries temporelles, Apprentissage machine, Réseaux de neurones récurrents, Apprentissage
profond, Apprentissage par renforcement, Détection d’anomalie

Résumé : La croissance massive des capteurs
(température, humidité, accéléromètre, capteur de
position) et des appareils mobiles (smartphones,
tablettes, smartwatch . . .) fait que la quantité de
données générées augmente de manière explosive.
Cette immense quantité de données peut être col-
lectée et gérée. Le travail réalisé durant cette thèse
vise à proposer en un premier temps une approche
qui traite un type de données spécifique qui sont
les séries temporelles. Pour ce faire nous avons uti-
lisé des méthodes de classification basées sur des
réseaux de neurones convolutifs ainsi que des multi
layer perceptron afin d’extraire les informations per-
tinentes. Nous avons par la suite eu recours à l’uti-
lisation des réseaux de neurones récurrents pour
réaliser les prédictions. Les données utilisées prove-
naient de plusieurs sources : Données de consomma-
tion énergétique, données de production d’énergies
renouvelables, données cellulaires, données de trace
GPS de taxi. Nous avons également investigué plu-
sieurs autres méthodes telles que la compression
sémantique ainsi que le transfer learning. Les deux

méthodes décrites précédemment nous permettent
pour la première de ne transmettre que les poids
des réseaux de neurones ou en cas d’anomalie
détectée d’envoyer les données la constituant. Le
transfer learning nous permet quant à lui de réaliser
de bonnes prédictions même si les données traitées
souffrent d’un manque ou d’un bruit. Ces traitements
nous ont permis par la suite de mettre en place
des mécanismes dynamiques de détection d’ano-
malie. L’objectif du dernier volet de la thèse est le
développement et l’implémentation d’une solution de
management des ressources ayant comme entrée
le résultat des phases précédentes. Pour mettre en
place cette solution de gestion des ressources nous
avons utilisé plusieurs approches tel que l’apprentis-
sage par renforcement, la résolution exacte ou encore
des réseaux de neurones récurrents. Une première
application est la mise en place d’un système de ma-
nagement de l’énergie et la seconde est la gestion du
déploiement des drones pour assister les réseaux cel-
lulaires en cas d’anomalies.

Title : A novel efficient time series deep Learning Approach using Classification, Prediction and reinforcement:
Energy and Telecom use case

Keywords : Time series, Machine learning, Recurrent neural network, Deep learning, Reinforcement learning,
Anomaly detection

Abstract : The massive growth of sensors (tempe-
rature, humidity, accelerometer, position sensor) and
mobile devices (smartphones, tablets, smartwatches)
increases the amount of data generated explosively.
This immense amount of data can be collected and
managed. The work carried out during this thesis aims
first to propose an approach that deals with a speci-
fic type of data, which are time series. First, we used
classification methods based on convolutional neu-
ral networks and multilayer perceptrons to extract the
relevant information. We then used recurrent neural
networks to make the predictions. We treated several
time series data: energy, cellular, and GPS taxi track
data. We also investigated several other methods like
as semantic compression and transfer learning. The
two described methods above allow us for the first to

transmit only the weight of the neural networks, or if an
anomaly is detected, send the anomalous data. Trans-
fer learning allows us to make good predictions even
if the data is missing or noisy. These methods allowed
us to set up dynamic anomaly detection mechanisms.
The objective of the last part of the thesis is to deve-
lop and implement a resource management solution
having as input the result of the previous phases. We
used several methods to implement this resource ma-
nagement solution, such as reinforcement learning,
exact resolution, or recurrent neural networks. The
first application is the implementation of an energy
management system. The second application is the
management of the deployment of drones to assist
cellular networks when an anomaly occurs.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Abstract
	Abstract
	Résumé
	Acknowledgements
	General Introduction
	Research issues
	Context and problem formulation
	Contributions
	Structure of the thesis

	Proposed architecture For Time Series Analysis
	Introduction
	Time Series Classification
	Related work
	Classification Algorithms
	Performance results for classification

	Time Series Forecasting
	Related work
	Prediction Algorithms
	The proposed error functions
	Hyperprametrisation
	Prediction algorithms comparison and choice
	Implementation of native LSTM on ships

	Proposed architecture
	Related work classification aware prediction
	Classification aware Prediction

	Applications
	Time Series collection
	Data Colletion architecture
	Micro Grid
	Cellular networks
	Public Transportation

	Discussion
	Conclusion

	A Deeper Time-series Analysis of the selected applications
	Introduction
	Semantic compression
	Introduction
	Related work
	Proposed method
	Performance analysis

	From Lack of data to Transfer Learning solution
	Introduction
	Related work
	Transfer learning Architecture
	Cellular network application
	Discussion

	Anomaly detection
	Introduction
	Related work
	Adaptive Range-based LSTM Prediction Scheme
	Spatio-Temporal Anomaly Detection Mechanism (STAD)

	Conclusion

	Resource Management and optimization Algorithm
	Introduction
	Related work

	Energy Use case
	Context and problem definition
	Uses cases
	Exact Resolution
	Heuristic Resolution
	Machine Learning Method
	Performance results for Resource management

	Cellular network Use case
	Related work

	Modeling and ILP optimization of the Quality of Service
	Network Model and architecture
	ILP Optimization

	Reinforcement Learning Approach
	Results and discussion
	From Deep LSTM to Transformers

	Conclusion

	Conclusion and Perspectives
	Conclusions
	Perspectives

	Bibliography

