
HAL Id: tel-03957362
https://theses.hal.science/tel-03957362

Submitted on 26 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Study of the potential of graph-based approaches in
blockchains

Mohamed Aimen Djari

To cite this version:
Mohamed Aimen Djari. Study of the potential of graph-based approaches in blockchains. Cryptogra-
phy and Security [cs.CR]. Université Rennes 1, 2022. English. �NNT : 2022REN1S064�. �tel-03957362�

https://theses.hal.science/tel-03957362
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies

de l’Information et de la Communication

Spécialité : INFO

Par

Mohamed Aimen DJARI

« Etude du potentiel des approches à base de graphes dans les
blockchains »

« Study of the potential of graph-based approaches in blockchains »

Thèse présentée et soutenue le 06 décembre 2022
Unité de recherche : UMR CNRS 6074 Institut de Recherche en Informatique et Systèmes
Aléatoires (IRISA)

Rapporteurs avant soutenance :
Silvia BONOMI Assistant professor, Université La Sapienza, Rome, Italie
Sébastien MONNET Professeur, Université Savoie Mont Blanc

Composition du Jury :
Examinateurs : Bruno SERICOLA Directeur de recherche, INRIA

Quentin BRAMAS Maitre de conférences, Université de Strasbourg
Pierre-Yves PIRIOU Ingénieur-chercheur, EDF R&D

Dir. de thèse : Emmanuelle ANCEAUME Directrice de recherche, CNRS
Co-encadrante : Sara TUCCI-PIERGIOVANNI Cheffe de laboratoire, CEA List

ii

Résumé en Français

Les blockchains sont des systèmes pair à pair dans lesquels les utilisateurs peu-
vent échanger des biens numériques sans autorité centrale de validation. Une
blockchain est un grand livre distribué maintenu grâce à la communication entre
les nœuds du réseau. C’est un registre sur lequel sont enregistrées toutes les opéra-
tions du réseau, ce qui contribue à sa transparence puisque chaque ajout dans la
blockchain peut être lu par tous et pour toujours (tant que le réseau existe). En
fonction de l’application souhaitée, le bon fonctionnement de la blockchain repose
sur trois piliers communs : (i) la décentralisation, (ii) la sécurité et (iii) le passage
à l’échelle aussi appelé scalabilité. Ces trois caractéristiques réunies donneraient
naissance à la solution blockchain parfaite. Malheureusement, cette solution est au-
jourd’hui considérée comme une utopie que l’on appelle le trilemme de la blockchain.
Il s’agit d’une croyance selon laquelle une crypto-monnaie ne peut pas combiner ces
trois caractéristiques, elle doit nécessairement sacrifier l’un de ces trois piliers. Par
exemple, la sécurisation d’un système décentralisé impliquerait trop de restrictions à
son passage à l’échelle (par exemple, le Bitcoin, une monnaie sécurisée et entièrement
décentralisée mais qui ne confirme que 7 txs/s en moyenne). La décentralisation d’un
système sécurisé et scalable ne serait également pas possible car un système décen-
tralisé prend plus de temps pour atteindre un consensus (par exemple VISA, une
solution centralisée et sécurisée qui peut confirmer plusieurs milliers de transactions
par seconde). Par conséquent, le passage à l’échelle d’une solution décentralisée et
sécurisée ne serait pas possible car les restrictions nécessaires à sa sécurité ajoutées
au délai de communication inhérent à sa décentralisation l’empêcheraient d’atteindre
un consensus (par exemple Ethereum, qui a choisi de diminuer le délai entre deux
blocs pour augmenter sa scalabilité au détriment de sa sécurité en augmentant le
risque de forks1).

Au cours de cette thèse, les enjeux ont vite été ceux de la quête de perfor-
mance, notamment en matière de scalabilité sans négliger pour autant les deux
autres aspects du trilemme. C’est là l’un des apports de l’approche à base de
graphes par rapport à la structure classique sous forme de chaine. En début de
thèse, nous avons alors réalisé un état de l’art en étudiant les différents systèmes
de blockchains à base de graphes existants [1, 2, 3, 4]. Parmi ces solutions figure
Sycomore, une blockchain PoW non permissionnée immuable et sécurisée dont la
structure est une structure particulière de graphe dirigé acyclique, appelée SYC-
DAG. L’une des caractéristiques uniques de Sycomore est l’auto-adaptabilité de la
taille du SYC-DAG à la charge (i.e. au taux de remplissage moyen des derniers blocs
d’une chaîne) actuelle du système et le fait que la probabilité de fork diminue avec

1Si deux mineurs (i.e. membres du système qui participent au maintien de la blockchain)
trouvent chacun un bloc valide dans un intervalle de temps réduit, alors ils diffusent leur solution
au même moment, on dit alors qu’il y a fork.

iii

iv

l’augmentation du nombre de blocs feuilles dans le SYC-DAG. Une augmentation
ou une diminution du nombre courant de transactions émises par les utilisateurs est
gérée de manière dynamique par la création ou l’extinction progressive de chaines
parallèles dans la structure du SYC-DAG. La décision d’adapter dynamiquement le
nombre de chaînes du SYC-DAG à l’activité du système dépend de la charge des
blocs récents du SYC-DAG. La vitesse à laquelle les blocs sont créés peut donc être
considérablement augmentée sans encourir plus de forks que dans Bitcoin. Puisque
la principale différence entre Sycomore et Bitcoin réside dans leur structure, nous
avons voulu étudier le comportement de Sycomore afin de mieux cerner l’intérêt de
l’utilisation d’une approche à base de graphes. Pour ce faire, et pour les besoins de
toutes les études conduites au cours de cette thèse, nous avons utilisé un simula-
teur basé-agents dédié à la blockchain, appelé Multi Agent eXperimenter (MAX) [5]
qui propose des bibliothèques génériques pour développer facilement des protocoles
blockchain. En raison de la complexité informatique de nos modèles et des simu-
lations impliquant un nombre représentatif d’agents, toutes les simulations ont été
menées sur Grid’5000 [6], une grille de calcul flexible et à grande échelle pour la
recherche expérimentale.

L’étude faite sur Sycomore est une étude expérimentale centrée sur la scalabilité
et la résilience de Sycomore face à la présence d’adversaires qui chercheraient à nuire
à l’efficacité du système. Cette étude nous a permis d’étudier le comportement, les
limites ainsi que les perspectives d’amélioration de Sycomore. C’est au cours de cette
étude que nous proposons Sycomore++, un protocole blockchain basé sur Sycomore.
Il consiste en une amélioration de Sycomore permettant une auto-adaptation de la
difficulté du PoW à la structure du graphe. Nous avons ensuite évalué ce protocole
via des simulations basées agents qui ciblent la capacité de Sycomore++ à relever
le défi de la scalabilité dans différents contextes d’exécution. L’une des principales
leçons tirées de ces simulations intensives est la capacité de Sycomore++ à réduire
considérablement le temps de confirmation des transactions par rapport à Bitcoin et
Sycomore, à garantir l’équité du traitement des transactions et à s’adapter aux vari-
ations du taux de création de transactions. Enfin, nous avons pu mettre en évidence
certains scénarios d’attaques susceptibles de pénaliser l’efficacité de Sycomore++.
Grâce à nos simulations, nous avons pu montrer que Sycomore++ avait bel et bien
une meilleure scalabilité que celle de Bitcoin et Sycomore avec des résultats 16 fois
supérieurs pour les mêmes paramètres utilisés. Sycomore++ arrive à stabiliser la
latence (i.e. le temps écoulé entre la soumission et la confirmation d’une transac-
tion), et ce, malgré la fluctuation du débit de transactions, ce qui implique une
accumulation de transactions non confirmées beaucoup moins importante que sur
Bitcoin. Enfin, nos résultats analytiques et expérimentaux montrent que la sécurité
de Bitcoin n’a pas été sacrifiée au profit de sa scalabilité et étant donné que le travail
des mineurs est reparti entre les chaines du graphe, la décentralisation de Bitcoin a
également été améliorée. publications dans des conférences internationales à comité
de lecture. Les résultats de cette étude ont fait l’objet de plusieurs publications
dans des conférences internationales à comité de lecture [7, 8] et une conférence
francophone avec comité de lecture [9]. Ils nous ont permis de montrer le poten-

v

tiel des approches à base de graphes en termes de scalabilité tout en améliorant la
décentralisation du pouvoir de décision et sans toutefois négliger leur sécurité.

Dans un second temps, après avoir montré l’apport d’une solution classique à
base de graphes dans le trilemme blockchain, nous nous sommes penchés sur les
solutions de sharding qui étant donné leur structure en graphe, nous semblaient être
des solutions à base de graphes plus avancées et des plus prometteuses en termes de
scalabilité. Le sharding étant à l’origine une technique avancée de gestion de base
de données, il peut également être utilisé dans le domaine des blockchains. En effet,
lorsque l’on fait face à un très grand volume de données comme c’est le cas pour les
transactions de crypto-monnaies, il est intéressant, pour les traiter plus rapidement,
de les séparer en plusieurs sous-ensembles. La technique du sharding sert dans ce
cas à partitionner les données de la blockchain (notamment tout l’historique des
échanges réalisés entre ses utilisateurs depuis sa création), et à ne pas concentrer
sur les blocs d’une seule blockchain le processus de validation de chaque nouvelle
transaction. Avec le sharding, il serait possible de traiter un plus grand nombre de
transactions en même temps, car la blockchain serait partagée en plusieurs sous-
parties autonomes. Ici encore, avant d’approfondir notre étude sur le sharding,
nous avons fait un second état de l’art qui compare différentes solutions de sharding
sur la base de critères préalablement sélectionnés. Parmi ces solutions figurent des
solutions industrielles prometteuses [10, 11] ainsi que des solutions académiques
intéressantes [12, 13, 14, 15, 16]. Cet état de l’art nous a permis de réaliser qu’il y
avait un manque à combler dans les solutions existantes. C’est dans ce cadre que
nous avons proposé Yggdrasil, une solution de state-sharding (i.e. sharding d’état)
pour les blockchains non permissionnées qui supporte à la fois les transactions de
paiement et les smart contracts.

Yggdrasil permet de diviser et de fusionner les shards de manière dynamique en
s’appuyant sur des mécanismes décentralisés pour assigner les nœuds aux shards de
manière sécurisée et non prévisible. Nous proposons également au cours de ce travail
un nouveau protocole 2-Phase-Commit permettant de garantir l’exécution de smart
contracts distribués sur différents shards, et ce de manière atomique même lorsque
les shards se réorganisent dynamiquement. La principale caractéristique d’Yggdrasil
réside dans son auto-adaptation à la charge de transactions, de sorte que le nom-
bre de shards s’adapte continuellement pour assurer une confirmation rapide des
transactions. Yggdrasil permet aux shards de se réorganiser en cas de charge élevée
en se scindant en nouveaux shards, puis de se regrouper à nouveau si la charge de
transaction diminue. Alors que la cohérence locale de chaque shard repose sur une
blockchain BFT locale, Yggdrasil assure la cohérence globale du système grâce à
une blockchain globale connue par tous appelée masterchain. Cette blockchain ne
contient que les informations nécessaires au maintien de la cohérence globale du sys-
tème. Yggdrasil permet notamment d’assigner les utilisateurs et les smart contracts
aux shards de manière transparente et décentralisée. Lorsque l’ensemble de shards
change, les smart contracts et les utilisateurs sont automatiquement réassignés à
un shard nouvellement créé (si nécessaire) de manière transparente et vérifiable.
Lorsqu’un shard est divisé en deux nouveaux shards, il s’éteint et un résumé de

v

vi

son état est transféré aux shards nouvellement créés. Yggdrasil garantit que chaque
utilisateur soit assigné à tout moment à un seul shard, c’est-à-dire qu’un utilisateur
ne peut pas soumettre de transactions à deux shards différents, ou s’il le fait, la
transaction est rejetée par l’un des shards, car l’assignation d’un utilisateur à un
shard est vérifiable. De la même manière, un smart contract est attribué à tout
moment à un seul shard. Yggdrasil garantit la confirmation des transactions cross-
shard mais également l’atomicité de l’exécution distribuée d’un smart contract (i.e.
une exécution qui s’étend sur différents shards) grâce à un algorithme 2PC basé sur
le verrouillage des contrats et la confirmation entre shards. Yggdrasil est tolérant
à un adversaire adaptatif : en s’appuyant sur le shuffle (i.e. brassage aléatoire des
noeuds dans différents shards), les validateurs sont régulièrement réassignés à des
shards choisis au hasard pour se défendre contre un adversaire adaptatif. De plus,
en utilisant un tirage aléatoire secret et vérifiable, l’assignation des validateurs est
imprévisible. Enfin, afin de réduire le volume de transactions cross-shard, Yggdrasil
permet aux nœuds de s’incarner dans plusieurs shards avec des comptes identifiés
de manière unique, afin de réduire le volume de leurs transactions cross-shard. En
effet, les nœuds peuvent être intéressés par un smart-contract particulier ou par
des échanges avec des utilisateurs spécifiques, de sorte qu’ils s’incarnent uniquement
dans le shard où ils échangent le plus et bénéficient d’un temps de confirmation de
transaction rapide en s’évitant des transactions cross-shards.

Une étude analytique a d’abord été faite pour vérifier les propriétés d’Yggdrasil.
C’est ainsi que nous avons prouvé la sécurité, ainsi que l’atomicité des transactions
dans Yggdrasil. C’est dans ce cadre que nous avons par exemple prouvé la confir-
mation des transactions intra et cross-shard, la bonne assignation des utilisateurs
dans un shard donné du système ainsi que l’intérêt du shuffle de validateurs dans
la résilience du système face à un adversaire adaptatif. Dans un souci de com-
plétude, nous avons également étudié Yggdrasil expérimentalement avec MAX, le
simulateur basé agents que nous avons utilisé pour l’étude de Sycomore++. Pour
ce faire, nous avons implémenté Yggdrasil en choisissant Tendermint [17] comme
moteur de consensus de chaque shard. Le but, entre autres, étant de comparer les
performances d’Yggdrasil à celles de Tendermint afin de montrer l’intérêt de faire
du sharding dans les blockchains. Au cours de cette étude, nous avons montré la
capacité d’Yggdrasil à s’adapter rapidement au débit d’arrivée des transactions, et
ce, encore plus efficacement que des solutions concurrentes de la littérature [13, 11].
Nous avons également pu montrer le potentiel d’Yggdrasil en termes de scalabilité
avec des résultats très prometteurs, environ 85 fois le débit de Tendermint. Grâce à
nos simulations, nous avons également pu montrer qu’Yggdrasil arrivait à stabiliser
la latence de confirmation des transactions, et ce, malgré la fluctuation du débit
de transactions, ce qui implique une accumulation de transactions non confirmées
beaucoup moins importante que sur Tendermint. Nous avons également montré
que l’auto adaptation du nombre de shards dans Yggdrasil lui permettait de garder
une latence stable malgré un volume de transactions cross-shards grandissant. Pour
finir, nous avons montré que l’utilisation de notre algorithme 2PC dans un environ-
nement de sharding dynamique était certes plus coûteux que dans un environnement

vii

sans sharding mais beaucoup moins que dans du sharding statique. Étant donné
la capacité de scalabilité indéniable des solutions à base de sharding, nous mon-
trons que ce surcoût lié au sharding n’est pas pénalisant. Grâce à cette technique
de sharding d’état en plusieurs shards, nous avons pu obtenir des performances très
prometteuses, meilleures que celles de Sycomore++ en termes d’évolutivité. Le prin-
cipal avantage du sharding d’état étant de réduire les frais de communication et de
stockage, les solutions qui la mettent en œuvre ont tendance à passer à l’échelle plus
facilement. Un de ses autres avantages étant sa capacité à maintenir une forte décen-
tralisation en donnant plus de pouvoir à plus de nœuds dans des shards séparés. De
plus, notre étude analytique et expérimentale d’Yggdrasil nous a permis de vérifier
sa sécurité. Au moment de l’écriture de ce manuscrit, les résultats de cette étude
sur Yggdrasil ont été soumis pour publication à à la conférence internationale avec
comité de lecture VLDB 2023 et un rapport technique présentant les résultats est
accessible [18].

Pour conclure, notre travail sur les solutions de DAG et de state-sharding nous
a permis d’établir que les solutions basées sur les graphes sont effectivement une
solution très intéressante et prometteuse en termes de scalabilité. De plus, comme
cette solution ne sacrifie ni la décentralisation ni la sécurité, elle semble être un
bon équilibre entre les trois piliers de la blockchain, a savoir, la décentralisation, la
sécurité et la scalabilité.

Mots-clés: Blockchain, Graphe, Scalabilité, Simulation basée agent, Sharding,
Performance, Décentralisation, Sécurité, Trilemme.

vii

viii

Abstract

Blockchains are peer-to-peer systems in which users can exchange digital assets
without a central validation authority. It is a distributed ledger maintained through
communication between the nodes of the network. It is a ledger on which all op-
erations are recorded, which contributes to its transparency since every addition in
the blockchain can be read by everyone and forever (as long as the network exists).
Depending on the desired application, the proper functioning of the blockchain relies
on three common pillars: (i) decentralization, (ii) security and (iii) scalability. A
solution that would bring these three characteristics together is currently considered
a utopia that is known as the blockchain trilemma, a belief that a crypto-currency
must necessarily sacrifice one of these three pillars.

During the course of this thesis, the issues at stake were quickly those of the quest
for performance, particularly in terms of scalability without neglecting the other two
aspects of the trilemma. We then started by studying Sycomore, an immutable and
secure permisionless PoW blockchain with a graph-based structure. It is during
the study of Sycomore that we propose Sycomore++, a blockchain protocol based
on Sycomore whose main feature is to dynamically self-adapt the number of blocks
created to the current number of transactions submitted. The results of this study
have been published in the proceedings of peer-reviewed conferences [7, 8, 9].

In a second step, after having shown the contribution of a classical graph-based
solution in the blockchain trilemma, we looked at sharding solutions which, given
their graph structure, seemed to us to be the most advanced graph-based solutions
and the most promising in terms of scalability. It is in this context that we propose
Yggdrasil, a state sharding solution for permisionless blockchains that supports both
payment transactions and smart contracts. Yggdrasil allows for dynamic splitting
and merging of shards by relying on decentralized mechanisms to assign nodes to
shards in a secure manner. In this work, we also propose a new 2-Phase-Commit pro-
tocol to guarantee the execution of distributed smart contracts on different shards,
even when shards dynamically reorganize. An experimental study confirms the
ability of Yggdrasil to evolve and adapt to the transaction load with very promising
performance, better than Sycomore++ in terms of scalability. Since the main ben-
efit of state-sharding is to reduce communication and storage costs, solutions that
implement it tend to scale more easily. Another advantage is its ability to maintain
strong decentralization by empowering more nodes in separate shards without hin-
dering its security. At the time of writing this manuscript, the results of this study
on Yggdrasil have been submitted for publication to VLDB 2023 and a technical
report presenting the results is available [18].

Keywords: Blockchain, Graph, Scalability, Agent-based Simulation, Sharding,
Performance, Decentralization, Security, Trilemma.

ix

x

Contents

1 Introduction 1
1.1 Context . 2
1.2 Contributions . 5

2 State of the Art 9
2.1 Consensus Models . 10
2.2 Transaction Models . 18
2.3 Incentives for honest participation 19
2.4 Classic Blockchains . 20
2.5 Graph-based Blockchains . 26
2.6 Sharded Blockchains . 29
2.7 Experimental Approach . 33
2.8 Conclusion . 37

3 Tools 39
3.1 Simulation for Blockchains . 40
3.2 Multi-Agent eXperimenter (MAX) 43
3.3 Experimental Environment . 51
3.4 Implemented Models . 52
3.5 Conclusion . 64

4 Graph-based blockchains 67
4.1 Background . 67
4.2 Overview of Sycomore . 70
4.3 Sycomore’s critical issue: difficulty readjustment 74
4.4 Sycomore++: a scalable graph-based ledger 76
4.5 Simulation Study of Sycomore++ . 79
4.6 Conclusion . 88

5 State-sharded blockchains 91
5.1 Background . 93
5.2 System Model . 97
5.3 Yggdrasil Protocol . 99
5.4 Implementation Details . 112
5.5 Yggdrasil Analysis . 117
5.6 Performance Evaluation . 122
5.7 Conclusion . 128

6 Conclusions 129
6.1 General Conclusion . 129
6.2 Future Work . 131

xi

xii Contents

Bibliography 135

List of Figures

1.1 The Blockchain Trilemma. 4

2.1 Proof of Elapsed Time [19]. 14
2.2 Tendermint Architecture. 23
2.3 Tendermint Core [17]. 24
2.4 JaCaMo-web Organization. 35

3.1 Types of Simulation Execution. 41
3.2 Agent-based Simulation. 43
3.3 MAX Scenario Example. 45
3.4 MAX Architecture. 46
3.5 Agent-Group-Role Organization. 47
3.6 Merkle Tree Construction. 48
3.7 Class Diagram: Network model. 50
3.8 Class Diagram: Blockchain model. 51
3.9 Class Diagram: Sycomore Datatype. 53
3.10 Class Diagram: Sycomore Environment and Messaging. 55
3.11 Class Diagram: Sycomore Experimenter. 56
3.12 Sycomore Configuration File. 57
3.13 Class Diagram: Sycomore Agent and actions. 58
3.14 Class Diagram: Yggdrasil Datatype. 59
3.15 Class Diagram: Yggdrasil Environment. 60
3.16 Class Diagram: Yggdrasil Message Creation and Handling. 61
3.17 Class Diagram: Yggdrasil Experimenter. 62
3.18 Yggdrasil Configuration File. 63
3.19 Class Diagram: Yggdrasil Agent and Actions. 64

4.1 Different Blockchain Structures. 68
4.2 A DAG Example. 69
4.3 An example of a SYC-DAG built by Sycomore. 71
4.4 Illustration of the issue caused by periodic readjustment of the difficulty. 75
4.5 Proof-of-Work Model. 80
4.6 Scalability of Bitcoin, Sycomore and Sycomore++ (overload thresh-

old � = 90%, underload threshold � = 0%) and Reactivity of both
Sycomore and Sycomore++ (� = 90%, � = 10%). 82

4.7 Impact of the Ledger and Chain Attacks. 86

5.1 An Example of Network Sharding. 93
5.2 An Example of Transaction Sharding. 94
5.3 An Example of State Sharding. 95

xiii

xiv List of Figures

5.4 A Simple Overview of Yggdrasil. 99
5.5 The different steps involved to confirm a cross-shard transaction. . . 102
5.6 Handling cross-shard Transactions. 118
5.7 Performance Evaluation of Yggdrasil. 123
5.8 Maximum rate and average latency of Yggdrasil and time-driven so-

lutions in presence of a peak of load. 125
5.9 Transaction average latency with 2-Phase Commit Algorithm. 127

List of Tables

2.1 Comparison table of blockchain sharding solutions. 30
2.2 Comparison table of blockchain sharding solutions (Continued). . . . 30

3.1 Example of a Schedule. 42

4.1 Average number f of forks and average time to resolve one fork (tr)
as a function of the network delay (ticks). 85

xv

xvi List of Tables

Chapter 1

Introduction

“Begin at the beginning,” the King said, very gravely,“and go on till you
come to the end: then stop.”

– Lewis Carroll, Alice in Wonderland

Contents
1.1 Context . 2

1.1.1 Blockchain Pillars . 3
1.1.2 Blockchain Fields . 4

1.2 Contributions . 5

The community is defined as an extended family, as opposed to society, which
exists from the moment when communities exchange with each other. Society thus
stems from the need to exchange because communities cannot live in autarky. How-
ever, the exchange has dangerous limits for the social link, it is always based on
trust.

Any transfer of value (money or any asset) usually requires a central entity
that plays the role of a trusted third party. For any money transfer, one must
go through a bank, which makes sure its client has enough money. After a car
accident, one must goes through an insurance company, which judges its client’s
responsibility before compensating him. When voting to elect the next president of
a country, a concerned citizen must go through the government, which checks his
rights before letting him vote. And the list goes on... All these innocuous activities
are centralized. For any money transfer, what actually happens is that the bank
first seizes money and then transfers it to the recipient(s). This implies that there
is a more or less long period of time where the money does not belong to neither
the sender nor the receiver but to the bank. Usually, all the mechanisms necessary
for everyday life follow this centralized pattern, which poses a problem, who is this
authority? How much trust should be given to it? Is it worthy of this trust? And
more importantly, what choice do we have but to trust it?

This last question has been answered in 2008 with the appearance of Bitcoin. A
cryptocurrency solution that aimed to give power back to the "people". No more
need to go through a central authority or any trusted third party. On Bitcoin, every-
one has to go through a whole network of people who decide in full transparency. At
that time, Bitcoin and the technology it is built on, the blockchain, already repre-
sented what could allow us to transform our daily actions by diluting our trust in an

1

2 Chapter 1. Introduction

individual or entity into a whole network. Unfortunately, to get there, blockchains
must be accepted. And to do so, they must satisfy users by meeting their criteria.
Among the adoption criteria appears scalability, i.e. the ability of a system to adapt
its performance in response to increasing demand.

To put it more simply, let’s imagine you are in a traffic jam. Instead of making a
trip in 10 minutes, you make it in an hour and are annoyed. If we transpose this to
cryptocurrencies, imagine waiting for hours for your coffee payment in Bitcoin to be
validated. Long-waiting Bitcoin transactions and traffic jams stem from the same
problem. A lot of demand at the same time but since the infrastructure was to meet
a much smaller demand, users wait longer. In other words, scalability is crucial for
mass adoption. If blockchains cannot scale, they will not be able to compete with
traditional systems in terms of throughput and latency.

Finally, while scalability emphasizes the best, it is security that prevents the
worst from happening. Usually, when people are willing to give up their freedom,
they do so for their security. This is what has happened with the surrender of
individual power to centralized systems that can guarantee the security of exchanges
if necessary. Being a new technology, blockchain is subject to many attacks or
vulnerabilities. Indeed, due to its transparent nature, it is easier to target it as the
different attacks that have occurred so far on blockchains can testify. This shows
the importance of such an issue and how it can impact blockchain’s approval.

In a nutshell, blockchains’ mass adoption will be defined by these three prop-
erties: decentralization, security and scalability. In this manuscript, we will focus
on these properties with a particular emphasis on the latter and how to improve it
without sacrificing any of the other two.

In the following, we describe the context of this thesis in Section 1.1, as well as
our contributions in Section 1.2.

1.1 Context

Based on the work of Stuart Haber, W. Scott Stornetta, and Dave Bayer [20],
cryptocurrencies were created by Satoshi Nakamoto in 2008. The goal was to create
a new decentralized cryptocurrency, Bitcoin. This new digital currency is based
on a distributed and public ledger. To this day, we still don’t know if Satoshi
Nakamoto really exists, his identity (or their identities if it’s a group of people)
remains unknown. Still, his creation, Bitcoin, was the first digital currency to be
able to solve double spending without having to rely on any trusted central authority.

The main features of Bitcoin come from its infrastructure, the blockchain. It is
a distributed ledger maintained through communication between nodes in a peer-
to-peer network. It is said to be append-only, which means that information can
be added to it at the end and it is supposed to be impossible to delete or change
it, so the data entered is considered unchangeable. It is a register on which all the
operations of the network are recorded, which contributes to its transparency since
each addition in the blockchain can be read by everyone and for ever (as long as the

Chapter 1. Introduction 3

network still exists).
As said before, the blockchain allows us to emancipate ourselves from any con-

trolling body. The power is given to the users who are distributed in the network.
Each user executes a precise protocol, the functioning of the blockchain is said to be
tolerant to human errors but also to breakdowns. However, human actions are still
behind all attacks in Bitcoin, which is still very resilient to corruption since it is no
longer a question of corrupting a cog in a system but a large part of it. Because of
its decentralized nature, it is more difficult to attack. Indeed, attacking a central
system is easier since it is located in one place. However, attacking a decentralized
system requires a lot more resources and is therefore not easy to achieve.

1.1.1 Blockchain Pillars

Depending on the desired application, the proper functioning of blockchain relies on
certain common pillars. Among the pillars of blockchain, we can find (i) decentral-
ization, (ii) security and (iii) scalability.

1. Decentralization specifies how the power is distributed among the nodes in
the network. The more power is concentrated at a node or group of nodes,
the less decentralized the system is. Decentralization balances the power of
decision among all participants. This is in contrast to a centralized system
where the power would belong to one person or group of people.

2. Security of a blockchain lies in its ability to withstand unexpected events,
such as breakdowns or malicious attacks. In general, the security of a
blockchain is guaranteed up to a certain centralization threshold. If this
threshold is reached, the security is no longer guaranteed. For example, sys-
tems where decision power is controlled by very few actors that are known and
trusted are said to be more secure than more permissionless systems where
not all nodes are trusted.

3. Scalability is a term that describes the ability of a system to adapt to a change
in the order of magnitude of demand in terms of transaction confirmation, in
particular its ability to maintain its functionality and performance under high
demand.

These three characteristics put together would give birth to the ultimate
blockchain solution. Unfortunately, this solution is today considered as a utopia
since such a solution cannot exist. This is what is called the blockchain Trilemma,
a belief that a cryptocurrency cannot combine all three characteristics, a blockchain
must necessarily sacrifice one of these three pillars. Indeed, securing a decentralized
system would imply too many restrictions to scale (e.g. Bitcoin, a secure and fully
decentralized currency but which can only confirm 7 txs/s). The decentralization of
a secure and scalable system is not possible since a decentralized system takes longer
to reach a consensus (e.g. VISA, a centralized and secure solution that can confirm

3

4 Chapter 1. Introduction

Figure 1.1 – The Blockchain Trilemma.

several thousand transactions per second). Consequently, the scaling of a decentral-
ized and secure solution would not be possible since the necessary restrictions to its
security added to the communication delay inherent to its decentralization would
prevent it from reaching consensus (e.g. Ethereum, which has chosen to lower its
inter-block delay to increase its scalability at the expense of its security by increasing
the risk of forks).

1.1.2 Blockchain Fields

Blockchain is a decentralized solution that revolutionized numerous fields. Its par-
ticular design has inspired many new solutions since it represents an alternative to
the traditional system. This has given rise to new applications, not only in the field
of finance with crypto-currencies, but in many diverse fields.

1. Finance The use of blockchain in money transfer is one of the most widespread
applications. It is generally cheaper and faster than traditional money trans-
fers (e.g. Western Union). This is especially true when the two actors of the
transfer are in different countries with different rules. We are talking about
several days for classic systems and several minutes or even hours for the slow-
est blockchains. Still in the field of finance, blockchain can also be used for
loan management. Indeed, the appearance of smart-contracts has allowed the
implementation of hundreds of "smart" applications. Depending on certain
events, actions will be executed automatically. These actions can be for ex-
ample the payment of a rent, the redemption of a credit... In this way, the
management of loans is faster and less expensive.

2. Insurance Thanks to the emergence of smart-contracts, the blockchain allows
today a better management of insurance and related risks. Indeed, in addi-
tion to the reduced processing speed, the insurances offer more transparency
regarding their decisions and the registration of all the information in the
blockchain would also prevent anyone from wanting to defraud by declaring

Chapter 1. Introduction 5

the same accident twice for example or by subscribing to two different insur-
ances for the same property and thus receiving the double of the compensation.

3. Real estate Real estate transactions can be long and costly. The use of
blockchain in this area would reduce processing times related to changes in
ownership and increase confidence in title deeds that would be forgery-proof,
mainly through NFTs and smart contracts.

4. Voting Blockchain could be a great help to democracy. Today, voting implies
a considerable waste of time and a significant processing delay. Coupled with
digital identity (i.e. personal information kept on the blockchain), blockchain
can accelerate these processes while guaranteeing their authenticity (e.g. one
vote per person).

5. Government benefits Blockchain can also improve the management of so-
cial rights by automatically assigning the rights related to each person while
avoiding fraud.

6. Medicine and Health The management of medical records on the blockchain
would allow a faster treatment but also a more interesting global follow-up
for the patient. Indeed, having ones medical file available for consultation by
doctors would allow a more precise and thorough follow-up of its examinations.
Coupled with the management of insurance, even the payments would be done
automatically on the blockchain.

7. Art Using the blockchain to manage authors’ rights when it comes to art
is a way to compete with labels that would take a big part of the money
intended for the artists. This way, the artist would receive all his rights in full
transparency.

8. Logistics and supply chain tracking Using blockchain for product trace-
ability is also one of the most widespread applications. This technology would
allow to follow the life of each part of a product and thus give more informa-
tion about its origin but it would also allow a better management of the life
cycle of the equipment and a more fluid communication between suppliers and
customers.

1.2 Contributions

During these three years, we have studied the veracity of the blockchain trilemma
by focusing on the scalability issue. More precisely, we have tried to answer the
following questions:

– Is it possible to improve the scalability of existing blockchain solutions while
maintaining their decentralization and security?

– Are graph-based blockchains a solution to blockchain’s lack of scalability?

5

6 Chapter 1. Introduction

This manuscript is organized as follows. Chapter 2 contains the state of the art
of what exists in the areas covered by this thesis work. In Chapter 3, we present
the tools used to evaluate the performance of our proposals presented in chapters 4
and 5. Chapter 6 will discuss the observations inherent to our results and present
the different perspectives associated with them.

Graph-based blockchains A recent evolution in blockchain technology seeks to
address the performance issue of permissionless chain-based ledgers, in particular
the small number of transactions confirmed per second – around 7tx/s for Bitcoin.
While some new efforts are dedicated to replace the proof-of-work (PoW) consensus
mechanisms with mechanisms such as proof-of-stake and BFT consensus (such as [17,
21, 22, 23]), reaching 102�103 tx/s, it is undeniable that Bitcoin has shown a great
longevity, validating on the ground its good design and security properties in these
last 10 years. For this reason other proposals are exploring how to leverage the
same design principles, and in particular the simplicity, of Bitcoin protocol. In this
line of works some proposals, including [24, 25, 26], called second-layer protocols,
propose to implement a protocol on top of Bitcoin that hits the blockchain only
from time to time. In this way second-layer transactions are handled at the Internet
speed, while only special transactions, needed occasionally to open/close sessions
and solve disputes, are translated into Bitcoin transactions. While the idea of off-
loading transactions is interesting, these proposals do not specifically address the
problem of scalability of the ledger-based PoW itself. In this respect, and to the
best of our knowledge (see Section 2.5), Sycomore [27] 1 has been the first ledger
protocol, relying on Bitcoin design principles, that addresses Bitcoin’s scalability
issues: Its graph-structure design allows for the “parallel" creation of valid and
durably appended chains of blocks.

In Chapter 4, we analyze the properties of Sycomore and propose Sycomore++,
a scalable Nakamoto-style Proof-of-Work protocol based on Sycomore. We present
our results and conclusions about its performances in order to define whether or
not it improves the scalability of Bitcoin without neglecting its decentralization
or security. This would give a definite insight into the potential of graph-based
blockchains in terms of scalability.

After having studied the Sycomore protocol, we were convinced of the real po-
tential of graph-based approaches to improve the scalability of blockchains. We were
therefore interested in other solutions that used the same principle of graph struc-
ture, but in a more advanced way. That’s when we realized that Sycomore was doing
an underdeveloped form of sharding, a solution widely used in databases allowing
to subdivide a set into several subsets. Consequently, we became interested in other
forms of sharding that would further improve the performance of blockchains.

1Sycomore is the french word for sycamore, a large broad-leaved tree tolerant to wind.

Chapter 1. Introduction 7

Sharded blockchains It is well-known that one of the main problems of
blockchains is their lack of scalability [28]. Since all the validators must validate
all the transactions, this can cause a huge computational and communication cost
to validate and synchronize to a single consistent state, which degrades system per-
formances. Recent academic works have addressed this issue by adopting sharding
techniques [29, 13, 12, 16, 30, 31, 14]. In blockchains, sharding means partitioning
transactions in disjoint sets, so that validators handle only a fraction of all trans-
actions in parallel. Initially sharding solutions provided only transaction sharding
(e.g. [12, 32]), where transactions where sharded in different sets, but validators
contained the whole blockchain’s state to verify those transactions. More recently,
state-sharding solutions emerged (e.g. [14, 13, 16]), where not only the set of trans-
actions is partitioned in different sets but the state of the blockchain is also chunked
so that different validators maintain only a partial view of the system. In these
systems a decentralized mechanism assigns validators and transactions to shards,
and to adapt to varying transaction load, shards might need to be re-organized at
run-time.

When devising a state-sharding solution there exists a trade-off between security
and efficiency. Security is particularly important when we target permissionless
blockchains, where users and validators can join the system at will. Indeed, dynamic
re-organization of shards must ensure to leave in the shards enough validators to
verify transactions and to shuffle them over time to protect them against adaptive
adversaries. Efficiency, on the other hand, is mainly related to the ability of properly
splitting the global state to maximize parallelization, and this over time. Since
transactions may have dependencies among them, multiple shards might be involved
in their verification. In that case shards need to coordinate through complex atomic
protocols that may provoke a performance loss[13].

In Chapter 5, we propose Yggdrasil 2 a new sharding system that securely ensures
dynamic reconfiguration of shards to adapt to transaction load in a permissionless
setting.

2Yggdrasil, in Norse cosmology, is an immense and central sacred tree. Around it exists all else,
including the Nine Worlds.

7

8 Chapter 1. Introduction

Chapter 2

State of the Art

“If you want to know the future, look at the past”
– Albert Einstein

Contents
2.1 Consensus Models . 10

2.1.1 Leader-based . 11
2.1.2 Committee-based . 15
2.1.3 Leader-based vs Committee-based 17

2.2 Transaction Models . 18

2.3 Incentives for honest participation 19

2.4 Classic Blockchains . 20

2.4.1 Bitcoin . 20
2.4.2 Algorand . 22
2.4.3 Tendermint . 22
2.4.4 Second Layer Solutions . 24

2.5 Graph-based Blockchains . 26

2.5.1 DAGs without Blocks . 26
2.5.2 DAGs with Blocks . 28
2.5.3 DAGs with or without blocks? 29

2.6 Sharded Blockchains . 29

2.6.1 Evolution of Sharding in Blockchains 30
2.6.2 Comparison of Existing Solutions 31

2.7 Experimental Approach . 33

2.7.1 Test-Nets . 33
2.7.2 Modeling and Simulation . 33

2.8 Conclusion . 37

In order to improve science and society in general, we have always tried to
improve the existing. In order to do this, we need to learn from our mistakes, see
what went wrong and improve or replace it. Thus, it is necessary to determine what
has been done or not done in the chosen field, a state of the art. The objective
of this chapter is to lay the foundations of our work through a state of the art of
what has been done in the literature in the blockchain field and more precisely in

9

10 Chapter 2. State of the Art

graph-based and sharded blockchains, which constitute our main interests in this
manuscript.

This chapter will be structured as follows, we will start by defining the most
common consensus models (Section 2.1), the two well-known transaction models
(Section 2.2) and the most widespread incentives for honest participation (Section
2.3).

Then, we will focus on some interesting blockchain solutions, whether they are
classical, graph-based or sharding-based, respectively in sections 2.4, 2.5 and 2.6.
Finally, we present the most interesting solutions found in the literature that deal
with the experimental approach chosen to carry out this research in section 2.7 then
finish this chapter with a conclusion in Section 2.8.

2.1 Consensus Models

An abstraction called consensus ensures a clear and unambiguous ordering of valid
blocks within the blockchain. Each block is valid if it has been created by respecting
the rules of the blockchain construction (e.g., valid signatures for blocks) and con-
tains only valid transactions, where valid is application dependent (e.g., no double
spending, positive balances in case of cryptocurrencies). Consensus also guarantees
the integrity and the consistency of the blockchain between any correct user.

Permissionless blockchains are public blockchains where participants do not rely
on a centralised registration system to take part to the blockchain construction.
Indeed, every node can read the blockchain and take the rights to append a block in
a decentralized way. Permissioned blockchains differ from permissionless ones in that
they rely on predefined nodes to append blocks to the blockchain. The absence of
such a predefined group of nodes in permissionless blockchains makes the election an
essential element of their design. Election is usually pseudo-random and verifiable,
i.e., it allows elected nodes to prove they have the rights to append a block (PoW
[33], VRF [22], PVSS [21], Randao [34, 35]). Two main approaches exist: leader-
based and committee-based. In leader-based approaches, a verifiable election aims at
electing a single node, which can then append a block and prove that it has the right
to do so. In committee-based approaches a large enough committee of nodes must
be elected, and a block can be appended only if a quorum of the committee signs
the block. A verifiable election grants rights to a committee of nodes, providing
them with means to prove quorum’s legitimacy. It is important to note that leader-
based blockchains do not guarantee that exactly one leader is elected at any point
of time. Committee-based blockchains, on the other hand, can guarantee that only
one committee is elected at any time.

In this section, we focus on both leader-based (Section 2.1.1) and committee-
based solutions (Section 2.1.2). Finally, in Section 2.1.3, we provide a thorough
comparison of these consensus models.

Chapter 2. State of the Art 11

2.1.1 Leader-based

In this section, we present some of the leader-based consensus models we found most
interesting in the literature.

2.1.1.1 Proof-of-Work (PoW)

Applied to some cryptocurrencies since the emergence of Bitcoin [33], Proof-of-Work
can be defined as an expensive computer calculation, also called "mining", which
must be performed by "miners" in order to create a new block. Essentially, Proof-of-
Work requires members of a community to solve challenging puzzles. It is a piece of
data that is hard and costly to produce, but easy to verify once it’s been generated.
In order to solve the puzzle, a miner must resolve an equation, and to do so, it has to
do intensive calculations. Additionally, the work that goes into solving the puzzle
generates rewards for whoever solves it. More operationally, a miner must make
sure that the hash of the block is below a certain target value. To do this, he has to
modify the content of the block. Usually, they modify the nonce, a numerical value
that serves no other purpose than to modify the internal structure of the block and
thus its hash. It will then be necessary to reproduce the operation until having a
"valid" hash. Please recall that the hash is a one-way function, one of its essential
properties is that it is practically impossible to reverse, that is to say that the hash
of a data is simply calculated but on the other hand the reverse calculation of a
data from the hash is almost impossible to realize.

Difficulty readjustment. Resolving the Proof-of-Work becomes more difficult
as the network grows and becomes more powerful. The more powerful the network
is, the faster it creates blocks. To avoid the inter-block delay being too short (to
prevent forks for example), the difficulty is periodically readjusted so that there is
always an average of 10 minutes between blocks (i.e. the inter-block delay decided
by Bitcoin). In Bitcoin, the difficulty is readjusted every 2016 blocks, i.e. every 2
weeks. The recalculation is based on the time spent to create the last 2016 blocks. If
the difficulty respected this average of 10 mn between blocks, it would take 2 weeks
to create these blocks. Thus, if we had spent less time, the difficulty would have to
be revised upwards and vice versa, if we had spent more time, the difficulty would
have to be revised downwards. The adjustment of the difficulty is proportional to
the time spent over or under the 2 weeks planned to create the 2016 blocks.

Advantages and disadvantages of Proof-of-Work. Because it is very hard to
do the work, PoW reduces the risk of a 51% attack [36]. It doesn’t rely on a single
trusted third party, which builds a “trustless” and transparent network. It also sets
a limit on how many new blocks of data can be generated (e.g. one Bitcoin block
every 10mn in average).

On the other hand, miners are incentivized to create as many blocks as possible
to maximize their rewards. Unfortunately, by using their computing power to try

11

12 Chapter 2. State of the Art

to create the next block, they consume energy. Since they are competing, a lot
of this energy is wasted, which has a significant financial and ecological impact.
Additionally, under certain conditions, it can happen that two blocks are created
by two different miners at the same time, which leads to a fork. Eventually, one of
these branches is chosen and the other deleted, which wastes the energy spent on
the discarded chain.

2.1.1.2 Proof-of-Stake (PoS)

Since the appearance of Bitcoin and the first usage of Proof-of-Work in cryptocur-
rencies, researchers around the world struggle to find a way to reach consensus
without it. The Proof-of-Work, as robust as it is, is also very energy consuming. It
has an energy consumption comparable to that of a state like Netherlands. In view
of the current ecological situation (as of writing this manuscript), such consumption
cannot be maintained, which is why new approaches have been proposed, including
the Proof-of-Stake (PoS) [37]. In Proof-of-Stake, contrary to Proof-of-Work, users
do not have to do any calculation to create a block. The computational power of
Proof-of-Work is here replaced by users’ "wealth". Generally, in this model, users
who wish to participate in the creation of blocks are called validators (this name
may change depending on the cryptocurrency). They have the same role as miners
in Bitcoin, i.e. to select transactions to be validated and to put them in blocks
common to all so that all nodes agree on the same account status. In order to
become a validator, a user must "lock in" some or all of their wealth, known as
"stakes". These are actually funds that a user stakes in order to be eligible to create
blocks and thus become a validator. As soon as a user stakes certain funds, they
still belong to him, but he can no longer use them, as they serve as collateral.

In Proof-of-Work, the competition between miners is a kind of race where the
first one to solve the cryptographic puzzle wins. In Proof-of-Stake, the competition
is represented by a comparison of wealth. Indeed, the selection of the next block’s
creator is random with a selection probability proportional to its number of tokens
in stake. As this information is public, everyone can know whether or not they are
selected to be the next block creator.

The advantages and disadvantages of Proof-of-Stake. One of the advan-
tages of Proof-of-Stake is its low power consumption. Although PoW is highly
secure, it is very energy intensive due to the high demand for computing power.
PoS, which does not have huge power requirements, offers an energy-efficient al-
ternative. Furthermore, since PoS does not require any hardware investment, this
method is accessible to a larger number of users. This means greater robustness,
since in a distributed system, the more nodes there are, the more secure the system
is. PoS also offers better performance; it is faster. Since no tedious calculations
are required, transactions are validated more quickly. It is also more suitable for
massive use with a large number of transactions to be validated, unlike PoW, which
always needs more computing power and therefore hardware and energy. To put this

Chapter 2. State of the Art 13

in perspective, during the early years of Bitcoin, one could mine a few blocks using
its personal computer. Today, only large groups with dedicated facilities can afford
to create blocks quickly. Despite the advantages of PoS over PoW, there are some
obstacles that need to be clarified and corrected in order to achieve widespread and
sustainable adoption of PoS. The main drawback that can be cited is the security
gap. Since PoS is faster and more open than PoW, it is easier for malicious individ-
uals to get the upper hand and work for their own interest. Nevertheless, solutions
are being proposed every day to improve PoS and thus offer a powerful, efficient
and secure system. One of these solutions, slashing [38], consists in punishing a
malicious validator, for example, by withdrawing his stakes.

Types of Proof-of-Stake. Let’s now look at the different variations of Proof-of-
Stake. Indeed, this consensus model being very popular today, new variants appear
every day.

• Delegated Proof-of-Stake (DPoS): with this method, token holders can
delegate part of their staked assets to validators who have a better chance of
being selected. The user who delegates his stakes to another is also considered
responsible for the latter’s actions, which is why he receives a part of the
reward if the validator is selected and acts correctly, but can also be punished
if he does not.

• Liquid Proof-of-Stake (LPoS): In LPoS, owners can delegate their vot-
ing rights without transferring their funds to a given validation node. This
amounts to keeping one’s cryptos in one’s wallet while transferring the equiv-
alent of decision power to the validator of one’s choice. In this way, the token
holder is excluded from any penalty for violating the security rules and the
delegate is the only one to bear the penalty.

• Hybrid Proof-of-Stake (HPoS): This is a compromise between Proof-of-
Work and Proof-of-Stake. This model exploits the strengths of these two
consensus mechanisms to increase the security level of the blockchain. Usually,
in this type of configuration, miners produce new blocks with PoW, and PoS
validators then vote on their validity.

2.1.1.3 Other Proof-of-* models

Other models, a little further away from the basic concept of previously presented
models but which can still be considered as variants have emerged.

Proof of Elapsed Time (PoET). Proof of Elapsed Time (PoET) [19] is a con-
sensus model created by Intel (Based on SGX (Software Guard Extensions)). The
main idea is that each node waits a random amount of time before it can broadcast a
block. This amount of time is generated using a distribution previously specified by
the system. SGX helps the node creating a block to generate a proof of the waiting

13

14 Chapter 2. State of the Art

Figure 2.1 – Proof of Elapsed Time [19].

time. This proof can be easily verified by other nodes with SGX. A statistical test is
used to determine whether the waiting time indeed follows the specified distribution.
This approach has two advantages compared to PoW: (i) less energy consumption
since no computation is needed, and (ii) a better fairness since PoET achieves the
goal of "one CPU one vote". In PoET, each user has to wait before it can create a
block, this waiting time follows a probability distribution F (previously specified by
the system), the procedure works as follows:

Definition 1 (PoET). Each node first uses a formula to generate a number which
represents its temporary waiting time. It is said to be in state 0. Whenever a node
creates a block, it has a probability p to change its state (1� > 251) thus to use
the same temporary waiting time (for 25 times in a row at most). Otherwise, it
calculates a new temporary waiting time.

localAverageWait = X ⇥ Y

waitT ime = minimumWait� localAverageWait⇥ log(r)
(2.1)

with minimumWait, a fixed system parameter, localAverageWait, calculated by
multiplying X (constant value, which corresponds to the most recent blocks to esti-
mate the number of active nodes) by Y (constant value). Finally, r is real number
derived from the hash value of the node’s previous certificate (uniformly distributed
in [0,1]).

Every node has to register in the system both (i) its public/private key pair,
which remains unchanged and (ii) the temporary waiting time, which can be updated
using Equation 2.1. More operationally, each node uses a finite state machine to
control the waiting time updating process. Each node starts from state 0, where
it computes a waiting time. Whenever a node goes back to state 0, it updates its
waiting time by recomputing a new number. At state i 2 {1, 2, ..., 25}, the node first
generates a block with the newest waiting time, and goes to state 0 (with probability
pi) or state i+1 (with probability 1� pi). Probabilities pi are the same for all nodes
and satisfy the condition that p1 < p2 < ... < p25 = 1.

1Note that 25 is the number chosen to limit the number of times the same waiting time can be
used

Chapter 2. State of the Art 15

Proof of Burn. Proof-of-Burn (PoB) [39] was initially created to solve some of
the PoW cons, especially concerning energy consumption. Instead of using compu-
tational resources, it uses the idea of burning coins. This method does not have any
dependency on computational power and energy. In PoW, a potential miner needs
to works for a certain amount of time in the hope of being the first to broadcast a
given block. In PoB, it burns coins, which could be immediate. However, since it
still needs coins to be generated in order to burn them, Proof-of-Burn needs another
way to create blocks. In order to do so, other consensus models such as Proof-of-
Work can be used as a money supply for the Proof-Of-Burn to burn it. Since PoB
blocks can be produced immediately, one or more PoB blocks can be produced be-
tween two PoW blocks, which could improve scalability. Note that blocks created
using PoB or PoW are concerned by the same verification conditions. Their only
difference being the consensus model used for their creation, PoB blocks are created
immediately while PoW blocks need some time.

More operationally, coins are burnt by sending a transaction to a predetermined
address (in the same way as stakes are deposited in some protocols). It is impossible
to get them back once they are burnt (unlike stakes, we don’t get the money back.).
In Proof-of-Burn, coins can be used to create blocks only when they are burnt. Once
the burning transaction has enough depth in the blockchain (it is confirmed), it can
be used to calculate burn hashes.

Definition 2 (PoB). Each burn transaction has a burn hash, it is calculated as
follows:

BurnHash = multiplier ⇤ [InternalHash] (2.2)

the multiplier is different for each transaction, it follows an expo growth parameter-
ized by the number of proof-of-work blocks found since the creation of its correspond-
ing burn transaction. Note that the multiplier is used to decay the value of burnt
coins over time.

2.1.2 Committee-based

In previously presented models, "leader-based" models, a single user is responsible
for the creation of a block. In committee-based consensus models, blocks are created
and broadcast by a group of validators called committee. In order to have an imme-
diate finality [40] , committee-based blockchains satisfy the following properties:

1. Termination : Each node must have decided a value by the end of the
algorithm.

2. Integrity : No node can vote more than once.

3. Agreement : If at the end of the algorithm, a node decides on a value, all
nodes must have decided on the same value.

4. Validity : If a node decides on a value, it must be valid.

15

16 Chapter 2. State of the Art

One of the main advantages of committee-based consensus is that it is consid-
ered fault-tolerant since the power is in the hands of several entities and not just
one as in leader-based consensus. Usually, systems that tolerate failures belonging
to the Byzantine Generals problem [41]. This problem is one of the most difficult
in the literature since it involves no restrictions and makes no assumptions about
the type of behavior a node can have, e.g. it can transmit and post fake transac-
tions while pretending to be an honest user, which questions the reliability of the
blockchain. The ability to keep an application running smoothly despite some fail-
ing, malicious, or simply non-protocol compliant machines is called Byzantine Fault
Tolerance (BFT).

Byzantine problem In the case of peer-to-peer networks, consensus is reached
when the majority of the nodes in the network agree on a given state. For this to
work, nodes must act correctly according to their protocol. For instance, when a
correct node receives a message, it forwards it to its neighbors without manipulating
it. If all the nodes in the network do this then the system works. Except that among
these nodes of the network, there are nodes that we call Byzantine. This term refers
to nodes that might deviate from the protocol by delivering false messages or by
remaining silent for example. By definition, these nodes have no limits and can
harm the proper functioning of the system. A BFT blockchain is therefore tolerant
to this kind of nodes. It can work despite their presence in the system by trying to
reduce their impact through the dilution of their power in a committee. BFT has
had many implementations over the years, the most widespread being the Practical
Byzantine Fault Tolerant (PBFT) systems.

Practical Byzantine Fault Tolerance (PBFT) The PBFT [42] has emerged
as one of the most interesting implementations of the BFT.

This implementation allows to create a state replication system resilient to
byzantine faults in an asynchronous environment. It also provides excellent per-
formance in terms of scalability. Its operation is based on simple principles. The
nodes are ordered according to a certain common parameter verifiable by anyone
(e.g. stakes). Each node in turn is considered as the leader that must propose a new
state to the other users. The outcome of a new state relies on the communication
between these nodes under the assumption that the proportion of Byzantine nodes
does not exceed 33% of the committee size. Note that in some implementations,
the size of the committee corresponds to number of nodes in the committee and in
others, it is the number of stakes held by the whole committee.

More operationally, pBFT works in 4 phases:

1. The leader proposes a new state 2 to the other nodes of the committee.

2It is important to note that the nodes must have the same common state before deciding on a
new state. And the calculation of this state must be deterministic so that all nodes arrive at the
same result.

Chapter 2. State of the Art 17

2. The other nodes check this state and give their verdict (i.e. if they approve or
not this state).

3. Members of the committee wait for at least f + 1 answers (with f being the
maximum number of Byzantine in a committee of size n).

4. Members of the committee update their state or change leader if the consensus
was not successful. (practical BFT uses a round-robin type format for modi-
fying the leader node in each view.) In this way, if the leader was byzantine,
a new, perhaps honest, user can replace it.

Proof of Authority (PoA). Unlike the above solutions, Proof-of-Authority [43]
is a permission-based solution. Instead of working or staking coins to prove its right
to create a block, PoA simply gives the right to certain nodes in the network to
create blocks. These nodes are called sealers. In this way, the decision power is a
bit more centralized but the security of the network (generally small in the case of
permissioned blockchains) is maintained. Let’s note that the solutions previously
mentioned are absolutely not suitable for such small systems. For instance, using
PoW in a permissioned system would make it vulnerable to attacks by powerful
users. As for PoS, one would not be safe from a malicious user who could quickly
accumulate the majority of stakes and take control over the network. The fact that
in PoA, users are known and can be held accountable makes it more appropriate for
permissioned uses of the blockchain.

2.1.3 Leader-based vs Committee-based

Let us provide in this section a quick comparison of the previously presented con-
sensus models.

Leader-based solutions are the first solutions that appeared in blockchain solu-
tions along with PoW and Bitcoin. The election of the leader in these systems is
usually based on certain criteria such as computing power or the number of stakes.
Before its election, its identity remains unknown which prevents it from being tar-
geted by the adversary. Note that in permissioned solutions, this criterion is not
taken into account, that’s why the nodes able to create blocks are known (PoA) and
therefore vulnerable to attacks targeting them.

These models also allow a low communication requirement since only one node is
responsible for the creation of a block. However, since the election is done in a prob-
abilistic way, it can happen that more than one leader is elected at the same time,
which would imply a consistency problem. This problem is solved by committee-
based solutions which generally allow a better consistency. Since the nodes agree on
a given state, there are rarely 3 several states at the same time (fork). Nevertheless,
it is also this need for communication that often implies a communication overhead
and sometimes a strong need for synchronization. It also makes the system more
vulnerable to attacks since the adversary has more time to adapt its target.

3Forks can happen if the assumption about the proportion of Byzantine in the committee is not
satisfied

17

18 Chapter 2. State of the Art

In both leader-based and committee-based solutions, the election of block cre-
ators is verifiable by any node. This is what allows trust and accountability in these
systems whether they are permissioned or not.

2.2 Transaction Models

After having seen the different ways to create blocks in the previous section. In this
section, let us look at the different transaction models and how they are confirmed.

UTXO vs Account-based models. Bitcoin introduced the fist type of spend-
ing model in crypto-currencies, called UTXO (Unspent Transaction Output). An
unspent transaction output is the result of transactions that a user has received and
is able to spend in the future. Note that every UTXO can be spent at most once
(i.e., it must be debited in a single transaction). At that point, the UTXO is no
longer unspent, meaning that it cannot be used again in the future. Thus, through
a transaction a receiver gathers money in new UTXOs. Note that in this model, a
user can have multiple UTXOs at a time, which can be combined to reach a given
amount of money to spend.

In the account-based model each user has one account on which it can receive
and spend money within the limits of the available funds. This model is akin to
each individual wallet having a ledger of its own. After every transaction, the
new balance is computed using basic arithmetics. One of the main advantages of
using the account-based model resides in its simplicity since a transaction with an
arbitrary amount of money can be performed with one sending account and one
receiving account (instead of multiple UTXOs on both sides). This model is used
by Ethereum and it is thought to be better suited than UTXO for supporting smart
contracts [44] (see section 5.1.2 for further details on smart contracts). As we will see
in Chapters 4 and 5, Sycomore++ uses UTXOs while Yggdrasil follows the account-
based model.

Finalization and Transaction Confirmation. Leader-based permissionless
blockchains guarantee weaker properties than the consensus abstraction by offering
probabilistic finality [40]. That is the very last appended blocks of the blockchain
may be revoked, i.e., pruned from the blockchain, in presence of conflicting blocks
(e.g. a fork due to two concurrent appends) but the probability that a block is
pruned decreases as it gets deeper into the blockchain. The term of Nakamoto style
consensus is often used to refer to the properties of these blockchains, and solving
Nakamoto style consensus may rely either on Proof-of-Work (PoW) or Proof-of-
Stake (PoS) (e.g., [33, 44, 21]) for the election mechanism.

Committee-based permissionless PoS blockchains are generally grounded on vari-
ants of BFT Consensus [45, 46, 34, 22]. In systems like Cosmos and Tezos [45, 46]
a verifiable election mechanism chooses a committee that, once elected, runs the
Byzantine consensus protocol (Tendermint [17], and Tenderbake [47], respectively)

Chapter 2. State of the Art 19

to append a unique block to the blockchain. These blockchains are said to have
deterministic finality, because conditions to determine if a block is finalized are de-
terministic and verifiable (e.g. in [45], as soon as a block is appended; in [46] as soon
as an appended block is followed by another one). Note that in this case finalization
is certain, and a finalized block can never be revoked. Ethereum PoS also uses a
committee to finalize blocks [48] generated by underlying Nakamoto-style consensus.

When a block is finalized (finalized with high probability in probabilistic mod-
els) all the contained transactions are said to be confirmed. As will be shown in
Chapter 5, our solution, Yggdrasil adopts a PoS system that guarantees immediate
deterministic finality, similar to [45, 46].

2.3 Incentives for honest participation

As the previous section on committee-based consensus showed, for a peer-to-peer
system to work, the nodes that compose it must act correctly. Since there is no
way to force them to do so, these systems are based on economic incentives. An
economic incentive is any specific non-mandatory economic policy measure that
seeks to obtain from actors a specific behavior, not necessarily desired by them, in
exchange for one or more specific benefits. Incentives are a subject of research in
themselves, but in the literature there are some incentives that are well known to
the public, such as the ones of Bitcoin or stake-based solutions.

Bitcoin Incentives Bitcoin’s incentives are built on two pillars, (i) Bitcoin
scarcity and (ii) transaction fees.

1. Bitcoin scarcity: The supply is limited to 21 million BTC, so there can never
be more. These Bitcoins are created with each new block created. And this
number is designed to decrease over time. It is divided by two, every 210,000
blocks, which is commonly known as halving. As of writing this manuscript,
the current reward is 6.25 BTC.

2. Transaction fees: Since the block size is limited, users are competing to get
their transactions prioritized. In order to prioritize and to compensate the
miner for his work in including these transactions (and to encourage him not
to release empty blocks as well), he receives the full fee for the transactions
contained in his block. Since the miners have the power to choose the trans-
actions, they usually choose the ones that make the most money.

Unlike transaction fees, the block reward is a temporary incentive initially cre-
ated to get users interested in Bitcoin. Eventually, Bitcoin will be completely fee-
driven, and although this aspect remains little studied except by a few studies that
estimate that Bitcoin would be significantly less secure without its block reward, it
is not clear that Bitcoin will be able to continue to operate in the future. It seems
that the future of Bitcoin lies in fees and the incentive they represent as well as in
the rationality of participants.

19

20 Chapter 2. State of the Art

Stake-based incentives: Slashing Slashing is a feature that provides security
by prompting validators to act correctly so as not to endanger the system. When
a validator acts in a malicious way, it can have a negative impact on the system.
Slashing will therefore consist in punishing this validator and making him lose be-
tween 5 and 20% of his stakes, either by redistributing them as rewards to other
validators who have acted well, or by destroying them. Double-signing is an exam-
ple of an attack that can lead to slashing. When a validator signs the same block
twice, it is usually an attack to weaken the network. But it can also be a mistake
by an honest user. To protect the system, users who are guilty of double-signing,
intentional or not, lose their validator privileges and some of their stakes. The goal
is to ensure that all users with stakes comply with the rules and maintain the in-
tegrity of the system. Unfortunately, if this is not the case, it can be very costly
as all or part of the money invested can be lost without any possibility of recovery.
Statistically, blockchains that practice slashing tend to be more secure, thanks to
the highly punitive dimension of this feature. This is due to the fact that stakes
owners have a lot to lose and therefore have an extra motivation to respect the rules
of the system and thus participate in its security.

2.4 Classic Blockchains

In this section, we will focus on some of the most interesting "classic" blockchains in
terms of properties. By classical, we mean blockchains with a single chain structure
not a DAG, as introduced in Chapter 4. We will develop the functioning of Bitcoin,
the first cryptocurrency ever created, Algorand a PoS solution allowing the presence
of highly adaptive adversaries, as well as Tendermint, a fork-free solution based on
the BFT consensus. Finally, we will also present some second layer solutions that
can be grafted to many existing solutions in the literature.

2.4.1 Bitcoin

Bitcoin is the pioneer of crypto-currencies, created in 2008 by Satoshi Nakamoto
to get rid of the centralization of the monetary system where a trusted third party
is needed for each transaction. It is the first protocol to rely on the blockchain
technology. In Bitcoin, users sign transactions using their private key before broad-
casting them to the network. The whole mechanism is based on cryptography, not
only transactions management. In fact, after the transactions have been broad-
cast, in order to validate it, miners put it in a block that is then appended to the
blockchain. Block creation is done under certain conditions. For Bitcoin, the con-
sensus mechanism is the PoW, which means that miners must prove that they have
worked enough to create a block. It translates into a cryptographic challenge that
the miner has to solve as quickly as possible to be the first to broadcast the block
and receive the reward (for more details, see Section 2.1.1.1).

Chapter 2. State of the Art 21

2.4.1.1 Common Bitcoin attacks

51% attack. A 51% attack [36] is a common attack on PoW systems like Bitcoin.
It allows a miner or a group of miners holding more than 50% of the network
power to take control of it. Since PoW is based on computing power, holding the
majority of this power allows anyone to alter the blockchain, to prevent certain
transactions from being validated or even to rewrite past history by introducing a
fork that it would consider more interesting. Since they hold the majority of the
network, malicious miners can have any invalid transaction confirmed and any valid
transaction invalidated. This is an extremely powerful attack, but it is also very
difficult to carry out, especially in systems with high participation rates because
collusion is almost impossible. This is why the decentralization of a system or its
popularity increases its security. It is mainly the considerable cost of this attack
that prevents it.

Selfish Mining Among the most common problems Bitcoin has to face in the
literature is selfish mining [49]. It is portrayed as the most significant threat to
Bitcoin’s security. The idea is that instead of spreading a block as soon as it is
created, the malicious miner keeps it for himself and creates his own "private" chain.
It is a matter of going faster than the public chain and thus having a head start.
When the public chain is almost as long as the private one, the miner broadcasts
all or part of his alternative chain, thus creates a fork to destabilize the chain. He
takes all the rewards and make sure that the honest miners have wasted their time
and energy working on a shorter chain, not taken into account by the majority
when resolving the fork. Note that [49] showed that this attack is feasible for any
miner that controls more than 33% of the computing power, which is lower than the
usually assumed 50% bound.

Importance of block reward in Bitcoin In the literature, there exists other
threats to Bitcoin’s security such as the importance of static reward in blocks. In-
deed, Carlsten et al. [50] argue that the decrease in block reward in Bitcoin can
only be bad for Bitcoin’s security since the only incentive left for miners would be
the transaction fees. With only transaction fees as a reward, the variance of a block
reward is very high and forking a block to steal its reward becomes more interest-
ing. The problem is that if the only reward for a miner when creating a block is the
transaction fees, any miner would be tempted to fork a block that took the most
interesting transactions in terms of fees. We would have a system with more and
more forks, and therefore less resistance to 51% attack. We would also have a less
"fair" system for the users since the transactions would only accumulate and cause
starvation thus increasing latency and transaction fees.

21

22 Chapter 2. State of the Art

2.4.2 Algorand

Algorand [22] is a proof-of-stake blockchain solution which aims to solve scalability in
blockchain to millions of users. Concerning the scalability aspect, their performances
are impressive with one block created every 22 seconds in average with 50.000 users
and a throughput multiplied by 125 with respect to Bitcoin. In Algorand, consensus
is achieved if 2/3 of users are honest, i.e. they make the hypothesis that at least
2/3 of the money is owned by honest users. Essentially, committee members elect
themselves randomly based on the users’ weights (based on stakes) to avoid Sybil
Attacks [51]. Every user in the system can independently determine if they are
chosen to be on the committee by computing a VRF (Verifiable Random Function)
[52] using their private key and some public information contained in the blockchain.
The VRF then returns a proof. Please note that a VRF is a cryptographic function
that takes a private key and a public seed as input parameters and outputs a results
value with a proof. Only the holder of the private key can compute the VRF, but
anyone with public key can verify the correctness of the proof. VRFs are useful
to decide the block creator for a certain height without everyone, and especially
the adversary, knowing it in advance, which increases the resilience of the election
protocol. This cryptographic sortition ensures that a small fraction of users are
selected at random weighed by their account balance. It provides each selected user
with a priority which can be compared between users and a proof of the chosen
user’s priority. There may be multiple users who propose blocks and the priority
determines which block to adopt. Additionally, committee members speak once to
prevent adversaries to target them.

More operationally, each user initializes the Byzantine Agreement with the high-
est priority block they received, checks if it has been selected, broadcast a message
which includes the proof and repeat these steps until enough users reach consensus.

Final and tentative consensus Algorand’s Byzantine Agreement protocol (BA)
can produce two kinds of consensus : final and tentative [22]. If one user reaches
final consensus, this means that any other user that reaches any type of consensus
must agree on the same value.

Tentative consensus means that other users may have reached tentative consen-
sus on another value. A tentative block is confirmed only if and when a successor
block reaches final consensus, which means that a final block confirms not only its
transactions but also its predecessors’ transactions.

2.4.3 Tendermint

While Algorand proposes asynchronous probabilistic BFT with the usage of VRFs
for leader selection, Tendermint [17] proposes a deterministic synchronous BFT pro-
tocol. It manages to work correctly even if up to 1/3 of the machines are Byzantine,
i.e. they work in an arbitrary way and do not follow the protocol. The consistency
of the replicated application lies in the fact that all non-Byzantine users have the

Chapter 2. State of the Art 23

Figure 2.2 – Tendermint Architecture.

same state, and the same copy of the blockchain. In distributed systems, security
and consistency are fundamental; they play a key role in fault tolerance for a wide
range of applications.

Unlike the previously presented solutions, Tendermint has a modular architec-
ture. It separates the consensus engine from the blockchain application. More
operationally, Tendermint [17] relies on two main components: (i) a consensus en-
gine, called Tendermint Core, which ensures that transactions are recorded in the
Tendermint Core, which itself is replicated on all the nodes of the network, and (ii)
a Tendermint application to connect users, allow them to exchange transactions,
but also to validate these transactions in order to propose them to the Tendermint
Core. As illustrated in Figure 2.2, the application and the Tendermint Core com-
municate through the Application BlockChain Interface (ABCI) [17], which allows
transactions to be processed in any programming language. Unlike other blockchain
solutions that require users to conform to a whole new framework, developers can
use Tendermint for the replication of applications written in any language they want.

In order to work properly, the ABCI uses standardized messages:

• DeliverTx: a message used to report transactions validated by the blockchain
to the application, which involves state changes.

• CheckTx: a message used to check the transactions contained in the mempool
before moving on to create a new block.

• Commit: a message used for the validation of a block, which momentarily
blocks the mempool.

Block creation in Tendermint Before being grouped in blocks, transactions
are stored in the mempool of each node. This mempool is a local memory cache
where transactions are stored after being validated thanks to the CheckTx message.
They are then broadcast to other peers in the form of an ordered list from which
transactions are drawn to create "blocks". These blocks are then voted on by the

23

24 Chapter 2. State of the Art

Figure 2.3 – Tendermint Core [17].

committee members. This mechanism takes place as illustrated by Figure 2.3 and
is done in rounds.

Each round consists of three phases, (i) a sending phase where the committee is
created based on the distribution of stakes, and a node is chosen among the others
to be the proposer of the next block. (ii) An intermediate phase where each node
reports everything it has received up to time t. Then (iii), a last computation phase
where each nodes takes into account all the received data to define its new state.

2.4.4 Second Layer Solutions

So far the solutions we have presented are Layer 1 solutions, which means that they
define the base protocol. On the other hand, Layer 2 solutions refer to a secondary
protocol that would exist on top of an existing blockchain protocol (of Layer 1). In
this section, we will see some Layer 2 solutions that we found interesting in terms
of scalability.

2.4.4.1 BitcoinLightning

When it was released in 2008, one of the most obvious problems with the Bitcoin
protocol was scalability. Indeed, with one block created every 10 minutes (in aver-
age) containing at most about 4.000 transactions, we have an average throughput

Chapter 2. State of the Art 25

of 7 transactions per second. Given that the idea is to compete with the banking
market, Bitcoin is far from offering a satisfactory throughput when we know that on
average, centralized solutions such as Visa runs on 24.000 txs/sec 4. In order to ad-
dress this scalability problem, research has been conducted and solutions have been
proposed. For example, increasing the size of a block or reducing complexity [53]
would be viable solutions as these are important factors limiting the ability to vali-
date transactions. However, these proposed solutions could also expose the system
to more security threats or inconsistency problem such as a higher fork probability
provoked by a lower inter-block delay. In any case, there are other problems such as
network latency, which makes competition with institutions such as Visa unlikely.

Finally, a brand new approach called Lightning [24] emerges in 2016. It is based
on the idea that "If a tree falls in the forest and there’s no one around to hear
it, did the tree make noise when it fell?". In the world of blockchains, it means
that if a transaction only involves two users, not everyone needs to know its details.
With this in mind, Lightning [24] proposes to create lightning channels between
two users. Operationally, pairs of users have to create a multi-signature wallet (
i.e. a wallet shared between two or more users) and put funds on it in the form
of real transactions that appear on the blockchain. Thereafter, transactions will be
nothing more than a transfer of funds from one user to another on the same wallet,
these transactions do not appear on the blockchain, thus are not limited by its rate.
When users want to close this channel, transactions containing what is left of each
user’s down payment will be sent on the blockchain. In this way, two users could
exchange an infinite number of transactions, while on the blockchain only 2 to 4
transactions would appear. In a sense, this solves the scalability problem (since this
solution imposes no limit on the transaction throughput) while reducing transactions
traceability and creating new security threats targeting lightning channels.

2.4.4.2 Colored Coins

Colored coins [54] are a way to issue and transfer assets on the Bitcoin blockchain. It
can be used to represent anything, such as stocks, bonds, smart properties, securities,
precious metals, commodities, other traditional currencies (such as dollars, pounds
or euros) and even other crypto-currencies. It also allows people to create smart
properties. A deed for a house can be represented on the Blockchain as a colored
coin. The owner of that coin is then the legal owner of the house. Transferring
ownership of the house becomes as simple as making a Bitcoin transaction. Colored
coins allow you to transact and hold virtual securities on the Bitcoin blockchain.
You could for example have a colored coin that represents your house or car, if/when
you sold your house/car you would send the colored coin to the new owner, there
would be no need for a physical deed as proof of ownership is in the blockchain.
The main advantage of the colored coin/open asset protocol is that it lives on the
Bitcoin blockchain and is therefore secured by the massive hardware investment that

4Note that this rate is a maximal value and latency in these centralized systems can be quite
high and variable.

25

26 Chapter 2. State of the Art

supports the network.

2.4.4.3 ERC-20

ERC20 [55] is an Ethereum standard. It defines functions and events a token has
to manage in order to be qualified as an ERC20 contract. Any code that respects
the ERC20 specifications creates an ERC20 token. An ERC (Ethereum Request
for Comments) is a process anyone can use to ask the community to comment
his proposal. The 20th proposal, submitted on November 19th, 2015 was about
standardization of token development on Ethereum (ERC20). An ERC20 token
contract in Ethereum is a smart contract containing a mapping between owners
and their tokens. It also manages token transfers by updating the mapping. For
example, if A wants to send 100 tokens to B. The contract modifies the mapping by
reducing the tokens of A by 100 and increasing the tokens of B by 100.

2.5 Graph-based Blockchains

Many graph-based protocols have been explored in the last years. Proposals such as
HashGraph [56], ByteBall [57], and Iota [2, 58] do not use blocks, i.e. a graph is
formed by transactions pointing to each other. Ghost [3] and Spectre [4] protocols
keep blocks, modifying the blockchain data structure from a totally ordered sequence
of blocks to a directed graph of blocks. Note that in these approaches, the absence
of mechanisms to prevent the presence of conflicting records (i.e., blocks with con-
flicting transactions) or the presence of cycles in the directed graph (Spectre [4]
organises blocks in a directed, but not acyclic, graph of blocks) require that partic-
ipants execute a complex algorithm to extract from the graph the set of accepted
(i.e., valid) transactions [4].

In this section, we focus on both DAGs without blocks (Section 2.5.1) and DAGs
with blocks (Section 2.5.2) . Finally, in Section 2.5.3, we provide a thorough com-
parison of these two models.

2.5.1 DAGs without Blocks

As said before, some graph-based solutions have chosen to work without blocks and
use only transactions. The validation paradigms are therefore completely different.

2.5.1.1 The Tangle

Iota [2] is an IoT (Internet of Things) oriented solution with transactions chained to
each other, instead of blocks. These transactions form a DAG through confirmation
links with other transactions. This is called a Tangle. Iota’s operation is based
on the work of the users. In order to validate a transaction, the transaction must
refer directly or indirectly (see Definition 3) to at least 2 other transactions. In
this way, users participate in maintaining the security of the network by choosing
which transactions to validate (or not). It is assumed that the majority of users are

Chapter 2. State of the Art 27

honest and will not validate conflicting transactions. These chained transactions all
indirectly refer to the genesis transaction which is at the origin of the tangle and
which contains the sole creation of Iota tokens. Note that for a node to issue a valid
transaction, it must solve a cryptographic puzzle similar to those in the Bitcoin
blockchain.

Definition 3 (Indirect reference). If there is not a directed edge between transaction
A and transaction B, but there is a directed path of length at least two from A to B,
we say that A indirectly approves B.

2.5.1.2 ABC : Asynchronous Blockchain without Consensus

ABC [1] is a non-permissive and resilient solution to an asynchronous environment.
It is an innovative solution without any need for consensus. It assumes that Bitcoin
has vulnerabilities and wants to solve them by replacing PoW with PoS which would
rely on randomness and more communication. ABC chooses to confirm transactions
instead of grouping them into blocks. To do this, transactions are confirmed via a
vote. Each transaction must refer to at least one other transaction. Note that
there is a difference between reference and dependency, a transaction can refer to
another simply by accepting its presence in the DAG while dependency is a direct
link between two transactions. As in IOTA (see Section 2.5.1.1), a transaction is
confirmed if enough transactions refer to it directly or indirectly (see definition 3).
There may be a conflict between two transactions and it is resolved by the number
of references of each of these transactions. This number must be greater than 2/3
stakes to confirm a transaction since at least 2/3 stakes are assumed to be held by
honest users who obey the protocol.

This solution has the advantage of using PoS which allows for less energy con-
sumption. The idea of using a DAG of transactions allows it to improve its scal-
ability and makes it applicable to the IoT domain but from this point of view, no
contribution compared to other solutions such as Iota [2]. However, creating "fake"
transactions only to validate others could lead to a large communication and storage
overhead.

2.5.1.3 Avalanche

Avalanche [59] consists of several Snowball [59] instances (i.e. a chain-optimized
consensus protocol powered by the Avalanche consensus protocol), instantiated as
a protocol that maintains a dynamic Directed Acyclic Graph (DAG) of all known
transactions. The DAG has a single starting point called genesis. When a client
creates a transaction, it names one or more parent transactions, which are included
in the transaction and form the links of the DAG. The parent-child relationships of
some transactions in the DAG can, but don’t need to, have a direct dependency;
e.g. a child transaction must not spend or have any relationship to funds received
in the parent transaction. Avalanche uses the DAG structure to check the validity

27

28 Chapter 2. State of the Art

of a transaction. when a transaction is submitted, it and its ancestors are checked
up to the genesis.

2.5.2 DAGs with Blocks

As opposed to the solutions presented above, some other graph-based solutions have
chosen to apply DAGs to blockchain while keeping the blocks structure.

2.5.2.1 GHOST

GHOST [3] is not strictly speaking a DAG but a modification of Bitcoin to change
the way forks are resolved. This is called a blocktree. Indeed, in Bitcoin, the rule is
to choose the longest chain. According to GHOST, this is a very insecure and slow
way to solve forks. They propose to keep all the forks ever created and to choose
each chain according to an associated weight. The weight of a string will be the
sum of the weights of each block, and the weight of each block corresponds to the
number of forks linked to it. The more a block is at the base of several forks, the
more weight it has.

2.5.2.2 SPECTRE

SPECTRE [4] is a solution to improve the scalability of Bitcoin. It believes that
Bitcoin’s choice to keep only one chain, with a preference for the longest, is a highly
unscalable solution. Instead, Spectre opts for a DAG structure of blocks. In this
way, miners can create blocks concurrently and thus make the system evolve faster.
Each time a new block is created, it must reference all other blocks in the miner’s
view. It is this referencing that will allow to resolve conflicts between two blocks.
Blocks are ordered by pairs to be able to choose between two blocks of this same
pair, thanks to the references contained in each block. It is the parallelization of the
miners’ work that allows this improvement of Bitcoin’s scalability. Unlike GHOST,
which is only a more advanced fork resolution solution, more than one chain is
considered in the state of the SPECTRE system, so the work of the miners is really
partitioned.

2.5.2.3 Sycomore

Sycomore [27] has been the first graph-based protocol to be fully distributed. Neither
a chain of blocks nor a set of transactions are extracted from the graph to become
the valid blockchain or the valid set of transactions. Instead, the full graph is the
ledger. Blocks are built so that they commit the state of the directed graph at the
time blocks were created, which decreases the opportunity for powerful attackers
to create blocks in advance. In contrast to previous approaches, Sycomore allows
a better immutability of the transactions thanks to the introduction of the label
which allows a better partitioning of the transactions and at the same time of the
miners’ work. It is this label that identifies each chain of the DAG. Moreover, the

Chapter 2. State of the Art 29

auto-adaptive character of Sycomore allows it to increase or decrease the number of
parallel chains and thus the capacity to confirm transactions. This auto-adaptability
of the DAG promises an extremely interesting scalability that we wanted to study
more in depth in Chapter 4.

2.5.3 DAGs with or without blocks?

Let us provide in this section a quick comparison of the previously presented graph-
based solutions.

First of all, transaction-based DAG solutions are not fully decentralized because
they leverage the presence of central or trusted nodes. Their use allows a better
scalability than classic blockchains. The more transactions there are, the faster
they are confirmed, which promises good performance in terms of throughput. This
is particularly interesting for domains where scalability is paramount such as the
Internet of Things. However, these solutions have not been tested on very high
intensity systems, so their performance is not guaranteed. Since transactions are
not put in blocks, they are only confirmed if other transactions refer to it, this kind
of system also needs a lot of traffic to work well. Similarly, if there is not enough
traffic, the system becomes vulnerable and this is what also causes transactions
to remain unconfirmed for a while, which would increase the confirmation latency.
Additionally, transactions do not need the work of others (miners) to be confirmed
and therefore incur little or no cost (fees).

On the contrary, block-based DAGs allow a better decentralization, an interest-
ing scalability but not yet compared to transaction-based DAGs since their applica-
tions are so different. Since they use blocks, the need for traffic is not the same as
in DAGs without blocks. The security of these systems is not more or less dimin-
ished depending on the rate of submission of transactions since it is the blocks that
maintain this security and their security impact remains the same when they are
broadcast empty (without any transactions). That said, it is for this very reason
that the work of the miners is paramount and therefore fees are necessary for the
system to work.

To sum up, we would say that both solutions are interesting from a scalability
point of view and can afford to coexist by targeting different domains of use, for
example IoT for DAGs without blocks and decentralized finance for DAGs with
blocks.

2.6 Sharded Blockchains

Sharding, first used in databases, is a method of distributing data across multiple
machines with a scaling objective. In blockchains, sharding means to partition
transactions, so that processes handle only a fraction of all transactions in parallel.
As long as there is a sufficient number of nodes verifying each transaction for the
system to maintain high reliability and security, dividing a blockchain into shards
will greatly improve the throughput and efficiency of the system.

29

30 Chapter 2. State of the Art

Elastico [12] Omniledger [13] Rapidchain [14] StakeCube [32]

State-sharding
Support No Yes Yes No

Smart-Contract Support No No No No
Atomic-Commit / / / /

Node-to-Shard Assignment Model PoW PoW/PoX Offline PoW UTXO Ownership
Predictability No No No No

Adaptability Time-driven Time-driven Time-driven Event-driven

Type of Protocols Intra BFT BFT BA BA
Inter / BFT / /

Security Asumptions
Network Partially synchronous Synchronous Synchronous As required for the BA 5

Failure Adaptive Weakly Weakly Weakly Weakly
Threshold 25% 25% 33% 33%

Cross-shard transaction reduction No No No No

Table 2.1 – Comparison table of blockchain sharding solutions.

TON [10] Elrond [11] Monoxide [15] BrokerChain [16]

State-sharding
Support Yes Yes Yes Yes

Smart-Contract Support Yes Yes No No
Atomic-Commit No No / /

Node-to-Shard Assignment Model PoS PoS PoW PoS
Predictability No No Yes Yes

Adaptability Event-driven Time-driven Static Time-driven

Type of Protocols Intra BFT SPoS PoW PBFT
Inter BFT SPoS PoW PBFT

Security Asumptions
Network Synchronous Synchronous Partially synchronous Synchronous

Failure Adaptive N/A Weakly N/A N/A
Threshold 33% 33% 50% 33%

Cross-shard transaction reduction No No Discussed Yes

Table 2.2 – Comparison table of blockchain sharding solutions (Contin-
ued).

2.6.1 Evolution of Sharding in Blockchains

In the past few years many sharding solutions have been proposed to improve
blockchain performance.

RScoin [29] is one of the first protocols that implements transaction sharding
with the objective of controlling monetary supply: a central bank maintains com-
plete control over the monetary supply, but relies on a distributed set of authorities,
or mintettes, to collect transactions and prevent double-spending using a two-phase
commit protocol. No consensus mechanism is used since mintettes are known and
trusted, which makes the protocol strongly permissioned.

Elastico[12] was the first to provide a sharded solution in permissionless settings.
Elastico proposes a PoW-based sharded blockchain that combines both network and
transaction sharding to scale transaction rates almost linearly with available com-
putational power. PoW-based state sharding has been proposed by Omniledger[13]
and Rapidchain[14], showing optimized performances via parallel transaction pro-
cessing. More recently, Monoxide [15] proposed a state-sharding solution proposing
asynchronous synchronization among shards. Each shard maintains its blockchain
through a PoW Nakamoto consensus. Authors aims at implementing eventual atom-
icity of cross-chain transactions, i.e. atomicity is guaranteed only if neither the
source nor the target shards’ blockchain fork.

In the realm of Proof-of-Stake (PoS) permissionless settings, StakeCube[32] com-
bines network and transaction sharding in such a way that the number of shards
scales sub-linearly with the total number of active UTXOs. Shards validate transac-

Chapter 2. State of the Art 31

tions in parallel, and a Byzantine agreement protocol, run among subsets of shards,
collects shard contributions (set of validated transactions) to create blocks. The
periodic re-assignment of UTXOs owners to the shards relies on a randomized shuf-
fling technique which allows StakeCube to defend against an adaptive adversary.
Shuffling is a form of re-assignment that aims at guaranteeing that the adversary
cannot predict the shards in which nodes will sit.

As for state sharding in PoS settings, some popular cryptocurrencies, such as
TON[10] and Elrond[11], propose a state sharding blockchain capable of adapting
the number of shards at run-time. Both solutions, however, rely on synchronous net-
work assumptions while security assumptions are unclear (i.e. not detailed in the
documentation). Brokerchain [16] focuses on cross transactions issues, proposing a
cross-sharding blokchain protocol that aims at reducing the volume of cross-shard
transactions by clustering nodes on the basis of their past exchanges. To this aim
Brokerchain proposes a state-graph partitioning algorithm that is in charge of shar-
ing out nodes among shards.

Gramoli et. al. [60] present a blockchain-agnostic shard management mechanism
applicable to sharded blockchain solutions. For their experimentation, they evaluate
their solution on a blockchain called CollaChain [61]. The solution presented a
novel idea to reconfigure sharding without disrupting the blockchain service through
dedicated smart contract invocations.

2.6.2 Comparison of Existing Solutions

In the remaining of the section, we compare the above discussed solutions along six
criteria. We will consider only permissionless solutions, so that RSCoin [29] is not
included in the comparison. Tables 2.1 and 2.2 show a summary of this analysis.

State sharding support. Solutions differentiate themselves in the type of
supported sharding. Note that the most recent solutions in PoS settings aim at im-
plementing state sharding [13, 14, 10, 11, 15, 16]. All these solutions must provide
support to cross-chain transactions. Omniledger relies on a two-phase atomic com-
mit protocol driven by the client, where shards do not communicate to each other.
Note that the need of a two-phase commit stems from the fact that Ominledger
transactions follow a UTXO model where each financial transaction must be veri-
fied retrieving all the parent transactions, possibly distributed in different shards.
Other solutions relies on inter-shard communication to confirm cross-chain transac-
tions, like Rapidchain [14], Monoxide [15] and Brokerchain [16], which use special
users which exist in multiple shards and act as relays between shards. Other ap-
proaches [10, 11] use a globally-shared blockchain named masterchain (or metachain)
to maintain synchronization between shards and thus confirm cross-shard transac-
tions.

As for smart contract support, only [11, 10] manage smart contracts. The
support however is only related to the management of smart contract-to-shard as-
signment (i.e., the assignment of a given smart-contract to one of the shards of the
system) but there is no support for atomicity of smart contracts in the general case.

31

32 Chapter 2. State of the Art

To the best of our knowledge, no academic proposal managing smart contracts in a
sharded environment offering a 2-phase commit protocol to assure their atomicity
has been proposed so far.

Node-to-Shard Assignment. In permissionless settings, node-to-shard as-
signment (i.e., the assignment of a given node to one of the shards of the system)
must be unpredictable, i.e. must rely on randomness. To this end, the selection
and assignment of processes can be based on PoW [12, 14, 13, 15], PoS [10, 11],
often coupled with decentralized partitioning mechanisms (identifier-based, DHT,
etc.). Some solutions propose to re-assign regularly nodes to shards to cope with
an adaptive adversary [32, 10]. Note that Brokerchain uses a public globally known
predictable heuristic to re-assign nodes.

Adaptability (Time/Event-driven). Adaptability refers to the adaptation
of the number of shards to a given parameter specified in the protocol, e.g. compu-
tational power of the system [12]. We categorize how solutions manage the number
of shards according to whether their adaptability is (i) static, i.e., the number of
shards is fixed [29, 15], (ii) time-driven, i.e. the set of shards changes at specific
instants of time [12, 13, 14, 11, 16], or (iii) event-driven, the set of shards changes
automatically when appropriate conditions are met [32, 10].

Type of protocols. Intra-shard protocols are typically consensus protocols
used to create blocks and elect block creators in each shard. Mostly used blockchain
consensus protocols in permissionless settings are BFT Consensus protocols [17, 47],
Byzantine Agreements (BA) [22] and Nakamoto-style consensus [33, 44, 21]. These
protocols are typically re-used with no or small adaptations in sharded blockchains
to create blocks (see Table). Election mechanisms, always in place to establish the
nodes that have rights to append blocks, are either based on PoW [12, 14, 15] or on
PoS [32, 11, 10].

For state-sharding solutions, inter-shard protocols can require a BFT protocol
[13], an asynchronous communication protocol (e.g. [15]), or synchronous protocols
(e.g. BFT synchronous [10], stake-based Nakamoto-style [11]).

Security Assumptions. The security of the each solution lies in the robust-
ness to an adversary that can take control of both network and nodes resources.
Because of the need of Consensus, which requires partially synchronous networks
to function properly, the best possible protection that blockchains can offer is tol-
erance to an adversarial network affected by temporary network partitions. Note
that synchronous solutions [13, 14, 10, 11] are not robust to an adversarial network.
As for processes corruptions, the best possible threshold that partially synchronous
solutions based on BFT Consensus can tolerate is the 33% threshold. Security in
permissionless blockchains is ensured by solutions coping with an adaptive adversary
[12, 13, 14, 32, 11]. Yggrdrasil relies on a partially synchronous network, tolerates
33% threshold of corrupted validators in each shard and provides security against
an adaptive adversary, being the sole (at the best of your knowledge) state-sharding
PoS solution providing the proper level of security in a permissionless setting.

Cross-shard transaction reduction. Cross-shard transactions are inevitable
when state sharding is used. A simple way to reduce the burden of cross-shard

Chapter 2. State of the Art 33

transactions is to let users choose the shards they are interested in, i.e., the ones
containing accounts of their sellers and preferred smart contracts. This way trans-
actions do not have to cross different shards. This approach has been mentioned
in [15] but without providing any method to implement it. Brokerchain [16] uses a
different approach: it proposes a shard formation heuristic to maximize the prob-
ability that users interactions will take place inside a single shard. The heuristic,
however, is fully public, which does not guarantee unpredictability and the required
security level in a permissionless setting.

2.7 Experimental Approach

In the literature, in order to efficiently test a system or a hypothesis, one can usually
choose one of two main approaches, experimentation through test-nets or simulation.
When it comes to simulation, there are several solutions, some are general and others
are dedicated to a specific domain such as the blockchain (e.g. MAX (Multi-Agent
eXperimenter) as presented in chapter 3).

2.7.1 Test-Nets

The whole point of test-nets is to provide a realistic implementation of a system
before starting the project. Its main use is to allow a considerable number of ex-
periments to be carried out to see if everything is working properly. When it comes
to cryptocurrencies, test-nets allow users to exchange fake tokens to test the ca-
pacilities of the system. In this way, blockchain providers test their products and
users can test new cryptocurrencies for free. For example, Bitcoin [33] has the Bit-
coin Faucet test-net, Ethereum [62] has Ropsten, RinkeBy, Kovan, or even Görli
test-nets. Finally, Tezos [46] also made the Alphanet network available for its users.

In a more scientific context, it is possible to deploy a private network in a local
environment where nodes are connected and running a predefined protocol. For
example, one can launch the Tezos or Tendermint protocol and specify the addresses
of the network peers [46] to create a private network and test it.

2.7.2 Modeling and Simulation

To shed some light on the dynamics of blockchain systems, recent research focused
on suitable simulation models to capture their behavior. The different proposals
differ in the level of abstraction of the model, the simulation type and the proper-
ties under study. First of all, general simulators, such as network simulators, have
an advanced environment as well as a strong community, which makes them a valu-
able asset when it comes to simulating any network. A second solution would be
to use agent-based simulators, their ability to derive global properties from indi-
vidual behaviors make them particularly applicable to distributed systems such as
blockchains. Finally, blockchain-dedicated simulators can be a perfect solution if

33

34 Chapter 2. State of the Art

they are advanced enough by offering as many basic features as the generic sim-
ulators while providing blockchain data structures and primitives for blockchain
management.

2.7.2.1 Network Simulators

Network simulators are used in many fields and have the particularity of being able
to adapt to the domain of activity with the help of plugins added over time.

Among the most popular ones, OMNeT++ [63] is a framework and a discrete-
event simulation library, mainly used in network researches. This simulator is ded-
icated to networks modeling, it focuses on communication aspects. In OMNeT++,
all actions are triggered by messages that can be scheduled and self-sent, which
allows great flexibility in terms of experimentation. Topologies are pre-defined by
creating the nodes and defining their connections manually. It is possible to add
nodes at any time. Thanks to this feature, this simulator makes it possible to create
dynamic networks by adding or removing nodes during the simulation. Nodes have
access to a unique environment, but it is possible for them to have multiple roles
(running different protocols for example) in this same environment. OMNeT++
also allows unit testing and regression testing with the opp_test tool.

In addition to OMNeT++, NS-3 [64] is a discrete-event network simulator mainly
used for research or educational purposes on network areas. NS-3 only allows nodes
and links to be added, not removed, which makes it impossible to simulate dynamic
systems where nodes can move in and out. On the other hand, it is possible to
turn off certain interfaces of certain nodes in order to "feign" an exit. As with
OMNeT++, nodes can only access a single environment and test are made available
by a dedicated framework integrated to the simulator [65].

2.7.2.2 Agent-based Simulators

As mentioned above, agent-based simulation is one of the best suited modeling
techniques for distributed systems. Among the most used agent-based simulators,
JaCaMo [66] is a multi-agent programming framework that combines three different
technologies, Jason for managing agents, CArtAgO for managing the environment
and Moise for the organization of both agents and environment. The JaCaMo
environment is organized in workspaces. Each agent can create, join or leave other
workspaces on a node (whether local 6 or remote) and has access to the specific
information of the workspaces to which it belongs. It has in this way a global
perception of the environment in which it evolves, which allows the agent to interact
with its environment and neighbours. As Figure 2.4 shows, within a workspace,
there are several types of objects: /working-agents, listing the agents linked to the
workspace; /hosted-agents, listing the agents that have accessed the workspace via

6By allowing to launch several nodes on the same physical machine, JaCaMo allows the creation
of private test-nets.

Chapter 2. State of the Art 35

Figure 2.4 – JaCaMo-web Organization.

another workspace; /child-wsps, listing the sub-workspaces; /linked-wsps, listing the
workspaces linked to it.

In order to use this environment, JaCaMo has implemented a REST API named
JaCaMo-web [67]. It facilitates the use of agents/environments running on a Ja-
CaMo node. In this way, each element of the system is represented by a web resource
accessible via URL. The use of JaCaMo is thus essentially done via GET and POST
requests.

2.7.2.3 Other Simulators

During our research, we came across solutions that are not simulators per se but
are interesting enough as test environments to be considered in experimental work
on distributed systems. Among these, one can quote SimEvents [68], a Matlab
[69] library (a high level language mainly used for visualization and application
development) that is dedicated to event planning and network simulation. It allows
the creation of agents, definition of their interaction and the exchange of messages
between them. As for the application of such a solution for the study of blockchain
systems, a Matlab application that implements a blockchain were implemented [70].
There exist other solutions written in other languages such as Simmer [71] or Agent
Based Modelling in R [72]. Both are libraries written in R (which is a programming
language used for statistical computing). Simmer is a generic framework that allows
discrete event simulation and exploits a new concept: trajectories. It consists of a
"path to follow" for agents of the same type, which will define their behavior and
therefore their actions. In other words, a trajectory would be a list of actions in
sequence that define the behavior of an agent. On the other hand, in ABM-R, models
are made of agents that can interact with each other and with their environment,
where they can also move. The movements and communications of the agents are

35

36 Chapter 2. State of the Art

governed by rules that define what an agent can or cannot do.

2.7.2.4 Blockchain-dedicated Simulators

As for blockchain systems, several solutions were proposed in the recent years. As
an example, SimBlock [73] is a simulator with event-based progress where each
node generates messages and block creation events. Simulation in SimBlock are
setup using block-related parameters (size, creation interval), node-related (number,
maximum connections, position...), but also network-related (transmission delay).
Each node has a defined capacity of creation of block, given that in this simulator,
the blocks are created in PoW, that means that creating a block has a certain
difficulty (parameter also defined). Even though nodes and network topology are
dynamic, SimBlock does not specify whether the system is dynamic, i.e., whether
nodes can enter and leave the network. In SimBlock, there is a single environment
on which agents can interact, which means all sent messages are received by all
nodes, network-partitioning attacks or solutions (e.g. sharding) are not possible.
Furthermore, there is no mechanism for orchestrating a scenario, or even for verifying
and validating models.

Kaligotla et al. [74] propose an agent-based framework for evaluating distributed
ledgers, modelling a blockchain at a very abstract level as a simple append-only
queue where a block is added when verified by enough agents. Agents are divided
into two categories, users who issue transactions and verify them through atomic
actions (no messages are exchanged) with associated costs, fees and energy costs,
respectively, and miners who create blocks using the PoW consensus model. As in
SimBlock, the agents belong to only one environment on which they interact, which
can be very limiting in some cases, as we will see in chapter 3.

Memon et al. [75] propose a modeling of a blockchain system based on a queue
simulation. They assimilate the process of creating block in PoW, mining to a queue
in a router. They used Bitcoin parameters and simulated it using an M/M/n/L
queueing system with JSIMgraph. In this simulation, there is only one queue and a
number of miners. The transactions are created randomly. They do not quite model
the distributed system that is the blockchain, nor do they model any communication
protocols of any kind. As for the other simulators we have studied, this one does
not offer any verification or orchestration mechanisms, nor does it allow an agent to
belong to several environments.

Piriou et al. [76] propose a stochastic simulation model and Monte-Carlo simula-
tions to evaluate the performance of a blockchain when the communication system
loses messages. A stochastic model is a tool used for estimating the probabilistic
distribution related to the distribution of assets. This being achieved through the
random variation of some parameters during execution. Various consensus models
are studied and double-spending attacks are modeled by a simplified append-only
queue model (which considers instantaneous communication).

Alharby et. al. [77], Rosa et al. [78] and Faria et al. [79] propose discrete-event
simulators for distributed ledgers that resemble to Bitcoin and Ethereum, but not

Chapter 2. State of the Art 37

adapted to simulate graph-based distributed ledgers. On the other hand, Bottone et
al. [80] present a simulation model for Tangle-like DAG ledgers [2] aiming at studying
the grow of the graph of transactions. The simulation model is instrumented on the
NetLogo [81] agent-based simulator. Due to the complexity of the computational
model, simulated strategies are very simple and network effects are not taken into
account.

2.8 Conclusion

In this chapter, we first saw different solutions in a wide spectrum of bricks used
in both blockchains and blockchain simulation. We have seen in this chapter that
each of the solutions studied, whatever the brick (consensus model, DAGs with or
without blocks...) is intended for a specific application domain and has advantages
that make it particularly interesting for this domain and disadvantages that make
it less interesting in others.

To start with, we have described the consensus models that we have found most
interesting. Among these, we have described some leader-based and committee-
based solutions. Each solution obviously has its advantages, disadvantages and
their particular interest and application domain. We could see for example some
interesting consensus models with their own limits. For example, the PoW is a
particularly resistant model but very energy consuming and in many cases not very
scalable. On the other hand, it can be very resilient in the face of an unsynchronized
network model. Faced with this, its first competitor, the PoS, proposes a less energy
consuming solution but which poses the same problems of fork that we have also
presented during this chapter. In order to solve this problem, the famous BFT
protocols have entered the blockchain, allowing the maintenance of a blockchain
without fork but which requires a better synchronization than the first two solutions.

Secondly, we have detailed the two main transaction models used in blockchains,
namely UTXO and account-based, with their application domains and the interest
of using one or the other of these models. Then, we’ve detailed the basic and most
widespread incentives for honest participation.

As these consensus and transaction models can be applied to different solutions,
we have then described some classical solutions such as Bitcoin, Algorand and Ten-
dermint while presenting their strong and weak points.

We have then moved on to graph-based blockchains by presenting both block-
free and block-based DAG solutions such as GHOST, the precursor, IOTA, the first
blockchain without block, and Sycomore, which will be our main subject of study in
Chapter 4. In this section, we have compared the use of transactions and blocks in
DAGs as well as the benefits of these two solutions in different application domains.

Fifthly, we have focused on sharding and the solutions that propose it. Solutions
such as RSCoin[29] and Elastico[12] launched the intuition of sharding while others
like StakeCube[32] and Omniledger[13] improved it by pushing it further. More
recently, successful industrial solutions not stemming from the scientific environment

37

38 Chapter 2. State of the Art

such as TON[10] or Elrond[11] appeared. We also had a comparison of these different
solutions based on precise criteria defined for this type of system.

At the very end of the chapter, we have also discussed the popular solutions
when doing experimental research in blockchain, namely a real implementation with
the use of test-nets for the verification of hypotheses or simulation with different
techniques and different solutions.

In the next chapter we will develop our penchant for the experimental approach
by presenting the tools we have used during this thesis.

Chapter 3

Tools

“It is essential to have good tools, but it is also essential that the tools should
be used in the right way”

– Wallace D. Wattles

Contents
3.1 Simulation for Blockchains . 40

3.1.1 Discrete-event simulation . 41
3.1.2 Agent-based simulation . 42
3.1.3 Agent-based simulation for blockchains 42

3.2 Multi-Agent eXperimenter (MAX) 43

3.2.1 Basic Elements of MAX . 44
3.2.2 Architecture . 44
3.2.3 Core . 46
3.2.4 Datatype . 47
3.2.5 Model . 49

3.3 Experimental Environment 51

3.3.1 Grid’5000 . 52
3.3.2 GNU parallel . 52

3.4 Implemented Models . 52

3.4.1 Sycomore . 53
3.4.2 Yggdrasil . 56

3.5 Conclusion . 64

"Study of the potential of graph-based approaches in blockchains" is the title of
this thesis. In this chapter, we will deepen our understanding of two of the words
contained in this title. "Study", which implies a dissection of the strengths and
weaknesses of a given subject of study. Then, "Potential", which implies a virtual
existence of this subject of study that may, or may not, meet certain criteria. These
two words put together imply to push this subject of study to its limit in order to
determine whether it meets our criteria or not.

In this manuscript, our subject of study is "graph-based approaches in
blockchains" and in this chapter, we detail the method as well as the different
tools used to carry out this study.

39

40 Chapter 3. Tools

Indeed, during this thesis, we privilege, when it is possible, the angle of the
experimentation with the method of agent-based simulation [82]. Our results and
the importance given to them therefore depend on the softwares we used, that’s why
we dedicate an entire chapter to them. These tools are the very basis of our work
and it is necessary, for the good understanding of our results but also to increase the
confidence of the reader in them, to understand the tools used to generate them.
Which tools have allowed us to (i) model our protocols (ii) execute the different
experiments that we have imagined to push these algorithms.

In this chapter, we will present in details our toolbox and each of its tools.
First, we define in detail simulation methods and their application to blockchain in
Section 3.1. In Section 3.2, we present MAX, the agent-based simulator we used to
model our protocols. Then, the experimental environment we used to execute our
numerous experimentations in Section 3.3. For the sake of completeness, we will
finish this chapter with the different implementations realized for both protocols
studied in this manuscript (respectively in Chapters 4 and 5) in Section 3.4.

3.1 Simulation for Blockchains

Usually, the easiest way to test a hypothesis is to test the experiment and observe
the result. In many cases the experiment is either not feasible or too expensive. One
then has to recourse to simulation [83], a computer tool used to study the results of
an action applied on an element without having to carry out the experiment under
real settings. Simulations allow to control the environment, whereas "real world"
experiments for distributed systems in particular will be done on an environment
(e.g. internet) whose conditions are neither observable nor configurable, which can
be detrimental to the interpretation of results, especially when comparing different
protocols or when we want to evaluate specific scenarios (e.g. malicious behavior).

In the context of system dynamics study, simulation is one of the possible ap-
proaches to understand the behavior of a system and to evaluate its performance. It
consists in modeling and studying a real system in the form of a computer program
called a simulator model. This method is widely used for the study of communicat-
ing systems such as distributed systems (e.g. blockchain systems) [84]. Simulation
allows to validate hypotheses about the functioning of a given distributed protocol
such as blockchain systems while keeping the hand on all the actors of the system,
i.e. both the nodes and their environment (which is impossible in reality). In the
same way, thanks to this technique, it is possible to define precisely in which context
a given system is efficient and in which context it is vulnerable. This is what we
will see in chapters 4 and 5 where we will try to validate our hypotheses on the
protocols we have designed in both honest and malicious environments (in order to
test different attacks or failures that could occur).

We therefore detail in this section some basic principles of simulation before
focusing on the application of this experimental method in the blockchain domain.

Chapter 3. Tools 41

Figure 3.1 – Types of Simulation Execution.

3.1.1 Discrete-event simulation

Essentially, a simulator executes a list of events in a chronological order. Among
the techniques used in the context of complex systems simulation is the discrete-
event simulation. It is a sequence of discrete events that are executed at a given
time, which change the state of the system. This state can only change at distinct
temporal instants when there occurs an event, which can be defined as a circum-
stance that allows the system to change state (i.e. the reception of a message...).
Nowadays, this technique is commonly used in order to both design, optimize and
validate organizations or to study complex non-linear systems such as networks and
distributed systems.

Types of execution The temporal aspect of simulations is managed by a clock,
used to indicate the current simulation time, counted in ticks. The simulation follows
a list of events, executes the events one after another and updates the simulation
clock according to the executed event’s parameters. As illustrated by Figure 3.1, we
distinguish two types of simulation execution:

• (1) Time-driven: The simulation progresses by incrementing the clock by a
predefined value named simulation step until it reaches a limit (i.e., the end of
the simulation). Events are executed when the clock reaches their execution
time.

• (2) Event-driven: The simulation progresses from one event to another
chronologically by executing them until the simulation ends.

In a discrete-event simulation, all events are not necessarily created at the simu-
lation’s beginning. As the simulation proceeds, an event may introduce one or more
new events, which are then inserted into the schedule, an event list sorted by the
execution time of each event. This list is managed by the scheduler. It manages
the identification and execution of the next event in the schedule, the insertion of a
future event in the list or the withdrawal of an event after its execution.

In Table 3.1, is shown an example of a time-driven schedule which associates
events to their countdown. At each interval, countdowns are decremented, and the
actions that have a countdown of 0 ticks are executed then removed.

41

42 Chapter 3. Tools

Event Countdown

Action 1 5
Action 2 7
Action 3 10
Action 4 15
Action 5 23
Action 6 29

Table 3.1 – Example of a Schedule.

3.1.2 Agent-based simulation

In order to simulate a distributed system (i.e., a system of distributed nodes), one of
the known approaches would be to use self-organizing and autonomous objects, also
known as agent-based simulation [82]. It is a subtype of discrete-event simulation
[83]. It is a model built from the bottom up which consists in decomposing the
global functionality of the system into sub-functionalities, and thus modeling the
behavior of each sub-system (node). It is not limited to observed data and can be
used to model the counterfactual or experiments that may be impossible to conduct
in the real world (e.g. malicious behavior).

As shown by Figure 3.2, the self-organizing objects that make up this system
are called agents. An agent could be defined as an entity capable of acting or re-
acting according to its role and what it perceives of the environment in which it
evolves. The environment is one of the agents that compose this system. It has a
rather special role since it serves as an intermediary between the other agents. It
is known as the most important entity of this system since it allows other compo-
nents’ connection. Using agent-based simulation allows to create systems composed
of these autonomous entities, which interact with each other in a dedicated envi-
ronment, leading to the emergence of a global scheme describing the functionality
of the system we want to simulate.

3.1.3 Agent-based simulation for blockchains

By definition, the blockchain is a application replicated among nodes of a distributed
system. The approach presented in 3.1.2 is therefore quite appropriate in the sense
that it allows us to model open, dynamic, distributed and intelligent systems, four
of the characteristics of blockchain systems.

In short, a blockchain application is independently executed on several nodes
that will interact to maintain or evolve the state of this self-organizing system.
Such a system is defined as being able to modify the behavior of its components,
without any external involvement, in order to maintain the expected functionality.
Agent-based simulation allows us to reduce this system’s complexity by focusing on
its components. In our case, it allows us to simulate a network of distributed nodes
by modeling the nodes by agents that will follow a pre-defined protocol (behavior)

Chapter 3. Tools 43

Figure 3.2 – Agent-based Simulation.

to act and/or react in the environment where they evolve. This environment is
also one of the main actors of the good functioning of the blockchain, as it involves
network parameters such as the transmission delay or its reliability which will be
both influencing the state of the blockchain.

3.2 Multi-Agent eXperimenter (MAX)

By simulating the functionality of a system at the agent level, the impact of the
behavior of each algorithm is tested and analyzed in detail under different execution
scenarios. It helps to focus on the fundamental characteristics that make such a
distributed system, namely, the organization of its elements and the ties that bind
them.

For the purpose of the various studies presented in this manuscript, we have
chosen to use MAX (Multi-Agent eXperimenter) [85, 5], an agent-based simulator
based on the MaDKit framework [86]. MAX is a blockchain-dedicated simulator
allowing to create models as close as possible to the real algorithm to be modeled,
in order to test it and improve it.

Community-Group-Role MAX allows a hierarchical organization of agents
thanks to the CGR (Community-Group-Role) concept. According to this concept,
two agents can be part of different groups but belong to the same community. In
this way, agents can play different roles in the same group (user and miner for ex-
ample) or in different groups (overlay blockchain, e.g., BitcoinLightning [24]). Note

43

44 Chapter 3. Tools

that this organization model is an abstraction, a community is simply the container
of a set of agents divided into subsets called groups in which individuals play roles.

3.2.1 Basic Elements of MAX

In MAX, simulations execute a given scenario, a roadmap where the number of
agents, their actions and their timing are strictly specified. The creation of a scenario
(example shown by Figure 3.3) in MAX is done in three steps, (i) initialization of
the scheduler, (ii) initialization of the environment, (iii) initialization of the agents.
These three steps are done by the experimenter. It is responsible of creating and
setting up the scenario to be simulated. Since it is above all agents, it can observe but
also intervene in the course of the simulation. This is what allows the dynamicity of
a scenario where agents can be added and removed according to certain conditions.
For example, it is possible to add an agent at time t1 and to remove it at time t2 in
order to study the reaction of the system to a dynamic environment.

For any scenario to run, it needs a scheduler. It is responsible of the simulation
global clock and for planning and executing the actions of the various agents. Agents
which could be defined as an active entity that can play one or multiple roles in one
or multiple environments. When an agent takes a role, it gains the right to plan
actions that are specific to that role, if it forsakes that role for any reason, the future
actions that only that role allows it to perform are cancelled by MAX.

The environment is also one of the key pieces when modeling multi-agent sys-
tems. It is an abstract element. It can be physical (internet) or logical (social
network), and is modeled as an agent that schedules events according to the re-
quests of other active agents. It thus acts as a mediator between agents and allows
their interaction. In other words, agents cannot interact directly with each other,
they must go through an environment. The environments are modeled as agents
belonging to a group and playing the role of environment in this group, the agents
which are also part of this group will be able to take the roles of this group and
interact via the unique agent which has the role of environment in this group.

As said before, an agent can be part of different groups. In order to keep a sep-
aration between the information received in each group, each agent has one context
per environment it belongs to. Context is what allows an agent to differentiate the
information it has perceived in several environments.

3.2.2 Architecture

MAX is a complex framework, created in such a way that it is generic, easy to use
and modular. As illustrated by Figure 3.4, the latter can be decomposed into three
subcomponents, which are detailed in the following:

1. max.core. It represents the engine of the simulator. It contains the imple-
mentation of the basic abstractions presented above, the most general roles,
as well as communication structures between agents.

Chapter 3. Tools 45

Figure 3.3 – MAX Scenario Example.

45

46 Chapter 3. Tools

Figure 3.4 – MAX Architecture.

2. max.datatype.ledger. It groups data structures specific to the blockchain
such as blocks, transactions...

3. max.model. It includes created models, thus the protocols implemented,
their specific messages or their specific roles.

3.2.3 Core

The MAX core is responsible of the management of the basic functionalities of the
simulator, namely action scheduling (with the scheduler), hierarchical organization
(CGR), as well as the scenarization (with the experimenter). It is based on a
discrete-event management framework named MaDKit (Multi-agent Development
Kit) [86], which (hierarchically) organizes agents, manages their addressing, as well
as the differentiation between roles.

MaDKit is a tool for developing multi-agent platforms. It is based on an orga-
nizational model based on groups containing agents and the roles associated with
them. As shown by Figure 3.5, MaDKit follows the AGR model (Agent-Group-
Role). This model is used to organize agents in a hierarchical way, and give them
different actions according to their position in the hierarchy (i.e. to which group
they belong to). This functionality allows the modeling of a heterogeneous system
(e.g. a distributed network).

3.2.3.1 Basic Elements of MaDKit

In MaDKit, there is two types of agents. The first one is called AbstractAgent. It
is defined as a reactive entity which can interact with the other agents belonging
to its group by adopting a behavior defined by the role(s) it has in this group.
The perception of the AbstractAgent is limited to what the other agents want to
show him by sending him a message. In contrast, the second type of agents, called
Watcher has a supervisory role in a given group. It has access to all the attributes

Chapter 3. Tools 47

Figure 3.5 – Agent-Group-Role Organization.

and methods of any agent. It is used for scripting (experimenter) or to ensure the
smooth running of the simulation. To do so, it uses the "probe" object which allows
it to access the information of the agents to "monitor".

In MAX, agents follow the same model. MAXAgent extends AbstractAgent by
adding some specific MAX actions while ExperimenterAgent (used for scripting of
scenarios) and Collector (used for monitoring of simulations) extend Watcher agents.

3.2.4 Datatype

In this section, we present the data structures used in MAX and made available
to model any blockchain system. These data structures are decomposed into two
sub-sets, (i) max.datatype.com, which gathers the necessary structures for communi-
cation, thus separated from any notion of blockchain, and (ii) max.datatype.ledger,
which will complete max.datatype.com by adding the blockchain-specific data struc-
tures necessary for the implementation of any blockchain protocol.

3.2.4.1 max.datatype.com

By definition, a blockchain system is a replicated application. It is based on a
network of nodes which communicate between them following a given protocol.
Therefore, for simulating properly any blockchain system, communication is neces-
sary. max.datatype.com groups all the data structures necessary for communication
between agents.

Each agent in each group to which it belongs have an assigned Address. It is an
identifier that has a unique representation and is of type UUID (Universally Unique
IDentifier). It is a structure of 128 bits used to identify agents. Messages are then
used for interactions between agents in a given environment, they constitute a data
structure that takes as parameters the sending agent’s address, the receiving agent’s
address and a payload.

47

48 Chapter 3. Tools

Data
Blocks

Hash
1
Hash 1-0+Hash 1-1hash()

Hash
0
Hash 0-0+Hash 0-1hash()

Hash 0+Hash 1hash()

Top Hash

Hash
0-0

hash(L1)

Hash
0-1

hash(L2)

Hash
1-0

hash(L3)

Hash
1-1

hash(L4)

L1 L2 L3 L4

Figure 3.6 – Merkle Tree Construction.

3.2.4.2 max.datatype.ledger

As said before, MAX is a simulator dedicated to blockchain. It must necessarily
embark data structures specific to blockchain. For example, in a blockchain, each
user has a Wallet that contains important information such as his address, his
cryptographic key pair and his transaction history. For a user to transfer goods to
another, it sends them from his wallet using a Transaction. After its creation, this
transaction is broadcast to the network to be put into a Block. It is modeled as
a Message where the payload represents the amount transferred. Transactions are
then organized in a MerkleTree [87]. As shown by Figure 3.6 [87], the Merkle Tree
is a tree created from transactions, these are hashed two by two until there is only
one hash left, the root of the tree, also called Merkle Root.

The MerkleTree is then put in the header of a Block, which is a data structure
containing a set of transactions chosen by the miner in his Mempool in addition to an
extra transaction which represents his reward, the coinbase transaction. The Block
also contains other information such as the version of the protocol, a timestamp,
a nonce and the hash of the previous block, which allows to build what we call, a
Blockchain. In MAX, a Blockchain is a dynamic list of blocks configured as "append-
only" where each block contains a cryptographic reference to the previous block.
The very first block is called a genesis block and is created when the blockchain is
created.

Chapter 3. Tools 49

3.2.5 Model

Usually, methods used to study complex protocols are based on mathematical ap-
proaches that are long and difficult to implement. Agent-based approach allows
us to better understand the algorithm, and modify it in order to improve it. To
do so, MAX proposes abstract models which will be used as bases for the var-
ious blockchain protocols that could be implemented. Message exchanging and
blockchain data structures management are two common aspects of the majority of
existing blockchain protocols.

3.2.5.1 Network Model

It is the ability of nodes to communicate that allows blockchain systems to function
properly. In this section, we will present the "network" communication module of
MAX: max.model.network.p2p. It represents the modeling of a classical unstructured
peer-to-peer network.

As illustrated by Figure 3.7, P2PAgent sends and receives messages via
P2PEnvironment which manages the communication between agents according to
parameters such as delay and transmission reliability.

In this model, agents are linked through a Connection. It allows them to com-
municate. However, a connection being a logical link, message sending is done via
the P2PEnvironment which delivers the message to the recipient(s) specified by the
sending agent. Those recipients being contained in its ConnectionList, which groups
all of its connections.

In order to add a Connection to its ConnectionList, an agent has to request
a Connection to another agent. To do so, it sends a "CONNECT" message to an
other agent it wants to communicate with. At its reception, the corresponding agent
can reply with an "ACCEPT", which implies the establishment of the connection
or a "REJECT" message. Note that while waiting for the other agent’s reply, the
connection request is added to the waiting list. A list of connection requests waiting
to be replied to. This is done to respect limitations on the number of connections
an agent has. In our model, these limitations are represented by connection bounds
that define the maximum number of both incoming and outgoing connections.

3.2.5.2 Blockchain Model

As the MAX simulator is dedicated to blockchain, an abstract model representing
the blockchain and its agents is provided to contain all the necessary actions for the
proper functioning of a blockchain model. In this way, it is made easy to create
blockchain protocols that follow this abstract model.

This model links the communication primitives of the Network model (see section
3.2.5.1) with the data structures described in section 3.2.4. In this way, agents in this
model (Blockchain agents) are Network agents having access to (i) blockchain data
structures and (ii) specific blockchain actions such as the creation of blocks, issuing
of transactions... Due to their complexity, some of these actions are abstracted

49

50 Chapter 3. Tools

Figure 3.7 – Class Diagram: Network model.

Chapter 3. Tools 51

Figure 3.8 – Class Diagram: Blockchain model.

using an oracle [88]. It is a Watcher agent (see section 3.2.3) which can access the
properties of all the agents. In this way, it can elect some specific agents to execute
some actions such as the creation and broadcast of a block at a given time. Note
that this agent is abstract and can be completed in any model inheriting from the
blockchain model. However, some block creation models are already made available
to facilitate the creation of new models (i.e. PoW, PoS).

As shown by Figure 3.8, BlockchainAgent is a P2PAgent that has access to
blockchain structures. This agent also has the ability to create blocks by being helped
by a new type of agent "BlockCreationOracle". The modeling of Blockchain proto-
cols such as Bitcoin, Tendermint, Sycomore and Yggdrasil extends the Blockchain
model.

3.3 Experimental Environment

The mono-threaded architecture of MAX made simulations relatively long depending
on the complexity of the model and/or the scenario 1. As we will see later, the
implemented protocols are complex and require a lot of resources. The different
experiments carried out during this thesis (see chapters 4 and 5) were therefore quite
heavy to simulate. In order to carry out these experiments in a timely manner, we
have chosen to use a high performance computing grid specialized in distributed
computing coupled with a task distribution software between different machines.
Note however that we did not distribute the calculation for a simulation (impossible
due to the architecture of MAX), we only used this platform to parallelise our

1The transition to a multi-threaded architecture that would allow better performance is part of
the future work.

51

52 Chapter 3. Tools

simulation scenarios (several thousands) on multiple nodes and thus benefit from a
considerable time saving (a few hours rather than several days or weeks), no changes
were made on MAX to this extent.

3.3.1 Grid’5000

In 2003, a platform for experimental research on parallel and distributed systems
was created. This platform, called Grid’5000 [6], is a test bed for experiments on
different types of distributed systems (high performance computing, peer-to-peer
systems, etc.). It is currently composed of 40 clusters, 752 nodes and 15788 CPU
cores, mainly located in France. The different nodes of this system are cut off from
all access to the Internet except for some sites on a regularly maintained white list.
This is to avoid any misuse of the Grid’5000 power (DDoS attack for example).

Operationally, in order to execute an experiment, users must (i) choose and re-
serve resources for a given period of time and (ii) specify the script to be executed.
As far as resource reservation is concerned, users can either browse the list of re-
sources on the web interface provided and choose the ones he/she wants or specify
his/her needs to the system which will then choose the appropriate resources that
will be free the fastest. Resource reservation management is done through the OAR
tool [89]. Regardless of the approach used for the two steps described here, access
to resources (sites and nodes) is via SSH. Each site has its own NFS server. This is
to ensure that the resources of a particular site can be used even when the link to
other sites is being maintained. Please note that Grid’5000 is a set of nodes hav-
ing all exactly the same software environment. Nevertheless, it is possible for any
user wishing to experiment on a heterogeneous system to implement specific system
images for each node (or group of nodes) he will have reserved, using Kadeploy [90].

3.3.2 GNU parallel

In order to parallelise our simulations on the several nodes provided by Grid’5000,
we used the GNU parallel solution. GNU parallel [91] is a shell tool used for running
tasks in parallel on multiple threads. A task can be a single command or a small
script that has to be executed for each line of the input. The typical input is a file
containing a list of parameters (files, hosts, URLs...).

3.4 Implemented Models

After having presented our simulation environment and the softwares we used,
we present in this section the implementations of the protocols we study in this
manuscript. These implementations include both data structures and actions set
up to model the desired behaviors. As all other models in MAX, our newly imple-
mented models meet MAX’s requirement for code testing, which is used for analysis
of completeness, correctness and requirement fulfillment of our models in various
contexts.

Chapter 3. Tools 53

Figure 3.9 – Class Diagram: Sycomore Datatype.

Note that both these implementations are based on the abstract blockchain
model presented in Section 3.2.5.2 and the peer-to-peer network model presented in
Section 3.2.5.1.

3.4.1 Sycomore

Sycomore [27] has been the first protocol we have studied during this thesis. It con-
sists of a Proof-of-Work blockchain protocol maintaining a Directed Acyclic Graph
of blocks. It uses the same basic primitives as Bitcoin with a DAG structure. Thanks
to it, Sycomore promises to improve the scalability of Bitcoin by self-adapting its
structure to transaction demand. In order to verify its properties, we wanted to
study this protocol from different angles presented in Chapter 4.

This section will present the modeling of Sycomore in MAX. Modeling that
we will use to carry out the different experiments presented in Chapter 4. Note
that in the following, we will use some concepts introduced in Chapter 4. Deep
understanding of these concepts is not necessary for the proper reading of this
section. However, feel free to refer to Chapter 4 for more details.

Datatype Being based on Bitcoin, Sycomore receives the same basic primitives as
the latter already modeled in MAX. However, its graph shape requires the addition
of new structures that we had to implement in order to model this protocol correctly.
As illustrated by Figure 3.9, the data structures used in Sycomore are the following:
DAGTree, SycomoreDAG, SycomoreBlock, Tuple and Label. This paragraph details
these different classes and the links between them.

53

54 Chapter 3. Tools

The DAG structure of Sycomore is implemented using the SycomoreDAG class
which is nothing else than a list of blocks chained to each other forming a graph.
Each of these blocks (SycomoreBlock) has two essential attributes, the Label and the
Tuple, they compose the header of the SycomoreBlock. Sycomore uses the Label, a
binary string used to differentiate DAG chains, it is thus the first element that we
have implemented. This class makes it possible to modify binary elements of the
label by removing the n least significant bits (remove method) or on the contrary
to add some bits (add function). These functions were implemented to allow the
creation of new labels (e.g. in case of split or merge [27]). It is also possible to check
if a label is parent of another, if it is sibling of another, if it is child of another or
even to get its distance [27] from another label.

Moreover, as one of the properties of Sycomore states that the predecessor of a
block cannot be known before its creation, each miner must integrate his view of
the DAG in each block he creates. He then integrates this view in the header of his
block in what we call tuples. These tuples are groups of 3 elements, the hashcode of
the previous block, the potential label of the block being created and the merkleTree
of transactions assigned to this label [27].

Finally, in order to manage the appearance of forks, we have added the DAGTree
class which is nothing else than a list of SycomoreDAG. Indeed, a fork being nothing
else than an alternative history of the ledger. It can be seen as an nth DAG different
from the other DAGs of the DAGTree in at least one conflicting block. This class
allows us to resolve conflicts related to forks. At each moment, it is possible to
calculate which DAG will be considered main DAG thanks to getMainDAG(). As a
reminder, in Sycomore, the main DAG is the DAG whose genesis block is the most
deeply confirmed. If two DAGs satisfy this criterion at the same height, we say that
there is no main DAG at that specific moment, so this method returns null. In
this case, another method allowing to choose one of these two DAGs at random has
been developed. Note that this function only exists for the purpose of monitoring
the correct execution of the simulation.

Environment As illustrated by Figure 3.10b, Sycomore uses the same message
types as Bitcoin, namely INV, GETDATA, BLOCK, TX and GETBLOCK. Since
these messages have a complex structure, we have created SycomoreProtocolFactory
in order to facilitate their creation and thus limit development errors. This class
makes it possible to easily create these different types of messages with the right
arguments in the right places.

Messages are then sent via the environment to be received by the receivers in
order to be processed. As the reception of messages in MAX is managed as an event,
we have also created handlers (see figure 3.10c) associated to each type of message.
This way, when a message of a certain type is received, the right handler is triggered
and the message is processed according to the desired behavior (e.g. MHInv handles
INV messages).

In this model, SycomoreEnvironment manages sending and reception of mes-

Chapter 3. Tools 55

(a) Class Diagram: Syco-

more Environment.

(b) Class Diagram:

Sycomore Protocol Factory.

(c) Class Diagram: Sycomore Messages.

Figure 3.10 – Class Diagram: Sycomore Environment and Messaging.

sages with various network parameters, namely transmission delay and reliability.
Additionnally, each agent being able to be part of several environments, it must
differentiate what it receives from these various environments. We have therefore
created SycomoreContext which allows to make this link between SycomoreAgent
and SycomoreEnvironment. The context contains the state of the agent in one
particular environment (see figure 3.10a).

Experimenter In our Sycomore model, we extend the Experimenter presented in
section 3.2 and create SycomoreExperimenter (see Figure 3.11 for UML diagram),
which allows to launch the agents necessary to the good functioning of the sim-
ulation. It also defines the various parameters of the simulation. Among these
parameters necessary to the good functioning of the simulation are values linked to
the Sycomore protocol such as GAMMA, TAU (in reality, it is a small gamma in
Sycomore), CMIN and HMAX. Others are broader parameters related to our exper-
iments such as TXS_CONFIRMATION_DELAY (i.e. the depth of a block needed
to consider it and the transactions it contains as confirmed), DIFFICULTY (the dif-
ficulty to solve the PoW, which will impact the inter-block delay) and MALICIOUS-
PROPORTION (proportion of computational power allocated to the malicious ones
when the scenario requires it).

An example of configuration file is illustrated by Figure 3.12.

55

56 Chapter 3. Tools

Figure 3.11 – Class Diagram: Sycomore Experimenter.

Agent In MAX, an agent executes actions in a planned way. These actions are ex-
ecuted according to the role the agent can have. In Sycomore, these roles are named
RSycomoreUser or RSycomoreMiner. Globally, the miner (RSycomoreMiner) exe-
cutes the actions associated to the creation of blocks while the user (RSycomoreUser)
can only create transactions. Note however that a miner is also a user and therefore
has the same actions as the user.

Figure 3.13 represents the SycomoreAgent and the different actions implemented
in our model. These actions can be divided into two categories, the user actions and
the block creation actions intended for the miners.

For users, ACIssueTransaction allows to broadcast a transaction to the network,
while ACGetBlocks allows to send a "GETBLOCK" message, an action usually
executed when an agent connects to the network so that it can synchronize its state
with the others. As for the miners actions, we can find ACDeciteToCreateBlock,
which allows to start the creation of a block following a geometrical or binomial
distribution, as desired 2. ACDecideToBroadcastBlock, which allows the agent to
check if he has received anything conflicting with the block he is about to broadcast.
If yes, the block is dropped, otherwise ACBroadcastBlock is executed to broadcast
the block.

3.4.2 Yggdrasil

Apart from Sycomore, we have studied another protocol, one that we have designed
and built ourselves. It is a state-sharding solution called Yggdrasil (presented in
details in Chapter 5) that we modeled and then studied from a simulation point

2Note that we have configured these two PoW models to always have an inter-block delay per
string of 10 ticks.

Chapter 3. Tools 57

Figure 3.12 – Sycomore Configuration File.

57

58 Chapter 3. Tools

Figure 3.13 – Class Diagram: Sycomore Agent and actions.

of view in order to demonstrate its full potential but also to assess some essential
properties. In this section, we will present our modeling of Yggdrasil in MAX.
Note that in the following, we will use some concepts introduced in Chapter 5.
Deep understanding of these concepts is not necessary for the proper reading of this
section. However, feel free to refer to Chapter 5 for more details.

Core Yggdrasil, being completely different than all the other protocols modeled
in MAX (since it is a system with several environments that evolve in parallel),
some basic functionalities were not compatible with the functioning of a system
such as Yggdrasil. Some major modifications had to be made in some cases. For
example, the management of event-driven executions in MAX did not take into
account the environment in which the action should take place. It implied that
the creation of a block in one environment lead to the creation of blocks in all
environments at the same time. Moreover, it was impossible for two agents belonging
to two different environments to communicate, but in a sharding context, cross-shard
communication is essential. We therefore had to modify the lower layers of MAX
to (i) model the correct behavior of our system and (ii) make MAX more intuitive
when managing agents, environments or actions.

Datatype In Yggdrasil, we differentiate our shards using the Label, a binary ele-
ment already present in Sycomore (see figure 3.9).

In addition to that, we introduce two new types of transactions, the ShardUpdate
Transaction, created for the good function of Yggdrasil. It allows communication be-
tween the shards and the masterchain, thus the synchronization of all shards states
and the maintenance of the global state’s coherence. Moreover, for our experimenta-
tions’ needs, we have also implemented the notion of smart-contract. Indeed, having
proposed a 2-phase commit protocol for smart-contracts in Yggdrasil (see Chapter
5 for more details), we wanted to study it more closely by modeling its execution.
To do so, we used SmartContractInvoke transactions that would invoke one of the
methods of a SmartContract. Note that no method is executed when the transaction

Chapter 3. Tools 59

Figure 3.14 – Class Diagram: Yggdrasil Datatype.

is admitted in a block, we only use the smart-contract concept to demonstrate the
performances of our 2-phase commit algorithm. Thus, we are only interested in the
scheduling of transactions related to the execution of a smart-contract. To do so,
we have added a serialNumber, which allows us to order transactions, thus confirm
them in a precise order.

Environment Figure 3.15 illustrates our modeling of the environment in Yg-
gdrasil. Yggdrasil practices state-sharding, which implies the maintenance of several
"shards" that have neither the same state (blockchain), nor the same composition
(agents). These shards are therefore different environments that evolve in parallel
(Shard) where the agents assigned to the Shard can communicate with each other.

As specified in Chapter 5, Yggdrasil uses a masterchain to maintain the global
state of the system, this masterchain is managed by all the validators of the system
on an environment that we call MasterShard. This environment is nothing else than
a Shard where all agents (of the system) can communicate. These two elements are
identified by their label (previously presented in section 3.4.1).

Due to its dynamic sharding property, Yggdrasil create or delete shards thanks
to split and merge actions. In order to abstract this feature from our algorithm,
we have implemented an Oracle, responsible of managing these mechanisms, thus
managing the set of shards.

Each of these shards uses a Tendermint consensus engine 3 which is used here
as a black box. This black box is composed of (i) TBEnvironment, a blockchain
environment on which the elected validators can communicate to allow the creation
of new blocks in the shard. (ii) TBTMOracle, an oracle which will allow us to manage
more efficiently the addition and removal of agents in the TBEnvironment. (iii)
TBContext, a necessary class in MAX that allows to link an agent to an environment

3Note that Tendermint is also implemented in MAX [5]

59

60 Chapter 3. Tools

Figure 3.15 – Class Diagram: Yggdrasil Environment.

Chapter 3. Tools 61

(a) Class Diagram: Yggdrasil Protocol Factory.

(b) Class Diagram: Yggdrasil Messages.

Figure 3.16 – Class Diagram: Yggdrasil Message Creation and Handling.

in order to maintain an agent-environement specific state (see section 3.2 for more
details).

Messaging Each shard in Yggdrasil uses Tendermint as consensus engine. It
therefore uses some necessary messages for its correct operation (Tx, Block, Get-
Block)4 but also other types of messages specific to Yggdrasil and which concern
especially the management of shard update transactions (GetBlocksSU and Get-
BlocksSUReply). These last ones allow respectively to ask for information following
the reception of a ShardUpdate and to answer this request for information. In or-
der to facilitate the creation of these messages, we have implemented two classes
TBMessageFactory for the Tendermint messages and ShardingProtocolFactory for
the Yggdrasil messages (figure 3.16a).

As explained before, sent messages must be processed by the receivers, that’s
why we have also implemented classes called "handlers" (see figure 3.16b) associated
to each type of message and which will be responsible for processing the message
(e.g. TXMessageHandler handles Tx messages).

Experimenter As for Sycomore, in order to launch the different scenarios of ex-
perimentation, only one agent is necessary. YggdrasilExperimenter allows to launch
the agents necessary to the good functioning of the simulation. It is used to define
the various parameters of the simulation.

4The necessary messages for Tendermint consensus are encapsulated in the Tendermint layer,
thus not visible in the Yggdrasil model.

61

62 Chapter 3. Tools

Figure 3.17 – Class Diagram: Yggdrasil Experimenter.

Being the only agent able to create other agents and thus environments, it
is also used during split or merge to create new shards. It contains the param-
eters necessary for the operation of Yggdrasil (GAMMA, CMIN, NUMBEROF-
VALIDATORS...) but also parameters created for our experiments, such as
CROSS_TXS_PERCENTAGE (to be able to manipulate the rate of cross-shard
transactions), TIME_DRIVEN (to activate or not the time-driven solution), NUM-
BER_OF_SHARDS_BITS (to start the simulation with a certain number of
shards) For our experiments, we used historical Ethereum transactions downloaded
for the occasion. These transactions are loaded at the start of the simulation in
the Experimenter so that they can be used by the agents (getHistoricalTransactions
method).

An example of configuration file is illustrated by Figure 3.18.

Agent As shown by Figure 3.19, Yggdrasil nodes can manage several identities
with different roles (RYggdrasilUser and RYggdrasilValidator). We have imple-
mented two entities, a node (YggdrasilNode) that can create agents (YggdrasilA-
gent), which participate in the maintenance of the blockchain either as validators
thus participate in the creation of blocks or as users thus simply send transactions.
Depending on its role, an agent usually has access to different actions. In Yggdrasil,
all agents have access to the only action defined in Yggdrasil, ACIssueTransaction,
which allows them to create and send one or more transactions to the network. Val-
idators also have access to the actions related to block creation which are contained
in the Tendermint level.

Chapter 3. Tools 63

Figure 3.18 – Yggdrasil Configuration File.

63

64 Chapter 3. Tools

Figure 3.19 – Class Diagram: Yggdrasil Agent and Actions.

3.5 Conclusion

In this chapter we wanted to present the tools we used for our experiments and
explain the choices we made in this respect. Many of our results were conducted on
this simulation environment and we believe that the good understanding and there-
fore the confidence given to this environment is essential for the good appreciation
of our numerous simulation results.

All the protocols we studied were modeled in MAX, an agent-based simulator

Chapter 3. Tools 65

dedicated to blockchains, which allowed us to efficiently model the protocols we
wanted to study but also the different scenarios we imagined to stress these protocols
and thus show their limits. Unfortunately, such a complexity on a mono-threaded
simulator implies excessively long simulations. This is why we requested the use of
Grid’5000, a distributed computing grid that allowed us to run several experiments
in parallel (using Parallel GNU) and thus benefit from a considerable time saving.

For our own needs, we needed to improve MAX in terms of performance, com-
pleteness and usability. These contributions can be counted around thousands of
lines of code (500, 000 ⇠ 600.000). Let us summarize these in a few lines:

• Implementation of the first graph-based model in MAX (Sycomore): block
append mechanism and fork management different from classical systems.

• Creation of a realistic and probabilistic PoW model (before, we had a static
model with a block every 10 ticks).

• Implementation of the first model with several parallel environments (Yg-
gdrasil).

• Modification of the MAX core to support event management in parallel envi-
ronments (for Yggdrasil’s implementation).

As a future work, regarding MAX, in view of the lack of performance of the
latter, it has been detected some important areas of improvement. Among these:

• Switch to a multi-threaded architecture to avoid blocking due to the use of a
single scheduler.

• Implement different types of network models or extend them to allow more
flexibility when creating malicious models.

• Allow a more dynamic management of agents and their actions (e.g. en-
trance/exit of agents).

In addition to the tools used, we also have shown in detail the implementations of
the two protocols studied during the chapters 4 and 5. This was done to clarify our
models to the reader so that he can better understand our studies. It is important to
note that for some models, it was necessary to modify the simulator in depth, which
contributed to the improvement of this software and thus to allow it to embark more
functionalities like the integration of event-driven executions by environment.

In the next chapter, we will focus on a particular graph-based blockchain proto-
col, Sycomore.

65

66 Chapter 3. Tools

Chapter 4

Graph-based blockchains

“A single act of kindness throws out roots in all directions, and the roots
spring up and make new trees”

– Amelia Earhart

Contents
4.1 Background . 67

4.2 Overview of Sycomore . 70

4.3 Sycomore’s critical issue: difficulty readjustment 74

4.4 Sycomore
++

: a scalable graph-based ledger 76

4.5 Simulation Study of Sycomore
++

. 79

4.5.1 Simulator and Experimental Environment 79
4.5.2 Simulation Model . 79
4.5.3 Scalability Study . 81
4.5.4 Reactivity Study . 84
4.5.5 Adversarial environment . 84
4.5.6 Adversarial strategies . 85

4.6 Conclusion . 88

In this chapter, we focus on the potential of graph-based blockchain in terms
of scalability. We first analyse Sycomore and propose a new graph-based protocol
relying on Sycomore and addressing Sycomore’s critical issue: periodic readjustment
of the difficulty. Moreover, using the tools presented in Chapter 3, we propose fine-
grained simulations to evaluate and compare protocols that have dynamic behavior
over complex graph structures.

4.1 Background

A blockchain constitutes a history that contains all the trades made between its
users since its creation (i.e. since the creation of the first block, also called genesis
block). This history is secure and distributed: it is shared by its various users,
without intermediaries, which allows each one to verify the validity of the chain.
Permanently updated and distributed, the maintenance of the blockchain is based
on cryptographic primitives that make any modification almost impossible, which
increases its security. Transactions between users are thus immutable.

67

68 Chapter 4. Graph-based blockchains

(a) Classical Structure.

(b) DAG Structure.

(c) A Forked Blockchain.

Figure 4.1 – Different Blockchain Structures.

Usually, there exists two types of users, those who exchange transactions without
any need to keep a copy of the chain, the "light users", and those who contribute
more actively to its maintenance by creating blocks, the so-called "block creators".
Each user has a "digital wallet" which contains the private key associated with the
account, as well as the history of transactions made on the blockchain. Essentially,
when a user broadcasts a transaction, it is received by all the other users of the
network and stored in their mempool, a memory space where transactions awaiting
validation are stored. Having the ability to create blocks, the block creators will
group these transactions into blocks. Once a block has been created, it is broadcast
to the network and appended at the end of the blockchain as shown by Figure

Chapter 4. Graph-based blockchains 69

Figure 4.2 – A DAG Example.

4.1a, a mechanism that makes each transaction contained in the blockchain almost
impossible to modify or delete. Consequently, the transactions contained in this
block are removed from users’ mempools.

Directed Acyclic Graph In graph theory, a Directed Acyclic Graph (DAG) is a
directed graph that does not have a circuit. This theory, often used in networking,
has been applied to the blockchain world since the appearance of [3]. As illustrated
by Figure 4.2, graph nodes (A-E) can reference one parent node (e.g. E) or two (e.g.
D). They can also reference no node if they are at the graph’s root (e.g. A) or have
no child node (e.g. G) if they are one of the graph’s leaves.

As shown by Figure 4.1b, a DAG is a distributed ledger whose data structure is
slightly different than the classical chain form. Instead of a single chain of blocks,
we use a graph with vertices and edges. Depending on the solution, these vertices
can be transactions [2] or blocks [3].

DAGs are an interesting solution often considered as a replacement to the classi-
cal chain form because of its ability to better manage data storage and transaction
processing. Since in a graph, each vertex can have several parents, transactions or
blocks do not need to wait for a specific parent before being processed, they can be
validated simultaneously. However, what remains the same as in classical one-chain
blockchains is that each new vertex must refer to the previous vertices as each block
must refer to its previous block in classical structures. Also, conflicts are resolved
by calculating the confirmation depth of the conflicting vertices. In some solutions,
the vertices are associated to a given weight and in this case, the confirmation depth
calculation takes it into account.

Fork As illustrated by Figure 4.1c, a fork is more or less a blockchain that splits
into two or more chains. This phenomenon is caused by a divergence in a block. In
the case of solutions such as PoW-powered blockchains [33], miners are in compe-
tition, thus it can happen that two miners find a block almost at the same time,
therefore other nodes do not necessarily agree on which one to choose. However,
this kind of fork is solved quite quickly when other blocks are added and one chain
becomes longer than the other. This chain is then chosen as the main chain and

69

70 Chapter 4. Graph-based blockchains

the blocks of the other chain are dropped. We call these forks accidental. However,
there are also so-called intentional forks that could be triggered to propose modi-
fications to the original protocol. They can also be used to correct a past security
flaw as for Ethereum [44] and Ethereum Classic [92] or more recently Luna [93] and
Luna Classic [94].

4.2 Overview of Sycomore

Sycomore [27] is a cryptocurrency ledger whose structure is a dedicated balanced
directed acyclic graph of blocks called the SYC-DAG. Construction of the SYC-
DAG is very close to Bitcoin one, i.e., it is fully distributed, permissionless, and
relies on a proof-of-work mechanism. Sycomore enjoys a set of properties that
enable it to dynamically adapt the fan-out of the SYC-DAG to the current number
of transactions submitted to the system.

Properties of Sycomore Sycomore has been designed to meet the following
properties [27]:

P1. Self-adaptation to transaction load. A rise or a drop in the current number
of submitted transactions is dynamically handled by the progressive creation
or disappearance of sibling leaf chains in the SYC-DAG;

P2. Balanced partitioning of transactions. There does not exist any transac-
tion that belongs to two different blocks.

P3. Unpredictability of the predecessor. The leaf chain to which a new block
is appended can neither be chosen nor predicted among all the leaf blocks of
the SYC-DAG.

P4. Chain fairness. All the leaf chains of the SYC-DAG grow at the same speed.

P5. Negligible probability of forks. The probability of forks is maximal when
the SYC-DAG is reduced to a single chain (i.e, 1, 2⇥ 10�3 in the time interval
of 30 seconds) and decreases proportionally with the number of leaf blocks.

To make this chapter self-contained, we detail in this section how Sycomore
implements those five properties.

Property P1 is implemented by introducing the notion of splittable and merge-
able blocks [27], which are a dynamic response to respectively a rise or a drop in
the current submission rate of transactions in the system. Both notions refer to
block load, where the load of a block is the ratio between its number of bytes and
its maximal load (for instance, 1 MByte in Bitcoin prior to the date of SegWit
activation). Hence, a block b appended to the SYC-DAG is called splittable if the
average load of block b together with the load of its cmin � 1 predecessors on the
chain exceeds the overload threshold � (both cmin and � are system parameters).

Chapter 4. Graph-based blockchains 71

Figure 4.3 – An example of a SYC-DAG built by Sycomore. This figure has

been borrowed from [27]. System parameters: overload threshold � = 95%,

underload threshold � = 15%, and cmin = 1. The number of bars in each block

is representative of block load, and colors of the bars illustrate the prefix of

transaction identifiers. This provides an intuitive way to see when chains split

or merge, and how transactions are partitioned over the SYC-DAG: When

the SYC-DAG is made of a single chain due to a very light load (e.g., chain

C"
1), each block contains transactions whose identifiers are prefixed with the

empty binary string label (denoted by "), which explains the multitude of colors

of the blocks (which exactly reflects Bitcoin’s chain). When the chain must

split into two sibling chains because of an increasing transaction load, the new

appended blocks partition the transactions into two sets: those whose prefix

match label " concatenated with 0, i.e, label 0, and those whose prefix match

label " concatenated with 1, i.e, label 1. This explains the partitioning of block

colors in the upper and lower chains respectively. A similar argument applies

when sibling chains merge to a single chain: subsequent blocks of this chain will

contain transactions whose identifier is prefixed by the largest common prefix

of the labels of these sibling mergeable chains (e.g., label 0 in chain C0
8). Chains

C00
9 , C01

10 , C10
6 , and C11

7 are called leaf chains, as blocks br, bs, bm1 and bm2 are the

leaf blocks of the SYC-DAG. Note that this SYC-DAG does not contain any

fork.

When a block b is splittable, miners will create subsequent blocks so that they will
form two parallel chains of blocks, such that the first block of each of both chains
references b. These chains are called sibling chains. Partitioning of the transactions
over the chain blocks is explained when Property P2 is explained. Conversely, when
the transaction rate drastically drops, the block load decreases accordingly, leading
Sycomore to progressively reduce the number of chains in the SYC-DAG to keep
blocks sufficiently loaded. Specifically, a block is called mergeable if the average
load of this block together with the load of its cmin � 1 successive predecessors of
its chain falls short of some given underload threshold � (� is a system parameter).
When two blocks belonging to two sibling chains are mergeable, miners will create
subsequent blocks so that they will form a single chain (called merged chain). Any
block that is neither mergeable nor splittable is said regular. As argued in [27], it is
clear that everyone, and in particular miners, detect the instant at which a block is
splittable or two sibling blocks are mergeable. This is observable and verifiable by

71

72 Chapter 4. Graph-based blockchains

anyone since it only depends on a publicly observable quantity (i.e., block load).
Property P2 aims at fully exploiting the gain brought by sibling chains, i.e, the

effective partitioning (in the mathematical sense) of the transactions over the SYC-
DAG. This property is implemented by introducing the notion of label. A label is a
binary string, and characterizes the common prefix of the identifier (i.e. fingerprint)
of the set of transactions embedded in a block. Any block when created is tagged
with the label of the chain it will belong to (the choice of the chain a block will belong
to is explained when Property P3 is discussed). The genesis block b0 is labelled with
the empty binary string ", and all the blocks from b0 to the first splittable block b (if
any) of the chain, say C"

1 in Figure 4.3, are labelled with the empty string ". Hence,
all the blocks of C" contain transactions for which there is no constraint on the prefix
of their identifier (this reflects Bitcoin’s behavior). On the other hand, all the blocks
of two sibling chains, say C0

2 and C1
3 in Figure 4.3, appended to the splittable block

b inherit b’s label extended with 0 and 1 respectively. Hence, all the blocks of C0
2

(resp. C1
3) only contain transactions whose identifier is prefixed by 0 (resp. 1). As

transactions’ identifiers can be considered as random bit strings, transactions are
evenly partitioned over sibling chains, and transactions cannot appear in more than
one block, which makes the parallelism introduced by the graph structure effective.
The same process applies for any splittable block. Conversely, all the blocks that
belong to a merged chain inherit the largest common prefix of its predecessor labels.
For instance, in Figure 4.3, chains C00

4 and C01
5 give rise to the merged chain C0

8

whose label is the largest common prefix of both labels 00 and 01, i.e., 0.
Property P3 is implemented by using the unpredictability and randomness of

the proof of work (PoW) to assign the predecessor of any block b. To make such an
assignment immutable, verifiable by anyone and non-ambiguous, the header of any
block b contains a set of tuples that (i) acknowledges or commit the miner’s local
view of the SYC-DAG, and (ii) characterizes b’s predecessor. More precisely, let
Lu be the local view of the SYC-DAG at miner u. Suppose that Lu contains c leaf
blocks b`1 , . . . , b`c at the time u starts b’s creation process, and among these c leaf
blocks, s of them are splittable, 1 miner u builds b’s header as follows: it inserts,
among different pieces of information, a set of (c+ s) commitment tuples

{. . . , (H(b`j), `0j ,m
`
0
j), . . .},

where, for 1 j c, H(b`j) is a cryptographic link to leaf block b`j , `0
j

is the label
of the block for which b`j will be the predecessor, and m`

0
j is the Merkle root of the

set of locally pending transactions whose identifier is prefixed by `0
j
. If leaf block

b`j is splittable then two tuples (H(b`j), `j0,m`j0) and (H(b`j), `j1,m`j1) commit
the presence of block b`j in Lu. If leaf blocks b`j0 and b`j1 are both mergeable
and belong to sibling chains then two tuples (H(b`j0), `j ,m`j) and (H(b`j1), `j ,m`j)
commit the presence of those mergeable blocks in Lu. By doing this, block b extends
(c + s) commitment paths, one to each leaf block of Lu, and recursively down to

1Note that a splittable block bs is considered a leaf block as long as bs is not the predecessor of
two sibling blocks.

Chapter 4. Graph-based blockchains 73

the genesis block. The length of a commitment path (that is the number of blocks
on the path) is used to resolve forks if any (see Rule 5). Miner u then engages
in finding a nonce ⌫ such that ⌫ is the solution of the PoW applied on b’s header
(exactly as in Bitcoin). If successful, the predecessor of block b is the leaf block
b`i in Lu closest to ⌫. More precisely, for each tuple (H(b`j), `0

j
,m`

0
j) in b’s header,

the numerical value of the “exclusive or” (XOR) between ⌫ and `0
j

is computed, and
the winning tuple is the one that minimizes this distance. Let (H(b`i), `0

i
,m`

0
i) be

that tuple. The predecessor of block b is thus the leaf block b`i . Miner u completes
the creation of its block b by embedding the appropriate set of transactions, that is
the set of transactions whose identifier is prefixed by `0

i
and whose Merkle root is

m`
0
i . Extracting b’s predecessor from the PoW computed for b makes the choice of

block’s predecessor an unpredictable and random process. Notice that no specific
reference to b’s predecessor is added in b’s header: b’s header is securely sealed with
PoW ⌫, and thus when a node receives block b, it derives b’s predecessor by using
the information in b’s header (i.e. ⌫ and the set of tuples).

Property P4 follows from the assumption that the PoW is modeled by a random
oracle, and that transaction identifiers result from the SHA256 cryptographic hash
function.

Property P5 directly derives from Properties P3 and P4: since each created
block is appended to a random leaf block, the probability that two blocks with the
same label share the same predecessor (this is a fork situation) is equal to p/c, where
p is the probability of fork in Bitcoin, and c is the current number of leaf blocks in
the SYC-DAG.

Based on the above descriptions, a SYC-DAG is defined as follows.

Definition 4 (SYC-DAG [27]). A graph G = (V,E) is a SYC-DAG if G has a
unique genesis block b0 and there exists a partition P = {C`1 , . . . , C`n} of V such
that 8i s.t. 1 i n, C`i is a chain with label `i (note that several chains in P may
be assigned the same label) and the following three properties hold:

8C`i 2 P, 8k s.t. 0 k < |`i|, C`
bk
i 2 P (4.1)

8C`i a merged chain 2 P, C`i.0, C`i.1 2 P (4.2)
8C`i , C`j 2 P, `i = `j) [pred(C`i) 6= pred(C`j)] (4.3)

Similarly to all PoW-based distributed ledgers, the distributed block creation
process may lead to forks, that is the presence of at least two concurrent blocks
appended to the ledger. In Sycomore two blocks are concurrent if and only if both
blocks have the same label and the same block predecessor (which differs from split
situations). The presence of forks gives rise to concurrent SYC-DAGs Lu and L0u
(both of them being rooted at the genesis block). To resolve forks, that is to locally
keep a single SYC-DAG L?

u, i.e, L?
u = Lu or L?

u = L0u, node u applies the fork
rule described below. This rule relies on the confirmation level of a SYC-DAG. By
definition, the confirmation level of a SYC-DAG is equal to the number of blocks

73

74 Chapter 4. Graph-based blockchains

that belong to the longest commitment path (as defined earlier in this section) that
commit the presence of the genesis block in this SYC-DAG.

Rule 5 (Fork rule [27]). At any time, keep the SYC-DAG L? for which the confir-
mation level of the genesis block is the largest.

As for Bitcoin, the fork rule favors the SYC-DAG that has been acknowledged
by the largest proportion of miners. Note that two concurrent SYC-DAGs may
temporarily have the same confirmation level. By convention, the oldest SYC-DAG
is kept as long as it is not superseded. Once a block has been inserted deep enough
then by construction of the blocks and by Rule 5, with high probability such a block
will remain forever in the local view L?

u of any node u in the system. The notion of
“deep enough” relates to the block confirmation level.

4.3 Sycomore’s critical issue: difficulty readjustment

By dynamically adapting the width of the graph to the actual transaction load of the
network, one might expect that Sycomore would guarantee an almost optimal trans-
action latency. By transaction latency, it is meant the time that elapses between
the instant at which a user submits a transaction to the network and the instant
at which this transaction is confirmed, i.e., belongs to a block that is deeply settled
down into one of the chains of the graph. Transaction latency deeply depends on
the mining difficulty, i.e. the difficulty to create a block. To cope with variations of
the network computational power, the mining difficulty is periodically readjusted,
to guaranteeing both security and acceptable latency. In Bitcoin, such a readjust-
ment is executed every time the height of the blockchain has been increased by 2016
blocks, i.e. every 14 days. Sycomore has a similar readjusting scheme, to guaran-
tee that the creation time between any two successive blocks of any given chain is
constant in average, the mining difficulty D is periodically adjusted based on the
current network hashrate (which is reflected by the time it took to mine the last
blocks of the SYC-DAG) and the current number c � 1 of leaf blocks. Specifically,
adjustment of the difficulty takes place every time the height of the SYC-DAG has
been increased by h blocks with respect to the last time the difficulty was adjusted,
that is, when its height h satisfies h = 0 mod Hmax, with Hmax = 2016. To cope
with the fact that some of the leaf chains may grow a little bit slower than others,
and thus leaf blocks do not reach height h at the same instant, once a leaf chain has
reached height h, miners do not take this leaf chain into account to determine the
predecessor of their block, i.e., they only consider all the leaf blocks whose height
have not reached height h yet. Once all the leaf chains have reached height h, miners
readjust the difficulty, if needed, to fit the actual network hash rate and the width
of the graph, i.e., the number of leaf chains in the graph. Note that there is no
incentive for an adversary not to follow this rule since its new block will be rejected
by the other miners.

Unfortunately, as shown by figure 4.4, it is likely that between any two periodic
readjustments of the difficulty, the width of the SYC-DAG drastically increases or

Chapter 4. Graph-based blockchains 75

Figure 4.4 – Illustration of the issue caused by periodic readjustment of
the difficulty. System parameters: overload threshold � = 95%, under-
load threshold � = 15%, cmin = 1, and Hmax=2. The figure shows the
evolution of a SYC-DAG with a dynamic transaction demand. At the
beginning, the graph contains one chain and the difficulty is computed
so that the inter-block delay on the SYC-DAG, � = 10 mn. A sudden
increase in the transaction rate at t=10mn causes several splits. Since
the difficulty is not readjusted yet, the inter-block delay on each chain
�c increases, and the performances are not improved by the split as they
should be. However, when height h = 2, happens the first Hmax (t=30mn),
the difficulty is recalculated to fit the new number of branches (4). The
performances are improved with � = 2,5 mn. When the transaction rate
decreases at t=45mn, the system starts to merge but as the difficulty
is still calibrated for a 4 chains SYC-DAG, the blocks are still created
as fast, and �c goes from 10 to 2,5mn, which could cause consistency
problems (forks). At the next Hmax at h = 6 (t=57,5mn), the difficulty is
re-calibrated and �c returns to a normal value of 10mn.

75

76 Chapter 4. Graph-based blockchains

decreases according to the transaction load demand (a cascade of splits or merges is
observed when the submission transaction rate varies as observed in Section 4.5.4).
This will lead to an inappropriate difficulty whose impact is twofold: from a security
point of view, it may degrade the ledger quality, that is the maximal proportion of
blocks contributed by the adversary that belong to the SYC-DAG of any honest
node. From a progress point of view, if the difficulty becomes too high, the average
creation delay between any two successive blocks will drastically increase, augment-
ing accordingly transaction latency, and thus transaction confirmation delay. To
illustrate this point, let us consider the scenario where, at the time readjustment
took place, the graph’s width was very large, but subsequently the number of sub-
mitted transactions significantly dropped, leading to a progressive diminution of the
number of leaf chains, and thus an under-estimated mining difficulty. Such a sce-
nario shows a possible breach of security: adversarial miners can take advantage of
a too low mining difficulty to degrade the ledger quality [95], that is the maximal
proportion of blocks contributed by the adversary in a sufficiently long part of the
ledger maintained by a honest node. The opposite scenario may also happen, where
a sudden augmentation of the transaction rate will give rise to an over-estimated
mining difficulty, and thus a very high power consumption, which will be in the
worst case similar to Bitcoin’s one. As a consequence, transaction latency will be
very high, until the next readjustment of the difficult takes place, thus hindering
scalability.

4.4 Sycomore
++

: a scalable graph-based ledger

To prevent such critical issues, we propose Sycomore++, which aims at guaranteeing
that whatever the structure of the SYC-DAG, a constant inter-block creation delay
is maintained on any of its chains. The main idea of Sycomore++ is to continuously
adapt the block creation difficulty to the actual number of leaf chains of the SYC-
DAG. Note that this adaptative adjustment does not replace the periodic global
computational power readjustment. The former adapts the difficulty to the structure
of the SYC-DAG while the latter adapts the difficulty to the hashing power of the
system.

Lemma 6. The expected effort miners must exert in Sycomore++ to successfully
create a block decreases with the number of leaf blocks of the SYC-DAG.

Proof. Let U be the current set of miners that participate to the construction of the
SYC-DAG. We suppose that the computational power of the network is uniformly
distributed among all the miners in U . Producing a proof of work is a random
process with low probability of success so that a lot of trials and errors are required
on average before a valid proof of work is generated, the probability of success ppow
of each trial being the same. The Geometric distribution models the number of
failures before the first success. Thus, if random variable X represents the number
of failures before the first success, we have P (X = q) = (1 � ppow)q�1ppow. Let

Chapter 4. Graph-based blockchains 77

W be the total computational power of the system. In Sycomore++, the difficulty
is divided by the current number c of leaf chains in the SYC-DAG (Recall that in
Sycomore, this does not necessarily hold, in particular in presence of variations of
the system workload demand). This comes backs to multiplying the probability of
success ppow of the PoW process by c. The probability p of successfully mining a
block is thus given by p = W ⇥ ppow ⇥ c, and at a miner, this probability is equal to
pu = p/|U|. In Sycomore++, the probability for a miner to work on a given chain
is 1/c, and the average number nc of miners working on a chain is equal to |U|/c.
Thus the probability pc of successfully mining a block on a given leaf chain pc given
by pc = p/c. Let Xc be the random variable representing the number of trials before
the first success on a given leaf chain, we have (Xc) = 1/pc = 1/(W ⇥ ppow), and
consequently, (X) = 1/p = 1/(W ⇥ ppow ⇥ c).

This lemma shows that in Sycomore++ the expected number of unsuccessful tri-
als before creating a block decreases with the number of leaf blocks, which is not the
case in Sycomore. This demonstrates the exemplary behavior of Sycomore++: Both
its SYC-DAG structure and the mining difficulty self-adapt to the current number
of transactions submitted to the system, which allows it to operate in adversarial
environments in which the transaction load can change arbitrarily. This is confirmed
by the experimental evaluation presented in Section 4.5.

The following Lemma shows that the occurrence of forks decreases exponentially
with the number of leaf chains.

Lemma 7. [27] Given a ledger L?
v with c leaf chains C1, . . . , Cc, each one being

selected by the block creation process with probability pi, with
P

c

i=1 pi = 1, the
probability that two blocks extend the very same chain Ci, 1 i c during an
interval of time [0, t] is pi(t) = 1 � e��t/c(1 + �t/c), where � is the block creation
rate.

Proof. Let us first consider the case where c = 1. We model the block creation
process as a Poisson process. In the following, an event represents the creation of
a block. Let {N(t), t � 0} with rate �, be the Poisson process representing the
number of events in the interval (0, t). We then have, for every n � 0,

P{N(t) = k} = e��t
(�t)n

n!
.

For all t > 0, we denote by p(t) the probability that at least two events of this
process occur in an interval of length t.

p(t) = P{N(t) � 2} = 1� e��t(1 + �t).

Let us assume that the SYC-DAG contains c � 1 leaf blocks, b`11 , . . . , b`cc . The
probability pi for a newly created block to have b`i

i
as predecessor depends on b`i

i
’s

header. The events produced by the Poisson process can be of c different types.
An event of type i represents the creation of a block that matches chain C`i

i
. Each

77

78 Chapter 4. Graph-based blockchains

event produced is of type i with probability pi = 1/c, for i = 1, . . . , c. The suc-
cessive choices for the types are supposed to be independent of each other and also
independent of the Poisson process. For every i = 1, . . . , c, let {Ni(t), t � 0} be
the number of events of type i produced the Poisson process. It is well-known that
{Ni(t), t � 0} is a also Poisson process with rate � ⇥ pi and that these c Poisson
processes are independent. We denote by pi(t) the probability that at least two
events of type i occur in the interval (0, t) (i.e. a fork occurs in the interval (0, t)).
We then have, for every i = 1, . . . , c,

pi(t) = P{Ni(t) � 2} = 1� e��t/c(1 + �t/c).

It is interesting to remark that this probability holds in Sycomore only at the instants
at which readjustments of the difficulty occur.

Lemma 8. For any correct node u, L?
u does not contain double-spending transac-

tions

Proof. The proof is by contradiction. Suppose that L?
u contains two transactions

T1 = (I1, O1) and T2 = (I2, O2) such that T1 and T2 redeem a common UTXO o,
where o belongs to the output set of some transaction T 2 L?

u. Suppose that T1

and T2 respectively belong to blocks b1 and b2. Since b1 and b2 belong to L?
u both

blocks are valid. Two cases must be considered.

• b1 = b2. This case is impossible since it would mean that block b1 = b2 is
invalid (i.e., it contains conflicting transactions T1 and T2).

• b1 6= b2. Suppose without loss of generality that node u already appended b1
to L?

u by the time it wishes to append b2. Two sub-cases are possible.

– b2’s header commits the existence of b1 in L?
u, that is b2’s header extends

at least one commitment path that acknowledges the presence of b1 in
one of the chains of L?

u. This contradicts the assumption that b2 is valid.

– b1 and b2 have been concurrently mined, that is at the time both blocks
were mined their respective miners did not know the existence of the other
block. By assumption, b1 2 L?

u at the time node u wishes to append b2.
Since the presence of b1 2 L?

u makes block b2 invalid, node u will reject
block b2. This contradicts the assumptions that b2 2 L?

u. Note that
another node v may have first appended b2 to its ledger L?

v, and thus
will reject block b1. Eventually, either L?

v or L?
u will contain the longest

commitment path to the genesis block, and thus by Rule 5, the ledger
with the longest commitment path to the genesis block will be kept by
all the nodes. This completes the proof.

Chapter 4. Graph-based blockchains 79

4.5 Simulation Study of Sycomore
++

This section presents the agent-based simulation study we have conducted on Bit-
coin, Sycomore and Sycomore++. The tools we used for this study are detailed in
Chapter 3 but in order to make this chapter self-contained, we will give a brief sum-
mary of these tools before we develop the rest of our study. Note that the source
codes of the protocols we study here: Bitcoin, Sycomore and Sycomore++ as well
as all the scripts of the experiments are publicly accessible [96].

4.5.1 Simulator and Experimental Environment

We have used an agent-based simulation framework dedicated to blockchain systems,
called Multi-Agent eXperimenter (MAX) [5] based on the MaDKit framework [86].
MAX offers generic libraries to easily develop distributed ledger protocols and a large
range of simulation scenarios. The simulator is a discrete event simulator, where the
unit of simulation time is referred to as a tick. Message-passing libraries allow us
to configure different types of communication schemes and message delays. In this
work, the communication schema is configured as a reliable broadcast with config-
urable delay. Impact of message losses is left for future works. All the experiments
for Sycomore++, Sycomore and Bitcoin have been run on Grid’5000, a large-scale
and flexible test-bed for experiment-driven research [6]. Due to the computational
complexity of simulation models and experiments involving a representative number
of agents, each experiment presented in this chapter takes in average 8 hours. For
more details about the tools used for this evaluation, please refer to chapter 3.

4.5.2 Simulation Model

4.5.2.1 Block creation model

Miners create blocks by following the prescribed protocols, i.e., validation of the
set of transactions to be inserted and creation of block header. For straightforward
reasons, miners do not solve proof-of-works but follow a simulation model. Before
disseminating a block to the network, a miner waits for a time determined by the
PoW model described below. Note that for both Sycomore++ and Sycomore, the
selection of the random predecessor in the model is achieved by computing the
distance between the block header (rather than the PoW nonce ⌫, which is not
computed in the model) and each leaf block of the SYC-DAG.

4.5.2.2 Proof-of-Work Model

To simulate the effort needed to find the proof, each miner u 2 U waits for a certain
amount of ticks, which depends on its computational power Wu. Specifically, Wu is
a fraction of the global computational power distributed among miners according to
a power law distribution (with parameter 3) such as

P
u2U

Wu = 1. The probability for

miner u to solve the proof-of-work after ` successive independent draws is modeled as

79

80 Chapter 4. Graph-based blockchains

(a) Geometric law’s cumulative ditri-

bution function.

(b) Proportion of blocks created by

each mining pool.

Figure 4.5 – Proof-of-Work Model.

a geometric distribution (figure 4.5a) with parameters ` and pPOW , where pPOW is
the probability of successfully solving the Proof-of-Work, i.e., pPOW = D/2k, where
k the security parameter of the Proof-of-Work and D the difficulty level. Difficulty
and security parameters have been set such that for W = 1, the time to solve the
proof-of-work is 10 ticks in expectation.

Calibration of our model has been set by using Bitcoin real network statistics
and by running our model with data extracted from the real network using tools
presented in [97]. Figure 4.5b represents the proportion of blocks created (y-axis)
for each miner (x-axis) and shows how well our model of proof-of-work (blue bars)
fits Bitcoin real data (orange bars).

4.5.2.3 Common parameters of the simulations

For all the experiments presented in this chapter we have fixed some common pa-
rameters as follows:
- The block capacity, that is the maximal number of transactions a block can embed,
is set to 100 transactions (to avoid the simulator overload). Note that while in Bit-
coin the block capacity is approximately equal to 4, 000 transactions [53], reducing
the block capacity does not affect the behaviour of the protocols.
- A transaction is confirmed when the block this transaction belongs to has a con-
firmation level equal to k = 6. Recall that the confirmation level of any block b
is equal to the number of blocks that confirm the presence of b in the blockchain.
Note that differently from Bitcoin, in both Sycomore and Sycomore++, these blocks
can belong to different chains of Sycomore, as long as these blocks form a path of
commitment down to block b.
- cmin is set to 1. Impact of cmin on the structure of the SYC-DAG and its perfor-
mances is left for future works.
- For each experiment, we have run sufficiently many simulations to get a confidence
interval equal to 5±%.

Chapter 4. Graph-based blockchains 81

4.5.3 Scalability Study

This section studies the capability of Sycomore++, Sycomore and Bitcoin to handle
high transaction submission rates. Specifically, we evaluate the transaction con-
firmation rate, the transaction latency, i.e., the average time elapsed between the
submission of a transaction in the network and the time at which the transaction is
confirmed, and the average number of pending transactions at the end of the simu-
lation (i.e., waiting to be embedded in a block). The energy lost by each protocol
is also measured. The lost energy is the sum for each miner u and for each created
block b not appended to the distributed ledger of the time spent working on b times
the computational power cpu. In this section, we assume that forks do not occur.

4.5.3.1 Experiment setting

The overload threshold � which conditions the SYC-DAG splitting in both Sycomore
and Sycomore++ varies from 90% to 100%. Note that when � = 100%, splits never
occur and thus both Sycomore and Sycomore++ reduce to Bitcoin. The submission
rate of transactions freq, which represents the number of transactions submitted
per tick of simulation, is set at the beginning of each experiment. freq varies from
1 to 160 txs/tick. Let us remark that we tune the proof-of-work parameters to
get in expectation one block mined every 10 ticks. This means that in Bitcoin
freq = 10 txs/tick already exhausts the system transaction treatment capacity, as
the system mines one block every 10 ticks in expectation and one block contains 100
transactions. From this observation, we might expect that for freq > 10 txs/tick,
pending transactions will accumulate over time in, at least, Bitcoin ledger. Note
that to avoid the overload of the simulator we were limited to freq = 160 txs/tick.
Anyway, setting freq up to 160 txs/tick allows us to severely stress Bitcoin, Syco-
more and Sycomore++. Similarly to Bitcoin Core client, miners give priority to old
transactions in Bitcoin, Sycomore and Sycomore++.

4.5.3.2 Experiment results

The main results of our experiments appear in the graphs of Figure 4.6. Note that
in all the graphs, points are linked together with lines. This is only for readability
reasons.

Let us first focus on the confirmation rate of transactions as a function of their
creation rate (see Figure 4.6a). The main observation regarding Bitcoin and Syco-
more is that whatever the computational power of the network, no more than 10
txs/tick are confirmed, which illustrates the impact of the globally constant inter-
block delay (i.e. a block is mined every 10 ticks in average). Sycomore shows
slightly worse results than Bitcoin, which is due to the augmentation of the num-
ber of chains, in which blocks can be moderately loaded. On the other hand, by
continuously adapting the mining difficulty to the number of leaf blocks, and thus
to freq, Sycomore++ exhibits an optimal behavior regarding confirmed transactions,
i.e., 8freq, the transaction confirmation rate equals the transaction creation rate.

81

82 Chapter 4. Graph-based blockchains

(a) Transaction confirmation rate as

a function of the transaction creation

rate.

(b) Number of pending transactions as

a function of the transaction creation

rate.

(c) Lost energy as a function of the

transaction creation rate.

(d) Transaction average latency as a

function of the transaction creation

rate.

(e) Reactivity of both Sycomore and

Sycomore
++

in presence of a peak of

load.

Figure 4.6 – Scalability of Bitcoin, Sycomore and Sycomore++ (overload
threshold � = 90%, underload threshold � = 0%) and Reactivity of both
Sycomore and Sycomore++ (� = 90%, � = 10%).

Chapter 4. Graph-based blockchains 83

For the sake of comparison, confirming 160 txs/tick with the simulator (and as pre-
viously said we cannot stress more the simulator) means confirming 6, 400 txs/mn
in the real life.

Figure 4.6b shows the average number of pending transactions at miners, that is
the average number of transactions that accumulate at miners before being embed-
ded in blocks. It clearly shows that for both Bitcoin and Sycomore, this number lin-
early increases with the transaction submission rate once it exceeds 10txs/tick since
this corresponds to the global inter-block creation delay. In contrast, by adapting
the number of created blocks to freq, Sycomore++ drastically reduces the average
number of pending transactions. For example, for freq = 10 txs/tick, this num-
ber is equal to 432 transactions, and for freq = 160 txs/tick, it is equal to 1, 957
transactions, compared to 154, 000 ones in both Bitcoin and Sycomore.

Figure 4.6c illustrates the lost energy as a function of freq. In Bitcoin, since the
inter-block delay, the number of miners, and the difficulty do not vary during each
experiment, the same amount of energy is lost regardless of freq. While this setting
also applies to Sycomore, the fact that the SYC-DAG becomes larger with increasing
values of freq gives rise to a uniform distribution of the global computational power
over the leaf chains, and thus decreases miners’ competition. Thus less work is
wasted w.r.t Bitcoin. Regarding Sycomore++, for increasing values of freq, the
SYC-DAG becomes larger and blocks are created faster (as the mining difficulty
adapts to the SYC-DAG structure), which allows Sycomore++ to reach an optimal
number of leaf chains more quickly than Sycomore does. As a consequence, we get
a better parallelism of miners’ work, and thus a drastic reduction of energy loss.

Figure 4.6d illustrates the average transaction latency as a function of freq.
Recall that the transaction latency measures the time elapsed between the instant
at which a transaction is submitted to the network by the user and the time it be-
comes confirmed in the ledger. In contrast to all the other experiments, transaction
latency has been measured as follows: transactions are submitted at freq for a while,
then freq is set to 0, and simulations stop once all the submitted transactions have
been confirmed. The first observation is that, in Bitcoin, once freq � 10 txs/tick,
transaction latency linearly increases with freq, which clearly corroborates both Fig-
ures 4.6a and 4.6b. Regarding Sycomore, the loss of performance w.r.t Bitcoin is due
to the fact that blocks in all the sibling chains are not necessarily fully loaded, which
delays accordingly transaction latency. On the other hand, Sycomore++ enjoys an
average constant latency, which is equal to 50 ticks regardless of freq. Essentially,
the more transactions are submitted, the more blocks are filled until the optimal
shape of the graph is reached. Results shown in Figures 4.6a, 4.6b combined with
these results clearly demonstrate the exemplary behavior of Sycomore++: transac-
tions are confirmed at the rate at which they are submitted by clients to the system,
and their latency is constant whatever the submission creation rate, meaning that
users can safely predict the time at which their transaction, if valid, will be deeply
confirmed in Sycomore++.

83

84 Chapter 4. Graph-based blockchains

4.5.4 Reactivity Study

This section aims at assessing the capacity of both Sycomore and Sycomore++ SYC-
DAG to react to sudden and abrupt fluctuations in the creation transaction rate. 2

4.5.4.1 Experiments setting

As briefly presented in Section 4.2, when freq shrinks, the SYC-DAG reacts by
progressively decreasing the under loaded sibling chains, and thus the number of
created blocks. Thus each merge divides by almost two the number of blocks that
will be subsequently created. By the randomness of transaction identifiers, if one
chain becomes under loaded, then soon after all, the chains will become under loaded
too, and thus merges will occur in cascade. Initially, freq = 100 txs/tick during 10
ticks to mimic a transaction peak load, and then at tick t = 12, freq = 0 txs/tick.

4.5.4.2 Experiments results

Figure 4.6e illustrates the reactivity of both Sycomore and Sycomore++ in presence
of a load peak (illustrated by the red constant function from t = 1 to t = 11 ticks
at freq = 100txs/tick). Both Sycomore and Sycomore++ initially undergo a series
of splits, and then progressively move on to a series of merge up to converging to
a single chain of blocks. Sycomore++ differs from Sycomore in its rapidity to split
and merge: Sycomore++ succeeds in coping with the load pick 75% faster than
Sycomore does, and 33% faster than Sycomore to cope with the sudden shrink of
load. It is worthwhile to observe that those results combined with the one observed
in Section 4.5.3, assess the capability of both Sycomore and Sycomore++ to meet
Properties P1 and P4.

4.5.5 Adversarial environment

This section measures the impact of high transmission delays on the number of
forks and the time it takes for Bitcoin, Sycomore and Sycomore++ to resolve them.
This section supposes that all miners are honest and thus do not design adversarial
strategies to create forks (adversarial behaviors are studied in Section 4.5.6). We
suppose that simultaneous events are not possible. Thus if transmission delays are
null, fork can never occur (once a miner receives a block b that would be appended
to the same leaf block as its own currently created block b0, it does not broadcast
b0). When transmission delays increase, miners will broadcast their blocks before
detecting the presence of concurrent ones, giving rise to forks. Let � be the constant
transmission delay on the network. Let tb and tb0 be the instant at which the two
concurrent blocks b and b0 are respectively broadcast. Forks can occur only if � is
greater than the time elapsed between tb and tb0 .

2We omit Bitcoin from this evaluation since Bitcoin chain does not adapt to transaction demand.

Chapter 4. Graph-based blockchains 85

� = 0 � = 0.1 � = 1 � = 5
f tr f tr f tr f tr

Bitcoin 0 0 0.5 1.4 0.9 10.8 2.3 36.6
Sycomore 0 0 0 0 0 0 0.6 11.7
Sycomore++ 0 0 0 0 0 0 1.1 6.1

Table 4.1 – Average number f of forks and average time to
resolve one fork (tr) as a function of the network delay (ticks).

4.5.5.1 Experiment settings

We vary the overload threshold � from 90% to 100% and set the underload threshold
� to 0%, so that merge do not happen (for � = 100%, splits never happen and thus
the SYC-DAG reduces to Bitcoin’s chain). freq is set to 160txs/tick to provoke
splits. � ranges from 0 (no fork) to 5 ticks. It is important to observe that � = 5
ticks is very large compared to the average time needed to create a block (i.e., 10
ticks). The reason is that we want to stress the system under constant and very
high submission rates to provoke splits, and large transmission delays to study their
impact on the occurrence and resolution of forks.

4.5.5.2 Experiment results

The main results drawn from our experiments appear in Table 4.1, which shows the
impact of � on the the number of forks f and their resolution time tr (in ticks).
Forks are alternative stories, that is having n forks in a simulation means having
n + 1 alternative ledgers. The fork resolution time tr is equal to the time elapsed
between the creation of an alternative chain (Bitcoin) or SYC-DAG (Sycomore and
Sycomore++) and the instant at which a ledger has the best confirmation level of the
genesis block w.r.t the others ledgers (see Rule 1, Section 4.2). As can be observed,
the number of forks f increases with �. As Sycomore and Sycomore++ differ in
their capacity to continuously adjust the difficulty to the actual number of leaf
blocks, their tolerance to fork occurrence is different: decreasing (resp. increasing)
the mining difficulty reduces (resp. enlarges) the standard deviation between any
two blocks b and b0 creation times, and therefore impacts the probability with which
� > |tb � tb0 | holds or not. On the other hand, as blocks are created faster, fork
resolution takes less time in Sycomore++ than in Sycomore. Hence, if sellers adopt
the same rule as in Bitcoin to wait for a given period of time T before sending their
goods to buyers, we clearly see that both Sycomore and Sycomore++ drastically
reduce T (i.e., T/3 for Sycomore and T/6 for Sycomore++ w.r.t Bitcoin for � = 5
ticks).

4.5.6 Adversarial strategies

This section studies the resilience of Bitcoin, Sycomore and Sycomore++ in presence
of adversarial strategies that could hinder the chain quality property as defined

85

86 Chapter 4. Graph-based blockchains

(a) Impact of a ledger attack on the

ledger quality. Hmax = 1.

(b) Impact of a ledger attack on the

ledger quality. Hmax = 2.

(c) Impact of a chain attack on the tar-

geted chain quality. Hmax = 1.

(d) Impact of a chain attack on the

ledger quality. Hmax = 1.

(e) Impact of a chain attack on the

ledger quality. Hmax = 2

Figure 4.7 – Impact of the Ledger and Chain Attacks.

in [95]. The chain quality property states that, in Bitcoin, the adversary may control
at most a µ/(1 � µ) percentage of the blocks in the chain, where µ represents the
ratio of the network hashing power owned by the adversary. As briefly explained
in Sections 4.2 and 4.4, both Sycomore and Sycomore++ aim at guaranteeing that
miners can neither foresee nor choose the leaf chain to which their block will be
appended prior to having irremediably completed the construction of their block’s
header (Property P3). The reason is to prevent an adversary from devoting all its
computational power to the growing of a specific chain. This means that the only
way for the adversary to target a specific chain is to repeatedly generate blocks until
a valid header for the targeted chain is produced. This process is computationally

Chapter 4. Graph-based blockchains 87

intensive and thus, the objective of these experiments is to determine how much
mining power the adversary should exert to have an effective impact on targeted
chains. This has led us to design and implement the following two attacks. In
the first one, called ledger attack, the attacker tries to undermine the whole ledger
quality, i.e., tries to maximize the proportion of blocks it contributed in Bitcoin
chain, and in each chain of the SYC-DAG in both Sycomore and Sycomore++. In
the second one, called chain attack, the adversary targets a specific chain of the
SYC-DAG and tries to maximize the proportion of blocks it contributed within
this chain. 3 This requires for the adversary to only keep the blocks they have
mined that match the targeted leaf chain. Note that the honest miners feed all
leaf chains equally, including the one targeted by the adversary. The impact of the
readjustment period Hmax is noticeable in the chain attack. Indeed, as discussed in
Section 4.2, at each readjustment period, i.e., each time the length of the ledger has
been increased by Hmax w.r.t to the previous re-adjustment, (i) the mining difficulty
is recomputed to adapt to the actual computational power of the system and (ii)
late leaf chains catch up to Hmax if necessary. In the latter case this means that
if the chain targeted by the adversary is among the first ones to reach Hmax, then
the adversary (and the honest miners) will not be able to contribute blocks on the
targeted chain (any block appended to these fast leaf chains will be ignored by the
honest miners as long as the other chains have not caught up). So to increase the
speed at which all the leaf blocks caught up, the adversary contributes blocks on
these late leaf blocks, so that it will be able to contribute on the targeted chain
quicker. It is important to note that all the blocks contributed by the adversary
are all valid otherwise they would not appear in the ledger. However, they possibly
favour particular transactions submitted by the adversary, or in contrast do not
contain transactions the adversary wishes to exclude from the ledger.

Experiments setting In addition to the parameters cited in Section 4.5, both
attacks share the same experiment settings. We set freq = 40 txs/tick to provoke
splits. The proportion of computational power µ owned by the adversary ranges
in the interval [0% � 50%]. Operationally, we divide miners into two groups, the
honest and malicious groups, and allocate each group with a proportion of the
total computational power W , i.e., W (1 � µ) for the honest group and Wµ for
the malicious one. This computational power is then decentralised, i.e., divided
among miners of each partition (see Section 4.5.2 for more details on this aspect).
Experiments are run with Hmax = 1 and Hmax = 2.

Ledger attack Figures 4.7a and 4.7b illustrate the impact of the ledger attack
in Bitcoin, Sycomore and Sycomore++ distributed ledgers. The main observation
drawn from both figures is the fact that the ledger quality property [95] holds in
Bitcoin, Sycomore and Sycomore++: the adversary cannot control more than µ/(1�
µ) percent of the blocks in the ledgers. Furthermore the impact of Hmax value is

3Note that the chain attack does not make sense in Bitcoin.

87

88 Chapter 4. Graph-based blockchains

negligible in both Sycomore and Sycomore++ since the adversary has no better
strategy than appending the maximum number of blocks on each chain of the SYC-
DAG.

Chain attack Figures 4.7c, 4.7d and 4.7e illustrate the impact of the chain
attack on the quality of the targeted chain (Figure 4.7c) and on the quality of the
ledger (Figures 4.7d and 4.7e). We have implemented the chain attack as follows:
the malicious group of miners focuses on the leaf chain with the lowest label (this
could be any existing leaf label) and only appends blocks to it, which requires for
the adversarial group to discard all the blocks they have mined that do not match
the lowest label. The main observation drawn from Figure 4.7c is the fact that
in both Sycomore and Sycomore++, the chain quality holds: the adversary cannot
control more than µ/(1�µ) percent of the blocks in the targeted chain. This figure
also illustrates that in both Sycomore and Sycomore++, the computational power
is equally distributed on the SYC-DAG leaf chains.

Figures 4.7d and 4.7e show the very low impact of the chain attack on both
Sycomore and Sycomore++ quality. For instance, if the adversary has 50% of the
hashing power, then it will control no more than 10% of the blocks in the honest
players’s ledger. It is interesting to see the impact of Hmax value on the ledger
quality: when Hmax = 1, the adversary continuously tries to append its contributed
blocks to its targeted chain at the expense of throwing away all its blocks that do not
fit this chain. On the other hand, when Hmax = 2, the adversary must periodically
feed the other chains when its targeted chain has been increased by 2 before all
the other ones (actually this is often the case since both the adversary and the
honest miners contribute to this targeted chain). As a consequence, the percentage
of blocks contributed by the adversary in the ledger augments in both Sycomore
and Sycomore++, while completely satisfying the ledger quality property [95].

4.6 Conclusion

In this chapter, we analysed Sycomore, a graph-based blockchain whose structure
self-adapts to fluctuations in transaction submission rates. Unfortunately, between
two difficulty readjustment’s periods, we have seen that Sycomore had performance
and even security concerns. This chapter presents a twofold contribution.

First, we prove that, in Sycomore, between two readjustments of difficulty, the
mining difficulty which was computed to fit both the hash rate of the network and
number of chains at the last readjustment may currently be either under-estimated
or over-estimated, which could cause performance and security concerns.

Given that, we present Sycomore++, a truly scalable proof-of-work based proto-
col that solves the critical issues mentioned above. Sycomore++ inherits the main
mechanisms of Sycomore, while adding a new mechanism to adjust difficulty in such
a way that at any time a constant inter-block creation delay is maintained on any
leaf chains of the graph.

Chapter 4. Graph-based blockchains 89

Lastly, we propose fine-grained simulations to evaluate and compare protocols
that have dynamic behavior over complex graph structures. More in detail, to
finely validate and compare the behavior of Sycomore++ with respect to its direct
competitors, we have implemented Bitcoin, Sycomore and Sycomore++ on an agent-
based simulator and have compared these three protocols in presence of adversarial
environments, i.e., sophisticated attacks, large communication delays, and sudden
and substantial variations of the system workload demand. Lessons learnt from
these experiments show that Sycomore++ succeeds in providing (i) a transaction
confirmation rate varying linearly with the transaction submission rate, (ii) a very
small and almost optimal average transaction latency regardless of the submission
transaction rate, (iii) a negligible number of transactions pending at miners prior
to be embedded in blocks, a drastic reduction of the computational power used
to create blocks that will never appear in the ledger w.r.t Bitcoin and Sycomore.
Moreover, we have designed sophisticated attacks that an adversary may elaborate
to hinder Sycomore++’s quality property [95]. Garay et al. [95] define the ledger
quality as the property that ensures that an adversary cannot control more than a
µ/(1� µ) percentage of the blocks in a sufficiently long part of the ledger, where µ
represents the ratio of the network hashing power owned by the adversary.

In this chapter, we have seen that graph-based blockchains are an interesting
solution to improve the scalability of blockchains with an interesting concept of
sharding the transactions into subsets to be able to process them in parallel. Thus,
in the next chapter, we will look at other types of sharding and their application to
the blockchain.

89

90 Chapter 4. Graph-based blockchains

Chapter 5

State-sharded blockchains

“Divide Et Impera” (“Divide and conquer”)
– Philip II of Macedon

Contents
5.1 Background . 93

5.1.1 The Many Faces of Sharding 93
5.1.2 Smart Contracts . 94

5.2 System Model . 97

5.3 Yggdrasil Protocol . 99

5.3.1 Transaction Life-Cycle through Sharding 100
5.3.2 2PC for distributed smart-contracts 102
5.3.3 2PC Correctness proofs . 105
5.3.4 Process-to-shard assignment 108
5.3.5 Dynamic management of shards 109
5.3.6 Shards update transactions details 110
5.3.7 Reducing cross-shard transactions volume 111
5.3.8 Dealing with an adaptive adversary 111

5.4 Implementation Details . 112

5.4.1 User transaction types and structures 112
5.4.2 Joining the network . 113
5.4.3 Transaction sharding and processing 113
5.4.4 Cross-shard transactions’ confirmation 116

5.5 Yggdrasil Analysis . 117

5.5.1 State-sharding . 117
5.5.2 Safety of the assignment . 119
5.5.3 Eventual confirmation . 121
5.5.4 Security . 122

5.6 Performance Evaluation . 122

5.6.1 Simulator and experimental environment 122
5.6.2 Simulation model . 123
5.6.3 Scalability . 124
5.6.4 Reactivity . 125
5.6.5 Cross-shard volume . 126

91

92 Chapter 5. State-sharded blockchains

5.6.6 2PC algorithm . 127
5.7 Conclusion . 128

Blockchains are peer-to-peer systems where users can exchange digital values
without a central validation authority. Operationally, a distributed set of validators
uses a consensus mechanism to validate transactions among users. More recently,
with the advent of smart contracts, blockchains have become programmable: con-
ditions ruling exchanges among two or more users can be encoded and executed in
the blockchain. Thanks to smart contracts new decentralized applications beyond
cryptocurrency (e.g. decentralized finance, traceability and audit of supply chains,
decentralized digital identity, etc.) can be built in untrusted environments. Smart
contracts can be implemented in different ways, but the most popular implemen-
tation is the one proposed by Ethereum, where a smart contract is a replicated
service running in the blockchain, exposing methods that can be called by submit-
ting transactions. A submitted transaction contains the remote method call and
fees transferred to validators that execute the smart contract.

Recent academic works have addressed this issue by adopting sharding tech-
niques [29, 13, 12, 16, 30, 31, 14]. In these systems a decentralized mechanism
assure then the shard formation, i.e., the assignment of validators and transactions
to shards. However, because the transaction submission load can vary over time,
shards might need to be re-organized at run-time.

Up to now, sharding solutions in permissionless settings have mainly focused on
cryptocurrencies or special classes of smart contracts managing payment transac-
tions [13, 16, 30, 15]. Payment transactions need a weak form of atomicity called
eventual atomicity [15]. Eventual atomicity ensures that if a payment is validated
in the buyer’s shard, then it will be also validated in the seller’s shard. Intuition
behind eventual atomicity is that if we assume that liquidity of the buyer is correctly
verified in the first shard, then the second shard will also accept the transaction.
However, to manage general smart contracts that call other smart contracts eventual
atomicity is no more sufficient. In Ethereum, invocations among smart contracts
are managed in an atomic way: either all the smart contracts execute or all abort.
To make an example consider a smart contract SC0 that calls two other smart
contracts SC1 and SC2 in sequence, where both of them realize a transfer of 1
coin. Let’s suppose the second transfer will fail (there are many reasons for that, for
instance insufficient fees for the execution of the second transfer). In this case the
first transfer must be cancelled. In a sharded system for performance reasons SC1
and SC2 may be assigned in different shards but in this case coordination through
atomic-commit protocols can provoke a performance loss.

In this chapter, we propose Yggdrasil a new sharding system that securely en-
sures dynamic reconfiguration of shards to adapt to transaction load in a permission-
less setting while ensuring consistency of the distributed smart contracts execution
through a new two-phase commit (2PC) algorithm among shards.

The chapter is organized as follows: Section 5.1 presents basic concepts and

Chapter 5. State-sharded blockchains 93

Shard 1

Shard 2

Shard 3

Network
1

2

3

4

5

6

7

8

9

1

3

6

8

9

35

7

9

1

3

4

7

Figure 5.1 – An Example of Network Sharding. Each node belongs to
a different shard even though they communicate with the same peer-to-
peer network: node 9 belongs to shards 1 and 2, node 7 belongs to shards
2 and 3; and node 3 belongs to all shards.

definitions, Section 5.2 the main building blocks and assumptions Yggdrasil relies
on, while Section 5.3 presents Yggdrasil and Section 5.6 an extensive performance
evaluation. Section 5.7 concludes the chapter.

5.1 Background

5.1.1 The Many Faces of Sharding

In the ecosystem, sharding (as explained in Section 2.6) exists along three dimen-
sions: network, transaction and state sharding [11].

Network sharding manages the way processes are grouped into shards. This
technique is used to optimize communication by letting nodes in the same shard
communicate directly with each other rather than having them communicating with
the entire network. In this way, nodes only work with the messages sent to their
shard(s), saving communication and computational resources.

Let us note that it is not excluded that a node could participate in more than
one shard.

Transaction sharding manages the way transactions are assigned to the shards
aiming at achieving parallel confirmation of transactions in multiple shards. Trans-
action sharding aims at both increasing confirmation throughput and reducing la-

93

94 Chapter 5. State-sharded blockchains

Figure 5.2 – An Example of Transaction Sharding. The colors of the
bars in each block illustrate the transaction partition. This provides
an intuitive way to see how transactions are partitioned over a DAG is
Sycomore [27]: When the DAG is made of a single chain, each block
contains transactions of all partitions, which explains the multitude of
colors of the blocks. When the DAG becomes larger, the new appended
blocks partition the transactions into multiple sets. This explains the
partitioning of block colors in the chains.

tency. In fact, transactions need to be confirmed only by nodes in the corresponding
shard and not by all the nodes in the system. Moreover, they do not need data from
the other shards to compute the validity of any transaction. Therefore, confirmation
time can be faster, hence the improvement in throughput and latency.

State sharding aims at splitting the blockchain data structure in different
shards. Operationally this implies that each node only maintains a portion of the
blockchain data, saving storage and computational resources. This is the most
challenging form of sharding, because of the presence of so-called cross-shard
transactions, occurring when the transaction recipient does not share the same
shard as the transaction sender. This is an issue specific to state sharding, and
may require to find a trade-off between the number of shards and cross-chain
transactions. Additionally, because shards have only partial views of the system,
care must be taken to prevent inconsistencies such as double spending.

Let us note that transaction sharding distribute transactions among nodes, but
this does not imply that the state is sharded as well. State sharding aims at replicat-
ing in each shard only the state necessary to validate the given shard of transactions.

5.1.2 Smart Contracts

Popularized by Ethereum, many blockchains today (e.g., [46], [98]) provide smart
contracts as a generic mechanism to make blockchains programmable. Smart con-
tracts are sequential programs, composed of a set of methods and variables, that exe-
cute in the blockchain. Operationally, a smart contract is deployed in the blockchain

Chapter 5. State-sharded blockchains 95

Figure 5.3 – An Example of State Sharding. Each shard keeps its own
state and confirms its own transactions. However, when transactions
involve more than one shard, cross-shard communication is necessary.

by its creator, which submits to the blockchain a uniquely identified transaction con-
taining the smart contract code. As soon as the submitted transaction is confirmed
we say that the contract is deployed. Once deployed, the set of variables of the
smart-contract assigned with initial values is defined as the initial state of the con-
tract. In the general case, the execution of one of the smart contract methods results
in a new state of the smart-contract, that is a new valuation of its variables. Users
can interact with a smart contract by submitting transactions that are requests to
execute one of the methods of the smart contract. These transactions are sent to
the smart contract’s address, which is deterministically generated using the creator’s
address and how many transactions he has sent [99]. For each transaction invoking
a smart contract method, the issuer has to pay some fees just like normal payment
transactions.

The smart contract executes in the blockchain network, i.e. each node of the
network locally executes the called methods. Since smart contracts are determin-
istic, participants can unequivocally determine the state of the smart contract by
simply executing all transactions submitted to it. Transactions are totally ordered
by the blockchain via the underlying consensus mechanism. Thus any two nodes ex-
ecuting the smart contract will compute the same state. That is, for any confirmed
transaction in the blockchain, either the transaction is successfully executed or not.
In the former case we say that the transaction is committed. In the latter case it is
aborted : the execution failed and the state of the smart contract is not changed. An
execution can fail for usual reasons like run-time errors or if the amount of fees sent
by the caller does not cover the costs of executing the method call with the given
input parameters. As a smart contract can call other smart contracts to complete
a method execution, the whole computation originated by a single user invocation
is represented as a call graph of smart contract invocations. Since semantics must
be guaranteed to be sequential for smart contracts, then either the whole call graph
is committed or aborted. In a given call graph, we denote with the term front-end
smart contract, the unique smart contract invoked by the user.

95

96 Chapter 5. State-sharded blockchains

5.1.2.1 Sharded smart-contracts and atomicity

In state sharding systems, each smart contract’ address resides in a single shard.
However, when a user invokes a smart contract, this smart contract may belong to
another shard. The system must have a mechanism to route user’s call to the smart
contract. Routing calls to smart contracts residing in different shards must be done
in a careful way to guarantee that if a balance is updated in the issuer’s shard, the
corresponding transaction will be eventually confirmed in the destination shard, no
matter if the result is an abort or a commit. Differently from the general atomic
commit problem [100], which must deal with the situation in which two different
shards might not willing to both confirm or reject the transaction, for each cross-
shard transaction, if the issuer’s shard confirms, then the other shard will never
reject the transaction. This is true only if the verification of transaction validity is
a deterministic process and shards do not fail. Sharding systems usually make these
hypotheses to rely on this weak form of atomicity [15]. More formally, eventual
atomicity of confirmation guarantees that for each transaction between a user and
a front-end smart contract, if one shard confirms the transaction then other shards
will eventually confirm it.

Besides users, smart contracts themselves can call other smart contracts. The
case of a smart contract calling smart contracts belonging to the same shard can
be treated as in a non-sharded system, or, if the user invoking the smart contract
is in another shard, by employing mechanisms to guarantee eventual atomicity as
explained above. On the other hand, invocations crossing shards cannot be treated
as internal invocations, like in the non-sharded case, but must be represented as
cross-shard transactions. Then, we need to guarantee the atomic commit of the
distributed execution of the front-end smart contract across shards, i.e., either cross-
chain transactions in the call graph originated from a given user invocation are all
committed or they are all aborted1 [101]. Let us stress that this form of atomicity
works on a commit and abort status of confirmed transactions because only con-
firmed transactions are part of the call graph. Since these confirmed transactions
are cross-chain, eventual atomicity must be assured, as in the case of user to the
front-end smart contract (which is the call graph root).

As observed in [102], specific classes of smart contracts, like ERC-20 con-
tracts, can be divided into smaller ones as their states can be fragmented into
non-interfering states, which may increase even more the parallel execution of the
smart contract. However, independently from this optimisation, one needs to han-
dle numerous interactions between smart contracts that do not execute in the same
shard, or their invocation from users that do not belong to the shard of the smart
contract. As detailed in Chapter 5, our solution, Yggdrasil combines a 2PC pro-
tocol with a cross-chain confirmation mechanism to assure atomic commit of the
distributed execution of smart contracts and eventual atomicity of confirmation.
Moreover, adaptivity of Yggdrassil allows to dynamically adapt shards to reduce the

1For sake of simplicity we consider that internal invocations in the same shard are collapsed in
the call graph to a single vertex.

Chapter 5. State-sharded blockchains 97

overload generated by these protocols.

5.2 System Model

Nodes, processes, users and validators. Yggdrasil is composed of an unbounded set
of nodes N = {n1, . . . , ni, . . .}. Each node controls several processes. Each process
pi has a unique identifier idi, and owns exactly one account of coins. The total sum
of available coins in the system is limited and its current value is known by all. Each
process has a well-defined role, that of user or validator. When a node joins the
network, it creates a process with the role of user, and the identifier of that user is
the public key of the node. Subsequently, a node can create other processes with the
role of user whose identifiers are derived from the node’s public key. To participate
in the maintenance of Yggdrasil, a node creates processes with the role of validator,
and stakes coins2. For sake of simplicity and without loss of generality we assume
that we have as many validators as coins staked in the system. The set of processes
is denoted by P , the set of validators is denoted by V and the set of users is denoted
by U . We have P = U t V , where t is the symbol of disjoint union.

Adversarial model. We suppose that at any time some processes can fail in
any arbitrary manner. These processes are indifferently called faulty or Byzantine
processes. Byzantine processes can “pollute” the computation (e.g., by sending
messages with different contents, when they should have sent messages with the same
content if they were not faulty). Processes that always follow the protocol are called
honest. We model the behavior of faulty processes as a weakly adaptive adversary.
We characterize the power of the adversary as follows [103]. The adversary has a
bounded amount of stake, i.e., at any time, Byzantine validators possess less than
a fraction ⌧ 2 [0, 1) of the total stake � currently available in the system. Note
that this does not guarantee that in each shard Byzantine validators possess less
than a fraction ⌧ of the shard stake. Indeed, the adversary may try to manipulate
more than one third of validators in a specific shard. Yggdrasil provides a shuffling
mechanism and a random uniform election mechanism guaranteeing that in any
shard, no more than ⌧ = 1/3 of the stake (i.e., validators) are owned by the adversary
(see Section 5.3.8).

The second assumption is related to the adversary’s level of adaptability. The
adversary can decide to corrupt more processes in a particular shard, but once a
process is corrupted the adversary cannot change his mind before k units of times
occurred. A time unit represents the maximal amount of time needed to build
a block. Users can also be corrupted by the adversary, but the only action cor-
rupted users could carry out would be to create transactions and therefore incur
costs (transaction fees). First, these costs imply that such an attack cannot be
done infinitely often, and moreover, these costs would disincentives the adversary

2Coin staking can be done through a special smart contract, as done in Eth2.0. We abstract
those implementation details, and just assume that coins can be put in escrow for the whole
validator lifetime.

97

98 Chapter 5. State-sharded blockchains

to attempt distributed denies of service (DDoS) attacks.
Byzantine fault-tolerant consensus and selection of committees. Yggdrasil main-

tains in parallel several blockchains. Each blockchain is built thanks to a variant of
Byzantine Fault Tolerant (BFT) Consensus [104] that provides deterministic final-
ity [40]. Specifically, we assume that each blockchain is grounded on Tendermint [17],
that provides immediate finality: a block is finalized as soon as it is appended to
the blockchain. Any transaction is then confirmed as soon as it appears in the
blockchain. As Yggdrasil is permissionless we also need a verifiable election to elect
the committee that once in place run the chosen BFT consensus protocol to build
and sign the block to be appended to the blockchain. Among the different existing
solutions ([22, 45, 47, 34]), we aim at those that elect a committee of fixed size to
determine the quorum of two-third signatures needed to finalize a block, such as
the ones provided in [46, 45] or Ethereum PoS [34]. Specifically, (i) a new validator
joins a validator set through a confirmed stake transaction, (ii) the maximal size of
the validator set is fixed at design time, (iii) the committee for each block is then
chosen uniformly at random within the validator set by a shuffling function that
makes a pseudo-random permutation of the validator members list at each election
and returns the first n validators, where n is the size of the committee. The shuf-
fling function takes as parameter the validator list and a random seed by reading
the blockchain. The random seed is generated by applying the xor operation on
the hashes of all finalized blocks. These operations being deterministic, this en-
sures that exactly one committee is elected. Note that a recent improvement to this
mechanism makes shuffling secret and unpredictable [105]. In the following, for any
blockchain b maintained by Yggdrasil, we assume the existence of a committee of
validators Qb elected among the current set of validators Vb thanks to the assumed
election mechanism, where Qb ✓ Vb ✓ V . Byzantine validators in the committee are
maintained under 1/3 threshold by the shard shuffling mechanism and the random
uniform election. We say that a shard is honest if less than a fraction ⌧ of the
committee of validators is Byzantine.

Communication primitives. Processes communicate by sending and receiving
messages via a best effort broadcast primitive, which means that when a honest
process broadcasts a value, eventually all the honest processes deliver it [106], i.e.,
messages sent by honest processes cannot be lost. Note that messages sent by
Byzantine processes are not guaranteed to be delivered to all honest processes.
Such a primitive can be implemented through a peer-to-peer gossip-based diffusion
mechanism, as usually done in blockchains. Messages contain a digital signature
and we assume that digital signatures cannot be forged. When a process pi receives
a message from pj , it is certain that pj sent that message. We assume a partially
synchronous environment where the maximum transmission delay is bounded but
unknown by the processes [107]. Finally, communication among shards is as follows.
When we say that a shard sends a message, we assume that the committee of
validators inside the shard broadcasts the message to the system. Any receiving
process will accept the message only if it is signed by a quorum of the corresponding
committee. Because each shard is maintained under the 1/3 Byzantine threshold

Chapter 5. State-sharded blockchains 99

Figure 5.4 – A Simple Overview of Yggdrasil.

by Yggdrasil, messages sent by a shard are never lost and are received by all honest
processes.

5.3 Yggdrasil Protocol

The main feature of Yggdrasil lies in its self-adaption to transaction load, so that
the number of shards continually adapts to provide fast transaction confirmation in
average. Yggrdrasil allows shards to re-organise under high load by splitting into new
shards, and later re-merge if transaction load reduces. Notably, Yggdrasil provides
a way to assign processes and smart contracts to shards seamlessly with respect to
shard dynamics. Smart contracts and processes are automatically re-assigned to a
newly created shard (if needed) in a transparent and verifiable way. When a parent
shard splits in two new shards, the parent extinguishes itself while a summary of its
state is transferred to the newborn shards.

While the local consistency of each shard relies on a local PoS committee-based
BFT blockchain (Section 5.2), Yggdrasil provides global consistency of the system.
Yggdrasil ensures that each user is assigned at any time to only one shard, i.e., a user
cannot submit transactions to two different shards, or if he does so, the transaction
is rejected by one of the shards, because user-to-shard assignment is verifiable. In
the same way a smart contract is assigned at any time to only one shard. As for user
transactions crossing shards, Yggdrasil safely ensures eventual atomic confirmation
(Section 5.1.2) and atomic-commmit of smart contract distributed execution — ex-
ecution that spans different shards – through a 2PC algorithm based on locking
and eventual confirmation among shards. Yggdrasil ensures eventual atomic confir-
mation during re-organisations of the system (split or merge operations). This is
achieved by shards labeling mechanism, guaranteing that there always exists only
one shard at time t that is the closest to any transaction, thus responsible of the
transaction processing.

Yggdrasil is tolerant to an adaptive adversary: by relying on random shuffling,
validators are regularly assigned to randomly chosen shards to defend against a
weakly adaptive adversary. Furthermore, by using a secret and verifiable random
draw, validators’ assignment is unpredictable.

Last but not least, Yggdrasil allows nodes to incarnate themselves in multiple

99

100 Chapter 5. State-sharded blockchains

shards with uniquely identified accounts, to reduce the number of their cross-shard
transactions. Indeed nodes can be interested in some particular smart contract or
to trade with specific users, so to incarnate themselves only in the shard where they
trade more and benefit for fast transaction confirmation time.

5.3.1 Transaction Life-Cycle through Sharding

An Yggdrasil’s process with the role of user can transfer coins to another user, deploy
smart-contracts, invoke smart contract methods, or deposit coins to become a valida-
tor as realized in common PoS-based blockchains. For each of these actions different
user transactions are submitted to Yggdrasil, i.e., payment transactions, smart con-
tract deployment transactions, smart contract method invocation call transactions,
and stake transactions3, respectively. Yggdrasil manages all these transactions in a
unified way as described below.

Transactions and state sharding. As will be detailed in Section 5.3.4, Yggdrasil
assigns each process to exactly one shard in a verifiable way, where a process can
be either a user (submitting transactions) or a validator (validating transactions).
Since the assignment is unique at any point of time, transaction sharding is re-
alised by assigning all the transactions of a user to this user’s shard. This also
implies that any smart contract is assigned to the shard of the user that deploys
the smart contract, through the smart contract deployment transaction. To re-
alise state sharding, Yggdrasil maintains a blockchain for each shard, called shard-
chain. Since a trusted third party is needed to achieve synchronization between two
or more blockchains [108], Yggdrasil also maintains a synchronization blockchain,
called masterchain. Each shard locally builds a shardchain to validate its own trans-
actions. When needed, shards coordinate to handle the creation of new shards or
the merging of some of them, and cross-shard transactions. To coordinate them-
selves, shards submit to the masterchain special transactions called shard update
transactions. The masterchain validates shard update transactions submitted by
shards and serves as a gateway for processes that want to stake coins to become
validators. To build a blockchain (i.e., a shardchain or the masterchain), a commit-
tee (quorum) of validators is elected after each block through modalities described
in Section 5.2. Each process in Yggdrasil locally manages, i.e., stores, reads and
updates, the masterchain. On the other hand, shardchains are managed solely by
the processes assigned to them. Each process has access to the state of both the
masterchain and its shard, where the state is defined as follows:

Definition 9 (State of a blockchain). The state of a blockchain is the current value
of accounts and smart contracts that can be computed by reading the blockchain.

Transaction processing. A user submits transactions within its shard (see Fig-
ure 5.4). Transactions are collected by the shard’s validators4, and locally stored in

3When a user submits a stake transaction tx, the user’s node creates a new process with the
role of validator identified by tx.

4Users can also store blocks and transactions if they want to but since they are not responsible

Chapter 5. State-sharded blockchains 101

their memory pool (a.k.a mempool). To create a block, validators being part of the
current committee invoke the Byzantine fault-tolerant consensus protocol with a set
of transactions from their mempool. Transactions are validated and embedded in
the next block of the shard’s shardchain. Once a block is appended to the shard-
chain, validators send a summary of the block to the masterchain via the shard
update transaction (denoted by SU in Figure 5.4, and whose content is detailed
later). Validators of the masterchain verify that each shard update transaction has
been created and sent by the issuer shard.

Implementation details and pseudo-codes of blockchain creation in each shard
and verification of the shard update transaction by the masterchain can be found
in Section 5.4.3.

Transaction confirmation and atomicity of cross-shard transactions. Yggdrasil
introduces its own notion of transaction confirmation to guarantee the global consis-
tency of the system. Specifically, all the transactions processed by the masterchain,
i.e. shard update transactions and stake transactions, are immediately confirmed
once they appear in a block appended to the masterchain. These two types of
transactions are confirmed in the masterchain because they have a system-wide
scope: they need to be seen from any shard to correctly manage shards member-
ship, shard dynamics and cross-shard transactions. The level of confirmation of the
other user transactions depends on whether or not they are intra-shard or cross-
shards. In the case of intra-shard transactions, both the issuer and the recipient
entities of the transaction (i.e., users or smart contracts) are assigned to the same
shard. Any intra-shard transaction is confirmed as soon as it appears in a block of
the shardchain and the corresponding shard update transaction sent by the shard
to the masterchain, notifying its confirmation in the shardchain, is confirmed in the
masterchain.

In the case of cross-shard transactions, the issuer and the recipient entities of the
transaction are assigned to two different shards 5. As mentioned in Section 5.1.2,
to avoid inconsistent situations or double spending, it is sufficient to guarantee
the eventual atomicity of cross-shard transactions confirmation. This is because
(i) the check of the issuer balance, which is done in the issuer’s shard, is the only
condition to confirm or reject a transaction and (ii) shard’s behavior, as a whole,
is honest. Yggrdrasil ensures that if the issuer is honest then her transaction is
eventually confirmed. For both payment and smart contract invocations, cross-
shard transactions are managed by relying on the masterchain. The different steps
involved to confirm a cross-shard transaction tx1 from shard s1 to shard s2 are
illustrated by Figure 5.5 and explained in the following. First, validators of s1 create
block b1, containing tx1, and broadcast a ShardUpdateTx SU1 (containing uniquely
the Merkle roots of the transactions of the block containing tx1); SU1 is then added

of building blocks, this is not mandatory.
5For a payment transaction, the two involved entities are user’s accounts. For smart contracts

invocations, the two entities are a user account and a smart contract account. Of course, smart
contracts can call in their turn smart contracts in another shards. Nested calls generate cross-shard
transactions that are managed by the 2PC protocol presented in Section 5.3.2

101

102 Chapter 5. State-sharded blockchains

Figure 5.5 – The different steps involved to confirm a cross-shard trans-
action.

in a masterchain block. When validators of s2 see SU1, they ask for b1. After
receiving it, they extract tx1, add it in a block b2, append b2 to their shardchain,
and broadcast a ShardUpdateTx SU2. SU2 is then added in a masterchain block.
In case tx1 is the call of a smart contract deployed in s2, validators of s2 create a
new transaction tx2 containing the results of the call and send it to s1 in the same
ShardUpdateTx as tx1 (SU2). After receiving it, s1 asks for b2, extracts tx2 and puts
it in its shardchain (e.g. in block b3). Implementation details of the confirmation of
cross-shard transactions can be found in Section 5.4.4.

In the following the definitions of the confirmation conditions for the different
types of transactions.

Definition 10 (Masterchain transactions confirmation). Any stake and shard up-
date transactions is confirmed when it appears in a block of the masterchain.

Definition 11 (Intra-shard transactions confirmation). An intra-shard transaction
tx assigned to shard s is confirmed when tx is embedded in a block of s’s shardchain
and the shard update transaction notifying tx is confirmed.

Definition 12 (Cross-shard transactions confirmation). A cross-shard transaction
is confirmed if and only if it is confirmed as intra-shard transaction by both involved
shards.

5.3.2 2PC for distributed smart-contracts

This section provides a 2PC algorithm to guarantee atomic-commit of the dis-
tributed execution when smart contracts involved live in different shards. Let us
make an explanatory scenario to illustrate the algorithm. Let us suppose to have
a user that calls, through a transaction tx0 a smart contract sc0, which calls, in
the body of the called method, two other smart contracts sc1 and sc2 in sequence.
If sc1 and sc2 live in two different shards, then Yggdrasil generates a cross-shard
transaction for each call, let us say tx1 and tx2. Note that, eventual confirmation
guarantees that the two transactions are added to the call graph, however, if their

Chapter 5. State-sharded blockchains 103

execution is left independent we could have the situation in which tx1 is committed
and tx2 is aborted. To be atomic, since tx2 failed, tx0 as a whole should be aborted
and tx1 ’s effects reverted. The 2PC algorithm we propose prevents tx1 to commit
in this scenario.

In the algorithm, front-end smart contract’s shard coordinates commit and abort
of other shards following an approach where shards committees emit special trans-
actions throughout the process. Specifically, inside committees, validators propose
blocks inserting specific transactions. Validators verify the block being sure that
the algorithm has been followed before accepting it. Once accepted (signed by a
quorum), any other validator in subsequent committees can resume the algorithm
if the previous committee did not complete it, by looking at blocks in shardchains
and masterchain. In other terms, the state of the algorithm is fully recorded in the
shardchains and the masterchain, which allows us to have dynamic committees that
rely on the total order of all transactions (intra and cross) to determine the state
of the algorithm. The pseudo-code is depicted in Algorithm 1. Each proposer that
selects a transaction in the MemPool (line 41) verifies, before inserting it in a block,
if it is an invocation to a front-end smart contract sc0 spanning different shards.
If the smart contract is not already locked, the proposer prepares and inserts in
the proposed block a intra-shard transaction of type lock txlock0 and a cross-shard
transaction txquery0,i of type QUERY for each outgoing call crossing the coordinator
shard reaching a shard si. The query transaction contains transactions to call the
recipient smart contract and the calling one.

When the block is confirmed by the committee of the sc0 (coordinator shard),
then the lock becomes effective. Each validator in the coordinator shard sees that
the smart contract has been locked by reading the blockchain, and stops to consider
other transactions directed to sc0 for inclusion in successive proposals. As soon
as txquery0,i are confirmed, validators in the recipients shards si, read these query
transactions (line 3). Note that, at that moment, the lock of sc0 is already effective.
If the execution of the incoming transactions do no involve other smart contracts in
other shards, then proposers pre-execute the called transaction (if the smart contract
is not already locked). More specifically, the block proposer pre-executes the result
against the state of the blockchain till the previous finalized block. Result of this pre-
execution can be abort or prepare-to-commit. In both cases the proposer prepares
and insert in the proposal a cross-shard vote transaction towards the coordinator
shard. Cross-shard transaction towards the coordinator shard are denoted as txvote

i,0 .
As soon as those transactions are confirmed, the coordinator shard compares results
to decide either roll-back or commit (line 16). In case of no abort in the votes
received, the proposer of the coordinator shard executes the transaction tx0 (line
21), then compute the decision (lines 23 and 29) and then unlock. The unlock is
an intra-shard transaction txunlock0 , while the decision is a cross-shard transaction
txdecision

i,0 for each shard si. At receiver side, all the shards commit or roll-back
accordingly with the decision. Roll-back is implicit, the validator does nothing in
this case. In case of commit, the computation must be redone by the new proposer
(the proposer might have changed since the last pre-execution). Since the state

103

104 Chapter 5. State-sharded blockchains

of the smart contract did not change from the last prepare-to-commit because of
the lock, the result is the same as in the pre-execution phase (smart contracts are
deterministic). After the execution, an unlock intra-shard transaction is inserted in
the block txunlock

i
. Note that the whole process is recursive to explore the whole call

graph. In case of loops in the call graph, to avoid deadlocks a locked smart contract
can accept incoming calls when originating by the same root of the call graph that
caused the smart contract to be locked (line 5). Let us stress that the call graph is
distributed among shards. To cope with that, call paths, which are added at each
outgoing invocation in the call graph, allow to trace back the path till the root and
find if there is a common root.

As mentioned above, locking a smart-contract consists in ignoring future trans-
actions that could modify the state of this contract (until this smart contract is
unlocked), however for stateless smart-contracts (i.e. smart-contracts that do not
have a state to maintain), it is useless to lock the contract.

Addressing the intersection of multiple call graphs Let us define an active
call graph G as a call graph involved in a 2PC protocol that has not terminated yet,
i.e. in the marsterchain we have the first QUERY cross-shard transaction issued by
the front end smart contract for G but not yet the DECISION one. In Yggdrasil users
can issue transactions that generate intersecting active call graphs, which, if not
managed, might induce deadlocks. In our system, the marsterchain is in charge to
prevent (when possible) and manage them. Let us remember that the marsterchain
does not have the view of the whole active call graphs in advance. However, cross-
sharding transactions, come with partial information about their relative call graph
G, e.g. the QUERY transactions from a sci to scj , scz, . . . are batched together
in the same block, which gives partial information about G. Leveraging on those
information, the marsterchain might detect if a cross-shard transaction tx related to
some active call graph G0 6= G is targeting some smart contracts already involved in
G. In that case, the marsterchain keeps tx pending. tx is processed after that G is
not active anymore. Notice that, even if another cross-shard transaction tx0 arrives,
starvation is not possible because tx appears in a corresponding shardUpdateTx
SU in the marsterchain, which gives a total order among them. If the masterchain
cannot prevent a deadlock, leveraging on the information in the masterchain, it can
detect it. In that case, the masterchain applies a deterministic order among the
active call graphs involved in the deadlock and make the necessary smart contracts
revert (without aborting the whole call graph) to let the prioritized active call graph
terminate, before resuming the 2PC protocol execution for the remaining active call
graphs.

In such a way, the prioritized active call graph terminates before resuming the
2PC protocol execution for the remaining active call graphs.

Addressing the dynamicity of the call graph In Yggdrasil we can have merges
and splits during the 2PC protocol, e.g. two smart contracts that are on the same

Chapter 5. State-sharded blockchains 105

shard at the beginning of the protocol can live on two different shards at the end of
it, splitting at some arbitrary moment. To make the dynamic sharding seamless to
the protocol, we modify the protocol as follows. Firstly, in the call graph, we treat
all the calls between smart contracts as cross-shard smart contract transactions,
i.e., the call graph has at its vertices all the involved smart contracts, independently
whether two adjacent ones are on the same shard or not. Secondly, when a validator
inserts in a block a cross-shard transaction that targets another smart contract on
the same shard, then he immediately processes it. In this way, we avoid to add
latency in the processing of an invocation between two smart contracts living in the
same shard.

5.3.3 2PC Correctness proofs

In the following we abstract away the complexity given by the cross-sharding com-
munications. For conciseness, we abuse our notation to say that a “smart contract
issues a transaction”, meaning that the shard in which the smart contract lives sends
that transaction (after being written in the shardchain and confirmed). In the same
spirit, we say that a “smart contracts” delivers a transaction meaning that, the shard
in which the smart contract lives received that transaction from the memPool and
the state of Yggdrasil chains.

Lemma 13. Given a call graph G, let sci, scj 2 G take a decision respectively deci
and decj belonging to the set {COMMIT,ROLL�BACK}. Then deci = decj.

Proof. We proceed by construction. Let us first consider that a smart contract
sci takes a decision in two cases: (i) sci is the front end smart contract sc0 and
delivered all the required votes to take a decision dec0 and inserts it in a trans-
action DECISION txdecision0,i ; (ii) sci 6= sc0 and delivered a transaction DECISION
txdecision

j,i
carrying the decision deci. We need to prove that for all sci 6= sc0, we

have deci = dec0. Since shards are correct, the 2PC protocol is correctly executed,
hence sc0 issues the same txdecision0,i toward all its smart contracts children. Each
smart contract child recursively does the same toward its smart contracts children
until the while call graph G is covered. This concludes the proof.

Lemma 14. Given a call graph G, let sc0 2 G be the front end smart contract of G
and sci 2 G be the other smart contracts. If all sci 6= sc0 vote for PREPARE, then
sc0 decides for COMMIT.

Proof. Let us proceed by construction. We need to show that, if all sci 6= sc0
vote for PREPARE then, sc0 collects all those votes and decides accordingly. A
smart contract sci votes for PREPARE in two cases: upon delivery of a QUERY
transaction txquery

j,i
in the case where sci is a leaf of G or after having collected VOTE

transactions (for PREPARE) from all its children in case sci is not a leaf of G. In
the former case, and by assumption of the proof sci votes for PREPARE and issues
a transaction txvote

i,j
toward its parent scj . In the later case, and by assumptions all

its children vote for PREPARE, i.e. scj receives txvote
i,j

from all its children. Hence

105

106 Chapter 5. State-sharded blockchains

Algorithm 1 Distributed-Graph 2PC for any shard block proposer
1: upon block proposal fetch MemPool and state of Yggdrassil chains

2: fetch all tx from confirmedTransactionSet in state

/* confirmed transactions till the previous block in the shardchain */

3: for each tx such that(tx.type = QUERY) then
4: ttx tx.targetTx

/* query received, target transaction ttx extracted */

5: if(!isLocked(ttx.sc) _ (isFromSameCallGraph(tx)) then
/* isFromSameCallGraph() returns true if the query comes from the same call

graph as the query transaction that provoked the lock of ttx.sc. This means that

the call path at the lock time is a prefix of the call path of ttx. False otherwise. */

6: if(hasCrossShardCalls(ttx)) then
/* call graph goes one level deeper */

7: block_proposal.insertLockTx(ttx.sc)
8: targetTxs getTargetTxs(ttx)
9: block_proposal.insertQueryTxs(ttx, targetTxs, tx)

10: else
/* call graph reaches a leaf */

11: res exec(ttx, state)
12: if(res! = null) then
13: block_proposal.insertLockTx(ttx.sc)
14: block_proposal.insertV oteTx(PREPARE, res, tx, txv0)

/* txv0 is a root vote transaction with all values to empty */

15: else block_proposal.insertV oteTx(ABORT, null, tx, txv0)
16: for each tx such that (tx.type = V OTE)
17: dtx tx.destTx;

/* vote received, dest transaction dtx extracted from tx */

18: if(isReadyToCompute(dtx) ^ isLocked(dtx.sc) then
/* isReadyToCompute() checks if, in this shard (the dtx.sc’s shard) all the votes,

for which the query tx.queryTx has been issued, have been gathered */

19: votes getV otes(getAllV oteTxs(tx))
20: if(noAbort(votes))
21: res exec(dtx, getResults(getAllV oteTxs(tx)))
22: case 1 (res! = null ^ isLockOnInvoke() ^ noAbort(votes))

/* the dtx is the root, a decision is sent */

23: insertDecisionTxs(COMMIT, getAllV otesTxs(tx))
24: insertUnlockTx(dtx.sc)
25: case 2 (res! = null^!isLockOnInvoke() ^ noAbort(votes))

/* the dtx is not root, a vote must be sent to the parent */

26: prevQuery tx.queryTx.previousQ.last()
27: insertV oteTx(PREPARE, res, prevQuery, tx)
28: case 3 ((res = null _!noAbort(votes) ^isLockOnInvoke())

/* the dtx is the root, a decision is sent */

29: insertDecisionTxs(ROLLBACK, getAllV oteTxs(tx))
30: insertUnlockTxs(dtx.sc)
31: case 4 (res = null_!noAbort(votes))^!isLockOnInvoke())

/* the dtx is not the root, a vote must be sent to the parent */

32: prevQuery tx.queryTx.previousQ.last()
33: insertV oteTx(ABORT, res, prevQuery, tx)
34: for each tx such that (tx.type = DECISION) then
35: dtx tx.targetTx;

/* decision received, dest transaction dtx extracted from tx */

36: if(isLocked(dtx.sc)) then
37: if(isCommit(tx)) then exec(dtx)
38: if(tx.prevV oteTx! = txv0)then

/* dtx is not a sink transaction in the call graph */

39: insertDecisionTxs(tx.decision, getAllV otesTxs(tx))
40: insertUnlockTx(tx.sc)
41: for each tx such that(tx.type = INV OKE from user) then
42: if(!isLocked(tx.sc) ^ hasCrossShardCalls(tx)) then
43: blockProposal.insertLockTx(tx.sc)
44: targetTxs getTargetTxs(tx)
45: blockProposal.insertQueryTxs(tx, targetTxs, txq0)

/* txq0 is a root query transaction with all values to empty */

46: else blockProposal.insertMemPoolTxsInBlock(tx)

/* insert all other invoke transactions from the MemPool in the block */

47: propose block

Chapter 5. State-sharded blockchains 107

Algorithm 2 insertQueryTxs(sourceTx,targetTxs,prevQueryTx)
1: callPath prevQueryTx.callPath.add(sourceTx)
2: previousQ prevQueryTx.previousQ.add(prevQueryTx)
3: for each targetTx 2 targetTxs
4: queryTx createTx(QUERY, callPath, targetTx, previousQ)
5: blockProposal blockProposal.add(queryTx)

Algorithm 3 insertVoteTx(vote, res, queryTx, prevV oteTx)

1: destTx queryTx.call_path.last
2: previousV prevV oteTx.previousV.add(prevV oteTx)
3: voteTx createTx(V OTE, vote, res, destTx, queryTx, previousV)
4: blockProposal blockProposal.add(voteTx)

sci votes for PREPARE and issues the transaction txvote
j,z

toward its parent scz. The
procedure continues up to sc0, which collects all the votes from its children and
decides for COMMIT.

Lemma 15. Given a call graph G, let sc0 2 G be the front end smart contract of G
and sci 2 G the other smart contracts. If at least a sci votes for ABORT, then sc0
decides for ROLL-BACK.

Proof. The proof follows the same spirit as the one of Lemma 14. Let us proceed
by construction. Let sci be the smart contract that votes ABORT. sci issues txvote

i,j

where j is the parent smart contract. scj upon receipt of ABORT can stop waiting
for other votes from its children and issues a transaction txvote

j,z
toward its parent

scj , where the vote is ABORT. The procedure continues up to sc0, which collects
all the votes from its children and decides for ROLL-BACK.

Theorem 1. Given a call graph G, if there exist some sci that votes for ABORT,
then all scj 2 G decides for ROLL-BACK, otherwhise all scj 2 G decides for COM-
MIT.

Proof. The proof follows from Lemmas 13, 14 and 15.

Lemma 16. Given a call graph G, let sc0 2 G be the front end smart contract of
G. If sc0 issues a QUERY transaction relative to G then each sci 2 G delivers a
QUERY transaction.

Algorithm 4 insertDecisionTxs(decision, voteTxs)
1: for each voteTx 2 votesTxs then
2: targetTx voteTx.queryTx.targetTx
3: prevV oteTx voteTx.previousV otes.last()
4: decisionTx createTx(DECISION, decision, targetTx, prevV oteTx)
5: blockProposal blockProposal.add(decisionTx)

107

108 Chapter 5. State-sharded blockchains

Proof. We proceed by construction. Upon receipt of an INVOKE transaction from
an user (Line 41 of Algorithm 1), sc0 invokes insertQueryTxs (Line 45 of Algo-
rithm 1). This function prepares and inserts in the proposed block all the transac-
tions txquery0,child that have to be delivered by the sc0’s children scchild in the call graph
G. When some scchild delivers a QUERY transaction (Line 3 of Algorithm 1), the
algorithm first checks if the smart contract is already locked. In the affirmative,
the transaction is not treated at that moment, except if that transaction results
from the same call graph G as the transaction that previously locked scchild. In this
particular case, the algorithm checks if the target transaction ttx on scchild induces
a call to another smart contract or not, i.e., if scchild is a leaf of G or not. If the
former case we are done. In the latter case, scchild executes the same steps as sc0
does. scchild invokes insertQueryTxs (Line 6 of Algorithm 1). This function pre-
pares and inserts in the proposed block all the transactions txquery

child,child0s child
that

have to be delivered by the scchild’s children scchild0s child in the call graph G. The
process continues recursively, and all the vertices in the call graph deliver a QUERY
transaction relative to G.

Lemma 17. Given a call graph G, let sc0 2 G be the front end smart contract of G.
If sc0 issues a decision transaction (either COMMIT or ROLLBACK) relative to G
then all sci 2 G deliver it.

Proof. The proof follows the same spirit as the one of Lemma 13, having that if
sc0 issues a decision, i.e. a transaction decision txdecision0,j , then such a transaction
is delivered by all smart contract scj that are children of sc0, which recursively
propagate a decision transaction toward their children, covering the whole call graph
G.

Theorem 2. Given a active call graph G, then eventually G is not active anymore,
i.e. the 2PC protocol terminates.

Proof. Termination of the 2PC protocol is proved as follows. Once the front end
smart contract issues a QUERY transaction, then eventually a QUERY transaction
is propagated to all the smart contracts in G (Lemma 16). Since all smart contracts
receive a QUERY transaction, then all of them eventually lock and vote. For the
smart contract leaf this is immediate. Other smart contracts need to wait for their
children votes. Since all leaf smart contracts deliver a QUERY transaction then
eventually all their parent will vote and recursively up to the front end smart contract
sc0. Finally, since sc0 collects all the votes, then it can issue a decision and unlock.
By Lemma 17 all the smart contracts in G deliver the decision, apply it and unlock.
This concludes the proof.

5.3.4 Process-to-shard assignment

Shards are uniquely identified by their label l (the computation of shards’ label is
described in Section 5.3.5). At any time, any process is assigned to the (unique)
shard whose label minimizes the distance with the process’s identifier.

Chapter 5. State-sharded blockchains 109

Definition 18 (Distance function). [27] Let a = a0 . . . ad�1 and b = b0 . . . bd0�1, for
any d, d � 1, be any two bit strings, and s = max(d, d0). Note that the bit numbering
starts at zero for the most significant bit. The distance between a and b, denoted by
D(a, b) is the numerical XOR between a and b and is computed as follows.

D(a, b) = D(a0 . . . ad�1.0
s�d, b0 . . . bd0�1.0

s�d0)

=
s�1X

i=0

2s�1�i1ai 6=bi

where notation 0s�d represents s � d digits set to 0, and 1A denotes the indicator
function, which is equal to 1 if condition A is true and 0 otherwise.

Property 19 (Process Assignment). Let idi be the identifier of process pi and S be
the set of shards, then the shard S` to which pi is assigned satisfies relation 5.1.

S` = argmin
S2S

D(idi, S) (5.1)

By construction of the shard labels mechanism (see Section 5.3.5) shard S`

is unique with respect to idi, that is, for any shard S`0 2 S with `0 6= `, then
D(idi, S`) < D(idi, S`0).

The pseudo-codes executed by a newly created process and its assignment to a
shard are moved to Section 5.4.2.

5.3.5 Dynamic management of shards

The number of shards in Yggdrasil self-adapts to the actual rate at which transac-
tions are submitted to Yggdrasil. This is achieved by two operations, namely the
split and the merge operations. Specifically, when the last blocks of a shardchain
become overloaded (i.e., the average ratio between their number of bytes and the
maximal number of bytes contained in a block exceeds a given threshold), then the
committee of validators of the overloaded shard triggers a split operation. Note that
this assumes that the size of the committee is greater than twice the minimal size
of a Byzantine tolerant committee. In the negative the overloaded shard does not
split into two smaller shards. Now, when a shard is under-loaded (i.e., the average
ratio between their number of bytes and the maximal number of bytes contained in
a block falls short of a given threshold), or the size of its committee of validators is
close to the minimal size of a Byzantine tolerant committee, then the committee of
validators triggers a merge operation with the shard closest to theirs. Operationally,
each shard maintains an attribute called status that can be set to Splittable, Merge-
able, or Regular depending on the conditions mentioned above. This attribute is
also included in the shard update transactions sent from shards to the masterchain
to globally share information about all the shards status.

We formally express the status of a shard as follows:

Definition 20 (Shard’s Status). We denote by V`(t) the set of validators assigned
to s` at time t. At time t, a shard is in one of the following three status.

109

110 Chapter 5. State-sharded blockchains

• Splittable: A shard is considered splittable at time t if |V`(t)| goes above a
certain threshold � and block load goes above another threshold �.

• Mergeable: A shard is considered mergeable a time t if |V`(t)| goes below a
certain threshold � or block load goes below another threshold �.

• Regular: A shard is considered regular if it is neither splittable nor mergeable.

Note that at each split/merge operations, the label of the newly created shard(s)
is derived from its parent’s label. Initially, Yggdrasil is made of a single shard
labelled with the empty binary string ` = ". If Yggdrasil needs to replace a splittable
shard s` labelled with ` by two new shards, they respectively inherit the label of
the overloaded shard suffixed with 0 and 1, i.e., s`.0 and s`.1. If two shards s`.0
and s`.1 are concomitantly Mergeable, they are replaced by a single shard s` whose
label is equal to the maximum prefix shared by the two Mergeable shards, i.e., `.
Processes are automatically re-assigned to the newly created shards according to
their identifiers.

State transfer between shards. As the split and merge operations lead to the
creation of new shards, this gives rise to the creation of new shardchains and the
extinction of old ones. The state of a newly created shardchain is initialized with
a summary of its parent(s)’ state. This summary is the genesis block of the new
shardchain. Each split or merge operation automatically re-assigns validators to
their new shard. This assignment is verifiable in the masterchain. The genesis block
of each new shardchain is produced by committees pseudo-randomly selected upon
the validators assigned to the shard. The pseudo-random selection is based on public
information contained in the masterchain. Processes maintain the set of shards S
by reading the information contained in the masterchain’s blocks. Specifically, upon
receipt of a masterchain’s block, processes append it to their local copy of the
masterchain and update S using the information contained in it.

5.3.6 Shards update transactions details

We are now able to detail shard update transactions. A shard update transaction
contains the latest information related to a shard, namely, the hash of the last
block created, the status of the shard, and information about outgoing cross-shard
transactions. When a shard validates a cross-shard transaction in its shardchain, it
must notify the receiving shard s0. It includes in its shard update transaction the
Merkle Root m0 of the cross-shard transactions that involve the shard s0 (if any)
associated to the label `0 of s0. More formally, a shard update transaction SU sent
by shard s is defined as follows.

SU = (`, h(b), T , ✓), (5.2)

where ` is the label of shard s, h(b) is the cryptographic hash of the latest block
b created in s, T represents the set of cross-shard transactions contained in b that

Chapter 5. State-sharded blockchains 111

involves r corresponding shards, and ✓ represents the status of s. Note that T is
a key-value list where the keys are the labels `j of involved shards sj , by involved
shards, we mean the shards that have to confirm at least one of the cross-shard
transactions contained in b. The value associated to each `j in T is the merkle root
mj of the transactions (contained in b) involving sj as a recipient, it is defined as:

T =

⇢
(`0,m0), . . . , (`j ,mj), . . . , (`(r),m(r))

�
(5.3)

5.3.7 Reducing cross-shard transactions volume

Cross-shard transactions are very expensive in terms of latency (i.e. since a cross-
shard transaction needs to be processed by two shards, users have to wait longer
for it to be confirmed), therefore, it is essential to limit their volume. We allow
any node to create several users (not necessarily when the node joins), one for each
shard of interest, to make transaction processing local to each shard. We call this
optimization incarnation. Each of these incarnations is a user with one account. Any
two incarnations have two different accounts. Incarnations get identifiers allowing
nodes to position themselves in the targeted shard. Specifically, an incarnation is
identified by the label of the targeted shard concatenated to the public key of the
node. Concretely, suppose that when a node joins the networks there exist 3 shards
respectively labelled 0, 10, and 11 and the node’s public key is 1001 6. Based on its
node’s public key, the default user incarnation would be identified by idnode = 1001,
therefore, would be assigned to shard 10. However, if the node intends to repeatedly
interact with another user or with a smart contract located in shard 0, Yggdrasil
enables it to incarnate in s0, with the identifier idincarnation = 0.idnode = 01001.
Operationally, to create an incarnation, initial funds must be deposited into its
account by sending a cross-shard transaction tx1: < idnode, idincarnation, _>. If the
node wants to withdraw its funds from its incarnation it must send a transaction
tx2: <idincarnation, idnode, _>.

5.3.8 Dealing with an adaptive adversary

So far, we considered a deterministic and static assignment for all processes in a
shard. However, to deal with an adaptive adversary, validators must be moved to
random shards from time to time (quickly enough to prevent the adversary from
poisoning the shard by progressively compromising more than a fraction ⌧ of the
validators committee). This mechanism is known as shuffling 7. Shuffling validators
(committee members or not) introduces some synchronization overhead, i.e., the
time it takes for moved validators to download the latest state. To avoid downtime
during the synchronization procedure, it is imperative that for each shard, each

6Here, we reduce the size of the public key for simplicity of the example. In reality, the public
key is 256 bits long

7Note that users do not need to be shuffled as they have no decision power, i.e., they have no
voting power.

111

112 Chapter 5. State-sharded blockchains

resynchronization involves a subset of the validators of the shard, and to defend
against a weakly adaptive adversary, the new assignement must be random, and
unpredictable.

Algorithm 5 describes our procedure to shuffle validators. The reassignment
function is parametrized by k. k is the number of blocks that need to be created
in a given shard before the adversary is capable of corrupting a new validator in
it. Operationally, our reassignment function consists in computing a new identifier
idhv for each validator v and each new height h of the masterchain. Input values
of the reassignment function are: (1) the validator identifier idv and (2) the hash
of the latest masterchain block hash(bhm

i
). Note that, the adversary cannot guess

hash(bhm
i
) prior this block is created which limits its adversarial strategies. This

results on an output value idhv , a binary string the validators use to (i) define if
they need to move and (ii) in which shard it should re-assign to. To do that, the
validators first calculate the distance (see Definition 18) between their identifier idv
and idhv D(idhv , idv). The validator is allowed to move if its D(idhv , idv) is below a
threshold such that the probability for the validator to be shuffled is equal to 1/k
(line 3 of Algorithm 5). Then, the validators calculate D(idhv ,S) and assign the
validator to the closest shard to idhv (line 4 of Algorithm 5). Note that the distance
function could return the same shard the validator was in for the last height, thus,
it would not move. Hence, the probability of of having a different shard than the
former shard the validator was in would be 1� 1

|S| . In this way, for each masterchain
block, we have a probability ⇡ 1/k for a validator to be re-assigned and each process
in the system could compute its assignment. Yggdrasil’s properties and proofs are
presented in Section 5.5.

Algorithm 5 Validators Reassignment

1: upon receive block from Cm(hm
i + 1)

/* Cm(h) being the masterchain committee at height h. */

2: idhv f(idv, hash(block)).

3: if (D(idhv , idv) <
D(idhv ,idhv)

k)

/* where idhv is the binary complement of idhv */

4: vi.shard getClosestShard(idhv ,S)
/* getClosestShard() returns the closest shard between idv and the shard

labels in S using the distance function defined in Definition 18. */

5.4 Implementation Details

5.4.1 User transaction types and structures

Any user transaction tx has a structure <sender, receiver, payload> where sender
and receiver are addresses, payload is a float or a binary depending on the transaction
type:

• Payment: A transaction of type payment corresponds to a sending of tokens
from one account to another. eg: <A, B, 10> corresponds to sending 10 tokens

Chapter 5. State-sharded blockchains 113

from account A to account B. This kind of transaction can be of two types:
UTXO and accounts.

• Stake: A transaction of type stake corresponds to the sending of one token
from one account A that wants to put the token in stake to a global address
known as STAKEHOLDER. i.e. : <A, STAKEHOLDER, 1> which means A
staking 1 token.

• Smart Contract Deployment: A transaction of type deployment corre-
sponds to the creation of the contract by pi. eg: <A, nil, data>, where
data contains the information about the deployed SC. Please note that smart-
contracts have their own identifier which derives from their creator’s identifier.
This is done in order to have the smart-contracts deployed in the same shard
as their creator.

• Smart Contract method invoke: A transaction of type method invocation
corresponds to the use of a Smart Contract method by the process. ex: <A,
SC, data>, where data contains the information about the SC method invoked
and its parameters.

• ShardUpdateTx: A transaction of type ShardUpdateTx is sent by a shard
committee after each newly created block. It contains the hash of the block,
the status of the shard and the merkle roots of all transactions contained in
the block.

5.4.2 Joining the network

When a process pi connects to the network, it follows the general routine as described
in Algorithm 6. First, it enters the Yggdrasil network by calling a join() function,
which aims at synchronizing its state with that of the other processes. During the
execution of the join() procedure, pi calculates its assignment to one of the existing
shards. Once the process is assigned to a shard, it can participate in the shard by
sending/receiving transactions if it has the role of a user, or, if it is a validator, by
maintaining the state of the shard with blocks creation and management of split
and merge mechanisms.

5.4.3 Transaction sharding and processing

Let us recall that our system is composed of a dynamic set S of shards s`. Each
shard maintains its own blockchain, called shardchain. A small dynamic (i.e. its
composition changes during execution) set of processes (with validator role) con-
stitutes the committee responsible of maintaining the shardchain, it is denoted by
C`(h). As stated earlier, processes are assigned to a shard depending on their iden-
tifier and the label of the shard. When a transaction (other than stake) involving
a process is broadcast, it is assigned to a given shard s`. In fact, since process as-
signment is computable by anyone, any process can calculate the position (in which

113

114 Chapter 5. State-sharded blockchains

Algorithm 6 General Routine

1: hm
i := 0

2: h`
i := 0

3:

4: upon arrival in the network

5: join()

/* join() is the first action pi executes when it enters the system, it initializes

the main structures, connect to others and ask for synchronization. */

6: (hm
i , h`

i) := updateLocalVariables()

7:

8: upon receive block from Cm(hm
i + 1)

/* Cm(h) being the masterchain committee at height h. */

9: addBlockToMasterchain(hm
i + 1)

10: hm
i ++

11: setProcessAssignment()

12: getCrossShardTxs(block)

13:

Algorithm 7 Process Assignment

1: Input : S
2: Output : /

3:

4: action setProcessAssignment()

5: if (shardOf(pi) = nil) then

/* shardOf(pi) returns the label of the shard pi belongs to or nil if it does

not belong to any shard. */

6:

7: pi.shard getClosestShard(pi.identifier,S)
/* getClosestShard() returns the closest shard between pi label and the

shard labels in S using the distance function defined in Definition 18. */

Chapter 5. State-sharded blockchains 115

shard) of another using its identifier (contained in the transaction). Being assigned
to s`, the transaction is then processed and confirmed in one of the blocks of the
shardchain maintained by s`.

As soon as it appends a block to its shardchain, s` must send a ShardUpdateTx
to the masterchain committee (Algorithm 8) in order for it to be eventually added
to the masterchain. As said earlier, ShardUpdate transactions contain the latest
updates about the shard such as the the hash of the newly appended block, the
cross-shard transactions and its shard status.

At masterchain side, since shards work in parallel and independently, we propose
here a verification algorithm (Algorithm 9) to check if the received updates are
coherent with the current information to maintain a consistent overall state and
reject them if they are not. This is done to avoid possible synchronization problems
between the shards and thus allow them to evolve correctly. As an example, if a
shard has split in the last update, it does not exist anymore, so it can not send
updates before its two child shards merge. As shown by Algorithm 9, we consider
an update valid iff the label of the shard transmitter is included in the shards set
S, which is calculated using the previous blocks of the masterchain.

Algorithm 8 Shardchain Block creation

1: Input: h`
i

S := {"}
2:

3: if (pi 2 C`(h`
i + 1)) then

4: shardBlock createShardchainBlock()
5: C {}
6: for each (s 2 S)
7: MR getMerkleRootOf(getCrossShardTxsWith(s, shardBlock))

/* getCrossShardTxsWith(s, block) returns the list of cross-shard transac-

tions involving s contained in shardBlock.

getMerkleRootOf() returns the merkle root of a list of transactions. */

8: C C [{[getClosestLabelTo(s),MR]}
/* getClosestLabelTo(s) returns the closest label to shard s in S */

9: send <ShardUpdateTx, hashcode(block), C, getStatus()> to all processes in Cm(t)
/* hashcode(shardBlock) returns the hashcode of shardBlock.

getStatus() returns the status of the shard (S/M/R).

Cm(t) being the masterchain committee at time t. */

10:

Algorithm 9 Reception of ShardUpdateTx

1: Input: hm
i , S

2: upon receive ShardUpdateTx from any shard

3:

4: if (pi 2 Cm(hm
i + 1) ^ emittingShardOf(ShardUpdateTx) 2 S) then

5: addTxToNextMasterchainBlock(ShardUpdateTx)

6:

115

116 Chapter 5. State-sharded blockchains

5.4.4 Cross-shard transactions’ confirmation

In the following, we suppose that the shard where pi belongs is called shard transmit-
ter st. The receiving shard, denoted by sr, is then notified using a ShardUpdateTx
confirmed in the masterchain. More operationally, cross-shard transactions are di-
vided in two. First, the st processes the transaction as an intra-shard payment
transaction and confirms the financial capabilities of the process for the operation.
Then, it sends to the masterchain a ShardUpdate transaction SU1 containing the
cross-shard transaction. Upon receving SU1, sr asks for the block referenced in
it. After its reception and depending on the cross-shard transaction involving an-
other process or a smart-contract, sr puts different transactions in its shardchain.
In the case of a payment transaction, the only added transaction is the original
payment transaction. In the case of a smart-contract method invoke, another trans-
action containing the results of the invoke is put in the block in addition to the
original payment transaction. After the creation of the block containing this/these
transaction(s), sr sends a ShardUpdate transaction SU2 to the masterchain. After
receiving it via a masterchain block, shard st will also ask for the transactions con-
tained in the SU2 and in case of a method invoke, put the resulting transaction in
its shardchain thus making available the result of the invocation. The cross-shard
transaction confirmation process is illustrated in Figure 5.6 and in the Algorithm 10.
Since confirming a cross-shard transaction is a lengthy process, one or both shards
may no longer exist at some point in the confirmation process. To cope with this,
all messages are sent to the shard with the closest label (using the distance function
defined in Definition 18) to the one of the sending/receiving shard.

Chapter 5. State-sharded blockchains 117

Algorithm 10 The actions of pi for confirming a received cross-shard tx.

1: Initialization : S := {"}
2:

3: action getCrossShardTxs()

4: upon receive block containing < CrossTx,_, shardOf(pi) > from Cm(t)
/* Cm(t) being the masterchain committee at time t */

5: for each (CrossTx 2 block)
6: if (CrossTx.label == pi.label) then

7: send <GETBLOCK, CrossTx.label, getBlockHashOf(CrossTx)> to all processes be-

longing to the shard with the closest label to CrossTx.label

/* getBlockHashOf(CrossTx) returns the hashcode of the shardchain

block containing the cross-shard transaction referenced in the masterchain

block. */

8:

9: action confirmCrossShardTxs()

10: upon receive shardBlock as reply to <GETBLOCK, _, _>

11: for each (CrossTx 2 getMyCrossShardTxs(shardBlock))
/* getMyCrossShardTxs() returns the list of cross-shard transactions in

shardBlock that involve pi shard. */

12: if (isValid(CrossTx)) then

13: addTxToMempool(CrossTx)

/* addTxToMempool(CrossTx) puts CrossTx in its mempool in order to

propose it for future shard blocks. */

14:

5.5 Yggdrasil Analysis

5.5.1 State-sharding

Before analyzing main properties of Yggdrasil, we show that Yggdrasil implements
state sharding. It means that in Yggdrasil, at any time, when there are a least two
shards, two processes in different shards do not maintain the same state. Moreover,
the union of the states of the different shards is the state of the whole system.
Yggdrasil ensures that if a node is in a shard, it keeps only track of its shardchain,
and of the masterchain.

To prove that Yggdrasil implements state-sharding, we need to have a formal
definition of what the state sharding is. First, let us define the notion of state.
The current state of a blockchain system corresponds to the current value of ac-
counts and smart contracts in the system. It can be obtained by the sequential
modifications/updates (confirmed transactions) applied to its initial state (genesis
block).

As in Definition 9, recall that the state of a shard is the current value of the
variables and accounts (smart contracts, users’ balance) in this shard. The current
state of a shard is the result of the successive modifications of the initial state
of this shard. These modifications are the application of the blocks added to the
shardchain.

Let us assume that the current shardchain s consists of the chain bs0, . . . , b
s

k
. The

initial state of s is the valuation of the variables and account set in bs0. The current

117

118 Chapter 5. State-sharded blockchains

Figure 5.6 – Handling cross-shard Transactions. Yggdrasil relies on
the masterchain to handle the confirmation of cross-shard transactions.
When the cross-shard transaction tx1 is broadcast, (i) tx1 is confirmed
by the sending shard’s committee, (ii) a ShardUpdateTx containing the
merkle root of tx1 is sent to the masterchain by the shard committee
and (iii) it is confirmed by the receiving shard. If tx1 involves a Smart-
Contract, the Smart-Contract’s response must be contained in a different
transaction tx2 and sent to the masterchain as a ShardUpdateTx.

state state of s is the current valuations of the variables and accounts after applying
blocks bs1, . . . , b

s

k
to its initial state. By abuse of language, we say that state0 is the

prefix of the state state of shard s, and we denote it state0 v state, if either state0

is the initial state of s, or state0 is obtained after applying blocks bs1, . . . , b
s

k0 to the
initial state of s, with k0 2 {1, . . . , k}.

Definition 21 (State-sharding).

• The state of a node is a prefix of the state of the shard he is member of:

8pi 2 sl, statei v statesl , where statesl is the state of the shard sl.

• When two nodes are members of the same shard, one’s state is necessarily the
prefix of the other’s state:

if p1, p2 2 sl, then state1 v state2 or state2 v state1.

Chapter 5. State-sharded blockchains 119

• When two nodes are not the in the same shard, then their state are not prefix
of one another. Moreover, the intersection of their states is a prefix of the
state all nodes should share. If there is no such state to be shared by all nodes,
then the intersection should be empty:

If p1 2 s1 and p2 2 s2 such that s1 6= s2, then state1 \ state2 v
stateSharedKnowledge. When there is no structured shared information between
shards, stateSharedKnowledge is always empty.

Lemma 22. Yggdrasil implements state-sharding.

Proof. Before trying to prove that Yggdrasil implements state-sharding, let us recall
that in blockchain with state sharding, the state corresponds to the current value
of accounts and smart contracts in the system. It can be obtained by the sequen-
tial modifications/updates (confirmed transactions contained in confirmed blocks)
applied to its initial state (genesis block). One can think that nodes in different
shards do not share any information but nodes from different shards can share some
information represented in our work with the masterchain (see section 5.1.1 for more
details).

To prove that Yggdrasil implements state-sharding, we prove here each point of
definition 21:

• Let p1 be a process assigned to s1. p1 maintains its own copy of s1’s shardchain,
which corresponds to its state state1. p1 receives the blocks of s1 after a
transmission delay �. It is therefore � seconds behind the most advanced state
of s1, states1 . p1’s state state1 is therefore prefix of states1 .

• Let p1 and p2 be processes assigned to s1. p1 and p2 both maintain their
own copy of s1’s shardchain. One of them, let’s say p1 necessarily receives the
blocks and therefore updates its state � seconds before p2. p1’s state state1 is
therefore prefix of p2’s state state2.

• Let p1 and p2 be processes respectively assigned to s1 and s2. p1 and p2 do not
maintain copies of the same shardchain, however, they both maintain copies
of the masterchain. Therefore, their states state1 and state2 have nothing in
common except the masterchain which represents the shared knowledge.

5.5.2 Safety of the assignment

The safety of Yggdrasil ensures that transactions and processes are well assigned and
that the assignments are verifiable by any process. More in detail, we have that (i)
Each intra-shard transaction is assigned to a unique shard, (ii) Process assignment
is verifiable by any other process, and (iii) At any time, each process is assigned to
exactly one shard. Thanks to these properties, no inconsistency can happen due
to the assignments. Each process knows which shard it is in and can compute the

119

120 Chapter 5. State-sharded blockchains

shard of any other process. Additionally, each transaction is assigned to the shard
of its emitter. It means that conflicting transactions will be managed by the same
shard, hence preventing the risk of inconsistencies.

Lemma 23. Each intra-shard transaction is assigned to a unique shard.

Proof. Let tx be a non-cross-shard transaction that has one sender and at most one
receiver (in the case of a smart-contract deploy, there is no receiver). tx is assigned
in the shard(s) of the sender and receiver if any. Since at time t, each user is assigned
to a single shard and tx is not a cross-shard, then both nodes are necessarily in the
same shard s so the transaction is only assigned to a unique shard s.

Lemma 24. Process assignment is verifiable by any other process.

Proof. Let pi be a process. First, let us consider that pi is a user, its assignment
is static and computed using the ID of the user and the set of shards at a given
masterchain height hm

i
(line 11 of Algorithm 6 then line 7 of Algorithm 7). The ID

of a user is public information, and the set of shards is computable using the mas-
terchain state (public information). All parameters used to compute pi’s assignment
are public, therefore user assignment is verifiable by any process in the system.

Now, let us consider the case of pi as a validator, its assignment is done using
a VRF. As explained in section 5.3.8, VRFs allow us to verify its output using the
public key of the validator (public information), the stake transaction that identifies
the validator process (public information) and the unforgeable proof (generated by
the VRF) the validator has to send with all its messages. All parameters used to
compute pi’s assignment are either public or provided by the process itself, therefore
validator assignment is verifiable by any process in the system.

Since a process can either be a user or a validator and its assignment is verifiable
in both cases, then process assignment is verifiable.

Lemma 25. At any time, each process is assigned to exactly one shard.

Proof. Let p be a process and id its identifier. Its assignment is computed using
the getClosestShard() function (see line 7 of Algo. 7) as specified in definition 19.
It uses the distance function (see Definition 18) with id and the set of all shards
(computed deterministically at a height h of the masterchain) as input parameters.
The result of the distance function is a single shard s` among those given as input.

Note that the assignment shard s` is unique because:

• Shards labels satisfy the non-inclusion property [109], which means that a
shard cannot be part of another shard.

• The XOR function has the property that for any point a, there exists one and
only one point b such that b is at a certain distance d from a.

Chapter 5. State-sharded blockchains 121

5.5.3 Eventual confirmation

The liveness property of interest for Yggdrasil is that all valid transactions are
eventually confirmed. Any intra-shard transaction is assigned to one shard that
manages it. If it is valid, it will be confirmed by the shard. On the other hand,
cross-shard transactions are managed by two shards. However, if such a transaction
is confirmed in the first shard, there is no conflict, and the transaction is correct.
Since the transaction is valid, therefore, it will be confirmed by the target shard too.

Lemma 26. Valid intra-shard transactions are eventually put in a block of the
corresponding shard.

Proof. Let us assume that property P3 is satisfied (see section 5.6.3). We say that
the system is scalable, which means that the average transaction confirmation rate
is roughly equal to the average transaction submission rate. If we assume that
transactions are processed in order of arrival, then no transaction is processed before
an older transaction.

Since property P3 is satisfied and transactions are processed in order of arrival,
therefore, all transactions are eventually processed.

More precisely, at time t, a shard processes all its intra-shard transactions sub-
mitted at time t0 t�� (where � finite is the time of transfer and require to process
a transaction), and if they are valid, the shard puts them in its shardchain.

Lemma 27. Valid cross-shard transactions are eventually confirmed.

Proof. A cross-shard transaction is confirmed by the system, if it is confirmed in
both shards involved (Definition 12).

Let tx0 be a valid cross-shard transaction involving shards s1 and s2. We prove
here that tx0 is necessarily confirmed in the system. Let tx1 and tx2 be the two
components of tx0 concerning respectively shards s1 and s2. Since tx0 is valid, then
tx1 and tx2 are both valid. To prove that the cross-shard transaction tx0 involving
s1 and s2 is confirmed, we prove in the following that tx1 is confirmed by s1, and
tx2 is confirmed by s2.

By lemma 26, if tx1 is valid, it is eventually put in a block, say b1 in the shard-
chain of s1. Once b1 is appended to the shardchain of s1, a ShardUpdateTx SU1

containing tx1 is sent to the masterchain (cf. line 9 of Algo. 8). Since SU1 is neces-
sarily valid, by Lemma 26, it will be put in the masterchain, which confirms b1, and
by extension tx1. As defined in equation 5.2, SU1 contains the label of the shard
s1, the hash of b1, the status of the shard s1 and the set of cross-shard transactions
contained in b1).

Thanks to the presence of SU1 in the masterchain, s2 is notified of the presence
of a cross-shard transaction in block b1 (line 4 of algorithm 10). s2 then asks to
receive b1 and thus tx1 (line 7 of algorithm 10) then inserts tx2 in a newly created
block b2 appended to its shardchain. In the same way as b1, b2 is then referenced in
the masterchain using a ShardUpdateTx SU2, which confirms tx2.

121

122 Chapter 5. State-sharded blockchains

We have that tx1 is confirmed by s1 and tx2 is confirmed by s2. Therefore, tx0
is confirmed in the system (Definition 12).

5.5.4 Security

The security properties concern the guarantee Yggdrasil provide against adversaries.
Concretely, we have that in Yggdrasil, (i) Validators (re-)assignment is unpredictable
in advance (before a new block is appended to the masterchain), (ii) Validators are
dynamically re-assigned, (iii) No validator has control on how it is (re-)assigned.
Thanks to these properties, the adversary cannot predict in which shard a validator
would be. Therefore, it will be complicated to target a given shard to compromise
it. These properties hold thank to the impredictability of the seed used for the
(re-assignement), since validator can predict it in advance.

5.6 Performance Evaluation

We evaluated the performances of Yggdrasil against the following properties: (i)
scalability, i.e. capacity to scale during a peak of transaction load in terms of
block/transaction throughput and latency, (ii) reactivity in terms of number of shards
in the system, against a sudden and abrupt transaction fluctuation, i.e. during and
after a burst of transactions and (iii) the impact of cross-shard transactions. We
evaluate Yggdrasil scalability using 500k historical Ethereum transactions [110] con-
tained in 10k blocks; between the 14, 700, 000th and the 14, 710, 000th blocks created
between 02/05/2022 at 20:54:24 and 04/05/2022 at 10:47:00. For reactivity we con-
sider realistic fluctuations (by scaling time from real-time minutes to simulation
seconds) and we compare Yggdrasil to time-driven approaches. For cross-shard
transaction we use a synthetic scenario, to evaluate performance under ever increas-
ing proportion of cross-shard volume (from 0% to 100%). The source codes of these
protocols as well as all the scripts of the experiments are publicly accessible [111].

5.6.1 Simulator and experimental environment

We used an agent-based simulation framework dedicated to blockchain systems,
called Multi-Agent eXperimenter (MAX) [5] based on the MaDKit framework [86].
MAX offers generic libraries to easily develop distributed ledger protocols and a large
range of simulation scenarios. The simulator is a discrete event simulator, where
the unit of simulation time is referred to as a tick. Message-passing libraries allow
us to configure different types of communication schemes and message delays. In
this work, the communication schema is configured as a reliable broadcast with con-
figurable delay to reflect assumptions on our reliable broadcast (see Section 5.2 for
more details). Impact of message losses is left for future works. All the experiments
have been run on Grid’5000, a large-scale and flexible test-bed for experiment-driven

Chapter 5. State-sharded blockchains 123

(a) Transaction confirmation rate as

a function of the transaction sub-

mission rate.

(b) Transaction average latency as

a function of their submission rate.

(c) Number of unconfirmed trans-

actions as a function of their sub-

mission rate.

(d) Transaction average latency as a

function of cross-shard transaction

probability.

Figure 5.7 – Performance Evaluation of Yggdrasil.

research [6]. Due to the computational complexity of simulation models and exper-
iments involving a representative number of agents, each experiment presented in
this chapter takes in average 24 hours.

5.6.2 Simulation model

The Yggdrasil protocol has been implemented in the simulator on top of an im-
plementation [112] of the Tendermint protocol[17], used for each shard. As for the
generated workload we used for the scalability study a set of historical ethereum
transactions containing records of the past 2 years, namely from 13/03/2020 to
14/03/2022 [110]. For reactivity and the impact of 2PC algorithm, synthetic work-
loads have been generated.

For all the experiments presented in this chapter, the block capacity, that is
the maximal number of transactions a block can embed, is set to 100 transactions
(to avoid the simulator overload). Note that while in general, the block capacity
is approximately equal to 4, 000 transactions [53], reducing the block capacity does
not affect the behaviour of the protocols.

For each experiment, we have run sufficiently many simulations to get a confi-
dence interval equal to 5±%. For each experiment,

123

124 Chapter 5. State-sharded blockchains

5.6.3 Scalability

This section studies the capability of Yggdrasil to handle high transaction submission
rates. Specifically, we evaluate the transaction confirmation rate, the number of
unconfirmed transactions and the transaction latency, i.e., the average time elapsed
between the submission of a transaction in the network and the time at which the
transaction is confirmed. We compare the performance of Yggdrasil to solutions
with static sharding such as Monoxide[15] with a number of shards n throughout
the simulation.

5.6.3.1 Experiment setting

The overload threshold � is fixed to 90% for Yggdrasil. Note that when � = 100%,
splits never occur and thus Yggdrasil reduces to Tendermint (n=1). The submission
rate of transactions ft, which represents the number of transactions submitted per
tick of simulation, is set at the beginning of each experiment. ft varies from 1 to
1280 txs/tick. Let us remark that we get in expectation one block created every 10
ticks. This means that in Tendermint ft = 10 txs/tick already exhausts the system
transaction treatment capacity, as the system creates one block every 10 ticks in
expectation and one block contains 100 transactions. From this observation, we
might expect that for ft > 10 txs/tick, pending transactions will accumulate over
time in, at least, Tendermint ledger. Note that to avoid the overload of the simulator
we were limited to ft = 1280 txs/tick. Anyway, setting ft up to 1280 txs/tick allows
us to severely stress Tendermint and Yggdrasil. Similarly to Bitcoin Core client,
validators give priority to old transactions in our implementations of Tendermint
and Yggdrasil.

5.6.3.2 Experiment results

The main results of our experiments appear in Figures 5.7a, 5.7b and 5.7c. Note that
in all the graphs, points are linked together with lines. This is only for readability
reasons.

Figure 5.7a shows the confirmation rate of transactions as a function of their
submission rate ft. The main observation regarding static sharding solutions is that
whatever the number of shards n is, they show a limited transaction confirmation
rate (e.g. approximately 200 txs/tick for n = 32 shards). On the contrary, this
rate is auto-adaptive for Yggdrasil which reaches more than 1.200 txs/tick while
Tendermint (n = 1) reaches only 15 txs/tick (85 times less powerful) which confirms
the interest of dynamic sharding when it comes to scalability. The implemented
static-sharding solution does not allow to reach such good performances even with
n = 32 shards. In order to better understand our simulation results, let us give
a correspondence between our simulated system and what would give us a real
system. According to [113], Tendermint has a transaction confirmation capacity of
approximately 500 txs/s. Proportionally and taking the same basic parameters such
as block size and inter-block delay, Yggdrasil would be able to confirm about 42.000

Chapter 5. State-sharded blockchains 125

Solution Yggdrasil rp=10 rp=20 rp=50 rp=100 rp=500 rp=1000 rp=1440

Rate (txs/tick) 375 253,5 189 120 60 15 15 15
Latency (tick) 35,8 71,4 85,5 114,5 123,9 132 132 132

Figure 5.8 – Maximum rate and average latency of Yggdrasil and time-
driven solutions in presence of a peak of load. Note that 1440 ticks corre-
sponds to a day, which is the reconfiguration period used by Elrond [11]
and Omniledger [13].

txs/s. Note that the ability of Yggdrasil to match its transaction confirmation
capacity to the arrival rate of these transactions already allows us to glimpse its
scalability potential. Figure 5.7b illustrates the average transaction latency as a
function of ft. In contrast to all the other experiments, transaction latency has
been measured as follows: transactions are submitted at ft for a while, then ft is set
to 0, and simulations stop once all the submitted transactions have been confirmed.
For static sharding solutions, latency is increasing in average but reaches lower
values as the number of shards n increases (450 tick/tx for n = 1 and 50 tick/tx for
n = 32). On the other hand, Yggdrasil with its dynamic sharding shows a stable and
lower latency (16 tick/tx). Figure 5.7c shows the average number of transactions
that accumulate at the end of the simulation before being embedded in blocks. The
number of unconfirmed transactions shows that Yggdrasil has a better confirmation
capacity than systems with a static number of shards shown by a lower number of
pending transactions at the end of the simulation. Note that the number of pending
transactions is close to 0 but not null because simulations are interrupted while
transactions are still arriving, thus not confirmed yet by newly created blocks.

5.6.4 Reactivity

This section assesses the capacity of Yggdrasil to react to sudden and abrupt fluctu-
ations in the creation transaction rate. Additionally, we compare Yggdrasil, which
is event-driven, to the time-driven adaptability some solutions of our related-work
provide (e.g, Elrond [11], Omniledger [13]). We thus study the reactivity of solutions
that adapt the number of shards at specific reconfiguration periods rp.

5.6.4.1 Experiments setting

As briefly presented in Section 5.3.5, when ft shrinks, the system reacts by progres-
sively decreasing the (under-loaded) sibling shards, and thus the number of created
blocks. Thus each merge divides by almost two the number of blocks subsequently
created. By the randomness of transaction identifiers, if one shardchain becomes
under-loaded, then soon after, all the shardchains become under-loaded too, and
thus merges occur in cascade. Initially, ft = 500 txs/tick during 10 ticks to mimic
a transaction peak load, and then at tick t = 12, ft = 0 txs/tick. Split parameters
� and T are set respectively to 90% and 5, while merge parameters � and ⌧ are set

125

126 Chapter 5. State-sharded blockchains

respectively to 10% and 2. As for the time-driven parameters, rp is set to 10, 20,
50, 100, 500, 1000 and 1440 ticks. The latter matching the reconfiguration period
of Omniledger [13] and Elrond [11] (a day).

5.6.4.2 Experiments results

Figure 5.8 shows the reactivity of Yggdrasil in presence of a load peak (constant
function from t = 1 to t = 11 ticks at ft = 500txs/tick). Yggdrasil initially un-
dergoes a series of splits, it reaches a maximum transaction confirmation rate of
375 txs/tick in order to lower latency to 35 ticks. Then, it progressively moves on
to a series of merge up to converging to a single shard. The time-driven solution,
on the other hand, performs less well since it does not adapt its number of shards
automatically. Indeed, at low values of rp such as 10 or 20 ticks, the system still
manages to increase the confirmation rate (190-250 txs/tick) to absorb the increase
in throughput thus lower latency (70-85 ticks). At medium values such as 50 or 100
ticks, the system reacts late and many transactions are already passed at a lower
confirmation rate (60-120 txs/tick) and therefore with a higher latency (115-125
ticks). For our highest values rp > 100ticks, the system does not even realize that
there has been an increase in the incoming transaction rate and does not react,
therefore, all transactions are confirmed in one shard, with a low rate (15 txs/tick),
thus a high latency (132 ticks) unlike Yggdrasil which shows optimal performance
with a reactive confirmation rate, thus a lower latency.

5.6.5 Cross-shard volume

This section studies the impact of various cross-shard transactions volumes on the
performances of Yggdrasil. The volume of cross-shard transactions is defined as the
ratio of the number of cross-shard transactions to the total number of transactions
at a given time. We vary this ratio to observe its impact on system scalability.

5.6.5.1 Experiment setting

Additionally to the experiments settings defined in section 4.5.3.1, we vary the cross-
shard transaction probability pc from 0 to 1 to observe the impact of cross-shard
transactions. Note that pc represents the probability that each time a transaction
is created, it involves two users from two different shards. Transaction creation rate
is set to ft = 640 txs/tick.

5.6.5.2 Experiment results

The main results of our experiments appear in the graphs of Figure 5.7d. Note that
in all the graphs, points are linked together with lines. This is only for readability
reasons. Figure 5.7d shows the average transaction latency as a function of the
cross-shard transaction probability pc. The main observation is that with dynamic
or static sharding solutions whatever the number of shards n is, latency increases as

Chapter 5. State-sharded blockchains 127

Figure 5.9 – Transaction average latency with 2-Phase Commit Algo-
rithm.

pc increases. It also decreases as n increases and is extremely low for Yggdrasil (as
shown in Section 5.6.3) since the number of shards in this specific scenario depends
on the transaction arrival rate.

5.6.6 2PC algorithm

This section studies the performance impact of our newly presented 2PC algorithm
for distributed smart-contracts (see Section 5.3.1). This algorithm allows to lock
a smart-contract while exchanging with other shards during one of its methods’
execution. We study the impact of 2PC on transaction latency.

5.6.6.1 Experiment setting

Additionally to the experiments settings defined in section 4.5.3.1, we study trans-
action latency (i.e. time spent between creation and confirmation of a transaction)
of Yggdrasil while using our 2PC algorithm under three different configurations: (i)
no-sharding (ii) static sharding and (iii) dynamic sharding. Transaction creation
rate is set to ft = 160 txs/tick. Transactions are all sent to SC1 which calls SC2.
The addresses of SC1 and SC2 have been created so that these two smart-contracts
can not be assigned to the same shard (if there is more than one). In this way, in
a sharded configuration (at least 2 shards), any call between SC1 and SC2 would
inevitably trigger our 2PC algorithm.

5.6.6.2 Experiment results

The main results of our experiments appear in the graph of Figure 5.9. It shows the
average transaction latency for the three different configurations presented above.
The main observation is that in no-sharding solutions (Ethereum for instance), la-
tency is the lowest (50 ticks). When the ledger is state-sharded, the smart-contract
needs to be locked for each invoke, which makes transactions wait longer, thus a
higher latency. Please note that as said before, only cross-shard calls involve the
use of our algorithm, thus smart-contract lock and higher latencies (as can be seen

127

128 Chapter 5. State-sharded blockchains

in the static sharding configuration, i.e. 800 ticks). Finally, dynamic sharding so-
lutions such as Yggdrasil allow to have a stable and low latency (110 ticks) despite
smart-contract locking. This is a side-effect of our split-merge mechanism. When
our system is sharded, only one transaction can be put in a block because this
transaction locks the contract which would have to wait for a return from the other
smart-contract located in another shard. This underfills leads to shards merging.
On the other hand, when our system is not sharded, blocks can be fulfilled because
no transaction requires smart-contract locking. This overfill leads to shards split-
ting. In other words, our system alternates splitting and merging. By doing so, it
can confirm transactions in less time than in static sharding solutions but in more
time than solutions with no sharding in this particular scenario. Note that in this
experiment, there are no financial transaction that could fill blocks, which could
hinder a merge. In this case, Yggdrasil would have the same transaction latency as
static sharding solutions.

5.7 Conclusion

In this chapter we presented Yggdrasil, the first adaptive and secure sharding so-
lution for general smart contracts in a permissionless setting. By combining ver-
ifiable decentralized techniques for dynamic sharding and a novel 2PC algorithm,
we demonstrated the feasibility of sharding in such a challenging system paving the
way to inter-blockchains distributed applications in the future.

Chapter 6

Conclusions

“The greater the difficulty, the more glory in surmounting it”
– Epicurus

Contents
6.1 General Conclusion . 129

6.2 Future Work . 131

6.2.1 Graph-based blockchains . 131
6.2.2 State-sharded blockchains . 132

6.1 General Conclusion

Blockchain solutions have the ambition to replace traditional infrastructures used for
instance by finance, traceability, or medecine applications. In fact, any application
relying on a trusted third party could be replaced by blockchain. To get there,
the path is long and full of obstacles. These obstacles are often illustrated by the
blockchain trilemma conjecture according to which blockchain cannot meet the needs
of decentralization, security and scalability at the same time. One of the challenges
that we need to face today is the design of blockchains that are very close to «solve»
this trilemma (if it is solvable), i.e., find the perfect solution that fulfills all three axes
of the trilemma. During this thesis, we were interested in this blockchain trilemma
and in particular in one of its axes: scalability, i.e., the capacity of a system to adapt
to meet a growing demand. This is a lever of blockchain systems that has interested
the community for many years and is still a topic of current interest. It inspired
this thesis which raises some questions, namely: "Is it possible to improve the
scalability of existing blockchain solutions while maintaining their decentralization
and security?" and "Are graph-based blockchains a solution to blockchain’s lack of
scalability?".

In order to answer these questions, we have been looking at solutions that have
been shown to improve scalability while maintaining decentralization and security.
Graph-based blockchains reveal to be relevant candidates since their graph structure
enables parallelisation of nodes’ work while keeping its decentralized aspect.

In this thesis, we studied Sycomore [27], the first ledger protocol, relying on
Bitcoin design principles, that addresses Bitcoin’s scalability issues by having a

129

130 Chapter 6. Conclusions

graph-structure design that allows for the “parallel" creation of valid and durably
appended chains of blocks. Since the main difference between Sycomore and Bitcoin
lies in their structure, it helped us exhibit some benefits of using a graph structure
in comparison with a classical structure with a single chain. This study led us
to propose Sycomore++, a blockchain protocol based on Sycomore. It consists of
an improvement of Sycomore enabling an auto-adaptation of the PoW difficulty
to the graph structure. Sycomore++ has shown us its true potential in terms of
scalability and its particular suitability for applications exhibiting strong and rapid
load variations. Moreover, as our analytical and experimental results show, Bitcoin’s
security has not been sacrificed for scalability either.

Based on this study, we can say that in the specific case of Bitcoin and
Sycomore++ it is possible to improve one of the axes of the blockchain trilemma
without sacrificing the other two, and this thanks to graph-based solutions. That
said, this has raised another question, to what extent is it possible to improve one
of these axes before having to sacrifice one of the other two?

To answer this newly raised question, we first had to know what these limits
represent. Since we were interested in scalability, we decided to exploit this axis by
looking at the most innovative solutions improving blockchains’ scalability. That’s
how we got interested in sharding 1, a solution of state compartmentalization, his-
torically used in databases and then adapted to blockchains. It is in this context
that we have proposed Yggdrasil, a solution implementing state-sharding (one of
the three types of sharding presented in Chapter 5). Thanks to this technique of
dividing the state into several shards, we have been able to achieve very promis-
ing performances better than those of Sycomore++ in terms of scalability. Since
state-sharding’s main advantage is to reduce communication and storage overhead,
solutions implementing it would tend to scale more easily. One of its other advan-
tages being its capacity to keep a strong decentralization by giving more power to
more nodes in separate shards. Additionally, our analytic and experimental study
of Yggdrasil allowed us to assess its security.

Finally, our work on both DAGs and state-sharded solutions helped us establish
that graph-based solutions are indeed a very interesting and promising solution in
terms of scalability. Moreover, since this solution does not sacrifice decentralization
nor security, it seems to be a good balance between the three blockchain pillars.
This work made us understand that scalability as well as each of the two other axes
of the trilemma could be pushed back. However, since we do not know the limits of
each of these axes given the current state of art in blockchains, we consider that it
is not possible to attain these limits. The best that any solution can do is to find
the right balance between these pillars, which is what graph-based blockchains have
the potential to achieve, as we have seen in this thesis.

1Given the graph structure of the shards, we consider this type of solution as a more advanced
graph-based solution.

Chapter 6. Conclusions 131

6.2 Future Work

In this section, we will discuss potential future work arising from this thesis. These
perspectives are extensions of the work presented in this manuscript.

We have structured this section in the same way as our main contributions.
Namely two main subsections, one for graph-based solutions (Sycomore++, see
Chapter 4 for more details) and another for solutions implementing sharding (Yg-
gdrasil, see Chapter 5 for more details).

6.2.1 Graph-based blockchains

In this section, we study the perspective and future work derived from our work on
graph-based blockchains such as Sycomore++.

Sycomore++ and its performances. During this thesis, we have proposed
Sycomore++, a graph-based blockchain protocol (see Chapter 4 for more details).
This protocol is a modification of Sycomore [27], which itself is an adaptation of
Bitcoin in graph structure. Its main feature is to dynamically self-adapt the num-
ber of created blocks to the current number of submitted transactions. We have also
presented an advanced experimental study to assess the properties of three permis-
sionless PoW-based distributed ledgers under high or chaotic submission transaction
rate, and adversarial environments. Experimental results show the nice behavior of
Sycomore++ compared to both Bitcoin and Sycomore in terms of scalability, energy
loss, reactivity, resilience, and quality of the distributed ledger. Our experimental
study allowed us to show the potential of our solution. However, we believe that
implementing Sycomore++ and testing it in a real environment would get us past
the resource limitations. In this way, we would be able to show how Sycomore++

behaves when exposed to the same conditions as Bitcoin or others today.
We believe that in this way, we could realistically compare Sycomore++ to other

graph-based blockchains [3, 4, 2] or any layer-1 blockchain solutions that would aim
to improve the scalability of Bitcoin [114, 115, 116] and thus give a more accurate
answer to the question "are graph-based blockchains a solution to blockchain’s lack
of scalability?".

Deepen the study of Sycomore’s properties. As said before, Sycomore++ is
a modification of Sycomore. It is the correction of a flaw that we noticed while
studying Sycomore. Nevertheless, Sycomore is a complex protocol which properties
are numerous and intricate. In order to optimize the performances of Sycomore++,
we think that it would be appropriate to deepen the study of Sycomore. More
specifically, we would focus on the different system parameters (�, �, cmin, Hmax...)
that could impact the performances as well as the security of both Sycomore and
Sycomore++.

131

132 Chapter 6. Conclusions

Analyze the computational cost of adversarial strategies in the presence
of transient network partitions. During our study of Sycomore++, we did not
focus on the impact of the network on our system. We make the hypothesis that the
transmission delay is null and that the transmission reliability is 100% (i.e. all the
sent messages are received instantaneously). In order to deepen our study, we find
interesting to vary these parameters to make the network less predictable and more
realistic. This modification would also open the way to potential network attacks.
For isntance, an adversary could use the dynamism of the network topologies to his
advantage by creating partitions and thus take the ascendancy on the other nodes
of the system (e.g. he could isolate a part of the network to create a fork).

Study the impact of fork resolution on Sycomore++ performances. As
our study of Sycomore++ was mainly about scalability, our goal was to show the
performances that Sycomore++ could offer in terms of throughput. Thus, during
our study on the resolution of forks in Bitcoin, Sycomore and Sycomore++, we did
not dwell on the impact of these forks on the system’s performance. Forks can
lead to the loss of an important number of blocks thus to the loss of miners’ work
which could harm the performance of the system. Hence, we think that it would be
interesting to compare the proportion of discarded blocks in Bitcoin, Sycomore and
Sycomore++ and the impact of this energy loss on the performance of the system,
under different network conditions.

Incentives for honest participation. During our study of Sycomore++, we did
not focus on the incentives for a miner to act correctly. As shown by [50], the security
of a system is endangered without a static block reward but what about the disap-
pearance of the block fees? In Sycomore++, transactions are uniformly partitioned
and since it adapts its graph structure to transactions arrival rate, transactions are
less in competition with each other compared to non-adaptive blockchain systems
such as Bitcoin.

The question we could ask ourselves is how much lower could fees go? Isn’t
their presence an incentive for the miner to act properly? And if the fees fluctuate
according to the graph structure, wouldn’t it be in the miner’s interest to prevent the
graph from splitting and therefore underfill his blocks? We think that it would be
interesting to answer these questions in order to complete our study on Sycomore++

with the tokenomics aspect.

6.2.2 State-sharded blockchains

In this section, we study the perspective and future work derived from our work on
state-sharded blockchains such as Yggdrasil.

Yggdrasil and its performances. As our second contribution, we have presented
Yggdrasil, the first adaptive and secure sharding solution for general smart con-
tracts in a permissionless setting. By combining verifiable decentralized techniques

Chapter 6. Conclusions 133

for dynamic sharding and a novel 2PC algorithm, we demonstrated the feasibility
of sharding in such a challenging system paving the way to inter-blockchains dis-
tributed applications in the future. An experimental study confirms the capability
of Yggdrasil to scale and to adapt to transaction load.

As for Sycomore++, we believe that the next step would be to implement Yg-
gdrasil and test it in a real environment. The fact is that the arrival of sharding
in blockchains is recent. It is an innovative solution with a strong potential, espe-
cially in terms of scalability. Comparing Yggdrasil to other non-sharding solutions
[17, 22, 115, 114, 116, 62] would give us a strong insight on the interest of using
sharding in blockchains. On the other hand, comparing it to other sharding-based
industrial [11, 10] or academic [12, 13, 32, 15] solutions in real conditions would
show the benefits of the proposed algorithms.

Smart Contracts in Sharding. Smart-contracts represent a large part of the
universal daily transactions volume. In state-sharded blockchains, they represent
a new challenge. Indeed, a smart-contract is a "generator" of traffic in its shard,
which could lead to a workload imbalance among shards.

In the literature, one of the most popular solutions to reduce shards workload
imbalance would be to make the smart-contracts "splittable" so that their state
would be divisible and that the two resulting smart-contracts would be able to live
each in a shard. Even if this is true for some types of smart-contracts such as
ERC-20 contracts [102], it is far from being applicable to most of them.

Optimization of cross-shard protocols. The benefits of state-sharding lies in
the division of the blockchain state into several sub-states assigned to each shard.
The more independent these shards are, the faster they can advance. The depen-
dency between these shards is represented by the cross-shard communication. Cross-
shard mechanisms represent a major issue in state-sharding blockchains. They rely
on the communication between shards and can considerably decrease the perfor-
mance of the system since they would increase the dependency between shards and
would remove any interest in doing state-sharding. As a reminder, a transaction is
said to be cross-shard when it involves two entities assigned to two different shards.

According to our study, the volume of cross-shard transactions is raised by the
way users and transactions are partioned. In our system, transactions are assigned
to the issuing shard because it is the most likely to be able to verify the validity of
the transaction. If the transaction is intended for a user assigned to another shard,
it is considered cross-shard. In our work, we have proposed a possibility for users
to clone themselves in another shard and thus choose their assignment. This would
reduce the number of cross-shard transactions but would be at the discretion of the
user. Another more centralized solution has been proposed by [16] which would allow
to define user assignments according to their past exchanges. Unfortunately, this
solution is centralized and does not offer any guarantee about the future exchanges
of users. Moreover, it requires a synchronous environment to be applicable. Thus,

133

134 Chapter 6. Conclusions

we believe that future work on other more interesting solutions could be done in an
asynchronous environment.

Incentives in a sharded system. As future work, it would be interesting to
study how incentives and fees could be re-designed in a system where transactions
are routed over multiple shards. In this kind of systems, as more than one shard,
and therefore more than one committee can be involved in the confirmation of a
transaction (i.e. in the case of cross-shard transactions), the fees should be shared
between these shards. Since fees cannot be configured from the beginning as a
cross-shard transaction because of the system’s dynamicity, the state of the shards
and therefore the condition of the transaction (whether it is cross-shard or not) can
change. So both shards have to settle for a classic fee, but in this case, how to share
it? Since the issuing shard is the one that performs the validity check, should it be
the one that collects all the fee? But in this case, what interest would the second
shard have to include (and thus confirm) the transaction in its shardchain. The
addition of smart-contracts only deepens these questions. If a user calls a smart-
contract, he has to put in an amount of gas to pay back the committee for doing the
calculations. In the sharded case, there are several committees that are responsible
of multiple calculations, especially in the case of a cascade of smart-contract calls.
How do we share the reward between these committees?

Bibliography

[1] J. Sliwinski and R. Wattenhofer, “ABC: asynchronous blockchain without con-
sensus,” CoRR, vol. abs/1909.10926, 2019. (Cited on pages iii and 27.)

[2] S. Popov, “The tangle. iota white paper,” 2015. (Cited on pages iii, 26, 27, 37,
69 and 131.)

[3] Y. Sompolinsky and A. Zohar, “Accelerating bitcoin’s transaction processing.
fast money grows on trees, not chains,” IACR Cryptology ePrint Archive,
vol. 2013, 2013. (Cited on pages iii, 26, 28, 69 and 131.)

[4] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: A fast and scalable
cryptocurrency protocol,” IACR Cryptol. ePrint Arch., p. 1159, 2016. (Cited
on pages iii, 26, 28 and 131.)

[5] MAX, “Source code.” https://gitlab.com/cea-licia/max/. (Cited on
pages iv, 43, 59, 79 and 122.)

[6] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot, E. Jean-
voine, A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum, O. Richard, C. Pérez,
F. Quesnel, C. Rohr, and L. Sarzyniec, “Adding virtualization capabilities to
the Grid’5000 testbed,” in Cloud Computing and Services Science (I. I. Ivanov,
M. van Sinderen, F. Leymann, and T. Shan, eds.), vol. 367 of Communica-
tions in Computer and Information Science, pp. 3–20, Springer International
Publishing, 2013. (Cited on pages iv, 52, 79 and 123.)

[7] A. Djari, E. Anceaume, and S. Tucci-Piergiovanni, “Simulation study of syco-
more++, a self-adapting graph-based permissionless distributed ledger,” in
2022 4th Conference on Blockchain Research & Applications for Innovative
Networks and Services (BRAINS), pp. 103–110, 2022. (Cited on pages iv
and ix.)

[8] A. Djari, E. Anceaume, and S. Tucci-Piergiovanni, “An extensive agent-based
simulation study of sycomore++, a dag-based permissionless ledger,” in Pro-
ceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, SAC
’22, (New York, NY, USA), p. 334–336, Association for Computing Machinery,
2022. (Cited on pages iv and ix.)

[9] A. Djari, E. Anceaume, and S. Tucci-Piergiovanni, “Sycomore ++ , un registre
distribué orienté graphe auto-adaptatif,” in AlgoTel 2022 - 24èmes Rencontres
Francophones sur les Aspects Algorithmiques des Télécommunications, (Saint-
Rémy-Lès-Chevreuse, France), pp. 1–4, May 2022. (Cited on pages v and ix.)

[10] N. Durov, “Telegram Open Network,” tech. rep., 03 2019. (Cited on pages v,
30, 31, 32, 38 and 133.)

135

https://gitlab.com/cea-licia/max/

136 Bibliography

[11] T. E. Team, “Elrond - A Highly Scalable Public Blockchain via Adaptive State
Sharding and Secure Proof of Stake,” tech. rep., 06 2019. (Cited on pages v,
vi, 30, 31, 32, 38, 93, 125, 126 and 133.)

[12] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena, “A
secure sharding protocol for open blockchains,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, CCS
’16, p. 17–30, Association for Computing Machinery, 2016. (Cited on pages v,
7, 30, 32, 37, 92 and 133.)

[13] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford,
“Omniledger: A secure, scale-out, decentralized ledger via sharding.” Cryptol-
ogy ePrint Archive, Report 2017/406, 2017. https://ia.cr/2017/406. (Cited
on pages v, vi, 7, 30, 31, 32, 37, 92, 125, 126 and 133.)

[14] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling blockchain
via full sharding,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, p. 931–948, Association
for Computing Machinery, 2018. (Cited on pages v, 7, 30, 31, 32 and 92.)

[15] J. Wang and H. Wang, “Monoxide: Scale out blockchains with asynchronous
consensus zones,” in 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), (Boston, MA), pp. 95–112, USENIX Associ-
ation, Feb. 2019. (Cited on pages v, 30, 31, 32, 33, 92, 96, 124 and 133.)

[16] H. Huang, X. Peng, J. Zhan, S. Zhang, Y. Lin, Z. Zheng, and S. Guo, “Bro-
kerchain: A cross-shard blockchain protocol for account/balance-based state
sharding,” in IEEE INFOCOM 2022 - IEEE Conference on Computer Com-
munications, 2022. (Cited on pages v, 7, 30, 31, 32, 33, 92 and 133.)

[17] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” 2016. (Cited on pages vi, xiii, 6, 18, 22, 23, 24, 32, 98, 123
and 133.)

[18] A. Djari, Y. Amoussou-Guenou, E. Anceaume, S. Tucci-Piergiovanni, and
A. Del Pozzo, “Yggdrasil: Secure state sharding of transactions and smart
contracts that self-adapts to transaction load,” Available on HAL, 9 2022.
(Cited on pages vii and ix.)

[19] L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, and W. Shi, “On security analy-
sis of proof-of-elapsed-time (poet),” in Stabilization, Safety, and Security of
Distributed Systems - 19th International Symposium, SSS 2017, Proceedings
(P. Tsigas and P. Spirakis, eds.), Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), pp. 282–297, Springer-Verlag, 2017. (Cited on pages xiii, 13
and 14.)

https://ia.cr/2017/406

Bibliography 137

[20] D. Bayer, S. Haber, and W. S. Stornetta, “Improving the efficiency and relia-
bility of digital time-stamping,” in Sequences II: Methods in Communication,
Security and Computer Science, pp. 329–334, Springer-Verlag, 1993. (Cited
on page 2.)

[21] B. M. David, P. Gazi, A. Kiayias, and A. Russell, “Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain,” in EURO-
CRYPT, 2018. (Cited on pages 6, 10, 18 and 32.)

[22] J. Chen and S. Micali, “Algorand: A secure and efficient distributed ledger,”
Theor. Comput. Sci., vol. 777, pp. 155–183, 2019. (Cited on pages 6, 10, 18,
22, 32, 98 and 133.)

[23] L. Aştefănoaei, P. Chambart, A. Del Pozzo, T. Rieutord, S. Tucci-
Piergiovanni, and E. Zălinescu, “Tenderbake - A Solution to Dynamic Re-
peated Consensus for Blockchains,” in 4th International Symposium on Foun-
dations and Applications of Blockchain 2021 (FAB 2021). (Cited on page 6.)

[24] J. Poon and T. Dryja, The bitcoin lightning network. 2016. (Cited on pages 6,
25 and 43.)

[25] C. Burchert, C. Decker, and R. Wattenhofer, “Scalable funding of bitcoin
micropayment channel networks,” in SSS, 2017. (Cited on page 6.)

[26] A. Ranchal-Pedrosa, M. G. Potop-Butucaru, and S. T. Piergiovanni, “Scal-
able lightning factories for bitcoin,” Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, 2019. (Cited on page 6.)

[27] E. Anceaume, A. Guellier, R. Ludinard, and B. Sericola, “Sycomore: A per-
missionless distributed ledger that self-adapts to transactions demand,” in
Proceedings of the IEEE 17th International Symposium on Network Comput-
ing and Applications (NCA), 2018. (Cited on pages 6, 28, 53, 54, 70, 71, 73,
74, 77, 94, 109, 129 and 131.)

[28] D. Agrawal, A. El Abbadi, M. J. Amiri, S. Maiyya, and V. Zakhary,
“Blockchains and databases: Opportunities and challenges for the permis-
sioned and the permissionless,” in European Conference on Advances in
Databases and Information Systems, pp. 3–7, Springer, 2020. (Cited on
page 7.)

[29] H. Tian, P. Luo, and Y. Su, “A centralized digital currency system with rich
functions,” in Provable Security: 13th International Conference, ProvSec 2019,
Cairns, QLD, Australia, October 1–4, 2019, Proceedings, (Berlin, Heidelberg),
p. 288–302, Springer-Verlag, 2019. (Cited on pages 7, 30, 31, 32, 37 and 92.)

[30] Y. Tao, B. Li, J. Jiang, H. C. Ng, C. Wang, and B. Li, “On sharding open
blockchains with smart contracts,” in 2020 IEEE 36th International Confer-
ence on Data Engineering (ICDE), pp. 1357–1368, 2020. (Cited on pages 7
and 92.)

137

138 Bibliography

[31] M. J. Amiri, D. Agrawal, and A. El Abbadi, “Parblockchain: Leveraging
transaction parallelism in permissioned blockchain systems,” in 2019 IEEE
39th International Conference on Distributed Computing Systems (ICDCS),
pp. 1337–1347, 2019. (Cited on pages 7 and 92.)

[32] A. Durand, E. Anceaume, and R. Ludinard, “Stakecube: Combining sharding
and proof-of-stake to build fork-free secure permissionless distributed ledgers,”
in Networked Systems: 7th International Conference, NETYS 2019, Mar-
rakech, Morocco, June 19–21, 2019, Revised Selected Papers, (Berlin, Hei-
delberg), p. 148–165, Springer-Verlag, 2019. (Cited on pages 7, 30, 32, 37
and 133.)

[33] S. Nakamoto, “Bitcoin : A peer-to-peer electronic cash system,” 2009. (Cited
on pages 10, 11, 18, 32, 33 and 69.)

[34] “Ethereum proof-of-stake consensus specifications.”
https://github.com/ethereum/consensus-specs/tree/
52a741f7c6d3bec98e04df3441bc8e7681480877/specs/altair. (Cited
on pages 10, 18 and 98.)

[35] V. T. Hoang, B. Morris, and P. Rogaway, “An enciphering scheme based on
a card shuffle,” in Advances in Cryptology - CRYPTO 2012 - 32nd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Pro-
ceedings, vol. 7417 of Lecture Notes in Computer Science, pp. 1–13, Springer,
2012. (Cited on page 10.)

[36] S. Sayeed and H. Marco-Gisbert, “Assessing blockchain consensus and security
mechanisms against the 512019. (Cited on pages 11 and 21.)

[37] S. N. Sunny King, “Ppcoin: Peer-to-peer crypto-currency with proof-of-stake,”
2012. (Cited on page 12.)

[38] V. Buterin, “Slasher: A punitive proof-of-stake algorithm,” Ethereum
Blog URL: https://blog. ethereum. org/2014/01/15/slasher-a-punitive-proof-
of-stake-algorithm, p. 85, 2014. (Cited on page 13.)

[39] K. Karantias, A. Kiayias, and D. Zindros, “Proof-of-burn.” Cryptology ePrint
Archive, Paper 2019/1096, 2019. https://eprint.iacr.org/2019/1096.
(Cited on page 15.)

[40] E. Anceaume, A. D. Pozzo, T. Rieutord, and S. Tucci Piergiovanni, “On final-
ity in blockchains,” CoRR, vol. abs/2012.10172, 2020. (Cited on pages 15, 18
and 98.)

[41] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 4, no. 3, pp. 382–401, 1982. (Cited on page 16.)

https://github.com/ethereum/consensus-specs/tree/52a741f7c6d3bec98e04df3441bc8e7681480877/specs/altair
https://github.com/ethereum/consensus-specs/tree/52a741f7c6d3bec98e04df3441bc8e7681480877/specs/altair
https://eprint.iacr.org/2019/1096

Bibliography 139

[42] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Proceedings
of the Third Symposium on Operating Systems Design and Implementation,
OSDI ’99, (USA), p. 173–186, USENIX Association, 1999. (Cited on page 16.)

[43] “Proof of authority.” https://github.com/paritytech/parity/wiki/
Proof-of-Authority-Chains. (Cited on page 17.)

[44] V. Buterin, “Ethereum white paper: A next generation smart contract &
decentralized application platform,” 2013. (Cited on pages 18, 32 and 70.)

[45] E. B. Jae Kwon, “Cosmos : A network of distributed ledgers.” (Cited on
pages 18, 19 and 98.)

[46] M. Bourgoin, “An overview of the tezos blockchain.” (Cited on pages 18, 19,
33, 94 and 98.)

[47] L. Astefanoaei, P. Chambart, A. D. Pozzo, T. Rieutord, S. Tucci-Piergiovanni,
and E. Zalinescu, “Tenderbake - A solution to dynamic repeated consensus for
blockchains,” in 4th International Symposium on Foundations and Applica-
tions of Blockchain 2021, FAB 2021, May 7, 2021, University of California,
Davis, California, USA (Virtual Conference) (V. Gramoli and M. Sadoghi,
eds.), vol. 92 of OASIcs, pp. 1:1–1:23, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. (Cited on pages 18, 32 and 98.)

[48] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” CoRR,
vol. abs/1710.09437, 2017. (Cited on page 19.)

[49] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is vulnerable,”
Commun. ACM, vol. 61, p. 95–102, jun 2018. (Cited on page 21.)

[50] M. Carlsten, H. Kalodner, S. M. Weinberg, and A. Narayanan, “On the insta-
bility of bitcoin without the block reward,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16,
(New York, NY, USA), p. 154–167, Association for Computing Machinery,
2016. (Cited on pages 21 and 132.)

[51] J. R. Douceur, “The sybil attack,” 2002. (Cited on page 22.)

[52] S. Micali, S. Vadhan, and M. Rabin, “Verifiable random functions,” in Pro-
ceedings of the 40th Annual Symposium on Foundations of Computer Science,
FOCS ’99, (USA), p. 120, IEEE Computer Society, 1999. (Cited on page 22.)

[53] J. Göbel and A. Krzesinski, “Increased block size and bitcoin blockchain dy-
namics,” in 2017 27th International Telecommunication Networks and Appli-
cations Conference (ITNAC), pp. 1–6, 2017. (Cited on pages 25, 80 and 123.)

[54] Y. Assia, V. Buterin, L. Hakim, M. Rosenfeld, and R. Lev, “Colored
coins whitepaper.” http://www.ma.senac.br/wp-content/uploads/2018/
05/ColoredCoinswhitepaper-DigitalAssets.pdf. (Cited on page 25.)

139

https://github.com/paritytech/parity/wiki/Proof-of-Authority-Chains
https://github.com/paritytech/parity/wiki/Proof-of-Authority-Chains
http://www.ma.senac.br/wp-content/uploads/2018/05/ColoredCoinswhitepaper-DigitalAssets.pdf
http://www.ma.senac.br/wp-content/uploads/2018/05/ColoredCoinswhitepaper-DigitalAssets.pdf

140 Bibliography

[55] V. B. Fabian Vogelsteller, “Eip-20: Token standard.” https://eips.
ethereum.org/EIPS/eip-20, 2015. (Cited on page 26.)

[56] L. Baird, “The swirlds hashgraph consensus algorithm: Fair, fast, byzantine
fault tolerance,” tech. rep., 2016. (Cited on page 26.)

[57] A. Churyumov, “ByteBall : A decentralized system for storage and transfer
of value,” 2017. (Cited on page 26.)

[58] G. Bu, Ö. Gürcan, and M. Potop-Butucaru, “G-IOTA: fair and confidence
aware tangle,” CoRR, vol. abs/1902.09472, 2019. (Cited on page 26.)

[59] T. Rocket, M. Yin, K. Sekniqi, R. van Renesse, and E. G. Sirer, “Scalable
and probabilistic leaderless BFT consensus through metastability,” CoRR,
vol. abs/1906.08936, 2019. (Cited on page 27.)

[60] D. Tennakoon and V. Gramoli, “Dynamic Blockchain Sharding,” in 5th In-
ternational Symposium on Foundations and Applications of Blockchain 2022
(FAB 2022) (S. Tucci-Piergiovanni and N. Crooks, eds.), vol. 101 of Open
Access Series in Informatics (OASIcs), (Dagstuhl, Germany), pp. 6:1–6:17,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. (Cited on page 31.)

[61] D. Tennakoon, Y. Hua, and V. Gramoli, “Collachain: A bft collaborative
middleware for decentralized applications,” 2022. (Cited on page 31.)

[62] V. Buterin, “Ethereum: A next-generation smart contract and decentralized
application platform,” 2014. (Cited on pages 33 and 133.)

[63] A. Varga and R. Hornig, “An overview of the omnet++ simulation environ-
ment,” in Proceedings of the 1st International Conference on Simulation Tools
and Techniques for Communications, Networks and Systems & Workshops,
2008. (Cited on page 34.)

[64] G. F. Riley and T. R. Henderson, “The ns-3 network simulator.,” in Modeling
and Tools for Network Simulation, 2010. (Cited on page 34.)

[65] “Ns3 testing framework.” https://www.nsnam.org/docs/release/3.9/
testing.html#TestingFramework. (Cited on page 34.)

[66] O. Boissier, R. Bordini, J. F. Hübner, A. Ricci, and A. Santi, “Multi-agent
oriented programming with JaCaMo,” 2011. (Cited on page 34.)

[67] A. Ricci, A. Ciortea, J. F. Hubner, R. H. Bordini, O. Boissier, and S. Mayer,
“Engineering scalable distributed environments and organizations for mas,”
in Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems, 2019. (Cited on page 35.)

[68] “Simevents.” https://www.mathworks.com/products/simevents.html.
(Cited on page 35.)

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://www.nsnam.org/docs/release/3.9/testing.html#TestingFramework
https://www.nsnam.org/docs/release/3.9/testing.html#TestingFramework
https://www.mathworks.com/products/simevents.html

Bibliography 141

[69] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts: The MathWorks
Inc., 2010. (Cited on page 35.)

[70] “Matlab blockchain example.” https://fr.mathworks.com/matlabcentral/
fileexchange/65419-matlab-blockchain-example. (Cited on page 35.)

[71] “simmer.” https://r-simmer.org/articles/simmer-02-jss.pdf. (Cited on
page 35.)

[72] M. Smolla, “An introduction to agent-based modelling in r,” 2015. (Cited on
page 35.)

[73] Y. Aoki, K. Otsuki, T. Kaneko, R. Banno, and K. Shudo, “Simblock: A
blockchain network simulator,” 2019. (Cited on page 36.)

[74] C. Kaligotla and C. M. Macal, “A generalized agent based framework for mod-
eling a blockchain system,” in Proceedings of the Winter Simulation Conference
(WSC), 2018. (Cited on page 36.)

[75] R. Memon, J. Li, J. Ahmed, A. Khan, M. Irshad Nazir, and M. I. Mangrio,
“Modeling of blockchain based systems using queuing theory simulation,” 2018.
(Cited on page 36.)

[76] P.-Y. Piriou and J.-F. Dumas, “Simulation of stochastic blockchain models,”
in Workshop on Blockchain Dependability organized with the 14th European
Dependable Computing Conference, 2018. (Cited on page 36.)

[77] M. Alharby and A. van Moorsel, “Blocksim: A simulation framework for
blockchain systems,” ACM SIGMETRICS Performance Evaluation Review,
vol. 46, pp. 135–138, 01 2019. (Cited on page 36.)

[78] E. Rosa, G. D’Angelo, and S. Ferretti, “Agent-based simulation of
blockchains,” ArXiv, vol. abs/1908.11811, 2019. (Cited on page 36.)

[79] C. Faria and M. Correia, “Blocksim: Blockchain simulator,” in IEEE Interna-
tional Conference on Blockchain (Blockchain), 2019. (Cited on page 36.)

[80] M. Bottone, F. Raimondi, and G. Primiero, “Multi-agent based simulations of
block-free distributed ledgers,” 2018. (Cited on page 37.)

[81] U. Wilensky, “Netlogo,” Center for Connected Learning and Computer-Based
Modeling, Northwestern University, Evanston, IL., 1999. (Cited on page 37.)

[82] C. M. Macal and M. J. North, “Tutorial on agent-based modeling and simula-
tion part 2: How to model with agents,” in Proceedings of the 38th Conference
on Winter Simulation, WSC ’06, p. 73–83, Winter Simulation Conference,
2006. (Cited on pages 40 and 42.)

141

https://fr.mathworks.com/matlabcentral/fileexchange/65419-matlab-blockchain-example
https://fr.mathworks.com/matlabcentral/fileexchange/65419-matlab-blockchain-example
https://r-simmer.org/articles/simmer-02-jss.pdf

142 Bibliography

[83] S. Mehta, N. Sultana, and K. Kwak, Network and System Simulation Tools
for Next Generation Networks: a Case Study. 08 2010. (Cited on pages 40
and 42.)

[84] U. Hatnik and S. Altmann, “Using modelsim, matlab/simulink and ns for
simulation of distributed systems,” in Parallel Computing in Electrical En-
gineering, 2004. International Conference on, pp. 114–119, 2004. (Cited on
page 40.)

[85] N. Lagaillardie, M. A. Djari, and O. Gurcan, “A computational study on
fairness of the tendermint blockchain protocol,” Information, vol. 10, no. 12,
2019. (Cited on page 43.)

[86] O. Gutknecht and J. Ferber, “The madkit agent platform architecture,” in
Proceedings of the International Workshop on Infrastructure for Multi-Agent
Systems: Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-
Agent Systems, 2000. (Cited on pages 43, 46, 79 and 122.)

[87] B. Curran, “What is a merkle tree? beginner’s guide to this blockchain com-
ponent,” 2018. (Cited on page 48.)

[88] G. Caldarelli, “Overview of blockchain oracle research,” Future Internet,
vol. 14, no. 6, 2022. (Cited on page 51.)

[89] OAR, “The oar project.” http://oar.imag.fr/. (Cited on page 52.)

[90] E. Jeanvoine, L. Sarzyniec, and L. Nussbaum, “Kadeploy3: Efficient and Scal-
able Operating System Provisioning,” USENIX ;login:, vol. 38, pp. 38–44, Feb.
2013. (Cited on page 52.)

[91] O. Tange, “Gnu parallel - the command-line power tool,” ;login: The USENIX
Magazine, vol. 36, pp. 42–47, Feb 2011. (Cited on page 52.)

[92] W. Tang, “Ecip-1029: Include uncles in total difficulty calculation.” https:
//github.com/ethereumproject/ECIPs/pull/71, 2017. (Cited on page 70.)

[93] “Luna.” https://docs.terra.money/learn/protocol/. (Cited on page 70.)

[94] E. Kim, T. Andersen, Marventus, A. E., P. Borges, D. Schmidt, and M. West-
ern, “Emergency management and recovery of luna classic,” 2022. (Cited on
page 70.)

[95] J. A. Garay, A. Kiayias, and N. Leonardos, “The Bitcoin Backbone Proto-
col: Analysis and Applications,” in Proceedings of the Annual International
Conference on the Theory and Applications of Cryptographic Techniques - Ad-
vances in Cryptology (EUROCRYPT), 2015. (Cited on pages 76, 86, 87, 88
and 89.)

http://oar.imag.fr/
https://github.com/ethereumproject/ECIPs/pull/71
https://github.com/ethereumproject/ECIPs/pull/71
https://docs.terra.money/learn/protocol/

Bibliography 143

[96] Sycomore++, “Source code.” https://anonymous.4open.science/r/
Sycomorepp-412D. (Cited on page 79.)

[97] B. H. Distribution 2020. (Cited on page 80.)

[98] “Cardano.” https://github.com/input-output-hk/cardano-node. (Cited
on page 94.)

[99] “Pyethereum.” https://github.com/ethereum/pyethereum/blob/
782842758e219e40739531a5e56fff6e63ca567b/ethereum/utils.py. (Cited
on page 95.)

[100] D. Skeen, “Nonblocking commit protocols,” in In Proceedings of the 1981
ACM SIGMOD international Conference on Management of Data (SIGMOD),
pp. 133–142, 1981. (Cited on page 96.)

[101] P. Robinson and R. Ramesh, “General purpose atomic crosschain transac-
tions,” in 2021 3rd Conference on Blockchain Research & Applications for
Innovative Networks and Services (BRAINS), pp. 61–68, IEEE, 2021. (Cited
on page 96.)

[102] G. Pîrlea, A. Kumar, and I. Sergey, “Practical smart contract sharding with
ownership and commutativity analysis,” in Proceedings of the 42nd ACM SIG-
PLAN International Conference on Programming Language Design and Im-
plementation, PLDI 2021, (New York, NY, USA), p. 1327–1341, Association
for Computing Machinery, 2021. (Cited on pages 96 and 133.)

[103] I. Abraham and D. Malkhi, “The blockchain consensus layer and BFT,” Bul-
letin of the EATCS, vol. 3, no. 123, pp. 1–23, 2017. (Cited on page 97.)

[104] L. Lamport, R. Shostak, and M. Pease, The Byzantine Generals Problem,
p. 203–226. New York, NY, USA: Association for Computing Machinery,
2019. (Cited on page 98.)

[105] “Whisk: A practical shuffle-based ssle pro-
tocol for ethereum.” https://ethresear.ch/t/
whisk-a-practical-shuffle-based-ssle-protocol-for-ethereum/
11763. (Cited on page 98.)

[106] L. A. Rodrigues, J. Cohen, L. Arantes, and E. P. D. Jr., “A robust permission-
based hierarchical distributed k-mutual exclusion algorithm,” in IEEE 12th In-
ternational Symposium on Parallel and Distributed Computing, ISPDC 2013,
Bucharest, Romania, June 27-30, 2013 (N. Tapus, D. Grigoras, R. Potolea,
and F. Pop, eds.), pp. 151–158, IEEE, 2013. (Cited on page 98.)

[107] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of partial
synchrony,” J. ACM, vol. 35, p. 288–323, apr 1988. (Cited on page 98.)

143

https://anonymous.4open.science/r/Sycomorepp-412D
https://anonymous.4open.science/r/Sycomorepp-412D
https://github.com/input-output-hk/cardano-node
https://github.com/ethereum/pyethereum/blob/782842758e219e40739531a5e56fff6e63ca567b/ethereum/utils.py
https://github.com/ethereum/pyethereum/blob/782842758e219e40739531a5e56fff6e63ca567b/ethereum/utils.py
https://ethresear.ch/t/whisk-a-practical-shuffle-based-ssle-protocol-for-ethereum/11763
https://ethresear.ch/t/whisk-a-practical-shuffle-based-ssle-protocol-for-ethereum/11763
https://ethresear.ch/t/whisk-a-practical-shuffle-based-ssle-protocol-for-ethereum/11763

144 Bibliography

[108] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias, P. Moreno-
Sanchez, A. Kiayias, and W. J. Knottenbelt, “Sok: Communication across
distributed ledgers,” in Financial Cryptography and Data Security (N. Borisov
and C. Diaz, eds.), (Berlin, Heidelberg), pp. 3–36, Springer Berlin Heidelberg,
2021. (Cited on page 100.)

[109] E. Anceaume, R. Ludinard, A. Ravoaja, and F. V. Brasileiro, “Peercube: A
hypercube-based P2P overlay robust against collusion and churn,” in Second
IEEE International Conference on Self-Adaptive and Self-Organizing Systems,
SASO 2008, 20-24 October 2008, Venice, Italy (S. A. Brueckner, P. Robertson,
and U. Bellur, eds.), pp. 15–24, IEEE Computer Society, 2008. (Cited on
page 120.)

[110] E. API, 2022. (Cited on pages 122 and 123.)

[111] Yggdrasil, “Source code.” https://anonymous.4open.science/r/
Yggdrasil-11E5. (Cited on page 122.)

[112] MAX, “Source code.” https://gitlab.com/cea-licia/max/models/
ledgers/max.model.ledger.tendermint_v2. (Cited on page 123.)

[113] D. Cason, E. Fynn, N. Milosevic, Z. Milosevic, E. Buchman, and F. Pedone,
“The design, architecture and performance of the tendermint blockchain net-
work,” in 2021 40th International Symposium on Reliable Distributed Systems
(SRDS), pp. 23–33, 2021. (Cited on page 124.)

[114] “Bitcoin xt.” https://github.com/bitcoinxt/bitcoinxt. (Cited on
pages 131 and 133.)

[115] “Bitcoin classic.” https://github.com/bitcoinclassic/bitcoinclassic.
(Cited on pages 131 and 133.)

[116] “Bitcoin unlimited.” https://github.com/BitcoinUnlimited/
BitcoinUnlimited. (Cited on pages 131 and 133.)

https://anonymous.4open.science/r/Yggdrasil-11E5
https://anonymous.4open.science/r/Yggdrasil-11E5
https://gitlab.com/cea-licia/max/models/ledgers/max.model.ledger.tendermint_v2
https://gitlab.com/cea-licia/max/models/ledgers/max.model.ledger.tendermint_v2
https://github.com/bitcoinxt/bitcoinxt
https://github.com/bitcoinclassic/bitcoinclassic
https://github.com/BitcoinUnlimited/BitcoinUnlimited
https://github.com/BitcoinUnlimited/BitcoinUnlimited

Titre : Etude du potentiel des approches à base de graphes dans les blockchains

Mot clés : Blockchain, Graphe, Scalabilité, Simulation basée agents, Sharding, Performance.

Résumé : Les chaînes de blocs sont des sys-
tèmes de pair à pair dans lesquels les utilisa-
teurs peuvent échanger des actifs numériques
sans autorité de validation centrale. Il s’agit
d’un grand livre distribué maintenu par la com-
munication entre les nœuds du réseau. C’est
un grand livre sur lequel toutes les opérations
sont enregistrées, ce qui contribue à sa trans-
parence puisque chaque ajout dans la block-
chain peut être lu par tous et pour toujours
(tant que le réseau existe). Selon l’application
souhaitée, le bon fonctionnement de la block-
chain repose sur trois piliers communs : (i) la
décentralisation, (ii) la sécurité et (iii) l’évoluti-
vité. Une solution qui permettrait de réunir ces
trois caractéristiques est actuellement consi-
dérée comme une utopie que l’on appelle le
trilemme de la blockchain, une croyance selon
laquelle une crypto-monnaie doit nécessaire-
ment sacrifier l’un de ces trois piliers. Au cours
de cette thèse, les enjeux ont rapidement été
ceux de la recherche de performance, notam-
ment en termes de scalabilité sans pour au-
tant négliger les deux autres aspects du tri-
lemme. Nous avons alors commencé par étu-
dier Sycomore, une blockchain PoW non per-
missionnée, immuable et sécurisée, dont la
structure est basée sur des graphes. C’est
au cours de l’étude de Sycomore que nous
avons proposé Sycomore++, un protocole de
blockchain basé sur Sycomore dont la prin-
cipale caractéristique est d’auto-adapter dy-
namiquement le nombre de blocs créés au
nombre actuel de transactions soumises. Les
résultats de cette étude ont été publiés dans
les actes de conférences à comité de lec-
ture. Dans un second temps, après avoir mon-

tré l’apport d’une solution classique à base
de graphe dans le trilemme de la blockchain,
nous nous sommes intéressés aux solutions
de sharding qui, compte tenu de leur struc-
ture en graphe, nous ont semblé être les so-
lutions à base de graphe les plus avancées
et les plus prometteuses en termes de scala-
bilité. C’est dans ce contexte que nous pro-
posons Yggdrasil, une solution de sharding
d’état pour les blockchains sans permissions
qui supporte à la fois les transactions de paie-
ment et les smart contracts. Yggdrasil per-
met de diviser et de fusionner dynamique-
ment les shards en s’appuyant sur des méca-
nismes décentralisés pour affecter les nœuds
aux shards de manière sécurisée. Dans ce
travail, nous proposons également un nou-
veau protocole 2-Phase-Commit pour garantir
l’exécution de smart contracts distribués sur
différents shards, même lorsque les shards se
réorganisent dynamiquement. Une étude ex-
périmentale confirme la capacité d’Yggdrasil
à évoluer et à s’adapter à la charge de tran-
sactions avec des performances très promet-
teuses, meilleures que celles de Sycomore++

en termes de scalabilité. Le principal avantage
du state-sharding étant de réduire les coûts de
communication et de stockage, les solutions
qui l’implémentent ont tendance à évoluer plus
facilement. Un autre avantage est sa capacité
à maintenir une forte décentralisation en habi-
litant plus de nœuds dans des shards séparés
sans entraver sa sécurité. Au moment de la ré-
daction de ce manuscrit, les résultats de cette
étude sur Yggdrasil ont été soumis pour publi-
cation à VLDB 2023 et un rapport technique
présentant les résultats est disponible.

Title: Study of the potential of graph-based approaches in blockchains

Keywords: Blockchain, Graph, Scalability, Agent-based Simulation, Sharding, Performance.

Abstract: Blockchains are peer-to-peer sys-
tems in which users can exchange digital as-
sets without a central validation authority. It is
a distributed ledger maintained through com-
munication between the nodes of the net-
work. It is a ledger on which all operations
are recorded, which contributes to its trans-
parency since every addition in the blockchain
can be read by everyone and forever (as long
as the network exists). Depending on the de-
sired application, the proper functioning of the
blockchain relies on three common pillars: (i)
decentralization, (ii) security and (iii) scalabil-
ity. A solution that would bring these three
characteristics together is currently consid-
ered a utopia that is known as the blockchain
trilemma, a belief that a crypto-currency must
necessarily sacrifice one of these three pillars.
During the course of this thesis, the issues at
stake were quickly those of the quest for per-
formance, particularly in terms of scalability
without neglecting the other two aspects of the
trilemma. We then started by studying Syco-
more, an immutable and secure permisionless
PoW blockchain with a graph-based structure.
It is during the study of Sycomore that we
propose Sycomore++, a blockchain protocol
based on Sycomore whose main feature is to
dynamically self-adapt the number of blocks
created to the current number of transactions
submitted. The results of this study have been
published in the proceedings of peer-reviewed
conferences. In a second step, after having

shown the contribution of a classical graph-
based solution in the blockchain trilemma,
we looked at sharding solutions which, given
their graph structure, seemed to us to be
the most advanced graph-based solutions and
the most promising in terms of scalability. It
is in this context that we propose Yggdrasil,
a state sharding solution for permisionless
blockchains that supports both payment trans-
actions and smart contracts. Yggdrasil allows
for dynamic splitting and merging of shards by
relying on decentralized mechanisms to as-
sign nodes to shards in a secure manner. In
this work, we also propose a new 2-Phase-
Commit protocol to guarantee the execution of
distributed smart contracts on different shards,
even when shards dynamically reorganize. An
experimental study confirms the ability of Yg-
gdrasil to evolve and adapt to the transaction
load with very promising performance, better
than Sycomore++ in terms of scalability. Since
the main benefit of state-sharding is to reduce
communication and storage costs, solutions
that implement it tend to scale more easily. An-
other advantage is its ability to maintain strong
decentralization by empowering more nodes
in separate shards without hindering its secu-
rity. At the time of writing this manuscript, the
results of this study on Yggdrasil have been
submitted for publication to VLDB 2023 and a
technical report presenting the results is avail-
able.

	Introduction
	Context
	Contributions

	State of the Art
	Consensus Models
	Transaction Models
	Incentives for honest participation
	Classic Blockchains
	Graph-based Blockchains
	Sharded Blockchains
	Experimental Approach
	Conclusion

	Tools
	Simulation for Blockchains
	Multi-Agent eXperimenter (MAX)
	Experimental Environment
	Implemented Models
	Conclusion

	Graph-based blockchains
	Background
	Overview of Sycomore
	Sycomore's critical issue: difficulty readjustment
	Sycomore++: a scalable graph-based ledger
	Simulation Study of Sycomore++
	Conclusion

	State-sharded blockchains
	Background
	System Model
	Yggdrasil Protocol
	Implementation Details
	Yggdrasil Analysis
	Performance Evaluation
	Conclusion

	Conclusions
	General Conclusion
	Future Work

	Bibliography

