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Abstract

Local energy communities offer a place to rethink our view on energy consumption, and

although, those communities have always existed, they have recently gained momentum.

From a regulatory perspective, since 2021, all member states of the European Union are

required to implement renewable energy communities in their national law. Additionally,

and at least in France, due to higher electricity prices, selling electricity to neighbors

might prove to be more profitable than selling to a supplier at a regulated price. In a

nutshell, local energy communities could be described as a group of neighbors selling

electricity to each others. However, key to this definition is that communities are subject

to a spatial limit preserving a proximity between members, as well as, a temporal limit

ensuring that local energy production overlap with local consumption. This temporal

limit is one of the principal challenge of communities, which justifies our scientific

work in assessing coordination strategies to match local energy consumption with

production. Our contribution is multi-fold: first, we bring a novel perspective on what

is expected of coordination strategies for local energy communities, and how does it

synergies with existing socio-economic coordination mechanisms. Second, we take a

critical look at whether coordination is worth the investment, and the carbon footprint

shift of communities. Third, we provide two actionable solutions for communities where

coordination of flexible assets is relevant: a predictive, and reactive approach. While

the predictive approach partially relies on a good knowledge of the future, the reactive

approach relies on a good knowledge of the recent past. Our results show that both

strategies performwell in a simulation environment. The reactive approach is in someway

the “least bad” option. Although, it cannot achieve the minimum cost of the predictive

approach under a perfect forecast, it is not subject tomaking poor decisions fromerroneous

forecasts. One of the main direction to extend the work carried throughout in this thesis

will be to test the proposed coordination strategies in a real-world environment.

Keyword: Local energy community, self-sufficiency, coordination strategies, distributed

energy resources, energy management systems, carbon footprint.



Resumé

Les communautés locales d’énergie offrent un lieu pour repenser notre rapport à l’énergie,

et, bien que, ces communautés aient toujours existé, elles ont récemment pris de l’ampleur.

D’un point de vue réglementaire, depuis 2021, tous les états membres de l’Union

Européenne sont tenus de mettre en œuvre des communautés d’énergie renouvelable

dans leur législation nationale. En outre, aumoins en France, en raisonde la hausse des prix

de l’électricité, une vente d’électricité à ses voisins peut s’avérer plus rentable que la vente

à un fournisseur à un prix réglementé. En simplifiant, les communautés locales d’énergie

peuvent être décrites comme un groupe de voisins, qui se vendent de l’électricité entre

eux. La clé de cette définition se trouve dans les limites soumisent aux communautés. Une

limite spatiale préservant la proximité entre les membres, ainsi qu’à une limite temporelle

garantissant que la production d’énergie locale chevauche la consommation locale. Cette

limite temporelle est l’un des principaux défis des communautés et justifie notre travail

scientifique dans l’évaluation des stratégies de coordination pour faire correspondre

la consommation d’énergie locale avec la production. Notre contribution est multiple :

d’abord, nous apportons une nouvelle perspective sur ce que l’on attend des stratégies de

coordination dans les communautés locales d’énergie et des synergies possibles avec les

mécanismes de coordination socio-économiques existants. Deuxièmement, nous jetons

un regard critique sur la plus-value d’un système de coordination et sa nécessité, ainsi

que sur l’empreinte carbone des communautés. Troisièmement, nous proposons deux

solutions concrètes pour les communautés où la coordination des actifs flexibles est

pertinente : une approche prédictive et une approche réactive. Alors que l’approche

prédictive repose en partie sur une bonne connaissance du futur, l’approche réactive

repose sur une bonne connaissance du passé récent. Nos résultats montrent que les deux

stratégies sont performantes dans un environnement de simulation. L’approche réactive

est, en quelque sorte, la “moins mauvaise” option. Bien qu’elle ne puisse pas atteindre le

coût minimum de l’approche prédictive dans le cas d’une prévision parfaite, elle n’est

pas sujette à prendre de mauvaises décisions à partir de prévisions erronées. L’une des

principales directions pour étendre le travail effectué dans cette thèse sera de tester les

stratégies de coordination proposées dans un environnement réel.

Mots clés: Communauté locale de l’énergie, auto-production, stratégie de coordination,

ressources distribuées, système de gestion de l’énergie, empreinte carbone.
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The mathematical nomenclature is ordered by first occurence in a chapter.
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1: The energy sector which includes

among other transports, producing elec-

tricity, energy used in buildings, or indus-

trial processes is responsible for 77% of

greenhouse gas emissions in Europe [1].

2: Note that,we consider the term“energy

transition” with caution as history always

shows “energy addition”, e.g., we have

never consumed more wood than today.

The term “energy transition” projects a

past that does not exist onto a future that

remains uncertain [3].

3: At 110VDC the power plant could not

reach much further than a mile.

Introduction: local energy
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1.1 Why work on local energy com-

munities? . . . . . . . . . . . . . . . 1

1.2 What are local energy communi-
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1.6 Publications . . . . . . . . . . 12

Almost any question you can ask can be answered. It’s only the
questions that you didn’t know to ask that remain, dancing the can-can
behind your back.

—Mark Forsyth, The Unknown Unknown: Bookshops and the
delight of not getting what you wanted

In this first chapter, we introduce local energy communities from three

angles: why do local energy communities motivate our work? What

are local energy communities? And what research questions do we

address?

1.1 Why work on local energy communities?

Simply put, local energy communities seem to be a relevant approach for

an energy transition that is respectful of the environment. To reduce the

impact of the energy sector onglobalwarming
1
three levers are commonly

accepted: energy sufficiency (reducing usages), energy efficiency, and

energy consistency (producing renewable energies) [2]. Local energy

communities create the environment to activate each of those levers. First

energy consistency as communities are often equipped with solar panels,

but also energy sufficiency and efficiency as community members have a

desire to better manage their consumption to respect the limits of local

production.
2

Sufficiency, efficiency, and consistency are keys aspects of the energy

transition, as illustrated by the recent fourmajor roadmaps for the French

energy sector [4], [5], [6], and [7]. In addition to activating those levers,

we postulate that local energy communities offer a communal space to

understand the hold of energy in our society, and as such the opportunity

to reconsider structural choices.

This postulate is initiated by the proximity that local energy communities

bring with the experience of a limited energy production. This proximity

is a fairly new resurgence, and definitively not the norm for our current

energy supply chain. Throughout the 20
th
century, the energy supply

chain has been extended with greater distances between the extraction

and usage of energy. The experience of turning on a car seems pretty far

away from the vision of offshore oil platforms.

Of course, they are very legitimate reasons to extend the energy supply

chain. In that endeavor, the electricity grid has been very efficient at mov-

ing the production of energy away from city centers. This is particularly

well illustrated by Edison’s power plant, Pearl Street Station. In 1884, the

coal power plant at the heart of Manhattan, New-York provided direct

current to 10,000 lamps.
3

Arguably “a messy way to make power in

a place as densely populated as lower Manhattan, where horses laden
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4: The synchronousgrid of continental Eu-

rope supplies over 400 million customers

with 667 GW of production capacity.

5: Among others, the grid enables to in-

stall much less production capacity than

what would be needed otherwise. Indeed

mutualizing takes advantage that con-

sumption happens at different times for

different consumers.

with black dusty coal arrived in a constant train clogging the narrow

street” [8]. So we can turn on lights in large cities, and for other reasons,

the alternative current electricity grid is a major invention of the late 19
th

century. As a result, during the 20
th
century, it grew to be the biggest

machine ever built
4
, and yet, at the same time it remains very much

invisible to our eyes. In that regard, the proximity brought by local

energy communities is a striking shift from the incommensurable scale

and invisibility of the larger grid.

Our point is definitively not to say that we should give up our grid

infrastructures. In fact, in our work, local energy communities are entirely

dependent on the grid. However, we want to nuance the efficiencies of

scale brought by a largegrid
5
,with thephysical and social understanding

of sufficiency brought by the proximity of local energy communities.

This complex trade-off motivates our work.

Physical and social understanding of sufficiency

Before closing this section, we provide some elements to reflect on the

importance of this trade-off.

First, the idea of proximity or right scale echoes the work of Leopold

Kohr. For Kohr, “there seems to be only one cause behind all forms of

social misery: bigness. [...] Whenever something is wrong, something is

too big”. Kohr insists on the difference between the nature and the scale

of our difficulties.

“The young people of today [...] have yet to become aware that

whatmatters is no longerwar, but bigwar; not unemployment,

but massive unemployment.” [9]

For Kohr, the heart of the problem is perhaps not the energy transition

but the massive energy transition.

“[The small state] is democratic because of its physical

inability to overwhelm the citizen, who is at all times capable

not only of participating in government but also of resisting

governmental encroachments without the intermediary of

powerful organizations.” [9] page 90.

As massive solutions for the energy transition, e.g., large-scale grid

infrastructures, might further distance individuals from their ability to

weigh on energy matters, and in a way engage in energy sufficiency

activities.In that sense, local energy communities offer an alternative from

an “overwhelming energy transition”. However, whether this alternative

is at the right scale from social and technical perspectives, remains to be

seen.

Ivan Illich asserts the idea that a limited energy production is desirable

for social structures. For a sustainable society, Illich insists on recognizing

“a threshold in energy consumption beyond which technical processes

begin to dictate social relations” [10]. In that sense solutions based on

large-scale grid infrastructuremay appear as “unlimited energy”without

a “maximum per capita energy use”. For Illich, this results in further

equity issues, as it opens up a race for energy that potentially deepen

social inequalities. Local energy communities do not impose a limited

consumption, but they provide an implicit limit as local production is

not unlimited.
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A third perspective lies in the relationship that we cultivate with tech-

nical objects. Having access to a large amount of energy multiplies our

machines, e.g., toasters, blenders, dishwashers, etc. but also shapes the

relationship that we cultivate with those machines. For Gilbert Simon-

don:

“the first condition for incorporating technical objects into the

culture would be that man is neither inferior nor superior to

the technical objects, that he can approach them and learn to

know them by maintaining with them a relation of equality,

of reciprocity of exchanges: a social relationship in some

way.” [11]

For instance, bikes are sometimes subject to this type of relationship,

where a certain care is given, but also a certain understanding and

acceptance of the little flaws exist. Whether local energy communities

with the physical proximity of production units, e.g., solar panels, and

their limited production can cultivate this “social relationship” with

technical objects is unclear, but motivating.

Finally, for Bruno Latour, it is a question of reconciling the world “in

which we live” and the world “from which we live”. For instance, the

daily life where we consume energy, and the world that produces this

energy. In a global society, where supply chains are stretched across

continents, the world “in which we live” does not have much in common

with the world “from which we live”. Local energy communities are an

attempt to reconcile those two worlds. We have discussed those worlds

from the perspective of energy, but this gap is not only inherent to energy.

Until the 19
th
century, 70% to 80% of the population was employed in

agriculture, against just 1.5% in France nowadays. In the energy sector,

we believe that local energy communities can offer a certain proximity

that fosters a reconciliation with sufficiency values, and this motivates

our technical work.

1.2 What are local energy communities?

The term local energy community refers to the generic concept of an energy
community [12], which can also be found under renewable energy community.
A universal and clear definition of renewable energy communities does

not exist, as there are many ways in which a community can engage in

energy projects [13], with different objectives, legal forms, governance, etc.

This lack of universal definition also applies to local energy communities,

even if the adjective local sets a certain geographic scope. This section is

not intended to provide a universal definition, but rather to synchronize

the reader with our definition of a local energy community.

In a nutshell, a local energy community could be described as a group of

neighbors selling electricity to each other. In France, those communities

are referred to as “collective self-consumption” communities. Key to this

definition is that electricity is directly sold to neighbors rather than to

distant energy suppliers. This aspect not only involves a limited geographic
scope, but also a limited temporal scope as there exists a limited time

between the production and the consumption of an electron, e.g., 30min

in France [14]. Local energy communities manage to overlap their energy
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6: We note that energy is understood as

electricity rather thanheat.District heating

is out of our scope, but a relevant example

nonetheless.

consumption with local production, in opposition to some communities,

e.g., energy cooperatives, which rather sell all their production to a

supplier.
6

From the electrical grid’s perspective, local energy communities are not

limited to microgrids and fundamentally rely on the larger grid. In fact,

we consider that neighbors connected to different parts of the network

can still be part of the same local energy community for two reasons.

To take advantage of existing infrastructures, and because individual

smart metering systems can virtually aggregate neighbors under the

same meter.

Our vision of local energy communities follows the guidelines of renew-

able energy communities defined by the European Commission [15]:

I a primary purpose aimed at generating social and environmental

benefits rather than a focus on financial profits.

I a geographic scope in the proximity of communities;

I a governance with the participation and effective control of local

members whose primary economic activity is not the energy sector;

The contours of our definition can be further clarified with the tool

developed in [16], illustrated in Tab. 1.1.

Table 1.1: Dimensions and levels for evaluating community orientation of community renewable energy projects [16]. Cells colored in light

green mark the left most boundary for what we define as local energy communities.

Levels 1 2 3 4 5

Range of

actors

involved

Only non-local

organisations,

business and

government

Mix of all actor

types, more non-

local than local

Mix of all actor

types, more local

than non-local

Local individuals,

organisations,

government and

business

Only local

individuals

Level of

community

engagement

Starts late, occurs

rarely and via

very limited

means

Occurs only at

key times, using

limited methods

Occurs via various

means but only

during key times

of project

Starts early but is

sporadic, uses less

methods

Starts early and

occurs often,

using a broad

range of methods

Distribution

of voting

power

One actor has all

votes

Actors’ votes

correlate to level

of shareholding

Limit on

shareholding to

ensure no single

controlling interest

Some actors get

more, less or no

votes

One vote per

actor

Scale of the

technology

Scaled to

maximise

economic

efficiencies

Scaled to local

demand

Scaled to gain

economic

efficiencies, with

some

consideration of

appropriateness

for local context

Balanced between

achieving

economies of scale

and

appropriateness

for local

community

Scaled in relation

to local energy

demand and local

agreement

Distribution

of financial

benefit

Non-local

investors, with

surplus leaving

local and possibly

national

Partly local

investors, partly

non-local

investors

Local investors,

with local

economic flow-on

effects

Partly to

community, partly

as dividends to

local investors

Community fund

to be used for

communal benefit

Tab. 1.1 is based on five dimensions associated with five levels with one

being the minimum. The cells highlighted in green define the minimum

level that still constitutes a local energy community for us. Although



1.2 What are local energy communities? 5

7: In a rural area this limit can be extended

to a 10 km radius upon a derogation as of

2020.

we mostly discuss the dimension called “scale of technology”, the trans-

disciplinary of local energy communities also requires that we position

ourselves in social and economic terms (this is further developed in

chapter 3).

These descriptions provide a good framework to consider local energy

communities. To sum up, two ingredients stand out for us. First, a

limited geographic scope in the proximity of communities, as opposed to

nationwide communities. Second a temporal scope to overlap consumption

with local production, as opposed to investing in production units to sell

at a national scale. Those ingredients are fundamental in our vision of

local energy communities. Fig. 1.1 shows a consumption and a production

profile with their intersection representing the “local consumption”. Our

goal throughout this thesis will be to maximize local consumption.

Power [kW]

Morning Noon Evening

Surplus

Grid 
consumptionLocal consumption

Consumption
Production

Figure 1.1: Profile illustrating energy im-

ported from the main grid, energy ex-

ported to the main grid, and local gen-

eration consumed by the community.

1.2.1 The case of local energy communities in France

To provide an illustrative example of local energy communities, and

because the French implementation has driven our work, we further

detail “collective self-consumption” communities (Fig. 1.2). Collective

self-consumption stems from a French law of July 2016 which evolves

regularly to account for new geographic perimeters and eligibility to

different tariff structures. As of today, the geographic scope of French local

energy communities is limited to a 1 km radius, i.e., a maximum of 2 km

between the furthest members of the community.
7
Further, the temporal

scope defining local consumption is set to 30min between the moment

where electrons are produced and consumed by the community.

Consumers and producers are regrouped together in a legal entity

whose main role is to define how the local production is shared among

consumers (also called “sharing keys”). Associations, local authorities,

and social landlords, among others, can play the role of the organizing

legal entity for collective self-consumption operation. To share local

production different types of sharing keys are possible, which, in a way,

decouple the consumption that is physically measured from financial

flux.
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Available sharing keys:

I Static keys: For all 30min time windows a static coefficient is

applied to determine the portion of local energy for each consumer.

For instance, 25% for consumer # 1 and75 % for consumer # 2. Those

coefficients can represent financial investments in the operation or

other aspects. Themain disadvantage of static keys is that consumer

2 may not be able to absorb 75% of the production which is then

accounted for as a surplus of the community.

I Dynamic by default: For each 30min coefficients are directly

calculated by the Distribution System Operator (DSO) as a pro-rata

of members’ consumption. If consumer # 1 represents 50% of the

consumption on a 30min window then he/she is entitled to 50%

of the total production on that time window.

I Dynamic keys: For each 30min coefficients are set by the organizing

legal entity. This type of key enables to completely customize the

share of energy across the community, but requires communicating

coefficients each month to the DSO. We note that ENEDIS, the

principal French DSO, is developing a fourth type of sharing key to

enable different producers within a community to have their own

set of sharing keys.

Figure 1.2: Illustrative example of local

energy communities in France: “collective

self-consumption”.

Producers Consumers

Organizing 
Legal Entity

Billing

Metering data

Sharing « keys »
Distribution 

System Operator
Energy 
supplier

1 km radius

Electrical grid
…

…

…

Although community members benefit from locally produced energy,

they still keep their traditional energy supplier for the rest of their

demand. As shown in Fig. 1.2 the DSO is in charge of communicating

consumed quantities based on sharing keys to the organizing legal entity,

but also to the various energy supplier. It results that members receive

an energy bill from their energy supplier, as well as, an energy bill from

the local energy producers.
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8: Quite logically, it is also better to self-

consume before selling it to a neighbor, as

it offsets the full regulated price of elec-

tricity at 15.58 cente/kWh after taxes

9: To avoid too much repercussions on

consumers a tax referred to as CSPE was

nearly removed for 2022.

10: In 2022 there are only 85 communities

of collective self-consumption in France.

1.2.1.1 Economics of selling energy within local energy communities.

Does it financially make sense to sell power to a neighbor? Although

this is not the only condition for local energy communities to exist (cf.

“why local energy communities?”), a profitable business model is helpful.

We propose a back-of-the-envelope calculation to assess at what price

electricity can be sold within local energy communities.

When selling power to a neighbor, i.e., a local energy communitymember,

we expect producers to provide a competitive price in comparison to the

regulated price of electricity which is always available. In other words,

producers within a community must sell at no more than the regulated

price of electricity. In August 2021, the regulated price of electricity

is 9.74 cente/kWh before taxes [17], and includes 3.71 cente/kWh for

network fees (TURPE) which means that producers can expect to sell

electricity at about 6 cente/kWh.

In comparison with other options to sell electricity at the retail level,

6 cente/kWh is not so great. The different retail options for selling

electricity are given in Tab. 1.2, those options are subsidized to develop

renewable energy production. For a solar capacity under 3 kWp, the

feed-in tariff guarantees 18 cente/kWh, which is three times more than

the 6 cente/kWh calculated. The other option, when opting for a self-

consumption tariff (further explained in chapter 2), still enables to sell

surplus of electricity at 10 cente/kWh under 9 kWp
8
.

For those reasons, collective self-consumption projects are usually not

seen as the best economic outcome. However, this could be changing for

a few reasons: the regulated price of electricity continues to rise, grid

fees are being modified for local energy communities, but also increasing

uncertainties regarding subsidized feed-in tariff.

Solar capacity kW Feed-in tariff per kWh

Self-consumption tariff

for surplus per kWh

≤ 3 kWp 18 cente
10 cente

≤ 9 kWp 15 cente

≤ 36 kWp 11 cente
6 cente

≤ 100 kWp 9.5 cente

Table 1.2: Retail options for selling elec-

tricity https://www.insunwetrust.sol
ar/blog/le-solaire-et-vous/tarif
-rachat-photovoltaique/.

In 2022, the regulated electricity price before taxes increased by 41%,

which brings the new regulated price to 13.74 cente/kWh before taxes.
9

With the 2022 regulated price, and if we remove 3.71 cente/kWh for grid

fees, this leaves a potential value of 10 cente/kWh for producers selling

within a community, which is equivalent to the self-consumption tariffs

for surplus of Tab. 1.2. As such, the 120 000 individual self-consumer

in France could imagine gathering in local energy communities
10
, and

selling their electricity surplus to their neighbors instead of relying on

a subsidized energy supplier. It is unclear how regulated prices will

evolve in particular with tensions on Russian fossil fuels, however, local

energy communities may have reached a stage where financial aspects

can partially drive developments.

https://www.insunwetrust.solar/blog/le-solaire-et-vous/tarif-rachat-photovoltaique/
https://www.insunwetrust.solar/blog/le-solaire-et-vous/tarif-rachat-photovoltaique/
https://www.insunwetrust.solar/blog/le-solaire-et-vous/tarif-rachat-photovoltaique/
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11: It is also possible to benefit from a vari-

able TURPE without being part of a local

energy community. Corresponding tariffs

are 6.27, 4.29, 1.34, and 0.83 cente/kWh

for respectively winter on peak, off peak

and summer on peak, off peak.

12: This is approximately the price of elec-

tricity in Germany.

Financial gains can also be expected from switching to a special regime of

network fees. ThebasicTURPEasmentionedbefore is at 3.71 cente/kWh,
11

whereas the specific local energy community TURPE is based on four

different tariffs covering winter/summer seasons, and on/off peak hours.

Although the specific TURPE is greater for grid consumption in the

winter at 4.16 and 6.81 cente/kWh respectively, it is also much lower in

summer at 0.35 and 0.73 cente/kWh depending on hours and locations.

This TURPE with 4 different values demands a case-by-case analysis that

goes beyond a simple back-of-the-envelope calculation. Nonetheless, we

can expect this specific TURPE to enable more value to fall in the hands

of local producers. If consumers are willing to accept a larger TURPE

in the winter, solar power could be sold at about 13 cente/kWh with

a 0.73 cente/kWh TURPE and still fall below the regulated electricity

price. Note that this specific TURPE for local energy communities only

applies to communities connected behind the same low voltage trans-

former and not for communities with a 1 km radius geographic scope. At

13 cente/kWh selling power within a community becomes the best retail

option for solar capacities above 9 kWp.

Finally, subsidized tariffs for retail producers to sell electricity shown in

Tab. 1.2 may not exist forever. Without those regulated tariffs, the bar to

reach becomes the Levelized Cost Of Energy (LCOE) of solar panels (i.e.,

the price of each kWh in order to reimburse the initial and operational

investments for a given lifetime). A report from the Fraunhofer institute

for solar energy systems shows that LCOE for small-scale solar panels

is between 6 and 11 cente/kWh [18], which is potentially a price range

already matched by local energy communities in France as they can

expect 10 cente/kWh from local production in 2022.

For a technological scenario with solar plus storage LCOE are more un-

certain with variation from 8 to 20 cente/kWh [18]. If we take an LCOE

of 20 cente/kWh storage systems are almost viable for individual usage

as the regulated price of electricity after tax is close to 20 cente/kWh.

However, using storage systems to sell power within local energy commu-

nities would require that the regulated electricity price increases to about

32.3 cente/kWh after taxes
12
. This would enable a price of electricity at

20 cente/kWh plus 3.71 cente/kWh and 3.2 cente/kWh in TURPE and

local taxes and a 20% VAT for a total cost after tax of 32.3 cente/kWh.

This analysis is meant as a back-of-the-envelope calculation of electricity

price per kWh, but there are many other economic aspects to consider.

In particular, local energy communities may also incur additional op-

erational costs, e.g., organizing events and meetings, and monitoring

activities, as they can also unlock value from:

I installing larger solar panels on unused roof areas,

I not having to pull a cable from the roof for each apartment to inject

solar power behind their meter,

I sharing the costs of electricity within the community (e.g., as a

pro-rata of revenues).

To sum up, in France, 2022 might be the tipping point where selling

solar production to neighbors becomes financially attractive. However,

selling power from solar panels plus storage systems has yet to become

cost-effective in France.
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13: All member states of the European

Union are required to have a framework

for renewable energy communities in 2021,

however, it is still an ongoing process in

many countries.

1.2.2 The case of other European countries

Large differences exist among members of the European Union with

regard to the implementation of renewable energy communities in

national laws
13

. In particular, several topics emerge: types of energy

included, capacity limits, grid tariffs, organisation rules, and physical

expansion [19]. In particular, physical expansion categorizes two kinds

of local energy communities: communities that use the public grid, and

communities that do not.

Some countries authorize local energy communities to be developed

on the public grid infrastructure. This is the case of France within a

2 km limit, but also Spain with a more restrictive limit at 500m and

the necessity to be behind the same low-voltage transformer. Italy, and

Austria impose to be behind the same low-voltage or medium-voltage

transformer. Wallonia, Belgium defines a “local perimeter” which de-

pends on case-by-case assessments. Defining proximity as a distance is

more transparent and easier to understand, however, requiring knowl-

edge about grid infrastructures fosters an organization that may reduce

network constraints in terms of voltage or loading. We note that a case-

by-case methodology might provide flexibility but can also induce a lack

of certainty for planners.

Using public infrastructures brings up the question of their cost. As we

have seen in France, it is often a crucial question when looking at the

profitability of a project. On that topic, the European guideline express

a certain ambiguity, while member states should “generally not apply

charges to electricity produced and consumedwithin the same premises”,

they “should be allowed to apply non-discriminatory and proportionate

charges to such electricity if necessary to ensure thefinancial sustainability

of the electricity system”[20]. In particular, Italy proposes a refund for the

network fees related to transmission lines (0.8 cente/kWh). France has a

special TURPE as mentioned earlier, and Belgium offers a case-by-case

price depending on the profits of the community.

Some countries, however, do not authorize local energy communities

to develop over the public grid infrastructures. As such, communities

are usually limited to apartment buildings under the same metering

system. This is the case for Denmark, Estonia, Finland, and Sweden

where exceptions are accepted to “interconnect single parts of a power

plant” with an internal grid between different buildings. In Switzerland,

this exception is the rule as local energy communities have the right to

develop their own private network unified under a common point of

coupling with the larger network.

This choice of a common point of coupling for communities brings several

advantages. For instance, communities do not rely on DSO to virtually

aggregate meters, but rather on an actual physical meter which is much

simpler in terms of data processing. This might also be an advantage

for coordinating consumption and production, as control strategies can

be based on a single metering system. Further, it also opens the door

to control strategies based on physical measures within the microgrid

instead of relying on communication protocols. However, communities

take more responsibilities (and costs) to safely operate an extended

electrical network. Communities are also harder to form as geographical
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proximity is critical to interconnecting buildings. Further, it might also

lead to a certain waste in the form of new cables instead of using existing

cables from the public infrastructure.

� Highlights:

I Two ingredients stand out in our definition of local energy

communities: a limited geographical scope and a limited

temporal scope,

I With the regulated electricity price in 2022, producers can

expect 10 cente/kWh from selling electricity within a commu-

nity,

I Whether local energy communities can extend on the public

grid or not is a major difference between national implemen-

tations in Europe.

1.3 Research questions

Local energy communities cannot simply install a large surface of solar

panels that covers their annual energy consumption. The challenge for

communities is the need to organize their consumption to match the

local production at a sub-hourly rate rather than yearly or even weekly.

Otherwise, the local energy produced that is not consumed within a

certain time limit is a surplus lost to the larger grid.

In this context, our research looks at how to coordinate local consumption

with local production across multiple community members. In addition,

we provide a critical look at when coordination strategies are coherent

with the community.

I Research question # 1: When and how to coordinate local con-

sumption with local production within communities?

In the end, what is the carbon impact of local energy communities when

installing renewable energy systems? This question is fundamental to

keep the “raison d’être” of local communities despite the embodied

carbon emission in solar panels and batteries. To assess the carbon

footprint of renewable energy systems, methodologies in the literature

do not consider both self-sufficiency at a sub-hourly rate, and long-term

investment horizons. We propose a method that accounts for local energy

communities’ aspects to size solar panels and batteries to minimize

carbon impact.

I Research question # 2: Is more renewable energy systems always

better for local energy communities?

1.4 Organisation

This thesis is built around 5 chapters. Literature review and bibliographic

work are spread across the different chapters.
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14: https://www.lancey.fr/?lang=en

Chapter 2: defines the concept of self-consumption, i.e., having a limited

time to consume local production which is a cornerstone of this work.

This chapter is also the place to define methods for estimating lower and

upper bounds on self-consumption.

Chapter 3: presents a review of coordination strategies. We take a critical

look at coordination within local energy communities. What are some

requirements, what are the roles, and synergies with other forms of

socio-economics coordination?

Chapter 4: assumes that flexible assets, e.g., batteries, are distributed

within a community, and explore a predictive and a reactive strategy to

coordinate flexible assets.

Chapter 5: takes a step back from the operation of local energy com-

munities, to look at the initial sizing of energy systems. In particular,

we look at the evolution of greenhouse gas emissions as a function of

self-sufficiency for communities.

1.5 Contributions

Throughout this work, we view scientific contributions as the remodel-

ing of existing theories by combining various ideas, and observations

specific to a novel context. In that sense, our contribution is to remodel

coordination strategies in the light of temporally and spatially limited

energy communities with existing socio-economic structures. This type

of scientific contribution is referred to, in a non-pejorativeway, as a “brico-

lage” approach [21]. This approach is different from an evolutionary

view of scientific contributions, “filling the gaps” of existing coordination

strategies. Our scientific contributions are not limited to “instrumental

knowledge”, providing coordination methodologies. It also includes

“reflexive knowledge”, questioning the sense of coordination strategies.

This approach which might be unexpected, is key to fitting coordination

strategies to local energy communities, if some coordination is needed.

We have listed some of the principal contributions in this work, more

contributions are given in the “highlight” frames. This study was funded

by LANCEY Energy Storage.
14

Contribution 1: A methodology to estimate the self-sufficiency that lies

at different storage cycles, i.e., the needs for storage between days and

nights, versus seasonal storage.

Contribution 2: A methodology to create realistic load profiles where

the amount of overlap with solar irradiance profiles is controlled.

Contribution 3: An analysis of the requirements, roles, and methods

of coordination for distributed flexible assets. In particular, the analysis

is built around two axes: centralized / decentralized strategies and

competitive / cooperative strategies.

Contribution 4: A model predictive approach to coordination in local

energy communities which includes network fees, and a market-like

approach for flexible assets’ participation.

https://www.lancey.fr/?lang=en
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Contribution 5: A reactive approach to coordination in local energy

communities.

Contribution 6: A methodology to minimize carbon impacts over a long

horizon when sizing solar panels and batteries in the context of local

energy communities.
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Overcome space, and all we have left is Here. Overcome time, and all
we have left is Now.

—Richard Bach, Jonathan Livingstone Seagull

This chapter develops the concept of self-consumption which is a pillar

of local energy communities. What does it mean to consume locally

produced electricity? This may seem trivial, yet measuring the self-

consumption of communities with storage assets is fuzzy in the literature.

This chapter aims at getting the reader familiar with self-consumption

metricswhile developing tools andmethodologies for the next chapters.

In France, the concept of self-consumption is fairly new from a retail

perspective. In the traditional feed-in-tariff structure, households directly

sell all their production at 18 ce/kWh, and then re-buy all their energy
needs at a lower price. In this scheme, the energy produced is always

entirely injected into the grid without first being “self-consumed” by

plant owners Fig. 2.1.

Self-consumption was only recently defined and authorized in France

for individual households and local communities.
1
With this scheme,

the energy produced is injected behind the meter which profits plant

owners before going into the larger grid. In France, the metering of what

is injected versus what is self-consumed is done over a time window of

30 minutes, thus tolerating some mismatch between consumption and

production.

Distribution grid

Meter #1 Meter #2

DemandProduction

Feed-in-tariff

Distribution grid

Meter #1

DemandProduction

Self-consumption

Figure 2.1: Illustration of the structural

diffrence between feed-in-tarif and indi-

vidual self-consumption.

In a way, self-consumption is the first ingredient of local energy commu-

nities, as it brings a limited temporal scope. This chapter is dedicated to

understanding this limit, which is the critical link between local energy

production and energy consumption.Without this limit, the focus of local

energy communities could be to produce greener electricity, without

considering aspects related to consuming less energy.
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2: It is easier to self-consume in winter as

solar-based generation tends to be lower

than in the summer. On the contrary, it

is harder to be self-sufficient for the same

reason. Thus giving self-consumption only

for the winter months is biased.

Through exploring the limited time window between consumption and

production of electricity, we develop several tools also relevant for the

next chapters:

I A method to estimate whether it is worth considering scheduling

batteries on a yearly, monthly, or daily horizon, e.g., how much

value is there in transferring energy from one week to another.

I An algorithm to find the maximum self-sufficiency achievable for

a given battery model and characteristics,

I A clustering method to accurately represent year-long time-series

with a few weeks,

I A metric and a methodology to characterize and modify load

profiles to overlap more with solar production.

This chapter starts by defining self-consumption and self-sufficiency to

measure the influence of a temporal limit. The two metrics measure the

ability to export less power and the ability to import less power from the

upstream grid.

2.1 How to measure self-consumption?

To calculate self-consumption and self-sufficiency ratios, it is commonly

accepted to use Eq. 2.1 and Eq. 2.2 [23]. Intuitively, self-sufficiency is

a metric to evaluate the ability of a household to provide for its own

energy needs, i.e., to rely less on the grid. Whereas, self-consumption

assesses the amount of generation that remains within the household,

i.e., it gets worse as surplus is injected into the grid. Those two metrics

are scale-independent, and bounded between 0% and 100%, thus easily

interpretable especially when calculated over a year to account for

seasonal effects
2
.

self-consumption =

∑)
C=1

min

(
load(C), prod(C)

)
∑)
C=1

prod(C)
(2.1)

self-sufficiency =

∑)
C=1

min

(
load(C), prod(C)

)
∑)
C=1

load(C)
(2.2)

Where prod(C) ≥ 0 is the local energy generation, and load(C) ≥ 0 is the

local energy demand.

Achieving both 100% self-sufficiency and 100% self-consumption would

indicate that a household does not import energy, and fully uses local

generation. A more common situation might be a household close to

100% on self-consumption with a small self-sufficiency. It is often the

result of a rather small solar panel which only produces a fraction of the

house’s energy consumption.
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Power [kW]

Morning Noon Evening

Surplus

Grid 
consumptionLocal consumption

Consumption
Production

Self-consumption =
+

Self-sufficiency =
+

Figure 2.2: Graphical explaination behind

self-sufficiency and self-consumption met-

rics.

2.1.1 What is the impact of time intervals?

Since France has adopted a 30 minutes time interval between local

energy production and consumption, but other European countries have

suggested 15 minutes intervals, we may wonder the impact that different

time intervals can have on the ease of achieving higher level of self-

sufficiency. Additionally, extending time intervals to days or even seasons

might provide a theoretical upper limit on the self-sufficiency achievable

with storage units.

It does not show in Eq. 2.1 and Eq. 2.2, yet the time resolution of load(C)
and prod(C) is a critical information [24]. In a way, varying time intervals

can depict a spectrum of scenarios from microgridswith stability issues

where time intervals are reduced to microseconds, to net-metering scheme

with large time intervals related to billing periods (i.e., time intervals

can be extended to a year). Self-consumption schemes lie in the middle,

where an hourly or sub-hourly match is expected between production

and demand.

With 30 min intervals:
self-sufficiency = 100%

10 AM 10:30 AM

With 15 min intervals:
self-sufficiency = 50%

… …
load(t)

prod(t)

Figure 2.3: Impact of metering self-

sufficiency over 15 minutes intervals ver-

sus 30 minutes intervals on an illustrative

scenario.

Self-consumption metrics are sensitive to the time resolution of prod(C)
and load(C) profiles, Fig. 2.3. Intuitively, larger time intervals leave more

“space” for local production to cover consumption. For instance, when



16 2 What does it mean to “self-consume”?

3: that is to say that load(C) and prod(C)
series are in fact aggregated (i.e., summed)

to a single data point.

self-consumption ismetered at a 30minutes rate, the energy consumption

of 1 kWh at 10:00 am counts as locally consumed as long as 1 kWh is

produced before 10:30 am. In fact, we can show that self-consumption

and self-sufficiency monotonically increase with larger time intervals.

To illustrate the impact of time intervals on a more realistic scenario, we

take a load profile with a 5minutes time resolution for a single household

from the REFIT open dataset [25], and solar irradiance from the PVGIS

open dataset [26] with a 60 minutes resolution linearly interpolated to 5

minutes. The data runs from May 2014 to May 2015 to capture a full year.

Note that this is an illustrative scenario that is not representative of all
householdswith solar panels. Inparticular, this exampledoesnot consider

rapid cloud cover and focuses on northern latitudes (Loughborough,

UK). Nonetheless, this highlights some interesting diurnal, weekly, and

seasonal trends. In particular, Fig. 2.5 shows the self-sufficiency achieved

for a load profile as the solar panel installed goes from 0 kWp to 5 kWp.

The different curves represent different time intervals, whether a 5

minutes time interval is used, or at the extreme, a 1-year interval is

applied.

Figure 2.4: Sample timeseries from the RE-

FIT and PVGIS open datasets, household

#7 with a 3 kWp solar panel.
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First, it is interesting to note that self-sufficiency taken with a 1 year

granularity
3
corresponds to the maximum achievable self-sufficiency

(dashed line on Fig. 2.5). As such, we can always determine an upper

bound on self-sufficiency for a given energy production, i.e., which

intuitively corresponds to using all the energy. Notably, this is also where

the concept of self-sufficiency meets with “net-metering”. As shown in

Fig. 2.5, this maximum self-sufficiency increases linearly with the number

of solar panels installed (below 100 % self-sufficiency).

For the specific load and production profiles chosen, using intervals of

15 minutes or 30 minutes which is the default interval in France, does

not significantly impact self-sufficiency metrics (1 % difference). In this

work, we choose to calculate self-consumption on a 15 minutes basis as

per [19].
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4: here a diurnal cycle refers to a battery

passing by a discharged state every day,

e.g., 0 % state of charge.

5: one implication is that self-sufficiency

gains will not be proportional to storage

sizes, as passing from daily to seasonal

cycles implies a significant energy step in

storage capacity from 10 kWh to 400 kWh

(this note is further detailed in the next

sections)
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Figure 2.5: Self-sufficiency metric taken

for different time intervals from 5 minutes

to 1 year, with increasing solar panel sizes

on the x-axis. Python notebook available

at https://github.com/Jonathan56/su
pplementary_thesis/tree/master/2_c
hapter.

Further, and perhaps more interestingly, we can estimate an upper bound

of the self-sufficiency that a storage asset could achieve, if it can work on

a diurnal, weekly, or seasonal cycle. A storage asset that is only able to

have a diurnal cycle
4
can not bring self-sufficiency higher than the self-

sufficiency calculated with a daily granularity. Indeed, the best outcome

of diurnal storage is to match all production with some consumption

(without losses), which is done by definition when calculating self-

sufficiency on a daily granularity. Fig. 2.5 clearly shows the potential for

diurnal battery cycles. Under a 5 kWp solar panel, an infinite battery with

a daily cycle can push self-sufficiency up to 62 % from the 31 % without

storage. Yet, the full potential as shown by the yearly curve is 92 % of

self-sufficiency. Thus when larger solar panel capacities are installed

storage is also needed on a seasonal scale (i.e., storing in summer to

discharge in the winter). We note that for this specific household the

weekly value gap is small
5
.

We see that simply “playing” with the self-sufficiency metric is quite

informative. In fact, varying time intervals already constitutes a useful

pre-analysis to assess the potential of storage assets. For a following

chapter on coordination strategies, this pre-analysis will give us an

estimate of whether it is worth considering scheduling batteries on a

monthly horizon, i.e., is there value in transferring energy from one week

to another. It also provides lower and upper bounds on self-sufficiency

to provide relative results in the upcoming chapters.

� Highlight:

I Self-sufficiency taken for different time intervals reveals the

theoretical value gap for storage devices to consider diurnal,

weekly, and seasonal cycles.

https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
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6: We note that intrinsically energy is

never “produced”, but rather transformed

by storage assets or solar panels. Nonethe-

less, we use the word “produced” as it is

in common usage.

2.1.2 How to account for storage assets?

Storage assets perturb the binary vision of self-consumption metrics,

where an asset is either accounted for as a production, e.g., solar panels,

or as a consumption, e.g., a washing machine. A storage asset may both

produce energy at night
6
, and consume energy during the day. Fig. 2.6

shows twoways to account for storage. Even though the resulting netload

from Fig. 2.6a or Fig. 2.6b is the same, the resulting self-sufficiency will

be higher for Fig. 2.6b, as the proportion of local consumption to the total

consumption is greater.
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Definition 1: Storage = production Definition 2: Storage = production & demand

Figure 2.6: Illustration of considering the storage power profile as a) a pure production (bottom left graph), or b) a production only when

the storage is discharging and a consumption when the storage is charging (bottom right graph).

In the literature, a large panel of publications include storage in self-

consumptionmetrics as “production” assets [23], [27–30].With this vision,

the storage power profile ?1(C) is simply subtracted to the production

profile prod(C), with the receptor convention such that ?1(C) < 0 when

the battery is discharging, and ?1(C) > 0 when the battery is charging

(Eq. 2.3 and Eq. 2.4). This definition from the literature is illustrated by

Fig. 2.6a and explicited with Eq. 2.3 and Eq. 2.4.

Definition 1:

self-consumption
1
=

∑)
C=1

min

(
load(C), prod(C) − ?1(C)

)
∑)
C=1

prod(C)
(2.3)

self-sufficiency
1
=

∑)
C=1

min

(
load(C), prod(C) − ?1(C)

)
∑)
C=1

load(C)
(2.4)

An other option to account for storage in self-sufficiency is to merge the

storage power profile with consumption and production as illustrated in
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Fig. 2.6b. Thus charging is accounted as a consumption and discharging

as a production. This vision leads to Eq. 2.6 where
¯?1(C) > 0 represents

the storage profile when charging, and ?1(C) > 0 represents the storage

profile when discharging.

Definition 2:

self-consumption
2
=

∑)
C=1

min

(
load(C) + ¯?1(C), prod(C) + ?1(C)

)
∑)
C=1

prod(C) + ?1(C)
(2.5)

self-sufficiency
2
=

∑)
C=1

min

(
load(C) + ¯?1(C), prod(C) + ?1(C)

)
∑)
C=1

load(C) + ¯?1(C)
(2.6)

In many scenarios, definition 2 simply leads to higher self-sufficiency

than definition 1, without that one definition is better than the other. We

propose to look at two scenarios to test the limits of both definitions.

The objective is to have a self-sufficiency metric that remains coherent

regardless of how a storage asset is operated. For instance, whether the

storage is charged from solar panels or the main grid, or whether the

storage comes back to its initial state of charge. The following section

attempts a proof by the absurd to differentiate both metrics.

2.1.2.1 The “arbitrage” scenario.

In this first scenario called “arbitrage”, a storage is charging from the grid,

either because it was poorly controlled, or because it has an arbitrage

role in the wholesale energy market (Fig. 2.7).
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Figure 2.7: Arbitrage scenario where the

battery is charging from the grid (top

graph) and resulting self-sufficiency from

definition 1 and 2 (bottom graph). Defi-

nition 1 gives a negative self-sufficiency

thus demonstrating that the metric is not

bounded by 0%. Python notebook avail-

able at https://github.com/Jonathan5
6/supplementary_thesis/tree/maste
r/2_chapter.

We choose to have the storage discharge during the day from the same

quantity it was charged, to maintain a neutral energy balance. The

arbitrage scenario is less common in the literature, as most often the

storage is perfectly controlled to charge on solar production and discharge

https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
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7: Note that in Eq. 2.7

∑)
C=1

is inside the

min() function, as opposed to the classic

self-sufficiency Eq. 2.2.

for local energy demand. However, in real-world applications some

arbitrage might be justified, or alternatively, degraded battery control

can happen for various reasons, such as uncertain load forecast, and

communication errors.

Fig. 2.7 shows that considering storage as a production (i.e., definition 1)

leads to negative self-sufficiency. This is problematic as self-sufficiency

without storage was originally bounded by 0 %, and bounded metrics

are easier to understand. Definition 1 of self-sufficiency does not have a

lower bound and thus loses a reference point. In that regard, definition 2

is better as it is by definition bounded between 0 % and 100 %.

2.1.2.2 Validity of the “net-metering” upper bound.

While the first scenario looks at the lower bounds of self-sufficiency

definitions, the second scenario looks at the upper bounds. By definition,

both approaches are bounded by 100 %.However, both definitions should

also respect the upper bound given by the “net-metering” self-sufficiency

Eq. 2.7, also represented by the dashed upper limit on Fig. 2.5
7
.

self-sufficiency ≤
min

( ∑)
C=1

load(C), ∑)
C prod(C)

)
∑)
C=1

load(C)
(2.7)

Figure 2.8: Second scenario (top graph)

and resulting self-sufficiency from defini-

tion 1 and 2 (bottom graph). Definition

2 leads to a self-sufficiency better than

the “net-metering” approach, which is

counter-intuitive. Python notebook avail-

able at https://github.com/Jonathan5
6/supplementary_thesis/tree/maste
r/2_chapter.
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This is a relevant characteristic to frame the potential of storage assets.

As storage assets attempt to match production and consumption, their

best outcome should be limited to a scenario where all production is

matched with some consumption which happens by definition in the

“net-metering” approach. In practice, that means that even with storage

assets self-sufficiency should not pass the dashed line on Fig. 2.5.

https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
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The second scenario is illustrated in Fig 2.8. The battery profile ensures

that the battery start and end at the same state of charge given a 10%

round-trip losses. As such, the battery does not bring additional en-

ergy production. Yet, self-sufficiency, as calculated by definition 2, is

higher than when there are no concerns of matching time (i.e., the “net-

metering” approach). This is problematic as this upper limit is intuitive

and informative.

We did not prove that one definition is “perfect”, but rather that they

both have flaws. Nonetheless, we select definition 1 to account for storage

in self-sufficiency for the rest of this manuscript. The two main reasons

are: it is the most generally accepted definition in the literature, and it

preserves the upper limit given by the “net-metering” approach.

� Highlight:

I For the purpose of self-consumption metrics, storage is con-

sidered as a production asset (definition 1).

2.1.3 How to expand self-consumption to communities?

Expanding self-consumption metrics to a community as a whole is not

so different than the metrics for a single household. The same self-

consumption metrics apply, to the difference that consumption and

production profiles are summed over the # community members (Eq.

2.8 and Eq. 2.9).

self-cons# =

∑)
C=1

min

( ∑#
==1

load=(C),
∑#
==1
(prod=(C) − ?1=(C))

)
∑)
C=1

∑#
==1

prod=(C)
(2.8)

self-suff# =

∑)
C=1

min

( ∑#
==1

load=(C),
∑#
==1
(prod=(C) − ?1=(C))

)
∑)
C=1

∑#
==1

load=(C)
(2.9)

However, expanding self-consumption metrics for individual houses in

a community requires that we consider the status of power exchanged

within the community. If we consider the energy production bought or

exchangedwith other members as part of the household local production,

then follows Eq. 2.10 and Eq. 2.11.

self-cons= =

∑)
C=1

min

(
load(C), prod(C) − ?1(C) + prod2><<.(C)

)
∑)
C=1

prod(C) + prod2><<.(C)
(2.10)

self-suff= =

∑)
C=1

min

(
load(C), prod(C) − ?1(C) + prod2><<.(C)

)
∑)
C=1

load(C)
(2.11)

Where prod2><<.(C) corresponds to the energy bought from other com-

munity members.
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8: Note that ΔC = 1/4 corresponds to a

time interval of 15 minutes.

2.2 Do we need storage to self-consume?

Webegan to estimate the value of storagewhen calculating self-sufficiency

with daily time intervals in Fig. 2.5. In other words, the self-sufficiency

achieved by an ideal unlimited storagewith daily cycles. In this section,we

aim at estimating the value of storagewhen accounting for storage physics

such as power constraints, energy constraints and charging/discharging

efficiencies. Alg. 1 provides a methodology as in [28] to maximize self-

sufficiency with such model of storage asset. Intuitively, this method

consists of charging/discharging a storage asset as soon as possible to

cover solar production, or load demand. For this solution to be optimal,

we assume that there is no benefits in delaying charging/discharging

activities at a later time.

Algorithm 1: An algorithm to maximize individual self-sufficiency

Data: timeseries load(C) and prod(C) ∀C ∈ [1...)],ΔC = 1/4
Data: battery model �1<0G , �

1
<8=

, %1<0G , %
1
<8=
∈ ℝ+ , � = 0.95

Result: ?1(C) in the receptor convention, and �1(C)
1 C = 1

2 while C < ) do

3 ?1(C) = prod(C) − load(C)

//Apply battery constraints

4 B<0G(C) = max(0, �
1
<0G−�1 (C−1)

ΔC × 1

� )
5 if ?1(C) ≥ B<0G(C) then
6 ?1(C) = B<0G(C)

7 B<8=(C) = min(0, �
1
<8=
−�1 (C−1)
ΔC × �)

8 if ?1(C) ≤ B<8=(C) then
9 ?1(C) = B<8=(C)

10 if ?1(C) ≥ %1<0G then
11 ?1(C) = %1<0G
12 if ?1(C) ≤ −%1

<8=
then

13 ?1(C) = −%1
<8=

//Update state of charge

14 if ?1(C) ≥ 0 then

15 �1(C) = �1(C − 1) + ?1(C) × ΔC × �
16 else

17 �1(C) = �1(C − 1) + ?1(C) × ΔC × 1

�

18 C = C + 1

19 return ?1(C), �1(C)

Alg. 1 takes a few input parameters load(C), and prod(C), the consumption

and the production measured at a smart meter.
8

The battery model

set physical limits in terms of energy contraints (�1
<8=

, �1<0G) and power

constraints (%1
<8=

, %1<0G). The initial state of charge �1(0) is set to �1
<8=

,

but it has a limited influence when looking at results for an entire year.

The storage power is set to ?1(C) = prod(C) − load(C) on line 4, to

maximize self-sufficiency at C. We note that Alg. 1 is used on offline

measures of load(C) and prod(C), as such the influence of ?1(C) does not
need to be discounted in the measurements of load(C) and prod(C). For
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the rest, we apply energy constraints from the storage (lines 5-10), then

power constraints (lines 11-14), and finally we update the storage state of

charge.

Fig. 2.9 shows a resulting storage power profile ?1(C) when �1
<8=

=0,

�1<0G = 3 kWh/house, and %1
<8=

=%1<0G = 1.5 kW/house for 20 households.

As expected, the storageprofile is limited to 30 kW(1.5 kW×20 households),
and the state of charge to 60 kWh. Further the storage only charges when

there is a surplus of solar production, and only discharge when there is

a surplus of demand.
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Figure 2.9: Sample timeseries from run-

ning Alg. 1 with 3kWh and 1.5kW storage

asset per household for 20 households.

Python notebook available at https://
github.com/Jonathan56/supplementar
y_thesis/tree/master/2_chapter.

2.2.1 Illustrative results

To illustrate the outcome of storage on self-sufficiency, we select a col-

lection of 20 households from an open dataset of 173 load profiles from

France for a full year at a 15 minutes resolution [28]. This collection of

20 load profiles both contains residential buildings with and without

electric heating so that their average yearly consumption matches the

larger database at 5.56 MWh/house/year. Separately, solar panel produc-

tion data is extracted from the open-source PVGIS platform for Valence,

France. [26]. We illustrate a sample of the resulting time-series load(C),
and prod(C) for a few days in May on Fig. 2.10.
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Figure 2.10: Sample timeseries from

Quoilin open dataset [28] and PVGIS solar

production for Valence, France, 20 house-

holds with each a 3kWp solar panel.

Before illustrating the outcome of storage system controlled via Alg. 1, we

highlight that simply calculating self-sufficiency at different time intervals

already provides some information. On Fig. 2.11, we vary solar panel

sizes from from 0 kWp to 5 kWp, and plot self-sufficiency calculated at

15 minutes intervals (denoted as “No storage”), 24 hours intervals, and

yearly intervals. Based on the different lower and upper bounds we can

define three zones: A, B, and C, if we assume that no more than 10% of

https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
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local energy production should be sold or donated to the upstream grid.

Zone A corresponds to a regime where storage does not have the margin

to improve self-sufficiency by more than 10 %. Zone B corresponds to a

regimewhere storage can follow themaximum achievable self-sufficiency.

In zone C inter-seasonal challenges must be addressed to remain within

10 % of the maximum achievable value [31].

Figure 2.11: Impact of solar panel capacity

on the community self-sufficiency for a

“no storage” self-sufficiency, a “daily” self-

sufficiency, and “yearly” self-sufficiency.

We define three zones based on the impact

that storage systems can theoretically have.

Python notebook available at https://gi
thub.com/Jonathan56/supplementar
y_thesis/tree/master/2_chapter.
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On top of the theoretical lower and upper bounds drawn on the previous

figure, Fig. 2.12 shows self-sufficiency curve with 15 minutes intervals

for different storage capacities �1<0G from 2 kWh to 8 kWh (respectively

storage charging power %1<0G from 1 kW to 4 kW). To obtain those curves,

storage systems are controlled via Alg. 1 for a year, and self-sufficiency is

calculated with definition 1 of section 2.1.2.

Fig. 2.12 shows interesting trends, even though none of the results have

an absolute value, since they correspond to a specific community of

20 households. For a storage as large as 8 kWh per household the “daily

net-metering” upper bound on self-sufficiency of section 2.1.1 is respected.

In fact, this upper limit is only matched with a 12.5 kWh storage. Thus,

as previously hypothesized self-sufficiency calculated with daily time

intervals seems to be a good estimation of the maximum value achievable

by storage assets under 10kWh per household. This theoretical limit can

be writen as Eq. 2.12 where � represent the set of days in a year.

self-sufficiency308;H =

∑�
3=1

min

( ∑∀C∈3
C load(C), ∑∀C∈3C prod(C)

)
∑)
C=1

load(C)
(2.12)

Further, the incremental gain of self-sufficiency is not proportional to the

storage size. For a solar panel of 5 kWp, we see a self-sufficiency increase

of 11 % between no storage and 2 kWh, when there is only a 6 % increase

between 6 kWh and 8 kWh storage.

https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
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Figure 2.12: Impact of solar panel ca-

pacity on the community self-sufficiency

for different storage capacities per house-

hold. Python notebook available at https:
//github.com/Jonathan56/supplement
ary_thesis/tree/master/2_chapter.

9: https://scikit-learn.org/stable/

modules/generated/sklearn.preproce

ssing.MinMaxScaler.html

� Highlights:

I Calculating self-sufficiency on a daily interval gives an upper

bound for what residential storage under 10 kWh can do.

I A storage asset ?1(C)maximizes self-sufficiency by following

?1(C) = prod(C) − load(C).

2.3 Can a few weeks represent a whole year?

Awhole year of data with relatively frequent time intervals of 15 minutes

can potentially lead to long and unmanageable optimization problems.

This section explores reducing the number of weeks to simulate yearly

scenarios without loss of accuracy with regard to self-sufficiency re-

sults.

Themethodology is inspired from [32], as such our contribution is limited

to an adaptation of the selection of the optimal number of clusters. To

introduce the general method, we provide a brief description of the

clustering steps from pre-processing data to K-Means clustering and

post-processing.

Before applying a clustering method, the load profile and the solar

production profile are individually standardized with a min-max scaler

to lie between zero and one.
9
To match the format required by the K-

Means clustering algorithm, the data is reshaped as a list of 52 elements,

i.e., one element for each week of a year. Each week consists of both load

and solar data concatenated to form a single vector. The reshaped data is

passed to a K-Means clustering algorithm which solves a minimization

problem to find  cluster centers. With  an input of the clustering

function, that represents the number of weeks to mimic the whole data

set.

https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
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To select actual weeks and not the hypothetical center of clusters, we

compute the euclidean distance between a center and each week of the

corresponding cluster. The closest week to the hypothetical center is

selected to represent the whole cluster. As such  weeks are selected to

represent the entire data set. To assign different weights �F for different

weeks, a coefficient is calculated from the number of weeks in a cluster

divided by the total number of weeks, i.e., 52 weeks. Finally, the actual

 weeks selected can be adjusted to match the full data set in terms of

energy. If so, a multiplicative coefficient is applied to scale up or down

power profiles. As such, the power profiles are modified from the original

data set, however, it enables to match the larger data set in terms of

energy which is important for self-sufficiency metrics.

2.3.1 Determining  the number of representative weeks

The objective is to find the lowest  number of clusters under 52 while

ensuring that the selected weeks are representative of the whole data set.

To select the number of clusters giving a satisfactory result [32] proposes

five performance indicators related to load profiles to measure the quality

of clusters. However, as we are interested in days representative of the

synergies between load and production profiles, as such we propose

to only use self-sufficiency as a performance indicator. In particular,

we look at self-sufficiency for a variety of solar panel sizes and battery

capacities.

As we look at the self-sufficiency achieved by batteries and solar panels

on  weeks, but also on the whole data set, we rely on Alg. 1 to maximize

self-sufficiency in an efficient way. The resulting metric is the mean

absolute percentage error applied to self-sufficiency between the  weeks

and the whole data set Eq. 2.13.

errorB(pv, bt) = self-sufficiency
1-year
(pv, 1C) − self-sufficiency

K weeks
(pv, 1C)

MAPEB =
1

card(PV × Battery)
PV∑
pv

Battery∑
bt

|errorB(pv, bt)|
self-sufficiency

1-year
(pv, bt)

(2.13)

Where Battery represents the set of battery capacity tested, PV is the set of

solar panel capacity tested. The term errorB is the error in self-sufficiency

between the full dataset and the dataset of  weeks.

2.3.2 Illustrative results

To illustrate the methodology, we attempt to reduce the number of weeks

representing the 20 households energy community in the previous exam-

ple Fig. 2.12. To assess if our clusteringmethodology is also representative

for large solar panel and battery capacities, we look at the quality of

clusters Eq. 2.13 for an extended scope of Battery ∈ [0, 2, 4, 10, 30] kWh

per household and PV ∈ [0, ..., 20] kWp per household for  clusters

with  ∈ [2, ..., 52].

The resultingmean absolute percentage errorMAPEB for clusters starting

with  = 2 representative weeks to  = 52weeks are shown in Fig. 2.13 in
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Figure 2.13: Mean absolute percentage

errors for a range of cluster sizes for two

different scenarios. Python notebook avail-

able at https://github.com/Jonathan5
6/supplementary_thesis/tree/maste
r/2_chapter.

two different scenarios. A scenario for the extended scope of solar panel

andbattery sizes, and a scenario for amore limited scopewhich represents

reasonable sizes for energy systems, PV ∈ [1, 5] and Battery ∈ [0, 10].
First, MAPEB converges to zero as expected, since for  = 52 the clustered

data is strictly equivalent to the full data set. Our results suggest that

 = 5 is a satisfying number of representative weeks that only lead to an

average 0.5 % error on self-sufficiency in the limited scope.
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Clustered data K = 5 weeks Figure 2.14: Self-sufficiency curves for so-

lar panel sizes from 0 to 20 kWp and bat-

teries from 0 to 30 kWh. The dash lines

represent results obtain with the full data

set, whereas plain lines represent results

obtain from the 5 weeks selected by the

clustering algorithm.

The resulting self-sufficiency curves for the whole data set and  = 5

weeks are shown in Fig. 2.14. The reference curves are well matched by

the simulation based on only the 5 selectedweeks. This figure extends the

results from our previous results Fig. 2.12 which were limited to 5 kWp

solar panels, and suggests that 100 % self-sufficiency can be reached for

solar panel capacities of 20 kWp per household and batteries of 30 kWh

per household.

https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
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Among other application, this methodology for data reduction provides a

way to simplify optimal sizing problems constrained by both a long-term

horizon of 20 years, and 15 minutes intervals for the operations of flexible

assets.

� Hightlight:

I A full year data set can be summarized in five weeks with

regard to self-sufficiency results when applying Alg. 1 to find

battery schedules maximizing self-sufficiency.

2.4 What is the impact of load profiles on

self-sufficiency?

While the previous sections take load profiles load(C) as a fixed parameter,

this section sees load(C) as a variable to achieve a target self-sufficiency.

This is useful when studying the optimal sizing of solar panels plus

storage systems in local energy communities, as the solution to those

problems is highly dependent on load profiles. Indeed, some load profiles

are naturally more inclined to be self-sufficient when coupled with solar

panels. For instance, an office building with greater consumption during

the daytime is naturally better fitted to consume solar generation, than a

residential building with an 8:00 pm peak demand.

Unfortunately, real-world consumption profiles are scarce resources,

especially when looking for a variety of consumer types. The existence of

open-source databases is one solution to study the effect of various load

profiles on the sizing of solar panels and storage capacities [28]. However,

this only provides discrete answers, without offering a continuous analysis
for degrees of “alignment” between load profiles and solar production.

In this section we develop a newmetric the Natural Self-Sufficiency (NSS)

index, and a method to create new load profiles for a given NSS index.

2.4.1 Defining natural self-sufficiency

The NSS index provides a solution to quantify the “alignment” of any

load profile with solar production on a continuous domain from 0 %, e.g.,

only nighttime consumption to 100 %, e.g., a profile that perfectly follows

solar panel production. As such, NSS quantifies the relative ability of a

load profile to overlap with solar production. We aim for a relative metric,

as we expect to compare different load profiles at the same location but

with unequal energy demands.

To build such a metric, we rely on the well-established self-sufficiency
metric from section 2.1. However, to provide a metric relative to a

load profile and a location, we calculate self-sufficiency for a solar panel

capacity that generates the same amount of yearly energy as consumed by

the load profile (i.e., a net-zero energy balance). Taking this solar capacity

enables us to theoretically reach a 100 % natural self-sufficiency for any

load profile. From this definition, it follows that NSS is bounded between
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0 % and 100 %. Interestingly, the NSS also corresponds to the point where

self-sufficiency meets self-consumption as shown in Fig. 2.15.

Proof. By definition at the natural self-sufficiency point:

)∑
C=1

prod(C) =
)∑
C=1

load(C)∑)
C=1

min

(
load(C), prod(C)

)
∑)
C=1

prod(C)
=

∑)
C=1

min

(
load(C), prod(C)

)
∑)
C=1

load(C)

self-consumption = self-sufficiency

The resulting NSS metric provides a way to differentiate the load pro-

files’ ability to absorb solar production. For instance, to differentiate a

residential load profile from an office building load profile. The latter

is more likely to have a higher NSS as the majority of its consumption

occurs during daylight hours as opposed to a residential scenario.
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Figure 2.15: Graphical determination of

natural self-sufficiency at the intersection

of self-sufficiency and self-consumption

for the data of section 2.2.Data andPython

notebook available at https://github.c
om/Jonathan56/supplementary_thesi
s/tree/master/2_chapter.

2.4.2 Methodology to set natural self-sufficiency

To generate a new load profile (profile(C)), we start from an original load

profile (load(C)) and implement an optimization-based approach. The

objective of the optimization is to make as few changes as possible from

the original profile, i.e., minimum mean square error as an objective,

to match a certain NSS target. Further, we impose that the energy

consumption remains unchanged and that the previous maximum power

demand is not exceeded as additional constraints. The problem results

in a mixed-integer quadratic programming problem.

https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
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10: https://www.gurobi.com/

Min.

)∑
C=1

profilechange(C)2 (2.14a)

profile(C) = load(C) + profilechange(C) (2.14b)

0 ≤ profile(C) ≤ max(load(C)) (2.14c)

)∑
C=1

profilechange(C) = 0 (2.14d)

grid
+(C) − grid

−(C) = profile(C) − pv#(( × pv
1:F(C) (2.14e)

0 ≤ grid
+(C) ≤ �(C) ×max

(
load(C)

)
(2.14f)

0 ≤ grid
−(C) ≤

(
1 − �(C)

)
× pv#(( × pv

1:F(C) (2.14g)∑)
C=1

grid
+(C)∑)

C=1
load(C)

= 1 − targetself-suff (2.14h)

Where load(C) represents the original load profile, pv#(( the solar panel

size in kWp at the point of NSS, and pv
1:F(C) the power production for a

1 kWp solar panel. The variables grid
+(C) and grid

−(C) have been added

to calculate the self-sufficiency of the new load profile profile(C). They
represent respectively energy imports and energy exports. In order to

ensure that power exports are zero when power imports are non-null

and vice versa, we introduce the binary variable �(C). Finally, targetself-suff
represents the natural self-sufficiency to reach while minimizing the

profile changes profilechange(C). To solve those equations, we use the

Gurobi solver.
10

To illustrate both the concept of natural self-sufficiency and the opti-

mization problem, Fig. 2.16 shows resulting load profiles when a 10 %

or a 90 % NSS target is applied to an actual load profile with a NSS of

42 %. The lower NSS target results in little load demand during the day

(typically a community built around residential profiles). Whereas the

90 % target increases demand during daylight hours as compared to the

original load profile. For all the profiles, peak demand and overall energy

consumption remain the same.

Figure 2.16: Illustrative example of modi-

fying the natural self-sufficiency of a load

profile from 42 % (in blue) to 10 % (in red),

and 90 % (in green) (Data and Python

notebook available at https://github.c
om/Jonathan56/supplementary_thesi
s/tree/master/2_chapter).
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As discussed previously, self-consumption metrics are most interpretable

when calculated over a year. However, creating a load profile with a 15

minutes resolution over a year involves more than 35 000 data points.

https://www.gurobi.com/
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
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This leads to a large quadratic mixed-integer problem, which cannot be

solved on a normal laptop. To surpass this limitation we use the data

reduction tool developed in the previous section. To reduce the full-year

data set to five weeks of data.

2.4.3 Results

Following the methodology presented, we generate nine load profiles

of five weeks representative of a full year with natural self-sufficiency

from 10 % to 90 %. Each of those nine load profiles is derived from the

original load profile describing the 20 households in the previous section,

Fig. 2.10, after this original load profile was reduced to five weeks by the

clustering algorithm.
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Figure 2.17: Impact on self-sufficiency of

9 generated load profiles with different

potentials to absorb local energy produc-

tion measured in “natural self-sufficiency”

from 10% to 90% (data and Python note-

book available at https://github.com/J
onathan56/supplementary_thesis/tr
ee/master/2_chapter).

The objective is to illustrate that we can study a variety of building

compositions with the proposed approach. In particular communities

with different lower bounds on self-sufficiency (i.e., equivalent to dif-

ferent “no storage curves” on Fig. 2.12). A higher “no storage curve” is

representative of a community capable of intrinsically absorbing more

local production without storage assets (e.g., office buildings), i.e., a

higher natural self-sufficiency.

Similar to other figures in this chapter, Fig. 2.17 shows self-sufficiency on

the y-axis and solar panel capacity per household on the x-axis. Although

this time instead of having a fixed lower bound on self-sufficiency (thicker

blue curve), we can study the impact of changing this lower bound

(thinner grey curves). Among other, this type of sensitivity analysis on

load profiles is useful to assess the importance of storage assets for a

variety of communities. For instance, in the 90 % NSS case storage assets

are not relevant before 4 kWp of solar panels per household, whereas in

the 10 % NSS case storage assets are relevant as soon as 0.5 kWp of solar

panels per household.

https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/2_chapter
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� Highlights:

I Natural self-sufficiency gives a reference to quantify the aligne-

ment of consumption with local production on a continious

range.

I The optimization formulation Eq. 2.14a provides a way to

generate new load profiles.

2.5 Partial conclusion

In chapter 2, we seek to explore “what does it mean to self-consume?”

from a technical viewpoint. Simply put, it is the ability to consume

energy that was produced locally within a short period of time. To

illustrate this concept, we explore three perspectives: the properties of

self-consumption metrics, the impact of storage assets on individual

self-sufficiency, and the natural “alignment” of load profiles with local

production.

Throughout those different perspectives, we illustrate the concept of

self-consumption, and more importantly, we highlight relevant lower

and upper bounds for the next chapters.

I Self-sufficiency taken for different time intervals reveals the theo-

retical value gap for storage devices to consider diurnal, weekly,

and seasonal cycles.

I Calculating self-sufficiency on adaily interval gives anupper bound

for what residential storage under 10 kWh capacity can do.

I A storage asset ?1(C) maximizes self-sufficiency by following

?1(C) = prod(C) − load(C).

In this chapter, we build the ground knowledge to understand local

energy communities, yet when we control storage assets (Alg. 1) we put

aside coordination issues. This is the topic of the next chapter and a core

question for this manuscript. Controlling storage assets in local energy

communities opens up discussions on centralized versus distributed

control, or competitive versus collaborative actions.
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La folie n’est plus folle, dès qu’elle est collective.
—Alain Damasio, La Horde du Contrevent

In chapter 2, we discussed what it means to have a limited time window

to consume local energy production. This chapter reviews strategy that

communities can follow to overlap their consumption and production.

Firstly, we look at the conditions that justify coordination mechanisms

at the scale of a community and what is expected of such mechanisms.

Then we propose a review of the literature on coordination strategies

based on two different perspectives: centralized versus decentralized

strategies and competitive versus cooperative strategies.

3.1 What do we mean by coordination?

Generally speaking, to coordinate is to organize different activities into a

coherent ensemble. For local energy communities defined in chapter 1, we

imagine coordination as shifting or prioritizing consumption activities to

overlap with local energy production. For instance, if between noon and

4:00 pm the available solar production is 1 kWh and two electric bikes

(A and B) must share this resource, but bike A has to leave at 2:00 pm

and bike B two hours later, then a coordination strategy would prioritize

bikeA, and charge B once A is gone.

This example illustrates some of the ingredients that must be considered

when deploying a coordination strategy. Ingredients also found when

evaluating the value of a forecast [33]:

I a decision space: i.e., flexible assets which can be controlled or

behaviors that can be nudged to consume or produce energy,

I a payoff structure: i.e., benefits or expenses associated with the

decision making process, e.g., if bike A is not prioritized then it

may not leave at 2 PM,

I the quality of decision in the absence of coordination: i.e., the

incremental benefits when decisions are taken with the aid of a

coordination strategy, e.g., in the absence of coordination, bike A is

not prioritized.

In France, collective self-consumption operations often have a limited
decision space, e.g., one storage asset, or a limited amount of thermal

storage and electric vehicles. This is representative of a modest payoff
structure with limited benefits for power shared within a community, as

discussed in chapter 1. As such, solar panels are often sized to overlap

with consumption profiles in the absence of coordination.
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One of the major challenges in coordinating local energy communities

is that it involves multiple people, i.e., a community. In comparison,

coordination at the scale of a single household is simpler. Communal

aspects open consideration for competition and cooperation, but also

decentralized and centralized decision making further detailed in section

3.5.1. Fortunately, coordination strategies are not meant to maintain grid

stability which is left to the larger electrical network with frequency

regulation mechanisms, or specific microgrid controllers. For coordina-

tion, local energy communities can rely on communication networks and

optimization algorithms even taking minutes to solve.

Finally, before diving further into coordination strategies for local energy

communities, we must acknowledge that such coordination strategies

have already been discussed. In particular, as early as 1981, when Fred

Schweppe describes the concept of “Homeostatic control” [34]. Schweppe

combines customers and energy providers into a single system, a market-

place, in which everyone can enter, trade, and benefit. In the residential

homeostatic day, Schweppe illustrates this idea: “at 3:05 PM the com-

puter reacts to very high spot prices by turning off everything except the

refrigerater, freezer and itself”. Later in 2013, the Pacific Northwest Smart

Grid (USA) proposed a large-scale demonstration of a similar concept

called “transactive energy” with 60,000 smart meters and 112MW of

controllable equipment [35]. The outcomes and the conclusions in this

large body of literature are discussed in the next sections. However,

we can already distinguish our vision of coordination strategies from

this large body of literature [36] on the emphasis put on scalability and

privacy. Our approach to local energy communities does not prioritize

those aspects as we face relatively small pools of objects to control (often

below a thousand), and sufficient trust in a community manager to share

consumption data.

� Highlights:

I Dowe need to coordinate flexible assets? In part, this question

depends on the decision space, the payoff structures, and the

quality of decisions in absence of coordination in a community.

I Coordinating consumption and production of electricity at

the retail scale is not new.

3.2 What do we expect from coordination

strategies?

Simply put, we expect that a coordination strategy meets the objectives

defined by the community while respecting a set of constraints. The

subsections “general objectives” and “general constraints” provide an

overview of what might be expected from coordination strategies in the

literature. We then formulate a list to highlight the most salient aspects

in our view for communities to consider when defining a coordination

strategy.
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General objectives

First of all, we expect coordination strategies to reach an objective that

communitymembers could not have achieved if theywere to control their

flexible assets individually. In comparison with an individual control

scheme, the coalition value stems frombettermanagement of the common

goods, e.g., the local solar production, and mutual support providing

more options for flexible assets to charge or discharge.

The objective of coordination strategies is most often expressed as a

reduction of costs [37] [38], even though some literature also includes

greenhouse gas emissions [39] as minimization objectives. The differ-

ence between coordination strategies often lies in what constitutes the

operational cost of a community. Depending on the desired level of

complexity, we find strategies accounting for a cost of energy inside and

outside of the community [40], a cost of using the distribution grid [41],

a cost for peak demand, a cost of equipment aging [42], or a cost of

lost comfort from shifting consumption [43, 44]. In addition, those cost

categories can be modeled differently, for instance, the cost of energy

outside the community is sometimes a piece-wise linear function to

represent time-of-use pricing specific for each member, or a constant

price for all at all times.

Beyond categories of costs and their modeling, the objective may embed

considerations on the fairness of costs distribution among members

[45], or not. The objective might be to simply minimize the cost for the

community as a whole [46], i.e., seeing the community as one entity, or

to minimize the cost for all members [43], [47]. The latter option implies

at least finding an equilibrium where no member is better off without

penalizing another member. Fairness may also result in a competitive

process, where each participant is subject to the same rules to minimize

their cost, i.e., a market-based approach [48].

Outside of cost-related objectives, coordination strategies can be expected

to value empowerment of community members. This objective is among

others related to the way coordination decisions are taken. Potentially, to

satisfy the objective of empowering members, coordination strategies can

give more resonsabilities to individuals in deciding when to activate their

flexible assets. Market-based approaches [49] and gamification [50] of

coordination mechanisms are some option from the literature to interact

with community members. However, empowerment may also result from

proposing easy to understand coordination strategy.

General constraints

We also expect coordination strategies to respect constraints set by the

community and the physical limits of flexible assets. In particular, the

community may desire a coordination scheme with strict privacy rules
where members’ personal information is being collected, shared, and

used in appropriate ways. This may require metering information to

be anonymized, or simply not transmitted to a community manager

[51]. The community may also require a scalable coordination scheme,

as they expect a large number of members, e.g., when the geographical

scope of a community is loosely restricted [44]. The coordination strategy

may be constrained to include future knowledge of flexible assets, i.e.,

when an electric vehicle must be fully charged to leave [52]. As such,
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1: The concept of shapeable assets is fur-

ther described in section 4.2.1. It describes

a category of flexible assets that can only

consume, but have some flexibility in their

power profile.

coordination strategies may be expected to predict future consumptions

and production profiles to schedule flexible assets ahead of time.

Perhaps, one of the most constraining aspects of coordination strategies

is the adaptability they need vis-à-vis of flexible assets. We expect coordi-

nation strategies to include different types of flexible assets, potentially

with chemical constraints, e.g., for batteries, or thermal constraints, e.g.,

for cooling systems, or even constraints related to mobility in the case

of electric vehicles [53]. Beyond categories of flexible assets, we expect

coordination strategies to be compatible with different manufacturers

for the same type of flexible asset, e.g., Sonnen batteries but also Tesla

Powerwall. Additionally, coordination strategies may be expected to

adapt to the network connecting community members, so coordination

can account for voltage and loading constraints on grid equipment, e.g.,

transformers and cables.

Further, the robustness of a coordination strategy to unexpected events can

be seen as an additional constraint, in particular, tomaintain coordination

even when some flexible assets are not responding. Or, alternatively, to

ensure that even in the worst-case scenario the price of energy remains

on average below a given threshold. We note that robustness may be

considered as a cost for the community, i.e., as a price representing the

risk a community is willing to accept.

Application to local energy communities

We formulate a list of features that we consider salient aspects potentially

leading to different coordination strategies. Coordination strategies can

be different in their objective, or how they model their objective, how

they account for fairness, or empowerment of members, but also in

their specific adaptability to different flexible assets, and specificities of

community members, grid constraints, and regulation. The following

check list covers seven categories with each several yes/no propositions

to frame local energy communities.

I Flexible assets:

� flexible assets come from different providers,

� members own short-term storage assets that can charge and

discharge on daily cycles, e.g., chemical batteries,

� members own long-term storage assets capable of charging

and discharging on seasonal cycles, e.g., fuel cells,

� members own controllable shapeable assets
1
with mobility

constraints, e.g., electric vehicles,

� members own controllable shapeable assets with thermal

constraints, e.g., heating ventilation and air conditioning,

� members own controllable deferrable assets with a fix load

profiles that can be moved in time, e.g., dishwasher.

I The cost of energy:

� each member when buying power outside of the community

can access different time-of-use prices,
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� different producers within the community can have different

selling prices,

� network fees for exchanging power within the community are

considered,

� costs for equipment aging are considered, e.g., related to

cycling batteries,

� costs of lost comfort are considered, e.g., related to the effort

of shifting power usage at a different time,

� additional revenues from providing grid services are consid-

ered, e.g., participating in primary frequency control, or load

shaving.

� the distribution of costs among members is done a posteriori

through sharing keys,

� the distribution of costs is the result of a competitive mecha-

nism before the operation.

I Members and the community:

� there exists a trusted community manager,

� members want strict privacy rules with regard to sharing

metering data, e.g., requiring to anonymize data,

� there is a large number of participants, e.g., more than 200

members,

� there is a rapid turnover of participants, e.g., the average

duration of an apartment lease is less than a year,

� the financial investment of individual members is heteroge-

neous, e.g., some participants have financed most renewable

energy systems,

� members accept a community-wide coordination mechanism,

� members accept competitive coordinationmechanisms (developped

in section 3.5.2),

� members accept to receive nudges to influence their consump-

tion patterns.

I Production units:

� some production units are controllable, e.g., biomass co-

generation power plants,

� the spread of production units is heterogeneous in the com-

munity, e.g., a single member owns most of the production

units,

� the ownership of production units, can be different from the

owner of the meter where the resource is connected,
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I Communication channels:

� flexible assets are securely connected to thewide area network,

� flexible assets are limited to one-way communication, i.e.,

react to a broadcast,

� community members are connected to the same microgrid,

and may rely on local voltage measurements for coordination,

I Grid constraints:

� voltage constraints must be accounted for in the dispatch of

flexible assets,

� thermal constraints for line and transformers are limiting

factors,

I Regulation:

� the duration of self-consumption intervals is 15 minutes,

� the General Data Protection Regulation (GDPR) applies to

metering data,

� the community can inject surplus production onto the up-

stream grid,

Although it could be tempting to design a control algorithm that would

“work” in all situations, at each scale, the individual scale, the collective,

and the larger grid. This algorithm may very well be over-complicated

and time-consuming to solve. As such, the design phase which consists

of carefully selecting the right level of complexity at each scale is critical.

Additionally, it may be interesting to provide themeans for a coordination

strategy to mutate, i.e., experiment with changes and keep positive

changes, as local communities are complex systems bound to unforeseen

evolution. To consider evolutionary coordinationmechanisms, the science

of complex systemsmight provide an interesting perspective that requires

further work.

� Highlights:

I An algorithm that accounts for all phenomena at each scale

may very well be over-complicated and time-consuming with

regards to the payoff structure and the added value of control-

ling assets.

I Local energy communities are complex systems bound to

unforeseen evolution, as such, coordination strategies may

want to include evolutionary processes.
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3.3 What synergies between social, economic,

and physical coordination?

Local energy communities already involve some coordination at different

levels. For instance, social coordination as communities followgovernance

rules, but also economic coordination through contractual agreements,

and sharing rules as described in section 1.2.1.1. As we add another layer

for the physical coordination of flexible assets, e.g., scheduling batteries

and electric vehicles to minimize costs for the community, we can choose

to replace socio-economic coordination mechanisms already in place or

build around them as shown in Fig. 3.1.

Sharing value among community members is often a complex problem

in itself as it requires members to agree on a definition of fairness. Thus,

a coordination algorithm that simply maximizes value for a community

as a whole is often simpler than a coordination algorithm that expects to

share this value among allmembers. Accepting that sharing value can

both come as a subsequent process, and result from a collective decision

of community members enables us to consider simpler coordination

strategies.

Similar to sharing value among community members, empowering com-

munity members is a complex problem as it requires involving members

without overwhelming them with too much information. Thus, a coordi-

nation algorithm that does not seek to empower community members is

often simpler than a coordination algorithm that includes this objective.

To be clear,we continue to advocate for empowering communitymembers

as this is one of the “raison d’être” of the community[54]. However, this

role of empowerment may not have to fall on the physical coordination

when also considering the presence of a social organization.

Physical 
coordination

Social 
coordination
(governance)

Economical 
coordination

Defining 
fairness

Sharing
revenues

Selecting
a methodology

Environment 
(regulatory, physical)

Figure 3.1: Illustration of the synergies

between social, economic, and physical

coordination. Author’s own compilation.

Socio-economic coordination mechanisms are predominant in French

local energy communities, as most communities do not have physical

coordination (mostly due to a lack of payoff structures and controllable

assets). For instance, the collective self-consumption of Pénestin in France

does not have storage systems or active load shifting as the solar panels
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2: https://smile-smartgrids.fr/en

/projects/projects/penestin.html

last consulted in July 2022.

installation is small enough (40 kWp) to be fully self-consumed by the

community members counting 12 local businesses.
2

In this scenario,

fairness, and empowerment are present, even though there are nophysical

coordination mechanisms. Physical coordination might benefit from

working with existing coordination schemes rather than proposing a

new paradigm. In part, because this leads to a simpler implementation

process, but also because enforcing a technical solution as the central
piece of local energy communities that might be misaligned with the

desired social outcomes.

When considering the sharing process as a subsequent step after the

physical coordination, it is important to ensure that the sharing rules have

some degrees of freedom in regard to themetering data that serves billing

purposes. Fig. 3.2 illustrates the degrees of freedom for two sharing rules

applied to different members. For the time window between 12:00 PM

and 12:15 PM the physical flux of electricity is such that producer # 1

produces 2 kWh,member # 2 consumes 1 kWh, andmember # 3 consumes

2 kWh. There exist a multitude of ways to economically share the value

of the 2 kWh of local production among the 3 kWh of consumption, in

[55] authors propose ten different approaches. We illustrate two schemes

to share the value of local production. Based on the first rule “pro-rata

of the total consumption” member # 2 receives 0.66 kWh and member

# 3 receives 1.33 kWh, whereas with the second rule “prioritization of

consumer # 2” leads to member # 2 receiving 1 kWh and member # 3

receives 1 kWh. Thus sharing mechanisms have relative freedom from

the physical flux, and even more if we consider that prices (cente/kWh)

can be different between members # 2 and # 3.

Physically from 12:00 to 12:15 pm Economically from 12:00 to 12:15 pm

kWh

prod. #1

cons. #3

cons. #2
1

2

3
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consumption
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of cons. #2 

0.66
1.33
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2
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share #2 = 33% of 2kWh
share #3 = 66% of 2kWh

share #2 = 1kWh
share #3 = 2kWh - 1kWh

Production Consumption

Figure 3.2: Illustration of the difference between physical flux and economic dispatch for the French collective self-consumption.

This distinction between physical flux and economic flux opens the door

to physically coordinate all resources “together”, and still economically

reward certainmembers selected by the community, e.g., resource owners.

In other words, the problem of maximizing the “the size of the cake”,

and “sharing the cake slices” are loosely coupled, which may facilitate

physical collaboration independently of how the economic dispatch is

carried out.

https://smile-smartgrids.fr/en/projects/projects/penestin.html
https://smile-smartgrids.fr/en/projects/projects/penestin.html
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� Highlights:

I To manage the complexity of local energy communities, phys-

ical coordination does not necessary need to play the central
piece when socio-economic constructs offer potentially inter-

esting synergies.

I There is some level of decoupling between physical flux and

contractual agreements on how to share local production.

3.4 What is the value of coalition?

In the first section 3.1, we have seen that some conditions are required to

design control mechanisms, namely: a decision space, a payoff structure,

and some plus-value with regard to what would happen in the absence

of control. Another aspect is whether there is some value to coordinating

flexible assets “together”, in comparison to flexible assets being controlled

separately by each individual member. This value gap that we refer to as

coalition value must compensate for the additional efforts of deploying

community-scale coordination. Note that, as illustrated in the previous

section, physical coordination at the community scale is not a requirement

to form local energy communities. As such, we can perfectly imagine local

energy communities bounded by sharing rules, and yet each participant

controlling their flexible assets on their own. In particular, when flexible

assets, such as batteries, are already too small to cover individual needs,

and therefore not apt to share capacity with the community.

The objective of this section is to propose a method to assess coalition

value in terms of self-sufficiency. Note that we do not take a cooperative

game theory approach, as such, we always consider the “coalition” to

represent the entire community and not a subset of it [56]. The coalition

value depends on the capacity of flexible assets to go beyond individual

needs. In some situations the existence of a coalition value is clear. In

particular, when there is a single solar panel for several flexible assets.

However, when community members have their own solar panels and

flexible assets the answer is less certain.

Methodology

We define the value of coalition as the self-sufficiency benefits obtained

by forming the coalition. It is the difference between the community

self-sufficiency when households are scheduled collectively, and the

community self-sufficiency when each household schedules its flexible

assets individually. To schedule batteries we use Alg. 1 both for individual

members, and for the aggregated community. As such, we apply Alg. 1 to

individual load=(C) and prod=(C) and sum the resulting battery schedules

?1=(C), or we apply Alg. 1 directly on the community load and production

profiles to obtain a coodinated battery schedule ?1
#
(C). Alg. 2 provides

the details of the methodology, and a Python implementation is available

at https://github.com/Jonathan56/supplementary_thesis/tree/m

aster/3_chapter.

https://github.com/Jonathan56/supplementary_thesis/tree/master/3_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/3_chapter
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Algorithm 2: An algorithm to find the coalition value

Data: load=(C) and prod=(C) ∀C ∈ [1...)], for each member =
Data: battery model �=<0G , �

=
<8=

, %=<0G , %
=
<8=
∈ ℝ+ , � = 0.95

Result: the coalition value #2>0;8C8>=

//Self-sufficiency when members are controlled individually

1 for member = ∈ # do

2 ?1=(C), �=(C) = apply Alg. 1 for = with load= and prod=

3 self-sufficiency8=3 =

∑)
C=1

min

(∑#
==1

load= (C),
∑#
==1

prod= (C)−?1= (C)
)

∑)
C=1

∑#
==1

load= (C)

//Self-sufficiency when members are controlled together

4 ?1
#
(C), �# (C) = apply Alg. 1 with

∑#
==1

load= and

∑#
==1

prod=

5 self-sufficiency2>; =

∑)
C=1

min

(
load# (C), prod# (C)−?1# (C)

)
∑)
C=1

load# (C)

6 #2>0;8C8>= = self-sufficiency2>; − self-sufficiency8=3

7 return #2>0;8C8>=

Result

We look at the value of coalition as a function of the controllable assets

per household, i.e., the battery capacity in kWh per household, and two

different spreads of flexible assets. To illustrate a coalition value, we select

the same data set as in chapter 2 section 2.2 also shown for a few days in

May on Fig. 2.10. The data represents a community of 20 households in

France with each a 3 kWp solar panel. Fig. 3.3 illustrates three scenarios,

the collaborative strategy, the individual strategy where everybody is

equipped with a battery, and the individual strategy where only 50% of

households are equipped with batteries twice as large. Lower and upper

bounds are also added to Fig. 3.3 to provide a reference (dashed lines).

Those bounds are calculated following the methodology discussed in

section 2.1.1.

Figure 3.3: Self-sufficiency of the commu-

nity as a function of battery capacity in

kWh per household for different strategies.

Solar panel capacity is fixed at 3 kWp per

household.
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This illustration does not provide an absolute answer on the value of any

coalition. For this specific scenario, households individually controlled

achieve between 42 and 44% of self-sufficiency with 3 kWh of battery per
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household, whereas the coalition reaches 48% of self-sufficiency. Beyond

6 kWh of battery per household the differences become exacerbated both

between the collaborative approach and the individual strategy, but also

between scenarios with different spreads of batteries. Finally, achieving

the upper limit, i.e., the self-sufficiency calculated on daily time intervals,

seems challenging when only considering individual scales.

For this specific community, those results suggest that for batteries below

3kWhper household, the absence of coordination at the community-scale

is not so damageable. It leads to 4 or 6% of self-sufficiency losses, i.e.,

the coalition value. Further, this coalition value could be smaller with

heterogeneous battery capacities among households, e.g., households

with a greater consumption could be given a larger battery capacity.

For larger battery capacity some community scale coordination seems

relevant as it increases self-sufficiency up to 20% in comparison to

individual scenarios. Those values are very much dependent on initial

assumptions, in particular, that eachhouseholdhas a solar panel.Different

spreads of flexible resources may very well prove that the coalition value

is significant with small battery capacities. It is interesting to highlight

the coalition value as a decision criterion that is not binary, but rather to

compare with the payoff structure and the complexity that is required to

achieve community-scale coordination.

We note that for this example, we have measured the coalition value in

terms of self-sufficiency and not in euros. However, we can reasonably

say that self-sufficiency is strongly correlated with electricity costs in

cente/kWh, meaning the more local power is consumed the smaller

the electricity bill will be. Nonetheless, in the financial case, grid fees

for exchanging power would also be accounted for. We extend this

methodology for financial coalition value in chapter 4.

3.5 A review of coordination strategies

To avoid listing coordination strategies, we choose to construct our review

in two steps. First, we discuss the typology of coordination strategies,

whether all decisions are taken centrally, or aggregated from the decisions

of individual members. Then, we explore the inner workings of strategies

whether they rely on competition or collaboration, or both.

3.5.1 Decentralized versus centralized strategies

A large body of scientific literature favors decentralized approaches.

This is in line with larger allocation problems such as food allocation

for metropolitan areas. It usually requires decentralized mechanisms to

coordinate theparticipationof thousands of small and large supermarkets,

and tens of thousands of restaurants, eachwith specific needs for different

categories of foods and transportation [57]. A central entitywith imperfect

knowledge of the participants is usually not recommended. However,

here, we do not have the scale of a metropolitan area but the limited

geographical scope of local energy communities, as such, we believe that

centralized coordination strategies are relevant to include.
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This single dimension, i.e., centralized or decentralized is convenient

to express a general idea on the topology of coordination strategies,

however, it is simplistic and does not discriminate between the different

aspects of coordination. To extend what we mean by centralized and

decentralized, we consider different domains [58]:

I Communication: which refers to the topology of communication

networks. In particular, we consider several options whether there

is no computerized communication, communication with a central

entity in a 1-way or 2-ways direction, or peer-to-peer communica-

tions,

I Control: which refers to where the decision is taken. We consider

two options if decisions are only taken by a central entity, orwhether

individual entities are also part of the decision process,

I Physical: which refers to the spread of consumption andproduction

resources, andwhether they can be controlled or not. An individual

self-consumption operation has no “spread” as everything happens

behind the same meter. This is not the case for most local energy

communities, especially collective self-consumption operations

which necessarily involve multiple metering systems. As a result,

we only consider scenarios where some spread exists, i.e., multiple

batteries or metering systems. Scenarios with no spread can often

be handled with Alg. 1 from chapter 2.

This analysis by domain is also useful to lift some of the confusion

around the “peer-to-peer” appellation. If it refers to the physical domain,

it may simply be that two neighbors trade energy, regardless of the

communication and control infrastructure. In that sense, any local energy

community engages in peer-to-peer activities. However, if peer-to-peer

refers to the communication and control infrastructure, local energy

communities are not always “peer-to-peer”. We can imagine peer-to-peer

scenarios with regard to decision making but not to communication

infrastructures. This is the case for local energy markets hosted on a

central platform and using a peer-to-peer decision-making such as a first

come first serve design. For instance, similarly to well-known central

platforms: Craigslist, or Leboncoin in France, yet involving peer-to-peer

decision making.

Decisions on
local issues
made locally

Decisions on
local issues
made 
centrally

One-way
communications

Two-way
communications

Price Reaction Transactive
Control

Top-down
switching

Centralized
optimization

Droop 
controller

Distributed
optimization &

distributed 
ledger

No
communications

Peer-to-peer
communications

Figure 3.4: Classifying energy community management systems based on [36].
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Figure 3.5: Droop controllers.
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Figure 3.6: Price reactive.

Instead of the centralized/decentralized duality, we obtain a 2D map

representing the different intersections of communication and control

domains (Fig. 3.4). This mapping is inspired by [36], and it distinguishes

four categories of coordination mechanisms based on communication

capabilities between devices and a platform (i.e., 1-way or 2-way), and

whether local decisions are taken locally or not. It is further extended by

two categories (in blue dashed lines), no computerized communication,

and peer-to-peer communication. The classification is not strict, and

coordination strategiesmay includemore than one category. Nonetheless,

this mapping is useful to organize our review of coordination strategies.

While it goes beyond simply centralized or decentralized methods, the

concept remains present, e.g., between categories such as centralized

optimization and peer-to-peer distributed optimization. The following

subsections highlight each category.

Droop controllers

Coordination in this category is possible as control elements influence

each other via the physical properties of the controlled process, but

not through direct communication. Droop controllers for power system

applications are very common, such as in power/frequencydroop serving

primary frequency control or for local voltage control, e.g. with a reactive

power/voltage droop [58]. This type of controller is typically targeted

at mitigating grid constraints, e.g., reducing tap changes, or allowing

network planners to approve higher DERs penetration and higher loads

than would otherwise be feasible [59].

Nonetheless, in [60] a similar control algorithm shows that it can shape

water heater consumption to better match solar panel production, which

corresponds to a self-sufficiency objective. As such [60] makes use of

thermal storage, where the resulting power consumption depends on

voltage and current water temperature. This strategy applies to other

forms of storage. For instance, batteries, where inputs variables become

voltage and current state of charge as in Nanoé’s DC interconnected

micro-grids [61]. To avoid noise, input data can be filtered, e.g., through

an exponential moving average, and the transition between the different

states of the controllable system can be smoothed, e.g., with dead-bands,

or fuzzy logic methods.

In this category, the control loop is closed locally and no internal infor-

mation needs to be shared; thus offering resilience to communication

outages, but also an ease for large-scale deployment. However, the de-

pendence on design-time parameters and assumptions may cause severe

incidents such as system collapse described in [62]. Further, as the system

information is not concentrated anywhere but distributed along with

control elements, it requires some effort to understand how and why the

control system responds to disturbances. For local energy communities

developed across multiple feeders including non-community members

this form of coordination strategy is therefore not applicable.

Price reaction

This is perhaps the most common coordination strategy, at least in France,

as roughly one of two consumers opted for an on/off peak hours pricing
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Figure 3.7: Top-down switching.

scheme. The price reaction approach is based on one-way signaling of

pricing. Strategies can be further differentiated from the frequency at

which price signals may change, whether signaling is fairly static with

on/off peak hours, dynamic with frequent updates on upcoming hourly

prices, or both as in [63].

This coordination strategy benefits from being rather simple to under-

stand. In fact, the difficulty lies in the coordinator which is tasked to

define what hours are on or off peak without full knowledge of in-

dividual devices’ constraints. In France, on/off peak hours vary from

city to city. For instance, in Paris off peak hours are at nighttime be-

tween 11:00 pm and 7:00 am, whereas in Nantes off peak hours includes

daylight hours (12:30 pm to 2:30pm). In the case of dynamic pricing

schemes, wholesale energy markets are usually directly driving prices to

be cost-representative for end customers.

In the context of local energy communities, price reaction mechanisms

could broadcast current local production as in [31]. In this way, individual

assets gain a global view of the community, enabling automatic responses

or nudging behaviors during high production time. Nonetheless, this

mechanism does not prevent assets from rushing all at once on available

local production. As such this mechanism may require more frequent

updates, thresholds to account for uncontrolled demand, and potentially

random response times to de-synchronize automatic assets.

In the recent collective self-consumption operation “ABC”
3
, the coordina-

tion of the principal storage system is based on a similar scheme to price

reaction. The storage system receives the local power production i.e., the

signal, and only starts charging after a certain power threshold is reached,

which represents the expected base consumption from the community.

The system discharges at nighttime during a fixed number of hours.

We note that broadcasting the community’s netload instead of local

production would carry additional information on current consumption,

but would also require retrieving information at individual metering

systems, e.g., closer to a 2-way communication scenario.

This type of strategy, broadcasting signals, is not new, as explained in the

following section on “top-down switching”. On/off peak hours could be

triggered by radio signals from the 1980s. However, with the advent of

the Internet of Things,
4
recent devices often have 2-ways communication

capabilities, and therefore only using 1-way communication is not a ne-

cessity anymore and may not justify a sub-optimal dispatch. Nonetheless,

price reaction schemes remain interesting as they provide a solution that

can be easily explained in the context of local energy communities.

Top-down switching

One of the earliest top-down switching mechanisms has been the radio

teleswitch system in the UK in the 1980s. Distribution system operators

(DSOs) had specific codes for teleswitches operating on their networks.

As such, DSOs could provide instructions to the central teleswitch

control unit in London, which would then be passed on to the British

Broadcasting Corporation (BBC) for long wave-transmission over the

UK [64]. Upon receiving the right signal teleswitches would activate the

corresponding switch with a random time offset of ±3.75minutes (or

alternatively switch between tariff rates) [65].

https://energies-renouvelables.geg.fr/dossier/38/361-projet-abc-une-experience-exemplaire-d-autoconsommation-collective.htm
https://energies-renouvelables.geg.fr/dossier/38/361-projet-abc-une-experience-exemplaire-d-autoconsommation-collective.htm
https://energies-renouvelables.geg.fr/dossier/38/361-projet-abc-une-experience-exemplaire-d-autoconsommation-collective.htm
https://energies-renouvelables.geg.fr/dossier/38/361-projet-abc-une-experience-exemplaire-d-autoconsommation-collective.htm
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Internet_of_things
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Figure 3.8: Transactive control.

In 2022, this top-down switchingmechanism is still available for DSOs on

the recently deployed French smart meters, however, it uses broadband

over power line communication. Some companies have also developed

their own “teleswitch”, e.g., Voltalis is a company connecting heating

elements to a switch that can be triggered over the Internet. Consumers

receive the guarantee that such service inhibitions occur for a total

duration of at most 30 minutes per day. In short, consumers are exposed

to delayed supply rather than price volatility [66].

Top-down switching schemes tend to find applications in large-scale

demand response control rather than in local energy communities where

2-ways communication is often enabled. Nonetheless, it is certainly

possible to imagine applications for local energy communities with water

heaters and HVAC systems.

Transactive control

This category of coordination strategies involves both 2-ways commu-

nication with a central platform and local decisions from community

members. As such, individual community members participate in the

overall coordination process through their individual controller. Empow-

erment of communitymembers and scalabilitywith regard to participants

are often cited as advantages of this category. Two types of strategies are

typically found in this category: decomposition methods for distributed

optimization, and market-based solutions.

Several decompositionmethods exist [67], however, theAlternatingDirec-

tion Method of Multipliers (ADMM) is often found in the literature [68].

Decomposition methods have at least two advantages over centralized

optimization, they parallelize optimization problems and preserve some

privacy on local variables. The ADMM is found in different domains, for

instance, to coordinate electric vehicles where there is a strong incentive

to parallelize problems [69], [70], for optimal power flow [71], pricing

mechanisms under uncertainties [72], or demand response from a large

pool of agents [44].

The second type of mechanism in this category are market-based ap-

proaches with a central platform. Local energy markets provide commu-

nity members the ability to express preferences through a willingness to

buy electricity, as well as, to incorporate different flexible resources in a

single price-quantity format through market bids. For those reasons, it is

not surprising to see market designs taking up a large place in the recent

literature [49, 73–75]. Several aspects of markets have been identified

in the practical design of local energy markets (highlighted in italic)

[76]. Trading horizons and dispatch intervalsmay vary from hours [77] to

minutes [76]. The type of auction developed: [78] uses a sealed double

sided auction with discrete market closing times, whereas [76] uses a

continuous clearing mechanism. The bidding format defines the type of
object transacted. In [78], the format includes a quantity (kWh) and a

price, whereas [48] introduces a more complex flexible bid including

information such as earliest start, latest end, and constraints on the power

profile. The price discovery mechanism can lead to uniform prices (e.g., merit

order) [78], or different prices per transaction (e.g., pay- as-bid) [48]. The
market objective and the settlement rules are additional aspects steering local

energymarkets. In [79] authors propose a payment structure that rewards
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prosumers according to their contributions to system loss reduction, and

by doing so, increases the social welfare of the community.

In this type of coordination strategy, individual members are asked to

optimize their own strategy, and as such competitive aspects are more

salient. However, as community members cannot possibly personally

bid their energy consumption every 15 minutes of the day, individual

energymanagement systems are needed. From an end-user’s perspective,

this might not be so different from a fully centralized platform, unless

individual energy management systems are intuitive and accurately

represent individual preferences.

Centralized optimization

In this category, coordination strategies rely on a central controller with

access to local information. This category includes multiple strategies as

it is not restricted by communications nor required to include decisions

from multiple actors. Decision making may take the form of heuristic

rules, use more recent machine learning methods, e.g., reinforcement

learning, or traditional convex optimization methods [46, 80, 81].

Model Predictive Controllers (MPC) represent an interesting solution

where control actions are solved online, at each sampling instant, using a

finite horizon open-loop optimal control problem with the current state

of the plant as the initial state [82]. MPC anticipate future conditions

while adapting to the current state of the system. Some examples of local

energy communities driven by a central MPC include [83]. MPC have

been used for robust control to deal with probabilistic load forecasts

[84–86], or deployed in as a bi-level implementation to handle longer and

shorter time-scales [87].

Centralized platforms allow companies to stay in control of the equipment

they deploy in communities. For instance, companies such as LANCEY

Energy Storage
5
with their electric heater plus storagemaywish to remain

in control of their flexible fleet to ensure that it is properly used. As such

LANCEY Energy Storage uses a centralized MPC to coordinate heating

and battery management with regard to variables such as upcoming

electricity prices and weather forecasts. Note that although we classify

LANCEY’s MPC algorithm as a centralized strategy, it also involves

local decisions at some level through user preferences with regard to

temperature planning. In the end, this level of end-user interaction and

experience, i.e., empowerment, might be similar to the empowerment of

local energy markets, if it also comes down to setting preferences in a

software.

Distributed ledgers

This category of coordination strategy involves both peer-to-peer commu-

nication and control. In otherwords, no single entity keeps all information

nor does it take all the decisions. Although this might be a simplification

weunderstandpeer-to-peer communication as the presence of distributed

ledgers, i.e., a distributed database. This category of mechanism is rele-

vant for coordinating non-trusting entities.

A good illustration of this double requirement is proposed in [53], where

both a distributed ledger through the Ethereumnetwork and adistributed

optimization method are combined. The Ethereum network not only

https://www.lancey.fr/?lang=en
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6: https://blog.chain.link/smart-

contract-automation/ last visited May

2022.

provides a distributed data storage for metering and billing data but also

a distributed computation platform through “smart contracts”. A smart

contract is a piece of executable code shared by every node that defines

immutable rules, running directly in the Blockchain. Practically, they are

stored in specific blocks in the chain and the rules they define trigger

subsequent logic to write data in the rest of the chain. This replaces the

need for a centralized trusted entity to hold the algorithm logic [88].

Alone the ADMM for distributing an optimization problem falls in the

“transactive control” as it still involves a central aggregation step, however,

with the Ethereum blockchain this aggregation step is done in a trans-

parent manner through smart contracts. Thus enabling all participants

to audit the progress of the coordination algorithm, the accuracy of the

solution, and the veracity of their scheduled commitments. Further, the

ADMM is a natural fit for implementation on a blockchain, as it both guar-

antees convergence for convex problems yet has a computationally cheap

aggregation step [53]. As most of the optimization problem is solved

by individual participants outside of the blockchain, this strategy can

be applied to solve complex linear programs. In [53] authors maximize

social welfare while dispatching batteries, shapeable load, deferrable

loads, and considering linearized grid constraints.

In [89], an ADMM decomposition is also used to solve a matching

problem between consumers and prosumers. However, additional care is

given to the consensus mechanism that selects the “miner” in charge of

writing to the blockchain. A proof of stake is usedwhich is far less energy-

greedy than the classical proof of work method used in Bitcoin. The

miner node selection is made according to a density function capturing

the trade-off between the exploitation of nodes with a good reputation

and the exploration of new nodes. In [90], and [91], a communication

strategy is proposed for solving a fully decentralized DC optimal power

flow using the ADMM, in which only limited information on boundary

buses are exchanged among adjacent branches of the grid (eliminating

the traditional central aggregation in ADMM). In [92] author proposes a

randomized ADMM consensus which also only requires neighbor-wise

asynchronous communications between community members.

Full peer-to-peer market designs are based on peers directly negotiating

with each other, in order to sell and buy electric energy. In [78] prosumers

and consumers trade with each other individually and in a randomized

order on a pay-as-bid basis. In every time slot, each buying consumer

is randomly paired with selling prosumers in an iterative fashion until

she/he has procured all of her/his electricity or has been paired with all

potential sellers. Peer-to-peer market designs may also include consider-

ations for grid constraints as in [93]. Traditional auction-based markets

can also gain a peer-to-peer characteristic if they are executed through

smart contracts as in the iconic Brooklyn experiment [94]. However, [95]

shows that there are some limitations to smart contracts, in particu-

lar the need to incentivize participants to trigger smart contracts that

would otherwise represent a central actor.
6
As an alternative to ADMM,

randomized trade matching, or smart contracts on a blockchain, [96]

describes consensus+innovation decomposition techniques.

Distributed ledgers, e.g., blockchain technologies are the backbones of

such coordination strategies. Although they offer certain advantages, e.g.,

https://blog.chain.link/smart-contract-automation/
https://blog.chain.link/smart-contract-automation/
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working with non-trusted entities, they also increase the complexity of

coordination strategies. In particular, [97] proposes a diagram to choose

whether a blockchain technology is needed or not as shown in Fig. 3.11.

In the case of local energy communities defined in chapter 1 (the red path

on Fig. 3.11), an always-online trusted third party is available, e.g., the

community manager. As such, trust-less environments are misaligned

with local energy communities expecting to form a trusted entity.
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Figure 3.11: Decision diagram to choose whether a blockchain technology is needed [97].

� Highlights:

I A single dimension, i.e., centralized or decentralized is conve-

nient to express a general idea on the topology of coordination

strategies, however, it is simplistic and does not discriminate

between the different aspects of coordination.

I Strategies that we named “droop controller” and “distributed

ledgers and optimization” are not adequate for the local energy

communities described in chapter 1.

I Among the possible strategies, model predictive controllers,

market-based approaches, optimization decomposition meth-

ods, and heuristic rules for price reaction strategies have been

proposed in the literature.
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3.5.2 Competitive versus collaborative strategies

A competitive strategy suggests winning individually, whereas a collab-

orative strategy suggests winning as a group. The literature on energy

trading is often focused on the competitive implementations and mod-

els, whereas the new European regulation through their definition of

renewable energy communities seems to favor a collaborative model [98].

While top-down switching and centralized optimization schemes impose

members to collaborate toward the same objective. The rest of the topolo-

gies presented in Fig. 3.4, can have both competitive and collaborative

aspects. In particular, transactive control and peer-to-peer mechanisms

are not limited to competitive mechanisms.

In [88], a peer-to-peer framework is proposed to allow participants to

collectively optimize local energy consumption. To avoid issues related to

market-based transactions, [46] proposes a solution in which cooperation

prevails over competition. Such a solution consists of sharing the aggre-

gated flexibility in a fair and optimal manner based on objective costs,

needs, and constraints. To share value while incentivizing cooperation

[99] and [56] propose a K-mean clustering and a randomized approach

to estimating the Shapley value in order to financially reward prosumers

based on their contributions to the local energy community.

On the one hand, for [98] competitive strategies are much easier to

implement, they simply need to be created and players allowed to

participate. Local energy markets rely on this competition and profit

maximization for participants to behave in a socially optimal way [100].

However, competition is also a source of challenges for local energy

communities. In particular, market liquidity (e.g., communities with a

single producer) is often mentioned as a problem but not solved [49].

Further, since individual household consumption is hard to predict,

e.g., for sub-hourly dispatch intervals, settlement mechanisms may play

a dominant role [101]. Those issues may prevent market pricing to be

cost-representative, potentially resulting in sub-optimal scheduling of

flexible resources.

On the other hand, cooperation requires the ability to create and enforce

contracts, so that players are “forced to cooperate” [98]. In centralized

optimization, participants are “forced” through command and control

to do the right thing for society, however, potentially at the detriment

of member empowerment considerations. Further, even if the physical

coordination is collaborative, an economic dispatch must also be agreed

upon among community members which is a complex topic. For instance,

the literature on tariff designs suggests that sharing rules should: enable

the recovery of investment costs, incentivize self-consumption, and be

attractive for all customers meaning they are transparent, simple, and fair

[102]. We note that the lack of empowerment from a centralized control

algorithm could be counter-balanced by discussions of the appropriate

economic dispatch among the community.

3.5.2.1 Competitive and collaborative environments

Are some environments more likely to develop competitive strategies

than others? As mentioned in [98] collaborative mechanisms require an
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environment that can “enforce” contracts for players to collaborate. As

David Vercauteren analyzes in his book “Micropolitique des groupes”,

one is not born a group, one becomes a group [103]. When it comes to cre-

ating a group, we are paradoxically accustomed to trusting our intuition

that it will naturallywork. On the contrary, it requires detailed knowledge

of the mechanisms at play to enable successful collaboration. In [104]

three ingredients are highlighted to create a favorable environment for

collaboration: a feeling of security, a feeling of equity, and a feeling of trust.

Whether local energy communities are deployed in large cities among

strangers with a rapid turnover due to apartment leasing, or in smaller

cities with a few house owners that know each other, the process is very

different to cultivate security, equity, and trust. As such, the coordination

strategy to deploy depends on the environment of the community. A

community of strangers might perceive collaborative mechanisms as

unfair, and alternatively, a strong community might perceive competitive

mechanisms as sapping unity.

In nature, competition often arises in abundant environments, e.g.,

competition for light between trees, whereas cooperation between species

is found in hostile environments as a non-negligible advantage for

survival, e.g., in mountains and deserts. In the literature, some energy

communities are portrayed as an abundant pool of prosumers trading

energy, as such competitive mechanisms seemwell aligned. However, the

local energy communities described in this work are more ambiguous.

From one angle, they are connected to the national grid and therefore

benefit from a certain abundance of energy, but from another perspective,

they also experience “shortages” of power from their limited local

resources, e.g., solar panels and batteries. As regulated electricity prices

increase, this “shortage” of local power might gain attention and favor

the collaboration naturally found in “hostile” environments.

3.6 Partial conclusion

For local energy communities, the challenge is to match load and produc-

tion in a limited time window, and to do so, collectively. To answer this

challenge, coordination strategies may take different forms depending

on the specific attributes of a community. For instance, a community can

be operating a microgrid with voltage constraints, or rather pay fees to

use the public distribution grid. As such, we propose a list of the most

salient aspects that may result in different coordination approaches.

Further, we suggest that local energy communities are complex systems

bound to unforeseen changes, e.g., in the definition of fairness, or the

composition of flexible assets. Thus, coordination strategies should be

able to mutate at some level to follow the dynamic needs of communities.

A potential approach is then to start simple and progressively complex-

ify a coordination strategy. We also highlight external socio-economic

mechanisms can reduce the complexity of coordination strategies, in

particular, for aspects related to fairness and empowerment.

The literature proposes a large panel of coordination strategies which we

categorize based on the communication channels available, where deci-

sions are made, and whether the approach is competitive or cooperative.
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We believe that this classification clarifies the characteristics of the differ-

ent approaches, and as such, simplifies the process of picking the right

methods to answer specific attributes of local energy communities.

In the next chapter, we consider local energy communities with a trusted

community manager to perform data collection from smart meters, and

to schedule flexible assets. We note that those types of privileges are

already granted to companies like LANCEY Energy Storage to manage

flexible heating systems. As such, we develop coordination strategies that

belong to the centralized optimization category while relying on external

socio-economic mechanisms for fairness and empowerment aspects. The

objective of the next chapter is to provide clear solutions for communities,

but also to highlight issues and limits that arise when implementing a

strategy.
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You are engaging in madness. I feel obliged to accompany you.
—Alejandro Jodorowsky

In the previous chapter, we reviewed the requirements, and the roles

of coordination strategies, as well as, a panel of approaches from the

literature. For communities to coordinate their consumption, this chapter

develops and compares two strategies, a predictive approach, and a

reactive approach. In relation to the previous chapter, we consider both

of those strategies as centralized optimization, since they rely on a central

community manager orchestrating available assets. While the predictive

approach partially relies on a good knowledge of the future, the reactive

approach relies on a good knowledge of the recent past. This chapter

describes both of those approaches and compares them.

4.1 Which local energy communities?

Before developing coordination strategies, we must clarify where do

we apply them and what do we expect of the predictive and reactive

approaches. This section reflects thediscussion fromchapter 3 on theprior

requirements to seek some coordination between community members,

as well as, on the role that physical coordination strategies have in the

community.

Conditions for a coordination strategy

We place ourselves in local energy communities that have (i) a decision

space, i.e., significant flexible assets in comparison to their energy con-

sumption (ii) a financial payoff structure, for instance, French regulated

electricity tariffs and (iii) some coalition value, i.e., value to act together

rather than act as individual actors.

Note that, although French regulated tariffs create incentives to control

flexible assets, they are possibly too low to achieve a return on investments

within the systems’ lifetime as discussed in section 1.2.1.1. Further, note

that a different methodology is presented in section 4.2.2.2 to assess

coalition values in euros, as opposed to the methodology of section

3.4 limited to coalition values terms of self-sufficiency. In the latter

methodology, network fees are accounted for, as they will decrease the

coalition value of a community.

Complexity of the coordination strategy

Following the bullet list of section 3.2, we frame the complexity aspects

of local energy communities that coordination strategies should account

for.
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1: At least in France, the dispatch may

rely on default dynamic keys from section

1.2.1, which avoids communities sending

custom sharing keys every month to a

distribution system operator.

I Flexible assets: local energy communities may be equipped with

batteries and shapeable loads such as electric vehicles, heating

and air conditioning systems, and water heaters from different

manufacturers.

I The cost of energy: for the community as a whole must be min-

imized while considering costs incurred through grid fees. The

economic value of local power production is shared among the

community a posteriori, i.e., after the physical coordination. Com-

munity members may have different energy providers and thus

different time-of-use prices.

I Members and the community: all types of consumers are connected

with a smart meter with a sub-hourly granularity. All community

members even if they do not have flexible assets must share their

smart meter data. Communities are limited geographically and

count less than 100 members, for which there exist a trusted com-

munity manager. The financial investment of community members

is heterogenous.

I Production units: are intermittent sources such as solar panels,

wind turbines. Production units must be connected behind a smart

meter. The spread and ownership of production units can be

heterogenous among community members.

I Communication channels: each community member must have

access to the wide area network, however, the connectivity issues

of a few flexible assets are not critical to the system.

I Grid constraints: voltage and loading constraints are assumed to

remain within the normal limits planned for at the design of the

local energy community. As such they are not considered at the

operational level. Note that local energy communities may spread

ondifferent sections of the distribution grid, i.e., allmembers are not

behind the same low-voltage transformer. As such, increasing self-

production does not necessarily mean reducing grid constraints.

Nonetheless, in many scenarios, those two aspects are in line as

they both depend on synchronizing consumption and production.

I Regulation: self-consumption interval last 15 minutes. Although,

the community does not have strict privacy rules, it respects the

GDPR, e.g., giving members the right to be forgotten. The commu-

nity may inject power onto the upstream grid without costs nor

gains.

The community is in charge of defining sharing rules to split financial

benefits amongmembers. Several sharing rules are available as presented

in section 3.3. We note that including grid fees in the scheduling problem

implies prioritizing flexible assets for individual needs. As such, it

potentially simplifies the subsequent economical dispatch.
1

The notion of empowerment in the physical coordination is limited to

the decision of members (i) to participate or not in a centrally managed

process, and (ii) to set power, energy, and time limits on flexible assets.

Empowerment is expected outside of the physical coordination, when

discussing sharing rules, during community events, and through user
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interfaces providing feedback on energy management. Local energy

communities targeted in this chapter favor cooperative environments

suitable to have a trusted community manager, potentially made of

several members, which can schedule flexible resources for individual

community members.

4.2 A model predictive control

As mentioned in chapter 3 Model Predictive Control (MPC) are very

common in the literature for a variety of scheduling problems [82]. It

consists in solving a finite time horizon open-loop control problem,

using the current state of the plant as the initial state. Fig. 4.1 illustrates

the idea of a prediction and control horizon ), which is periodically

updated to include the system’s last observed states. MPC is often found

in applications mixing several energy vectors, i.e., electricity and heat,

where an optimal schedule is computed on a rolling horizon [87].

Predict & control horizon T

Time until 
next update

time

timet = ∆k

t

∆k

t = 0
T

∆k + T Figure 4.1: Conceptual representation of

the dispatching algorithm.

In the following MPC approach, we propose a unique combination of

models, predictive algorithms and control formulation. We model flexible

assets via standardized flexible bids which are inspired by [48]. Flexible

bids convey information on the status and the limits of flexible assets,

and are described in the next section. This approach aims at facilitating

the interface with a wide range of assets whether they have chemical,

thermal, or time constraints, as well as, a wide range of manufacturers

and providers. The optimal control schedule is solved through a linear

program. We distinguish our approach from other MPC in the literature

by including the cost of exchanging power within the community from

distribution grid fees. However, a consequence of accounting for power

exchange is that we must forecast netloads for individual members. As

such, predictive models must handle small-scale short-term netload fore-

casts which is fairly challenging due to the high volatility and uncertainty

involved at the scale of a single household [105].

This implementation is conceptually illustrated in Fig. 4.2. The next

sections detail the building blocks of the MPC strategy: the order book

included in the data layer, the optimal scheduling, and the forecasting of

netloads. In addition, the result sections illustrate the impact of frequently

updating forecasts and schedules, as well as, options to mitigate the

impact of forecasting errors.
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Figure 4.2: Conceptual representation of

the dispatching algorithm, Netload= cor-

responds to ?= (detailed in next section).
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4.2.1 The order book

The order book maintains a list of all participating resources. To par-

ticipate, a resource must submit a flexible bid with some information

related to its current status and available capacity. This intermediary

order book adds a level of abstraction between flexible resources and

the scheduling mechanism, which provides adaptability and avoids

issues related to directly interfacing with flexible resources. Flexible

resources must respect a specific format to be added to the order book.

Four types of flexible resources are standardized on the platform: batter-

ies, shapeable, shapeable at a price, and deferrable devices with power

injection/withdrawals denoted as follows:

?3(C): Deferrable devices ?1(C): Stationary batteries

?@(C): Shapeable devices ?D(C): Shapeable devices at a price

The order book accepts bids at any time, however, assets are encouraged

to send bids close to the start of a new prediction and control horizon. If

not, the state of flexible assets is estimated from past schedules.

Several reasons motivate modeling flexible assets through a standardized

and limited bidding format. The main reason is to provide an interface

for flexible assets with a variety of embedded software to cooperate, e.g.,

batteries from Sonnen or Telsa with electric vehicles from Renault. It also

enables providers of flexible assets to remain in control of their devices,

as they only delegate control to our proposed MPC platform. The order

book approach is also adaptive to new or removed assets, as it is built

around a changing list of flexible bids. In a way, this approach mimics

energy markets in their ability to create a common ground for a variety

of actors [48].

We provide a panel of bidding options to represent most flexible assets,

in particular, electric vehicles (i.e., either as a storage or a shapeable),

heating ventilation and air conditioning as shapeable loads at a price,

and washing machines as deferrable loads. Each of those categories are

described below.
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Defintion 1: Battery bid.

1 = {start1
1H
, end11H , %

1
<0G , %

1
<8= , �

1
<0G , �

1
8=8C80;

, �1
4=3
}

Stationary batteries can be controlled during the time window defined

by start
1
1H

and end
1
1H to withdraw power (?1(C) > 0) or inject power

(?1(C) < 0). We assume charging and discharging efficiency (�8= , �>DC),
some power boundaries %1<0G %

1
<8=

, a maximum state of charge �1<0G , and

a final state of charge defined by �1
4=3

. �1
8=8C80;

sets the state of charge of

the battery at the time of the bid, in a way, this information synchronizes

the order book with actual batteries. The dispatch interval is represented

by ΔC (e.g., 15 minutes in our case).

∀C = 1...)

?1(C) = ?18=(C) − ?
1
>DC(C) (4.1a)

0 ≤ ?18= ≤ %
1
<0G (4.1b)

0 ≤ ?1>DC ≤ %1<8= (4.1c)

�1<8= ≤ �
1(C) ≤ �1<0G (4.1d)

�1(C) = �1(C − 1) + ?18=(C)ΔC�8= − ?
1
>DC(C)ΔC/�8= (4.1e)

�1
4=3
≤ �1()) (4.1f)

?1(C) = 0 ∀C = 1...start1
1H

?1(C) = 0 ∀C = end
1
1H ...)

(4.1g)

Defintion 2: Shapeable bid.

@ = {start@
1H
, end

@

1H
, %

@
<0G , �

@

4=3
}

Shapeable devices (e.g., electric vehicles with continuous charging levels,

continuously variable fans) are modeled as having a net energy demand

�
@

4=3
, and must be charged between times start

@

1H
and end

@

1H
:

∀C = 1...)

0 ≤ ?@(C) ≤ %@<0G (4.2a)

)∑
C

?@(C) = �@
4=3

(4.2b)

?@(C) = 0 ∀C = 1...start
@

1H

?@(C) = 0 ∀C = 4=3@
1H
...)

(4.2c)

Defintion 3: Shapeable at a price bid.

: = {startD
1H
, endD1H , %

D
<0G , �

D
4=3
, %D

4G?42C43
()),�D

34E80C4
}

This category of shapeable load is equivalent to the previous description,

except that a profile %D
4G?42C43

()) is providedwith a cost�D
34E80C4

to deviate

from the expected profile. This cost is considered in the objective function
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described in the next section.

∀C = 1...)

0 ≤ ?D(C) ≤ %D<0G (4.3a)

)∑
C

?D(C) = �D
4=3

(4.3b)

?D(C) = 0 ∀C = 1...startD
1H

?D(C) = 0 ∀C = end
D
1H ...)

(4.3c)

Defintion 4: Deferrable bid.

3 = {start3
1H
, end31H , %

3
?A> 5 8;4

(�)}

Deferrable loads are considered to have some flexibility in their start

time, but a defined load profile once started, %3
?A> 5 8;4

(�),∀� = 1...! (e.g.

appliances, manufacturing equipment).

∀C = 1...) and �(C) ∈ ℤ+

?3(C) =
min(C ,!)∑

:

�(C − :) × %3
?A> 5 8;4

(:) (4.4a)

)∑
C

�(C) = 1 (4.4b)

?3(C) = 0 ∀C = 1...start3
1H

?3(C) = 0 ∀C = end
3
1H ...)

(4.4c)

Where �(C) represents the scheduling signal in ℤ+ which is convoluted

with the power profile %3
?A> 5 8;4

(�) to obtain the power consumption

schedule ?3(C).

4.2.2 Scheduling

The scheduling mechanism minimizes the overall costs for the com-

munity. To do so, we minimize energy imports from outside of the

community, and fees from using the public distribution grid. Interest-

ingly, although this is a collaborative approach, this formulation leads

to prioritizing members’ resources for themselves as there is a non-zero

cost of transacting energy.

To solve this scheduling problem, we opt for a fast and scalable linear pro-

gramming approach, but other methods, in particular, genetic algorithms

[106], or dynamic programming could be relevant as well. The linear

programming approach leads to Eq. 4.5. Note that, the terms for battery

aging and the cost of deviating from shapeable bids may be ignored if
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those bid types are not present in the order book.

Minimization

)∑
C=1

(
�8<?>AC ×max(0,

#∑
=

?=(C))

+ �4G2ℎ0=64 × (
#∑
=

max(0, ?=(C)) −max(0,
#∑
=

?=(C)))

+ �0648=6 ×
�∑
1

?18=(C)
)

+
D∑
:

�D
34E80C4

(errorD<0G − error
D
<8=) (4.5)

Subject to: Eq. 4.1, 4.2, 4.3, 4.4, and :

?=(C) = unctrl
�
=(C) +

�=∑
1

?1(C) +
(=∑
B

?@(C) +
 =∑
:

?D(C) +
�=∑
3

?3(C)

%D
4G?42C43

(C) − ?D(C) ≤ error
D
<0G

%D
4G?42C43

(C) − ?D(C) ≥ error
D
<8= (4.6)

Where ?=(C) is the netload of member = composed of unctrl
�
=(C) and

power profiles from flexible assets. unctrl
�
=(C) represents a forecast of

the uncontrolled netload for member =, i.e., the netload without the

influence of flexible assets (described in the next section). The power

imported by member = is max(0, ?=(C)), and the power imported by the

whole community is max(0, ∑#
= ?=(C)).

In the objective function, Eq. 4.5, �8<?>AC represents the price of buying
energy from the main grid in e/kWh, �4G2ℎ0=64 represents the price of
using the grid to exchange energy in e/kWh, �068=6 represents the price
for using batteries in e/kWh, and �D

34E80C4
represent the cost of deviating

from a shapeable bid with a pre-defined schedule in e/kW. All prices

are not on the same scale, and specifically, the relation between prices

follows Eq. 4.7. The price of buying power outside of the community is

more expensive than the fee for sharing it within the community, and

sharing with the community is more expensive than charging your own

battery.

�8<?>AC > �4G2ℎ0=64 > �0648=6 (4.7)

We demonstrate that the energy exchangedwithin the community (priced

�4G2ℎ0=64 in Eq. 4.5) is simply the difference between energy imports

from the community as a whole and the sum of individual members’

imports (Eq. 4.8). Intuitively, community imports are lower or equal to

the sum of individual imports, as some members may export power

which cancels out imports of other members. The portion of imports
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2: http://www.pyomo.org/ last visited

in June 2022

3: https://www.gnu.org/software/g

lpk/ last visited in June 2022

canceled out is precisely power exchanges within the community.

Exchange =

#∑
=

max(0, ?=(C))︸                ︷︷                ︸
Sum of ind. imports

− max(0,
#∑
=

?=(C))︸                ︷︷                ︸
Import at the community level

(4.8)

We note that deferrable loads turn the problem from a linear program to a

mixed-integer linear program. Thus, in the case with no deferrable loads,

the optimization problem is then faster to solve. Eq. 4.6 ensures that the

maximum and the minimum deviation from a pre-defined shapeable

schedule : is penalized with cost �D
34E80C4

.

4.2.2.1 Scalability of the proposed linear programming approach

We demonstrate the ability of this optimization formulation to manage

up to a hundred participants each with their own flexible assets. To do

so, we measure the CPU time to write the optimization problem using

Pyomo
2
and solve it using the GLPK solver

3
on a laptop with a 2.3 GHz

processor. We run the optimization for two days at 15 min intervals,

which represents a total of 4 intervals × 24 hours × 2 days = 192 time

steps.

The same data source is selected as for the previous examples, however,

the number of households is increased from 2 to 100. Each household is

equipped with a 3 kWp solar panel and a 5 kWh battery. Grid fees are

set to 3.71 cente/kWh and the electricity price outside of the community

at 17.4 cente/kWh.

Figure 4.3: Time to write and solve the

optimization problem Eq. 4.5 with Pyomo

and GLPK. Python notebook available at

https://github.com/Jonathan56/supp
lementary_thesis/tree/master/4_cha
pter.
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The results in Fig. 4.3 show that the optimization can be solved in

1.25 minutes for a community of a hundred participants with a time

horizon of 2 days. This is faster than the 30 minutes time intervals for

collective self-consumption in France, even though this optimization

process is rather intended to run a few times per day, hence we show

that this portion of our coordination algorithm is scalable for our desired

complexity. In terms of memory, for a hundred households the problem

used 140 MB of RAM. We note that extending the time horizon to a full

week for a hundred households takes 14 minutes to solve. However, as

http://www.pyomo.org/
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
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highlighted in Fig. 2.5 (the impact of time intervals on self-sufficiency)

the potential of the weekly value gap must be assessed before, as well as

the battery capacity required to reach such a temporality beyond diurnal

cycles as illustrated on Fig. 2.12.

4.2.2.2 The value of coalition in euros

In this section, we illustrate the optimal scheduling problem on finding

the coalition value of a community. To the difference of section 3.4, we

define the value of a coalition as the financial benefits obtained from

forming a coalition. It is the difference between the overall energy cost

when each household schedules its flexible assets individually and the

overall cost when households are scheduled “together”.

Methodology

The linear programming formulation described above Eq. 4.5 enables

us to compute the minimum energy cost for a community, including

the cost of imports, and exchanges when households are scheduled

together. As such, the linear programming formulation provides one

side of the coalition value, the mimimum energy cost when households

are coordinated together.

To find the minimum cost of energy when each household schedules

their flexible assets individually, we use Alg. 1. This algorithm computes

the battery schedule to reach the maximum self-sufficiency achievable for

a single household. Further, we make the assumption that a household

achieving a maximum self-sufficiency also achieves a minimum energy

cost. This equivalence between self-sufficiency and energy cost holds

when reducing energy imports is the only way to reduce costs. Note that

it does not hold with time-of-use pricings, as a cost minimization would

also depend on moving usage from high to low price hours. We place

ourselves in a context without time-of-use pricings.

To compute the coalition value, on one side, we use the optimal schedul-

ing problem Eq. 4.5 to obtain battery schedules minimizing cost using a

community wide coordination, and on the other side, Alg. 1 to obtain

battery schedules minimizing cost for separately controlled households.

Instead of comparing self-sufficiency achieved by both scheduling ap-

proaches as in Alg. 2, we compare the energy cost calculated with Eq.

4.9.

cost =

)∑
C=1

(
�8<?>AC ×max

(
0,

#∑
=

?=(C)
)

+ �4G2ℎ0=64 ×
( #∑

=

max

(
0, ?=(C)

)
−max

(
0,

#∑
=

?=(C)
) ))

(4.9)

Where Eq. 4.9 is essentially the objective function of the optimal schedul-

ing problem Eq. 4.5, where ?=(C) is the netload of member =. Note that

in Eq. 4.9 as in the definition of the self-consumption metrics, changing

the time granularity of the time series data can be helpful to estimate a

theoretical lower bound on energy cost.
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Results

We look at the value of coalition as a function of grid fees on the energy

exchange among community members in cente/kWh. To illustrate the

outcome of the value of coalition, we select the same data sample as in

chapter 2 section 2.2. However, to avoid the burden of optimizing a full

year, we select a single week in spring between the 28th of May and the

4th of June. For the 20 households selected (as in previous examples),

we fix the solar panel capacity per household to 3 kWp, and the battery

capacity per household at 5 kWh. Note that battery power constraints

are taken has half the energy capacity, i.e., for a 5 kWh battery power

limits are ±2.5 /kW.

Grid fees vary from 0 to 17.4 cente/kWh, and the price for electricity

outside of the community is fixed at 17.4 cente/kWh (which is represen-

tative of the regulated tariff in France in 2022), costs for battery aging are

not accounted for over the course of one week.

Fig. 4.4 shows a sample of the resulting battery profile aggregated at

the community level when the optimization formulation is adopted. As

expected the battery reaches a full state of charge every day while only

charging from the local solar panels. Although it does not show in the

figure, power exchanges between community members are minimized

to avoid distribution grid fees at 3.71 cente/kWh.

Figure 4.4: Resulting battery profiles from

the minimization of community costs dur-

ing two days.
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Fig. 4.5 shows the cost of electricity in several scenarios. In particular, for

the individual and collaborative strategies to highlight the evolution of

the coalition value (yellow shade) as a function of grid fees. Note that the

results in Fig. 4.5 include many assumptions: load profiles, solar profiles,

capacity installed, the homogeneous spread of assets, an arbitrary week

in June, etc..

When grid fees are null the coalition value for a week and 20 households

is 40 e, it becomes 31 e at 3.71 cente/kWh (the basic network fees in

France in 2022), and finally the coalition value is null when grid fees

are the same as the cost of electricity. Both upper and lower limits have

been added to Fig. 4.5 to show the cost of electricity in the absence of

batteries, or the cost of electricitywith an ideal infinite battery, i.e., ?=(C) is
aggregated to a single point. Those limits follow themethodology defined

in chapter 2 section 2.1.1. A perfect battery leads to a cost of 0 ewhen grid

fees are null as all power is provided by local solar panels. Although, the

community as a whole is fully self-sufficient, power exchanges between
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members are needed, and thus even in the theoretical scenario, the cost

for the community is proportional to grid fees.
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Figure 4.5:Coalition value in terms of elec-

tricity cost for increasing network tariffs

under an individual strategy and the opti-

mal collaboration. This scenario involves

20 households with each a 3 kWp solar

panel and a 5 kWh battery. Python note-

book available at https://github.com/J
onathan56/supplementary_thesis/tr
ee/master/4_chapter.

Those results illustrate and also participate in validating the optimization

formulation. Indeed, when grid fees are the same as electricity tariff the

optimal scheduling leads to the same cost of electricity as Alg. 1, even

though both approaches are significantly different. This is due to the fact

that there is no interest in exchanging power and thus the individual

strategy Alg. 1 also leads to an optimal outcome. As mentioned in section

3.4 network fees penalize exchanging power and thus collaborative

strategies. The magnitude of grid fees is therefore another determinant

of the coalition value.

4.2.3 Forecasting

Only flexible resources are submitted to the order book, the rest, uncon-

trollable load demand, and solar production are included as day-ahead

forecasts. This sectiondescribes themethod selected to forecast short-term

netloads for individual households.

Picking the right forecasting method depends heavily on the nature of

the data, and thus on a specific scenario. The literature offers a large panel

of forecasting methods, whether they are based on traditional statistics

(e.g., exponential smoothing, ARIMA models), classification methods

(e.g., k-nearest neighbors, decision trees), or neural networks [107]. For

instance, extreme gradient boosting regressor have been described as

suitable to handle non-linearity in load profiles [108]. Among those

options, we choose to use the prophet algorithm [109] which mixes

piece-wise linear functions and Fourier series. As such, it works well

on time series that have piece-wise trends and daily, weekly, or yearly

seasonality. The Prophet method does not require data to be stationary,

and offers several advantages which decided our choice:

https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
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I the simple and insightful formulation decoupling trends and sea-

sonal components Eq. 4.10,

I the possibility of adding exogenous weather variables and auto-

regressors,

I the ability to provide confidence intervals on the forecast.

Later, we refer to Eq. 4.10 as a Generalized Additive Model (GAM).

unctrl
�
=(C) = growth(C) + season(C) + ℎ(C) + 4G(C) + &C (4.10)

Here growth(C) is the trend function that models non-periodic changes in

the time series through a piece-wise linear function, season(C) represents
periodic changes through a Fourier series, and ℎ(C) represents the effects
of holidays that occur on potentially irregular schedules, &C is the error
term. Further details are available in [109]. Besides capturing the overall

trend and periodicity, additional regressors can be added to Eq. 4.10

through 4G(C).

4.2.3.1 Illustrative example

This section ismeant to illustrate thedifferentways of creating aGAM, e.g.,

with regressors and autoregressive variables, as well as, the difficulties

to forecast small scale load profiles. The following example is based on

a real-world household equipped with a “linky” smart meter. The data

is recorded from March the 22
nd

to May the 12
th
at 15 minutes intervals

and includes the power imported and the power exported for a single

household equipped with solar panels but no flexible assets. Note that

the data is the propriety of LANCEY Energy Storage, and thus not for

public use. Along with data from the smart meter, weather series such

as apparent temperature, humidity, wind speed, and Global Horizontal

Irradiance (GHI) are available from a weather service at the location of

the building.

Figure 4.6:Real-world netloadprofile asso-

ciated with Global Horizontal Irradiance

(GHI) data for a single household with

solar panels.
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As the consumption and the production time-series are not measured

separately, i.e., we do not have data from the solar panel directly, we can

only forecast the netload. We denote this netload unctrl
�
= (C), for actual

uncontrolled netload. As shown in Fig. 4.6 the netload profile is noisy at

least in comparison with the global horizontal irradiance data. To train

the different GAM models, we select thirty-one days from March the
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25
nd

to April the 25
th
, and we then illustrate the models’ predictions

on the next two days. In order to get the score achieved by each model,

we use the normalized root mean square error also referred to as the

Goodness of Fit (GOF) Eq. 4.11. Although the mean absolute percentage

error is often simpler to understand, it is not applicable here, as the time

series cross zero, and thus potentially lead to a division by zero.

Goodness of fit = 1 −

unctrl

�
= (C) − unctrl

�
=(C)

2
unctrl

�
= (C) − 1

#

∑#
==1

unctrl
�
= (C)

2

(4.11)

We illustrate three different models Fig. 4.7.Model 1 is the simplest, it has

no regressors, and thus mostly relies on the Fourier series to accurately

represent weekly and daily cycles, default parameters are kept from the

Prophet Python package. Thismodel is expected to provide a very smooth

result.Model 2 in addition tomodel 1, includes a regressor representing the

GHI to better estimate the influence of sunny days on the uncontrolled

netload. Note that the GHI data provided is historical, however, in

an operational scenario, the GHI data would be a forecast itself, thus

embedding errors.Model 3 in addition to thepreviousmodel, also includes

autoregressive variables to represent lagged observations, as such the

forecasted netload at C depends on previous time C − 1, C − 2, ..., C − =. We

select nb;06 = 4 lagged values to represent the past hour (4×15 minutes)

and include the most representative lags from the partial auto-correlation

function. As per models 1 and 2, the default parameters from the Prophet

Python package are kept.
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Figure 4.7: Resulting netload forecasts for

the three different models. The actual net-

load is the thiner blue curve. Python note-

book available at https://github.com/J
onathan56/supplementary_thesis/tr
ee/master/4_chapter.

While model 1 does not need to be updated within the two days to

forecast, i.e., re-training the model does not drastically influence the

results, models 2 and 3 benefit from periodically updating regressors and

autoregressive variables. Note that in our case model 2 uses historical

GHI data which does not need to be updated, however, in an operational

scenario GHI data might gain in accuracy and thus trigger a new netload

forecast.Model 3must beupdated every 15minutes in order for the lagged

value at C − 1 to always represent the previous observation. However, to

https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
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4: https://otexts.com/fpp2/useful

-predictors.html last consulted in June

2022.

5: Note that, in the next sections, the cal-

ibration of models is done the two days

prior to the prediction.

reduce the number of forecasts, model 3 is only updated every 3 hours

and relies on the results of prior forecasts for lagged values.

The results in Fig. 4.7 show predictions for the three models. The best

goodness of fit is reached bymodel 3 with 33.7 %, yet the prediction is far

from perfect. Model 1 and model 2 provide smooth results as the Fourier

series and the GHI data cannot capture sudden changes. However, GHI

data provide a significant improvement to model 2 in comparison to

model 1 which can only capture the average daily seasonality. Updating

model 3 every 15 minutes increases the goodness of fit to 52.4 %.

As an addition to model 3, we add a regressor to represent each hour of

the day, i.e., 23 regressors. We build such regressor variable with zeros

outside of the designated hour, and one on the designated hour. For

instance, the regressor for hour two consists of zeros except between

2:00 am and 2:45 am included. Notice that only 23 dummy variables are

needed to code 24 categories. That is because the 24
th
category (in this

case midnight) is captured by the intercept, and is specified when the

dummy variables are all set to zero.
4
This addition enables model 3 to

reach slightly higher goodness of fit of 34.1 %.

In order to explore the meta-parameters of model 3, we run a random

search to find the best combination of parameters for the day to predict.
5

We explore different numbers of lagged values from 1 to 14, and different

levels of relative importance for regressors (GHI, seasonal components,

hour of the day, and lagged variables).We find that the default parameters

where all regressors have the same relative importance, and four lagged

values are added is the best option from a limited random search. Fig. 4.8

shows the 80 % incertitude interval associated with model 3 as given by

the Prophet algorithm. The incertitude interval suggests that the model

is not able to capture the sudden 15 minutes consumption peaks.

Figure 4.8: Uncertainty intervals associ-

ated with model 3 for a netload forecast.

The actual netload is the thiner blue curve.

Python notebook available at https://
github.com/Jonathan56/supplementar
y_thesis/tree/master/4_chapter.
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Although far from perfect, model 3 provides a base that can be modified

depending on the time series to predict. We use model 3 in the next

section where each instance of the model is calibrated to represent a

specific community member.

https://otexts.com/fpp2/useful-predictors.html
https://otexts.com/fpp2/useful-predictors.html
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
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6: As per other simulations in this thesis,

data and code are available as Python

notebooks at https://github.com/Jon

athan56/supplementary_thesis/tree

/master/4_chapter

Before closing this section, we should acknowledge that the quality

of a forecast (measured in goodness of fit) is not necessarily driving

the value of a forecast, (measured in euros saved for the community).

Although counter-intuitive, a forecast with greater goodness of fit can

lead to a lesser value in the end. For instance, a forecast with a better

prediction of large negative netload values may not change the value

for the community if batteries are caped in their charging power. In

general, a forecast should be accurate or show quality when flexible

assets represent a significant portion of the netload. For instance, when

the netload is close to zero at 6:00 am or in the afternoon at 5:00 pm.

However, quality is not critical in the middle of the afternoon when all

batteries are full, or at 2:00 am when batteries are already empty.

4.2.4 Results

In this section, we combine forecasting and scheduling (also referred

to as a “dispatch”) to assess how much erroneous forecasts affect the

benefits of the predictive strategy.

For this example, we use the data already illustrated in chapter 2 section

2.2 from the open-source database described in [28]. We assume that

we only have access to smart meter data and no raw production time

series. Similarly to the previous section, we cannot separate consumption

and production profiles, and we directly forecast netloads. In order, to

keep this example repeatable via Python notebooks and to avoid long

simulation time, we run forecasts and optimal dispatch for a single week

and five households.
6
This section illustrates implementation details,

and the relation between frequency of dispatch, i.e, 15 minutes or 2

days, and relative gains for the community. Although yearly results

include a greater diversity of netloads, we show that a week already

includes interesting dynamics with regards to the periodicity and timing

of dispatch.
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Figure 4.9: Aggregated netload for the

community of five households covering

training and prediction windows.

We select a week to predict fromMay the 30
th
to June the 6

th
that contains

a day without solar production. To mimic access to weather data, and

because GHI data is often available, we include the historical GHI time

series for the week studied. As such, the GHI data included as a regressor

does not contain errors and constitutes a best-case scenario. Prior to the

week of interest, we include 31 days to calibrate and train a GAM for

each household. Fig. 4.9 shows the aggregated netload from the five

households from the beginning of the training period to the end of the

prediction window.

As a first step, we calibrate an instance of model 3 from the previous

section for each household. The calibration process is simple and consists

https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
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for each household of running a set of 16 forecasts on the two days

prior to the prediction for 30 different preset configurations. The best

configuration of parameters, i.e., number of lagged variables and relative

importance of regressors, is selected for the highest goodness of fit (Eq.

4.11). Once models for each household are calibrated, we forecast the

week of interest. To illustrate the impact of frequent forecasts we predict

the netload of each household at different periodicity: 2 days, 1 day, 12

hours, 6 hours, 3 hours, 1 hour, and 15 minutes. Note that the forecasting

horizon remains 2 days for all periodicity, as it corresponds to the horizon

of the optimization problem. As such forecasting with a periodicity of 15

minutes for aweek involves 7 days×24 hours×4 intervals = 672 forecasts

with an horizon of 2 days, i.e., 2 days × 24 hours × 4 intervals = 192

time steps. This requires a substantial amount of time, which justifies

limiting simulation to a week to facilitate repeatability. Fig. 4.10 shows

the resulting netload at household # 2000989 when forecasts are run

every 2 days. With this periodicity, auto-regressive variables have little

impact on resulting netloads.

Figure 4.10: Actual and predicted netload

for household # 2000989withmodel 3 run

every 2 days.
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Fig. 4.11 shows the goodness of fit taken over the predicted week for each

of the five households as a function of the forecast periodicity. As expected

when forecasts are run more often goodness of fit improves. However,

until a periodicity of three hours goodness of fit is only slightly improved

as auto-regressive variables have little influence. At a periodicity of 15

minutes, the auto-regressive variable at C − 1 always has information on

the last observed netload value which results in better forecast quality.

Figure 4.11: Goodness of fit as a function

of forecast periodicity for five residential

building netloads. Python notebook avail-

able at https://github.com/Jonathan5
6/supplementary_thesis/tree/maste
r/4_chapter.
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At this stage, we should note that forecasting and scheduling problems

https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
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can be decoupled. However, this might not always be the case. In a

situation where we only have access to smart meter data, then forecasting

and scheduling are coupled, as the impact of scheduling flexible assets

is measured by the smart meter which influences future forecasts. To

avoid this situation, we consider that the power profile of flexible assets

is known, either because they follow perfectly their schedules, or because

they communicate with a community manager. As such, we can subtract

the influence of flexible assets in the netload, so that the forecasting pro-

cess only observes uncontrollable demand and production also referred

as unctrl
�
= (C). In the present simulation setting, it enables us to first get

all the predicted netloads and then run optimal schedulings as a second

step. This is relevant to notice, as this requirement might be harder to

achieve in practice.

The optimal scheduling controls 5 kWh battery installed at each of the

five households. Optimal scheduling is run at the same periodicity as

forecasts, i.e., each forecast corresponds to an optimal schedule that

covers the horizon of 2 days. For the one hour periodicity, this leads to

running an optimization every hour for a week to schedule five batteries

over the next two days. This is further detailed in Alg. 3, where �

represent the training horizon (a month), ) the simulation horizon (a

week), dispatchℎ>A8I>= the horizon of optimal schedules (2 days), nb;06

the number of autoregressor in the GAM, and periodicity a number of

minutes between dispatch. Further, weather
�(C) is a matrix containing

theweather data, and schedule
)
� (C) amatrix containing the power profiles

for all flexible assets � of any type.

Algorithm 3: A dispatch algorithm mixing forecast and scheduling

Data: past unctrl
�
= (C) ∀C ∈ [�...)], for each member =

Data: future weather
�(C) ∀C ∈ [�...)]

Result: schedule
)
� (C) ∀C ∈ [1...)] for all flexible assets �

//Train forecasting model for each member

1 ∀C ∈ [�...0[
2 for member = ∈ # do

3 GAM= = Fit Eq. 4.10 with unctrl
�
= (C) and weather

�(C)

//Dispatch at a periodicity for an horizon )

4 : = 0

5 while : < ) do

//Forecast netload for each member

6 ∀C ∈ [:, : + dispatchℎ>A8I>=]
7 ∀� ∈ [: − nb;06 , :[
8 for member = ∈ # do

9 unctrl
�
=(C) = GAM=

(
unctrl

�
= (�), weather

�(C)
)

//Retrieve all flexible bids �

10 orderbook
: = {18 , @8 , :8 , 38} ∀8 ∈ � :

//Find the optimal schedule

11 schedule
)(C) = solve Eq. 4.5

(
[unctrl�=(C) ∀= ∈ #], orderbook:

)
12 : = : + periodicity

13 return schedule
)(C)
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An important point of attention is the starting and ending times of the

scheduling process. We found that a schedule starting at midnight and

ending at 11:45 pm two days later leads to a sub-optimal dispatch. When

the schedule starts at midnight the battery tends to be inactive until it can

charge from solar power at 6:00 am, further, on the next day, the battery

may not charge completely as the energy consumption before 11:45 pm at

the end of the horizon does not require the full battery capacity. On the

contrary, when scheduling starts around 6:00 am, there is no period of

inactivity. As a rule of thumb, consumption and production cycles should

not be cut at the start or end of the scheduling process to limit sub-optimal

schedules from a finite horizon. As such, we start forecasts and optimal

schedules at 6:00 am on the first day of the simulated week.

Fig. 4.12 shows the resulting batterypower and energyprofiles aggregated

for the five households, as well as, actual and predicted netloads for two

scenarios. When the dispatch is executed every two days or every 15

minutes. This figure illustrates that with a 15 minutes interval between

dispatch (bottom figure) the netload forecast (in orange) is closer to

the actual netload value (in blue) than when a 2 days interval between

dispatch (top figure) is used. In other words, as mentioned earlier the

forecast quality is better with 15 minutes interval between dispatch.

With different netload forecasts, resulting battery schedules are different,

however, in both cases the aggregated energy profile pass by a 100 %

state of charge.

Figure 4.12: Three days sample for two

scenarios of dispatch: (i) with a 2 days pe-

riodicity (top), and (ii) with a 15 minutes

periodicity (bottom). For each scenario,

uncontrolled netload profiles and battery

time series are shown. Note that the sam-

ple starts before 6:00 am, as it is taken in

the middle of the simulated week.
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Fig. 4.13 shows the cumulative energy imports from the community

resulting from dispatch in four different scenarios. On the one hand,

two scenarios to mark limits, a perfect scenario where the schedule is

based on a perfect knowledge of the netload, and a scenario without

batteries that provides an upper limit on community imports. On the

other hand, two scenarios represent different periodicity of dispatch, a

long periodicity of 2 days and a short periodicity of 15 minutes. The

result shows that both the two days and 15 minutes periodicity achieve a

similar value, respectively 80 % and 82 % of the value gap between the

lower and upper limits on energy import from the community. This result

is similar when considering energy costs at the end of the week which

also includes the prices of exchanging power, then the two days dispatch
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achieves 82 % of the value gap between a scenario without batteries and

the perfect schedule, whereas the 15 minutes dispatch achieves 85 %.
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Figure 4.13: Cumulative community im-

ports over the simulated week. Four sce-

nario are illustrated, a periodicity of two

days and 15minutes, and boundaries with

a scenario without batteries and a scenario

based on a perfect forecast. Python note-

book available at https://github.com/J
onathan56/supplementary_thesis/tr
ee/master/4_chapter.

In this section, we show that a faster periodicity in the dispatch, i.e.,

forecast and optimal scheduling, does not necessarily translate into more

value for the community. In particular, in our scenario, a better quality of

forecast does not translate to a lower cost for the community. In the end, a

dispatch every two days demands less computing time, and capture 80 %

of the value gap between a scenario without batteries and a scenario with

perfect knowledge of the netload.Although, a faster periodicity of forecast

was not significant in this scenario, a faster periodicity of scheduling

migth be required if battery models deviate from their physical counter

part, i.e., to cope with the uncertainties on flexible assets. The next

sections explore methods other than through a faster periodicity to cope

with uncertainties in the forecast.

4.2.4.1 Mitigating the impact of forecasting errors

Minimizing the cost of energy for the community accepts different

solutions that leads to the same minimum cost. This optimal front is

particularly large when flexible assets are small compared to the netload,

e.g., when a battery can be fully charged in one hour, yet has six hours

to do so. As such, for the same outcome, we should choose a schedule

for flexible assets that is the least subject to perturbations, i.e., the safest

path.

In order to obtain information on which path is the safest, deterministic

GAM forecasts can be extended with probabilistic distributions through

a Markov Chain Monte Carlo sampling method implemented in Prophet,

as shown in Fig. 4.8. Although it takes longer to solve, it can provide

a distribution of values at each time C. To use this information at the

decision-making stage, a variety of approaches exist in the literature [110].

In particular, stochastic programming is close to our linear programming

formulation. However, we did not pursue this option as the number of

scenarios to consider grows significantly with the size of the community,

since# membersmay haveΩ= scenarioswith) time step values.We note

https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
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that further work could involve applying methods such Sample-Average

Approximation to reduce the number of scenarios [111].

To pick the path that is least impacted by forecasting errors, we make

the assumption that charging and discharging activities should rather

happen when the absolute netload is larger. For instance, a forecasting

error of 1 kW on a -6 kW netload has no consequences for a battery that

is caped at a charging power of 2.5 kW. As such, we propose to add

a penalty � for charging or discharging when the netload is close to

zero, i.e., a penatly proportional to 1/unctrl2= . The new objective function

without the component in �D
34E80C4

for shapeable load at a price becomes:

Minimization

)∑
C=1

(
�8<?>AC ×max(0,

#∑
=

?=(C))

+ �4G2ℎ0=64 × (
#∑
=

max(0, ?=(C)) −max(0,
#∑
=

?=(C)))

+ � ×
�∑
1

(
1

unctrl
�
=(C)
×

(
?18=(C) + ?

1
>DC(C)

) )2

)
(4.12)

Where unctrl
�
=(C) represents the forecasted uncontrolled netload = at the

point of connection with battery 1.

The direct effect of this penalty is to enforce a path thatmirrors the netload

as shown in Fig. 4.14. The optimal scheduling places as much charging

as possible when the netload is very negative, and discharging when the

netload is very positive. This additional term turns the optimization to a

quadratic problem that is not handled by GLPK, as such we use Gurobi

to solve this problem.

Figure 4.14: Time series of actual and fore-

casted netloadwith the aggregated battery

power profile from five households, and

their aggregated SOC.
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The line with no penalty, i.e., � = 0, corresponds to the two days dispatch

scenario from the previous example in Fig. 4.13. Note that, we ensure

that a penalty coefficient of � = 1e-6 is small enough to provide the same

minimum costs as a scenario without a penalization coefficient, while

ensuring a “safer” schedule for forecasting errors. A � = 1e-4 is an upper

limit where the penalization factor starts to induce a deviation from

the minimum cost otherwise achieved without penalization. Without

certainties for thewhole year, this approach reduces the amount of energy

imports at the end of the simulated week as shown in Fig. 4.15. In term

of cost, for the week considered the MPC is able to recover 86% of value

achieved with a perfect forecast (and 88.5% of the energy import). The
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results in the following subsection are obtained with this new objective

function Eq. 4.12.
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Figure 4.15: Cumulative community im-

ports for the community of five house-

holds. Four scenario are illustrated, a peri-

odicity of two days with penalties of � = 0

and � = 1e-4, as well as, a scenario with-

out batteries and a scenario based on a

perfect forecast. Python notebook avail-

able at https://github.com/Jonathan5
6/supplementary_thesis/tree/maste
r/4_chapter.

4.2.4.2 Influence of battery capacities and community size

The capacity of flexible assets, i.e., the decision space of the predictive

strategy, is critical to the impact that forecasting errors may have. As a

general rule, smaller flexible assets will be less impacted by inaccurate

forecasts as they are either already at full or empty, or their power range

could not match the forecasted netload.

The impact of the decision space on the cost of energy is shown in Fig.

4.16 for a range of battery size per community member of 0 to 10 kWh and

0 to 5 kW of charging and discharging power capacity respectively. The

results correspond to a scenario where a dispatch is calculated every two

days with a penalty coefficient of � = 1e-6 (orange line). For comparison,

we show the result of the perfect dispatch derived from the actual netload.

Fig. 4.16 suggests that the value gap from the perfect forecast is under

10 % for a battery size of 3 kWh per household.
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Figure 4.16: Cost in euros as a function

of battery sizes for three scenarios using

the MPC with a 2 days periodicity and a

penalty of � = 1e-6. “Gap” labels repre-

sent the size of the gap with the perfect

dispatch in relation to the gap between

the perfect dispatch and the solar only sce-

nario. Python notebook available at https:
//github.com/Jonathan56/supplement
ary_thesis/tree/master/4_chapter.

https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
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Similarly to battery size, we run a sensitivity analysis for community

size in numbers of members. For this simulation, we randomly draw #

households from a pool of 170 households, where # is the community

size. For each household a forecast with a periodicity of two days is

used to optimally schedule a 5 kWh battery with a penalty coefficient of

� = 1e-6 for the week illustrated in Fig. 4.10.

Figure 4.17: Cost in euros per member as

a function of community sizes for three

scenarios using the MPC with a 2 days

periodicity and a penalty of � = 1e-

6. Python notebook available at https:
//github.com/Jonathan56/supplement
ary_thesis/tree/master/4_chapter.
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Results in Fig. 4.17 suggest that for this scenario under 120 participants, the

community size is not a factor impacting the cost of energy per member,

i.e., reducing the impact of forecasting errors. One of the reasons for

this observation is that forecasting is done on the basis of individual

netloads, and do not benefit from learning the patterns of the aggregated

community. For small communities the cost of energy per member has a

significant variability from the random draw of households, i.e., some

households consume more than others. This variability is reduced with

larger community size, however, larger communities do not show a trend

to reduce the cost of energy per member.

4.2.5 Limits

Beyond the relative results at different periodicity, battery, and community

sizes, the previous section is interesting because it highlights the limits

and assumptions that the model predictive control brings. We list the

points of attention that can be problematic.

I Forecasting consumption and production profile independently. Recov-
ering raw production time series, e.g., from solar panel inverters,

is often possible but requires adapting to a variety of manufactur-

ers’ API. As such, while it is easier to forecast consumption and

production independently, it brings an additional communication

brick that might require some customization from community to

community.

I Decoupling predictive and control problems requires to remove the

influence of flexible assets in metering data. Either the power

profile of assets is communicated to the community manager, or

the community manager makes the assumption that flexible assets

perfectly follow their schedule.

https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter


4.2 A model predictive control 77

I Accurate modeling of flexible assets. Physical batteries are likely to

deviate from their digital twin in the MPC, for a number of reasons

including: non-linearity in the battery management system, the in-

fluence of temperature, non-linear efficiency, or capacity reduction

through aging. The MPC is capable of handling such discrepancies

with frequent update of flexible asset states. However, this would

require flexible assets to regularly post onto the order book. The

management of expected state versus actual state, e.g., state of

charge, can be challenging as the discretion to post onto the order

book is left to flexible assets.

I Frequently rescheduling flexible assets must not completely change

the schedules for all flexible assets throughout the community. As

such the MPC stability to minor changes must be studied. The

risk of often re-shuffling control orders is to have flexible assets on

different versions of a schedule.

I Tuning and training forecasting models is also an integral part of the

MPC process that should not be overlooked, e.g., when should

the model be re-trained. We note that, tuning meta-parameters

with metrics of forecast quality might be misaligned when forecast

quality and value for the community are not necessary correlated.

I Long simulation times. Fast algorithms such as Alg. 1 enable to

explore the influence of local energy community designs, e.g., the

spread of flexible assets, the capacity of flexible assets, the capacity

of production units, the types of consumer profile, etc. . However,

training models and forecasting netload for # individual house-

holds is more cumbersome, especially with the auto-regressive

approach that requires step by step forecasts for each time of hori-

zon ), and re-dispatch at a higher frequency than every two days.

Selecting representative weeks with a clustering approach is an

option discussed in section 2.3, but it must be adapted to leave data

prior to a representative week to train models.

4.2.6 Perspectives and mutations

As mentioned in section 3.2, it is important to provide the means for

a coordination strategy to mutate, i.e., experiment changes and keep

positive ones. This section describes four changes that either answer

some of the limits mentioned above, or add aspects that have not yet

been considered.

Relaxing complexity

Not considering network fees. Network fees for power exchange brings

several limits related to forecasting individual netloads, for instance,

longer simulation time, larger uncertainties in forecasts, combinatorial

aspects in stochastic programming. As such, ignoring network costs

would simplify the MPC approach. In some situation this might even be

possible without lost of optimality. In particular, when only one or two

large storage systems support the community, and thus are required to

transit most of their capacity through the distribution grid anyway. This

switch to only considering the community netload can be tested without
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7: https://energies-renouvelables

.geg.fr/dossier/38/361-projet-ab

c-une-experience-exemplaire-d-au

toconsommation-collective.htm last

consulted in May 2022.

large modifications of the MPC, the objective function Eq. 4.12 simply

becomes 4.13.

Minimization

)∑
C=1

(
�8<?>AC ×max(0, ?# (C))

+ � ×
�∑
1

(
1

?̂# (C)
×

(
?18=(C) + ?

1
>DC(C)

) )2

)
(4.13)

Subject to: Eq. 4.1, 4.2, 4.3, 4.4, and :

?# (C) = unctrl
�
# (C) +

�=∑
1

?1(C) (4.14)

Where %# (C) is directly a forecast of the community netload.

Removing the order book. Aside from forecasting individual netloads, the

order book described in section 4.2.1 also brings some limitations. In

particular, issues related to decoupling predictive and control problems,

accurately modeling of flexible assets, and frequently rescheduling flexi-

ble assets as described in the list above. Although the order book format

is potentially critical in local communities with a diversity of flexible

assets from different makers, it may also be cumbersome in communities

with flexible assets coming from the same provider. In the latter scenario,

the provider already has a direct access to communicate with flexible

assets without needing the additional order book layer. Note that, in the

hypothetical case of a real-world implementation with LANCEY Energy

Storage on the “ABC” local energy community,
7
we would remove the

order book layer, as we are only expected to coordinate batteries from

LANCEY.

Increasing complexity

Adding grid constraints. We did not consider grid constraints in the

formulation of Eq. 4.5, however, including grid constraints in scheduling

flexible assets has the potential to avoid the need for grid upgrades

[59]. This is particularly interesting for local energy communities in

charge of managing power lines in between community members, e.g.,

in Switzerland as discussed in section 1.2.2. However, when distribution

system operators are in charge the situation is different. In France local

energy communities would require additional information from meters

outside of the community to model the distribution grid within a 2 km

radius. Note that in essence, maximizing self-sufficiency might already

correspond to a scenario minimizing grid constraints. Nonetheless, grid

constraints can be an explicit part of the MPC formulation using the

branch flow equations which reflect a balanced single-phase radial

network [53].

Adding nudges. The present MPC formulation does not attempt to change

the “uncontrollable” demand, however, we can imagine nudging commu-

nity members to align their consumption profile with local production.

The authors Thaler and Sunstein coined the term “nudge”, referring to

any aspect of the decision environment “that alters people’s behaviour

https://energies-renouvelables.geg.fr/dossier/38/361-projet-abc-une-experience-exemplaire-d-autoconsommation-collective.htm
https://energies-renouvelables.geg.fr/dossier/38/361-projet-abc-une-experience-exemplaire-d-autoconsommation-collective.htm
https://energies-renouvelables.geg.fr/dossier/38/361-projet-abc-une-experience-exemplaire-d-autoconsommation-collective.htm
https://energies-renouvelables.geg.fr/dossier/38/361-projet-abc-une-experience-exemplaire-d-autoconsommation-collective.htm
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in a predictable way without forbidding any options or significantly

changing their economic incentives” [112]. For instance, nudging could

take the form of a traffic light, green when some surplus is available and

red otherwise. To influence the uncontrollable demand, we propose to

add an additional layer which send nudges, e.g., a text message that

some solar production will be available in two hours, to community

members from the expected community netload. This potentially enables

members to plan to increase their consumption, e.g., manually increase

room cooling, heat cooking water, or use household appliances. One of

the difficulties of this approach is that the influence of nudging on the

netload is hard to isolate. As such, it complexifies the role of forecasting

models that might require additional regressors encoding when nudges

were sent.

� Highlights:

I In a simulation environment, the MPC approach can recover

up to 86 % of the value available over the week simulated.

I The MPC can follow an evolutionary approach to include

or remove certain aspects of complexity depending on their

added value, e.g., include nudges, or remove network fees .

4.3 A reactive approach

As opposed to the predictive approach which anticipates future states,

the reactive approach consists of acting based on past observations. Fig.

4.18 illustrates the idea of a reactive strategy. This approach requires to

relax some of the complexity expected for a coordination strategy, as

discussed in section 4.1. In particular, this approach as presented in this

section only applies to one type of flexible assets: batteries. As scheduling

shapeable loads and deferrable loads usually requires some knowledge

of future events. For instance, scheduling electric vehicles often requires

the anticipation of driving cycles. Secondly, this approach requires a tight

coupling between batteries and the community manager as frequent

updates are the basis of this control strategy. Third, costs from network

fees cannot be minimized over an horizon ) but simply at each time C,

as such the resulting schedule is sub-optimal at minimizing the cost of

power exchanges in comparison to the predictive approach.

timet

Self-consumption 
intervals

7 PM 7:15 
PM

Observations 
from t-1 to t

Sets actions 
from t to t+1

∆𝑡 = 3 minutes
Sub-intervals

Figure 4.18: Concept of the reactive ap-

proach during self-consumption intervals.

Nonetheless, the reactive approach answers the limits expressed in the

predictive strategy, section 4.2.5. In particular, it avoids limits related to
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forecasting netloads, and accurately modeling the future states of flexible

assets, while minimizing at C energy imports and exchanges within the

community.

4.3.1 Methodology

Alg. 4 describes each step of the reactive strategy. This algorithm is based

on dividing self-consumption intervals which last 15 minutes into sub-

intervals of 3 minutes, i.e., ΔC = 1/20. On the first sub-interval, batteries

are sent idling orders to wait for observations. The next sub-interval and

until the last sub-interval, batteries react to netload observations at C − 1.

For the last sub-interval, i.e., 3 minutes before the end of a 15 minutes

interval, batteries react to the previous netload, but also to the expected

netload during the sub-interval. Fig. 4.19 illustrates Alg. 4, where the first

sub-interval is an observation round, and the last sub-interval includes

the observed netload at C − 1 and the expected netload at C. Note that

some uncertainties arise at the last sub-interval as the netload must be

anticipated for batteries to react before then end of the self-consumption

interval.

Each battery reacts to the previous netload observation in two steps,

firstly at the individual level, and secondly at the community level. At

the individual level the Alg. 1 is used, and as such battery orders for

member = is ?1
′
= (C) = −unctrl�= (C − 1)while being subject to power and

energy constraints.

The community level starts on line 12, the first step is to get the expected

community ?# (C−1)with battery orders ?1
′
= (C). If the community netload

is negative, i.e., there remains more local production to absorb, then

batteries for eachmember = are ordered from themost empty to the fullest

(line 13 to 17). In the opposite situation, for a positive community netload,

batteries are ordered from the fullest to the most empty. This merit order

provides the prioritization for which batteries answer community-scale

needs first. The first battery on the list attempts to change power set

point such that ?1=(C) = ?1
′
= (C) − ?# (C − 1) while respecting power and

energy constraints (line 20 to 29). Then the expected community netload

is updated and the following battery on the merit order attempts to

provides support to the community.

Figure 4.19: Illustrative example of the

reactive dispatch.
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Algorithm 4: An algorithm to maximize collective self-sufficiency

Data: unctrl
�
= (C) ∀C ∈ [1...)],ΔC = 3 minutes

Data: battery model �=<0G , �
=
<8=

, %=<0G , %
=
<8=
∈ ℝ+ , � = 0.95

Result: ?1=(C) representing ?1(C) aggregated for member =
1 C = 0

2 while C < ) do

//Skip the first step

3 if C mod 15/ΔC == 0 then

4 ?1=(C) = 0 ∀= ∈ # ; C = C + 1

5 Continue with next iteration,

//Estimate netloads for the last step and add it at t-1

6 if C + ΔC mod 15/ΔC == 0 then

7 for member = ∈ # do

8 unctrl
�
=(C) = unctrl

�
= (C − 1)

9 unctrl
�
= (C − 1) = unctrl

�
= (C − 1) + unctrl

�
=(C)

//Apply Alg. 1 for individual members

10 for member = ∈ # do

11 ?1
′
= (C), �=(C) = apply Alg. 1 for = with unctrl

�
= (C − 1) and ΔC

//Get the community netload

12 ?# (C − 1) = ∑#
==1

(
unctrl

�
= (C − 1) + ?1′= (C)

)
//Order batteries SOC in kWh

13 order# (C) = [�=(C) for = ∈ #]
14 if ?# (C − 1) ≤ 0 then

15 order# (C) = order# (C) from lowest to highest

16 else

17 order# (C) = order# (C) from highest to lowest

//Member = shares capacity with the community

18 for member = ∈ order# (C) do
19 ?1=(C) = ?1

′
= (C) − ?# (C − 1)

//Apply battery constraints

20 B<0G,=(C) = max(0, �<0G,=−�= (C−1)
ΔC × 1

� )
21 if ?1=(C) ≥ B<0G,=(C) then
22 ?1=(C) = B<0G,=(C)
23 B<8=,=(C) = min(0, �<8=,=−�= (C−1)

ΔC × �)
24 if ?1=(C) ≤ B<8=,=(C) then
25 ?1=(C) = B<8=,=(C)

26 if ?1=(C) ≥ %<0G,= then

27 ?1=(C) = %<0G,=
28 if ?1=(C) ≤ −%<8=,= then

29 ?1=(C) = −%<8=,=

//Update community netload

30 ?# (C − 1) = ?# (C − 1) + ?1=(C) − ?1
′
= (C)

//Update state of charge

31 for member = ∈ # do

32 if ?1=(C) ≥ 0 then

33 �=(C) = �=(C − 1) + ?1=(C) × ΔC × �
34 else

35 �=(C) = �=(C − 1) + ?1=(C) × ΔC × 1

�

36 C = C + 1

37 return ?1=(C)
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Note thatAlg. 1 does not consider sub-intervals to adjust battery schedules

?1=(C) , as such it considers that unctrl
�
= (C) can be observed and reacted to

instantaneously, as if ΔC tends to zero. This is relatively realistic as Alg. 1

only depends on local data and does not communicate with a community

manager, e.g., as in the droop controllers of section 3.5.1. However, in Alg.

4 discrete intervals must be considered to leave time for communication

with a community manager.

4.3.2 Results

To illustrate the reactive approach and compare it to the predictive

strategy described in the previous section, we select the the same data

as in section 4.2.4 from May the 30
th
to June the 6

th
for five households.

As in the previous section households are equipped with 3 kWp solar

panels and a 5 kWh battery.

Fig. 4.20 shows the cumulative energy imports of the reactive approach

along with three other scenarios. The scenario with only solar panels

and no batteries, a scenario derived from a perfect forecast, and the

result of the predictive approach from Fig. 4.15. The results show that

the reactive approach perfectly matches an optimal schedule in terms of

energy imports at the end of the week, however, the overall cost is slightly

increased as a result of more power exchanges between participants.

Nonetheless, the cost at the end of the week of the reactive strategy 12.2 e
is still below the cost from the predictive strategy at 14.9 e . Note that

energy imports in the reactive case momentarily go below those of the

perfect schedule, especially on June the 4
th
. This behavior is expected as

the reactive strategy uses flexible assets as soon as possible, in comparison

to the predictive schedule that can postpone charging or discharging on

the time horizon ).

Figure 4.20: Energy imports for the reac-

tive dispatch for one week. Costs in euros

represent the cost of energy imports and

grid fees at the end of the week for the

community of five households.
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An important caveat of the results in Fig. 4.20 is that netload data is

constant over 15 minute intervals and thus each sub-interval of 3 minutes

observes the same netload value. This illustrates a best case scenario for

Alg. 4 as the netload on the last sub-interval is always the netload at C − 1

as expected.
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Figure 4.21: Costs distribution for the re-

active dispatch with a normal distributed

noise. Additional scenarios are added for

reference. Python notebook available at

https://github.com/Jonathan56/supp
lementary_thesis/tree/master/4_cha
pter.

To test the sensitivity of Alg. 4 to varying netload values every 3 minutes,

we add to the netload profile a random uniform noise centred on zero

with a variance of �2 = 0.3. Further, to maintain the same cumulative

energy demand, we ensure that the added noise is zero mean every two

hours. To draw representative distributions of possible costs, we simulate

the same week a thousand times with random uniform noise added.

The result of Fig. 4.21 suggests that the reactive strategy is significantly

affected by a more noisy netload, as this moves the costs at the end of the

week to under 13 e in only 10 % of the scenario and under 14.9 e in 85 %

of the scenarios.

Yearly results

Since Alg. 4 is fast to solve, as well as, the linear optimization problem

Eq. 4.5 we can apply both the reactive and the perfect predictive strategy

to a complete year. In practice, we limit the problem size for the linear

optimization to week long horizons. We solve each week separately using

historical data to obtain the perfect schedule. This is possible without

lost of optimality as the battery capacity per household is limited to

5 kWh, which is not enough to have significant intra-week effects. To

run a complete year comparison we pick the same twenty household

community as the example in section 2.2. Each household is equipped

with a 3 kWp solar panel.

The results from Fig. 4.22 suggest that the reactive strategy can achieve

the same energy import over a complete year as the predictive strategy

with a perfect knowledge of the futur. However, the reactive approach

leads to a slightly higher energy cost of 13 e permember and per year due

to more power exchanges between community members. Note that this

is a best case scenario for the reactive approach as on the last sub-interval

the netload is always known, i.e., equal to the netload from the previous

3 minutes.

https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
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Figure 4.22: Energy import for the perfect

and reactive dispatch for a full year. Costs

include energy imports and grid fees at

the end of the year when equally shared

among the twenty members. Python note-

book available at https://github.com/J
onathan56/supplementary_thesis/tr
ee/master/4_chapter.
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4.3.3 Perspectives

Several aspects of the reactive approach could be improved to reduce

erroneous decisions that might happen when predicting netloads on

the last sub-interval, as well as, to include a broader category of flexible

assets.

I Include predictive models such as decision trees or neural networks

to estimate the netload expected on the last 3 minutes of a self-

consumption interval. In Alg. 4 the expected netload is simply the

netload at C − 1.

I Faster updates, thus shortening sub-intervals to limit the impact of

the last interval. If sub-intervals are reduced to 1 minute, then only

1/15 of the time has some unexpected netload value.

I Act on the first sub-interval to avoid switching on and off batteries,

and thus obtain a more homogenous schedule with less variability.

I Include shapeable loads such as electric vehicles as flexible assets

that can only charge and have a higher priority than battery assets.

Further, some conditions are required to enable Alg. 4 to charge

electric vehicles from the upstream grid when they are close to

their departure time.

I Mix predicitve and reactive strategiesMix the predictive approachwith

some safety built in a reactive fashion. In particular, we propose in

appendix A an approach to train a model to learn the best course

of action when seeing a perturbation. Other reactive adjustments

are possible, in particular, adjustments that only ensure that the

predictive strategy remainswithin acceptable limits. In otherwords,

that the predictive strategy never leads any battery to charge or

discharge from the upstream grid.

https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/4_chapter
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� Highlights:

I In a simulation environment, over a full year, the reactive

approach can recover 94% of the value that a perfect dispatch

would achieve.

I The reactive approach requires a close integration with the

energy management systems of flexible assets which might

be challenging when it involves different providers of assets.

4.4 Partial conclusion

To provide a solution for local energy communities to coordinate their

consumption within a short interval of the local production, we present

two solutions. Both solutions, a predictive and a reactive approach rely

on a trusted community manager.

The predictive approach has the potential to schedule flexible assets

such that the community achieves a minimum cost of energy. However,

in practice, forecasting errors when predicting future netloads lead to

sub-optimal schedules. In fact, for the week simulated, due to erroneous

forecasts, the predictive strategy captures only 86% of the available

value.

The reactive approach is in someways the “least bad” option. As it cannot

capture the minimum value given by the predictive approach under a

perfect forecast, since the reactive approach does not consider decision

making over a time horizon ), but simply at time C. However, it is not

subject to forecasting errors, as such for the week simulated it captures

98% of the available value.

The reactive approach, as opposed to the predictive approach, relies

on a fast communication with battery management systems, which is

potentially challenging. Further, the predictive approach offers a simpler

modeling for flexible assets that depend on future events, e.g., electric

vehicles that need to be charged before a departure time. When both

the predictive and reactive approaches are suitable for a local energy

community, a simulation can decide which approach is likely to recover

themost value, i.e., howmuch erroneous forecasts influence thepredictive

approach.

We can ask ourselves if other strategies, outside of the centralized opti-

mization category of Fig. 3.4 would avoid some of the limits encountered

with the predictive strategy. With regards to erroneous forecasts, most

strategies are also subject to this issue. In particular, for distributed

strategies and market based approaches, instead of being an issue for

a central community manager, forecasting errors become an issue for

individual members.

Sincewemake the assumption of a trusted communitymanager, strategies

based on distributed legders do not solve a particular need of the

community, while adding issues related to a consensus mechanisms,

e.g., proof of stake. Market-based approaches have the advantage of

simplifying the role of a central community manager as decisions are
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partially taken by community members themselves. However, it implies

that individual members may have to solve a complex decision problem.

In particular, individual members have less knowledge on flexible assets

in the community than a community manager while not necessarily

benefiting frommore knowledge on their ownflexible assets.Additionally,

community members that produce power may not provide a relevant

price signal if theydecide to sell their production at the constantmaximum

price of electricity, i.e., the price otherwise available from traditional

suppliers. As such, we believe that among the large panel of strategies,

the proposed predictive and reactive strategies offer good solutions for

the local energy communities envisioned.
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Other people can talk about how to expand the destiny of mankind. I
just want to talk about how to fix motorcycle. I think that what I have
to say has more lasting value.
—Robert M. Pirsing, Zen and the Art of Motorcycle Maintenance

This last chapter takes a radically different perspective on local energy

communities, we move away from financial aspects to look at carbon

impacts, and from operating communities to sizing communities, i.e.,

energy systems. This chapter has two main motivations; to assess if

local energy communities preserve their “raison d’être” despite the

embodied carbon emissions in solar panels and batteries, and to show

that self-sufficiency can be included in sizing problems.

We start with a simple back-of-the-envelop calculation to answer if “more

solar panels are always better”. Then, we show that if the national grid

is not considered as an ideal infinite storage option, the answer is not

trivial. As such we propose an optimization method for local energy

communities to find the optimal sizing of solar panels plus batteries that

minimizesGreenhouseGas (GHG) emissions.We apply ourmethodology

to both a French and a German community to draw results from grids

with significantly different hourly carbon emissions. Finally, we use the

natural self-sufficiency index developed in section 2.4 to explore the

sensitivity of our results with regard to load profiles.

5.1 Are more solar panels always better?

At first sight, yes, more solar panels always reduce GHG emissions. At

least, this is the answer from a simple back-of-the-envelope calculation.

Manufacturing and retiring solar panels have an average GHG cost of

1040 kgCO2-eq/kWp [113]. While producing electricity from a 1 kWp

solar panel avoids on average 266 kgCO2-eq per year in Germany and

69 kgCO2eq per year in France [26], [114]. It follows that after 4 years in

Germany or 15 years in France, a solar panel has virtually reimbursed its

carbon impact. If we assume that the lifetime of a solar panel is longer

than 20 years, we can conclude that more solar panels always reduce

GHG emissions.
1

However, this brief calculation makes the hypothesis that the electrical

grid acts as infinite and ideal storage. In other words, it is always possible

to import or export from or to the grid.

Let’s consider the hypothesis where power injection into the upstream

grid is possible but no longer desired. In such a scenario, more solar

panels are not always better in terms of GHG emissions. In particular, it

depends on the proportion of solar energy that can be absorbed locally.

With that hypothesis, only the energy production that overlaps with local
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consumption is accounted for to reimburse the initial carbon cost of solar

panels.

Figure 5.1: Illustration of CO2 operational

costs from various sources, note that ex-

porting power is not -60 gCO2/kWh as in

the infinite grid assumption.

Producers Consumers

0 gCO2/kWh

60 gCO2/kWh 
on average

Local power

Grid imports

Local energy community

0 gCO2/kWh

Grid exports

Why would we consider this more conservative hypothesis? We propose

two reasons, first from a technical point of view, and second from a

more social or energy sufficiency-oriented perspective. In reality, the

electrical grid is far from an infinite storage, and exporting solar power

also has a carbon cost. For instance, solar power does not replace the

stability brought by large rotating machines (i.e., spinning reserve for

frequency regulation), nor does it change the number of thermal power

plants required to meet the electricity demand at night in winter. In

some cases, it actually calls for more thermal power plants to increase

“ramp up” capacities when evening consumptions increase as the sun sets

(Calero 2022). Exportingmore solar powermay also imply additional grid

reinforcements and emissions from unintentional start-up and shutdown

sequences of conventional thermal units.

The second reason to consider the hypothesis of constrained grid exports

is of a social nature.We believe that there is a trade-off to consider between

the different scales of the grid, in particular between the national scale

and the scale of local energy communities. A trade-off between efficiency

gains from large-scale infrastructures, versus what the proximity to a

limited production can bring in terms of energy sufficiency (Illich 1974).

To be clear, we do not advocate for grid-independent energy communities.

In this chapter, we consider grid-dependent communities that chose to

situate their actions for the energy transition at a local scale, rather than

at a national scale. Then the question becomes: From a GHG emission’s

perspective, what is the right number of solar panels and size of batteries,

when exporting power is not a desired option?

To answer this question, we formulate an optimization problem. In

addition, for the optimization to be more insightful than just providing a

minimum scenario, i.e., GHG emissions are minimized for G solar panels

and H batteries which coincide with achieving I % of self-sufficiency,

we add the constraint to achieve a given self-sufficiency level. Thus,

we get a better overview of how emissions vary on the complete range

of possible self-sufficiency, from 0%, i.e., forcing that no solar panels

are installed, to 100% which demands solar panels but also significant

storage capabilities. This approach is illustrated in Fig. 5.2 where the

expected shape of results is intuited.
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At first, when self-sufficiency increases GHG emissions are reduced, since

all local solar production is absorbed by consumption, similarly to when

the grid is equivalent to an infinite storage, i.e., the back-of-the-envelop

calculation. However, at some point reaching higher self-sufficiency will

inverse the trend, and increase GHG emissions. As reaching higher

self-sufficiency requires either oversize solar panels, i.e., not benefiting

from all the solar production as some is exported to the larger grid, or

investing in storage capabilities which tend to increase carbon costs per

kWh. As such, we expect our results to form a bell curve as shown in

Fig. 5.2, where the starting point at 0% self-sufficiency corresponds to

the average emission of the upstream grid.

5.2 Methodology

In this section, we provide the mathematical formulation for the opti-

mization problem that sizes solar panels plus batteries to reach a given

self-sufficiency with a minimum amount of carbon emissions. The emis-

sions estimations account for the solar and battery manufacturing, i.e.,

“capital” emissions, as well as the emissions incurred by energy imports

from the grid, i.e., “operational” emissions. As such, minimizing GHG

emissions involves both long-term decisions, e.g., investment decisions

with aging equipment, and short-term operational aspects, e.g., hourly

data to assess how much grid emissions are offset. This multi-temporal

scale is problematic, as the size of the optimization problem becomes

significant, and bridging between short and long-term time scales is

challenging.

The literature offers different options to manage such a problem [115].

For instance, Monte Carlo simulations with different sizes of flexible

assets randomly selected to participate in the minimization of operat-

ing expenses [116]. Bi-level optimization procedures formulated as a

leader-follower problem where the outer loop is a genetic algorithm

to explore the space of possible sizes [117]. “All-in-one” formulations

where both operating and sizing variables are considered in a single

linear or mixed integer linear optimization problem [118]. We take the
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“all-in-one” approach with a linear programming problem that is fast

to solve. Additionally, we reduce the number of simulation periods

through a clustering of representative weeks following the methodology

developed in section 2.3.

As such, we can account for long terms dynamics:

I battery aging,

I solar panel aging,

I multiple battery investment decisions, i.e., not only the first year

but throughout the optimization at years 1, 8, and 16, we consider

that batteries have a 8 year lifetime,

I self-sufficiency goals over the course of the optimization horizon.

But also account for shorter terms dynamics in the same “all-in-one”

optimization:

I energy balance at the community level every 15 minutes,

I sub-hourly greenhouse gas emissions from the grid,

I battery constraints and scheduling.

In the following mathematical formulation, solar panel size PV20?028CH

as well as initial and replacement battery capacities Battery20?028CH(1)
are the critical decision variables. Those decision variables are used to

minimize capital and operational grid emissions, i.e., CAPEX and OPEX,

while reaching a specific self-sufficiency.

Min. CAPEX +
.∑
H=1

OPEX(H) (5.1)

CAPEX and OPEX, are defined in units of kgCO2-eq. CAPEX represents

emissions from manufacturing and retiring solar panels and batteries.

OPEX of year H represents emissions from the consumption of electricity

on the grid. Within a year H, we consider a set of , periods with

" intervals, so time is defined by a year, a period, and an interval

C = (H, F, <). � represents the set of years when the battery capacity can

be renewed, i.e., years 1, 8, and 16.

CAPEX = PV�,% × PV20?028CH + Battery�,%×
�∑
1

(Battery20?028CH(1) ×
BatteryDB064(1)
Battery;8 5 4C8<4

) (5.2)

OPEX(H) =
,∑
F

�F
"∑
<

(
grid

+(H, F, <) × grid4<8BB8>=B(H, F, <)
)

(5.3)

The Global Warming Potential (GWP) of both solar panels and batteries

is represented, Battery�,% is defined in kgCO2-eq/kWh, and PV�,% in

kgCO2-eq/kWp. Battery emissions are calculated taking into account

the number of years a battery is in service in relation to its lifetime, this

discounts remaining years of service after the optimization horizon. For

solar panels the lifetime is assumed to be 20 years, the optimization

horizon. The OPEX of different periods F is weighted by �F a coefficient

which is given by the clustering algorithm when reducing the number of
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simulation steps. For the rest, the OPEX is given by the product of grid
+

in kWh and grid4<8BB8>=B in kgCO2-eq/kWh.

grid
+(C) = load(C)
− PV20?028CH × pv

1:, (C) × PV068=6(H)
+ ?1(C) + grid

−(C) (5.4)

grid
+(C) ≥ 0 (5.5)

grid
−(C) ≥ 0 (5.6)

Solar panels are subject to aging with PV068=6(H)which decreases power

production each year. grid
−(C) ≥ 0∀C ∈ ) is a variable representing

“negative” imports which is necessary to maintain the energy balance.

This variable is minimized as a result of minimizing grid
+(C). In addition,

grid
+(C) is constrained to match a self-sufficiency target

B4; 5
over the

horizon of the optimisation.∑.
H

∑,
F

∑"
< grid

+(H, F, <)∑.
H

∑,
F

∑"
< load(H, F, <)

= 1 − target
B4; 5

(5.7)

On the storage side, B(C) is constrained to model battery charging and

discharging.

?1(C) = ?8=(C) − ?>DC(C) (5.8)

0 ≤ ?8=(C) ≤
Battery20?028CH(H)

2

(5.9)

0 ≤ ?>DC(C) ≤
Battery20?028CH(H)

2

(5.10)

Battery20?028CH(H) × 0.2 ≤ �(C) ≤ Battery20?028CH(H) (5.11)

�(C) = �(C − 1) + ?8=(C)ΔC × �8= − ?>DC(C)
ΔC

�8=
(5.12)

�0 = �()) (5.13)

Where �8= and �>DC represent charging and discharging efficiency. We

assume that the initial and final state of charge must be equal. Further,

we make the assumption that batteries can fully be charged or discharged

in two hours, thus we set power limits to half of the battery capacity.

Battery20?028CH(H) is limited to 80% of the full battery capacity in order

to ensure an 8-years lifetime with corresponds to 3000 daily cycles.

The next constraint prevents batteries fromhavingCO2 arbitrage activities

beyond the solar panel production at C, e.g., chargingwhen grid emissions

are low and discharging when they are high.

?8=(C) ≤ PV20?028CH × pv
1:, (C) × PV068=6(H) (5.14)

Finally, the last constraint ensures that battery aging is applied every year

through the battery state of health (>�(H), except years 10 = 0, 11 = 8,

and 12 = 16 when the optimisation decides to invest in new battery
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capacities.
Battery20?028CH(H) = (>�(H) Battery20?028CH(10), if H > 10 & H < 11

Battery20?028CH(H) = (>�(H) Battery20?028CH(11), if H > 11 & H < 12

Battery20?028CH(H) = (>�(H) Battery20?028CH(12), if H > 12

(5.15)

5.3 What is the right number of solar panels?

To illustrate the optimization problem, we propose a quantitative solution

of Fig. 5.2 for France and Germany. For both countries, we select a

local energy community of 20 households as for examples in previous

chapters [28]. The solar production data is determined with PVGIS [26]

for Grenoble, France, and Berlin, Germany. The GHG emissions data of

the French and German power grid comes from ElectricityMap, 2022. For

this example, load profiles, irradiance profiles, and GHG emissions from

the grid are assumed invariant over the course of 20 years. Although

the methodology enables to take different profiles each year, we did

not want to assume any direction with regards to load profiles and

grid emissions in this example, i.e., reduction or increase. For capital

CO2 costs associated with solar panels and batteries, we consider an

average carbon impact of 1040 kgCO2-eq/kWp for solar panels [113], and

158 kgCO2-eq/kWh for batteries [119].

As mentioned in the methodology section, a phase of data reduction is

necessary to reduce the complexity of the optimization. As such, we use

the K-Means clustering methodology explained in section 2.3. However,

in this chapter, the clustering is not only performed on the load profile,

and solar production, but also on the CO2 emission profile. To verify

that the weeks selected by the K-Means clustering are representative of

the whole year, we calculate carbon OPEX and self-sufficiency metrics.

Both in the French case and the German case, we have validated that five

weeks are sufficient to represent a whole year.

Fig. 5.3 and Fig. 5.4 illustrate that the optimization accounts for opera-

tional constraints. In themselves, those figures are not the final results

that we are interested in, they are merely one week over five in the first

year of a twenty years life cycle, however, they highlight some of the

dynamics at play. In both scenarios the target self-sufficiency to reach is

50%, however, the German scenario requires more batteries as shown

by the upper limit on the battery state of charge. This is mostly due to a

lesser solar production overall in Berlin compared to Grenoble.

For the German case, the grid emissions vary significantly between day

and night as opposed to the French case where they remain around

60gCO2-eq/kWh. Those high variations in the German case open the

door for “arbitrage” activities which we choose to limit to remain within

the community’s perimeter. As mentioned in the methodology arbitrage

activities are limited below the solar panel production Eq. 5.14. We

note that Fig. 5.3 shows some arbitrage activity on September the 12
th
,

since the community imports electricity and yet the battery is charging,
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Figure 5.3: Sample result for the German scenario the first year, target self-sufficiency is 50%. Python notebook available at https:
//github.com/Jonathan56/supplementary_thesis/tree/master/6_chapter.

Aug 6 Aug 7 Aug 8 Aug 9 Aug 10 Aug 11 Aug 12 Aug 13
0

20

40

60

80

100

120

140

2019Ba
tte

ry
 S

O
C

 [k
W

h]
 &

 G
rid

 e
m

is
si

on
s 

[g
C

O
2/k

W
h]

Grid emissions
Battery SOC

100% SOC

20% SOC

Grid imports [kW] Grid exports [kW]

Figure 5.4: Sample result for the French scenario the first year, target self-sufficiency is 50%. Python notebook available at https:
//github.com/Jonathan56/supplementary_thesis/tree/master/6_chapter.

however, the battery is charging at a slow rate to remain below the solar

production.

Fig. 5.5 and Fig. 5.6 represent a quantitative answer for Germany and

France of the hypothesis posed in Fig. 5.2. We check that when self-

sufficiency is at 0%, all the energy consumption is imported from the

main grid. Thus, the normalized carbon emissions are equal to the

average French and German grid emissions (red dashed line).

https://github.com/Jonathan56/supplementary_thesis/tree/master/6_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/6_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/6_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/6_chapter
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Figure 5.5: GHG emissions results as a

function of self-sufficiency for the German

scenario. Python notebook available at ht
tps://github.com/Jonathan56/supple
mentary_thesis/tree/master/6_chapt
er.
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Figure 5.6: GHG emissions results as a

function of self-sufficiency for the French

scenario. Python notebook available at ht
tps://github.com/Jonathan56/supple
mentary_thesis/tree/master/6_chapt
er.
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In both countries, at low self-sufficiency targets, i.e., 20% self-sufficiency,

the GHG emissions incurred by manufacturing solar panels are compen-

sated by reducing day-to-day emissions from the main grid. However,

greater self-sufficiency targets require the installation of larger solar panel

and battery systems, which incurs significant emissions. Especially, as

batteries need to cope with successive days of moderate solar production,

and supply power peaks. In those cases, the operational carbon savings

do not compensate for the manufacturing emissions, and the global

system GHG emissions can reach values well above those of national

grids.

Looking at GHG emissions per kWh in France and Germany tells a

different story. Since GHG emissions for electricity are much lower in

France, it is harder to reimburse the initial cost of solar panels and

batteries. As such, shedding 2 kgCO2-eq/MWh from the initial 57 kgCO2-

eq/MWh grid only emission is the best case scenario which is realized

for 20% self-sufficiency. In Germany, the best-case scenario is to shed

84 kgCO2-eq/MWh at 50% self-sufficiency from the initial 287 kgCO2-

eq/MWh grid only emission. Although both scenarios must achieve

exactly the same self-sufficiency, the German case demands greater solar

panel and battery capacities due to a lesser irradiance. In the French case,

theminimumcarbon emissions are reached for a 1 kWp solar panel and no

battery, whereas, in the German case the minimum carbon emissions are

https://github.com/Jonathan56/supplementary_thesis/tree/master/6_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/6_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/6_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/6_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/6_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/6_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/6_chapter
https://github.com/Jonathan56/supplementary_thesis/tree/master/6_chapter
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reached for a 4.3 kWp solar panel and a battery capacity of 10.2 kWh.

Dividing theglobalwarming impact of solar panels by two, i.e., 520 kgCO2-

eq/kWp instead of 1040 kgCO2-eq/kWp, does not drastically change

the results in France. In this scenario, the minimum carbon emissions

are achieved around 25% self-sufficiency with a resulting 50 kgCO2-

eq/MWh instead of 55 kgCO2-eq/MWh when the solar panel GWP is

1040 kgCO2-eq/kWp. This small difference in the end, is due to two

reasons. Firstly, solar panel capital emissions at 25% self-sufficiency are

small, i.e., only related to a 1.7 kWp solar panel, in comparison to the

operational emissions from grid imports. Secondly, to go beyond 25%

self-sufficiency, although solar panel capacities are increased, batteries

are still required, however, with a GWP at 158 kgCO2-eq/kWh for an

8-years lifetime, batteries end up beingmore costly than importing power

from the grid.

� Highlights:

I For the local energy community of residential buildings stud-

ied in France, a solar panel capacity beyond 1 kWp per house-

hold increases GHG emission, if we consider that exporting

power is not desired.

I Reducing inhalf the globalwarmingpotential of solar panels to

520 kgCO2-eq/kWphas a limited impact of 5 kgCO2-eq/MWh

in France.

5.4 What is the impact of load profiles?

The previous example is relative to a twenty household community from

which we have load profile data. However, minimizing GHG emissions

by installing solar panels and storage systems is highly dependent on

load profiles. As some load profiles are more inclined to absorb solar

production, i.e., self-consume. For instance, an office building with

greater consumption during daytime is naturally better equipped to

consume solar generation, than a residential building with an 8 pm peak

demand.

Unfortunately, real-world consumption profiles are scarce resources,

especially when looking for a variety of consumer types. The existence

of open-source databases is one solution to study the effect of various

load profiles on the optimal sizing of solar panels and storage capacities

[28]. Another option is to use bottom-up approaches which consider

the number, use patterns, and technical characteristics of individual

appliances to reflect load profiles [120]. However, those solutions only

provide discrete answers,without offering a continuous analysis for degrees
of “alignment” between load profiles and solar production. To provide

this continuous analysis, we use the concept of Natural Self-Sufficiency

(NSS) developed in section 2.4, as well as the methodology to modify

load profiles to match a given NSS.

There are several reasons to create new load profiles with modified

NSS. One reason is to provide lower and upper bounds with regard

to variations in load profiles when optimally sizing solar panels for a
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community. This approach is potentially faster than running large Monte-

Carlo simulations. Another reason, which we explore in Fig. 5.7, is to

summarize the impact of any load profile, i.e., with different load patterns,

and energy demands, on the optimal sizing of solar panels through a

single NSS index. If NSS can represent the diversity of load profiles, then

this methodology is useful to exhaustively explore the impact of any load

profiles on GHG emissions, as load profiles are necessarily within 0 to

100% NSS. In a way, we estimate the minimum GHG emission for any

local energy community, i.e., for any NSS, at a given location.

Intuitively, a community expecting to be fully self-sufficient with a NSS

index close to zero will need large storage capacities leading to a high

GHG impact due to carbon installation costs. On the contrary, achieving

30% self-sufficiency for a community with an already high natural self-

sufficiency of 50% might avoid any storage, or oversized solar panels,

and thus lead to a low GHG impact.

5.4.1 Reference chart for France and Germany

In this section, we provide numerical results which explore the impact of

load profiles on GHG emissions associated with solar panel production.

The data for this example is the same as for the previous example both

for France and Germany, from section 5.3.

We then apply the NSS methodology explained in chapter 2 to both

the German and the French load profiles to match NSS values from

10% to 100%, which results in 10 different load profiles of five weeks

for each country. Each profile for France and Germany is optimized for

self-sufficiency targets from 0% to 100% to give Fig. 5.7. To simplify

comparing load profiles with different NSS values, annual average grid

emissions factors are considered. For Germany 293 gCO2-eq/kWh and

for France 60 gCO2-eq/kWh as per hourly data [114].

0 20 40 60 80
0

100

200

300

400

500

1%
10%

20%
30%

40%
50%

60%
70%

80%
90%

100%

Grid only emission

Natural self-sufficiency

C
ar

bo
n 

em
is

si
on

 [k
gC

O
 2e

q 
/ M

W
h]

Self-sufficiency [%]
0 20 40 60 80

40

60

80

100

120

140

160

180

10%
20%

30%
40%

50%

60%

70%

80%

90%

100%

Self-sufficiency [%]

Germany France

Figure 5.7: GHG emissions as a function of self-sufficiency levels for profiles with 10% to 100% natural self-sufficiency in France and

Germany. The bold line represents the NSS that can be expected for a residential community.
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Fig. 5.7 is an extended version of Fig. 5.5 and Fig. 5.6 which enables to

envision the benefits of shifting consumption at time of solar production.

The bold lines in Fig. 5.7 represents a load profile with a 30% NSS

which corresponds to a common NSS for residential buildings. Since

GHG emissions for electricity usage are much lower in France, shedding

10 gCO2-eq/kWh is challenging, i.e., it requires a starting NSS of around

80% with 3 kWp solar panels per house. In Germany, where the grid

emissions are much higher, we can hope to shed 75 gCO2-eq/kWh

realistically, i.e., with a moderate NSS at 30%, 3.5 kWp of solar panels,

and 8 kWh of batteries per household. We note that since average grid

emissions are used instead of dynamic emissions, arbitrage activities

are not present, which results in slightly higher carbon emissions in the

German case in comparison with Fig. 5.5.

5.4.2 Verifying the hypothesis on natural self-sufficiency

As mentioned earlier, we hypothesize that load profile differences can

be summarized through the concept of natural self-sufficiency when it

comes to sizing renewable energy systems for a given location. To verify

this hypothesis, we expect that two load profiles with the same NSS

will give identical results in Fig. 5.8. In other words, any load profile

with a given NSS should fall within the corresponding NSS curves from

Fig. 5.8. We select 4 different load profiles from open-source data sets

with respectively 29%, 31%, 33%, and 39% NSS.
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Figure 5.8: Verifying the hypothesis on

NSS for the German case using 4 differ-

ent load profiles with various natural self-

sufficiency (specified on each curve).

Below 60% self-sufficiency, Fig. 5.8 shows that our hypothesis holds,

as all the curves remain within the 30% to 40% boundaries. This is a

significant result as energy communities most often remain below 65%

self-sufficiency [28]. Beyond 60% self-sufficiency, the NSS index is not

the only parameter to consider, as the GHG impact of batteries becomes

significant. In particular, the maximum peak demand, and consecutive
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days with large energy demand influence the size of the battery required

to reach a certain self-sufficiency. It ultimately leads to deviations from

the expected GHG emissions given by the reference chart generated with

load profiles computed following our methodology.

� Highlight:

I Natural self-sufficiency provides a metric to summarize the

impact of a variety of load profiles on optimization results.

5.5 Partial conclusion

In this chapter, we address the sizing of solar panels plus storage in view

of minimizing GHG emissions. We place ourselves in a context where

power injection into the upstream grid, i.e., outside of a local energy

community is possible but no longer desired for technical and social

reasons.

From our results, we draw trends rather than absolute certitudes. For

instance, in the French case further reducing emissions by 10 gCO2-

eq/kWh is challenging. However, in Germany, communities can hope to

shed 75 gCO2-eq/kWh realistically,with an overall natural self-sufficiency

of 30%, and households equipped with 3.5 kWp solar panels, and 8 kWh

batteries. Our results also speak to the limits of relying on high self-

sufficiency levels to reduce the carbon intensity per kilowatt-hour, when

simply reducing the amount of kilowatt-hour consumed might be better

at the end of the day. This is clear in France, less in Germany as GHG

emission per kilowatt-hour can be lowered by a third in comparison to

the national grid.

We believe that our proposition for a natural self-sufficiency index and

the methodology to modify load profiles is interesting to estimate results

on a variety of load profiles (which is often not possible due to the scarcity

of available data). In particular, this is a valid solution when load profiles

cannot be modified from the ground up using individual appliances’

consumption. If local energy communities want to gain confidence in

regard to potential load profile changes, e.g., due to unexpected new

members, they may use our methodology to apply some variations

to their load profile. Further, we expect that this methodology can

evolve, by including other parameters like consecutive days without solar

production.
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6.1 Overview of the main results

Local energy communities offer a place to rethink our view on energy

consumption, and although these communities have always existed, they

have recently gained momentum. From a regulatory perspective, since

2021, all member states of the European Union are required to implement

renewable energy communities in their national law. Additionally, and

at least in France, due to higher electricity prices, selling electricity to

neighbors might prove to be more profitable than selling to a supplier at

a regulated price.

In our view, local energy communities rely on at least two principles a

spatial limit and a temporal limit. The spatial limit ensures that com-

munities remain in the physical proximity of production units, and in

practice, that communities have a limited number of participants. The

temporal limit provides the necessary link to ensure a physical relation

between local energy production and consumption. This temporal limit

is also the principal challenge of local energy communities which justifies

our scientific work in assessing coordination strategies.

Throughout this work, we adopt a specific posture on scientific contri-

butions. Rather than producing knowledge through the evolutionary

process of “filling gaps” on existing coordination strategies, we follow a

“bricolage” approach as defined in [21]. This approach views scientific

contributions as a remodeling of existing theories by combining various

ideas, and observations specific to a novel context. As such, we consider

that one of our main contributions is to cast the perspective of spatially

and temporally limited energy communities on existing coordination

strategies. Additionally, we situate our scientific contributions as both

“reflexive knowledge” and “instrumental knowledge” [121, 122]. In that

order, we question the purpose of local energy communities and coordi-

nation strategies, and then, the means to achieve coordination of local

energy production with local consumption.

To question and frame the potential of coordination strategies, we first

look at estimating the theoretical lower and upper self-sufficiency limits

of communities. In chapter 2, we show that self-sufficiency calculated

with a daily granularity represents a good theoretical upper limit below

10 kWh of storage capacity per household for a residential community in

France. On a longer time-scale, we show that for the community studied,

storing energy from one day to another within a week has a very limited

5% impact on self-sufficiency below 5kWp solar panel per household.

This methodology, which looks at different storage cycles is interesting to

justify the length of a coordination horizon ). Additionally, although it

is important to calculate self-sufficiency over a complete year to provide

meaningful results, we show that it is possible to represent a full year

with only five weeks of data using a clustering method.
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One of the difficulties in designing coordination strategies is under-

standing how existing strategies relates to each other, and how they

relate to the local energy communities they are designed for. This is not

trivial as local energy communities take many shapes in the literature,

often with larger geographical scopes, as do coordination strategies from

different market-based approaches to convex optimization, or heuristic

rules. In chapter 3, we list objectives and constraints that communities

may expect coordination strategies to include: in terms of adaptability to

different flexible assets, granularity in calculating the cost of energy, or

acceptability by the community members. We suggest that an algorithm

that accounts for all phenomena at each scale may very well be over-

complicated and time-consuming with regard to the payoff structure for

controlling flexible assets.

Local energy communities are complex systems bound to unforeseen

changes [123], from which coordination strategies should be able to

adapt. A potential approach is then to start with simple strategies that

get progressively more complex. In that sense, we highlight that external

socio-economic mechanisms can substitute some of the complexity of

coordination strategies, e.g., the problem of fairly sharing the value

of local production or the issue of empowering community members.

Additionally, we provide a classification of coordination strategies on

the basis of who takes decisions and how they are communicated to

flexible assets. From this analysis, we can filter out several coordination

strategies, in particular, if we place ourselves in communities that have

access to a trusted community manager.

At this level, we assume that community-wide coordination strategies are

needed. However, we could imagine a communitywhere each participant

controls their individual assets independently. As such, to verify the use

of a community-wide scheme,we look at the coalition value, i.e., the value

of coordinating together as opposed to each member of the community

independently controlling their assets. We show that the coalition value

depends, among other things on the capacity and spread of flexible

assets in the community. A community relying on the production of

one member for a multitude of distributed flexible assets has a greater

coalition value than a community where each member pairs distributed

production with flexible assets. In other words, pairing production units

and flexible assets can reduce the burden falling on community-wide

coordination, thus opening the door to simplifying strategies.

The classification of coordination strategies provides a high-level view,

however, certain issues arise when implementing a specific strategy.

For that reason, and to provide actionable solutions for communities

we implement two strategies, a predictive approach, and a reactive

approach.

The reactive approach is in some ways the “least bad” option. It cannot

achieve the minimum cost of the predictive approach under a perfect

forecast, because it provides an optimal solution at C and not over the

horizon ). However, it is not subject to making poor decisions from an

erroneous forecast. In a simulation environment over a full year, the

reactive approach leads to only a 3% cost increase in comparison to the

minimum cost achieved from a perfect dispatch of storage assets.
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1: https://www.centralesvillageoise

s.fr/les-chiffres-cles last consulted

in June 2022.

2: As discussed in [124], the role of en-

ergy cooperative should be less to seek a

capacity to accelerate the development of

renewable energies, but rather to reason

this development with social and environ-

mental dimensions.

The predictive approach offers a simpler modeling approach for flexible

assets that depend on future events, e.g., electric vehicles that need to

be charged before a departure time. However, forecasting individual

netload time series is challenging. Further, we show in chapter 4 that

efforts on forecasts’ quality do not necessarily lead to more value for

the community after solving the scheduling problem. Additionally, the

scheduling problem makes it difficult to include stochastic aspects, as we

must consider uncertainties at each time in horizon ) for each member in

# . To address the impact of forecasting errors, we propose a solution that

consists of encouraging assets to charge and discharge when individual

netloads have the most amplitude, i.e., when forecasting errors are

the most forgiving due to power and energy constraints on batteries.

Although this solution turns scheduling into a quadratic programming

problem, it shows the potential to better match the outcome of the perfect

schedule.We note that limits related to erroneous forecasts are common to

most strategies, in particular, they apply to fully distributed strategies as

well as market-based approaches. However, instead of being the purview

of a central community manager, they are the responsibility of individual

community members.

Finally, in the last chapter, we move away from financial aspects to look

at carbon impacts, and from operating communities to sizing energy

systems. Are more solar panels always better? From a simple back-of-

the-envelop calculation, yes, as solar panels virtually reimburse their

carbon footprint after 4 years in Germany or 15 years in France. However,

if we consider that only self-consumed power offsets solar panels’ carbon

footprint, the answer is less trivial. From our results, we draw some trends

rather than absolute certitudes. For instance, in the French case further

reducing emissions by 10 gCO2eq/kWh is challenging Fig. 5.8. However,

in Germany, communities can hope to realistically shed 75gCO2-eq/kWh.

Our results speak to the limits of relying on high self-sufficiency levels

to reduce the carbon intensity per kilowatt-hour when at the end of the

day, simply reducing the amount of kilowatt-hour consumed might be

better.

6.2 Potential impacts of the results

Local energy communities have often been disregarded as they offer

fewer financial benefits and much more administrative work than feed-

in schemes. As of 2022, there are only 85 communities of collective

self-consumption in France. In comparison, energy cooperatives have

deployed 400 solar power plants,
1
i.e., cooperatively own power plants,

where all the energy production is sold and the benefits are shared among

members. The issue with energy cooperatives is that much of the focus

can be on the financial arrangement, and producing greener electricity,

without considering aspects related to consuming less energy.
2
However,

local energy communities might inverse this trend as electricity prices

increase. In particular, the 120 000 individual self-consumers in France

could imagine selling their electricity surplus to their neighbors instead

of relying on a subsidized energy supplier. This is potentially a strong

selling point. As such, we might see more and more companies offering

https://www.centralesvillageoises.fr/les-chiffres-cles
https://www.centralesvillageoises.fr/les-chiffres-cles
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to deploy local energy communities without losses of revenue for local

producers.

Based on those premises, we see our work having an impact when creat-

ing local energy communities, and during their operation. In particular,

we imagine that consulting firms could develop local energy communities

as an iterative process incorporating our methods at different levels. We

imagine three stages (i) local energy communities do not manage their

flexible assets if any, (ii) flexible assets are managed at the individual

level, (iii) flexible assets are managed with a community-wide coordi-

nation strategy. At the first stage, feedback on self-consumption and

self-sufficiency metrics could be coupled with clustering representative

weeks to provide an overview of typical self-consumption patterns in

time. In the second stage, our method would enable a consulting firm

to assess the impact of storage assets on self-sufficiency and financial

gains for individual members. Additionally, at this stage, the coalition

value stemming from a community-wide coordination scheme should

be assessed to potentially transition toward the third development stage.

Finally, if the acceptability and the economics of a community-wide

coordination scheme are validated, a consulting firm could propose to

implement (i) a predictive solution with an order book to adapt to differ-

ent flexible assets with their own provider, or (ii) a reactive approach if

flexible assets can be solicited frequently.

On the academic side, one of the desired outcomes of our work is to show

that scientific contributions on local energy communities are not limited

to adding onto existing coordination strategies, e.g., with sophisticated

artificial intelligence. In fact, looking at the purpose of local energy

communities open a different paradigm: questioning if coordination

strategies can be reshaped in a “low-tech” perspective as an elementary

brick of a sustainable, fair, and convivial society [125].

We hope that chapter 5 will nuance our technological approach focused

on coordinating flexible assets, and reminds readers that achieving higher

self-sufficiency is sometimes detrimental from a carbon’s perspective,

which is only one aspect of life cycle analysis. Community members

consuming less energy is one of our initial motivations, as such, we hope

that it remains the principal objective of local energy communities, rather

than becoming technological displays.

6.3 Perspectives

There are several directions in which the work carried out throughout

this thesis can be extended. However, one of the most prominent aspects

is to test our coordination strategies in real-world conditions. Although

simulation environments enable the exploration of different scenarios,

they represent best-case conditions where the impact of unexpected

events is hard to quantify. One of the next development for this work

is for LANCEY Energy Storage (funder of this study) to deploy the

predictive coordination strategy to control battery assets in a local energy

community. In particular, this deployment would provide data, on

whether the complexity of flexible assets’ models is sufficient to estimate
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the actual state of physical assets for a day, or whether the periodicity of

dispatch must be increased.

Another perspective is to develop a mix of predictive and reactive

strategies. We see that this approach could enable the best of both worlds.

On one side, the predictive strategy provides a forecast of the netload,

and models to include elements such as the departure of a vehicle. On

the other side, the reactive strategy plays a verification step ensuring

that no clear mistakes are made, for instance, storage systems charging

outside the community on the upstream grid.

Finally, social aspects are key. As coordination strategies rely on the

acceptability of flexible assets at first, to influence the comprehension
of what it costs to produce energy. A perspective of our thesis is to

develop a transdisciplinary approach with social science. In particular,

to monitor at different stages of communities, the perception of energy

by members, to anticipate the needs of the community, whether it is

a different coordination strategy, flexible assets, or specific nudges to

impact behavioral changes.
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near-tree

A
Mixing predictive and reactive strategies

The scheduling mechanism provides a 15 minutes schedule correspond-

ing to the resolution atwhich communities have tomatch local production

with local consumption. Those time intervals leave space to adjust flexible

resources when a deviation from the forecasted netload is observed.

During the day, as we differ from the predicted netload, we can repeat

the process of forecasting and solving the scheduling problem Eq. 4.5

in a model predictive control way. Nonetheless, we attempt to limit this

computationally intensive process to a few instances per day, thus we

propose an additional approach for swift adjustments. Our approach is

based on pattern recognition. We propose to train a model to recognize

the best course of action when a deviation from the predicted netload is

observed. We note that we are not simply building a machine learning

model on the error of the forecasting model, but rather on the impact of

this error on the scheduling problem Eq. 4.5. We search a function 5 to

go from ?1 a battery power setpoint based on a potentially inaccurate

forecast, and $ a set of observations to

∗
?
1
the setpoint for a perfect

forecast.

∗
?
1
= 5 (?1 , $) + & (A.1)

Although,

∗
?
1
the perfect control is unknown at C due to forecast uncer-

tainties, we can compute it a posteriori from historical data. We train a

model to obtain a function 5 (?1 , $) such that & is minimized (Eq. A.1).

To represent 5 (?1 , $), we choose to implement a decision tree with linear

regression at the leaves [126] based on the linear-tree library
1
. One of

the reasons for choosing this model is the potentially piecewise linear

nature of 5 . For instance, we expect the perfect control to be proportional

to the previous setpoint ?1 , and forecasting errors in situations where

capacity constraints do not prevail. Further, as linear trees are analogous

to piecewise linear functions, they have good interpretability.

In their inner working principle, linear trees are similar to the classical

decision trees. Each split candidate consists of a feature and a threshold

partitioning the data in a right and a left subset. For the linear tree,

each split candidate leads to a linear regression on the left and right

partition. The feature and threshold leading to the minimum weighted

loss summed over the partitions is accepted if it is lower than the loss of

the parent node. Where losses are calculated as the mean square error

induced by linear regressions. Different features can be used to split the

tree and form regression at the leaves. Intuitively, we can select state

variables to split the tree (e.g., state of charge, community and individual

https://github.com/cerlymarco/linear-tree
https://github.com/cerlymarco/linear-tree
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netloads), and variables proportional to the output for the regression

(e.g., planned dispatch ?1 , individual, and aggregated forecasting errors).

Fig. A.1 illustrates the concept of linear tree for one battery.

Figure A.1: Illustrative example of a linear

tree.

Netload ≤ 0.88
Samples: 3360

No

Netload ≤ -1.5
Samples: 1540

Yes

…

Netload	≤ 2
Samples: 1820

……

Linear regression 
model

NoYes NoYes

Illustrative example

This section is meant to illustrate the improvement that may come from

this approach, but also the process of parameterizing linear trees. We

illustrate the adjustment on the same data as chapter 2 section 2.2,

similarly to previous examples. Each of the twenty households has a

5 kWh battery and a 3 kWp solar panel. We select five weeks from April

to May, four weeks to train linear tree models, and one week to test

models. Each linear tree represents a battery controller adjusting power

set points based on the perturbations observed since the last optimal

dispatch was run. An optimal dispatch is run twice every day, once to

obtain upcoming battery schedules based on the GAM forecasts, e.g.

denoted ?1(C), and once at the end of the day based on recorded data to

obtain what should have been the perfect schedule without forecasting

errors, e.g., denoted

∗
?
1
(C). Along with the planned schedule ?1(C) and

the perfect schedule

∗
?
1
(C), a set of observations denoted $(C) is also

recorded.

Those observations include the hour of the day, the state of charge of

battery 1, the netload of member =, the forecasting error on netload =, the

aggregated netload and the forecasting error for the entire community.

Each of those observations can be used to train linear tree controllers,

either as a splitting feature of the decision tree or as a regression feature

of the linear regressions at the leaves. For this specific scenario, we choose

to build a model with the following variables to split the decision tree:

I The netload of member =: whether member = is producing or

consuming electricity and at what rate. The idea is that if the

netload is very positive or very negative, adjustments tend to also

have more amplitude unless the forecasting error is small.

I The aggregated netload of the community: whether the com-

munity is in deficit or excess of energy overall. This information
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provides a global view beyond a member’s meter, so batteries

charging on shared production can be understood by the model.

I The forecasting error of netload =: whether the forecasting error

was small or large might influence the adjustment to discard the

previous optimization set point ?1(C) and rather adjust based on

the actual netload directly.

For the linear regression at the leaves of the decision tree, we select

the following variables: the previous optimization set point ?1(C), the
uncontrolled netload of member =, and the uncontrolled aggregated

netload of the community. In the end, the adjustment for battery 1 comes

down to the following equation:

?̂1(C) = : × ?1(C) + �: × unctrl
0
=(C) + �: ×

#∑
=

unctrl
0
=(C) + �: (A.2)

Where ?̂1(C) is the newly adjusted power set point for battery 1, and : ,
�: , �: , �: are the linear regression coefficients corresponding to the leaf

: of the decision tree. Each leaf represent a specific scenario delimited

by splitting variables and corresponding thresholds as in traditional

decision trees. Finally, as a last step the new set point is clipped using

a battery model, e.g., power and energy constraints, in order to always

provide feasible orders for the battery.

Fig. A.2 illustrates the improvement achieved over the course of a week,

improvements are measured as how much the new schedule ?̂1(C) is
closer to the perfect schedule

∗
?
1
(C) than ?1(C) the original schedule, in

percentage of the difference between

∗
?
1
(C) and ?1(C). On average the new

schedule is 31.5 % closer to the perfect schedule. Although this additional

control layer may increase errors in some scenarios, it is overall beneficial

in most situations.
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Figure A.2: Improvement achieved over

the course of a week by linear tree models

over the original scheduling with forecast-

ing errors to achieved theoptimal schedule

calculated as posteriori.

This work on adjusting battery set points with linear tree models also

opens the door for more questions: how are the parameters of linear tree

models influenced by the spread of batteries in the community?Can linear
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trees lead to stable heuristic rules replacing the need to run optimization

models in the daily operation of local energy communities?
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