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Chapter 1

Introduction

In this thesis, we have studied different statistical problems: clustering in a bipartite
graph, estimation in topic models and benign overfitting in nonparametric frame-
work. We present these three problems in more detail in the following sections.
Notation may change from a section to another. More detail about each problem are
provided in the following chapters.

1 Clustering in Bipartite Stochastic Block Model

The first problem we considered is the clustering problem in a graph. It is considered
in Chapter 3. For clustering problems, one can generally consider two approaches.
Either the observations are composed of individuals/objects without interaction and
we choose to model them by a mixture model. Either the observations are composed
of individuals/objects with interactions and we choose to model them by a graph
model. Graph models have applications in many disciplines and allow, for example,
the study of social, biological and computer interactions. An essential model in
statistics is the Stochastic Block Model (SBM). It is a suitable model in community
detection.

1.1 Erdos-Renyi model

Before presenting the SBM, we first introduce the fundamental Erdos-Rényi model
(ER) [Erd6s and Rényi, 1959, Erdés et al., 1960]. Let n be an integer and p € (0, 1).
A graph G(n,p) generated according to the ER model is a non-oriented graph with
n vertices that are randomly connected. The probability that two vertices are con-
nected is p, independently of the other vertices. Although this model is very simple
and often not realistic in applications, many statistical problems have been developed
from this model. It has also allowed progress in the study of more complex graph
models. In particular, the ER model is not a suitable model for community detection,
since the probability of interaction of two vertices is homogeneous in the whole graph.
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This model allows one to introduce the concept of phase transition. A phase
transition phenomenon occurs when a threshold phenomenon is observed. The two
parameters of the ER model are n and p. According to their relative values, the
graph looks different. Thus, [Erdds et al., 1960] proved that for any € € (0, 1),

—ifp< (1_8)%, then G(n,p) almost surely contains isolated vertices (i.e., is a
disconnected graph),

— ifp > (HE)%, then G(n,p) is almost surely connected (i.e., does not contain
any isolated vertex).

Thus, for fixed n, a small variation of p radically modifies the appearance of the

graph and k’% can be considered as a connectivity threshold of the graph.

1.2 Stochastic Block Model

The Stochastic Block Model [Holland et al., 1983] can be considered as an extension
of the ER model. The main assumption of the SBM is that the vertices are not
connected randomly but according to their respective community.

Let us consider the framework of the SBM with two communities. Let n be
an integer and (p,q) € (0,1)%. A graph G(n,p,q) generated according to a two-
communities SBM model is a non-oriented graph with n vertices, such that the
probability that two vertices belonging to the same community are connected is p,
and the probability that two vertices belonging to different communities are con-
nected is q.

We now give a formal definition of the SBM. Let n,n_ be two positive integers
such that n = ny +n_. Let V be the set of n vertices such that V' contains n
vertices with label +1 and n_ vertices with label —1. For each vertex u of V', we
denote by o(u) € {—1,1} its label. We denote by A the adjacency matrix of the
graph, i.e. the (n,n)-matrix such that its entries A;; equal 1 if the corresponding
vertices 7,7 € V are connected, and 0 otherwise.

We say that A is generated according to a SBM(ny,n_,p,q) model if the entries
A;; are independent and if

o A;j ~ Ber(p) if o(i) = o(j), i.e., two vertices with the same labels are con-
nected with probability p,

o A;j ~ Ber(q)ifo(i) # o(j), i.e., two vertices with different labels are connected
with probability q.

There, Ber(p) denotes the Bernoulli distribution with parameter p.

We note that if p = ¢, we obtain the Erdos-Rényi model. If p > ¢, the SBM is
called assortative and interactions are more frequent within a community than be-
tween communities. This is the most common situation in applications. Conversely,
if p < ¢, the SBM is called disassortative and interactions are less frequent within
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a community than between communities. Examples of disassortative graphs can be
found in biology or in the link architecture of web pages.

We denote by n € {£1}" the vector of the labels of the vertices of V. Note that
if the task is to classify the vertices in two communities, it can be achieved either by
estimating 7 or by estimating —n.

Any measurable function 7 from A to {£1}" is an estimator of 7. In order to
measure the loss of such an estimtor, we introduce the Hamming distance, which
equals twice the number of coordinates where n and 7 differ:

1 —all:= Dl — sl = 2D 1(m # i),
i=1 i=1
where n; (resp., 7;) designates the i*" coordinate of 7 (respectively, 7).

Since as mentioned above, it is equivalent for community detection to estimate n
and —n, we consider the following loss

(i) = min [ = vl (1)

There are various properties of interest in the study of SBM.

Definition 1 (weak recovery in SBM). The estimator 1) achieves weak recovery of n
if there exists a € (0,1) such that

lim sup P (7"(77777) > oz) =0, (1.2)

nHOOSBM n -

where supgp,, denotes the maximum over all distributions of A drawn from SBM (n,
n_,p,q).

Weak recovery is also called detection in the literature.

Definition 2 (almost full recovery in SBM). The estimator f) achieves almost full
recovery of n if (2.2) holds for all a € (0,1).

Almost full recovery, also called almost exact recovery in the literature, means
that 7) correctly classifies almost every vertex with high probability.

Definition 3 (ezact recovery in SBM). The estimator 7} achieves exact recovery of
n if
lim inf P(r(n,ﬁ) = O) = 1.

n—oo SBM

Exact recovery means that 7 correctly classifies all the vertices with high proba-
bility.
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A great deal of work was devoted to determine the phase transitions on n, p, g for
these problems. Most results were obtained under the specific assumptions a = pn
and b = gn, a« = pn/log(n) and 8 = gn/log(n), that characterize the most interesting
case. In particular, for the problem of weak recovery, [Massoulié, 2014] and [Mossel
et al., 2018] proved that weak recovery is possible if and only if (a — b)% > 2(a + b).
For the problem of ezact recovery when p > ¢, [Abbe et al., 2015] have proved the
following phase transition phenomenon: ezxact recovery is possible if # —VvaB >1

and is impossible if 222 — \/afB < 1.

1.3 Bipartite Stochastic Block Model

Many generalizations of the Stochastic Block Model have been considered. In this
thesis, we are particularly interested in a non-symmetric generalization of the SBM,
which is the Bipartite Stochastic Block Model (BSBM).

Introduced by [Feldman et al., 2015], the BSBM is adapted to the study of
interactions between two sets, where each set is divided into several communities,
and these two sets are most often composed of objects of different natures. Within a
set, there may be inter- and intra-communities interactions, but most often these are
inaccessible or uninformative. The BSBM is relevant for example for the study of
object /user interactions within the framework of recommendation systems. The users
constitute a first set, divided into several communities, and the objects constitute a
second set, also divided into several communities. This model has several applications
such as document /word interactions [Dhillon and Modha, 2001, Lancichinetti et al.,
2014], gene/genetic sequences interactions [Eren et al., 2013, Larremore et al., 2013],
and object/user interactions in the context of recommendation systems [Jang et al.,
2007], and other.

Initially, the BSBM was introduced by [Feldman et al., 2015] in the context
of Constraint Satisfaction Problems (CSP). CSPs are mathematical problems that
consist in the study of states or objects satisfying certain criteria or constraints.
Formally, a CSP is a triplet (27, 2,%) where 2 is a set of n variables, Z is a
set of n domains of values for each variable of 2", and % is a set of constraints.
CSPs arise in many fields, for example in computer science and machine learning. In
particular, the theory of CSPs is closely related to complexity theory in theoretical
computer science. [Feldman et al., 2015] introduced the BSBM to unify several
problems including the classical SBM problem and the random CSP k-SAT problem.
The SAT problem, or Boolean satisfiability problem, is the CSP problem which,
given a propositional logic formula, determines whether there is an assignment of
propositional variables that makes the formula true. If such an assignment exists,
the formula is said to be satisfiable. Recall that in Boolean logic, a literal is a
Boolean variable or its negation, and a clause is a disjunction of literals. Clauses
relate to constraints. A random k-SAT formula is a conjunction of m clauses of k
Boolean variables randomly chosen from n Boolean variables. We are interested in
the probability that a random k-SAT formula is satisfiable. [Feldman et al., 2015]
have studied the problem of planted satisfiability. In this framework, a so-called
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planted assignment is fixed in advance and the (random) clauses are drawn according
to a distribution defined by this assignment. [Feldman et al., 2015] proved that the
random planted k-SAT problem reduces to the BSBM problem.

Definition of BSBM

Let n14,m1_,n94, no_ be four non-zero positive integers such that ny :=n;. +n;- <
Not +no_ :=mng and let p € (0,1/2), 6 € (0,2). Let V5 and V5 be two sets of vertices
such that V; (respectively V5) is composed of nyy (resp. nyy) vertices with label +1
and of n;_ (resp. mg_) vertices with label —1. For each vertex u of V; or V5, we
denote by o(u) € {—1, 1} its label.

We denote by A the biadjacency matrix, i.e., the (ny,ns)-matrix such that its
entries A;; equal 1 if the corresponding vertices ¢ € V3, j € V, are connected, and 0
otherwise.

Then, we say that A is generated according to a BSBM (,n14,m1_,n24, N9, D)
model if the entries A;; are independent and if

o A;j ~ Ber(dp) if o(i) = o(j) i.e. two vertices i € V; et j € V5 with the same
label are connected with probability dp,

o A;jj ~ Ber((2—0)p) if o(i) # o(j) i.e. two vertices i € Vj et j € V, with
different labels are connected with probability (2 — d)p.

Note that the BSBM model is a generalization of the SBM model since if V} = V5,
we obtain the SBM.

Community detection

Suppose that we observe a matrix A generated according to a model BSBM (§,n1,
ni_,noq,ne_,p). We are interested in the problem of estimating the partition asso-
ciated to V; from the observation of the biadjacency matrix A. Let n; € {£1}™ be
the vector of labels of the vertices of Vi. As in the SBM setting, it is equivalent to
estimate 7, and —n;. Any measurable function 7 from A to {£1}™ is an estimator
of ;.

As for the SBM problem, we consider the problems of weak recovery, almost full
recovery and exact recovery. We may easily adapt Definitions 4,5,6 to the BSBM
setting. We use the Hamming loss 7 defined in (2.1) to characterise the loss of an
estimator 7 of 7.

Overview of previous results

If the SBM has been extensively studied, the BSBM remains less known. [Feldman
et al., 2015, Florescu and Perkins, 2016, Cai et al., 2019] studied the phase transition
phenomena for p. [Florescu and Perkins, 2016] proved that the phase transition
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Figure 1.1: Hlustration of BSBM.

1
(A=) Jmims "
order to prove the sufficient condition, they used a reduction to the SBM and then

an optimal "black-box" algorithm for the weak recovery in the SBM, as in [Bordenave
et al., 2015, Massoulié, 2014, Mossel et al., 2018].

[Florescu and Perkins, 2016] also provided a sufficient condition for almost full
recovery in the high dimensional framework i.e. for ny > n;. [Florescu and Perkins,
2016] consider spectral methods, which are classical methods in the community esti-
mation framework. In particular, [Florescu and Perkins, 2016] proved that modifying
the classical SVD method allows a significant improvement in the high dimensional
framework. Instead of considering the singular vectors of the biadjacency matrix
A, [Florescu and Perkins, 2016] consider the eigenvectors of the associated Gram
matrix, whose diagonal elements are all set to 0. The associated algorithm is called
'"Diagonal Deletion SVD'". For ny > ny(logng)*, [Florescu and Perkins, 2016] have
proved with the "Diagonal Deletion SVD" that p = Q) (%) is a sufficient condition
to obtain almost full recovery in the BSBM model. Here and in what follows, we
write a, = O(b,) if there is a constant ¢ > 0 such that a, < cb,, and we write
a, = (b,) if there is a constant ¢ > 0 such that a,, > cb,. We also write a,, < b, if
a, = O(b,) and a, = Q(b,).

phenomenon for weak recovery occurs for the critical probability p. = In
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[Feldman et al., 2015] have proved the best known conditions for ezact recovery

until our results. Th«gy proved in the high-dimensional setting ns > n; that the
a jz%;;g ni
rithm named "Subsampled Power Iteration". [Feldman et al., 2015] conjecture that
the condition p = Q(%) is necessary for the ezxact recovery. We have disproved
this conjecture as detailed below.

We notice that under very similar conditions, [Feldman et al., 2015] provide better
results than [Florescu and Perkins, 2016], since the "Subsampled Power Iteration'
algorithm allows exact recovery instead of almost full recovery.

Note that [Cai et al., 2019] have proved that the "Diagonal Deletion SVD" algo-
rithm also allows ezact recovery under conditions very close to [Feldman et al., 2015]
for ny 2 ny, but these conditions degrade in the ny > ny frame, for example for

ny < e™. To be more specific, [Cai et al., 2019] prove that it is possible to achieve
exact recovery via Diagonal Deletion SVD if

condition p = € ( ) is sufficient to achieve exact recovery using their algo-

(1.3)

p>C(1—9)> <log(n1 +ng) v log(n; + n2)> |

\/T1MNo ny + N9

where C' > 0 is a constant independent of p, §, nq, ny. [Zhou and Amini, 2019, Zhou
and Amini, 2020, Neumann, 2018] have also provided results on the BSBM but in a
more general framework. These results do not allow one to estimate the communities
in the high dimensional framework when ny > n;. [Zhou and Amini, 2019] use
spectral methods on a well chosen matrix. Theorem 1 of [Zhou and Amini, 2020]
adapted to our framework requires ny = O(n?), which is quite restrictive. [Neumann,
2018] focuses on the estimation of so-called tiny clusters, i.e., clusters of size n® for
any € > 0, where n is the number of vertices of the graph. However, the work of
[Neumann, 2018] applied to our setting is suboptimal.

[Feldman et al., 2015, Florescu and Perkins, 2016] observed that the main dif-
ficulties of estimating communities arise in the high-dimensional regime ny > n;.
This regime is most adapted to real applications of the BSBM and it is the regime
that presents theoretical difficulties. Indeed, the ny < n; regime is more standard,
as we can apply classical SBM clustering methods to it. We obtain optimal results
for ny < ny by applying SVD algorithms directly to the biadjacency matrix [Zhou
and Amini, 2019, Zhou and Amini, 2020]. This is because we know how to control
the spectral norm of the noise of the biadjacency matrix, but less so of the noise of
the Gram matrix with a null diagonal, which we have to control for ny > n;.

To obtain our results, we made an analogy with the Gaussian Mixture Model (ab-
breviated GMM). [Lu and Zhou, 2016, Ndaoud, 2018, Giraud and Verzelen, 2019, Lof-
fler et al., 2019] have developed optimal clustering algorithms for the GMM. [Lu and
Zhou, 2016] have proved that an iterative procedure similar to Lloyd’s algorithm
[Lloyd, 1982] allows clustering with optimal properties for GMM. [Ndaoud, 2018§]
provided a modified version of such an iterative clustering algorithm which has been
shown to achieve the phase transition for exact recovery in this model. Thus, by
analogy between GMM and BSBM, [Ndaoud, 2018] conjectured that similar algo-
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rithms would allow almost full recovery and exact recovery for BSBM, and that the

condition p = ((1 — 5)2\/%) is sufficient to obtain the ezxact recovery for the
BSBM if ny > nqlogn,. This goes against the heuristics made by analogy with the
log n1

SBM that p = Q (\/ﬁ) is necessary for exact recovery, cf. [Feldman et al., 2015].

Summary of the results

In Chapter 3, we introduce an algorithm called the hollowed Lloyd’s algorithm, which
allows ezact recovery under better conditions than those known in the previous work
[Ndaoud et al., 2021]. We prove that, for all regimes of (ny,ns),

p>C(1—6)> (,/log”1 v lognl) (1.4)
ning N9

is a sufficient condition for the exact recovery for the BSBM, with C' > 0 a positive
constant. This condition is better than (2.3). In particular, it does not degrade for
ng =< e,

The condition (2.4) reveals an elbow at ny < njlogn; between the high and
low dimension regimes. In the low-dimensional regime ny < njlogn;, we find the
sufficient condition of [Zhou and Amini, 2019, Cai et al., 2019}, p = 2 (105%) In
the high dimensional regime ny > n;logn;, we obtain the sufficient condition p =
Q <\/ 12?—:21) We conjectured in [Ndaoud et al., 2021] that this condition is necessary
in the regime ny > nylogn; by exhibiting an oracle estimator that does not allow

. logn
ezact recovery it p < c¢\/T5H for ¢ > 0 small enough.
Our results can also be read in[Ndaoud et al., 2021].

2 Estimation of topic-document matrix in topic
model

The second problem we studied is the topic model problem. It is considered in
Chapter 4.

In Statistics and Natural Language Processing (NLP), a topic model is a useful
model for classifying documents by topics. For instance, it is necessary to know how
to classify web pages in order to recommend them to users. It is also useful to be
able to automatically classify scientific articles online. Topic models can be used to
address these issues.

2.1 Probabilistic Latent Semantic Indexing

In this thesis, we consider the probabilistic Latent Semantix Indexing (pLSI) model.
Introduced by [Hofmann, 1999], this model links three types of variables: documents,
topics and words. We assume that we have a dictionary of p words and a corpus of



2. ESTIMATION OF TOPIC-DOCUMENT MATRIX IN TOPIC MODEL 9

n documents, where p, n are non-zero natural numbers. A document is a sequence of
words from the dictionary. We assume that the documents can be classified according
to their topic. Let K € N* be the number of topics. We suppose 2 < K < min(n, p).
We typically have K very small compared to n and p.

The fundamental assumption of the pLLSI model is that the probability of a word
j appearing in a document on topic k is independent of the document. In other
words, by the law of total probability,

K
P(word j|document i) = Y P(topic k|document )P (word j|topic k).
k=1

We introduce the following notation

II;; = P(word j|document i),
Wir = P(topic k|document i),
Ay; = P(word j|topic k).

Then, we can write I1;; = W A;, where W, = (Wj1,...,Wig)" € [0, 11% is the topic
probability vector of document i and A; = (Ayj,...,Ar;)" € [0, 11% is the topic
probabilityvector of word j, for each topic £ = 1,..., K. Thus, we can write in
matrix form

II=WA,

where IT is the (n, p)-document-word matrix with entries IL;;, W := (W7, ..., Wn)T
is the (n, K)-document-topic matrix, A = (Ay,...,A4,) is the (K,p)-topic-word
matrix. The rows of these matrices being probability vectors, we have

K p p
> Win=1,> Ay;=1, Y I =1foralli=1,...,n, k=1,... K.

m=1 j=1 j=1

Here, II;; is the probability of occurrence of word j in document . In practice, we
do not know II;; but we know the corresponding empirical frequency Xj;.

Thus, we have a (n,p)-document-word matrix X = (X;;) such that for each
document ¢ in 1,...,n, and each word j in 1,...,p, X;; is the observed frequency
of the word j in the document i. Let N,; denote the (deterministic) number of
words sampled in document 7. We assume that, for each document-word vector
X; = (X, - .. ,Xip)T, the corresponding vector N;X; of the number of occurrences
of each word in the document i follows a multinomial distribution of dimension p,
of parameters (N;, I1;), where II; = E(X;) = (Il;y,...,I1;,)". We also assume that
Xi,...,X, are independent random vectors. We can write the model as a “signal +
noise”’-model:

X=N+Z=WA+Z, (1.5)
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where Z := X —II is a zero mean matrix.

The objective of topic modelling is to estimate the A and W matrices from the
observation of the X matrix and the knowledge of Ny,..., N,,. The estimation of A
and the estimation of W answer different objectives. An estimator of the A matrix
identifies the distribution of the topics on the dictionary. An estimator of the W
matrix identifies the topics associated with each document. Our study is mainly
focused on the estimation of the W matrix.

2.2 Constraints

It is standard in the context of topic models to introduce anchoring hypotheses.
One widely used hypothesis in the literature is the anchor word assumption, cf., for
example [Arora et al., 2013, Bing et al., 2020a, Ke and Wang, 2017]. This anchor
word assumption consists in assuming that for each topic, there is at least one word
associated only to this topic. This assumption is best suited to estimation of the A
matrix, which has been extensively studied in the literature. Another assumption
that we adopt below is the anchor document assumption, which postulates that for
each topic, there is at least one document dealing exclusively with this topic.

A fundamental idea of high-dimensional statistics is that a large collection of data
can be of very low rank. Thus, by reducing the dimension, it is possible to better
exploit the data. This is the case for topic models, where there is an underlying
topic structure of dimension K that is typically very small in comparison to n and p.
There are several dimensionality reduction methods. We are particularly interested
in matrix factorisation methods.

2.3 Overview of previous results
Non-negative matrix factorization (NMF) with no noise

We first place ourselves in a noiseless setting, where equation (2.5) becomes
X =WA.

Non-negative Matrix Factorisation (NMF) methods aim to recover W and A from
observing X. A non-negative matrix is a matrix whose entries are non-negative.
The NMF method was introduced by [Paatero and Tapper, 1994, Paatero, 1997, Lee
and Seung, 1999a, Lee and Seung, 2000] and consists in factoring under suitable
assumptions a non-negative matrix X into a product of two non-negative matrices
W, A. In the case where X is a (n,p) matrix, W a (n, K) matrix and A a (K, p)
matrix, this factorisation allows a dimension reduction. This method is useful in
certain settings where the matrices studied are intrinsically non-negative, such as
in NLP or image analysis. Classical methods like Principal Component Analysis
(PCA) cannot be applied to such matrices. Indeed, the orthogonality constraint
required in PCA cannot be respected. This is precisely the framework of the pLSI
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model, where all matrices under consideration are non-negative. In general, the NMF
problem is an NP-hard problem, but separability constraints such as the anchor
document assumption allow for its resolution. These methods consist most often
in the minimisation of a regularised cost function, cf. for example [Cichocki et al.,
2009, Donoho and Stodden, 2004, Lee and Seung, 1999a, Recht et al., 2012]. These
papers deal with non-noisy case and their result cannot be used under the noisy
model in (2.5).

Bayesian perspective: Latent Dirichlet Allocation

We now turn to NMF in the noisy case specific to topic models. There is an abun-
dant literature on estimation of matrices A, W in this context. Probably the most
famous and popular model in text classification is the Latent Dirichlet Allocation
or LDA model. Introduced by [Blei et al., 2003], the LDA model imposes a Dirich-
let prior on the A matrix and then estimates the W matrix by an EM algorithm.
This line of work is mainly interested in the construction of algorithms and does
not provide statistical guarantees for the obtained estimators. Moreover, the LDA
algorithm is computationally slow and assumes that the subjects are uncorrelated,
which is not realistic [Blei and Lafferty, 2007, Li and McCallum, 2006]. To face this
last issue, [Lafferty and Blei, 2006] introduced another model, the Correlated Topic
Model. Other related papers considered Gibbs-sampling [Porteous et al., 2008, Ram-
age et al., 2009] or variational Bayes techniques [Chien and Chueh, 2010, Zhai et al.,
2012] to estimate W, rather than using the EM algorithm.

Prior work on statistical guarantees for topic models

To estimate matrix A, several papers have proposed algorithms with statistical guar-
antees under the anchor word assumption, cf. for example [Arora et al., 2012, Arora
et al., 2013, Ding et al., 2013, Anandkumar et al., 2014, Bansal et al., 2014, Bing
et al., 2020a, Bing et al., 2020c, Bing et al., 2021a, Ke and Wang, 2017]. These papers
use different techniques including co-occurrence matrix analysis, tensors, or simplex
methods via SVD. The work of [Bing et al., 2020a, Bing et al., 2020c, Bing et al.,
2021a, Ke and Wang, 2017] develops methods attaining up to log-factors minimax
optimal rates of convergence for estimator of A in ¢;-norm. These papers use the
anchor word assumption but propose different estimators than ours, as they focus
on estimation of matrix A. The estimation method of matrix A in [Ke and Wang,
2017] is a simplex method in dimension p, with a computational cost pX. Their
procedure also allows for estimation of matrix W using their estimator A of A, via
a least-squares method.

[Bing et al., 2020a] propose a fast SVD-based method for the estimation of A
under the anchor word assumption. In follow-up works, [Bing et al., 2020c, Bing
et al., 2021a] consider problem (2.5) in a sparse setting and under the anchor word
assumption. [Bing et al., 2021a] study the estimation of the rows of matrix W,
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provided an estimator A of A. Denote by (w;)"_, the rows of matrix W and by

(WMLE)_ the corresponding maximum-likelihood estimators of [Bing et al., 2021a].

Assume that N; = N for all . Let 1 < i < n be fixed. [Bing et al., 2021a]

prove, for the ¢;-norm of ith row [|@ML¥ — w1, a bound in probability of the order

( LV ﬁ) (to within a weak factor, that is, a factor depending only on K or
sparsity, and a logarithm of the main parameters p,n, N). Consequently, the rate of
estimating W in the ¢;-norm obtained in [Bing et al., 2021a] scales as (\/% Vv \/LN>’
up to a weak factor. An analogous result is obtained in the 2022 version of the
paper [Ke and Wang, 2017] for a different estimator, again under the anchor word
assumption.

2.4 SPOC algorithm

In order to estimate W, we have introduced an algorithm called Successive Projection
Overlapping Clustering (SPOC), inspired by the Successive Projection Algorithm
(SPA). The SPA algorithm was introduced by [Aratjo et al., 2001] to solve the NMF
problem and was widely used thereafter, due to its simplicity and speed. The SPOC
algorithm applies the SPA algorithm not to the initial matrix X, but rather to the
matrix of its left singular vectors and uses the result to recover W.

The SPA and SPOC algorithms are iterative projection algorithms. Starting from
the SVD decomposition of the X matrix, we apply the following iterative procedure.
At each step of the algorithm, we select the row with maximum norm of the matrix
of left singular vectors, and we project our matrix onto the orthogonal complement
of the space generated by this row. Geometrically, this procedure is explained by the
fact that the rows of the matrix of left singular vectors of IT belong to a simplex whose
vertices are anchor documents. The SPOC algorithm iteratively finds estimators of
these vertices, which then allows the estimation of W.

2.5 Summary of the results

In Chapter 4, we prove bounds on the accuracy of the SPOC algorithm in the Frobe-
nius norm and the ¢;-norm [Klopp et al., 2021]. We obtain upper and lower bounds
that match within a logarithmic factor, implying the quasi-optimality of our proce-
dure. Specifically, assuming that N; = N for all i, we prove that the SPOC estimator

of W converges in the Frobenius norm and in the ¢;-norm with the rates y/n/N and
n/+v' N respectively, up to a weak factor. We also prove minimax lower bounds of
the order y/n/N and n/v/' N respectively. We can observe that the rate in ¢; is faster

than ( v \/LN) following from [Bing et al., 2021a]. However, the assumptions in
[Bing et al., 2021a] are different. They impose the anchor word assumption while
we are working under the anchor document assumption. The potentially big term

Z2 in the rate appears in [Bing et al., 2021a] because of the use of preliminary
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estimation of A. It accounts for the rate of estimation of A, which is an artefact of
the method and is not reflected in the lower bound.

We also notice from our theoretical results and our simulations that the error
of the SPOC algorithm does not increase significantly with p, unlike the error of
the LDA algorithm. Moreover, our procedure is computationally fast and simple
to implement. Compared to [Ke and Wang, 2017], whose algorithm has complexity
p’, our algorithm has complexity max(p,n)K + nK?2. The first term max(p,n)K
corresponds to the cost of truncated SVD, and the second term nK? correponds to
the cost of SPA. Finally, our procedure is adaptive as it does not need to know the
number of topics K in advance.

Our results can also be read in [Klopp et al., 2021].

3 Benign overfitting in nonparametric regression

The third problem we studied is the problem of benign overfitting in the nonpara-
metric setting. It is considered in Chapter 5.

3.1 State of the art

Modern machine learning methods have shown some unexpected and seemingly con-
tradictory properties to classical statistics. One of the most popular learning meth-
ods today is the neural network method. Initially inspired by the functioning of the
human brain, neural networks mimic the transmission of a signal from one neuron
to another. The theoretical functioning of neural networks is still not well under-
stood. Empirically, the excellent performance of deep neural networks is no longer to
prove (cf. for example [Gupta et al., 2015, Sagun et al., 2017, Huang et al., 2017]).
However, deep neural networks have the property of being interpolative, i.e., with
zero bias on the training data set, but still has a small prediction error on unknown
datasets [Belkin et al., 2019a, Zhang et al., 2021]. This phenomenon goes against the
classical bias-variance trade-off intuition, which has thus been questioned for some
years (cf. for example [Ma et al., 2018]).

Recent work in benign overfitting in linear regression

In order to better understand this phenomenon, called benign overfitting, several
papers have studied this problem in the context of linear regression, cf. for example
[Bartlett et al., 2020, Tsigler and Bartlett, 2020, Chinot and Lerasle, 2020, Muthuku-
mar et al., 2020, Bartlett and Long, 2021, Lecué and Shang, 2022]. The main con-
clusion of these works is that benign overfitting can only occur in a linear model
if the model is over-parametrized and if the design matrix has an unbalanced spec-
trum - which is close to the nonparametric setting. The above papers show that the
estimators are interpolative but do not attain the optimal rates. The very recent
paper [Wang et al., 2022] obtains optimal rates for benign overvitting in the linear
regression setting, with sparsity set to 1.
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Benign overfitting in nonparametric regression model

Consider now the nonparametric regression framework. Assume that we have n
independent pairs of random variables (X1,Y7),...,(X,,Y,) in R? x R such that,
forall 1 <1 <n,

where ¢; are random noises. Function f : R? — R is called the regression function
and is unknown. The problem of nonparametric regression is to estimate f given a
priori that it belongs to a nonparametric class of functions .7 .

On particular instance is the nonparametric ridge regression framework. Then,
it is assumed that f belongs to 7, where 7 is a reproducing kernel Hilbert space
(RKHS). In this setting, it is common to consider estimators of f based on regularized
least squares [Alvarez et al., 2012, Golub et al., 1979, Smola and Schélkopf, 1998],
that is, solutions of the problem

1 n

in — XZ _Y; 2 A 24
in - 3 () = YO + A
where A > 0 and || - ||+ denotes the norm in JZ.

The role of the regularization term is to avoid overfitting. In contrast to that,
[Zhang et al., 2021, Belkin et al., 2019b], [Liang and Rakhlin, 2020] proposed the
"'ridgeless" kernel regression estimator, showing that interpolative solutions with min-
imal norms provide an implicit regularization under some conditions. They proposed
the following estimator

A

— ' v st f(X) =Y. Vi
f argjr}elg;Hme st. f(Xy) =Y, Vi

[Liang and Rakhlin, 2020] assume that the sample size n is of the same order as the
dimension d of the data, i.e., d < n. Subsequently, [Liang et al., 2020] extended this
framework to d < n® for a € (0,1). These papers provide upper bounds on the risk
that depend on the sample and can be small depending on the spectral properties
of the data and the RHKS kernel. In the case where d is constant independent of n,
[Rakhlin and Zhai, 2019] have shown that the minimum norm interpolative estimator
depending on the Laplace kernel does not converge.

We now place ourselves in the general nonparametric estimation regression frame-
work (2.6). [Belkin et al., 2019b] have provided statistically optimal interpolative
kernel estimators, using the Nadaraya-Watson estimator with singular kernel. The
Nadaraya-Watson estimator is defined as

| T YiK (57)

K

(@)
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where h > 0 is the bandwith and K : R? — R is a kernel.

It is known since [Shepard, 1968] that using a singular kernel with the Nadaraya-
Watson estimator allows one to obtain an interpolative estimator. Singular kernel
was initially chosen as K(u) = |Ju||~* where @ > 0 and || - || denotes the Euclidean
norm and v € RY. [Shepard, 1968] introduced his interpolating estimator for d = a =
2. Not aware of the work of [Shepard, 1968] and its extensive use in image processing,
[Devroye et al., 1998] generalized Shepard’s estimator for any d and proved that this
estimator converges in probability but not almost surely. However, this kernel is not
integrable and has the particular property that the smoothing parameter h vanishes
in the definition of the estimator. So, the bias-variance trade-off cannot be achieved
by the choice of smoothing parameter h. Thus, [Belkin et al., 2019b] suggest to
define the kernel as follows:

K(u) = |lul~1(|jull < 1), a € (0,d/2).

The Nadaraya-Watson estimator with this modified kernel remains interpolative.
[Belkin et al., 2019b] proved that this estimator reaches the minimax convergence
rates for the Holder class of functions with regularity parameter g € (0,2]. However,
these results do not extend to other values of 5 and the obtained estimators are not
adaptive to 3.

3.2 Local polynomial estimator

We consider the local polynomial estimator (LPE), which is a generalization of the
Nadaraya-Watson estimator. For simplicity, we give here the definition of LPE in
dimension d = 1. The definition in any dimension d is detailed in Chapter 5.

If we consider a nonnegative kernel, the Nadaraya-Watson estimator satisfies

f (x) = arg min Zn:(Yi —0)°K (th_ x) . (1.7)
=1

Thus, fflv W can be seen as a local approximation of the outputs Y; by a constant
via least squares. The local character is determined by the kernel, which gives more
weight to the X; closer to x, while € is a local constant to be adjusted. We can
generalize this definition by replacing the constant 6 in (2.7) by a polynomial of
degree ¢. We introduce

Uu) = (Lu,u?/2L,.. ot j0)
0(x) = (F(@). S @h, f@h?, ... JOB")
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Then, vector 0, (z) € R defined by

0,(z) = arg min zn: <Y; —0'U <Xih_$)>2K (th_x> (1.8)

S S
is called a local polynomial estimator (LPE) of order ¢ of §(z). The statistic

Jule) = UT(0)0u(2)

is called a local polynomial estimator of order ¢ (or LP(¢)) of f(x).

We will use LPE with singular kernels K, which requires a slightly different
definition of f, due to the fact that the minimization problem (2.8) is not well-
defined for x = X; (see Chapter 5 for more detail). Local polynomial estimators
with singular kernels have been quite popular since [Lancaster and Salkauskas, 1981]
as interpolation tool in numerical analysis. They have also been considered in the
context of nonparametric estimation by [Katkovnik, 1985]. However, these works did
not provide statistical guarantees and studied only the regularity properties of such
estimators.

3.3 Summary of the results

In Chapter 5, we prove that using local polynomial estimators with a singular kernel,
one can construct minimax optimal interpolative estimators on Holder classes of
regularity parameter 3, for any 5 > 0. For 5 > 0, L > 0, we denote by X(8,L) a
suitably defined Holder class of functions (see Chapter 5 for the precise definition of
this class). We denote by f,, our estimator. We suppose that K is a non-negative
integrable kernel with singularity at 0, which is compactly supported and continuous
on RN\{0}. Let C' > 0 be a constant which does not depend on n. We prove that
our estimator satisfies, for all  in the support of X7,

sup B ([fulr) = f(2)]?) < Cn 70
fex(B,L)

= __2B8
sup B(|f, - fI3,) < Cn 55,
fex(p,L)

and that there exists a constant ¢ > 0 such that with probability greater than
1 —ce 4n/¢ with A, = n%, our estimator is interpolative, i.e. satisfies f,(X;) = Y;
for every 4, and f, is continuous on the support of X;. Here, || - ||z, denotes the
Lo(Px)-norm, where Py is the marginal distribution of Xj.

We have also shown that these estimators can be constructed adaptively to 3 if
B € (0, Pmax), for all fuax > 0, and adaptively to the boundary parameter L > 0
of the Holder class. These adaptive procedures are constructed using aggregation

methods.
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As a by-product, we obtain non-asymptotic bounds on the quadratic risk of LPE
estimators in the classical framework, with non-singular kernels. To the best of our
knowledge, such bounds were not available in the literature, as the prior work on LPE
was focused on asymptotic properties of LPE, such as convergence in probability or
asymptotic normality [Stone, 1980, Stone, 1982, Tsybakov, 1986, Fan and Gijbels,
1996].

Our results can also be read in [Chhor et al., 2022].



Chapter 2

Introduction en francais

Au cours de cette these, nous avons étudié différents problemes statistiques : le clus-
tering dans le Bipartite Stochastic Block Model, I'estimation dans les Topic Models
et le probleme de Benign Overfitting dans le cadre non-paramétrique. Nous présen-
tons ces trois problémes plus en détails dans les chapitres suivants. A noter que les
notations peuvent varier d’un chapitre a l'autre.

1 Le clustering dans le Bipartite Stochastic Block
Model

Le premier probleme étudié est le probléeme de clustering dans un graphe. Ce
probleme est développé dans le Chapitre 3. Pour les problemes de clustering, on
peut généralement considérer deux approches. Soit les observations sont composées
d’individus/objets sans interaction et on choisit de les modéliser par un modele de
mélange. Soit les observations sont composées d’individus/objets avec interactions
et on choisit de les modéliser par un modele de graphe. Les modeles de graphe
ont des applications dans de nombreuses disciplines et permettent, par exemple,
I’étude d’interactions sociales, biologiques et informatiques. Un modele essentiel en
statistiques est le Stochastic Block Model (SBM). Il s’agit d’'un modele adapté a la
détection des communautés.

1.1 Modele d’Erdos-Rényi

Avant de présenter le SBM, nous commencons par introduire le modeéle fondamental
d’Erdos-Rényi (ER) [Erdds and Rényi, 1959, Erdés et al., 1960]. Soit n un entier et
p € (0,1). Un graphe G(n,p) généré selon le modele ER est un graphe non orienté
de n sommets connectés aléatoirement. La probabilité que deux sommets soient con-
nectés est de p, indépendamment des autres sommets. Bien que ce modele soit tres
simple et souvent peu réaliste en pratique, de nombreux problemes statistiques ont
été étudiés a partir de ce modele. Il a également permis de progresser dans 1’étude
de modeles de graphes plus complexes. En particulier, le modele ER n’est pas un

18
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modele adapté a la détection de communautés, puisque la probabilité d’interaction
de deux sommets est homogene dans tout le graphe.

Ce modele permet d’introduire le concept de transition de phase. Un phénomeéne
de transition de phase se produit lorsqu’on observe un phénomene de seuil. Les deux
parametres du modele ER sont n et p. En fonction de leurs valeurs relatives, le
graphique a un aspect différent. Ainsi, [Erdés et al., 1960] ont prouvé que pour tout
e €(0,1),

— si p < U=218n qlors G(n, p) est presque siirement non-connexe (i.e., contient
n

des sommets isolés),

. 1—e)1 A . .
— sip > U218 alors G(n, p) est presque stirement connexe (i.e., ne contient
n

aucun sommet isolé).

Alinsi, pour n fixé, une petite variation de p modifie radicalement I’aspect du graphe
et 10% peut étre considéré comme un seuil de connectivité du graphe.

1.2 Le Stochastic Block Model

Le Stochastic Block Model (SBM) [Holland et al., 1983] peut étre considéré comme
une extension du modele ER. L’hypothese principale du SBM est que les sommets
ne sont pas connectés au hasard mais selon leur communauté respective.
Considérons le cadre du SBM a deux communautés. Soit n un entier et (p,q) €
(0,1)2. Un graphe G(n,p,q) généré selon un modele SBM & deux communautés est
un graphe non orienté avec n sommets, tel que la probabilité que deux sommets
appartenant a la méme communauté soient connectés est p, et la probabilité que
deux sommets appartenant a des communautés différentes soient connectés est q.
Nous donnons maintenant une définition formelle du SBM. Soit ny,n_ deux
entiers positifs tels que n = ny + n_. Soit V ’ensemble de n sommets tel que V'
contienne n, sommets d’étiquette +1 et n_ sommets d’étiquette —1. Pour chaque
sommet u de V, on note o(u) € {—1,1} son étiquette. On note A la matrice
d’adjacence du graphe, i.e. la matrice (n,n) dont les coefficients A;; valent 1 si les
sommets correspondants 4,5 € V' sont connectés, et 0 sinon.
On dit que A est générée selon un modele SBM (ny,n_,p,q) si les coefficients A;;
sont indépendants et si

o A ~ Ber(p) si 0(i) = o(j), i.e. si deux sommets de méme étiquette sont
connectés avec une probabilité p,

o A;; ~ Ber(q) si 0(i) # o(j), i.e. si deux sommets d’étiquettes différentes sont
connectés avec une probabilité q.

Ici, Ber(p) désigne la distribution de Bernoulli de parameétre p.
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On note que si p = ¢, on obtient le modele d’Erdos-Rényi. Sip > ¢, le SBM est dit
assortatif et les interactions sont plus fréquentes au sein d’'une communauté qu’entre
communautés. C’est la situation la plus courante dans les applications. Inversement,
sip < q, le SBM est dit disassortatif et les interactions sont moins fréquentes au sein
d’une communauté qu’entre les communautés. On trouve des exemples de graphes
disassortatifs en biologie ou dans l'architecture des liens des pages Web.

Nous désignons par n € {£1}" le vecteur de la partition de V. Notez que si
I'objectif est de classer les sommets entre deux communautés, cet objectif peut étre
atteint aussi bien en estimant n que —n.

Toute fonction mesurable /) de A vers {£1}" est un estimateur de n. Afin de
mesurer la perte d'un tel estimateur, nous introduisons la distance de Hamming, qui
est égale au double du nombre de coordonnées ou 7 et 7 different :

n—n = |m— 0l =2> 1(n; # M),
i=1 i=1
ou 7; (resp., 7;) désigne la i® coordonnée de 7 (resp., 7).

Puisque, comme mentionné ci-dessus, il est équivalent pour la détection de com-
munautés d’estimer 7 et —n, nous considérons la perte suivante :

rin.i) =, min 7 v 2.)

Il existe plusieurs propriétés pertinentes pour 1’étude du SBM.
Definition 4 (weak recovery dans le SBM). L’estimateur 7 accomplit la weak recov-

ery de n s’il existe a € (0,1) tel que

lim sup P (W > 04) =0, (2.2)

n—>OOSBM n

0l Supgp,, désigne le mazimum sur tous les tirages de A selon SBM (ny,n_,p,q).
La weak recovery est également appelé detection dans la littérature.

Definition 5 (almost full recovery dans le SBM). L’estimateur 7) accomplit 'almost
full recovery de n si (2.2) est vraie pour tout o € (0,1).

L’almost full recovery, également appelée almost exact recovery dans la littéra-
ture, signifie que 7 classe correctement presque tous les sommets avec une probabilité
élevée.

Definition 6 (ezact recovery dans le SBM). L’estimateur 7 accomplit l’ezact recovery
de n si

lim inf P(r(n,ﬁ) = O) =1

n—oo SBM



1. BSBM 21

L’exact recovery signifie que 7 classe correctement tous les sommets avec une
forte probabilité.

Un grand nombre de travaux ont été consacrés a la détermination des transitions
de phase sur n,p,q pour ces problemes. La plupart des résultats ont été obtenus
sous les hypotheses suivantes, a = pn et b = gn, a = pn/log(n) et § = gn/log(n),
qui caractérisent le cas le plus intéressant. En particulier, pour le probleme de
weak recovery, [Massoulié, 2014] et [Mossel et al., 2018] ont prouvé que la weak
recovery est possible si et seulement si (a — b)? > 2(a + b). Pour le probleme d’ezact
recovery lorsque p > q, [Abbe et al., 2015] ont prouvé le phénomeéne de transition de
phase suivant : 1’exact recovery est possible si o‘%ﬁ — VafB > 1 et est impossible si

atp
%—\/a6<1.

1.3 Le Bipartite Stochastic Block Model

De nombreuses généralisations du Stochastic Block Model ont été étudiées. Dans
cette these, nous nous intéressons plus particulierement a une généralisation non-
symétrique du SBM : le Bipartite Stochastic Block Model (BSBM).

Introduit par [Feldman et al., 2015], le BSBM est adapté a ’étude des interac-
tions entre deux ensembles : chaque ensemble est divisé en plusieurs communautés,
et ces deux ensembles sont le plus souvent composés d’objets de natures différentes.
Au sein d’'un ensemble, il peut exister des interactions inter et intra-communautés,
mais celles-ci sont le plus souvent inaccessibles ou peu informatives. Le BSBM est
par exemple pertinent pour ’étude des interactions objet/utilisateur dans le cadre
des systemes de recommandation. Les utilisateurs constituent un premier ensemble,
divisé en plusieurs communautés, et les objets constituent un second ensemble, égale-
ment divisé en plusieurs communautés. Ce modele a plusieurs applications telles que
les interactions document/mot [Dhillon and Modha, 2001, Lancichinetti et al., 2014],
les interactions gene/séquences génétiques [Eren et al., 2013, Larremore et al., 2013],
et les interactions objet/utilisateur dans le cadre des systemes de recommandation
[Jang et al., 2007].

Initialement, le BSBM a été introduit par [Feldman et al., 2015] dans le con-
texte des problémes de satisfaction de contraintes (CSP). Les CSP sont des prob-
lemes mathématiques qui consistent en I’étude d’états ou d’objets satisfaisant certains
critéres ou contraintes. Formellement, un CSP est un triplet (27, 2,%) ou 2 est un
ensemble de n variables, & est un ensemble de n domaines de définition pour chaque
variable de 2, et € est un ensemble de contraintes. Les CSP apparaissent dans de
nombreux domaines, par exemple en informatique et en apprentissage automatique.
En particulier, la théorie des CSP est étroitement liée a la théorie de la complexité
en informatique théorique. [Feldman et al., 2015] ont introduit le BSBM pour unifier
plusieurs problémes, notamment le probleme classique du SBM et le probleme CSP
k-SAT. Le probleme SAT, ou probleme de satisfiabilité booléenne, est le probleme
CSP qui, étant donné une formule de logique propositionnelle, détermine s’il existe
une affectation de variables propositionnelles qui rende la formule vraie. Si une telle
affectation existe, on dit que la formule est satisfaisable. Rappelons qu’en logique
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booléenne, un littéral est une variable booléenne ou sa négation, et une clause est
une disjonction de littéraux. Les clauses s’identifient aux contraintes. Une formule
E-SAT aléatoire est une conjonction de m clauses de k variables booléennes choisies
aléatoirement parmi n variables booléennes. Nous nous intéressons a la probabilité
qu'une formule k-SAT aléatoire soit satisfaisable. [Feldman et al., 2015] ont étudié le
probleme de la satisfiabilité plantée. Dans ce cadre, une affectation dite plantée est
fixée a I'avance et les clauses (aléatoires) sont tirées selon une distribution définie par
cette affectation. [Feldman et al., 2015] ont prouvé que le probléeme k-SAT planté
aléatoire se réduit au BSBM.

Définition du BSBM

Soient ny,,n1_,ney,no_ quatre entiers positifs non nuls tels que ny :=nyy +n1- <
Not + Na— = ng et soient p € (0,1/2), 6 € (0,2). Soient V; et V5 deux ensembles de
sommets tels que V) (respectivement V5) soit composé de nyy (resp. noy ) sommets
d’étiquette +1 et de ny_ (resp. ny_) sommets d’étiquette —1. Pour chaque sommet
u de Vi ou V3, on note o(u) € {—1,1} son étiquette.

On note A la matrice de biadjacence, i.e. la matrice (nj,ny) telle que ses coeffi-
cients A;; sont égaux a 1 si les sommets correspondants i € V1,5 € V, sont connectés,
et 0 sinon.

On dit alors que A est générée selon un modele BSBM (0, n14,n1_, N9y, No_, D)
si les coefficients A;; sont indépendants et si

o A;;j ~ Ber(dp) si o(i) = o(j) i.e. si deux sommets i € V; et j € V5 de méme
étiquette sont connectés avec une probabilité op,

o A ~ Ber((2—19)p) si (i) # o(j) i.e. si deux sommets ¢ € Vj et j € Vj
d’étiquettes différentes sont connectés avec une probabilité (2 — 0)p.

Notons que le modele BSBM est bien une généralisation du modele SBM puisque si
Vi = V,, on obtient le SBM.

Détection de communautés

Supposons que nous observons une matrice A générée selon un modele BSBM (9, ny 4,
ni_,Nay,no_,p). On s’intéresse au probléme de 'estimation de la partition associée
a Vi a partir de l'observation de la matrice de biadjacence A. Soit n; € {£1}™
le vecteur des étiquettes des sommets de V;. Comme dans le cadre du SBM, il est
équivalent d’estimer 7, et —n;. Toute fonction mesurable ) de A vers {£1}"* est un
estimateur de n;.

Comme pour le probleme SBM, nous considérons les problémes de weak recovery,
almost full recovery et exact recovery. On adapte facilement les définitions 4,5,6
au cadre du BSBM. Nous utilisons la perte de Hamming r définie dans (2.1) pour
caractériser la perte d'un estimateur 7 de ;.
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Figure 2.1: Hlustration du BSBM.

Syntheése des résultats précédents

Si le SBM a été abondamment étudié, le BSBM reste moins connu. [Feldman et al.,
2015, Florescu and Perkins, 2016, Cai et al., 2019] ont étudié les phénomeénes de
transition de phase pour p. [Florescu and Perkins, 2016] ont prouvé que le phénomene
de transition de phase pour la weak recovery se produit pour la probabilité seuil
De = %. Afin de prouver la condition suffisante, ils ont utilisé une réduction
au SBM et ensuite un algorithme "black-box" optimal pour la weak recovery dans le
SBM, comme dans [Bordenave et al., 2015, Massoulié, 2014, Mossel et al., 2018].
[Florescu and Perkins, 2016] ont également fourni une condition suffisante pour
I'almost full recovery dans le cadre de grande dimension, i.e. pour ng > ny. [Flo-
rescu and Perkins, 2016] utilisent des méthodes spectrales, qui sont des méthodes
classiques dans le cadre de l'estimation de communautés. En particulier, [Florescu
and Perkins, 2016] ont prouvé que modifier la méthode SVD classique permet une
amélioration significative dans le cadre de grande dimension. En effet, au lieu de con-
sidérer les vecteurs singuliers de la matrice de biadjacence A, [Florescu and Perkins,
2016] considerent les vecteurs propres de la matrice de Gram associée, dont les élé-
ments diagonaux sont tous fixés a 0. L’algorithme associé est appelé "Diagonal
Deletion SVD". Pour ny > ny(logny)?, [Florescu and Perkins, 2016] ont prouvé avec
logny

le "Diagonal Deletion SVD" que p = 2 (\/ﬁ) est une condition suffisante pour ac-
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complir ’almost full recovery dans le modele BSBM. Ici et dans ce qui suit, on note
a, = O(b,) s'il existe une constante ¢ > 0 telle que a,, < cb,,, et on note a,, = Q(b,)
s’il existe une constante ¢ > 0 telle que a,, > c¢b,. On note également a,, =< b, si
a, = O(by,) et a, = Q(by).

[Feldman et al., 2015] ont prouvé les meilleures conditions connues pour !’ezact

recovery jusqu’a nos résultats. Ils ont prouvé dans le cadre de grande dimension

(6—1)?logn,
Jninz

recovery en utilisant leur algorithme nommé "Subsampled Power Iteration". [Feldman

et al., 2015] conjecturent que la condition p = Q(%) est nécessaire pour 'ezact
recovery. Nous avons réfuté cette conjecture (cf. ci-dessous).

Nous remarquons que dans des conditions tres similaires, [Feldman et al., 2015]
fournissent de meilleurs résultats que [Florescu and Perkins, 2016], puisque 'algorithme
"Subsampled Power Iteration" permet 1’exact recovery au lieu de 1’almost full recov-
ery.

[Cai et al., 2019] ont prouvé que 'algorithme "Diagonal Deletion SVD" permet
également 1'ezact recovery dans des conditions tres proches de [Feldman et al., 2015]
pour ny 2 mq, mais ces conditions se dégradent dans le cadre ny > ny, par exemple
pour ny < ™. Pour étre plus précis, [Cai et al., 2019] ont prouvé qu’il est possible
d’accomplir I'ezact recovery via le "Diagonal Deletion SVD" si

ny > ny que la condition p = Q( ) est suffisante pour accomplir I’ezact

(2.3)

p> 06— 1) <10g(n1 + 1) Y log(ni + nz)) :

A/ 1Mo ni + No

ou C' > 0 est une constante indépendante de p, d, ny, ne. [Zhou and Amini, 2019, Zhou
and Amini, 2020, Neumann, 2018] ont également fourni des résultats sur le BSBM
mais dans un cadre plus général. Ces résultats ne permettent pas d’estimer les
communautés dans le cadre de grande dimension lorsque 1y > ny. [Zhou and Amini,
2019] utilisent des méthodes spectrales sur une matrice bien choisie. Le théoréme
1 de [Zhou and Amini, 2020] adapté a notre cadre nécessite ny = O(n?), ce qui
est assez restrictif. [Neumann, 2018] se concentre sur l'estimation des clusters dits
minuscules, i.e. les clusters de taille n® pour tout € > 0, ou n est le nombre de
sommets du graphe. Cependant, les travaux de [Neumann, 2018| appliqués a notre
cadre sont sous-optimaux.

[Feldman et al., 2015, Florescu and Perkins, 2016] ont observé que les principales
difficultés d’estimation des communautés apparaissent dans le régime de grande di-
mension ny > ny. Ce régime est le plus adapté aux applications réelles du BSBM et
c’est celui qui présente des difficultés théoriques. En effet, le régime ny < ny est plus
standard, car nous pouvons lui appliquer les méthodes classiques de clustering pour
le SBM. Nous obtenons des résultats optimaux pour ny < n; en appliquant des algo-
rithmes SVD directement a la matrice de biadjacence [Zhou and Amini, 2019, Zhou
and Amini, 2020]. En effet, on sait contrdler la norme spectrale du bruit de la ma-
trice de biadjacence, mais moins celle du bruit de la matrice de Gram a diagonale
nulle, que I'on doit controler pour ny > n;.
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Pour obtenir nos résultats, nous avons fait une analogie avec le Modele de Mélange
Gaussien (GMM). [Lu and Zhou, 2016, Ndaoud, 2018, Giraud and Verzelen, 2019,
Loffler et al., 2019] ont développé des algorithmes de clustering optimaux pour
le GMM. [Lu and Zhou, 2016] ont prouvé qu’'une procédure itérative similaire &
I'algorithme de Lloyd [Lloyd, 1982] permet le clustering du GMM avec des pro-
priétés optimales. [Ndaoud, 2018] a fourni une version modifiée de cet algorithme
de clustering itératif, dont il a été démontré qu’il permet de réaliser la transition de
phase pour I’ezact recovery dans ce modele GMM. Ainsi, par analogie entre le GMM
et le BSBM, [Ndaoud, 2018] a conjecturé que des algorithmes similaires permet-
traient 1’almost full recovery et 1’exact recovery pour le BSBM, et que la condition
p = (((5 — 1)2\/%) était suffisante pour obtenir I'exzact recovery pour le BSBM
si ng > nylogn;. Cela va a 'encontre de I'heuristique faite par analogie avec le
SBM selon laquelle p = (M> est nécessaire pour obtenir 1'ezact recovery, cf.

ND
[Feldman et al., 2015].

Résultats

Dans le Chapitre 3, nous introduisons un algorithme appelé le hollowed Lloyd’s algo-
rithm, qui accomplit I’exact recovery dans de meilleures conditions que celles connues
dans les travaux précédents. Nous prouvons que, pour tous les régimes de (ny,ns),

p>C(1—6) (, jlogm | log ”1) (2.4)
niny Mo

est une condition suffisante pour 1’exact recovery pour le BSBM, ou C' > 0 est une
constante positive. Cette condition est meilleure que (2.3). En particulier, elle ne se
dégrade pas pour ng < e™.

La condition (2.4) révele un effet de coude a ny =< njlogn; entre les régimes
de grande et faible dimension. Dans le régime de faible dimension ny < njlogny,
nous retrouvons la condition suffisante de [Zhou and Amini, 2019, Cai et al., 2019],

p = (loi%) Dans le régime de grande dimension ny > nglogn;, nous obtenons
la condition suffisante p = ) (,/lzf—:;;). Nous avons conjecturé dans [Ndaoud et al.,
2021] que cette condition est nécessaire dans le régime ny > nylogn; en exhibant

un estimateur oracle qui n’accomplit pas 'ezact recovery si p < c,/lf—:; pour ¢ > 0
assez petit.
Nos résultats sont issus de [Ndaoud et al., 2021].

2 Estimation de la matrice topic-document dans
le cadre de topic model

Le deuxieme probleme que nous avons étudié est celui de I'estimation dans le cadre
de topic models. Ce probleme est développé dans le Chapitre 4.
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En statistiques et en traitement du langage naturel (NLP), un topic model (en
francais, "modele thématique") est un modele utile pour classer des documents par
themes. Par exemple, il est nécessaire de savoir comment classer les pages Web
afin de les recommander aux utilisateurs. Il est également utile de pouvoir classer
automatiquement des articles scientifiques en ligne. Les topic models peuvent étre
utilisés pour résoudre ces problémes.

2.1 Probabilistic Latent Semantic Indexing

Dans cette these, nous considérons le modele probabilistic Latent Semantic Indexing
(pLSI). Introduit par [Hofmann, 1999], ce modele relie trois types de variables : les
documents, les topics (ou sujets) et les mots. Nous supposons que nous disposons
d’un dictionnaire de p mots et d’un corpus de n documents, ot p,n sont des entiers
strictement positifs. Un document est une suite de mots du dictionnaire. Nous
supposons que les documents portent sur plusieurs sujets ou topics. Soit K € N* le
nombre de sujets. Nous supposons que 2 < K < min(n,p). Typiquement, K est tres
petit devant n et p.

L’hypothese fondamentale du modele pLSI est que la probabilité quun mot j
apparaisse dans un document sur le sujet k est indépendante du document. En
d’autres termes, selon la loi des probabilités totales,

K
P(mot j|document i) = Y P(topic k|document 7)P(mot j|topic k).
k=1

Nous introduisons les notations suivantes :

II;; = P(mot j|document i),
Wi = P(topic k|document i),
Ay; = P(mot j|topic k).

Ensuite, nous pouvons écrire IT;; = W' A;, ou W; = (Wyy,..., Wix)T € [0, 1% est le
vecteur de probabilité de chaque sujet dans le document i et A; = (Ay;, ..., Ax;)T €
[0, 1]K est le vecteur de probabilité de chaque sujet pour le mot 7, pour chaque sujet
k=1,..., K. Ainsi, nous pouvons écrire sous forme matricielle

II=WA,

ot IT est la matrice (n, p) documents-mots de coefficients II;;, W := (W1, ..., Wn)T
est la matrice (n, K) documents-sujets, A = (Ay,...,A4,) est la matrice (K,p)
sujets-mots. Les lignes de ces matrices étant des vecteurs de probabilité, nous avons

K P P
mezl, ZAkal, Zﬂijzlpourtoutizl,...,n, k=1,...K.
m=1 j=1

Jj=1
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Ici, II;; est la probabilité d’occurrence du mot j dans le document . En pratique,
nous n’observons pas II;; mais la fréquence empirique correspondante X;.

Nous avons donc une matrice (n,p) documents-mots X = (X;;) telle que pour
chaque document i de 1,...,n, et chaque mot j de 1,...,p, Xj; est la fréquence
observée du mot j dans le document i. Soit N; le nombre (déterministe) de mots
échantillonnés dans le document i. Nous supposons que, pour chaque vecteur X; =
(Xi1,...,Xip) " de mots du document i, le vecteur correspondant N;X; du nombre
d’occurrences de chaque mot dans le document ¢ suit une distribution multinomiale
de dimension p, de parametres (N;,II;), ou II; = E(X;) = (I;,...,1L;,)". Nous
supposons également que X7, ..., X, sont des vecteurs aléatoires indépendants. Nous
pouvons écrire le modele comme un modele "signal + bruit" :

X=NN+Z=WA+ Z, (2.5)
ou Z := X — II est une matrice de moyenne nulle.

L’objectif des topic models est d’estimer les matrices A et W a partir de 'observation
de la matrice X et de la connaissance de Ny, ..., N,. L’estimation de A et ’estimation
de W répondent a des objectifs différents. Un estimateur de la matrice A identifie la
distribution des sujets sur le dictionnaire. Un estimateur de la matrice W identifie
les sujets associés a chaque document. Notre étude se concentre principalement sur
I’estimation de la matrice W.

2.2 Contraintes

Il est courant, dans le contexte des topic models, d’introduire des hypotheses d’ancrages.
Une hypothese largement utilisée dans la littérature est I’anchor word assumption,
cf. par exemple [Arora et al., 2013, Bing et al., 2020a, Ke and Wang, 2017|. Cette
anchor word assumption consiste a supposer que pour chaque sujet, il existe au
moins un mot associé uniquement a ce sujet. Cette hypothese est la mieux adaptée

a l'estimation de la matrice A, qui a été largement étudiée dans la littérature. Une
autre hypothese que nous adoptons ci-dessous est ’hypothese anchor document as-
sumption, qui postule que pour chaque sujet, il existe au moins un document portant
exclusivement sur ce sujet.

Une idée fondamentale de la statistique en grande dimension est qu'un large en-
semble de données peut étre de tres faible rang. Ainsi, en réduisant la dimension,
il est possible de mieux exploiter les données. C’est le cas pour les topic models,
ou il existe une structure thématique sous-jacente de dimension K qui est générale-
ment tres petite par rapport a n et p. Il existe plusieurs méthodes de réduction de
dimension. Nous sommes particulierement intéressés aux méthodes de factorisation
matricielle.
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2.3 Vue d’ensemble des résultats précédents
Nonnegative Matrix Factorization (NMF') sans bruit

Nous considérons d’abord un modele sans bruit, ou 'équation (2.5) devient
X =WA.

Les méthodes de Nonnegative Matrix Factorization (NMF) visent a estimer W et A
a partir de 'observation de X. Une matrice positive ("nonnegative' en anglais) est
une matrice dont les entrées sont positives. La méthode NMF a été introduite par
[Paatero and Tapper, 1994, Paatero, 1997, Lee and Seung, 1999a, Lee and Seung,
2000] et consiste a factoriser sous des hypotheses appropriées une matrice positive X
en un produit de deux matrices positives W, A. Dans le cas ou X est une matrice
(n,p), W une matrice (n, K) et A une matrice (K,p), cette factorisation permet
une réduction de dimension. Cette méthode est utile dans certains contextes ou
les matrices étudiées sont intrinsequement positives, comme en NLP ou en analyse
d’images. Les méthodes de réduction classiques comme l’analyse en composantes
principales (ACP) ne peuvent pas étre appliquées a de telles matrices. En effet, la
contrainte d’orthogonalité requise dans ’ACP ne peut étre respectée. C’est précisé-
ment le cadre du modele pLSI, ou toutes les matrices considérées sont positives. En
général, le probleme NMF est un probleme NP-hard, mais des contraintes de sépara-
bilité telles que 'hypothese anchor document assumption permettent de le résoudre.
Ces méthodes consistent le plus souvent en la minimisation d’une fonction de cofit
régularisée, cf. par exemple [Cichocki et al., 2009, Donoho and Stodden, 2004, Lee
and Seung, 1999a, Recht et al., 2012]. Cependant, ces articles traitent du cas sans
bruit et leurs résultats ne peuvent étre utilisés dans le modele avec bruit (2.5).

Perspective bayésienne : Latent Dirichlet Allocation

Nous nous intéressons a présent a la NMF dans le cas bruité spécifique aux topic
models. Il existe une littérature abondante sur I'estimation des matrices A, W dans
ce contexte. Le modele le plus célebre et le plus populaire dans la classification de
documents est probablement le modele Latent Dirichlet Allocation ou LDA. Introduit
par [Blei et al., 2003], le modele LDA impose une prior de Dirichlet sur la matrice A
et estime ensuite la matrice W par un algorithme EM. Cette perspective vise prin-
cipalement a la construction d’algorithmes et ne fournit pas de garanties statistiques
sur les estimateurs obtenus. De plus, l'algorithme LDA est computationnellement
lent et suppose que les sujets sont non corrélés, ce qui n’est pas réaliste [Blei and
Lafferty, 2007, Li and McCallum, 2006]. Pour résoudre ce dernier probléeme, [Lafferty
and Blei, 2006] ont introduit un autre modele, le Correlated Topic Model. D’autres
articles connexes ont utilisé I’échantillonnage de Gibbs ([Porteous et al., 2008, Ra-
mage et al., 2009]) ou les techniques de Bayes variationnelles ([Chien and Chueh,
2010, Zhai et al., 2012]) pour estimer W, plutot que d’utiliser I’algorithme EM.
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Travaux antérieurs sur les garanties statistiques pour les topic models

Pour estimer la matrice A, plusieurs articles ont proposé des algorithmes avec des
garanties statistiques sous ’hypothese anchor word assumption, cf. par exemple
[Arora et al., 2012, Arora et al., 2013, Ding et al., 2013, Anandkumar et al., 2014,
Bansal et al., 2014, Bing et al., 2020a, Bing et al., 2020c, Bing et al., 2021a, Ke and
Wang, 2017]. Ces articles utilisent différentes techniques, notamment ’analyse de
la matrice de co-occurrence, des tenseurs ou des méthodes de simplexes via SVD.
Les travaux de [Bing et al., 2020a, Bing et al., 2020c, Bing et al., 2021a, Ke and
Wang, 2017] développent des méthodes atteignant des taux de convergence minimax
optimaux a des facteurs logarithmiques pres pour l'estimateur de A pour la norme
l1. Ces articles utilisent 'hypothese anchor word assumption mais proposent des
estimateurs différents des notres, car ils se concentrent sur I’estimation de la matrice
A. La méthode d’estimation de la matrice A dans [Ke and Wang, 2017] est une
méthode de simplexe en dimension p, avec un cofit de calcul p. Leur procédure
permet également d’estimer la matrice W en utilisant leur estimateur A de A, via
une méthode des moindres carrés.

[Bing et al., 2020a] proposent une méthode rapide fondée sur des méthodes SVD
pour I'estimation de A sous I’hypothese anchor word assumption. Dans les travaux
suivants, [Bing et al., 2020c, Bing et al., 2021a] considérent le probléme (2.5) dans
un cadre sparse et sous I'hypotheése anchor word assumption. [Bing et al., 2021a]
étudient ’estimation des lignes de la matrice W a partir d’'un estimateur A de
A. Notons (w;)™, les lignes de la matrice W et (0MEE)" | les estimateurs par
maximum de vraisemblance correspondants de [Bing et al., 2021a]. Supposons que
N; = N pour tout i. On fixe 1 < i < n. [Bing et al., 2021a] prouvent, pour la norme
(1 du i€ rang ||wMEE — w;||;, une borne en probabilité de I'ordre de (\/NIN v ﬁ) (a
un faible facteur pres, i.e. un facteur ne dépendant que de K ou de la sparsité, et un
logarithme des parametres principaux p,n, N). Par conséquent, le taux d’estimation
de W en la norme ¢; obtenue par [Bing et al., 2021a] est de l'ordre ( LY \/LN>’
a un faible facteur pres. Un résultat analogue est obtenu dans la version 2022 de
article [Ke and Wang, 2017] pour un estimateur différent, toujours sous ’hypothese
anchor word assumption.

2.4 Algorithme SPOC

Afin d’estimer W, nous avons introduit un algorithme appelé Successive Projec-
tion Overlapping Clustering (SPOC), inspiré par le Successive Projection Algorithm
(SPA). L’algorithme SPA a été introduit par [Aratdjo et al., 2001] pour résoudre le
probleme NMF et a été largement utilisé par la suite, en raison de sa simplicité et
de sa rapidité. L’algorithme SPOC applique I'algorithme SPA non pas a la matrice
initiale X, mais plutot a la matrice de ses vecteurs singuliers gauches, et utilise le
résultat pour estimer W.

Les algorithmes SPA et SPOC sont des algorithmes itératifs de projection. En
partant de la décomposition SVD de la matrice X, nous appliquons la procédure
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itérative suivante : a chaque étape de l'algorithme, nous sélectionnons la ligne
de norme maximale de la matrice des vecteurs singuliers gauches, et nous proje-
tons notre matrice sur le complément orthogonal de I'espace généré par cette ligne.
Géométriquement, cette procédure s’explique par le fait que les lignes de la matrice
des vecteurs singuliers de IT appartiennent a un simplexe dont les sommets sont les
anchor documents. L’algorithme SPOC trouve itérativement des estimateurs de ces
sommets, ce qui permet ensuite ’estimation de W'.

2.5 Reésultats

Dans le Chapitre 4, nous fournissons des bornes sur 'algorithme SPOC en la norme
de Frobenius et la norme ¢;. Nous obtenons des bornes supérieures et inférieures qui
correspondent a un facteur logarithmique pres, ce qui implique la quasi-optimalité
de notre procédure. Plus précisément, en supposant que N; = N pour tout i, nous
prouvons que l'estimateur SPOC de W converge en la norme de Frobenius et en

la norme ¢; aux taux \/n/N et n/v/N respectivement, a un faible facteur pres.

Nous prouvons également des bornes inférieures minimax d’ordres \/n/N et n/v/N
respectivement. Nous pouvons observer que le taux ¢; est plus rapide que le résultat
( v ﬁ) de [Bing et al., 2021a]. Cependant, les hypotheses de [Bing et al., 2021a]
sont différentes. Ils imposent I'’hypothese anchor word assumption alors que nous
travaillons sous I'hypothese anchor document assumption. Le terme potentiellement
grand \/% dans le taux apparait dans [Bing et al., 2021a] du fait de I'estimation
préliminaire de A. Elle tient compte de 'estimation de A, qui est un artefact de la
méthode et n’apparait pas dans la borne inférieure.

Nous remarquons également, d’apres nos résultats théoriques et nos simulations,
que l'erreur de l'algorithme SPOC n’augmente pas significativement avec p, con-
trairement a l’erreur de l'algorithme LDA. De plus, notre procédure est compu-
tationnellement rapide et simple & mettre en oeuvre. Comparé a [Ke and Wang,
2017], dont I'algorithme a une complexité p’, notre algorithme a une complexité
max(p,n) K +nK?2. Le premier terme max(p,n)K correspond au cofit du SVD tron-
qué, et le second terme nK? correspond au cotit du SPA. Enfin, notre procédure est
adaptative : elle ne requiert pas la connaissance du nombre de sujets K.

Nos résultats sont issus de [Klopp et al., 2021].

3 Benign Overfitting en régression non paramétrique

Le troisieme probleme que nous avons étudié est le probleme de Benign Overfitting
dans le cadre de la régression non paramétrique. Ce probleme est développé dans le
Chapitre 5.
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3.1 Etat de l’art

Les méthodes modernes d’apprentissage automatique ont manifesté des propriétés
inattendues et en apparence contradictoires avec les statistiques classiques. L’une
des méthodes d’apprentissage les plus populaires aujourd’hui est celle des réseaux
de neurones. Initialement inspirés par le fonctionnement du cerveau humain, les
réseaux de neurones imitent la transmission d’un signal d’un neurone a un autre.
Le fonctionnement théorique des réseaux de neurones est encore mal compris. Em-
piriquement, les excellentes performances des réseaux de neurones profonds ne sont
plus & démontrer (cf. par exemple [Gupta et al., 2015, Sagun et al., 2017, Huang
et al., 2017]). Cependant, les réseaux de neurones profonds ont la particularité d’étre
interpolants, i.e. de biais nul sur le jeu de données d’apprentissage, mais tout en
présentant une erreur de prédiction faible sur des jeux de données inconnus [Belkin
et al., 2019a, Zhang et al., 2021]. Ce phénomene va a I’encontre de I'intuition clas-
sique du compromis biais-variance, qui est donc remis en question depuis quelques
années (cf. par exemple [Ma et al., 2018]).

Travaux récents sur le Benign Overfitting en régression linéaire

Afin de mieux comprendre ce phénomene, appelé Benign Overfitting, plusieurs travaux
ont étudié ce probleme dans le contexte de la régression linéaire, cf. par exemple
[Bartlett et al., 2020, Tsigler and Bartlett, 2020, Chinot and Lerasle, 2020, Muthuku-
mar et al., 2020, Bartlett and Long, 2021, Lecué and Shang, 2022]. La principale
conclusion de ces travaux est que le Benign Overfitting ne peut se produire dans un
modele linéaire que si le modele est surparamétré et si la matrice de design a un
spectre déséquilibré — ce qui est proche du cadre non paramétrique. Les articles ci-
dessus montrent que les estimateurs sont interpolants mais n’atteignent pas les taux
de convergence optimaux. L’article trés récent [Wang et al., 2022] obtient des taux
optimaux pour le Benign Overfitting dans le cadre de la régression linéaire, avec une
sparsité fixée a 1.

Benign Overfitting dans le modele de régression non paramétrique

Considérons maintenant le cadre de la régression non paramétrique. Supposons que
nous disposons de n paires de variables aléatoires indépendantes (X1,Y7), ..., (X, Yy)
dans R? x R tel que, pour tout 1 <i < n,

Y = f(X;) + i, avec E(g;) =0, (2.6)

oll &; sont des bruits aléatoires. La fonction f : R? — R est appelée la fonction de
régression et est inconnue. Le probleme de régression non paramétrique est d’estimer
f, étant donné qu’elle appartient & une classe non paramétrique de fonctions ..
Le cadre non paramétrique de la régression ridge en est un exemple particulier.
On suppose alors que f appartient a s, ou  est un espace de Hilbert a noyau
reproducteur (RKHS). Dans ce cadre, il est courant de considérer des estimateurs de
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f de moindres carrés régularisés [Alvarez et al., 2012, Golub et al., 1979, Smola and
Schoélkopf, 1998], i.e. des solutions du probléme

1 n
min 3 (F(Xi) = Yi)? + A £l

=1

ou A > 0et || - |22 désigne la norme dans 7.

Le role du terme de régularisation est d’éviter le surajustement. A l'opposé,
[Zhang et al., 2021, Belkin et al., 2019b], [Liang and Rakhlin, 2020] ont proposé
Iestimateur 'ridgeless" de régression a noyau, montrant que les solutions inter-
polantes de normes minimales fournissent une régularisation implicite sous certaines
conditions. Ils ont proposé 'estimateur suivant

A

f= arg}greujr} | f|lz, tel que f(X;) =Y;, Vi.

[Liang and Rakhlin, 2020] supposent que la taille de I’échantillon n est du méme
ordre que la dimension d des données, i.e. d < n. Par la suite, [Liang et al., 2020]
ont étendu ce cadre a d < n® pour o € (0,1). Ces articles fournissent des bornes
supérieures sur le risque qui dépendent de I’échantillon et peuvent étre petites en fonc-
tion des propriétés spectrales des données et du noyau RHKS. Dans le cas ou d est
constant et indépendant de n, [Rakhlin and Zhai, 2019] ont montré que l’estimateur
interpolant de norme minimale dépendant du noyau de Laplace ne converge pas.

Nous nous plagons maintenant dans le cadre général de la régression non paramétrique
(2.6). [Belkin et al., 2019b] ont fourni des estimateurs & noyau interpolants statis-
tiquement optimaux, en utilisant I'estimateur de Nadaraya-Watson avec un noyau
singulier. L’estimateur de Nadaraya-Watson est défini comme suit :

LYK (X

kv

fa (@) =

ol h > 0 est un parametre de lissage et K : R — R est un noyau.

Il est connu depuis [Shepard, 1968] que l'utilisation d’un noyau singulier avec
I'estimateur de Nadaraya-Watson permet d’obtenir un estimateur interpolant. Le
noyau singulier initialement choisi était K(u) = |lu]|™® ot @ > 0 et || - || désigne
la norme euclidienne et u € R% [Shepard, 1968] a introduit son estimateur inter-
polant pour d = a = 2. Ignorant le travail de [Shepard, 1968] et sa large utilisation
en traitement d’images, [Devroye et al., 1998] ont développé I'estimateur de Shep-
ard pour tout d et ont prouvé que cet estimateur converge en probabilité mais pas
presque stirement. Cependant, le noyau qu’ils considerent n’est pas intégrable et a
la propriété particuliere que le parametre de lissage h se simplifie dans la définition
de l'estimateur. Ainsi, le compromis biais-variance ne peut pas étre atteint par le
choix du parametre de lissage h. Par conséquent, [Belkin et al., 2019b] suggerent de
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définir le noyau comme suit :
K(u) = |lul""1([Jul| < 1), a € (0,d/2).

L’estimateur de Nadaraya-Watson avec ce noyau modifié reste interpolant. [Belkin
et al., 2019b] ont prouvé que cet estimateur atteint les taux de convergence minimax
pour la classe des fonctions de Holder avec un parameétre de régularité 5 € (0,2].
Cependant, ces résultats ne s’étendent pas a d’autres valeurs de 3 et les estimateurs
obtenus ne sont pas adaptatifs en f3.

3.2 Estimateur par polydomes locaux

Nous considérons l'estimateur par polynomes locaux (LPE), qui est une générali-
sation de l'estimateur de Nadaraya-Watson. Pour des raisons de simplicité, nous
donnons ici la définition du LPE en dimension d = 1. La définition en dimension d
quelconque est détaillée dans le Chapitre 5.

Si 'on considére un noyau positif, I’estimateur de Nadaraya-Watson satisfait la
condition suivante

P (2) = axgmin > (v, — 07K (HT)) (27)
=1

Ainsi, f,]LV W peut étre vu comme une approximation locale des sorties Y; par une
constante via les moindres carrés. Le caractere local est déterminé par le noyau, qui
donne plus de poids aux X; plus proches de z, tandis que 6 est une constante locale
a ajuster. Nous pouvons généraliser cette définition en remplagant la constante 6

dans (2.7) par un polynéme de degré ¢. Nous introduisons
Uu) = (1,u, u?/2!, ... ,z//f!)T
.
) = (f(@), @), /2 fON)

Ensuite, le vecteur 6, (z) dansR ™ défini par

; " Xi—a\\? . (Xi—
On(w) = arg min, <Y" 0 < h x)) K ( h x) (2:8)
=1

est appelé un estimateur par polynémes locaux (LPE) d’ordre ¢ de §(z). La statis-
tique

Jule) = UT(0)0a(2)

est appelé un estimateur par polynémes locaux d’ordre ¢ (ou LP(¢)) de f(x).
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Nous utiliserons les LPE avec des noyaux singuliers K, ce qui nécessite une déf-
inition légerement différente de fn, du fait que le probléeme de minimisation (2.8)
n’est pas bien défini pour z = X; (voir Chapitre 5 pour plus de détails). Les LPE
a noyaux singuliers sont assez populaires depuis [Lancaster and Salkauskas, 1981]
comme outils d’interpolation en analyse numérique. Ils ont également été considérés
dans le contexte de I'estimation non paramétrique par [Katkovnik, 1985]. Cepen-
dant, ces travaux n’ont pas fourni de garanties statistiques et ont étudié uniquement
les propriétés de régularité de tels estimateurs.

3.3 Reésultats

Dans le Chapitre 5, nous prouvons qu’en utilisant des LPE avec un noyau singulier,
on peut construire des estimateurs interpolants minimax-optimaux sur les classes de
Holder de parametre de régularité 3, pour tout 5 > 0. Pour § > 0, L > 0, nous
désignons par (3, L) une classe de fonctions de Holder convenablement définie (voir
Chapitre 5 pour la définition précise de cette classe). Nous notons f,, notre estima-
teur. Nous supposons que K est un noyau intégrable positif avec une singularité
en 0, qui est défini de mani¢re compacte et continue sur R4\{0}. Soit C' > 0 une
constante qui ne dépend pas de n. Nous prouvons que notre estimateur satisfait,
pour tout x dans le support de X7,

— 25
sup B ([fu(z) — f(2)]2) < Cn~ 251,
fex(s,L)
= 9 28
sup E ([|fn — fII},) < Cn =753,
feE(B,L)

et qu’il existe une constante ¢ > 0 telle qu’avec une probabilité supérieure a 1 —

ce=An/¢ avec A, = n%, notre estimateur est interpolant, i.e. qu’il satisfait a
fn(X;) = Y; pour tout 4, et f, est continue sur le support de X;. Ici, | - ||z, désigne
la norme Lo(Pyx), ou Px est la distribution marginale de Xj.

Nous avons également montré que ces estimateurs peuvent étre construits de
maniere adaptative en 3 si § € (0, Bax), pour tout Suax > 0, et de manieére adapta-
tive au parametre de borne L > 0 de la classe de Holder. Ces procédures adaptatives
sont construites en utilisant des méthodes d’agrégation.

En corollaire, nous obtenons des bornes non-asymptotiques sur le risque quadra-
tique des estimateurs LPE dans le cadre classique, avec des noyaux non-singuliers.
A notre connaissance, de telles bornes n’étaient pas disponibles dans la littérature,
car les travaux antérieurs sur les LPE étaient axés sur les propriétés asymptotiques
des LPE, comme la convergence en probabilité ou la normalité asymptotique [Stone,
1980, Stone, 1982, Tsybakov, 1986, Fan and Gijbels, 1996].

Nos résultats sont issus de [Chhor et al., 2022].



Chapter 3

Improved clustering algorithms for
the Bipartite Stochastic Block
Model

We establish sufficient conditions of exact and almost full recovery of the node parti-
tion in Bipartite Stochastic Block Model (BSBM) using polynomial time algorithms.
First, we improve upon the known conditions of almost full recovery by spectral clus-
tering algorithms in BSBM. Next, we propose a new computationally simple and fast
procedure achieving exact recovery under milder conditions than the state of the art.
Namely, if the vertex sets Vy and Vo in BSBM have sizes ny and ng, we show that the

condition p = € (max (./lﬁf—;;, lorgl%)) on the edge intensity p is sufficient for exact
recovery witin Vi. This condition exhibits an elbow at ny < nqlogn, between the
low-dimensional and high-dimensional regimes. The suggested procedure is a vari-
ant of Lloyd’s iterations initialized with a well-chosen spectral estimator leading to
what we expect to be the optimal condition for exact recovery in BSBM. The op-
timality conjecture is supported by showing that, for a supervised oracle procedure,
such a condition is necessary to achieve exact recovery. The key elements of the
proof techniques are different from classical community detection tools on random
graphs. Numerical studies confirm our theory, and show that the suggested algorithm
is both very fast and achieves almost the same performance as the supervised oracle.
Finally, using the connection between planted satisfiability problems and the BSBM,
we improve upon the sufficient number of clauses to completely recover the planted

assignment.

This chapter is based on [Ndaoud et al., 2021]: M. Ndaoud, S. Sigalla, and A. B.
Tsybakov, Improved clustering algorithms for the bipartite stochastic block model.
IEEE Transactions on Information Theory, 2021, vol. 68, no 3, p. 1960-1975.
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1 Introduction

Unsupervised learning or clustering is a recurrent problem in statistics and machine
learning. Depending on the objects we wish to classify, we can generally consider
two approaches: either the observed objects are individuals without any interaction,
which is often described by a mixture model, or the observed objects are individu-
als with interactions, which is described by a graph model. In the latter case, the
individuals correspond to vertices of the graph and two vertices are connected if
the two corresponding individuals interact. The clustering problem becomes then a
node clustering problem, which means grouping the individuals by communities. The
most known and studied framework for node clustering is the Stochastic Block Model
(SBM), cf. [Holland et al., 1983]. In this paper, we focus on the Bipartite Stochastic
Block Model (BSBM), cf. [Feldman et al., 2015], which is a non-symmetric general-
ization of the SBM. This model arises in several fields of applications. For example,
it can be used to describe different types of interactions; documents/words [Dhillon,
2001, Lancichinetti et al., 2014], genes/genetic sequences [Eren et al., 2013, Lar-
remore et al., 2013] and objects/users in recommendation systems [Jang et al., 2007].
Some other examples are related to random computational problems with planted so-
lutions such as planted satisfiability problems, cf. [Feldman et al., 2018] for a general
definition. As shown in [Feldman et al., 2015], three planted satisfiability problems
reduce to solving the BSBM. Namely, this concerns planted hypergraph partitioning,
planted random £—SAT, and Goldreich’s planted CSP. Planted satisfiability can be
viewed as a k—uniform hypegraph stochastic block model. The corresponding re-
duction to BSBM is characterized by a high imbalance between its two dimensions.
For instance, one dimension is n while the other is n"~!, where n is the number of
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boolean literals and r (that can be large) is the distribution complexity of the model
that we define later.

1.1 Definition of Bipartite Stochastic Block Model

Let ny14, ny_, noy and ny_ be four integers such that ny :==nyy +n;- < ngy +ny_ =
ng, where ny > 2, ny > 2, and let 6 € (0,2), p € (0,1/2). Consider two sets of
vertices V] and V5 such that:

— V} is composed of ny, vertices with label +1 and of n;_ vertices with label —1;
— V4 is composed of ny, vertices with label +1 and of ny_ vertices with label —1.

We denote by o(u) € {—1,1} the label corresponding to vertex u. We call
|n1+ —ny_|/ny (respectively, |noy —no_|/ng) the imbalance of the set Vi (respectively,
V3). In what follows, it is assumed that there exist v; € (0,1),i = 1,2, such that

Iy =i/ <y, ney —ne-|/ng < 7. (3.1)

Let A denote the biadjacency matrix, i.e., a rectangular matrix of size n; X no
whose entries A;; take value 1 if the two corresponding vertices i € V; and j € V;
are connected and take value A;; = 0 otherwise.

We say that matrix A is drawn according to the BSBM (5, n14,m1_,no4, o, p)
model if the entries A;; are independent and

o A;; ~ Ber(dp) if 0(i) = o(j), i.e., two vertices i € Vi, j € V5 with the same
label are connected with probability dp;

o A;j~ Ber((2—=9)p)ifo(i) # o(j), i-e., two vertices i € Vi, j € V, with different
labels are connected with a probability (2 — J)p.

Here, Ber(q) denotes the Bernoulli distribution with parameter ¢ € (0, 1).

In this definition, p is proportional to the overall edge density. The Bipartite
SBM is a generalization of the SBM in the sense that we obtain the SBM if V; = V5.
Another possible definition of BSBM is obtained by fixing only n; and ns and letting
N1y, MN1_,Nat,Ne_ be random variables such that the expectations of n;, and n;_ are
both equal to n;/2 for i = 1,2 (then the partitions are called balanced). This is the
case when the labels are independent Rademacher random variables as assumed, for
example, in the previous work [Feldman et al., 2015, Florescu and Perkins, 2016].

1.2 Recovery of communities

Assume that we observe a biadjacency matrix A drawn according to a BSBM (9, ny4,
ni_,Nay,no_,p) model. We consider the problem of recovering the node partition
associated with V] from the observation of A. Denote by 1, € {£1}"™ the vector of
vertex labels in V;. Recovering the node partition of V; is equivalent to retrieving
either n; or —n;.
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As estimators of 17; we consider any measurable functions 7 of A taking values in
{£1}™. We characterize the loss of any such estimator 7 by the ¢;-distance between
71 and 71, that is, by twice the number of positions at which 7 and 7, differ:

ni ni
17 —mllr =D |0 —mal = 2D 1 (% # i)
=1 =1

where 7); and 7;; denote the ith components of  and 7, respectively. Since for
community detection it is enough to determine either n; or —n; we consider the loss

rlm,n) = min 17 = vl
The performance of an estimator 7 is characterized by one of the three properties
defined below. The limits in the following definitions and everywhere in the sequel
are considered over sequences n; — oo such that the first imbalance condition in
(3.1) is satisfied for every n;. The size of the second set of vertices ny need not tend
to infinity and should only satisfy the second condition in (3.1). Since we consider
the asymptotics as n; — oo the values 7;, p and ¢ are allowed to depend on n;.

Definition 7 (weak recovery). The estimator 1) achieves weak recovery of ny if there
exists o € (0,1) such that

lim sup P (W > oz) =0, (3.2)

n1—0 BB M ny

where supggp) denotes the maximum over all distributions of A drawn from BSBM (9,
N1y, N1, Nay, N2, P).

If the communities in V; are balanced weak recovery with small a can be interpreted
as the fact that 7 recovers the vertices better than chance. However, if there is a
strong imbalance, Defintion 7 does not necessarily characterize good estimators as
one can achieve weak recovery with small a using a trivial estimator that assigns all
vertices to one community.

In this paper, the property stated in Definition 7 is not of interest on its own
but rather as an auxiliary fact that we need to prove exact recovery. Namely, the
initialization of the algorithm proposed below should satisfy the property stated in
Definition 7.

Definition 8 (almost full recovery). The estimator 7 achieves almost full recovery
of m if for all o« € (0,1) we have

lim sup P (W > oz) =0.
M= pSpM n

Almost full recovery means that 7 correctly classifies almost every vertex with
high probability.
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Definition 9 (exact recovery). The estimator 1) achieves exact recovery of ny if

n{l{)noo Bg%fMP(r(nl, n) = 0) =1
Exact recovery means that 7 correctly classifies all the vertices with high proba-
bility.

Notation

We will use the following notation. For given sequences a,, and b,, we write that
a, = O(b,) (respectively, a,, = §(b,)) if there is an absolute constant ¢ such that
a, < cb, (respectively, a,, > cb,). We write a, < b, if a, = O(b,) and a,, = Q(b,).
For a,b € R, we denote by a V b (respectively, a A b) the maximum (respectively,
minimum) of @ and b. For x,y € R™ for any m € N, we denote by 2"y the Euclidean
scalar product, by ||z||s the corresponding norm of = and by sign(z) the vector of
signs of the components of x. For any matrix M € R™* ™ we denote by ||M || its
spectral norm. Further, I, denotes the m x m identity matrix and 1(-) denotes the
indicator function. We denote by ¢ positive constants that may vary from line to
line.

2 Reduction to a spiked model
The biadjacency matrix A can be written as
A=EA)+W

where A is observed, E(A) is interpreted as the signal, and W := A — E(A) as the
noise. It is easy to check that

E(A) = pl,, 1, + (6 — 1)pmn, , (3.3)

where 1, (respectively, 1,,) is the vector of ones with dimension n; (respectively,
ng) and 7,1, are the vectors of labels corresponding to the sets of vertices V; and
Vs, respectively. The second component on the right hand side of (3.3) contains
information about the vector n; that we are interested in, while the first component
p]lnl]l; is non-informative about the labels. Assuming parameter p to be known
we can simply subtract this component from A. From an adaptive perspective, one
way to eliminate the non-informative component is by getting an estimator p of p,
then considering A — ﬁ]lm]l; as the new data matrix. Another way to disregard this
component is to assume, as in [Feldman et al., 2015, Florescu and Perkins, 2016],
that the partitions are balanced, which implies the orthogonality of 1,, and 7; for
i = 1,2. This assures that 7; and 7, are the singular vectors of E(A) corresponding
to the second largest singular value, which makes it possible to recover them with
suitable accuracy from the observation of A.
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In this paper, we follow the first approach where we estimate p by

1) Al,,. (3.4)

Then we consider the corrected adjacency matrix

A= A= ply, 17, = (6= Dpmng + W+ (p— p)1,, 1], . (3.5)

noise

This is a special case of spiked matrix model where the underlying signal and the
noise have a particular structure. In the rest of this paper, we assume that the
observed matrix A is of the form (3.5).

A well-known approach to community detection is the spectral approach, i.e.,
clustering according to the signs of the entries of eigenvectors or singular vectors of
the adjacency matrix or its modified version. In our case, 7; is the left singular vector
associated with the largest singular value of the signal matrix (§ — 1)pmn, . Since
E(A) is unknown — only A is observed — a natural algorithm for recovering 7; would,
at first sight, consist in computing the left singular vector of A corresponding to the
top singular value and then taking the signs of the entries of this vector as estimators
of the entries of 1. However, such a method provides a good estimator of 7; only if
the top singular value (6 — 1)p of the signal matrix is much larger than the spectral
norm of the noise term in (3.5) that is dominated by the spectral norm of W under
mild assumptions on the imbalance 417,. As noticed in [Florescu and Perkins, 2016],
this approach suffers from a strict deterioration of sufficient conditions of recovery
when ny grows larger than n;. The problem can be avoided by applying the spectral
approach to hollowed matriz H(AAT) rather than to A, where H : Rmxm —y Rmixm
is the linear operator defined by the relation

H(M) = M — diag(M), YM € R™*™.

Here, diag(M) is a diagonal matrix with the same diagonal as M. The corresponding
spectral estimator of n; is

ny = sign(d), (3.6)

where 9 is the eigenvector corresponding to the top eigenvalue of H (AAT) We will
further refer to n? as spectral procedure on hollowed matriz. The properties of 7} are
studied in Section 5. In particular, we show that 7} achieves almost full recovery
under milder conditions than previously established in [Florescu and Perkins, 2016]
for a different method called the diagonal deletion SVD. However, it is not known
whether 1 can achieve exact recovery.

In order to grant exact recovery, we propose a new estimator. Namely, we run
the sequence of iterations (7*);>; defined by the recursion
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Wt =sign (H(AADRY),  k=0,1,..., (3.7)

with the spectral estimator as initializer: 7° = n?. Our final estimator is #™ with
m > 1201%; — % We call this procedure the hollowed Lloyd’s algorithm. 1t is inspired
by Lloyd’s iterations, whose statistical guarantees were studied in the context of SBM
and Gaussian Mixture Models by [Lu and Zhou, 2016]. More recently, this approach
was used in [Ndaoud, 2018] to derive sharp optimal conditions for exact recovery in
the Gaussian Mixture Model. It follows from those papers that the issue of proper
initialization of Lloyd’s algorithm is essential. The question of proving optimality of
recovery by Lloyd’s algorithm under random initialization is still open, both in the

Gaussian Mixture Model and in the BSBM model.

3 Related work

While the literature about the classical SBM abounds (we refer to the paper [Abbe
et al., 2015] and references therein), fewer results are known about the Bipartite
SBM. Papers [Zhou and Amini, 2019, Zhou and Amini, 2020, Neumann, 2018] con-
sider more general BSBM settings than ours. Being specified to our setting, their
results guarantee consistency for clustering under conditions not covering the high-
dimensional regime ny >> ny. In particular, paper [Zhou and Amini, 2019] shows that
consistency can be achieved by spectral clustering on an appropriately regularized
adjacency matrix when ny < n;. As an example of limitations used in [Zhou and
Amini, 2020], we refer to the main theorem in [Zhou and Amini, 2020] (Theorem
1) that requires p*> = O(ny/n2) in our setting (cf. assumption (A3) in [Zhou and
Amini, 2020]). This assumption combined with the necessary condition for weak
recovery p*> = Q((niny)~!) only allows for values of ny, ny such that ny = O(n?). In
[Neumann, 2018], the focus is on handling mutiple and possibly overlapping clusters.
The recovery conditions from [Neumann, 2018] being specified to our setting (two
non-overlapping clusters) are far from optimal.

On the other hand, papers [Feldman et al., 2015, Florescu and Perkins, 2016, Cai
et al., 2019] study the problem on finding proper thresholds for p under conditions
covering the high-dimensional regime ny > ny. In particular, [Florescu and Perkins,
2016] proves that the sharp phase transition for the weak recovery problem occurs
around the critical probability p. = %. The sufficient condition in this case
is based on a reduction to SBM then using any optimal “black-box” algorithm for
detection in the SBM as in [Bordenave et al., 2015, Massoulié, 2014, Mossel et al.,
2018].

For the problem of exact recovery, [Feldman et al., 2015] obtained what we will
further call the state of the art sufficient conditions. Namely, using the Subsam-
pled Power Iteration algorithm, [Feldman et al., 2015] shows that the condition

p = (%) is sufficient to achieve exact recovery. Although no necessary
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condition for this property is known, it is conjectured in [Feldman et al., 2015] that

p = (j}’%) is necessary for exact recovery. Our results below disprove this con-
jecture.

Spectral algorithms for BSBM were investigated in [Florescu and Perkins, 2016,
Cai et al., 2019]. In particular, [Florescu and Perkins, 2016] compared sufficient
conditions of almost full recovery for the classical SVD algorithm and for the diag-
onal deletion SVD. It was shown in [Florescu and Perkins, 2016] that, in the high-
dimensional regime ny > nq, the diagonal deletion SVD provides a strict improve-
ment over the classical SVD. One way to explain this improvement is by observing
that, in this regime, the spectral norm of the expectation of the noise term WW '
is much larger than its deviation. It was proved in [Florescu and Perkins, 2016]
that p = Q (\1;%) is sufficient to achieve almost full recovery through the diagonal
deletion SVD algorithm. Note that [Feldman et al., 2015] proved that, under similar
conditions, the Subsampled Power Iteration algorithm achieves a better result, i.e.,
it provides exact recovery rather than almost full recovery. The most recent paper
[Cai et al., 2019] parallel to our work shows that the diagonal deletion SVD also
upgrades from almost full to exact recovery under the conditions that are analogous
to [Florescu and Perkins, 2016] for moderate ny > n; but deteriorate for very large
ny (for example, if ny < €™). The results of [Feldman et al., 2015, Florescu and

Perkins, 2016, Cai et al., 2019] are summarized in Table 1.

Ref. Results Conditions Algorithm
kno , Mg > Ny,
[Feldman et al., 2015] Exact o b=t Subsampled
recovery p>C(6—1) Jins iterations
. Exact known p, Diagonal
[Cai et al., 2019] recovery { p>C[—1)2 (log(%:;”) VA “;1;"2)) deletion SVD
5 unknown p, no > ni(logni)?, 1 = v2 =0, i ¢
[Florescu and Perkins, 2016] Almost full W]Oggl’ 2 2 mlogm)’ m =1 Dlggonal
recovery p> Cg\/ﬁ deletion SVD
unknown p, ng > nq, v = v =0,
[Florescu and Perkins, 2016] Weak (54)—5 ? L= SBM
recovery P> s reduction

Table 3.1: Summary of the results of [Feldman et al., 2015, Florescu and Perkins,
2016, Cai et al., 2019]. Here, Cs > 0 is a constant depending on §. In this table,
condition y; = 75 = 0 means that the labels are independent Rademacher random
variables.
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We emphasize that [Feldman et al., 2015, Florescu and Perkins, 2016] focus on the
regime ny > ny. It will be also the main challenge in the present paper even though
our results are valid for all ny, ny with no restriction. There are two reasons for that:

e The high-dimensional regime ny > n; is of dominant importance in the appli-
cations of bipartite SBM.

e The high-dimensional regime is challenging from the theoretical point of view.
The case ny < ny is more direct to handle as it can be solved similarly to
standard SBM. Indeed, optimal results for n, < n; are achieved by SVD type
algorithms applied to the adjacency matrix A (cf. [Zhou and Amini, 2019, Zhou
and Amini, 2020]). They are based on a control of the spectral norm of W.
While the behavior of the spectral norm of W is well understood (cf. [Bandeira
and Van Handel, 2016]), existing results for the spectral norms of WWT —
E(WWT) or of HWWT) that one needs to control when ny > ny turn out to
be suboptimal. It makes the regime ny > n; quite challenging.

Under the condition ny > nq log ny, the state of the art results can be summarized
by the following diagram leaving open the optimal value p = p* at which exact
recovery can be achieved.

weak recovery exact recovery
is impossible is possible
0 (6—-1)"2 p* (6—1)"2logny P
Vninz Vninz

A related recent line of work developed optimal clustering algorithms for Gaussian
Mixture Models (GMM) [Lu and Zhou, 2016, Giraud and Verzelen, 2019, Ndaoud,
2018, Loffler et al., 2019]. It was shown in [Lu and Zhou, 2016] that clustering with
optimality properties in GMM can be achieved by an iterative algorithm analogous to
Lloyd’s procedure. Moreover, [Ndaoud, 2018] proved that a version of such iterative
clustering algorithm attains the sharp phase transition for exact recovery in those
models. Based on an analogy between the GMM and the BSBM, it is conjectured
in [Ndaoud, 2018] that similar algorithms can achieve almost full recovery and exact
recovery in bipartite graph models. Namely, comparing the first two moments of
the matrices arising in the two models one may expect p = Q ((5 - 1)‘%/%) to
be sufficient to achieve exact recovery in the BSBM, provided that ny > njlogn;.
This heuristics suggests a logarithmic improvement over the state of the art condi-
tion presented in the diagram above. More interestingly, it goes against another,
seemingly more natural, heuristics based on an analogy with standard SBM and
conjecturing the right recovery condition in the form p = Q (;’%) (cf. [Feldman
et al., 2015]). We show below that, surprisingly, the analogy with GMM and not
with SBM (however, the “closest parent" of BSBM) appears to be correct.
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Finally, some consequences were obtained for planted satisfiability problems. Re-
duction of those problems to BSBM allows one to get sufficient conditions of complete
recovery of the planted assignment. We refer to [Feldman et al., 2015] for the details
of this reduction. Namely, it is shown in [Feldman et al., 2015] that considering a
planted satisfiability problem is equivalent to considering a BSBM where n; = n and
ny = n" "1, with n and r > 2 defined below. For any satisfiability problem, we are in-
terested in m, which is the sufficient number of k-clauses from C}, in order to recover
completely the planted assignment o. Here, C}, is the set of all ordered k-tuples of n
literals xy, ..., z, and their negations with no repetition of variables. For a k-tuple of
literals C' and an assignment o € {—1,+1}", 0(C) denotes the vector of values that o
assigns to the literals in C. Given a planting distribution Q : {—1, +1}* — [0, 1], and
an assignment o, we define the random constraint satisfaction problem Fg ,(n,m)
by drawing m k-clauses from C} independently according to the distribution

Q)
Qal0) = = Q@)

A related class of problems is one in which for some fixed predicate P : {—1,1}* —
{—1,1}, an instance is generated by choosing a planted assignment ¢ uniformly at
random and generating a set of m random and uniform P-constraints. That is, each
constraint is of the form P(z;,,...,z;) = P(oy,,...,0i ), where (z;,,...,2;, ) is a
randomly and uniformly chosen k-tuple of variables (without repetitions).

In simpler words m plays the role of pnin, in the BSBM, and any sufficient
condition on p leads to a sufficient condition for m. It was shown in [Feldman et al.,
2015] that the following conditions are sufficient to achieve exact recovery in some
of the satisfiability problems.

o For any planting distribution @ : {—1,1}* — [0, 1], there exists an algorithm
that for any assignment ¢ € {—1,1}", given an instance of Fg ,(n,m), com-
pletely recovers the planted assignment o for m = O(n"/?logn). Here, r > 2
is the smallest integer such that there is some S C {1,...,k} with |S| = r, for
which the discrete Fourier coefficient Q(S) is non-zero.

o« For any predicate P : {—1,1}f — {—1,1}, there exists an algorithm that
for any assignment o, given m random P-constraints, completely recovers the
planted assignment o for m = O(n’/?logn) where r > 2 is the degree of the
lowest-degree non-zero Fourier coefficient of P.

4 Main contributions

Our findings can be summarized as follows.

o FExact recovery. We present a novel method - the hollowed Lloyd’s algorithm. -
that achieves exact recovery under strictly milder conditions than the state of



4. MAIN CONTRIBUTIONS 45

the art. Namely, we show that

/1 1
p= 0 ( ogny v ognl) (38)
ning N9

is sufficient to achieve exact recovery in the BSBM. Condition (3.8) exhibits
an elbow at ny =< nylogn; between the low-dimensional and high-dimensional
regimes. In the low-dimensional regime ny < njlogny, it takes the form p =
Q (loi%), the same as the sufficient condition in [Cai et al., 2019], that can be
shown minimax optimal using similar lower bound techniques as in [Bandeira,
2015] for SBM (clustering oracle with side information). Such a lower bound
was formalized, for the Bipartite SBM, in Theorem 2 of [Zhou and Amini,
2020] under the conditions n; < ny and ny = O(ny logny) that correspond to
assumptions (A1) — (A4) from [Zhou and Amini, 2020]. On the other hand,
in the high-dimensional regime ny > n; logn; the sufficient condition of exact
recovery (3.8) reads as p = 2 (1 / %) We argue that this condition is tight by
showing that even a supervised oracle procedure fails to achieve exact recovery
in the regime ny > nylogny if p < c./l;f—:; for a constant ¢ > 0 small enough.

Importantly, our findings imply that the condition p = 2 (\1}’%) common for
all the related work and based on the analogy with usual SBM is not necessary

for exact recovery in the BSBM when ny > nqlogn;.

o Almost full recovery. We provide a new sufficient condition for almost full
recovery by spectral techniques using the diagonal deletion device. Our spec-
tral estimator and its analysis are different from [Florescu and Perkins, 2016],
where another diagonal deletion method was suggested. The analysis uses an
adapted version of matrix Bernstein inequality applied to a sum of hollowed
rank one random matrices where bounding the corresponding moments, in op-
erator norm, involve combinatorics arguments. This leads to an improvement
upon the sufficient condition of [Florescu and Perkins, 2016]. We show that,
unlike in the Gaussian case, hollowing the Gram matrix yields, both theoreti-
cally and empirically, a strict improvement over debiasing, i.e., subtracting the
expecation of the Gram matrix.

o The hollowed Lloyd’s algorithm that we propose is computationally faster than
the previously known methods. Its analysis that we develop is novel and makes
it possible to transform any estimator achieving weak recovery into another one
achieving exact recovery. We expect this analysis to be useful to solve more
general exact recovery problems for random graphs.

o In contrast to the related work, where simplifying assumptions of either zero
imbalance (73 = 72 = 0) as in [Florescu and Perkins, 2016] or known p as in
[Feldman et al., 2015, Cai et al., 2019] were imposed, our approach is more gen-
eral. In particular, our exact recovery result holds adaptively to p under a mild
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assumption on ;.. Notice that as 7,7, get closer to 1, then estimation of p
gets harder. Our theoretical findings are supported by numerical experiments,
where we show that our iterative procedure (with or without spectral initializa-
tion) outperforms spectral methods and achieves almost the same performance
as the supervised oracle.

e QOur results regarding almost full recovery based on the spectral estimator, ex-
act recovery via the hollowed Lloyd’s algorithm, and the impossibility of exact
recovery via the supervised oracle are summarized in the table below.

Results Conditions Procedure
Almost full recovery unknown p, 1172 < 1/C7 Spectral
by spectral methods p>Cp(6—1)72 (,/lf—:; \Y% lofb%) on hollowed matrix

unknown p, 172 < 1/480,
Exact recovery

ogni «, logny Hollowed Lloyd’s
p>C(6—1)72 () leBm y losm) Y

Impossibility of ny > nylogng, v =y =0,
t recover <C \/@ Oracle
exac Yy P s o

Table 3.2: Summary of our main contributions. Here, Cs > 0 is a positive constant
depending on J, C' > 0 is an absolute constant and C,,, C], are any sequences such
that C,,,C}, — 00 as n; — oo.

» As a byproduct, we also improve upon sufficient conditions of [Feldman et al.,
2015] for exact recovery in some of the satisfiability problems. Namely, our
results imply the following.

1. For any planting distribution @ : {—1,1}* — [0, 1], there exists an algo-
rithm that for any assignment o, given an instance of Fg,(n,m), com-
pletely recovers the planted assignment o for m = O(n’/?y/logn) where
r > 3 is the smallest integer such that there is some S C {1,...,k} with
|S| = r, for which the discrete Fourier coefficient Q(S) is non-zero.

2. For any predicate P : {—1,1}* — {—1,1}, there exists an algorithm that
for any assignment o, given m random P-constraints, completely recovers
the planted assignment o for m = O(n"/?y/logn) where r > 3 is the
degree of the lowest-degree non-zero Fourier coefficient of P.
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5 Properties of the spectral method

In this section, we analyze the risk of the spectral initializer n?. As in the case of
SDP relaxations of the problem, the matrix of interest is the Gram matrix AAT,
It is well known that it suffers from a bias that grows with ny. In [Royer, 2017], a
debiasing procedure is proposed using an estimator of the covariance of the noise. In
this section, we consider a different approach that consists in removing the diagonal
entries of the Gram matrix.

We give some intuition about this procedure when p is known. In this case the
adjacency matrix can be replaced by

A=A-pl,1].

The general case follows similarly since one can show that |p — p| does not exceed the
noise level arising when p is known (see the details below). The spectral norm of the
expected noise matrix ]E(WWT) is of the order of nop. If ny > ny, which is the most
interesting case in the applications, this is too large compared to the deviation, in the
spectral norm, of the noise matrix from its expectation, cf. [Florescu and Perkins,
2016]. Since the expectation of the noise WW T is a diagonal matrix, removing
diagonal terms is expected to reduce the spectral norm of the noise and hence to
make the recovery problem easier. Specifically, observe that the matrix H (AAT) can
be decomposed as follows:

H(AAT) = (6 — 1)*p*noH (mn]) (3.9)
signal
FHWWT) +p(6 — VH(Wnan] +mn WT).

noise

It turns out that the main driver of the noise is H(WW ). On the other hand, it is
easy to see (cf., e.g., Lemma 17 in [Ndaoud, 2018]) that

IHWW )|l < 2AWWT —E(WW )]l (3.10)

for any random matrix W with independent columns. This shows that removing the
diagonal terms is a good candidate to remove the bias induced by the noise. Thus,
diagonal deletion can be viewed as an alternative to debiasing of the Gram matrix.
Nevertheless, the operator H(-) may affect dramatically the signal. Fortunately, it
does not happen in our case; the signal term is almost insensitive to this operation
since it is a rank one matrix. In particular, we have:

1
1H ] = (1= =) ] e

Thus, as ny grows, the signal does not get affected by removing its diagonal terms
while we get rid of the bias in the noise term. This motivates the spectral estimator
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n{ defined by (3.6), where © is the eigenvector corresponding to the top eigenvalue
of H(AAT). The next theorem gives sufficient conditions for the estimator 79 to
achieve weak and almost full recovery.

Theorem 1. Let 1) be the estimator given by (3.6) with p defined in (3.4) and let
a € (0,1). Let (Cy,),(C},) be sequences of positive numbers that tend to infinity as
ny — 0Q.

(i) Let the following conditions hold:
MYz < \/5/967
p=CE—1)72 (/i v i),
where C' > Cy/+/a for an absolute constant Cy > 0 large enough. Then the
estimator 1Y satisfies (3.2).

(ii) Let the following conditions hold:
{ Ny <1/C;

P> Coy(6—1)72((/lBm y legm )

Then the estimator 1Y achieves almost full recovery of ;.

Part (i) of Theorem 1 establishes the property of spectral initializer n? that we
need to prove the exact recovery in Theorem 2 below. Part (ii) of Theorem 1 improves
upon the existing sufficient conditions of almost full recovery by spectral methods
[Florescu and Perkins, 2016], cf. Table 1 above. Theorem 1 covers any n, ny with

.. 1 1 . .
no restriction, and scales as ./% rather than \;% in the regime ny > nqlogn;.
The proof of Theorem 1 is given in Section 10. It is based on a variant of matrix
Bernstein inequality applied to a sum of independent hollowed rank one random
matrices (Theorem 4). As a consequence of this new matrix concentration result, we

have the following improved bound for the spectral norm of the noise term.

Proposition 1. Assume that p > C(,/f‘f—:; \Y bi%) for some constant C' > 0.
Then, there exists a constant c, > 0 such that

2 1
‘ ) < ¢y (1 + nlognl> n1n2p2 logn;.

00 N2

E (HH(WWT)

On the other hand, for the non-hollowed matrix WW ', using matrix Bernstein
inequality, we can only obtain that

E <HWWT

i ) = O((m + n2)?p*(log n1)2).

[e.e]

Comparing the above two bounds explains why our hollowed spectral method is
superior to the standard SVD procedure even in the low-dimensional regime ny =
O(nylogny).
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Our next point is to explain why applying the hollowing operator H(-) is better
than debiasing by subtraction of E(WW ). Inequality (3.10) is useful to bound the
spectral norm of the hollowed Gram matrix, under the Gaussian Mixture Model (cf.
[Ndaoud, 2018]). What is more, one can show that (3.10) is tight when the noise is
isotropic and normal, suggesting that hollowing and debiasing are almost equivalent
in the Gaussian Mixture Model. Suprisingly, the same inequality turns out to be
loose in the the BSBM model. It turns out that hollowing the Gram matrix can be
strictly better. Indeed, the next proposition shows that debiasing the Gram matrix
through covariance subtraction can be suboptimal.

Proposition 2. Let ny > nylogn; and

log ny 1
18 <p< ———M . 3.11
n1Na =p= 206 nq log ny ( )
Then Nap
T Ty(2 2
E(|wwT —EWW)|Z) > o

Proposition 2 deals with the high-dimensional regime n, > nylogn; under the
additional restriction n;(logn;)® = O(ny) that follows from condition (3.11). Notice
that for smaller p satisfying (3.11), we have nynyp®logn; = o(nsp), so that inequality
(3.10) is loose. This explains the suboptimality of debiased spectral estimator. We
further check this fact through simulations in Section 11. Proposition 2 also explains
why the result in [Cai et al., 2019] is suboptimal. Indeed, the assumptions in [Cai
et al., 2019] are such that the spectral norm of matrix diag(I/VVVT —E(WWT)) (that
scales as y/myp ) is not bigger in order of magnitude than the spectral norm of the
corresponding off-diagonal matrix. While this fact is true in several other settings,
it is not in the high-dimensional regime of bipartite clustering, cf. Proposition 2.

The question of whether the spectral estimator 79 can achieve exact recovery
under the conditions of Theorem 1 remains open. Pursuing similar arguments as
developed in [Abbe et al., 2017] for the case of SBM would lead to a logarithmic
dependence of order logn; or bigger in the sufficient condition (as it is the case
in [Cai et al., 2019]), and not to the desired y/logn; . By analogy to the Gaus-
sian Mixture Model, for which it was shown recently in [Abbe et al., 2020] that
the spectral estimator is optimal for exact recovery, we conjecture that the condi-
tion p > C(6 — 1)*2@/12?—:21 is sufficient for 7} to achieve exact recovery whenever
ny > nylogn;. Proving such a result would most likely require developing novel
concentration bounds for Bernoulli covariance matrices.
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6 Exact recovery by the hollowed Lloyd’s algo-
rithm

In this section, we present sufficient conditions, under which the hollowed Lloyd’s
algorithm (7*)>o defined in (3.7) with spectral initialization achieves exact recovery
for all k large enough.

Theorem 2. Let (7*)>0 be the recursion (3.7) initialized with the spectral estimator
(3.6) for p given by (3.4). There exists an absolute constant C' > 0 such that if the
following conditions hold:

{ T2 < 1/480,

> O~ 1) (5 ),

then the estimator i™ with m = m(ny) > 1201%% — % achieves exact recovery of 1.

Some comments are in order here.

1. The approach that we developed to construct 7™ is general. In fact, it is a tool
that transforms any estimator achieving weak recovery into a new estimator
achieving exact recovery under mild assumptions. This can be readily seen
from the proof of Theorem 2.

2. Numerically, the procedure (7*)z>o considered in Theorem 2 has the same
complexity as the spectral initializer 7{. It remains an open question whether
the result of Theorem 2 holds with random initialization, which would further
bring down the complexity.

3. We conjecture that the conditions p > C(§ — 1)*2@/%—1’;1 and ny > nqlogng
of Theorem 2 cannot be improved. In the next section, we provide a result
supporting this fact. The imbalance condition v;72 = O(1) is only required to
handle the estimation of p. If p is known the results of this paper remain valid
with no assumption on v, and ~,.

7 Impossibility result for a supervised oracle

Motivated by the spiked reduction of the BSBM model when p is known, we define
the supervised oracle as follows

i = sign(H(AA )m). (3.12)

Note that this oracle is extremely powerful. We set the definition of the oracle in
a compact form using the hollowed matrix H(-) for the purpose of shorter writing.
However, if one unfolds this definition, it turns out that the oracle makes a decision
about one vertex by using the majority vote of all the other vertices. In other words,
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this oracle has access to all except one labels and uses these known labels to predict
the remaining one. Specifically, for each label 7y; to estimate, the supervised oracle
has access to the remaining labels (71;,7 # @) and to p. We refer the reader to
[Ndaoud, 2018] for more discussion about such an oracle structure.

We state below an impossibility result corresponding to the supervised oracle.

Proposition 3. Assume that ny > nilogn, and v = 75 = 0. There exists cs > 0

depending only on § such that if p = 1/051;‘%—;21 then for the oracle n; we have

n}ignooZP(ﬁn # M) = 00.
i=1

Proposition 3 shows that condition p = 2 (, / 17‘;?—:21) is necessary for the supervised
oracle to achieve exact recovery when ny > nylogn,;. Combining this result with
the sufficient conditions for exact recovery from Theorem 2, we can now complete
the diagram in [Florescu and Perkins, 2016, which compares the exact recovery
conditions for SVD and for the debiased spectral method when ny > ny(logn;)?.
We recall here that the SVD estimator is the one returning signs of the second
eigenvector of AA". In [Florescu and Perkins, 2016], a debiased spectral method
is also considered, which uses as an estimator the signs of the second eigenvector
of AAT — E(WWT). Under perfect balance (that is, 71 = v = 0), E(WWT) is
proportional to I, and hence SVD and debiased spectral method coincide in that
case, while in general the debiased spectral method outperforms the SVD estimator.
Comparison of the oracle and of the three methods: SVD, debiased spectral (DS)
and hollowed Lloyd’s (HL), in the general case of imbalance, and under the condition
ny > ny(logng)?, can be summarized as follows :

failure of failure of DS : failure of SVD: success
the oracle : success of HL: success of DS: of SVD

2

0 log ny P

ninz n;l/Bng/g

3
o

This hier-
archy of procedures becomes apparent in the simulations given in the next section.

8 Control of the spectral norm of the hollowed
Gram matrix
This section is devoted to the control of the spectral norm of the hollowed matrix

HWWT) = 52, HW,;W,"), where we denote by W; the columns of W. The
following theorem will be used in the proofs.

Theorem 3 (Matrix Bernstein inequality — adapted from [Tropp, 2012], Theorem
6.2). Let (Y])?:1 be a sequence of independent symmetric random matrices of size
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dxd, and a, R > 0. Assume that for all j in {1,...,n} we have
!
E(Y;) = 0 and [E(YY)]|s < %RH@? forq=2,3,... .

Then, for allt > 0,

d

We will show that in our case this theorem can be applied with Y; = H(W; W),
d=mny,n=ny, R=23(1+2n:p) and a® = 4p*n;. One can check that it gives a strict
improvement over the matrix Hoeffding type inequality that uses only the fact that
|H(W;W.")||o < ny almost surely. Namely, we have the following theorem.

Theorem 4. For allt > 0,

t2
P >t] <njexp|— 5 )
0o 8ninop? 4+ 6(1 + 2n1p)t

Proof. Fix jin {1,...,ns}. In view of Theorem 3, it is enough to show that for all
integers ¢ > 2 we have

n

2Y)

=1

t2
Z t) S d exXp <—M> with 0'2 = TLCL2.

S H(W,W)

J=1

[ECz W) < 201601+ 200p)" 0. (3.13)

We now prove (3.13). To alleviate the notation, we set w = W, and we denote by wy,
the entries of w. Note that wy are independent random variables taking value 1 — p
w.p. pand —p w.p. 1 — p, where p is either ép or (2 — d)p. We have E(wy) = 0 for
all k. Furthermore, for any integer m > 2,

[E(wi) [l < 2p. (3.14)

Indeed,
IE(wi)[lx < p(1—p) (L=p)™ ' +p™ 1) =p(1—p).

Denote by hi(q) the (i, k)th entry of matrix H(ww")4. Note that the (i, k)th entry
of matrix H(ww') is H(ww ")y, = wyw,1(i # k). It comes out that

max
0<p<1

q
hielg) = Y, wauwg [[wi,

(92,13,..0y0q)EJ (=2

where J = {(ig,13,...,1q) : lg # i3,...,0q-1 7 iq;12 # 1,14 # k} and indices i, take
values in {1,...,ny}. Thus,

IE(hi(@))l < >

(i2,i3,...,iq)EJ

(3.15)

q
]E(wiwk H w?ﬁ)
=2

1
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First note that for ¢ = 2 the terms in this sum are non-zero only if ¢ = k£ and in this
case the sum is bounded by 4p?n;. Thus, (3.13) holds for ¢ = 2. In order to prove
(3.13) for ¢ > 3, it suffices to show that for all i, k& we have

IE(hie(@))llx < 2¢!(1 + 2pna)7%p%, i # k, (3.16)

and
IE(Rii(q)) 1y < 4g!(1 4 2pn1)?~?p°ny. (3.17)

We start by showing (3.16) for all ¢ > 3. Let i # k. We first bound the number
of non-zero terms in the sum in (3.15). Since wy, ..., w,, are independent zero-mean
random variables, the term in this sum corresponding to some fixed (ig, 13, ...,1%,)
can be non-zero only if both ¢ and k belong to the set {is,43,...,7,}. In order to
take into account equalities between different indices i,, consider all partitions 7 of
the set {is,13,...,1,} into s subsets, with equal indices in each subset, where s runs
from 2 to ¢ — 1 (the case s = 1, that is io = i3 = --- = {,, is excluded since the
corresponding expectation vanishes).

Assume a partition 7 in s subsets fixed. Then, for the expectation

q
E (wiwk H w?g)
=2

to be non-zero, two out of s subsets must contain variables with indices ¢ and &, and
in this case due to independence of w,, and (3.14) we have

om i)

(=2

< (2p)". (3.18)

Denote by &, the set of all partitions 7 of {is,13,...,7,} into s subsets such that
for two of these subsets the indices iy are equal to ¢ and k. To get an upper bound on
the cardinality of &, notice that any such partition can be obtained by choosing
s — 2 distinct indices among the ¢ — 3 possible values (other than i and k) and
then allocating the remaining ¢ — s indices to s buckets. This leads to the bound
Card(Z;5) < (Z:g) s?7%. Denote by iy(m) # -+ # is—2(m) the s — 2 distinct indices
(other than ¢ and k) corresponding to the partition m € ;5. Using (3.18) and the
fact that the indices i,(7) can take values from 1 to n; we obtain

E@h<S Y Y @)

s=2m€Ps,2 i1(m)F - Fis—2(m)
q—1 -3
<2 <q )sq‘sni‘z(%)s
\s—2
q—1 -9
< 2% (q 2) (2pny)* 2
8 J—

s=2
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< 2¢1(1 + 2pny )9~ 202,

where we have used the inequalities s77° < (¢ —1)!/(s —1)! < ¢!/2. Thus, the bound
(3.16) is proved for all ¢ > 3.

It remains to show that (3.17) holds for ¢ > 3. Denote by Z,; the set of all
partitions 7 of {42, i3, ..., i, } into s subsets such that for one of these subsets the index
i¢ is equal to i. Similarly to the argument for &4, we obtain that Card(%,;) <

(q 2)3" $ and

s—1

|E(Rix( !!1<Z > > (2p)°

s=27m€Ps1 ir(m)#Fis_1(m)
q—1
q_2 -5, 8§— S
5 o b BTt
2\q—s(q— 1)'
2
—Z<s_2> e

s (s —
q—1 q— 2
< 4p*nig! Z (S 2) 2pnq )
s=2

< 4q!(1 + 2pny)**pna.

]

Proposition 1. Assume that p > C’(,/I;)f—:; V mrgl%) for some constant C' > 0.
Then, there exists a constant ¢, > 0 such that

2 n; logn
) < ¢y (1 + 1g1> n1n2p2 logn,.

U

E (HH(WWT)

Proof. Introduce the notation H = ||[H(WWT)||%, t; = 6/ningp?logny, ty = 48(1+
2n1p) logny and t3 = ¢ V t5. Using Theorem 4 and the facts that exp(—a/(b+¢)) <
exp(—a/(2b)) + exp(—a/(2¢)) for all a,b,c > 0, we get

0o +2
_2/ (H > 1) tdt<t3+2n1/ exp<—>tdt

t3 16n1n2p2

o ¢
9 / T
tem ) exP( 12(1—|—2n1p)>

Since ninqp? > C'logn, it comes out that, for some constants ¢, cs, c3 we have

E (H?) < 113
< co(ningp* log ny + nip? log? n)
< csningp? logny (1 + nylogny /ns).
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O
Proposition 2. Let ny > nylogn; and
log nq 1
18 <p< ———. 3.11
ning P = 206 nq lOg T ( )
Then Nap
T T\ (12
E(WwT —EWWIZ) > o

Proof. Set p = max(dp, (2 — d)p) > p. Since 73 < 1 and 75 < 1 then at least one
row of W has not less than ny/2 entries that are centered Bernoulli variables with
parameter p. Without loss of generality, let it be the first row of W. We denote this
first row by X;. We have

WW' —EWW e > [WW' —EWW )|l — [[HWW )|l
> X012 = E(X )] = [HWW )]s,

so that
Emwa—wwwﬂmgzéEmmm%wmmmm%—EmHmmﬂmQ.

Denoting by 7 the centered Bernoulli variable with parameter p (n takes value 1 —p
with probability p and value —p with probability 1 — p) we get
n2
E (X0 = E(1X4]1%))?) = 5 Var(n?)

Ingp
20

= Sp(l-p)(1-2p)" 2

where we have used the inequalities p < p < 2p < 1/70.
Next, note that 2n;p < 1 and introduce again the notation H = |H(WW ||,

ty = 4v/ninep?logny, to = 4ninep®/(3(1 + 2nyp)) > t1. From Theorem 4 and the
facts that to > (2/3)ninep® > (2¢/3) logny with ¢ = 182, and n; > 2 we get

o) t t2
E (H?) = 2/ P(H > t)tdt < t§+2n1/2exp (—) tdt
0

t 1611 ngp?

o ¢
9 / L,
tem ) eXp( 12(1—{—2n1p)>

00 t
< 16711712]92 10g ny + 16n1n2p2 + 21y / exp ( - 24>tdt
t2

< 16n1n9p* (logny + 1) + 211 (32n1n9p* + (24)?) exp(—c(logny)/36)
< 16n1n9p°*(logng + 1) 4+ 2% nynap® + (3/2)?

9 17
< ningp” logng (16 + og n1>
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<

)

nzp
)

where we have used the condition on p. Combining the above displays we get the
proposition. O

9 Lower bound on the oracle

We prove below Proposition 3, which, we recall, states the impossibility of our oracle

logni YW re-write the oracle as

estimator (3.12) to achieve exact recovery if p = |/¢c; 75"

follows
iin = sign (H((A — pL, 1])(A—pL, 1) i)

Proof. Since n1, = ny_ and nyy = ny_ we obtain that the ith entry of vector
H((A—pl, 1, )(A—pl, 1) )" )m is equal to

ni “no

no na

hz‘ = Z( Z Akjnlk — M Z(A _p)2

J=1 J=1

For all ¢ in {1,...,ny}, since 7;; # m1; is equivalent to h;ny; < 0 we have

P(ij; # i) = (Z > mink(Aij — p) Ak <p i(p - Aij)) :

k#i j=1 j=1

Observe that

Z Z 771i771k(Aij - P)Akj = (1 - p) Z 771i771kAkj -Pp Z 771i771kAk:j

k£i j=1 ki, jiAs =1 ki, jiAs;=0
=—(1-p > > Ay

k#imp#m. jAi;=1

+(1-p) Z Z A —p Z MMk Ak;-

k#Fimig=m Jj:Ai;=1 k#i, j:Aij=0

Hence

P(ﬁli#ﬁli)zp( > > Akj>5)2[?(a>ﬂ)

kFimp#m: j:Aij=1
> E[P(a > f|A)Lr],

where Az = (Azj)n2

=0

o= Z Z Agj,

kFimg#n J:Ag=1m25=n1i
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na
B= > > A+ P ( S Ai— Y. 771i7711<:Akj>7
=1

k#imip=m; j:Ai;=1 l—p k#i, j:A;;=0

and
no

F:{ZA,-j§4n2p}m{ Z Aij25pn2/4}.

J=1 Jim2;=n1i
Note that F' is an event of large enough probability for n, large enough. Indeed, as
E(A;;) < 2p and Var(A4;;) < 2p we get from Chebyshev inequality that

P( nz Ay > 4n2p> < ]P’( SO(A4y — E(Ay)) > 2n2p) (3.19)

=1

< < L ,
~ 2pny T 2y/cslogny
where we have used the fact that ny > nylogn;. Similarly, using Chebyshev in-

equality and the facts that for any ¢ we have Card{j : 79; = m;} = n2/2 and that
E(A;;) = dp for ny; = my; we find

1@( S Ay < opn /4> < IP’( S (0p— Ay) > opn /4) (3.20)

Jim2i=ni Jim2;=mi

< 8 < 8 .
~ dpng T 04/cslogny

It follows from (3.19) and (3.20) that

P(F) > 1— \/C_éllogm(; + i) (3.21)

Next, from Chebyshev inequality and the facts that E(Ay;) < 2p, Var(A4y;) < 2p, we
obtain, conditionally on A;,

7

Quite similarly, as Card{k : mx = n;} = n1/2 and for A; € F we have Card{j :
Ajj =1} = X752, Aij < 4png, the following inequality holds

Z nlinlkAkj

ki, j:A;;=0

> dnonypl A4; ) < 1 .
- on1p 7] = 2n2n1p

1
\V/A,L e F: P ( Z Z Akj Z 871277,1])2‘ Al) <

k#imip=n1; Jj:Aij=1 N 4n2n1p2
Thus, for all n; large enough to have p < 1/2 we obtain

VA; € F: P(B < 24cslogni| A;) = P(B < 24ninyp?| Ay)
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3 3
>l-—=1—-—.
4dnong p? 4cslogny
Observe that random variables o and 3 are independent conditionally on A; since
the sums over (k, j) in their definitions are taken over disjoint sets of indices. Using
this we get

3

)E [P <a > 24cslog ny
4cslog ny

Ai) 1,

P (7 # mi) > (1 - : (3.22)
Note that, conditionally on A;, the random variable o has a Binomial distribution
with probability parameter (2 — §)p. Moreover, if A; € F' then the number of terms
in o denoted by n is such that n < 4pnjng and n > (n1/2 —1)(0pny/4) > dpning /12
for ny > 6. It follows that, for any fixed A; € F, the assumptions of Lemma 1 are
satisfied with p = (2 — 0)p, t = 24cslogn, provided that y/n;/logn; > 288,/cs/4.
Therefore, for n; large enough to satisfy this condition and cslogn; > 1, ny > 6,
Lemma 1 implies that, for any A; € F,

Pla > 24cslogny|A) > 255 1o ny 1 ( 500 )
a Cs 10gn i) = —F/———————€X — Cs 102 Ny 10 .
= Sheosmh v/b0mes logny P 570871708 d(2—0)

-1
With the choice ¢s = (50 log ( 6(:;%6))) this yields

o1/6
V50mesng logng

Combining this inequality with (3.21) and (3.22) we get the proposition. O

P(a > 24c¢slogng|A;) >

The following lemma is used to control the lower tail of binomial variables.

Lemma 1.Let &, ...,&, be i.i.d. Bernoulli random variables with parameter p and
a=3y",&. Then for all np <t <n we have

e 1/6 t+1
P(a>t)> mexp (—(t + 1) log (np)) :

Proof. Set k = [t]. Since
P (anfz > t) > P(Xn:fz = k’)
i=1 i=1

for k = n the result is trivial. Assume that £ < n — 1 and set a = k/n. Then
p < a < 1. By Stirling’s approximation,

V2mn (nfe)" < nl < V2mn (nfe)"e'/12,
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Therefore,

(Sez)=e (et = Sy
V2mnnph(1 —p)"

>
el/6\/2mk kF\ /2w (n — k) (n — k)»—k

p*(1 —p)"" p*

> > .
~ el/82ran ak (1 —a)"F — el/6y/2ran a*

10 Main proofs

10.1 Proof of Theorem 1
Recall that

;= sign(d),
where ¢ is the eigenvector corresponding to the top eigenvalue of the matrix

H((A = ply,1,,)(A = ple,1,,)")

ni1--no n1"ng
with p = -1 Al,,. Recall the notation A = A — pl,,,1,],. We have

H((A—pL, 1 )(A—pl,, 1)) = HAAT) + Z,,

n1"ng n1"no

where (cf. (3.9))

H(AAT) = (6 — 1)°p*naH (mn{ ) + HWW )+ p(6 — ) H(Wnan! +mng W)

and
Zy=H((A—pl, 1) )(A—pl,1])") — H(AAT).
Therefore,
H((A—=ply, 1, )(A—pl,,1,,)") = (6 — 1)*p*nomn, + Z,
where

Z=HWWT") +p(§ = 1) HWnyn! +mn, W) = (5 — 1)*p*nol,, +Z,.

A Za Z3

Notice that since Z3 is a multiple of the identity matrix, ¥ is the eigenvector corre-
sponding to the top eigenvalue of H' = H((A—pl,, 1) )(A—pl,, 1} )" )+ Z5. Thus,
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.
 and —=n, are the eigenvectors of - H" and (6 —1)*p°ny " associated to their top

N n
eigenvalues, respectively. Since 17/ is rank one matrix, we get from Davis-Kahan

Theorem (Theorem 4.5.5. in [Vershynin, 2018]) that

2 8HZl+ZQ+Z4HZO
= TG - 1)

A

v

1
‘m_l"l_”

This implies (see Lemma 2 below) that

min
ve{—-1,1} 9

1

16
— 0 < Zy+ Zo+ Z4||%.
nlr(ﬁlﬂh)_ G 55121+ Za + Zul| 5

- 1)4294”1”2

Thus, in order to bound r(n;,7?), it remains to control the spectral norm of Z; +
Zy + Z4. Namely, we will prove that

lim P (||ZZ-||OO > @(5 — 1)2p2n1n2> =0, i=1,24,

n1—00 12

which implies the theorem.

« Control of || Z;||-

Recall that W is a random matrix with entries that are independent and dis-
tributed as ¢ —E({) where ( is a Bernoulli random variable with parameter dp
or (2—9)p. Therefore, both the expectation and the variance of each entry are
bounded by 2p. We now apply Theorem 4 with ¢t = %(5 — 1)?p*nin,. This
yields

t2
P Z1lloc > @(6 — 1)2p2n1n2 <njexp |—
12 (8nynaep? + 6t) + 2nypt

< mjexp {—12_2a(5 — 1)4n1n2p2/17}
+nyexp [—v/a(0 — 1)%pny/288]

where the last inequality uses the facts that exp(—a/(b+c¢)) < exp(—a/(2b)) +
exp(—a/(2¢)) for all a,b,c > 0, and o« € (0,1), [0 — 1| < 1. Recall that

p > C(6—1)2/%% and p > C(6 — 1)722% by the assumption of the
theorem. Using these conditions and choosing C' > 289/+/a we obtain
Va

P <||Zl||oo > E(é - 1)2172”1"2) < 2ny %,

« Control of || Z5]s-

In order to control Zy, we first observe, using the inequality |[[H(M)|ls. <
2| M| valid for any matrix M € R™*™ (cf., e.g., Lemma 17 in [Ndaoud,
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2018]), that

[ et W) | < 2 W]
< 2flmng W[+ 2(Wnan] | _

< 4y/ni[[Wingllo.
Hence
E([[Z2]1%) < 16(5 — 1)*p*mE(||Wll3). (3.23)
Denote by Xj,...,X,, the column vectors equal to the transposed rows of
matrix W. Since E(X;X,") is a diagonal matrix with positive entries bounded
from above by 2p for all © = 1,...,ny, we obtain
E([[Wrll3) = my B(W TW)ne =3~ 0y B(X, X, e < 2pnans. (3.24)
i=1

Chebyshev’s inequality combined with (3.23) and (3.24) yields the bound

va 2,2 9.2°
P||Zs|loc = —(6—1 <
(1221 Yo = 1mans) < 25
9.29
<77
— Calogng

where we have used the fact that p > C(§ — 1)*2% by the assumptions of
the theorem.

« Control of || Z||c-
We have

Z4 = H((A - ﬁﬂnln;rQ)(A - ﬁ]}‘nlﬂ;rQ)T - (A - p]lnIILTTLQ)(A - p]lnl]l;lrz)T)
=H((p—p)(AL, 1, + 1,1, AT) + ((p — p)* — 2p(p — p))naln, 1))
=(p-p)H(W1,,1] +1, 1] W

n2-"ny n1"ng

+ (0 = Dp(nar —no-)(mly, + Lomy ) + (p = p)nala, 1,,)-

Since

(0 — )p(niy —ni—)(na+ —no-) + ! > Wy

ninsg ninsg

p—p=
1,J
then, recalling that |n;; — n;_|/n; <~ fori = 1,2, and setting y := ﬁ > Wij,
we have

p—pl <16 —1pnre+ [yl
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Thus, using again the inequality ||H(M)|~ < 2||M|/~ and introducing the
notation L = |[W1,,1] + 1,1, WT|. we obtain

n2 -nq ni1“no

1Z4]ls < 2|p = BIL + 416 — 1||p — plprans + |p — pP*na| H (Lo, 1,)))[|
< 20p — p|L +4(6 — 1)*p*ninayive + 4lylpning + [p — pl*nins
<V +6(5 — 1)*p*ninamie,

where
V = 2|p — p|L + 4|y|pning + 2y*nins.
Now, note that since W;; are zero mean random variables

2p . 2p
E(lp—pl) <p*+

E(y*) < : :
n1n2 ning

Moreover, by the same argument as in the control of || 7|,

E(L?) = B(||[Wl,1,) + 1,1 WT|A) < 32nym2p® < 8nynip.

n2 -nq n1"no

Using these inequalities and the facts that p < 1/2, ny > 2 and /p?niny >

C(6 —1)72/logn; > 2894/log 2 we obtain

E(V) < 2y/E(]p — p|?) \/E L?) +4\/E 2)pring + 2E(y%)nins

< 2n9+/8na9py [ P? \/ 3
> 2NV ONePA [P s
< 124/p*ning(1 + /pny).

Putting the above arguments together and applying Markov inequality we get
that, for v1vo < 1/ /96,

P <||Z4||Oo > \1/25(5 - 1)2p2n1n2) <P <v > \185(5 - 1)2p2n1n2>

576(1 + /piy)

— (0= 1)*VavpPniny
< G P 4 ) ),

Recall that, by the assumptions of the theorem, we have p > C'(6 —1)72,/ lgf:;

p>C—-1) 21°g”1, and that we have chosen C' > 289/y/a. Using these
inequalities and the facts that 0 —1] <1, @ € (0,1) in the last display we find

\/a 9 9 36
Pl Zs]|oc > ~=(0 -1 < -
<H alloo = 12 ( ) pimns | < al/46 — 1]v/logny
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In conclusion, we have proved that, for any o € (0,1), C' > 289/y/a and y172 <
v/ /96 we have

9. 99
Calogn,
36
a5 — 1[v/log my

Hence, if v € (0,1), 7172 < /a/96, there exists an absolute constant Cy > 0 such
that for C' > Cy/\/a we have

16 L
P<(5 i 2|\Zl+Zz+Z4||§oza> < 2n, ™ 4 (3.25)

- 1)4p nin;

1
lim P (nr(m,n?) > oz) =0. (3.26)
1

This proves part (i) of the theorem. Next, if we assume that v;7, < 1/C}, and set
C = Cy, where C,,,C;, are any positive sequences that tend to infinity then (3.26)
holds simultaneously for all o € (0, 1), which proves almost full recovery.

Lemma 2. For n? = sign(?d) we have

2

I/ A
‘m—f’“

Proof. By definition, r(n1,7{) = 2minyeq—11y ity 1 (vni; # ng;) . Set b = by/ny.
Then 7? = sign(b) and, for any v € {—1,1},

il <9
17“(771, ) Vef{ﬂl{ll} 2

2

v
771—U

1 A 1 &
= —|lvm —b||2 > — 1 (v # Oi ,
m“ m Iz = " ;:1 ( m ?71)

2

where the last inequality is due to the fact that (z — y)? > 1 (z # sign(y)) for any
rxe{-1,1} and y € R. O

10.2 Proof of Theorem 2

Note that the assumptions of Theorem 1(i) are satisfied with o = 1/25. Note also
that ||n; —n?(|, = ny —n{ n%. It follows from Theorem 1 and the deﬁnition of (71, m)
that with probability that tends to 1 as n; — oo we have either —771 n? > 3/4 or
?1771 n? < —3/4. Next, recall that

I':= H((A - p]lm TLQ)(A pﬂnl]l;l;g) ) - (5 - 1)2])27127]177;— +Z.

From (3.25) we have

lim P (Hzl b T+ Tl >

nip—0oo

1
%(5 - 1)2p2n1n2) =0,
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using the same notation as in the proof of Theorem 1. Observing that ||Zs|le =
(6 — 1)*p*ny we get moreover that

tim P (112 >

n]1—0o0

1
T6(5 - 1)2p2n1n2> =0. (3.27)

Define the following random events:

1 §—1)2
O; = {(Fﬂh) mi = ( ) P2n2}7 =1,
ny

1
16

B = {2l < 1500 — 1Vns}

ny

where I'; denotes the ith row of matrix I'. From (3.27) we have that the probability
of B tends to 1 as n; — co. We call O; the oracle events since they are similar to
the events arising in the analysis of the supervised oracle procedure that, given the
labels (11,7 # i), estimates the label ny;. The proof is decomposed in three steps
that we detail in what follows.

e Proving the contraction.
We place ourselves on the random event BN O N---NO,,. Our first goal is to
prove that if n%anﬁk > 3/4, then ||9** —m |y < 3[19* — ml1 and n%anﬁk“ >

3/4. We have

1 1 . 1
— I =—2 (1" —m) + —Tim
sl ny nq

I +.
— (6 = 1)*p’nomy; (1 - 711771T77k> ,

where z; is a column vector equal to the transposed 7th row of matrix Z. Hence,
if 7, = —1 then

It follows that

<
~ \n1(0 — 1)2p%ns

(A0 )

<1
{rirzop = T LT rom)z 050, |

Similarly, if 17;; = 1 then

]1 1
{;FmKO}

n1(0 — 1)2p?ng

S(4Jmk—m>f_



10. MAIN PROOEFS 65
Now,
sk+1 — o
H mlh ;1{%mk20} nu_1+211{ L k<0} mi=1-

Hence, we get

4] H77 —mll3 1
Skl < o 2 < A =l (3.28

The fact that 2 e/l IAFt > 3/4 follows immediately from the 1nequahty [

mll < 3l9* - 771||1 and the relation ||7* — n.||; = ny — n{ A~
Quite analogously, we find that that if 771 I AF < —=3/4, then ||[AF T + ny||; <
il +mls

« Reduction to the oracle events.
Assume that the event BNO;N---NO,, holds. Let first n—llann‘f > 3/4. Since
179 = mlls = n1 — 0 n? we get

1 & 1 0 1 k 1 k+1
_ |IHF — < - — _ < _ .
nllln mi < n1||n1 Ml (4) < (4>

For k > lo8m _ 3 e have
2log?2

so that

17 =l = 0.

log ny 3

Quite similarly we prove that if - -1 I'h* < —3/4 then, for k > ,
1 2log 2 2

1" +ml: = 0.
Recalling the definition of 7(7*, n;) we conclude that
ni
P (r(i*,m) #0) < P(B%) + Y P(O5).
i=1

It follows from (3.27) that lim P(B¢) = 0. Thus, the proof of the theorem will

ni—00
be complete if we show that

lim iIP’(Of) = 0. (3.29)

np—o0 4
(2
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e Control of the oracle events.

We proceed now to the proof of (3.29). Let Gy,...,G,, be the column vectors
equal to the transposed rows of matrix G := A — pl,,, 1), = (p — p)1,, 1, +
(6 — Dpmny +W. Foralli =1,...,n,, we have

P(O;) =P (7712 (Z Ulka) - 5 1)2p2n2n1) .
k#i

Denoting by Xi,...,X,, the column vectors equal to the transposed rows of
matrix W we may write n1,G; = v;+n1;X;, where v; = ny;(p—p) 1, + (6 —1)png.
Therefore,

miG (Z 771ka) (v +nuX,) (Z v+ Y 771ka)

ki ki ki
= (6 — 1)*p*na(ny — 1) + Ty + To + T3 + Ty,

where
Tv=nuY X, v, To= nuv) Xy,
kot kot
Ty =nu Y X, Xe, Ti=>_vjvpy—(0—1)%p’na(ng — 1)
kot kit

and we obtain
P(OS) =P (=T — Ty = Ts — Ty > (6 — 1)°pna(n1 /2 — 1))

We now bound from above the four corresponding probabilities. First, recall
that

> Wi,

ning =

|6 — 1\19 ’
480

. 1
p—pl <16 —1pynye + ‘ZW@-J- <
n1no i

The entries W;; of matrix W are independent zero-mean random variables
distributed as ¢ — E(¢) where ( is a Bernoulli random variable with parameter
dp or (2 —0)p. As W;; are bounded in absolute value by 1 and have variances
bounded by 2p we get from Bernstein’s inequality that

P([p—p| > |0 — 1|p/64) < 270~V mmap, (3.30)

Here and below we denote by ¢ absolute positive constants that may vary from
line to line. Next, on the event |[p — p| < |§ — 1|p/64 we have

.
71| < |1,,Xi|

S me(p = )|+ 13 = 1l(m = iy X4
ki

<16 = Upna (11, X3 + |ny Xi).
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Here, ]IZQXi and 772T X; are two sums of n, independent zero-mean random

variables bounded in absolute value by 1 and with variances bounded by 2p.
Using these remarks, Bernstein’s inequality and (3.30) we obtain that, for
ny Z 47
1 2 2
P(ITi] 2 16— 1Pna(m/2 - 1)
1 .
< P (L, X0 + I Xil = 710 = LUpna) + B(1p — pl = 16 = 11p/64)
< dexp (—c(0 = 1)°pna) +P(|p — p| > |0 — 1p/64)

1
< 6exp(—cClogn,) < —
ni

where we have used the assumption that p > C(6 — 1)_21"5% for some C' > 0
large enough. Quite analogous application of Bernstein’s inequality, this time
to two sums of ny(n; — 1) random variables, yields the bound

P(%Bzi@-lﬁﬁhMM2—U>

1
<P (— > X > T(é - 1)2]?2”1”2)
ki 6

< 6exp <—c((5 — 1)2pn1n2)

1
< 6exp (—cCnylogn;) < —.
ni

Next, we consider the term T3 = 11; > ;4 kaiT Xj. We have

P <—T3 > le(é — 1)2p2n2n1>

1
gE@(J@24@—U%%ﬂ1 +P(FY),

Xi)1r

where F; = {||X;[3 < 6nop}. Recall that ||X;]|3 = 372, W where W;; are
the elements of matrix W. We now apply Bernstein’s inequality conditionally
on X; to the random variable T3, which is (conditionally on X;) a sum of
ns(n; — 1) independent zero-mean random variables bounded in absolute value
by 1 and with the sum of variances bounded by 2p(n; — 1)||X;||3. It follows

from Bernstein’s inequality that for any fixed X; € F; we have

9

c(6 — 1)*pinin? )
pra||Xil[3 4 (6 = 1)*pPnam

1
P <—77u ankXiTXk > 1(5 - 1)22?2”2”1
k#i

e
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1

<exp (—c(d — D%?ngng ) < =

< exp (—c(6 — 1)'p 21)_n%,
where the last inequality is valid if C' > 0 is large enough. Applying once more
Bernstein’s inequality we obtain the bound

n2

P(F) <P (Z(Wé —~E(W3)) = 4nzp) < exp (—cngp) <

J=1

1
n

=N

if ¢ > 0 is large enough. Finally, we consider the term Ty = 37, 4, v vp — (6 —
1)?p*ng(ny — 1). We have

Ty| < |mi(p — §)°n2 Y muk| + ‘(5 — D)pp— D) (13 Lny) > m1k
k#i ki
+ [ni(6 — Dpp — p)(n1 — 1)(ng 1)

< nng(p — p)* + 2|6 — 1pnyna|p — p.

Therefore, on the event [p — p| < p|d — 1]/64 we have |Ty| < (6 — 1)*p*nyna,
which implies that for ny > 4 and C' > 0 large enough,

P (—T4 > i(a 2P na(n1 )2 — 1))

1
< P(|p—p| = p|d —1|/64) < 2exp (—cCnylogny) < —,
ni

where we have used (3.30) and the assumption that p > C'(§ — 1)_2105% for
some C > 0 large enough. Combining the above inequalities we find that, for
C > 0 large enough,

4
— — 0.
nl n]1—0o0

SSB(Of) <

i=1

This proves (3.29) and hence the theorem.

11 Numerical experiments

The goal of this section is to provide numerical evidence to our theory. We compare
the performance of methods defined previously, namely:

e SVD estimator (SVD),
« debiased spectral estimator (DS),
« diagonal deletion SVD estimator (DD),

« hollowed Lloyd’s algorithm with spectral initialization (HL),
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« the oracle procedure (O).

In what follows, we fix the number of labels n = 300, the imbalance v; = 0, 75 = 0.5
and 0 = 0.5. For the sake of readability of plots, we define the parameters a and b
such that

p=+a/n; and b= ni(logn;)/ns.

According to our improved sufficient conditions and using the above parameterization
we expect the phase transition for exact recovery to happen at

a> Cs(bV b2

for some Cs > 0. We set up the simulations as follows. We consider b € {0.1,0.5,5}
and we take a on a uniform grid of 20 points in a region where the phase transition
occurs. For each such (a,b), we repeat the simulation 1000 times. Figure 1 presents
the empirical probabilities of exactly recovering the vector of true labels 7;.

b=0.1 b=0.5 b=5
1.0 — 1.0 — g
7 =L 0.8 o
0.8 s 0.8 P L
g1 /f 0.6 A
0.6 / 0.6 /Y v Iz o
/. V4 #
0.4 /11 0.4 5 04 /7 L
7.7 4 Y 4 DD
0.2 /11 0.2 /Y 0.2 g7 —— DS
‘ /1 % ' ,,// 5\%[)
0.0 [ —Es. 0.0 [ =2 0.0 L=
1 2 3 4 5 6 7 8 0 20 30 40 50 60 400 600 800 1000 1200 1400
a a a

Figure 3.1: Empirical probability of success over 1000 runs of the experiment for:
b=0.1 (left), b = 0.5 (center) and b = 5 (right).

Overall, numerical experiments match our theoretical findings and provide some
interesting insights:

1. Hollowed Lloyd’s algorithm with spectral initialization achieves a performance
remarkably close to the oracle without any prior knowledge about the true
labels. Notice that this holds also when only a fraction of labels can be re-
covered, i.e. when the probability of wrong recovery is not exactly zero. This,
in particular, suggests that the theoretical comparison we established between
the above algorithms can be extended beyond the problem of exact recovery.
Further simulations show that randomly initialized hollowed Lloyd’s algorithm
achieves the same performace as well (we omit these simulations since such an
algorithm is not covered by our theory).

2. In the case b = 0.1 (high dimension), we recover empirically the diagram of
Section 7. Observe that as b gets larger (moderate and small dimension) all the
estimators converge to almost indistinguishable performance. In other words,
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the ranking of estimators given in Section 7 only accentuates for the high-
dimensional regime. This agrees with the fact that the conclusions of Section
7 are restricted to the zone ny > ny(logn)?*.

. In high dimensions, the DD method outperforms the DS, which supports the

argument that, under the BSBM model, hollowing is more beneficial than
debiasing (cf. Proposition 2 and the corresponding discussion).



Chapter 4

Assigning topics to documents by
successive projections

Topic models provide a useful tool to organize and understand the structure of large
corpora of text documents, in particular, to discover hidden thematic structure. Clus-
tering documents from big unstructured corpora into topics is an important task in
various fields, such as image analysis, e-commerce, social networks, population ge-
netics. Since the number of topics is typically substantially smaller than the size of
the corpus and of the dictionary, the methods of topic modeling can lead to a dramatic
dimension reduction. We study the problem of estimating the topic-document matrix,
which gives the topics distribution for each document in a given corpus, that is we
focus on the clustering aspect of the problem. We introduce an algorithm that we
call Successive Projection Overlapping Clustering (SPOC) inspired by the Successive
Projection Algorithm for separable matrixz factorization. This algorithm is simple to
implement and computationally fast. We establish upper bounds on the performance
of SPOC algorithm for estimation of topic-document matriz, as well as near match-
ing minimazx lower bounds. We also propose a method that achieves analogous results
when the number of topics is unknown and provides an estimate of the number of
topics. Our theoretical results are complemented with a numerical study on synthetic
and semi-synthetic data.

This chapter is based on [Klopp et al., 2021]: O. Klopp, M. Panov, S. Sigalla,
and al. Assigning Topics to Documents by Successive Projections. ArXiv preprint
arXiv:2107.03684, 2021.
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1 Introduction

Assigning topics to documents is an important task in several applications. For ex-
ample, press agencies need to identify articles of interest to readers based on the
topics of articles that they have read in the past. Analogous goals are pursued by
many other text-mining applications such as, for example, recommending blogs from
among the millions of blogs available. A popular approach to the problem of estimat-
ing hidden thematic structures in a corpus of documents is based on topic modeling.
Topic models have attracted a great deal of attention in the past two decades. Be-
yond text mining, they were used in areas, such as population genetics [Bicego et al.,
2012, Pritchard et al., 2000], social networks [McCallum et al., 2005, Curiskis et al.,
2020], image analysis [Li et al., 2010, Zhu et al., 2017], e-commerce [Palese and Usai,
2018, Yuan et al., 2018|.
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We adopt the probabilistic Latent Semantic Indexing (pLSI) model [Hofmann,
1999]. The pLSI model deals with three types of variables, namely, documents,
topics and words. Topics are latent variables, while the observed variables are words
and documents. Assume that we have a dictionary of p words and a collection of n
documents. Documents are sequences of words from the dictionary. The number of
topics is denoted by K. Usually, K < min(p,n) and we will assume that 2 < K <
min(p,n). The pLSI model assumes that the probability of occurrence of word j in
a document discussing topic k is independent of the document. Therefore, by the
total probability formula,

K
P(word j |document i) = Y P(topic k |document i) P(word j |topic k).
k=1

Let II;; := P(word j |document i), Wy, := P(topic k |document i) and Ay; :

P(word j |topic k). We can write II;; = W.'A;, where W; = (Wyy,...,Wix)" €
[0,1]% is the topic probability vector for document i and A; = (Ayj, ..., Ag;)" €
[0, 1]K is the vector of word j probabilities under topics k = 1,..., K. Then,
II=WA, (4.1)
where IT is n x p document-word matrix with entries II;;, W := (Wy,..., Wn)T is
n x K document-topic matrix and A := (A;,...,A4,) is K X p topic-word matrix.

The rows of II, W and A are probability vectors:

K P P
> Wim=1,> Ay;=1, > I=1foranyi=1,...,n, k=1,... K. (4.2)
j=1

m=1 j=1

Unless otherwise stated, we will assume throughout the paper that I, W, A are
matrices with non-negative entries satisfying (4.2). The value II;; is the probability
of occurrence of word j in document 7. It is not available but we have access to
the corresponding empirical frequency X;;. Thus, we have a document-word matrix
X = (Xj;) of size n x p such that for each document ¢ in 1,...,n, and each word
J in 1,...,p, the entry Xj; is the observed frequency of word j in document 4.
Let N; denote the (non-random) number of sampled words in document i. We
assume that, for each document-word vector X; = (X1, ..., X;,)T, the corresponding
vector of cumulative counts N;X; follows a Multinomial,(V;, II;) distribution, where
I; := E(X;) = (I, ...,0;,)T. We also assume that Xi,..., X, are independent.
We will denote by Pyp the probability measure corresponding to the distribution of
X. We can write the observation model in a “signal + noise” form:

X=T+Z=WA+2Z, (4.3)

where Z := X — II is a zero mean noise. In topic modeling, the objective is to
estimate the matrices A and W based on the observed frequency matrix X and on
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the known Ny, ..., N,. The recovery of A and the recovery of W address different
purposes. An estimator of A identifies the topic distribution on the dictionary. An
estimator of W indicates the topics associated to each document.

The estimation of W has multiple applications and has been discussed mainly in
the Bayesian perspective. The focus was on Latent Dirichlet Allocation (LDA) and
related techniques (see Section 4 for more details and references). These methods are
computationally slow and, to the best of our knowledge, no theoretical guarantees
on their performance are available. On the other hand, the estimation of matrix A
is well-studied in the theory. Several papers provide bounds on the performance of
different estimators of A. We give a more detailed account of this work in Section 4.
Most of the results [Arora et al., 2013, Bing et al., 2020b, Bing et al., 2020d, Ke and
Wang, 2017] use the anchor word assumption postulating that, for every topic, there
is at least one word which occurs only in this topic.

At first sight, it seems that results on estimation of A can be applied to estimation
of W by simply taking the transpose of (4.2) and inverting the roles of these two
matrices. However, such an argument is not valid since the resulting models are
different. Indeed, the rows of the matrix X' are not independent and the rows of
the matrices TIT, AT, W™ do not sum up to 1, which leads to a different statistical
analysis.

Note that in some works on topic modeling, authors chose to estimate A first
and treat the estimation of W as an easy problem, for example, by using least
squares, given an estimator A. The argument used to justify this approach is that
the K x p matrix A can be learned more accurately as we have more documents
(see, for example, [Bing et al., 2020b, Ke and Wang, 2017]) but the number of
parameters in n X K matrix W increases as we increase n. However, this approach
is questionable for several reasons. First, it is not always possible to get an accurate
estimate of matrix A, as it will be the case when we deal with a relatively large sized
dictionary (cf. Remark 2 below). In such a situation, the existing algorithms for
estimation of matrix A may be quite slow, and the error of estimating A passes on
the estimation of W making it suboptimal (see the comments at the end of Section
4). Secondly, many of the existing methods of estimating A are based on the anchor
word assumption that has been pointed out as a major limitation of spectral topic
models. This assumption is not needed if we estimate matrix W directly.

In the present paper, we change the framework by focusing on estimation of W
rather than A. We introduce the following assumption:

Assumption 1 (Anchor document assumption). For each topic k= 1,..., K, there
exists at least one document i (called an anchor document) such that Wy, = 1 and
Wu =0 foralll # k.

Since each document is identified with a mixture of K topics, the anchor docu-
ment assumption means that, for each topic, there is a document devoted solely to
this topic. To illustrate the anchor document assumption, consider the Associated
Press data set [Harman, 1993], which is a collection of 2246 articles published by this
press agency mostly around 1988. An application of the pLSI model fitted via the
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Document Finance Politics

1 0.248 0.752
2 0.362 0.638
3 0.527 0.473
4 0.357 0.643
) 0.181 0.819
6 0.001 0.999
7 0.773 0.227
8 0.004 0.996
9 0.967 0.033
10 0.147 0.953

Table 4.1: The first ten rows of the estimated matrix W for the Associated Press
data set.

LDA method with K = 2 leads to two well-shaped topics “finance” and “politics”.
For the details of the analysis see [Silge and Robinson, 2020]. The first 9 rows of
the estimator of W are presented in Table 4.1. Notice that documents 6 and 8 in
Table 4.1 can be considered as anchor documents. For example, document 6 has
the weight of the second topic estimated as 0.999. A closer look at the most fre-
quent words in this document (Noriega, Panama, Jackson, Powell, administration,
economic, general) tells us that, indeed, this article corresponds solely to the topic
“politics” — it is about the relationship between the American government and the
Panamanian leader Manuel Noriega.

Our approach to estimation of W, that we call Successive Projection Overlapping
Clustering (SPOC), is inspired by the Successive Projection Algorithm (SPA) initially
proposed for non-negative matrix factorization [Araujo et al., 2001] and further used
in the context of mixed membership stochastic block models [Gillis and Vavasis,
2014, Panov et al., 2017, Mao et al., 2020]. The idea of our method is to start with
the singular value decomposition (SVD) of X and launch the SPA on the matrix of
singular vectors. This gives an iterative procedure that, at each step, chooses the
maximum norm row of the matrix of singular vectors and then projects on the linear
subspace orthogonal to the selected row. From a geometric perspective, the rows of
the matrix of singular vectors of IT belong to a simplex in R¥. The documents can
be identified with some points in this simplex and the anchor documents with its
vertices. Our algorithm iteratively finds estimators of the vertices, based on which
we estimate the topic-document matrix W.

The idea of exploiting simplex structures was previously applied for estimation
of matrix A, see [Arora et al., 2013, Ding et al., 2013, Ke and Wang, 2017], among
others. For example, the method to estimate A suggested in [Ke and Wang, 2017]
is based on an exhaustive search over all size K subsets of {1,...,p}. Its goal is to
select K vertices of a p-dimensional simplex and its computational cost is at least
of the order p®. Our algorithm recovers the vertices of a K-dimensional simplex
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(recall that K < p), and its computational cost is of the order max(p,n)K + nK?2.
Here, max(p,n)K and nK? are the costs of performing a truncated SVD and SPA,
respectively.

Our theoretical results deal with the problem of estimating the document-topic
matrix W. In practice, our method can be used for estimation of A as well. Based
on the SPOC estimator of W, we can obtain an estimator of matrix A by a com-
putationally fast procedure (see Section 2). Our simulation studies (see Section 10)
indicate that this estimator exhibits a behavior similar to the LDA on average while
being more stable.

Assuming that N; = N for ¢ = 1,...,n, we prove that the SPOC estimator of

W converges in the Frobenius norm and in the ¢;-norm with the rates \/n/N and

n/v N, up to a weak factor, respectively. (We mean by weak factor a small power
of K multiplied by a term logarithmic in the parameters of the problem. We will
ignore weak factors when discussing the convergence rates.) We also prove lower

bounds of the order /n/N and n/v/N, respectively, implying near optimality of the
proposed method. One of the conclusions, both from the theory and the numerical
experiments, is that the error of the SPOC algorithm does not grow significantly with
the size of the dictionary p, in contrast to what one observes for Latent Dirichlet
Allocation. We also introduce an estimator for the number K of topics, which is
usually unknown in practice. We show that SPOC algorithm using the estimator of
K preserves its optimal properties in this more challenging setting.

We stress that the minimax convergence rates for estimation of matrix W estab-
lished in this paper cannot be improved by any estimation method. In particular,
our results imply that an accurate estimation of matrix W requires the number of
words per document N to be large. In practice, when the topic-word matrix A can
be accurately estimated from the data one can estimate document-topic matrix W
via, for example, least squares. However, accurate estimators of A are only available
when p (the size of the dictionary) is relatively small while n (the total number of
documents) and N are large. On the other hand, when p is large compared to every-
thing else, the error of estimating A could be too high to allow for a good estimator
of W in the above scheme. But our algorithm that estimates W directly still works.

The rest of the chapter is organized as follows. In Section 2, we introduce the
SPOC algorithm. Section 3 contains the main results on the convergence rate of
the algorithm and the minimax lower bound for estimation of W. In Section 5,
we present numerical experiments for synthetic and real-world data in order to il-
lustrate our theoretical findings. Finally, in Section 6 we summarize the outcomes
of the study. Last sections contains proofs, additional simulations and a detailed
discussion of related work.

Notation. For any matrix M = (M;;) € R™* ||M]| denotes its spectral
norm, i.e., its maximal singular value, || M]||r its Frobenius norm, and |M|; =
Zf:n Z§:1 |M;;| its ¢;-norm. We also consider the maximum /¢;-norm of its rows

| M||100 = max Z?Zl |M;;|. We denote by A;(M) the jth singular value and by
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Amin(M) the smallest singular value of M. Assuming that matrix M has rank
K we consider its singular values A\{(M) > X\o(M) > -+- > Ag(M) > 0 and its
condition number k(M) = A\ (M)/Axg(M). If J is a non-empty subset of rows of
matrix M the notation M ; is used for a matrix in RIY*¥ obtained from M by
keeping only the rows in J. We denote by Iy the K x K identity matrix, and by
(e1,...,e,) the canonical basis of R". For any vector u € R%, we denote by ||ul-
its Euclidean norm. Throughout the paper, we use the notation O for orthogonal
matrices and P for permutation matrices. & denotes the set of all permutation
matrices in RE*X and ¢, C positive constants that may vary from line to line.

2 Successive Projection Overlapping Clustering

We start by introducing the Successive Projection Ouverlapping Clustering (SPOC)
algorithm. It is an analog, in the context of topic models, of the algorithm proposed
in [Panov et al., 2017] for the problem of parameter estimation in Mixed Membership
Stochastic Block Model. To explain the main idea of the algorithm, we consider the
singular value decomposition (SVD) of matrix IT. Using assumption K < min(p,n)
and that rank IT < K we get:

IT=ULV", (4.4)

where U = [Uy,...,Ug] € R™K and V = [V, ..., Vk] € RP*E are matrices of left
and right singular vectors and L € RE*¥ is the diagonal matrix of the corresponding
singular values. Under Assumption 1, if Ax(IT) > 0, the key observation is that U
can be represented as

U=WH, (4.5)

where H € RE*K is a full rank matrix (cf. Lemma 6). Thus, the rows of matrix
U belong to a simplex in R¥ with vertices given by the rows of the matrix H. The
empirical counterparts of U, L, V are obtained from the SVD of X:

X =0LV" + 0,1, V], (4.6)

where U = [U,...,Ux] and V = [V4, ..., Vi] are, respectively, the matrices of left
and right singular vectors of X correspondmg to its K leading singular values A >

- > )\K, L= dlag{)\l, . )\K} and UL, V1 is the singular value decomposition
of X — ULVT. It follows from the matrix perturbation theory (see 7.1) that there
exists an orthogonal matrix O such that Uisa good approximation for UO and we
can write

U=UO+N=WHO + N, (4.7)

where N is a “small enough” noise matrix. Having obtained U from the SVD of X,
we then apply the Successive Projection Algorithm (SPA) [Araujo et al., 2001, Gillis
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and Vavasis, 2014] to estimate matrix HO in (4.7). Applied to matrix M = U
and r = K this algorithm finds the rows of matrix U with the maximum Euclidean
norm and then projects on the subspace orthogonal to these rows and repeats the
procedure until K rows are selected. The main idea underlying the SPA is that the
maximum of the Euclidean norm of a vector on a simplex is attained at one of its

vertices.

Algorithm 1 SPA

Input: Matrix M € R™¥ and integer r < n.
Output: Set of indices J C {1,...,n}.
1: Initialize: Sg = M7, Jy = 0.
2: Fort=1,...,r do:
~ Find i(t) = argmax;_; _, [|si|l2, where s;’s are the column vectors of S;_;.

Si(t sTt .
~ Set 8, = (IK - néitfﬁg’) S, 1, Ji=JiaUfi(D)
3: Set J = J,.

If Assumption 1 holds in the noiseless case (i. e. when N = 0), it can be
shown that U; = HO, where J is the set of K rows of U selected after K steps of
SPA. In the noisy case we need additional assumptions on the noise level to ensure
that SPA extracts documents close to anchor ones, which leads to an accurate enough
estimator H of HO (see 7.2 for the precise statement). Once we have such estimator,
the final step is to define our estimator of matrix W as W = UH™!. This definition
is valid only if matrix H is non-degenerate, which is true with high probability under
suitable assumptions (cf. Section 3). An additional potentially useful step is to apply
preconditioning to matrix U, which leads to improved bounds on the performance
of the algorithm in the presence of noise, see [Gillis and Vavasis, 2015, Mizutani,
2016]. Preconditioned SPA is defined as follows. Let r = K and let a;,...,a, be
the column vectors of matrix M"'. Let L* € RF*X be the solution of the following

minimization problem
min —logdet L. (4.8)
L>0: max; a;rLaigl
Matrix L* defines the minimum volume ellipsoid centered at the origin that contains
ai,...,a,. The preconditioned SPA is defined by Algorithm 1 initialized with Sq =
(L*)Y2M™ rather than with Sg = M". The SPOC algorithm for topic modeling is
summarized in Algorithm 2.

Based on the SPOC estimator W of matrix W, it is possible to construct an esti-
mator for matrix A in a straightforward way. Indeed, given the decompositions (4.4)
and (4.5), we can use the definition IT = W A and deduce that A = HLVT. A
direct sample-based estimator of A is then given by

A A~

A=HLV". (4.9)
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Algorithm 2 SPOC (respectively, preconditioned SPOC)

Input: Observed matrix X and number of topics K.
Output: Estimated document- -topic matrix wW.
1: Get the rank K SVD of X: ULVT,
2: Run SPA (respectively, preconditioned SPA) with input (U, K), which outputs
a set of indices J with cardinality K.
3: Set I:I = IAJJ.
4: Set W .= UH L.

In order to illustrate the performances of this new estimator, we have performed
experiments to compare it with LDA, see Section 10.

3 Main results

In this section, we provide bounds on the performance of the SPOC algorithm. We
first prove deterministic bounds assuming that X is some fixed matrix close enough
to IT in the spectral norm. Next, we combine these results with a concentration
inequality for || X — IT|| when X is distributed according to Pry in order to obtain a
bound on the estimation error with high probability under our statistical model.

3.1 Deterministic bounds

A key step in analyzing the performance of the SPOC algorithm is to show that U
is close to an orthogonal transformation UO of the population matrix U. The next
lemma gives a bound on the maximal ¢5-distance between the rows of U and UO
for some orthogonal matrix O. This lemma will allow us to deduce an upper bound
on the error of SPA (see 7.2 for the details). Recall that A;(W) is the maximum
singular value of matrix W, Ax (IT) is the K'th singular value of matrix IT, and x(W),
k(IT) are the condition numbers of matrices W and II, respectively. Assuming that
Ak (IT) > 0 (that is, IT is a rank K matrix) we define

le) Xl X —TI|| | [le; (X — TT)]l2
Ak (TT) A(I)

Bi(X,II) = KY2*(I)

1=1,...,n,

where (eq,...,e,) is the canonical basis of R™.

Lemma 1. Assume that I1 € R"*? is a rank K matriz, and X € R™P is any matriz
such that || X —TII|| < Ax(I1)/2. Let U, U be the nx K matrices of left singular vectors
corresponding to the top K singular values of X and II, respectively. Then, there
exist an orthogonal matriz O and a constant C' > 0 such that, for any1=1,...,n,

lef (T~ U0)|» < Cai(X, IN).
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Define now f(X,IT) = max;—;__, 5;(X, IT). We will need the following condition:

.....

Assumption 2. For a constant C > 0 we have

c
I = S W W R VR

Assumption 2 is satisfied with high probability for X ~ P for IV, the sample size,
large enough (see Section 8.3). Under Assumption 2, we can derive from Lemma 1 the

following deterministic bound on the error of estimating the document-topic matrix
by the SPOC algorithm:

Lemma 2. Let Assumptions 1 and 2 be satisfied with constant C' small enough.
Assume that IT € R™ P is a rank K matriz, and X € R™*P is any matriz such that
| X — II|| < Mx(I1)/2. Then, matriz H is non-degenerate and the preconditioned
SPOC algorithm outputs matriz W such that

min
Pecy

max

W — WPy < CK/? {v W)n(W)(x, 1) + DMWY - T } |

Ak (IT)
where & denotes the set of all permutation matrices.

Inspection of the proof shows that, for this lemma to hold, it is enough to choose
the constant C' < min(C,, C 1) where C,, Cy are the constants from Theorem 4 and
Corollary 5.

3.2 Bounds with high probability

Lemma 2 combined with a concentration inequality for || X — IT|| (cf. Lemma 4 in
the Section) allows us to derive a bound for the estimation error that holds with high
probability when X is sampled from distribution Pr. Introduce the value

A(W,TI) = (iig;) 1 (W)2(TI).

The main result is summarized in the next theorem.

Theorem 1. Let Assumption 1 hold, and N; = N fori = 1,...,n. Assume that
N >log(n+ p) and

nlog(n + p)

A (IT) > @ K <N)1/4/€(H) M (W) k(W). (4.10)
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Then, with probability at least 1 — 2(n + p)~', matriz H is non-degenerate and the
output W of preconditioned SPOC' algorithm satisfies, for some constant C; > 0,

nlog(n + p)

N AW, II),

mlnHW WPH <CiK

where &2 denotes the set of all permutation matrices.

Condition (4.10) in Theorem 1 guarantees that Assumption 2 is satisfied. This
condition holds if N is large enough and it quantifies the separation of the spectrum
of the matrix IT from zero. The bound of Theorem 1 depends on the singular values
of matrices W and II. We now further detail this bound for the balanced case
where matrices W and II are well conditioned and the smallest non-zero singular
value of I is of the same order as the largest singular value of W. It follows from
Lemma 7 that in this case both A\ (IT) and A (W) are of the order of y/n/K. This
is coherent with the behavior of the singular values of IT and W that we observed
in the simulation study (see Section 11). The balanced case is formally described by
the following assumption.

Assumption 3. There exist two constants C' > 1 and ¢ > 0 such that
A(IT) > CA (W) and max {x(II),x(W)} < c.

The second condition in Assumption 3 is quite standard and just states that
matrices IT and W are well-conditioned. The first condition is more restrictive. It
holds, in particular, if matrix A is well-conditioned with large enough Ax(A). For
example, it will be the case if A satisfies the anchor word assumption (see Section 1)
with the probabilities of anchor words uniformly above the probabilities of other
words. This is detailed in Lemma 9. Noteworthy, the lower bound of Theorem 3
below is attained with such choice of matrix A, see the proof of Theorem 3 in
Section 8.5. We can interpret it as the fact that, in a minimax sense, such matrices
A are associated with the least favorable models. The following corollary quantifies
the behavior of SPOC estimator in the balanced case:

Corollary 1 (Upper bound in the balanced case). Let Assumptions 1 and 3 hold,
and N; = N fori=1,...,n. Let also

N > CK®log(n + p) (4.11)

or some C > 0 large enough. Then, with probability at least 1 — 2(n + p)~t, matriz
Je q g p Y p) ",

H is non-degenerate and the output W of preconditioned SPOC algorithm satisfies,
for some constant Cy > 0,

nlog(n + p)
» < CoK N

Pey

where &2 denotes the set of all permutation matrices.
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To prove Corollary 1, it is enough to notice that under Assumption 3 we have
A(W,II) < (" for some constant C’ > 0, and condition (4.10) follows from (4.11),
Assumption 3 and the inequality Ay (W) > \/n/K (see Lemma 7). Note that from
Theorem 1 and Corollary 1 we can derive bounds in other norms. Thus, using the
inequalities HW WPT’, < \/_HW WPH and HW WPH < \/_HW —

WPH we obtain the following corollary:

Corollary 2. [f the assumptions of Theorem 1 are satisfied then, with probability at
least 1 —2(n+p)~t, matriz H is non- degenerate and the output w of preconditioned
SPOC algorithm satisfies

1
min < 0 K32 MO D) Ay g
Pez 0o N
. 1
min|[W - WP| < C,K%%n log(n +7) \ (w1,
Pey 1 N

If the assumptions of Corollary 1 are satisfied then with probability at least 1 —
2(n + p)~t matriz H is non-degenerate and the output W of preconditioned SPOC
algorithm satisfies

]
mlnHW WPH < O, K2 ”Ogng and
]
min < C K2, 1084 P)
Pcy 1 N

It follows from Corollaries 1 and 2 that the rate of estimating W (to within a
weak factor) is determined by two parameters, which are the number of documents
n and the sample size N. The dependence on the size of the dictionary p is weak.
This is confirmed by the numerical experiments, see Section 5.

3.3 Adaptive procedure when K is unknown.

We now propose an adaptive variant of the SPOC algorithm when the number of
topics K is unknown. It is obtained by replacing K in Algorithm 2 by the estimator

A

K:max{j D A(X) >4 nlog(vﬂ—p)}

N

In the sequel, the resulting procedure will be called the adaptive (preconditioned)
SPOC algorithm. The following analogs of Theorem 1 and Corollary 1 hold.

Theorem 2. Let the assumptions of Theorem 1 be satisfied and

32C [nlog(n + p)
5K? N '

M(W) > (4.12)
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Then, with probability at least 1 — 2(n + p)~', matriz H is non-degenerate, K= K,
and the output W of the adaptive preconditioned SPOC algorithm satisfies

nlog(n + p)

S A(WLII).

inHW - WPHF <O K

m
Pew

Corollary 3. Let the assumptions of Corollary 1 and (4.12) be satisfied. Then, with
probability at least 1 — 2(n + p)~', matriz H is non-degenerate, K = K, and the
output W of the adaptive preconditioned SPOC' algorithm satisfies

min |[W — W[ < Gy D)

Note that condition (4.12) introduced in Theorem 2 and Corollary 3 additionally
to the conditions of Theorem 1 and Corollary 1 is rather mild. Indeed, due to

inequality (4.42) we have A\ (W) > /n/K. Therefore, it is sufficient that N >
C'log(n + p)/K? to grant (4.12).

3.4 Minimax lower bound

The following lower bound shows that the rate obtained in Corollary 1 is near min-
imax optimal. Denote by .# the class of all matrices IT satisfying the assumptions
stated in the Section 1 and Assumption 3.

Theorem 3 (Lower bound). Assume that N; = N fori=1,....,n and 2 < K <
min(p/4, N/2,n/2). Then, there exist two constants C > 0 and ¢ € (0,1) such that,
for any estimator and W of W we have

e n
SEP//PH{II’DGI%HW —~WP|r > C'MN} > ¢, (4.13)
d Prd min [[W = WP[|; > Cny| 2\ > (4.14)
and  sup Prrq i 12026 :

where &2 denotes the set of all permutation matrices.

Combining Corollary 1 and (4.13) we find that the minimax optimal rate of
estimation of W on the class .# in the Frobenius norm scales as y/n/N. On the
other hand, (4.14) and Corollary 2 imply that the minimax optimal rate of estimation
of W in the l;-norm on .# scales as n/\/ﬁ
Remark 1. Inspection of the proof of Theorem 3 shows that the lower bound is in
fact established for a subset of M composed of matrices satisfying both anchor word
and anchor document assumptions.

Remark 2. Under the same observation model and the anchor word assumption, the
minimaz optimal rate for estimation of matriz A in the {1-norm scales as \/p/nN,
see [Ke and Wang, 2017, Bing et al., 2020b]. Note that this rate is determined by all
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the three main parameters of the problem - the size of the dictionary p, the number of
documents n and the sample size N. This is quite different from the minimax {1-rate
n/\/ﬁ of estimation W, which remains valid under anchor word assumption, cf.
Remark 1 and the remark after Assumption 3. It shows that there is a significant
difference between the problems of estimating matrices A and W in topic models.

4 Related Work

There exists an extensive literature on topic modeling and several algorithms have
been proposed to estimate the matrices A and W. As the problem of recovering
these two matrices when there is no noise is an instance of non-negative matrix fac-
torization, several papers propose algorithms based on minimization of a regularized
cost function, see, e.g., [Lee and Seung, 1999b, Donoho and Stodden, 2004, Cichocki
et al., 2009, Recht et al., 2012]. Such methods result in non-convex optimization
and often fail when many words do not appear in a single document, that is, when
N < p. Also, spectral analysis methods have long been used in related problems,
see, for example, [Azar et al., 2001].

Another approach is to use Bayesian methods such as the popular Latent Dirichlet
Allocation (LDA) introduced in [Blei et al., 2003]. LDA proceeds by imposing a
Dirichlet prior on A and then computing an estimator of W by a variational EM-
algorithm. The original paper [Blei et al., 2003] and the subsequent line of work
do not provide statistical guarantee on the recovery of W. LDA avoids two issues
of the pLSI that are the risk of overfitting and the difficulty of classifying a new
document outside the corpus, see [Blei et al., 2003] for more details. Yet, LDA is
computationally slow and makes the assumption that topics are uncorrelated, which
may be unrealistic [Blei and Lafferty, 2007, Li and McCallum, 2006]. This last
issue has been addressed in [Lafferty and Blei, 2006] by introducing Correlated topic
models. LDA has been extended to relax some assumptions such as the bag-of-words
hypothesis (“order of words does not matter”) [Wallach, 2006], the exchangeability
of documents (“topics do not vary in time”) [Blei and Lafferty, 2006], the assumption
that the number of topics is known [Teh et al., 2005]. Also, to recover W in the LDA
setting, some papers used Gibbs-sampling [Ramage et al., 2009, Porteous et al., 2008]
or variational Bayes techniques [Zhai et al., 2012, Chien and Chueh, 2010] rather than
the EM-algorithm. However, these works do not provide statistical guarantees on
the estimation of W and the associated algorithms are computationally slow.

Paper [Li et al., 2015] adopts a more general approach than LDA model by con-
sidering a statistical mixture model, which includes topic models with LDA. Using
spectral and transportation techniques, they provide an estimation method for A,
which does not require any assumption of structure such as the anchor word assump-
tion but has weak statistical guarantees.

In [Arora et al., 2016], the authors focus on labeling a single document when A
is known, which means finding the proportion of each topic in this document, with



5. NUMERICAL EXPERIMENTS 85

a fixed set of topics. They solve this problem assuming the true topic proportion
vector is sparse and the number of topics is large (typically K = 100).

For the problem of estimation of matrix A, papers [Arora et al., 2012, Anandku-
mar et al., 2012, Arora et al., 2013, Ding et al., 2013, Anandkumar et al., 2014, Bansal
et al., 2014, Ke and Wang, 2017, Bing et al., 2020b], to mention but a few, provide
provable statistical guarantees under the anchor word assumption. They propose
various techniques based, for example, on analyzing co-occurrence matrices, tensors,
or on recovering vertices of a simplex using SVD. Most of these papers, except for [Ke
and Wang, 2017, Bing et al., 2020b], do not work under the same statistical model
as ours (cf. Section 1). Thus, [Arora et al., 2012, Arora et al., 2013, Ding et al.,
2013] assume that topic-document matrix W is randomly generated from some prior
distribution. For a setting with no randomness, [Mizutani, 2014] proposes ellipsoidal
rounding algorithm with application to topic models. Paper [Mao et al., 2018] de-
velops a generalized method to bind overlapping clustering models, including topic
models. Moreover, for some classes of matrices, minimax optimal algorithms for esti-
mating A have been introduced in [Ke and Wang, 2017, Bing et al., 2020b]. Both [Ke
and Wang, 2017, Bing et al., 2020b] impose the anchor word assumption but their
estimators are different. Thus, [Ke and Wang, 2017] performs SVD on properly nor-
malized matrix X followed by an exhaustive search over a p-dimensional simplex,
while [Bing et al., 2020b] proceeds by first recovering the anchor words and then
deriving estimators of A from a scaled version of matrix X XT. A work parallel
to ours [Bing et al., 2021b] considers the problem estimating a single row of ma-
trix W under sparsity assumptions based on a preliminary estimator of matrix A.
Specifically, [Bing et al., 2021b] establishes the rate max{y/p/nN,1/v/N} (to within

logarithmic factors) for estimating a single row of W in the ¢;-norm, which implies

the ¢i-error of the order max{\/np/N,n/v/N} for estimation of the whole matrix

W. On the other hand, we obtain a better rate n/+/N. The additional term y/np/N
corresponds to the accuracy of estimating A, and seems to be inevitable for methods
of recovering W based on a preliminary estimator of A.

Additionally, we mention the series of works [Lee et al., 2015, Lee et al., 2019, Lee
et al., 2020], which look on the estimation in topic models from a different perspective
and provide algorithms having strong practical performance. In particular, [Lee et al.,
2020] considers influence of the prior on the estimation and [Lee et al., 2015] explores
the use of word-word co-occurrence matrix for extraction of topics. The latter idea,
potentially combined with our approach, could lead to new algorithms for estimation
in topic models.

5 Numerical experiments

5.1 Synthetic Data

We first present the results of experiments on synthetic data. We have performed
simulations with different values of the parameters n, p, N and the number of topics
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K. Our aim was to observe the effect of each of these parameters on the Frobenius
error between W and its estimator W obtained by the SPOC algorithm. We report
the results for the SPOC algorithm without the preconditioning step as it had a
negligible impact on the performance of the method while being computationally
demanding. As a benchmark, we use the LDA algorithm [Blei et al., 2003]. For the
experiments we use the Python implementation of SPOC! and an implementation of
the LDA algorithm available in Sklearn [Pedregosa et al., 2011].

Figures 4.3-4.4 present an example of results that we have typically obtained
in simulations. We take K = 3. We set K rows of W as the canonical basis
vectors and each of the remaining N — K rows is generated independently using the
Dirichlet distribution with parameter o« = (0.1,0.15,0.2). In Figure 4.4, where K
must vary, we define W in a different way. Namely, for the N — K rows that are not
canonical basis vectors, each element Wy; is generated from the uniform distribution
on [0, 1] and then each row of the matrix is normalized so as to have Zszl Wi = 1.
For the matrix A, we take K columns proportional to canonical basis vectors with
coefficients equal to random variables U,k = 1,..., K uniformly distributed on
[0,1]. The elements Aj; of matrix A in the remaining p — K columns are obtained
by generating numbers from the uniform distribution on [0, 1] and then normalizing
each row of the matrix to have Z?:K-‘,—l Ay =1—-Us,k=1,..., K. The resulting
matrix A has normalized rows, i.e. Z;’:l Ap; =1 (we also performed experiments in
the case when Assumption 3 is violated, see below). For given W and A, the data
matrix X is generated according to the pLSI model defined in Section 1. For each
value on the z-axes of the figures, we present the averaged result over 10 simulations.

We clearly retrieve the patterns indicated in Theorem 1, Corollary 1 and (4.13).
Thus, the plots have a near \/n and a near 1/v/N behaviour in Figures 4.1 and 4.3.
Figures 4.2 and 4.4 show weak dependence of the error of the SPOC algorithm on
the size of the dictionary p, which agrees with the bound obtained in Corollary 1.
Note that choosing p = 5000 in three plots of Figures 4.1 and 4.2 corresponds to a
rare case where LDA slightly outperforms SPOC (seen the left plot of Figure 4.2).
Additional experiments for p = 2000 are presented in Section 12 and show a clear
advantage of SPOC over LDA.

We also studied the influence of Assumption 3 on the performance of the algo-
rithms. In Figures 4.3 and 4.4 we generate data in the same way as above except
for the definition of matrix A. Namely, we take K columns of A proportional to
the canonical basis vectors, while the elements in the remaining p — K columns
are obtained by generating numbers from the uniform distribution on [0,1]. Then
we normalize each row of the matrix to have Z?zl Ai; = 1. With this definition,
Assumption 3 is violated, which presents an unfavorable case according to our the-
ory. Nevertheless, we still observe the dependence on the key parameters outlined
in Theorem 1, Corollary 1 and (4.13). Moreover, we observe that SPOC still per-
forms better than LDA. Generally, in all the experiments we observe that the SPOC
algorithm is very competitive with LDA while being much more stable.

!The code of SPOC algorithm is available at https://github.com/stat-ml/SPOC
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Figure 4.1: On the left (respectively, on the right), the n-dependence (respectively,
the N-dependence) of minpe s |[W — WP|| using SPOC and LDA algorithms
when the total number of words is p = 5000. The number of sampled words is

N = 200 on the left, the number of documents on the right is n = 1000. Matrix A

is generated in a way that Assumption 3 is satisfied.
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Figure 4.2: On the left (respectively, on the right), the p-dependence (respectively,
the k-dependence) of minpe s |[W — WP|| using SPOC and LDA algorithms.
Number of documents n = 1000 on the left, number of sampled words N = 200 on
the left and N = 5000 on the right, total number of words p = 5000 on the right.
Matrix A is generated in a way that Assumption 3 is satisfied.
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Figure 4.3: On the left (respectively, on the right), the n-dependence (respectively,
the N-dependence) of minpe» |[W — WP||p using SPOC and LDA algorithms
when the total number of words is p = 5000. The number of sampled words is

N = 200 on the left, the number of documents on the right is n = 1000. Matrix A

is generated in a way that Assumption 3 is not satisfied.
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Figure 4.4: On the left (respectively, on the right), the p-dependence (respectively,
the k-dependence) of minpe» |W — WP||p using SPOC and LDA algorithms.
Number of documents n = 1000 on the left, number of sampled words N = 200 on
the left and N = 5000 on the right, total number of words p = 5000 on the right.
Matrix A is generated in a way that Assumption 3 is not satisfied.
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A numerical study of the SPOC estimator A of matrix A is deferred to Section 10.
It shows that A behaves similarly to the corresponding LDA estimator while being
more stable.

5.2 Corpus of NIPS abstracts

We now illustrate the performance of our algorithm applying it to the data set of full
texts of NIPS papers? [Perrone et al., 2017]. This data set contains the distribution
of words in the full text of the NIPS conference papers published from 1987 to 2015.
It has the form of a 11463 x 5811 matrix of word counts containing 11463 words and
5811 NIPS conference papers. Each column contains the number of times each word
appears in the corresponding document.

We start by pre-processing the data. We first remove all the documents with
less than 150 words. Then we remove from the resulting dictionary the stop words
and the words that appear in less that 150 documents. This results in a database of
5801 documents with a dictionary of 6380 words. In order to compare our method
to LDA, we proceed as follows. For each value of K = 3,...,10, we first compute
the LDA estimator W of the document-topic matrix and the LDA estimator A of
the topic-word matrix. Next, with the underlying matrix II = W A, for each value
of K we simulate 10 matrices X with N = 200 sampled words according to pLSI
model. For each matrix X, we estimate W using both LDA and SPOC algorithms.
Finally, for each K we compute the mean error over 10 simulations. The resulting
comparison as function of K is presented in Figure 4.5. We can observe that SPOC
systematically outperforms the LDA algorithm, except for K = 2.

Next, we apply the SPOC estimator of matrix W to the problem classifying the
documents in the NIPS corpus. We apply the simplest possible classifier: we assign
to the article ¢ the topic that has the maximum value of Wi for k = 1,....,K. We
consider the number of topics K = 3. While some words (such as “learning” or
“model”) are very frequent in the whole corpus, other words are more frequent for
particular topics. Therefore, for each topic, we choose the words that have the highest
difference between their frequency for this topic and their maximum frequency for
other topics. We clearly see that the obtained topics are semantically well separated,
see Table 4.2.

Additionally, we can note that the anchor documents extracted by the SPOC
algorithm are quite adequate. For the topic “Algorithms and Theory”, the selected
paper is [Beygelzimer et al., 2015]. This is clearly a theoretical paper, it does not
mention neural networks at all and also does not speak much about statistical learn-
ing or modeling. The paper [Park et al., 2013] was selected as an anchor document
for the “Statistical Learning” topic. It is a purely modeling paper with again no
mentioning of neural networks and no theoretical results. Finally, the paper [Liu
et al., 1994] was chosen as an anchor document for the “Neural Networks” topic.

2The link to the dataset: https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-
2015
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Figure 4.5: The K-dependence of minpey |[W — WPHF using SPOC and LDA
algorithms on semi-synthetic data. Matrix W is the LDA estimator on the NIPS
data set (n = 5081 documents, p = 6380 words), and W is the LDA or SPOC
estimator on data simulated from II.

Table 4.2: Top 10 words, which have the highest difference in frequency for each
topic compared to other topics. The three topics were identified by SPOC method.

“Neural Networks” “Statistical Learning” “Algorithms and Theory”

1 network model algorithm
2 input data learning
3 neural image function
4 neurons distribution problem
5 units inference set

6 output likelihood theorem
7 layer latent bound

8 neuron prior matrix
9 system Gaussian loss
10 synaptic parameters error

This paper deals with neural networks and control. In the context of the extracted
three topics (see Table 4.2), it is heavily a neural networks paper as it does not
develop any theory and also does not talk about statistical modeling.

6 Conclusion

In the present paper we proposed a new algorithm for estimating the document-topic
matrix in the topic model, the SPOC algorithm. Our algorithm is computationally
efficient even in the case of an unknown number of topics. It is based on the Successive
Projection Algorithm used to recover the vertices of a K-dimensional simplex in
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the context of separable matrix factorization. We developed the statistical analysis
of the SPOC algorithm under the anchor document assumption requiring that, for
each topic, there is a document devoted solely to this topic. We proved that the
proposed method is near minimax optimal under the Frobenius norm and the ¢;-
norm. As an element of our analysis, we derived a bound on the concentration of
matrices with independent multinomial columns that may be of independent interest.
The theoretical results are supported by empirical evidence demonstrating a good
performance of the SPOC algorithm and its advantages compared to the LDA.

7 Tools

7.1 Matrix Perturbation Bounds

In this section, we provide some facts about matrix perturbation that will be used
in the proofs. We start with the following lemma, which is a variant of Davis-Kahan
theorem.

Proposition 1 (Lemma 5.1 [Lei and Rinaldo, 2015]). Let M € R™" be a rank K
symmetric matriz with smallest nonzero eigenvalue Ax (M), and let M € R™™ be
any symmetric matriz. Let U(M) € R and U(M) € R™K be the matrices of K
leading eigenvectors 0f1\7I and M, respectively. Then there exists a K X K orthogonal
matriz O such that

2V2K| M — M|
Ak (M)

IOM) —UM)O||r <

Corollary 4. Let IT and X be matrices with singular value decompositions given
by (4.4) and (4.6). Then there exist K x K orthogonal matrices O and O such that

2v2K (| X || + )| X — ]

U-UO||r < 4.15
[0 - VO] < i (4.15)
and
G ol < 2V2EX] -+ [T X — 11|
V -VO|r < . 4.16
IV - VOl < o (1.16)
Furthermore, if || X — II|| < IX\g(II) then
A ~ ~ OV2KkK(II)|| X — 11
max (||U - UO||s, |V = VO ) < (1| I (4.17)

Ak (IT)
Proof. Applying Proposition 1 to matrices TITIT and X X we get

V2K — XX _ 2v2K (|| X]| + |[TT|)]| X — I

U-U0|r <
Y U 2 ()
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Similarly, inequality (4.16) is obtained by applying Proposition 1 to matrices TT'TI
and X" X. Next, if | X — II|| < iAx(II) then due to the triangle inequality we
have || X|| < |[TII|| + 3Ax(IT) < 2|II||. Combining this fact with (4.15) and (4.16)
we obtain (4.17). O

We will also need the following bounds for matrices of singular values L and L:

Lemma 3. Let the assumptions of Corollary 4 hold. Let L and L be diagonal K X K -
matrices of K largest singular values of X and I1, respectively, cf. (4.4) and (4.6).
I 1X — T < Sxe(T) then

|IL — OTLO| < CR¥(IT)VK || X —II|

and

f1 ATy - X —IIJ
L' —O™TL'0| < Ck*(1II KH
| | < CRIVE S

where the orthogonal matrices O, O are the same as in Corollary 4.
Proof. Applying Weyl’s inequality [Giraud, 2015, Theorem C.6] we get
IOLVT — ULVT|| < 2|1 - X|
and further
|OLVT — ULVT|| > |[UO(L — OTLO)VY|
— (U - UO)LV"|| — |[ULO(V — VO)7|.
Therefore
IL —OTLO| < | X — M| +[|(U ~ UO)LVT|| + [ULO(V — VO)||
<X — 1|+ X[T - UO| + IV — VO

_ (2V2E(I1X]| + |1L]))®
S

+1) X — ),

where the last inequality is due to Corollary 4. Next,
|IL' = O"L!O| = L }(O"LO — L)OTL 0|
< [IL7Y |IL - O"LO| L]

(wﬁnxn + 1) |x — 0

= X (1) A (X ) (T

where Ag(X) is the K-th largest singular value of matrix X. Due to Weyl’s in-
equality and the fact that || X — IT|| < Ax(II)/2 we have Ag(X) > Ag(II)/2 and
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| X < IIT|| + (Ag(IT)/2) < 3||II||/2. Plugging these inequalities in the last two
displays we obtain the lemma. O]

7.2 Noisy Separable Matrix Factorization

In this section, we give a bound on the error of preconditioned SPA in Noisy Separable
Matrix Factorization model. Assume that we observe

G=G+N=WQ+N,
where N € R"*¥ is a perturbation (noise) matrix, and
G=WQ,

where W € R*Y and Q € Rf*K_ If we assume that W satisfies Assumption 1
then we obtain the setting usually referred to as Noisy Separable Matrix Factorization
(NSMF). The following theorem holds for preconditioned SPA in the NSMF model,
see [Gillis and Vavasis, 2015, Mizutani, 2016]:

Theorem 4. Let K > 2 and let Assumption 1 hold. Assume that matrix Q is non-
degenerate and the entries Wi, of matrix W satisfy the condition Zﬁzl Wim <1
fori=1,...,n. Moreover, assume that for any i =1,...,n, the norms of the rows
of matriz N satisfy ||efN||y < € with

)\min(Q)
KVK
for some constant C, > 0 small enough. Let J be the set of indices returned by the

preconditioned SPA with input (G,K). Then, there exist a constant Cy > 0 and a
permutation m such that, for all j € J,

e < C,

18 — dr(jll2 < Cor(Q)e,
where g5, and qi are the k-th rows of matrices G and Q, respectively.

Note that this error bound depends on the upper bound on the individual errors
leFN]|o. From the statistical point of view, one might expect that there should be
an algorithm, which improves upon this error bound if there are many nearly “pure”
rows in matrix G, so that the value of the error is diminished by averaging. However,
to the best of our knowledge, no such algorithm complemented with a performance
analysis can be found in the literature.

We now consider a specific instance of NSMF model given by (4.7). In this case,
G = U and Q = HO for an orthogonal matrix O. Specifically, O is the orthogonal
matrix, for which (4.15) holds (it is the same matrix O, for which the bound of
Lemma 1 is valid). Combining Theorem 4 with Lemma 1 we get the following
corollary.
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Corollary 5. Let Assumptions 1 and 2 be satisfied with constant C < C,. Consider
the matrices TI, X, H, U as in (4.4) — (4.6) such that A\g(IT) > 0 and || X —
IT|| < Ag(II)/2. Let O be the orthogonal matriz, for which (4.15) holds. Let J
be the set of indices returned by the preconditioned SPA with input (ﬁ, K), and let
H = U,. Then, there exist a constant Coy > 0 and a permutation 7 such that, for all
j=1,...,K,

ﬁj - q7r(j) H2 < CO’%(H)B(Xv H)7 (418>
where flk and qy are the k-th rows of matrices H and HO, respectively. Furthermore,

|71 - PHOHF < CoK'?r(W)B(X,TI), (4.19)

where P is a permutation matriz corresponding to the permutation 7.

Proof. Taking into account equations (4.4) — (4.7) we apply Theorem 4 with Q =
HO, N =U — UO. By Lemma 1,

[N = €] (U~ UO) o < e, i=1.....n.

where € = 3(X,II). Therefore, using Assumption 3, (4.39), and the fact that C' < C*
we have

< C _ Chpin(H) ~ Cidmin(HO)
" MW)KVE  KVK T KVK

Thus, the assumptions of Theorem 4 are satisfied and we deduce from Theorem 4
that

A~

h; — qu(ﬁHz < Cor(HO)e = Cor(H)A(X, 11),

where hy, and qr are the k-th rows of matrices H and HO, respectively. Thus, (4.18)
follows. Inequality (4.19) is an immediate consequence of (4.18) and of the equality
k(H) = k(W) (cf. (4.40)). O

7.3 Concentration Bounds for Multinomial Matrices

In this section, we provide a bound with high probability on the spectral norm of
matrix X —II. Recall that, by definition, X = [X},..., X,] is such that NX; € R?
are independent random vectors distributed according to p-dimensional multinomial
distribution with parameters (N, II;). We will use matrix Bernstein inequality (cf.
Theorem 6.1.1 [Tropp, 2015)):

Proposition 2 (Matrix Bernstein inequality). Let Z1, ..., Zy be independent zero-
mean n X p random matrices such that ||Z,,|| < L form =1,...,N. Then, for all

t > 0 we have
1 X t2N?
(|5 =70 20) < 04w (-3 )
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where N N
o max{ S E(Z.Z))|. | E(2,.2.) } .
m=1 m=1

Applying Proposition 2 to our setting we obtain the following result.

Proposition 3. Let X' = [Xy,...,X,] be such that NX; € RP are independent
random vectors distributed according to p-dimensional multinomial distribution with
parameters (N,11;). Then, for all t > 0 we have

P(IX —TI[ > 1) < (n + p)sxp (—2 A /3>>. (420)

Proof. We prove (4.20) for X" —II* rather than X —II, which is equivalent. Matrix
Z" = XT — " has the form Z* = [Z,,...,Z,] with independent column vectors
Z; = + 3 (T — E(Tyn)), where vectors Ty, are distributed according to p-
dimensional multinomial distribution with parameters (1,1I;) and independent over
m for any fixed i. Here, we have used the fact that Multinomial, (N, II;) is a sum of
N independent Multinomial, (1, II;) vectors. We also have IT* = [IIy, ..., II,]. Thus,
we can write

r 1 X 1 Y
ZT = 5N (T,, ~E(T,) =~ S Z,., 4.21
yE s -5 & aa
where T, = [Tim, ..., Tom] and Z,, = T, — E(T,,) are independent zero-mean

random matrices.
We apply Proposition 2 to the sum (4.21). The first step is to evaluate HZ%ZI E (Zmzﬁ) H

Let T;,, (k) denote the k-th component of T;,,,, k = 1,. .., p. We have E(T},,,(k)) = [L;,
Var(T, (k) = (1 — k), Cov(Tim(k), Tim(j)) = —Iixll;; for @ # j. Therefore,

E(Z.Z)) =E(T,T,) - E(T,)E (T},

=EY T, T -T' =YY,
=1 =1

where
Yi = diag(Hﬂ, Ce 7Hip) — HZHlT

The spectral norm of Y; satisfies

p p 2 p
Vil < il = Y+ () -2 m <2
k=1 k=1 k=1

where we have used the fact that >F_, 113 < >°F_ Tl = 1. Thus, |E (ZmZ£) H <
V2n and
N
S E(Z.2,,)| < V2Nn. (4.22)
m=1
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Next, we derive an upper bound on Hzﬁ:l E (Z%me Note that E(T'>T,,) is a
matrix with diagonal entries E(T T;,) = S%_; Iz = 1 while its off-diagonal entries
are B(Ty,Tim) = [E(Tim)]* E(T}y) = IIFII; due to independence between Tj,, and
Tjm for i # j. Also, (T} ) E(T,,) = II"TI is a matrix with entries IT7TI;. Hence,

E(Z020) = E(TLT,) - E(T5) E(T,) = ding (1 - [T, ..., 1= [TLJ3).
(4.23)

It follows that ||[E (2, 2,,)| < 1, and thus [N _, E (Z},Z,,)| < N. Combining this
inequality with (4.22) we obtain that o defined in Proposition 2 satisfies 0% < v/2Nn.

Finally, we specify the constant L that gives an upper bound on || Z,,||. Let
u € SP~! be an element of the unit sphere in R”. Since for any i vector T}, has only
one component equal to 1 and all other components 0 we have ||T;,, — E(T;,)||3 =

| Ty — TL||2 < 2 and thus
0" (Tim — B(Tim))| < V2.

It follows that

2
1T = E(T)|* = sup

ueSr—1

(T — E(T))

= sup i’uT(TZ —E(T}))

uesSP—1,_q

and we get || Z,,]| < v2n =: L for any m = 1,...,n. The desired result now follows
by applying Proposition 2 with 02 < v/2Nn and L = v/2n. O]

The next lemma is a corollary of Proposition 3:

Lemma 4. Let the assumptions of Proposition 3 be satisfied. Assume that N >
log(n + p) and min(n,p) > 2. Then

1
P (nx 11| >4 wgw) <n+p) (1.2
Furthermore,
log(n + p) -
T 1
P (mx &7 (X — T, > 5y B0 ) < o)t (4.25)

. . .. . o nlo (n+ )
Proof. Inequality (4.24) follows easily from Proposition 3 by setting t = 4,/ =27

and using the assumptions N > log(n + p). In order to prove (4.25), we bound
cach probability P (He;F(X —1II)|]z > 54/log(n + p)/N) via Proposition 3 with n = 1
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(that is, we apply Proposition 3 to 1 x p matrices e} X, el II) and then use the union
bound. This yields

log(n + p) 751og(n + p)
T
P (fgag; le; (X —ID)[]2 > 5 N <n(p+1)exp T 16va )

The right hand side of this inequality does not exceed (n + p)~'. H

8 Proofs of the Main Results

8.1 Proof of Lemma 1
Using the fact that VlTVT = (0 we obtain

lef (U — UO0)||; =[lef (XVL™ — IIVL'0)||
—ef X V(L™ - O'L'0)
+ef X(V

V - VO)O'L 0 + el (X —II)VL'O||,
<|lef XV(L™! - O'L'0)|),

+ |lef X (V - VO)O'L 0|,

+lef (X —I)VL™'O

- G1 + G2 + G3.

We now bound the values G, Gy and G5 separately. We have

Gy = el X V(L™ = O"L7'O)[ < [le] X]|2 |V |£~* - O"LO|
HeiTXHZ | X — IT|
N

< CKY?£*(I0)

where the last inequality is due to Lemma 3. The values G5 and GG3 can be controlled
using the bounds for the norm of matrix product and Corollary 4:

Gy =[lef X(V ~ VO)O'L 'O < [lef X2 [V = VO L7

He-TX||2||\7—V6|| lel X ||, || X — II||
= < 5v/2k(IT)
wam oI
'x -11
Ga = [leF(X ~ IOVLO]f < e} (X - T o |v] ) = 125> T,
(D)

Combining these bounds proves the lemma.
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8.2 Proof of Lemma 2

We first prove that matrix H is non-degenerate. In this proof, we denote by O
the orthogonal matrix, for which (4.15) holds, and by P the permutation matrix,
for which the bound of Corollary 5 holds. Using Weyl’s inequality |[Giraud, 2015,
Theorem C.6] and Corollary 5 we obtain

> Ami
> Aui <H> - COK”%(WW(X,H)-

Using this inequality, Assumption 2 with C' < Cy!, and equations (4.39), (4.40) we
find

11
20u(W) 20 (W)’

Ain () > Apin (F) — (4.26)

which proves that H is 1nvert1b1e Then, for the estimator W = UH™! and the
permutation matrix P = P! we have

|W — WP|r=|UH" - UH'P|x
< 0@ - O™ 'P)|r + ||(U - UO)[P'HO| ||

We now bound separately I; and I,. Due to (4.26) and (4.39) we have
1

B = g S2M) = (W), (4.27)

Using the fact that |[A™' — B~z < |A7Y[|B7!| [|A — B||r with A = H, B =
P 'HO = PHO, inequality (4.27) and Corollary 5 we find
L=|U@" -O0"H 'P)|r < [H' - O"H 'P||r
< |[H'|[|OTH'P|| |H — PHO||
< 2C, K202 (W)k(W)B(X ,II).
On the other hand,

I, = (U -UO0)P'HO] || < |[U - UO|¢ |[H!|
< OV2ER(ID[| X — IT|
- A (TT)

I,
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where the last inequality follows from Corollary 4. Combining the above bounds we
get

W — WP||p < CKY2)\ (W) {AI(W)/@(W)B(X,H) + AUID]IX — H”}

Ak (IT)

8.3 Proof of Theorem 1

We apply Lemma 2 combined with the concentration inequalities of Lemma 4. First,
we check that Assumption 2 holds with probability at least 1 — 2(n + p)~'. For
N > log(n + p) we get from Lemma 4 that

nlog(n +p)
X —II|| < 4y —=—=
| | < N

with probability at least 1 — 1/(n + p), and

log(n + p)

T
max fle; (X —I)l> <5 ¥

with probability at least 1—1/(n+p). Notice also that max; |le] X || = max; \/>5_; X7 <
max; /Z§=1 X;; = 1. Putting together the above remarks we deduce that, with prob-
ability at least 1 —2(n +p)~!,

log(n + p)
N (T VN
< 10s*(I)VEnY———

log(n + p)
"N (VN

B(X, M) < 5 {k*(M)VEn + Ax(IT)}

where we have used the inequality A\ (IT) < y/n/K proved in Lemma 7. Since A (IT)
is chosen to satisfy (4.10) we get that, with probability at least 1 — 2(n + p) ™,

C

X, I < MW)E(W)KVE'

Thus, on an event that has probability at least 1 — 2(n + p)~!, Assumption 2 is
satisfied and we can apply Lemma 2. This yields that, with probability at least
1-2(n+p~Y

[ W - W], < cxvn w) fauwsw s m + ST
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M (W) /nK log(n + p) KY252(I0)

nlog(n + p) <)\1(W
N (I

<CK

;)Qfa(W)nz(H),

where we have used the inequalities A\g(IT) < y/n/K and A\ (IT) < VKA (W) (see
Lemma 7).

8.4 Proof of Theorem 2 and Corollary 3

We will use the following lemma.

Lemma 5. Let IT € R™*P be a rank K matriz with smallest non-zero singular value
Ak (IT), and X € R™P be a matriz such that || X — II|| < 7 for some 7 > 0. Let
K =max{j: \j(X)>7}. If \e(IT) > 27 then K = K.

Proof. By Weyl’s inequality, we have |\;(X) — X, (IT)| < 7 for all j. Since A;(II) =0
for 7 > K +1 we deduce that K < K. On the other hand, K>K. Indeed, condition
Ak (IT) > 27 implies that A (X) > A (IT) — |X;(X) — A\ (IT)| > 7. O

Theorem 2 is obtained by combining Theorem 1 with Lemma 5. Indeed, no-
tice that the bound of Theorem 1 is proved on the event & := {HX —1II)| <

4\/n log(n +p)/N}. Set T = 4\/n log(n + p)/N. It follows from Lemma 5 that if

nlog(n + p)

)\K(H) > 8 N

(4.28)

then on the event & we have K = K. But condition (4.28) is implied by (4.10)
and (4.12). Therefore, the proof of Theorem 1 goes through verbatim if we replace
K by K. This yields Theorem 2. Corollary 3 is deduced from Theorem 2 in the same
way as Corollary 1 was deduced from Theorem 1.

8.5 Proof of Theorem 3

We use the techniques of proving minimax lower bounds based on a reduction to the
problem of testing multiple hypotheses [Tsybakov, 2008, Chapter 2]. The hypotheses
correspond to probability measures P, where Y = wi A with carefully chosen
matrix A and matrices WU, j =0,1,...,T. The construction of these matrices
borrows some elements from the proofs of the lower bounds in papers [Ke and Wang,
2017, Bing et al., 2020b]. An additional subtlety is related to the fact that we need
to grant Assumption 3 on the singular values. Without loss of generality we assume
that n is a multiple of K and that K is even.
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1. Construction of the set of matrices W)
We first introduce the basic matrix W and then define matrices W@, j =1,...,T
as slightly perturbed versions of W

Let Dy be a n x K matrix composed of n/K blocks, each of which is the identity
matrix I of size K:

DY =|Ix|Ix| — |Ix].
We have that DT D, = (n/K)Ig and o(D;) = {,/n/K,0}, where o(D;) denotes
the set of singular values of D;. Set

1

Ly e

and define the n x K matrix D, by the relation
Dj = [ Or x \ 1k (n—K) }

where we denote by 1,, (respectively, 0,,) the n x p matrix with all entries 1

(respectively, 0). Then, D; Dy = (n K)71 1k and o(Ds) = {11y/K(n — K),0}.

We will further consider the matrix D3 = Dy + D given by the relation

L0 (14+m) m 0 ¢ N I I+m) ™
pr_|: o (I+m) ... 0N I M (T+m)
3 . . . . .
0---1 Y1 71 (1—|—’}/1) ...... Y1 71
:{IK‘IK+711K,K‘---‘IK+711K,K-}-

Applying Weyl’s inequality [Giraud, 2015, Theorem C.6], we get

)\K D3 \/n/K— M (n—K /K > Z\/n/K.

Finally, the basic matrix W© is defined by the relation

= { IK ‘ (1_K71)IK+711K,K ‘ ‘ (1_K71)IK+711K,K}

Clearly, W satisfies Assumption 1, all entries of W® are non-negative and its
rows sum up to 1. Applying Weyl’s inequality to matrix W@ yields

) < 3\/n/K + Kyi(\Jn/K —1) < 3\/n/K, (4.29)
> %\/W K%(\/m) > %m,

{ A (W)

§é!
4!

(1+7)
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implying that x(W©®) < 3. ‘
Our next step is to define the matrices W, j =1,...,T. Consider the set of
binary sequences

M = {07 1}K(n—K)/2

Applying the Varshamov-Gilbert bound [Tsybakov, 2008, Lemma 2.9] we get that
there exist w) € M, j =1,...,T, such that:

Hw“—w@mznw“—wwﬁzl“ﬁgKlﬂnmwo§i¢jST, (4.30)
with w® = 0 and

logT > 11g62K(n - K). (4.31)

We divide each w" into (n — K) chunks as w) = (wl w$, ... w" ) with w!? €

{0, 1}K/ 2. Next, for each wl( ), we introduce its augmented counterpart defined as

o = (w?, - l(])) € {—1,0,1}¥. In what follows, we set

- N
T E(N K

where ¢, > 0 is a small enough absolute constant. For 1 < j < T define the
(n — K) x K matrix 20 and the n x K matrix AW as follows:

ng)
~(7)
. w . 0
QU = ~ 2 and AW — [ﬁffjffﬁ] _
e

Note that all the entries of (AY)T AU are bounded in absolute value by v%(n — K),
which yields

A9 = JIA)TAD]| < \/|(AD)TAD 1 < 7y/(n - K)K.

Thus, choosing ¢* small enough and using the assumption that N > 2K we obtain
1
N < JV/K.

Now, for 1 < j < T, we define WY as

WO — WO L AG), (4.32)
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It is easy to check that, for each 1 < j < T', the rows of W) are probability vectors
if ¢* is chosen small enough, and W) satisfies Assumption 1. Moreover, using (4.29)
and applying Weyl’s inequality once again, we obtain

MWOY < T n/K, (433)
)\K(W(])) 2 %\/R/K, '

so that k(W) < 7.

2. Constructing matriz A and checking the fact that TIV) € .#, j =0,1,...,T.
Assume that p is a multiple of K (if it is not the case the definition of A should be
modified by adding a block of zeros of the size of the residual). Define the following
block matrix:

AO:{el,OK,...,OK,eg,OK,...,OK,...,eK,OK,...,OK} ERKXP,

p/K p/K p/K
where (ey,...,eg) is the canonical basis of RX and 0x € R¥ is the vector with all
entries 0. Define
N-K K
A="—""A"+ 1,
N + pN Kp

All entries of A are non-negative and the rows of A sum up to 1. We have that
3/2

o (%AO) = {N;NK,O} and o (%1[@) = {5;;[,0}. Using the assumption that

K < p/4 and Weyl’s inequality we get

_ 3/2
A (A) > MR — 5;3 > 1/4, '

which implies that x(A) < 4. ‘
For 0 < j < T, define TI¥) = WU A, Using Lemma 8, (4.29), (4.33) and (4.34)
we obtain

A(TT0) = A (WO 4) > A (WD)Ac(4) > 1\ fn/ K. (4.35)

It follows from (4.29), (4.33) and (4.35) that the first inequality in Assumption 3 is
satisfied for W = W and IT = IIV) = W(])A, J=0,1,...,T. Next, using the
first inequality in (4.35) and the fact that A (WY A) < A\ (W @)\, (A) yields
K(WUA) < s(WU)Kk(A) < C. (4.36)
Thus, Assumption 3 is satisfied for W = W) and II = IIV = w04, j =
0,1,...,T. In conclusion, we have proved that IIV) ¢ .7, j =0,1,...,T.



104 CHAPTER 4. TOPIC MODEL

To prove Theorem 3, we now use Theorem 2.5 [Tsybakov, 2008], according to
which the lower bounds (4.13) and (4.14) hold if the following conditions are satisfied:

(a) KL(Pg), Pgo) < lolgGT, for each j = 1,...,T, where KL(P,Q) denotes the

Kullback-Leibler divergence between the probability measures P and Q.

(b) For0 < j < ¢ < T we have minp¢ » HW(Z)—W(j)PHF > c\/% and minpe » HW(j)—

W(Z)PHl > cn\/% . where & is the set of all permutation matrices and c is a
positive constant.

Ml_M2P||F and (Ml,MQ) — minpey

(¢c) The maps (M, M3) — minpe» M,—

M ,P||; are semi-distances.

The rest of the proof is devoted to checking that these conditions (a) — (c) are indeed
satisfied.

3. Proof of (a).
Our aim now is to derive an upper bound on the Kullback-Leibler divergence between
PL» and P, where

M0 =W9WA and OO =wO0A4.

To shorten the notation, we set

N-K KK
o= N N =N

Forany 1 <i <n,1 < /¢ <p, we have Hgg) =K, Wi(IS)AM‘ If i > K + 1, for the
entries in the ith row of matrix II® the following holds.

 For the columns ¢ such that (¢ — 1) is a multiple of p/K:
— HZ(-S) takes once the value a + (K — 1)y (5 — «),
- HES) takes K — 1 times the value 5+ v1(a — f).

« For all other columns: IV € {a, 8}.

On the other hand, for any 1 < j < T, by the definition of W) in (4.32) we
have

Y = 11@ L A0

=19 + [ngi ] .
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Therefore, forany 1 < ¢ < p, ifi < K, Huz) = HZ(,S), and ifi > K+1, HZ(Z) _ (0)+A§z),
where

K .
IZ = Z w AM — Z wl@K(/{: — K/Q)Akg
k=K/2+1
If i > K + 1, for the entries in the ith row of matrix AY) the following holds.

« For the columns ¢ such that (¢ — 1) is a multiple of p/K:

— AY is K/2 times equal to v(a — B),

- A(g is K /2 times equal to —vy(a — ).
« For all other ¢: A%) =

We are now ready to bound the Kullback-Leibler divergence between Pp ;) and
Phw. Denote by M,(N,q) the multinomial distribution with parameters (V,q)
where ¢ is a probability vector in R?. We recall that the Kullback-Leibler diver-
gence between two multinomial distributions M,(N,q;) and M,(N, ) is equal to
N Y U_1 qielog (qie/qze). Hence, we have

Note that, by construction, S°_; A% = 0. Therefore,

n p
KL (Pyo), Pro) < N_ > 2

" 72(oz —B)?
<N Y > o
i=K+1 (¢{—1) multiple of p/K il
> >

2
i=K+1 (¢{—1) multiple of p/K N Hi@
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v 2 [ 3N 2(K —1)KN

<

_Ki:;rl N—K+ N-K
c KN

<—(n-K

< cK(n— K)

<logT’

— 16

where we have used (4.31) and we have chosen ¢* small enough, such that the constant
¢ in the penultimate line does not exceed (log2)/256.

4. Proof of (b).
O _—wOP| = |W® —
W 9| since the first K rows are the same for matrices W® and W), Then,

n—K .
W - WO = a9 - i = 3 ol - ol

n—K
] l .

z%'( — K) (using (4.30))
— % (]\(f K)2> > c% (since K <n/2), (4.37)

which proves (b) for the Frobenius norm. Quite analogously, for the ¢;-norm we get
WV =W, = ¥ -0, = znm -2
> 2wt — w ],

>cn

==

5. Proof of (c).
We now prove that the map (M, Ms) — minpecy |[M; — MP||F satisfies the

triangle inequality. For any matrices M, My, M3, we have
. . — . I
lI:‘TéléleMl M2P||F P7I1T311n7 ||M1P M2P||F
< min (|M,P'— My + [|M; — MPr)

P Pe
J— /_ o p—
= min |[M, P — My|[r + min [| M3 — MoP||r

i .
P, —M3P HF“‘IID%%HMS_MZPHF
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The same calculation holds with the ¢;-norm in place of the Frobenius norm. This
completes the proof of Theorem 3.

9 Auxiliary lemmas
Lemma 6. Let Assumption 1 be satisfied. Then,

Ag(W) > 1. (4.38)

If, in addition, A\ (IT) > O then the matriz U of left singular vectors of II can be
represented in the form (4.5), where H is a rank K matriz with singular values

1 1
MH) = —— Amin(H) = Ag(H) = , 4.39
and the condition number satisfying
r(H) = k(W). (4.40)

Proof. Let J* C {1,...,n} be the set of K row indices of W corresponding to anchor
documents. By Assumption 1 we have W ;. = I'x. Hence,

Ak(W) = mim1 |Wall > Hnlllinl |W jealls = 1,
all2=

llalla=
which proves (4.38). Next, if Ag(IT) > 0 then matrix L is positive definite and
we define H := AVL™!. In view of (4.4) we have WH = IIVL™! = U, which
yields (4.5). We now prove that H is non-degenerate. Indeed, (4.38) implies that
matrix W W € REXK is positive definite, so that H = (WW)~'W™'U. Then for
the minimal singular value A, (H) of matrix H we have

Amin(H) = min [|[(WTW)'WTUq|,

llalla=1

1
> min wWIw)" "Wz, = ——— > 0.
T zeR™:|z|2=1 H( ) H2 )\1(W)

Thus, H is non-degenerate and we can write W = UH™! implying (4.39). Equal-
ity (4.40) is an immediate consequence of (4.39). O

Lemma 7. Let W, A and I1 = W A be matrices with non-negative entries satisfy-
ing (4.2). Then the singular values of matrices W and 11 satisfy the inequalities

Ax(IT) < \/n/K, (4.41)
AM(W) < /n, (4.42)
A (IT) < VEMN(W). (4.43)
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Proof. Inequality (4.41) follows from the fact that
KXj(I) < X{(TT) + -+ + N (IT) = [[TI[[f < m.

Next, using (4.2) we obtain

n

M(W) < [[W ] = Jzzw&; < &zwﬁc Vi (4.44)

i=1 k=1 1=1 k=1

On the other hand, for a = (1/VK,...,1/vVK)" € R¥ we have

(W) = [Wal, = JZ;( (i w) _

i=1

Quite similarly to (4.44), using (4.2) we get ||A| = \(A) < ||A|lr < VK, which
implies (4.43):

I = [WA| < [W]|A]l < VEMW).
O

Lemma 8. Let K < min(n,p). For any two matrices W € R™E and A € RExP
we have

A (WA) > A (W)Ax(A). (4.45)

Proof. We consider only the case Ag(A) > 0 since otherwise (4.45) is trivial. By
Courant-Fischer min-max formula (see [Giraud, 2015, Theorem C.3] e.g.) we have

S:dim(S)=K yeS\{0} ”?JH2

Y

where the maximum is taken over all linear spans S of K vectors in RP. Since
Ag(A) > 0 and Ay € RE we can write

A A
Ae(WA) = ma n WAl | Ayl
Sdim(S)=K yes\{0} [|Ay|z ||yl
Wl Ayl
~ zeRK\{0} ||x||2 S:dim(S)=K yeS\{0} ||yH2

= Ax(W)Ak(A).
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Lemma 9. Let A° be a matriz with the following block structure:

A’ = [Oélel,...,CKKGK,OK,...,OK} S RKXP,
——_— ——
p—K
where (ey, ..., ex) is the canonical basis of R, o; € (0,1) and O € RE is the vector

with all entries 0. Let

A=P (A" +AYP, and TI=WA
where P1, Py are permutation matrices, |A'|| < B, and W € R™K_ [f 1I<ni<mK a; —
B> C then Ag(IT) > CA(W). o

Proof. Matrix A° has K top non-zero singular values as,...,ag. Using Weyl’s
inequality (see [Giraud, 2015, Theorem C.6] e.g.) we get

)\K(A) = /\K(AO + Al) Z 12%21[{ Q; — ﬁ Z C.
Combining this inequality with (4.45) yields the result. O

9.1 The anchor document assumption under the Dirichlet
prior

In this section, we provide a simple result that shows that the anchor document

Assumption 1 is approximately satisfied with high probability under the Dirichlet

prior on the document-topic matrix W if the number of documents devoted to a

particular topic is large enough and the Dirichlet prior is putting a weight of at least
1/2 on one of the topics.

Lemma 10. Assume that we have m documents such that the corresponding document-
topic vectors wy, ..., w, € RX arei.i.d. following the Dirichlet distribution parametrized
by (au,...,ar) with Y5, a; = 1. Let ax = 1 — a, where a € (0,1/2), and let
e€(0,1) and g € (0,1). If

> _210g(1 - 5)

go ’

then

P(Ji:wx>1—¢)>0,
where w;i denotes the Kth component of w;.
Proof. We have

PEFi:wixg>1—¢)=1-[Pwx <1—2¢)]".
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Here,
1 1—¢
Pwig <1—¢)= Sm(ﬂaK)/ rK (1 — z) K dx
T 0
- 1
=1- SID(WQK)/ 271 — 2)* 'da.
™ 1—¢

Since a < 1/2 we have

sin(rag) = sin(m(1 — ag)) > 7;*0[7
so that

. 1 1 1
M) [T e - aptar > @ [0 (1wt = e,
7 1—¢ 1= 2

This yields

(e

P(wiK<1—5)§1—%.

Using the inequality log(1 — £%/2) < —&®/2 we finally get

o

P(az':wm>1—s)z1—(1—€2> > 8.

]

10 Additional Experiments: Estimation of topic-
word matrix

In this section, we investigate the SPOC estimator of topic-word matrix A using the
sequence of experiments on synthetic data similar to those of Section 5. Figures 4.6-
4.9 below present the results of simulations with different values of parameters n, p, N
and the number of topics K. The generation of matrices W and A was performed in
the same way as in Section 5. For each value on the z-axes of the figures, we present
the averaged result over 3 simulations. Our objective is to assess the effect of each of
parameters n, p, N, K on the Frobenius error between A and the estimator A derived
from SPOC algorithm via (4.9). For comparison, we provide the same simulation
study for the LDA estimator of A and also Joint Stochastic Matrix Factorization
algorithm (JSMF; [Lee et al., 2015]). The experiments show that the SPOC estimator
is very competitive with JSMF and they show quite similar results in many regimes.
The LDA estimator outperforms both SPOC and JSMF in some experiments, but it
has serious issues with stability when the number of words increases; see Figure 4.8.
Finally, somewhat surprisingly, SPOC is very robust when the number of topics
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Figure 4.6: The n-dependence of the Frobenius error of A using SPOC, LDA and
JSMF algorithms. Total number of words p = 5000, number of sampled words in
each document N = 1000, number of latent topics K = 3.

increases (see Figure 4.9), while both LDA and JSMF have clear error-increasing
trend.

Additionally, we compared the runtime for the considered algorithms. For the
moderate size task with n = 1000 documents, p = 5000 words in the vocabulary and
K = 3 latent topics to be extracted, SPOC required less than 0.1 second to calculate,
while for LDA and JSMF the execution time was 4 and 20 seconds respectively. Such
a difference is not surprising as SPOC is non-iterative method unlike LDA and JSMF.
However, of course, it has limitations and might become very computationally and
memory demanding for large vocabularies and document corpora.

11 Additional Experiments: Empirical study of
singular values of word-document and topic-
document matrices

Most conditions and assumptions used throughout the paper are satisfied for fairly
general choices of parameters. However, Assumption 3 enforces certain bounds on
matrices W and II which might seem restrictive. The goal of this section is to
experimentally show that singular values and quotients appearing in Assumption 3
admit reasonably small upper bounds.

We consider matrices W, II and A generated in the following way. In most
experiments we take K = 3 and the matrix W has the following structure: K rows
of W are canonical basis vectors, each of the remaining N — K rows is generated
independently using the Dirichlet distribution with parameter o = (0.1,0.15,0.2). In
the experiments where K must vary, we define W in a different way. Namely, for the
N — K rows that are not canonical basis vectors, each element Wj; is generated from



112

CHAPTER 4. TOPIC MODEL

Figure 4.7: The N-dependence of the Frobenius error of A using SPOC and LDA
algorithms. Total number of words p = 5000, number of documents n = 1000,
number of latent topics K = 3.

Z6%

Figure 4.8: The p-dependence of the Frobenius error of A using SPOC and LDA
algorithms. Total number of words n = 1000, number of sampled words in each
document N = 1000, number of latent topics K = 3.



11. ADDITIONAL EXPERIMENTS: EMPIRICAL STUDY OF SINGULAR VALUES OF WORD-D(

764
28

Figure 4.9: The K-dependence of the Frobenius error of A using SPOC and LDA
algorithms. Total number of words p = 5000, number of sampled words in each
document N = 1000, number of documents n = 1000.

the uniform distribution on [0, 1] and then each row of the matrix is normalized to
have S°& | Wy, = 1. For the matrix A, we take K columns proportional to canonical
basis vectors with coefficients equal to random variables U,k = 1, ..., K uniformly
distributed on [0, 1]. The elements Ay; of matrix A in the remaining p — K columns
are obtained by generating numbers from the uniform distribution on [0, 1] and then
normalizing each row of the matrix to have Y0_p . Ap; =1 Ui,k =1,..., K. The
resulting matrix A has normalized rows, i.e. 3%_; Ay; = 1. We essentially use the
same parameters as in the experiments reported in Section 5. The dependencies of
the condition numbers x(IT) and k(W) on parameters n, p and K are presented on
Figures 4.10 and 4.11. All the condition numbers have small to moderate values for
a quite wide range of parameters n and p, while the dependence on K is stronger.
Additionally, we study the ratio A\;(W')/Ak(II) also appearing in Assumption 3. As
presented on Figure 4.12 it shows the tendencies similar to the condition numbers.
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The dependence of k(II) on parameters n, p and K.
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Figure 4.11: The dependence of k(W) on parameters n and K.
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Figure 4.12: The dependence of A\;(W')/Ak(II) on parameters n, p and K.

12 Additional Experiments: Estimation for the
p = 2000

Additionally, we decided to look on the behaviour of estimators in the scenario with a
smaller size of the dictionary. We took p = 2000 and performed the same experiments
as in Section 5. We clearly observe on Figures 4.13 and 4.14 that in a situation is
more favorable for the SPOC algorithm and it significantly outperforms LDA.
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0
400 600 800 1000 1] 1000 2000 3000 4000 5000

Figure 4.13: On the left (respectively, on the right), the n-dependence (respectively,
the N-dependence) of minpe » ||W — WPHF using SPOC and LDA algorithms.
Total number of words p = 2000 on right and left, number of sampled words
N =200 on the left, number of documents on the right n = 1000. Matrix A is
generated in a way that Assumption 3 is satisfied.

Figure 4.14: The k-dependence) of minpe» |[W — WP||p using SPOC and LDA
algorithms. Number of documents n = 1000, number of sampled words N = 5000,
and total number of words p = 2000. Matrix A is generated in a way that
Assumption 3 is satisfied.




Chapter 5

Benign overfitting and adaptive
nonparametric regression

In nonparametric regression setting, we construct an estimator, which is a continuous
function interpolating the data points with high probability while attaining minimax
optimal rates under mean squared risk on the scale of Hdélder classes adaptively to
the unknown smoothness.

This chapter is based on: J. Chhor, S. Sigalla, and A. B. Tsybakov, Benign
overfitting and adaptive nonparametric regression. ArXiv preprint
arXiv:2206.13347, 2022.
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1 Introduction

Benign overfitting has attracted a great deal of attention in the recent years. It
was initially motivated by the fact that deep neural networks have good predictive

118
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properties even when perfectly interpolating the training data [Belkin et al., 2019a],
[Belkin et al., 2018b], [Zhang et al., 2021], [Belkin, 2021]. Such a behavior stands in
strong contrast with the classical point of view that perfectly fitting the data points
is not compatible with predicting well. With the aim of understanding this new
phenomenon, a series of recent papers studied benign overfitting in linear regression
setting, see [Bartlett et al., 2020], [Tsigler and Bartlett, 2020], [Chinot and Lerasle,
2020], [Muthukumar et al., 2020], [Bartlett and Long, 2021], [Lecué and Shang,
2022] and the references therein. The main conclusion for the linear model is that
an unbalanced spectrum of the design matrix and over-parametrization, which in
a sense approaches the model to non-parametric setting, are essential for benign
overfitting to occur in linear regression. Extensions to kernel ridgeless regression were
considered in [Liang and Rakhlin, 2020] when the sample size n and the dimension
d were assumed to satisfy n < d, and in [Liang et al., 2020] for a more general case
d =< n® for a € (0,1). These papers give data-dependent upper bounds on the risk
that can be small assuming favorable spectral properties of the data and the kernel
matrix. On the other hand, if d is constant (independent of n) then the least-norm
interpolating estimator with respect to the Laplace kernel is inconsistent [Rakhlin
and Zhai, 2019].

In the line of work cited above, benign overfitting was understood as achieving si-
multaneously interpolation and prediction consistency, or possibly, consistency with
some suboptimal rates. On the other hand, it was shown that, in non-parametric
regression setting, interpolating estimators can attain minimax optimal rates [Belkin
et al., 2019b]. Namely, it is proved in [Belkin et al., 2019b] that interpolation with
minimax optimal rates can be achieved by Nadaraya-Watson estimator with a sin-
gular kernel.

The idea of using singular kernels can be traced back to [Shepard, 1968] giving
start to popular techniques in image processing referred to as Shepard interpolation.
In statistical language, Shepard interpolant is nothing else but the Nadaraya-Watson
estimator with kernel K (u) = 1/||ul|?, where || - || denotes the Euclidean norm and
v € R2  Unaware of Shepard’s work and its subsequent extensive use in image
processing, [Devroye et al., 1998] considered the same estimator in general dimension
d, that is, with the kernel K (u) = ||ul|~¢ for u € R?, and proved that the Nadaraya-
Watson estimator with such a kernel is consistent in probability but fails to be
pointwise almost surely consistent. However, this kernel is not integrable and has a
peculiar property that the bandwidth cancels out from the definition of the estimator.
Thus, the bias cannot be controlled and the bias-variance trade-off argument based
on bandwidth selection does not apply. It remains unclear whether some rates of
convergence can be achieved by such an estimator. Therefore, it was suggested in
[Belkin et al., 2019b] to localize and modify the kernel as K (u) = [Ju|*1(]|u|] < 1)
where 0 < a < d/2 rather than a = d and 1(-) denotes the indicator function. The
estimator with such a weaker type of singularity is also interpolating, and it was
shown in [Belkin et al., 2019b] that it achieves the minimax rates of convergence on
the p-Holder classes with 0 < § < 2. Also, [Belkin et al., 2018a] proved a similar
claim for the k nearest neighbor analog of this estimator with 0 < § < 1. However,
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those results were restricted to functions with low smoothness 5 and the suggested
estimators were not adaptive to 5.
In this paper, we show that:
(i) interpolating estimators attaining minimax optimal rates on S-Holder classes
can be obtained for any smoothness g > 0,

(ii) estimators with such properties can be constructed adaptively to the unknown
smoothness 5 € (0, fiax], for any Bnax > 0, and to the unknown parameter
L > 0 of the Holder class of regression functions.
The estimators that we consider to achieve (i) are local polynomial estimators (LPE)
with singular kernels. In order to obtain adaptive estimators achieving (ii), we apply
aggregation techniques to a family of LPE with singular kernels.

As a by-product, we obtain non-asymptotic bounds for the squared risk of LPE
in classical setting with non-singular kernels. To the best of our knowledge, such
bounds are missing in the existing literature on LPE that was mainly focused on
asymptotic properties such as convergence in probability or pointwise asymptotic
normality, cf. [Stone, 1980, Stone, 1982, Tsybakov, 1986, Fan and Gijbels, 1996].

Note that local polynomial method with singular kernels has been used as inter-
polation tool in numerical analysis, starting from [Lancaster and Salkauskas, 1981].
It was also invoked in the context of non-parametric regression in [Katkovnik, 1985].
However, [Lancaster and Salkauskas, 1981, Katkovnik, 1985] only discussed func-
tional properties, such as the smoothness of interpolants, rather than their statistical
behavior.

2 Preliminaries

2.1 Notation

For any vector x = (1, ...,74) € R? and any multi-index s = (s1,...,s4) € N% we
define
d
ls| = > s, sl =s1!... 84!

i=1

DS . 851+A“+Sd
— Sl Sd .
Ox] ...8a:d

=it
We denote by || - || the Euclidean norm, and by Card(J) the cardinality of set J. For
any integer k € N*, we set [k] = {1,...,k}. For any x € R% r > 0, we denote by
PBa(x,r) the closed Euclidean ball centered at x with radius r. We set for brevity
By = $Bq(0,1). For any § > 0, we denote by || the maximal integer less than
S, and by [f] the minimal integer greater than 3. We use symbols C,C” to denote
positive constants that can vary from line to line.
For any k£ > 0, we denote by I; the identity matrix of size k. For any square
matrix M, the writing M > 0 means that M is positive definite. For any matrix M,
we denote by M ™ its Moore-Penrose inverse, and by || M| its spectral norm.
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2.2 Model

Let (X,Y) be a pair of random variables in R¢ x R with distribution Pxy and assume
that we are given n i.i.d. observations 2 := {(X1,Y1),..., (X,, Y,)} with distribution
Pxy. We denote by Py the marginal distribution of X and assume that it admits
a density p with respect to the Lebesgue measure on the compact set Supp(p). We
assume that for all x € Supp(p), the regression function f(z) = E(Y|X = z) exists
and is finite. Set £(X) =Y — E(Y|X). Equivalently, the model can be written as
Y = f(Xi) + £(X;), where E(£(X;)|X;) = 0. We make the following assumptions.

Assumption (A1). E(|£(X)[*™°|X = x) < C¢ for all x € Supp(p), where § and
C¢ are positive constants.

Assumption (A2). The random vector X is distributed with Lebesgue density
p(+) such that p € [Pmin, Pmax] Where Pmax = Pmin > 0. The support Supp(p) of p is a
convex compact set contained in AB,.

For any estimator f,, of f based on the sample &, we consider the following
Lo-loss :

Ifa = £, = Bx ([£2() = FOOP) = [ [fal@) = f(@)] pla)d,

where Ex denotes the expectation with respect to Py. We define the expected risk
as E {H fo—fII3 2} , where E denotes the expectation with respect to the distribution
of 9.

Definition 10 (Interpolating estimator). An estimator f, of f based on a sample
2 ={(X1,Y1),...,(Xpn,Yn)} is called interpolating over P if f,(X;) =Y, fori =
1,...,n.

2.3 Holder classes of functions

For any k-linear form A : (RY)* — R, we define its norm as follows
1A, = sup{’A[hl, hl| Il <1 e [k]}. (5.1)

Given a k-times continuously differentiable function f : R — R and = € R%, we
denote by f®)(x): (RY)* — R the following k-linear form

FO@) b, b = Y DM f() R R, Yha,. . by € RY,

Im;|=1,vj€[k]

where my,...,m; € N? are multi-indices. Throughout the paper, we will consider
the following Holder class of functions.

Definition 11. Let § > 0, L > 0, and let f : B; — R be a ¢ = |B] times
continuously differentiable function. We denote by ¥(B, L) the set of all functions f
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defined on AB, such that

0@ - 0w, _,

z,x' €EBy Hx - 33/“’376 B

max sup Hf(k)
0<k<t rE€EB,

These classes of functions have nice embedding properties that will be needed to
prove our result on adaptive estimation. For §’ < § < 1, we clearly have (3, L) C
X(4', L). Analogous embedding is valid for 5 > 1 as stated in the next lemma proved
in Section 7.

Lemma 3. For any 0 < 8’ < 8 and L > 0 we have X(5, L) C 3(F',2L).

The class X(f, L) is closely related to several differently defined Hoélder classes
used in the literature. One of them is based on Taylor approximation, cf., for ex-
ample, [Stone, 1980]. For any z € R and any / times continuously differentiable
real-valued function f on R? we denote by 7'f, its Taylor polynomial of degree ¢ at
point z:

(iL’ _|x/)stf(l’/).

S!

Tfm(l’,) = Z

0<|s|<e
Lemma 4. Let >0, L >0 and f € X(B,L). Then for all x,y € By, and { = | ]
it holds that
L 8
7@) = Thy(a)| < glla—l’

Thus, we have (5, L) C X/(5, L/ 5]!), where ¥/(3, L) stands for the class of all
functions f satisfying the relation |f(z) — T'f,(x)] < L'||z—y||®.
Next, considering one more definition of Holder class:

3 | 1O@) = rO)
E(ﬂ,L):{f:,%’d%R:sup || T *SL}

we also immediately have that (3, L) C E(ﬁ, . It follows from [Stone, 1982] that
the minimax estimation rate on the class (B, L) under the squared loss that we

consider below is~n72ﬁ2% up to constants depending only on $ and d. Notice that
the functions in X(f, L) used in the lower bound construction in [Stone, 1982] can
be rescaled into functions in (8, L) by multiplying by a factor depending only on
$ and d. Hence, the lower bound construction in [Stone, 1982] remains valid for the
class E(ﬁ ,L). Tt implies that the minimax rate of estimation on the class (53, L)

is n~ . In conclusion, though (3, L) is a subclass of suitable Holder classes 3
and Y it is not substantially smaller, in the sense that estimation over these classes
is essentially equally difficult.
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3 Local polynomial estimators and interpolation

For ¢ € N let Cpq = (sz) be the cardinality of the set of multi-indices {s =
(51,...,84) € N4 O <|s| < ¢}. We assume that the elements sV, ... s(Cea) of this
set are ordered according to the increasing values of |s|, and in an arbitrary way for
equal values of |s|. In particular, s() = (0,...,0). For any u € R?, define the vector

U(u) € R as follows:
uS
U(u) = () ,
() s!/ |s|<e

where the components of U(u) are ordered in the same way as s()’s. In particular,
the first component of U(u) is 1 for any u.

The definition of local polynomial estimator usually given in the literature is as
follows, cf., e.g., [Tsybakov, 2008]. Let K : R® — R, be a kernel, h > 0 be a
bandwith and ¢ > 0 be an integer. Consider a vector én(x) € R% such that

oy e 3 [0 (S (BE) e
Then
falx) = UT(0)6,(x) (5.3)

is called a local polynomial estimator of order ¢ of f(z). Note that f,(x) is the first
component, of 6, (z).

However, this definition is not convenient for our purposes. First, én(x) is not
uniquely defined for such z € R? that the matrix

1 & X, —x X, —x X, —x
B,, = — U ! U’ ( ! )K( v ) RCeaxCe.a
o 2 ( h ) h o) S

is degenerate. Furthermore, én(x) is not defined for x = X; if the kernel K has a
singularity at 0, which will be the main case of interest in what follows. Therefore,
we adopt the following slightly different definition.

Definition 12 (Local polynomial estimator). If the kernel K is bounded then the
local polynomial estimator of order € (or shortly, LP(l) estimator) of f(x) at point
x is defined as

falz) = Enj YiWni(), (5.4)

=1
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where, fori=1,... ,n, the weights Wy;(x) are given by

Wos(x) = UT;ES)B,;U (Xh_ x) K (Xh_ “7) . (5.5)

If the kernel K has a singularity at 0, that is, lim, o K(u) = 400, then the LP(()
estimator of f(x) at point v ¢ {X1,..., X} is still defined by (5.4) while we set, for

7=1,...,n,

fn(X;) = limsup f,(2). (5.6)

Z—}Xj

The purpose of (5.6) is to provide a valid definition for kernels with singularity
at 0. We introduce limsup in (5.6) for formal reasons. In the cases of our interest
described in the next lemma there exists an exact limit in (5.6): lim,,x, fu(z) =Y
for all j € [n], which means that the estimator f,, is interpolating.

Lemma 5. [Interpolation property of LPE] Let f,, be an LP(¢) estimator with kernel
K : R — R, having a singularity at 0, that is, lim,_o K (u) = 400, and continuous
on R4\ {0}. In particular, there exist co > 0 and A > 0 such that

K(u) > col(|Jul| € A), Vuec R (5.7)

Assume that X1, ..., X, are distinct points in R and there exists a constant Ay > 0

so(F) e G (P

J

) -~ e, (5.8)

Jor all x in some neighborhood of X;, where Ic,, denotes the identity matriz. Then

For ¢ = 0 (corresponding to the Nadaraya-Watson estimator) condition (5.8) is
trivially satisfied since the expression on the left hand side is a positive scalar for
any z in a neighborhood of X;. For general ¢, this condition is satisfied with high
probability if X;’s are distributed with a density bounded away from zero on its
support. Indeed, we have the following result. For A > 0 consider the matrix

B i (50 (S 52 ) e

Lemma 6. Let h < a, where a > 0. Let Assumption (A2) be satisfied. Then, the
following holds.
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(i) For any A > 0 there ezist constants A\o(¢) > 0, ¢ > 0 independent of n and x
and depending only on €, a, A, d, p(-) such that

P( it Auin(Bra) > A0(€)> > 1= c(h~Pde=mh/e | gmnth /ey,

z€Supp(p)

where Ain(Bne) is the minimal eigenvalue of Bp,. Moreover, Xo(£) > Xo(£') if £ < (.
(i) If K is a kernel satisfying (5.7) then there exist constants A\y(¢) > 0, ¢ > 0

independent of n and x and depending only on €, o, A, d, p(-) such that

P< inf Amin(Bue) > A{)(E)) > 1= (e g o),
x€Supp(p)

Note that part (ii) of Lemma 6 is an immediate consequence of its part (i) and
the fact that B, = coByp if (5.7) holds. Also, the next corollary follows immediately
from Lemmas 5 and 6.

Corollary 1. Let f, be an LP({) with kernel K : R — R having a singularity at
0, that is, lim, 0 K (u) = +00, and continuous on R*\ {0}. Let h = an_ﬁ, where
a, > 0 and let Assumption (A2) be satisfied. Then, there exists a constant ¢ > 0
such that, with probability at least 1 — e~ 4n/ where A, = n%, the LPE f, is
interpolating, that is, f,(X;) =Y; fori=1,...,n, and f,(-) is a continuous function
on Supp(p). Furthermore, the LP(0) estimator is interpolating with probability 1.

Note that the kernels K(u) = ||ul|7*1(|lu|| < 1) with a € (0,d/2) considered
in [Belkin et al., 2019b] are not continuous on R?\ {0} and thus do not satisfy the
conditions of Lemma 5 and Corollary 1. On the other hand, these conditions are met
for the kernels K (u) = [Ju[| = cos® (||ull /2)L(|ju]| < 1) or K(u) = [Jul=*(L — [[u])+
with a > 0.

4 Minimax optimal interpolating estimator

In this section, we show that for any 5 > 0, one can construct an interpolating local
polynomial estimator reaching the minimax rate niﬂ?% on the Holder class (5, L).

In what follows, we assume that we know a constant Ly such that |f(z)| < Lg for
all z € Supp(p). We denote the class of all such functions f by .%,. This assumption
is not crucial and can be avoided at the expense of slightly more involved dependence
of the result on the noise distribution (see Remark 1 below).

Let f, be an LP(¢) estimator of order ¢ = |3]. Set p := Ly V maxj<;<, |Y;| and
consider the truncated estimator

fal@) = [fa(@)]” (5.9)

“w

—H
where for all y € R and a < b the truncation of y between a and b is defined as
[ylh = (y vV a) AD.
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Theorem 5. Let Assumptions (A1) and (A2) be satisfied. Let f € X(B,L) for
B>0,L>0,and|f(x)] < Lo for all x € Supp(p) and a constant Ly > 0. Consider
the estimator f, defined in (5.9), where f, is the LP({) estimator with { = |j],

h = omelﬂi, for some a > 0, and kernel K.
(i) If K is a compactly supported kernel satisfying (5.7) and [ K?(u)du < oo then

E ([fu(z) — f(2)) < Cn"%%,  Va € Supp(p). (5.10)
E (/.- fl7,) < Cn~ 75, (5.11)

where C' > 0 is a constant depending only on 3, L, Lo, d, Ce, K, pmax, Pmin and c.

(ii) If, in addition, lim,_o K(u) = +o0o and K is continuous on R4\ {0}, then
there exists a constant ¢ > 0 such that, with probability at least 1 — c'e=4/¢ | where
A, = n%, the estimator f, is interpolating, that is, f,(X;) =Y; fori=1,...,n,
and f,(+) is a continuous function on Supp(p).

Note that, for the examples of singular kernels given at the end of the previous
section, we need a € (0,d/2) to grant the condition [ K?(u)du < oo required in The-
orem 5. Moreover, Shepard kernel K (u) = ||u||~ does not satisfy the assumptions
of Theorem 5.

Remark 1. The value max;<;<, |Y;| is introduced in the threshold p only with
the aim to preserve the interpolation property. Inspection of the proof shows that
Theorem 5(i) remains valid when max;<;<, |Y;| is dropped from the definition of u,
so that p© = Ly, but in this case data interpolation is not granted. On the other
hand, by setting ;1 = 2max;j<;<,, |Y;| it is possible to obtain both items (i) and (ii)
of Theorem 5 for an estimator that does not require the knowledge of L,. We do
not state this result here since we are able to prove it with the constant C' in (5.10)
- (5.11) depending not only on C¢ but also on a tail property of the distribution of
£(X) given X.

Remark 2. Theorem 5(i) completes the existing literature on LPE in the clas-
sical setting when the kernel is non-singular. To the best of our knowledge, non-
asymptotic bounds on the mean squared error of LPE were not obtained. The
previous work was mainly focused on asymptotic properties such as convergence in
probability or pointwise asymptotic normality, cf. [Stone, 1980, Stone, 1982, Tsy-
bakov, 1986, Fan and Gijbels, 1996]. For binary Y € {0, 1} specific to classification
setting, non-asymptotic deviation bounds for LPE were obtained in [Audibert and
Tsybakov, 2007]. However, the techniques of [Audibert and Tsybakov, 2007] cannot
be extended beyond the case of bounded Y.

Remark 3. Inspection of the proof shows that Theorem 5 extends to kernels K
that are not necessarily compactly supported. It suffices to assume that the integrals

S+ ||ul|?) K (u)du and [(1 + |Ju||**)K?(u)du are finite.



5. ADAPTIVE INTERPOLATING ESTIMATOR 127

5 Adaptive interpolating estimator

In this section, we will use the following assumption on the noise £(X).

Assumption (A3). Conditionally on X = x, the random variable £(X) is a
zero-mean og¢-subgaussian random variable for all x € Supp(p).

We propose an adaptive estimator that does not need the knowledge of 3, L, Ck,
achieves the minimax Ly-rate of convergence on classes (3, L) for all L > 0 and
B € (0, Bmax), where B > 0 is an arbitrary given value, and is interpolating with
high probability. Our adaptive estimator is based on least squares aggregation. We
refer to [Wegkamp, 2003] for the study of such aggregation procedures.

Assume without loss of generality that n is even. We split the sample ¥ =
{(X1,Y1),...,(X,,Y,)} into two independent subsamples 7, = {(Xl, Y1), . (Xn, Yﬂ)}

and 9, = {(Xgﬂ, Vo), .o, (X, Yn)}, and we proceed in two steps.

1. Choose a finite grid (3;);es on the values of 5. Let f, ; denote a LP(¢;) estima-
1

tor (with ¢; = | 3;]) based on the subsample %; with bandwidth h = an 2%+,
a > 0, and kernel K satisfying the assumptions of Theorem 5. Set p :=
Lo V maxi<;<pn/2 |Y;| and construct |J| truncated local polynomial estimators:

F Iz ‘
Fug(x) = | fnvj(z)}_ﬂ, jel. (5.12)
By Theorem 5, each estimator f_n’j is interpolating over &, with high proba-
bility, and satisfies

2,

sup By || £, — fIIF,] < On” 7, (5.13)
feX(B;,L)NFo

where E; denotes the expectation with respect to the distribution of Z.

2. From the collection (f, ;)jes, we select an estimator f» that minimizes the sum
of squares over the second subsample %,, that is, we set f, = fnfjv with

~ n _ 2
J € argmin Z (Yk - fn,j(Xk)> )
J€J k=141

As each of the estimators among ( fnj) jes is interpolating over Z;, the estimator
fn is also interpolating over Z;, but not over %,. We therefore introduce the esti-
mator g, obtained in the same way as f,, by interchanging %, and %,. Thus, g, is
interpolating over %,. Next, we define an estimator interpolating over %; U % by
combining fn and g, as follows.

For any € R? and any set A C RY, denote by d(z, A) = inf,ea ||z — y|| the
distance between x and A. Let A : R? — [0,1] be any continuous function such
that A(z) — 0 as d(z, Z2) — 0 and A\(z) — 1 as d(z, Z;) — 0. For example, take
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A(z) = 2 arctan (;lgig3

our final estimator as

) with § = oo and arctan(oco) = 1 by convention. We define

fu(@) = A@) fal@) + (1 = A(@))gn(2)- (5.14)

Theorem 6. Let n > 3, Bnax > 1. Consider the grid points 3; defined as follows:

1 J

b= (14 ) i
logn

where M = 2 |log(n)loglog(n)] and Muyax = M A [log(n)log(Bmax)|. Let Assump-

tions (A1) and (A3) be satisfied. If kernel K satisfies the assumptions of Theorem

5(i), then for any 5 € (0, Bmax] and L > 0 for the estimator f,, defined by (5.14) we

have

sup _ Bf, - fI7,] < On-35, (5.15)
fes(8,L)NZ

where C' > 0 is a positive constant depending only on B, L, Lo, d, Bmax, O¢, K, Pmax; Pmin
and o.

If, in addition, kernel K satisfies the assumptions of Theorem 5(ii), then the
estimator f, is an interpolating continuous function with probability at least 1 —
' exp(—nﬁﬁ/c'/), where ¢’ is a positive constant depending only on L, Ly, d, Bmax, KK,
Pmax, Pmin and o

6 Numerical experiment

In this section, we report some results of our numerical experiment with singular
kernel local polynomial estimators. We ran simulations with various kernels and
various regression functions in dimension d = 1. We present below some examples
of obtained results for two regression functions:

f(r) =2 -2 and g(x) =z + cos(3x).

We generated X1, ..., X, according to a uniform law on [—2, 2] with n = 80. We set,
for all i € [n], Y; = f(X;)+¢; or Y; = g(X;) + ¢;, where ¢;’s are independent normal
random variables with mean 0 and variance 0.5. We considered three singular kernels
and the rectangular kernel:

Ky (u) =lu| " 1(jul < 1),
Ky (u) =[ul~ (1-]ul)] ,
Ks(u) =lul =" cos® (wful/2)1(Ju] < 1),
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Kreer(u) = 1(|u| < 1)

for various choices of a € (0,1/2). Below we only present the results for a = 0.2.

Both f and g belong to Holder classes with any smoothness 5. We take = 8
and we compute LP(¢) estimators with ¢ = 7 and with bandwidth A chosen, for
each kernel, to minimize the mean squared error (MSE) over a dense enough grid.
For each singular kernel estimator, we also compute its smoothed version (named
Smooth LPE), which is a result of applying the running median with a short window
to the initial LPE.

The results are presented below. For comparison, we reproduce in each figure the
LPE with rectangular kernel on the right hand graph. Note that K is not continuous
on R\ {0} and therefore does not satisfy the assumptions of Lemma 5 ensuring the
interpolation property. Nevertheless, our simulations show that the corresponding
LPE does interpolate the data.

The tables present the averaged MSE values for 100 simulations. We note that
they are bigger for singular kernel estimators than for rectangular kernel ones but not
excessively big. It supports the fact that singular kernel LPE achieves the minimax
optimal rate, with probably worse constant factor than for its non-singular kernel
counterparts. Reasonable MSE values for singular kernel LPE’s are obtained in
spite of the fact that visually they are very spiky. The best results are observed
for smoothed singular kernel method that cleans out the small spikes. Finally, note
that the MSE values are better for function f, which itself is a polynomial, than for
function g.

Singular kernel 1 Rectangular kemnel

— LPE — LPE
*l o i i
e Sample ,,
4 ,’,"’”‘ 4
2 V 2
. 7l
#Irﬁn 1_' TI T;}"ﬁ/ l
! o S ) " 0
° » P
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-2 ;’ ° -2
i
#
. g’ .
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Figure 5.1: Local polynomial estimator of regression function f with singular kernel
K, and rectangular kernel.
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Singular kernel 1 Rectangular kemnel

— LPE — LPE
Smooth LPE

-==- Tue curve e
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=20 -15 -1.0 -05 00 05 10 15 20 -2.0 -15 -1.0 -05 0.0 05 10 15 20

Figure 5.2: Local polynomial estimator of regression function g with singular kernel
K, and rectangular kernel.

Singular kernel K; | Singular Kernel K; + Smooth | Rectangular kernel Ko

Function f 0.0559 0.0252 0.0159

Function g 0.0584 0.0323 0.0265

Table 5.1: averaged MSE values for different kernels and functions, over 10
simulations.
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Figure 5.3: Local polynomial estimator of regression function f with singular kernel

Ky and rectangular kernel.
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Figure 5.4: Local polynomial estimator of regression function g with singular kernel

K5 and rectangular kernel.
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Singular kernel K, | Singular kernel Ky + Smooth | Rectangular kernel K e

Function f 0.0675 0.0378 0.0259

Function g 0.0604 0.0328 0.0260

Table 5.2: averaged MSE values for different kernels and functions, over 10

Singular kernel 3
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Figure 5.5: Local polynomial estimator of regression function f with singular kernel
K3 and rectangular kernel.
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Singular kernel 3

133

Rectangular kernel
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Figure 5.6: Local polynomial estimator of regression function g with singular kernel

K3 and rectangular kernel.

Singular kernel K3

Singular kernel K3 + Smooth

Rectangular kernel Ko

Function f

0.0640 0.0350

0.0249

Function g

0.0659 0.0385

0.0323

Table 5.3: averaged MSE values for different kernels and functions, over 10

7 Proofs

simulations.

Proof of Lemma 3. The result is straightforward if there exists an integer ¢ > 0 such
that £ < 8/ < g <+ 1. Indeed, for any integer ¢ > 0,

(<p <p<i+1

—  %(8,L) C 58, L).

(5.16)

Thus, it remains to consider the case ¢ < ' < ¢+ 1 < 3 for an integer /. Handling
this case will be based on the following embedding:

%(B, L) € X(¢,2L),

V¢ € N such that ¢ < 3.

(5.17)

We now prove (5.17). Indeed, let f € X(8, L) and let ¢ be an integer less than .

Then, in particular, max sup

0<s<l e,

Hf(s)(x)H* < L. Consider z,y € %4 and h = y — x.

Denote by h; the ith component of h and by e; the ith canonical basis vector in R,
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Set k = ¢/ — 1. Then for any multi-indices my, ..., m; € N% we have
Dt ) prteme () = / 1 <VDm1+'"+mk flx +th),h> dt
/ Z D £ 4 R hydt
_ ; /0 Dttt (o 4 th)dt her,

Writing for brevity G, ...my e, (€, h) = [ D™+ Fmtei f( 4+ th)dt we obtain

d
|FP () = fB ()| = sup > Gonnen (@, ) R
H“.fe”[ﬁ]lv [ |=1.vj€lk] i=1
J

h\“ m
s | Y G mkezm(nhn) o

luj <1,V 1m|=1,vj€k] i=1

Jelk]

< || sup 3 / D (g h)dE
g I<3, 1 | =1 vy k+1]
jEk+1]

1
< Al sup ’f(k+1)(x+th)[u1,...,ukﬂ]’dt

0 JluylI<1,
Jelk+1]
< |[A]] Sup 175V ). < Ll =y,
2€ER4
which, together with bound max sup Hf(s) H < L implies that f € X(¢,2L).

0<s<l'~1 yeop,

Thus, we have proved (5.17).
It follows from (5.17) that if ¢ < 8’ < ¢+ 1 < § for an integer ¢ then X(3, L) C
Y(¢ +1,2L), while taking = ¢+ 1 in (5.16) implies that X(¢ + 1,2L) C 3(5,2L).
This proves the lemma when ¢ < 3/ < ¢+ 1 < (8 for an integer /.

U

Proof of Lemma 4. The result is clear for § < 1. Assume that f > 1 and fix some
x,y € B,y. By Taylor expansion, there exists ¢ € (0, 1) such that

fl@)y=">_ k,, D" (y)(z—y) +Z D*f(y+c(z—y))(@—y)",

0<|k|<t-1 k=e k

and

\k\<l

= M “f(y+e(z—y)) — D ()| (x—p)*].

|k|=¢
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By a standard combinatorial argument, it is not hard to check that, for any h, z € R,
f(k)(z)[h]k D= o Z | 1Dm1+...+mef(z)hm1+...+me — “;2 /{:'Dk
mi|=...=|my|=

It follows that

> ,;[Dkf(y%(:v—y)) — D (y)] (z—y)" (5.18)

k|=¢
- ;' £O (y+e(@—y))lw—y)* = FO ) [r—y)|

s;,\\f<f>(y+c<x—y>) 1O, o=yl
< Fla—yllllee—)* < 7

]

Proof of Lemma 5. In this proof, we fix i € [n], and our aim is to prove that
lim, ,x, fo(x) = Y;. Let ¥ be the neighborhood of X; where (5.8) holds. Since
Xi,..., X, are distinct, we assume w.l.o.g. that " does not contain (X;);;. Due to
conditions (5.7) and (5.8), we have that B, = 0 for all z in ¥ := ¥\ {X;}. Thus,
for all z € ¥ the vector 0,(z) is the unique solution of (5.2), and f,(z) is given by
(5.3):

2

0,(z) = argmin Z[-—OT (X}:a:)]

9cRCtd =1

fala) = UT(0)8, ().

Define g;(x) = (Y; — én x)TU (Xi=z 2. First, we prove by contradiction that lim g¢;(x) =
h

z—X;

0 for any ¢ € [n]. Indeed, suppose that lim,_,x, g;(z) # 0. Then, there is a se-
quence (x3); in RY converging to X; as k — oo such that limy_,. gi(2) = 400 or
limy 00 gi(xx) = const > 0. In both cases,

N Xj— ) _
]}i}rgojz::lgj(a:k)f( (h) = 400 (5.19)

since the kernel K has a singularity at 0. On the other hand, the definition of 6, ()
implies that, for any k and any 6, € R,

2

ot (452%) <5 (-0 (552)) s (5).
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In particular, for ] = (Y; 0...0) we have

> (v o () ) e () = v ()

2

j=1 J=1
X, —
=0 - VK (S
i
X:— X,
R VAP it Al
L S = YPK () < 4o,
JF#i
which is in contradiction with (5.19). Therefore, for any i € [n| we have liH)} gi(x) =
T—Xj
0.
A similar argument yields that lim sup g;(z) < +oo for any j # i. Indeed, if

T—X;
for some j # i this relation does not hold then there is a sequence (x); in R4
converging to X; as k — oo such that limy_, gj(z;) = +o00. It implies (5.19), which
is not possible as shown above.
Next, we prove that ||f,(z)|| is bounded for all 2 in a neighborhood of X;. Since

lir§ gi(z) = 0, and for any j # i we have lim sup g¢;(z) < +o0 the values g;(z) are
r—X; z—X;

bounded for all j € [n] and all z in a neighborhood of X;. We will further denote
this neighborhood by ¥”. Tt follows that o;(x) = 8, (z) U (Xj{x), j=1,...,n, are
bounded for # € #” and thus the sum 7, 7 (z) is bounded as well. On the other

hand, by assumption (5.8), for all z € ¥,

S i) 2 S0 () ur () (P < a) o

=1
|

116 (2)1%,

v
yk)

where Ay > 0. It follows that 10, ()| is bounded for allz e V"N

Let 0, 1)(z) = fu(x) denote the first component of ,,(x) and 6, (2)(x) the vector
of its remaining C; 4 — 1 components, so that én(x)T = (ém(l)(x), énV(g) (x)T> Recall
that the first component of U(u) is equal to 1 for all u € R%. Denote by Us)(u) the
vector of its remaining Cy4 — 1 components, so that U(u)" = (1, U (u)T) With
this notation, the relation xlg%l gi(z) = 0 proved above can be written as:

A~ N Xz — T 2

Since ||0, ()| is bounded for z € ¥’ N ¥ we get that ]ém(l)(x)] and Hén(z)(l’)H
are also bounded for z € ¥’ N ¥_. The definition of U(u) implies the convergence
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i [|U (%572 || = 0. It follows that

and therefore

which concludes the proof since énj(l)(x) = fulz). O

Proof of Lemma 6. We prove only part (i) of the lemma since part (ii) is its imme-
diate consequence. We have

Bpe = — T( )1 <h
da v (S (S (Mg

and, for any \g > 0,

P ( inf Apin(Bnz) < >\0> =P ( inf inf v’ B < >\0>

zE€Supp(p) z€Supp(p) [Jvll=1
<P ( inf inf v" B(2)v —sup || Bpe—B(2)|le < /\0> (5.20)
z€Supp(p) [|v]|=1 z€Supp(p)
where B(z) := E(B,;). Set S(z,h,A) = {u € $B,(0,A) : x + uh € Supp(p)}. Then
we have
v B(z)v = 1/ v'U (Z - J;)r 1 ( =Tl < A) (z)dz
" h =2)F

Z pminUT [/ U(U)U(U)TdU] v
S(z,h,A)

> min T / U U Td )

>t | [ U000 ) o

where for the last inequality we used the fact that S(z,a,A) C S(x,h,A) since
h < a and Supp(p) is a convex set. Notice that S(z,a, A) is also a convex set and
it is not reduced to one point x as Supp(p) is a convex set with positive Lebesgue
measure. Thus, S(z,«, A) is of infinite cardinality for any x € Supp(p).

Denote by Sg(0,1) the unit sphere in R centered at 0. Note that, for fixed A
and «, the function

Supp p x S4(0,1) — R
{ (l’, U) = UT [fS(m,a,A) U(U)U(U)Td’lﬁ} v
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is continuous and defined on a compact set. Therefore, it attains its minimum at
some (xg,vp), where zy € Supp(p) and [[vg]] = 1. We argue now that the value of
this minimum is positive. Indeed, it is clearly non-negative, and if it were 0 we would
have:

k
— o Uw) =Y v()(k;)%, Vu € S(xo, a, A). (5.21)
k| <2 ’

As observed above, S(zg,, A) is a set of infinite cardinality. On the other hand,
the expression in (5.21) is a polynomial in w, so that for vy # 0 it can vanish only in
a finite number of points. Thus, (5.21) is impossible. It follows that

M(0) = min v’ [/S(%OC,A) Uu)U(u)"du| v > 0.

v€84(0,1),2€Supp(p)

Next, note that the vector U(u) = Uy(u) depends on ¢, and that for ¢ < ¢’ and any
fixed x, the matrix [g, , a) Ue(u)Us(u) " du is an extraction of the matrix [g(, o o) Ur (w)Up (u) " du.
Hence, the smallest eigenvalue of the former matrix is necessarily not less than that
of the latter. Thus, A\j(£) > A (¢) for £ < 7.
Setting Ao = Ao(¢) := pminA1(¢)/2 and using (5.20) we find:

P ( inf  A\pin(Bng) < )\0> <P ( sup || Bnz — B(2)||s > /\0> . (5.22)

2€Supp(p) x€Supp(p)

It remains now to bound the probability on the right hand side of (5.22).

By Assumption (A2), the convex compact set Supp(p) is included in B, =
$4(0,1). For ¢ > 0, let {z1,...,2x} C PBY be the minimal e-net on %, in the
Euclidean metric. Then we have:

sup [|B(2) = Brallee < sup min [[B(z) = B(zk)l|e

z€Supp(p) T zes, 1SkSN
+ max [B(zr) = Buaylloo + s I Bra — Bua | co-
Jo—a|| <
Thus,
P ( sup || By = B(#) oo > Ao> < P+ P, + Py, where (5.23)
z€Supp(p)

_ _ A
P =P <sup min |[B(z) — B(ax)|| > 0) :

TERB, 1<k< 3

_ _ Ao
P =P (s, 1BG) = Bl > )
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— A

P = P( sup || Bra — Bl > °>.
z,x' €EBy: 3
lo—a'||<e

In the rest of the proof, we control the terms Py, P, Ps.
Control of P,. Since all norms in the space of C; 4 x Cy 4 matrices are equivalent
there exists a constant ¢; > 0 depending only on ¢, d such that, for all k € {1,..., N},

1<4,j<Cp q

where b, (i,7) and b, (¢, j) are the elements of B,,,, and B(z}), respectively. Then,
for any k € {1,..., N},

_ _ A . . A
P (1B(a0) = Bonlle > ) < Cha, g, P (b licd) 0 i) > 52 )

1<i,j<C¢,a 3cq

We recall that by, (i,7) = E [bps, (,7)]. Setting s = s® and r = s0) we have

bnxk(l7.]> = nhd Z hssl hrrl = A) ’

m=1

1 v (Xm — I‘k)s (Xm — xk)’“l (HXm — Tk
h

This is a sum of n i.i.d. random variables, each of which is bounded in absolute value
by % and has variance not exceeding %, where C' > 0 is a constant depending
only on ¢, d, A. By Bernstein’s inequality,

o o A
P(W%@ﬁ—%mdﬂ>£ﬁﬁ2wﬂﬂﬁwﬁ

where ¢o > 0 only depends on ¢, d, A and not on n, k,, 7. It follows from the above
inequalities and the union bound that

Py < 2NC} jexp(—canh?). (5.24)

Control of P3. For any x,x' € A,,
v (Z) v G (P

Xi—l‘l T Xi—ZL‘I Xi—I/
1

For any v € R? consider the matrix

_ _ 1

>

V(u) = Uw)U" (u)1{|lu]| < A}. (5.25)
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Notice that U(u) € R4 is Lipschitz continuous in u on the ball %,(0, A) since the
components of vector U(u) are polynomials in u. Thus, there exists a constant L>0
depending only on ¢ and d such that for any u,u’ € R, if either |lul < A, ||| < A
or |lul]] > A, ||v|| > A, then

|V (w) - V()

< EHU o U,H>
e¢]
and if (u,u’) belongs to the set

A= {(ud) : lull <A | > AU {(w, ) < Jull > A ] < A

then
[V -ve)| <L
taking L > max HU(u)U(u)TH . Tt follows that
[viw - v < E{Hu )+ (o) € A)}, (5.26)

which implies the bound

_ L L : 3
| Bre — Bna'||oo < WH:C — || + nthard{z € [n]: X; € Az, o, hA)},

where we denote by A(z, 2/, hA) the symmetric difference By(x, hA)ABy (2, hA).
Thus,

— - Le L - ~
Sup | Bz — Bra'||oo < pat T ord sup > 1(XZ- € Az, hA)), (5.27)
z,x' €EBy: T2’ €Bg: =1
lo—a'[[<e lo—a’[|<e

If ||z — 2’|| < e then

Az, 2 ,hA) C{z:hA < |z —z|| < hA+e} U{z: hA < ||z — 2| < hA + ¢}

Therefore, for ||z — 2’| < & we have ‘A(w, x, hA)‘ < C,h%'e, where we denote by

|S| the Lebesgue measure of a measurable set S C RY, and C, > 0 is a constant

depending only on A and d. Set € = coh®*!, where the constant ¢, satisfies 0 < ¢y <

A

6—% Then for ||z — 2/|| < & we get P(X; € Az, 2/, hA)) < praxCicoh??. Choose cq
Ao

small enough (and depending only on £, d, prinPmax, A) to satisfy Panax CiCoa? < A
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Consider the random event

o = { sup ZI(X,; € A(x,x/,hA)) < A},
2

A
where A = 6—Enhd. Due to the choice of ¢y and the fact that h < « the bound
P(X; € Az, 2, hA)) < A/2 holds whenever ||z — 2’| < e. Hence,

n

LS 1(X: € Al o, hA)) — P(X, € A, hA))‘ > A/z}.

n;3

P(,@f) < P{ a:j’lé/%

(5.28)

The class of all balls in R% has a VC-dimension at most d + 2, cf. Corollary 13.2 in
[Devroye et al., 1996]. Consequently, the class of all intersections of two balls in R4
has a VC-dimension at most C'd where C' > 0 is an absolute constant [van der Vaart
and Wellner, 2009]. This allows us to apply the Vapnik-Chervonenkis inequality to
bound the probability in (5.28). Indeed, we can use the decomposition

1(X; € A, 2, hA)) = 1(X; € Bz, hAN)) + 1(X; € Ba(a', hA))
—2-1(X; € Ba(x, hA) N B2/, hA)) (5.29)

and bound from above the probability in (5.28) by the three probabilities corre-
sponding to the three terms on the right hand side of (5.29). Applying the Vapnik-
Chervonenkis inequality [Devroye et al., 1996, Theorem 12.5] to each of these prob-
abilities we get

P(g) < c3n® exp(—nA?/128) < c3n® exp(—cyn®h??),

where ¢3 > 0,¢4 > 0 are constants depending only on d,¢,p(-),A. On the other
hand, due to (5.27) and the definitions of € and A, on the event &7 we have

— — A
z,x’' EBy: 3
llo—a'|| <=

Thus, we have proved that
Py < c3n® exp(—cyn®h??). (5.30)

Control of P,. Fix v € %y and let k € {1,..., N} be such that ||z — x| < e.

Using (5.26) we obtain
z—x Z— Tp
V( h >_V( h )pr(z)dz
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< L . {6 +1(z € A(m,xk, hA))]p(z)dz

he Jra Lh
< Le ! + C*pmax) (since ‘A(x T hA)’ < C,h1e)
> hdJrl h y Lk > Lk

~ ~ A
= Lcy (1 + C’*pmaxhd> < Ley (1 + C*pmaxad) < ?0

provided that ¢q is chosen small enough (depending only on ¢,d, p(-), A, a). Thus,
P, = 0 under this choice of ¢g. Combining this remark with (5.22), (5.24) and (5.30)
we conclude that

P < Sinf( ))\min(ﬁm) < )\0> < 2NC%, exp(—canh®) 4 cgn eXp(—c4n3h2d).
z€Supp(p ’
Recall that the cardinality /N of the minimal e-net on the ball £, = %,(0, 1) satisfies
d
N < (g + 1) . The result of the lemma now follows by observing that under our

choice of ¢ we have N < Ch~®~% where the constant C' > 0 depends only on
/gﬁ d’p(.)7A7 a' D

In the proof of Theorem 5 below, we will use the fact that an LP(¢) estimator
reproduces the polynomials of degree < ¢ for all z € R? such that B,,, = 0. We state
this property in the next proposition. The proof is omitted. It follows the same lines
as the proof of Proposition 1.12 in [Tsybakov, 2008] dealing with the case d = 1.

Proposition 4. Let x € R? such that B,y = 0 and let Q be a polynomial of degree
< (. Then the LP({) weights W,; are such that

i Q(Xi)Whi(x) = Q(z).

In particular,

zn:Wm(:c) =1 and zn:(Xz — )" Woi(x) = 0 for |k| < L. (5.31)

i=1

Proof of Theorem 5. Part (ii) of the theorem follows from Corollary 1. Also, note
that (5.11) is an immediate consequence of (5.10) and Assumption (A2). Therefore,
we need only to prove (5.10).

Fix z € Supp(p) and define the random events & = {x Z{Xy,... ,Xn}}, and

& = {uin(Bnz) > Ao} N .
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where A\, = A{(¢) is a constant from Lemma 6 that does not depend on n and .
From Assumption (A2) we get that P(&;) = 1. This and Lemma 6 with our choice
of h yield:

P(&) < de /e, (5.32)

28
where A, = n?7% and ¢ > 0 does not depend on x and n.
Since |f,(z)] < p = maxi<;<, |Yi| V Ly we obtain

E([fu@) - @]) < B([fu@) - 1@)] 16)) + E(Lo + 1))
< E([fule) - @) 1(8)) + B(1Lo + 1)) P@)7H,

where we have used Hélder’s inequality and the fact that | f,(z) — f(x)] < |fa(z) —
f(z)| for all € Supp(p). Next,

E([Lo+ pu*"*) < B([2Lo + max (X)) < C[1+ nE(J6(X1)*)].

Using this inequality and Assumption (A1) we get

E([£@) = /@)]") E([fu@) ~ f@PUE) + CnssP@)s,  (5.33)

We now bound the main term E( [fo(x) — f(2)]? 1((5’)) on the right hand side of (5.33).
Writing for brevity E[-| X1, ..., X,] = E[] we have

E([ful@) ~ f@)1(6)) < 2B ((fu(@) ~ Elfuw)]) 1(6))
1+ 2E ((E[ Ful@)] = F(@))’ 1(5)) | (5.34)

We analyze separately the two terms (bias and variance terms) on the right hand
side of (5.34).

Bound on the variance term. On the event & we have

n

E[f.(2)] = > F(X)Wyi(2),

=1

where

Wi() = WUT(O)B,;;U (X];x) K (Xh_x)

Thus, using Assumption (A1) the variance term can be bounded as follows:

E ((fn@c) ~E[fa(2)])’ 1<€>) =E ((i}w@»)m(m)z 1<£>)
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— B (S E[ex] i) < oo,

—E (2; W,fi(x)l(é")> .

In what follows, we assume w.l.o.g. that Supp(K) C %B,;. On the event &, we have
| B o] < ||UH/X for any v € R%¢. This inequality and the fact that HU( ) =1

imply

where

1

nhd
1

<
~ nhi)

[Whi(2)] <

X, —x X, —x
B (55 K (55)

v ()l ()

1 X, —=x 1
K (— e ince Supp(K) C %
> nhd)\6 ( h ) OSXS:SZ (S!)Q (smce upp( ) - d)

Cs Xl —ZC)
< K = Giy
~nhd < h ¢

where ¢; > 0 is a constant that does not depend on n and x. Using Assumption (A2)
and the compactness of the support of K we get

) < 57;‘23" [ K2 w)du < Zhd, (5.35)
1/2
E(G) < Csp;ax/K(u)du g(/Kz du> : gg (5.36)
It follows that
n C
<8 (5¢) <7
and
. C
E((fulo) ~ Elfa(e))) 1(6)) < - (5.37)

Bound on the bias term. On the event & we have

Blf,(x)] - £(z) = 3 F(X)Wasla) — F(2)
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so that the bias term in (5.34) can be written as

B ((Blfu(@)] - /(@) 1(6)) = E ([imx» - f<a:>JWm<x>] 1<£>) —: B(a).

=1

Using (5.31) and the Taylor expansion of f we get that for some 7; € [0, 1],

S — fla 3y PRI )
i=1 i=1 |k|=¢

Since f belongs to (3, L) we can apply (5.18), which yields

20 < B | (3 el W) 1)

-E (fjjnxi—xuﬁ|Wm-<x>|1<|rxi—xnsm)w)

(as supp(K) C %)

<E (f: ZhO W (2 )21(@@)

=1

As |Wyi(x)| < ¢ we further get
(x) < ChE = OR [ STR(E) + Y BGB(G)
i=1

n 2
i=1 i#j

= Ch?? [nE(¢}) + n(n — DE(Q)?] < Ch?,

where the last inequality follows from (5.35), (5.36) and the fact that h = an” 7,
Combining this bound on b*(z) with (5.32), (5.33), (5.34) and (5.37) we finally obtain

B([fue) ~ f@)]) £C (g 427 4 nsfse/0),

where a = m Since h = an~ 77 the desired bound (5.10) follows. O

Proof of Theorem 6. If K satisfies the assumptions of Theorem 5(ii) then each esti-
mator f, ; is interpolating on %; with probability at least

1 — Cexp(—n~2A/@hitd) joy > 1 — Cexp(—n_ﬁﬁ/(})
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if 8; > 1, and with probability 1 if 0 < 8; < 1. Hence all of them are simultaneously
interpolating with probability at least

1 — C'Mpax exp(—n”%d/C') >1-C exp(—nfﬂ%/C’/),

and the same holds true for the estimator fn Analogously, the estimator g, is
interpolating on %, with the same probability. These remarks and the definition of
f, in (5.14) ensure that f, is interpolating on the whole sample 2 with probability
at least 1 — 2C" exp(—n_ﬁ/(?’).

We now prove the bound (5.15). First, we show that such a bound holds for the
estimator fn Set B= Lo+ p. Then ||fn] — flloo < B for all j=—=M,... Myax,
where || - || denotes the L,-norm on Supp(p). Fix the subsample 2;. Then f,;’s
become fixed functions, and applying Theorem 2.1 in [Wegkamp, 2003] with a =1,
Aj=0, Vj=—M,. .., Mpay, and K =M + My.x + 1 < Clog*(n), we get

~ _ _ C(B?loglogn + log*(n
B I fI2] <2 wmin o, — I, + SElsloantloa () 0,

—M<j<Mmax n

where we denote by Es the expectation over the distribution of the sample %,, and
we have used the fact that My,.x < M. Note that under Assumption (A3) we have
E;(B?) < Clogn (see, e.g., Lemma 1.6 in [Tsybakov, 2008]). Therefore, taking the
expectations over %, on both sides of (5.38) we get

~ ) - log?(n)loglogn
B (|7, fI] <2 min B [IF, - fI3) + ¢8O (g g

7M§j§Mmax

Assume now that 3 € [}, B4+1] for some j € {—=M, ..., My —1}. Lemma 3 implies
that (5, L) C 3(8;,2L). Hence, using (5.13), we obtain:

_ _ _ 2
sup By [[lfa; = fIR] < swp By [lfay— FI3,] < On L (5.40)
fex(s,L)N%o fex(B;,2L)NFo
Combining (5.39) and (5.40) we get that, for 5 € [5;, Bj11],
~ 2B
sup EE, {an — f||%2} < Cn 255+, (5.41)

fEX(B,L)NF0o

Notice that if 5 € [§;, B;+1] for some j € {—M, ..., Myax — 1} then

28 Y
n it <en 26+d,

Indeed,

B B BB _ 5,
28+d 28,+d = (28+d)(28,+d) (28, + d)(28 + d) logn
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< b < L .
T (28 +d)(28+ d)logn — 2logn

The case 5 € [Bafay, Omax] 18 treated analogously. These remarks and (5.41) imply
thta for each 8 € [5_pr, Bmax] there exists a constant C' > 0 such that

sup E [||fn - f||%2} < On~ %, (5.42)
feX(B8,L)NFo

Next, recalling the definition of M and (_j; as functions of n we note that for any
fixed f > 0 it is possible to have 8 < [_j; only for n not exceeding some finite
number ny(f). For such values of n the estimation error of f, is bounded by a
constant depending only on 3, d and Ly:

Bllf = fI5] < 48[ max P[] 4215 < Cllog(no()) + L),

i=1,...m0(8)/
Consequently, (5.42) also holds for 0 < 5 < f_p; (and thus for all 8 € (0, fmax]) if
we take the constant C' > 0 in (5.42) large enough.

By the same argument, we deduce that the bound (5.42) holds for the estimator
gn. Combining both bounds and using the fact that function A(-) appearing in (5.14)
takes values in [0, 1] we get the desired bound (5.15) for the final estimator f,. [

8 Conclusion

We have shown that local polynomial estimators with singular kernels can achieve
minimax optimal rates of convergence (with respect to the mean squared risk) while
perfectly interpolating the data, and moreover, can do it adaptively to the the
smoothness of the regression function. This seemingly surprising conclusion is indeed
not surprising at all because the mean squared risk is used as a criterion. Indeed,
by adding "by hand" extremely small spikes to an accurate enough regression esti-
mator we can always get a function interpolating the data and having a reasonably
good mean squared risk. Of course, such a construction is very artificial. It makes
no sense in practice and it is problematic to achieve adaptation in this way. The
miracle of singular kernel LPE is to provide such an effect automatically, including
adaptation, as we have outlined above. The resulting interpolating estimators have
quite a reasonable behavior in terms of mean squared criterion but not in terms of
visual criteria. Note that the interpolating procedures developed in different contexts
in the recent literature, in particular, in deep learning are analyzed only in terms of
mean squared error and expectedly share the same drawback. The difference from
our setting is that, in those models, the resulting estimators are not easy to visualize,
so that this sort of "spiky" behavior is not made explicit.



Chapter 6

Conclusion

To conclude this thesis, we have worked on three different problems. For the first
problem, the clustering problem in the Bipartite Stochastic Block Model, we have
introduced a new algorithm, the Hollowed Lloyd’s algorithm, which allowed us to
improve the estimation conditions of the BSBM. This algorithm, a modified version
of the classical Lloyd’s algorithm, is an iterative algorithm, fast and simple to im-
plement. We have provided statistical guarantees on the result of this algorithm,
improving the conditions on almost full recovery and exact recovery, in particular in
the high dimensional framework. We have exhibited an oracle estimator to support
the optimality of our conditions - optimality that was later proved. It remains to
show whether our algorithm works with a random initialization, and whether the
spectral estimator we introduced allows for exact recovery. For the second problem,
the topic model problem, we have also introduced a new algorithm, the Successive
Projection Overlapping Clustering algorithm. This algorithm is a modified version
of the Successive Projection Algorithm, and is fast and simple to implement. To
guarantee the results of this algorithm, we introduced a new anchor assumption, the
document anchor assumption. We proved that the SPOC algorithm allows under this
assumption the estimation of the document-topic matrix within the pLSST model. We
have provided statistical guarantees on the estimation of the document-topic matrix
for the Frobenius and ¢; norms. Such guarantees were previously not available in
the literature. Our procedure is adaptive in the number of topics. We have ob-
tained upper and lower bounds matching up to weak factors. Finally, for the third
problem, we have illustrated the Benign Overfitting phenomenon in nonparametric
regression using local polynomial estimators with singular kernels. We proved that
these estimators are minimax optimal on the Holder classes of regression functions,
interpolative and adaptive to the smoothness. This result questions the relevance
of the classical mean square criterion since such estimators, despite their statistical
optimality, are visually improper.
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Résumé : Dans cette these, nous considérons les trois
probléemes suivants : le probleme de clustering dans le
Bipartite Stochastic Block Model, le probléme de classi-
fication de documents dans le cadre des topic models,
et le probléme de benign overfitting dans le cadre de
régression non paramétrique. Tout d’abord, nous consi-
dérons le probleme de clustering dans le Bipartite Sto-
chastic Block Model (BSBM). Le BSBM est une généra-
lisation non symeétrique du Stochastic Block Model, avec
deux ensembles de sommets. Nous introduisons un al-
gorithme appelé le Hollowed Lloyd’s algorithm, qui per-
met de classer les sommets du plus petit ensemble avec
grande probabilité. Nous fournissons des garanties sta-
tistiques sur cet algorithme, qui est rapide et simple a
implémenter. Nous établissons une condition suffisante
pour le clustering dans le BSBM. Nos résultats amé-
liorent les travaux précédents sur le BSBM, en particu-
lier dans le cadre de grande dimension. Deuxiémement,
nous étudions le probléme de la classification de docu-
ments dans le cadre des topic models. Les topic mo-
dels permettent d’exploiter des structures sous-jacentes
dans un grand corpus de documents et ainsi de ré-

Titre : Contributions a I'inférence en grande dimension structurée

Mots clefs : Bipartite stochastic block model, topic model, benign overfitting, régression non-paramétrique, statis-

duire la dimension du probleme considéré. Chaque to-
pic est vu comme une distribution de probabilité sur le
dictionnaire de mots du corpus, et chaque document
est vu comme un mélange de topics. Nous introdui-
sons un algorithme appelé Successive Projection Over-
lapping Clustering (SPOC), inspiré du Successive Pro-
jection Algorithm pour le probléme de Nonnegative Ma-
trix Factorization. Lalgorithme SPOC est rapide et simple
a implémenter. Nous fournissons des garanties statis-
tiques sur le résultat de I'algorithme SPOC. En particu-
lier, nous fournissons des bornes minimax inférieures et
supérieures sur son risque d’estimation pour les normes
de Frobenius et /1, bornes correspondant a de faibles
facteurs prés. Notre procédure de clustering est adapta-
tive en le nombre de topics. Enfin, le troisieme probléeme
étudié lors de cette thése porte sur la régression non pa-
ramétrique. Nous considérons des estimateurs par po-
lyndmes locaux avec des noyaux singuliers. Nous prou-
vons que ces estimateurs sont minimax optimaux, adap-
tatifs en la régularité et interpolants avec une probabilité
élevée. Cette propriété est appelée benign overfitting.

Keywords :
dimensional statistics, adaptive estimation

Abstract : In this thesis, we consider the three following
problems: clustering in Bipartite Stochastic Block Model,
estimation of topic-document matrix in topic model, and
benign overfitting in nonparametric regression. First, we
consider the graph clustering problem in the Bipartite
Stochastic Block Model (BSBM). The BSBM is a non-
symmetric generalization of the Stochastic Block Model,
with two sets of vertices. We provide an algorithm called
the Hollowed Lloyd'’s algorithm, which allows one to clas-
sify vertices of the smallest set with high probability. We
provide statistical guarantees on this algorithm, which is
computationnally fast and simple to implement. We es-
tablish a sufficient condition for clustering in BSBM. Our
results improve on previous works on BSBM, in parti-
cular in the high-dimensional regime. Second, we study
the problem of assigning topics to documents using topic
models. Topic models allow one to discover hidden struc-
tures in a large corpus of documents through dimension

Title : Contributions to structured high-dimensional inference
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reduction. Each topic is considered as a probability dis-
tribution on the dictionary of words, and each document
is considered as a mixture of topics. We introduce an
algotihm called the Successive Projection Overlapping
Clustering (SPOC) algorithm, inspired by the Successive
Projection Algorithm for Non-negative Matrix Factoriza-
tion. The SPOC algorithm is computationnally fast and
simple to implement. We provide statistical guarantees
on the outcome of the algorithm. In particular, we pro-
vide near matching minimax upper and lower bounds on
its estimation risk under the Frobenius and the ¢;-norm.
Our clustering procedure is adaptive in the number of
topics. Finally, the third problem we study is a nonpa-
rametric regression problem. We consider local polyno-
mial estimators with singular kernel, which we prove to
be minimax optimal, adaptive to unknown smoothness,
and interpolating with high probability. This property is
called benign overfitting.
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