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Résumé en français

L e travail de cette thèse a consisté à montrer la richesse dynamique
insoupçonnée d’une diode laser soumise à une rétroaction optique à
conjugaison de phase (PCF, phase-conjugate feedback), en analysant à la

fois numériquement et expérimentalement l’évolution de la puissance du laser,
avec des vitesses de l’ordre de quelques dizaines de GHz.

D’abord, j’ai étudié le signal chaotique généré par un tel système, à la fois
par des simulations et par l’expérience. Trois indicateurs étaient considérés :
la bande-passante de chaos, c’est-à-dire l’étendue des fréquences sur lesquelles
l’énergie du signal est répartie, la platitude spectrale, qui vérifie que l’énergie
n’est pas concentrée sur une seule fréquence et l’entropie de permutation, qui
étudie si des motifs se répètent dans le signal. J’ai observé que le chaos généré
par un tel système était à la fois étendu sur un grand nombre de fréquences
(bande passante de 30 GHz environ) et complexe (entropie de permutation
jusqu’à 0,994), et sur une large plage de paramètres extérieurs au laser, dont la
force de la rétroaction, le retard dans la rétroaction ou le courant d’alimentation
du laser.

Ensuite, j’étudie les phénomènes périodiques très rapides précédemment
observés avec le PCF, les modes de cavités externes (ECM, external cavity
modes). Cette dynamique est marquée par une évolution périodique de la puis-
sance du laser à une fréquence égale à un multiple de la fréquence associée
au retard de la rétroaction. Nous étendons les précédentes études expérimen-
tales en variant de nombreux paramètres du système, à savoir la force de la
rétroaction, le retard dans la rétroaction et le courant d’alimentation du laser.
En particulier, nous observons expérimentalement deux résultats qui avaient
été prédits numériquement. D’une part, les ECM sont bistables, c’est-à-dire
qu’avec les mêmes paramètres physiques ils peuvent avoir des fréquences
différentes. D’autre part, nous montrons la fréquence des ECM ne change pas
significativement si on change le retard sans changer les autres paramètres de
l’expérience.

Enfin, nous étudions numériquement la possibilité de générer des ondes car-
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rées avec une rétroaction optique à conjugaison de phase. Nous observons que
la dynamique ainsi obtenue est semblable à celle obtenue avec une rétroaction
optique non conjuguée en phase.
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English summary

T his thesis studied the dynamics of a laser diode subjected to a phase
conjugate feedback (PCF). I analyzed both numerically and experimen-
tally the evolution of the laser power, with speeds of the order of a few

tens of GHz.

First, I studied the chaotic signal generated by such a system, both by
simulations and by experiment. Three indicators were considered: the chaos
bandwidth, i.e. the range of frequencies over which the energy of the signal
is distributed, the spectral flatness, which verifies that the energy is not con-
centrated on a single frequency, and the permutation entropy, which studies
whether patterns are repeated in the signal. I observed that the chaos gener-
ated by such a system was both broadband (bandwidth of about 30 GHz) and
complex (permutation entropy up to 0.994). Such chaos was observed over a
wide range of experimental parameters, including the feedback strength, the
feedback delay, or the laser pump current.

Then, I study the very fast periodic phenomena previously observed with the
PCF, the external cavity modes (ECM). The ECMs are regular self-pulsations
of the laser power, at a frequency equal to a multiple of the frequency asso-
ciated with the feedback delay. We extend previous experimental studies by
varying the feedback strength, the feedback delay and the laser pump current.
In particular, we observe experimentally two results that had only been numer-
ically predicted. First, the ECMs are bistable, i.e. under the same experimental
parameters they can have different frequencies. Secondly, we show that the
frequency of the ECMs does not change significantly if we change the delay
without varying the other parameters of the experiment.

Finally, we study numerically the generation of square waves with phase
conjugate feedback. We observe that the resulting dynamics are similar to
those obtained with non-phase conjugate optical feedback.
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Introduction

T he realization of the first lasers, or light amplification by stimulated

emission of radiation, in 1960 opened new perspectives for signal pro-

cessing and communications. The semiconductor laser, introduced in

1962, allowed breakthroughs, e.g. in telecommunications and sensing.

Our study is concerned with one aspect of this vast field of study, namely

the non-linear dynamics obtained with semiconductor lasers. In particular, a

laser diode destabilized by optical feedback can generate chaos, i.e. have an

evolution that is both deterministic and unpredictable because it is sensitive to

initial conditions. Such a chaotic signal allows for example encrypted telecom-

munications, more accurate sensors, or the generation of random numbers at

very high rate.

More precisely, we study here a laser diode subjected to a phase conjugate

feedback. The phase conjugate feedback was first seen as a way either to self-

align feedback in a laser or rather to stabilize the laser output. However, the

studies conducted since the introduction of phase conjugation have also shown

a very important and new dynamic richness. This thesis is a continuation of

this research.

We will present the state of the art in more detail in chapter 1. We will

briefly describe the operation of a laser diode and the study of its nonlinearity,

in particular when subjected to conventional optical feedback. We will then

present the particularities induced by the phase conjugate feedback, then we

will introduce the objectives of this thesis.

In chapter 2, we will present the experimental setup used during the thesis.

We will first deal with the question of the practical realization of a phase
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conjugate mirror to obtain a phase conjugate optical feedback. After a general

approach, we will present in more detail the mirror used in this thesis, a self-

pumped phase conjugate mirror realized in a barium titanate crystal. Then,

we will present the characteristics of the lasers used during this thesis. The

chapter will end with the description of the different measuring devices used.

Chapter 3 and 4 will study the chaos generated with the PCF through

three indicators of its complexity and speed: the chaos bandwidth, the spectral

flatness and the permutation entropy. Chapter 5 will introduce the study of

the external cavity modes, the self-pulsed dynamics specific to the PCF. Finally,

chapter 6 studies a variant of the PCF, the polarization-rotated phase conjugate

feedback.

Chapter 7 will conclude this study and give several perspectives for future

work.
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Chapter 1

Background and motivations

T his first chapter is an introduction into the subject of this thesis, i.e.

the nonlinear dynamics of a laser diode subjected to phase-conjugate

feedback.

First, section 1.1 introduces one of the most commonly used design in the

world, the laser, especially the laser diode. Section 1.2 presents the background

concepts necessary for the understanding of this thesis: the nonlinear dynamics

in laser diodes. After a general introduction to non-linear dynamics and chaos,

it presents an overview of the non-linear dynamics in laser diodes. Then,

section 1.3 summaries the previous studies about the behavior of a laser under

phase-conjugate feedback. Last, section 1.5 explains the objectives of the work

presented in this thesis.

1.1 Laser

1.1.1 Principle

First, we start by a definition of the laser.

Laser is an acronym for Light Amplification by Stimulated Emissions of

Radiations. This name is actually of good summary of its principle: the emission

of radiations is stimulated to generate amplified light. That said, we have to be

more precise. Light is both a wave, characterized by its wavelength λ and a set

3



CHAPTER 1. BACKGROUND AND MOTIVATIONS

of particles called photons, characterized by their energy E. Quantum physics

told us that both the energy of the photons and the energy of the matter are

quantified. In the case of the photon, its wavelength λ is related to its energy

E through the following equation [1, 2]:

(1.1) E = h
c
λ

where h is the Planck constant and c the speed of light.

When light and matter interacts, three phenomena can occur:

• absorption: a photon is absorbed by the matter. The later transits from a

low energy level to a higher energy level (excited level), the difference of

energy being equal to the energy of the photon.

• spontaneous emission: it is the inverse phenomenon. The matter transits

from an excited level to a lower energy level and a photon is emitted. Its

energy is equal to the difference of energy between the concerned energy

levels of the matter.

• stimulated emission: the matter interacts with an incoming photon. The

matter transits from an excited level to a lower energy level, another

photon being generated, with the same energy, polarization and direction

than the incoming photon. To obtain that phenomenon, the difference

between the concerned energy states of the matter must be close to the

energy of the incoming photon.

To explain that more clearly, we illustrate in Fig. 1.1 the example of an

atom with two levels of energy E1 and E2 > E1. In the case of absorption (a),

the atom absorb an incident photon of wavelength λ= hc
E2−E1

and an electron

moves from E1 to E2 energy levels. In spontaneous emission (b), the atom is

at the energy level E2. Its energy spontaneously reduces to E1 and it emits

a photon of wavelength λ = hc
E2−E1

. For stimulated emission, a photon, with

wavelength λ = hc
E2−E1

, interacts with an excited atom, with energy E2. The

energy of the atom falls to E1 and a new photon is emitted with a wavelength

λ′, similar to λ.

4



1.1. LASER

E2   

=hc/(E2-E1)   

E1   

(a)
E2   

(b)

=hc/(E1-E2)   

E1   

=hc/(E2-E1)   =hc/(E1-E2)   

'= E1   

E2   

(c)

Figure 1.1: Principle of (a) absorption, (b) spontaneous emission and (c) stimu-
lated emission, in the case of a two levels atom (energy E1 and E2).

Stimulated emission was first proposed by Einstein in 1916 [3] and experi-

mentally observed in 1928 [4]. A cascade of stimulated emissions can create an

amplification of light [5].

However, to use the "stimulated emission of radiation" to amplify light, the

matter must be set initially in an excited state. That condition is called "inver-

sion of population". To achieve it, the amplifying medium is pumped, either by

another light beam (optical pump) or by an electrical current (electrical pump).

The energy added by the pump has to be superior to the losses of energy of the

atoms [5].

To ensure that all the photons have the same energy and directions, it is

necessary to have a medium that control their wavelength. This is achieved

using a cavity. Such cavity is generally made of two mirrors, with one of them

being semi-transparent. That permits photons to leave the laser from that

extremity.

A laser is therefore in practice made of a gain medium in a cavity, with an

external pump. The first experimental laser was achieved in 1960 by Theodore

Maiman. To pumped a cavity made of a ruby rod and silver reflectors, he used

a flashlamp coiled around the ruby rod [6].

5



CHAPTER 1. BACKGROUND AND MOTIVATIONS

Figure 1.2: The first laser created by Theodore Maiman. It is made a ruby
rod pumped by the light from a flashlamp. The cavity is delimited by silver
reflectors. Photograph taken from Ref. [5].

1.1.2 Laser diodes

After the first ruby laser was demonstrated in 1960, the laser diode was

developed during the following years.

A laser diode is a specific type of laser, whose gain medium is made of

semiconductor materials. Therefore, laser diode and semiconductor laser are

interchangeable expressions.

1.1.2.1 Semiconductor materials as laser amplification mediums

In semiconductors materials, such as silicon or gallium arsenide, the electrons

can occupy low energy states in the conduction band and high energy states

in the valence band. A bandgap separates these two possible energy bands.

While at zero temperature all the electrons stay in the valence band, bandgap

of semiconductors is short enough so that electrons can move to the conduction

6



1.1. LASER

band at room temperature. When electrons are in the conduction band, they

are free charges, as are the electrons in metals. On the other side, an electron in

the conduction band lead to a "hole" in the valence band. That missing electron

is mobile, as an electron in the valence band can fill the hole but, in doing so,

creates a new one as its place becomes vacant.

A semi-conductor can be doped by the addition of impurities. It is performed

by introducing elements with superior or inferior numbers of valence electrons.

For instance, adding Phosphorus (5 valence electrons) to a Silicon (4 valence

electrons) lattice adds free electrons in the semiconductor. Similarly, adding

Boron (3 valence electrons) to a Silicon lattice creates a lack of electrons, i.e.

holes. Semiconductors with excess of holes are known as "p", for positive, while

"n", or negative, indicates an excess of electrons.

electrons

holes

active
region

n-doped 
region

p-doped 
region

(a) electrons

holes

recombination

active
region

n-doped 
region

p-doped 
region

(b)

E

Figure 1.3: Principle of the p-n junction. (a) At thermodynamic equilibrium, the
electrons and the holes are confined around the active region. A local electric
field E (green arrow) prevent further movement of the charges. (b) If a bias
current is applied, the electrons and the holes move into the active region
(purple arrows), where they recombine.

When p-type and n-type semiconductors are adjacent, a p-n junction is

created. At equilibrium (Fig. 1.3 (a)), supernumerary holes and electrons re-

combine in the so-called "active region", the frontier between the p-doped and

n-doped zones. That region stops further diffusion because of the difference

of potential between the holes in the p-doped zone and the electrons in the

n-doped zone. Applying a bias voltage (Fig. 1.3 (b)) reduces the energy barrier

between the p and n regions and induces an additional drifting motion of

the supernumerary carriers into the opposite part, hence boosting the carrier

7



CHAPTER 1. BACKGROUND AND MOTIVATIONS

recombinations and photon emissions.

The first semiconductor laser was achieved in 1962 by Robert Hall and

the General Electric Research Laboratory [7]. They used direct transition in

gallium arsenide immersed in liquid nitrogen [8]. However, the carriers in

such laser were hardly confined at room temperature. Therefore, high pump

currents were necessary to maintien stimulated emission [9].

Figure 1.4: Kroemer’s figure of the energy diagram in a double hetero-junction
[10].

Herbret Kroemer proposed a new solution in 1963: the double hetero-

structure (Fig. 1.4). The device is now made of three zones: two highly doped

regions, typically p+ and n+, and a thinner region with a lower bandgap. The

difference of energy gaps between the zones enables the confinement of the

carriers in the active region [10]. The active region also acts as a longitudinal

wave-guide to confine the light in a single direction since its lower energy

bandgap yields also a higher refractive index than the surrounding semicon-

ductor material [9].

1.1.2.2 Realisation of laser diodes

Typical laser diode are made with a Fabry-Pérot cavity. It is constituted by two

partially-reflecting mirrors, placed at the two sides of the cavity (Fig. 1.5 (a)).

A laser with such a cavity undergoes multimode operations: the photons in

the cavity oscillate simultaneously at various wavelengths. The frequencies

of the photon are multiples of the inverse of the round-trip time of the cavity.

8



1.1. LASER

Therefore, the Fabry-Pérot laser has a free spectral range ∆ν equal to:

(1.2) ∆ν= c
ngL

where ng is the group index of the active medium and L the round-trip length

of the cavity. Generally, one of the mirrors has a reflectivity close to 100%, in

order to have only one exit facet.

grating

active 
region

active 
region

reflector

reflector reflector

(a)

(d)

grating

grating

active 
region

grating

active 
region

(c)

(b)

Figure 1.5: Four types of laser diodes: (a) Fabry-Pérot, (b) DBR laser, (c) DFB
laser and (d) VCSEL.

Other types of semiconductor laser have been developed. Three are pre-

sented on Fig. 1.5:

• distributed Bragg reflector (DBR) laser (Fig. 1.5 (b)). One of the mirror is

replaced by a Bragg reflector, i.e. a grating region. That grating region

forces the selection of only one wavelength, directly related to its grating

period. Therefore, DBR lasers have monochromatic emission.

• distributed feedback (DFB) laser (Fig. 1.5 (c)). It is similar to DBR laser

but the grating is placed in the active region. It is considered as highly

stable and monochromatic.

• vertical-cavity surface-emitting laser (VCSELs) (Fig. 1.5 (d)). In VCSELs,

the distributed Bragg reflectors are placed on top and bottom of the

9



CHAPTER 1. BACKGROUND AND MOTIVATIONS

active region. Therefore, the emission is parallel to the semiconductor

growth direction. Such configuration is useful in commercial application

of semi-conductor lasers: lasers can be tested directly on the silicon wafer

and their integration is easier [11]. However, the active region of VCSEL

has typically a circular symmetry and an equal spatial distribution of

the gain, hence making no preference in the polarization of the light: the

light often switches between two possible linearly polarized orthogonal

polarization states [12, 13]. To differenciate from the VCSELs, the laser

diodes that emit parallel to the active region are named edge-emitting

laser diodes or EELs.

Laser diodes are used in various fields. They can be massively produced

and need low currents to operate [5]. These advantages are particularly true

with VCSELs [14].

We give three examples of applications of laser diodes:

• In 1966, Kao (later recipient of the Nobel Prize in 2009) and Hockham

proposed to use optical fibers as waveguide. They tested their hypothesis

with two lasers, an helium neon gas laser and a gallium arsenide laser

diode [15]. Laser diodes were soon preferred because of their low absorp-

tion in silicon at their wavelength of emission. The boom of Internet in

the 1990s led to the development of highly effective laser diodes. The

transparency of a standard optical fiber is maximized around 1.5 µm and

telecommunication laser diodes operate in that range of wavelength [5].

• In lidars, i.e. sensors using light to determine ranges and spatial distribu-

tion of elements [16], laser diodes enable eye-safe, low-cost and small size

lidars [17, 18]. Lasers are either emitting short pulses or a modulated

continuous-wave. In that later case, laser diodes are easy to modulate

through their pump current [17].

• Laser diodes can also be used to sense the presence of gas. The possi-

bility to tune their emitting wavelength with the temperature led to

the development of gas sensors based on a temperature-controlled laser

diode [19–21].

10
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Other applications of laser diodes require a peculiar modulation of the laser

diode dynamics, to make them chaotic.

1.2 Non-linear dynamics and chaos in laser
diodes

1.2.1 From lasers to non-linear dynamics and chaos

Since the start of the modern science, base on mathematical equations in the

17th century, modelling the physical mechanisms with equations seemingly

enabled a perfect prediction of the future. The first example was the gravitation

mechanism, that describes how a planet orbits around the sun. However, a

question remains in that case: what will happen if a third astronomical body

was added? In 1890, responding to a challenge proposed by King Oscar II

of Sweden, Henri Poincaré concluded that no simple solution can be found

and that a small perturbation in the initial conditions can lead to completely

different planet trajectories. As an anecdote, Poincaré made a mistake in his

memoir. He admitted it but the mathematician that publicly validated his work

discreetly searched for all the erroneous copies of the memoir to destroy them,

to protect his own reputation until the new memoir was printed [22].

While these results can be considered as the first statements of non-linear

dynamics, the next important step was only achieved in the 1960s. The devel-

opment of computer sciences then enabled the calculation of the dynamical

evolution of complicated deterministic systems using integration methods.

Lorenz, a weather researcher, tried to simulate atmospheric dynamics with

three simple coupled equations. He observed not only "complex" non periodic

dynamical states but also very different dynamics when modifying the initial

conditions of the numerical simulations. First published in 1963 under the

name Deterministic Nonperiodic Flow [23], his work was recognized in 1972

when he presented a conference talk entitled Does the Flap of a Butterfly’s
Wings in Brazil Set Off a Tornado in Texas? It was the birth of chaos theory.

Chaos is generally defined as irregular (a-periodic) fluctuations governed by

11
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Figure 1.6: Phase-space trajectory of the Lorenz system. The projections into
the three two-parameters planes are plotted in yellow.

a deterministic rule [24]. Additionally, chaotic systems show a strange attractor

in the phase-space of the state variables of the system. The trajectory of the

temporal evolution of the variables, although complex, stay in a bounded region.

The attractor of the Lorenz system under common parameters initialization

[24, 25] is presented in Fig. 1.6. The trajectory turns here around two points but,

contrary to a periodic trajectory, it never passes twice by the same dynamical

point. The strange property of such attractor has later been characterized as a

mathematical object of non-integer, also called fractal, dimension [25].

Lasers were first considered to be far from such realities. However, in 1975,

Haken observed that the general equations used to describe a laser were similar

to the Lorenz equations [26]. While Haken’s chaos only occurs in specific lasers,

further studies observed that chaos was observable in many types of lasers,

including the laser diodes [25, 27].

12
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LASER
DIODE

Conventional mirror

E(t- )
Figure 1.7: Schematic of a COF experiment. E(t−τ) is the delayed laser output
electric field.

Figure 1.8: Spectra of a laser diode under COF. The spectrum in (a) is under
limited feedback, the solide line in (b) is the spectrum with higher feedback
strength and the dashed line in (b) the spectrum of the free-running laser.
Figure taken from Ref. [28].

Soon after the invention of the laser diode, it was observed that its response

to a change in its drive current was nonlinear [29]. In 1969, Broom reported

a new phenomena: a laser diode was destabilized when its output light was

coupled back into its internal cavity by a mirror [28]. Such feedback will be

thereafter named conventional optical feedback or COF (see Fig. 1.7). The

optical spectra of Broom’s laser is presented Fig. 1.8. Under moderate COF,

sidebands appear around the central peak, as shown Fig. 1.8 (a). At higher

13



CHAPTER 1. BACKGROUND AND MOTIVATIONS

feedback strength, as presented in the solide line of Fig. 1.8 (b).

The observed side-bands in Ref. [28] were identified as an udamping of the

relaxation oscillations (ROs), a frequency related to the competition between

the decay rate of the carriers and the decay rate of the photons in the laser

diode cavity [25]. Then, observations show that the undamping of the ROs lead

to chaotic dynamics [30].

1.2.2 The Lang-Kobayashi equations

The numerical reproduction of these observations was unclear until Lang and

Kobayashi proposed in 1980 a model to describe the behavior of a single-mode

laser diode under weak COF. The equations give the evolution of E(t)eiΩt the

complex electric field of the laser and N(t) the density of excited carriers [31]:

d
dt

E(t)eiΩt =
{

iω(N)+ 1
2

(G(N)−Γ0)
}

E(t)eiΩt(1.3)

+κE(t−τ)eiΩ(t−τ)

d
dt

N(t)=−γN −G(N)|E(t)|2 +P(1.4)

where Ω is the laser oscillation frequency, ω(N) is the resonant frequency

of the laser cavity longitudinal mode, G(N) is the gain, Γ0 is the losses in the

laser cavity, γ the inverse spontaneous lifetime of the excited carriers and P is

the injection rate of excited carriers, expressed as a density. τ is the round-trip

time between the laser and the external mirror and κ is the coefficient defined

as [31]:

(1.5) κ= c
2ηlD

a = a
τin

where a is the coupling strength between the light in the laser and in the

external cavity. c is the speed of light, η the index of light in the laser cavity,

lD the length of that cavity and therefore κ is inversely proportional to τin, the

round-trip time in the laser cavity.

These equations were soon modified with a new parameter of the laser

diodes: the linewidth enhancement factor, or α. It was discovered to explain
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1.2. NON-LINEAR DYNAMICS AND CHAOS IN LASER DIODES

larger linewidth of the laser diode when compared with other lasers [32].

Having a typical value between 3 and 7 for laser diodes, it enhances the

linewidth by a factor of 1+α2 but it also a key parameter of the modulation

properties and of the dynamics of laser diodes [33].

Close to the threshold, the gain G(N) is also expressed as linearly dependent

to the carriers density [33]:

(1.6) G(N)=GN(N −N0)

where GN is the linear gain and N0 the carriers density at transparency.

If the laser operates far from threshold, saturation has to be considered

and the gain is now [33]:

(1.7) G(N)= GN

1+ϵ|E|2 (N −N0)

where ϵ is the coefficient gain saturation.

Therefore, the Lang-Kobayashi equations write as follows [24], once we set

E(t)= E(t)eiΩt:
d
dt

E(t)=
[

1+ iα
2

{
G(N)− 1

τp

}
+ iω(N)

]
E(t)+κE(t−τ)(1.8)

d
dt

N(t)= P − n
τe

−G(N)|E(t)|2(1.9)

where τp = 1
Γ0

is the photon lifetime and τe = 1
γ

is the carrier lifetime.

Since the dynamics of the electric field is much slower than the variations

of the optical frequency, we can decompose the electric field into a slow complex

electric field Es(t) and a fast optical carrier eiωt (ω is considered to be constant

over time) [24]:

(1.10) E(t)= Es(t)eiωt

Equation 1.8 transforms into [24]:

d
dt

Es(t)eiωt + iωEseiωt(1.11)

=
[

1+ iα
2

{
G(N)− 1

τp

}
+ iω

]
Es(t)eiωt +κEs(t−τ)eiω(t−τ)
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Dividing each term by eiωt and adding −iωEs to both sides gives the stan-

dard form of the Lang-Kobayashi equations [24, 33, 34]:

d
dt

Es = 1+ iα
2

{
G(N)− 1

τp

}
Es(t)+κEs(t−τ)e−iωτ(1.12)

d
dt

N(t)= P − n
τe

−G(N)|Es(t)|2(1.13)

The system can be seen as a reservoir of excited carriers coupled to an optical

emitter with delay. Carriers are injected by the pump +P term in equation

1.13 but spontaneously decay, hence the − n
τe

term. Other are destroyed when

they recombine to create photons with a gain G(N): −G(N)|Es|2. While some

photons decay a the rate 1
τp

, photons are created, hence the 1
2

{
G(N)− 1

τp

}
Es(t)

term in equation 1.12. The +κEs(t−τ)e−iωτ term considers the energy added

into the laser cavity by the delayed feedback.

The Lang-Koyashi equations were later modify to apply to many systems

with conventional laser diodes, such as, for instance, multimode lasers [35],

injection of the output light of a laser diode into another laser diode [36] or

optical feedback with rotation of the polarization [37].

1.2.3 The dynamical scenario of a laser with
conventional optical feedback

The dynamics of the laser diode with conventional optical feedback was ex-

tensively studied, both by experiments and simulations. The dynamics were

understood as a competition between the relaxation oscillation frequency fRO

of the laser and the frequency fEC of the external cavity [25].

The relaxation oscillation frequency is given by [24]:

(1.14) fRO = 1
2π

√
P/Pth −1
τpτe

where P is the carriers pump, Pth the pump at threshold, τp the photon lifetime

and τe the carriers lifetime. fRO is of the order of a few GHz for standard laser

diodes.
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The frequency of the external cavity is the inverse of the external time

delay τ:

(1.15) fEC = 1
τ
= c

2Lext

where Lext is the distance between the laser and the mirror.

The dynamics of the system is different depending if fEC ≪ fRO ("short

cavity") or fEC ≫ fRO ("long cavity") [25].

Figure 1.9: Numerically computed bifurcation diagram versus the feedback
strength for a laser under weak optical feedback. Figure taken from Ref. [34].

In Fig. 1.9, we present the bifurcation diagram of the output electric field of

a laser under conventional optical feedback in the long cavity configuration,

versus the feedback strength κ. The laser destabilizes from κ> 6×10−4 through

the undamping of the relaxation oscillations. Then, it becomes chaotic via

period-doubling as the feedback strength is increased. From κ = 1.7×10−3,

the dynamics stabilizes again. A study of its optical spectrum shows that the

laser optical frequency settles at multiples of the inverse of the round-trip

time of the external cavity [34]. As the feedback strength increases, the laser

undergoes a new Hopf bifurcation at κ= 2×10−3, which leads to chaos via a

quasi-periodicity. The laser follows several bifurcation cascades on successive

external cavity modes.
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Figure 1.10: Experimental optical spectra of a laser subjected to COF. The
feedback strength, measured by using the threshold reduction, increases from
(a) to (l). Figure taken from Ref. [34].

This cascade of external cavity modes can be observed experimentally, as

shown in Fig. 1.10, which was also taken from Ref. [34]. Figure 1.10 presents

the experimental optical spectra of a laser subjected to COF, for increasing

feedback strengths from (a) to (l). At low feedback strength (Fig. 1.10 (b)), the

laser output spectrum is narrow: the laser output power is steady. Then, Fig.

1.10 (c) shows sidebands at fRO around the central peak: the laser output

power has undamped relaxation oscillations. The spectra b, d, f, h, j and l in Fig.

1.10 show the external cavity modes, separated by unstable dynamics shown

in the spectra c, e, g, j and l in Fig. 1.10 [34].
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FEEDBACK

1.3 Dynamics of laser diodes with
phase-conjugate feedback

Conventional optical feedback requires a good alignment of the mirror to

couple the feedback beam into the laser cavity. Therefore, a new solution was

proposed, using phase-conjugate feedback. A phase-conjugate feedback is a

counterpropagating beam that follows the inverse propagation of the original

beam. The feedback is therefore self-aligned.

Phase-conjugation, and how it can be generated in a phase-conjugate mirror

(PCM), will be extensively described in chapter 2. However, we will now describe

how phase-conjugate feedback creates many different dynamical behaviors on

laser diodes.

1.3.1 Equations

The first numerical study of the dynamics of a laser with phase-conjugate

feedback was a modification of the standard Lang-Kobayashi equations [38]:

Ė(t)= i(ω0 −Ω)E(t)+ 1
2

(
G− 1

τp

)
(1− iα)E(t)(1.16)

+κE∗(t−τ)exp(iφPCM)

Ṅ(t)= I
q
− N(t)

τe
−G|E(t)|2(1.17)

where E(t) is the optical field (normalized such that |E(t)|2 represents the

number of photons in the cavity), E∗(t) is the phase-conjugation of E(t), N(t) the

electron population, ω0 the optical frequency of the laser with feedback, Ω the

optical frequency of the free-running laser, G =GN (N(t)−N0) the linear optical

gain, N0 the population inversion at transparency, τp the photon lifetime, α

the linewidth enhancement factor, I the injection current, q the charge of an

electron, τe the electron lifetime. κ is the feedback rate, τ is the round-trip time

in the external cavity and φPCM is a possible phase-shift in the PCM.

Since the feedback field is the phase-conjugate of the output field, there is

no ω0τ phase-shift in the feedback term as in equation 1.12 [38].
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Previous studies [38–43] have considered a detuning in the feedback field. It

simulates the case of an external pump applied to the phase-conjugate mirror,

whose optical frequency is possibly different from the solitary laser frequency.

Subsequent studies also added non-linear gain saturation [41, 44–46]:

Ė(t)= i(ω0 −Ω)E(t)+ 1
2

[(
G′− 1

τp

)
− iα

(
GN[N(t)−N0]− 1

τp

)]
E(t)(1.18)

+κE∗(t−τ)exp(iφPCM)

Ṅ(t)= I
q
− N(t)

τe
−G′|E(t)|2(1.19)

with

(1.20) G′ = GN

1−ϵ|E(t)|2 (N(t)−N0)

where ϵ is the non-linear gain coefficient.

Using a self-pumped PCM (see section 2.1.3), the four-wave mixing is

frequency-degenerated (no detuning), hence there is no shift in the wavelength

[47]. The equations therefore become, considering also that the phase-shift

φPCM can be set to 0, and if the gain is linear [48]:

Ė = 1+ iα
2

[
GN(N −N0)− 1

τp

]
E+κE∗(t−τ)(1.21)

Ṅ = I
q
− N
τe

−GN(N −N0)|E|2(1.22)

To obtain dimensionless equations, we can introduce the following variables

[48],

t′ = t
τp

(1.23)

Y =
√
τeGN

2
E(1.24)

Z = GNτp

2
(N −N − sol)(1.25)
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with Nsol = N0 + 1
GNτp

the population inversion of the solitary laser. All the

parameters expressed as a time are also normalized by τp

γ= κτp(1.26)

θ = τ

τp
(1.27)

T = τe

τp
(1.28)

Last, the pump is reinterpreted as a new parameter P:

P = GNτpτe

2

(
I − I th

q

)
(1.29)

with I th = Nsol q
τe

the threshold current.

Equations 1.21 and 1.22 can now be written in a dimensionless form [48]:

d
dt′

Y = (1+ iα)ZY +γY ∗(t′−θ)(1.30)

T
d

dt′
Z = P −Z− (1+2Z)|Y |2(1.31)

If fRO is normalized, equation 1.14 can be written as [49]:

(1.32) fRO = 1
2π

√
2P
T

In the case of finite depth-penetration length in the PCM, i.e. if the PCM

does not have an instantaneous response [50], the feedback field U is filtered by

a parameter τr, related to the times it takes for the light to penetrate the PCM.

If we assume that τr is normalized by τp, the equations now reads as [51]:

d
dt′

Y = (1+ iα)ZY +γ(1.33)

T
d

dt′
Z = P −Z− (1+2Z)|Y |2(1.34)

τr
d

dt′
U =Y ∗(t′−θ)−U(1.35)

1.3.2 Bifurcation scenario

Equations 1.33 to 1.35 are simulated with parameters P = 0.6016, α= 2, τr = 50,

θ = 1143 and T = 1200 [52]. Four time series at different values of γ are shown

in Fig. 1.11 and the corresponding bifurcation diagram is show in Fig. 1.12.
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Figure 1.11: Simulated time traces of a PCF laser with filtered feedback,
obtained from equations 1.33 to 1.35. (a) is γ=0.0012, (b) at γ= 0.008, (c) at γ=
0.0168 and (d) at γ=0.0506. Other parameters are P = 0.6016, α= 2, τr = 50,
θ = 1143 and T = 1200. Figure taken from Ref. [52].

ECM ECM ECM

ROs

Figure 1.12: Simulated bifurcation diagram of a PCF laser with filtered feed-
back, obtained from equations 1.33 to 1.35. Parameters are the ones of Fig.
1.11. Figure taken from Ref. [52].

At low feedback strength, the laser destabilizes into the relaxation oscil-

lations [52–54], as in conventional feedback [25]. An example of simulated

undamped oscillations are presented in Fig. 1.11 (a).

When the feedback strength is increased, chaos appears from the undamp-

ing of the relaxation oscillations [52–55], as illustrated in Fig. 1.11 (b). However,

the PCF seems more prone to chaos [55] and phase-conjugate feedback chaotic
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dynamics encompass larger bandwidths than the chaos obtained with conven-

tional feedback [56].

For still larger feedback strength, the system shows qualitatively different

dynamics, shown in Fig. 1.11 (c). The output power oscillates at a frequency

equal to a multiple of the inverse of the output roundtrip time and this fre-

quency is often higher than the relaxation oscillation frequency [52, 54, 57].

Analogous to the external cavity modes of the conventional feedback, these

latter states are named external cavity modes (ECMs) [58].

At higher values of feedback strength, early studies predicted a restabiliza-

tion of the laser [43]. That result was observed in 2002 with a self-pumped

phase-conjugate mirror [59]. It is worth noting that the authors observed

restabilization but no ECMs.

Restabilization after ECM crisis was reported by our group in 2017 [52].

That latter study led us to use a model that took into account the penetration

time into the crystal [50], presented in equations 1.33-1.35. The restabilization

was analytically determined to be from an inverse Hopf bifurcation on an ECM

solution [51].

1.4 Other PCF systems

We have described the behavior of the laser diode using a simple setup, with a

degenerate phase-conjugate feedback. However, more complex configurations

have been associated to PCF.

First, an external pump of a phase-conjugate mirror was also considered

in theory. In that configuration, the laser locks to the frequency of the pump

before the undamping of the relaxation oscillations [39].

Such results were experimentally observed with a PCM made of rubidium

vapor cell, as presented Fig. 1.13. There is a 300 MHz detuning between the

frequency of the pump of the PCM and the frequency of the free-running laser.

At a given value of feedback strength, the laser locks to the frequency of the

pump and its optical spectrum is thinner. Then, sidebands at the frequency of

the relaxation oscillations ( fRO) appear and are followed by new harmonics of
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Figure 1.13: Optical spectra of a laser diode with PCF from a rubidium vapor
cell at increasing feedback strength: (a) free running laser, (b) four-wave mixing
in the laser, (c) the laser locks to the pump frequency, (d) two sidebands appear,
(e) and (f) four sidebands, (g) spectrum becomes broad and (h) coherence col-
lapse. Figure taken from Ref. [60].

fRO. The spectrum becomes broader until coherence collapse occurs [60].

A strong detuning δ of the PCM with respect to the feedback rate, i.e. if

|δ| >
p

1+α2

τp
, will only create chaotic solutions [42].

Moreover, the phase-conjugation can be used as a way to easily inject

light from a master laser into a slave laser, by using a BaTiO3 crystal as a

"shared-waveguide" between the two lasers [61, 62].

The dynamical effect of phase-conjugate feedback was also theoretically

explored for quantum cascade lasers (QCLs). QCLs are stable in a larger range

of feedbacks strength with PCF than with COF [63].
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1.5 Objectives

The chaos generated by PCF has been qualitatively studied in several works

in the past thirty years [41, 52–54, 59]. However, no extensive quantitative

study has been conducted, except for the two studies made by our group in

2016 [56, 64]. These studies were however limited not only by the range of laser

and feedback parameters considered but also by the limited time resolution of

the measured dynamics.

Therefore, we decided to extend their results with a broader qualitative

study. After a presentation of the experimental setup in chapter 2, we will

discuss the following results:

• Reference [56] analyzed the chaos bandwidth (defined in section 3.1). The

chaos bandwidth is analyzed by using a three-times larger measurement

bandwidth, as we report in chapter 3.

• Reference [64] analyzed theoretically the chaos bandwidth, the permu-

tation entropy and the spectral flatness (defined section 3.1) but it used

the standard unfiltered PCF equations. Still in chapter 3, we extend its

conclusions by considering the finite depth penetration time in the PCM

and also comparing theory with experiment.

• Similarly, the permutation entropy of PCF had never been measured. We

analyze it here, in chapter 4.

• Still, our group was the first to evidence external cavity modes in Refs. [52,

54, 57, 65–67]. Still, how the feedback parameters influence the stability

and properties of the ECMs was not considered year experimentally. In

particular, Refs. [65, 66] predicted that the frequency of the external

cavity modes was independent of the length of the external cavity but no

experimental proof had been made. This will be done in chapter 5.

• Finally, we found interesting to analyze more complex PCF configurations

such as one in which a Faraday rotator is inserted in the feedback loop.

That configuration leads to interesting new dynamics when compared to
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conventional PCF, and these dynamics are here unveiled theoretically in

chapter 6.
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Chapter 2

Experimental setup

V arious configurations have been used to study the dynamics of the

laser diode subjected to phase-conjugate feedback (PCF). We will here

present the key components of our experiment, i.e. the phase-conjugate

mirrors and its principle, and the different elements of the experimental setup

(laser diodes and measurement devices).

2.1 Phase-conjugate mirrors

The main components of the PCF experiment are the laser diode and a phase-

conjugate mirror (PCM).

2.1.1 Principle of phase-conjugate mirrors

We present first some general statements about PCMs. A beam is the phase

conjugate of another beam when they are counterpropagating but also have

the same amplitudes and phases. If we consider the complex expression of

the electric field, the amplitude of the phase-conjugate beam is the complex

conjugate of the original beam amplitude.

We take the example of a planar wave. The amplitude of the input electric

field is written as follow:

(2.1) E(x, y, z, t)= A(x, y, z)ei(kz+φ(x,k,z))e−iωt
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where A(x, y, z) is defined as the amplitude of E(x, y, z, t), φ(x, y, z) is the spatial

dependency of the phase, k projection of the propagation vector on the direction

z and ω the frequency of the wave (in radians).

The electric field of the phase-conjugate beam is the following:

(2.2) E∗(x, y, z, t)= A(x, y, z)ei(−kz−φ(x,k,z))e−iωt

The signs of both the phase and the propagation vectors have been inverted.

It has two consequences :

• The spatial modifications of the phase will be "corrected", the phase-

conjugate beam being subjected to the inverse phase modification of the

input beam,

• The phase-conjugate beam will have the same propagation direction

as the input beam, but reversed. For instance, if the input beam was

diverging from a source, the phase-conjugate beam will be converging

into the source of the input beam.

In practice, phase-conjugation is often non-degenerate and light may not be

monochromatic but the principle remains.

Phase-conjugate mirrorConventional mirror

Figure 2.1: Illustration of the effect of a PCM compared to a conventional
mirror. PCM inverts the propagation of the light and the person is only able to
see his eye.

To illustrate phase-conjugation, we consider a human looking himself in

a mirror, as shown in Fig. 2.1. The eye is open and he is able to see a larger

part of the mirror, in the solid angle corresponding to his eye. If the mirror is a

conventional mirror, the person can see most of his face. However, if the mirror
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is a phase-conjugate mirror, the reflected light is directly inverted and he is

only able to see its eye. Of course, phase-conjugation can not be achieved when

the energy of the light is too low and spread on a too large surface.

Phase-conjugate mirror

Distorting medium

Undistorted 
wave

Conventional mirror

Distorting medium

Doubly 
distorted 

wave

(a)

(b)

Figure 2.2: The traditional illustration of the wavefront corrective effect of
phase-conjugation [68–71]. A wave with a planar wavefront is reflected by (a)
a phase-conjugate mirror and (b) a conventional mirror. The wavefront of the
forward wave is represented in red and the one of the reflected wave is in green.

Another example of the properties of phase-conjugation is presented in Fig.

2.2. A wave with a plane wavefront propagates to the right, is distorted by a

distorting medium and then reflected by a mirror (blue wave). If the mirror

is a phase-conjugate mirror, as shown in Fig. 2.2 (a), the wavefront is not

inverted and the distortion is canceled, while if the mirror is a conventional

mirror, as shown in Fig. 2.2 (b), the wavefront is distorted twice, first during
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its forward propagation and second during its backward propagation. Such

wavefront distortion leads to a deformation of the observed image.

2.1.2 Physical processes to create phase-conjugate
mirrors

In order to generate a phase-conjugate mirror, various setups, using different

physical processes, can be used. Complete reviews can be found in Refs. [69,

71, 72].

2.1.2.1 Scattering mediums

The first phase-conjugation was historically achieved in 1972 using stimulated

Brillouin scattering (SBS) in a gas cell. The back-scattered light generated by

SBS was already known to be in the opposite direction of the incoming beam

but Zel’dovitch et al., observed that the reflected wavefront was similar to the

indicident one [73]. Phase-conjugation was later achieved with other types of

stimulated scattering, such as stimulated Raman scattering [74], stimulated

Rayleigh-wing scattering [75] or photorefractive back-scattering [76].

2.1.2.2 Four-wave mixing

However, the most used phase-conjugation method is four-wave mixing (FWM),

in third order (χ(3)) mediums [71]. Its principle is shown in Fig. 2.3. As its name

implies, FWM is based on the interaction of four waves, a signal wave, two

pump waves and a fourth wave, in a third-order non-linear medium. It can be

described as real-time holography: the signal and one of the pump waves create

a grating in the material, grating that is then read by the second pump wave

to generate the phase-conjugate signal. The phase-conjugate wave is generated

by the χ(3) response of the medium [71].

Four-wave mixing enables the generation of the beam at a new frequency.

If the two pump beams have frequencies f1 and f2 and the signal beam a

frequency f3, the fourth beam will have frequencies at ± f1± f2± f3 and third-

harmonic generation 3 f i. Degenerate four-wave mixing implies f1 = f2 = f3 = f ,
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Figure 2.3: Geometry of four-wave mixing, from Ref. [77]. In a χ(3) non-linear
medium, four waves interact: two pump beams (A1) and (A2), one signal beam
(A3) and the phase-conjugate (A∗

4).

so the phase-conjugate beam has a frequency of f , in addition to third-harmonic

3 f generation. One of the main advantage of degenerate four-wave mixing

is that if the two pump beams are opposite, the phase-matching condition is

always fulfilled [77]. Degenerate four wave mixing also enables the use of only

one laser to generate both the pump and the signal. Such configuration is used

in self-pump mirrors, i.e. mirrors whose pump is taken from the laser output.

A widely used medium to obtain the aforementioned gratings is the pho-

torefractive mediums, where the gratings to generate phase-conjugation are

obtained using Pockels effect. The physical principle of the photorefractive ef-

fect is presented in Fig. 2.4. The interference fringes homogeneously illuminate

the material. This nonhomogeneity of light intensity leads to a migration of the

photoexcited charges into the darker areas. The difference in the charge density

creates a space charge field, that changes the refractive index through Pockels

effect. The refractive index is now a periodic grating, of same wavelength than

the original fringes but with a π/2 detuning. The response time of the material,

related to the mobility of the carriers, is directly linked to the time it takes to

write the gratings structure into the photorefractive material.

We can note that four-wave mixing was also achieved in broad-area semi-

conductor lasers. In that case, the gratings is inscribed into the semiconductor
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Figure 2.4: Principle of photorefractive effect in a material non-homogeneously
illuminated. Figure taken from Ref. [78].

inner structure of the laser by the pump beam and its reflection in the laser

rear facet [79, 80]. There are two main advantages: the response of the system

is faster because of the low relaxation time of the carriers (fs-ps) [81, 82] and

the phase-conjugate beam can be electrically amplified in the laser [83].

2.1.3 Photorefractive self-pump phase-conjugate mirror
and cat-mirror

The phase-conjugate mirrors obtained in photorefractive crystals are often

self-pumped, i.e. the pump beams and the signal beam are created by the same

laser. A peculiar kind of self-pumped PCM is named the "cat" mirror. It was

first demonstrated in 1982 by J. Feinberg [84]. He used the image of a cat

to illustrate the image correction properties of the proposed phase-conjugate
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Figure 2.5: The "image of a common househould member" used in Ref. [84] to
show the efficiency of the ’cat’ mirror.

mirror (see Fig. 2.5) and consequently that mirror is always named cat.

Technically speaking, its principle is presented in Fig. 2.6. The phase-

conjugation occurs in a photorefractive crystal and uses an effect named "fan-

ning". J. Feinberg reported the observation of an asymmetric defocusing of

light in photorefractive crystals. The deviation of light, or fanning, occurs in

the direction of the c-axis of the crystal (Fig. 2.6) [85]. It is used to generate the

pump for the four-wave mixing process in the crystal, without any additional

beam splitting device.

After the beam enters the crystal, part of the input light A1 is deviated in

the direction of the c-axis thanks to the fanning physical process. That deviated

light is named A1,d in Fig. 2.6. It experiences total internal reflection in I1 and

I2 and then arrives at point G2. At that point, four-wave mixing occurs between
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G1

G2

I1

I2

c-axis
A1*

A2*

A1

A2,d

A1,d

A2,d

A1,dA2

Figure 2.6: Principle of the ’cat’ self-pumped phase-conjugate mirror. The
fanning is indicated with curved red arrows.

the beam A2 that went straight from G1, the beam A1,d and the beam that is

deviated by fanning in G2, named A2,d. The fourth wave is the phase-conjugate

of A2. Similarly, in G1, four-wave mixing occurs between A1, A1,d and A2,d,

the fourth wave A1∗ being the phase-conjugate of the input wave A1.

To obtain total-internal reflection, the crystal has to be carefully polished.

Therefore, porous crystals such as Sn2P2S6 (SPS) have not been used in ’cat’

phase-conjugate mirrors. In Ref. [84] the crystal is BaTiO3 (barium titanate)

and that crystal was used in most of the further studies [86–90]. Copper-

doped (K1−xNax)0.4(Sr1−yBay)0.8Nb2O6 (Cu:KNSBN) [91] and iron-dopped

K NbNO3 (Fe : K NbNO3) [92, 93] were also used. All these experiments were

performed at wavelengths around 480-530 nm. Cobalt-dopped barium titanate

Co : BaTiO3 crystals enable efficient phase-conjugation at 800 nm [94] and

Rhodium-dopped barium titanate Rh : BaTiO3 at 1.06 µm [95]. In 2001, one

of the few dynamical studies of a near-infrared laser under a phase-conjugate

feedback was performed in a ’cat’ mirror with Rh : BaTiO3 cubic crystal con-

figuration [59]. In our study, we use two different crystals of the same material.

These two crystals, manufactured together by the German company FEE in

2015, are 5 by 5 by 5 mm cubes, cut parallel to the c-axis. They are dopped

with rhodium (Rh) at 1000 ppm to make them more efficient at infrared wave-
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lengths. Indeed BaTiO3 has an absorption maximized for visible light at low

wavelength but adding Rh drives the peak of absorption to 600 nm and en-

ables the crystal to be sensitive to a beam with a near-infrared wavelength of

850 nm [96].

Figure 2.7: Light path in the ’cat’ phase-conjugate mirror. The light enters the
crystal from the left. The edges of the cube are roughly indicated with a green
dotted line.

Using an infrared camera, we took the picture displayed in Fig. 2.7, that

shows the light path as phase-conjugation occurs in the crystal. The light is

seen entering from the left, and then part of the light is deviated by fanning

into the top-right corner. The two bright points on that corner correspond to

the total-internal reflections of the fanned beam.

BaTiO3 crystals have a response time of a few ms [97]. However, it is

not a default in phase-conjugate feedback experiments because the phase-

conjugation still takes place but the crystal is insensitive to the fast variations

(ns-scale) of the laser output. A photorefractive material with a faster response

time may generate a phase-conjugate feedback that is inconsistent with the

laser output signal. For instance, if the PCM is sensitive to the fast variations of

a chaotic laser signal, it could create a chaotic and always changing reflectivity.

Such PCF study would be unworkable.
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2.1.4 Analysis of phase-conjugate beam in the cat
configuration instabilities

Figure 2.8: Temporal evolution of the reflectivity of a PCM-cat mirror, for a
lateral position y equal to 5.64 mm, (a), 5.99 mm (b), 6.2 mm (c), 6.33 mm (d),
6.4 mm (e). In particular, time trace (a) is stable and time trace (e) has been
proven to be chaotic. The inset shows the geometry of the mirror. Figure taken
from Ref. [87].

As we try to implement phase-conjugation in cat mirrors, a question will

appear: is the reflectivity stable and constant with time? The temporal insta-

bility of the reflectivity of cat mirrors has been reported from 1985. In Ref. [98],

the authors reported various experimental results about these instabilities.

In particular, they described the possibility of oscillating, stable and chaotic

dynamics of the reflectivity. Periodic oscillations and steady-state were ob-

served in a cat-mirror whose faces had been covered by a diffusely reflecting

layer of Tipp-Ex. Damped oscillations leading to steady-state and chaos were

observed with a highly reflecting cover, silver paint in that case. They reported
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a linear increase of the period of the regular oscillations with respect to the

intensity of the pump beam and supposed the oscillations were created by spa-

tial oscillation of the photorefractive gratings. In the case of highly reflecting

sides, they explained the chaotic states by the simultaneous presence of two

channels, i.e. two possible optical paths. When the signal power is above a

threshold, the reflectivity stabilizes. In 1987, Gauthier et al. [86] proposed a

numerical explanation for that result: the interactions between the two points

of four-waves mixing in the cat mirror make the evolution of the reflectivity

chaotic. Thee authors experimentally confirmed their model with a BaTiO3

PCM-cat: the "Rényi entropy" of its reflectivity, which is an indicator of the

diversity of the dynamics, converges to a positive value.

Several ways have been then proposed to stabilize the reflectivity of the

PCM-cat. In 1992, Rauch et al. studied the influence of the position of the input

point of the light on the instabilities of a BaTiO3 PCM-cat. They moved the

PCM parallel to its c-axis and measured the time series, reproduced on Fig.

2.8. They concluded that a carefully chosen point enables constant and high

values of reflectivity [87]. Jeffrey et al. confirmed that result by calculating

the Lyapunov exponent of the experimental reflectivity of a BaTiO3 PCM-cat

moved parallel to its c-axis [88]. Medrano et al. obtained a stable reflectivity

with a specially-cut Fe : K NbNO3, its edges being non parallel to its c-axis [93].

Zheng et al. shows that the polarization of the output light into a Cu : K NSBN
PCM-cat can also stabilize its reflectivity [91]. In 1995, Goetz et al. studied the

influence of the temperature of a BaTiO3 crystal on the dynamics [89].

We have tried to reproduce that later result, by mounting the crystal on

a radiator. The temperature is then stabilized but still, we did not observe

stabilization of the reflectivity. Geometric studies were also not efficient in

stabilizing the laser over long time. We explain that lack of stabilization by

the unstable nature of the laser output light. The authors trying to optimize

the reflectivity of a PCM used Faraday isolator to prevent the laser dynamics

from being destabilized while our goal is to have an unstable laser to study its

dynamics.

However, these unwanted variations enabled us to explore the influence

of the feedback strength on laser without the need of human intervention
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Figure 2.9: Variation of the feedback ratio F (0.64 times the reflectivity of
our PCM) versus time. The dots, diamonds and crosses indicate that the laser
dynamics are respectively chaotic, self-pulsing or steady state. Figure taken
from [99] and modified.
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Figure 2.10: Variation of the feedback ratio F (0.64 times the reflectivity of
our PCM) versus time. The dots, diamonds and crosses indicate that the laser
dynamics are respectively chaotic, self-pulsing or steady state. Figure taken
from [99] and modified.

on the variable attenuator. Figure 2.9 shows an example of such variations

and how the system explores various dynamical states depending on the PCM

reflectivity. These dynamical states will be presented in more details in chapter

3. By a careful choice of the geometry, we were also able to stabilize the PCM

for a relatively long time, up to several minutes but the reflectivity suddenly

became irregular after a variable time. Figure 2.10 is an example of such

stabilization of the reflectivity, followed at t = 155 s by the onset of irregular

variations of the reflectivity.

As now, we know how to generate a phase-conjugate mirror, let us present

the experimental setup to analyse nonlinear dynamics of a laser subjected to

phase-conjugate feedback.
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2.2 Experimental setup

We have presented the principles of the two main components, the laser diode

and its dynamics (section 1.3) and the cat mirror (section 2.1.3). We will now

detail the experimental setup that is used in this thesis.

2.2.1 Setup description

0

I 
(V

)

Time (ns)

Oscilloscope

Att.

BS

Iso.

Fiber

PD

M1

M2

PCM

PM

Coupler

Col.

°C

J
constant
current

laser driver

850nm EEL

Lens

Figure 2.11: Setup of a PCF experiment, with a cat-mirror. The edge-emitting
laser is place left and the PCM right. Col. means collimator, BS means beam
splitter, Att. means attenuator, PM means powermeter, M1 and M2 are two
mirrors, Iso. designates a Faraday isolator and PD means phototiode.

The setup, derived from the setup presented in Ref. [52], is presented in

Fig. 2.11. The two main components of our experiment are the laser and the

phase-conjugate mirror. The principle of the mirror was described in the above

sections. The laser is an edge-emitting laser (EEL) emitting in the near-infrared

(λ≈ 850 nm) and its specifications will be given in section 2.2.2. It is mounted

in on a Newport 710 Temperature Controlled Laser Diode Mount, controlled by
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a Newport Model 6100 Laser Diode and Temperature Controller. The mount of

the laser is maintained at a temperature of 20°C.

Semiconductor lasers have diverging outputs and we placed a Newport

5722-B-H aspheric lens (Col.) a few centimeters after the laser to collimate the

beam. The distance between the laser and the collimating lens can be adapted

to change the beam divergence, for instance to better focus the beam on the

mirror.

The light is then splitted by a 80-20 beam splitting plate (BS). Precise

measures show 78% of the light is not deviated and 19% of the light is deviated.

The straight-going beam is then attenuated by a variable neutral density,

slightly tilted to avoid unwanted conventional feedback into the laser. We often

remove the attenuator, because the reflectivity of the PCM can be decreased

by a small tilt in its geometry. After the attenuator, the light enters the cat

phase-conjugate mirror. As explained in section 2.1.3, the mirror generates the

backward-propagating phase-conjugate of the laser output.

The phase-conjugate beam is then splitted by the beam splitter and 19% of

it is measured by a powermeter (PM). If necessary, a lens is placed in front of

the powermeter to focus the large beam into the measurement cell. The part of

the feedback that is not diverted by the beam splitter returns into the laser.

The part of the output of the laser that is splitted after the collimator is

coupled into an optical fiber. We use a free-space isolator Thorlabs IO-3-850-HP

to prevent reflections from the coupler. Two mirrors are placed before the

isolator to help the coupling of the light into the isolator and the fiber. The

measurement arm itself will be described in section 2.2.3.

Apart from the adjustments of the light path, the important parameters

that will change are:

• the feedback strength, which is controlled by the attenuator and by the

spontaneous time-dependent variations of the reflectivity of the PCM,

• the laser pump current, which can be tuned at the driver of the laser,

• the distance between the laser and the PCM. The BaTiO3 crystal is

placed on an rail. The distance can vary from 14.7 cm to the length of the
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Figure 2.12: Photograph of the experimental setup with the shortest possible
external cavity. The mechanical mount of the phase-conjugate mirror (PCM,
the crystal is highlited in red) touches the beam splitter (BS), whose mount
is as close as possible to the collimator (Coll.) and the laser mount (EEL). In
the foreground, the lens is the one that focalizes the feedback beam into the
powermeter.

optical table. The minimum distance is reached when the PCM is sticked

to the beam splitter. Such configuration is detailed in Fig. 2.12.

2.2.2 Laser diodes

We have used two different laser diodes. Both are GaAlAs Fabry-Perot index-

guided laser diodes produced by JDS-Uniphase, from the SDL-5400 series. The

first model, a SDL-5420 was used in the first year of study. In particular, it is

used for the results of Refs. [99–102]. Then that laser stopped lasing and was

replaced by another laser, model SDL-5410. It was used in Ref. [103]. Their

characteristics are given below.
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We choose that series of Fabry-Pérot laser to make easier the comparison

with previous experiments from our group: in Refs. [54, 56, 104, 105] the laser

was a SDL-5400 and in Ref. [52], the laser was the aforementioned SDL-5420 ;

but also with many experiments in the past 30-years about nonlinear dynamics

of laser diodes that also use SDL-series laser diodes.

2.2.2.1 JDS-Uniphase SDL-5410

While, chronologically speaking, it is the second laser we used, we have more

data available to characterize the SDL-5410 than the SDL-5420 laser.
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Figure 2.13: Light-current curve of the JDS-Uniphase SDL-5410 laser diode.
The equation of the linear section of the curve was obtained by linear regression
for the values of injection current higher than 19 mA.

First, we present in Fig. 2.13 the light-current curve of that laser. The linear

regression was performed on the points with an injection current higher than

19 mA. We obtain a threshold current of I th = 16.6 mA and an electrical-optical

efficiency of 1.06 W /A.

We then present in Fig. 2.14 the evolution of the optical spectrum of the

laser for various values of pump current I. At 15 mA, the emitted light is

from spontaneous emission. The spectrum shows resonance at regularly spaced

wavelengths that correspond to the modes of the Fabry-Pérot cavity. We can

determine the free-spectral range: FSR = 124 ps. Then, at I = 20 mA, the

spectrum shows a maximum at 856.2 nm. However, other modes are lasing

simultaneously, in particular at 855.8 nm. The multimode behavior of the
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Figure 2.14: Experimental evolution of the optical spectrum of the SDL-5410
laser diode, for increasing values of pump current. Each successive spectrum
has an offset of 50 dBm with the respect to the previous one.

laser is even more visible for I = 40 mA. As the pump current increases, the

frequency of the laser red-shifts, up to a wavelength 858.9 nm under a pump

current of 100 mA.
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Figure 2.15: Evolution of the frequency of the ROs of the SDL-5410 laser diode.
The dots correspond to the measured points.

Last, we present in Fig. 2.15 the frequency of the relaxation oscillations

fRO versus the pump current I. The relaxation oscillations appear when the
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laser diode is modulated, which is also true when being self-modulated such as

in optical feedback experiments. The values of fRO are therefore obtained by

visual observation of the spectrum of the laser under very low feedback. We

observe a peak at fRO in the Fourier spectrum of the laser output power. Then,

we performed a linear regression to obtain an approximation of the general

evolution of fRO with I.

(2.3) fRO = K

√
I − I th

I th

with K a real coefficient, we performed a linear regression of
√

I−I th
I th

and we

obtain K = 2.49 GHz. The corresponding curve is indicated in red in Fig. 2.15.

2.2.2.2 JDS-Uniphase SDL-5420

Figure 2.16: Light-current characteristic of the SDL-5420 laser diode used in
our experiment. Figure taken from Ref. [106].

The other laser diode is of the model SDL-5420. According to its datasheet,

it can be pumped up to ≈ 200 mA and has a maximum output power equal to

200 mW.

It was used in previous experiments in our group and Émeric Mercier

gives in his PhD thesis [106] the light-current curve of that laser and the

evolution of its relaxation oscillation frequency versus its pump current. They
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Figure 2.17: Evolution of the frequency of relaxation oscillations as a function
of the injection current of the laser diode. Figure taken from Ref. [106].

are reproduced respectively in Fig. 2.16 and in Fig. 2.17. From Fig. 2.16, the

threshold of the laser is 15.9 mA. The value of the RO frequency was obtained

by relative intensity noise measurements. In the operating range of pump

current 40-50 mA, fRO ≈ 3.5 to 4.5 GHz.

2.2.3 Measurement arm

Our laser diode generates high-frequency dynamics. To record them, part of

the laser output light is coupled into an optical fiber. A photodiode is then fiber-

coupled and converts the optical dynamics into the dynamics of a photocurrent.

We used two different photodiodes :

• The first one was a Newport 1414-50, with a 3-dB bandwidth running

from DC to 25 GHz. At 850 nm, it has a responsivity of roughly 0.3 A/W .

The evolution of that responsivity versus the frequency is presented in

Fig. 2.18. The input of that photodiode is a multimode fiber with 50 µm
core. Using multimode fiber facilities the coupling of light into the fiber.

• The second one was a Newport 1474-A, with a 3-dB banwidth running

from 15 kHz to 38.5 GHz. Its output is a singlemode fiber with a 9 µm core.
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Figure 2.18: Frequency responsivity of the Newport 1414-50 photodiode, from
the manufacturer. Source : https://www.newport.com/p/1414-50

Figure 2.19: Frequency responsivity of the Newport 1474-A photo-
diode, from the manufacturer. Source : https://www.newport.com/f/
22-ghz-and-38-ghz-photoreceivers

It requires more careful coupling of light but the photodiode has a slightly

better responsivity, ≈ 0.35 A/W. We give in Fig. 2.19 the responsivity of

the 1474-A phototiode. It is worth noting there is a 2-dB high peak in

the responsivity around 5 GHz. That value being close to the relaxation

oscillations frequency of our laser, it could led to a small overestimation

of the contribution of that frequency.

To avoid filtering the photodiode electronical output, we directly plug the

photodiodes to the oscilloscope.
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2.3. CONCLUSION

We use two models of oscilloscope. The first one is a Tektronix DPO72304SX

oscilloscope. It has a bandwidth of acquisition of 23 GHz and a sampling rate

of 50 GSample/s. We couple the 1414-50 photodiode with that oscilloscope. The

second oscilloscope is a Teledyne LeCroy 10-Zi-36, with a 36 GHz bandwidth

and a sampling rate of 80 GSample/s. It allows the capture of the full dynamics

from the 1474-A photodiode.

2.2.4 Powermeter and real-time measurement of the
reflectivity

To monitor the feedback strength, as described in section 2.2.1, we use a power-

meter. Depending on the available one, we used Newport 818-IR (Germanium),

818-IG (InGaAs) and 818-SL (Silicon) photodetectors. A crucial issue of our

work was to synchronize the measurements of the feedback strength and of the

laser output time series, since a time series is measured each half-second.

To do so, a first method is to record the feedback strength with a PC con-

nected by a Newport 843-R-USB powermeter. The software of the powermeter

is not compatible with interface-based instrument communication protocols.

Therefore, we obtain a reference point by blocking the laser light, as both laser

output power (measured at the oscilloscope) and reflectivity immediately fall

to 0.

The second method is simpler to implement: we directly plug the Newport

photodetector to the oscilloscope. We suppose the measured voltage linearly

varies with the optical power and we calibrate our measurement with a 2 mW

power. Since the duration of time series and the rise time of the photodectors

are of the same order of magnitude (≈ 2 µm), we do not consider possible

low-scale variations in the feedback strength and we take its average value on

the duration of the laser output time series.

2.3 Conclusion

We have presented our experimental setup. The first component, the self-

pumped phase-conjugate feedback. It uses degenerate four-wave mixing in a

47



CHAPTER 2. EXPERIMENTAL SETUP

photorefractive BaTiO3. The spontaneous instabilities in the mirror yield a

time-dependent reflectivity, which enables us to study the dynamics at various

feedback strengths without user’s intervention. Then, we have shown the

properties of the two laser diodes used in this thesis, in particular the evolution

of their output power, wavelength and relaxation oscillations frequency with

respect to the pump current. Last, we presented the measurement apparatus,

namely the photodiodes and the measurement of the feedback strength.
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Chapter 3

Study of the chaos bandwidth of
laser diodes with
phase-conjugate feedback

I n chapter 1, section 1.3, we described the ability of laser diodes under

phase-conjugate feedback to generate chaos. To enable the fast encryp-

tion of chaos-based communication, the laser diodes must present high

frequencies and a broad range of modulation. Cryptography using broadband

chaos will also be harder to break than chaos deployed over a small range of

frequencies. The following work intends to be a proof of concept of the capacity

of the PCF to fulfill these requirements. We study here in detail the qualitative

evolution of the chaos generated by phase-conjugate feedback.

That work was presented in various conferences [100, 101, 107] and pub-

lished in several articles [99, 103, 107].

3.1 Definitions of the different indicators of the
chaos quality

To qualitatively analyze our results, we define here two indicators, the chaos

bandwidth and the spectral flatness, and we will give the state of art.
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3.1.1 A first indicator: the chaos bandwidth

3.1.1.1 Different definitions of chaos bandwidth

In random bit generation using chaotic signal, the need of fast chaos is a direct

consequence of the objective of generating numbers at high rates [108, 109].

Broadband chaos will also be harder to break in secured communications [110].

Last, the resolution of a chaotic lidar is increased thanks to the large bandwidth

of the chaos used [111].

Figure 3.1: Three definitions of chaos bandwidth used on two different spec-
trum: standard chaos bandwidth (a-b), chaos bandwidth centered on the main
peak (c-d) and effective chaos bandwidth (e-f). Figure taken from Ref. [112].

To quantify the bandwidth of chaos, information can be obtained from the

radio-frequency (RF) spectrum, i.e. the spectrum of the power of the output of

the chaotic laser. The conventional definition of bandwidth, that considers the

frequency at which the signal energy is attenuated by 3dB, can not be applied

to chaotic signals, since they do not have a flatband frequency content. Other

definitions have been proposed:

• First, a simple way is to study the range of frequencies on which the

chaotic spectrum extends. A definition was proposed in 2003 by F.Y.

Lin and J.M. Liu [113]: the chaos bandwidth is equal to the range of

frequencies that contains 80% of the total energy of the spectrum, starting

from DC. Figure 3.1 (a) and (b) present an example of such measurement.
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• That definition was later improved. A first possible issue with the previ-

ous definition is that if the chaos originates with a pulsed state at a high

frequency, most of its energy will be far from DC, meaning fast chaos, but

the system actually oscillates on a few range of frequencies. Therefore

was introduced the definition of the chaos bandwidth studying the range

of frequencies that contains 80% of the total energy but starting from the

main frequency of the system [112]. That measurement is presented in

Fig. 3.1 (c) and (d).

• However that later definition will still conclude on a broadband chaos

altough the spectrum may just have two frequency peaks far from each

other. Therefore, a new definition was introduced, considering the sum-

up of the discrete components of the spectrum that contains 80% of the

signal energy [112]. That new kind of chaos bandwidth is named effective

bandwidth. It is presented in Fig. 3.1 (e) and (f). The easiest method to

calculate the effective bandwidth from a spectrum is to sort the spectrum

in descending order and then calculate its chaos bandwidth.

3.1.1.2 State of the art

Since the chaos bandwidth was defined, many results have tried to improve it

in chaotic optical sources. In general the chaos obtained by a single laser diode

with optical feedback has a bandwidth limited by the laser relaxation oscillation

frequency [110]. In the study by F.Y. Lin and J.M. Liu that first introduced

chaos bandwidth [113], the system was a laser subjected to both optoelectronic

feedback and optical injection (Fig. 3.2 (c)) and they obtained a bandwidth of

20.5 GHz. When using COF and optical injection, a chaos bandwidth of 17 GHz

was typically measured [117]. Zhang et al. proposed an experiment using

dual wavelength-injection in laser diode also subjected to feedback amplified

by an EDFA, and generated a chaos bandwidth of 32 GHz [118]. To obtain

wideband chaos, another solution is triple injection: one laser with COF injects

its output into a second laser, which itself inject a third laser. Sakuraba et al.

reported a chaos bandwidth of 35 GHz [114]. Using mutual injection between

two lasers, Qiao et al. obtained a chaotic signal with a bandwidth superior to
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Figure 3.2: Various configurations mentioned in section 3.1.1.2. The symbol M
(or M1/M2) indicates a mirror, PD a photodiode, EDFA an erbium doped fiber
amplifier and HNLF a high nonlinear optical fiber. (a) COF (Refs. [114, 115]),
(b) dual COF [116], (c) injection and opto-electric feedback [113], (d) injection
and COF [117], (e) dual wavelength injection in laser with active feedback [118],
(f) cascaded injection [114], (g) mutual coupling [119] and (h) a laser subjected
to non-linear active feedback [120].
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38 GHz [119]. The same group proposed an experiment using an active feedback

loop with an EDFA and a high nonlinear fiber: they reported a bandwidth close

to 39 GHz [121]. However, all these experiments, whose configuration is shown

in Fig. 3.2 (c-h), require active components to improve the destabilization of

the laser.

Of more fundamental interest is therefore the question of the chaos band-

width in a single laser with feedback. A typical laser under COF (Fig. 3.2 (a))

exhibits chaos with a bandwidth inferior to 12 GHz [114, 115]. In 2017, Schires

et al. used a laser diode with both ultra-short and long external cavities (Fig.

3.2 (b)) that enables to generate chaos with a bandwidth of 16 GHz. However,

they used a specifically designed laser with a relaxation oscillation frequency

being pushed towards 14 GHz [116].

In 2016, members of our group studied the bandwidth of the chaos gener-

ated by a PCF system, and compared it to COF. They observed that the chaos

bandwidth of PCF chaos is superior to the one of COF chaos on the range of

feedback strength they studied [56]. However, the maximum value of feedback

strength was limited by the PCF configuration used (ring-PCM, see Ref. [95])

and the chaos bandwidth measurements were limited by the bandwidth of the

photodiode (12 GHz) [56]. Further numerical analysis with a simplified PCF

model without accounting for the mirror finite penetration depth (see section

1.3.1) confirms that the chaos bandwidth of chaotic PCF was superior to COF. It

also predicted a quasi-continuous increase of the chaos bandwidth as the feed-

back increases [64]. These studies from our group therefore motivate the idea

that replacing conventional mirrors by PCM would significantly extend chaos

bandwidth for a fixed fRO, which is a significant paradigm shifting approach!

3.1.2 Spectral flatness: another indicator of complexity

Apart from the chaos bandwidth, it is important to known how the frequencies

are distributed in the range of frequency inside the chaos bandwidth. Therefore,

we use what is called the spectral flatness. A common definition in laser

dynamics is to consider the distance between the maximum and the minimum

values of the power spectrum, in decibels [122]. It works well with chaotic
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spectrum measured by a RF spectrum analyser. However, that definition proved

to be less effective when studying the spectrum generated from measured time

series, which is our case. The electronic noise of the oscilloscope leads to possibly

strong fluctuations of the power spectrum energy versus the frequency.

On the contrary the spectral flatness is defined in signal processing as

the ratio of the geometric mean of the power spectrum by the arithmetic

mean [123]:

(3.1) SF =
∏N

n=1 f (n)
1
N

1
N

∑N
n=1 f (n)

where f (n) is the n-th discrete component of the Fourier spectrum and N is

the length of the discrete Fourier spectrum.

A spiky spectrum will have a spectral flatness close to 0 and a white-noise

will have a spectral flatness close to 1. Notice that the white-noise has a

perfectly flat spectrum only in expectation: the values are always distributed

around that expectation and the spectral flatness is typically inferior to 1. The

spectrum of a perfect chaos should looks like the one of a white noise, meaning

all the frequencies are present in the time traces.
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Figure 3.3: Example of the spectral flatness obtained from two RF spectra.

Figure 3.3 presents an example of a spectrum obtained from two time series

X1 and X2, generated by:

X1(t)= ξ1(t)+Rξ2(t);(3.2)

X2(t)= cos(2πt)− cos(3πt)− cos(5πt)+Rξ3(t)(3.3)
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where ξ1, ξ2 and ξ3 are decorrelated white gaussian noises. The spectral flat-

ness of X1 is 0.84 and the spectral flatness of X2 is 0.19.

In the field of chaotic laser diodes, the spectral flatness is generally cal-

culated on the 80% most significant part of the spectrum (i.e. the part inside

the chaos bandwidth), to avoid calculating spectral flatness on high-frequency

sections of the spectrum that would not be used in real applications [64, 122].

We follow that approach. Since we use the general definition of spectral flat-

ness and not the one used by the studies on chaotic laser diodes, we do not

have results to compare with the existing literature. Only Ref. [64] predicted a

maximum spectral flatness of 0.82 in PCF and 0.72 in COF, using our definition.

The spectral flatness is generally used as a secondary indicator with respect

to chaos bandwidth and we will not always mention the flatness when studying

chaos bandwidth, for instance in section 3.3.1.

3.2 Preliminary results

We use the experimental setup presented in chapter 2, section 2.2. During my

PhD thesis, we have used two different devices to record the time series.

• The first one used a photodiode model Newport 1414-50 and a Tektronix

DPO72304SX oscilloscope. The photodiode has a 3 dB bandwidth of

24.5 GHz while the oscilloscope has a bandwidth of acquisition of 23 GHz

and a sampling rate of 50 GSample/s. That later value means the Fourier

spectrum will extend up to 25 GHz.

• To further increase the bandwidth of analysis, the 23 GHz bandwidth

oscilloscope was replaced by a 36 GHz oscilloscope (Teledyne LeCroy

10-Zi-36) and the photodiode by a Newport 1474-A, AC coupled and

whose 3 dB bandwidth is 38 GHz. The sampling rate of the oscilloscope

is 80 GSample/s and the Fourier spectrum will extend up to 40 GHz.

The results of Ref. [56] were obtained with a 12.5 GHz photodiode, so both of

our new setups enable us to measure higher chaos bandwidths.
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Two lasers have also been used. First, a JDS-Uniphase SDL-5420, whose

characteristics have been given section 2.2.2.2. Later, that laser stopped lasing

and was replaced by a JDS-Uniphase SDL-5410, presented section 2.2.2.1.

3.2.1 First example with a 23 GHz oscilloscope

As an example of measurement, we study two time series obtained at different

feedback strengths (named F here). We used the SDL-5420 laser under a pump

current of 50 mA, i.e. 3.6 times the threshold (13.9 mA). At this operating point,

the frequency of the relaxation oscillations fRO is 3.9 GHz. The cat-mirror was

placed at a distance of 53.5 cm from the laser cavity, so the cavity round-trip

frequency fEC is 280 MHz. The time trace measurement setup is made of the

23 GHz oscilloscope and the 25 GHz photodiode.
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Figure 3.4: Time-traces of laser output power (left) and corresponding RF
spectra (right) for different phase-conjugate feedback strengths. (a) and (c)
have been recorded at F = 0.46%, (b) and (d) at F = 4.6%. The purple part
(left of the thin dotted line) of the spectrum was ignored. The blue part of the
spectrum (left of the dashed line) contained 80% of the total energy, the red
part 20%. Figure taken from Ref. [99].

We display in Fig. 3.4 (a) and (b) a small part of the time traces. The

corresponding spectra are given in (c) and (d). The RF spectrum of these
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time traces show resonances at frequency components at multiples of the

cavity round-trip frequency (280 MHz). This is a well-known feature of the

chaos generated by lasers with feedback, that can also be observed in the

autocorrelation function of the time traces. It can be reduced using various

methods, such as additional feedback [124] or a choice of fEC close to fRO [125].

In our case, it is a good way to verify the value of FEC.

To compute the chaos bandwidth, we proceed in two steps. First we remove

the noisy high-frequency part of the spectrum. In laser dynamics experimental

measurements, the noise is mostly electrical noise, created by the photodiode

and the oscilloscope. In typical determination of the chaos bandwidth, the

spectrum is determined by a RF spectrum analyser and the authors substract

the spectrum of the noise from the spectrum of the chaotic signal. We cannot

use such method with our spectrum obtained from the time traces. Indeed, we

did not use a RF spectrum analyser because its measurement time would be too

slow when compared with the spontaneous variations of the reflectivity of the

PCM (see section 2.1.4). Therefore, we choose not to study the high-frequency

part of the spectrum whose average energy on a range of 500 MHz is inferior

to the average energy of the noise. That removed part is colored in magenta in

Fig. 3.4.

Second we calculate the chaos bandwidth. The blue part contains 80% of

the energy of the useful spectrum and the red part the remaining 20%. The

chaos bandwidth is shown with an arrow.

At low feedback (i.e. F = 0.46 %, see Fig. 3.4 (a)) the laser exhibits a chaotic

behavior. Most of the energy is concentrated around fRO (3.9 GHz), indicating

the chaos is created by the destabilization of the relaxation oscillations. The

chaos bandwidth achieved in Fig. 3.4 (c) is equal to 9.4 GHz. Fig. 3.4 (d) presents

the RF spectrum at a higher F (around 4.6 %). The laser is still chaotic, but it

features a better distribution of the energy. Consecutively, it has a significantly

larger chaos bandwidth, equal to 18.3 GHz. That later value is close to the

measurement limit: as the oscilloscope has a bandwidth of 23 GHz, the limit

chaos bandwidth will be around 18.4 GHz (80% of 23 GHz). The presence of

high frequency components can also be hintered from the evolution of the

output power, whose variations are faster in Fig. 3.4 (b) than in Fig. 3.4 (a).
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3.2.2 Another example with a 36 GHz oscilloscope

We present here another example of chaos bandwidth measurements, obtained

with another laser (SDL-5410), a shorter cavity (14.7 cm, fEC = 1.02 GHz) and

the measurement apparatus with a higher bandwidth (36 GHz oscilloscope

and 38 GHz photodiode). The laser threshold current is 14.9 mA and it was

operated at 40 mA ( fRO = 4.8 GHz).
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Figure 3.5: Time traces of the laser output power at three values of feedback
strength. The pumping current is set at 80 mA and the delay length at 0.98 ns.
(d-f) are zooms on the region marked with a red square on (a-c). Figure taken
from Ref. [103].

The better sampling time of the oscilloscope (80 Gsample/s instead of 50)

enables a better view on the time traces. The time traces of three measured

time series are shown in Fig. 3.5. Figures 3.5 (a)-(c) show a 120 ns subset of

the acquired time traces (on a total length of 1 µs). Figures 3.5 (d)-(f) shows a

zoom on the red-squared zones from Figs. 3.5 (a)-(c). The corresponding spectra

are given in Figs. 3.6 (a)-(c).

Figures 3.5 (a) and (d) were measured under weak feedback , here F = 1.6%

(notice that the laser changed from section 3.2.1 and feedback strengths are

therefore not exactly similar). The time trace displays irregular pulsations with

intensity peaks generally separated by around 160 to 200 ps, see for instance

the oscillations between 42 and 43 ns. That observations is confirmed by the
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Figure 3.6: Spectra of the laser output powers, corresponding to the time traces
of Fig. 3.5 (a)-(c), at several values of feedback strength, delay and pump
current. The chaos bandwidth is indicated in white and corresponds to the
span of frequencies of the blue part of spectrum (until the vertical dashed line),
that contains 80% of the energy of spectrum. Figure taken from Ref. [103].

RF spectrum, shown in Fig. 3.6 (a): most of its energy is centered around 5 GHz,

close to fRO = 4.8 GHz. The spectrum also displays some energy at lower levels

in the higher frequencies and consequently faster dynamics can be observed

on the time traces. They are particularly visible between 43 and 44 ns on Fig.

3.5 (c). The RF spectrum of the chaos is similar to what would be obtained

with COF [119] and its chaos bandwidth is 13.6 GHz. We also calculate the

spectral flatness. We obtain a value of 0.74, which shows that the energy is

well distributed in the limited range of the chaos bandwidth.

Figures 3.5 (b) and (e) are for higher feedback strengths. One can notice
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the time traces displays both "slow" (≈200 ps) and faster variations, hence the

chaos encompasses a wider range of time scales. As a consequence, the spec-

trum, shown in Fig.3.6 (b), displays higher frequencies with a good distribution.

The chaos bandwidth rises to 26.1 GHz while the spectral flatness is equal to

0.71. In simulations of Ref. [64], the spectral flatness decreases for high values

of chaos bandwidth but our experience shows the spectral flatness remains

high.

As the feedback is further increased in Figs. 3.5 (c) and (f), the laser is at

the edge of a dynamical change and follows an intermittent destabilized limit

cycle, mixing chaos and regular oscillations. Between 18 and 41 ns, the output

power is close to periodic, with a period of approximately 150 ps (frequency of

6.8 GHz) while at longer times the signal is highly chaotic. The system goes

back and forth between chaos and quasi-periodicity and an analysis of the full

time series can confirm it. Figure 3.5 (f) is taken close to the bifurcation point

and shows that, each nanosecond, the quasi-periodic signal is interrupted for

a few picoseconds. This duration of 1 ns is a clear signature of the time delay.

The spectrum shown in Fig.3.6 (c) is remarkable because it features clear peaks

at 6.80 and 7.86 GHz alongside standard chaotic spectrum. The frequency of

7.86 GHz is probably related to other regions of quasi-periodicity that are not

visible the small part of the time series displayed in Fig. 3.5 (c). The flatness of

the spectrum is equal to 0.71, which is the same value as in Fig. 3.6 (b) but the

chaos bandwidth is here lower.

3.3 Evolution of the chaos bandwidth versus
the feedback strength

3.3.1 Experimental result

In that section, we use the configuration of section 3.2.1: the oscilloscope has

a bandwidth of 23 GHz, the laser is the SDL-5420, pumped at 50 mA and

fEC = 282 MHz. We did not calculate the spectral flatness of our time traces.

As we explained in section 2.1, the reflectivity of our PCM varies over time,
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Figure 3.7: Evolution of (a) the feedback strength F and (b) the chaos bandwidth
versus time. Dots are for chaotic dynamical states, diamonds for ECMs and
crosses for stationary states. For self-pulsing states, the frequency is not the
chaos bandwidth but the frequency of the main ECM. Arrows a and b indicates
the time series presented in Fig. 3.4 (a) and (b). Figure taken from [99].

at a tenth of a second time scale. Therefore, the feedback strength is naturally

tuned during an experiment if one time series is measured each second. Since

the time series are 2 µs long, we consider that the feedback strength is constant

on this short range.

We obtained three types of dynamics, as explained in section 1.3. The main

measured dynamics are the chaotic states, which are the core of the study

of this chapter. Two other dynamics are also obtained when the feedback

strength varies freely: restabilized steady-states at high values of feedback

strength, and ECMs, the self-pulsing states that will be described in chapter 5.

We display these ECMs in Fig. 3.7, with a green diamond. Similarly, a black

cross means steady-state time series. The ECMs being self-pulsing states,

the frequencies displayed in Fig. 3.7 (b) for the self-pulsing states are the

fundamental frequency of the self-pulsations.
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Figure 3.8: Experimental evolution of the chaos bandwidth versus F. For
regular self-pulsing states (diamonds), the reported frequency is not the chaos
bandwidth but the frequency of the ECM. Figure taken from Ref. [99].

From the data such as those presented in Fig. 3.7, we can plot the evolution

of the chaos bandwidth versus the feedback strength F. It is presented in

Fig. 3.8. As the reflectivity of the PCM is varying continuously, there is some

uncertainty in the measurement of F (around 0.5%). First, we observe that for

very low feedback strength F < 0.5%, the chaos has a low chaos bandwidth and

coexists with undamped relaxation oscillations, i.e. diamonds with a frequency

around 4 GHz. The chaos bandwidth is really low, around 5 or 6 GHz. Then,

the chaos bandwidth linearly increases with the increase of F while F < 3%.

At F ≈ 3%, the chaos bandwidth reaches a value of about 15 GHz. That value,

equal to 3.8 times fRO, is higher than the one obtained with COF [114, 115].

But higher values can be obtained: for increasingly moderately large F, the

chaos bandwidth shows an increase with F, though much slower than at low

F values. The chaos bandwidth reaches a maximum value of about 18 GHz

- i.e. close to the measurement limit - when F is close to 10%. In that range

of values, the dynamics shows several regions of stable ECMs at very high

harmonic frequencies of the external cavity frequency. For still larger F, the

laser diode re-stabilizes to a stationary steady-state.
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Figure 3.9: Experimental evolution of the chaos bandwidth versus F. For
regular self-pulsing states (diamonds), the reported frequency is not the chaos
bandwidth but the frequency of the ECM. Figure taken from Ref. [100].

That behavior is highly reproductible. We present in Fig. 3.9 another mea-

surements done with the same setup on another day: the curve completely

follows the behavior describe above.

3.3.2 Numerical confirmation: the role of the PCM finite
depth penetration

We showed in section 3.3.1 that the evolution of the chaos bandwidth with

respect to the feedback strength is not linear and saturates for high values

of feedback strength. These findings contradict the numerical simulations

performed in Ref. [64]. In that reference, our group observed that the chaos

bandwidth of a PCF laser would linearly increase with the feedback strength.

Therefore, we perform another numerical investigation of the evolution

of the chaos bandwidth with respect to the feedback strength. In Ref. [64],

the numerical model was the unfiltered model, i.e. the simulation of a laser

without accounting for the finite penetration depth. As explained in details

in section 1.3.1, the finite penetration depth τr is the time it takes the light

to penetrate the nonlinear crystal of the PCM and it is directly proportional

to the length of the crystal. We use the equations of section 1.3.1 with the

following parameters: τp = 1.4 ps, α= 2, P = 0.6016, T = 1200 and τr = 50. All
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these values were already used in previous simulations of the behavior of our

laser [67]. Considering our experimental cavity round-trip length (L = 1.07 m),

we take τ = 2548 = L
cτp

(c is the speed of light). We choose γ ∈ [0 0.06] and

set two values of τr: 1 and 50. τr = 50 corresponds to a PCM with a length of

5 mm [52]. τr = 1 actually corresponds to unfiltered PCF in our simulations, the

cut-off frequency of the feedback being equal to the time step of our algorithm.

Self-pulsing
Stationary
Chaotic

Figure 3.10: Theoretical variation of chaos-bandwidth (for chaotic state) and
oscillation frequency (for self-pulsing states) of a laser with filtered PCF, versus
the feedback rate κ. The red dotted line is the chaos bandwidth of an instanta-
neous PCF. Figure taken from Ref. [99].

We plot in Fig. 3.10 the chaos bandwidth versus γ. As in Fig. 3.8, we dif-

ferenciate the dynamics obtained for τr = 50: stable steady-state are indicated

with black crosses, regular self-pulsing dynamics are indicated with green

diamonds and chaotic states with blue dots. The indicated frequency is the

chaos bandwidth for the chaotic states and the frequency of the main period of

the system for regular self-pulsing states. For τr = 1 (unfiltered), the system

only displays chaos (except when γ < 0.001). It does not mean ECMs do not

exist but they are unstable [65]. Therefore we plotted in red dotted line the

evolution of its chaos bandwidth.
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At low feedback (γ< 0.015), the chaos bandwidth is similar for filtered and

unfiltered PCFs. From γ= 0.02, external cavity modes appear. The bandwidth

of the unfiltered case follows a monotic linear increase with feedback strength,

as previously reported by Ref. [64], while the bandwidth of the filtered PCF

saturates with the feedback strength, as experimentally reported. However,

chaotic states still appear between succesive ECMs and can present very high

bandwidths, such as 18.23 GHz at γ= 0.0354.

Freq
ECM

Chaos
BW

Figure 3.11: Influence of the finite penetration depth τr (horizontal axis) and of
the feedback strength γ (vertical axis) on the frequency of the external cavity
modes for the self-pulsing states (pink to yellow color-scales, in GHz) and on
the chaos bandwidth (green to blue color-scales, in GHz). The steady-states are
displayed in white. Figure taken from Ref. [107].

We then performed an even deeper analysis. We decided to study the evo-

lution of the chaos bandwidth versus γ for a large set of τr. Therefore, we

present in Fig. 3.11 the value of the chaos bandwidth (for chaotic states) or the
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frequency of the ECM (for regular self-pulsing states) versus γ and τr. All the

parameters are the same than above. The white zone of the map indicates the

steady-states. The chaos bandwidth is measured in green to blue color scale

and the frequency in magenta to yellow. A similar map was already published

in Ref. [67], displaying only the frequency of the ECMs. Our map enables

comparison between the properties of ECMs and of chaos in the plane of the

system parameters.

The conclusion that can be drawn from Fig. 3.11 confirms those of Fig. 3.10.

First, filtering the feedback through the finite penetration depth reduces the

chaos bandwidth. Indeed, for τr < 10, broadband chaos (up to 25 GHz) can be

obtained for γ ≈ 0.05 and larger values of γ. However, reducing τr requires

a shorter phase-conjugate mirror, and this may complicate the achievement

of high feedback values because the PCM efficiency is directly related to the

interaction length between the beam in the nonlinear medium. Second, the

restabilization occurs for lower values of γ when τr increases. That limits both

the frequency of the higher ECM and the maximum of chaos bandwidth. Third,

high values of chaos bandwidth can be reached in the bubbles of chaos between

successive ECMs. That later observation shows the link between the existence

of the PCF ECMs and the fact the chaos bandwidth in PCF is higher than in

COF.

3.3.3 Conclusion

We have reported in this section two new results about the chaos bandwidth

of phase-conjugate feedback. First, we reported that PCF enables high chaos

bandwidths, up to 18.3 GHz. It is higher than those of COF, the only limit

being the measurement bandwidth. We also report an experimental saturation

of the chaos bandwidth. Numerical simulations unveiled the influence of the

finite penetration depth in the laser in explaining such saturation. It opens

new perspectives in the generation of broadband chaos with PCF, for instance

with mirror featuring a smaller finite penetration depth, i.e. nonlinear media

with smaller interaction lengths.
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3.4 Study of the effective chaos bandwidth

3.4.1 Experimental observations

We now investigate the effective chaos bandwidth of a PCF system. We use

in that section the SDL-5420 laser, pumped at 80 mA ( fRO = 5.2 GHz). The

cavity is 1.545 m long ( fEC = 97.07 MHz) and the oscilloscope has a 36 GHz

bandwidth and a sampling rate of 80 GSample/s. We have measured around

5000 different time traces and for the sake of clarity we have kept ≈60 time

series, choosing the most representative time spans of the dynamics. As in the

previous section, we do not consider in the energy calculation the noisy high

frequency part of the spectrum. We sort the spectrum in descending order and

then determine the part that contains 80% of the total energy, starting from

the highest values of the spectrum.
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Figure 3.12: Evolution of the chaos bandwidth (blue stars) and the effective
chaos bandwidth (red crosses) versus the feedback strength. Figure taken from
Ref. [101].

The evolution of the chaos bandwidth and the effective chaos bandwidth is

displayed in Fig. 3.12. The chaos bandwidth (blue stars) follows the same trend

than in the previous section: it increases until the feedback F = 2.2% and then

shows saturation. The observed maximum chaos bandwidth value is 30.2 GHz,

which is the largest chaos bandwidth measured to our knowledge in laser

with passive feedback. The effective chaos bandwidth follows the evolution of

the chaos bandwidth when F ≤ 2.2%. However, it has a different behavior in

the range 2.2% ≤ F ≤ 5%: both the chaos bandwidth and the effective chaos
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bandwidth increase but the enhancement of the effective chaos bandwidth is

not as strong as the one of the chaos bandwidth. Still, the values of effective

chaos bandwidth are often equal to ≈ 20 GHz in the range 2.2%≤ F ≤ 5% while

a typical laser with COF has an effective chaos bandwidth of 9.6 GHz [114].

The effective chaos bandwidth we obtain with PCF is even larger than the one

reported in the case of chaos from a laser with both feedback and injection

(13.8 GHz) [114].

3.4.2 Numerical simulations and the role of the
destabilized ECMs
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Figure 3.13: (a) Evolution of chaos bandwidth and effective (chaos) bandwidth
(for chaotic states) and oscillation frequency (for ECMs) for a typical laser with
PCF. (b) and (c) present the power spectral density (PSD) for γ= 0.0358 (brown
line on (a)) and γ= 0.0446 (violet line on (a)). Figure from Ref. [107].

To confirm the experimental results, we now numerically study the evolu-

tion of the effective chaos bandwidth and compare it with the chaos bandwidth.

The parameters are the one of section 3.3.2. Figure 3.13 (a) shows the evolution

of the chaos bandwidth (blue dots), the effective chaos bandwidth (red dots) and

the frequency of the ECMs (green diamonds) versus the normalized feedback

strength γ. If a state is chaotic, both the effective chaos bandwidth and the

chaos bandwidth are indicated.
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Like in experiment, the chaos bandwidth and the effective chaos bandwidth

follow the same trend until γ= 0.025. From γ= 0.025, the chaos bandwidth in-

creases as the ECMs become stable at γ= 0.03. High value of chaos bandwidth

(16.4 GHz) and effective chaos bandwidth (13.4 GHz) are obtained at γ= 0.0358,

indicated with a brown vertical bar. The corresponding RF spectrum is dis-

played in Fig. 3.13 (b). The peak of the spectrum is at a frequency of 4.8 GHz

and harmonics while lower peaks are visible at 2.4 GHz and harmonics. Since

4.8 GHz is the frequency of the ECM that appears at γ= 0.0357, we conclude

that the wideband chaos we report at γ= 0.0358 is created by a destabilized

ECMs, with the signature of period doubling (peak at 2.4 GHz). However, in

that region, the effective chaos bandwidth can become very low while the chaos

bandwidth remains high. A good example can be found at γ= 0.0446 (violet

vertical bar): the chaos bandwidth equals 12.15 GHz while the effective chaos

bandwidth is as low as 4.5 GHz. Therefore, we display in Fig. 3.13 (c) the

spectrum of that time series. The energy is centered around 5.91 GHz, which

is as previously the frequency of the next stable ECM,. However, the spectrum

does not show new frequencies created by period doubling and most of its

energy is centered around 5.91 GHz and 11.82 GHz. That explains the lower

value of effective chaos bandwidth, while the chaos bandwidth remains high

since there is no energy in the low frequency part of the spectrum (from DC to

5 GHz).

It is also highly interesting to observe that simulations predict that, in

the region of the ECMs, the spectrum of the chaotic states is centered on

the frequency of the neighbour ECMs. However, experimental spectra, such

as those of Figs. 3.4 and 3.6, do not display any large peak around those

frequencies.
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3.5 Influence of the delay on the chaos
bandwidth and the spectral flatness

3.5.1 Experimental observations

In that section, we reuse the setup used in section 3.2.2. The bandwidth of the

oscilloscope is 36 GHz, the laser is the SDL-5410 and it is pumped at 80 mA.

To our knowledge, there has been no study of the influence of the feedback

delay on the chaos bandwidth. On the other hand, it has been demonstrated

that a wise choice of delay can highly reduce the time delay signature (TDS)

[125]. However, the question remains of the behavior of the chaos bandwidth:

does it decrease with delay? Can broadband chaos be obtained at all values of

delay?

BS
PCM

PM

Col.

Laser diode

Lens

Acquisition of the laser 
output power (sampled 
at 12.5ps, 36GHz 
bandwidth)

Figure 3.14: The experimental setup used in that subsection, and its compo-
nents. The support of the phase-conjugate mirror (PCM), represented in light
green, is as close as possible to the mount of the beam splitter (BS). In the illus-
tration, the single-trip distance between the output of the EEL (edge-emetting
laser) and the PCM is 14.7 cm.

Therefore, we investigated the evolution of the chaos bandwidth and spec-

tral flatness versus the delay. Two values of delay have been chosen: 3.55 ns

and 0.98 ns, corresponding to fEC = 282 MHz and fEC = 1.02 GHz. That later

value is the shortest that can be obtained with our setup since a beam splitter

has to be placed between the mirror and the laser to measure the feedback
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strength (Fig. 3.14). The 14.7 cm distance between the laser and the crystal is

occupied by a collimating lens and a beam splitting plate.
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Figure 3.15: Evolution of (a) the average chaos bandwidth, (b) the average
spectral flatness. The pump current is set at 80 mA. Experiments have been
performed with two values of delay: 3.55 ns (blue triangles) and 0.98 ns (yellow
circles). Figure taken from Ref. [103].

We still use the method of section 3.3.1: we concatenate the data from

various time series, a time series being measured each half-second and the

feedback strength varies following the spontaneous slow variations of the

PCM reflectivity. Since we have more time traces than in the previous section,

we divide the experimental range of feedback strength in intervals long of

0.15%. In each interval of feedback strength values, several time series have

been measured and the displayed chaos bandwidth is the average value of the

different values of chaos bandwidth obtained. The same method is used for the
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spectral flatness. We also indicated with a bar associated the standard deviation

when computing the chaos bandwidth or spectral flatness for different time

series. No bar means that only one time series was recorded for that specific

feedback strength. To improve the readability, the ECMs have not been shown

in the graph, nor the steady states.

As it can be seen from the error bars, there is some deviation from the

average value of bandwidth or flatness at a given feedback value. It is caused by

the multi-stability between the different dynamics of the PCF (see Refs. [44, 65]

and chapter 5). The variations of the chaos bandwidth are rather limited but

those of the spectral flatness are stronger. It is particularly the case for the

3.55 ns delay (blue triangles) at low feedback strengths but the amplitude of

these variations decrease if the feedback strength increases. Anyway, these

variations do not prevent the observation of the trends of the evolution of chaos

bandwidth.

The overall trend is that the chaos bandwidth does not vary much when the

time delay changes. The chaos bandwidth increases with the feedback strength

and slowly saturates when the feedback strength F becomes superior to 3%. It

is completely similar to what we described in the previous section (3.3.1) and

in Ref. [56] with other lasers and it remains true even when changing the delay.

The spectral flatness also increases until the feedback strength equals 3% but

then decreases with the feedback strength. That decrease may be caused by

the apparition of stable ECMs, from F =2.5%.

3.5.2 Numerical confirmation

We try to reproduce that behavior with the filtered model of PCF. We keep

τR = 50. To simulate the new laser and in particular to match the observation

of the relaxation oscillation frequency, we set T = 1200 and τp = 1.4 ps, P = 0.95.

We also choose α = 3. We add a gaussian noise with a standard deviation of

10−12 to the intensity of the output field before the calculation of the next step

of the simulation. The goal is to avoid that the PCF laser dwells on infrequent

stable states.

We show in Fig. 3.16 the simulated chaos bandwidth (a) and spectral
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(a)

(b)

Figure 3.16: Numerical evolution of (a) the chaos bandwidth and (b) the spectral
flatness. The pump current I is set at 80 mA. Simulations have been performed
with two values of delay: 3.55 ns (yellow circles) and 0.98 ns (blue downward-
pointing triangles). Figure taken from [103].

flatness (b) versus the feedback strength γ. For the sake of clarity, the self-

pulsing dynamics and steady-states are not displayed.

Figure 3.16 shows a qualitatively similar conclusion than the one we ob-

served experimentally in Fig. 3.15: the evolution of the chaos bandwidth and

of the spectral flatness are rather insensitive to delay, except at some values

of γ (for instance at γ≈ 0.07). The greater variability of the indicators can be

linked to the presence of the ECMs in that region. For instance at γ= 0.07, the

laser simulated with a 0.98 ns delay (yellow circles) encounters an ECM state.

Then, the next simulated time trace, at γ = 0.071 shows a rather low chaos

bandwidth and its spectral flatness is not equal to the one at 3.55 ns delay

(blue triangles).
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The drop of spectral flatness from γ = 0.04 confirms the one observed in

experiment from F = 3.5%. The drop is however more significant in simulations.

In that region where both ECMs and chaos are found, the spectrum of the

chaotic states is centered on the frequency of the neighbor ECMs (see Fig.

3.13 (b) and (c)) while the experimental spectra show a broad distribution of

the energy among the different frequency components (see Fig. 3.4 or 3.5).

Moreover, noisy time series can arbitrarily increase the minimum value of

spectral flatness and in experiment much noise was added by the electronic

measurement setup. Noise was added in the algorithm to avoid dwelling on un-

usual states and does not simulate the actual noise added by the measurement

setup.
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Figure 3.17: Mapping in the plane (γ, θ) of the frequency of the self-pulsing
modes (magenta to yellow scale, in GHz) and of the chaos bandwidth of the
chaotic states (green to blue scale, in GHz), for a laser diode with PCF.

We then calculated a map of the evolution of the chaos bandwidth versus
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both the delay (θ) and the feedback strength γ. We use the following parameters:

τp = 1.4 ps, α= 2, P = 0.6016, T = 1200 and τr = 50. The corresponding map

of the frequency of the self-pulsing modes and of the chaos bandwidth, with

respect to θ and γ, is presented in Fig. 3.17. The chaos bandwidth is found to be

rather insensitive to delay, as are the ECM frequencies. However, between the

ECMs, typically for 0.03< γ< 0.05, the position of the chaotic states varies and

the achieved chaos bandwidth may change with the delay. That result extends

the findings from Fig. 3.16 (a).

The map of Fig. 3.17 also enables us to study the case of short feedback,

that could not be experimentally studied with our setup. When fEC ≈ fRO,

i.e. when θ ≈ 200, the chaos bandwidth and the frequency of ECMs are not

different from those measured at other values of delay. For some values of

short delays, restabilization may occur at lower values of γ, such as 0.037 at

θ = 180, in contrast to the typical restabilization at γ= 0.05 for longer values of

delay. Last, the laser is nearly always stable for all values of γ at θ ≈ 65. That

value of θ corresponds to a very short external cavity, with a distance of 1.4 cm

between the laser and the PCM. Such small θ could be achieved experimentally

by placing the PCM in front of the laser diode output but not leaving enough

space for inserting a beamsplitter and for therefore measuring simultaneously

the PCM reflectivity.

3.6 Influence of the pump current on the chaos
bandwidth and the spectral flatness

3.6.1 Experimental observations

We now study the properties of the chaos when varying the pump current. An

increase in the pump current increases fRO and we demonstrate in chapter 5

that it also increases the frequencies of the ECMs. The role of this part is to

study whether it also enhances chaos bandwidth and spectral flatness. We use

the 36 GHz acquisition setup and the delay here equals 3.55 ns.

The evolution of chaos bandwidth and spectral flatness when varying the
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Figure 3.18: Measured evolution of (a) the chaos bandwidth and (b) the
spectral flatness versus the pump current, for feedback strength in 5 var-
ious intervals, [0.45,0.55%] (blue diamonds), [0.95%,1.05%] (magenta dia-
monds), [1.45%,1.55%] (black diamonds), [2.45%,2.55%] (green diamonds)
and [3%,3.5%] (red diamonds). The delay is equal to 3.55 ns. Figure taken
from [103].

pump current from 40 mA to 80 mA is displayed in Fig. 3.18. We trace the

averaged value of (a) the chaos bandwidth and (b) the spectral flatness for all

the time series whose feedback strengths F are in the following ranges: 0.45

to 0.55% (blue diamonds), 0.95 to 1.05% (magenta diamonds), 1.45 to 1.55%

(black diamonds), 2.45 to 2.55% (green diamonds) and 3 to 3.5% (red diamonds),

versus the pump current.

We expected that the pump current enhances the chaos bandwidth, as an

higher fRO increases the general frequencies. We can confirm that from Fig.
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3.18 (a), but there are some exceptions. For instance, with a pump current of

40 mA, the average chaos bandwidth equals 22 GHz for F ∈ [2.45%,2.55%]. At

that particular value of feedback strength, the increase of the chaos bandwidth

is not linear. An explanation is that mixed dynamics with both ECMs and chaos,

as described in section 3.2.2, reduces the chaos bandwidth. Small divergences

with the general trend were also observed in COF, where an increase of the

current from 25 mA to 30 mA decreases the chaos bandwidth of ≈ 0.5 GHz at

very high reflectivity [56].

There is no clear trend in the evolution of the spectral flatness. At a pump

current equal to 40 mA, increasing the feedback strength decreases the spec-

tral flatness. On the contrary, at 80 mA, an increase in the feedback strength

increases the spectral flatness. The high spectral flatness measured at low

feedback strength under a pump current of 40mA is surely created by a mea-

surement artefact: the variations of the laser output power are smaller and

are concealed in the noise. Hence, the measurement spectral is flatter, but the

actual original spectrum of the laser is not.

3.6.2 Numerical study

We simulate the evolution of the chaos bandwidth and of the spectral flatness

versus the current I for the following values of feedback strength: γ = 0.1,

γ= 0.06, γ= 0.04, γ= 0.06, γ= 0.08. We keep the parameters of section 3.5.2:

τp = 1.4 ps, α= 2, T = 1200 and τr = 50. However, the value of the normalized

pump parameter P varies with the pump current. Since P is proportional to

the pump parameter above threshold, we set:

(3.4) P = 0.2
I − I th

I th

The resulting values of chaos bandwidth and spectral flatness are shown in

Fig. 3.19. To capture the main features, we averaged chaos bandwidth and spec-

tral flatness from ten simulations with random initialization. The observations

from the experiment of Fig. 3.18 are confirmed by the simulation: the chaos

bandwidth increases with the pump current. In particular, the increase of the

chaos bandwidth with the pump is stronger when γ is higher. This was also
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Figure 3.19: Simulated evolution of (a) the chaos bandwidth and (b) the spectral
flatness, versus the pump current I, for five values of feedback strength γ. The
delay is equal to 3.55 ns. Figure taken from [103].

observed in Fig. 3.18 for feedback strength between 3% and 3.5%. We find that

the spectral flatness is rather independent from the change of pump current,

and, for low feedback strengths, increasing the pump current even slightly

decreases the spectral flatness. This confirms our experimental findings. The

value of γ associated with the onset of ECMs decreases with the pump cur-

rent [67]. Hence the drop of spectral flatness described in section 3.6.1 occurs

at a lower value of γ as the pump current decreases. That explains why the
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spectral flatness strongly increases with the pump current for γ> 0.06.

3.7 Conclusion

We have presented one of the results of this thesis, the analysis of the evolu-

tion of the chaos bandwidth and spectral flatness of the laser output power.

The chaos bandwidth is defined as the span of frequencies where 80% of the

total energy is located while spectral flatness indicates whether the energy is

concentrated in a few frequencies or over a large range of frequencies.

First, we studied the evolution of the chaos bandwidth with the feedback

strength. We experimentally find a fast increase of the chaos bandwidth at

low feedback strength values, followed by a slighter increase of the chaos

bandwidth at higher values of feedback strength. Using numerical simulations,

we highlighted that the finite depth penetration in the phase-conjugate mirror

can be responsible of this saturation of the chaos bandwidth. Then, we also

observed that both the experiment and the numerical simulations show a

link between the high values of chaos bandwidth obtained with PCF and

the external cavity modes obtained at high values of feedback strength. The

spectral flatness has a behavior similar to the chaos bandwidth: after a fast

increase at low values of feedback strength, it saturates and even slightly

decreases for larger feedback strengths.

Second, we observed that changing the length of the cavity does not signifi-

cantly modify the chaos bandwidth and the spectral flatness. Last, we studied

the influence of the pump current. An increase in the pump current leads to

higher values of chaos bandwidth but the spectral flatness remains in the same

range of values.
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Chapter 4

Permutation entropy in
phase-conjugate feedback

I n the previous chapter, we studied the chaos generated by phase-conjugate

feedback (PCF), using the chaos bandwidth and the spectral flatness. We

observed that PCF was able to generate broadband chaos, with a quite

flat spectrum, in a large range of parameters.

Another performance of the chaos is here analyzed: the permutation en-

tropy (PE). PE studies the repetition of patterns in time series and enables to

quantify its predictability. It can easily be applied to quantify the complexity

of deterministic chaos. Therefore, we use that method to further explore the

richness of the chaos from PCF in laser diodes.

The calculation of the permutation entropy from the experimental and

numerical data were performed. Our results were published in Refs. [102, 103,

126].

4.1 Permutation entropy

4.1.1 General definition

Permutation entropy was proposed in 2002 by Bandt and Pompe [127]. Its

calculation is based on the repetition of short patterns when the time series is
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re-sampled at a given value. For a given time series, we take a delay tD and a

subset length D. The time series is also characterized by its sampling time tS

and its length ttot = N × tS, N being the number of points in the time series.

We consider all the possible vectors of D points separated by a time of tD .

Hence we obtain subsets of D points, [I(1)...I(D)]. Since the time series are

numerical measures, it is very rare to have two equal values. Therefore, we

sort [I(1)...I(D)] in strictly increasing order I(r1)...I(rD)], where r1, ..., rD are

indices chosen to sort the vectors. The vector [r1...rD] can be represented by

a permutation. We then compare the permutation associated with the vector

[r1...rD] and the D! possible permutation, of order D.

ttot=N tS

A' B'

C'

tS

tD=n tS

A
B

C

Figure 4.1: Principle of the subsets of permutation entropy. tS is the sampling
time, ttot the total length of time trace and tD the permutation entropy delay.
The vectors of D = 3 points, with a distance between two points of tD = 30× tS
are considered, for instance [A B C] and [A’ B’ C’].

An example of the association of permutations within the time trace is

presented in Fig. 4.1, with D = 3. The time trace, in blue, is sampled at a period

tS (red points). Then, D points separated by the distance tD are considered.

We take for instance the vectors [A B C] and [A’ B’ C’]. We have A>B>C and the

permutation (1,2,3) is associated with the subset [A B C]. We also have B’>A’>C’

and associate to it the permutation (2,1,3). All the N − (D−1)×n vectors of D
points separated by tD are considered for the calculation of PE.
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We note πi, i = 1...D!, the possible permutations and the distribution p(πi)

of each permutation is defined as:

(4.1) p(πi)= #{k|k ≤ N −D, [I(k+1)...I(k+D)] is associated with πi}
N −D+1

If the system is predictable, only a few patterns will repeat and there will

be a pattern more present than the others. The permutation entropy at a delay

tD is therefore defined as:

(4.2) ρ(tD)=−
N∑

i=1
p(πi) log p(πi)

That definition is related to the Shannon entropy [128].

ρ(tD) is often normalized 1
logD! [129, 130] and we will use that convention

here. Therefore, ρ(tD) is always between 0 and 1. 0 correspond to the complete

predictability and 1 to complete predictability. The condition N ≫ D! is neces-

sary to have an accurate measurement of PE [129]. To keep relatively short

calculation time, one typically choose 3≤ D ≤ 7 [130].

4.1.2 Applications

Permutation entropy has been used in numerous field of study.

In medicine [131], it was used to analyze electroencephalograms (EEGs).

Permutation entropy of EEGs can indicate epilepsy [132] or make the difference

between consciousness and unconsciousness during an anesthesia [133]. Per-

mutation entropy can determine the physiological and pathological condition

of a patient from its heart rate variability [134].

In economics, permutation entropy is able to underline the period of time in

the evolution of the prices of some American commodities [135]. Permutation

entropy was also used to study the degree of stock market inefficiency, i.e. the

difference between the trade price of goods and their real value [136].

In environment studies, Bandt applied in 2005 permutation entropy to

textbook time series: the evolution of the population of the Canadian Lynx

between 1821 and 1934, the southern oscillation index from 1950 to 1987,

i.e. the monthly evolution of the temperature of the Pacific Ocean and the
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Figure 4.2: Example of permutation entropy used in climate studies. Permu-
tation entropy (red) and the entropy obtained from histograms (blue) of the
temperature of the Ocean during the Holocene, versus time. The authors use
a sliding time window of 1000 data values and a lag of 100 data values be-
tween successive windows. The grey bands correspond to the major periods of
Holocene rapid climate change (RCC). Figure taken from Ref. [137].

associated El Niño phenomenon, and the monthly estimated fish recruitment

from 1950 to 1987. It was used to underline the hidden predictability in these

systems [138]. Permutation entropy can also enable a study of the evolution

of the southern oscillation index of the Holocene, in particular during rapid

climate changes (RCC). It is presented in Fig. 4.2. The authors use a gliding

permutation entropy at delay tD = tS to determine the presence of RCCs,

indicated in grey. Using the permutation entropy on 1000 consecutive points

(in red) is found to enhance the distinction of RCC phenoma when compared to

Shannon entropy obtained from histograms (in blue) [137].

In all these applications, the number of points in the experimental time

series varies from about hundreds to tens of thousands [130].

Permutation entropy was also applied to numerical simulations, such as

the Lorenz equations [139] or logistic maps [138, 139]. And it was logically
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extended to the laser diode dynamics, and in particular chaotic dynamics.

4.1.3 Previous results about laser diode chaos
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Figure 4.3: Experimental permutation entropy of the output intensity of a
laser with COF, as a function of the embedding delay τ (= tD) with embedding
dimensions D between 4 and 8. The grey arrow indicates the peak at τRO and
the black one the peak at τEC + τRO/2. The inset displays the detail of the
locations of the peak at τEC and its sub-harmonics for D = 8. Figure taken from
Ref. [140].

In 2011, Soriano et al. analysed the permutation entropy of a laser with con-

ventional optical feedback (COF), with data obtained from the Lang-Kobayshi

equations or from experiment. They described that permutation entropy high-

lights the time scales of the laser, i.e. the relaxation oscillation frequency τRO

and the time delay of the external cavity τEC, as it can be shown in Fig. 4.3.

They varied the delay of the permutation entropy tD from tS to 2500tS. They

observed peaks at τEC and its (D−2) subharmonics (i.e. τEC/i,i = 1..(D−1)), a

peak at τRO and also a peak at τEC +τRO/2. Increasing D increases the depth

of the peaks [140].
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In the applications of chaotic delayed lasers, identifying the time-delay

enables the reconstruction of the signal and hence lowers the security of chaos-

based cryptography [141]. The consequence of the observation of a drop in

permutation entropy around τEC was that permutation entropy around τEC

should be maximized to avoid a signature of the time delay. It was therefore

compared to the so-called "time-delay signature" (TDS), i.e. the peak in the

autocorrelation function of the time series [125, 141].

Permutation entropy was also applied to simulated laser with COF with

the addition of a low amplitude digital signal [142], to VCSELs with variable

polarization feedback [143], to mutual delay-coupled lasers (in that case the

time delay is the distance between the two lasers) [144] and to laser diodes

under stimulated Brillouin scattering optical feedback [145]. Permutation

entropy was also used to differentiate stochasticity and noise in the switching

of dynamics between two coupled lasers [146], in a way similar to the low

frequency fluctuations of lasers with feedback [147].

4.2 Permutation entropy versus feedback
strength

4.2.1 Preliminary results

We now apply the PE calculation to three time series generated by our PCF

system. The laser diode is the SDL-5410 laser diode (cf. section 2.2.2.1), pumped

at 80 mA. The relaxation oscillation frequency is 4.8 GHz, i.e. a period of 208 ps.

The external cavity length τ is 0.98 ns. The time series are sampled at 12.5 ps,

so the relaxations oscillations correspond to an embedding delay τRO =17 and

the external cavity to an embedding delay τ=78. The time series are 80000-

points long. The feedback strength F is equal to 1.6%, 4.0% and 4.4%. These

time series are the three time series presented in Fig. 3.5.

We show in Fig. 4.4 the permutation entropy versus the embedding delay of

these three times series. When F =1.6% (dotted red line), a strong peak appears

at τRO/3 and a smaller peak at τ. That confirms results findings of Chapter
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Figure 4.4: Evolution of the permutation entropy as a function of embedding
delay for the three time traces obtained at feedback strengths of 1.6% (green
dashed line), 4.0% (red dotted line) and 4.4% (green dashed line). The multiples
or sub-multiples of the external cavity delay are indicated with arrows. The
time delay is 0.98 ns. Embedding delay is expressed in multiples of the sample
time (12.5 ps) and is here the external cavity round-trip time. Figure taken
from Ref. [103].

3: at low feedback strength, the dynamics is driven by destabilized relaxation

oscillations. When F =4.0% (solid blue line), the signature at τ is much stronger

and the signature at τRO/3 is less important. The main time signature of the

system is τ. Last, when F =4.4% (dashed green line), the permutation entropy is

low at multiples and submultiples of τ. Further studies of that time series [103]

show that it exhibits intermittency and switchings between self-pulsed external

cavity mode and chaos. The presence of an external cavity mode strongly

increases the signature of τ. We also observe that the permutation entropy is

lower for that time series at all values of embedding delay. Consequently, this

intermittency creates recurrent patterns at various frequencies.
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4.2.2 Main results

Next, we study a set of time series from section 3.2.2. The laser is the SDL-5420

laser, pumped at 80 mA ( fRO = 5.2 GHz). The time series are still sampled

at 12.5 ps. The cavity is 1.545 m long, so the round-trip time corresponds to

τRT =824. Each time series has 36404 points and we choose D=7.

The peak at τRT is the deepest signature of the permutation entropy. There-

fore, we study the evolution of the permutation entropy at τRT , with respect to

the feedback strength.
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Figure 4.5: Evolution of the permutation entropy versus the embedding delay.
The time delay is 10.3 ns and the feedback strength is 1.23%. Figure also
presented in Ref. [102].

We present in Fig. 4.5 the evolution of the permutation entropy versus

the embedding delay. For that particular time series the feedback strength is

1.23%. If we compare with Fig. 4.4, the longer delay in Fig. 4.5 enables a closer

look to the peaks at sub-multiples of τRT . Peaks are present at τRT , 3τRT /4,

τRT /2, 2τRT /5, τRT /3, τRT /4, τRT /5, τRT /6, and also at τRO/2 and 69τRO/2.

Then, we show in Fig. 4.6 the evolution of the permutation entropy at τRT

(or ρRT), coupled with the evolution of the chaos bandwidth The permutation

entropy is high, superior to 0.85. The only exceptions are with external cavity

modes, indicated with black dots in Fig. 4.6 or similar states. It is reasonable

that dynamics oscillating at a submultiple of τRT have a low permutation
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I II III IV

Figure 4.6: Dynamics of a PCF system in the context of PE at roundtrip delay
(primary vertical axis) and chaos BW (secondary vertical axis) as a function
of feedback. Region I (yellow): relaxation oscillation buildup; II (green): low-
feedback; III (grey): transition window towards external cavity modes (ECM)
with black dots representing pulsed output; IV (red): high-feedback with ECM.
Black dots represent pulsing states. Figure taken from [102].

entropy at τRT . However, for η ∈ [1,3.3]% (regions I and II) and η ∈ [4.4,6.5]%

(region IV), ρRT > 0.93, the laser output is highly complex with extremely low

predictability.

With COF, the experimental permutation entropy was limited to 0.75 (for

D = 7 and τRT =4.5 ns) [148]. Therefore PCF demonstrates a much better

permutation entropy and complexity.

Reference [64], from our group, predicted high values of permutation en-

tropy, up to 0.986 (for D = 7 and τRT =1 ns), and our experimental results

therefore confirm that prediction. We predicted a monotonic increase of the per-

mutation entropy, and then a plateau and a slight decrease with the increase of

the feedback strength. The theoretical study also predicted higher permutation

entropy for PCF than for COF, which we here confirm.
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4.2.3 Inversion of the permutation entropy at harmonics
of τRT

Figure 4.7: Permutation as a function of feedback (a) for embedding delays
equal to τRT and subharmonics of τRT and (b) for embedding delay equal to
τRO/2. The black arrows in (a) indicate an inversion of τRT /4 and τRT /5. The
secondary vertical axis and the blue curve in (b) gives the chaos bandwidth.

We have studied the evolution of the permutation entropy at τRT . However,

Fig. 4.5 shows that the peak at τRO/2 is deeper than the one at τRT and that

submultiples of τRT may highlight peculiar dynamics. Therefore, we now study

the evolution of the permutation entropy at τRT /6, τRT /5, τRT /4, τRT /3, τRT /2,

τRT , 2τRT /5 and τRO/2 versus the feedback strength.

Figure 4.7 (a) shows the evolution of the permutation entropy at these

various embedding delays as a function of feedback, for η ∈[0.9 2.2]%. The
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PE value, i.e. the predictability of the time series, increases with the delay

corresponding to the sub-harmonic multiple of τRT . However, we observe an

exception at τRT /4: the PE values at τRT /4 are higher than at τRT /5 and

lower than at τRT /6. That inversion occurs between the two black arrows in

Fig. 4.7 (a). Outside of that region of values of feedback strength, we observe

PE(τRT /4)< PE(τRT /5)< PE(τRT /6). That inversion is masked if we only study

PE(τRT) .

4.2.4 Evolution of the permutation entropy at τRO/2

Figure 4.7 (b) shows the PE values at τRO/2 at increasing feedback strength

and compares it with the chaos bandwidth. In the presented region, both

have a similar continuous increase. In the region η ∈ [1.22.2], the permutation

entropy at τRT is constant versus the feedback strength. Therefore we conclude

that two phenomena occur simultaneously: the onset of high chaos bandwidth

and the decrease of the signature of the ROs in the laser dynamics, without

variations of the signature of PE at τRT time-scale.

4.3 Evolution of permutation entropy versus
delay

In section 3.5, we studied the evolution of the chaos bandwidth and the spectral

flatness for two different values of delay. We have concluded that the delay has

no influence on the chaos bandwidth and spectral flatness of the laser output.

We extend that study to permutation entropy.

4.3.1 Experimental observations

We use the same time series as in section 3.5.1. The experimental setup is

given in Fig. 4.8. The 850 nm edge-emitting laser is the SDL-5420 model. Its

output light is reshaped by the collimator and focused into the phase-conjugate

mirror (PCM). The beam splitter (BS) enables the acquisition of the feedback

strength trough a powermeter (PM) and of the laser output power is recorded
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Figure 4.8: The experimental setup used in that section, and its components.
The support of the phase-conjugate mirror (PCM), represented in light green,
is as close as possible to the mount of the beam splitter (BS). In the illustration,
the single-trip distance between the output of the EEL (edge-emitting laser)
and the PCM is 14.7 cm.

at a sampling rate of 12.5 ps. All the details about this equipment have been

given in section 2.2. Two values of delay have been chosen: 3.55 ns and 0.98 ns,

corresponding to fEC=282 MHz and fEC=1.02 GHz and the distance between

the laser output facet and the mirror equals 53.2 cm and 14.7 cm. This latter

configuration is the shortest cavity length we can apply.
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Figure 4.9: Evolution of the permutation entropy at time delay. The pump
current is set at 80 mA. Experiments have been performed with two values of
delay: 3.55 ns (blue triangles) and 0.98 ns (yellow circles). Figure taken from
Ref. [103].

To obtain the time series, we use as in section 3.3.1 the slow natural
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variations of the feedback strength while we record 1 µs long time series.

Hence we obtain a set of time series at various values of feedback strength.

Then, for both values of delay, we randomly select 6 to 9 time series at different

times to obtain a rough study of the permutation entropy at delay. The results

are presented in Fig. 4.9. In the range of feedback strength from 0.9% to 2%,

the permutation entropy at time delay increases similarly for both values of

time delays. From 2% to 3.5%, it reaches a plateau at high values of feedback

strength (>0.98). The maximum value is 0.994. Then, for values of feedback

strength superior to 3.5%, the permutation entropy at delay is reduced. That

range of feedback strength values correspond to the region of the onset of

the ECMs dynamics. In the configuration described in that section, we do not

observe chaotic dynamics at higher values of feedback strength. In section

4.2.2 (see Fig. 4.6), we observed a decrease of the permutation entropy at delay

around the ECMs in region III, followed in region IV by a rise to the high values

obtained at medium values of feedback strength. That difference is probably

caused by the longer cavity that was used, with a time delay of 10.3 ns.

4.3.2 Numerical findings

To check the previous conclusions about the permutation entropy at delay, we

use the model of the filtered PCF model, introduced in section 1.3.1. Reference

[64] proposed a study of the evolution of the permutation entropy at delay in

the case of an unfiltered PCF. However, that model considers an instantaneous

penetration of the light inside the PCM and the filtered model describes more

accurately the dynamics of the PCF with a finite-length nonlinear material

(see section 1.3.1).

To compare with the results about chaos bandwidth and spectral flatness,

we reuse the 20000-points long time series obtained in chapter 3, section 3.5.2.

The parameters are presented in table 4.1

Figure 4.10 shows the simulated evolution of the permutation entropy at

two time delays with the chaos bandwidth. Only the chaotic states have been

represented in the graph and missing points indicate regular self-pulsing states.

For γ ∈ [00.005], the permutation entropy strongly rises. Then, it remains at
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Symbol Description Value
τp photon lifetime (integration step) 12.5 ps

τ
normalized round-trip time in the external
cavity

0.98 or 3.55 ns

T normalized electron lifetime 1200
γ dimensionless feedback strength ∈ [0 0.1]
α linewidth enhancement factor 3
P pump parameter 0.951

R
standard deviation of the Gaussian noise in
the intensity of the output field

1e−12

Table 4.1: Parameters used in the simulation of sections 4.3.2 and 4.4.2.

Figure 4.10: Evolution of the permutation entropy with the feedback strength
(γ). The simulation has been ruled with two values of delay. Figure taken from
Ref. [103].

high values. The maximum value equals 0.987. From γ> 0.05, the permutation

entropy decreases. That behavior is consistent with the experimental results

presented in Fig. 4.9. The first stable ECMs appear at γ> 0.05 and we observe

that the apparition of the ECMs decreases the permutation entropy.

4.4 Evolution of permutation entropy versus
pump current

Pump current is one of the parameters that is easy to tune in an experimen-

tal system. We have concluded that the delay has no influence on the chaos
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bandwidth and spectral flatness of the laser output. We extend that study to

permutation entropy at delay. In section 3.6, we studied the influence of the

pump current on the chaos bandwidth and the spectral flatness. We concluded

that an increase in the pump current increased the chaos bandwidth whereas

the spectral flatness was less dependent on the pump current. We now extend

the analysis of the influence of the pump current to permutation entropy at

round-trip delay (designated "permutation entropy" or PE thereafter).

4.4.1 Experimental observations

We reused the experimental setup of 4.3.1. The distance between the laser and

the mirror is set at 53.2 cm, so the time delay equals 3.55 ns.
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Figure 4.11: Measured evolution of the PE versus the pump current, for feed-
back strength in two intervals, [0.45%, 0.55%] (blue diamonds) and [2.45%,
2.55%]. The delay is equal to 3.55 ns. Figure taken from Ref. [103].

Figure 4.11 shows the evolution of permutation entropy when varying the

pump current from 40 mA to 80 mA, for feedback strength in the ranges 0.45%

to 0.55% and 2.45% to 2.55%. The PE reaches high values for all pump currents.

The PE is slightly higher at smaller feedback strengths but it does not decrease

when varying the pump current. We can conclude that the complexity is rather

independent of the pump current. However, changing the pump current induces
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an increase of the chaos bandwidth (see section 3.6) and that increase will

therefore not induce a reduction of chaos complexity.

4.4.2 Numerical findings

We want to confirm these experimental results. Therefore, we perform a new

simulation, reusing the equations and the parameters of section 4.3.2 (see table

4.1), that were also used in the numerical study of the influence of the pump

on the chaos bandwidth (section 3.6.2 of chapter 3). In particular, we set:

(4.3) P = 0.2
I − I th

I th

where I th =13.9 mA is the threshold current of the laser.
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Figure 4.12: Simulated evolution of the permutation entropy versus the pump
current, for five values of feedback strength (γ). The delay is equal to 3.55 ns.
Figure taken from Ref. [103].

Figure 4.12 shows the permutation entropy for pump current I∈ {40 mA,

50 mA, 60 mA, 70 mA, 80 mA} and for feedback strength γ ∈ {0.01, 0.02, 0.04,

0.06, 0.08, 0.1}. At low values of γ, the pump current has a low influence on the

permutation entropy. However, for high values of γ, the permutation entropy
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is lower and more sensitive to I. It confirms the results of section 4.3.2: the

onset of the ECMs induces a decrease of the permutation entropy. In particular,

numerical simulations indicate that the onset of the ECMs occur at lower

values of γ for low values of pump current [67] while the permutation entropy

at 40 mA is the lowest one, and the decrease is also visible at γ= 0.06. If the

pump current is low, the ECMs will be found at lower values of γ and the

decrease of the permutation entropy will also occur at lower values of γ.

4.5 Conclusion

We have studied the permutation entropy of a laser subjected to PCF. The

permutation entropy displays the signatures of both the external-cavity delay

and the period of the relaxation oscillations (section 4.2.1). The experimental

and numerical permutation entropy at external cavity delay of PCF is larger

than the one found for chaos from COF, and the permutation entropy keeps a

large values in a large range of feedback strength (section 4.2.2). The experi-

mental permutation at the period of the relaxation oscillations increases with

the feedback strength (section 4.2.4). The permutation entropy at the external

cavity time delay remains high whatever the length of the external cavity or

the pump current (sections 4.3.1 and 4.4.1). A filtered PCF model reproduces

the experimental findings qualitatively well (sections 4.3.2 and 4.4.2). Both

simulation and experiment indicate that the onset of the ECMs is responsible

for a decrease in the permutation entropy.

To conclude, PCF is a good way to obtain high complexity with a simple

system. The parameters can be tuned to modify the chaos bandwidth while

keeping the complexity high, except if the system approached a region of ECMs

dynamics.
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Chapter 5

External cavity modes

A laser diode with phase-conjugate optical feedback (PCF) is able to

generate dynamics completely different from those obtained with a

conventional optical feedback (COF). External cavity modes (ECMs),

defined as regular self-pulsing modes, are unique to PCF. In this chapter, we

study the ECM solutions systematically and demonstrate their dependency on

the external cavity (EC) frequency. ECMs show harmonic frequencies of the EC

frequency. Still, remarkably, we show that the ECM frequency is independent

of the EC length. When varying the EC length, the harmonic order adjusts

itself such that the resulting ECM frequency remains constant. We conclude

by analyzing the influence of the laser pump current on the frequency of the

ECMs.

5.1 Self-pulsing dynamics in lasers with optical
feedback

Optical feedback generate self-pulsing dynamics at two different frequencies in

a laser diode: 1) the first frequency, called the relaxations oscillations frequency

fRO, is related to the sustained regular pulsations, undamped by the feedback

[25] and 2) a laser with external optical feedback also bears another frequency,

the frequency of the external cavity fEC, defined as the inverse of the feedback

time delay τ. In the so-called Ikeda nonlinear optical cavities, self-pulsations
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are predicted at fEC/2 [149]. Oscillations at fEC can also be obtained in laser

diodes from the beating between two external cavity modes [150]. For short

delays (τ≪ 1/ fRO), the system can reach therefore high frequencies [151]. With

longer delays, harmonics of 2n+1
2 fEC have been reported in nonlinear optical

cavities [149, 152] and have been also observed in systems with OF [153, 154].

However, the frequency of these harmonics remains much more lower than

fRO. More recently, self-pulsations at frequencies larger than fRO have been

reported in polarization rotated OF although with a long fEC [155].

Figure 5.1: Optical spectrum of a laser subjected to COF, showing external
cavity modes. The feedback strength is measured using the threshold reduction.
Figure taken from Ref. [34].

A new kind of self-pulsations was theoretically predicted in 2003: a laser

with phase-conjugate feedback (PCF) [156] could present self-pulsing states

[38], where the frequency oscillates at a multiple of fEC = 1/τ. Hence, these

solutions were named external cavity modes (ECMs), by analogy with the

steady-state external cavity modes of the conventional optical feedback (COF).

Figure 5.1 presents the optical spectra of a laser subjected to COF, for increas-
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Figure 5.2: Time traces and corresponding radio-frequency (RF) spectra of a
laser subjected to PCF, for five values of feedback strength R. In (c) and (d),
the laser output power oscillates at two and three times the frequency of the
external cavity fEC = 680 MHz. Figure taken from Ref. [54].

ing feedback strengths. The linewidth of the laser will settle on a multiple of

fEC at some given values of feedback strength. Between such steady states

(spectra b, d, f, h, j and l in Fig. 5.1), the laser has a chaotic behavior (c, e,

g, i and k) [34]. In PCF, a similar phenomenon occurs but not with steady

dynamics. For some values of feedback strength, the output power will oscillate

and the peak at the frequency of the external cavity will be visible in the radio-

frequency spectrum (RF spectrum). The experimental evidence of such-induced

harmonic self-pulsations (ECMs) was given by our group in 2014 [54]. Such

ECMs from PCF are presented in Fig. 5.1: the laser output power oscillates

at 2 fEC (time traces c in Fig. 5.1) or 3 fEC (time traces d) [54]. Increasing

feedback strength will make the laser oscillate at the next multiple of fEC [58].
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Such limit cycle was experimentally observed by our group in two different PCF

configurations [52, 54]. At high values of feedback, ECMs always appear. That

fact was named ECM crisis [65]: indeed, from a certain threshold of feedback

strength, the system will mostly exhibit ECMs and multistability is typically

found between ECMs of different frequencies and between ECM dynamics and

chaos. Therefore, to know if the destabilization of the laser is related to phase-

conjugation and not to parasitic conventional feedback, observing self-pumped

states at super-harmonic frequencies of the external cavity frequency is a clear

evidence that phase-conjugation occurs in the optical system.

Numerical and theoretical studies have been performed on the emergence

of ECMs [58, 65], on the evolution of the frequency with the delay [66] and on

the influence of all the laser parameters (α, time delay, carrier lifetime, pump

and the dimensions of the mirror) [67].

5.2 Preliminary theoretical predictions

5.2.1 Frequencies of PCF

First, we try to understand the apparition of the ECMs from a numerical point

of view, using a simple model. To familiarize with our numerical model, we will

compare its results with the analytical results described by a previous study.

The first theoretical studies of the frequency of the external cavity modes

on PCF, reported in Refs. [58, 65] used an unfiltered model derived from the

Lang-Kobayashi equations. That model is studied in section 1.3.1. Subsequent

studies [52, 67] used a filtered model, described in section 1.3.1: the feedback

field is filtered by a parameter, named the finite penetration depth τr. It can

be understood as the time it takes the light to penetrate the nonlinear crystal

used for generating the PCM and it is directly proportional to the length of the

crystal. The equation in its normalized form can be written (section 1.3.1):

(5.1) Ẏ = (1+ iα)Y Z+κU

(5.2) TŻ = P −Z− (1+2Z)|Y |2
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(5.3) τrU̇ =Y ∗(t−τ)−U

Where Y is the complex normalized electric field of the laser output, Z the

normalized carrier population inversion, U the normalized feedback field of the

PCF, τr the finite penetration depth mentionned above and T the ratio of the

carrier and photon lifetimes. For analyzing PCF frequencies, we will focus our

study on the dimensionless feedback strength parameter γ, the time delay τ

and the pump current P. Ref. [67] proposed an in-depth study of the influence

of each parameter.

The scenario of PCF bifurcations is that the system will first destabilize into

ROs through a first Hopf bifurcation. Then, after successive Hopf bifurcations

leading to self-pulsing external cavity modes, the laser will restabilize at the

frequency of the last Hopf bifurcation [51, 58, 67]. From an analytical point

of vue, the frequency σ and the amplitude C of the first Hopf bifurcation are

analytically given by [51]:

C = 1+2P
T(1−α2)

(5.4)

σ=
√

2P
T

=ωRO(5.5)

if we assume P =O(1), C =O(T−1/2), τ=O(T), τr ≥O(T2) and σ=O(T−1/2), T
being the carrier lifetime ratio and α the linewidth enhancement factor.

In Eq. 5.5, σ is equal to ωRO, the relaxation oscillations frequency: the

first Hopf bifurcation does not correspond to an ECM but to the well-known

undamping of the relaxation oscillations. The corresponding feedback strength

γ is given by [51]:

γ= |C|
√

1+α2 = (1+2P)
p

1+α2

T|α2 −1|(5.6)

Each successive Hopf bifurcation unlocks a new external cavity mode,

whose frequency is the next harmonic of fEC of the previous ECM [65]. For

increasing feedback strength, the laser then encounters a last subcritical

Hopf bifurcation and the system restabilizes into a steady-state. Under the

assumptions P = O(1), C = O(T−1/2), τ= O(T), τr ≥ O(T2) and σ= O(T−1/2), it
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is characterized by [51]:

C =
√

P|α2 −1|
T(1+α2)

(5.7)

σ=
√

P(1+α2)
T

=ωRO

√
1+α2

2
(5.8)

γ=
√

P|α2 −1|
T

(5.9)

One can notice that the frequency σ at the last bifurcation, i.e. the highest

frequency that the system can reach, is proportional to ωRO.

fECM (GHz)

R = 50

Figure 5.3: Simulated map of fECM in plane (P, γ), for τR = 50. Steady states
are indicated in white and chaos in grey. The dashed red line indicates the
evolution of the value of the first bifurcation from Eq. 5.6 and the dotted red
line, the value of the last Hopf bifurcation, obtained from Eq. 5.9.

Figure 5.3 shows the evolution of fECM versus γ and α, for P ∈ [0,3], α= 2

T = 1200, τR = 50 (values used in Ref. [67]) and θ = 2500. To measure fECM ,

we use a code that computes the distance between the extrema of the laser

output field. If the distance is periodic, the system is pulsing and we report

that frequency in our map. If the extrema are non-periodic, we consider the

system is chaotic (grey in Fig. 5.4). Our group previously used that code in
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Ref. [67]. The analytical positions in the plane (P,γ) of the first and last Hopf

bifurcations are represented with, respectively, dashed and dotted red lines.

We observe that the analytical positions of the Hopf bifurcations do not

perfectly fit the numerical solutions. However, the value of γ associated with the

first Hopf bifurcation still varies quite linearly with P. Similarly, the relation

between P and the feedback strength γ leading to the last Hopf bifurcation is

close to the square root equation (5.8).

(a) R = 50

(b) R = 100 (c) R = 1000

fECM (GHz)

Figure 5.4: Simulated map of fECM in plane (α, γ), for τR = 50 (a), τR = 100 (b)
and τR = 1000 (c). Steady states are indicated in white and chaos in grey. The
dashed red line indicates the evolution of the value of the first bifurcation from
Eq. 5.6 and the dotted red line, the value of the last Hopf bifurcation, obtained
from Eq. 5.9.

We plotted in Fig. 5.4 three maps of fECM versus γ and α, for P = 0.6016,
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T = 1200 (values used in Ref. [67]), θ = 2500 and τR ∈ {50,100,1000}. The ana-

lytical solutions of the first and last Hopf bifurcations are again displayed with

dashed and dotted red lines. These approximations closely fit the numerical

values of destabilisation and restabilisation only for τr = 1000, that corresponds

to a 20 cm long BaTiO3 crystal. The analytical solutions of equations 5.7, 5.8

and 5.9 are obtained for very large feedback strengths, which is not the case for

our 5 × 5 × 5 mm3 photorefractive crystal used as a phase-conjugate mirror.

If we are using that later value, we rather obtain τr =O(T1/2) [52]. However,

these analytical results remain highly interesting to understand the general

bifurcation scenario of the filtered PCF and observe the global influence of each

parameter. In particular, the proportionality between the frequency of the last

Hopf bifurcation and the frequency of the ROs is an interesting feature to keep

in mind during the experimental study of the frequency of the ECMs.

5.2.2 Influence of the feedback strength, of the delay and
bistability

As mentioned above, the region of parameters corresponding to the external

cavity modes has been previously studied in our group [51, 52, 54, 65, 67].

To understand the questions behind the experimental work that we per-

formed in our thesis, we now report an example of numerical external cavity

modes varying the feedback strength and the length of the external cavity. We

take the equations 5.1 to 5.3 of filtered PCF, with the following parameters: α,

the linewidth enhancement factor, is set to 2, P, the pump parameter above

threshold is set to 0.06016 ; T = 1200, the ratio of carriers lifetime is set to

1200 and τr = 50. That latter value corresponds to a crystal with 5 mm-long

edges. All the values are taken from previous studies [52, 67] and also from

section 3.3.2. The temporal values T, τ and τr are normalized by the photon

lifetime, τp = 1.4 ps. We take two values of external cavity length fEC = 1/τ,

equal to 282 MHz and 1.02 GHz.

Figure 5.5 shows the simulated frequency of the ECMs fECM versus the

dimensionless feedback strength γ. The pale pink and the red lines are plotted

for fEC =282 MHz ; the red lines was simulated for increasing γ and the pale
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fEC=282MHz

fEC=282MHz

fEC=1.02GHz

Figure 5.5: Theoretical evolution of the frequency of the ECMs fECM versus
the dimensionless feedback strength γ. Three simulations were performed: the
first one (pale pink) at an external cavity frequency fEC equal to 282 MHz and
for decreasing γ, the second one (red) at the same fEC and for increasing γ, and
the last one (black) at fEC =1.02 GHz and for increasing γ.

pink lines for decreasing γ. The black curve corresponds to fEC =1.02 GHz.

First, Fig. 5.5 clearly illustrate the quantification of the frequencies of the

ECMs around multiples of fEC, as previously described in Refs. [51, 58]. It is

also worth noting that the frequency of ECM varies a little bit from the absolute

multiple of fEC. For instance, when fEC =1.02 GHz (black curve), we obtain

at γ = 0.04, fECM =5.83 GHz= 5.72 fEC and at γ = 0.047, fECM =5.9 GHz=
5.78 fEC.

Secondly, Fig. 5.5 shows that the laser, whatever the value of fEC, oscillates

at a frequency close to a similar frequency for different values of fEC. The

self-determination of the ECMs was previously described using both simu-

lations and continuation methods: fECM depends on the feedback strength,

and changing the external cavity length will only modify the multiple of fEC

at which the laser will oscillate [66]. The great novelty of PCF is that the

self-pulsating frequency is much larger than 1/τ and fRO [52].

Figure 5.5 also shows that the system can dwell on different ECMs at the

same value of γ and fEC. With other values of γ, both curves will present
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Figure 5.6: Evolution of the ratio fECM / fEC versus the feedback strength γ.
fEC=282 MHz. The simulation was run for increasing γ (blue) and decreasing
γ (red).

different kind of dynamics: one will oscillate while the other will be chaotic

(no point displayed in the figure). It means various ECMs and chaos are

theoretically bistable. It was confirmed using continuation methods in Ref. [65].

Figure 5.6 shows the same results than Fig. 5.5 but fECM is now divided

by fEC. The curve in blue was simulated for increasing γ and the curve in red

for decreasing γ. It is highly instructive to see that fECM
fEC

is always inferior to

the nearest integer multiple n of fEC (dotted lines). Changing the direction of

the tunning of γ does not change that result. Therefore, that observation is not

linked to a continuation of the stability at nfEC. Please note that this result

remains true if the delay is changed.

5.3 Experimental results about ECMs

In the previous section, we studied some numerical properties of the ECMs:

their frequencies, the influence of the feedback strength and the delay and the

bistability of the ECMs. Our study will now focus on experimental confirma-
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tions of that predictions.

5.3.1 Observation of high-frequency ECMs

The highest frequency experimentally obtained till our work with PCF was

8.15 GHz, corresponding to the 13-th harmonics of fEC = 625 MHz [52] .

F=2.6%, fEC=1.02GHz

F=2.8%, fEC=394MHz

F=2.5%, fEC=282MHz
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Figure 5.7: Experimental time series (left) and RF spectra (right) for three
values of fEC and at a pump current of 40mA. They are measured at a similar
value of feedback strength. In (a), fEC equals 1.02 GHz, in (b) 394 MHz and (c)
282 MHz. The maximum frequency in the spectrum ( fECM) is indicated with a
red arrow.

We present below a few external cavity modes we observed with the setup

described in section 2.2, i.e. a laser with a "cat" phase-conjugate mirror (PCM).

The observed variations of the reflectivity of that mirror enables us to scan the

various dynamics of the PCF for different values of reflectivity. The laser is

here the SDL-5410, pumped with a current equal to 40 mA. At that value of

current, fRO ≈ 2.8 GHz.

Figures 5.7 and 5.8 present six examples of time series, obtained for six

different values of feedback strength and for three given fEC. For each example,
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F=6.5%, fEC=1.02GHz

F=6.3%, fEC=394MHz

6.64GHz

F=6.3%, fEC=282MHz(f)

(e)

(d)

6.71GHz

Figure 5.8: Experimental time series (left) and RF spectra (right) for three
values of fEC and at a pump current of 40mA. They are measured at a similar
value of feedback strength. In (d), fEC equals 1.02 GHz, in (e) 394 MHz and (f)
282 MHz. The maximum frequency in the spectrum ( fECM) is indicated with a
red arrow.

a short piece of the time series is plotted on the left and the spectra corre-

sponding to the full time series is plotted on the right. In Fig. 5.7, the feedback

strength F is around 2.5%, a relatively low value, and in Fig. 5.8 F is around

6.5%, a high value.

Fig. 5.7 (a), (b) and (c) are obtained at similar values of feedback strengths

but at different values of fEC. They present a similar values of fECM , respec-

tively 5.563 GHz (5th harmonics of fEC = 1.02 GHz), 5.274 GHz (13th har-

monics of fEC = 394 MHz) and 5.776 GHz (20th harmonics of fEC = 282 MHz).

Similarly, the frequencies of the ECMs of Fig. 5.8 (d), (e) and (f) are respectively

6.707 GHz (6th harmonics of fEC = 1.02 GHz), 6.877 GHz (17th harmonics

of fEC = 394 MHz) and 6.637 GHz (23rd harmonics of fEC = 282 MHz). The

offset in the multiples of the fEC is probably related to the interaction dynam-

ics inside the crystal. Indeed, the light may have longer path due to several

round-trips in the crystal.
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These six ECMs observations are good examples of the diversity of self-

pulsing dynamics that can be obtained with our system. Figs. 5.7 (a) and

5.8 (e) display spectra with multiple peaks. Consequently, the corresponding

time series, in particular in Fig. 5.8 (e), show modulation of the periodical

time series. It corresponds to dynamical states where the system can’t remain

stable on one frequency and explore the neighboring frequencies. It is highly

interesting because it enables us to distinguish the quantification of the ECMs.

For instance, in Fig. 5.7 (a) the distance between two peaks in the spectrum

is 1.06 GHz, which is close to fEC = 1.02 GHz and in Fig. 5.8 that distance

equals 395 MHz= fEC. It is worth noting that in Figs. 5.7 and 5.8, feedback

strengths are in the same range for the three different values of delay, and that

the frequency of the ECMs are in that case similar. We will further investigate

that observation in section 5.3.3.
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Figure 5.9: Experimental time series (left) and RF spectra (right) of an high
frequency ECM.

Although our objective is not to observe the fastest external cavity modes

but to qualify their properties, we report in Fig. 5.9 one of the largest ECM

frequency ever observed. It was obtained with a SDL-5420 laser pumped

at 80 mA and with an external cavity delay of 10.3 ns ( fEC =97 MHz). The

frequency of the ECM is 11.07 GHz and it is the 114th harmonics of fEC!
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5.3.2 Evolution of the frequency of the ECMs versus the
feedback strength
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Figure 5.10: Evolution of the chaos bandwidth (blue dots, see chapter 3) and of
the frequency of the self-pulsing modes (green diamonds) versus the feedback
strength. Steady-states are indicated with black crosses. Figure taken from
Ref. [99].

We now report the evolution of the frequency of the external cavity modes

with respect to the feedback strength for the JDS-Uniphase SDL-5420 laser,

presented in section 2.2.2.2. The laser is pumped with an electric current of

40 mA ( fRO = 3.6 GHz). We show in Fig. 5.10:

• the evolution of the frequency of the self-pulsing modes (green diamonds),

• the chaos bandwidth of the chaotic states [99] (blue dots),

• the steady-states (black crosses).

That figure was presented in section 3.3.1 to study the chaos bandwidth but

one can make more analysis about the ECMs.

First, the first bifurcation from the steady-state into undamped relaxation

oscillations is visible. The frequencies of the first oscillations, for a feedback

strength < 0.5%, are around 4 GHz, close to fRO =3.9 GHz. These oscillations

are destabilized into chaos as the feedback strength increases. From a feedback

strength of 4%, chaotic dynamics became rare and the system display external
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cavity modes. From previous results, the frequency of the external cavity modes

should increase by steps, each step corresponding to successive harmonics of

fEC [65] but the frequencies of the external cavity modes are somewhat mixed

together. We will further study that observations in the next section. At high

values of feedback strength, i.e. more than 10%, the laser restabilizes (black

crosses).

We observe from our experiment that both ECMs and steady-state can co-

exist. No one studied the question of the subcriticity of the final Hopf bifurcation

that leads to restabilization in PCF, since Green and Krauskopf studied the

criticity of the Hopf bifurcations leading to ECMs but only in the region of low

feedback strength [44]. Noise can also shift the bifurcation points. We can also

link that observation to the uncertainty about the actual feedback rate of light

coupled back into the laser or to the various possible geometric paths in the

laser, which could modify the finite depth penetration inside the crystal and

therefore the dynamics.

5.3.3 Influence of the delay on the frequency of the ECMs,
and bistability

In that section, we study a still unsolved question: could the ECM frequency

be independent of the delay? Indeed, we have reported ECMs oscillating at a

multiple of the frequency corresponding to the external cavity length. Such a

statement is theoretically predicted in section 5.2.2.

The setup of the experiment, discussed in section 2.2, is reproduced Fig.

5.11. The experimental parameters are the following: the edge-emitting laser

diode is the SDL-5410 model, whose caracteristics were given in section 2.2.2.1.

The pump current is set at 40 mA, as in section 5.3.1. The measurement arm

is made of the Newport 1474-A photodetector and the Teledyne LeCroy 10-

Zi-36 oscilloscope, and it enables measurements at frequencies up to 36 GHz.

We record 1-µs long time series each third or quarter of second. That rate

has been measured by using from the time stamp inscribed in each digital

data file generated by the oscilloscope. It is constant for each run of 500 time

series. As in sections 3.5.1 and 4.3.1, the PCM was mounted on a rail so that the
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Figure 5.11: Setup of the experiment used in section 5.3.3. Note that the
distance between the PCM and the edge-emitting laser can be tuned.

distance between the laser and the PCM can be tuned. We chose three distances:

single-trip lengths equal to 14.7 cm, 38.0 cm and 53.2 cm, corresponding to

fEC=282 MHz, fEC=395 MHz and fEC = 1.02 GHz.

We plot in Fig. 5.12, fECM versus the feedback strength, for three values of

fEC. We have removed the non-self pulsing dynamics but they represent more

than the three quarters of the time series that we recorded. The system gen-

erally encounters more or less long chaotic or steady state dynamics between

two points presented in Fig. 5.12.

We observe several features. First, the distribution at integer multiples of

fEC is clearly visible, particularly for fEC =1.02 GHz (yellow circles). For given

values of feedback strength and fEC, many values of fECM can be reached. How-

ever, these values are obtained at different times. The black dotted arrow in the

green-bordered inset shows the evolution of fECM versus the feedback strength

for six consecutive times, i.e. without chaotic dynamics in-between. The system

reaches fECM ≈5.56 GHz, i.e. the 5th ECM. For smaller fEC (282 MHz and

395 MHz), the larger number of ECMs did not enable us to observe similar

dwelling on an ECM for more than two consecutive time series. These observa-

tions, coupled with the fact that many chaotic dynamics are also observed in

the range of feedback associated with ECMs, clearly confirm the theoretical

predictions of Ref. [65]: there appears a bistability between successive ECMs

and between ECMs and chaos.
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Figure 5.12: Evolution of fECM versus the feedback strength, for three values of
fEC (282 MHz in red triangles, 395 MHz in blue downward pointing triangles
and 1.02 GHz in yellow circles). The inset is a zoom on the region delimited by
the green rectangle. The black doted arrow in this inset presents the evolution
of fECM and the feedback strength for six time series measured consecutively.
The laser pump current was set at 40 mA.

Section 5.2.2 predicted that the frequency of the ECMs was self-determining,

i.e. that for a given value of feedback and two values of fEC, the two integer

multiples n1 and n2 will be chosen so that n1 fEC,1 ≈ n2 fEC,2. The aforemen-

tioned bistability means that many values of n1 and n2 can be reached for a

given value feedback. Still, Fig. 5.12 shows clearly that, for a given value of

feedback strength, the values of fECM are in the same range of frequencies

whatever is fEC. For fEC =1.02 GHz, the frequencies do not reach the high

values obtained for fEC =395 or 282 MHz. It is probably due to the instability
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of the higher ECMs for that great value of fEC. That confirms simulations

that predicted the system can lock on a stable steady-state for lower values of

feedback strength when the time delay is small, i.e. restabilization occurs at

lower values of feedback strength [67].

5.3.4 Influence of the pump current on the frequency of
the ECMs

Figure 5.13: Distribution of the frequency of the external cavity modes for
increasing pump current, at fEC = 282MHz (red triangles) and fEC = 1.02GHz
(yellow circles). Each measured ECM is plotted at the corresponding values of
fECM and pump. The frequency of the relaxation oscillations is indicated with
gray diamonds.

We have studied the influence of the feedback strength and of the delay.

However, a third experimental parameter can be easily controlled: the electric

pump of the laser. To further continue our study, Fig. 5.13 illustrates the evolu-

tion of the frequency of the ECMs versus the pump current, for fEC =282 MHz

and 1.02 GHz; we compare it with fRO. The experimental setup is the same

than in the previous section, in particular the laser is the model SDL-5410.

The conclusions are not easy to draw. In some cases high frequency ECMs can
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be reached. For instance at a pump of 40 mA and fEC =282 MHz, the frequency

of the ECMs is higher than at a pump of 60 mA. Still, the frequencies of the

lowest ECM and of the highest ECM globally increase with the pump, as does

fRO, thus confirming numerical predictions of section 5.2.1.

5.4 New PCF dynamics

(a)

(b)

(c)

Figure 5.14: Example of time series showing intermittent high frequency pulses.
(b) is a zoom on the red square in (a) and (c) is a zoom on the read square in (b).

Last, we observe new dynamics with PCF. Such dynamics were observed in

the case of a long feedback (10.3 ns round-trip time). Figure 5.14 shows a time

series obtained at feedback strength equal to 3.07%, with the SDL-5420 laser

associated to a 10.3 ns external cavity. Similar time series were observed for

values of feedback strength between 2.5% and 5%.

Figure 5.14 (a) shows a first feature of this time series: the system shows

intermittent behavior, regularly repeated at a rate of τ. A more precise study,

with Fourier analysis, shows that the low amplitude parts are ECMs and that

117



CHAPTER 5. EXTERNAL CAVITY MODES

the short pulses are broadband chaotic signals. These time series have a global

chaos bandwidth superior to 30 GHz (see chapter 3). The intermittent dynamics

that appear irregularly between two chaotic pulses, as shown in Fig. 5.14 (b),

are self-pulsations at a frequency around 30 GHz. The inset in Fig. 5.14 (c)

shows that this frequency is modulated.

Feedback strength Frequency of the ECMs Frequency of the HF part
2.5% 11.26 GHz 33.4 GHz
2.7% 10.98 GHz 31.4 GHz
2.9% 10.98 GHz 30.6 GHz
3.3% 11.08 GHz 29.0 GHz
3.6% 11.08 GHz 30.8 GHz
3.7% 11.17 GHz 32.8 GHz
3.9% 11.17 GHz 32.4 GHz
4.3% 11.08 GHz 28.83 GHz
4.7% 11.47 GHz 29.79 GHz

Table 5.1: Frequencies measured in some time series with intermittent high-
frequency (HF) pulses, mixed in ECMs.

In other time traces obtained at other values of feedback strength, the

frequency of the ECM is different and so is the frequency of the high-frequency

intermittent pulses. The values are presented in table 5.1. There is no clear

relation between the frequency of the ECM and the frequency of the high-

frequency pulses.

Conclusion

We have analyzed in details the external cavity modes of a PCF system. We

confirmed various numerical prediction:

• We confirmed that high-frequency ECMs can be obtained, more than the

100th harmonics of fEC in the case of long cavities ;

• We experimentally observed that the ECMs are self-determining solu-

tions, i.e. the self-pulsation frequency remain constant whatever is the
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5.4. NEW PCF DYNAMICS

delay value. This is a remarkable, unexpected feature in a laser with a

delayed feedback.

• We demonstrated that the ECMs are bistable. The system will dwell

on a given ECM but several ECMs can be obtained at a given feedback

strength and the system switches between therefore different self-pulsing

dynamics with time.

• We studied the role of the pump current and shows how a larger pump

current enables higher frequencies.

• We reported a new dynamics, periodic switching between ECM and chaos

with intermittent high-frequency pulses.

These various features are here unveiled experimentally for the first time.

They make the PCF system a unique system in the field of delayed feedback

lasers.
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Chapter 6

Polarization rotated
phase-conjugate feedback

O ne of the interesting aspects of the phase-conjugate feedback is the

possibility to generate high-frequency self-pulsing oscillations, the

so-called external cavity modes presented in chapter 5. The laser

oscillates then at multiples of the external cavity frequency, hence much fater

than the standard modulation limit of laser diodes, typically determined by the

frequency of relaxation oscillation fRO.

Alternatively, optical feedback can be used to excite new polarization modes.

A standard edge-emitting laser diode naturally emits light polarized parallel to

the active region. Such lasing modes are named transverse electric (TE) modes.

The orthogonal transverse magnetic (TM) modes are strongly suppressed [157].

However, feedback can be used to excite the normally suppressed polarization,

by injecting energy into the TM mode through rotation of the polarization of the

feedback beam. This was first achieved using a quarter-wave plate, rotating the

polarization of the feedback of the TE mode into the one of the TM mode and

inversely [158]. In particular, such laser is able to generate square waves at a

period equal to twice the feedback time delay τ. The apparition of the square

waves can be intuitively described. The TE mode, emitting during a time τ is

reinjected into the TM mode. That stimulates the TM mode and depreciates

the TE mode for a duration τ. The TE mode will then be stimulated by the
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CHAPTER 6. POLARIZATION ROTATED PHASE-CONJUGATE FEEDBACK

feedback of the TM mode and so on [158]. Although the explanation appears as

intuitive, it was later shown that the TE-TM dynamics results from a large set

of bifurcations including Hopf bifurcations to square waves [159].

The system called Polarization Rotated Optical Feedback (PROF) therefore

exhibits square wave (SW) dynamics: the laser output switches between the two

modes at the frequency 1
2τ [160]. It is demonstrated in [155] both experimentally

and numerically that the PROF system can exhibit asymmetric oscillations on

the plateau of the TM mode (Fig. 6.1). The frequency of these oscillations, fp is

larger than fRO but remains limited to about 2-3 times fRO.
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Figure 6.1: Experimental time-series (a-c) of the TM mode dynamics, in PROF
configuration, and associated RF spectrums (a.1-c.1). (a) shows undamped
relaxation oscillations at 3.8 GHz, (b) the self-pulsing square waves (the TE
mode has standard square waves) at a larger value of feedback strength and
(c) standard square-waves at a value of feedback strength larger than the one
in (a) and (b). Figure taken from Ref. [155].

In this chapter we study the effect of combining the high-frequency external

cavity modes from the PCF setup with the switching dynamics of the PROF,

and investigate whether this mixing of frequencies enable us to have high

frequency switching wave-forms. That study is based on the work done with

master student Neco Kriel from Queensland University of Technology under

my supervision.
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P

Phase-conjugate 
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850nm EEL

Figure 6.2: Proposed configuration of a PRPCF system. The output beam from
an EEL is reflected by a phase-conjugate mirror into the laser. By rotating
it by 45-degrees while going backward and going forward, the vertical (TE)
polarization is sent back into the horizontal (TM) polarization.

6.1 Configuration

6.1.1 Proposed experimental setup

In this chapter we consider a setup consisting of an edge-emitting laser diode

(EEL) with Polarization Rotated Phase Conjugate Feedback (PRPCF), as seen

Figure 6.2. Typically this experimental setup is one where the TE-TM light

emitted by a laser diode is rotated 45-degrees by a Faraday rotator (FR),

followed by a polarizer (Pol.) removing the rotated vertical (TE) polarization.

The reflected light is then again rotated by 45-degrees, resulting in a feedback

beam, parallel to the TM axis when injected back into the system. A phase

conjugate mirror typically reflects only one polarization, and the crystal’s c-axis

must be parallel to the 45◦ rotated TE-mode. Finally, an attenuator (Att.) is

used to control the feedback strength.

In practice, a half-wave plate can be added between the polarizer and the

PCM to avoid tilting the crystal at 45◦.

6.1.2 Associated equations

All types of PROF systems with an EEL can be mathematically modelled using

a modified Lang-Kobayashi (LK) model [31], and described mathematically
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using non-dimensionalised set of rate equations [49, 161, 162]:

Ė1(s)= (1+ iα)E1(s)Z(s)+Rξ1(s)(6.1)

Ė2(s)= [
(1+ iα)κ(Z(s)−β)− iΩ

]
E2(s)

+ηpκEF (s)+Rξ2(s)(6.2)

TŻ(s)= P − (1+2Z(s))
(|E1(s)|2 +|E2(s)|2)

−Z(s)(6.3)

The parameters in this model corresponds to an extension of the dimen-

sionless PROF system [49], where τR is the finite depth penetration of the

PCM, τP is the photon lifetime, and Rξ1(s) and Rξ2(s) represent the zero-mean

and R-variance of the Gaussian white noises present in the system, respectively.

Further, EF represents the normalized complex field of the feedback wave,

where in a PROF system, EF = E1(s−τ), and for a phase-conjugate feedback

(PCF) setup, EF = E1
∗(s−τ). To explain the restabilization of the steady state

for high values of feedback ratio, we have to account for a filtered PCF model

[52] and therefore we add a fourth equation to our system, (Equation 6.7), in

which τR is the finite depth penetration. It has been demonstrated that a PCM

with τR ≫ 1 tends to filter out the infinitely high frequencies generated in

PCF [50].

Ė1(s)= (1+ iα)E1(s)Z(s)+Rξ1(s)(6.4)

Ė2(s)= [
(1+ iα)κ(Z(s)−β)− iΩ

]
E2(s)(6.5)

+ηpκEF (s)+Rξ2(s)

TŻ(s)= P − (1+2Z(s))(|E1(s)|2 +|E2(s)|2)(6.6)

−Z(s)

τRĖF = E1
∗(s−θ)−EF(6.7)

We consider typical parameter values as defined in Table 6.1, to compare

with our own analysis and also to be consistent with the literature on PROF

systems [49].
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Table 6.1: Definitions and default values used for parameters used in the
analysis.

Default value: Parameter definitions:
P 0.6 Pump parameter
T 250 Carrier-cavity lifetime ratio
θ ∈ [1000,7000] Normalized delay
η ∈ [0,0.3] Feedback ratio
κ 0.96 TM-TE modes gain ratio
β 1−κ

2κ TM mode additional losses
α 2 Linewidth enhancement factor
Ω 0 TM-TE modes detuning
τR 50 PCM finite penetration depth
τP 1.4×10−12 Photon lifetime
R 10−12 Variance of noise

6.2 Numerical results

6.2.1 Typical Bifurcation Scenario

(a)

(b)

Figure 6.3: Bifurcation diagrams of the TM output power for (a) PROF and (b)
PRPCF.
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Considering typical parameter values, as defined in Table 6.1, with θ = 7000,

κ= 0.96, and α= 2, we give a typical bifurcation diagram for a PRPCF system

in Fig. 6.3. For low values of feedback ratio, η≤ 0.02, we observe steady-state

solutions, where both polarizations are lasing, and by increasing the feedback

ratio, we observe the output power of the vertical polarization increases, while

the horizontal polarization’s output power decreases. This result is reported in

the PROF system as well, and intuitively makes sense, since as we increase

the feedback ratio we are increasing the amount of energy transferred into the

normally depressed polarization. Through a Hopf bifurcation, we observe a re-

gion, η ∈ [0.0202,0.035], of mixed-mode undamped oscillations at the relaxation

frequency of the laser ( fRO).

PRPCF

PROF

(a)

(b)

Figure 6.4: Examples of the square-wave (SW) dynamics we observe in a typical
setup with (a) PRPCF with η= 0.0498 and (b) PROF with η= 0.0407. Time t is
normalized by the delay θ =8.9 ns.

Continuing to increase the feedback ratio, we observe a very narrow region

of chaos before the transition into SW dynamics. As shown in Fig. 6.4, the TE

mode shows fast oscillations on the upper plateau while the ground plateau is

steady. Further, the horizontal polarization has a short transient state, with

damped oscillations at fRO, and lases with steady dynamics for the duration
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of θ. That dynamics is similar to the one obtained in COF, shown in Fig. 6.4

(b). The vertical polarization oscillates at fP for a duration of θ along the upper

plateau, where fP has previously been studied in PROF systems [155]. In

particular, Ref. [155] analytically obtained fP = fRO

√
k
2 (1+α2 . The vertical

polarization continues to oscillate after a period of θ, however, the oscillations

are damped and the oscillating frequency changes from fP to fRO.

Figure 6.5: Examples of the quasi-steady square-wave (QSW) dynamics we
observe in a typical PRPCF setup with η= 0.0995. Time t is normalized by the
delay θ =8.9 ns. The black arrow indicates the secondary plateau.

When we increase the feedback ratio to η≈ 0.082, the vertical polarization’s

oscillations stabilizes, resulting in a regime of SW we distinguish from typical

SWs, and we name this quasi-steady SWs (QSW), see Fig. 6.5. Particularly, this

QSW solution has a secondary, lower plateau acting as transient state at the

end of the SW (indicated with a black arrow in Fig. 6.5). This shape of QSWs

has also been reported for PROF and is noise-sensitive [49]. Beyond η≥ 0.082

we only observe QSW solutions. All these bifurcations have been reported for

PROF systems [155].

6.2.2 Influence of Parameters on Bifurcation Scenario

We investigate how the regions of parameter space corresponding to differ-

ent dynamical regimes established earlier for a typical bifurcation scenario

changes, when different parameters are varied. Particularly, we use the typical

parameters defined in Table 6.1 and investigate the dynamical influence of
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varying the delay, θ ∈ [150,10000], and the PCM’s finite penetration depth,

τR ∈ [0,10000].

We observe that the frequencies associated with the PRPCF dynamics are

insensitive to changes in the delay parameter (θ), except for cases of very short

delay, where θ < fRO. For short delay, we don’t observe any SW solutions, since

the frequency associated with the delay is too short when compared with . This

non-dependency from values of θ is a result that has already been shown to be

the case for the PROF system [155]. However, the values of η associated with

the bifurcation points vary with the delay θ.

(a)

(b)

Figure 6.6: Time traces of square waves obtained at large values of finite
depth penetration τR. (a) τR = 1000 and η= 0.28422 and (b) τR = 10000 and
η= 0.22042.

In the case of zero finite penetration depth for the PCM, that is τR = 0,

we find that the dynamics of PROF and PRPCF systems are very similar.

Particularly, for larger values of feedback ratio, higher frequencies appear in

the transient states of the upper plateau for the TE mode. For large values of τR ,

when τR = 1000, and for values of feedback ratio beyond the Hopf bifurcation

point, η≥ 0.0202, we observe that the SW regimes are modified, and the high

frequencies of the square TE mode’s signal are filtered, see Fig. 6.6 (a). Further,
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when we increase the PCM’s finite penetration depth to τR = 10000 (Fig. 6.6

(b)), we notice that the filtering now occurs on the TM mode as well. High

frequencies dominate the transient state of the upper plateau in the TE and

TM modes. Note that τR = {1000,10000} corresponds to a nonlinear medium

whose length is not realistic and therefore these values of τR are interesting

only from a mathematical perspective.

6.2.3 Study of the first bifurcation point

Figure 6.7: Position ηHopf of the first Hopf bifurcation, for various values of θ.

It is interesting to observe the position of the first Hopf bifurcation, i.e. the

destabilization of the steady state into undamped relaxation oscillations as it

occurs in PCF, PRPCF and PROF.

We present Fig. 6.7 the evolution of ηHopf , the value of feedback strength

associated with the first Hopf bifurcation, versus the time delay θ. ηHopf

becomes independant of θ when θ ≫ fRO, as predicted for PCF in Ref. [51]
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and for PROF in Ref. [49]. We have ηHopf → 0.006 for PCF, ηHopf → 0.015 for

PROF and ηHopf → 0.021 for PRPCF.

Conclusion

We have studied a new configuration, with phase-conjugate feedback on the

depreciated TM mode of the laser diode.

Since both PCF and PROF are known to generate high frequency self-

pulsations, with frequency superior to fRO, it was initially thought that com-

bining both setups and therefore suggesting a PRPCF configuration would

enable to control and maybe even improve the stability of the high frequency

dynamics.

The observations do not confirm the initial claim:

• the resulting dynamics is dominated by square waves with pulsations on

the plateau at frequency fP , which is close to the one observed in PROF

without phase-conjugation.

• ECM dynamics of PCF do not appear in the PRPCF system, or in other

words the rotated feedback suppresses the dynamical features of the PCF

system!

• The instability, to undamped relaxation oscillations and later square

waves takes place for about the same feedback strength in PROF and

PRPCF and the bifurcation point is about the same independtly of the

value of the delay.

• The finite time of the interaction in the nonlinear medium acts like a

filter for both the pulsations on the square waves and for the time to

switch between the TE/TM modes.
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Chapter 7

General conclusion and
perspectives

We conclude here our study of the dynamics of a laser diode subjected to PCF.

First, we present a summary of the results obtained during this thesis. Then,

we give some perspectives for future works about PCF.

7.1 Summary of the results

This thesis studied the effect of phase-conjugate feedback (PCF) on laser diode

dynamics, in the more general field of chaotic laser diodes. Previous works,

presented in Chapter 1, had shown the specificity of the nonlinear dynamics of

a laser diode subjected PCF:

• The chaos obtained from PCF has a larger bandwidth than the one

obtained from COF.

• The PCF enables the generation of high-frequency self-pulsing states

with a frequency equal to a multiple of the frequency of the external

cavity fEC.

• The finite penetration depth in the nonlinear phase-conjugate mirror

(PCM) leads to a restabilization of the laser at high values of feedback

strength.
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Then, in chapter 2, we presented how our experiment was performed.

Perform an experiment with PCF requires a careful study of the PCM geometry

to obtain interesting values of feedback strength. In particular, we observe a

spontaneously varying reflectivity in the PCM and therefore we are able to scan

different values of feedback strengths without human intervention during the

measurement. The characteristics of the laser diodes were also presented, in

particular the evolution of their output power and frequency of the relaxation

oscillations fRO with the bias current.

In chapter 3, we introduced the study of the chaos bandwidth and of the

spectral flatness. We observed chaos bandwidth larger than 30 GHz and spec-

tral flatness up to 0.75, which indicates a complex chaos. We studied the

influence of the feedback strength on these two indicators. We saw a saturation

of the chaos bandwidth and of the effective bandwidth and we relates that

result to the non-instantaneous response of the PCM. We also observed that

the length of the cavity has no influence on the chaos bandwidth and spectral

flatness. Last, the study of the influence of the pump current showed that an

increase of the pump current increases the chaos bandwidth while the spectral

flatness does not significantly varies.

Then, in chapter 4, we continued our analysis of the properties of chaos

generated by a laser diode with PCF by calculating the permutation entropy.

We reported high values of permutation entropy, superior to 0.93 on a large

range of feedback values. The length of the external cavity does not influence

the permutation entropy but we experimentally observed a saturation of the

permutation entropy at high values of feedback strength. This saturation was

also observed in simulations. Last, the permutation entropy values remain

high when the pump current varies.

In chapter 5, we focused the study on the external cavity modes of the PCF.

We reported high frequencies of ECMs, fECM , around 11 GHz. We also observed

that an increase feedback strength leads to higher values of fECM . However,

while fECM is always a multiple of fEC, fECM remains in the same region if

the length of the cavity varies while the feedback strength is constant. We

also observed that different values of fECM can be obtained at the same value

of feedback strength, which indicates bistability. We observe that increasing
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the pump current enables the generation of higher values of fEC. Last, we

presented an intermittency between ECMs and higher frequency pulses.

Last, in chapter 6, we introduced a new setup, the polarization rotated

phase-conjugate feedback (PRPCF), where the feedback is sent into the nor-

mally suppressed orthogonal mode of the laser diode. We numerically report

the generation of square waves, and also of square waves with fast oscillations

on the high plateau of the TM mode. These phenomena were also observed in

conventional polarization rotated optical feedback (PROF) but the bifurcations

occur at different values of feedback strength.

7.2 Perspectives

Since 2011, our group has extensively studied the dynamics of PCF. I consider

that I have addressed the main questions that remained before my thesis

started: the influence of the delay on the chaos and on the ECMs and the

bistability of the ECMs. The complexity and large chaos bandwidth of the

chaotic signal obtained from PCF was also put in evidence. However, many

aspects of the PCF remain unknown.

The following aspects could be considered:

• We have used a photorefractive BaTiO3 crystal with a fixed length to

generate the PCF. It may be interesting to study the influence of the

length of the crystal on the dynamics, since a smaller crystal would have

a lower finite depth penetration time.

• The PCM has spontaneous variations. However, commercial applications

require a monitoring of the feedback strength. It would be necessary to

stabilize the reflectivity of the PCM. Using another type of PCM, such

as phase-conjugation obtained in semiconductor materials may enable a

better control of the feedback strength.

• We have not demonstrated the possible applications of the broadband

and complex chaos obtained from PCF. It might be interesting to use the
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PCF as a real-time random number generator or as the source of light in

a chaotic lidar.

• Last, the intermittency between high-frequency pulses and ECMs de-

scribed in section 5.4 of chapter 5 was not predicted in simulations.

Further study could be launched on these dynamics.
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