
HAL Id: tel-03959710
https://theses.hal.science/tel-03959710v1

Submitted on 27 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Definitions and Detection Procedures of Timing
Anomalies for the Formal Verification of Predictability

in Real-Time Systems
Benjamin Binder

To cite this version:
Benjamin Binder. Definitions and Detection Procedures of Timing Anomalies for the Formal Veri-
fication of Predictability in Real-Time Systems. Embedded Systems. Université Paris-Saclay, 2022.
English. �NNT : 2022UPASG086�. �tel-03959710�

https://theses.hal.science/tel-03959710v1
https://hal.archives-ouvertes.fr

T
H
È
S
E
D
E
D
O
C
T
O
R
A
T

N
N
T
:
2
0
2
2
U
PA

S
G
0
8
6

Definitions and Detection Procedures of
Timing Anomalies

for the Formal Verification of
Predictability in Real-Time Systems
Définitions et procédures de détection des

anomalies temporelles
pour la vérification formelle de la

prédictibilité des systèmes temps-réel

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 580 : Sciences et technologies de l’information
et de la communication (STIC)

Spécialité de doctorat : Informatique
Graduate School : Informatique et sciences du numérique

Référent : Faculté des sciences d’Orsay

Thèse préparée à l’institut LIST (université Paris-Saclay, CEA), sous la direction de
Mathieu JAN, directeur de recherche, LIST (université Paris-Saclay, CEA), le
co-encadrement de Mihail ASAVOAE, ingénieur-chercheur, LIST (université

Paris-Saclay, CEA), le co-encadrement de Belgacem BEN HEDIA, ingénieur-chercheur,
LIST (université Paris-Saclay, CEA), et le co-encadrement de Florian BRANDNER,

enseignant-chercheur, LTCI (institut polytechnique de Paris, Télécom Paris)

Thèse soutenue à Paris-Saclay, le 13 décembre 2022, par

Benjamin BINDER

Composition du jury
Membres du jury avec voix délibérative

Alain FINKEL Président
Professeur des universités, ENS Paris-Saclay (uni-
versité Paris-Saclay)
Stephan MERZ Rapporteur & Examinateur
Directeur de recherche, INRIA & LORIA (université
de Lorraine)
Christine ROCHANGE Rapporteure & Examinatrice
Professeure des universités, IRIT (université
Toulouse III - Paul Sabatier)
Claire PAGETTI Examinatrice
Ingénieure de recherche, ONERA (ISAE-SUPAERO)

Title: Definitions and Detection Procedures of Timing Anomalies for the Formal Verification of Pre-
dictability in Real-Time Systems
Keywords: Timing Anomalies, Real-Time Systems, Formal Verification, Model Checking, Out-of-Order
Pipeline, TriCore

Abstract: The timing behavior of real-time sys-
tems is often validated through timing analyses,
which are yet jeopardized by timing anomalies
(TAs). A counter-intuitive TA manifests when
a local speedup eventually leads to a global slow-
down, and an amplification TA, when a local slow-
down leads to an even larger global slowdown.
While counter-intuitive TAs threaten the sound-
ness/scalability of timing analyses, tools to sys-
tematically detect them do not exist. We set up a
unified formal framework for systematically assess-
ing the definitions of TAs, concluding the lack of
a practical definition, mainly due to the absence of
relations between local and global timing effects.
We address these relations through the causality,
which we further use to revise the formalization of

these TAs. We also propose a specialized instance
of the notions for out-of-order pipelines. We evalu-
ate our subsequent detection procedure on illustra-
tive examples and standard benchmarks, showing
that it allows accurately capturing TAs.
The complexity of the systems demands that their
timing analyses be able to cope with the large re-
sulting state space. A solution is to perform com-
positional analyses, specifically threatened by am-
plification TAs. We advance their study by show-
ing how a specialized abstraction can be adapted
for an industrial processor, by modeling the timing-
relevant features of such a hardware with appropri-
ate reductions. We also illustrate from this class
of TAs how verification strategies can be used to-
wards the obtainment of TA patterns.

Titre : Définitions et procédures de détection des anomalies temporelles pour la vérification formelle
de la prédictibilité des systèmes temps-réel
Mots-clés : Anomalies temporelles, systèmes temps-réel, vérification formelle, vérification de modèles,
pipeline out-of-order, TriCore

Résumé : Les systèmes temps-réel sont souvent
validés par des analyses temporelles, qui sont mises
en péril par des anomalies temporelles (AT). Une
AT contre-intuitive a lieu quand une accélération
locale conduit à un ralentissement global, et une
AT d’amplification, quand un ralentissement local
entraîne un ralentissement encore plus grand.
Alors que les AT contre-intuitives menacent le
bien-fondé ou la flexibilité des analyses, il n’existe
pas d’outils pour les détecter de manière systé-
matique. Nous proposons une structure formelle
unifiée pour évaluer les définitions des AT, con-
cluant au manque d’une définition pratique, princi-
palement dû à l’absence de relations entre les effets
temporels locaux et globaux. Nous y répondons
par la causalité, que nous utilisons pour revoir la
formalisation de ces AT. Nous proposons aussi une

instance des notions spécialisée pour les pipelines
out-of-order. Nous évaluons notre procédure de
détection subséquente sur des exemples illustrat-
ifs et bancs de tests, montrant qu’elle permet de
capturer précisément les AT.
La complexité des systèmes exige que leurs anal-
yses gèrent l’important espace d’états résultant.
Une solution est de réaliser des analyses com-
positionnelles, précisément menacées par les AT
d’amplification. Nous faisons progresser leur étude
en montrant comment une abstraction spécialisée
peut être adaptée pour un processeur industriel,
en modélisant les caractéristiques temporelles clés
avec des réductions appropriées. Nous illustrons
aussi à partir de cette classe d’AT comment des
stratégies de vérification peuvent être utilisées en
vue de l’obtention de motifs d’AT.

À mon grand-père, Simon CORMAND (1930-2011)
À ma grand-mère, Colette BINDER (1926-2022)

REMERCIEMENTS

On entend souvent que le travail d’une thèse est synonyme de phases certaines
d’isolement voire de perdition. Si j’ai bien sûr dû affronter des difficultés et

prendre des décisions pour aller de l’avant, je ne fus jamais seul, pas davantage
dans l’adversité que la félicité dont la soutenance est évidemment l’apogée.

Je remercie donc en premier lieu Mathieu, mon directeur de thèse, qui a su
conserver son niveau d’exigence tout en me soutenant immanquablement pendant
trois ans. Certains sollicitent à l’occation l’avis de leur directeur de thèse, au point
parfois d’être capables de mentionner leurs rencontres ; j’ai eu la chance d’avoir
un premier encadrant, et toujours disponible.

Ma thèse n’aurait pas été la même sans Mihail, mon encadrant, tant pour ses
apports scientifiques et techniques que pour la présence réconfortante d’un ami :
je savais que je pouvais compter sur lui de jour comme de nuit. Il m’a permis de
relativiser les déconvenues et a offert au déroulement de ma thèse un innocent brin
de légèreté.

La rigueur de Florian, mon encadrant, a beaucoup profité à la consolidation
de mes travaux. Nous avons passé beaucoup de temps à travailler ensemble au
tableau, dès le début de ma thèse : j’ai bénéficié d’une véritable émulation. Je fus
maintes fois ravi de pouvoir partager avec lui mes réflexions et mes interrogations
sur mes résultats jusque dans leurs moindres détails.

Je remercie également Belgacem, mon encadrant, qui m’a accordé sa confiance
dès notre rencontre et qui me l’a renouvelée sans cesse. Il m’a accompagné dans
toutes mes démarches, depuis mon parcours d’arrivée au CEA jusqu’à la préparation
de ma soutenance, et m’a constamment soutenu et encouragé.

Je pense aussi à tous mes collègues et amis, qui ont grandement contribué
à rendre agréables au quotidien ces trois années passées au CEA. Jeux de cartes
le midi, nombreuses discussions – scientifiques ou « ordinaires » –, pauses-café,
déjeuners : autant de moments partagés pour lesquels je les remercie.

Je tiens aussi à remercier toutes les personnes au CEA qui m’ont régulièrement
aidé et permis de mener à bien mes travaux. Je pense en particulier à mes chefs
de laboratoire et aux secrétaires du DSCIN. Je remercie Christian GAMRAT, alors
responsable scientifique du département, pour son accueil extrêmement chaleureux.

Je remercie ici Nermine de son soutien et ses encouragements indéfectibles et
de m’avoir, pour ainsi dire, ouvert la voie. Grâce à elle, j’ai presque vécu deux
thèses.

Les derniers mois de rédaction puis finalisation de ma thèse se sont doublés
de ma charge d’enseignement en CPGE. Je remercie vivement tous mes collègues
de prépa qui m’ont fourni des ressources, m’ont apporté leur aide ou qui ont fait
en sorte de ménager mon emploi du temps.

5

Je remercie M. Alain FINKEL de m’avoir fait l’honneur de présider mon jury,
mes rapporteurs Mme Christine ROCHANGE et M. Stephan MERZ d’avoir relu
attentivement mon manuscrit, et Mme Claire PAGETTI d’avoir accepté d’examiner
mes travaux.

Enfin, je suis reconnaissant à mes parents, mon frère et ma grand-mère de
leur aide perpétuelle et ô combien essentielle, jusque dans les aspects logistiques.
Je leur dois d’avoir pu focaliser mon attention sur mes travaux et ma thèse.

RÉSUMÉ ÉTENDU EN FRANÇAIS

La problématique de la correction est importante lors du développement des
systèmes temps-réel. Outre la correction fonctionnelle, le comportement tem-

porel des systèmes temps-réel est souvent vérifié formellement, de façon à garan-
tir que des résultats corrects sont délivrés dans les temps, quelles que soient
les conditions d’exécution. Le comportement temporel résulte de la combinai-
son d’une composante matérielle, dans notre cas un processeur comportant un
pipeline d’exécution, et d’une composante logicielle, dans notre cas un programme
sous la forme d’une séquence d’instructions. Du fait que les microarchitectures
modernes comportent de nombreux mécanismes d’optimisation des performances
moyennes, du fait par ailleurs de l’absence d’une notion de temps explicite dans les
programmes, auxquels s’ajoutent lors d’une exécution l’indétermination des don-
nées d’entrée et de l’état initial du matériel, il existe une importante dispersion des
temps d’exécution possibles d’un même programme sur une même microarchitec-
ture.

Ainsi, le comportement des systèmes temps-réel doit être validé par des anal-
yses temporelles rigoureuses, généralement destinées à déterminer le pire temps
d’exécution d’un programme sur une cible matérielle. Il existe plusieurs méth-
odes pour conduire de telles analyses, parmi lesquelles les méthodes génériques
d’analyse statique ; on peut aussi citer les méthodes basées sur des mesures ou
des analyses probabilistes. Toutes ces méthodes sont pourtant mises en péril par
des phénomènes d’exécution nommés anomalies temporelles (AT). Une AT se
manifeste au niveau d’au moins deux traces d’exécution du même programme avec
les mêmes données d’entrée, néanmoins à partir d’états initiaux matériels distincts
qui provoquent localement une variation de latence, par exemple avec un défaut
de cache (cache miss) pour une instruction dans une trace alors que la même
instruction connaît un succès de cache (cache hit) dans l’autre trace. Nous dis-
tinguons deux types d’AT : les AT contre-intuitives et les AT d’amplification.
Une AT contre-intuitive a lieu quand une accélération locale (succès de cache par
exemple) conduit à un ralentissement global, tandis qu’une AT d’amplification se
produit quand un ralentissement local (défaut de cache par exemple) entraîne un
ralentissement global encore plus grand.

La compréhension et la détection des AT sont donc cruciales pour l’analyse des
systèmes temps-réel. Étant donné que de plus en plus de processeurs standards
sont utilisés dans les systèmes temps-réels et que ces processeurs sont connus,
par leurs nombreux mécanismes d’optimisation, pour présenter des AT, il en est
d’autant plus important de mettre en œuvre des procédures de détection fiables.
Nous détaillons dans ce manuscrit les domaines de l’état de l’art qui y concourent :
la modélisation du temps dans les microarchitectures, l’utilisation des méthodes

7

formelles pour la vérification matérielle, la littérature portant sur les outils de
modélisation et vérification formelles, et enfin nous mettons l’accent sur la formal-
isation des AT au niveau de la microarchitecture. En particulier, nous établissons
une classification des différentes définitions préexistantes des AT contre-intuitives,
c’est-à-dire les AT les plus documentées, selon plusieurs critères :

• le critère utilisé pour définir (formellement) les latences et donc les varia-
tions ;

• l’interprétation du phénomène qui est faite vis-à-vis de ses conséquences
potentielles sur les analyses pire temps ;

• l’existence d’une définition complémentaire pour les AT d’amplification ;

• et enfin l’existence d’une procédure de détection implémentée associée aux
notions théoriques exposées.

Nous montrons ainsi que les diverses définitions sont essentiellement différentes
et donc qu’elles nécessitent d’être approfondies et comparées, mais aussi que la
plupart des travaux existants demeurent théoriques et sans applications concrètes
– d’où la nécessité de proposer des procédures de détection.

Alors que la présence d’AT contre-intuitives menace le bien-fondé ou la flexi-
bilité des analyses, il n’existe pas d’outils pour les détecter de manière systématique.
En outre, leurs définitions formelles sont souvent incomplètes et illustrées seule-
ment à travers des exemples partiels. Nous proposons une structure formelle unifiée
pour évaluer les définitions existantes des AT à partir d’un modèle générique de
pipeline out-of-order. Les principales contributions sont alors :

• une approche systématique, avec des hypothèses précises ;

• un modèle formel concret du matériel (spécifié en TLA+) ;

• une évaluation comparative des différentes définitions par vérification de
modèle (model checking).

Cela nous permet de montrer qu’aucune définition ne domine les autres ni n’est
suffisamment précise pour détecter les AT de manière fiable. Nous montrons de
plus que le principal défaut expliquant l’absence d’outils est l’absence de relations
entre les effets temporels locaux et globaux. Nous y répondons par le concept
important de causalité, que nous utilisons pour revoir la formalisation de ces AT.
Nous proposons systématiquement des notions génériques, mais aussi des instances
de ces notions spécialisées pour les pipelines out-of-order. Nous évaluons notre
procédure de détection subséquente sur des exemples illustratifs et bancs de tests,
montrant qu’elle permet de capturer précisément les AT.

Par ailleurs, l’inhérente complexité des systèmes exige que leurs analyses gèrent
l’important espace d’états résultant. Une solution est de réaliser des analyses com-
positionnelles, dans lesquelles le comportement temporel du système est obtenu à

partir des contributions individuelles de différents composants. Ces analyses com-
positionnelles sont précisément menacées par les AT d’amplification. Nous faisons
progresser l’étude de ces AT en montrant comment une abstraction spécialisée
peut être adaptée pour analyser les AT d’amplification de manière efficace sur
un processeur industriel, en l’occurence le processeur TriCore d’Infineon, large-
ment utilisé dans l’industrie automobile. Par rapport aux processeurs prédictibles
sur lesquels cette abstraction avait déjà été appliquée, la microarchitecture beau-
coup plus complexe (double pipeline et hiérarchie mémoire) nécessite un passage
à l’échelle, tant des fonctionnalités modélisées que de l’espace d’états. De plus, ce
processeur industriel – standard – n’est pas conçu comme un processeur prédictible
et est donc susceptible de donner lieu à des AT : la problématique n’est plus de
prouver l’absence d’AT mais plutôt d’explorer les différentes sources possibles de
variations qui conduisent à des AT. Les principales contributions sont alors :

• des extensions structurelles et fonctionnelles de l’abstraction spécialisée pour
notre cas d’étude ;

• des réductions systématiques consistant à supprimer les configurations inu-
tiles de l’espace d’états, en prenant en compte les spécificités de la microar-
chitecture (effets superscalaires notamment) ;

• une évaluation de la complexité de notre procédure ;

• une illustration, à partir de cette classe d’AT, de la façon dont des méthodes
de vérification fondées sur les contre-exemples peuvent être utilisées en vue
de l’identification de motifs logiciels conduisant potentiellement à des AT
lors de l’exécution (pour, à plus long terme, fournir des contre-mesures).

Enfin, nous fournissons des pistes de réflexion sur les fortes interactions po-
tentielles et bidirectionnelles entre les deux branches de nos travaux, à savoir la
formalisation précise des concepts à partir des AT contre-intuitives (les plus doc-
umentées) et les stratégies de vérification en vue de mettre en œuvre des contre-
mesures, à partir de l’exemple des AT d’amplification (sur la base de travaux
préalables supposant une condition nécessaire).

INTRODUCTION

Real-time systems are subjected to timing requirements, which demands that
they be predictable. That means that their timing behavior must be soundly

estimable offline, before they are operational. Timing Anomalies (TAs) are ex-
ecution phenomena known to hinder the predictability of real-time systems. In
an ideal situation, real-time applications should thus rely on predictable, TA-
free architectures. However, COTS (Commercial Off-The-Shelf) processors are
more and more adopted for real-time applications, in order to reduce costs and,
in mixed-criticality systems, to benefit from their performance enhancers. These
enhancers are likely to introduce TAs and to jeopardize predictability. Hence, it is
fundamental to reliably detect TAs in real-time systems. Only formal verification
can provide safe guarantees on the absence of TAs or identify their occurrences
accurately. Since real-time systems run application-specific software, and analy-
ses are conducted with regard to the executed software, we must formally verify
that the execution of a given program is free from TAs or, in default thereof,
identify TAs accurately. In this code-specific approach, the system is seen as a
combination of both hardware and software components. We thus need formal
models that integrate both aspects. The first part of this thesis elaborates
on this context and the microarchitecture case studies, before setting up
the formal-verification framework and presenting the related work. We
introduce two types of TAs, namely counter-intuitive TAs, which are more docu-
mented, and amplification TAs. Right after this part, we state more specifically
the problems that we address in the next parts of the thesis.

A natural step in achieving a reliable detection of TAs consists in disposing
of a formal definition of the phenomenon. Yet, the usual interpretation of the
term Timing Anomaly remains rather colloquial and the understanding of the
underlying effects is often only illustrated through simple examples that give some
intuitive understanding. Existing work often provides abstract notions, making
it difficult to apply the definitions—let alone reason about TAs—on concrete
applications. In the second part of this thesis, we develop a formal model
of an out-of-order pipeline [1] and we peruse the existing definitions of
counter-intuitive TAs in light of this concrete hardware model, exhibiting
their limitations [2]. From the outcome of this work, we propose a precise and
applicable formal definition of counter-intuitive TAs. From this definition, we
implement a TA-detection procedure for real-time systems. In the third part of
this thesis, we present our novel definition of counter-intuitive TAs and
the related detection procedure [3].

Regardless of the underlying formal definitions of TAs, we have investigated
how architectures can be appropriately modeled to verify timing properties of pro-

11

gram executions, and how formal tools can be harnessed to derive TA patterns, for
the purpose of inserting counter-measures. This work concerns in the first instance
amplification TAs, for which no precise detection procedure exists—only heuristics
are known to detect them—, but it could also concern counter-intuitive TAs, for
which our novel detection procedure can be utilized—the procedure alone is limited
to a verdict and, potentially, a single counterexample showing a TA. In the fourth
part of this thesis, which is independent of the previous two, we illustrate
the detection of amplification TAs on an industrial case study [4], and we
provide generic heuristics to derive TA patterns [5].

The last chapter of this document concludes the thesis and outlines future
work.

CONTRIBUTIONS

[1] Benjamin Binder et al. “Formal Processor Modeling for Analyz-ing Safety and Security Properties”. In: 11th European Congress
Embedded Real Time Systems (ERTS). 2022.

[2] Benjamin Binder et al. “Is This Still Normal? Putting Definitionsof Timing Anomalies to the Test”. In: IEEE 27th International Con-
ference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA). 2021, pp. 139–148. DOI: 10.1109/RTCSA52859.
2021.00024.

[3] Benjamin Binder et al. “The Role of Causality in a Formal Def-inition of Timing Anomalies”. In: IEEE 28th International Confer-
ence on Embedded and Real-Time Computing Systems and Applica-
tions (RTCSA). 2022, pp. 91–102. DOI: 10.1109/RTCSA55878.2022.
00016.

[4] Benjamin Binder et al. “Scalable Detection of Amplification Tim-ing Anomalies for the Superscalar TriCore Architecture”. In: For-
malMethods for Industrial Critical Systems - 25th International Con-
ference, FMICS 2020, Vienna, Austria, September 2-3, 2020, Proceed-
ings. Vol. 12327. Lecture Notes in Computer Science. Springer,2020, pp. 151–169. DOI: 10.1007/978-3-030-58298-2_6.

[5] Benjamin Binder et al. “Formal Modeling and Verification forAmplification Timing Anomalies in the Superscalar TriCore Ar-chitecture”. In: International Journal on Software Tools for Technol-
ogy Transfer (STTT) 24 (2022), pp. 415–440. ISSN: 1433-2787. DOI:
10.1007/s10009-022-00655-1.

13

https://doi.org/10.1109/RTCSA52859.2021.00024
https://doi.org/10.1109/RTCSA52859.2021.00024
https://doi.org/10.1109/RTCSA55878.2022.00016
https://doi.org/10.1109/RTCSA55878.2022.00016
https://doi.org/10.1007/978-3-030-58298-2_6
https://doi.org/10.1007/s10009-022-00655-1

CONTENTS

I Background 17

1 Context 21

2 Microarchitecture Case Studies 33

3 Formal Verification 45

4 Related Work 59

Problem Statements 79

II Limitations of the Existing Definitions of Counter-Intuitive Tim-
ing Anomalies 81

5 Interpretation and Modeling of the Definitions 85

6 Assessment of the Definitions 103

III Detection of Counter-Intuitive Timing Anomalies 113

7 A Novel Formal Definition 117

8 Detection Procedure 139

IV Heuristics for the Detection of Timing-Anomaly Patterns 161

9 Detection of Amplification TAs 165

10 Towards Software-Related Patterns 185

Conclusion & Prospects 201

Bibliography 203

15

Part I
Background

17

Next, we introduce the background on which this thesis stems. We present
the context within the thesis falls, the hardware case studies that we have

retained, the formal methods and tools that we used and the related work. All
these elements allow us to accurately state the problems that we outlined in the
introduction and on which we elaborate in the next parts of the thesis.

CONTENTS
1 Context . 21

1.1 Real-Time Systems 21
1.1.1 Microprocessors . 21
1.1.2 From Embedded Systems to Safety-Critical Systems 22
1.1.3 Predictability . 23
1.1.4 Timing Analysis . 24

1.2 Pipelines . 27
1.2.1 Principle . 27
1.2.2 Hazards and Stalling, Static/Dynamic Scheduling 27
1.2.3 Single-Issue/Superscalar Pipelines 28

1.3 Timing Anomalies in Microarchitectures 29
1.3.1 Intuitive Definitions . 29
1.3.2 Timing Anomalies against Timing Analysis 31

1.4 Summary: Context of the Thesis 31
2 Microarchitecture Case Studies 33

2.1 Classical In-Order Pipeline 33
2.1.1 Description of the Pipeline 33
2.1.2 Guideline Example of Amplification TAs 35

2.2 Overview of the TriCore Microarchitecture 36
2.2.1 The TriCore Microarchitecture 36
2.2.2 Timing Behavior . 37

2.3 A Representative Out-of-Order-Pipeline Template. 41
2.3.1 Pipeline Overview . 41
2.3.2 Execution Functioning . 42
2.3.3 Traditional Pattern of Counter-Intuitive TAs 43

19

3 Formal Verification . 45
3.1 Formal Notions 46
3.2 Model Checking 49

3.2.1 Invariants . 49
3.2.2 Explicit Model Checking 50
3.2.3 Symbolic Model Checking 51
3.2.4 Counterexample-Guided Methods 52

3.3 Modeling and Verification Tools 52
3.3.1 UCLID5 . 53
3.3.2 TLA+ . 54

3.4 Applications of Formal Verification 56
3.5 Summary: our Formal Framework. 57

4 Related Work . 59
4.1 Interpretations of Counter-Intuitive TAs 59

4.1.1 Concrete and Abstract Models 59
4.1.2 Static-Analysis-Centric Interpretation 61
4.1.3 Hardware-Centric Interpretation 63
4.1.4 Absolute-WCET Interpretation vs. Pairwise Interpretation 63

4.2 Overview of the Definitions of TAs 65
4.2.1 Step Heights in Step Functions 66
4.2.2 Intersections in Step Functions 68
4.2.3 Component Occupation 69
4.2.4 Instruction Locality . 69

4.3 Predictable Cores 70
4.3.1 Specific Hardware Designs 71
4.3.2 Canonical Model for Assessing Compositionality 72

4.4 Timing Modeling in Pipelines 73
4.4.1 Model Checking of Timing Properties 74
4.4.2 Analytical Methods . 75
4.4.3 Timing Modeling of TriCore 75

4.5 Summary: the Definitions of Timing Anomalies 76

20

1 – CONTEXT

In this chapter, we provide a general background on microprocessor-based sys-
tems and those qualified as real-time systems in particular. First, we elaborate

on general microarchitecture notions, as well as on important notions specific to
these systems, such as predictability and timing analysis (Sec. 1.1). Then, we in-
troduce the main notions related to microarchitectural pipelines (Sec. 1.2), before
describing the phenomena called Timing Anomalies (TAs) (Sec. 1.3).

1.1 . Real-Time Systems

We first describe generic microprocessor-based computational systems, which are
made of hardware and software components (Sec. 1.1.1). Then, we focus on real-
time systems, which are subjected to timing constraints that are explicitly part of
their specification (Sec. 1.1.2). Consequently, verifying real-time systems requires
checking that these constraints are satisfied. The ability of these systems to be
analyzed in a timing-oriented approach is called (timing) predictability (Sec. 1.1.3).
Finally, we introduce generalities on timing analysis and a common metrics, the
Worst-Case Execution Time (WCET) (Sec. 1.1.4).

1.1.1 . Microprocessors
Digital systems are made of integrated circuits, i.e., electronic assemblies that use
digital signals to encode information. An important class of digital systems is pro-
cessors. They are specific circuits designed to execute programs, i.e., sequences of
instructions. Processors contained in a single integrated circuit are named micro-
processors. In the minimal configuration, actual systems connect a microprocessor
with one or several memories through a bus. Memories contain the instructions
and the data manipulated by the program. A microprocessor design can conceptu-
ally be decomposed into a control path and a data path. The main component of
the data path is the Arithmetic Logic Unit (ALU), i.e., a dedicated hardware for
integer operations. The main component of the control path is the (logic) con-
troller, which orchestrates the execution of the program, by monitoring the state of
the data path. It is responsible for retrieving the instructions of the program from
memory and for adequately configuring the data path (by means of multiplexers),
so that the ALU performs the operations actually required by the instructions.

Processors have the advantage over other classes of integrated circuits that
they can be easily programmed and reprogrammed. For these operations, the
hardware design is totally unchanged. Only the sequence of instructions is loaded
into memory. Consequently, the execution of a program on a processor can be seen
as the combination of two independent subsystems: a hardware system—the fixed
processor design, also known as microarchitecture—and a software system—the

21

CHAPTER 1. CONTEXT
program that is intended to condition the behavior of the processor on the fly, by
imposing its semantics to the hardware. An important effort has to be made to
write programs, which can be written in general-purpose programming languages.
Programs are to be compiled and built and, ultimately, loaded into memory in
the form of machine instructions. The instructions that a processor is able to
execute form its Instruction Set Architecture (ISA). Assembly languages allow an
intermediate, human-readable representation of machine instructions; they thus
constitute an interface with hardware. Since processors are exclusively designed to
execute programs, the ISA constitutes the functional specification of a processor,
whereas the concrete hardware design of the processor is an implementation of
the ISA. In this document, we restrict the notion of hardware to that of
microprocessor microarchitecture, and the notion of software to assembly
programs.

Finally, processors may contain several cores with shared resources, so as to
perform a parallel execution of some instructions. The assignment of tasks to the
various cores and to the shared resources is out of the scope of this thesis. We will
focus on the consequences induced by shared resources at a lower level, namely
the pipeline level (Sec. 1.2).

1.1.2 . From Embedded Systems to Safety-Critical Systems
Processors are intensively used in purely computational systems, such as desktop
computers or servers. However, they are also found in almost all ubiquitous, daily
systems. In this case, the computational subsystem is called an embedded system,
and it is dedicated to a specialized application. The embedded system refers to
the software components as well as to the underlying microarchitecture. Whereas
all computational systems must comply with functional requirements, which spec-
ify what they must do, the environment of embedded systems subjects them to
additional, non-functional requirements that specify under which constraints, e.g.,
regarding weight, size, temperature, or timing. Embedded systems are sometimes
called Cyber-Physical Systems (CPS), but this terminology notably refers to com-
plex networked embedded systems [6], in the context of the Fourth Industrial
Revolution and, in particular, the Internet of Things (IoT). We focus on (tra-
ditional microprocessor-based) embedded systems, and the non-functional
characteristic of interest is time.

Some embedded systems are designed to maintain a permanent interaction
with their environment, by producing actions/physical outputs in response to stim-
uli/physical inputs, through actuators and sensors. An important subset of reactive
systems is that of Real-Time (RT) systems, which are moreover subjected to ex-
ternal timing constraints [7, 8]. In this thesis, we focus on real-time (reactive
embedded) systems. Real-time systems can be divided into soft, firm, and hard
real-time systems, depending on the fixed tolerance regarding the deadlines im-
posed by the timing constraints. In soft real time, deadline misses are allowed and
results remain usable to a certain extent after the deadlines. In firm real time,

22

1.1. REAL-TIME SYSTEMS
sparse deadline misses are tolerable but associated to outdated, unused values.
Finally, deadline misses are considered failures for hard real-time systems. When
failures are likely to entail severe consequences (on equipment, environment, or
human beings), such systems are qualified as safety-critical (e.g., the Flight Man-
agement System of an aircraft). Obviously, providing guarantees regarding the
timing constraints is all the more relevant for this class of systems.

1.1.3 . Predictability

In the context of real-time systems, the correctness of the execution of a program
on a given microarchitecture relies as much on its temporal behavior as on its func-
tional aspects. Hard real-time systems are often subjected to certification. Their
timing behavior is to be verified as well as their functional correctness. Hence, exe-
cutions, and thus underlying microarchitectures, should ideally be fully predictable.
Timing predictability refers to the ability of computational systems (or re-
sulting executions) to be analyzed in order to derive safe guarantees on
the timing behavior, before any actual execution. The raison d’être of this
problem—estimating time—stems from several causes:

1. Programs do not embed any notion of physical, microarchitectural time,
but only a notion of logical, sequential time through the instruction order—
hence, analyzing the timing behavior is important.

2. Modern microarchitectures contain performance enhancers that may perform
the same computations in different ways, depending on the values of the
instruction operands and on the hardware state—we face a finite set of time
values that may be characterized by its bounds.

3. The input data and the complete initial state of the microarchitecture are
not known in advance—we can only compute estimates.

In practice, predictability is not a clear-cut property; a microarchitecture can
be deemed predictable as it implements features that are intended to ease analyses
and as it tends to enforce a regular timing behavior in certain situations. We will
elaborate on predictable microarchitectures in Sec. 4.3.

Real-time systems are subjected to external timing constraints; hence, trans-
posing the logical time of the program onto the physical time of the environment
is crucial (item 1). Processors rely on sequential circuits triggered by specific sig-
nals called clocks. They do not execute instructions in zero time; each instruction
requires a certain number of clock cycles, primarily depending on the instruction
type. Clock rate (or frequency) f is in turn limited by the design of the data path
and the physical features of its digital components—the clock cycle 1/f is limited
by the critical path, i.e., the chain of combinatorial components between an input
and an output of the data path that has the largest delay. As a consequence, the
implementation imposes a certain time T to execute a sequence of N instructions,

23

CHAPTER 1. CONTEXT
which can be approximated by the basic performance equation through the average
clock-Cycle-Per-Instruction indicator CPI [9]:

T ≈ N × CPI× 1

f
(1.1)

Performance enhancers (item 2), such as caches and predictors, are complex
mechanisms that aim at improving the average execution time of a program. These
mechanisms may store reusable data or implement specific treatments for certain
operand values to speed computations up. A cache memory stores a portion of the
main-memory content on a fast chip. When the processor executes a read-memory
instruction, it first checks whether the data are available in the cache. If so, this
is a cache hit and the processor gets the data directly from the cache; otherwise,
this is a cache miss and the data are loaded from the main memory, through the
memory bus, and then stored in the cache (potentially replacing another value
according to a policy). In the favorable cases (e.g., cache hits), on which all
overall optimization mechanisms bet, the speedup may be considerable; however,
performance enhancers introduce an important microarchitectural-state, and thus
time dispersion. This dispersion runs counter to predictability, since the number
of clock cycles to execute one instruction may strongly vary (even for the same
instruction class or the same instruction), making the average number CPI (cf.
Eq. 1.1) a poor indicator, against the bounds notably.

Finally (item 3), it is important to keep in mind that processors, as all tradi-
tional computational systems, are deterministic. This means that for a given input,
the initial state fully determines the whole execution. Thus, in spite of the time
dispersion that specific mechanisms may introduce, it is theoretically possible to
accurately compute the time required to execute a program, by determining and
accumulating the number of clock cycles per individual instruction (in Eq. 1.1)—
depending on the initial processor state, e.g., the contents of the cache memories.
The problem resides, on the one hand, in the undetermined initial state in the anal-
ysis stage, and on the other hand, in the complexity of microarchitectures and the
huge resulting state space that prevent from performing an exhaustive exploration
in practice, due to state explosion. Hence, one must compute estimates, of the
timing bounds in particular.

1.1.4 . Timing Analysis
Studying predictability means analyzing the distribution of the possible execution
times of the application program on the microarchitecture of the real-time system
(see Fig. 1.1). All possible executions—depending on the initial hardware state
and the input data—form the actual distribution of times, i.e., the top, dark curve
on Fig. 1.1. The longest execution time is called the Worst-Case Execution Time
(WCET) and the shortest execution time is called the Best-Case Execution Time
(BCET). As explained above, the hardware state and the input data that lead
to these two particular execution times are not known. Timing analysis is often

24

1.1. REAL-TIME SYSTEMS
limited to the estimation of these timing bounds.

Figure 1.1: Distribution of execution times of a program (or a task) on a pro-cessor, Worst-Case Execution Time (WCET), and estimations (from [10]).
We focus on Worst-Case-Execution-Time (WCET) analysis. Estimating

the WCET is of particular importance in order to provide guarantees on the timing
correctness. Critical real-time systems are often statically scheduled, namely tim-
ing quanta are allocated to the various program tasks for them to execute on the
processor. The preallocated durations are in turn subordinated to the automatic-
control laws that produce physical outputs in reaction to physical stimuli. As a
consequence, the execution time of a task should never exceed the preallocated
time that enforces deadlines; in other words, the WCET should be shorter than
the preallocated time. In dynamically scheduled systems, the task deadlines are
determined on the fly, according to specific algorithms. In this case, schedulabil-
ity analyses must guarantee that all tasks will execute in time. Again, WCET
estimation is important, since the task WCETs are an essential input of these
analyses.

Several methods exist to estimate the WCET of a task. Some are based on
test measurements [11, 12] or probabilistic analysis [13, 14, 15]. However, these
approaches alone are obviously non-exhaustive and thus are not safe to provide
timing guarantees. Fig. 1.1 illustrates that only a subset of the possible execution
times can be observed, which constitutes the distribution of measured execution
times. From this distribution can be derived the minimal and the maximal ob-
served execution time. This latter value is a WCET estimate that is likely to be
underestimated (as a bound of a subset of the possible execution times).

So as to provide safe guarantees, analyses must cope with the absence of
exhaustivity. Specific methods, grouped together under the name of static analy-
sis [10, 16], allow substituting the intractable exhaustive exploration of the concrete
hardware by operations on an abstract microarchitectural model. They use abstrac-
tions to compute an over-approximation of the possible hardware states that may

25

CHAPTER 1. CONTEXT
appear during the program execution. It is again possible to derive the longest exe-
cution time from this abstract model, which constitutes another WCET estimate.
By abuse of language, this estimate from static analysis is sometimes referred to as
the WCET [10], notably owing to the fact that the actual WCET is inaccessible.
We will try to systematically use the phrase “WCET estimate” when we refer to
an estimate. If the system is predictable (cf. Sec. 1.1.3), this estimate is supposed
to be safe, i.e., an overestimation of the actual value (see the upper timing bound
for predictability in Fig. 1.1). However, the estimation is more or less tight, i.e.,
the WCET is more or less overestimated, depending both on the concrete and
the related abstract models [10].

The static WCET analysis of a task lies on three main steps [10, 17, 16]:

1. program, control-flow analysis;

2. processor-behavior, microarchitectural analysis;

3. global bound calculation (or path analysis).

First (item 1), programs may contain branches that influence the executed instruc-
tion sequence, depending on the input data in particular. Thus, besides the time
dispersion introduced by hardware, the program itself may also allow various (func-
tional or non-functional) behaviors. Control-flow analysis is required to find out
all feasible program paths. Moreover, programs may contain loops, whose bounds
could depend on the input data and must be determined. In this thesis, we consider
unrolled sequences of instructions with fixed input data, thus one fixed program
path at a time. This first step identifies basic blocks, which are considered atomic
in the analysis, namely the instructions of the basic blocs are executed one after
another, in the same order and without any interruption, in any execution of the
program.

At this level, a microarchitectural analysis (item 2) is required to determine the
time needed to execute the program on the processor—this is the shift from the
code-level time (in terms of executed instructions) to the microarchitecture-level
time (in clock cycles), mentioned in Sec. 1.1.3. When mentioning static WCET
analysis in the remainder, we focus on this second step of the standard analy-
sis. Finally, analytical methods, such as the Implicit Path Enumeration Technique
(IPET) [10], are used to compute global bounds.

Lastly (item 3), the complexity of microarchitectures makes it necessary to
perform the microarchitectural analysis in a compositional way [18, 19], by adding
up the timing contributions of individual microarchitecture elements. A compo-
sitional analysis, for instance, would consider separate microarchitectural timing
analyses for caches and pipelines and then combine their respective timing results.

1.2 . Pipelines

26

1.2. PIPELINES
All modern processor cores integrate hardware pipelining, a basic feature to improve
execution throughput. Yet, pipelines highly complicate timing analyses, since the
execution of one instruction depends on the execution of other instructions that
simultaneously make use of shared hardware resources. We now explain the general
functioning of pipelines (Sec. 1.2.1), the notion of (pipeline) hazards and their
consequences (Sec. 1.2.2), and the notion of superscalarity (Sec. 1.2.3).

1.2.1 . Principle
Pipelines work on the principle that the execution of an instruction can be divided
into several steps relying on different elements of the microarchitecture. Thus, they
implement Instruction-Level Parallelism (ILP) by processing several instructions
simultaneously [9], in distinct parts of the microarchitecture called pipeline stages.

Pipelines make it possible to reach the ideal throughput of 1 instruction per
cycle, since in steady state (when the pipeline is filled), one instruction may com-
plete and leave the pipeline in each cycle. In this case, the average number of
cycles per instruction is CPI = 1 (cf. Eq. 1.1), so that the pipelined-execution time
Tideal pipeline of a sequence of N instructions is:

Tideal pipeline = N × 1

f
(1.2)

Note that the resulting execution time could certainly not be achieved without
pipelining, since it would require a very complex data path to fully execute all in-
structions in a single cycle (i.e., the ideal throughput), which moreover would dras-
tically lengthen the critical path and limit the maximal frequency (see Sec. 1.1.3).
However, the ideal throughput of a pipelined execution is maintained only if one
instruction completes in each cycle. This is possible only if the instruction flow
through the successive pipeline stages is uninterrupted. Yet, besides the penalties
introduced by performance enhancers in unfavorable cases (e.g., cache misses),
the pipeline must be stalled in some situations called (pipeline) hazards.
In these cases, the incriminated instructions—as well as other instructions, accord-
ing to the stalling logic—occupy certain pipeline stages but do not perform any
computation, so that a bubble is inserted in the pipeline.

1.2.2 . Hazards and Stalling, Static/Dynamic Scheduling
There exist three types of hazards: structural, data, and control hazards [9]. Struc-
tural hazards occur when two instructions in the pipeline need the same hardware
resource in the same cycle, e.g., the memory bus. Data hazards are due to data
dependencies in the program, when an instruction depends on the result of a pre-
vious instruction that has not been produced yet. Finally, control hazards occur
when the next value of the Program Counter (PC), i.e., the address of the next
instruction to be executed, is not known (or is mispredicted if the microarchitec-
ture is endowed with speculation mechanisms); the (actual) PC following a control
instruction is not known until this instruction computes whether a branch should

27

CHAPTER 1. CONTEXT
be taken or not. The timing contribution of all stall cycles must be accounted for,
which entails an effective throughput lower than the ideal 1 instruction per cycle.

Data dependencies are common in programs. The data hazards that they may
entail can be reduced by implementing mainly the two following mechanisms (possi-
bly together): forwarding/bypassing and Out-of-Order (OoO) execution/dynamic
scheduling [9]. Forwarding extends the data path with signals that communicate
the results of the computations produced by an instruction in one stage to previous
stages (processing younger instructions), thus propagating the computed results
at the soonest for dependent instructions in the pipeline. Forwarding and OoO
execution tend to maintain the throughput as close as possible to the ideal
throughput.

Pipelines always fetch instructions in program order, according to the sequen-
tial semantics of programs. Whereas in-order/statically scheduled pipelines pre-
serve this order through each pipeline stage, OoO execution allows the scheduling
of instructions to the functional units (where the actual computations are made on
the operands) in a different order from the program one. Obviously, specific mech-
anisms must ensure that OoO execution respects data dependencies. All modern
OoO microarchitectures also implement a reorder buffer (ROB) so as to commit
instructions in program order, so that the effective processor state is updated in
program order and the OoO engine is transparent to the user.

OoO execution means dynamic scheduling, and thus requires a dynamic issue
structure to detect hazards, through dedicated hardware components. However,
note that even in-order pipelines must issue instructions that comply with data haz-
ards, so as to respect data dependencies. The issue structure of in-order pipelines
may be either static (with a hazard detection at the software level) or dynamic
(hazard detection at the hardware, pipeline level).

1.2.3 . Single-Issue/Superscalar Pipelines
Pipelines are characterized by their length/depth, i.e., the number of pipeline
stages, which results from a trade-off between the microarchitectural complex-
ity (including hazard management) and the maximal frequency (as evoked above
in Sec. 1.1.3). They are also characterized by the number of copies of the same
pipeline stages or similar resources (e.g., functional units) in the pipeline. Pipelines
with a single set of such resources are called single-issue (or scalar). They contrast
to multiple-issue pipelines [9], which allow several instructions to be issued to the
functional units in the same cycle, so as to keep all of the functional units busy.
All other pipeline stages are often multiplied consequently, in order to benefit fully
and at lower cost from the multiple issue, raising the ideal throughput beyond 1

instruction per cycle.
Multiple-issue pipelines benefit even more than single-issue pipelines from OoO

execution (since the instructions issued at the same time may execute in parallel),
which leads to a specific classification of multiple-issue pipelines under their (stat-
ic/dynamic) scheduling features and the associated issue structures. Multiple-issue

28

1.3. TIMING ANOMALIES IN MICROARCHITECTURES
pipelines with dynamic issue structures are called superscalar. These pipelines is-
sue a varying number of instructions per cycle, depending on the hazard detection,
handled by hardware. They contrast, notably, with VLIW (Very Long Instruc-
tion Word) pipelines, which issue a fixed number of instructions statically gathered
by the compiler into bundles. In the remainder, we study various real-time
systems, containing a single-issue or superscalar, in-order or OoO pipeline
microarchitecture.

1.3 . Timing Anomalies in Microarchitectures

We mentioned that performance enhancers are complex mechanisms that intro-
duce many microarchitecture states (cf. Sec. 1.1.3). None of the timing-analysis
methods is able to explore all possible executions in the concrete hardware. They
thus only provide safe WCET estimates (cf. Sec. 1.1.4) when certain underlying
hypotheses (Sec. 1.3.2) are satisfied. Yet, undesired timing phenomena, called
Timing Anomalies (TAs), can manifest, threatening these hypotheses and the
soundness of timing analyses.

In this section, we first provide an intuitive definition of two classes of TAs,
specifically counter-intuitive and amplification TAs, and a brief historic background
(Sec. 1.3.1). Then, we explain to what extent TAs are problematic for timing
analyses (Sec. 1.3.2).

1.3.1 . Intuitive Definitions
Intuitively, a TA is a local condition at a given moment during the execution of a
real-time software that leads to an undesired effect on the (global) execution time.
TAs manifest at the level of (at least) two different execution traces corresponding
to the same program trace, i.e., with the same input program and data, yet starting
from distinct initial hardware states. A counter-intuitive TA occurs when a
local speedup of one trace (wrt. another one), e.g., a cache hit (instead
of a miss in the other trace), leads to a larger global execution time. An
amplification TA occurs when a local slowdown of one trace, e.g., a cache
miss (instead of a hit in another trace), leads to an even larger global
execution time. Both of these TA variants may also be described in the opposite
point of view, where the sense of the local variation is reversed and the execution
time is reduced. The point of view where the execution time is increased is generally
preferred, since these effects may have an impact on the actual WCET and thus
have to be considered during timing analysis.

Fig. 1.2 exemplifies TAs by mapping a reference execution (Execution 1),
as well as various possible executions (Executions 2a/b/c) of the same program
induced by the variation of a local execution variation (in gray). Compared to
Execution 2a, the local speedup (∆L) of Execution 1 leads to an increased global
execution time (∆CI

G), thus Execution 1 shows a counter-intuitive TA wrt. Execu-
tion 2a. Compared to Execution 1, the local slowdown (∆L) of Execution 2b leads

29

CHAPTER 1. CONTEXT

Execution 1:
Execution 2a:
Execution 2b:
Execution 2c:

∆L ∆CI
G ∆Amp

G

Time

Figure 1.2: Schematic of timing anomalies (TAs) from various executions ofthe same program with a local timing variation∆L: Executions 1 and 2a showa counter-intuitive (CI) TA, whereas Executions 1 and 2b show an amplification(Amp) TA. Execution 2c shows no TA.

to a proportionally larger increase (∆Amp
G > ∆L) of the global execution time, thus

Execution 2b shows an amplification TA wrt. Execution 1. In contrast, the local
slowdown (∆L) of Execution 2c compared to Execution 1 leads to an increased
global execution time, and this global increase is smaller than ∆L. Thus, Execution
2c shows no TA.

In practice, local variations may have various root causes: notably, variable
instruction latency (e.g., for division or multiplication) or variable memory-access
time (e.g., due to DRAM page conflicts or cache misses). Microarchitecture fea-
tures like out-of-order execution [20, 21, 22, 23, 24], specific cache policies [22,
24], branch prediction [22, 24], or contention of memory accesses [19, 25, 26] (e.g.,
because of the bus arbitration) may lead to TAs. TAs caused by OoO execution,
called scheduling anomalies, are the most documented anomalies [ibid.], and, be-
sides, counter-intuitive TAs are systematically illustrated from the scheduling on
the functional units of an OoO pipeline (cf. Sec. 2.3.3). To our knowledge, con-
tention of memory accesses is specific to amplification TAs, and such TAs may
occur even in simple in-order pipelines (cf. Sec. 2.1.2) and were recently studied
[ibid.]. Thus, we will illustrate counter-intuitive TAs through scheduling
TAs and amplification TAs through TAs caused by contention of memory
accesses, and, without restricting the generality, we will often interpret
local timing variations as cache misses (see the case studies introduced in
Ch. 2).

Counter-intuitive TAs were first studied, back in the sixties, in the context
of task scheduling on uniform multi-processors [27, 28, 29, 30, 31], which differs
from our work in several aspects. First, the granularity of tasks erases the presence
of an executed code. Second, resources are considered to be identical processors
in the context of tasks, whereas we have specialized pipeline resources. Third, all
parameters are controllable inputs of scheduling algorithms, whereas we consider

30

1.4. SUMMARY: CONTEXT OF THE THESIS
executions on a fixed hardware microarchitecture. Notably, such algorithms may
consider task priorities (nonexistent in our context) or the partial order between
tasks—we have a fixed total order due to the instruction order (for in-order mi-
croarchitectures) or partial order due to the data dependencies in the program (for
OoO microarchitectures).

1.3.2 . Timing Anomalies against Timing Analysis
Counter-intuitive TAs pose a challenge to all WCET approaches, due to
their impact on their hypotheses (cf. Sec. 1.1.4). In particular for static analyses,
counter-intuitive TAs are problematic because it is generally no longer possible to
consider only the local worst-case variations [10] (see Executions 2a against 1 in
Fig. 1.2). Instead, an exhaustive exploration of the reachable hardware states has
to be performed, which is costly or often even prohibitive. The same issue arises
for test-based approaches relying on measurements, since the possible number of
tests to cover increases drastically. Probabilistic methods are also jeopardized.
Slight changes in the hardware state may trigger a counter-intuitive TA, which
in turn may cause a considerable increase of the execution time. TAs may thus
invalidate fundamental hypotheses of probabilistic approaches (e.g., independence
and stationarity [15]) and thus pose a threat to the validity of the obtained results.

Amplification TAs hinder compositional timing analysis [19, 26]. The
complexity of modern microarchitectures makes it necessary to perform timing
analysis in a compositional way (cf. Sec. 1.1.4). In the presence of such TAs and
in order to perform a sound compositional timing analysis, it becomes essential to
bound the amplification effects. Note that counter-intuitive TAs jeopardize timing
analysis in general, thus also compositional analysis in particular.

1.4 . Summary: Context of the Thesis

We introduced general notions about real-time systems and computer microarchi-
tectures that are used all along this document. In the next chapters, we focus on
real-time systems whose hardware microarchitectures are comprised of a pipelined
microprocessor, including caches and connected to a memory system. We then
consider pipelined executions resulting from the execution of (low-level) programs
on these microarchitectures. Hazards entail stalling in pipelines, thus deviating
from the ideal timing behavior. Forwarding and Out-of-Order (OoO) execution
are specific mechanisms that allow reducing the occurrence of hazards and getting
close to the ideal pipeline throughput.

We intend to study the timing predictability of real-time systems, namely to
what extent they can be analyzed off-line to derive timing guarantees, focusing
on the Worst-Case Execution Time (WCET). Forwarding, OoO execution, and
superscalar features are likely to trigger variations in different execution traces of
the same program, which in turn may trigger counter-intuitive or amplification
timing anomalies (TAs). Counter-intuitive TAs pose a challenge to all WCET-

31

CHAPTER 1. CONTEXT
analysis methods and amplification TAs prevent compositional timing analyses.

A counter-intuitive TA occurs when a local speedup leads to a larger global
execution time, whereas an amplification TA occurs when a local slowdown leads
to an even larger global execution time. Counter-intuitive TAs require that static
timing analyses perform an exhaustive exploration of the reachable hardware states,
and amplification TAs jeopardize the penalties that compositional analyses may
introduce to integrate the timing behavior of some components (e.g., caches) in
the total timing.

We will mainly illustrate local timing variations through cache misses and we
will focus on scheduling counter-intuitive TAs in OoO pipelines and on amplifica-
tion TAs caused by contention of memory accesses in in-order pipelines.

32

2 – MICROARCHITECTURE CASE
STUDIES

We present next the various pipelined hardware microarchitectures that consti-
tute the case studies of this work. We first introduce a textbook in-order

pipeline (Sec. 2.1) that we use as a reference to study amplification timing anoma-
lies, from which we extend previous work on this topic (in Ch. 9) to a more com-
plex microarchitecture, namely the in-order superscalar TriCore microarchitecture
(Sec. 2.2). TriCore is an industrial processor mainly used in the automotive field.
It is based on an in-order superscalar microarchitecture, with advanced features
(such as a Store Buffer) that make it more sophisticated that the previously stud-
ied microarchitectures and that hinder predictability. In this chapter, we present
the features of its pipelines that may have an impact on amplification TAs. Then,
we describe the template of a parameterizable out-of-order pipeline (Sec. 2.3) that
we adopt to study counter-intuitive timing anomalies (in Ch. 5). This template
is a generic, representative microarchitecture, on which the commonly represented
TA pattern can manifest. We provide execution examples for each case study and
we introduce the typical situations of TAs on which we based our work.

2.1 . Classical In-Order Pipeline

We consider a textbook microprocessor [9] comprised of a 5-stage in-order single-
issue pipeline, a cache memory, and connected to a memory system. Hahn et
al. [19] have shown that amplification TAs may occur due to contention of memory
accesses even in such a simple in-order pipeline, and Jan et al. [26] analyzed various
predictable pipelines with regard to such TAs.

First, we describe the basic pipeline and we exemplify an execution of a pro-
gram on this pipeline (Sec. 2.1.1). Then, we introduce our guideline example of
amplification TAs in in-order pipelines (Sec. 2.1.2).

2.1.1 . Description of the Pipeline

The microprocessor is connected to an external (main) memory through a memory
bus. The pipeline stages form a (total) order, with the successive stages shown in
Fig. 2.1:

1. Instruction Fetch (IF): This stage is responsible for retrieving the instruc-
tions of the executed program and initiating the traversal of the instructions
through the pipeline stages. The instructions are retrieved either from the
main memory (i.e., cache miss), or directly from the cache if they are already
present inside (i.e., cache hit).

33

CHAPTER 2. MICROARCHITECTURE CASE STUDIES
2. Instruction Decode (ID): This stage uses a combinatorial logic to decode the

instructions, namely to get the opcode (instruction type) and the operands.

3. Execute (EX): This stage uses the ALU to execute the arithmetic instruc-
tions strictly speaking, i.e., making the computations on the operands.

4. Memory (MEM): This stage handles the memory instructions, i.e., data
reads/writes from/to the main memory (cache miss) or the cache (cache
hit). We do not worry whether the data cache is separate from the instruc-
tion cache (related to IF), but we will qualify as data-cache misses the
misses related to MEM, in contrast to instruction-cache misses related to
IF.1

5. Write-Back (WB): This stage writes the results of arithmetic operations
or the data read from cache or memory to the appropriate register in the
processor register file. The effective processor state, representative of the
evolution specified by the ISA (cf. Sec. 1.1.1), is thus updated here.

The only two stages that exhibit a variable timing behavior are thus IF and
MEM, due to a performance enhancer, specifically the cache. Even if we consider
separate instruction and data caches, the memory bus is shared and the information
(instruction or data) is multiplexed. As a consequence, the IF and MEM stages
may interfere.

IF ID EX MEM WB
Figure 2.1: Textbook 5-stage in-order pipeline.

Let us consider a 5-instruction program made of the successive instructions
A to E . Table 2.1 represents the ideal execution of this program on the pipeline,
i.e., only with cache hits and no stall cycles. Table 2.1a represents a picture of the
system resources (i.e., pipeline stages) in function of time, showing in any cycle
which instructions are currently processed by each resource. It may be more conve-
nient to represent pipelined executions from a second, program viewpoint, namely
detailed traces showing the processing of the successive instructions in function of
time. Hence, Table 2.1b represents, in an equivalent way, the trajectory of any
instruction through the successive pipeline stages, in function of time. By consid-
ering the instructions as particles and the execution as a flow crossing the stages,
the first viewpoint is similar to the Eulerian description in field theory, whereas the
second one is similar to the Langrangian description. We can observe, in particular
in Table 2.1a, that from cycle 5, one instruction completes (in WB) in each cycle,
allowing the ideal throughput of 1 instruction per cycle after the transitional regime

1This terminology will also be used for equivalent notions in the microarchitectures intro-duced below.

34

2.1. CLASSICAL IN-ORDER PIPELINE
Table 2.1: Ideal execution of a 5-instruction program on the in-order pipelinerepresented in Fig. 2.1.

(a) Resource, “Eulerian” viewpoint.

Stages Cycles 1 2 3 4 5 6 7 8 9
IF A B C D EID A B C D EEX A B C D EMEM A B C D EWB A B C D E

(b) Instruction, “Lagrangian” viewpoint.

Instr. Cycles 1 2 3 4 5 6 7 8 9
A IF ID EX MEM WBB IF ID EX MEM WBC IF ID EX MEM WBD IF ID EX MEM WBE IF ID EX MEM WB

where the pipeline is being filled (cf. Sec. 1.2.2). In the remainder, we will focus
on the second representation for any pipeline, since timing anomalies are intuitively
defined from variations in the trajectory of some instructions.

2.1.2 . Guideline Example of Amplification TAs

Table 2.2 illustrates an amplification TA in the pipeline described above by com-
paring two traces. The anomaly is caused by memory accesses that are either
serviced by a cache or require a bus access. At the end of cycle t3, the load/store
instruction A aims to perform a data memory access in the next stage (MEM),
while instruction B is fetched at the same time in the IF pipeline stage. Instruc-
tion B always suffers from a cache miss when fetched (3×IF) and thus always
accesses the bus. Instruction A, on the other hand, may either suffer a cache miss
(3×MEM in the trace at the top) or experience a cache hit (1×MEM, trace
at the bottom). The instruction does not access the bus in the later case. The
anomaly is caused by the two pipeline stages that interfere (cf. Sec. 2.1.1) and the
additional stalling due to the bus conflict between A and B : in addition to the
two stall cycles for A’s cache miss (∆L = 3 − 1 = 2), the pipeline is stalled an
additional cycle at time instant t4 due to the bus conflict (∆G = t8− t5 = 3). Ta-
ble 2.2 illustrates this case as in Fig. 1.2, where the local variation ∆L = 3−1 = 2

is caused by the switch from a data cache hit to a cache miss for instruction A,
while the global variation ∆G = t8− t5 = 3 for the end of instruction A is greater

35

CHAPTER 2. MICROARCHITECTURE CASE STUDIES
than ∆L because of the instruction cache miss of instruction B .

Table 2.2: Example of an amplification TA due to fetch and data memory ac-cesses, constituted by two different execution traces. InstructionA either suf-fers a data cache miss (3×MEM in the top trace) or experiences a data cachehit (1×MEM in the bottom trace). Instruction B always shows an instructioncache miss (IF).
Cycle t1 t2 t3 t4 t5 t6 t7 t8 t9Instr. A IF ID EX EX MEM MEM MEM WBInstr. B IF IF IF ID EX EX MEM WB
Instr. A IF ID EX MEM WBInstr. B IF IF IF ID EX MEM WB

∆L = 2

∆G = 3

2.2 . Overview of the TriCore Microarchitecture

This section details our more sophisticated case study for the analysis of ampli-
fication TAs: the in-order superscalar TriCore microarchitecture. This microar-
chitecture is sufficiently simple to be commonly embedded in real-time systems,
but much more complex than the predictable pipelines that Jan et al. [26] study
regarding the amplification TA introduced in Sec. 2.1.2. In Ch. 9, we show how
this analysis can be extended to the complex case of TriCore.

In the remainder, we first present an overview of the TriCore microarchitecture
(Sec. 2.2.1). Then, we detail its timing behavior wrt. the progression of instructions
in the pipeline, the interactions between instructions, and their interactions with
the memory hierarchy (Sec. 2.2.2). The timing behavior is essential in our formal
modeling of TriCore, introduced in Ch. 9.

2.2.1 . The TriCore Microarchitecture
The TriCore microarchitecture is composed of two principal pipelines—an Integer
(I) and a Load/Store (LS) pipeline—and a third one, specialized for hardware
loops. The three pipelines form the execution unit, as described in detail in the
manual [32, p.218]. In the following, we focus our investigation of amplification
timing anomalies on a compact TriCore microarchitecture consisting of the two
principal pipelines, as shown in Fig. 2.2. Structurally, the two pipelines are quite
similar and close to the text-book in-order pipeline presented in Sec. 2.1; however,
they provide different functionalities. The I-pipeline mainly handles arithmetic
instructions, whereas the LS-pipeline handles load and store instructions.

The Instruction Fetch (IF) stages of the two pipelines operate either in-sync
on so-called fetch bundles (i.e., pairs of I- and LS-instructions) or on a single
I- or LS-instruction (meanwhile a bubble is inserted in the other pipeline) [33].
Instruction Fetch is responsible for fetching instructions from the memory system

36

2.2. OVERVIEW OF THE TRICORE MICROARCHITECTURE

I pipeline

LS pipeline

IF
IF

ID
ID

EX
EX

EX2 WB
WB SB

Program Memory
Interface (PMI)

Cache
(PCACHE)

Scratchpad
(PSPR)

Data Memory
Interface (DMI)

Cache
(DCACHE)

Scratchpad
(DSPR)

Flash
Memory
Buffer (PPB)

SRI Bus

Core

Figure 2.2: The TriCore microarchitecture: the principal pipelines and the memorysystem with input and output buses.

and to direct them to the appropriate execution pipeline. It is the de facto first stage
of both pipelines. Both IF stages are connected to the Program Memory Interface
(PMI) [32, p.297]. The PMI is comprised of a Program Cache (PCACHE) and
a Program Scratchpad (PSPR) and is in-turn connected to the Shared Resource
Interconnect Bus (SRI) [32, p.57]. The SRI bus allows instructions to be fetched
from a Flash Memory, which is equipped with a Program Prefetch Buffer (PPB),
and may cause the pipeline to stall.

Data memory accesses are performed exclusively by the LS-pipeline. Load
instructions perform data reads in the EX stage, while store instructions place
their data writes in an asynchronously operating store buffer. These components
are connected to the Data Memory Interface (DMI), comprised of a Data Cache
(DCACHE) and a Data Scratchpad (DSPR) [32, p.310]. The load and store
instructions also access the SRI through the DMI (in order to communicate with
the Flash Memory) and this shared resource may cause pipeline stalling. The
load instructions, the store buffer, and the PMI contend for the shared SRI bus
and may thus interfere with each other. Notably, any of the three components
may delay an access of any of the other components. However, according to the
manual [32, p.228], the store buffer has the lowest priority of all.

2.2.2 . Timing Behavior

Apart from the IF stage and the EX stage, which are connected to the memory
interfaces, the other pipeline stages cannot cause stalling and complete in a single
cycle. Note that only a few multi-cycle instructions (e.g., multiply-accumulate)
make use of the EX2 stage in the I-pipeline. However, the two pipelines may
interact with each other—even for instructions that do not belong to the

37

CHAPTER 2. MICROARCHITECTURE CASE STUDIES
same fetch bundle. Data dependencies and structural hazards (cf. Sec. 1.2.2)
in the I-pipeline may stall the LS-pipeline for several cycles, whereas stalls in the
LS-pipeline also stall the I-pipeline for the same number of cycles [33].

Memory Latencies

Table 2.3: Baseline latencies (in clock cycles) for memory accesses in the Tri-Core microarchitecture.
(a) Program Memory Interface (PMI)

PCACHE hit/local PSPR 1Flash memory access & PPB hit 4Flash memory access & PPB miss 8Distant DSPR (via SRI bus) 5
(b) Data Memory Interface (DMI)

DCACHE hit (1 line)/local DSPR 1DCACHE hit (2 lines) 2Flash memory access (DCACHE miss) 10Distant PSPR (via SRI bus) 5

The baseline latencies for instruction fetch accesses (IF) and data memory ac-
cesses (EX/store buffer) are reported in Table 2.3. The latency values are derived
from plausible configurations [32, p.172, 828]. The PMI component (Table 2.3a)
gets these instructions from either the Flash Memory or the PCACHE or the
PSPR (a fast component dedicated to critical code sequences). If the instruction
is stored in the main memory (not in a PSPR), the instruction may be cached in
the PCACHE. In case of a cache hit, the instruction can be dispatched to the IF
unit immediately. In case of a cache miss, the instruction is fetched from the Flash
Memory, via the SRI bus, updating the corresponding cache line. Both cases are
possible: if the instruction has been buffered (in the PPB), the transfer requires 4
cycles, otherwise, an initial PFlash (Program Flash) access is necessary, incurring
a penalty of 4 more cycles. An instruction can also be fetched from a DSPR,
which entails a transfer via the SRI bus [32, pp.172, 297, 310].

The baseline latencies related to the DMI are reported in Table 2.3b. A hit
in the DCACHE may occur at the end of a cache line and therefore span over
two cache lines, entailing one additional wait cycle [32, p.310]. A DCACHE miss
requires a cache line refill from the main memory and then, an initial DFlash (Data
Flash) access is performed. Finally, data can also be contained in the local DSPR
or a (distant) PSPR.

Pipeline Hazards
Dependent-Load Hazards. A store instruction, when followed by a dependent
load instruction (i.e., that accesses the same memory address), causes a memory

38

2.2. OVERVIEW OF THE TRICORE MICROARCHITECTURE
reference hazard. In this scenario, the microarchitecture ensures that the load
instruction is correctly updated by stalling it until the completion of the store
instruction [33]. Table 2.4 exemplifies this situation: case (a) shows the incorrect
execution that would occur if the hazards were ignored, while case (b) shows the
stalling introduced to resolve it. In Table 2.4a, the value read in the EX stage is
not up to date, since the store has not already written the data in the SB stage.
On the contrary, in Table 2.4b, the value read in cycle t7 is correct, due to the
stalling in the EX stage.

Table 2.4: A memory-reference hazard between a store and a dependentload.
(a) Illegal execution, if a memory-reference hazard were ignored: the load is supposed toread the value of the preceding store.

Cycle t1 t2 t3 t4 t5 t6Store IF ID EX WB SB SBLoad IF ID EX WB
(b) Stall cycles are introduced to resolve the hazard.
Cycle t1 t2 t3 t4 t5 t6 t7 t8Store IF ID EX WB SB SBLoad IF ID EX EX EX EX WB

RAR/WAR/RAW Dependencies. Besides the dependencies between memory
accesses, two instructions may also present data dependencies due to their reg-
isters, as source and, respectively, destination. These dependencies could cause
additional pipeline hazards and hence, require special features to guarantee the
correct execution of the program. Read-after-Read dependencies (RAR), occur
when two instructions share a source register. This does not cause any hazard,
since the shared resource is read-only. Besides, Write-after-Read dependencies
(WAR) occur when the destination register of the second instruction is a source
register of the first one. Hazards associated with WAR dependencies cannot oc-
cur in the TriCore microarchitecture, since instructions always execute in-order and
registers are read early in the pipeline (in the ID stage) and written late (in the
WB stage). Finally, Read-after-Write dependencies (RAW) occur when the des-
tination register of the first instruction is a source register of the second one. The
associated hazards are resolved by forwarding [33] in the TriCore microarchitecture
and thus do not cause additional delays, as in many modern pipelines.

WAW Dependencies. Write-after-Write dependencies (WAW), occur when
two instructions share the same destination register. Contrary to the other forms
of dependencies, the associated hazards may cause additional stall cycles when
both instructions execute in parallel in the two pipelines. This may lead to a data

39

CHAPTER 2. MICROARCHITECTURE CASE STUDIES
hazard (i.e., an incorrect order of writes) or a structural hazard, i.e., a resource
contention at the write port of the register file. For such WAW hazards to occur,
a load instruction has to execute on the LS pipeline that has a WAW dependency
with either a preceding multi-cycle instruction or any arbitrary instruction in the
I-pipeline [33]. In all cases, these hazards are resolved by stalling the pipeline for
1 or 2 additional cycles.

Table 2.5: Write-after-Write (WAW) hazards between a load and an I-pipelineinstruction.
(a) Illegal execution, if a data hazards were ignored: instruction A is supposed to write itsresult before B .

Cycle Instr. t1 t2 t3 t4 t5I pipeline A IF ID EX EX2 WBLS pipeline B IF ID EX WB
(b) Two stall cycles are introduced to resolve the data hazard of (a).

Cycle Instr. t1 t2 t3 t4 t5 t6I pipeline A IF ID EX EX2 WBLS pipeline B IF ID ID ID EX WB
(c) Illegal execution, if a structural hazard were ignored: both instructions would try to writeto the same register at the same time.

Cycle Instr. t1 t2 t3 t4 t5I pipeline A IF ID EX EX2 WB
LS pipeline B0 IF ID EX WB

B IF ID EX WB
(d) In this case, one single stall cycles is required to resolve the structural hazard of (c).

Cycle Instr. t1 t2 t3 t4 t5 t6I pipeline A IF ID EX EX2 WB
LS pipeline B0 IF ID EX WB

B IF ID ID EX WB

Tables 2.5a and 2.5b show a data hazard within a fetch bundle consisting of
a multiply-accumulate (A) and a load instruction (B) that both write to the same
register. Instruction A takes two cycles to execute, i.e., spends an extra cycle in
the EX2 stage and thus would write its result after B . Table 2.5a shows the
incorrect execution that would occur if the data hazard were ignored (cf. the order
of the colored WB stages). In order to enforce in-order completion, instruction B
in the LS-pipeline needs to stall for two cycles (in the ID stage), as presented
in Table 2.5b. These stalls (are intended to) alter the relative position between
instructions. The number of stall cycles vary if the I- and LS-instructions are not
part of the same fetch bundle.

40

2.3. A REPRESENTATIVE OUT-OF-ORDER-PIPELINE TEMPLATE
Tables 2.5c and 2.5d show a structural hazard due to the same interaction sce-

nario between instructions A and B , while considering an intermediate instruction
B0 in the same fetch bundle as A. Without special handling, in the incorrect exe-
cution shown in Table 2.5c, both instructions try to write the register at the same
time, which leads to a structural hazard. Here, Table 2.5d shows that instruction
B requires a single stall cycle (in the ID stage) to solve the hazard.

2.3 . A Representative Out-of-Order-Pipeline Template

In this section, we introduce the template of an Out-of-Order (OoO) pipeline (see
Sec. 1.2.2). The template is representative of modern OoO pipelines that are sus-
ceptible to TAs, for instance the RISCV BOOM core.2 OoO microarchitectures
are well known to exhibit counter-intuitive TAs [21, 22, 23, 24, 34], more docu-
mented and typically illustrated in this situation, as well as amplification TAs [21,
23]. We use this hardware template to assess the existing formal definitions of
counter-intuitive TA s, in Part II.

We first provide an overview of the template (Sec. 2.3.1), before elaborating on
the execution functioning (Sec. 2.3.2). Then, we introduce the traditional pattern
of counter-intuitive TAs found in the literature, caused by the scheduling in OoO
pipelines (Sec. 2.3.3).

2.3.1 . Pipeline Overview

pr
og

ra
m IF ID RSNFU FUNFU

COM/

su
pe

rs
ca

l

/ /

In-order front-end OoO computation In-order
back-end

ROB
/

Figure 2.3: Representative hardware template of an OoO pipeline based onTomasulo’s algorithm. The pipeline hasNFU functional units and is able to fetch,decode and commit superscal instructions per cycle from a software specifica-tion (program).

The template, illustrated in Fig. 2.3, is inspired by case studies proposed in
the literature to reason about timing modeling [21, 35]. It is based on a pipeline
containing:

2https://boom-core.org/

41

https://boom-core.org/

CHAPTER 2. MICROARCHITECTURE CASE STUDIES
• an in-order front-end, responsible for fetching (IF) and decoding (ID) the

instructions from the input sequence;

• an OoO execution engine in the middle, which may hold instructions in
Reservation Stations (RS) and perform computations in Functional Units
(FU)—while respecting (data) dependencies;

• and an in-order back-end, so as to commit (COM) the instructions in pro-
gram order via a reorder buffer (ROB).

The template can be parameterized using four parameters: superscal determines
the number of instructions fetched/decoded/committed per cycle, NFU specifies
the number of RSs/FUs, and SRS and SROB specify the sizes of the buffers of the
RSs and the ROB.

Concrete implementations may bring out some additional stages, however only
prolonging the in-order front-end or back-end, without affecting the scheduling
algorithm. The template abstracts away the Write-Back (WB) stage (if existing),
since, on the one hand, we assume full bypassing allowing back-to-back operations
even in case of (Read-after-Write) data dependencies, and, on the other hand, we
do not represent the register file explicitly (cf. Sec. 5.1.2).3 Besides, we assume
that each FU has a Common Data Bus (CDB) in charge of broadcasting the
produced data towards the ROB and, by bypassing, towards the RSs. Hence, the
number of simultaneous computation completions in the FUs is not limited.

2.3.2 . Execution Functioning
The template allows executing an arbitrary specified instruction sequence, as program
in Fig. 2.3. We can specify for each instruction its data dependencies and the ad-
missible FUs. Data-cache misses/hits will be modeled through regular FUs (for
loads/stores)4 that have a variable timing behavior (cf. Ch. 5). We specify for each
instruction the sets of possible latencies for the FUs and the IF stage (the COM
stage always takes 1 cycle), representing for instance the behavior of, respectively,
the instruction and the data caches. The instruction sequence, the choice of FUs,
as well as the choice of latencies explicitly represent the initial state that deter-
mines the outcome of an execution trace. The set of all initial states is given by
all possible combinations of these choices. A subset of all these initial states thus
yields the set of execution traces that can actually be observed (and thus need to
be analyzed for timing anomalies).

Starting from an initial state, instructions deterministically advance through
the pipeline at each cycle (). The OoO computation relies on Tomasulo’s al-
gorithm [38] and only represents how instructions progress through the pipeline,
i.e., the instruction computations will not be modeled. When several FUs are

3For instance, BOOM implements a Bypass Network for forwarding the Write-Back data tothe register-read stage [36].
4Several load/store unitsmay exist; or separate load and store units, e.g., the Pentium4 [37].

42

2.3. A REPRESENTATIVE OUT-OF-ORDER-PIPELINE TEMPLATE
admissible for an instruction, an arbitrary choice is made. Instructions are issued
directly from the ID stage to a FU () or otherwise from the associated RS,
when the respective FU is occupied or the instruction’s data dependencies are not
satisfied. The results from FUs are bypassed/forwarded (), allowing the back-
to-back execution of dependent instructions on FUs, instead of delaying it until the
update of the ROB. Note that in modern OoO architectures, register renaming
is extensively used to fully avoid Write-after-Read (WAR) and Write-after-Write
(WAW) hazards (see Sec. 2.2.2) caused by data dependencies in the program.
Only Read-after-Write (RAW) hazards may still subsist in executions, despite the
use of forwarding. The RSs and the ROB keep track of the status of instructions
(pending/ready/executing/completed/committed) and their (data) dependencies
(). The oldest instruction in a RS is selected to execute on a FU among the
ready instructions. Instructions are assigned an entry in the relevant RS and in
the ROB within the ID stage. If the buffer capacity of one of these resources is
reached (SRS or SROB), the pipeline is stalled in ID (otherwise this stage takes 1

cycle).

2.3.3 . Traditional Pattern of Counter-Intuitive TAs

LD r1, 0(r2) ; A
ADD r3, r1, r4 ; B
ADD r5, r6, r7 ; C
LD r8, (0)r5 ; D

(a) Input assembly code.

α FU1 A D
FU2 B C

β
FU1 A D
FU2 C B

(b) Scheduling on functional units (FUs).
1 2 3 4 5 6 7 8 9 10 11 12 13

α
A IF ID FU1 COMB IF ID RS2 FU2 FU2 FU2 COMC IF ID RS2 RS2 RS2 FU2 FU2 FU2 COMD IF ID RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COMB IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COMC IF ID FU2 FU2 FU2 ROB ROB ROB COMD IF ID RS1 RS1 RS1 FU1 FU1 FU1 ROB COM

(c) Execution traces on our template represented in Fig. 2.3, with superscal = 2 and NFU = 2.
Figure 2.4: Traditional scheduling pattern [21, 22, 23, 24, 34] (2.4b, 2.4c) onthe functional units of an OoO pipeline, showing a counter-intuitive TA froma given program (e.g., 2.4a) with data dependencies ().

Fig. 2.4 introduces a common example of a counter-intuitive TA [21, 22, 23,
24, 34], caused by a variation in the number of cycles that instruction A spends in
functional unit FU1, which impacts the instruction scheduler of an OoO processor

43

CHAPTER 2. MICROARCHITECTURE CASE STUDIES
executing a sequence of instructions such as that of Fig. 2.4a with (read-after-
write) data dependencies. The variation in FU1 may represent a cache hit in
case α, against a cache miss in β. Fig. 2.4b shows that the favorable variation,
i.e., the local speedup in α, leads to an actual in-order scheduling on the FUs
that entails a larger global execution time than in β; contrariwise, instruction
C can execute actually out of order and earlier in case β, which in turn allows
dependent instruction D to execute—and thus the global execution to complete—
earlier. This is a typical situation of a counter-intuitive TA. Fig. 2.4c shows
that this counter-intuitive-TA pattern can be obtained exactly from our template
introduced in Sec. 2.3.1, for instance with superscal = 2 and NFU = 2. This figure
represents cases α and β as two complete, detailed execution traces of an input
program representing the instruction sequence shown in Fig. 2.4a with its data
dependencies, on our OoO-pipeline template, according to the behavior described
in Sec. 2.3.2.

44

3 – FORMAL VERIFICATION

In this chapter, we provide the background on the formal verification of real-time
systems, from general notions to the tools used in next parts.

In order to reason about a system, one needs a model of the system. The
operation permitting to pass from a real system (such as a real-time system) to a
model of this system is abstraction. An abstraction can be considered as a gen-
eralization that consists in describing the system by focusing on some particular
aspects of interest only, necessarily with approximations for other aspects. Obvi-
ously, several models may exist, depending on the type of targeted aspects and
the level of granularity. A given abstraction may be refined by adding details to
an (abstract) model in order to get a more concrete model, i.e., closer to the real
system.

Specifying a system—namely, listing the (functional and non-functional) re-
quirements that the system must satisfy—can be achieved at various levels of
detail, and of confidence furthermore. The intended system at the design stage
is necessarily an abstract model of the final, real system. We will often make
an equivalent use of the words specification and model, without suggesting any
stage of the lifecyle of the system. That means in particular that a specification
may describe the actual behavior of the (real) system, as well as of the expected
one. When a specification of a system is developed, a certain part of its behavior
can be described confidently, since the real system has been observed or will be
surely conforming. However, some requirements may be expressed as constraints
that must be satisfied, depending on other requirements, thus not fulfilled a priori.
Besides, the real system may have a behavior that was not expected or considered
in the design stage. We consider here that the system specification/model itself
concerns the part of the description known confidently, to which we add a set of
properties specifying requirements that are to be checked.

In order to specify the system with a high level of confidence, i.e., to describe
it unambiguously and to reason about it rigorously, formal models are required.
Formal models use mathematical theories to describe the system. Then, it is thus
possible to formally verify properties, expressed in these theories, that the system
must satisfy. Hereafter, we introduce general formal notions (Sec. 3.1), before
focusing on model checking (Sec. 3.2), a particular formal-verification method.
Then, we introduce the modeling and verification tools (Sec. 3.3) that we use in
our work. Finally, we provide a brief historical overview of applications of formal
verification (Sec. 3.4).

3.1 . Formal Notions

45

CHAPTER 3. FORMAL VERIFICATION
Systems can be described using a set of (state) variables.

Definition 3.1: State — A state of a system is an assignment of a value to each
state variable, from the domains of the state variables. The set of all states is
denoted as S and is called the state space.

We consider discrete-time systems, so that their behavior can be represented
as a sequence of states. A transition (or step) is a pair of successive states allowed
by the system behavior. A common way of modeling systems is the concept of
transition system.

Definition 3.2: Transition System (TS) — A Transition System is a tuple
(S, I,→), where I ⊆ S is the set of initial states and →⊆ S ×S is the transition
relation (or next-state relation).

A transition system formally describes all possible behaviors, namely how the
system may pass from a state to another. The initial states are those from which
one may start observing the system, and relation → exactly contains all possible
transitions.

Definition 3.3: Execution of a TS — An execution (also called run or behav-
ior) of the TS is a (potentially infinite) sequence of states (s1, s2, . . .) ∈ S ×
S × . . . s.t. (such that) the successive states are in the transition relation:
∀i ∈ N∗, (si , si+1) ∈ →. It is an initial execution if s1 ∈ I.

The diameter of a TS is the least number of steps to reach all reachable states
(i.e., the states that belong to at least one initial execution).

A convenient way to characterize a transition from a given, current state lies
on actions. An action is a formula that relates to two states. Let us consider a
pair of two states (S1,S2) ∈ S × S, where S1 is called current (old) state and S2

is called next (new) state. The (unprimed) variable symbol x thus refers to the
(current) value of variable x in state S1, whereas x ′ refers to the (next) value of
the same variable in state S2.

Definition 3.4: Action — An action is a formula mixing unprimed variables with
primed variables (thus the current values of one or several variables with their next
values).

Any transition (s1, s2) ∈ → is formed by two successive states s1 = S1 and
s2 = S2 of a possible execution of the TS. From the above (with s1 = S1 and
s2 = S2), any transition can be labelled by an action (possibly involving all state
variables and their current and next values). A transition is thus characterized by
the current state (s1) and the action label.

Definition 3.5: Labelled Transition System (LTS) — A Labelled Transition
System is a tuple (S, I,Λ,→Λ), where I ⊆ S is the set of initial states, Λ is a set
of labels, and the transition relation →Λ is a set of labelled transitions.

Let us assume that action a ∈ Λ relates to states s1 and s2 ∈ S. We can

46

3.1. FORMAL NOTIONS
construct an LTS with actions as labels, s.t. if a is true, then a is true of the
transition (s1, s2) ∈ →, namely there exists a TS execution where s1 and s2 are
successive states. In this case, a, s1, and s2 form a labelled transition of the LTS,
i.e., a is enabled at state s1 and (s1, a, s2) ∈ →Λ. Conversely, the transition
relation →Λ of the LTS is a subset of S × Λ× S.

Executions of an LTS are of the form (s1, a1, s2, a2, s3, . . .), where the succes-
sive labelled transitions are in the transition relation: ∀i ∈ N∗, (si , ai , si+1) ∈ →Λ.
However, we can define paths of an LTS from executions, by removing all label-
s/actions. In short, the path corresponding to the above execution is (s1, s2, s3, . . .).

Now, suppose that one intends to assess a property over a system state.

Definition 3.6: State Function/Predicate — A (state) function is a formula
that can contain (state) variables, as well as constants. A Boolean-valued (state)
function is called a (state) predicate.

Many properties targeting a single state of the system can be expressed as
first-order logic formulae, to which we will restrict (with background theories, such
as arithmetic). First-order logic formulae are inductively built from rules involving
symbols.

Definition 3.7: Syntax of a First-Order Formula — The symbols of a first-
order logic formula are:

• logical connectives (as in propositional logic) and punctuation symbols (e.g.,
parentheses);

• an equality symbol (=);

• quantifiers (∀ for universal quantification and ∃ for existential quantifica-
tion);

• variables ranging over individual objects (denoted by letters);

• truth constants (⊤ for true and ⊥ for false);

• function symbols (cf. Def. 3.6;

• predicate (or relation) symbols (cf. Def. 3.6.

Constant symbols refer to 0-ary functions.
The syntax of first-order formulae relies on logical symbols and non-logical

symbols. Whereas logical symbols (e.g., the equality symbol = and logical con-
nectives) have a fixed semantics and are interpreted a priori, non-logical symbols
(i.e., function/constant and predicate symbols) require an interpretation in order
to give the formulae a truth value (⊤ or ⊥).

Definition 3.8: Interpretation for a First-Order Formula — An interpretation
L of an arbitrary first-order logic formula φ is comprised of the following elements:

• a domain of discourse D;

47

CHAPTER 3. FORMAL VERIFICATION
• an assignment of an element of D to every constant symbol;

• the interpretation of every n-ary uninterpreteda-function symbol, i.e., a func-
tion Dn → D;

• the interpretation of every n-ary uninterpreted-predicate symbol, i.e., the
subset of Dn that makes the predicate true.

The truth value of formula φ under interpretation L is denoted as [[φ]]L.

aIn view of the considered background theories.
Assigning a meaning to all sentences of first-order logic requires a so-defined

interpretation. An arbitrary (well formed) first-order formula may be true or false,
depending on the considered interpretation.

Definition 3.9: Model for a Formula — Given a formula ϕ, an interpretation
L that satisfies ϕ, i.e., [[φ]]L = ⊤, also denoted as L |= φ, is called a model for
formula φ.

If L is not a model for φ, we denote it by L ̸|= φ.

Definition 3.10: Satisfiability of a Formula — Formula φ is:

• satisfiable if there exists an interpretation L that is model for φ, i.e.:
∃L, L |= φ

• unsatisfiable if there exists no interpretation that is model for φ, i.e.:
∀L, L ̸|= φ

• valid if any interpretation is model for φ, i.e.,
∀L, L |= φ, also denoted as: |= φ

.

If we consider a system modeled by an LTS, we need to enrich the modeling
structure with an interpretation to evaluate formulae on states. However, it may
be more convenient to proceed in an indirect way. In this context, predicates are
state predicates; they depend on the state variables.

Definition 3.11: Kripke Structure (KS) — Let AP be a set of atomic predi-
cates. A Kripke Structure is a tuple M = (S, I,Λ,→Λ,AP ,L) that is an LTS
enriched with a state-labeling (or interpretation) function L : S → P(AP) (where
P designates the power set), providing for every state the set of all atomic predi-
cates in AP that are satisfied in the state.

The state-labeling function provides the minimal information in order to de-
termine whether any formula derived from the atomic predicates is true or not of
a state.

Paths of a KS are similar to paths of an LTS. If we focus on the sequence
of (true) atomic predicates instead, we can define traces. The trace of path
(s1, s2, s3, . . .) is (L(s1),L(s2),L(s3), . . .). The set of all traces allowed by the

48

3.2. MODEL CHECKING
KS is denoted as L(M).

In the next chapters, we will often represent sequences of states only. We
will use the term trace with a more general meaning than the strict one used in
the current chapter for introducing the formal notions, potentially also referring to
executions of TSs and paths of LTSs. We will also use the phrase (execution)
trace to describe sequences of states representing one execution of a program on
a microarchitecture model.

3.2 . Model Checking

The main advantage of writing formal specifications of systems is that we can verify
properties of these specifications: this is formal verification. Formal verification can
be (highly) automated, by means of computer tools. Among the automated-proof
techniques, we can cite (automatic) theorem proving [39] and model checking [40,
41, 42, 43]. Theorem proving is deductive reasoning on a system description,
through step-by-step inference rules. Model checking relies on a model checker
to perform an exhaustive search of a property violation, over all possible states
allowed by the specification. Theorem proving may turn to be tedious and to
require extensive manual effort to prove a property. Contrariwise, model checking
needs fewer manual efforts, since many properties can be expressed directly from
the formal specification. Model checking has consequently gained notoriety in
industry, and many tools have been developed [44, 45, 46, 47, 48, 49]. However,
model checking faces the state-explosion problem, due to its exhaustive nature.
For this reason, a considerable effort may have to be made to adopt a suited
abstraction level while writing the formal specification. In this thesis, we focus
on model checking to verify properties related to timing anomalies.

3.2.1 . Invariants

Since model checking is based on state exploration and property assessment over
states or traces, the Kripke structure (Def. 3.11) proves to be one of the natural
formal structures that can be manipulated by a model checker. So, we consider
model M = (S, I,Λ,→Λ,AP ,L). We focus on first-order logic to express state
properties, for which models are simple interpretations as defined in Def. 3.8.
However, we are generally interested in verifying properties dealing with several
states that represent the system at different instants; we need modal, temporal
logics to write formulae that express the properties easily (without stating time
explicitly) [50, 51]. We will exclusively verify linear-time properties, which apply
to traces of the Kripke structure.

Definition 3.12: Linear-Time (LT) Property — A linear-time property over
AP is a subset of (P(AP))ω, i.e., of the set of (possibly infinite) sequences whose
elements are in P(AP).

49

CHAPTER 3. FORMAL VERIFICATION
Definition 3.13: Model for an LT Property — Trace t ∈ L(M) is model for
a linear-time property P over AP iff (if and only if) t ∈ P , which is denoted as
M, t |= P . KSM is model for P iff L(M) ⊆ P , which is denoted asM |= P .

Trace t violates property P if t /∈ P .
To express linear-time properties, we can adopt specialized temporal logics, for

instance Linear Temporal Logic (LTL) [41] or a variant, Temporal Logic of
Actions (TLA) [48]. Linear-time properties are basically divided into safety and
liveness properties [51]. Safety properties specify that “something bad will never
happen”, whereas liveness properties specify that “something good will eventually
occur”. We will focus on safety properties, more specifically on invariant
properties, i.e., safety properties that refer only to the current state.

Definition 3.14: Invariant — A (linear-time) property is an invariant if there ex-
ists a state predicate φ s.t. P = {(A1,A2,A3, . . .) ∈ (P(AP))ω | ∀i ∈ N∗, Ai |=
φ}. Such a state predicate φ is called an invariant (condition).

In LTL and TLA, we can express above invariant property P as follows:
P = □φ, or equivalently in LTL: P = Gφ, where φ is a state predicate.

A model-checking problem for an invariant thus consists in:

1. specifying the system (e.g., through KSM);

2. formalizing the property in a temporal logic (e.g., invariant φ);

3. deciding whetherM |= □φ (through dedicated algorithms).

The last step is performed automatically by the model checker. According to
Def. 3.13 and 3.14, it holds:

M |= □φ⇐⇒ ∀t ∈ L(M),M, t |= □φ (3.1)
If the property is verified, the model checker proves that it holds for all traces.
Otherwise, i.e.,M ̸|= □φ, the model checker proves that there exists (at least) a
path on which the property does not hold, by providing a counterexample, namely
a trace/path that violates the property. Note that if a safety property is violated,
there always exists a finite counterexample.

3.2.2 . Explicit Model Checking
According to Eq. 3.1 and Def. 3.14, a KS is model of an invariant iff every reachable
state is model of the invariant:

M |= □φ⇐⇒ ∀t = (L(s1),L(s2),L(s3), . . .) ∈ L(M), ∀i ∈ N∗, L(si) |= φ

(3.2)
The KS can be unrolled into a state-transition graph that enumerates each

state and each transition. The most direct manner to decide whether M |= □φ

is to perform an explicit exploration of the state space by constructing this graph.
In this way, all reachable states are visited (at least if the property is satisfied).

50

3.2. MODEL CHECKING
Then, specialized decision procedures lie on the state-transition graph to solve the
problem [40].

3.2.3 . Symbolic Model Checking

One way to handle state explosion is to affect the representation of the state space,
in order to reduce the size of the data that must be held in memory while model
checking, instead of reducing the number of states. Symbolic model checking [52,
53, 40] allows using formulae—i.e., with symbols—to encode the state space,
instead of explicitly building the state-transition graph.

Binary Decision Diagrams (BDDs)
Symbolic methods constituted a major step in formal verification and allowed ap-
plying model checking in industrial case studies [54]. These methods allow implicit
explorations of the state space, in the sense that the state-transition graph is
never built explicitly. The main symbolic methods lie on Binary Decision Dia-
grams (BDDs) to encode the state-transition graph in a compact way [55, 42].
BDDs [56] are representations of Boolean functions that are compact, since they
operate on sets and concretely allow for factorizing shared information. The basic
idea is that Boolean functions, called characteristic functions, can be used to rep-
resent sets and relations, thus in particular set of states and the transition relation
of a KS. BDDs are used to represent the characteristic function of the transition
relation, so that all paths of the KS are encoded symbolically. Distinct BDDs
may be built for the same function, according to the canonical form that fixes the
ordering for the (state) variables.

Bounded Model Checking (BMC)
Implicit model checking based on BDDs may still suffer from state explosion.
Besides, the efficiency of their symbolic state-space representation is strongly de-
pendent on the canonical form [42]. Bounded Model Checking (BMC) [57, 58]
consists in transforming the exploration problem of model checking into the satis-
fiability problem of a formula that is satisfiable iff there exists a finite fixed-length
sequence of transitions in the KS reaching a state that violates the property.

A Boolean Satisfiability (SAT) problem is a decision problem consisting in
determining whether a Boolean formula with propositional variables is satisfiable
or, on the contrary, unsatisfiable (cf. Def. 3.10).

Satisfiability Modulo Theories (SMT) is a decision problem addressing the sat-
isfiability of a first-order logic formula (with equality and without quantifiers), wrt.
associated background theories [59]; propositional variables are replaced by atomic
predicates wrt. a basic SAT problem, thus interpretations also give a meaning to
the predicate symbols (cf. Def. 3.8). BMC is thus generally an SMT problem, re-
quiring an SMT solver to perform the verification. SMT uses Boolean expressions
but, contrary to BDDs, they do not rely on canonical forms.

Formula F , whose satisfiability is to be determined, contains in a conjunction,

51

CHAPTER 3. FORMAL VERIFICATION
on the one hand (between square brackets below), the symbolic k -unrolling of
the KS, translating all paths of length k by using k copies of the symbols that
represent the state variables, and, on the other hand, the negation of the invariant
φ:

F =

[
I (s1) ∧

k∧
i=2

T (si−1, si)

]
∧ ¬φ(sk) (3.3)

where I is the initial predicate (true iff s1 is an initial state, i.e., s1 ∈ I) and
T is the transition-relation predicate (true iff si−1 and si form a transition, i.e.,
∃a ∈ Λ, (si−1, a, si) ∈ →Λ). I and T are also called characteristic functions
(see Sec. 3.2.3). F describes an under-approximation of the state space, since
paths are restricted to length k . If F is satisfiable, then M ̸|= □φ and we get
a counterexample of length k . Using the equivalent contrapositive: if M |= □φ,
then F is unsatisfiable. However, the reverse is wrong: if F is unsatisfiable, then
the property is true of any path of length k (i.e., it merely holds that M |=k

□φ). BMC can be performed successively with increasing values of k . This
permits getting counterexamples quicker, since counterexamples of minimal length
are found.

3.2.4 . Counterexample-Guided Methods
The obtainment of counterexamples may provide information about the system
itself (in which situations a property is violated) or about the underlying model of
the system. In any case, one can exploit the obtained counterexamples to adapt
the model of the system by preventing certain behaviors.

The basic use of counterexample-guided methods is Counterexample-Guided
Abstraction Refinement (CEGAR), which aims at refining the model of a system
in an automatic manner [60]. Whenever a counterexample is found, this method
determines whether it represents an actual property violation or an abstraction
artifact, due to a too coarse model. In the latter case, the model is refined by
taking into account the infeasible behavior that must be excluded.

In Ch. 10, we set up similar strategies to explore various sources of delays in
a pipeline model. We must successively exclude already explored scenarios. These
strategies are based on SMT counterexample-guided approaches, with applications
spanning from program synthesis [61] to microarchitecture design [62]. SMT-
based counterexample-guided methods are convenient, since SMT solvers can be
manipulated on the fly and integrated within an automatic specialized procedure
(cf. Sec. 3.3.1).

3.3 . Modeling and Verification Tools

We intend to develop generic procedures relative to TAs. To do so, we need
to model the cycle-accurate behavior of the microarchitectures that we study.
We do not need to use specific time abstractions, and the procedures that we

52

3.3. MODELING AND VERIFICATION TOOLS
develop are not tool-specific. We base our formal modeling on generic (labelled)
transition systems, in which the states represent clock cycles, and transitions clock
ticks. We have experimented with several tools for describing our pipeline models
and verifying timing properties, in particular UCLID5(from an existing modeling
basis), but also TLA+.

Next, we present the tools that we use in the following parts of this the-
sis to verify invariants—UCLID5 and an SMT solver (Sec. 3.3.1), and TLA+

(Sec. 3.3.2). Modeling tools and languages are useful to express symbolic represen-
tations of system models (typically a KS, Def. 3.11). These representations could
theoretically be generated automatically; however, all models used in this document
are written manually. Model checkers and SMT solvers use these representations
to verify properties.

3.3.1 . UCLID5

UCLID5 provides a specialized modeling language [63] and has been applied, in
particular, for the functional verification of processors [64]. It offers abstractions
to describe computational system models and supports a range of techniques to
formally verify properties on these models. In our work, we exclusively use BMC.

Infrastructure
LTL and invariant properties in particular (cf. Sec. 3.2.1) can be specified and
then verified by BMC (cf. Sec. 3.2.3). In this case, model checking is performed
up to a specified number of transitions (depth) that represents the bound. The
LTL temporal operator G applied to a predicate φ, i.e., G(φ), means that φ is
supposed to be an invariant—to hold in all states.

UCLID5 resembles a programming language, close to C with nevertheless
two specialized blocks to describe the transition-system structure: init and next.
Models are composed of a set of typed variables, whose values define states. The
next block specifies the next value of each changed variable with parallel assign-
ments, i.e., all changes are simultaneously applied at the end of the block. The
prime operator (′) refers to the new value of a variable. Each execution of the next
block corresponds to a transition. The notion of time, e.g., with clocks [65], is not
inherently present in UCLID5: it has to be modeled explicitly by a state variable.

Models may also explicitly define the initial values of variables in the separate
init block. Variables that are not explicitly initialized assume arbitrary values,
in accordance with the variables’ types/domains. Moreover, assumptions can be
formulated to control at any step the range of possible values for a variable, which
might also introduce non-determinism. These two points draw up the state space of
the verification problem. When a property is violated at a certain depth, the model
checker provides a (single) counterexample for that depth, showing a detailed trace
with the evolution of specified variables up to this depth.

The canonical pipeline model [26], a particular hardware abstraction designed
to track delays induced in a pipeline (cf. Sec. 4.3.2), had been encoded in UCLID5.

53

CHAPTER 3. FORMAL VERIFICATION
We extended this work to TriCore, the industrial case study introduced in Sec. 2.2.
In Ch. 9, we use symbols of first-order logic (connectives and quantifiers) to write
term definitions (≜), instead of the counterpart C-like logical operators and ex-
panded forms used for variable assignments in UCLID5. Similarly, all formulae
that do not comprise a definition (symbol ≜) are in fact encompassed within an
assume() statement, in a close form to the logical one used in this document.

Unfortunately, the verification tool does not provide any statistics. We also
faced various expressiveness limitations when using complex/nested data struc-
tures. Note that we do not rely on the specific abstractions offered by the language,
since we do not model the results of operations.

Bounded Model Checking (BMC)
UCLID5 transforms the BMC problem (expressed by a specialized command
bmc), performed by unrolling the transition system up to a given depth k , into
one SMT problem per depth. The verification at a given depth of a property
expressed in UCLID5 relies on the SMT formulation at this depth, which is
checked using the Z3 solver [66]. The user has the possibility to only generate the
SMT formulations (for each property and each depth up to the specified bound),
without calling the solver. The successive values of the state variables are expanded
into distinct symbols and the problem boils down to one conjunction that involves
the symbols related to the initial state, the transition relation applied k times, and
finally, the values after the last transition representing the states whose reachability
is assessed, as introduced above (Sec. 3.2.3).

UCLID5 generates SMT files, in the SMT-LIB standard language [67] (sup-
ported by the SMT solvers, like Z3). Moreover, SMT solvers provide specialized
APIs to directly manipulate the SMT problem. In this work, we use the Z3 SMT
solver and its Python API (details are in Ch. 10). A convenient feature provided
through SMT-LIB—in particular, through the API of Z3—is scoping. Scopes al-
low for directly manipulating the SMT encoding using the push operation, to add
new assertions on the solver stack, and the pop operation, to remove assertions
from the same stack. A direct use of scoping is that the solver can be used to
incrementally address a verification problem (as in Ch. 10 in order to get multiple
counterexamples).

3.3.2 . TLA+

We have also experimented with TLA+ [48]. It is a formal language accompa-
nied by a complete toolbox and was originally designed for specifying concurrent
systems. A specification is made of TLA formulae (cf. Sec. 3.2.1), i.e., based
on first-order logic, set theory, and actions (Def. 3.4). The toolbox comes with
an explicit model checker, TLC, which makes it possible to check properties on
the specification. Note that we can use a symbolic model checker as an alterna-
tive [68]. Note also that the framework comes with TLAPS [69], a Proof System
allowing for writing proof obligations in the same language as the specification—

54

3.3. MODELING AND VERIFICATION TOOLS
TLA+—and to send them to various back-end verifiers (e.g., theorem provers and
SMT solvers).

The language is intuitive (it relies on basic mathematics), allows modularity,
and is well-documented. The toolbox offers convenient features, such as numerous
options for displaying the counterexample traces or the possibility of evaluating
expressions at each state of a derived trace. Moreover, the model checker provides
clear errors and avoids unintended state-space explosion by prompting the user
to define a next-state relation for each state variable. TLA+ does not come
with specific abstractions for hardware features (e.g., bit vectors) or time but,
as mentioned above, we do not need such abstractions—we use a standard state
variable to model time. We have chosen TLA+ (with TLC) as our main formal
tool for the most recently proposed work, due to its convenient features for
developing and testing models efficiently, and the range of verification techniques
that are supported and integrated together into the toolbox. In particular, we have
formalized the parameterizable OoO model introduced in Sec. 2.3 in TLA+ (cf.
Sec. 5.1).

TLA+ allows us to specify a KS through a single TLA formula, containing
in particular an initial-state predicate and a next-state relation built from actions
relating the values of variables in the current state (e.g., x) to their values in the
next state (x ′). Fig. 3.1 shows a sample of the specification of our OoO template
in TLA+. The state variables are declared after the keyword variables, here a
variable representing the current cycle and the program counter. The specification
defines several operators, i.e., well-formed, named TLA+ expressions that may be
parameterized. TimeProgress is an operator used later for the next-state relation.
We can make several remarks from this operator:

• An if-then-else construct is available to alleviate expressions.

• The let-in construct permits writing local definitions.

• The expression currCycle ′ = currCycle + 1 is an atomic action (it relates
to a single state variable).

• ⟨ and ⟩ define sequences (i.e., functions defined on N∗).
The expression: unchanged ⟨currCycle⟩ is a syntactic sugar for stating
an action where each variable of the sequence is unchanged, here merely:

currCycle ′ = currCycle

In Fig. 3.1, the possible initial values of the state variables are those that
satisfy the initial-state predicate Init . For the two variables that are visible, a
single value (0) is allowed in the initial state. The vertical alignment of logi-
cal connectives describes precedence (implication has the lowest precedence on
the same vertical axis), e.g., in the figure, each line of predicate Init (lines 6-
8 in Fig. 3.1) is one conjunct and all conjuncts are in the same level, so the

55

CHAPTER 3. FORMAL VERIFICATION
vertical alignment does not introduce any precedence. Operator Next is the next-
state relation, composed of several actions in conjunction (operator Progress is
not shown here). Finally, the behaviors allowed by the system are those that
satisfy operator Spec (which is explicitly stated in the toolbox as the temporal
formula that specifies the system). This formula specifies that operator Init is
indeed the initial-state predicate (the expression must be true of the initial state,
since it is not prefixed by any temporal operator) and that operator Next is in-
deed the next-state relation (the action must be true of any transition, see the
temporal operator 2). The syntax [Next]⟨currCycle, pc, ...⟩ is a syntactic sugar for
Next ∨ (currCycle ′ = currCycle ∧ pc′ = pc ∧ . . .). Thus, besides the steps al-
lowed by operator Next , stuttering steps (in which the specified variables are
unchanged) are also allowed. Stuttering steps are mandatory for legal temporal
formulae in TLA (they notably ease the composition of specifications).

variables currCycle, pc, exec inst , . . .
TimeProgress ∆

= if ∃ i ∈ 1 . . Len(pipe stages) :let x ∆
= pipe stages [i]in x ′ ̸= xthen currCycle ′ = currCycle + 1else unchanged currCycle

Init ∆
= ∧ currCycle = 0
∧ pc = 0
∧ . . .

Next ∆
= Progress ∧ TimeProgress ∧ unchanged exec inst

Spec ∆
= Init ∧2[Next]⟨currCycle, pc, exec inst , ...⟩

Figure 3.1: Sample of our TLA+ specification of the OoO template (cf. Sec. 2.3).

3.4 . Applications of Formal Verification

Model checking was early used for software verification, in particular to check
communication protocols [70]. Then, significant work has been done to check
C programs [71, 72, 73], in traditional or embedded-system contexts. The goal
is to detect errors introduced in the code (e.g., invalid pointers) and, thus, to
prevent bugs. In such an approach, the underlying hardware microarchitecture is
completely out of scope and is not modeled, whereas we consider timing properties
of the execution of a program on a hardware target.

Formal verification has also been used to check the correctness of hardware
designs, since the eighties [74]. It follows from Ch. 1 that implementations do not
materialize ISAs (cf. Sec. 1.1.1) in a straightforward way, notably due to the nec-
essary stalling cycles (e.g., for respecting data dependencies) and the performance
enhancers such as out-of-order-execution engines. Since the ISA specifies the ex-
pected functional behavior of instructions, it can be seen as an abstract model

56

3.5. SUMMARY: OUR FORMAL FRAMEWORK
of the processor. The formal verification of hardware designs consists in checking
whether a model of the implementation, called the concrete model, produces the
same results as the abstract model.

Burch and Dill [75] laid the foundation for the verification of hardware de-
signs. They modeled the control path of in-order microarchitectures, assuming
that the data path was correct, and used uninterpreted functions to represent ex-
ecutions symbolically. Their method results in a logical formula that is valid iff
the implementation is correct. However, a special decision procedure is needed
for checking the validity of the formula, which prevents this method from being
directly usable with model checking. Burch [76] introduced abstractions in the
specification and simplifications in the decision procedure, and he extended the
previous work to superscalar pipelines. Skakkebæk et al. [77] continued in this di-
rection, by providing a support for out-of-order pipelines. Berezin et al. [78] shifted
paradigms, by verifying OoO implementations with BDD-based symbolic model
checking (cf. Sec. 3.2.3) while preserving uninterpreted functions, which thus no
longer requires special decision procedures. They also introduced a special data
structure to share sub-terms appearing in symbolic executions; pointers to entries
of this data structure allow for a compact encoding. However, some manual guid-
ance was still inevitable. Lahiri et al. [64] proposed a more systematic approach,
also with uninterpreted functions but, additionally, with lambda expressions, using
UCLID (UCLID5’s ancestor, cf. Sec. 3.3.1). Their work mainly relies on the
decision procedure of these tools that is based on inductive invariant checking.
All these approaches seek to check the functional correctness of hardware designs,
namely to verify that the relevant part of the state of the implementation is correct
wrt. to the specification. Firstly, these approaches are code-independent—they do
not consider any input program but, instead, any sequence of instructions allowed
by the ISA—and thus more general than required in our context, since real-time
systems are designed to execute specific input programs. Secondly, these methods
are too abstract to verify timing properties, since, on the one hand, the guidance
specifications do not deal with the temporal correctness, and, on the other hand,
only the results of computations are considered in the implementation.

Model checking has also been used to verify timing properties, which requires
taking into account both the software and the hardware. Our work lies in this
context and we elaborate on this part of the related work in Sec. 4.4.1.

3.5 . Summary: our Formal Framework

In the current chapter, we introduced formal notions and formal modeling and
verification tools—UCLID5 and TLA+. Whereas formal verification is often
performed on hardware and software separately, and focuses mostly on functional
correctness, we intend to carry out the co-verification of non-functional, timing
properties on hardware and software; properties thus concern (pipelined) executions

57

CHAPTER 3. FORMAL VERIFICATION
resulting from the combination of both components. We highlighted in the previous
chapters the importance of verifying the absence of timing anomalies or precisely
identifying them. From this formal framework, we develop in next parts formal
models of the two main case studies—the representative out-of-order pipeline and
the TriCore microarchitecture—aiming at detecting and analyzing timing anomalies
by model checking.

58

4 – RELATED WORK

In this chapter, we introduce the related work specific to timing analysis and tim-
ing anomalies in microarchitectures, and we highlight the issues and limitations

in the state of the art that motivate the work described in the next parts.
Counter-intuitive TAs have a systematic impact on analyses (cf. Sec. 1.3.2),

whereas the effect of amplification TAs, which are an issue for compositional anal-
yses only, is often deemed harmless [79, 23]. The particular relationship between
counter-intuitive TAs and WCET analyses questions the intuitive definition in-
troduced in Sec. 1.3.1 and complicates the impact on the WCET. We thus first
describe the various interpretations of counter-intuitive TAs that coexist in the
literature (Sec. 4.1). Then, we provide an overview of the existing definitions of
TAs (Sec. 4.2), with an emphasis on counter-intuitive TAs. Finally, we present
some predictable cores (Sec. 4.3) and we elaborate further on the work related to
amplification TAs that arise from memory interference, introduced in Sec. 2.1.2,
before describing modeling approaches related to general low-level WCET analysis
or to our microarchitecture case studies (Sec. 4.4).

4.1 . Interpretations of Counter-Intuitive TAs

A study of the literature shows that counter-intuitive TAs can be interpreted in var-
ious ways against their impact on the WCET.1 We have observed that the source
of TAs is subject to two interpretations as to the abstract vs. concrete nature of
the considered traces: respectively, a static-analysis-centric vs. a hardware-centric
interpretation. Among the considered traces, those that are amenable to trigger-
ing a TA also constitute a complementary interpretation, according to whether
the impact on the WCET is absolute or pairwise.

4.1.1 . Concrete and Abstract Models

Processors are commonly modeled using transition systems, comprised of (hard-
ware) states and transitions. Static WCET analyses compute abstract states that
over-approximate the states that may appear on the concrete hardware while exe-
cuting a given program, and derive timing bounds from these states (see Sec. 1.1.4).
Thus, we can reason on two models: the concrete model serves as a reference and
is assumed to represent the real system, faithfully and accurately wrt. its timing
behavior; the abstract model provides timing estimates against a certain analysis
method.

Fig. 4.1a represents a concrete model (solid shapes) and a corresponding ab-

1We will provide a detailed overview of the existing definitions in Sec. 4.2 and of their un-derlying interpretations in Sec. 4.5.

59

CHAPTER 4. RELATED WORK
Time

(a) A concretemodel (solid circles are states and solid edges are transitions) and a possible cor-responding abstractmodel for staticWCET analysis (dashed rectangles are over-approximatedstates, dashed edges and rods represent estimations).

∆L

∆G

TA

(b) Abstract, static-analysis-centric inter-pretation: the TA is an artifact of abstrac-tion combined with pruning ().

TAs∆L
∆G

∆′
G

(c) Concrete, hardware-centric interpreta-tion: the TAs impose hardware assump-tions on analyses ().
Figure 4.1: Two interpretations of TAs in the literature wrt. worst-case-execution-time analysis.

stract model (dashed shapes). The horizontal axis represents the time—needed to
reach the states in the concrete model, and indicating the computed estimates in
the abstract model. In the concrete model, the initial state (the leftmost circle)
has three successor states (the solid green circles) that represent comparable mi-
croarchitectural states defining a latency—e.g., the corrugated transitions ()
represent an initial instruction fetch under various cache contents—which in turn,
for simplification, have one successor each as a final state. The final states (the
solid red circles) also represent comparable microarchitectural states—e.g., the end
of the global execution. In the corresponding abstract model, the two uppermost
successors of the initial concrete state are merged into a single state (i.e., the
uppermost dashed UPSacOrange rectangle)—this is an over-approximation—from
which one (provisional) estimate of the global time can be computed ().

Since certain states or estimates are comparable, we can define variations.
Fig. 4.1b shows the local variation ∆L and the global variation ∆G that can be
identified in the abstract model. These variations form the typical situation of a
counter-intuitive TA. Similarly, Fig. 4.1c shows the identical local variation ∆L, as
well as the two global variations ∆G and ∆′

G that can be identified in the concrete
model. Both pairs of local/global variations also represent counter-intuitive TAs
in this model.

Note that variations may concretely occur only from distinct initial hard-

60

4.1. INTERPRETATIONS OF COUNTER-INTUITIVE TAS
ware states, since the system, i.e., a processor and memories, is deterministic (cf.
Sec. 1.1.3)—a given program executed from the same initial hardware state will
always result in the same hardware behavior. The models in this section adopt a
simplified viewpoint, with only one initial state of a restricted part of the microar-
chitecture (i.e., related to the input program and data) but a non-deterministic
transition () to represent distinct behaviors, according to initial conditions
that are not explicitly part of the models (e.g., depending on the contents of
the caches).2 In this way, we intend to clearly indicate that we consider various
paths that are suitable for assessing TAs. We believe that the intuitive notion of
TAs demands that the restricted initial states in our models should correspond to
the components that are visible in the ISA (cf. Sec. 1.1.1). Thus, all the elements
to which the code sequence refers must be part of the initial states, as well as
the instruction memory where the code sequence is loaded. On the contrary, any
element present in the implementation only (e.g., a cache) constitutes other initial
conditions that may participate in variations. One can formally define the part of
the microarchitecture that is retained for initial states and distinguished from other
initial conditions, e.g., a “timing-relevant dynamic computer state for a program
scope” [23].

TA

Time

(a)With a concrete TA.
TA

Time

(b)Without concrete TAs.
Figure 4.2: A concrete model (solid shapes) and a possible corresponding ab-stract model (dashed shapes) that assumes a TA though the particular WCETestimate () obtained after pruning () is safe.

4.1.2 . Static-Analysis-Centric Interpretation

A first interpretation, based on abstract models, considers TAs to be an artifact of
the analysis in combination with pruning [21, 22]. On complex hardware, despite
the over-approximations, exploring the abstract model inevitably leads to state
explosion, and thus, it would be desirable if some abstract states could be pruned
during the analysis. According to the intuition, the pruned states might be those
that represent favorable cases [ibid.] (e.g., cache hits), thus local speedups (∆L)
wrt. another execution trace (cf. Fig. 4.1b). The estimate of the global execution

2Our simplified “concrete” models thus contain a certain degree of abstraction, but standfor reference models.

61

CHAPTER 4. RELATED WORK
time of a trace (/) is always safe wrt. to the actual execution time of the
(concrete) trace (see the solid red circles), i.e., for this trace in isolation—we
assume that static analyses compute a sound upper bound from one abstract
state, possibly with penalties that introduce pessimism only (Fig. 4.1a). However,
this estimate is not necessarily safe wrt. other traces. An estimate obtained with
pruning (from the abstract state that is preserved) may thus be unsafe. As pruning
should also preserve the soundness of the WCET analysis, in this interpretation,
a TA is identified for a given abstraction when a WCET estimate obtained with
pruning is smaller (∆G) than without pruning, and it is safe to prune abstract
states if they do not trigger TAs.

Note that under this interpretation, TAs may be assumed even when the
WCET estimate obtained with pruning is safe wrt. the concrete hardware. For
instance, assume that in a given abstraction, we get the abstract model shown in
Fig. 4.2a for the unchanged concrete model, such that the particular time estimate
() obtained with pruning is larger than in Fig. 4.1b. The TA still exists in the
abstract model. However, even with pruning and in spite of the actual TA in the
concrete model, the so derived WCET estimate is safe, since it is an upper bound
of the global execution time of any concrete trace—in particular, the trace pruned
by the analysis (i.e., reaching the lowermost solid red circle). TAs may even be
assumed when the concrete model does not contain TAs (i.e., a false positive in
the detection of TAs). For instance, the abstract model considered in Fig. 4.2b
may also correspond to the different concrete model represented in Fig. 4.2a. In
this case, the concrete model has no TA and the abstraction introduces a TA. In
both cases of Fig. 4.2, pruning is supposed to be harmful due to the TA, though
the consequent WCET estimate would be safe.

Time

(a)With a concrete TA.

Time

(b)Without concrete TAs.
Figure 4.3: A concrete model and a possible corresponding abstract modelthat indicates no TA though a particular WCET estimate () from the prunedtrace () would be still safe (and tighter).

Fig. 4.3 represents the two remaining combinations of presence/absence of
counter-intuitive TAs in the concrete/abstract models. In Fig. 4.3, the abstract
model indicates no TA. By definition, the WCET estimate obtained with pruning
is not smaller than without pruning. However, as shown in Fig. 4.3, a particular
WCET estimate () obtained without pruning may be safe wrt. the concrete

62

4.1. INTERPRETATIONS OF COUNTER-INTUITIVE TAS
hardware—and thus tighter than with pruning, whether there is a concrete TA
(i.e., a false negative, Fig. 4.3a) or not (Fig. 4.3b).

The problem with this pure static-analysis-centric interpretation is that nothing
makes it possible to discriminate between the tightness of the estimation method
(e.g., with pessimistic penalties) used in a specific analysis and the issue that
pruning could entail with the considered executions, even for arbitrarily accurate
static analyses.

4.1.3 . Hardware-Centric Interpretation

TAs were originally observed in a real processor [20], outside of any analysis frame-
work. This leads to another interpretation, based on the concrete model (Fig. 4.1c),
where TAs originate from the hardware itself [80, 23, 24, 81]. This interpretation
does not prevent from relating TAs with static WCET analysis. Pruning a trace
during an analysis becomes unsafe (only) when the estimate without pruning is
unsafe wrt. a concrete execution—namely, in Fig. 4.1c, where the two uppermost
traces remain after pruning, when the analysis computes an estimate situated in
the filled zone (). The absence of TAs in this interpretation thus indicates that
the hardware fulfills the underlying assumptions of a static analysis.

This second interpretation is also applicable outside of the traditional con-
text of static WCET analysis. Notably, TAs may be problematic when trying
to bound the impact of perturbations that may occur during the execution of a
program. Preemptions or interrupts would be a typical example of such situations.
The perturbations may lead to new hardware states that would not occur during
an execution of the program in isolation, e.g., an instruction cache miss might
occur even for two successive instructions on the same cache line. Let us assume
that an analysis provides a safe estimate for the program in isolation (without
perturbations). In the presence of a (concrete) TA, this estimate might become
unsafe due to the impact of a perturbation on a pruned trace, even if pruning
was safe during the static analysis, and even if the analysis introduces pessimistic
penalties. Besides, TAs jeopardize other timing-analysis methods partially based
on concrete executions, such as measurement-based analysis and probabilistic anal-
ysis (cf. Sec. 1.1.4). Considering that TAs are primarily concrete execution
phenomena and that their understanding from this perspective allows for
better controlling the accuracy of static analyses and for integrating per-
turbations, we believe that the impact of TAs should be studied and un-
derstood independently of the WCET-analysis technique itself ; we thus
adhere to the hardware-centric interpretation of TAs.

4.1.4 . Absolute-WCET Interpretation vs. Pairwise Interpretation

If we face at least three traces, a variation in a trace may trigger a counter-intuitive
TA wrt. one or some of the other traces only, without impacting the identification
of the (actual or estimated) WCET, so that the TA is harmless with regard to the
WCET. Certain authors consider that such harmless TAs, where the worst case

63

CHAPTER 4. RELATED WORK

TA? β

α

γ

Time

(a) Analysis-centric interpretation: β is pruned dueto γ, thus the TA between α and β is not captured.

TA?
β

α

γ

Time

(b) Hardware-centric interpretation: the actualWCET is given by γ, thus the TA between α and βis not captured.
Figure 4.4: Three execution traces α, β and γ, in which α and β form a TA inthe pairwise interpretation, while the existence of γ hides the TA in the absolute-WCET interpretation.

is not directly involved, do not even constitute a TA [79, 22, 81]. This restrictive
absolute-WCET interpretation, where only certain traces can be involved in a TA,
is in contrast to the pairwise interpretation, where any pair of execution traces may
trigger a TA [80, 23, 21]. Nevertheless, the identification of such traces differs
according to whether the analysis-centric or the hardware-centric interpretation is
adopted. In the former case, the actual WCET must be impacted, and the final
WCET estimate from a systematic pruning method in the latter.

The absolute-WCET interpretation, which naturally often relies on a static-
analysis method, and the analysis-centric interpretation, which intrinsically rests
on pruning, make more sense together.3 A TA then occurs only if a remaining
(abstract) trace after maximal pruning is involved, thus compromising the WCET
bound. Fig. 4.4a illustrates a situation where the combined absolute-WCET and
analysis-centric interpretations hide a TA. Note that β does not trigger a TA wrt. γ
and4 that, on the contrary, α triggers a TA wrt. γ, even in the restrictive absolute-
WCET interpretation. However, trace α triggers a TA wrt. β in the pairwise
interpretation yet not in the absolute-WCET interpretation, since β is removed

3In practice, the analysis-centric interpretation is often often associated with the absolute-WCET one, and conversely (cf. Table 4.2).
4Even in the pairwise interpretation; otherwise, it would also in the absolute-WCET inter-pretation (isolated estimates are sound).

64

4.2. OVERVIEW OF THE DEFINITIONS OF TAS
after pruning (only γ remains). This reinforces the fact that the static-analysis-
centric interpretation (in combination with the absolute-WCET interpretation)
allows verifying the assumptions of a certain static-analysis method (with pruning)
rather than strictly reasoning about TAs.

The hardware-centric interpretation is not related to a particular static-analysis
method. Thus, in this case, the absolute-WCET interpretation restricts TAs to
situations where a trace leading to the actual WCET is involved. Fig. 4.4b repre-
sents a situation where the absolute-WCET and hardware-centric interpretations
hide a TA. Trace α triggers a TA wrt. β in the pairwise interpretation yet not in
the absolute-WCET interpretation, since it does not trigger a TA wrt. γ, which
leads to the actual WCET. Note that the exact situation in Fig. 4.4b can also be
illustrated with an abstract model (thus in the analysis-centric interpretation); in
this case, the trace that remains after pruning (i.e., γ) is also the trace yielding
the WCET bound.

We intend to study TAs independently of any WCET analysis technique (as
mentioned above), and, moreover, the actual worst case is likely to be inaccessible
(cf. Sec. 1.1.3). The WCET is in any case not known a priori—and may be im-
pacted by perturbations—, whereas the restrictive absolute-WCET interpretation
might be useful only if some traces unequivocally did not constitute the worst
case. We thus believe that TAs should be defined from pairs of (concrete)
execution traces, e.g., trace α in Fig. 4.4b triggers a TA wrt. trace β (whereas
it does not wrt. γ).

4.2 . Overview of the Definitions of TAs

In this section, we provide an overview of the existing definitions of TAs. Lundqvist
and Stenström first introduced the notion of (counter-intuitive and amplification)
TAs [20], from the observation of different behaviors of a processor when executing
the same program, namely (execution) traces. Their semi-formal definition is based
on instruction sequences whose first instruction has a variable latency, e.g., due
to a cache hit/miss. They define the notion of TAs by comparing two execution
traces and provide examples for an OoO processor. The definition is incomplete
as it only allows for a single latency variation at the first instruction and does not
define instruction latencies. Wenzel et al. adopt the same framework [21]. Though
latencies are clearly defined as the time spent in functional units, their definition is
still restricted to a single instruction variation. The introduced “resource allocation
criterion” that provides a necessary condition for the occurrence of TAs thus
cannot accommodate with more variations or with TAs that do not primarily
originate from the scheduling (cf. Sec. 1.3.1). Moreover, the definition demands
“almost identical” initial hardware states, without a clear definition.

Mainly semi-formal definitions [20, 21] exist for amplification TAs, and to
our knowledge, only Kirner et al. [80, 23] provide formal definitions of such TAs

65

CHAPTER 4. RELATED WORK
(also called weak or strong-impact anomalies). In the following, we focus on
counter-intuitive TAs, which are dominant in the literature, and we consider formal
definitions, for which we were able to develop formal and executable models (cf.
Ch. 5).

The formal definitions of counter-intuitive TAs mainly differ in two orthogonal
features: the various interpretations of the TA phenomenon against the WCET,
and the essential notion of variations. We already mentioned that the source
of TAs is subject to various interpretations (cf. Sec. 4.1). The definitions often
assume a “hardware model” or an “abstract hardware model”, without more details,
whose refinement level might thus be subjective. Consequently, the very definitions
of TAs often do not directly involve the nature of the hardware model (concrete or
abstract), and the underlying positioning wrt. static WCET analysis remains an
ancillary interpretation of the definitions. However, the restrictive absolute-WCET
interpretation (cf. Sec. 4.1) may be apparent.

The definitions differ in the way of defining latencies and then (local and global)
variations that entail TAs. We found four typical ways of comprehending variations
in the literature, around which we structure the following overview. However,
the definitions are often incomplete and only illustrated through partial
examples (e.g., scheduling diagrams as in Fig. 2.4b). When necessary, we highlight
problems that we encountered while trying to encode the definitions in a systematic
manner. In Ch. 5, we will establish assumptions that enabled us to overcome these
problems and to encode the definitions.

4.2.1 . Step Heights in Step Functions
A simple definition of TAs is provided by Gebhard [24]. In this definition, execution
time γ(η, i) assigns the i -th instruction of a sequence its latency, depending on the
initial hardware state η. Initial hardware states may cover, for instance, the cache
content. The global execution time up to instruction n, from initial state η, is the
sum of the execution times of each instruction: Γ(η,n) =

∑n
i=1 γ(η, i). Then,

counter-intuitive TAs are defined from these notions. The formal definition mixes
words with mathematical symbols. However, according to our understanding, the
definition can be stated as follows; a TA occurs for a given input sequence of
instructions iff:

∃θ, i < n, ∀η ̸= θ, γ(θ, i) < γ(η, i) ∧ Γ(θ,n) ≥ Γ(η,n) (4.1)
where θ and η are two initial hardware states. TAs are thus defined by the existence
of an initial state θ, called anomalous, that leads to the shortest execution time
(i.e., a local speedup) for the i -th instruction and that eventually results into the
largest global execution time at the n-th instruction (i.e., a global slowdown).

Firstly, note that the non-strict inequality includes borderline cases in situations
that constitute a TA, where another initial state leads to the same global execution
time as the anomalous initial state. We consider that this inequality should be
turned into a strict inequality to fit the intuitive understanding of TAs introduced

66

4.2. OVERVIEW OF THE DEFINITIONS OF TAS
in Sec. 1.3.1. Secondly, though intuitive, this definition restricts counter-intuitive
TAs to the situations where, in a trace starting from an anomalous initial state:

1. the global execution time at the point of a later instruction (n) is the largest
one, i.e., the WCET;

2. and the latency of the incriminated instruction (i) is the shortest one

against all initial hardware states. Whereas the first item rigorously corresponds
to the absolute-WCET interpretation discussed in Sec. 4.1 that excludes harmless
cases wrt. the WCET, we cannot find reasons for the second item, since in any
interpretation, at least one trace that is responsible for a TA may originate from
any initial hardware state, and, moreover, the trace with the shortest latency is
never taken as a reference. We thus believe that the above formula should be
adapted at a minimum to exclude borderline cases wrt. the WCET and to have
both (local and global) comparisons independent:

∃θ, η, i < n, ∀η̃, (γ(θ, i) < γ(η, i)) ∧ (Γ(θ,n) > Γ(η̃,n)) (4.2)
Moreover, since we believe that TAs should be defined from pairs of traces (cf.
Sec. 4.1), we could also modify the first item, related to the absolute-WCET
interpretation, and simplify the adapted formula, in order to provide a sound formal
definition, in the pairwise interpretation, that nonetheless remains consistent with
the spirit of the paper [24] as to latencies and variations. A TA would occur iff:

∃θ, η, i < n, γ(θ, i) < γ(η, i) ∧ Γ(θ,n) > Γ(η,n) (4.3)
The derived definition (based on the last formula) still leaves several details

open. For instance, it relies on the notion of hardware states without a clear
definition. The same applies to instruction latencies, which are only supposed to
be non-negative and yield the execution time when summed. Instruction latencies
are obvious on in-order processors, but the situation is more complex for OoO
processors. The notion of latencies used by Wenzel et al. [21] (i.e., the time spent
in FUs), for instance, is not admissible due to the second constraint.

Note that Reineke and Sen proposed another definition [17] that is presented
as a relaxed version of the one based on instruction locality (cf. Sec. 4.2.4). This
definition relies on the same kind of step functions, which are nevertheless explic-
itly obtained from the instants when instructions start execution (i.e., when they
are fetched), so that the step heights represent the duration between two states
that correspond to the fetch operations of two successive instructions. However,
this definition is limited to timing variations at the first instruction of the
sequence. Besides, the definition adopts a simplified absolute-WCET interpre-
tation, in which only the longest traces are considered among several traces that
share the same states up to (and including) the variation, but that diverge after
the state where the second instruction is fetched.

67

CHAPTER 4. RELATED WORK
4.2.2 . Intersections in Step Functions

An alternative definition of TAs, which also relies on the cumulative execution
times, was proposed by Kirner et al. [80]. This definition is exclusively based on
cumulative execution times, i.e., it focuses on the instants when the execution of
each instruction completes. Keeping the same notations as in the previous section,
a TA occurs iff:

∃θ, η, i < n, Γ(θ, i) < Γ(η, i) ∧ Γ(θ,n) > Γ(η,n) (4.4)
Cassez et al. [81] proposed a similar definition, with the notion of “consistently
as slow” hardware states, yet in the restrictive absolute-WCET (though also
hardware-centric) interpretation that excludes harmless TAs wrt. the WCET (see
Fig. 4.4b). Still with the same notations, a TA thus occurs iff:

∃θ, η, i < n, ∀η̃, (Γ(θ, i) < Γ(η, i)) ∧ (Γ(θ,n) > Γ(η̃,n)) (4.5)

TA β

α

γ

Time

(a) A TA is stated.

β

α

γ

Time

(b) No TA is stated.
Figure 4.5: Eisinger et al. [79] mix the hardware-centric interpretation with thestatic-analysis-centric interpretation, leading to a particular absolute-WCET in-terpretation (cf. Sec. 4.1).

Another definition of TAs is proposed by Eisinger et al. [79]. In the pairwise
interpretation, this definition would be equivalent to the other two variants, with
the only difference that the two axes of the step function are switched, i.e., it tracks
the number of instructions completed in an arbitrary time window. However, the
authors actually interpret TAs in a particular manner that combines the hardware-
centric interpretation with the static-analysis-centric interpretation. They indeed
base their definition on a specific reference trace obtained from a fictive behavior
that is supposed to represent the abstract model used in a WCET analysis after
pruning. A TA is then defined in a particular absolute-WCET interpretation, as a
situation where the execution time of any concrete trace is larger than that of this
abstract reference trace. In sum, this situation might correspond to the filled zone
in Fig. 4.1c, where, nevertheless, it would define a TA,5 whereas this situation

5And where the reference trace would always be obtained with maximal pruning.

68

4.2. OVERVIEW OF THE DEFINITIONS OF TAS
invalidates a hardware assumption in a pure static-analysis-centric interpretation
(cf. Sec. 4.1). Fig. 4.5 illustrates this interpretation in further detail. Fig. 4.5a
echoes Fig. 4.4a; here, pruning serves for constructing the (single) abstract trace
only. A TA is stated between α and γ (and not between α and β), exactly as
in Fig. 4.4a. Similarly, Fig. 4.5b echoes Fig. 4.4b. No TA is stated, and the
TA between α and β is not captured, exactly as in Fig. 4.4b. The approach for
defining TAs remains WCET-centric and does not enable to strictly reason about
TAs. However, this particular absolute-WCET interpretation has the advantage
of eradicating the artifacts caused by abstraction, over pure static-analysis-centric
interpretations that fully rely on abstract models (see Fig. 4.2).

4.2.3 . Component Occupation

The previous definitions summarize the timing of individual instructions using a
single value, the instruction latency. Kirner et al. [23] propose a different view that
focuses on the use of a hardware component (resulting from a partitioning of the
whole microarchitecture) throughout a trace. By comparing the amount of time
when a FU is occupied, among two traces, along with the execution times of the
traces, they describe a new type of TAs called parallel inversion.

The use of FU1 for the traces depicted in Fig. 2.4b and 2.4c, for instance,
amounts to 4 and 6 cycles for α and β, respectively. Despite the higher use of
FU1, the execution time of β is lower, which indicates a TA. The use of FU2 is
the same in both traces and thus does not indicate a TA. A component including
both FUs again yields a TA.

The main problem with this definition is that the authors [23] do not de-
scribe what a suitable hardware component is, e.g., whether/how FUs have
to be grouped together in a single component. As illustrated by the example
from above, the hardware partitioning has an impact on the identification of TAs.
Unfortunately, the authors do not describe how to obtain partitions that reliably
identify TAs.

4.2.4 . Instruction Locality

Reineke et al. [22] propose another point of view, making it possible to combine
per-instruction latencies with the notion of occupation of resources—the so-called
locality. It is based on a transition system that specifies the cycle-level behavior
of the considered processor. The authors assume that one can derive an assign-
ment of instructions to resources (hardware components) from a given state of the
transition system. Consequently, it is possible to extract, on every cycle, the loca-
tions (e.g., a FU) occupied by an instruction; this is called a locality constraint.
The authors also assume that the occupation of locations by an instruction may
change due to non-deterministic behavior that represents unknown information at
the analysis stage. TAs are then defined by comparing the occupation of locations
by an instruction at the first instant when execution traces diverge, along with the
global execution times of the traces.

69

CHAPTER 4. RELATED WORK
This definition is basically related to static WCET analysis. It is based on

the analysis-centric, absolute-WCET interpretation, illustrated by Fig. 4.4a. The
authors consider the decomposition of trace π under locality constraint l as a
prefix, local sub-trace π|l in which l holds, and a suffix: π = πpre ◦ π|l ◦ πpost .
Thus, whenever some traces share the same prefix and then diverge due to a local
variation at a given locality constraint, this definition identifies the variation with
the largest latency as a local worst case. A local-worst-case trace corresponds to
a trace that always follows the local worst cases (i.e., for all variations): trace
π is a local-worst-case trace iff, for any trace π′ and any locality constraint l ,
whenever π and π′ share a common prefix πpre so that π = πpre ◦ π|l ◦ πpost

and π′ = πpre ◦ π′
|l ◦ π

′
post , then

∣∣π|l ∣∣ ≥ ∣∣π|l ′∣∣ (otherwise it is a non-local-worst-
case trace). In Fig. 4.4a, the prefix is restricted to the initial state and the locality
constraint that triggers the (single) variation to one state (in green) for each trace;
thus, γ is the local-worst-case trace. Then, this definition identifies a TA when
the WCET bound (given by α in Fig. 4.4a) is not derived from a local-worst-case
trace (but from a non-local-worst-case trace); hence the TA in the figure.

A first problem with this definition concerns the interpretation of TAs.
The underlying abstract transition system is abstract and cannot be a faithful
model of the actual hardware (cf. Fig. 4.2). It is unclear how to obtain suitable ab-
stractions in practice. A second, more tangible problem concerns the locality
constraints, which are described as convex predicates. The authors do not
explain how to chose suitable locations (only that they should be at the pipeline-
stage level), nor how to obtain corresponding convex predicates. Thus, it is unclear
how to compare the occupation described by a locality constraint once the traces
have diverged, e.g., when an instruction occupies different locations in the two
traces in the next cycle. It is also unclear whether it is always possible to identify a
local-worst-case trace—the condition introduced above should hold for any locality
constraint. In the event that it is not possible, the definition indicates the existence
of a TA, since the WCET bound is indeed not derived from a local-worst-case
trace. Conversely, from the above criterion, traces are local-worst-case by default,
if there is not a common prefix. By construction, the definition indicates the ab-
sence of TAs if no non-local-worst-case trace is identified and, consequently, the
WCET bound is given by a local-worst-case trace. This introduces a surprising
asymmetry between the two borderline cases. Note that locality constraints would
raise issues for comparing traces even in the pairwise interpretation.

4.3 . Predictable Cores

Lundqvist and Stenström [20] proposed the utilization of synchronization instruc-
tions as a software counter-measure for removing TAs emerging from an OoO
scheduling. However, they did not precisely explain where these instructions should
be placed to guarantee the absence of such TAs.

70

4.3. PREDICTABLE CORES
Specific cores based on hardware counter-measures have been designed so

as to inherently improve the timing predictability of the hardware, by enforcing
a regular timing behavior and, desirably, removing or limiting TAs. All these
cores prevent execution scenarios that are known to entail TAs, but no
definition of TAs per se is provided. Hereafter, we introduce a few predictable
cores (Sec. 4.3.1), as well as a specialized abstraction for analyzing such hardware
designs wrt. amplification TAs (Sec. 4.3.2).

4.3.1 . Specific Hardware Designs
Rochange and Sainrat [82] implement specific hardware mechanisms to regulate
the fetch of basic blocks on OoO pipelines supporting an instruction-prescheduling
policy. They actually fetch the instructions of a basic block only when they cannot
induce stalls within the basic block, thus concentrating the impacts of variations
within the basic blocks. Their goal is not to strictly remove TAs, but instead
to provide a flexible mechanism to achieve a trade-off between performance and
predictability (cf. Ch. 1). Whitham and Audsley [83] continue this work, improving
instruction-level parallelism by resynchronizing sequences of basic blocks instead
of basic blocks, which tend to contain few instructions.

The absence of counter-intuitive TAs is a prerequisite for a regular timing
behavior. The following cores are simple—they widely exclude OoO execution, well
known to cause counter-intuitive TAs—but they implement counter-measures to
specifically limit amplification TAs in addition.

The PRET microarchitectures [84] are designed to perform repeatable ex-
ecutions, thus achieving predictability at source, by removing most features that
may introduce non-determinism—and time dispersion—when executing a program
(cf. Sec. 1.1.3). An example of such a microarchitecture is PTARM [85], en-
suring repeatability through a thread-interleaved pipeline, a scratchpad memory,
and a specific DRAM controller. FlexPRET [86] adapts this principle for mixed-
criticality applications, providing guarantees for hard real-time threads but allowing
soft real-time threads (cf. Sec. 1.1.2) to execute against the predictability, in order
to globally improve performance. These cores thus purely disable the features that
we consider (e.g., caches), to avoid TAs.

Although amplification TAs are often ignored or seen as a mere variant of
counter-intuitive TAs (cf. Sec. 4.2), Hahn et al. [19] analyzed amplification TAs
and their link with compositionality. They highlighted the typical situation intro-
duced in Sec. 2.1.2, where an amplification TA may occur due to memory interfer-
ence, (even) in in-order pipelines. However, they did not provide a formal definition
of amplification TAs, nor did they rely on any established formal definition. The
Patmos core [87] decouples the memory accesses for instructions and data, thus
preventing the memory-interference scenario illustrated in Sec. 2.1.2 [26]. Hahn
and Reineke continue the work on compositionality [19] with the development of
a pipeline called SIC [25], designed to be free from TAs. The SIC core targets
in particular TAs that occur due to the mentioned memory-interference scenario,

71

CHAPTER 4. RELATED WORK
this time by delaying the incriminated instruction-fetch memory accesses.

All these in-order cores are based on simple pipelines and it is unclear how
to extend the results to common OoO pipelines, e.g., based on Tomasulo’s algo-
rithm [38]. MINOTAuR [88] extends the framework of SIC to a more complex
microarchitecture that allows speculative execution and can execute independent
instructions out of order, nevertheless stalling decoding on dependencies and then
respecting program order on functional units.6 Similarly, Vicuna [89] is a timing-
predictable vector co-processor based on SIC and relying on the same hardware
counter-measure.

4.3.2 . Canonical Model for Assessing Compositionality
Jan et al. [26] use model checking in order to prove the absence of amplification
TAs (which hinder compositional analyses) in predictable pipelines and compare
their hardware approach to avoid such TAs. This work assumes a prerequisite for
TAs, in the particular situation of memory interference (cf. Sec. 2.1.2), and does
not aim at providing a definition. The authors propose a particular abstraction,
called canonical pipeline model, and use it to verify the absence of such anomalies
on PRET [84], Patmos [87], and SIC [25]. In addition, they identify TA scenarios
for the K1 pipeline [90]. The canonical model serves as a basis for our formal
modeling of TriCore (in Ch. 9).

Hardware Abstraction
The canonical model is based on a hardware abstraction addressing the timing
behavior of the considered processors only; consequently:

• Instruction variants are not distinguished individually, only instruction classes
such as load/store or arithmetic/logic operations.

• Computations (i.e., arithmetic) are not modeled, only the pipeline logic that
may impact how instructions progress through pipeline stages as well as the
interactions with caches and the external bus.

• Cache content is not modeled, only the (potential) impact of hits and misses.

• Only the interactions between two instructions, i.e., the downstream in-
struction and the upstream instruction, are modeled explicitly, side-effects
of other instructions in the pipeline are over-approximated.

The downstream instruction precedes (not necessarily directly) the upstream
instruction in the flow of instructions. Therefore, the downstream instruction
(older) is more advanced in the pipeline, i.e., in later stages of the pipeline, com-
pared to the upstream instruction (younger).

From a structural point of view, the downstream instruction may advance
through the pipeline, provided that the memory bus is not busy if the instruction

6This design implements scoreboarding, a restricted form of OoO execution.

72

4.4. TIMING MODELING IN PIPELINES
has to access main memory. Hence, although the downstream instruction precedes
in the instruction flow, it may be delayed because of a shared resource (i.e., the
bus prompts a structural hazard). This is actually a source of amplification TAs
(cf. Table 2.2). The upstream instruction, besides being potentially stalled by a
bus access, may also be prevented from advancing to the next stage, potentially
occupied by the downstream instruction. Beyond these structural aspects, mi-
croarchitectures may implement stalling strategies that fully or partially stall the
pipeline to enforce a more regular behavior. Such additional progression strate-
gies have been modeled within their canonical pipeline model. In particular, we
adapt two of their strategies in Part. IV: the whole logic stalls the entire pipeline
as soon as any instruction induces a stall, whereas the only-upstream logic allows
the downstream instruction to continue advancing through the pipeline while the
upstream instruction is stalled.

The canonical model was encoded in UCLID5 (cf. Sec. 3.3.1). Each attribute
of both instructions is represented by UCLID5 state variables and each transition
(next block) corresponds to a clock cycle of the processor.

Verification Procedure
The canonical model is used to verify the pipelines using the BMC engine of
UCLID5 (cf. Sec. 3.3.1). The basis of the verification procedure consists in ini-
tializing the bounded model checker such that the downstream instruction is placed
in any stage of the pipeline (stage attribute) and the upstream instruction is placed
in the pre stage, i.e., about to be issued. This is actually equivalent to succes-
sively choosing all possible initial stages for the downstream instruction when the
upstream instruction enters the pipeline, as represented in Table 4.1. This table
exemplifies the initial placement and the progression of the upstream instruction,
as well as of successively explored downstream instructions corresponding to differ-
ent initializations of the current stage (in the same 5-stage in-order pipeline as in
Table 2.2). In this way, all possible distances between instructions in the pipelines
are evaluated. We note that not all possible execution behaviors, i.e., baseline
latencies, are represented in the table. All classes of instructions and all possible
baseline latencies are exhaustively explored by model checking. The state space
is completely determined after the initialization step (init block), through as-
sumptions (see Sec. 3.3.1) that permit the model checker to arbitrarily choose the
initial values of variables representing the initial pipeline stage of the downstream
instruction, the classes of both instructions, and the values of baseline latencies
of both instructions for the stages that may access memory—thus capturing local
timing variations.

4.4 . Timing Modeling in Pipelines

In this section, we introduce the related work on timing modeling for the purpose of
timing analysis. We introduce modeling approaches aiming towards model checking

73

CHAPTER 4. RELATED WORK
Table 4.1: Example of successive downstream instruction placements ex-plored by the model checker through the arbitrary choice of the initial stage,in a 5-stage in-order pipeline. The upstream instruction is the one about toenter the pipeline (pre stage) at the initial clock cycle (t0).

Cycle t0 t1 t2 t3 t4 t5.Down. 3 EX MEM WBDown. 2 ID EX MEM WBDown. 1 IF ID EX MEM WBUpstream pre IF ID EX MEM WB

(Sec. 4.4.1) and towards specialized analytical methods (Sec. 4.4.2). We also
introduce the related work on the timing modeling of TriCore (Sec. 4.4.3).

4.4.1 . Model Checking of Timing Properties
In Ch. 3, we mentioned model-checking applications that aim at verifying func-
tional properties, either on hardware or software. Hereafter, we cite model-checking
applications that aim at verifying timing properties, taking into account the com-
bination of hardware and software in real-time systems.

WCET Analysis
Metzner [91] showed that model checking can be applied in the context of WCET
analysis (cf. Sec. 1.1.4), nevertheless with a limited hardware model comprised of an
ideal pipeline—thus without TAs—whose timing behavior is modeled through pre-
estimated costs. Huber and Schoeberl [92] adopted a similar approach, advocating
for combining model checking with traditional WCET methods such as IPET (cf.
Sec. 1.1.4). Dalsgaard et al. [93] and Gustavsson et al. [94] used model checking to
determine the WCET on simplified but more realistic in-order-hardware models.
Metta et al. [95] proposed abstractions at software level to improve the scalability of
WCET analyses by model checking. None of these methods primarily takes TAs
into consideration; the model of Dalsgaard et al., for instance, could accommodate
the occurrence of TAs when computing WCETs, but this is not the focus of this
work and the authors report that their methods suffer from state explosion [93].
Furthermore, we do not basically seek to estimate or check WCETs, but to analyze
TAs, possibly in a broader context than that of WCET analyses.

Detection of TAs
It follows from Sec. 4.2 that the definitions show issues that make it difficult to put
them into practice in order to detect TAs on realistic models. Consequently, the
definitions are most of the time not implemented as procedures. The definition
by Eisinger et al. [79] (cf. Sec. 4.2.2) is an exception, since it is accompanied
with a model-checking procedure to detect TAs automatically on the model of
an OoO processor; however, they do not provide details about their formal model
and they adopt a absolute-WCET interpretation. Asavoae et al. [34, 96] also use

74

4.4. TIMING MODELING IN PIPELINES
model checking in a first attempt to make the definition by Reineke et al. [22]
(cf. Sec. 4.2.4) executable; this work assumes a relaxed version of this definition
targeting the execution stage of an in-order or OoO pipeline, and shows how it can
be auspiciously integrated into an automatic tool.

4.4.2 . Analytical Methods

With the design of SIC (cf. Sec. 4.3.1), Hahn and Reineke [25] base their analysis
on a monotonicity property resting on a progress notion [18], as a sufficient condi-
tion for the absence of TAs. This work does not make a clear distinction between
both types of TAs and uses monotonicity, intuitively related to counter-intuitive
TAs, to ensure compositionality (related to amplification TAs) in the case of the
specific design of SIC. Moreover, though the essential notions of progress and
then monotonicity are natural, they are specialized for classical in-order pipelines,
and it seems difficult to transpose them to an OoO context.

In Ch. 7, we propose a novel definition of counter-intuitive TAs, based on a
notion of causality between events occurring in a pipelined execution. Our event-
style approach for modeling timing dependencies in a pipelined processor is similar
to that of Li et al. [35] (more details are given in Ch. 7). They use Execution
Graphs (EG) that model the timing semantics of an OoO pipeline through events,
latencies, and the imposed order between events, in order to provide analytical
WCET estimates. Bai et al. [97] extend the EG with a more compact but
equivalent symbolic data structure called Execution Decision Diagram. Hahn et
al. [19] use microarchitectural execution graphs to represent possible durations
between events of interest. However, they focus on abstract states that do not
permit distinguishing the effects of individual instructions nor the resource use
needed to identify causal relationships.

4.4.3 . Timing Modeling of TriCore

In Ch. 9, we propose a formal model of the TriCore microarchitecture introduced in
Sec. 2.2 to study amplification TAs. Nguyen et al. [98] also propose a formaliza-
tion of TriCore that is then explored, using model checking, towards identification
of memory interference. Our model differs from that of this work in the impor-
tant aspect that we consider a finer timing granularity, as we propose a core-level
microarchitecture modeling (as opposed to an inter-core model). Our formal inves-
tigation of amplification TAs is a prerequisite to the analysis in this work. Another
compositional timing analysis is presented by Wilhelm and Wachter [99], sharing
the same TriCore pipeline timing granularity as ours. However, to implement a
symbolic pipeline analysis, modeling the fetch and decode stages is sufficient [99],
while tracking amplification TAs requires a modeling of the temporal behavior of
all pipeline stages.

A variant of the TriCore dual-pipeline is used by Ungerer et al. [100] in the
time-predictable multicore platform named Merasa. To the best of our knowl-
edge, the predictability aspects of a Merasa core are not formally investigated

75

CHAPTER 4. RELATED WORK
using formal methods. Finally, the TriCore microarchitecture is considered by Sun
et al. [101] wrt. its integration into a WCET analyzer called Otawa [102]. The
analyzer provides a description language that allows custom microarchitecture de-
signs to be plugged into the timing analyzer of Otawa. This work describes the
TriCore microarchitecture (i.e., I, LS and loop pipelines introduced in Ch. 2) in
the microarchitecture description language, providing accurate timing information.
Our TriCore model considers similar timing parameters, but is also integrated into
a formal specification and verification framework.

4.5 . Synthesis of the Various Definitions of Timing Anomalies

We introduced the various interpretations of TAs that can be found in the lit-
erature. We believe that TAs must be basically understood independently of
WCET-analysis techniques, which are however sound only if they comply with
the potential TAs. Thus, we consider that TAs arise from the comparison
of two execution traces on a concrete hardware model.

Table 4.2 provides a synoptic view of the existing definitions of TAs. It
reports, for each definition, the key features for defining variations (the guideline of
Sec. 4.2), as well as their interpretations against the WCET. Since amplification
TAs are never formally defined alone, but in a similar way to counter-intuitive
TAs7, we also report whether the related work provides a definition of amplification
TAs in addition to counter-intuitive TAs.

Many definitions are based on hardware models restricted to theoretical
concepts (as the generic form of a transition system) that do not refer
to the actual microarchitectural components. Consequently, the papers
remain theoretical. We report the exceptions in Table 4.2: the definition by
Eisinger et al. [79] is accompanied with a detection procedure and Asavoae et
al. [34, 96] proposed a detection procedure based on a simplified version of the
definition by Reineke et al. [22] (cf. Sec. 4.4.1). Only Jan et al. [26] implemented
a detection procedure for (a prerequisite of) amplification TAs (cf. Sec. 4.3.2).

7The provided definitions of amplification TAs are very similar to their counterparts forcounter-intuitive TAs (translating the intuitive understanding introduced in Ch. 1), since thedefinitions of both types share the same frameworks and the same underlying definitions ofvariations. Note that this is facilitated by the fact that the counterparts in question are notWCET-centric.

76

4.5. SUMMARY: THE DEFINITIONS OF TIMING ANOMALIES

Table 4.2: Synoptic view of the existing definitions of TAs, reporting the retained criteriafor defining variations (cf. Sec. 4.2) and the interpretations (cf. Ch. 1) regarding the posi-tioning in relation to WCET analysis—the symbol “?” stands for undetermined and “∼” forsimplified version.
Tim

ein
FUs

Ste
ph

eig
hts

(Se
c.4

.2.1
)

Inte
rse

ctio
ns

(Se
c.4

.2.2
)

Glo
bal

occ
upa

tion
(Se

c.4
.2.3

)
Loc

alit
y(S

ec.
4.2.

4)
Ana

lysi
s-ce

ntr
ic

Abs
olu

te-W
CET

Pai
rwi

se
Har

dw
are

-ce
ntr

ic
Ver

sion
for

am
plifi

cat
ion

TAs
Det

ect
ion

pro
ced

ure
(Se

c.4
.4.1

)
Definitions Variations Interpretations
Lundqvist and Stenström [20] ? ✓ ✓ ✓Wenzel et al. [21] ✓ ✓ ✓ ✓Gebhard [24] ✓ ? ✓Reineke and Sen [17] ✓ ✓ ∼Kirner et al. [80] ✓ ✓ ✓ ✓Cassez et al. [81] ✓ ✓ ✓Eisinger et al. [79] ✓ ✓ ✓ ✓ ✓Kirner et al. [23] (parallel) ✓ ✓ ✓ ✓Reineke et al. [22] – *[34, 96] ✓ ✓ ✓ ∼*

77

PROBLEM STATEMENTS

Our ultimate goal consists in disposing of reliable detection procedures of TAs,
which are essential to ensure timing predictability in real-time systems. A

first problem concerns the identification of a reliable definition of counter-
intuitive TAs. Detection procedures must be based on formal definitions to decide
on the presence or absence of TAs. Table 4.2 shows that the existing definitions
of counter-intuitive TAs adopt combinations of interpretations; consequently, the
results of hypothetical detection procedures based on various definitions are not
comparable from this feature. However, we can bring the definitions down to a
common interpretation and then build detection procedures. We thus face proce-
dures based on various criteria for defining variations (Table 4.2).8 This raises the
question: Do procedures based on various definitions entail the same results about
the presence or the absence of counter-intuitive TAs? In Part II, we present
the implementation of such detection procedures and we address this issue,
which results in the proposal of a novel definition of counter-intuitive TAs
in Part. III.

A second, complementary issue concerns the formal modeling method-
ology and the verification strategy. We illustrate this problem from the detec-
tion of amplification TAs, though the methodology could be extended to counter-
intuitive TAs. Jan et al. [26] applied their detection procedure only to simple
predictable pipelines (besides the textbook pipeline introduced in Sec. 2.1, as a
reference), in which the actual absence of amplification TAs allows for composi-
tional analyses. In contrast to the previously studied architectures, we consider the
complex, industrial TriCore microarchitecture (cf. Sec. 2.2), which actually suffers
from amplification TAs. The consequence is two-fold and raises the following
questions: Can we provide suitable abstractions to comply with the sophisticated
microarchitecture? How can we monitor and guide the verification engine towards
covering the state space in desired ways, for the purpose of inserting counter-
measures? In Part IV, we thus wonder whether and how amplification TAs
can be tracked efficiently for such a microarchitecture.

8Here, we focus on counter-intuitive TAs since all existing definitions address this class,sometimes with similar counterparts for amplification TAs (see Sec. 4.5).

79

Part II
Limitations of the

Existing Definitions of
Counter-Intuitive Timing

Anomalies

81

In this part, we tackle the first problem introduced in Sec. 4.5, namely the impact
of the various criteria for defining variations on the verdict about the pres-

ence/absence of counter-intuitive TAs (in the pairwise interpretation of TAs).
We set up a unified formal framework for assessing the various definitions. This
framework allows us to compare the verdicts of the definitions and to determine
whether one definition dominates the others and could serve as a reference for the
study of TAs.

Applying a formal definition of TAs means encoding a detection procedure
from this definition, based on a formal hardware model. The goal of this part
is thus to put existing definitions to the test, by comparing the verdicts of the
subsequent detection procedures for a representative OoO pipeline. Are those
definitions able to capture the intuitive understanding of TAs (cf. Sec. 1.3.1)? Do
those definitions provide reliable and coherent answers when applied to different
execution scenarios? In order to answer those questions, we have:

1. developed a parametric formal model (Ch. 5) of the OoO-pipeline
template introduced in Sec. 2.3 [1, 2];

2. encoded the most relevant formal definitions of TAs into executable
procedures (Ch. 5) coupled to the processor model [2];

3. then assessed the definitions (Ch. 6) through model checking by find-
ing examples that lead to contradictions (among those definitions) [2].

We make this assessment independently of any WCET-analysis technique.
Note that no definition presents restrictions on its application conditions (the
definitions only require, generally speaking, a hardware model of the underlying
microarchitecture). Hence, any procedure for detecting TAs based on those defi-
nitions should be exact, excluding false positives/negatives. Our assessment shows
that no definition is able to identify TAs precisely on all the considered examples.

83

CONTENTS
5 Interpretation and Modeling of the Definitions 85

5.1 Formal Modeling of the OoO-Pipeline Template 85
5.1.1 Abstract Modeling for Timing Properties 85
5.1.2 Formal Specification . 86

5.2 Assumptions on the Definitions 91
5.2.1 Step Heights in Step Functions 92
5.2.2 Intersections in Step Functions 93
5.2.3 Component Occupation 93
5.2.4 Instruction Locality . 94

5.3 Uniform Formal Modeling of Properties 96
5.3.1 Discussion on Hyperproperties 96
5.3.2 Properties Based on the Definitions 96

5.4 Summary: the Parameters of our Formal Model 101
6 Assessment of the Definitions 103

6.1 Assessment by Model Checking 103
6.1.1 Verification Methodology 103
6.1.2 Shortcomings of the Definitions 104

6.2 Assessment Outcome 110
6.2.1 Unsuited Granularities for Detecting TAs 110
6.2.2 Towards the Notion of Causality 111

6.3 Summary: the Lack of Causality 112

84

5 – INTERPRETATION AND MOD-
ELING OF THE DEFINITIONS

In this chapter, we present our formal framework to evaluate the presence or ab-
sence of TAs under the various definitions, in a unified, pairwise interpretation.

We aim at making this assessment by model checking, over executions of specific
traces on the representative OoO microarchitecture introduced in Ch. 2.

First of all, we need a formal model of the OoO-pipeline case study introduced
in Sec. 2.3. We thus first introduce our parametric formal model of the considered
microarchitecture (Sec. 5.1). We cannot encode procedures as is, since none of
the existing definitions appears to be precise enough to be systematically used for
detecting TAs in a concrete microarchitecture—the definitions are essentially theo-
retical and only exemplified through simple scheduling diagrams in functional units.
Thus, we have then to specify precise assumptions so as to make all definitions
applicable to a systematic detection of TAs in our case study (Sec. 5.2). Finally,
we can formulate predicates based on the formal model and these assumptions, as
detection procedures related to the various definitions (Sec. 5.3).

5.1 . Formal Modeling of the OoO-Pipeline Template

In this section, we present our formal and executable TLA+ [48] model of the
OoO-microarchitecture template introduced in Sec. 2.3. This model targets mainly
the non-functional, timing behavior of the pipeline, described in Sec. 2.3.2, for the
purpose of verifying timing properties, in particular those related to TAs. We
detail the general modeling needs in this purpose (Sec. 5.1.1), before providing an
insight of the formal specification of the OoO pipeline (Sec. 5.1.2).

5.1.1 . Abstract Modeling for Timing Properties

The formal modeling of OoO microarchitectures generally focuses exclusively on
functional correctness, often from specialized decision procedures, in particular
to verify implementations of Tomasulo’s algorithm (cf. Sec. 3.4). To our knowl-
edge, few formal models of OoO hardware intended for the model checking of
timing properties have been developed. We mentioned several model-checking ap-
proaches in Sec. 4.4.1, in particular by Dalsgaard et al. [93] and Gustavsson et
al. [94], which target simple in-order microarchitectures. These approaches model
the advancement of instructions through the in-order pipeline stages, in a simi-
lar way to our formal modeling of the OoO template; nevertheless, they rely on
specific time abstractions (clocks [65]) that we do not need to express our timing
properties and to verify them through generic procedures (cf. Sec. 3.3). Eisinger
et al. [79] model an OoO pipeline but they do not provide modeling details (cf.

85

CHAPTER 5. INTERPRETATION AND MODELING OF THE DEFINITIONS
Sec. 4.4.1). The formal specification introduced in this section is inspired by the
models by Asavoae et al. [34, 96], nevertheless with a more generic, parametric
approach and with the modeling of a reorder buffer (ROB).

A suitable model for verifying timing properties necessarily integrates both
hardware and software features, whose combination characterizes the system and
in particular its non-functional timing characteristics. The properties are not cor-
related to the functional complexity of microarchitectures, which materializes into
the data path (cf. Sec. 1.1.1). We do not need to consider the functional
aspects beyond their impact on the pipeline-level timing behavior. Instead,
we need to develop an abstract formal model of the processor focusing on the
instruction progress—the software characteristics—through the successive pipeline
stages of the processor—the hardware characteristics. The data path is abstracted
into black-box, but cycle-accurate pipeline stages imposing timing constraints to
the instruction flow, except for the execute stage, where in addition the scheduling
algorithm that maps instructions to functional units is fully captured. Finer models
are unnecessary since they describe changes in internal, hidden states of the data
path, typically a matter of functional correctness. On the contrary, pipeline-level
models are required, since pipeline stages are essential to the cycle-accurate timing
behavior, which allows observing external events, e.g., the full completion of an
instruction.

Our abstraction thus needs to precisely delimit the pipeline stages from the
data path of the hardware microarchitecture, and to extract the control signals that
impact the timing behavior of the control path according to the pipeline stalling
logic. We also need to map at any time instructions onto the identified stages that
process them, from the input program—this is the combination of the hardware
and software specifications. Finally, our model also captures the execution time to
verify timing properties.

5.1.2 . Formal Specification

Hereafter, we exemplify the main features of a suitable formal model for the ver-
ification of timing-predictability properties, from the representative OoO-pipeline
template introduced in Sec. 2.3. We present the key points for modeling the tim-
ing behavior of Tomasulo’s algorithm with a ROB, for the purpose of verifying
properties that indicate the absence of TAs under various definitions (Sec. 5.3).

We formalized this pipeline using the TLA+ language [48] (cf. Sec. 3.3.2).1 In
our case, the transition system defines how the instructions of an execution
trace proceed through the pipeline at the granularity of clock cycles. We
model which instruction is processed by each of the hardware components depicted

1In this chapter, we present a simplified version of the model, where the data dependen-cies are explicitly stated in the input program while the ROB is implicit (it only stores instructionindexes), and where the ROB and the RSs are infinite buffers. The related sources are avail-able at: https://bitbucket.org/benjaminbinder/ta-models/ in branch master. A refinedversion of the specification is used in Part III.

86

https://bitbucket.org/benjaminbinder/ta-models/

5.1. FORMAL MODELING OF THE OOO-PIPELINE TEMPLATE
in Fig. 2.3, at any instant. In our abstraction, the pipeline stages do not have side
effects, such as a write to the memory or the register file. We consider multi-cycle
instructions that thus may cause stalling. The pipeline timing behavior depends
on the number of units for each stage (cf. superscal and NFU in Fig. 2.3), on the
program dependencies that clearly restrict OoO computations, and, when needed,
on the mere information of the required computation clock cycles.

We systematically verified that our specification behaves as intended, namely
as described in Sec. 2.3.2. To do so, we relied on simple, specific invariants, e.g.,
when we specified the scheduling on FUs, an invariant for verifying that data de-
pendencies are always respected. We will also represent concrete counterexamples
showing detailed execution scenarios in Ch. 6.

Abstract Data Path and Computations

We define a state variable for each pipeline stage (IF , ID , RS , FU and
COM), which notably contains the instructions that are currently processed.

The specification depends on a set of input parameters (a in Table 5.1, Sec. 5.4)
that enable to set the instruction sequence under analysis (program) and refine
the characteristics of the microarchitecture (superscal and NFU). The last two
parameters represent a particular version of the pipeline template, by fixing its
abstract data path. Execution parameter program specifies the input instruction
sequence with increasing addresses2 associated with execution constraints about
the mapping onto the hardware. This information originates from the analysis of
the concrete program: each instruction embeds the set of admissible functional
units (FU affinities)—an abstraction of the functional instruction class—, as well
as a set of possible latencies related to timing-variable stages—an abstraction of
the intended computations. The variables related to such stages contain, besides
the current instruction, the elapsed latency (i.e., a counter) and the total required
latency in the stage. Memory is not explicitly modeled, but the IF stage and
the FUs feature instead a variable timing behavior. Execution constraints thus
specify latencies in the IF stage (modeling instruction cache hits/misses)3 and in
the FUs (e.g., modeling the data-cache behavior). The actual total latencies in
these stages result from arbitrary choices among the sets of possible latencies (in
program).

The register file is not modeled either, but only the (Read-After-Write) data
dependencies (), which are explicitly encoded in program. The resulting ab-
stract specification allows for all the behaviors that are concretely made
possible by different initial hardware states (e.g., the initial cache content),
considering the execution of the input instruction sequence on the target microar-
chitecture. It remains to actually make instruction classes progress through the
pipeline, i.e., to encode the control path from the established data path and the

2We exclude branch instructions, thus focusing on one program path.
3In our model, an instruction cache miss in one superscalar IF stage stalls all IF stages.

87

CHAPTER 5. INTERPRETATION AND MODELING OF THE DEFINITIONS
execution constraints.

Timing Modeling of the Control Path
While the data path refers to the hardware states, the control path materializes the
transitions that entail changes in the data-path configuration. We consider that the
pipeline is initially empty. In order to get a cycle-accurate abstraction of the control
path, a transition models one clock cycle, where the change in the state of each
stage is modeled by an action involving a data-path variable—this constitutes the
body of operator Progress involved in the next-state relation introduced in Fig. 3.1.
The additional state variable currCycle is a counter modeling absolute time (cf.
Sec. 3.3.2): currCycle ′ = currCycle + 1 holds as long as there is a change in
the state of a pipeline stage (see Fig. 3.1), i.e., the input sequence has not fully
executed. The evolution of absolute time is modeled in accordance by operator
TimeProgress, which is used as a conjunct in the next-state relation (Fig. 3.1).
Finally, state variable prog is a record monitoring the execution, with a field (rest)
containing the remaining instructions (not fetched yet) from program and a field
(exec) modeling the ROB. Each of these fields are sequences of instructions, where
the instructions are nested records, e.g., with Booleans completed and committed
for the instruction status in the ROB.

We now illustrate how the abstract data-path state is used in order to ac-
curately model the control path, by focusing on the most critical, OoO-specific
elements of the control path, namely the scheduling of instructions to FUs and
the reordering for in-order commit. Modeling the scheduling requires selecting the
next pending instruction and modeling the in-order commit, the next completed
instruction. Both selections rely on the instruction status in the ROB.

Prerequisite Operators. First of all, let us define operators Exec and Done,
used to specify the next-state relation. They return the set of the ROB indexes
of the instructions that will have already completed and, respectively, committed,
in the next cycle.

NxtFUBusy(i) ∆
= FU [i].currLat < FU [i].baseLat 1

Exec ∆
= {i ∈ 1 . . Len(prog .exec) : 2

∨ prog .exec[i].completed 3

∨ ∃ j ∈ 1 . . NFU : prog .exec[i].PC = FU [j].PC ∧ ¬NxtFUBusy(j)} 4

Done ∆
= {i ∈ 1 . . Len(prog .exec) : 5

∨ prog .exec[i].committed 6

∨ ∃ j ∈ 1 . . superscal : prog .exec[i].PC = COM [j].PC} 7

Operator Exec returns the set of indexes in the range of the current ROB
(line 2, first line of the definition of Exec) s.t. the relevant Boolean field (completed)
of the corresponding instructions (exec[i]) is set (first disjunct, line 3) or a back-
to-back execution, i.e., without delay (see in Fig. 2.3), is possible (second
disjunct, line 4). In the latter case, the instruction itself (PC field, whose values
are unique across program instructions) is currently handled by one of the FUs,

88

5.1. FORMAL MODELING OF THE OOO-PIPELINE TEMPLATE
i.e., it is the instruction of the j -th element of the FU state variable (first con-
junct in line 4), and the instruction in this FU is to leave the FU in the next cycle
(second conjunct in line 4). Indeed, operator NxtFUBusy(i) uses the information
about latencies contained in the FU variable to determine whether the instruc-
tion currently handled by a given FU should remain in the FU in the next cycle
and, hence, cause a pipeline stalling. This operator compares the current latency
currLat of the i -th FU with the total required latency baseLat .

Similarly, operator Done is based on the relevant field of the ROB (committed),
as well as on the ongoing commits (COM state variable) that will be immediately
echoed to the ROB. Note that the commit is always a one-cycle operation in our
model. Operator Exec and Done are both used to update the ROB field exec of
prog in each cycle.

Scheduling on the FUs. Based on operator Exec, we can now specify the
scheduling of instructions to the FUs. Operator NxtFU (i) returns the instruction
that is to be scheduled to the i -th FU in the next cycle, or a special instruction
empty that models the absence of an instruction:

FURout(i) ∆
= { ID [j].PC : j ∈ {k ∈ 1 . . superscal : 1

ID [k].PC ̸= empty ∧ FU [ID [k].PC .pc] = i}} 2

NxtFU (i) ∆
= if NxtFUBusy(i) then empty 3

else let minReady ∆
= Min({x .pc : x ∈ 4

{y ∈ RS [i] ∪ FURout(i) : ∀ z ∈ y .dep : z ∈ Exec}}) in 5

if minReady = 0 then empty 6

else choose x ∈ RS [i] ∪ FURout(i) : x .pc = minReady 7

8

In the case that the i -th FU does not suffer stalling and thus may accept a
new instruction in the next cycle (i.e., NxtFUBusy(i) evaluates false), we define
local operator minReady (lines 4-5) that determines the address (pc field from
the program input parameter) of the relevant instruction among the candidate
instructions. If this instruction exists (0 is the conventional address of the empty
instruction, used in line 6), we select (through the TLA+ choose operator) the
instruction itself whose address has been determined by local operator minReady
(line 7). minReady implements an age-ordered policy that selects the oldest in-
struction whose all dependencies are satisfied (or will be in the next cycle). It is
based on the assumption that older, preceding instructions in the program order,
have smaller addresses (see above). It is also based on operator FURout(i) pro-
viding the set of the currently decoded instructions (in the ID stage) that have
actually been assigned the FU under consideration, which requires the FU to be
admissible for this instruction. This is trivial when the decoded instructions have
only one admissible FU and it otherwise lies on an arbitrary choice. Consequently,
minReady selects the smallest address (Min), from the instructions waiting in the

89

CHAPTER 5. INTERPRETATION AND MODELING OF THE DEFINITIONS
associated RS4 or directly from the ID stage5, more precisely only those (set in
line 5) whose all dependencies (dep field assigned from the program input param-
eter) will have been computed (i.e., in Exec).

The issued instructions are removed from the RSs in accordance, while the
non-issued decoded instructions are added for a later selection, the whole through
simple set-theory operators. Each entry of the RS variable (one per RS/FU) is
updated under this consideration:

RS ′ = [i ∈ (1 . . N FU) 7→ (RS [i] ∪ FURout(i)) \ {NxtFU (i)}]
Similarly, the FU variable is updated using the NxtFU (i) operator for each

FU i .

In-Order Commit. Hereafter, we focus on the second main item of the control
path, namely the way of exploiting the data path so as to specify the in-order
commit of instructions. An instruction can be committed in the next cycle only if
its computation in a FU has completed (in the next cycle) and all the preceding
instructions in the ROB sequence have committed. Note that operator Done
does not suffice to consider all the preceding committed instructions, since several
commits might be performed in the next cycle, depending on superscal . We define
operator ReadyCOM (DoneCOM), returning the set of instructions that can be
committed:

ReadyCOM (DoneCOM)
∆
= 1

let ready ∆
= {j ∈ 1 . . Len(prog .exec) : ∀ k ∈ 1 . . j − 1 : k ∈ DoneCOM } 2

in (Exec ∩ ready) \DoneCOM 3

For simplification, we consider the scalar case (i.e., superscal = 1) in the first
instance, in which parameter DoneCOM is always equal to the set derived from op-
erator Done. Local operator ready returns the set of instruction indexes whose all
older instructions will have been committed in the next cycle (i.e., in DoneCOM).
This set is intersected with that of the indexes of completed instructions, deter-
mined by operator Exec. Instructions are never actually removed from the ROB,
in order to keep information about the whole execution of the considered behavior.
This will be useful to specify and verify properties. Hence, the already committed
instructions must be removed from the intersection of the candidate instructions.
Finally, the (potential) instruction that commit in the next cycle is the oldest in-
struction among those that are ready for commit, determined from the minimum
of the resulting set (in the same way as in NxtFU (i)).

In the superscalar case (superscal > 1), ReadyCOM (DoneCOM) must be
applied superscal times in the same transition, taking into account that a first
committed instruction might immediately make another instruction committable

4This models the forwarding through the Common Data Bus (CDB), which broadcasts theresults from the FUs (see Sec. 2.3.1).
5A decoded instruction is immediately issued to the FU if it is ready to execute and therelated RS is empty (see Sec. 2.3.2 and in Fig. 2.3).

90

5.2. ASSUMPTIONS ON THE DEFINITIONS
(if the latter instruction has also already executed and is only waiting in the ROB
for the former to commit). This may provoke a chain reaction of simultaneous
commits that is only limited by the superscal number of resources. Then, the (at
most) superscal instructions that will actually commit in the next cycle result from
the superscal sets derived from ReadyCOM (DoneCOM):

recursive nxtCOM () 1

nxtCOM (s) ∆
= if s = 1 then ReadyCOM (Done) 2

else ReadyCOM (Done ∪ union ({nxtCOM (j) : j ∈ 1 . . s − 1})) 3

These sets are constructed recursively (line 1) through operator nxtCOM (s),
called superscal times, where the base case (line 2) corresponds to a scalar pipeline,
i.e., ReadyCOM (Done), whereas in the recursive steps (line 3), the value of pa-
rameter DoneCOM is a set that also contains (the indexes of) all the preceding
instructions that have just been determined to commit in the next cycle.

Note that operator ReadyCOM (DoneCOM) does not remove from the in-
tersection the set given by Done, but indeed by DoneCOM . Thus, a call to
ReadyCOM (DoneCOM) can never provide a set that contains an instruction in-
dex in DoneCOM and, as a consequence, nxtCOM (s) excludes the instructions
that have already committed (i.e., instructions are not committed twice). Besides,
a closer look reveals that local operator ready (within ReadyCOM (DoneCOM))
is such that for a given value of DoneCOM , the resulting set is either the empty
set or a singleton, since if in the next cycle, an instruction has executed but not
committed yet, either none or one instruction only will have all preceding instruc-
tions committed6. Consequently, each call to nxtCOM (s) brings at most one new
instruction to DoneCOM in the next recursive call (s + 1), which can be selected
as the instruction to commit for this value of s +1. Since, moreover, the operator
is called at least once per cycle (depending on superscal), no instruction commit
may be missed.

5.2 . Assumptions on the Definitions for the Concrete OoO-
Pipeline Model

In order to make all definitions applicable and evaluate their capabilities in the de-
tection of TAs, we need to rely on a set of interpretations/assumptions (which are
to be detailed and explained when needed). We address the problems highlighted
in Sec. 4.2, for our hardware model, by revisiting the definitions. We generally
focus on pairs of traces only—this is not restrictive in our pairwise interpretation
(cf. Sec. 4.1). We illustrate our assumptions from the common example in Fig. 2.4,
which results, with specific graphical representations, in Fig. 5.1.

6Assume that the resulting set contains a second instruction and, without restricting thegenerality, that this instruction follows in the program. Necessarily, all preceding instructionsin the program have committed or are in COM, thus in particular the first considered instruc-tion, which is contradictory.

91

CHAPTER 5. INTERPRETATION AND MODELING OF THE DEFINITIONS

A B C D

4

6

11

13

∆α
∆β

α

β

Executed Instructions
Exe

c.T
ime

(cyc
les)

(a) Execution time as step function.
1 2 3 4 5 6 7 8 9 10 11 12 13

α
A IF ID FU1 COMB IF ID RS2 FU2 FU2 FU2 COMC IF ID RS2 RS2 RS2 FU2 FU2 FU2 COMD IF ID RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COMB IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COMC IF ID FU2 FU2 FU2 ROB ROB ROB COMD IF ID RS1 RS1 RS1 FU1 FU1 FU1 ROB COM

∆α

•

∆β

•

(b) Execution traces showing latencies (), the order of commits (), the
assignment to functional units (/ /), the common prefix () consideredto apply the definition based on locality, and the end of traces (/).

Figure 5.1: Different ways of representing two execution traces that consti-tute a counter-intuitive TA on our OoO-pipelinemodel (with superscal = 2 and
NFU = 2, cf. Sec. 2.3), from a given program (e.g., 2.4a) showing data depen-dencies ().

5.2.1 . Step Heights in Step Functions
The evolution of the cumulative execution time of a trace can be represented as a
step function. Fig. 5.1a represents this step function for the two traces in Fig. 5.1b.
This plot is obtained from the cumulative execution times up to the end of the
execution of each instruction in both traces, i.e., α that we assume to start from
initial state ηα and β that we assume to start from ηβ :

Γ(ηα,A) = 4 Γ(ηβ,A) = 6

Γ(ηα,B) = 7 Γ(ηβ,B) = 10

Γ(ηα,C) = 10 Γ(ηβ,C) = 10

Γ(ηα,D) = 13 Γ(ηβ,D) = 11

(5.1)

The main issue with this class of formal definitions concerns the definition
of latencies (cf. Sec. 4.2.1). For this approach, we thus assume instruction
latencies as the number of cycles between the commit of an instruction
(COM) and the previous commit (or trace start), according to the program
order of instructions. The instruction latencies in both traces in Fig. 5.1a are thus

92

5.2. ASSUMPTIONS ON THE DEFINITIONS
the following:

γ(ηα, 1) = 4 γ(ηβ, 1) = 6

γ(ηα, 2) = 3 γ(ηβ, 2) = 4

γ(ηα, 3) = 3 γ(ηβ, 3) = 0

γ(ηα, 4) = 3 γ(ηβ, 4) = 1

(5.2)

Note that it indeed holds that for η ∈ {ηα, ηβ}, for all i ∈ {A,B ,C ,D}, γ(η, i) ≥
0 and for all n > i (in lexicographical order), Γ(η,n) =

∑n
i=1 γ(η, i).

Then, a TA can be identified by comparing the step functions of two traces: a
TA occurs when the latency for an instruction in one trace, i.e., the corresponding
step height in the plot, is smaller than in the other trace, but later the execution
time is larger. This is illustrated by Fig. 5.1a, where the step height ∆α (γ(ηα,A) =

4) of trace α is smaller than ∆β (γ(ηβ,A) = 6) of trace β, but the execution
time of α at the end of the trace (• Γ(ηα,D) = 13) is larger than that of β

(• Γ(ηβ,D) = 11). For brevity, the step functions can be observed directly in the
detailed trace representation of Fig. 5.1b, where the steps are represented in the
same way.

5.2.2 . Intersections in Step Functions

In the pairwise interpretation, all definitions of this class apply in the same manner,
which can again rely on step functions. A TA occurs when the step functions
of both traces intersect, i.e., a trace that initially executed instructions faster
suddenly becomes slower than the other. This class of definitions only relies on
the cumulative execution time, which can be determined unambiguously; hence, it
does not require specific interpretations.

This situation is illustrated in Fig. 5.1a, where the traces intersect at the last
instruction: α initially situated below β passes above. From the existence of such
an intersection, it follows that the absolute values of the step functions switch
order, as indicated by the red arrows (and).

Such an inversion can also be observed in the detailed execution traces from
Fig. 5.1b, by looking at the respective instances at which instructions were com-
mitted (COM). Instruction A, for instance, was committed in cycle 4 for α but in
cycle 6 for β, as illustrated by the red diagonal arrow. The situation is inverted for
instruction D , as indicated by the red arrow pointing in the opposite direction. Red
arrows pointing in opposite directions (vs.) then indicate a TA (similarly
to intersections in plots).

5.2.3 . Component Occupation

The main problem with this definition resides in the fact that suitable partitions
for considering hardware components are not defined (cf. Sec. 4.2.3). We do not
need to explore all possible partitions to assess the definition. We assume any
non-empty subset of the FUs to be a possible component. In our formal
model, the considered subset is supplied as an input parameter and we assume that

93

CHAPTER 5. INTERPRETATION AND MODELING OF THE DEFINITIONS
a TA exists if a parallel inversion is signaled for the FU(s) of this subset.

5.2.4 . Instruction Locality
The definition based on locality is the most complicated to apply. When we try to
apply it in the pairwise interpretation, the main issue concerns locality constraints
(cf. Sec. 4.2.4). Since this definition is strongly related to WCET analysis, we also
illustrate again, henceforth from detailed traces, the limitations of the absolute-
WCET interpretation.

Locality Constraints. This definition relies on the decomposition of traces from
the transition system that describes the cycle-accurate behavior of the pipeline.
For this work, we assume that the transition system can be represented by a table,
similar to the one from Fig. 5.1b, that assigns instructions to pipeline stages. We
assume that every instruction occupies only one location at a time in a trace
(cf. “convex predicates” in Sec. 4.2.4). Since the RSs and the ROB only model
instructions waiting for a FU or for committing, i.e., due to the scheduling of other
instructions, we furthermore assume all pipeline stages except the RSs and the
ROB to be part of the set of suitable locations. We also assume that FUs
are gathered in a single execution stage (EX) as a suitable location. This
allows (local) comparisons of the occupation even when different FUs are used
for the execution of an instruction. Finally, we do not compare the occupation of
locations after the moment when the traces diverge.

Consider again Fig. 5.1b, in order to illustrate the situation. We denote the
hardware state in cycle i as αi for trace α and βi for β, so that α = (α1, . . . , α13)

and β = (β1, . . . , β11). We denote the locality constraint indicating that instruc-
tion X occupies stage S as S (X) (which is true of a state if X is in S in this state).
The depicted traces are clearly identical for the first two cycles, with the common
prefix αpre = (α1, α2) = (β1, β2), as indicated in the figure by the gray box on
the left (). We can decompose α and β in the following way (cf. Sec. 4.2.4):
α = αpre ◦ α|l ◦ αpost and β = αpre ◦ β|l ◦ βpost . This decomposition is possible
only with the following locality constraints (according to the above): l = ID(C),
l = ID(D), or l = EX(A) (see the column of the third cycle in Fig. 5.1b). We
can then compare the sub-traces in which each of these locality constraints holds
in both traces. Locality constraints ID(C) and l = ID(D) hold in α3 and β3 only:∣∣α|l=ID(C)

∣∣ = ∣∣α|l=ID(D)

∣∣ = ∣∣β|l=ID(C)

∣∣ = ∣∣β|l=ID(D)

∣∣ = 1 (5.3)
However, a non-deterministic choice in cycle 3 causes the traces to diverge. As a
result, FU1 is occupied by 1 vs. 3 cycles for α and β, respectively ():

α|l=EX(A) = (α3) β|l=EX(A) = (β3, β4, β5) (5.4)
It holds, for all the above locality constraints, that: β|l ≥ α|l , thus β is local-
worst-case (and, since we face two traces only, α is non-local-worst-case). The

94

5.2. ASSUMPTIONS ON THE DEFINITIONS
TA is explained by the fact that β is the local-worst-case trace, while yielding a
shorter execution time than non-local-worst-case trace α (see again the red arrows
in Fig. 5.1b)—actually since instruction A occupies FU1 longer in this trace, which
has an impact on the subsequent instruction scheduling.

Comments on the absolute-WCET interpretation. We illustrate the lim-
itations of the absolute-WCET interpretation from our concrete OoO-pipeline
template, hence in a hardware-centric interpretation, though the original definition
is analysis-centric (cf. Sec. 4.1)—it assumes a hardware abstraction, and conse-
quently, a static analysis to compute abstract hardware states. However, on the
one hand, the definition does not indicate suitable abstractions, and, on the other
hand, we can apply the definition to an abstract model arbitrarily close to our
concrete model, without loss of generality. We thus intend to illustrate the situ-
ation schematized in Fig. 4.4b, which might be derived from an abstract model
in any case (cf. Sec. 4.1). We assume an abstraction that explores all (concrete)
states and we consider that an abstract state maps each pipeline resource to the
(potential) processed instruction at a given instant and to the associated latency.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

γ
A IF IDFU1 FU1 FU1 FU1 FU1 FU1 FU1 COMB IF IDRS2 RS2 RS2 RS2 RS2 RS2 RS2 FU2 FU2 FU2 COMC IF ID FU2 FU2 FU2 ROBROBROB ROB ROBROBCOMD IF ID RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 ROB COM•

Figure 5.2: A third execution trace (γ), in addition to those in Fig. 5.1b. Alltraces exhibit a local variation wrt. the use of FU1 by instruction A (). Thethree traces constitute the situation schematized in Fig. 4.4b, where γ is thelocal-worst-case trace and yields the WCET, so that no TA is stated in theabsolute-WCET interpretation, which justifies that we focus on the pairwiseinterpretation.

Let us consider, from Fig. 5.1b, a third trace, γ, represented in Fig. 5.2.
Consequently, instruction A experiences a trivalued variation, e.g., a data cache
hit that is performed, in certain cases, with a write-back to the main memory,
entailing an additional penalty. Instruction A executes 1 cycle on FU1 in α (hit),
3 cycles in β (miss), and 7 in γ (miss with write-back). The three traces share
the same prefix in the first two cycles, so that the definition prompts to state γ

as the local-worst-case trace, through the use of FU1 by A. Since γ is also the
longest trace, i.e., yielding the WCET, the definition states the absence of TAs.
This constitutes exactly the situation represented in Fig. 4.4b. If, in certain cases,
a write-back to the main memory is impossible, the initial state of γ, and thus this
trace, should be excluded (i.e., for a tighter WCET bound). Yet, the TA that
concretely occurs between α and β is not captured by the definition as it is. This
is the reason why we focus on the pairwise interpretation (cf. Sec. 4.1).

95

CHAPTER 5. INTERPRETATION AND MODELING OF THE DEFINITIONS
5.3 . Uniform Formal Modeling of Properties

The parameterized formal specification of the pipeline template (cf. Sec. 5.1.2)
allows us to model the execution of a single (arbitrary) execution trace, while
tracking all the instructions of the trace, as well as all the involved hardware
components. However, in order to reason about TAs, we need at least two traces—
exactly two in our pairwise interpretation (Sec. 5.3.1). This formal framework
allows us to implement the various definitions of TAs into a uniform formalization
(Sec. 5.3.2).

5.3.1 . Discussion on Hyperproperties
A TA is actually a (safety) hyperproperty [103] of the pipeline specification, namely
a safety property (cf. Sec. 3.2.1) that is a set of sets of traces, instead of a
set of traces for Linear-Time (LT) properties (Def. 3.12)—more specifically a 2-
safety property, since it is a set of pairs of traces. To reason about two traces
simultaneously, we define a self-composition [104] of the pipeline specification,
through two instances in a main, higher-order specification module. All state
variables are duplicated and each instance manipulates its own set. In this
way, we can formulate a common (LT) safety property of the dual execution in
the main module, instead of a 2-safety property of the basic pipeline specification.7
Both instances share the input parameters (cf. a in Table 5.1), which guarantees
that we consider the same program and the same version of the data path of the
microarchitecture.

We thus face two essentially identical copies of the microarchitecture model.
The traces are thus restricted to the same instruction sequence, having the same
set of dependencies, possible latencies and FU affinities, on the exact same hard-
ware microarchitecture. The differences between the two traces arise solely from
variations in the actual latencies and FUs of instructions observed during execu-
tion (see Sec. 5.1.2). Instructions may advance at their own pace through the
pipeline, according to their own actual latencies and assignments to FUs, the
use of hardware components by other instructions, and the dependencies among
instructions.

5.3.2 . Properties Based on the Definitions
The uniform formalization consists in defining, in association with each definition,
a detection procedure that decides whether a TA is signaled for the con-
sidered definition. These procedures are specified in the form of invariants (cf.
Sec. 3.2.1) drawing on elements of the pipeline model. In this regard, we rely on
additional code and state variables, summarized in Table 5.1. The table highlights
helper operators (b), which operate on the history of a trace, and helper state
variables (c).

We may observe a TA only when both executions have completed, at least up

7Besides, note that hyperproperties are not supported by TLC.

96

5.3. UNIFORM FORMAL MODELING OF PROPERTIES
to a certain instruction. The invariants, explained in detail further below, check the
absence of TAs after the completion of each instruction in both traces, as a direct
formalization of the key ideas and the assumptions introduced in Sec. 5.2. Operator
ProgDone(n) (cf. Table 5.1) returns a Boolean indicating whether both executions
have completed (at least) up to the n-th instruction of the input sequence:

ProgDone(n) ∆
= ∀ tr ∈ 1 . . 2 : ∃ i ∈ 1 . . Len(progs[tr].exec) : 1

progs[tr].exec[i].PC .pc = Program[n].pc ∧ progs[tr].exec[i].committed 2

ProgDone(n) checks whether the n-th instruction exists in the ROB (first
conjunct line 2) of the instances corresponding to both traces (tr ∈ 1 . . 2)—progs
is an operator returning a pair containing both copies of state variable prog (cf.
Sec. 5.1.2)—and whether its execution is over (committed field, second conjunct
line 2).

Property for Step Heights in Step Functions
The key elements of this definition are commit events (cf. Sec. 5.2.1), which are
tracked by an additional field in state variables and accessible via helper operator
ComTime(tr ,n) (cf. Table 5.1). This additional field comTime nested in the
ROB entries (cf. Sec. 5.1.2) keeps track of the instant (currCycle) of each com-
mit event occurring during the execution. Operator ComTime(tr ,n) returns the
value of the comTime field for the n-th instruction in the trace specified through
parameter tr ∈ {1, 2}:

ComTime(tr , n) ∆
= progs[tr].exec[n].comTime

A TA thus occurs when the comparison of the k -th instruction’s step heights
does not match the global execution time—or, inversely, a TA is excluded when
they always match, as expressed here. We use operator StepHeight(tr ,n), which
is in fact derived from the commit time (cf. Table 5.1). Based on the operators,
we now specify the property expressing the absence of TAs under this definition:8

NoTASteps ∆
= ∀ k ∈ 1 . . Len(Program)− 1 : ∀n ∈ k + 1 . . Len(Program) : 1

∧ ProgDone(n) 2

∧ StepHeight(1, k) < StepHeight(2, k) 3

=⇒ ComTime(1, n) ≤ ComTime(2, n) 4

There is no TA iff, for any instruction k and for any subsequent instruction n
(line 1), it holds that if:

1. the execution is completed up to the considered instructions in both in-
stances under consideration (line 2),

2. and the (local) commit for instruction k is s.t. the step height (line 3) is
smaller in the first instance (α in Fig. 5.1) than in the second one (β),

then the commit ordering for subsequent instruction n in both instances is the
same as that of the step heights (line 4).

8Implication has the lowest precedence (cf. Sec. 3.3.2).

97

CHAPTER 5. INTERPRETATION AND MODELING OF THE DEFINITIONS
Note that both instances of the pipeline specification are totally interchange-

able. That justifies the fact that we fix a priori the roles of each trace in the
property, namely their commit ordering—it is not necessary to consider the case
where both traces switch positions in the formula, since TLC will explore all pos-
sible pairs of traces. This also applies to the subsequent formulae.

Property for Intersections in Step Functions
The predicate for this definition (Sec. 5.2.2) is very similar as the previous one.
Here, a TA occurs when the intermittent order of the k -th instruction’s commit
(itself, instead of the step height) between the two traces (second conjunct) does
not match the global execution time:

NoTAInter ∆
= ∀ k ∈ 1 . . Len(Program)− 1 : ∀n ∈ k + 1 . . Len(Program) : 1

∧ ProgDone(n) 2

∧ ComTime(1, k) < ComTime(2, k) 3

=⇒ ComTime(1, n) ≤ ComTime(2, n) 4

Property for Component Occupation
In order to express the predicate based on component occupation (Sec. 5.2.3), addi-
tional state variables have to be added to the TLA+ specification that track the oc-
cupation of FUs, which is again accessible through a helper operator, FUuse(tr , f)
(cf. Table 5.1):

NoTAComp ∆
= let n ∆

= Len(Program) in 1

let use(tr) ∆
=

∑
f ∈ locFU FUuse(tr , f) in 2

∧ ProgDone(n) 3

∧ use(1) < use(2) 4

=⇒ ComTime(1, n) ≤ ComTime(2, n) 5

From the individual occupation obtained through FUuse(tr , f) (not detailed),
the occupation of the supplied component is computed through summation.9 The
FUs to consider in this component are provided as a model parameter, locFU (cf.
Table 5.1), since the choice of the partitions has little impact on the evaluation
presented in Ch. 6. As before, the absence of TAs is stated when the relationship
between the component occupation (use at the second conjunction) of the two
traces is always the same as the global execution time (the consequent in the
implication).

Property for Instruction Locality
The invariant for this definition (Sec. 5.2.4) is the most complex, since it is not
based on simple numeric features as the other definitions. Firstly, TAs are associ-
ated with the instant when the two traces diverge. As explained in Sec. 5.2.4, we
consider the two traces identical as long as the mapping of instructions to pipeline

9This is a pseudo-TLA formula, where only the formalization of the summation is simplified.

98

5.3. UNIFORM FORMAL MODELING OF PROPERTIES
stages is identical. This is expressed through state variable commonPre (cf. Ta-
ble 5.1), which is initialized to true and only reset to false when this mapping
differs:

commonPre ′ = ∧ commonPre 1

∧ ∀ tr ∈ 1 . . 2 : ∀ k ∈ 1 . . superscal : ∃ kk ∈ 1 . . superscal : 2

Treatment for the IF stage 3

∧ IFs[tr][k].PC = IFs[3− tr][kk].PC 4

∧ IFs[tr][k]′.PC = IFs[tr][k].PC 5

=⇒ IFs[3− tr][kk]′.PC = IFs[3− tr][kk].PC 6

∧ ∀ tr ∈ 1 . . 2 : ∀ k ∈ 1 . . NFU : ∃ kk ∈ 1 . . NFU : 7

Similar treatment for the EX stage (gathering FUs) 8

In our model, this is expressed through the terms IFs[tr][k] (and FUs[tr][k]),
where operators IFs (and FUs) are pairs—one entry per execution trace, similar to
progs above. Each pair contains a sequence tracking the content of any IF stage
(and FU, respectively) k in trace tr , from both copies of state variables IF (and
FU). These terms give access to the assignment of instructions to the IF stages

(there are several if superscal > 1) (and the FUs) (fields PC), and also to the
current (elapsed) latency of the instruction in the stage (or FU) (field currLat).
Any divergence in a PC field causes commonPre to be reset. The first main-level
conjunct (line 1) ensures the whole conjunction to remain false once both traces
have diverged. The second disjunct (lines 2-6) ensures the conjunction to evaluate
to false when the traces diverge in the next cycle due to IF, which does not
occur when the following two conditions hold for any trace tr , i.e., there is still a
common prefix in both traces:

1. The IF stages contain the same (potentially special, empty) instructions
(PC) in the trace (tr) and in the other trace (line 4)—trace 3− tr is the
other trace, since 3− tr = 2 if tr = 1 and 3− tr = 1 if tr = 2;

2. If, in the next cycle (note the prime symbol), a certain instruction remains
in the same stage in a trace, then this instruction also remains in the same
stage in the other trace (implication lines 5-6).

Note that we use independent indexes (k and kk) since in superscalar versions,
the IF stages play the same role and are indistinguishable. A similar check is also
performed for the FUs (as indicated by the shaded comment). The treatment is
exactly the same, in particular with two independent indexes, to allow for instruc-
tions that merely execute on another FU (see Sec. 5.2.4)—thus, the various FUs
also act as indistinguishable (EX) stages. We do not consider the other hardware
components for the comparison of traces, since they do not exhibit variable laten-
cies and thus cannot cause a divergence, and, besides, state variable commonPre
remains false when the traces have diverged.

Once the traces are about to diverge, the occupation of the various pipeline
stages has to be compared in order to determine which traces represent a local

99

CHAPTER 5. INTERPRETATION AND MODELING OF THE DEFINITIONS
worst case. This is performed through state variable locWorst (cf. Table 5.1),
which contains a pair of Booleans, initialized to true—traces are local-worst-case
by default, see Sec. 4.2.4—, indicating for each trace whether it is local-worst-case:

locWorst ′ = [tr ∈ {1, 2} 7→ 1

∨ ¬commonPre ∧ locWorst [tr] Remains local-worst-case trace if it was so 2

∨ ∧ commonPre Traces still comparable 3

∧ ∀ k ∈ 1 . . superscal : ∀ kk ∈ 1 . . superscal : 4

IFs[tr][k].PC = IFs[3− tr][kk].PC 5

=⇒ IFs[tr][k]′.currLat ≥ IFs[3− tr][kk]′.currLat 6

∧ ∀ k ∈ 1 . . NFU : ∀ kk ∈ 1 . . NFU : 7

FUs[tr][k].PC = FUs[3− tr][kk].PC 8

=⇒ FUs[tr][k]′.currLat ≥ FUs[3− tr][kk]′.currLat] 9

10

This TLA+ formula distinguishes two cases. In the first case (first disjunct,
line 2), the two traces have already diverged (¬commonPre); locWorst [tr] then
simply preserves its value for both traces (cf. Sec. 5.2.4). The second case (sec-
ond disjunct, lines 3-9) considers the situation where the two traces have not
diverged, in particular the situation where the two traces are about to diverge,
i.e., commonPre is still true (line 3) but will be reset in the next cycle. At this
moment, it is still possible to compare the occupation of the pipeline stages. Trace
tr loses its status as a local worst case if, in the next cycle, an instruction in the
other trace (3− tr) has completed the fetch in IF (lines 4-6) or its computation in
a FU (lines 7-9). We use the FUs[tr][k]′.currLat and FUs[3− tr][kk]′.currLat
terms to detect a divergence in the next cycle due to a FU (this is similar for IF).
The value of the currLat field (line 9) of that FU (or IF stage, line 6) will thus
be reset in this trace, resulting in diverging values in both traces that invalidate
the implication.10 Thus, the conjunction is false and trace tr (line 1) becomes a
non-local-worst-case trace. When both traces have not diverged and are not about
to diverge, the last two conjuncts (lines 4-9) are true, either since the implications
are vacuously true or since the latencies evolve identically in both traces. Note
that we do not consider the other hardware components for the comparison of
latencies, since they do not exhibit variable latencies and they are not suitable
locations (Sec. 5.2.4).

With these two additional state variables (commonPre and locWorst), it is
possible to check for TAs, using the following invariant:

NoTALoc ∆
= let n ∆

= Len(Program) in 1

∧ ProgDone(n) 2

∧ ¬locWorst [1] 3

10The implications are similar to those in the above action for updating commonPre , with thecurrent latency in the stage instead of an instruction, and with inequalities associated to theuse of two universal quantifiers (lines 4 and 7), due to the fact that we reason from the casewhere tr is not a local-worst-case trace.

100

5.4. SUMMARY: THE PARAMETERS OF OUR FORMAL MODEL
=⇒ locWorst [2] ∧ ComTime(2, n) ≥ ComTime(1, n) 4

The formula might appear surprising at first sight, as one might expect a
formula where locWorst [tr] (with tr ∈ {1, 2}) simply implies that the global ex-
ecution time in tr is the largest. However, both traces might be local-worst-case
(cf. Sec. 4.2.4), and we have encoded the definition as it was stated in the original
paper [22]. Note that this may entail different classifications of TAs, notably when
both traces become local-worst-case due to opposing latency variations occurring
at the same instant.

There is no TA iff, when the program is fully executed (line 2), if trace 1 is a
non-local-worst-case trace (line 3), then trace 2 is a local-worst-case trace that has
the same or a larger global execution time (line 4). Here again, the model checker
will explore all pairs of traces, including where traces 1 and 2 merely switch their
roles.

5.4 . Summary: the Parameters of our Formal Model

A formal model is essential to evaluate the existing definitions of TAs. Moreover,
most of the definitions of TAs found in the literature are dissociated from con-
crete hardware microarchitectures and, thus, cannot be integrated as they stand
into automatic tools. We thus specified precise assumptions to make the existing
definitions applicable to an automatic detection of TAs on our formal model of
the representative OoO-microarchitecture template. Our parametric model allows
the exploration of FU affinities and variations in latencies, e.g., representing cache
hits/misses, through execution constraints on the input program. It also allows the
study of model variations, through the input program and/or microarchitectural
parameters (a in Table 5.1). We defined helper operators and state variables
(b and c in Table 5.1) to project the various definitions with their assump-
tions to our formal model, which enabled us to derive predicates that represent
TA-detection procedures according to these definitions.

101

CHAPTER 5. INTERPRETATION AND MODELING OF THE DEFINITIONS

Table 5.1: Summary of model parameters (a), and helper operators (b) and state variables(c) used in the formalization of procedures based on the definitions of TAs for the OoO-pipeline template (cf. Sec. 2.3).
Input program with execution constraints about FU affinitiesprogram and possible latencies in IF and FU (Sec. 5.1.2)

superscal Maximum number of instructions fetched/committed per cycle (Sec. 5.1.2)
NFU Number of functional units (Sec. 5.1.2)
SRS Size of the RSs (Sec. 2.3.1)
SROB Size of the ROB (Sec. 2.3.1)

a
locFU Subset of FUs considered for component occupation (Sec. 5.2.3)
ProgDone(n) First n instructions were committed in both traces (Boolean, Sec. 5.3.2)
ComTime(tr ,n) Commit instant of the n-th instruction in trace tr (Boolean, Sec. 5.3.2)

ComTime(tr , 1) for n = 1;StepHeight(tr ,n) ComTime(tr ,n)− ComTime(tr ,n − 1) otherwise (Sec. 5.3.2)b
FUuse(tr , f) Number of cycles where FU f is occupied in trace tr (Sec. 5.3.2)
commonPre The two traces have not diverged at current instant (Boolean, Sec. 5.3.2)c locWorst [tr] tr is a local-worst-case trace at current instant (Boolean, Sec. 5.3.2)

102

6 – ASSESSMENT OF THE DEFI-
NITIONS

In this chapter, we use model checking in order to assess the various definitions of
TAs, under the related detection procedures that we proposed in Ch. 5. First,

we explain our approach for assessing the formal definitions by model checking
and we provide a series of examples that highlight various shortcomings of the
definitions (Sec. 6.1). Then, we conclude about this assessment, in particular by
emphasizing the essential notion of causality (Sec. 6.2).

6.1 . Assessment by Model Checking

In this section, we present the verification methodology (Sec. 6.1.1) that allows us
to make a comparative assessment of the definitions (Sec. 6.1.2).

6.1.1 . Verification Methodology
We do not intend to set up a procedure for detecting TAs over a wide range of
programs, i.e., from a specific (reliable) definition. We invoke TLC, the model
checker of TLA+ (cf. Sec. 3.3.2), for particular instances of the parametric formal
model (i.e., with all parameters fixed), in order to explore timing variations of
otherwise identical traces, while evaluating the various predicates, as potential
culprits for TAs. Verifying the absence/presence of TAs in this way helps us
to find inconsistent scenarios, e.g., where some definitions identify a TA
for an instruction sequence while others do not.

The state space that is to be explored mainly depends on parameter program
(cf. Table 5.1), namely the length of the input program, the program dependencies,
and the specified execution variability through possible latencies and FU affinities.
The depth of the state space is approximately the program length and the breadth
is fully determined by the set of initial states. Indeed, the next-state relation of our
specification is a function describing the deterministic advancement in the pipeline
up to the completion of executions; choices (for actual latencies and assignments
to FUs) are made in the initial state. Denoting as IFLat and FULat the sets
of possible IF and, respectively, FU latencies (imposed in fact as execution con-
straints), checking the absence of TAs for all the input programs of length N
would require exploring all possible dependencies (ΠN

k=02
k ≈ 2N 2/2), as well as all

variations of IF and FU latencies for each instruction in each trace (|IFLat |2N
and |FULat |2N) and all FU affinities (NFU2N). Those terms essentially multiply
and quickly result in a very large state space.

However, we do not need to consider all programs. We aim at getting several
scenarios, i.e., pairs of execution traces, that expose the contradictions

103

CHAPTER 6. ASSESSMENT OF THE DEFINITIONS
among the definitions and their limitations. Those scenarios may differ from
the input program and/or architectural parameters, e.g., superscal and NFU. Such
scenarios are derived as counterexamples for specific—violated—properties. These
properties are invariants expressing, for instance, that some definitions always make
consistent statements about TAs (for fixed values of the parameters, thus for
a fixed microarchitecture and a given program). We systematically analyze the
obtained counterexamples to confront them to the intuitive understanding and then
set up an invariant expressing another inconsistent scenario, e.g., a contradiction
between another pair of definitions.

Our probation methodology starts from the basic example (in Fig. 5.1), then
progressively proceeds through more elaborated variations in order to obtain con-
vincing counterexamples that are short, easy to understand, and still illustrate a
relevant shortcoming of at least one of the definitions. We supply program portions
made of a few instructions and we perform progressive variations on the depen-
dencies and on the constraints restricting the possible FU latencies and the FU
affinities. In most examples, we only vary the FU latencies (since this is enough
to demonstrate the shortcomings). In some cases, we also allow variations on the
IF latencies to highlight specific shortcomings. Consequently, we do not face state
space explosion and the worst complexity in our execution scenarios exposed in the
next section is illustrated by a counterexample (cf. Fig. 6.5) requiring TLC to exe-
cute for 6 seconds and explore about 1,000 states. TLC provides counterexamples
by enumerating the sequence of states that represent the execution scenario. Its
output can be parsed automatically in order to obtain a visual illustration, e.g., the
basis of all examples presented hereafter.

6.1.2 . Shortcomings of the Definitions

In this section, we present the (counter)examples found by TLC that we have
retained for illustrating the shortcomings of the definitions. These traces are es-
sentially based on the common example of Sec. 2.3.3, from which we investigate
the impact of some additional instructions, data dependencies and/or execution
variations on the stated presence/absence of TAs.1 Note that we do not seek to
unduly justify why the specific obtained traces are relevant, since we consider that
any execution pair is suitable for stating TAs.

Importance of Structural Aspects

This example shows that taking into account the structure of the whole pipeline
and its microarchitectural features is important to identify TAs. Let us resume
the example in Fig. 5.1b and modify the value of parameter superscal (from

1For this assessment, we use the version of the sources in branch master at: https://
bitbucket.org/benjaminbinder/ta-models/ (cf. Ch. 5). Note that the assumption on infinitebuffers in this version is reasonable for this assessment, due to the actual small length of inputsequences (wrt. reasonable buffer sizes). The TLA+ configurations of all examples are in therepository [2].

104

https://bitbucket.org/benjaminbinder/ta-models/
https://bitbucket.org/benjaminbinder/ta-models/

6.1. ASSESSMENT BY MODEL CHECKING
1 2 3 4 5 6 7 8 9 10 11 12 13

α
A IF ID FU1 COMB IF ID FU2 FU2 FU2 COMC IF ID RS2 RS2 FU2 FU2 FU2 COMD IF ID RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COMB IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COMC IF ID FU2 FU2 FU2 ROB ROB ROB ROB COMD IF ID RS1 RS1 FU1 FU1 FU1 ROB ROB COM

∆α

•
∆β

•

Figure 6.1: Importance of structural aspects.

superscal = 2 to superscal = 1) to allow at most one instruction per cycle in
the in-order stages of our model. We only present the detailed table-based exe-
cution traces, which nevertheless contain all the information (and not the other
representations, e.g., step functions). The execution traces, in both scenarios, are
given in Fig. 6.1. Trace β takes longer compared to the dual-issue pipeline of
Fig. 5.1b and all of the formal definitions correctly reflect the consequent intuitive
absence of TAs. Though the definitions agree here, this first example confirms
that: (i) the common scheduling diagrams (such as Fig. 2.4b), almost exclusively
used in the literature, are not sufficient to study TAs; (ii) executable models of
hardware platforms and program executions are beneficial for the concrete assess-
ment of TAs.

Step Height and Execution Order

1 2 3 4 5 6 7 8 9 10

α
A IF ID FU1 COMB IF ID RS2 FU2 COMC IF ID RS2 FU2 COMD IF ID RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COMB IF ID RS2 RS2 RS2 FU2 COMC IF ID FU2 ROB ROB COMD IF ID RS1 RS1 RS1 FU1 FU1 FU1 COM

•

•

∆α

∆β = 0

Figure 6.2: Step heights and execution order.
Both TASteps and TAInter require the completion of entire instructions,

namely the observation of commit events. The slightly modified example of
Fig. 6.2 shows that the step height of a specific instruction is likely to present TAs
in unexpected situations. It is primarily obtained as a violation of the invariant
NoTAInter =⇒ NoTASteps, i.e., the definition TASteps states a TA though
TAInter does not. There is no clear counter-intuitive TA, since trace β with the
3-cycle latency in FU1 leads to the WCET. Yet, (only) TASteps indicates a TA.
Indeed, the latency for instruction C in trace β is zero, because it is committed at
the same time as B . While any inversion in cumulative execution times necessarily
originates from variations in step heights at some points, this example shows that

105

CHAPTER 6. ASSESSMENT OF THE DEFINITIONS
the converse is not true. The step-height metric is too coarse-grained since values
cannot be negative (due to in-order commit). Consequently, it is not adequate
to define and ultimately reason about TAs in terms of step heights.

Intersections and Execution Order

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α
A IF ID FU1 FU1 FU1 COMB IF ID RS2 RS2 RS2 FU2 FU2 FU2 COMC IF IF IF ID RS2 RS2 RS2 FU2 FU2 FU2 COMD IF IF IF ID RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COMB IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COMC IF ID FU2 FU2 FU2 ROB ROB ROB COMD IF ID RS1 RS1 RS1 FU1 FU1 FU1 ROB COM

∆α

•

∆β

•

Figure 6.3: Intersections and execution order.
So far, we discarded only one definition among those based on commit events.

The other definition, TAInter seems, so far, to be more adequate. However, this
new example shows that surprising TAs arise from intersections too. It is
obtained with the violation of the invariant: NoTALoc =⇒ NoTAInter , where
TALoc is taken as an initial postulate. In the previous examples, no instruction
memory accesses are performed (concretely plausible, for instance, with an instruc-
tion scratchpad). If instead we consider an instruction cache, a cache miss might
increase the fetch delay. In Fig. 6.3, we present a pair of program executions with
no variations in FUs, but a possible instruction cache miss for the last two in-
structions. Here again, there is no clear counter-intuitive TA, since the WCET
is indeed given by the unfavorable scenario, i.e., with the instruction cache miss
(trace α). This is confirmed by TALoc, which does not signal a TA (see the gray
box and occupation). In the case of TAInter (and TASteps), there is an evident
inversion and thus a TA.

There is however a particularly surprising timing effect. The favorable case,
i.e., the cache hit in trace β, entails a scheduling similar to that of trace β in the
previous examples, namely instruction C starting its computation before instruction
B , delaying the commit of B . Intuitively, the global execution of the unfavorable
case α needs 4 additional cycles, whereas its cache miss shows a 2-cycle difference
compared to the cache hit. This is an amplification effect that shows that both
counter-intuitive and amplification TAs are closely related.

Deficiencies of Commit Events and Relevance of Locality

Showing unspecified behaviors wrt. the statement of counter-intuitive TAs is not
the only shortcoming of TAInter . The formulation based on intersections
is also unable to detect all TAs. The example from Fig. 6.4 shows that
its high-level granularity based on commit events is insufficient; a finer control

106

6.1. ASSESSMENT BY MODEL CHECKING
1 2 3 4 5 6 7 8 9 10 11

α
A IF ID FU1 FU1 FU1 COMB IF ID FU2 FU2 FU2 COMC IF ID RS3 RS3 FU3 FU3 FU3 COMD IF ID RS1 RS1 FU1 FU1 FU1 COME IF ID RS2 FU2 FU2 FU2 ROB COM

β
A IF ID FU1 FU1 FU1 COMB IF ID FU2 FU2 ROB COMC IF ID RS3 RS3 FU3 FU3 FU3 COMD IF ID RS2 FU2 FU2 FU2 ROB COME IF ID RS2 RS2 RS2 FU2 FU2 FU2 COM

•

•

Figure 6.4: Commit events and relevance of locality.)

of pipelined executions (e.g., as in TAComp or TALoc) is required. This ex-
ample is based on the execution of a program with five instructions on a mi-
croarchitecture with NFU = 3. It is derived from the violation of the invariant:
(NoTAInter ∨ NoTASteps) =⇒ NoTALoc, assuming here that TALoc is reli-
able for detecting TAs. Instruction B has a variable latency in FU2 and instruc-
tion D can execute either on FU1 or FU2 (FU affinities). The two execution
scenarios in the figure show choices of different FUs after a variable latency of
instruction B (concretely plausible if instructions are preferably issued to FUs that
are not busy).

The seemingly most favorable case, i.e., 2 cycles in FU2 (trace β), eventu-
ally leads to the global worst case, which is intuitively a TA. Yet, only the last
instruction differs in terms of commit events and hence the definitions based on
commit events, TAInter and TASteps, are unable to detect it. The definition
TALoc has the shorter trace α as a local-worst-case trace (and not trace β) due
to instruction B , which does correspond to a TA. Similarly, TAComp could de-
tect a TA, though depending on a hardware partitioning. For instance, with the
(sub)set locFU = {FU1,FU2,FU3} (all highlighted cells), the TA is detected,
due to the way that FU2 is used.

Concern about Local Occupation for Applying Locality
We mentioned in Sec. 4.2.4 that a major concern of the original work from which
we have defined TALoc concerns the way of reasoning about the local occupation
of the pipeline resources. However, the example in Fig. 6.5 shows that the concern
with local comparisons remains even with the clarifying hypotheses about
locality constraints added in Sec. 5.2.4. All instructions execute on FU1 and,
considering only traces α and β, trace β is the local-worst-case trace and there
is no TA (whatever the definition).2 Let us assume that the hardware model
brings up (only) a third trace, α′, in which the last two instructions experience
instruction cache misses. Traces α′ and β are concretely derived from the violation
of the invariant: (NoTAComp ∨ NoTAInter) =⇒ NoTALoc. The local-worst-

2Tracesα and β are obtained fromaproperty stating the absence of TAs fromall definitions.

107

CHAPTER 6. ASSESSMENT OF THE DEFINITIONS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α
A IF ID FU1 FU1 FU1 COMB IF ID RS1 RS1 RS1 FU1 COMC IF ID RS1 RS1 RS1 FU1 FU1 FU1 COMD IF ID RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COMB IF ID RS1 RS1 RS1 FU1 FU1 FU1 COMC IF ID RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 COMD IF ID RS1 RS1 RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

α′
A IF ID FU1 FU1 FU1 COMB IF ID RS1 RS1 RS1 FU1 COMC IF IF IF ID RS1 FU1 FU1 FU1 COMD IF IF IF ID RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

•

•

•

Figure 6.5: Comparing occupation of locations for locality.

case trace is now α′, and TALoc identifies a TA, due to the variation in instruction
fetching. Note that with TALoc, we cannot properly compare the local occupation
of FU1 by instruction B for traces β and α′, since these traces have diverged when
B starts its computation on FU1.

Actually, the variation in fetching (α vs. α′) is independent of the one in the
FUs, and it does not impact the scheduling on FUs. It is however clear that the
verification based on commit events still states the absence of TAs, as well as when
applying TAComp. Comparing local resource use in this way is unreliable
under more than one source of variations.

Issue with Component Occupation

1 2 3 4 5 6 7 8 9 10 11

α
A IF ID FU1 COMB IF ID RS1 FU1 COMC IF ID RS2 RS2 RS2 FU2 COMD IF ID FU2 FU2 FU2 ROB COME IF ID RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 COMB IF ID RS1 FU1 COMC IF ID RS2 RS2 RS2 FU2 FU2 FU2 COMD IF ID FU2 FU2 FU2 ROB ROB ROB COME IF ID RS1 RS1 FU1 FU1 FU1 ROB COM

α′
A IF ID FU1 COMB IF ID RS1 FU1 FU1 FU1 COMC IF ID RS2 RS2 RS2 FU2 COMD IF ID FU2 FU2 FU2 ROB COME IF ID RS1 RS1 FU1 FU1 FU1 COM

•

•

•

∆β

∆′
α

Figure 6.6: Component occupation.
We already showed that the arbitrary choice of relevant FUs for TAComp

has an impact on stating the absence of TAs (cf. Sec. 4.2.3). The example from
Fig. 6.6 shows that this definition based on the global use of components
is not stable even with a preset hardware partitioning. We consider two

108

6.1. ASSESSMENT BY MODEL CHECKING
independent variations in the computation latency of two instructions B and C .
In the first place, we consider traces α and β, and we fix, for TAComp, the subset
of FUs as locFU = {FU1}. Under TAComp, these traces do not present a TA,
since the component occupation is 5 for both α and β—the other definitions of
TAs yield the same answer.2 However, the slightly modified trace α′ emphasizes
the previously introduced issue on comparing local resource use for TALoc, while
TAComp cannot address it: α′ and β are merely derived from the violation of the
invariant: NoTAComp ∧ NoTALoc.

When we consider traces α′ and β, both TALoc and TAComp show the
presence of a TA, since the component occupation in trace α′ is 7. In any case, it
is difficult to interpret the results of TAComp, since this definition gives absolutely
no information whether a certain scenario is identified as a TA. Actually, wrt. α′

and β, all definitions state a TA incriminating instruction B (because of its commit
event or its FU latency). Yet, B cannot be the cause of a TA, since its execution
variation (i.e., the latency in FU1) is completely hidden by the execution of D .
Specifically, instruction D is allowed to immediately start its computation in FU2,
so the computation of B in FU1 does not alter the FU scheduling and C always
starts its computation in cycle 7 (and, from that point, the single variation in FU2

has no surprising effect). Intuitively, these independent variations do not generate
a TA; however, no definition is able to separate the effects of the two variations
(e.g., starting in cycle 7).

Issue about the End of the Instruction Sequence

1 2 3 4 5 6 7 8 9 10 11

α
A IF ID FU1 COMB IF ID FU1 COMC IF ID FU1 COMD IF ID FU1 COME IF IF IF IF ID FU1 COM

β
A IF ID FU1 FU1 FU1 COMB IF ID RS1 RS1 FU1 COMC IF ID RS1 RS1 FU1 COMD IF ID RS1 RS1 FU1 COME IF ID RS1 RS1 FU1 COM

∆α

•
∆β

•

Figure 6.7: End of the instruction sequence.
Up to now, we focused on the main differences between the proposed criteria

to define local variations, which allow us to define the favorable cases. The global
comparisons are simpler to establish, since these are always based on the execution
end of a certain last instruction, and, in our model, the end of an instruction is
clearly defined by its commit event. However, all definitions rely on an instruction
sequence within a program. The example in Fig. 6.7 shows that the choice of
the input sequence, thus of the last instruction for the global comparisons,
is essential to properly assess TAs.

109

CHAPTER 6. ASSESSMENT OF THE DEFINITIONS
Let us consider the simple example with a single FU and a single FU latency

variation, in Fig. 6.7. This counterexample is derived from an invariant involving
copies of the predicates that express the absence of TAs under the various defini-
tions, in which, instead of the program length, we can specify through a parameter
the last instruction to consider. If we do not consider the last instruction, the single
variation drives the whole execution (with instruction A in FU1) and all defini-
tions confirm the absence of TAs. However, no definition can accommodate the
fact that the last instruction(s) might add irrelevant extra cycles. If we consider
the complete sequence (including instruction E), all definitions state a TA. It is
interesting to remark that E is fully independent of the other instructions and no
definition is able to capture the variation of this last instruction.

6.2 . Assessment Outcome

The systematic investigation of TAs showed that the definitions often lead to
contradictory statements about TAs, even with themselves when we vary the last
instruction of the considered input sequence. Thus, even under a precise evaluation
framework, it is impossible to fix conditions under which a given definition behaves
consistently and could serve as a reference in place of the intuitive understanding
of TAs introduced in Sec. 1.3.1—in any case, in the intuitive and essential pairwise
interpretation of TAs: none of the existing definitions of TAs dominates the
others.3

Many examples show that the various definitions are not consistent when the
traces exhibit several variations. The semi-formal definitions by Lundqvist and
Stenström [20] and Wenzel et al. [21] explicitly assume that a single variable
latency affects the trace comparison (cf. Sec. 4.2). However, no later formal
definition restricts the way that traces may differ from each other, and the cases
that we provided are not degenerated.

Moreover, we carefully analyzed the counterexamples to clarify the reasons
why some definitions state a TA or not: no definition is reliable when put to
the test on an OoO pipeline, i.e., none is always consistent with the intuitive un-
derstanding. We argue that this is due to the fact that no definition always adopts
the suited pipeline-level granularity to define TAs (Sec. 6.2.1) and that all defi-
nitions lack the notion of causality to correctly reflect the intuitive understanding
(Sec. 6.2.2).

6.2.1 . Unsuited Granularities for Detecting TAs

The definitions based on commit events only [80, 79, 24, 81], i.e., encoded by
NoTAInter and NoTASteps, which represent the instants where instructions leave
the pipeline to define latencies and local variations, are unsafe: they are too coarse-

3The same holds when considering the definitions corresponding toTAInter andTAComp(by the same authors) complementary definitions of TA variants (i.e., with parallel inversions).

110

6.2. ASSESSMENT OUTCOME
grained and omit relevant events in-between instruction commits, which may hide
TAs and thus lead to inconsistent verdicts. Only the definition by Kirner et al. [23],
encoded by NoTAComp, is not based on variations identified by instructions, but
on a global favorable (i.e., lower) total use of certain resources that constitute a
hardware partition. The detection of TAs is not conclusive, even after fixing a
hardware partition, since one instruction may increase its use of a resource while
another instruction decreases its use of the same resource, leading to the same
total use in both traces. The definition by Reineke et al. [22], i.e., encoded by
NoTALoc, is based on finer-grained comparisons of traces that allows capturing
fine changes in the use of resources according to locality constraints. However,
even when defining locality constraints with clear assumptions, the definition can-
not always accommodate several variations. Besides, the granularity used for global
comparisons is the same as in the other definitions, which may also lead to incon-
sistent verdicts (since we intend to analyze TAs independently of the WCET
analysis).

6.2.2 . Towards the Notion of Causality

The examples show that the contradictions of the previously proposed formal def-
initions, corroborated with the intuitive understanding, stem from a common
deficiency: the notion of causality . These definitions are based on the pre-
sumed relation between local variations and global execution times. Yet, nothing
ensures that a variation of a global execution time is due to the variation of an
assessed local execution time. Such a causality link is however central in the
intuitive perception of a TA. We observed that the definitions based on commit
events can be easily manipulated by shifting the moment when a certain instruction
ends, independently of surprising timing effects leading to TAs. The definitions
based on components/locations may target local variations that would not be in-
tuitively considered determining, as soon as an instruction sequence entails two
(local) variation sources. The omission of causality is thus the main defect shared
by all formal definitions. Note that, more generally, causality is required for finely
capturing timing effects, even for cases with a single variation (cf. Fig. 6.3).

We exemplified shortcomings of the existing definitions of TAs on a rep-
resentative microarchitecture and on simple, short instruction sequences. These
definitions would be incomplete a fortiori on a more complex microarchitecture and
larger programs. Larger programs might require defining start and stop instants to
analyze a trace. Even in short examples (cf. Fig. 6.3), the notion of causality should
prevent from arbitrarily slicing a trace. All the TAs identified above are interpreted
through scheduling of instructions and depict the most commonly described class
of TAs in the literature. However, TAs could also arise from speculation or cache
effects, even in in-order pipelines (cf. Sec. 1.3.1). We believe that the notion of
causality will be all the more relevant in these cases.

111

CHAPTER 6. ASSESSMENT OF THE DEFINITIONS
6.3 . Summary: the Lack of Causality

We assessed the various definitions of counter-intuitive TAs by model checking.
The various exposed execution scenarios represent different situations (e.g., pro-
grams) reflecting plausible executions in an OoO pipeline and showing specific
limitations of the definitions.

We showed that formal and executable models are essential to evaluate the
existing definitions of TAs. We notably showed that common FU-scheduling
diagrams are not sufficient to reason about TAs and that structural aspects must
be taken into account. We also established that none of the existing definitions
dominates the others, nor is it reliable to detect TAs on an OoO pipeline. We
explained that a fine-grained, resource-level granularity is needed to capture fine
variations, both in local and global comparisons of traces. The main deficiency
shared by all definitions, in particular—but not only—in case of several sources of
variations, is the lack of causality to relate global variations to their local causes.

112

Part III
Detection of

Counter-Intuitive Timing
Anomalies

113

None of the existing definitions of counter-intuitive TAs is able to correctly
capture TAs on an OoO pipeline. These definitions share several issues. First,

nearly all are based on hardware models that remain theoretical concepts, without
a clear relation to the concrete hardware. As a consequence, they are often not
implemented as TA-detection procedures or in any other practical setting. Second,
they lack a way to correlate the local timing variations and their impact on global
execution time. More precisely, we showed that the contradictions of the previously
proposed formal definitions, corroborated with the intuitive understanding, stem
from a common deficiency: the notion of causality. These definitions are based on
the presumed relation between local variations and global execution times. Yet,
nothing ensures that a variation of a global execution time is due to the variation
of an assessed local execution time, even with a single local variation. Such a
causality link is however central in the intuitive perception of TAs. Again, this
shortcoming might explain the absence of tool support to reason about TAs.

Consequently, a precise formal definition of counter-intuitive TAs was
still needed. We have integrated the crucial notion of causality into a precise
and practical formal definition of counter-intuitive TAs, along with a detection
procedure to prove the absence/presence of TAs. As stated in the previous part, a
detection procedure necessarily relies on a specific hardware model. We propose a
framework that lays the groundwork for the detection of counter-intuitive TAs—
unambiguously applicable to a concrete microarchitecture and independent of any
timing-analysis method:

1. We propose a formalization of counter-intuitive TAs based on the no-
tion of causality, which restricts the scope of a variation to the trace
portion where the variation actually determines the timing behavior
(Ch. 7) [3].

2. We instantiate this formalism on the well-specified hardware model
representing an OoO pipeline (Ch. 7), with all the necessary infor-
mation for the TA-detection procedure that we have implemented
(Ch. 8) [3].

3. We evaluate the detection procedure of counter-intuitive TAs on the
OoO-pipeline model wrt. false positives and faithfulness of the repre-
sentation of scheduling effects established as TA patterns (Ch. 8) [3].

4. We apply our detection procedure on standard benchmarks, in order
to pave the way for the concrete detection of TAs on real applications
(Ch. 8).

We also identify a new problem, related to the composition of multiple
variations, since our accurate formalization of counter-intuitive TAs exposes more
complicated scenarios on the traces under consideration. We consistently represent
multiple variations individually, which allows for tackling this open problem.

115

CONTENTS
7 A Novel Formal Definition 117

7.1 Reference Example 117
7.1.1 Fine-Granularity Definition based on Locality 118
7.1.2 Sketch of our Formal Definition 119

7.2 Formal Definition of Counter-Intuitive TAs 120
7.2.1 Execution Model for Timing Anomalies 120
7.2.2 Event Time-Dependence Graph (ETDG) 123
7.2.3 Relating Events between Traces 126
7.2.4 Causality Graph (CG) . 127
7.2.5 Counter-Intuitive Timing Anomalies 128
7.2.6 Application to the Reference Example (cf. Sec. 7.1) 129

7.3 Correctness Arguments. 132
7.3.1 Intuitive Understanding 132
7.3.2 Prerequisites . 132
7.3.3 Formal Definition of Timing Anomalies 135

7.4 Summary: a Groundwork for the Detection of TAs 137
8 Detection Procedure 139

8.1 Adaptation of the Formal Framework 139
8.1.1 Formal Specification . 139
8.1.2 Property for the Absence of TAs 141

8.2 Interpretation on Short Sequences 145
8.2.1 Basic Variation Cases . 145
8.2.2 General Scenarios . 148

8.3 Detection of Timing Anomalies on Benchmarks 151
8.3.1 Strategy and Heuristics 151
8.3.2 Workflow . 154
8.3.3 Experimental Results . 155

8.4 Summary: a Tool Support for the Detection of TAs 159

116

7 – A NOVEL FORMAL DEFINITION

In this chapter, we present our formalization of counter-intuitive TAs and its
instantiation on the formal model of the OoO-pipeline template, introduced in

Ch. 5. We use a slightly more complex version of the basic example of a counter-
intuitive TA (cf. Sec. 2.3.3), in order to illustrate the key points of our proposed
formalism (Sec. 7.1). Then, we expound our formalism, which results in a formal
definition of counter-intuitive TAs (Sec. 7.2). We also provide some correctness
arguments that allow gaining more confidence in our overall formalization approach
(Sec. 7.3).

7.1 . Reference Example

1 2 3 4 5 6 7 8 9 10 11 12 13

α
A IF ID FU1 COMB IF ID RS2 FU2 FU2 FU2 COMC IF ID RS2 RS2 RS2 FU2 FU2 FU2 COMD IF ID RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 COME IF ID FU3 FU3 FU3 ROB ROB ROB ROB ROB COM

β
A IF ID FU1 FU1 FU1 COMB IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COMC IF ID FU2 FU2 FU2 ROB ROB ROB COMD IF ID RS1 RS1 RS1 FU1 FU1 FU1 ROB COME IF ID FU3 FU3 FU3 ROB ROB ROB COM

α′
A IF ID FU1 COMB IF ID RS2 FU2 FU2 FU2 COMC IF ID RS2 RS2 RS2 FU2 FU2 FU2 COMD IF ID RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 COME IF IF IF IF IF IF ID FU3 FU3 FU3 COM

β′
A IF ID FU1 FU1 FU1 COMB IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COMC IF ID FU2 FU2 FU2 ROB ROB ROB COMD IF ID RS1 RS1 RS1 FU1 FU1 FU1 ROB COME IF IF IF IF IF IF ID FU3 FU3 FU3 COM

•

•

•

•

δα = 1

∆α = 9

δβ = 3

∆β = 5

δα′ = 1

δβ′ = 3

Figure 7.1: Execution of a program with data dependencies () on our OoO-pipeline model (with superscal = 2 and NFU = 3, cf. Sec. 2.3). Traces α/α′

vs. β/β′ exhibit a local variation wrt. FU1 for A (). α/β vs. α′/β′ exhibit a lo-cal variation wrt. IF for E (). β′ is the local-worst-case trace according tothe definition by Reineke et al. [22], which indicates the absence of TAs. α/α′

vs. β/β′, however, constitute a well-established example of a TA [21, 22, 23,24, 34]. Symbols δ,∆, and the colored cells are relevant for our definition (cf.Sec. 7.2).
We consider a sequence of instructions A to E with data dependencies, ex-

ecuted on our OoO-pipeline template (Fig. 2.3). The program is thus very close

117

CHAPTER 7. A NOVEL FORMAL DEFINITION
to that in Fig. 2.4c, with additional, independent instruction E that uses a third
functional unit (NFU = 3). Fig. 7.1 presents four traces, α, β, α′, and β′, cor-
responding to different pipelined executions of this sequence, from distinct initial
hardware states yet the same input data. These traces may exhibit a local varia-
tion wrt. the use of FU1 by instruction A. This particular instruction executes 1

cycle on FU1 in α/α′ (e.g., data-cache hit) and 3 cycles in β/β′ (e.g., data-cache
miss). These traces may also exhibit a local variation wrt. the use of the IF stage
by instruction E , which requires 1 cycle in α and β (e.g., instruction-cache hit)
and 3 cycles in α′ and β′ (e.g., instruction-cache miss).

The definition of counter-intuitive TAs by Reineke et al. [22] is the most ap-
propriate wrt. the granularity of variations (cf. Sec. 6.2.1), since the underlying
latencies are based on the local occupation of a pipeline resource by an in-
struction. In this section, we review the issues raised by this definition, when
applied to this precise example (Sec. 7.1.1), before sketching from the example the
functioning of the definition that we propose to address these issues (Sec. 7.1.2).

7.1.1 . Fine-Granularity Definition based on Locality

We thus focus on the definition based on locality (cf. Sec. 5.2.4), as a starting point
for our approach and as a comparison basis. Hereafter, we recap from the example
in Fig. 7.1 why, nevertheless, the absolute-WCET interpretation of this definition
(cf. Sec. 4.1) and the presence of several sources of variations when comparing
traces, without the notion of causality, are unsuitable for precisely detecting TAs.

Issue due to Pruning in the Absolute-WCET Interpretation
Since this definition is absolute-WCET, the same issue arises as in the example
with a tri-valued variation (Sec. 5.2.4), due to multiple sources of variations (IF
and FU1). The four traces in Fig. 7.1 share the same prefix comprised of the
first two cycles and then diverge due to two distinct, simultaneous variations in
cycle 3, i.e., the use of FU1 by A and of IF by E . Both variations identify the
variations in β′ as local worst cases (wrt. any other trace), thus this trace is a
local-worst-case trace (cf. Sec. 5.2.4). Since this local-worst-case trace results in
the global WCET, this definition does not signal a TA, as in the example from
Fig. 5.2. However, a WCET analyzer might determine that trace β′ is infeasible
(e.g., the case with two cache misses is excluded). More precisely, the abstract
state that opens up β′ in cycle 3 should be pruned from the state space. A direct
consequence of this pruning is that, in order to remain sound when applied, this
definition should also address the remaining traces. Yet, it does not, since it follows
only the local-worst-case traces (cf. Sec. 5.2.4).

The pruning under the local-worst-case trace leaves us with traces α, β, and α′.
Let us inspect them closer. We note that instruction E does not impact the
scheduling of the other (preceding) instructions because E has no data dependency
and is the only instruction to use FU3. Moreover, E does not impact the global
execution time, which is, in fact, determined by the execution of instructions A

118

7.1. REFERENCE EXAMPLE
to D (i.e., the same in traces α and α′). We also note that the variation in the
use of FU1 by A, in traces α/α′ as opposed to β, affects the scheduling of
instructions B to D . This variation is favorable (i.e., A has a shorter latency)
in α/α′, and leads to a global slowdown wrt. β, notably for the commit of D
and E . This case is the traditional TA pattern introduced in Sec. 2.3.3.

Issue due to Local Comparisons and the Lack of Causality
The definition by Reineke et al. [22] is unable to identify a local-worst-case trace
among the remaining traces α, α′, and β. Both variations are favorable for trace α,
thus this trace cannot be a local-worst-case trace. Traces β and α′ mutually prevent
each other from being identified as a local-worst-case trace, since each trace has a
variation that constitutes a local worst case that appears precisely when the traces
diverge. However, the local worst case related to the use of FU1 by A should
serve as a basis to actually identify trace β as the local-worst-case trace, since it
causes the particular scheduling of instructions B to D . This shows once again
that this definition is limited in comparing traces with several sources of variations
(cf. Sec. 6.2.2), thus for consistently reasoning about TAs.

We argue that a definition of TAs should be able to identify individual varia-
tions and to check whether these variations actually determine global slowdowns.
Moreover, it should be able to identify chains of events from any favorable varia-
tion, defining trace portions of interest (/), later called causal regions. As such,
a TA would be stated wrt. a trace if a slowdown is observed () in the causal
region. A formal definition that is able to identify variations and causal regions,
to work under less restrictive assumptions (i.e., the existence of a static analysis
to compute abstract hardware states) and to systematically discriminate between
traces is introduced in Sec. 7.2.

7.1.2 . Sketch of our Formal Definition

Next, we provide an intuition on the way that our proposed formal definition (cf.
Sec. 7.2) works on traces α and β (in Fig. 7.1) and addresses the issues highlighted
above. Our definition is based on the pairwise interpretation of counter-intuitive
TAs (cf. Sec. 4.1). We start from latencies (δα = 1 and δβ = 3) and then
variations (), where we compute the causal region (/) in the trace where the
variation is favorable, i.e., α (δα < δβ). This causal region covers events that are
delayed directly or indirectly by the variation and thus could not occur earlier. The
use of FU2 by B and C , the use of FU1 by D , and the commit (COM) of D
form a chain of events, whose instants are determined by the variation of A on
FU1. It is only on this condition that we can say that the favorable variation in
trace α causes a further slowdown. We then compute the relative time distance
() between the variation and each event of this causal region, for instance the
commit of D (∆α = 9). We also compute the relative time distance between
the variation and the corresponding events in the other trace (∆β = 5 for the
commit of D). If the relative time is greater in the favorable trace (i.e., in short,

119

CHAPTER 7. A NOVEL FORMAL DEFINITION
the trace with the single favorable variation), a TA is triggered at this event ().
As indicated in Fig. 7.1, a TA is identified for the commit of D (in cycle 13

of α), which is in the causal region of the variation and has a greater relative time
compared to β (∆α > ∆β).

In the following sections, we will define the necessary concepts: timing depen-
dencies, latencies, corresponding events, variations, causality, causal regions, and
relative time, based on Event Time-Dependence and Causality Graphs.

7.2 . A Consistent Formal Definition of Counter-Intuitive TAs

In this section, we gradually develop a formal definition of counter-intuitive TAs.
We rely on two input traces derived from a transition system, from which we
define events at the granularity of pipeline resources. The events represent the
acquisition and the release of resources at some instants. From these events, we
define an Event Time-Dependence Graph (ETDG) for each trace, whose arcs
capture timing dependencies expressing the fact that a source event imposes a
minimal duration before which another destination event cannot occur. The in-
terval between the instants of the acquisition and the release of a resource by the
same instruction defines a latency. From the ETDGs of both traces, we define
(favorable) variations in the use of resources. Then, we introduce a Causality
Graph (CG), a sub-graph of the ETDG where only the arcs that exactly and
unambiguously explain the instant of the destination event remain. We then in-
troduce the causal region of a favorable variation, as a sub-graph of the CG,
to define the scope in which the variation determines the timing of other events.
Finally, we combine all these elements to precisely capture counter-intuitive TAs
triggered by the variation.

We first define general concepts and then provide concrete instantiations for
our case study, the OoO-pipeline template (cf. Sec. 2.3). We focus on this precise
microarchitectural model, providing modeling details.

7.2.1 . Execution Model for Timing Anomalies

Closely following the intuitive scheme outlined in Sec. 7.1.2, we first define execu-
tion traces, i.e., how the hardware executes a given sequence of instructions. The
targeted hardware is a pipeline that may perform computations out of order. We
only assume that the computed results are committed in-order—which is the case
for modern processors.

Definition 7.1: Execution Traces — The set T of execution traces of a hardware
model, represented by a transition system (TS), consists of all finite sequences of
instructions executed by the TS, from any possible initial state.

120

7.2. FORMAL DEFINITION OF COUNTER-INTUITIVE TAS
Instantiation 7.1: Hardware Model & Execution Traces
We base our work on the formal OoO-pipeline specification developed in
Sec. 5.1, from the template introduced in Sec. 2.3. In the following, we use the
extended version of the model, with finite buffers (i.e., the ROB and the RSs),
whose sizes are specified through model parameters (cf. Table 5.1).a From this
formal specification, we can get execution traces similar to those represented in
Fig. 7.1.

aThe sources used in this part of the thesis, where the registers used as operands are ex-plicitly stated in the input program to detect data dependencies and where the (finite) ROBis modeled through a fully-fledged state variable that explicitly contain the instructions, areavailable in branch detection procedure at: https://bitbucket.org/benjaminbinder/
ta-models/

Remark — The hardware model is centered on the pipeline stages. In particu-
lar, the memory system is modeled implicitly, through variable latencies. Possible
interference, e.g., on the memory bus, is thus not modeled. Other microarchi-
tectural features (e.g., branch prediction, speculation) could also be considered,
but we leave them for future work. This microarchitecture is prone to TAs, but
sufficiently simple to reason about the relevant events that may occur during ex-
ecution. This is also true for the choices of initial states—possible extensions are
evoked in the conclusion.

In order to reason about TAs, we need to extract information from these
execution traces. For this, we define two functions to capture the runtime behavior
at the hardware level:

Definition 7.2: Events — Function Events : T → P(E) (where P denotes the
power set) provides a set of triples (i , r , t) ∈ E , called timestamped events, where
i is an instruction identifier, r , a resource identifier, and t , a timestamp.

The Events function captures, from an execution trace (Def. 7.1), any times-
tamp t when an executed instruction i triggers an event associated with a resource
identifier r , which may refer to an in-order commit unit or the acquisition/the re-
lease of a relevant hardware resource by an instruction.

Definition 7.3: Instruction Dependencies — Function IDeps : T → P(D) pro-
vides a set of triples (i , j , t) ∈ D, where i and j are instruction identifiers and t a
timestamp.

The IDeps function captures, from an execution trace, the data or control
dependencies that impact an event of instruction j at timestamp t , due to instruc-
tion i .

Instantiation 7.2: Events & Instruction Dependencies
• In our case, instruction identifiers i are capital letters, e.g., A or B ,

according to the order of executed instructions.

• Instructions progress through the OoO pipeline; the fetch unit (within

121

https://bitbucket.org/benjaminbinder/ta-models/
https://bitbucket.org/benjaminbinder/ta-models/

CHAPTER 7. A NOVEL FORMAL DEFINITION
the IF stage), the decode unit (ID) and the FUs are considered to be
resources that are acquired when the instruction enters the unit and re-
leased when the instruction exits. Note that the release of a resource by
an instruction corresponds to the cycle immediately following the last cy-
cle where this instruction uses the resource.a For instance, in Fig. 7.1, the
release of FU1 by A in trace α occurs in cycle 4. The acquisition/release
of one of these resources is denoted by an arrow pointing upward/down-
ward, followed by the name of the unit/stage u: respectively, ↑u and ↓u,
e.g., r =↑ IF or r =↓FU1. Instructions complete in the COM stage,
which is reflected by a resource r = COM. Each instruction is assigned
an entry in the ROB/RS buffers in ID. The attribution of an entry is
indicated by r = ROB and r = RS respectively.

• In our case, an instruction dependency of j on i may impact j at a single
timestamp t , i.e., the timestamp of the acquisition of a FU by i . The
Events and IDeps functions emit events/dependencies according to the
progress of instructions in the pipeline as defined by Inst. 7.1.

aThen, the release of the resource by this instruction may coincide with the acquisitionof the resource by another instruction.
The fetch unit and the FUs are considered relevant resources in our model,

since they may have an intrinsic impact on the timing of other events. The time
that an instruction spends in these resources thus represents a latency that can
be explained directly by the initial hardware state. Note that ↑ / ↓ IF exclusively
correspond to the time required for fetching an instruction (from memory or a bus):
additional stalling may occur in the IF stage after ↓IF, e.g., when the instruction
in ID stalls. Also, the ID stage is relevant, since its timing is not determined
only by the use of the fetch unit. The COM stage is relevant since it represents
the completion of instructions, therefore a reference point when comparing traces.
Since COM events are simple end-markers (they take a single cycle and may never
cause stalling), there is no need to distinguish acquisition/release. Similarly, ROB
and RS are markers within the ID stage (the behavior/content of ROB and RS
are otherwise irrelevant for our approach).

Remark — While we focus on our OoO model, we would like to make some
remarks relevant for more general architectures:

• We expect that events coincide with register writes in most cases, e.g., when
data of an instruction is written into a pipeline register.

• On more complex architectures, it might not be sufficient to capture events
only for pipeline stages. Events related to caches, buses, memories, etc.
might be required.

• On real processors, it is not sufficient to fix the instruction sequence to be
certain that the exact same program was executed, e.g., due to changes

122

7.2. FORMAL DEFINITION OF COUNTER-INTUITIVE TAS
in the input data. In this case, registers and memories visible through
the instruction set architecture (defined by the programmer’s manual or
application-binary interface) have to be identical, whereas the behavior of
hidden registers and memories may diverge (cf. Sec. 4.1).

7.2.2 . Event Time-Dependence Graph (ETDG)

The Event Time-Dependence Graph (ETDG) captures a minimal duration im-
posed between two events in a trace τ . The nodes are the events in the trace
(Def. 7.2) and the arcs connect two nodes for which the source node may have a
direct timing impact on the destination node.

Definition 7.4: Timing Dependencies of Events — Function TDeps : P(E)×
P(D) → P(H) provides a set of triples (e1, e2,w) ∈ H, called timing dependen-
cies, where e1, e2 ∈ E are two events and w ∈ N, a duration.

The TDeps function captures, from an execution trace, a set of minimal delays
w between pairs of events (e1, e2) that suffices to explain (by transitivity) why any
event of the trace cannot occur earlier, due to the structure of the trace and
its resource use. This set of delays is derived from microarchitecture-dependent
rules using information on the events of the trace (Def. 7.2), as well as on data
dependencies among instructions (Def. 7.3).

Definition 7.5: Event Time-Dependence Graph (ETDG) — The ETDG of
trace τ is the graph G = (N ,A), where N = Events(τ) is the set of nodes,
which are directly derived from the events occurring during the execution of the
trace (Def. 7.2), and A = TDeps(Events(τ), IDeps(τ)) is a set of weighted arcs
that specify timing dependencies (Def. 7.4).

An arc is denoted as e1
w−→ e2, where e1 is the source event node, e2 the

destination node, and w the weight, i.e., a minimal delay imposed between the
events.

Instantiation 7.3: Timing Dependencies & ETDG
Our microarchitectural model imposes order and delay constraints between
events, captured by the following rules (which may be applied in any order).

1. Order of pipeline stages: The pipeline structure imposes a progression
order wrt. a given instruction, as well as a minimal duration. In terms of
events, any instruction X of a trace has nodes of the form (X , ↑IF, t1),
(X , ↓ IF, t2), (X , ↑ ID, t3), (X , ↓ ID, t4), (X , ↑FUi , t5), (X , ↓FUi , t6),
and (X ,COM, t7). Instructions are decoded in a single cycle, so:

(X , ↓IF, t2)
0−→ (X , ↑ID, t3) ∈ A

(X , ↑ID, t3)
1−→ (X , ↓ID, t4) ∈ A

(X , ↓ID, t4)
0−→ (X , ↑FUi , t5) ∈ A

123

CHAPTER 7. A NOVEL FORMAL DEFINITION
Similarly, since an instruction might be committed immediately (i.e., when
the preceding instructions are committed and a commit unit is free):

(X , ↓FUi , t6)
0−→ (X ,COM, t7) ∈ A

2. Resource use: The duration between the acquisition of the IF stage
or a FU (by an instruction) and the matching release (by the same
instruction), i.e., the duration of a resource use by the instruction, is
determined by the initial hardware state. Hence, considering the events
evoked in Rule 1, the weights of the related arcs are exactly the timestamp
difference between events:
(X , ↑IF, t1)

t2−t1−−−→ (X , ↓IF, t2), (X , ↑FUi , t5)
t6−t5−−−→ (X , ↓FUi , t6) ∈ A

3. Order of instructions in the input sequence: If we consider two suc-
cessive instructions in the input sequence, the stages of the in-order front-
end and the in-order back-end (cf. Inst. 7.1) cannot process the second
instruction before the first one. A minimal duration between these stages
is 0: instructions could be processed at the same time (depending on the
superscal parameter). Any pair of successive instructions X and Y in a
trace has events of the form (X , ↑ IF, t1) and (Y , ↑ IF, t ′1), which have
to respect the program order, and thus:

(X , ↑IF, t1)
0−→ (Y , ↑IF, t ′1) ∈ A

The same applies for the decode/commit events: for nodes (X , ↑
ID, t2)/(Y , ↑ID, t ′2) and (X ,COM, t3)/(Y ,COM, t ′3), it follows that:

(X , ↑ID, t2)
0−→ (Y , ↑ID, t ′2), (X ,COM, t3)

0−→ (Y ,COM, t ′3) ∈ A

4. Instruction dependencies: In the OoO engine, the instructions use the
resources independently of their order in the input sequence. However, the
execution obviously respects data dependencies, which entails an order
between dependent instructions. Moreover, back-to-back computations
in FUs are possible (i.e., without delays, cf. Sec. 5.1.2). Any pair of
instructions X and X ′ of a trace has events of the form (X , ↓ FUi , t)
and (X ′, ↑FUj , t ′) (possibly with i ̸= j) since instructions always require
a computation in a FU. If IDeps(τ) indicates that X ′ depends on a result
produced by X , then:

(X , ↓FUi , t)
0−→ (X ′, ↑FUj , t ′) ∈ A

5. Resource contention

(a) Execution in a FU: Even without dependencies, an instruction
cannot be issued to its FU if another instruction is already using
it. In this case, the instruction is ready but not executing, it has

124

7.2. FORMAL DEFINITION OF COUNTER-INTUITIVE TAS
to wait in the associated RS (cf. Inst. 7.1). Here again, back-to-
back computations are possible when the FU is free (cf. Sec. 5.1.2).
Such competing instructions have events of the form (X , ↓FUi , t ′),
(Y , ↓ ID, t1) and (Y , ↑FUi , t2), with t1 < t ′ ≤ t2. If two instruc-
tions X and Y exhibit such events, then:

(X , ↓FUi , t ′)
0−→ (Y , ↑FUi , t2) ∈ A

(b) Limited in-order parallelism: Instructions may also suffer resource
contention in the in-order front-end and the in-order back-end, when
more than superscal instructions try to access the resources at
the same time (cf. Inst. 7.1). This occurs when two successive
instructions are not part of the same fetch bundle or when the
second instruction is completed but not committed yet and thus
remains in the ROB. Any pair of successive instructions X and Y
has events of the form (X , ↓ IF, t1) and (Y , ↑ IF, t ′1). If t1 = t ′1,
then X and Y are not part of the same fetch bundle, s.t. Y is
delayed and fetched when the resource is released:

(X , ↓IF, t1)
0−→ (Y , ↑IF, t ′1) ∈ A

Likewise, successive instructions have events (X ,COM, t ′), (Y , ↓
FUi , t1) and (Y ,COM, t2). If t1 ≤ t ′ < t2,a then Y is in the
ROB and must wait for the end of the ongoing commit:

(X ,COM, t ′) 1−→ (Y ,COM, t2) ∈ A

(c) Finite resources: Stalling occurs in ID whenever the capacity
of the finite ROB or appropriate RS is reached (cf. Sec. 2.3.2).
Otherwise, instructions remain a single cycle in this stage. If the
ROB is full, ID is stalled until instructions are removed from the
ROB: the new assignment in the ROB occurs after the instruction
enters ID, and a minimal duration between the commit(s) that
immediately precede the new assignment (within ID) and the end
of the stalling in ID is 1. If the RS is full, ID is stalled until
the end of an instruction’s execution in the FU, and thus until an
entry is freed in the RS: the new assignment in the RS occurs
after the instruction enters ID, and a minimal duration between
this execution end and the end of the stalling in ID is 0. Moreover,
in both cases, the next instruction is transitively stalled in IF: a
minimal delay of 0 is imposed between the end of the stalling in ID
and the acquisition of ID by the next instruction.
Any instruction X has events of the form (X , ↑ ID, t1),
(X ,ROB, t2), (X ,RS, t3), (X , ↓ ID, t4) and (X , ↑FUi , t5), with
t1 ≤ t2 ≤ t4 and t1 ≤ t3 ≤ t4 ≤ t5. If t1 + 1 < t4, X is stalled
in ID. If t1 < t2, then stalling occurs due to the ROB and an

125

CHAPTER 7. A NOVEL FORMAL DEFINITION
instruction X ′ exists with an event (X ′,COM, t2 − 1), so that:

(X ′,COM, t2 − 1)
1−→ (X , ↓ID, t4) ∈ A

If t1 < t3, then stalling occurs due to the RS and X ′ exists with
an event (X ′, ↓FUi , t3), so that:

(X ′, ↓FUi , t3)
0−→ (X , ↓ID, t4) ∈ A

Let Y be the instruction that follows X . It has an event (Y , ↑
ID, t ′). If t1 < t2 or t1 < t3, then Y is transitively stalled:

(X , ↓ID, t4)
0−→ (Y , ↑ID, t ′) ∈ A

aIn the ideal progression, the release of a FU by Y (at t1) coincides with the commit of
Y (at t2).

Remark — A similar reasoning would apply with additional events, resulting for
instance from an explicit modeling of the memory system. Note that the number
of events with the same timestamp is unlimited and that ↑ / ↓ pairs can be nested.
Thus, the rules reported above constitute a sound basis for more complex models.

The ETDG captures the use of resources by the instructions. This allows us
to formally define latencies:

Definition 7.6: Latency — Given an acquisition event (i , ↑u, t↑) and a matching
release event (i , ↓u, t↓), the latency δ of i wrt. that resource is δ = t↓− t↑ .

In our case, an arc always exists between these events (cf. Rule 2 of Inst. 7.3).

Our approach for modeling timing dependencies in a pipelined processor is
similar to that of Li et al. [35] and Bai et al. [97] (cf. 4.4.2). However, the events
of their data structures are not timestamped but are statically annotated with in-
tervals representing possible latencies. Our ETDG serves as a basis to capture the
causality emerging from dynamic effects, which may trigger TAs. Consequently,
an ETDG refers to one specific trace and it contains runtime information for this
trace, such as the actual instant of each event and the actual order imposed by
contention (the EG by Li et al. [35], for instance, uses undirected arcs in this
case).

7.2.3 . Relating Events between Traces

Henceforth, we consider two traces α and β that execute precisely the same in-
struction sequence and for which we want to decide whether a TA exists or not.
As such, we need to be able to reason about events that occur in both of those
traces and relate events from one trace to events in the other trace:

Definition 7.7: Corresponding Event — Function CospEvent : Events(α) →
Events(β) maps an event of trace α to its corresponding event of trace β.

126

7.2. FORMAL DEFINITION OF COUNTER-INTUITIVE TAS
Instantiation 7.4: Corresponding Event
For the microarchitectural model from Inst. 7.1, such a mapping is straight-
forward. The acquisition/release or occupation related to the IF, ID, and
COM stages of a given instruction identifier are simply mapped to the same
events of the other trace of the same instruction identifier, i.e., an event
(i , r , tα) ∈ Events(α) is mapped to (i , r , tβ) ∈ Events(β). However, instruc-
tions may execute on different FUs in the two traces. For events related to
FUs, we thus simply map to that other FU, i.e., (i , ↑FUα, tα) ∈ Events(α) is
mapped to (i , ↑FUβ, tβ) ∈ Events(β) (similarly for the release of FUs).

Remark — Note that on our hardware model, such a mapping always exists, i.e.,
for every event in one trace, a corresponding event exists in the other trace. This
might not be the case for all models, e.g., when the bus or memory is not accessed
due to a cache hit. In that case, the CospEvent function needs to be adapted
accordingly.

Since the corresponding events between the two traces are used to compare
latencies (Def. 7.6), we can define variations that represent a favorable local case:

Definition 7.8: Variation — Let δα be the latency of a given instruction wrt.
a given resource (Def. 7.6) in trace α and δβ be the latency obtained from the
corresponding events (Def. 7.7). We observe a variation if δα ̸= δβ , more precisely
a favorable variation for α (β) when δα < δβ (δβ < δα).

Similarly we can detect whether an instruction has switched from one func-
tional unit to another:

Definition 7.9: Resource Switch — A resource switch occurs when the cor-
responding events (Def. 7.7) of an instruction’s resource use in trace α refers
to a different resource in trace β, i.e., for e = (i , rα, tα) ∈ Events(α) and
CospEvent(e) = (i , rβ, tβ) we have rα ̸= rβ .

In our OoO model, variations arise from the resources IF and FUi , and re-
source switches only from FUs.

7.2.4 . Causality Graph (CG)

Now that we can build the ETDGs of traces α and β, which capture the order
as well as timing dependencies among events of the traces, we further refine the
graphs in order to capture the causality.

Definition 7.10: Causality — Function Causality : G × G → P(H), where G
is the set of all ETDGs, provides, for a pair of ETDGs, the subset of timing
dependencies in the first trace of the pair where the source node has a direct
impact on the destination node in terms of timing.

Generally, not all arcs of an ETDG correspond to this notion of causality,
and, consequently, some arcs are removed from the graph, resulting in the causality
graph:

127

CHAPTER 7. A NOVEL FORMAL DEFINITION
Definition 7.11: Causality Graph (CG) — Given ETDGs Gα = (N ,A)
and Gβ of both considered traces (Def. 7.5), the CG is the sub-graph C =
(N ,Causality(Gα,Gβ) ⊆ A) of Gα, where only the arcs that reflect causality (cf.
Def. 7.10) of events, called causal arcs, are retained.

Causal arcs e1
w−→ e2 ∈ Causality(Gα,Gβ) represent situations where event

e1 in trace α has actually a direct timing impact on event e2 of the trace, i.e., the
first event determines the timestamp of the other event. Node e1 ∈ N is causal
to node e2 ∈ N iff there exists an arc e1

w−→ e2 ∈ A that is causal.

Instantiation 7.5: Causality & CG
For our OoO model (Inst. 7.1), we distinguish three rules, identifying, from
ETDGs Gα and Gβ , the cases where an arc a = e1

w−→ e2 ∈ A between
two events e1 = (i1, r1, t1), e2 = (i2, r2, t2) ∈ N has to be removed, i.e.,
a /∈ Causality(Gα,Gβ):

1. Timing gap: An arc has to be removed when t1 + w < t2. In this case,
another event should exist that delays e2 more than the duration w due
to e1, so that e2’s timestamp is not determined by e1 (at least not via
that arc of the ETDG).

2. Variation: An arc needs to be removed if it corresponds to a variation
(thus e1 represents a resource acquisition and e2 the matching release)
(Def. 7.8). Any event e0 that occurred before e1 and that is causal wrt.
e1 is no longer causal to any event e3 that occurs after e2 (even if e2 is
causal wrt. e3), since the timestamp of e3 is not only determined by e1
but also by the variation that lies between them.

3. Resource switch: The same occurs when an instruction switches from
one FU to another (Def. 7.9). The assignment to a FU results from the
initial state (cf. Inst. 7.1), and consequently, this choice also determines
the timestamp of later events e3 according to the scheduling on FUs.

In particular, if an arc is causal, then the minimal duration specified by its
weight is the actual timestamp difference between both events (Rule 1). Note
that the CG of a specific trace may vary, depending on the other trace under
consideration (due to Rules 2 and 3).

Definition 7.12: Causal Region — Given a causality graph C =
(N ,Causality(Gα,Gβ)) (Def. 7.11) and an event e ∈ N , we define the causal
region of that event, denoted by C (e), as the sub-graph obtained from the nodes
that are reachable from e. The set of nodes of C (e) is denoted as NC (e) ⊆ N .

7.2.5 . Counter-Intuitive Timing Anomalies
Based on the variations and their causal region, we can now reason about TAs.
We formally define them in accordance with the intuitive definition. Nevertheless:

1. The definition is based on a precisely defined variation (Def. 7.8) in how an

128

7.2. FORMAL DEFINITION OF COUNTER-INTUITIVE TAS
instruction uses a resource.

2. The causal region (Def. 7.12) of this variation limits the scope of the TA
verdict to this region (i.e., not necessarily the whole trace).

3. Contrary to previous definitions, we do not rely on the (absolute) global
execution time. Instead, we compare the relative time distance of events by
using the operator ∆, which computes the time distance ∆(e1, e2) = t2− t1
of two events e1 = (i1, r1, t1) and e2 = (i2, r2, t2).

Definition 7.13: Counter-Intuitive Timing Anomaly — For τ = α or τ = β,
let eτ↑ = (i , ↑ rτ , tτ↑) be an acquisition event and eτ↓ = (i , ↓ rτ , tτ↓) be the
matching release event, s.t. eβ↑ = CospEvent(eα↑) and eβ↓ = CospEvent(eα↓).
Event eα↓, which represents the release of a variation in α, triggers a counter-
intuitive TA at event e wrt. β, iff:

1. Variation: α exhibits a favorable variation (Def. 7.8) at eα↓, i.e.:
(δα = tα↓− tα↑) < (tβ↓− tβ↑ = δβ)

2. Causality: e is a node of the causal region C (eα↓) of the variation
(Def. 7.12):

e ∈ NC (eα↓)

3. Slowdown: α exhibits a relative slowdown, expressed as:
∆(eα↓ , e) > ∆(eβ↓ ,CospEvent(e))

We can obviously apply the definition with α and β exchanged in order to get
TAs for favorable variations in β.

While this definition applies to all events e, we notably focus on COM events.
Such events are relevant since the related instructions are fully executed and can no
longer impact the execution of other instructions in the trace. However, considering
terminal nodes other than COM events, i.e., nodes without any successors in the
causal region, is particularly relevant for events representing a resource switch or
another variation. This is necessary to reason about the composition of variations
and about chains of TAs, as in certain examples presented in the next chapter. In
any case, ROB and RS events explain the whole scheduling but not TAs directly.

7.2.6 . Application to the Reference Example (cf. Sec. 7.1)

Next, we present in further detail how the various definitions/instantiations work
on the reference example (cf. Sec. 7.1), and how our definition addresses the raised
issues. As a first step, we consider only traces α and β. Fig. 7.2 shows the ETDG
and CG of this pair of traces—all arcs are in the ETDG while the dashed arcs
are not in the CG, which contains only the solid arcs.1 The successive steps in the
application of our definition together constitute a TA-identification procedure.

1These graphs are generated automatically, from the framework described in Sec. 8.1.

129

CHAPTER 7. A NOVEL FORMAL DEFINITION
1. The first step consists in extracting events from both considered traces of

Fig. 7.1. The derived events (cf. Def. 7.2/Inst. 7.2) are the nodes in Fig. 7.2a
and 7.2b.

2. From these events and from the time-dependence rules of Inst. 7.3, we build
the ETDG (Def. 7.5) of each trace. In Fig. 7.2a and 7.2b, the nodes
that have the same timestamp are vertically aligned. The arcs derived from
Rule 1 (order of stages) and Rule 2 (resource use) are represented with bold
black arrows (→), those from Rule 3 (order of instructions) with simple
black arrows (→), those from Rule 4 (instruction dependencies) with red
arrows (→), those from Rule 5a (contention in a FU) with blue arrows (→)
and, finally, those from Rule 5b (limited parallelism) with green arrows (→).

3. Both ETDGs exhibit a single variation (Def. 7.8), namely from the latencies
(Def. 7.6) related to the use of FU1 by instruction A in both traces, denoted
as δα and δβ . The variation is highlighted similarly in Fig. 7.1 and 7.2 ().
The variation is favorable for α (δα = 1 < 3 = δβ).

4. Both CGs (Def. 7.11) are derived from the ETDGs by removing the dashed
arrows in Fig. 7.2, according to Rules 1 and 2 of Inst. 7.5. Rule 3 does not
apply due to the absence of resource switches.

5. We then compute the causal region C (eα↓) (Def. 7.12) of the release event
eα↓ = (A, ↓ FU1, 4) using the CG C of α, which contains the favorable
variation. The nodes of this region are highlighted in Fig. 7.2a (/)—
reflecting the same information as in Fig. 7.1.

6. We finally compare the relative time distance from eα↓ to each event
e ∈ NC (eα↓) of the causal region, with the relative time distance from the
corresponding release event eβ↓ = CospEvent(eα↓) = (A, ↓ FU1, 6) to
each corresponding event CospEvent(e) in trace β. The events at which
a TA manifests (Def. 7.13) are highlighted with a more pronounced color
in Fig. 7.1 and 7.2a (). Let us consider, in particular, the commit event
eE = (E ,COM, 13) ∈ NC (eα↓).
The relative time distance is ∆(eα↓ , eE) = 9, denoted by ∆α in Fig. 7.1
and 7.2a. The corresponding relative time distance in the ETDG of β is
∆(eβ↓ ,CospEvent(eE)) = 5, with CospEvent(eE) = (E ,COM, 11), de-
noted by ∆β .2 Trace α is longer (∆α > ∆β), thus a TA is triggered by eα↓
at eE .

Let us now bring α′ up, so that we consider the three traces that remain after
pruning β′ from the reference example. The variation related to the use of IF
by instruction E is favorable in α and β against α′. It can be observed from

2CospEvent(eE)may not be in the causal region of the variation in β.

130

7.2. FORMAL DEFINITION OF COUNTER-INTUITIVE TAS
δα = 1

∆α = 9

(a) Trace α

δβ = 3

∆β = 5
xx
(b) Trace β

Figure 7.2: ETDG/CG of α and β from the reference example (cf. Fig. 7.1). Foreach trace, all arcs are in the ETDG, while the arcs represented with dashedarrows are not in the CG. The nodes of the causal region of the favorable varia-tion are highlighted (/). Among these nodes, those at which a TAmanifestsare highlighted in a more pronounced manner ().3

Fig. 7.1 that in α and β, the causal region of the release event of this variation
is limited to the use of FU3 by E . There is no slowdown in these causal regions
wrt. α′, and thus no TA is signaled. This correctly reflects the fact that for the
considered traces, this variation has no scheduling impact on the other instructions
(cf. Sec. 7.1). Besides, the variation in FU1 is favorable for α′ wrt. β. The causal
region of the release event in α′ is exactly the same as in α, thus entailing the
same TAs wrt. β. This consistently captures the TA pattern shared by both
traces α and α′.

3For readability, we do not represent ROB and RS nodes in the figures (cf. Sec. 7.2.5). More-over, for simplification, we do not represent ID nodes in this figure (no stalling occurs here inID).

131

CHAPTER 7. A NOVEL FORMAL DEFINITION
Finally, our definition does capture the TA pattern even if we consider β′

instead of β. In α/α′, exactly the same TAs as wrt. β are triggered wrt. β′,
for two reasons stemming from the fact that our definition is not based on the
WCET: we do not exclusively focus on the end of the traces, and moreover we
compare relative times.

7.3 . Correctness Arguments

In this section, we intend to show that the identification of TAs from our definition
of counter-intuitive TAs on the OoO model, based on the various instantiations
from Sec. 7.2, is accurate wrt. the intuitive understanding of TAs, which is re-
minded below in terms of events.

7.3.1 . Intuitive Understanding

TAs can be intuitively defined as follows, from informal definitions of fundamen-
tal notions: execution trace, latency, (favorable) variation, local/global effect,
speedup/slowdown. A trace is a detailed execution scenario showing the hard-
ware elements (i.e., resources) used when executing a program. TAs may occur
when comparing two traces of the exact same instruction sequence executed from
the same input data, nevertheless from different initial hardware states. One can
observe events in such traces, e.g., the start of a computation performed by an
instruction. Certain events can be compared in both traces, since they represent
how an instruction uses certain resources. A latency is the duration between two
particular events in a trace, for instance identifying a resource use by an instruc-
tion. The two traces considered for TAs may present a variable latency related to
comparable events in both traces (e.g., a cache hit or a cache miss), depending
on the initial hardware state. This is often called a local variation. The trace in
which the latency of the local variation is smaller (greater) thus constitutes a local
speedup (slowdown). The local variation is favorable for the trace with the local
speedup. The execution time up to a certain later event (e.g., the end of the trace)
may be qualified as global. We can also compare this global execution time in both
traces and derive a global slowdown in one trace. A TA is thus stated when a
local speedup and a global slowdown occur in the same trace, wrt. the other trace,
reflecting that the processor performs more work sequentially after the favorable
variation. We consider slowdowns emerging from instructions being scheduled for
execution in our OoO-pipeline model.

7.3.2 . Prerequisites

We first investigate the correctness of the ETDG, which establishes a link between
the actual execution of the input traces on the OoO model (Inst. 7.1) and our
formalization.

132

7.3. CORRECTNESS ARGUMENTS
Lemma 1: ETDG Accuracy — The ETDG (Inst. 7.3) is accurate, i.e., 1. its
nodes exactly represent the relevant observable events of an execution trace for
the study of TAs; 2. for all pairs of events for which an order is imposed by
the OoO model during the execution of a trace, arcs exist in the graph; 3. the
arc weights represent actual delays imposed by the OoO model between the
respective events.

Proof . 1. COM events are indispensable in order to identify executions of the
same program and to delimit the contribution of a given instruction within an exe-
cution of our Transition System (TS). Besides, the acquisition/release of resources
(IF/FU) that provide information about the initial hardware state must be repre-
sented, since the intuitive understanding of TAs relies on latencies ensuing from
the initial state. The observation of the COM stage (cf. Sec. 7.2.1) is subject
to insignificant simplifications, since commit always takes 1 cycle. The duration
spent in the RSs and the ROB is an emerging property of the pipeline scheduling,
not a latency that is directly related to the initial state.
2. For brevity, we do not provide a full proof showing that the ETDG reflects any

possible evolution of the state variables that represent relevant resources, specified
by the transition relation of our TS. However, the microarchitectural model speci-
fied from Inst. 7.1, on the basis of the template described in Sec. 2.3, may impose
an ordering among events only in four situations (Rules 1/2 and 3-5 of 7.3). Note
that it is sufficient to consider the direct timing dependencies. Other (later) events
may be impacted by transitivity.
3. A similar analysis yields the correctness of the weights of arcs in the ETDG,

which represent delay constraints on the observed time distance between events.
■

The intuitive definition of TAs from Sec. 7.3.1 furthermore requires that traces
are comparable.

Lemma 2: Trace Comparison — Inst. 7.4 as well as Def. 7.8 and 7.9, which
build on it, allow a consistent comparison of the two traces at hand.

Proof . The relevant notions (instructions, resource use) are captured by events
(Def. 7.2) and latencies (Def. 7.6). The correctness follows immediately from the
design of the microarchitectural model. Notably, variations and resource switches
are well defined due to the fact that a unique resource use can be identified (via
the corresponding events) in the respective other trace. ■

The objective of the CG is to capture causality, i.e., the relationship of two
events within a trace s.t. the first event explains why the second event occurred
at a specific instant.

Lemma 3: CG Accuracy — The CG (Def. 7.11) is accurate, i.e., 1. all
arcs of the graph link causal events; 2. all the events that verify the causality
relationship are connected through an arc.

133

CHAPTER 7. A NOVEL FORMAL DEFINITION
Proof . 1. We must ensure that all remaining arcs in the CG correspond to the
causality relationship. To do so, we must verify that Inst. 7.5 exactly character-
izes this relationship. All arcs are also in the ETDG, so they represent a delay
constraint. This constraint is clearly necessary to establish the causality but it is
not sufficient. We must verify that the source event e1 determines the timestamp
of the destination event e2. Indeed, a timing gap may exist due to the timing
dependency of e2 on another event e0. Inst. 7.5 (Rule 1) ensures that such an arc
between e1 and e2 is not present in the CG. Note that in this case, an arc must
exist between e0 and e2, due to the second item of the instantiation.
Besides, we must verify that the causality relationship takes into account the com-
parison of both traces at hand, since we are interested in explaining whether a
given event caused a divergence between the two traces. Variations and resource
switches are the only source of divergence between the execution of traces (cf.
Inst. 7.1), and they are correctly captured (cf. Lemma 2). All other effects (e.g.,
the order of computations on FUs) are emerging from that in the hardware model.
Recall that variations are based on latencies and that the assignments to FUs are
independent and only depend on the initial hardware state (cf. Inst. 7.1). Conse-
quently, the instants of the events that are time-dependent on the release e2 of a
resource use that exhibits a variation or a switch are not explained by the matching
acquisition e1 alone. Rules 2 and 3 of Inst. 7.5 complete the removal of undesired
arcs, without loss of relevant information (the ETDG suffices to characterize the
resource use in question).

2. Assume that a pair of events exists that verifies the causality relationship,
but no arc in the CG connects them. By definition, the CG is a sub-graph of
the ETDG that shares the same event nodes. An ordering exists between the two
events. Consequently, a path must exist between the two nodes in the ETDG (due
to Lemma 1) and at least one arc along this path was removed during the CG con-
struction. The removed arc either represents a timing gap or a variation/resource
switch. In the former case, the initial hypothesis on causality is contradicted. In
the latter case, the initial variation is no longer the only explanation for the in-
stant of the destination event. Consequently, an arc must exist between the two
considered events. ■

Causal regions represent chains of events where each event is time-determined
by its predecessor.

Lemma 4: Timing in Causal Regions — Given a causality graph C , for any
pair of events (e1, e2), where e2 ∈ NC (e1) (Def. 7.12), the relative time distance
∆(e1, e2) between the two events corresponds exactly to the sum of the arcs
weights on any path between the two events of C (e1) .

Proof . This follows from Lemma 3 and by induction from the fact that any arc
of C (e1) satisfies Rule 1 of Inst. 7.5. ■

Lemma 4 indicates that causal regions capture the desired notion that the
source event (here e1) determines the instant of the destination event (e2), i.e., e2
could not occur earlier due to e1.

134

7.3. CORRECTNESS ARGUMENTS
Lemma 5: Resource Use in Causal Regions — Considering a causal region
(Def. 7.12), all the instructions involved in the events of this region make the
same use of resources involved in these events in both traces, i.e., they use
the same resources, with the same latencies.

Proof . The proof is similar to that of 4. It is immediate from an inductive
reasoning on arcs with Rules 2 and 3. ■

Lemma 5 indicates that the difference between both traces regarding the events
of a causal region may only reside in emerging properties from the scheduling,
namely the other trace makes the same use of resources, possibly in a different
order or even in parallel.

7.3.3 . Formal Definition of Timing Anomalies
We now argue that Def. 7.13 corresponds to the intuitive definition of TAs exposed
in Sec. 7.3.1, considering the notion of causality. We will proceed in two steps:

1. considering scenarios with a single variation and without resource switches;

2. considering general scenarios with possibly many variations and/or re-
source switches.

First, however, we need to discuss our choice to rely on relative time instead of
absolute time. The main reason for this is due to the fact that absolute time
cannot reliably serve as a reference once the two traces have diverged. This has
been shown to lead to inconsistent verdicts for various definitions (cf. Ch. 6).

Single Variation Most existing definitions are limited to this kind of execution
scenarios (often without explicitly stating so).

Lemma 6: Counter-Intuitive TAs — For the OoO model from Inst. 7.1,
Def. 7.13 corresponds to the intuitive understanding of TAs, as stipulated in
Sec. 7.3.1.

Proof . Given the vagueness, inherent to the intuitive understanding of TAs, it
is impossible to provide a formal proof. We will thus develop a series of arguments
highlighting different aspects of the definition and showing that its verdicts are
coherent with this intuitive notion of TAs.
We first investigate the three necessary conditions at the heart of our definition,
by assuming the absence of each of them:
1. Variation: Suppose that the two input traces do not exhibit any variation.
Consequently, the two traces are identical and our definition does not signal a
TA—conforming to the intuitive notion of TAs.
2. Causality: Now suppose that a (single) favorable variation is present in one

of the traces and that an event e, of that execution trace, experiences a slowdown
due to the variation. Furthermore, assume that e is not in the causal region of
the release event e↓ of the variation. Our definition does not signal a TA, while
intuitively one would expect a TA.

135

CHAPTER 7. A NOVEL FORMAL DEFINITION
However, given that the slowdown is due to the variation, some ordering must
exist between e↓ and e, which has to be captured by a corresponding path in the
ETDG (Lemma 1). At least one arc along this path was removed according to
Lemma 3. The rules of Inst. 7.5 referring to variations and resource switches are
not applicable, since only a single variation occurred. The arc must have been
removed due to a timing gap. This contradicts the hypothesis that e suffered a
slowdown due to the variation (e was delayed by some other event), and the verdict
of our definition must be correct.
3. Slowdown: Finally, assume that a (single) favorable variation is present in the

input traces, that an event e suffered a slowdown due to the variation, and that
e is in the causal region of the variation’s release event e↓, but e does not exhibit
an increase in relative time (∆) for the favorable trace (i.e., with the favorable
variation). Intuitively, a TA should be signaled, due to this slowdown.
Having a single variation, and no resource switch, means that both traces are
identical up to and including the acquisition events of the variation. Given that
the acquisition events occur at the same instant, that the variation is favorable
(δ), and that the relative time distance (∆) is not larger in the favorable trace,
it follows that also the absolute time of e is smaller in the favorable trace. This
contradicts that e suffered a slowdown, and the verdict of our definition must be
correct.
Traces that do not satisfy the three conditions in Def. 7.13 lead to a verdict that is
coherent with the intuitive notion of TAs. It remains to show that our definition
is also coherent with this intuitive notion when it actually signals a TA.
For this, assume that a (single) favorable variation is present in the input traces and
that an event e exists that is both causal wrt. the variation and whose relative time
distance increased in the favorable trace, but that did not experience a slowdown.
In terms of the intuitive notion, no TA should be signaled, while our definition
clearly does.
As before, we need to contradict the fact that e did not experience an intuitive
slowdown. For this, we can analyze the impact of the relative slowdown on e’s
timestamp:
1. If the increase of the relative time distance (∆) is larger than the amplitude
of the variation (δ), its absolute time becomes larger in the favorable trace. It
is difficult to attest the absence of a slowdown for e when both its relative and
absolute times increase. This leads to a contradiction, and the verdict of our
definition must consequently be correct.

2. The increase of the relative time distance (∆) is not large enough and e
occurs at the same timea or even earlierb in the favorable trace than in the other
trace—which leads to a quite controversial situation, and the intuitive notion of
TAs is no longer sufficient to reach a conclusion.
We argue that our definition still provides a sensible verdict for two reasons. First
of all, we can find examples that reflect the same TA pattern (see Sec. 8.2) with
regard to some event e, with the only difference that in one example, e occurs
earlier and in the other example, e occurs later (in terms of the absolute time).
Since both examples exhibit the same pattern, the verdict should be the same

136

7.4. SUMMARY: A GROUNDWORK FOR THE DETECTION OF TAS
for both examples—which is the case for our definition. Secondly, a strong link
between the relative slowdown and causality exists (Lemma 4), which ensures that
the accumulated delay up to e in the favorable trace is always greater than that of
its corresponding event in the other trace, i.e., the OoO processor performs more
work sequentially in the favorable trace between the variation and e. The increase
in sequential work reflects the intuitive notions of global slowdowns and thus TAs,
even when the absolute time is not impacted. ■

aFor a concrete example, see Fig. 8.3.
bFor a concrete example, see Fig. 8.4.

General Scenarios Having multiple variations, possibly combined with resource
switches, goes beyond the intuitive notion of TAs and the capabilities of the ex-
isting definitions (cf. Ch. 6). We argue that our definition still provides sensible
verdicts with regard to a specific variation in the input traces. The causal region
of this specific variation allows us to clearly identify the events that are directly im-
pacted by the variation from those that are not impacted at all, or from those that
are impacted in addition by other variations. Our definition thus allows us to rea-
son only about the events that are directly impacted—with correctness arguments
similar to those for the case of a single variation (cf. Lemma 6).

Beyond individual variations, this leads to a new challenging problem: how
can we classify TAs that are composed of possibly many variations and resource
switches? Causal regions are an important step towards answering this question,
which is out of the scope of this thesis and for now remains an open problem. We
provide some illustrative examples in the next chapter.

7.4 . Summary: a Solid Groundwork for the Detection of TAs

In this chapter, we proposed a formalization of counter-intuitive TAs that addresses
the issues caused by the existing definitions.

Our formalization allows accurate reasoning about multiple variations and the
resource use of instructions. It is based on a specialized data structure, the Event
Time-Dependence Graph, which is refined into a data structure that integrates the
notion of causality, namely the Causality Graph. We sketched the open problem
of the composition of variations (or resource switches).

We also instantiated our formalization on the OoO-pipeline template, with
clear assumptions that allows for deriving a detection procedure of TAs for the
concrete hardware model introduced in Ch. 5.

137

8 – DETECTION PROCEDURE

Our detection procedure is code-specific, i.e., it performs the verification of the
presence/absence of counter-intuitive TAs from a given input program only,

namely for the combination of hardware and software (cf. Ch. 1). First, real-time
systems execute a specific software on the target hardware, and, moreover, timing
analyses are conducted for this software. Then, most of modern microarchitectures
are subject to TAs, due to complex mechanisms acting as performance enhancers
(cf. Ch. 1). Deeming a hardware intrinsically timing-anomalous could only deter
from using it for real-time applications or, at best, guide for new designs (that
would definitely discard some features), while a code-specific approach paves the
way for efficient, localized (software or hardware) counter-measures.

Our definition of counter-intuitive TAs, sustained by the various instantia-
tions in Ch. 7, constitutes a consistent TA-identification procedure for two input
execution traces, from the same program trace executed on the representative out-
of-order-pipeline hardware model (cf. Sec. 7.2.6). Our TA-detection procedure
naturally consists in applying, with automatic tools, this identification procedure
to a set of pairs of possible execution traces of the input program trace (i.e., from
various initial hardware states).

Hereafter, we introduce the required adaptations to integrate a detection pro-
cedure based on our formal definition of TAs into the formal framework introduced
in Ch. 5 (Sec. 8.1). Then, we interpret the results of the detection of TAs on
short instruction sequences, in order to assess the theoretic capabilities of our pro-
cedure and the underlying formal definition of TAs (Sec. 8.2). Finally, we apply
the detection procedure on standard benchmarks, showing that our work provides
a solid basis for a tool support in the detection of TAs (Sec. 8.3).

8.1 . Adaptation of the Formal Framework

To apply our definition of counter-intuitive TAs, both the formal pipeline speci-
fication and the verification framework, introduced in Ch. 5, have to be adapted,
wrt. Sec. 7.2.1 and, respectively, Sec. 7.2.2 to 7.2.5.

8.1.1 . Formal Specification

The full version of the TLA+ specification accurately describes the parameterized
OoO-microarchitecture case study (cf. Sec. 2.3). As mentioned above, it relies on a
state variable, rob, to model the finite ROB through a sequence of instructions; it
also relies on an additional state variable, robHead , pointing to the first instruction

139

CHAPTER 8. DETECTION PROCEDURE
in the rob sequence that actually resides in the ROB.1 The TLA+ specification
thus allows us to derive pairs of execution traces from the target hardware model
(cf. Inst. 7.1). However, we need to implement functions Events and IDeps in our
specification (cf. Inst. 7.2). To do so, we rely on a state variable (with one copy
per trace instance), graph, that keeps track of the events of the trace (in a similar
way to prog .exec in Ch. 5), namely the events of the ETDG (cf. Def. 7.5), as
well as the RAW dependencies, in the form of source-destination instruction-index
pairs where the destination instruction depends on the source instruction:

graph ′ = [graph except 1

! .nodes = [i ∈ 1 . . robHead − 1 7→ graph.nodes[i]] 2

◦ [j ∈ 1 . . Len(graph.nodes)− robHead + 1 7→ 3

let i ∆
= robHead − 1 + j in 4

[IFacq 7→ graph.nodes[i].IFacq , 5

IFrel 7→ if ∃ k ∈ (1 . . superscal) : IF [k].instr = program[i] 6

∧ IF [k].baseLat = IF [k].currLat 7

then currCycle + 1 else graph.nodes[i].IFrel , 8

. . .]] 9

◦ AppendRow(superscal), 10

! .deps = let dep(x) ∆
= {entry ∈ robHead . . RobSelect(x)− 1 : 11

rob[entry].instr .r0 ∈ {x .r1, x .r2} \ {“”}} in 12

@ ∪ union ({{[source 7→ rob[x].instr .ind , 13

dest 7→ FU [k].instr .ind] : x ∈ dep(FU [k].instr)} : 14

k ∈ {j ∈ 1 . . N FU : NotEmpty(FU [j].instr) ∧ FU [j].currLat = 1}}) 15

This state variable, which is a record composed of two fields (nodes for the
events and deps for the dependencies), is updated according to the observation of
the states variables that represent pipeline stages. The TLA+ keyword except
(line 1), in association with the symbol !, allows both fields to be updated sepa-
rately (from lines 2 and 10, respectively).

Events
Field nodes is a sequence, where each element contains events related to the same
instruction. Each of these elements is a nested record, where the various fields
store the timestamps of the events that precisely refer to Inst. 7.2.2 The update
of the events preserves those related to instructions that are actually no more
present in the ROB, i.e., that have committed and have thus left the pipeline
(see robHead − 1 in line 2). The preserved sub-sequence (line 2) is composed
with the updated sub-sequence of already observed instructions (lines 3-9), as
well as with the sub-sequence of newly entered instructions (line 10), through
operator AppendRow() (not detailed). The field for event IFacq is unchanged

1Instructions are never removed from the rob variable, only the pointer (robHead) is up-dated.
2An additional field in the nested records identifies the instruction in question.

140

8.1. ADAPTATION OF THE FORMAL FRAMEWORK
(line 5), since it is assigned its definitive value by AppendRow(). The fields for
the other events, for instance IFrel (line 6), are updated by observing the related
state variables, in this case IF . If one IF stage contains the instruction that
has the same index in field nodes as in the input program (line 6), and moreover
this instruction is about to complete the time required for fetching (line 7, cf.
Sec. 5.1.2),3 then the timestamp of the event corresponding to the release of
IF by this instruction is updated (line 8), with the value of the next cycle (cf.
Inst. 7.2). Otherwise, the timestamp is unchanged (line 8). The same reasoning
applies for all other events (line 9).

Data Dependencies
Field deps is an (unordered) set that contains pairs of dependent instructions. A
RAW dependency may be detected for instruction x among all the instructions
actually present in the ROB (see robHead) and preceding in the ROB—operator
RobSelect(x) selects the index in state variable rob where x is stored (line 11).
A dependency is detected when such an instruction has a destination register
(field r0) that fits one of the source registers (fields r1 and r2, if they are not
empty) of x (line 12). To reduce the size of the ETDG, which partially relies
on data dependencies (cf. Inst. 7.3), not all static dependencies that exist in the
program are captured, but only the dependencies within the dynamic window where
a previous instruction may have an impact on the dependent instruction (in the
same vein as the exclusion of causality rules that would cause unnecessary arcs by
transitivity).4 We thus focus specifically on instructions that have just entered a
FU (line 15)—NotEmpty() ensures that an instruction is not the conventional
empty instruction. For any such FU (indexed by k), we specify the set of source-
dest records (lines 13-14) that have the instruction in the FU as the destination
instruction and an instruction on which the destination instruction depends as the
source instruction. Note that this set is empty if there is no dependency. Then, we
specify the union (line 13) of the sets (of sets) related to distinct FU indexes k .
Finally, we update field deps through the union (∪) of this flattened set in turn
with the current value of the field (line 13)—the symbol @ is a syntactic sugar for
the current value of the field under consideration (i.e., corresponding to the last
“ !”). Both functions Events and IDeps are thus implemented.

8.1.2 . Property for the Absence of TAs

In order to capture causal relationships and accurately detect TAs, our definition
relies on graphs that have to be explored in specific ways. In particular, several
calculations are necessary to establish causal regions in a trace (Def. 7.12), in a
single cycle, and the number of operations is not known in advance, since it depends

3The instruction is not necessarily about to leave the stage—stallingmayoccur (cf. Sec. 7.2.1).
4Note, however, that this is a different issue from the removal of arcs according to causality(cf. Ch. 7), since we also do capture data dependencies that may not have a direct impact onthe dependent instructions.

141

CHAPTER 8. DETECTION PROCEDURE
on the structure of the trace. Consequently, expressing the property stating the
absence of TAs under our definition is difficult through temporal logic. TAs are
complex properties, not only since they manifest at the level of two traces (which
can be easily resolved, see Sec. 5.3.1), but also since they refer to distinct, arbitrarily
distant states of a trace to express local and global variations. The properties that
we proposed in Ch. 6 for detecting TAs under the previous definitions are quite
simple to express in the form of temporal-logic invariants (cf. Sec. 3.2.1), through
a few state variables (or fields) that actually keep track of the history of traces.
Nevertheless, even for these properties, the most complex (and fine-grained) case
(TALoc) is not trivial and relies on several auxiliary state variables.

We have progressively established our definition in the purpose of identifying
TAs (see Sec. 7.2). This inherently leads to an algorithmic description of the
identification procedure, as we sketched in Sec. 7.2.6.

Black-Box TLA+ Property

A convenient feature of the model checker TLC is the possibility for the user to
override TLA+ modules [48], thus to encode algorithms. The operators defined
in overridden modules must only be syntactically correct, whereas their semantics
is transferred to the (Java) code integrated in the sources of the model checker—
the TLA+ operators act as black boxes. We thus define an operator to provide
the result of our identification procedure of TAs on the current traces from both
instances:

HasTA(g1, g2, cycle, onlyCom)
∆
= false

This operator is overridden by Algorithm 8.1, encoded in a general-purpose
programming language.5 This algorithm is at the heart of our detection procedure,
since it formalizes the identification procedure sketched in Sec. 7.2.6. Then, we
can simply verify the absence of counter-intuitive TAs in each cycle (i.e., each
state of our dual-execution specification), with the following invariant:6

¬HasTA(graph, graph2, currCycle, onlyCom)

where graph and graph2 are both copies of state variable graph (cf. Sec. 8.1.1),
which allow building the graphs (ETDGs/CGs) of both traces. Our detection
procedure thus relies on two exploration phases: the engine of TLC explores the
possible variations to build pairs of traces on the fly (first phase), while the very
identification of TAs is performed through the implementation of Algorithm 8.1
that explores the specific (ETDG/CG) graphs, for two fixed input traces (second
phase).

142

8.1. ADAPTATION OF THE FORMAL FRAMEWORK

Algorithm 8.1: TA-identification procedure for a pair of tracesfrom the OoO-pipeline model.
Input: Events(α), IDeps(α), Events(β), IDeps(β) ; ▷ Def. 7.2-7.3 / Inst. 7.2:

arguments g1, g2 of HasTA (cf. Sec. 8.1.1)
Output: Presence of TAs ; ▷ Overridden Boolean-valued operator HasTA
Result: ETDGs Gα, Gβ , CGs Cα, Cβ , set of TAs {(e↓ , e)} ; ▷ Graphical results

1 foreach τ ∈ {α, β} do
2 tdepsτ = TDeps(Events(τ), IDeps(τ)); ▷ Def. 7.4 / Inst. 7.3
3 Gτ = (Events(τ), tdepsτ); ▷ ETDG (Def. 7.5)

4 foreach τ ∈ {α, β} do
5 variationsτ = ∅;
6 causalArcsτ = tdepsτ ;
7 foreach a = [e1 = (i1, r1, t1)

w−→ e2 = (i2, r2, t2)] ∈ tdepsτ do
8 if a /∈ Causality(Gτ ,G⋃

[{α,β}\{τ}]) ▷
⋃

simply selects the other trace.
then

9 causalArcsτ = causalArcsτ \ {a}; ▷ Def. 7.10 / Inst. 7.5
10 if (i1 = i2 = i) ∧ ∃u, (r1 =↑u ∧ r2 =↓u) ▷ Resource use (matching

acquisition/release events) then
11 (i , r ′

1, t ′1) = CospEvent(e1); ▷ Def. 7.7 / Inst. 7.4
12 (i , r ′

2, t ′2) = CospEvent(e2);
13 δ = t2 − t1, δ′ = t ′2 − t ′1; ▷ Latency (Def. 7.6)
14 if δ ̸= δ′ ▷ Variation (Def. 7.8) then
15 variationsτ = variationsτ ∪ {(e1, e2, δ, δ′)}

16 Cτ = (Nτ , causalArcsτ); ▷ Causality graph (Def. 7.11)

17 TAs = ∅ ;
18 foreach τ ∈ {α, β} do
19 foreach (e↑ , e↓ , δ, δ′) ∈ variationsτ do
20 if δ < δ′ ▷ Favorable variation (Def. 7.8) then
21 foreach e ∈ NCτ (e↓) ▷ Causal region (Def.7.12) do
22 if ∆(e↓ , e) > ∆(CospEvent(e↓), CospEvent(e)) ▷ TA (Def. 7.13)

then
23 TAs = TAs ∪ {(e↓ , e)};

143

CHAPTER 8. DETECTION PROCEDURE
Algorithmic Identification Procedure
Algorithm 8.1 is a procedure that permits finding the TAs triggered by either trace
at any event, based on the definitions introduced in Sec. 7.2. Its implementation
relies on the instantiations introduced in Sec. 7.2, through a straightforward, se-
quential encoding of the rules described in the instantiations. The algorithm takes
as input the two traces for which we wish to identify TAs and outputs a Boolean
indicating the existence of TAs—triggered by events of any of both input traces
wrt. the other one. It also produces the set of discovered TAs, as well as the com-
puted graphs for each trace. The flow of the algorithm is similar to the description
provided in Ch. 7, allowing for identifying TAs in both directions (where traces
switch positions). However, the variations and the causal arcs in an ETDG are
identified in a single step—a single exploration of an ETDG permits the identi-
fication of variations and the progressive construction of the CG—and, similarly,
the TAs triggered by each favorable variation are identified incrementally as the
causal region of the variation is explored.

1. The first step consists in determining the timing dependencies of events, for
each trace (line 2). From these timing dependencies, we directly build the
ETDG of each trace (line 3).

2. Once both ETDGs are built, we can derive the variations and the causal
arcs of each. We successively explore both of them (line 7). The causal arcs
are derived by the elimination (cf. Inst. 7.5) of the other arcs (lines 6 and 8-
9). If an arc connects two matching acquisition/release events (line 10,
cf. Def. 7.6), the arc represents a resource use and we can compute the
related latency. Note that the arcs that represent a variation in the use
of a resource are not causal (cf. Rule 2 Inst. 7.5). From the corresponding
events (lines 11-12, cf. Inst. 7.4), we compute the latencies in both ETDGs
(line 13) and we thus identify (line 14) and save (line 15) the variations. At
the end of this step, the causality graphs are fully determined (line 16) and,
hence, we can explore causal regions in these graphs.

3. For each trace, we analyze the identified variations and we consider only the
favorable variations (line 20). We compute the causal region of each favor-
able variation (from the resource release) in the CG of the trace (line 21).
For each event node e of this region, we compare the relative time distance
between this node and the release event involved in the variation, obtained
via the ∆ operator (cf. Sec. 7.2.5), with the corresponding time distance in
the other trace (line 22). A TA is signaled when the favorable variation is
associated with a larger relative time distance, thus indicating a (temporary)
slowdown (line 23).

5The sources are available in the aforementioned repository.
6currCycle is supplied for debugging/logging purposes and onlyCom can be used to restrictthe events that may trigger TAs to commit events.

144

8.2. INTERPRETATION ON SHORT SEQUENCES
8.2 . Interpretation of our Detection Procedure on Short Se-

quences

The detection procedure established in the previous section allows us to query the
model checker for TAs: Does a given instruction sequence exhibit TAs? May
TAs disappear when restraining the initial hardware state? The subsequent
illustrations and examples are all obtained using this tool. The input sequences are
based on the short example found in the literature (cf. Sec. 2.3.3) and adapted in
order to highlight interesting features of our definition (e.g., through variations of
the parameters of the OoO model, in particular superscal and NFU). For better
readability, we use only a compact trace representation similar to Fig. 7.1 (which
integrates the main information of the CG of the trace).

8.2.1 . Basic Variation Cases
We start with a series of simple examples, by opposing the results obtained using
our definition with previous work and the intuitive notion of TAs. We show that
these examples, entailing surprising results for the major formal definitions, are
correctly handled by ours.

Unrelated Variations

1 2 3 4 5 6 7 8 9 10 11

α
A IF ID FU1 COMB IF ID FU1 COMC IF ID FU1 COMD IF ID FU1 COME IF IF IF IF ID FU1 COM

β
A IF ID FU1 FU1 FU1 COMB IF ID RS1 RS1 FU1 COMC IF ID RS1 RS1 FU1 COMD IF ID RS1 RS1 FU1 COME IF ID RS1 RS1 FU1 COM

•

•

δα = 1

δβ = 3

Figure 8.1: Illustration of the separation of unrelated variations.
Fig. 8.1 shows two execution traces on an in-order configuration of our OoO

model (superscal = 1, NFU = 1). The traces contain two variations, where one
is favorable for trace α and the other one is favorable for trace β. The other two
traces (i.e., resulting from the other two combinations of the variations) might have
been pruned (see Sec. 7.1.1). If we try to apply the definition by Reineke et al. [22]
to α and β, the situation of the reference example of Ch. 7 is reversed. We can
identify a local-worst-case trace, namely trace β. The variation in FU1 is a local
worst case for β: αpre = βpre = (α1, α2) and 1 =

∣∣α|EX(A)

∣∣ < ∣∣β|EX(A)

∣∣ = 3.
Since both traces have already diverged in cycle 5, when the second variation
occurs, and the traces consequently do not share the same prefix, no local worst
case is identified for this variation and only the first observed variation serves as a
basis to define the local-worst-case trace. However, the first variation is irrelevant

145

CHAPTER 8. DETECTION PROCEDURE
wrt. the global execution time. The scheduling on FU1 is exactly the same in both
traces, and the global execution time depends on the larger latency among both
variations, namely the latency of the second one in this case. More generally, while
the intuitive definition clearly leads to the absence of TAs, all existing definitions,
surprisingly, state a TA (cf. Sec. 6.1.2).

Our approach splits the favorable trace α into independent parts. The
causal region of the first variation in α is limited to the commit event of the
first instruction, (A,COM, 4), since the successive instructions do not have data
dependencies and they do not experience a resource contention. The relative time
distances of the COM event wrt. the variation in both traces is constant (1 cycle).
Hence, our definition correctly states the absence of TAs.

TA with a Limited Impact

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α
A IF ID FU1 FU1 FU1 COMB IF ID RS2 RS2 RS2 FU2 FU2 FU2 COMC IF IF IF ID RS2 RS2 RS2 FU2 FU2 FU2 COMD IF IF IF ID RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COMB IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COMC IF ID FU2 FU2 FU2 ROB ROB ROB COMD IF ID RS1 RS1 RS1 FU1 FU1 FU1 ROB COM

•

•

δα = 3∆α = 4

δβ = 1
∆β = 7

Figure 8.2: Example showing that TAs may be limited in scope.

Since the causal region allows precisely capturing the scope of a variation, we
can also detect TAs that have a limited impact on the execution. In the example
from Fig. 8.2, we observe that the execution of instruction B in FU2 and its
completion in COM occur later in the favorable trace β. However, the trace with
the favorable variation has the shorter global execution time. The definition by
Reineke et al. [22] does not state a TA, since α is a local-worst-case trace and
is longer. Note that the definition by Gebhard [24] for instance would signal a
TA caused by instruction B (cf. Sec. 6.1.2): this instruction has a shorter latency
γ(ηα,B) = 3 cycles in α vs. γ(ηβ,B) = 4, while the global execution time is
larger in α (Γ(ηα,D) = 15 > Γ(ηβ,D) = 11). However, it is clear that B does
not cause the TA.

In our case, the TA is clearly attributed to the variation at instruction C , which
blocks instruction B due to a resource contention on FU2 in trace β. Such effects
are generally not captured in previous work. Our definition also captures the
fact that a TA has an effect on a limited scope. In this example, instruction
D neither experiences an absolute nor a relative slowdown wrt. the variation. Thus
no TA is signaled here.

146

8.2. INTERPRETATION ON SHORT SEQUENCES
1 2 3 4 5 6 7 8 9 10 11 12 13

α
A IF ID FU1 COMB IF ID FU2 FU2 FU2 COMC IF ID RS2 RS2 FU2 FU2 FU2 COMD IF ID RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COMB IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COMC IF ID FU2 FU2 FU2 ROB ROB ROB ROB COMD IF ID RS1 RS1 FU1 FU1 FU1 ROB ROB COM

•

•

δα = 1

∆α = 9
δβ = 3

∆β = 7

Figure 8.3: Example showing a TA pattern that does not impact absolute time.

Identification of TA Patterns
Fig. 8.3 shows a variant of the common example (cf. Sec. 2.3.3), executing on a
constrained OoO model (superscal = 1, NFU = 2). All existing definitions signal
the absence of TAs due to the identical global execution time (cf. Sec. 6.1.2).
Yet, the global scheduling pattern characterized by the use of FUs is the same as
in the common example, which clearly exhibits a TA. The situation is similar to
the TA detection on traces α/α′ vs. β′ in the reference example of Ch. 7, but this
time the traces exhibit a single variation.

Our definition is based on the precise identification of relevant uses of re-
sources, which leads to the detection of this TA pattern as of the acquisition of
FU2 by C , i.e., the event (C , ↑FU2, 7). This resource can indeed be used even
before the end of the variation in β, i.e., the corresponding relative time distance
in β is negative. Moreover, the TA persists up to the end of the execution, al-
though the global execution time is the same in both traces. This may surprise,
but our definition relies on the relative time distance from the resource release
of the variation, in order to capture actual slowdowns instead of the absolute
execution time. The commit of D in α does suffer a slowdown in α wrt. β due to
the sequential execution of instructions B , C , and D .

1 2 3 4 5 6 7 8 9 10

α
A IF ID FU1 COMB IF ID RS2 FU2 COMC IF ID RS2 FU2 COMD IF ID RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COMB IF ID RS2 RS2 RS2 FU2 COMC IF ID FU2 ROB ROB COMD IF ID RS1 RS1 RS1 FU1 FU1 FU1 COM

•

•

δα = 1

∆α = 5
δβ = 3

∆β = 4

Figure 8.4: A TA pattern in contradiction with the absolute time.
Fig. 8.4 shows that our definition does capture TA patterns, relying on relative

time, even when the favorable trace is associated with a smaller absolute time.
In this example with a different configuration (superscal = 2), an additional data
dependency, and shorter default latencies in FUs, the commit events (C ,COM, 6)

147

CHAPTER 8. DETECTION PROCEDURE
and (D ,COM, 9) in the favorable trace α, notably, have smaller timestamps than
the corresponding events in trace β (7 and 10, respectively). However, TAs are
triggered, due to the larger relative time distances from the variation (see the figure
for the commit events of D in both traces). Here again, the stated TAs consistently
reflect the slowdown in α due to the sequential execution of instructions B , C ,
and D .

8.2.2 . General Scenarios
Next, we consider more complex examples that exhibit several variations or even
FU switches. These considerations are overlooked by all of the existing definitions,
though these definitions do not exclude them from their hypotheses. Our approach
consistently handles variations by identifying their individual impact, through causal
regions. Within a causal region, the relative time distance enables us to focus
on the effects of the last variation, excluding any resource switch. This brings
up the problem of the composition of multiple variations/switches. If none of the
variations taken independently triggers a TA, we might intuitively suspect that the
composition of the variations does not exhibit a TA. However, the composition of
variations/switches and TAs in general is an open problem. We illustrate this in
the following examples.

Serial Composition

1 2 3 4 5 6 7 8 9 10 11 12

α
A IF ID FU1 COMB IF ID RS2 FU2 FU2 FU2 COMC IF ID RS2 RS2 RS2 FU2 FU2 FU2 COMD IF ID RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COMB IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COMC IF ID FU2 FU2 FU2 ROB ROB ROB COMD IF ID RS1 RS1 RS1 FU1 FU1 FU1 ROB COM

•

•

δα = 1

∆α = 6

δβ = 3

∆β = 4

Figure 8.5: Composition of two variations with a clear verdict.
In Fig. 8.5, we consider the slightly modified common example (cf. Sec. 2.3.3),

where instruction D also has a variation. Both variations occur one after the other
in one trace and, moreover, the second variation is time-dependent on the first.
Differently stated, the causal region of the first variation contains the acquisition
event of the second variation. Rules 2 and 3 of Inst. 7.5 ensure that the causal
region ends with this event, similarly to the cases where there is no timing depen-
dency (cf. Fig. 8.1) or there is a timing gap, since the remainder of the execution
behavior does not depend only on the first variation. Consequently, we do detect
the same TA as previously (cf. Sec. 7.1), triggered by the first variation, up to the
commit of C .

Since both variations are time-dependent and favorable for the same trace,
this situation leads to a serial composition. The second variation only reduces

148

8.2. INTERPRETATION ON SHORT SEQUENCES
1 2 3 4 5 6 7 8 9 10 11

α
A IF ID FU1 COMB IF ID RS2 FU2 FU2 FU2 COMC IF ID FU1 FU1 FU1 COMD IF ID RS1 RS1 RS1 FU1 FU1 COM

β
A IF ID FU1 COMB IF ID RS2 FU2 FU2 FU2 COMC IF ID RS2 RS2 RS2 FU2 FU2 COMD IF ID RS1 RS1 RS1 RS1 RS1 FU1 FU1 COM

•

•

δα = 3

δβ = 2

Figure 8.6: Example highlighting the impact of resource switches indepen-dently from the actual (latency) variation.

the global execution time in α; it does not entail any particular timing effect
nor globally prevent the TA from occurring. We thus could extend the causality
region of the first variation in order to compute the relative time distance up
to the end of the trace and state a global TA. Similarly, we intuitively suspect
that the serial composition of two TAs remains a global TA, since in this case the
second variation even exacerbates the already observed slowdown. However, as the
subsequent examples show, the analysis of a composition of TAs is complicated
in general. Our definition provides a starting point to tackle the problem of
compositions in future work.

Combined Variation with FU Switch

Through the example in Fig. 8.6, we show that we consistently handle variations
with resource switches. We consider one variation combined with a FU switch,
namely C uses different FUs in each trace. We identify one favorable variation
and our definition states no TA, since the relative time distances are the same
in both traces. This statement is consistent: the use of—whatever—FU by C
implies no particular scheduling effect for the rest of the trace and we observe
exactly the same tail in both traces from the variation onward. The difference in
the global scheduling only results from the FU switch that delays the acquisition
of the FU in β. We suspect the delay thus introduced until a resource is available
to be similar to amplification effects (cf. Table 2.2).

Composition with a Series of TAs

Let us now consider the example in Fig. 8.7, in which instructions A and C exhibit
variations and instruction C , in addition, switches its FU. The definition by
Reineke et al. [22] does not signal a TA, since the first variation is favorable for the
shorter trace (α). Gebhard’s definition [24] would attribute a TA to instruction D
(latency of 2 cycles in α vs. 1 in β).

For our definition, two favorable variations are identified, one for instruction
A in α and a second for instruction C in β. The former variation alone does not
trigger any TA, as indicated in the figure (). The latter triggers TAs by itself
(), in particular for D ’s commit (see ∆α and ∆β). This allows us to state that

149

CHAPTER 8. DETECTION PROCEDURE
1 2 3 4 5 6 7 8 9 10

α
A IF ID FU1 COMB IF ID RS2 FU2 FU2 FU2 COMC IF ID FU1 FU1 FU1 COMD IF ID RS1 RS1 RS1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COMB IF ID RS2 RS2 RS2 FU2 FU2 FU2 COMC IF ID FU2 FU2 ROB ROB ROB COMD IF ID RS1 RS1 FU1 FU1 ROB ROB COM

•

•

δα = 1

δβ = 2

∆α = 2

∆β = 4

Figure 8.7: Illustration of cumulative effects of multiple variations.

TAs occur in this example.
The characterization of the global timing behavior is tricky, due to the inter-

action between the opposing variations. Let us focus on the favorable variation
for α, which clearly does not trigger TAs in α. Note that we observe an increase
in the relative time distance wrt. the commit of instruction D (5 cycles in α, vs. 4
in β)—a slowdown. This event is not in the causal region of the variation, since
it is exclusively delayed by C . If we focus on trace β, we observe that the re-
source switch of C imposes a delay on B due to contention on FU2. However,
the increase of the use of FU1 by A is crucial in determining the execution order
between B and C . Without this increase, the example would result in the same
trace as Fig. 8.6. The variation on A thus also plays a role in the appearance of
the TAs visible in β. Due to the independence of these choices (Inst. 7.1), causal-
ity is excluded though. This shows that the problem of composition is complex
and needs to be investigated further—notably, considering more realistic processor
implementations, where these choices will necessarily expose causal relationships.

Composition with Mutual TAs

1 2 3 4 5 6 7 8 9 10 11 12 13

α
A IF ID FU1 COMB IF ID RS2 FU2 FU2 FU2 COMC IF IF IF ID RS2 FU2 FU2 FU2 COMD IF IF IF ID RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COMB IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COMC IF ID FU2 FU2 FU2 ROB ROB ROB COMD IF ID RS1 RS1 RS1 FU1 FU1 FU1 ROB COM

•

•

δα = 1

∆α = 9
∆α = 5

∆β = 5

δβ = 1
∆β = 7

Figure 8.8: Composition triggering mutual TAs in both traces.
Now, let us consider Fig. 8.8, a combination of the common example (cf.

Sec. 2.3.3) and the traces from Fig. 8.2, i.e., a variation in the use of IF by C
and D is added. The global execution times and scheduling effects in the resulting
traces are the same as in the common example. This is due to the fact that the
use of IF by C , though longer, is still too short for its release to delay any relevant
event in the trace and thus to have some effect on the execution. Intuitively, there

150

8.3. DETECTION OF TIMING ANOMALIES ON BENCHMARKS
thus should be at least the same TAs as in the common example. The definition by
Reineke et al. [22] does not signal a TA, since the first variation is favorable for β,
which is also the shorter trace. The definition by Gebhard [24] signals a TA for
instruction B (γ(ηα,B) = 3 < γ(ηβ,B) = 4 and Γ(ηα,D) = 13 > Γ(ηβ,D) =

11).
Our definition remains consistent, identifying the same TAs for α as in the

common example. Moreover, TAs are identified due to the favorable variation
of IF for C in β, which are consistent with those identified in Sec. 8.2.1. The
difference is that the commits of B and C occur earlier in α for this example,
which explains the TA for instruction C in β. Our definition is thus able to
clearly separate the effects of those mutual TAs.

8.3 . Detection of Timing Anomalies on Benchmarks

In this section, we present a partial evaluation of the capability of our procedure
to detect TAs on standard benchmarks executed on our OoO-hardware model,
specifically the TACLe benchmark collection [105]. This benchmark collection is
commonly used as a case study in the real-time community [25, 97, 106].

8.3.1 . Strategy and Heuristics
Our detection procedure accurately captures all counter-intuitive-TA effects that
may arise in the scope of the causal region of any (favorable) variation. It can thus
theoretically detect any TA that may occur during the execution of a program.
However, in practice, we need to specify a certain set of possible variations that
must be explored by the model checker and we must ensure both the feasibility of
these variations and the correctness of the verdicts about TAs.

Variation sources
On the one hand, we assume that variations result from the behavior of the cache,
but we do not explicitly model the cache: the possible variations must be predeter-
mined; on the other hand, a too wide set of variations (e.g., an over-approximation)
entails state explosion and might hinder the detection of TAs. Consequently, we
need to rely on heuristics to derive a reasonable set of variations, targeting spe-
cific variation points. We will see that this often allows highlighting TAs, but,
otherwise, the specified set could be refined to account for more variations. The
heuristics could rely on preliminary static (instruction- and data-) cache analyses,
to detect the TAs that may occur without perturbations. However, as a first step,
we set up, for our evaluation, a particular heuristic (Hvar) that targets the data-
cache misses as in the traditional pattern (see Fig. 7.2).7 In this pattern, (RAW)
data dependencies constitute a constraint that enforces a sequential execution in
certain traces and thus may entail TAs. With this heuristic, only the memory

7Note that we thus exclude here, as a first step, the instruction-cachemisses thatmay entailTAs, e.g., as in Fig. 8.2.

151

CHAPTER 8. DETECTION PROCEDURE
instructions (i.e., load/store operations, which may access memory) on which a
subsequent instruction is dependent are allowed to exhibit a variation, in the FU.
The resulting number of variations depends on the application and the number of
instructions in the input program. Note that this heuristic is not part of the TLA+

specification; the possible variations are still explicitly supplied as input. For con-
venience, we adapt the specification with a separate input parameter, mayDMiss,
that specifies the set of (indexes of) the instructions that may exhibit variations in
the FUs.8 The total required latency in a FU (cf. Sec. 5.1.2) is thus assigned as
follows:

if NxtFU (i).ind ∈ mayDMiss then {latency , missLat} else {latency}

where NxtFU (i) returns the instruction that is to be scheduled in the FU
(cf. Sec. 5.1.2), latency is a default latency, and missLat is the input latency that
represents a cache miss.

Verification Instants
The detection problem cannot either be decomposed into sub-problems in a straight-
forward manner, since TAs might be triggered at any event of causal regions and
causal regions may only be bounded according to the length of the whole trace.
The copies of the graph state variable that store the events and the dependencies
of both traces (see Sec. 8.1.1) keep track of an increasing, cumulative amount
of information in each cycle (without any loss). Ideally, causal regions could be
exploited to reset these variables and decompose the problem on the fly by consid-
ering only sub-graphs where at least one variation determines the timing of some
events for each represented timestamp. Hereafter, we do not exploit causality but,
as a first step to mitigate the repeated computations on the same parts of the
graphs in successive states, we set up a second heuristic (Hcheck). We check for
TAs only in specific states, when predicate CheckTA holds. The invariant stating
the absence of TAs (cf. Sec. 8.1.2) thus becomes:

NoTA(onlyCom)
∆
= CheckTA =⇒ 1

¬HasTA(graph, graph2, currCycle, onlyCom) 2

Under Hcheck, predicate CheckTA holds only when a number of instructions—
in our case, SROB, the size of the ROB—has fully executed since the last state
where the TA detection was performed (or since the initial state), or when the
whole program has executed. The final verdict does not depend on this predi-
cate (nor on the considered number of instructions), since the graphs may only
grow in successive states where CheckTA holds. This predicate allows a trade-off
between the fast identification of counterexamples (with early calls to the identifi-
cation procedure through ¬HasTA, potentially in each cycle) and the elimination
of repetitive computations (which can be achieved by checking for TAs only once

8In this version of the specification, there is a direct match from instruction types to oneoperable FU, with specified default and miss latencies in the FUs.

152

8.3. DETECTION OF TIMING ANOMALIES ON BENCHMARKS
both execution traces are complete). The latter possibility (checking for TAs only
when both traces are complete) forms the alternative heuristic H’check.

GraphBound ∆
= Min({robHead , robHead2})− 1 1

CheckTA ∆
= 2

∨GraphBound − lastBound = SROB 3

∨ ∧ Len(rob) > 0 4

∧ rob[Len(rob)].instr = program[Len(program)] ∧ rob[Len(rob)].done 5

∧ graph.nodes[Len(graph.nodes)].COM ̸= 0 6

∧ Similar for trace 2 (rob2, graph2) 7

Operator GraphBound computes the ROB index of the last instruction that has
left the pipeline in both instances (line 1)—recall that robHead points to the oldest
instruction still in the ROB. State variable lastBound , initialized to 0, is updated
with the value of GraphBound every time that CheckTA is true and thus we
check for TAs. Consequently, the first disjunct (line 3) is satisfied when the fixed
number of instructions has executed. The second disjunct (lines 4 to 7) is satisfied
only once, when the whole program has executed. The last instruction currently in
the ROB (of the first instance) must be the last instruction of the input program
and this instruction must have fully executed (line 5). Moreover, to ensure that
this disjunct is satisfied only once, we add the condition that the commit event has
not occurred yet (line 6). The condition line 4 is required not to entail errors in the
subsequent conjuncts when the ROB is empty. We do the same for the second
instance (line 7). Note that H’check is simply got by removing the first disjunct
(line 3).

Symmetry in the Dual Specification
Finally, the two copies of the pipeline specification for reasoning on two traces may
result in the exactly same execution. Moreover, contrary to the verification strat-
egy based on previous definitions (cf. Sec. 5.3.2), we do not need here to explore
pairs where both traces merely switch positions while exploring the variations (with
TLC), since our identification procedure explicitly checks for favorable variations,
and then TAs, for both traces (Algorithm 8.1). We can thus remove the sym-
metry between both execution instances, in order to get an asym version of the
specification where the above condition for the assignment to missLat becomes:

if ∧ NxtFU (i).ind ∈ mayDMiss 1

∧ exec inst = 2 =⇒ NxtFU (i).ind ̸= Min(mayDMiss) 2

The second conjunct (line 2) removes one arbitrary variation in the second
instance (e.g., the variation for the instruction with the smallest index among
those that may show variations). Note that a single variation can be removed, to
allow for all possible combinations of variations in both traces.

It may also be helpful to consider instead heuristic asym’, in which the trace of
a single instance may exhibit cache misses (according to mayDMiss). In this way,
we (temporarily) prevent compositions with opposite variations to occur and we

153

CHAPTER 8. DETECTION PROCEDURE
can focus on isolated traditional patterns of TAs. The compositions that can still
manifest in this case are easier to interpret, since the favorable variations always
occur in the same trace (see Sec. 8.2.2). Heuristic asym’ is derived from the asym
version of the specification by substituting the following line for above line 2:

∧ exec inst = 2

8.3.2 . Workflow

In TACLe benchmarks, all input data are part of the C source codes and all flow
constraints are incorporated into the code [105]; hence, the benchmarks are single-
path programs, of which any execution thus corresponds to a single program trace,
i.e., a sequence of instructions. To apply our detection procedure to benchmarks,
we need to format this sequence of instructions to fit our program representation,
namely the program input parameter.

Fig. 8.9 represents the workflow for applying our detection procedure
to the benchmarks, from an input C source code to the related values
of the formatted input parameters for our TLA+ specification. First, we
target RISC-V microarchitectures, such as the BOOM core (cf. Sec. 2.3). We
thus rely on the RISC-V gcc (cross) compiler to produce an executable file from
the C source code, the execution of which always generates a single trace. Then,
we use a simulator, gem5, to simulate the functional behavior of the processor
under this executable and produce the execution trace. We thus get a sequence
of instructions, from which, moreover, we automatically extract the instruction
class (e.g., ALU or memory read) and the operands (i.e., in particular, registers).
Besides the execution of the instructions of the input program, this sequence of
instructions contains initialization instructions for the target microarchitecture. To
focus actually on the benchmark under consideration, we retain the first instruction
of the main function of the input code as the starting point for the input program of
our specification. To do so, we also disassemble the .text section of the obtained
executable, and we search for the address of this first instruction. We use it to
parse the simulation trace, from this instruction and with Ninstr (supplied as an
input of the workflow) instructions in total. We extract the relevant information of
each instruction and we store it, in the purpose of generating the program input
parameter, in the appropriate format (cf. Sec. 7.2.1) for our specification.

We also remarked that Hvar (as well as any other potential heuristic for varia-
tions) is not part of the specification (see Sec. 8.3.1). We thus need to determine
the possible variations, according to the considered heuristic, within the setting-up
workflow. To apply Hvar, we use a circular buffer that helps us identify the instruc-
tions that show (RAW) dependencies on a memory operation within the range of
previous instructions determined by the maximal number SROB of instructions in
the ROB (i.e., the number of instructions that can interact during execution, see
Sec. 8.3.1). We use the derived list of instruction indexes directly as the value of
parameter mayDMiss.

154

8.3. DETECTION OF TIMING ANOMALIES ON BENCHMARKS

RISC-V cross compiler (gcc)

Trace simulator (gem5) Disassembler of the.text section (objdump)

Parser*

program gener-ator (interface)* Generator of possiblevariations (heuristics)*
TLA+ specification (input parameters)

TACLe benchmark (C code)

Ninstr

SROB

Executable

Simulation trace Entry point (main function)

Instructions: Addresses/Operation types/Registers

Figure 8.9: The setting-up workflow of input parameters transforms the traceencoded in a TACLe [105] benchmark () into a suitable input program for ourTLA+ pipeline specification (), accompanied with a set of possible variationsderived from heuristics. It relies on standard tools () and on personal scripts(*) to produce intermediate information (), from supplied parameters (Ninstrand SROB).

8.3.3 . Experimental Results

Hereafter, we report experimental results obtained from several TACLe bench-
marks (column benchmark). Our assessment is not systematic but aims at showing
that our formal definition can have a practical implementation. In this section, we
fix the sizes of the buffers (SRS = 12 in the TLA+ specification and SROB = 12 in
the specification and in the setting-up script, see Fig. 8.9).9

Verification Configurations

The numbers NFU of FUs are specified according to the amount of distinct in-
struction types in the benchmarks, and the related default latencies are also fixed
(e.g., 1 cycle for memory operations—cache hits—, 1 cycle for integer operations,
except 4 cycles for integer division). The data-cache-miss latency is also fixed to
be of 10 cycles. Besides, we always rely on NoTA under the form NoTA(false)

9These values are chosen for illustrative purposes but are of the same order of magnitudeas in other experiments, e.g., about WCET in OoO pipelines [35].

155

CHAPTER 8. DETECTION PROCEDURE
(not restricting reported TAs to COM events). However, we allow for varia-
tions in parameter superscal (in the specification), as well as in parameter Ninstr
(in the setting-up script)—see the respective columns in the table. The remaining
TLA+ input parameters, the input program and the possible variations mayDMiss
(whose cardinality is reported in the table), are generated for each benchmark
(cf. Sec. 8.3.2). The latter parameter is always derived from heuristic Hvar (cf.
Sec. 8.3.1). The number Ninstr of considered instructions in the benchmarks may
be progressively increased, in particular to reduce the state space by starting with a
limited set of variations mayDMiss from Hvar and thus to get quick results about
the detection of TAs.

Interpretation of Results

Table 8.1 reports the results for the various verification configurations: the verdict
from the model checker (column result: true if the property is verified, or cex if
a counterexample is found), the runtime needed to check the property indicated by
column invariant (column time), the diameter (column diam., i.e., the number of
explored transitions), and the total number of states found by the model checker
up to its verdict (column states found). When the property is not verified, the
diameter corresponds to the way that the model checker searches the state space
(in our case, the smallest counterexample, since we perform a breadth-first search).
When the property is verified, the diameter is the maximal number of states, thus
of clock cycles, required to fully execute the program. It must be (and it is indeed
in Table 8.1) larger than Ninstr/superscal (cf. Ch. 1).

The first two configurations perform the verification from a trivial, valid in-
variant (column invariant), i.e., true, on an arbitrary benchmark. In this way, we
focus on the first exploration phase of our verification strategy (cf. Sec. 8.1.2) and
we can easily check the impact of asym (cf. Sec. 8.3.1): the gain in verification
runtime is not relevant for small runtimes (which include the initialization of the
model checker), but, by comparing configurations (1) and (2), we can observe that
the state space (penultimate column) is indeed divided by more than two. asym
allows us to remove the duplicate scenarios where both instances switch their roles
(thus about half of the original state space), as well as those where they represent
the same trace. Moreover, by comparing configurations (2) and (3), we separately
identify the costs of both exploration phases. Compared to (2), (3) performs the
second phase (identification procedure) in each cycle, while in (2), the second
phase is nonexistent. For this configuration, the verification proves the absence of
TAs (result: true), which thus requires an exhaustive exploration of the possible
variation in the first phase. We deduce from this comparison that the cost of the
first phase is negligible wrt. that of the second phase (in this case, it represents less
than 3 % of the total verification runtime). This confirms the need of implement-
ing heuristics (such as Hcheck) for the crucial aspect of calling the identification
procedure.

156

8.3.DETECTIONOFTIMINGANOMALIESONBENCHMARKS

Table 8.1: Results of the detection of counter-intuitive TAs from the execution of TACLe [105] benchmarks on the OoO-pipeline formal model. Weuse a particular heuristic (Hvar) to define the possible variations, based on the input program (cf. Sec. 8.3.1). “cex” stands for counterexample (result);
◦: cex showing a composition of variations, possibly moreover with no COM event among those at which a TA is triggered (◦◦). * stands for heuristics
asym’ or H’check (cf. Sec. 8.3.1) instead of asym or Hcheck.

benchmark Ninstr |mayDMiss| superscal asym Hcheck invariant result time diam. states found
1

countneg 50 4 4
true true 00:00:14 59 42082

✓

true 00:00:09 59 20153

noTA

true 00:06:25 59 21054 * true 00:00:36 59 21055
✓

true 00:01:24 59 21056 2 simple cex 00:00:12 43 7287 iir 100 4 4 ✓
cex◦◦ 00:04:07 69 8478 * simple cex 00:03:58 100 48189 ✓ simple cex 00:03:10 100 474910 cosf 30 7 4

✓ ✓
true 00:23:24 86 11888011 2 true 00:22:50 86 11899112 fft 100 3 4 ✓ ✓ true 00:00:26 98 83413 fir2dim 100 4 4 ✓ ✓ simple cex 00:05:42 81 180014

insertsort 30 6 4 ✓

✓

cex◦ 00:00:31 29 333315 * true 00:00:15 71 115916 2 ✓ cex◦◦ 00:00:26 30 363217 * simple cex 00:00:17 37 45618 complexup 100 4 4 ✓ ✓ simple cex 00:02:17 79 256319 bitonic 100 30 4 ✓ ✓ simple cex 00:05:21 35 18008

157

CHAPTER 8. DETECTION PROCEDURE
Detection of TAs

Configuration (4) implements H’check, thus with a single call to our identification
procedure (at the end of both executions), and brings a speedup in verification
runtime of more than 90 % wrt. (3). With the main heuristic Hcheck instead of
H’check, configuration (5) also leads to a speedup wrt. (3), but of less than 80 %.
Indeed, the model checker performs fewer calls to the identification procedure, but
more than one final call. However, the same reasoning on the second benchmark
shows that the situation differs when there actually exist TAs: H’check (8) and
Hcheck (9) allow a speedup in verification runtime wrt. configuration (7), but the
speedup in (9) is of about 23 % against less than 4 % in (8), thus considerably
higher with heuristic Hcheck. Moreover, while the speedup offered by Hcheck still
represents 89 % of that offered by H’check in our case where there is no TA—
configurations (4) and (5)—, the speedup offered by Hcheck is 5.75 as important
as that offered by H’check in our case where there is a TA—configurations (8)
and (9). Consequently, heuristic Hcheck allows a considerable speedup, whether
there actually are TAs or not; this is consistent with the trade-off described in
Sec. 8.3.1 and justifies that we only retain it for most examples.

Note that the cex for (7) shows complex execution scenarios (◦◦), with more
than a single favorable variation and thus, with an issue about composition, and
without TAs triggered at COM events. We could wonder whether simpler scenar-
ios could be found, by using asym’ (to avoid complex compositions) or by relying
on invariant noTA(true) (to check for COM events at which TAs should be
triggered). However, both cex derived from Hcheck (8) and H’check (9) prove to be
such simpler scenarios. They are simple counterexamples, i.e., similar to the tradi-
tional TA pattern, with a single favorable variation (no composition of variations)
and at least one TA triggered at a COM event. Both simple counterexamples are
different, even with the same diameter in the present case (which is sensible, since
the property under consideration is not the same).

Let us now compare configurations (3)/(4)/(5) with (6). Through our para-
metric formal model, we can vary the microarchitectural parameters and base the
verdicts of the detection on the concrete values. We observe that, although there
is no counter-intuitive TA for superscal = 4, the execution of the first benchmark
on a microarchitecture with superscal = 2 does entail TAs.

Some results from other benchmarks are reported in configurations (10), (11),
and (12)—showing the absence of TAs—, and in (13), (18), and (19)—illustrating
the presence of TAs through simple execution scenarios. In the case of configu-
rations (10) and (11), contrary to that of (5) and (6), the verdict is the same for
both values of parameter superscal . Fig. 8.10 represents a small portion of the
generated graphs for both traces that constitute the cex of configuration (13).

Configuration (14) shows that, for the benchmark under question, a cex can be
derived quickly. Although this cex clearly identifies TAs, we may intend to check
for simpler scenarios, since this one is not easy to interpret (◦). The use of asym’

158

8.4. SUMMARY: A TOOL SUPPORT FOR THE DETECTION OF TAS

Figure 8.10: Portion of the graphs (ETDG/CG) produced during the automatic detection ofcounter-intuitive TAs for configuration (13) in Table 8.1, showing in particular the variation ()and the TAs that are triggered ().

in configuration (15) shows that, for this configuration, there do not exist simple
scenarios (without cumulative effects of multiple variations) that trigger TAs.

A complex scenario is also found for the slightly different configuration (16),
in which superscal = 2 instead of 4. Using asym’ (17) leads to a simple scenario,
with a single favorable variation and TAs triggered at COM events.

8.4 . Summary: a Practical Tool Support for the Accurate De-
tection of TAs

In this chapter, we proposed a detection procedure based on the formal definition
of counter-intuitive TAs that we have introduced in the previous chapter. We thus

159

CHAPTER 8. DETECTION PROCEDURE
detailed the adaptations of the formal framework for implementing the procedure,
and we presented the algorithm that constitutes the heart of the procedure.

We explained on short examples the key features of our procedure, in com-
parison with the application of the limited previous formal definitions from the
literature, and we showed that these features match our intuitive understanding of
TAs. We also highlighted that our framework allows for tackling the new, open
problem of the composition of variations.

Finally, we exemplified on a standard benchmark collection how our procedure
can serve to detect TAs on concrete applications. We presented the workflow that
we set up so as to cover these benchmarks, and we reported some results for several
configurations. We have thus shown that our work provides a concrete tool
support for the accurate detection of counter-intuitive TAs.

160

Part IV
Heuristics for the

Detection of
Timing-Anomaly

Patterns

161

In this last part, we tackle the second problem introduced at the end of the first
part of the thesis, i.e., related to the formal modeling style, the abstractions, and

the verification strategy that are suited to the detection of TA patterns in complex
microarchitectures. The accurate identification of software-related patterns—thus
taking into account the various microarchitectural features that impact the timing
behavior—will allow for inserting counter-measures, in the purpose of mitigating
the effects of TAs.

In this part, we focus on amplification TAs, but the same verification frame-
work could be applied for the detection of counter-intuitive TAs. We made this
choice since, to our knowledge, the state of the art explores the issue of deriving
efficient abstractions for the detection of TAs only for amplification TAs [26].
Besides, although we believe that our formal framework proposed in the previous
part and based on causality, for the detection of counter-intuitive TAs, might be
adapted to capture amplification TAs, so far, only this work based on a typical
delay scenario (cf. Sec. 2.1.2) offers a detection procedure for amplification TAs.
We thus study amplification TAs starting from this work.

We investigate how the industrial superscalar TriCore microarchitecture (cf.
Sec. 2.2) is amenable to compositional timing analyses, via a formal evaluation of
the amplification TAs that can manifest in this microarchitecture. TriCore is a
COTS (commercial off-the-shelf) hardware, in contrast to the simple microarchi-
tectures on which amplification TAs were previously studied in the literature, and
it actually suffers from such TAs. In this way, it becomes necessary to use formal
verification to fully explore possible sources of amplifications.

Can amplification TAs be tracked efficiently for the TriCore microar-
chitecture? To answer this question, we develop in this part the following contri-
butions:

1. We adapt and extend the specialized abstraction called canonical
pipeline model [26] (cf. Sec. 4.3.2), to capture the amplification
effects in a formal model of the TriCore microarchitecture (Ch. 9) [4,
5].

2. We use model checking to efficiently detect amplification TAs and
we report the associated complexity results (Ch. 9) [4, 5].

3. We aim for better accuracy as we design and implement counter-
example-based methods, so as to uncover patterns leading to such
anomalies (Ch. 10) [5].

We model the TriCore microarchitecture using the language of UCLID5, we
assess this model using the underlying BMC-based engine of UCLID5, and finally,
we exploit the SMT back-end (Z3 solver) in order to get multiple counterexam-
ples (cf. Ch. 3). Our formal model of TriCore and our script implementing these

163

heuristics are available on a GitHub repository.10
We show that detecting these anomalies over a model that fully represents

possible dependencies between the TriCore pipelines is possible—however, only
with appropriate reductions. We also provide a collection of SMT-based heuristics,
for identifying the execution patterns that are likely to entail such anomalies. These
heuristics properly address scalability issues in the detection of amplification TAs
in TriCore.

CONTENTS
9 Detection of Amplification TAs 165

9.1 Scale-up Modeling Process 165
9.1.1 Adaptations for the Dual Pipeline of TriCore 165
9.1.2 Progression and Stalling Logic 168
9.1.3 Store Buffer . 172
9.1.4 WAW Hazards . 176

9.2 Evaluation of the TriCore Model 177
9.2.1 Validation of the Model 177
9.2.2 Results of the Detection 178

9.3 Summary: our Modeling and Verification Approach 184
10 Towards Software-Related Patterns 185

10.1 Exploration of Multiple Counterexamples 185
10.1.1 Delay Scenarios . 185
10.1.2 Specific SMT Problem 186

10.2 Counterexample-Guided Exploration Strategies 188
10.2.1 Broad-Spectrum State-Space Exploration 190
10.2.2 Delay-Scenario Enumeration 192

10.3 Evaluation . 193
10.3.1 Analysis of the Broad-Spectrum Exploration 194
10.3.2 Analysis of the Delay-Scenario Enumeration 198

10.4 Summary: a Step towards Accurate TA Patterns 199
10https://github.com/t-crest/patmos-sail/tree/master/uclid/tricore

164

https://github.com/t-crest/patmos-sail/tree/master/uclid/tricore

9 – DETECTION OF AMPLIFICA-
TION TIMING ANOMALIES

Is the verification strategy from the canonical model (cf. Sec. 4.3.2) suitable for
reliably detecting amplification TAs on TriCore? In this chapter, we present how

to encode the abstraction of the canonical model for the TriCore microarchitecture
and we provide a complete formalization of this microarchitecture. We rely on
bounded model checking (cf. Ch. 3) to detect amplification TAs, based on a
necessary condition. Due to the complexity of this microarchitecture, reductions
are needed. These reductions efficiently remove useless pipeline configurations,
wrt. timing anomalies, from the state space that has to be explored by the model
checker. We analyze complexity results for different evaluation settings, with both
generic and TriCore-specific reductions.

First, we provide, as a scale-up process from the canonical model, the full
formalization of this specialized abstraction for amplification TAs, adapted for the
more complex microarchitecture of TriCore (Sec. 9.1). This full formalization is
the first step towards the obtainment of software-related TA patterns (cf. Ch. 10).
Then, we address various TA-driven scenarios and we report the evaluation settings
and results (Sec. 9.2).

9.1 . Scale-up Modeling Process

In this section, we introduce successive extensions of the canonical pipeline model
(cf. Sec. 4.3.2). These extensions are not straightforward, as the canonical pipeline
model requires both structural modifications (due to a second pipeline, Sec. 9.1.1),
as well as functional extensions to accommodate the particularities of the Tri-
Core microarchitecture wrt. the progression logic (Sec. 9.1.2), the store buffer
(Sec. 9.1.3), and data dependencies (Sec. 9.1.4). As a whole, this section is the
complete presentation of our formal modeling of TriCore.

9.1.1 . Adaptations for the Dual Pipeline of TriCore
In the canonical model, each instruction is characterized at a given instant by a
tuple [26]:

⟨class, bl , stage, latency , delay , stalled , progress⟩

where class denotes the instruction class, bl the vector of baseline latencies for
each pipeline stage, stage the current pipeline stage, latency the remaining amount
of cycles to complete the baseline latency for the current pipeline stage, and delay
the accumulated delay in cycles, due to stalling so far. The first two attributes
determine an execution scenario and keep the same value after the initial state.
The last two attributes are Booleans related to the progression logic, where stalled

165

CHAPTER 9. DETECTION OF AMPLIFICATION TAS
indicates that the instruction suffers a pipeline stall caused by another instruction,
whereas progress indicates whether the instruction may proceed to the next stage.
Fig. 9.1 illustrates an instruction progressing through the pipeline.

I... ...
currentstage

latencydelay progress

stalling semantics

Figure 9.1: Canonical pipeline model (from [26]): the advancement of (up-stream or downstream) instruction I in the pipeline is allowed by the progressattribute, which depends on the latency in its current stage and on the stallingsemantics. The delay attribute enumerates the number of cycles when I wasstalled so far because of the other (downstream or upstream) instruction.
Since BMC is used, one must provide the bound up to which the model

checker performs the transitions from one state to another (cf. Sec. 3.2.3). For the
purpose of studying the effects of local variations for the downstream instruction,
the model checker should perform transitions, i.e., advance the instructions through
the pipeline, up to the completion of the downstream instruction in all behaviors.
It is not necessary to check whether the upstream instruction could overtake the
downstream instruction, nor delaying it, when the downstream instruction has
finished its execution. The completion of the downstream instruction means that
this instruction has reached the post stage, which is specified by an LTL (see
Sec. 3.1) property [26]:

G(step = depth =⇒ stagedown = post) (9.1)
where the step state variable models time by counting the number of transitions
(see Sec. 3.3.1), the current stage of the downstream instruction is stagedown

and the specified bound for BMC is depth. The LTL property ensures that the
specified depth is high enough to reach all states where the current stage of the
downstream instruction is post (in any execution scenario). The minimal depth for
which this property is verified is progressively established in a binary-search fashion,
starting from arbitrary high values.

Jan et al. [26] state that a sufficient condition for the absence of amplification
TAs is that the upstream instruction should never be able to delay the downstream
instruction (e.g., contrary to the example of Table 2.2 that shows a TA). The vio-
lation of this property indicates that the total execution time of a sequence may not
be compositional, i.e., some hardware reasons prevent from considering instructions

166

9.1. SCALE-UP MODELING PROCESS
independently, and thus the combination of their timing effects. Whenever a down-
stream instruction is stalled, its delay variable is incremented. If a strictly positive
value of the downstream delay is found by the model checker, there thus can be
an amplification TA. The authors formulate the following LTL property, to which
we further refer as the delay property. It states that a downstream instruction may
never be delayed [26]:

G(delaydown = 0) (9.2)
It is a sufficient condition, as strictly positive delay values do not imply amplification
TAs (i.e., there can be false positives) [26]. The generated counterexample, in
particular the initial values of both the upstream and the downstream instructions,
can be analyzed.

Addressing the dual pipeline of TriCore requires adapting both the
model itself and the associated verification procedure.

Adaptation of the Canonical Model

The canonical pipeline model is designed for a single pipeline; therefore, its exten-
sion to accommodate the dual execution pipeline of TriCore requires some changes.
As a direct consequence, the upstream and downstream instructions need to be
duplicated, in order to capture the interactions between the I- and LS-pipelines of
TriCore. We thus consider four instructions, denoted by dw .p and up.p, where
p ∈ {I ,LS}. We also note that the dw and up instructions, respectively, do not
necessarily belong to the same fetch bundle. Thus, in order to accurately model
this TriCore-specific extension, we associate, to each instruction, three additional
Boolean variables: pbus, dbus, and conflict . Their semantics is as follows: pbus
and dbus indicate, respectively, whether the instruction needs to access the SRI
bus through the PMI and/or DMI, and conflict captures if the instruction is
currently subjected to interference due to priority rules (which are to be detailed
below). Thus, pbus and dbus are set whenever the required instruction/data do
not reside in the local cache or scratchpad memory. These two attributes, ini-
tialized with non-deterministic values (cf. Sec. 3.3.1), refer to specific stages and
are constant, i.e., their values remain unchanged after the initial state. We also
note that the dbus attribute for an instruction that is neither a load nor a store
(in particular an I-instruction) is not set. The conflict attribute is part of the
progression logic (it is computed and it is not constant).

Adaptation of the Verification Procedure

The verification procedure [26] is adapted likewise. The up.LS instruction serves
as the reference point and is initially placed in the pre stage, while the three other
instructions can be freely placed in any pipeline stage. The only constraint is that
the (older) instruction dw .p has to be more advanced than the instruction up.p,
p ∈ {I ,LS}, in the respective pipeline, according to the total order of stages S
defined in Sec. 9.1.2. As a consequence, we obtain the following two properties,

167

CHAPTER 9. DETECTION OF AMPLIFICATION TAS
adapted from formulae (9.1) and (9.2):

G(step = depth =⇒ (stagedw .LS = post ∧ stagedw .I = post)) (9.3)
G(delaydw .LS = 0 ∧ delaydw .I = 0) (9.4)

Property (9.3) extends Property (9.1) as the downstream instructions of both
pipelines should terminate their execution, whereas Property (9.4) expresses a
sufficient condition for the absence of amplification TAs in the TriCore microar-
chitecture, as it is originally stated for a single pipeline, by Property (9.2).

9.1.2 . Progression and Stalling Logic
In the canonical model [26], when an instruction enters a pipeline stage, its latency
is initialized with the corresponding value in bl . Then, every transition (specified in
the next block) after which the instruction has to remain at least one more cycle
in the stage decrements the latency of the instruction—unless the progression
logic stalls the instruction due to another instruction in the pipeline. The baseline
latencies (bl) thus are only minimal latencies, as some conditions may require
stalling and thus delay instructions more than they may require themselves (as
illustrated in Table 2.2). The result (progress) from the progression logic is based
both on the remaining cycles (latency) and on the conditions that may induce
stalling (stalled). In addition to the actual pipeline stages of the processor, the
models contain two special stages, pre and post , where instructions reside before
entering the actual pipeline and after completion, respectively. Both pipeline stages
have initial latencies of 1, as instructions can enter the pipeline as soon as possible
and post is always the last possible stage.

We must now specify the progression logic for TriCore. The structure of both
pipelines (see Fig. 2.2) is modeled as a totally ordered set of stages:

S = { pre, IF, ID,EX,EX2,WB,SB, post }

where stages EX2 and SB (for store buffer) are optional for the I- and LS-
pipelines, respectively—as shown in Fig. 2.2.

Progression Logic for Upstream Instructions
Formula (9.5) specifies under which conditions an up.p instruction (p ∈ {I ,LS})
is allowed to advance to the next stage in the TriCore model:

progress ′up.p ≜ latencyup.p ≤ 1∧¬stalled ′
up.p∧¬conflictup.p∧nextup.p ̸= stage ′dw .p(9.5)

This formula is expressed using the standard notation for state transitions (see
Ch. 3), where primed variables (e.g., progress ′up.p) indicate next state values, while
unprimed variables refer to current state values. We use the sign ≜ for vari-
able assignments and the sign = for variable comparisons.1 Variable latency (cf.

1As mentioned in Sec. 3.3.1, for better readability, we present here our specification in theform of first-order formulae.

168

9.1. SCALE-UP MODELING PROCESS

commondw ≜ (∃p ∈ {I ,LS} : stagedw .p = IF ∧ pbusdw .p ∧ latencydw .p > 1)

∨ (stagedw .LS = EX ∧ dbusdw .LS ∧ latencydw .LS > 1) (9.6)
stalled ′

up.LS ≜ commondw ∨ (stageup.I = IF ∧ pbusup.I ∧ latencyup.I > 1)

(9.7)
stalled ′

up.I ≜ commondw ∨ (stageup.LS = IF ∧ pbusup.LS ∧ latencyup.LS > 1)

∨ (stageup.LS = EX ∧ dbusup.LS ∧ latencyup.LS > 1) (9.8)
conflictup.LS ≜ (stageup.LS = pre ∧ pbusup.LS) ∧ (stagedw .LS = ID ∧ dbusdw .LS)(9.9)
conflictup.I ≜ (stageup.I = pre ∧ pbusup.I)

∧ [(∃x ∈ {dw , up} : stagex .LS = ID ∧ dbusx .LS)

∨ (stagedw .LS = pre ∧ pbusdw .LS)] (9.10)
Figure 9.2: Formulae capturing the particular progression logic for upstream in-structions.

Sec. 4.3.2) is used to check whether the instruction has completed its execution in
the current stage (e.g., completed its own cache miss or bus access). The Boolean
variable stalled indicates stalling due to the progression logic, which may prevent
the up.p instruction from advancing, e.g., due to another instruction experiencing
a cache miss. The newly introduced conflict attribute is used to model the in-
terference on the SRI bus. Finally, the up.p instruction may only advance if the
corresponding downstream instruction, dw .p, does not occupy the next stage.
We also note that next represents the next pipeline stage of the instruction, not
always the stage at the next step.

Formula (9.5) defines the progression logic of the dual pipeline, whose speci-
ficities are captured by the attribute stalled . Formulae (9.6) to (9.10), which
capture the details of the progression logic for upstream instructions, are grouped
together under Fig. 9.2 in order to increase readability. Formulae (9.6) to (9.8)
illustrate for the upstream instructions one variant of such a progression logic,
called whole [26] (cf. Sec. 4.3.2), where both pipelines are stalled simultaneously
whenever one of the pipelines needs to stall. Consequently, the stalled variables
characterize the stalling situations due to in-progress accesses, which occur when-
ever a bus access has already begun and is not about to complete. The stalling
of each pipeline is expressed through a common stalling condition given by For-
mula (9.6). As such, commondw denotes stalling of the upstream instructions
in the I- and LS-pipelines due to the downstream instructions. The instructions
involved in the stalling must access the SRI bus (the pbus or dbus attributes are

169

CHAPTER 9. DETECTION OF AMPLIFICATION TAS
set). It is important to note that only load operations may lead to baseline laten-
cies that are higher than 1. Due to this property, the class attribute is not tested
in association with the current stage being EX.

The up.LS instruction may only experience additional stalling when up.I is
in the IF stage (the second disjunct in Formula (9.7)), while the up.I instruction
may experience such stalling when up.LS is in the IF stage (the second disjoint in
Formula (9.8)) or in the EX stage (the second line of Formula (9.8)). We address
the stalling due to store instructions in the next section, where we present the
modeling of the store buffer.

Next, we address the interference of the shared SRI bus. The conflict
variables, e.g., in Formulae (9.9) and (9.10), capture the stalling due to interfer-
ence, in particular due to upcoming accesses. The SRI bus can be configured with
different arbitration policies, including round-robin and fixed-priority. We model a
fixed-priority scheme for the SRI bus, where data memory accesses are prioritized
over instruction fetches.

Formula (9.9) indicates that the (upstream) LS instruction may only expe-
rience interference on the SRI bus during instruction fetch, thus being stalled in
the pre stage, which is expressed by the first conjunct of (9.9). This moreover
may only occur when the downstream instruction dw .LS , in the ID stage, is to
start its execution (in the EX stage) and to access the SRI bus, expressed by the
second conjunct of (9.9). The up.I instruction may also experience interference
during instruction fetch from the dw .LS and up.LS instructions when either of
them is about to enter the EX stage while accessing the SRI bus, expressed by
the first disjunct in (9.10). The second disjunct addresses the particular case where
the up.I and dw .LS instructions are in the same fetch bundle, but span over two
cache lines or scratchpad accesses.

Pipeline Progression
An (upstream or downstream) x .p instruction advancement (where x ∈ {dw , up},
p ∈ {I ,LS}) in the pipeline is captured by Formula (9.11), according to the value
of the related progress ′x .p :

progress ′x .p =⇒ (stage ′x .p ≜ nextx .p ∧ latency ′
x .p ≜ blx .p .nextx .p) (9.11)

Whenever an instruction can advance one step in the pipeline, the stagex .p at-
tribute is updated with its new value nextx .p , and the latencyx .p attribute (for the
remaining cycles in the current stage) is initialized with the baseline latency blx .p
of the stage. Otherwise, the stagex .p attribute remains unchanged, as specified by
Formulae (9.12) and (9.13).

When an instruction cannot advance to the next stage and is not experiencing
stalling by another instruction, it must advance its execution in the current stage,
while decrementing its (remaining) latency in the stage, as in Formula (9.12):

[¬progress ′x .p∧¬stalled ′
x .p] =⇒ (stage ′x .p ≜ stagex .p∧latency ′

x .p ≜ latencyx .p−1)(9.12)
170

9.1. SCALE-UP MODELING PROCESS

commonup ≜ (∃p ∈ {I ,LS} : stageup.p = IF ∧ pbusup.p ∧ latencyup.p > 1)

∨ (stageup.LS = EX ∧ dbusup.LS ∧ latencyup.LS > 1) (9.15)
stalled ′

dw .LS ≜ commonup ∨ (stagedw .I = IF ∧ pbusdw .I ∧ latencydw .I > 1)(9.16)
stalled ′

dw .I ≜ commonup ∨ (stagedw .LS = IF ∧ pbusdw .LS ∧ latencydw .LS > 1)

∨ (stagedw .LS = EX ∧ dbusdw .LS ∧ latencydw .LS > 1) (9.17)
conflictdw .LS ≜ ⊥ (9.18)
conflictdw .I ≜ (stagedw .I = pre ∧ pbusdw .I)

∧ [(∃x ∈ {dw , up} : stagex .LS = ID ∧ dbusx .LS)

∨ (∃x ∈ {dw , up} : stagex .LS = pre ∧ pbusx .LS)] (9.19)
Figure 9.3: Formulae capturing the particular progression logic for downstreaminstructions.

Finally, whenever an instruction cannot progress since it is stalled by another
instruction, both stagex .p and latencyx .p remain unchanged, as in Formula (9.13):

[¬progress ′x .p ∧ stalled ′
x .p] =⇒ (stage ′x .p ≜ stagex .p ∧ latency ′

x .p ≜ latencyx .p)(9.13)
Progression Logic for Downstream Instructions
The progress formula for the downstream instructions, in (9.14), is slightly simpler
than its counterpart for the upstream instructions, given in (9.5). Explicit checking
whether the next stage is available is unnecessary, due to the ordering of the
instructions.

progress ′dw .p ≜ latencydw .p ≤ 1 ∧ ¬stalled ′
dw .p ∧ ¬conflictdw .p (9.14)

Similar stalling conditions stand for the downstream instructions. The de-
tails about the progression logic for downstream instructions are given by Formu-
lae (9.15) to (9.19), which are grouped together under Fig. 9.3. Formulae (9.16)
and (9.17) are expressed based on a common stalling condition, in (9.15), when-
ever SRI bus accesses occur. Similar to the stalling of the upstream instructions,
expressed by Formulae (9.7) and (9.8), the second disjunct in (9.16) and the last
two disjuncts in (9.17) represent the stalling of the downstream instructions by
the downstream instruction in the other pipeline, due to PMI accesses in For-
mula (9.16), and either PMI or DMI accesses in Formula (9.17).

The priority rules for the downstream instructions are complementary with
those of the upstream instructions. Formulae (9.9) and (9.10) express that the

171

CHAPTER 9. DETECTION OF AMPLIFICATION TAS
dw .LS instruction has a higher priority wrt. the upstream instructions, regard-
less of PMI or DMI accesses. Consequently, interference scenarios involving
an upstream instruction are not expressed in Formula (9.18), corresponding to
the conflicts experienced by the (downstream) LS instruction. As for the dw .I
instruction, it does not have priority, even in the case of simultaneous PMI ac-
cesses, as previously expressed by Formula (9.9). Consequently, the formula of
conflictdw .I must explicitly contain all the possible interference scenarios with the
up.LS instruction.2 Formula (9.18) states that the conflict attribute of the dw .LS
instruction is always false. In particular, the priority rule about data memory ac-
cesses and instruction fetches prevents dw .LS from experiencing interference on
the SRI bus from the up.LS instruction. This is consistent with the upstream
Formula (9.9).

Formula (9.19) captures all the possible SRI bus interference between the
dw .I instruction and both up.LS and dw .LS instructions. Such interference occurs
only when dw .I performs accesses through the PMI, expressed by the first conjunct
of (9.19). Moreover, data memory accesses are prioritized and may come from
either the up.LS or the dw .LS instruction, as expressed by the first disjunct of
(9.19). The particular case of instructions from the same fetch bundle entailing
delays are addressed with Formulae (9.10) and (9.19) (i.e., the second disjunct).

The cycles leading to the stalling of a downstream instruction due to an
upstream instruction are accumulated into the delay attribute:

delay ′
dw .p ≜delaydw .p + (9.20)

[¬progress ′dw .p ∧ stage ′dw .p ̸= post ∧ (stalled ′
dw .p ∨ latency ′

dw .p = 0)]

Formula (9.20) states that the delaydw .p variable of a downstream instruction is
incremented if the instruction cannot progress (first conjunct in the second line),
provided that this particular instruction is still in the pipeline (i.e., not in the post
stage, cf. the second conjunct), either because it is stalled by another instruction
(i.e., the stalleddw .p variable) or because of a conflict (third conjunct). In this
latter case, the remaining latency of the instruction has elapsed. Note that we
have adopted here the convention where true terms evaluate to 1 and false to 0.

9.1.3 . Store Buffer

We model the asynchronously operating store buffer as a special pipeline stage,
SB, placed at the end of the LS-pipeline between the WB and post stages, as
shown in Fig. 2.2. Asynchronous memory accesses of SB are modeled using the
regular baseline latencies associated with the SB stage, which are similar to those
of load instructions (in the EX stage).

2It cannot interfere with the up.I instruction, since both instructions may only access thePMI in the IF stage.

172

9.1. SCALE-UP MODELING PROCESS
Fill Status
The store buffer of the TriCore microarchitecture contains several entries. Multiple
store instructions may thus place their data into the store buffer without stalling—
as long as the store buffer has free entries. Consequently, and in contrast to regular
stages, the up.LS and dw .LS instructions can both simultaneously occupy entries
in the store buffer. While we do not model the actual fill level (number of entries
occupied), it suffices to introduce a new Boolean instruction attribute prio SB that
is associated with up.LS and dw .LS and may be valid for store instructions. This
variable is set whenever a store instruction performs a memory access and the SB
is full. It is a constant attribute, initialized with a non-deterministic value.

The model checker consequently explores all possible scenarios where the
buffer’s fill status impacts the arbitration between SRI bus accesses. A store
may only stall the pipeline (for its writing operation) when the buffer is full (i.e.,
prio SB is set).3 Whenever the prio SB attribute of a store instruction is not set,
this instruction may stall in the WB stage.

SRI Bus Conflicts
The store buffer may asynchronously access the SRI bus, potentially causing ad-
ditional bus conflicts. It has the lowest priority and only starts new transfers when
the bus is idle (i.e., after stalling in the WB stage). An ongoing transfer from the
store buffer may cause interference when the bus was initially idle. In addition, the
store buffer has the highest priority whenever it is full. These new forms of bus
conflicts need to be added, as disjuncts, in formulae (9.9)-(9.10) and (9.18)-(9.19).
Moreover, the existing conflicts related to instructions in the ID stage only apply
to loads; for example, an expression such as (stagedw .LS = ID ∧ dbusdw .LS) must
be replaced by: (stagedw .LS = ID ∧ classdw .LS = load ∧ dbusdw .LS).

New conflicts arise from store instructions that are currently in the WB stage
and about to enter SB, when the dbus and prio SB (i.e., the store buffer is full)
attributes are set. These conditions indeed prevent store instructions from stalling
in the WB stage in this case. The formulae that capture these conflicts are refined
accordingly with all these considerations and are presented under Fig. 9.4.

Upstream instructions. Formulae (9.21) and (9.22) present the refined conflict
conditions for the upstream instructions. The up.I instruction accessing the bus
through the PMI could experience conflicts from an ongoing transfer of the store
buffer (through the DMI) (third disjunct in (9.21)) or from a forthcoming transfer
(when the store buffer is full) (last disjunct in (9.21)). Thus, the up.I instruction
experiences conflicts before entering the IF stage (in pre).

The up.LS instruction accessing the PMI may experience the same conflicts
(due to the dw .LS instruction). Moreover, as shown in Formula (9.22), a forth-
coming (up.LS) load may experience exactly the same conflicts. Finally, we also

3This will be refined in Sec. 9.1.3 by taking into account the case of dependent loads (For-mula (9.26)).

173

CHAPTER9.DETECTIONOFAMPLIFICATIONTAS

conflictup.I ≜ (stageup.I = pre ∧ pbusup.I) (9.21)
∧ [(∃x ∈ {dw , up} : stagex .LS = ID ∧ classx .LS = load ∧ dbusx .LS)

∨ (stagedw .LS = pre ∧ pbusdw .LS)

∨ (∃x ∈ {dw , up} : stagex .LS = SB ∧ dbusx .LS ∧ latencyx .LS > 1)

∨ (∃x ∈ {dw , up} : stagex .LS = WB ∧ classx .LS = store ∧ dbusx .LS ∧ prio SBx .LS)]

conflictup.LS ≜ {(stageup.LS = pre ∧ pbusup.LS) ∧ [(stagedw .LS = ID ∧ classdw .LS = load ∧ dbusdw .LS) (9.22)
∨ (stagedw .LS = SB ∧ dbusdw .LS ∧ latencydw .LS > 1)

∨ (stagedw .LS = WB ∧ classdw .LS = store ∧ dbusdw .LS ∧ prio SBdw .LS)]}
∨ {(stageup.LS = ID ∧ classup.LS = load ∧ dbusup.LS) ∧ [(stagedw .LS = SB ∧ dbusdw .LS ∧ latencydw .LS > 1)

∨ (stagedw .LS = WB ∧ classdw .LS = store ∧ dbusdw .LS ∧ prio SBdw .LS)]}
∨ {(stageup.LS = WB ∧ classup.LS = store ∧ dbusup.LS ∧ ¬prio SBup.LS)

∧ [∃x ∈ {dw , up} : stagex .I = pre ∧ pbusx .I]}
conflictdw .I ≜ (stagedw .I = pre ∧ pbusdw .I) (9.23)

∧ [(∃x ∈ {dw , up} : stagex .LS = ID ∧ classx .LS = load ∧ dbusx .LS) ∨ (∃x ∈ {dw , up} : stagex .LS = pre ∧ pbusx .LS)

∨ (∃x ∈ {dw , up} : stagex .LS = SB ∧ dbusx .LS ∧ latencyx .up > 1)

∨ (∃x ∈ {dw , up} : stagex .LS = WB ∧ classx .LS = store ∧ dbusx .LS ∧ prio SBx .LS)]

conflictdw .LS ≜ (stagedw .LS = WB ∧ classdw .LS = store ∧ dbusdw .LS ∧ ¬prio SBdw .LS) (9.24)
∧ [(∃x ∈ {dw , up} : stagex .I = pre ∧ pbusx .I) ∨ (stageup.LS = pre ∧ pbusup.LS)

∨ (stageup.LS = ID ∧ classup.LS = load ∧ dbusup.LS)]

Figure 9.4: Refined formulae capturing the priority rules of interference due to the store buffer.

174

9.1. SCALE-UP MODELING PROCESS
need to consider that an (up.LS) store instruction may experience conflicts in
the WB stage, when the store buffer is not full. In this case, only the I-pipeline
may cause interference (through the PMI), since the dw .LS instruction is more
advanced in the pipeline.

Downstream instructions. A similar reasoning applies for the downstream in-
structions. Formula (9.23), for example, refines the conflict terms for the down-
stream instructions, as expressed by (9.19). The additional terms are the same
as in the conflictup.I formula. A dw .LS store instruction may only experience
conflicts related to the SB in the WB stage, when the store buffer is not full.
Moreover, the dw .LS instruction cannot interfere with a store transfer of up.LS ,
because it is more advanced in the pipeline than the up.LS instruction. This single
new form of conflict must be added as a disjunction with ⊥ in Formula (9.18),
which actually leads to the refined Formula (9.24). This formula states that a
dw .LS store instruction in the WB stage, expressed by the first conjunct, may
suffer interference from fetching both upstream instructions, from a downstream
instruction dw .I or from a memory load by an upstream instruction up.LS .

Store Buffer and Dependent Loads
In the pipeline model, a hazard caused by a dependent load may occur when dw .LS
is a store instruction in the WB or SB stage, and up.LS is a load instruction in the
EX stage (see Sec. 2.2.2).4 Our pipeline model needs to distinguish whether both
instructions refer to the same address, namely this is the case of a memory-reference
hazard. We address this particular point using a new global Boolean attribute
memdep to indicate, when valid, that dw .LS and up.LS are two dependent load/
store instructions. The model checker again explores all possible assignments of
this variable—while respecting consistency, i.e., the two instructions are of the
required (load and store) class. Moreover, as the data cache has a write-allocate
policy [32], the dependent load always experiences a cache hit, i.e., dbusup.LS is
not set:

memdep =⇒ ¬dbusup.LS (9.25)
Since the dependent load stalls the pipeline, the access of the store buffer to the
SRI bus is prioritized—similar to the case when the store buffer is full. Conse-
quently, the prio SBdw .LS attribute is set:

(classdw .LS = store ∧ classup.LS = load) =⇒ prio SBdw .LS (9.26)
Finally, we model the impact of these stalls by extending the progression logic as
follows:

. . . ∨ (stageup.LS = EX ∧memdep ∧ stage ′dw .LS ̸= post)

4Note that for the specific handling of hazards (cf. Sec. 2.2.2), the progression logic differsfrom the whole logic.

175

CHAPTER 9. DETECTION OF AMPLIFICATION TAS
Formula (9.5) is refined into (9.27) such that, in the case of the up.LS instruction,
the new stalling condition does not refer to another instruction but to up.LS itself:

progress ′up.LS ≜ latencyup.LS ≤ 1 ∧ ¬stalled ′
up.LS (9.27)

∧ ¬conflictup.LS ∧ nextup.LS ̸= stage ′dw .LS

∧ ¬(stageup.LS = EX ∧memdep ∧ stage ′dw .LS ̸= post)

The additional expression prevents an upstream store instruction to progress through
the pipeline until the downstream has completed its write transfer, i.e., is pro-
gressing to the post stage. Note that the memdep attribute cannot be set if the
instruction classes are not load and store; hence, the instruction classes are not
tested in the previous expression:

(classdw .LS ̸= store ∨ classup.LS ̸= load) =⇒ ¬memdep (9.28)
In addition, we update the current latency of the EX stage on a specific

condition that is given by Formula (9.29). The dependent load instruction only
performs the memory access after the other memory access, of the store instruction,
terminates. Consequently, the latency is decremented once the store access is
completed. Formula (9.12) is thus refined with a specific version for the up.LS
instruction that captures the advancement from any stage of this instruction. This
formula is obtained by substituting in Formula (9.12) the antecedent (between
square braces [·]) with the condition of Formula (9.29):

[¬progress ′
up.LS ∧ ¬stalled

′
up.LS ∧ (9.29)

¬(stageup.LS = EX ∧memdep ∧ stage
′
dw .LS ̸= post)]

The specific up.LS version of Formula (9.13) (when the latency remains un-
changed) is refined in accordance by substituting the antecedent with Formula (9.30):

[¬progress ′
up.LS ∧ ¬stalled

′
up.LS ∧ (9.30)

(stageup.LS = EX ∧memdep ∧ stage
′
dw .LS ̸= post)]

9.1.4 . WAW Hazards
Write-after-Write (WAW) dependencies entail interactions between both pipelines;
more precisely they may delay the progression in the LS-pipeline (cf. Sec. 2.2.2).
Similarly to dependent loads, a set of new attributes is associated with the instruc-
tions of the LS-pipeline (waw dwx .LS and waw upx .LS , x ∈ {up, dw}), indicating
a WAW dependency from an upstream load or a downstream load to either dw .I
or up.I , respectively. The progression logic of instructions in the LS-pipeline is
then extended, as presented in Formulae (9.31) and (9.32) in Fig. 9.5, to encode
the various scenarios by adding a disjunct to Formulae (9.7) and (9.16) for up.LS
and dw .LS .

176

9.2. EVALUATION OF THE TRICORE MODEL

stalled ′
up.LS ≜ commondw ∨ (stageup.I = IF ∧ pbusup.I ∧ latencyup.I > 1)

∨ (stageup.LS = ID ∧ [(waw dwup.LS ∧ (stagedw .I = ID ∨ stagedw .I = EX))

∨ (waw upup.LS ∧ (stageup.I = ID ∨ stageup.I = EX))]) (9.31)
stalled ′

dw .LS ≜ commonup ∨ (stagedw .I = IF ∧ pbusdw .I ∧ latencydw .I > 1)

∨ (stagedw .LS = ID ∧ [(waw dwdw .LS ∧ (stagedw .I = ID ∨ stagedw .I = EX))

∨ (waw updw .LS ∧ (stageup.I = ID ∨ stageup.I = EX))]) (9.32)
Figure 9.5: Refined formulae capturing the progression logic of (upstream anddownstream) instructions, due to WAW hazards.

Formulae (9.31) and (9.32) state that the up.LS and dw .LS instructions in
the ID stage stall when they depend either on the dw .I or the up.I instructions.
The total number of stall cycles is iteratively determined by the current stage (ID
or EX) of the related instruction, which may progress meanwhile.

9.2 . Evaluation of the TriCore Model

We conducted two types of experiments on our model of the TriCore microarchi-
tecture. The first benefit drawn from these experiments is the validation of the
model (Sec. 9.2.1). The second type of experiments concerns the evaluation of
amplification TAs in our TriCore model (Sec. 9.2.2).

9.2.1 . Validation of the Model

In the first type of experiments, we empirically validate the specification presented
in Sec. 9.1. We are interested in the cycle-accurate timing behavior of the microar-
chitecture. To the best of our knowledge, available simulation tools for TriCore,
such as TSIM (TriCore Instruction Set Simulator) [107, p.45] or TRACE32 In-
struction Set Simulator [108], are driven by the functional specification, thus at the
instruction level. As far as we are concerned, we rely on documentation, in partic-
ular the description of the timing behavior of the TriCore pipelines [33]. We test
our model in order to check that it is compliant with the pipeline description [33] in
all the documented scenarios. Note that we do not aim at being exhaustive in our
modeling, since we focus on the effects arising from the shared bus (for instance,
we do not model all instruction opcodes). We produce traces on our model from
trivial invariants, entailing a trace output and we check that the output is conform
to the documentation. Such experiments allow us to establish confidence in our
model during its development.

For instance, we fixed the instruction classes so that classdw .LS ≜ store and

177

CHAPTER 9. DETECTION OF AMPLIFICATION TAS
classup.LS ≜ load (with arbitrarily fixed values for the two other instructions) and
we observed the traces describing an unrolled execution up to a certain depth,
both with memdep not set and set. We checked that when this variable is set, the
behavior of our model specified by Formulae (9.27) and (9.29) is conform to the
timing behavior described in Table 2.4b, extracted from the documentation [33,
p.7]. Similarly, for instance, we fixed classup.LS ≜ load and classup.I ≜ mac, as
well as the initial stage for up.I (up.LS being initialized at pre): stageup.I ≜ pre
(same fetch bundle) or stageup.I ≜ ID (i.e., previous fetch bundle). In each case,
we produced traces with both waw upup.LS set or not set. We thus checked
here that the part of the behavior specified by Formula (9.32) is conform to the
description made in Tables 2.5b and 2.5d, from the documentation [33, pp.6, 14].

We adopted this approach for all the cases covered by the model. Moreover,
we also checked that all counterexamples found by the further assessments are
consistent, e.g., the execution scenarios reported in Table 9.2 (Sec. 9.2.2) and
Fig. 10.2 (Sec. 10.3). An example of a refinement of the model in the wake of the
analysis of such a counterexample is detailed in Sec. 10.3.2.

9.2.2 . Results of the Detection

In the following experiments, we will assess amplification TAs in (variants of) the
TriCore microarchitecture, using the verification strategy from Sec. 9.1.1. Aside
from expanding the results of the existing comparative study [26], with
a more complex microarchitecture, our work also evaluates the scalability
of the canonical model for tracking amplification TAs. Then, we evaluate
possible refinements where data dependencies are considered, we analyze a coun-
terexample showing an amplification TA and finally, we address a code-specific
extension. Table 9.1 reports the runtime of the model checker (column Runtime)
for various microarchitecture models (column Core model). It mentions various
configurations of the TriCore model (TRx) and of the basic in-order pipeline [26]
for comparison (INx). The model configurations differ in terms of the modeled
core features and reduction strategies that are applied (cf. the check marks ✓).
For these experiments, the bounded model checker explores a minimal number of
steps (see Sec. 3.3.1) for the downstream instructions to reach the post stage (see
Sec. 9.1.1), as indicated by column Min. bound.

Evaluated Core Models

In order to proceed with an incremental evaluation of the scalability of the model,
we firstly evaluate the TriCore model without data dependencies.

TriCore Adaptation. Without data dependencies, instructions within the iso-
lated I-pipeline do not interfere with the LS-pipeline. Consequently, the only
stage in the I-pipeline that may affect the execution is IF. Since stalling entails
the same stall cycles in the LS-pipeline, modeling instruction progressions in the
I-pipeline is not relevant wrt. TAs. Their initial stage is thus set to post in the

178

9.2.EVALUATIONOFTHETRICOREMODEL

Table 9.1: Evaluation of various configurations (i.e., modeled features and reduction strategies) of the TriCore model (TRx), com-pared to the basic in-order model with the whole progression logic [26] (INx).
Features Reductions

Core model Configuration Sto
reb

uffe
r

Me
m.

dep
.

WA
W

Gen
era

l
Inte

rfer
enc

e
WA

W
Cod

e-s
pec

.

Min. bound Runtime (h:min:s)
Basic In-order (IN1) 33 0:00:29(IN2) ✓ 33 0:00:15

TriCore (single pipeline) (TR1) ✓ ✓ 38 0:06:42(TR2) ✓ ✓ ✓ 38 0:05:14(TR3) ✓ ✓ ✓ ✓ 38 0:05:23

TriCore (dual pipeline)
(TR4) ✓ ✓ ✓ 53 8:23:04(TR5) ✓ ✓ ✓ ✓ ✓ >53 >7:23:53(TR6) ✓ ✓ ✓ ✓ ✓ ✓ 53 6:52:15(TR7) ✓ ✓ ✓ ✓ 53 3:48:35(TR8) ✓ ✓ ✓ ✓ ✓ 53 3:38:38(TR9) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 42 0:28:49

179

CHAPTER 9. DETECTION OF AMPLIFICATION TAS
simplest configurations of the TriCore model. This feature is referred to as Inter-
ference reduction in Table 9.1. The resulting model configurations are quite similar
to the single-pipeline models [26]; hence, they are qualified as single-pipeline con-
figurations. Table 9.1 provides the result for the whole-logic basic in-order pipeline
(IN1) [26] (with the same verification support as for TriCore), and for the basic
TriCore model (TR1). The significant difference in runtimes—from seconds (IN1)
to minutes (TR1)—is due to the state space of the TriCore model being extended
by the multiple possible baseline latencies for the additional stage SB representing
the store buffer (see Sec. 9.1.3).

General Reductions. The previous case studies [26] were simpler than the Tri-
Core model and hence, aggressive state space reductions were not required. This
point changes in the case of the TriCore model, as the verification of this par-
ticular model requires efficient verification strategies. The verification procedure
must explore all possible baseline latencies for each stage. First, varying the values
of baseline latencies (bl) of stages that will never be reached by an instruction,
because its initial stage is greater in the pipeline order, is useless for the verification
procedure. These values are thus systematically enforced to one at the initial step:

∀x ∈ {up, dw}, ∀p ∈ {I ,LS}, ∀s ∈ S, (s < stagex .p =⇒ blx .p .s = 1) (9.33)
This kind of reductions is implemented in UCLID5 as assumptions (see Sec. 3.3.1).
For instance, if the initial stage is different than pre or IF, the latency of IF is 1.

Furthermore, all values in the range defined by the maximal value of the
possible baseline latencies of the initial stage must be preserved. For instance, a
complete 10-cycle latency for a memory access actually entails the exploration of
all the values (bldw .LS .EX) that are ranged between 1 and 10, if the (downstream
LS) instruction is initialized in the EX stage. Indeed, the instruction may have
already completed partially its latency for its current stage (EX) before the up.LS
instruction is about to enter the pipeline (pre in the initial state). Nevertheless,
the state space could be reduced by retaining only concrete baseline latencies for
non-initial stages. For instance, an instruction in the IF stage should use, in the
EX stage, the particular baseline latencies of Table 2.3b, instead of all the range
defined by the maximal value (10).

Configurations (TR2) and (IN2) in Table 9.1 restart (TR1) and, respectively,
(IN1) with added General reductions. Though the absolute differences are not
substantial, the relative (20 % and 48 %) gains on execution times are significant.
The preserved partial baseline latencies for SB are responsible for the lower global
decline as to the TriCore model.

Data Dependencies
The specific refinements of the TriCore model are evaluated hereafter.

Memory References. Configuration (TR3) shows that the additional verifica-
tion time when adding data memory references to the TriCore model (by relaxing

180

9.2. EVALUATION OF THE TRICORE MODEL
the value of the memdep attribute now possibly set) is only of 9 seconds. Actually,
as explained in Sec. 9.1.3, the single situation allowing this kind of dependencies
is a load following a store, with the baseline latency for the load in EX excluding
cache misses by design.

Dual Pipeline. Dealing with WAW dependencies (as in the next paragraph) re-
quires the second pipeline in the model, marked in Table 9.1 by dual pipeline. Con-
figuration (TR4) shows a state space explosion and a significantly higher runtime,
even in the absence of WAW dependencies. Though modeling a dual pipeline (thus
including the I-pipeline) without WAWs does not impact amplification anomalies,
this configuration exposes the associated state space explosion. On the one hand,
this setting generates multiple cases with different baseline latencies for fetching
in the I-pipeline, and on the other hand, it causes more stalling cases of both
pipelines.

WAW Dependencies. Some reductions are thus necessary before modeling WAW
dependencies. Note that the I-pipeline may interfere with the LS-pipeline when
actual WAWs are explored. In that case, the following Boolean attributes may be
set and the Interference reduction needs to be refined:

(¬waw upup.LS ∧ ¬waw updw .LS) ⇐⇒ stageup.I = post (9.34)
(¬waw dwup.LS ∧ ¬waw dwdw .LS) ⇐⇒ stagedw .I = post

The reduction holds only when an instruction in the I-pipeline does not inter-
fere with the LS-pipeline, namely it does not cause dependencies for any LS-
instructions. However, the previous depth of 53 is not enough to verify the prop-
erty. Indeed, hazards cause more stall cycles and more transitions to complete.
(TR5) already takes more than 7 hours, despite the Interference reduction. Be-
sides, WAW hazards can only happen in ID and EX. It is not necessary to explore
the (no-effect) occurrences of data dependencies if these stages are out of reach.
At the initial step, we thus assume the so-called WAW reduction:

stagedw .LS > ID =⇒ (¬waw updw .LS ∧ ¬waw dwdw .LS) (9.35)
stageup.I > EX =⇒ (¬waw upup.LS ∧ ¬waw updw .LS)

stagedw .I > EX =⇒ (¬waw dwup.LS ∧ ¬waw dwdw .LS)

The first implication means that the downstream LS-instruction is considered in-
dependent of both upstream and downstream I-instructions if it is initialized after
the ID stage. The last two implications mean that I-instructions after the EX
stage do not cause dependencies for any LS-instructions. These implications have
a side effect when combined with Formulae (9.2.2), since they transitively boil
down to replacing all the targeted stages by post , i.e., applying the Interference
reduction in an efficient way. With the WAW reduction (TR6), the verification
with possible WAW hazards still requires the former bound of 53 and a quite
sensible verification runtime.

181

CHAPTER 9. DETECTION OF AMPLIFICATION TAS
Assessment of the Store Buffer. We notice that, when comparing configu-
rations (TR1) and (IN1), the presence of the SB in configuration (TR1) entails
a considerable overhead, in comparison to the basic in-order pipeline (IN1) with
an otherwise comparable feature set. This is further emphasized by configuration
(TR7), which re-confirms the role of the SB model on the state space size. When
stores are excluded from the possible values of instruction classes to be explored
(through an assumption in the initial state), the verification with possible WAW
hazards (TR5) does not require a greater bound, nor some specific reductions.
This verification process completes even faster than the full exploration with the
WAW reduction of configuration (TR6). Furthermore, configuration (TR8) shows
that the WAW reduction mainly affects stores. Indeed, the verification times with
the reduction (TR8) or without the reduction (TR7) are similar in the absence of
the SB. This shows that the main side effect of the WAW reduction on the Inter-
ference reduction is due to the states involving a store instruction in the SB. The
numerous possible baseline latencies associated with this stage entail a significant
state space explosion.

Analysis of a Counterexample

Table 9.2 presents a counterexample returned by the verification procedure on con-
figuration (TR6). This example is based on two multiply-accumulate instructions,
up.I and dw .I , and a load following a store (up.LS and dw .LS), with the store
buffer not full. The load does not depend on the store but has a WAW dependency
with up.I . The data writing in SB (dw .LS) and the data reading in EX (up.LS)
have each a baseline latency of 5 cycles, representing scratchpad accesses through
the SRI bus (see Table 2.3b). The pipeline progression is conform to the above
specification, in particular with the dw .LS instruction stalled in the WB stage due
to the whole progression logic, which does not apply to the WAW dependency.

The presence of a TA is confirmed when another execution scenario with the
same instruction classes, same order, same dependencies, and same initial stages,
but without delays, can be deduced from the counterexample. Table 9.2 shows such
a scenario (*), whose behavior in the I-pipeline is identical but in which the load
instruction does not need to access the SRI bus, since data are accessible after a
cache hit. Due to the store buffer and its conflict rule, this scenario entails a global
timing variation ∆G = t14− t9 = 5 larger than the local variation ∆L = 5−1 = 4

relative to the data operation of the load (in Table 2.3b).

Note that similar counterexamples without data dependencies can be gener-
ated by the model checker, under the specified assumptions. Unlike the SB, data
dependencies do not introduce new types of TAs. The delays introduced by the re-
lated stalls are not the primary sources of TAs, since they are not due to unknown
hardware states while executing the code. Our model accurately represents the
occurrence of data dependencies and the timing behavior of the counterexample
from Table 9.2.

182

9.2.EVALUATIONOFTHETRICOREMODEL

Table 9.2: A counterexample provided by the verification procedure on TriCore (TR6) and a deduced counterpart (*) where the(LS) downstream instruction is not delayed by the upstream instruction, confirming an amplification TA.
pipeline instr. class t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14I dw mac ID EX EX2 WB post

up mac IF ID EX EX2 WB
LS dw store IF ID EX WB WB WB WB WB WB SB SB SB SB SB post

up load pre IF ID ID EX EX EX EX EX WB post post post post post
LS dw store IF ID EX WB SB SB SB SB SB post* up load pre IF ID ID EX WB post post post post

183

CHAPTER 9. DETECTION OF AMPLIFICATION TAS
Code-Specific Verification
This approach can be specialized to be code-specific, by restricting the non-
determinism for the successive instructions (class, latencies...). Such software
reductions tend to represent the execution of one particular input program. On
the other hand, a code-specific approach requires modeling the ISA more finely. In
such a model, even though the hardware is known to exhibit amplification TAs,
the execution of a given program might hide them.

The aforementioned verification configurations generate generic counterexam-
ples. When we take into consideration a model of the application code, we should
expect more specific counterexamples and even to prove the absence of ampli-
fication TAs wrt. a path of this code. A first step towards generating specific
counterexamples requires fixing the types of the four instructions and their code
order (through UCLID5 assumptions). Configuration (TR9), for example, restarts
configuration (TR6) after restricting both I-instructions to be of class multiply-
accumulate (with loads as LS-instructions). The total order imposed on the four
instructions is the following:

stageup.LS ≤ stageup.I ≤ stagedw .LS ≤ stagedw .I

which is consistent with the previously described partial order. As expected, the
set of counterexamples does not include the store buffer and the case of Table 9.2.
Also, the execution time is more than 14 times less than in configuration (TR6),
advocating for a code-specific TA detection. Recall, however, that this detection
deals with one program path only.

9.3 . Summary: our Modeling and Verification Approach

We proposed a formal and executable model of TriCore, a sophisticated microar-
chitecture that we introduced in Ch. 2 and that is used in the automotive industry.
Our model is specialized to evaluate real-time systems wrt. amplification TAs.
We extended the existing abstraction called canonical pipeline model (cf. Ch. 4),
by considering both structural and functional elements of the TriCore microar-
chitecture: stalling logic, store buffer, data dependencies. We specified each of
these elements and we evaluated them with the formal verification framework of
UCLID5 (cf. Ch. 3).

We showed how to achieve a scalable detection of amplification TAs by inte-
grating appropriate reductions in the TriCore model: we must take advantage of
the hardware specificities to remove useless configurations from the state space.
We also showed that a code-specific detection is valuable in order to reduce the
verification runtime.

184

10 – TOWARDS THE IDENTIFICA-
TION OF SOFTWARE-RELATED
PATTERNS

In this chapter, we aim at exploring the various execution scenarios that lead
to downstream instructions being delayed (i.e., delay scenarios). Our approach

advances the systematic study of amplification TAs in two directions. First, it
enables us to identify code sequences that do not exhibit TAs when executed on
the TriCore microarchitecture. Second, it analyses the potential sources of TAs.
In future work, this should help integrate the undesired timing behavior in WCET
analysis and deploy counter-measures to limit their occurrence.

We thus monitor and guide the verification engine towards covering the state
space in desired ways, aiming to obtain multiple counterexamples related to the
delay property of Formula (9.4). Our abstraction (the adapted canonical pipeline
model) is too coarse to determine accurate execution sequences, as it relies on a
limited number of representative instructions. We propose refinement strategies
towards constructing software-related execution patterns showing TAs, and their
projection on our pipeline model of TriCore.

First, we formulate the problem that consists in getting multiple counterex-
amples (Sec. 10.1). Then, we detail the implementation of several SMT-based
strategies (Sec. 10.2), and finally, we present the assessment of those strategies
on the TriCore model (Sec. 10.3).

10.1 . Exploration of Multiple Counterexamples

Hereafter, we explain why we need to adapt the verification procedure in order to
obtain multiple counterexamples (Sec. 10.1.1) and how we handle the generated
SMT problems in this pursuit (Sec. 10.1.2).

10.1.1 . Delay Scenarios

The delay scenario of a counterexample generated from Formula (9.4) is the state
corresponding to the smallest depth at which a downstream instruction exhibits a
strictly positive delay in the counterexample. The anatomy of such a counterex-
ample shows a prefix, i.e., a series of states leading to the delay scenario, the delay
scenario itself, and a suffix, where either the delay value is incremented again or
the instructions advance through the pipeline (or stay in the post stage).

There exist counterexamples from one transition after the initial state, i.e.,
delay scenarios found at a depth of one. Consequently, one run of the BMC
engine up to a certain bound basically provides a set of counterexamples of different

185

CHAPTER 10. TOWARDS SOFTWARE-RELATED PATTERNS
lengths (see Sec. 3.3.1). However, these counterexamples might actually share the
same prefixes and delay scenarios. In this case, the execution in the pipeline is
more or less unrolled. Moreover, different scenarios might exist at the same depth,
from different initial states, and thus remain unexplored. We must guide the
verification in order to derive new counterexamples and delay scenarios
(whatever the depth), as detailed in Sec. 10.2.

The whole progression logic (see Sec. 9.1.2), though realistic for the TriCore
model, entails many stall cycles, shared by several instructions, and leads to long
counterexamples. Moreover, these stall cycles are likely to give false positives
from Property 9.2 (cf. Sec. 9.1.1), which would require a thorough inspection of
the counterexamples. In order to better exemplify the proposed strategies for the
multiple counterexample generation, we implement the so-called only-upstream
logic [26], adapted for the TriCore model. With this progression logic, upstream
instructions are still stalled whenever an instruction performs an SRI bus access,
while downstream instructions can advance through the pipeline if an upstream in-
struction performs a bus access. Note that a downstream instruction may still suffer
interference from the SRI bus when the instruction itself requires the bus. We also
refine the transition relation for the delay variables, initially in Formula (9.20), so
as to restrict the delay scenarios to cases where a downstream instruction cannot
progress through the pipeline though it has finished its execution in the current
stage. We thus remove the stalled attribute in the disjunction of Formula (9.20):
the delays are incremented only when the latency has elapsed (or is about to
elapse).

10.1.2 . Specific SMT Problem

Hereafter, we implement specialized methods to control the provided counterex-
amples. Instead of letting the model checker call the SMT solver, we export the
SMT problems into files and then manipulate them through the Z3 API (see
Sec. 3.3.1). We dispose of functions sat, model and assert, which allow, re-
spectively, deciding whether the problem is satisfiable, getting an SMT model,1
i.e., an interpretation m (cf. Def. 3.8) that satisfies the problem, and adding new
SMT assertions as logical formulae (see Table 10.1).

The advantages of this direct manipulation of counterexamples/SMT models
are twofold. First, it simplifies the interaction with the SMT solver, when adding
new assertions based on the derived counterexamples. We furthermore dispose
of the push and pop functions (cf. Sec. 3.3.1), which allow us to conveniently
add and remove assertions during the exploration (see Table 10.1). Second, we
can target one specific depth, in particular the bound specified in UCLID5, and
avoid iterating up to this particular depth. We can work on the last iteration of
the unrolled model, thus a single SMT file corresponding to the bound. Note,

1In this chapter, we call ‘SMT model’ a model of a formula (cf. Def. 3.9) and we reserve thephrase “model” for the formal specification (of TriCore).

186

10.1.EXPLORATIONOFMULTIPLECOUNTEREXAMPLES
Table 10.1: Notations used in the counterexample-guided exploration strategies (Algorithms 10.1 to 10.3).

Variables and SMT problem
X Set of state variables defined in the pipeline specification (Ch. 9).
I ⊂ X Set of initial conditions (constant state variables, see Sec. 10.1).

IS = I ∪ {stagedw , stageup.I} Set of extended initial conditions (with stage variables, see Sec. 10.1).
max d Bound of the BMC problem described by the input problem smt pb.
Xd Set of SMT variables representing a valuation of the state variables at depth d .

V =
⋃

d ∈ {0,...,max d}Xd Set of SMT variables representing the state variables over all depths.
xd ≡ x xd ∈ Xd is a depth-level SMT variable representing state variable x ∈ X .
F Set of all first-order formulae with V as symbols of variables.
P Designates the power set.

Special functions implicitly operating on the input variable smt pb ∈ P(F)
sat : P(F)→ {⊤,⊥} ⊤ if the SMT problem is satisfiable, ⊥ otherwise (relies on the solver).

model : P(F)→ (V → D) Get an (SMT) model of the SMT problem from the solver.
Operators and functions on SMT variables/models

Y [d ∈ N] : Y ∩ Xd Subset of the terms in Y that represent a valuation of state variables at depth d .
Y{x ∈ X} :

⋃
{xd ∈ Y | xd ≡ x} Subset of the terms in Y that represent (depth-level) values of state variable x .

[[·]]m : V → D Interpretation of an SMT variable in model m (i.e., a suitable value in domain D).
delay depth : (V → D)→ N Minimal depth s.t. the delaydw variable is not null: min{d ∈ N | V [d]{delaydw} ≠ (0, 0)}.

Special functions implicitly updating the input variable smt pb (P(F)→ P(F))
assert Update the SMT problem with a new assertion.
push Add next assertions into the stack (new scope) (Algorithm 10.2).
pop Remove previous assertions from the stack (scope end) (Algorithm 10.2).

Other notations (Algorithm 10.2)
list Get an (arbitrarily ordered) list from a set.
rem Remove the first element of a list.
yield Return a value from a (Python) generator and set the reentry point at the next statement.

CHAPTER 10. TOWARDS SOFTWARE-RELATED PATTERNS
however, that this SMT file contains the unrolled terms related to the valuations
of the state variables, at each depth up to the bound. The symbols in V represent
the variables of the SMT formula, i.e., all the valuations of the state variables in
X (see Sec. 3.2.3). The operators denoted by Y[d ∈ N] and Y{x ∈ X} allow the
extraction of all the terms related to depth d (whatever the state variable) and,
respectively, all the terms related to the values of state variable x ∈ X (whatever
the depth) (see Table 10.1). A delay scenario derived from the file may thus
actually occur at any depth of the unrolled model. Function delay depth allows
finding this depth from a given SMT model (see Table 10.1).

The set of all state variables is denoted by X (see Table 10.1). Some state
variables of the TriCore model remain constant after their initialization, for ex-
ample those corresponding to instruction attributes (for any instruction when ap-
propriate2): class, bl (Sec. 4.3.2), pbus, dbus, prio SB , memdep, waw dw and
waw up (Sec. 9.1.1). These state variables form the subset I of initial conditions
(see Table 10.1). These variables, as well as those of the stage attribute (which may
be updated on each transition), are not explicitly initialized and hence can assume
any non-deterministic values in their domains, except for stageup.LS , initialized
with a fixed value. All these state variables, which form the extended initial con-
ditions IS (see Table 10.1), introduce non-determinism through the assumptions
governing the possible values in the initial state (see Sec. 3.3.1). Consequently,
one valuation of all these variables (IS) in the initial state totally determines an
unrolled execution up to a given bound. The value of a variable x ∈ IS in the
initial state, in particular, can thus be accessed through: V[0]{x}. The other state
variables, e.g., of the attributes latency , delay , stalled , and progress, are com-
puted according to relations between other state variables and may be updated on
each transition.

We propose different methods to explore the state space and to identify
patterns that exhibit TAs when executed on the TriCore model. While these
methods differ in the way that the explored counterexamples are evaluated, they all
share a first step, that of fixing the bound, i.e., the maximal depth—and thus one
SMT file. This depth must be sufficiently large to include all the counterexamples
and guarantees that no interaction between the upstream and the downstream
instructions is omitted, i.e., it must verify the property of Formula (9.3). We
take the lowest depth verifying this property (i.e., similar to the minimal bounds
reported in Table 9.1).

10.2 . Counterexample-Guided Exploration Strategies

Since non-determinism is expressed only in the initial states (Sec. 10.1.2), we can
focus on the SMT symbols related to the extended initial conditions, in order to
exclude the SMT models that assign all of them the same values as previously

2For instance, the memdep attribute globally characterizes two instructions.

188

10.2. COUNTEREXAMPLE-GUIDED EXPLORATION STRATEGIES
explored. Those symbols are later referred to as initial terms. This method is
described by Algorithm 10.1, which shows the blueprint for the development of
two other exploration methods (described below and assessed in Sec. 10.3).

Algorithm 10.1: Basic counterexample-guided explorationstrategy
Input: smt pb,X , I, IS,V

1 while sat do
2 m ←model;
3 forall x ∈ IS do
4 print [[V [0]{x}]]m ;
5 d ← delay depth(m);
6 forall x ∈ X \ I do
7 print [[V [d]{x}]]m ;
8 assert ¬

(∧
x ∈ IS V [0]{x} = [[V [0]{x}]]m

);
Algorithm 10.1 takes as input the set of terms V in particular, thus notably

the downstream delays for each depth.3 The algorithm iterates until there are no
more counterexamples (line 1), meaning that all initial conditions entailing a TA
have been explored. While the problem at hand is still satisfiable, the algorithm
gets (line 2) an SMT model and prints/saves the values of all the initial terms
(lines 3 and 4). Algorithm 10.1 focuses on the extended initial conditions, with the
initial terms being used to block the current initial state, i.e., evict it from the next
possible initial states, through additional SMT assertions (line 8). We note that
these values do not provide information about the delay scenario and consequently,
Algorithm 10.1 aims to determine the minimal depth where the downstream delay
has a positive value (line 5). Moreover, this algorithm prints/saves the values of
terms at this depth where the delay scenario occurs (lines 6 and 7). It suffices to
consider the non-constant terms, i.e., corresponding to the state variables in X \I.
Lines 2 to 7 are shared by the subsequent two algorithms that we designed in this
context of counterexample-guided exploration for amplification TAs.

The drawback of Algorithm 10.1 lies in its poor runtime performance, expected
since it depends on the number of counterexamples. There are many initial con-
ditions to lead to the same delay scenario, e.g., due to different baseline latencies
in the same initial stage: the complex memory hierarchy of TriCore implies that
many baseline latencies exist for the same stage. However, Algorithm 10.1 serves
as a blueprint for other, more efficient, counterexample-driven exploration
heuristics. As expected from such heuristics, the sets of explored counterexamples
are not complete but meet particular criteria, presented hereafter.

3This delay delay dw is here actually a tuple (one delay per I or LS downstream instruction)and a positive delay value is a tuple different from the null delay = (0, 0).

189

CHAPTER 10. TOWARDS SOFTWARE-RELATED PATTERNS
initial terms t1 t2 t3
̸=
̸=
̸=

= ̸=
= ̸=

̸=
= = ̸=

Figure 10.1: Principle of the broad-spectrum exploration on a simplifiedthree-term example, where each edge represents a call to the SMT solver andeach node represents the additional blocking (̸=) or fixing (=) constraints as-serted on term values wrt. their parents.

10.2.1 . Broad-Spectrum State-Space Exploration

This first proposed heuristic is a refinement of Algorithm 10.1, aiming to detect
delay scenarios from various extended initial conditions. In essence, we implement
a procedure based on scopes and incremental solving (see Sec. 3.3.1) for approxi-
mating an exhaustive solver [66].

Principle. Fig. 10.1 maps the procedure on a simplified case study, made of
n = 3 initial terms. Starting with a satisfiable set of assertions and a subsequent
SMT model (i.e., the root of the tree), the state space is split into n = 3 domains
that are guaranteed to be disjoint (i.e., first level in the tree). The i -th domain has
the first i − 1 terms blocked from taking the same values (denoted by ̸=) and the
i -th term fixed with the same value (denoted by =) as in the root. The first node
blocks the first term, so that it cannot take the same value as in the root, and thus
makes the domain disjoint from the root. The second node fixes the value of the
first term (with the same value as in the root) and blocks the value of the second
term, making the domain disjoint from the root and the previous node. Finally,
the last node fixes the first two terms (disjoint from the previous two nodes) and
blocks the third term (disjoint from the root). These three nodes represent new
assertions imposed on the solver: one blocking and several fixing assertions for each
node. For each new domain, if the problem with the additional set of assertions
remains satisfiable, a new SMT model is derived. The same process is started
over in a new scope, taking into account only the n − i terms without additional
constraints so far. In Fig. 10.1, when deriving the second level in the tree, only the
last two terms are considered from the first node of the first level, only the third
term from the second node, whereas the last node is terminal. Switching between
branches means defining new scopes through push/pop operations on assertions.
Scopes are destroyed only on switching; hence the current assertions are kept from
one node to its children (not represented in Fig. 10.1). In this way, all domains
are guaranteed to be disjoint.

This procedure cannot distinguish more than two counterexamples that differ
only in a single term. It is, however, a sufficient argument for the noticeable

190

10.2. COUNTEREXAMPLE-GUIDED EXPLORATION STRATEGIES
improvement of the solving runtime.

Algorithm 10.2: Broad-spectrum incremental exploration
Input: smt pb,X , I, IS,V

1 Function broadExpl(list of terms)
2 if sat then
3 m ←model;
4 forall x ∈ IS do
5 print [[V [0]{x}]]m ;
6 d ← delay depth(m);
7 forall x ∈ X \ I do
8 print [[V [d]{x}]]m ;
9 yield m;
10 forall term ∈ list of terms do
11 push;
12 assert term ̸= [[term]]m ;
13 forall t <list of terms term do

/* <l means that the rank in list l is smaller. */

14 assert t = [[t]]m ;
15 new list ← rem(list of terms);
16 forall m ∈ broadExpl(new list) do
17 yieldm;
18 pop;
19 init list ← list(

⋃
x ∈ IS V [0]{x});

20 forall m ∈ broadExpl(init list) do
21 yieldm;

Application to the Problem. Algorithm 10.2 describes the procedure exempli-
fied in Fig. 10.1 with the specific terms of our SMT problem. It is based on a
recursive function, which is called at the beginning of a new branch. Each call
(except the one in line 20) is accordingly framed by a scoping push/pop pair. This
function takes as input the list of remaining terms on which it should still operate.
The first call (line 20) is made with the list of all initial terms (from extended
initial conditions). The function checks whether there is at least one counterex-
ample/SMT model. If so, an SMT model is obtained (line 3) and the initial
terms (lines 4 and 5) and the delay scenario (lines 7 and 8) are printed/saved. The
function terminates (line 9) with this first SMT model as its result.

Algorithm 10.2 was implemented in Python and the main function, broadExpl ,
was coded as a generator (i.e., a function with the behavior of an iterator). The

191

CHAPTER 10. TOWARDS SOFTWARE-RELATED PATTERNS
generator yields the current value, i.e., it returns the value but reenters at the next
statement when it resumes (see Table 10.1).4 Due to the loop iterating over the
generator (line 20), the function re-enters at line 10. Here, the outer loop (lines
10 to 18) represents the origin of all the branches from the root (Fig. 10.1), i.e.,
all the content of each loop iteration is confined within a scope. Within these
scopes, it adds the (first) new assertions of the branches (lines 12 to 14), namely
the blocking assertion and the fixing assertions of the child in the current branch.

The recursive calls of this function (line 16) exhaustively explore all the children
of the current branch; this function terminates when there are no more counterex-
amples in the current branch. Since a new iterator object is created on line 20,
those calls make the function re-enter at the beginning (line 2) where the sat-
isfiability of the problem at hand is checked. In the case that this problem is
unsatisfiable, the exploration of the current branch is over and the current iterator
reaches its end. Its caller can continue its execution, performing pop operations
on the branch assertions (line 18). If the problem remains satisfiable, an SMT
model is derived (line 3) and this process re-starts for the next children. Finally,
each new iterator prepares all further additional assertions in the branch (loop on
line 10) for it to consider one less term, as in Fig. 10.1.

10.2.2 . Delay-Scenario Enumeration

Though the previous method is designed to provide a broad spectrum of counterex-
amples in an efficient way, it is incomplete (in the sense that it cannot enumerate
all the delay scenarios of the TriCore model). Moreover, since many extended initial
conditions can lead to the same delay scenario, the procedure described by Algo-
rithm 10.2 provides sets of counterexamples that share many similarities. These
counterexamples slightly differ in terms of the initial conditions (e.g., baseline la-
tencies) and may, in fact, have the same delay scenarios. The next heuristic extends
the initial-state exploration of Algorithm 10.2 to a more accurate exploration of
counterexamples, which is based on the enumeration of the delay scenarios.

Algorithm 10.3 is similar to Algorithm 10.1, as it iterates until the SMT model
under consideration becomes unsatisfiable. The terms concerning the delaydw ,
stagedw , and stageup state variables play a particular role, since they may char-
acterize a delay scenario. As previously presented in Algorithm 10.1, the delay
scenario is extracted (lines 5 to 7), for each SMT model. This does not only
print/save the counterexamples (by exporting the values, line 7), but also serves
to guide the next solving iterations (as in Algorithm 10.1). In that respect, we
do not fix any term, but block the delay scenario. Since the same delay scenario
might happen again at any depth (see Sec. 10.1.1), we block it considering the
relevant terms corresponding to any depth. We thus prevent further counterexam-
ples from having, at any depth, the same combination of stages as in the current
SMT model m, as soon as the associated delay has a positive value (line 10).

4https://docs.python.org/3/glossary.html#term-generator

192

https://docs.python.org/3/glossary.html#term-generator

10.3. EVALUATION

Algorithm 10.3: Delay-Scenario Enumeration
Input: smt pb,X , I, IS,V ,max d

1 while sat do
2 m ←model;
3 forall x ∈ IS do
4 print [[V [0]{x}]]m ;
5 d ← delay depth(m);
6 forall x ∈ X \ I do
7 print [[V [d]{x}]]m ;
8 forall d ′ ∈ {1, ...,max d} do9

assert ¬(V [d ′]{delaydw} ≠ (null delay = (0, 0))

∧ V [d ′]{stagedw} = [[V [d]{stagedw}]]m
∧ V [d ′]{stageup} = [[V [d]{stageup}]]m);

Contrary to Algorithm 10.2, Algorithm 10.3 does not incrementally construct its
solution. Its efficiency comes from the fact that it handles less counterexamples
than Algorithm 10.1 (i.e., due to the fact that there are fewer delay scenarios than
initial conditions).

10.3 . Evaluation

Hereafter, we assess the broad-spectrum exploration (Algorithm 10.2) and the
delay-scenario enumeration (Algorithm 10.3) on the TriCore model. We present
the results derived from two core model configurations, described in Table 9.1: the
code-specific one (TR9) and the more general one (TR6).5

Table 10.2 presents relevant statistics wrt. the state-space exploration of both
aforementioned algorithms on both model configurations: the code-specific con-
figuration (Table 10.2a) and the more general configuration (Table 10.2b). The
broad-spectrum exploration is faster in both configurations of the model.
This method is particularly efficient in finding numerous counterexamples.
For this method, the number of calls to the solver (so as to check whether a
certain set of assertions is satisfiable) is greater than the number of the provided
counterexamples. This is indeed due to the fact that Algorithm 10.2 does not stop
when a certain SMT problem becomes unsatisfiable, but continues its exploration
on another branch, representing an unexplored part of the state space.

Table 10.3 enumerates all the counterexamples for the code-specific configu-
ration, and Table 10.4, for the general configuration.

5With the only-upstream progression logic, however (see Sec. 10.1.1).

193

CHAPTER 10. TOWARDS SOFTWARE-RELATED PATTERNS
Table 10.2: Overview of the generation of multiple counterexamples (cex.).

(a) Code-specific configuration (features of core model TR9)
Method Calls to Z3 Number of cex. Total time (s)Algorithm 10.2 134 64 331.5Algorithm 10.3 13 13 379

(b) General configuration (features of core model TR6)
Method Calls to Z3 Number of cex. Total time (s)Algorithm 10.2 626 218 2950.3Algorithm 10.3 64 64 4721.1

I dw
up

LS dw
up

mac EX
mac ID
load ID
load pre

depth = 1

(a) Initial conditions

EX2EX
IDIF

depth = 2

(b) Intermediate state

WBEX
ID
IF

(c) Delay scenario
Figure 10.2: Interpretation of the counterexamples derived from our proce-dures based on SMT solving.

10.3.1 . Analysis of the Broad-Spectrum Exploration

Presentation of the Results. Tables 10.3a and 10.4a present the results from
the broad-spectrum method, in terms of initial conditions and delay scenarios (in
the two columns). Move precisely, both tables show the valuation of the initial
terms, making up extended initial conditions that lead to an amplification TA, and
the valuation of relevant state variables at the depth at which the delay scenario
occurs. Many actual counterexamples differ in their initial terms due to several
factors: the bus accesses, the baseline latencies, and the WAW attributes. For
brevity, we regroup the counterexamples under shared values of the stage terms,
for the initial conditions and the delay scenario, all at once. Hence, each line
represents as many counterexamples as described by the multiplicity column and
these counterexamples share the same initial stages and the same delay scenarios.
In short, these counterexamples provide different execution patterns (instruction
classes, baseline latencies, dependencies, etc.) leading to the same delay scenario,
from the same initial stages. In both Tables 10.3a and 10.4a, the attributes of
downstream instructions and upstream instructions are presented in pairs (i.e., the
first element referring to the I-pipeline and the second element, to the LS-pipeline).
Finally, the term for the initial upstream stage only concerns the I-pipeline, the
LS-instruction being always initialized in the pre stage.

194

10.3. EVALUATION
Table 10.3: Counterexamples found for the code-specific model configura-tion (TR9)—also see Table 10.2a.

(a) Broad-spectrum exploration (Algorithm 10.2)
Initial conditions Delay scenariomultiplicity stagedw stageup.I depth stagedw stageup1 (IF, pre) pre 3 (EX2, ID) (ID, IF)1 (EX, IF) pre 7 (post, ID) (IF, IF)1 (post, IF) pre 9 (post, ID) (IF, IF)1 (IF, pre) pre 10 (post, ID) (pre, IF)16 (EX, ID) ID 2 (WB, ID) (EX, IF)15 (ID, ID) IF 3 (WB, ID) (ID, IF)1 (EX, ID) pre 2 (WB, ID) (IF, IF)15 (ID, ID) pre 3 (WB, ID) (IF, IF)13 (EX, ID) IF 2 (WB, ID) (IF, pre)

(b) Delay-scenario enumeration (Algorithm 10.3)
Initial conditions Delay scenario

stagedw stageup.I depth stagedw stageup1 (IF, pre) pre 7 (EX, ID) (IF, IF)2 (ID, ID) IF 1 (EX, ID) (IF, pre)3 (IF, pre) pre 6 (EX2, ID) (IF, IF)4 (IF, pre) pre 3 (EX2, ID) (IF, pre)5 (post, pre) pre 3 (post, ID) (ID, IF)6 (EX, IF) pre 7 (post, ID) (IF, IF)7 (post, pre) pre 3 (post, ID) (IF, pre)8 (IF, pre) pre 7 (post, ID) (pre, IF)9 (EX, ID) ID 2 (WB, ID) (EX, IF)10 (ID, ID) IF 3 (WB, ID) (ID, IF)11 (IF, pre) pre 10 (WB, ID) (IF, IF)12 (ID, ID) IF 3 (WB, ID) (IF, pre)13 (IF, pre) pre 9 (WB, ID) (pre, IF)

Consistency of the Delay Scenarios. By definition of a delay scenario, at least
one element (related to the LS or I-pipeline) of the progressdw term should be false,
at least one of delaydw should have a positive value and no element of delaydw

should be greater than 1. These conditions are checked at the end of the respective
algorithms. All the counterexamples reported in Table 10.3a have the same values
for the class attribute ((mac, load) for both the downstream and upstream tuples),
fixed accordingly with the code-specific example (as in Sec. 9.2.2). We also check
that the memdep and prio SB attributes are always false in the code-specific
counterexamples, a condition that is not necessary for the general configuration.

Analysis of the Delay Scenarios. The delay scenarios in Table 10.3a correspond
to the (LS) downstream instruction about to perform a data memory access while
another memory access to fetch an upstream instruction is in-progress. Indeed, all
have in common a delay scenario, as represented in Fig. 10.2c, with the LS down-
stream instruction waiting in the ID stage6 and at least one upstream instruction
in the IF stage. Moreover, we verify that the initial terms for the bus accesses are

6Just before the EX stage where the SRI bus access will occur through the DMI (Sec. 9.1.2).

195

CHAPTER 10. TOWARDS SOFTWARE-RELATED PATTERNS
Table 10.4: Counterexamples found for the general model configuration(TR6)—also see Table 10.2b.

(a) Broad-spectrum exploration (Algorithm 10.2)
Initial conditions Delay scenariomultiplicity stagedw stageup.I depth stagedw stageup1 (IF, WB) pre 1 (ID, WB) (IF, IF)1 (post, ID) ST 3 (post, WB) (ST, EX)32 (pre, ID) pre 1 (pre, EX) (IF, IF)2 (pre, EX) pre 1 (pre, EX) (IF, IF)22 (pre, ID) pre 1 (pre, EX) (IF, IF)1 (pre, EX) pre 1 (pre, EX) (IF, IF)19 (pre, ID) pre 1 (pre, EX) (IF, IF)2 (pre, ID) pre 1 (pre, EX) (pre, IF)71 (pre, IF) pre 1 (pre, ID) (IF, IF)14 (pre, IF) pre 1 (pre, IF) (pre, pre)4 (pre, WB) pre 1 (pre, post) (IF, IF)3 (pre, ST) pre 1 (pre, ST) (IF, IF)3 (pre, WB) pre 1 (pre, ST) (IF, IF)4 (pre, ST) pre 1 (pre, ST) (IF, IF)2 (pre, WB) pre 1 (pre, ST) (IF, IF)6 (pre, ST) pre 1 (pre, ST) (IF, IF)3 (pre, WB) pre 1 (pre, ST) (IF, IF)4 (pre, ST) pre 1 (pre, ST) (IF, IF)6 (pre, WB) pre 1 (pre, ST) (IF, pre)1 (pre, ST) pre 1 (pre, ST) (IF, pre)3 (pre, WB) pre 1 (pre, ST) (IF, pre)4 (pre, ST) pre 1 (pre, ST) (pre, IF)2 (pre, WB) pre 1 (pre, ST) (pre, IF)2 (pre, ST) pre 1 (pre, ST) (pre, pre)6 (pre, EX) pre 1 (pre, WB) (IF, IF)

set accordingly.
Fig. 10.2 exemplifies such a delay scenario from the 16 gathered counterexam-

ples presented in Table 10.3a. Some initial terms of these counterexamples, i.e.,
the pipeline stages for the dw and up instructions in both pipelines, their class,
and the WAW dependencies, are represented in Fig. (10.2a). The subsequent un-
rolling of the transition system leads to an intermediate state (10.2b) (not exported
by the algorithm), where the dw .LS instruction experiences stalling because of a
WAW dependency (see Sec. 9.1.4). Lastly, the next unrolling of the transition
system, thus with a depth of 2, leads to the delay scenario (10.2c) reported by the
algorithm. All the other counterexamples presented in Tables 10.3 and 10.4 are
interpreted in the same way.

The general configuration, presented in Table 10.4a, aims towards identifying
patterns that do not exist in the code-specific configuration. Such patterns can
occur when store instructions create new interference on the bus. For instance, the
(6) counterexamples gathered in the last line of Table 10.4a show a delay scenario
where a store instruction (i.e., dw .LS), is stalled in the WB stage because of the
fetching of the upstream instructions, requiring the SRI bus with a higher priority.

Finally, recall that a delay scenario may be entailed by different initial condi-
tions. Initial conditions may differ in various ways (e.g., combinations of baseline
latencies and WAW dependencies) and thus lead to this scenario with the same
depth. Here, in both core-model configurations, the counterexamples represented

196

10.3. EVALUATION

Table 10.4

(b) Delay-scenario enumeration (Algorithm 10.3)
Initial conditions Delay scenario

classdw classup stagedw stageup.I depth stagedw stageup1 (other op, load op) (other op, load op) (IF, pre) pre 7 (EX, ID) (IF, IF)2 (other op, store op) (mac op, load op) (ID, WB) IF 1 (EX, WB) (ID, IF)3 (other op, store op) (other op, load op) (pre, ID) pre 3 (EX, WB) (IF, ID)4 (other op, store op) (mac op, load op) (ID, WB) pre 1 (EX, WB) (IF, IF)5 (mac op, store op) (other op, load op) (IF, pre) pre 9 (EX, WB) (pre, IF)6 (mac op, load op) (other op, load op) (IF, pre) pre 10 (EX2, ID) (IF, IF)7 (mac op, load op) (mac op, load op) (EX, ID) IF 1 (EX2, ID) (IF, pre)8 (mac op, load op) (other op, other op) (pre, IF) pre 4 (EX2, ID) (pre, IF)9 (mac op, store op) (mac op, load op) (pre, IF) pre 8 (EX2, WB) (EX, ID)10 (mac op, store op) (mac op, load op) (EX, WB) ID 1 (EX2, WB) (EX, IF)11 (mac op, store op) (mac op, load op) (EX, WB) IF 1 (EX2, WB) (ID, IF)12 (mac op, store op) (mac op, load op) (EX, WB) pre 1 (EX2, WB) (IF, IF)13 (mac op, store op) (other op, other op) (IF, pre) pre 9 (EX2, WB) (pre, IF)14 (other op, store op) (other op, load op) (pre, EX) pre 2 (ID, WB) (IF, ID)15 (other op, store op) (other op, load op) (pre, IF) pre 9 (ID, WB) (IF, IF)16 (mac op, store op) (other op, other op) (IF, pre) pre 5 (ID, WB) (pre, IF)17 (other op, store op) (other op, load op) (pre, WB) pre 1 (IF, WB) (pre, IF)18 (other op, store op) (other op, other op) (IF, WB) pre 1 (IF, WB) (pre, pre)19 (mac op, load op) (other op, load op) (EX, IF) IF 6 (post, ID) (ID, IF)20 (other op, load op) (mac op, other op) (EX, IF) pre 6 (post, ID) (IF, IF)21 (other op, load op) (other op, load op) (EX, ID) IF 2 (post, ID) (IF, pre)22 (other op, load op) (other op, other op) (post, pre) post 3 (post, ID) (post, IF)23 (mac op, load op) (mac op, load op) (ID, IF) pre 4 (post, ID) (pre, IF)24 (other op, load op) (other op, load op) (post, IF) ST 2 (post, ID) (ST, IF)25 (other op, load op) (other op, load op) (post, IF) EX 8 (post, ID) (WB, IF)26 (mac op, store op) (mac op, other op) (post, WB) ID 1 (post, WB) (EX, IF)27 (other op, store op) (mac op, load op) (pre, IF) pre 9 (post, WB) (EX2, ID)28 (mac op, store op) (mac op, load op) (post, WB) EX 1 (post, WB) (EX2, IF)29 (other op, store op) (other op, other op) (post, pre) IF 5 (post, WB) (ID, IF)30 (other op, store op) (mac op, load op) (post, WB) pre 1 (post, WB) (IF, IF)31 (other op, store op) (mac op, load op) (post, WB) IF 1 (post, WB) (IF, pre)32 (other op, store op) (other op, load op) (ID, IF) IF 5 (post, WB) (post, EX)33 (other op, store op) (mac op, load op) (post, WB) post 1 (post, WB) (post, IF)34 (other op, store op) (other op, load op) (IF, pre) pre 12 (post, WB) (pre, IF)35 (other op, store op) (other op, load op) (post, ID) ST 3 (post, WB) (ST, EX)36 (mac op, store op) (mac op, load op) (post, WB) ST 1 (post, WB) (ST, IF)37 (other op, store op) (mac op, load op) (post, pre) pre 5 (post, WB) (WB, EX)38 (mac op, store op) (other op, load op) (IF, pre) pre 9 (post, WB) (WB, ID)39 (mac op, store op) (other op, load op) (post, WB) EX 1 (post, WB) (WB, IF)40 (mac op, load op) (other op, load op) (pre, EX) pre 1 (pre, EX) (IF, IF)41 (other op, load op) (other op, other op) (pre, EX) pre 1 (pre, EX) (pre, IF)42 (mac op, load op) (mac op, load op) (pre, EX) pre 1 (pre, EX) (pre, pre)43 (other op, load op) (mac op, store op) (pre, IF) pre 1 (pre, ID) (IF, IF)44 (other op, load op) (mac op, other op) (pre, IF) pre 1 (pre, ID) (pre, IF)45 (other op, load op) (other op, other op) (pre, IF) pre 1 (pre, IF) (pre, pre)46 (other op, other op) (other op, load op) (pre, WB) pre 1 (pre, post) (IF, IF)47 (other op, other op) (other op, load op) (pre, WB) pre 1 (pre, post) (pre, IF)48 (mac op, store op) (mac op, load op) (pre, ST) pre 1 (pre, ST) (IF, IF)49 (mac op, store op) (mac op, load op) (pre, ST) pre 1 (pre, ST) (IF, pre)50 (other op, store op) (mac op, load op) (pre, ST) pre 1 (pre, ST) (pre, IF)51 (mac op, store op) (mac op, load op) (pre, WB) pre 1 (pre, ST) (pre, pre)52 (mac op, store op) (mac op, other op) (pre, WB) pre 1 (pre, WB) (IF, IF)53 (other op, store op) (other op, load op) (pre, EX) pre 1 (pre, WB) (pre, IF)54 (mac op, load op) (mac op, other op) (pre, IF) pre 5 (WB, ID) (IF, IF)55 (mac op, load op) (other op, load op) (ID, ID) IF 3 (WB, ID) (IF, pre)56 (mac op, load op) (other op, other op) (pre, IF) pre 5 (WB, ID) (pre, IF)57 (other op, store op) (mac op, load op) (pre, IF) pre 8 (WB, WB) (EX, ID)58 (other op, store op) (mac op, load op) (EX, WB) ID 1 (WB, WB) (EX, IF)59 (mac op, store op) (mac op, load op) (pre, IF) pre 9 (WB, WB) (EX2, ID)60 (other op, store op) (mac op, load op) (EX, WB) IF 1 (WB, WB) (ID, IF)61 (other op, store op) (mac op, load op) (pre, IF) pre 4 (WB, WB) (IF, ID)62 (other op, store op) (mac op, load op) (EX, WB) pre 1 (WB, WB) (IF, IF)63 (other op, store op) (mac op, load op) (EX, WB) IF 1 (WB, WB) (IF, pre)64 (mac op, store op) (other op, load op) (IF, IF) pre 4 (WB, WB) (pre, IF)

197

CHAPTER 10. TOWARDS SOFTWARE-RELATED PATTERNS
by one line always share the same depth for the delay scenario. It is important
to note that the experimental results are inherent to how the solver finds the
counterexamples.

10.3.2 . Analysis of the Delay-Scenario Enumeration

Presentation of the Results. Tables 10.3b and 10.4b also represent the com-
plete results of the delay-scenario enumeration, through Algorithm 10.3, on both
core-model configurations. The delay scenarios in both tables (i.e., from line 7
of Algorithm 10.3) are inherently different from one another and drive the
state-space exploration (i.e., line 10 of the algorithm). For each counterexample,
we report the depth of the delay scenario and the extended initial conditions. For
the general core configuration, we also present the instruction classes.

Correction of the Model. The procedure for multiple counterexample genera-
tion provided valuable feedback wrt. the TriCore model, as it exposed an incorrect
execution scenario in the model. More precisely, Table 10.4 presents execution
snapshots where I-instructions are incorrectly found in the ST stage, since only
the store instructions, in the LS-pipeline, may access this stage. This is shown,
for instance, in the second counterexample of Table 10.4a in the stageup.I column.
The incorrect execution scenario was due to a missing assumption, which we even-
tually added in the model. The possible values for the initial stage of the up.I
instruction are specified through UCLID5 assumptions on the dw .I instruction in
the initial state, in order to respect the upstream/downstream pipeline order. How-
ever, when dw .I was initialized in the post stage, the missing assumption caused
the up.I stage to be initialized with any existing stage value, in a non-deterministic
way (see Sec. 3.3.1). Such omissions increase the state-space size and hence, the
number of false positives that are reported when analyzing the counterexamples
(they do not entail false negatives).

Same Delay Scenarios with New Patterns. The delay scenarios shared by Ta-
bles 10.3b and 10.3a are from different counterexample lengths and, consequently,
are not exposed by the same extended initial conditions.7 For instance, the coun-
terexample in line 11, in Table 10.3b, shows a delay scenario that is already present
in Table 10.3a ((WB , ID), (IF , IF)) at different depths and under different initial
conditions (e.g., baseline latencies or WAW attributes). This entails new patterns
for the same delay scenario.

Equivalent Delay Scenarios. When a delay scenario is found by Algorithm 10.3,
the combination of the four stages (exposed by the pipeline model) and positive
delay value are to be eliminated through additional assertions over each depth (as
in Sec. 10.2.2). However, not the four instructions are responsible for the delay
scenario (as shown in Fig. 10.2). For example, the delay scenario in the first coun-

7Note that the converse is not true, as mentioned above.

198

10.4. SUMMARY: A STEP TOWARDS ACCURATE TA PATTERNS
terexample of Table 10.3a differs by the stageup column wrt. the counterexample
in line 3 of Table 10.3b. More precisely, the only variable with a different value in
the two delay scenarios is the stageup.I variable. This variable is not responsible
for the delay, as explained above (it is independent of a load being delayed when
an upstream instruction is fetched). As such, the delay scenario from Table 10.3a
(with the up.I instruction in ID) is the same effective scenario8 as the one from
Table 10.3b (with the up.I instruction in IF), merely with a greater global progress
in the pipeline.

Now, in the delay-scenario enumeration procedure, the four-stage combination
of the delay scenario with up.I in the ID stage (as in Table 10.3a) would be
possible only in prefixes of new counterexamples (when the delay is still zero),
not in suffixes. Yet, the delay scenario reported from the broad exploration (with
stageup.I in ID) is included in the suffix of the delay scenario reported by the
enumeration procedure (with stageup.I in IF, as in Table 10.3b), and hence, it
is not reported as a new counterexample by the solver. As a final remark, the
presentation order of these counterexamples does not reflect the order in which
the exploration produces them.

New Delay Scenarios. The code-specific counterexamples in Table 10.3 show
a single type of effective delay scenario—when the downstream load instruction is
delayed by an upstream fetching. For general counterexamples, the results of the
delay-scenario enumeration, in Table 10.4b, reveals delay scenarios that are not
reported by the broad-spectrum exploration, shown in Table 10.4a. We identify
in Table 10.4a (six) delay scenarios consisting in a downstream instruction stalled
in the WB stage because of an upstream instruction in the IF stage (last line).
We also need to identify and exclude impossible counterexamples. Table 10.4b
shows three such counterexamples (at lines 24, 35 and 36) and a delay scenario
involving the LS downstream instruction, stuck in the WB stage due to a fetching
access of an upstream instruction (line 52). Several counterexamples from a new
delay scenario, also involving the LS downstream instruction in the WB stage,
are presented in lines 32 and 37 of Table 10.4b. In these cases, the downstream
instruction is stalled because of a load upstream instruction performing a data
memory access through the SRI bus (the upstream instruction has a higher priority
as the store buffer is not full).

10.4 . Summary: a Step towards Accurate TA Patterns

In this chapter, we presented our counterexample-based heuristics to discover ex-
ecution scenarios that can entail amplification TAs and we reported the results of
their application to the TriCore model.

8Namely, the same scenario if we omit the pipeline stages that are not responsible for thedelay scenario.

199

CHAPTER 10. TOWARDS SOFTWARE-RELATED PATTERNS
The broad-spectrum strategy is a heuristic designed to find multiple coun-

terexamples efficiently. It allows uncovering TA patterns that result from various
(extended) initial conditions. It could also be specialized to explore many ini-
tial conditions entailing a specific delay scenario. The delay-scenario-enumeration
strategy is a heuristic designed to derive an exhaustive list of the delay scenarios.
It requires further analyzing the initial conditions that can lead to these scenarios
but provides all the delay scenarios that can manifest, and thus all the hardware
sources of amplification TAs.

We explained that the verification strategies presented in this chapter require
a more concrete model in order to determine precise execution patterns. As future
work, we intend to apply these strategies on such a model, with a view to inserting
(hardware or software) counter-measures that limit the occurrence of amplification
TAs, e.g., through compilation instructions. This direction should imply further
extensions to the current TriCore model, notably at the level of execution units
and accurate formal ISA semantics.

The work developed in this chapter is not specific to TriCore, nor to amplifi-
cation TAs. For instance, our heuristics could be applied to an SMT formulation
of our OoO-pipeline specification (cf. Ch. 5). Note that SMT formulations could
be derived from TLA+ specifications (e.g., our pipeline specification: see Part III)
through the use of a symbolic model checker [68] (cf. Sec. 3.3.2).

200

CONCLUSION & PROSPECTS

In this thesis, we studied timing anomalies (TAs), i.e., undesired phenomena that
manifest at the level of two different execution traces for the same program

path and that jeopardize predictability (cf. Part I). We distinguished two types
of TAs, namely counter-intuitive TAs (a local slowdown yielding a larger global
execution time) and amplification TAs (a local slowdown yielding a more significant
global slowdown). We exemplified counter-intuitive TAs on the most documented
class of hardware microarchitectures that allow TAs, specifically a simplified but
representative Out-of-Order (OoO) pipeline template, and from the most current
hardware source of variations, specifically the scheduling on the pipeline. We
exemplified amplification TAs on in-order pipelines, which recent work showed
to be prone to particular execution scenarios resulting from the interference on a
shared memory bus.

We demonstrated that the various existing formal definitions of counter-intuitive
TAs are limited in detecting TAs in practice, which explains the lack of tool sup-
port for the automatic detection of TAs (cf. Part II). We highlighted that the
major issue shared by all these definitions resides in the lack of causality, in order
to relate global effects to their local causes. We thus proposed a novel definition
of counter-intuitive TAs, integrating the notion of causality (cf. Part III). This
then allowed us to develop a detection procedure of counter-intuitive TAs and we
showed that this procedure is able to detect TAs on our hardware formal model,
and from a standard benchmark collection.

We also showed how the existing work on amplification TAs can be extended
to handle a more complex microarchitecture than previously studied in this field,
which requires scaling up an established verification procedure (cf. Part IV). We
set up reductions that appropriately reduce the state space that must be explored.
Moreover, contrary to the previously studied microarchitectures, our case study
is not specifically designed to be predictable. Consequently, amplification TAs
actually occur and it becomes necessary to identify the software patterns that
entail them. We presented several strategies to monitor the covered state space,
aiming at getting multiple execution scenarios that help building such patterns.

In ongoing work, we intend to improve our detection of counter-intuitive TAs,
by refining both our OoO-pipeline model and our verification procedure. We intend
to improve the model with a more concrete scheduler; the actual policy for assign-
ments to functional units, notably, will be relevant when reasoning more in depth
about compositions, a new, open problem that our work raised. Compositions also
require additional information, linking variations to one another so as to represent
side-effects on the hardware states. This might also help us integrate and address
a related problem, that of domino effects, potentially caused by a chain of TAs.

201

Conclusion & Prospects
We will also refine our model with other hardware resources (e.g., speculation
mechanisms) that are known to be potential sources of TAs. We will thus need to
adapt our procedure to integrate these hardware features into the input causality
relationships. Besides, we intend to speed up our detection procedure, applied on
the fly on the causal regions, which should serve as a basis to decompose the iden-
tification of TAs into subproblems, each of them concerns only a limited portion
of the execution traces. From the refined procedure, we intend to allow for more
variation sources (e.g., from the instruction cache) and to continue the practical
assessment on benchmarks that we reported in this work.

We also intend to provide an accurate formal definition of amplification TAs,
beyond the established precondition on which we based our work. Indeed, this
property actually concerns a projection of amplification TAs on a single trace,
whereas all TAs are hyperproperties referring to at least two distinct execution
traces (cf. Ch. 6). Though this property enabled us to advance the systematic
work on the detection of TAs, it does not allow for a better understanding of the
nature of amplification TAs. Amplification TAs are usually defined in the wake of
counter-intuitive TAs, and only illustrated from the scheduling of instructions on
an OoO pipeline. The amplification TAs caused by contention of memory accesses,
on which we focused, are sometimes introduced without a clear distinction from
counter-intuitive TAs (cf. Ch. 4), thus making it impossible to properly analyze
amplification TAs and their—distinct—consequences. We believe that our formal
framework and the notion of causality introduced for counter-intuitive TAs will be
also valuable for the purpose of clarifying amplification TAs, due to either OoO
scheduling or contention. In particular, we have identified execution scenarios
that could be TAs at first sight, but where the global time is not caused by the
variation. We could also tackle the combined consequences of both classes of
TAs: In the proved presence of counter-intuitive TAs, could a static analysis be
safe and reasonably precise without being exhaustive, if one can verify the absence
of amplification TAs and insert appropriate penalties during the analysis?

The precise identification of (any class of) TAs through automatic tools will
be helpful in order to insert mitigation mechanisms and efficient counter-measures
preserving convenient static analyses. In that regard, it is also of interest to inte-
grate such formal pipeline models into a WCET analyzer. As a final remark, the
ongoing development of open hardware initiatives might allow us to base our formal
modeling approach on existing hardware descriptions, e.g., from HDL (Hardware
Description Language) designs. This should be a further step towards detecting
TAs over increasingly complex microarchitectures.

202

BIBLIOGRAPHY

[1] Benjamin Binder et al. “Formal Processor Modeling for Analyz-ing Safety and Security Properties”. In: 11th European Congress
Embedded Real Time Systems (ERTS). 2022.

[2] Benjamin Binder et al. “Is This Still Normal? Putting Definitionsof Timing Anomalies to the Test”. In: IEEE 27th International Con-
ference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA). 2021, pp. 139–148. doi: 10.1109/RTCSA52859.
2021.00024.

[3] Benjamin Binder et al. “The Role of Causality in a Formal Defini-tion of Timing Anomalies”. In: IEEE 28th International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA). 2022, pp. 91–102. doi: 10.1109/RTCSA55878.2022.00016.

[4] Benjamin Binder et al. “Scalable Detection of Amplification Tim-ing Anomalies for the Superscalar TriCore Architecture”. In: For-
malMethods for Industrial Critical Systems - 25th International Con-
ference, FMICS 2020, Vienna, Austria, September 2-3, 2020, Proceed-
ings. Vol. 12327. Lecture Notes in Computer Science. Springer,2020, pp. 151–169. doi: 10.1007/978-3-030-58298-2_6.

[5] Benjamin Binder et al. “Formal Modeling and Verification forAmplification Timing Anomalies in the Superscalar TriCore Ar-chitecture”. In: International Journal on Software Tools for Tech-
nology Transfer (STTT) 24 (2022), pp. 415–440. issn: 1433-2787. doi:
10.1007/s10009-022-00655-1.

[6] Stefano Zanero. “Cyber-Physical Systems”. In:Computer 50.4 (2017),pp. 14–16.
[7] Alan Burns. “Scheduling Hard Real-Time Systems: a Review”. In:

Software Engineering Journal 6.3 (1991), pp. 116–128.
[8] John A Stankovic. “Real-Time and Embedded Systems”. In: ACM

Computing Surveys (CSUR) 28.1 (1996), pp. 205–208.
[9] John L. Hennessy and David A. Patterson. Computer Architecture,

Fifth Edition: A Quantitative Approach. 5th. San Francisco, CA, USA:Morgan Kaufmann Publishers Inc., 2012. isbn: 012383872X.
[10] Reinhard Wilhelm et al. “The Worst-Case Execution-Time Prob-lem—Overview of Methods and Survey of Tools”. In: ACM Trans.

Embed. Comput. Syst. (May 2008). doi: 10.1145/1347375.1347389.

203

https://doi.org/10.1109/RTCSA52859.2021.00024
https://doi.org/10.1109/RTCSA52859.2021.00024
https://doi.org/10.1109/RTCSA55878.2022.00016
https://doi.org/10.1007/978-3-030-58298-2_6
https://doi.org/10.1007/s10009-022-00655-1
https://doi.org/10.1145/1347375.1347389

BIBLIOGRAPHY
[11] Ingomar Wenzel et al. “Measurement-Based Timing Analysis”.In: ISoLA. 2008, pp. 430–444.
[12] Stephen Law and Ian Bate. “Achieving Appropriate Test Cover-age for ReliableMeasurement-Based TimingAnalysis”. In: ECRTS.ECRTS’16. 2016. doi: 10.1109/ECRTS.2016.21.
[13] GuillemBernat, AntoineColin, and StefanM. Petters. “WCETAnal-ysis of Probabilistic HardReal-Time System”. In: RTSS. 2002, pp. 279–288.
[14] Francisco J. Cazorla et al. “Probabilistic Worst-Case Timing Anal-ysis: Taxonomy and Comprehensive Survey”. In: ACM Comput.

Surv. (2019). doi: 10.1145/3301283.
[15] Robert Davis and Liliana Cucu-Grosjean. “A Survey of Probabilis-tic Timing Analysis Techniques for Real-Time Systems”. In: LITES(2019). doi: 10.4230/LITES-v006-i001-a003.
[16] Reinhard Wilhelm et al. “Static Timing Analysis for Hard Real-Time Systems”. In: vol. 5944. Jan. 2010, pp. 3–22. isbn: 978-3-642-11318-5. doi: 10.1007/978-3-642-11319-2_3.
[17] Jan Reineke and Rathijit Sen. “Sound and EfficientWCET Analysisin the Presence of Timing Anomalies”. In: WCET. 2009.
[18] Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. “TowardsCompositionality in Execution TimeAnalysis: Definition andChal-lenges”. In: SIGBED Rev. 12.1 (Mar. 2015), pp. 28–36. doi: 10.1145/

2752801.2752805. url: https://doi.org/10.1145/2752801.
2752805.

[19] SebastianHahn,Michael Jacobs, and JanReineke. “Enabling Com-positionality for Multicore Timing Analysis”. In: RTNS. RTNS ’16.Brest, France: Association for ComputingMachinery, 2016, pp. 299–308. isbn: 9781450347877. doi: 10.1145/2997465.2997471. url:
https://doi.org/10.1145/2997465.2997471.

[20] Thomas Lundqvist and Per Stenström. “Timing Anomalies in Dy-namically ScheduledMicroprocessors”. In: Real-Time Systems Sym-
posium. RTSS’99. 1999. doi: 10.1109/REAL.1999.818824.

[21] I. Wenzel et al. “Principles of Timing Anomalies in SuperscalarProcessors”. In: QSIC. 2005. doi: 10.1109/QSIC.2005.49.
[22] Jan Reineke et al. “ADefinition andClassification of TimingAnoma-lies”. In:WCET. WCET’06. 2006. doi: 10.4230/OASIcs.WCET.2006.

671.

204

https://doi.org/10.1109/ECRTS.2016.21
https://doi.org/10.1145/3301283
https://doi.org/10.4230/LITES-v006-i001-a003
https://doi.org/10.1007/978-3-642-11319-2_3
https://doi.org/10.1145/2752801.2752805
https://doi.org/10.1145/2752801.2752805
https://doi.org/10.1145/2752801.2752805
https://doi.org/10.1145/2752801.2752805
https://doi.org/10.1145/2997465.2997471
https://doi.org/10.1145/2997465.2997471
https://doi.org/10.1109/REAL.1999.818824
https://doi.org/10.1109/QSIC.2005.49
https://doi.org/10.4230/OASIcs.WCET.2006.671
https://doi.org/10.4230/OASIcs.WCET.2006.671

BIBLIOGRAPHY
[23] R. Kirner, A. Kadlec, and P. Puschner. “Precise Worst-Case Exe-cution Time Analysis for Processors with Timing Anomalies”. In:

ECRTS. ECRTS’09. July 2009. doi: 10.1109/ECRTS.2009.8.
[24] GernotGebhard. “TimingAnomalies Reloaded”. In:WCET.WCET’10.2010. doi: 10.4230/OASIcs.WCET.2010.1.
[25] S. Hahn and J. Reineke. “Design and Analysis of SIC: A ProvablyTiming-Predictable Pipelined Processor Core”. In: RTSS. 2018.
[26] Mathieu Jan et al. “Formal Semantics of Predictable Pipelines:a Comparative Study”. In: ASP-DAC. 2020, pp. 103–108. doi: 10.

1109/ASP-DAC47756.2020.9045351.
[27] R. L. Graham. “Bounds on Multiprocessing Timing Anomalies”.In: SIAM Journal on Applied Mathematics 17.2 (1969), pp. 416–429.issn: 00361399.
[28] B. Andersson and J. Jonsson. “PreemptiveMultiprocessor Schedul-ing Anomalies”. In: Parallel andDistributed Processing Symposium.2002. doi: 10.1109/IPDPS.2002.1015483.
[29] A.K. Mok and Wing-Chi Poon. “Non-Preemptive Robustness un-der Reduced System Load”. In: Int. Real-Time Systems Symposium.2005, pp. 10–209. doi: 10.1109/RTSS.2005.31.
[30] AlanBurns and SanjoyBaruah. “Sustainability in Real-time Schedul-ing”. In: JCSE 2 (Mar. 2008), pp. 74–97. doi: 10.5626/JCSE.2008.

2.1.074.
[31] Petros Voudouris, Per Stenström, andRisat Pathan. “Timing-AnomalyFree Dynamic Scheduling of Task-Based Parallel Applications”.In: Real-Time and Embedded Technology and Applications Sympo-

sium. 2017, pp. 365–376. doi: 10.1109/RTAS.2017.2.
[32] AURIX TC21x/TC22x/TC23x Family 32-Bit Single-Chip Microcontroller

User’s Manual. Infineon Technologies AG. Dec. 2014.
[33] TriCore 1 Pipeline Behaviour and Instruction Execution Timing. AP32071.Infineon Technologies AG. June 2004.
[34] Mihail Asavoae, Belgacem Ben Hedia, and Mathieu Jan. “FormalExecutable Models for Automatic Detection of Timing Anoma-lies”. In: WCET. Ed. by Florian Brandner. 2018. doi: 10 . 4230 /

OASIcs.WCET.2018.2. url: http://drops.dagstuhl.de/opus/
volltexte/2018/9748.

[35] Xianfeng Li, Abhik Roychoudhury, and Tulika Mitra. “ModelingOut-of-Order Processors for WCET Analysis”. In: Real-Time Syst.34 (2006), pp. 195–227. doi: 10.1007/s11241-006-9205-5.

205

https://doi.org/10.1109/ECRTS.2009.8
https://doi.org/10.4230/OASIcs.WCET.2010.1
https://doi.org/10.1109/ASP-DAC47756.2020.9045351
https://doi.org/10.1109/ASP-DAC47756.2020.9045351
https://doi.org/10.1109/IPDPS.2002.1015483
https://doi.org/10.1109/RTSS.2005.31
https://doi.org/10.5626/JCSE.2008.2.1.074
https://doi.org/10.5626/JCSE.2008.2.1.074
https://doi.org/10.1109/RTAS.2017.2
https://doi.org/10.4230/OASIcs.WCET.2018.2
https://doi.org/10.4230/OASIcs.WCET.2018.2
http://drops.dagstuhl.de/opus/volltexte/2018/9748
http://drops.dagstuhl.de/opus/volltexte/2018/9748
https://doi.org/10.1007/s11241-006-9205-5

BIBLIOGRAPHY
[36] Berkeley University of California. The Register Files and Bypass

Network of the RISCV-BOOM CPU. url: https://docs.boom-core.
org/en/latest/sections/reg-file-bypass-network.html(visited on 12/18/2020).

[37] Glenn Hinton et al. “TheMicroarchitecture of the Pentium 4 Pro-cessor”. In: Intel Technology Journal (2001).
[38] R. M. Tomasulo. “An Efficient Algorithm for Exploiting MultipleArithmetic Units”. In: IBM Journal of R&D 11.1 (1967), pp. 25–33.doi: 10.1147/rd.111.0025.
[39] Jean H. Gallier. Logic for Computer Science: Foundations of Auto-

matic Theorem Proving, Second Edition. USA: Dover Publications,Inc., 2015. isbn: 0486780821.
[40] StephanMerz. “Model Checking: A Tutorial Overview”. In:Model-

ing and Verification of Parallel Processes: 4th Summer School,MOVEP
2000 Nantes, France, June 19–23, 2000 Revised Tutorial Lectures. Ed.by Franck Cassez et al. Berlin, Heidelberg: Springer Berlin Hei-delberg, 2001, pp. 3–38. isbn: 978-3-540-45510-3. doi: 10.1007/
3-540-45510-8_1. url: https://doi.org/10.1007/3-540-
45510-8_1.

[41] EdmundClarke, OrnaGrumberg, andDoron Peled.Model Check-
ing. Jan. 2001. isbn: 978-0-262-03270-4.

[42] Edmund M. Clarke et al. “Bounded Model Checking Using Sat-isfiability Solving”. In: Formal Methods in System Design 19 (2001),pp. 7–34.
[43] Edmund Clarke et al. “Model Checking: Back and Forth betweenHardware and Software”. In: Verified Software: Theories, Tools, Ex-

periments: First IFIP TC 2/WG 2.3 Conference, VSTTE 2005, Zurich,
Switzerland, October 10-13, 2005, Revised Selected Papers and Dis-
cussions. Ed. by Bertrand Meyer and Jim Woodcock. Berlin, Hei-delberg: Springer BerlinHeidelberg, 2008, pp. 251–255. isbn: 978-3-540-69149-5. doi: 10 . 1007 / 978 - 3 - 540 - 69149 - 5 _ 27. url:
https://doi.org/10.1007/978-3-540-69149-5_27.

[44] Kim G. Larsen, Paul Pettersson, and Wang Yi. “Uppaal in a Nut-shell”. In: Int. J. Softw. Tools Technol. Transf. 1.1–2 (Dec. 1997), pp. 134–152. issn: 1433-2779. doi: 10.1007/s100090050010. url: https:
//doi.org/10.1007/s100090050010.

[45] G.J. Holzmann. “The Model Checker SPIN”. In: IEEE Transactions
on Software Engineering 23.5 (1997), pp. 279–295. doi: 10.1109/
32.588521.

206

https://docs.boom-core.org/en/latest/sections/reg-file-bypass-network.html
https://docs.boom-core.org/en/latest/sections/reg-file-bypass-network.html
https://doi.org/10.1147/rd.111.0025
https://doi.org/10.1007/3-540-45510-8_1
https://doi.org/10.1007/3-540-45510-8_1
https://doi.org/10.1007/3-540-45510-8_1
https://doi.org/10.1007/3-540-45510-8_1
https://doi.org/10.1007/978-3-540-69149-5_27
https://doi.org/10.1007/978-3-540-69149-5_27
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/s100090050010
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521

BIBLIOGRAPHY
[46] Alessandro Cimatti et al. “NuSMV: a New Symbolic Model Veri-fier”. In: International conference on computer aided verification.Springer. 1999, pp. 495–499.
[47] Marta Kwiatkowska, Gethin Norman, and David Parker. “PRISM:Probabilistic Symbolic Model Checker”. In: International Confer-

ence onModelling Techniques and Tools for Computer Performance
Evaluation. Springer. 2002, pp. 200–204.

[48] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools
for Hardware and Software Engineers. Addison-Wesley, 2002.

[49] Didier Lime et al. “Romeo: a Parametric Model Checker for PetriNets with Stopwatches”. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer.2009, pp. 54–57.

[50] Amir Pnueli. “The Temporal Logic of Programs”. In: 18th Annual
Symposium on Foundations of Computer Science (sfcs 1977) (1977),pp. 46–57.

[51] Leslie Lamport. “What Good is Temporal Logic?” In: IFIP congress.Vol. 83. 1983, pp. 657–668.
[52] J.R. Burch et al. “Symbolic Model Checking: 1020 States and Be-yond”. In: Information and Computation 98.2 (1992), pp. 142–170.issn: 0890-5401. doi: https://doi.org/10.1016/0890-5401(92)

90017 - A. url: https : / / www . sciencedirect . com / science /
article/pii/089054019290017A.

[53] Kenneth L. McMillan. “Symbolic Model Checking: an Approachto the State Explosion Problem”. In: 1992.
[54] Jörg Bormann et al. “Model Checking in Industrial Hardware De-sign”. In: Proceedings of the 32nd Annual ACM/IEEE Design Automa-

tion Conference. DAC ’95. San Francisco, California, USA: Associa-tion for ComputingMachinery, 1995, pp. 298–303. isbn: 0897917251.doi: 10.1145/217474.217545. url: https://doi.org/10.1145/
217474.217545.

[55] Olivier Coudert, Jean Christophe Madre, and Christian Berthet.“Verifying Temporal Properties of Sequential Machines withoutBuilding their State Diagrams”. In: Computer-Aided Verification.Ed. by Edmund M. Clarke and Robert P. Kurshan. Berlin, Hei-delberg: Springer Berlin Heidelberg, 1991, pp. 23–32. isbn: 978-3-540-38394-9.

207

https://doi.org/https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/https://doi.org/10.1016/0890-5401(92)90017-A
https://www.sciencedirect.com/science/article/pii/089054019290017A
https://www.sciencedirect.com/science/article/pii/089054019290017A
https://doi.org/10.1145/217474.217545
https://doi.org/10.1145/217474.217545
https://doi.org/10.1145/217474.217545

BIBLIOGRAPHY
[56] Henrik Reif Andersen. “An Introduction to Binary Decision Dia-grams”. In: Lecture notes, available online, IT University of Copen-

hagen (1997), p. 5.
[57] Armin Biere et al. “Symbolic Model Checking Using SAT Proce-dures instead of BDDs”. In: Jan. 1999, pp. 317–320. doi: 10.1109/

DAC.1999.781333.
[58] ParoshAziz Abdulla, Per Bjesse, andNiklas Eén. “Symbolic Reach-ability Analysis Based on SAT-Solvers”. In: Proceedings of the 6th

International Conference on Tools and Algorithms for Construction
and Analysis of Systems: Held as Part of the European Joint Confer-
ences on the Theory and Practice of Software, ETAPS 2000. TACAS’00. Berlin, Heidelberg: Springer-Verlag, 2000, pp. 411–425. isbn:3540672826.

[59] Clark Barrett and Cesare Tinelli. “Satisfiability Modulo Theories”.In: Handbook of Model Checking. Cham: Springer InternationalPublishing, 2018, pp. 305–343. isbn: 978-3-319-10575-8. doi: 10.
1007/978-3-319-10575-8_11. url: https://doi.org/10.1007/
978-3-319-10575-8_11.

[60] Edmund Clarke et al. “Counterexample-Guided Abstraction Re-finement”. In: Computer Aided Verification. Ed. by E. Allen Emer-son andAravinda Prasad Sistla. Berlin, Heidelberg: Springer BerlinHeidelberg, 2000, pp. 154–169. isbn: 978-3-540-45047-4.
[61] Alessandro Abate et al. “Counterexample Guided Inductive Syn-thesis Modulo Theories”. In: Computer Aided Verification. Ed. byHana Chockler and Georg Weissenbacher. Cham: Springer In-ternational Publishing, 2018, pp. 270–288.
[62] B. A. Brady, D. Holcomb, and S. A. Seshia. “Counterexample-Guided SMT-driven Optimal Buffer Sizing”. In: 2011 Design, Au-

tomation Test in Europe. 2011, pp. 1–6. doi: 10.1109/DATE.2011.
5763058.

[63] S. A. Seshia and P. Subramanyan. “UCLID5: Integrating Model-ing, Verification, Synthesis and Learning”. In: 2018 16th ACM/IEEE
International Conference on Formal Methods and Models for Sys-
tem Design (MEMOCODE). 2018, pp. 1–10. doi: 10.1109/MEMCOD.
2018.8556946.

[64] Shuvendu K. Lahiri, Sanjit A. Seshia, and Randal E. Bryant. “Mod-eling andVerification ofOut-of-OrderMicroprocessors inUCLID”.In: Formal Methods in Computer-Aided Design. Ed. by Mark D. Aa-gaard and John W. O’Leary. Berlin, Heidelberg: Springer BerlinHeidelberg, 2002, pp. 142–159. isbn: 978-3-540-36126-8.
208

https://doi.org/10.1109/DAC.1999.781333
https://doi.org/10.1109/DAC.1999.781333
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1109/DATE.2011.5763058
https://doi.org/10.1109/DATE.2011.5763058
https://doi.org/10.1109/MEMCOD.2018.8556946
https://doi.org/10.1109/MEMCOD.2018.8556946

BIBLIOGRAPHY
[65] Rajeev Alur and David L. Dill. “A Theory of Timed Automata”. In:

Theoretical Computer Science 126 (1994), pp. 183–235.
[66] Nikolaj Bjørner et al. “Programming Z3”. In: Engineering Trustwor-

thy Software Systems: 4th International School, SETSS 2018, Chongqing,
China, April 7–12, 2018, Tutorial Lectures. Ed. by Jonathan P. Bowen,Zhiming Liu, and Zili Zhang. Cham: Springer International Pub-lishing, 2019, pp. 148–201. isbn: 978-3-030-17601-3. doi: 10.1007/
978-3-030-17601-3_4. url: https://doi.org/10.1007/978-3-
030-17601-3_4.

[67] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. “The SMT-LIBStandard: Version 2.0”. In: Proceedings of the 8th International
Workshop on Satisfiability Modulo Theories (Edinburgh, UK). Vol. 13.2010, p. 14.

[68] Igor Konnov, Jure Kukovec, and Thanh-Hai Tran. “TLA+ ModelChecking Made Symbolic”. In: Proc. ACM Program. Lang. 3.OOP-SLA (Oct. 2019). doi: 10.1145/3360549. url: https://doi.org/
10.1145/3360549.

[69] Kaustuv Chaudhuri et al. “A TLA+ Proof System”. In: Knowledge
Exchange: Automated Provers and Proof Assistants (KEAPPA). Doha,Qatar, 2008. url: https://hal.inria.fr/inria-00338299.

[70] E. M. Clarke, E. A. Emerson, and A. P. Sistla. “Automatic Verifi-cation of Finite-State Concurrent System Using Temporal LogicSpecifications: A Practical Approach”. In: Proceedings of the 10th
ACMSIGACT-SIGPLAN SymposiumonPrinciples of Programming Lan-
guages. POPL ’83. Austin, Texas: Association for Computing Ma-chinery, 1983, pp. 117–126. isbn: 0897910907. doi: 10.1145/567067.
567080. url: https://doi.org/10.1145/567067.567080.

[71] ThomasBall, Andreas Podelski, and SriramK. Rajamani. “Booleanand Cartesian Abstraction for Model Checking C Programs”. In:
Tools and Algorithms for the Construction and Analysis of Systems.Ed. by TizianaMargaria andWang Yi. Berlin, Heidelberg: SpringerBerlin Heidelberg, 2001, pp. 268–283. isbn: 978-3-540-45319-2.

[72] Edmund Clarke, Daniel Kroening, and Flavio Lerda. “A Tool forChecking ANSI-C Programs”. In: International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Springer.2004, pp. 168–176.

[73] Bastian Schlich and StefanKowalewski. “Model Checking C SourceCode for Embedded Systems”. In: STTT 11 (July 2009), pp. 187–202.doi: 10.1007/s10009-009-0106-5.

209

https://doi.org/10.1007/978-3-030-17601-3_4
https://doi.org/10.1007/978-3-030-17601-3_4
https://doi.org/10.1007/978-3-030-17601-3_4
https://doi.org/10.1007/978-3-030-17601-3_4
https://doi.org/10.1145/3360549
https://doi.org/10.1145/3360549
https://doi.org/10.1145/3360549
https://hal.inria.fr/inria-00338299
https://doi.org/10.1145/567067.567080
https://doi.org/10.1145/567067.567080
https://doi.org/10.1145/567067.567080
https://doi.org/10.1007/s10009-009-0106-5

BIBLIOGRAPHY
[74] E. Clarke andB.Mishra. “Automatic Verification of AsynchronousCircuits”. In: Logics of Programs. Ed. by Edmund Clarke and Dex-ter Kozen. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984,pp. 101–115. isbn: 978-3-540-38775-6.
[75] Jerry R. Burch andDavid L. Dill. “Automatic Verification of PipelinedMicroprocessor Control”. In: Computer Aided Verification. Ed. byDavid L. Dill. Berlin, Heidelberg: Springer BerlinHeidelberg, 1994,pp. 68–80. isbn: 978-3-540-48469-1.
[76] Jerry Burch. “Techniques for Verifying Superscalar Microproces-sors”. In: July 1996, pp. 552–557. isbn: 0-7803-3294-6. doi: 10.

1109/DAC.1996.545637.
[77] Jens Ulrik Skakkebæk, Robert B. Jones, and David L. Dill. “FormalVerification of Out-of-Order Execution Using Incremental Flush-ing”. In: CAV. 1998.
[78] Sergey Berezin et al. “Combining Symbolic Model Checking withUninterpreted Functions forOut-of-Order Processor Verification”.In: FormalMethods in Computer-AidedDesign. Ed. byGaneshGopalakr-ishnan and Phillip Windley. Berlin, Heidelberg: Springer BerlinHeidelberg, 1998, pp. 369–386.
[79] J. Eisinger et al. “Automatic Identification of Timing Anomaliesfor Cycle-AccurateWorst-Case Execution TimeAnalysis”. In:DDECS.2006. doi: 10.1109/DDECS.2006.1649563.
[80] Raimund Kirner, Albrecht Kadlec, and Peter Puschner. Worst-

Case Execution Time Analysis for Processors showing Timing Anoma-
lies. Tech. rep. TU Wien, 2009.

[81] Franck Cassez, RenéRydhofHansen, andMadsChr.Olesen. “Whatis a Timing Anomaly?” In: WCET. Vol. 23. WCET’12. 2012. doi: 10.
4230/OASIcs.WCET.2012.1.

[82] Christine Rochange and Pascal Sainrat. “A Time-Predictable Exe-cutionMode for Superscalar Pipelineswith Instruction Preschedul-ing”. In: Jan. 2005, pp. 307–314. doi: 10.1145/1062261.1062312.
[83] Jack Whitham and Neil Audsley. “Time-Predictable Out-of-OrderExecution for Hard Real-Time Systems”. In: IEEE Transactions on

Computers 59.9 (2010), pp. 1210–1223. doi: 10.1109/TC.2010.109.
[84] Isaac Liu, Jan Reineke, and Edward A. Lee. “A PRET ArchitectureSupporting Concurrent Programswith Composable Timing Prop-erties”. In: 2010 Conference Record of the Forty Fourth Asilomar

Conference on Signals, Systems and Computers. 2010, pp. 2111–2115.doi: 10.1109/ACSSC.2010.5757922.
210

https://doi.org/10.1109/DAC.1996.545637
https://doi.org/10.1109/DAC.1996.545637
https://doi.org/10.1109/DDECS.2006.1649563
https://doi.org/10.4230/OASIcs.WCET.2012.1
https://doi.org/10.4230/OASIcs.WCET.2012.1
https://doi.org/10.1145/1062261.1062312
https://doi.org/10.1109/TC.2010.109
https://doi.org/10.1109/ACSSC.2010.5757922

BIBLIOGRAPHY
[85] Isaac Liu et al. “A PRET Microarchitecture Implementation withRepeatable Timing and Competitive Performance”. In: IEEE 30th

International Conference on Computer Design (ICCD) (2012), pp. 87–93.
[86] Michael Zimmer et al. “FlexPRET: a Processor Platform forMixed-Criticality Systems”. In: IEEE 19th Real-Time and Embedded Tech-

nology and Applications Symposium (RTAS) (2014), pp. 101–110.
[87] Martin Schoeberl et al. “Towards a Time-predictable Dual-IssueMicroprocessor: The Patmos Approach”. In: Proc. of Bringing The-

ory to Practice: Predictability and Performance in Embedded Sys-
tems. 2011.

[88] Alban Gruin et al. “Speculative Execution and Timing Predictabil-ity in an Open Source RISC-V Core”. In: Real-Time Systems Sympo-
sium. IEEE, 2021, pp. 393–404. doi: 10.1109/RTSS52674.2021.
00043.

[89] Michael Platzer andPeter Puschner. “Vicuna: A Timing-PredictableRISC-V Vector Coprocessor for Scalable Parallel Computation”.In: Euromicro Conference on Real-Time Systems. Vol. 196. LIPIcs,2021. isbn: 978-3-95977-192-4. doi: 10 . 4230 / LIPIcs . ECRTS .
2021.1.

[90] Benoît Dupont de Dinechin et al. “Time-Critical Computing ona Single-Chip Massively Parallel Processor”. In: 2014 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). 2014,pp. 1–6. doi: 10.7873/DATE.2014.110.

[91] Alexander Metzner. “Why Model Checking Can Improve WCETAnalysis”. In: International Conference on Computer Aided Verifi-
cation. Springer. 2004, pp. 334–347.

[92] Benedikt Huber and Martin Schoeberl. “Comparison of ImplicitPath Enumeration and Model-Checking-based WCET Analysis”.In: 9th International Workshop on Worst-Case Execution Time Anal-
ysis (WCET’09). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.2009.

[93] Andreas Dalsgaard et al. “METAMOC: Modular Execution TimeAnalysis UsingModel Checking”. In: vol. 15. Jan. 2010, pp. 113–123.doi: 10.4230/OASIcs.WCET.2010.113.
[94] Andreas Gustavsson et al. “Towards WCET Analysis of MulticoreArchitectures Using UPPAAL”. In: vol. 15. Jan. 2010, pp. 101–112.doi: 10.4230/OASIcs.WCET.2010.101.

211

https://doi.org/10.1109/RTSS52674.2021.00043
https://doi.org/10.1109/RTSS52674.2021.00043
https://doi.org/10.4230/LIPIcs.ECRTS.2021.1
https://doi.org/10.4230/LIPIcs.ECRTS.2021.1
https://doi.org/10.7873/DATE.2014.110
https://doi.org/10.4230/OASIcs.WCET.2010.113
https://doi.org/10.4230/OASIcs.WCET.2010.101

BIBLIOGRAPHY
[95] Ravindra Metta et al. “TIC: a Scalable Model-Checking-based Ap-proach to WCET Estimation”. In: ACM SIGPLAN Notices 51.5 (2016),pp. 72–81.
[96] Mihail Asavoae, Mathieu Jan, and Belgacem Ben Hedia. “FormalModeling andVerification for Timing Predictability”. In: ERTS. 2020.
[97] Zhenyu Bai et al. “Improving the Performance of WCET Analysisin the Presence of Variable Latencies”. In: LCTES. 2020, pp. 119–130. doi: 10.1145/3372799.3394371.
[98] Viet anh Nguyen et al. “Using Model Checking to Identify Tim-ing Interferences on Multicore Processors”. In: ERTS 2020 - 10th

European Congress on Embedded Real Time Software and Systems.Toulouse, France, 2020, pp. 1–10.
[99] Stephan Wilhelm and Björn Wachter. “Towards Symbolic StateTraversal for Efficient WCET Analysis of Abstract Pipeline andCacheModels”. In: 7th Intl. Workshop onWorst-Case Execution Time

(WCET) Analysis, Pisa, Italy, July 3, 2007. 2007.
[100] Theo Ungerer et al. “Merasa: Multicore Execution of Hard Real-Time Applications Supporting Analyzability”. In: IEEE Micro 30.5(2010), pp. 66–75.
[101] Wei-Tsun Sun, Eric Jenn, and Hugues Cassé. “Build Your OwnStatic WCET Analyser: the Case of the Automotive Processor AU-RIX TC275”. In: 10th European Congress on Embedded Real Time

Software and Systems (ERTS 2020). Jan. 2020.
[102] Clément Ballabriga et al. “OTAWA: AnOpen Toolbox for AdaptiveWCET Analysis”. In: SEUS 2010. 2010, pp. 35–46.
[103] Michael R. Clarkson and Fred B. Schneider. “Hyperproperties”.In: 21st IEEE Computer Security Foundations Symposium. 2008, pp. 51–65. doi: 10.1109/CSF.2008.7.
[104] G. Barthe, P.R. D’Argenio, and T. Rezk. “Secure Information Flowby Self-Composition”. In: Proceedings. 17th IEEE Computer Security

Foundations Workshop. 2004, pp. 100–114. doi: 10.1109/CSFW.
2004.1310735.

[105] Heiko Falk et al. “TACLeBench: A Benchmark Collection to Sup-port Worst-Case Execution Time Research”. In: 16th International
Workshop on Worst-Case Execution Time Analysis (WCET 2016). Ed.by Martin Schoeberl. Vol. 55. OpenAccess Series in Informatics(OASIcs). Dagstuhl, Germany: SchlossDagstuhl–Leibniz-Zentrumfür Informatik, 2016, 2:1–2:10.

212

https://doi.org/10.1145/3372799.3394371
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1109/CSFW.2004.1310735
https://doi.org/10.1109/CSFW.2004.1310735

[106] Michael Platzer and Peter Puschner. “A Processor Extension forTime-Predictable Code Execution”. In: 2021 IEEE 24th International
SymposiumonReal-TimeDistributed Computing (ISORC). 2021, pp. 34–42. doi: 10.1109/ISORC52013.2021.00016.

[107] Architecture Overview Handbook, TriCore 1.3, 32-bit Unified Proces-
sor Core, IP Cores. Infineon Technologies AG. May 2002.

[108] Simulator for TriCore. Lauterbach GmbH. Apr. 2021.

https://doi.org/10.1109/ISORC52013.2021.00016

Thèse de doctorat de Benjamin BINDER, soutenue à Paris-Saclay, le
13 décembre 2022.
Benjamin Binder’s PhD thesis, defended in Paris-Saclay, on December 13, 2022.

Definitions and Detection Procedures of Timing Anomalies
for the Formal Verification of Predictability
in Real-Time Systems

Abstract: The timing behavior of real-time systems is often validated through timing analyses,
which are yet jeopardized by timing anomalies (TAs). A counter-intuitive TA manifests when
a local speedup eventually leads to a global slowdown, and an amplification TA, when a local
slowdown leads to an even larger global slowdown.

While counter-intuitive TAs threaten the soundness/scalability of timing analyses, tools to
systematically detect them do not exist. We set up a unified formal framework for systematically
assessing the definitions of TAs, concluding the lack of a practical definition, mainly due to the
absence of relations between local and global timing effects. We address these relations through
the causality, which we further use to revise the formalization of these TAs. We also propose
a specialized instance of the notions for out-of-order pipelines. We evaluate our subsequent
detection procedure on illustrative examples and standard benchmarks, showing that it allows
accurately capturing TAs.

The complexity of the systems demands that their timing analyses be able to cope with the
large resulting state space. A solution is to perform compositional analyses, specifically threat-
ened by amplification TAs. We advance their study by showing how a specialized abstraction
can be adapted for an industrial processor, by modeling the timing-relevant features of such a
hardware with appropriate reductions. We also illustrate from this class of TAs how verification
strategies can be used towards the obtainment of TA patterns.

	I Background
	Context
	Real-Time Systems
	Microprocessors
	From Embedded Systems to Safety-Critical Systems
	Predictability
	Timing Analysis

	Pipelines
	Principle
	Hazards and Stalling, Static/Dynamic Scheduling
	Single-Issue/Superscalar Pipelines

	Timing Anomalies in Microarchitectures
	Intuitive Definitions
	Timing Anomalies against Timing Analysis

	Summary: Context of the Thesis

	Microarchitecture Case Studies
	Classical In-Order Pipeline
	Description of the Pipeline
	Guideline Example of Amplification TAs

	Overview of the TriCore Microarchitecture
	The TriCore Microarchitecture
	Timing Behavior

	A Representative Out-of-Order-Pipeline Template
	Pipeline Overview
	Execution Functioning
	Traditional Pattern of Counter-Intuitive TAs

	Formal Verification
	Formal Notions
	Model Checking
	Invariants
	Explicit Model Checking
	Symbolic Model Checking
	Counterexample-Guided Methods

	Modeling and Verification Tools
	UCLID5
	TLA+

	Applications of Formal Verification
	Summary: our Formal Framework

	Related Work
	Interpretations of Counter-Intuitive TAs
	Concrete and Abstract Models
	Static-Analysis-Centric Interpretation
	Hardware-Centric Interpretation
	Absolute-WCET Interpretation vs. Pairwise Interpretation

	Overview of the Definitions of TAs
	Step Heights in Step Functions
	Intersections in Step Functions
	Component Occupation
	Instruction Locality

	Predictable Cores
	Specific Hardware Designs
	Canonical Model for Assessing Compositionality

	Timing Modeling in Pipelines
	Model Checking of Timing Properties
	Analytical Methods
	Timing Modeling of TriCore

	Summary: the Definitions of Timing Anomalies

	Problem Statements
	II Limitations of the Existing Definitions of Counter-Intuitive Timing Anomalies
	Interpretation and Modeling of the Definitions
	Formal Modeling of the OoO-Pipeline Template
	Abstract Modeling for Timing Properties
	Formal Specification

	Assumptions on the Definitions
	Step Heights in Step Functions
	Intersections in Step Functions
	Component Occupation
	Instruction Locality

	Uniform Formal Modeling of Properties
	Discussion on Hyperproperties
	Properties Based on the Definitions

	Summary: the Parameters of our Formal Model

	Assessment of the Definitions
	Assessment by Model Checking
	Verification Methodology
	Shortcomings of the Definitions

	Assessment Outcome
	Unsuited Granularities for Detecting TAs
	Towards the Notion of Causality

	Summary: the Lack of Causality

	III Detection of Counter-Intuitive Timing Anomalies
	A Novel Formal Definition
	Reference Example
	Fine-Granularity Definition based on Locality
	Sketch of our Formal Definition

	Formal Definition of Counter-Intuitive TAs
	Execution Model for Timing Anomalies
	Event Time-Dependence Graph (ETDG)
	Relating Events between Traces
	Causality Graph (CG)
	Counter-Intuitive Timing Anomalies
	Application to the Reference Example (cf. Sec. 7.1)

	Correctness Arguments
	Intuitive Understanding
	Prerequisites
	Formal Definition of Timing Anomalies

	Summary: a Groundwork for the Detection of TAs

	Detection Procedure
	Adaptation of the Formal Framework
	Formal Specification
	Property for the Absence of TAs

	Interpretation on Short Sequences
	Basic Variation Cases
	General Scenarios

	Detection of Timing Anomalies on Benchmarks
	Strategy and Heuristics
	Workflow
	Experimental Results

	Summary: a Tool Support for the Detection of TAs

	IV Heuristics for the Detection of Timing-Anomaly Patterns
	Detection of Amplification TAs
	Scale-up Modeling Process
	Adaptations for the Dual Pipeline of TriCore
	Progression and Stalling Logic
	Store Buffer
	WAW Hazards

	Evaluation of the TriCore Model
	Validation of the Model
	Results of the Detection

	Summary: our Modeling and Verification Approach

	Towards Software-Related Patterns
	Exploration of Multiple Counterexamples
	Delay Scenarios
	Specific SMT Problem

	Counterexample-Guided Exploration Strategies
	Broad-Spectrum State-Space Exploration
	Delay-Scenario Enumeration

	Evaluation
	Analysis of the Broad-Spectrum Exploration
	Analysis of the Delay-Scenario Enumeration

	Summary: a Step towards Accurate TA Patterns

	Conclusion & Prospects
	Bibliography

