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Introduction

Abstract and organization of the thesis

The main theme of this dissertation is the metric properties of the group of Hamiltonian diffeomorphisms. The group of Hamiltonian diffeomorphisms is known to possess two remarkable bi-invariant metrics discovered by Hofer and Viterbo which are referred to as the Hofer metric and the spectral metric, respectively. A third metric on Ham(M, ω) which has been of interest in symplectic topology is the C 0 metric. Roughly speaking, my research explores the deep and mysterious relation between these three metrics. It might appear somewhat strange at first glance to consider C 0 metric in symplectic topology which is a realm of differential topology.

The dissertation is structured as follows: In Section 1.2, I give a motivation to study C 0 -symplectic topology by reviewing its development. In Section 1.3, I summarize the main results of this thesis. In Section 3, I will explain results concerning the comparison between the spectral metric and the C 0 metric. Materials in this section are taken from [START_REF] Kawamoto | On C 0 -continuity of the spectral norm for symplectically non-aspherical manifolds[END_REF]. In Section 4, I explain a construction of quasimorphisms that have some new types of continuity properties which are related to a famous question of Entov-Polterovich-Py. Materials in this section are mostly taken from [START_REF] Kawamoto | Homogeneous quasimorphisms, C 0 -topology and Lagrangian intersection[END_REF]. In Section 5.1, I explain some new properties of the spectral norm. Materials in this section are based on a work in progress with Egor Shelukhin [KawSh].

Each section is designed to be readable more or less independently from the other sections and therefore there are some overlaps between different sections.

A biased introduction to C 0 -symplectic topology

Since the birth of modern symplectic topology, the study of algebraic and topological properties of the group of Hamiltonian diffeomorphisms of a symplectic manifold (M, ω), denoted by Ham(M, ω), has been one of the cornerstones of the field. This direction of research has been strongly influenced by the discovery of two remarkable bi-invariant metrics on Ham(M, ω) in the seminal works of Hofer and Viterbo which are referred to as the Hofer distance and the spectral 1 distance, respectively. A third metric on Ham(M, ω) which has been of interest in symplectic topology is the C 0 distance. Roughly speaking, my research explores the deep and mysterious relation 1 The spectral distance is sometimes referred to as the γ distance.

11 between these three metrics. My results outlined in Section 1.3.1 provide direct comparisons between the C 0 distance and the spectral distance. I have also obtained results on the existence of certain homogeneous quasimorphisms on Ham(M, ω); see Section 1.3.3.

Recall that these three norms which induce the three distances mentioned above are defined as follows: The C 0 -norm of a Hamiltonian diffeomorphism φ ∈ Ham(M, ω) is defined by

||φ|| C 0 := max x∈M d M (x, φ(x))
where d M denotes the distance induced by any choice of a Riemannian metric; any two such distances are equivalent. The Hofer norm is the least "energy" required to produce a given Hamiltonian diffeomorphism φ ∈ Ham(M, ω):

||φ|| Hof := inf{ 1 0 ( sup x∈M H t (x) -inf x∈M H t (x))dt : φ = φ H }.
The definition of the spectral norm γ : Ham(M, ω) → R 0 is more involved than the previous two: it utilizes the sophisticated machinery of Hamiltonian Floer homology. Since its introduction in [START_REF] Viterbo | Symplectic topology as the geometry of generating functions[END_REF], the spectral norm has been used extensively and has found various applications.

The relation between the Hofer norm and the spectral norm is explained by the following well-known inequality which follows easily from the very definition of the spectral norm: γ(φ) ||φ|| Hof .

On the other hand, the relation between the C 0 -norm and the other two norms has been very poorly understood even though the significance of role of the C 0 -topology in symplectic topology was recognized at a very early stage of modern symplectic topology. But, before going into the story, why do we are we interested in the C 0topology in the first place? We answer this is the next section.

Why C 0 ?

All the basic notions one encounters in symplectic geometry are smooth objects e.g. a symplectic manifold, a Hamiltonian, a Lagrangian submanifold and so on. Thus, it might sound strange to talk about C 0 -topology at first sight. However, actually the mysterious relationship between symplectic phenomenon and the C 0 -topology had been discovered at the very first stage of modern symplectic toplogy, even before the advent of pseudo-holomorphic curve theory of Gromov.

Theorem 1. (Eliashberg-Gromov) Let (M, ω) be any symplectic manifold. Let {φ n } n∈N be a sequence of symplectic diffeomorphisms i.e. (φ n ) * ω = ω for all n ∈ N. Assume

φ n C 0 --→ φ ∈ Diff(M ).
Then, φ is symplectic i.e. φ * ω = ω.

Notice that being symplectic is a condition that involves differentials (pullingback a differential form!) but here, we do not have any control on the differential as the convergence is given only in the C 0 -topology. This C 0 -rigidity phenomenon opened up a new sub-field: C 0 -symplectic topology. The main aim of the sub-field is to determine the border between the world of symplectic topology and the world of (general) topology. More precisely and realistically, C 0 -symplectic topologists study whether or not symplectic phenomena persist under C 0 -limits. With the C 0 -rigidity of Eliashberg-Gromov, one might naively think that there is a better chance to expect a rigidity, in other words, many of the symplectic phenomena do persist under C 0limits. However, it turned out that the story is not that simple. Over the past decade, C 0 -symplectic topology has seen a spectacular progress and it was revealed that C 0 -rigidity appears often but not any more often than C 0 -flexibility. In the next two sections, I will explain some of the main features of the two aspects through my personal selection of important discoveries.

C 0 -flexibility

The first instance of the C 0 -flexibility was found by Buhovsky-Opshtein along with their invention of the "quantitative h-principle". They started from the following question.

Question 2. Let (M, ω) be a symplectic manifold. Let S be a symplectic (resp. isotropic, coisotropic, Lagrangian) submanifold. If a symplectic homeomorphism φ ∈ Symp(M, ω) maps S to a smooth submanifold i.e. if φ(S) is smooth, then will φ(S) be symplectic (resp. isotropic, coisotropic, Lagrangian)?

Theorem 3. ([BO16]) Let d m + 2. In C d .
For any open neighborhood U of (D 2 ) d-m × {0} × {0}, there exists a symplectic homeomorphism φ ∈ Symp(C d ) such that • Supp(φ) ⊂ U .

• φ| (D 2 ) d-m ×{0}×{0} = 1 2 id (D 2 ) d-m ×{0}×{0} . This clearly answers Question 2 in the negative. By applying the "quantitative h-principle", Buhovsky-Humilière-Seyfaddini proved that the analogue of the Arnold conjecture (a typical example of a symplectic rigidity) no longer holds in the C 0 setting which is another instance of the the C 0 -flexibility. Let us first recall the Arnold conjecture before stating the theorem of Buhovsky-Humilière-Seyfaddini.

Conjecture 4. (The Arnold conjecture)

Let (M 2n , ω) be a closed symplectic manifold.

1. For a non-degenerate φ ∈ Ham(M, ω),

#Fix(φ) j dim C H j (M ; C). 2. For φ ∈ Ham(M, ω), #Fix(φ) cl(M )
where cl(M ) := # max{k + 1 :

∃a 1 , a 2 , • • • , a k ∈ H * <2n (M ) s.t. a 1 ∩ a 2 ∩ • • • ∩ a k = 0}
and ∩ denotes the intersection product.

Since the advent of Floer homology, there has been a huge progress in the two versions of the Arnold conjecture: (1) is now completely settled [START_REF] Fukaya | Arnold conjecture and Gromov-Witten invariant[END_REF], [START_REF] Liu | Floer homology and Arnold conjecture[END_REF] and (2) has been confirmed for symplectically aspherical manifolds [START_REF] Floer | Symplectic fixed points and holomorphic spheres[END_REF], CP n [For85] [START_REF] Fortune | A symplectic fixed point theorem for complex projective spaces[END_REF] and negative monotone symplectic manifolds with N M n [START_REF] Vân Lê | Cup-length estimates for symplectic fixed points, Contact and symplectic geometry[END_REF]. Although the second verison of the conjecture has not yet been solved in full generality, one can see that Hamiltonian diffeomorphisms tend to possess many fixed points. What Buhovsky-Humilière-Seyfaddini observed is that, all these fixed points can be smashed into a single fixed point which contrasts the case of Hamiltonian diffeomorphisms.

Theorem 5. ([BHS18])

On any symplectic manifold (M, ω) of dimension 4, there exists a Hamiltonian homeomorphism φ which possess only one fixed point: #Fix(φ) = 1. Remark 6. On the other hand, the case that is not covered by this Theorem, namely the 2 dimensional case was studied by Matsumoto [START_REF] Matsumoto | Arnold conjecture for surface homeomorphisms[END_REF] and the turn out is that the Arnold conjecture for Hamiltonian homeomorphisms do hold! In general, in dimension 2, symplectic features appear less often than in the higher dimensional case e.g. the Gromov embedding theorem becomes a non-symplectic statement in dimension 2.

C 0 -rigidity

There are C 0 -rigidity results other than the Eliashberg-Gromov theorem. Leclercq-Humilière-Seyfaddini answered Question 2 for cosiotropic submanifolds and proved the C 0 -rigidity.

Theorem 7. ([HLS15])

Let (M, ω) be a symplectic manifold. Let C be a coisotropic submanifold. If a symplectic homeomorphism φ ∈ Symp(M, ω) maps C to a smooth submanifold i.e. if φ(C) is smooth, then φ(S) is coisotropic.

In the previous section, we have seen that the Arnold conjecture no longer holds for Hamiltonian homeomorphisms but using the C 0 -continuity of the spectral norm, Buhovsky-Humilière-Seyfaddini [START_REF] Buhovsky | The action spectrum and C 0 -symplectic topology[END_REF].

Theorem 8. ([BHS21])

Let (M, ω) be a symplectically aspherical manifold. If the number of distinct spectral invariants of a Hamiltonian homeomorphism φ is less than the cup-length cl(M ), then the set of fixed points Fix(φ) is homologically non-trivial hence is an infinite set.

Note that this statement is not rigorous as one cannot define spectral invariants for a Hamiltonian homeomorphism φ. Yet, one can count the number of distinct "spectral invariants" of a Hamiltonian homeomorphism on a symplectically aspherical manifold by using the theory of barcodes, a notion coming from TDA (topological analysis). Ever since Polterovich-Shelukhin [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF] brought barcodes into symplectic topology, the application of barcode theory has been a hot topic. According to Polterovich-Shelukhin, given a Hamiltonian diffeomorphism φ, by looking at its filtered Floer homology, one can construct a barcode B(φ). One nice feature of barcodes is the notion of distance-the so-called bottle-neck distance d bot measures how far two barcodes are. This allows us to talk about how far two filtered Floer homologies are. In fact, this distance was estimated Kislev-Shelukhin [START_REF] Kislev | Bounds on spectral norms and barcodes[END_REF] as follows:

d bot (B(φ 1 ), B(φ 2 )) 1 2 γ(φ -1 1 φ 2 ).
This implies that the C 0 -continuity of the spectral norm γ will imply the C 0continuity of barcodes which will even allow us to define barcodes for Hamiltonian homeomorphisms as limits of barcodes of Hamiltonian diffeomorphisms. Now, we can count the number of half-infinite intervals in the barcode of a Hamiltonian homeomorphism with distance starting point and interpret the count as the number of distinct spectral invariants for a Hamiltonian homeomorphism. The above theorem of Buhovsky-Humilière-Seyfaddini should be understood in this way.

Practical application: 2D conservative dynamics

As mentioned earlier, 2 dimensional spaces are not the ideal place to capture symplectic features: they appear less often than in the higher dimensional spaces. Nevertheless, from a practical point of view, C 0 -symplectic topology provides a powerful tool to attack questions in 2 dimensional conservative dynamics namely questions concerning area-preserving diffeomorphisms or homeomorphisms. This is because for a 2-sphere S 2 or a 2-disk D 2 , Hamiltonian homeomorphisms are precisely the elements of the identity component of the group of area-preserving homeomorphisms.

The very first success in this direction was a result of Seyfaddini which answers the so-called "displaced disks problem"-a question in 2D dynamics -as a direct consequence of a result in C 0 -symplectic topology.

The "displaced disks problem" posed by Béguin-Crovisier-Le Roux asks whether or not a C 0 -small area-preserving homoemorphism can displace a disk of large area.

Question 9. (Béguin-Crovisier-Le Roux) Let G r := {φ ∈ Homeo(S 2 , σ area ) : φ(f (B r )) ∩ f (B r ) = ∅}
for any r > 0 where f : B r → (M, ω) is a symplectic embedding. Does the C 0 -closure of G r contain the identity element for some r > 0?

It turned out that this is a direct consequence of the C 0 -continuity of the spectral norm. More recently, Cristofaro-Gradiner-Humilière-Seyfaddini [START_REF] Cristofaro-Gardiner | Proof of the simplicity conjecture[END_REF]. [START_REF] Cristofaro-Gardiner | PFH spectral invariants on the two-sphere and the large scale geometry of Hofer's metric[END_REF] have settled the longstanding "simplicity conjecture" in a similar spirit -their crucial step was to prove a C 0 -continuity of a relevant spectral invariant (more precisely, spectral invariants of Hutchings' periodic Floer homology).

Theorem 10. (Simplicity conjecture [START_REF] Cristofaro-Gardiner | Proof of the simplicity conjecture[END_REF], [START_REF] Cristofaro-Gardiner | PFH spectral invariants on the two-sphere and the large scale geometry of Hofer's metric[END_REF])

The group of area-preserving homeomorphisms of a 2-disk/sphere is not simple.

Sum-up

The study of C 0 -symplectic topology had a significant progress during the past decade and it seems fair to say that the need for studying the C 0 -topology in symplectic topology is becoming more and more prominent. I present three pieces of evidence.

1. Recent developments in astrophysics claim that a notion of C 0 -Hamiltonian is needed to study the N -body problem [START_REF] David | Should N -body integrators be symplectic everywhere in phase space?[END_REF].

2. The C 0 -continuity of a certain Floer theoritic invariant played a crucial role in the recent resolution of the historically famous "simplicity conjecture" [START_REF] Cristofaro-Gardiner | Proof of the simplicity conjecture[END_REF] which was a long standing conjecture that was studied by many symplectic geometers and dynamicists.

3. There were important discoveries in symplectic dynamics about the C 0 behavior of pseudo-rotations which are important objects in dynamical systems [START_REF] Bramham | Periodic approximations of irrational pseudo-rotations using pseudoholomorphic curves[END_REF], [START_REF] Bramham | Pseudo-rotations with sufficiently Liouvillean rotation number are C 0 -rigid[END_REF], [START_REF] Ginzburg | Hamiltonian pseudo-rotations of projective spaces[END_REF].

1.3 Overview of the results in this thesis 1.3.1 Spectral metric and C 0 -metric

As mentioned in the introduction, not much was known about the relation between the C 0 -metric and the Hofer or the spectral metrics apart from the C 0 -continuity of the spectral metric for R 2n [START_REF] Viterbo | Symplectic topology as the geometry of generating functions[END_REF]. After this discovery, the question of whether or not the C 0 -continuity of the spectral metric holds for every symplectic manifold caught attention within the symplectic community. However, there was very little progress on this question apart from the case of closed surfaces by Seyfaddini [START_REF] Seyfaddini | C 0 -limits of Hamiltonian paths and the Oh-Schwarz spectral invariants[END_REF] which was based on an argument specific to 2-dimensional manifolds. The case of higher dimensions saw a significant progress in [START_REF] Buhovsky | A C 0 counter example to the Arnold conjecture[END_REF] where Buhovsky-Humilière-Seyfaddini proved the C 0 -continuity of the spectral norm for symplectically aspherical manifolds. Later, Shelukhin confirmed the case of CP n in [START_REF] Shelukhin | Viterbo conjecture for Zoll symmetric spaces[END_REF]. In [START_REF] Kawamoto | On C 0 -continuity of the spectral norm for symplectically non-aspherical manifolds[END_REF], by following the approach of [START_REF] Buhovsky | A C 0 counter example to the Arnold conjecture[END_REF] and adding an analysis of the pseudo-holomorphic spheres which does not appear in the symplectically aspherical setting, I obtained the following results (where my method for CP n is different from the approach of Shelukhin).

Theorem 11. ([Kaw21])

The spectral norm γ : Ham(M, ω) → R is C 0 -continuous when (M, ω) is either a negative monotone symplectic manifold or (CP n , ω F S ).

Although I could not achieve the C 0 -continuity for other classes of symplectic manifolds, I have obtained the following partial results. Note that C 0 -continuity of the spectral norm γ is equivalent to γ being small around the C 0 -neighborhood of id ∈ Ham(M, ω).

Theorem 12. ([Kaw21])

1. Let (M, ω) be a monotone symplectic manifold. For any ε > 0, there exists

δ > 0 such that if φ ∈ Ham(M, ω) satisfies d C 0 (id, φ) < δ, then γ(φ) dim(M ) N M + ε
where N M denotes the minimal Chern number i.e.

c 1 (T M ), π 2 (M ) = N M Z, N M > 0.
2. Let (M, ω) be a rational symplectic manifold i.e. ω, π 2 (M ) = λ 0 Z for some λ 0 > 0. For any ε > 0, there exists δ > 0 such that if φ ∈ Ham(M, ω) satisfies

d C 0 (id, φ) < δ, then |γ(φ) -l • λ 0 | < ε for some l ∈ Z.
The first result provides a uniform bound of the spectral norm for monotone symplectic manifolds on a C 0 -neighborhood of id ∈ Ham(M, ω) which unexpectedly played a crucial role in the proof of Theorem 78 which will appear later. The second result gives candidates of values of the spectral norm of Hamiltonian diffeomorphisms on a C 0 -neighborhood of id ∈ Ham(M, ω) for rational symplectic manifolds. The cases considered above i.e. (negative) monotone and rational form important classes of symplectic manifolds.

Persistent homology

Persistent homology (or barcode) is a tool that is broadly used and studied in TDA (topological data analysis). Recently the language of barcodes was brought into symplectic topology by Polterovich-Shelukhin [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF] (see also [START_REF] Usher | Persistent homology and Floer-Novikov theory[END_REF]) which allowed one to define barcodes from (filtered) Floer homology groups under the assumption that the ambient symplectic manifold is aspherical i.e. ω| π2(M ) = c 1 | π2(M ) = 0. One remarkable feature about barcodes is the notion of distance called the bottleneck distance denoted by d bot . With the bottleneck distance, one can measure how "far" two Floer homology groups are. Barcodes contain a lot of important information of Hamiltonian diffeomorphisms; for example, spectral invariants are the half-infinite intervals in a barcode. It also reads the boundary depth à la Usher [START_REF] Usher | Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds[END_REF], [START_REF] Usher | Hofer's metrics and boundary depth[END_REF] which corresponds to the longest finite interval in a barcode. In addition to all these, barcodes contain also "short" finite intervals. Recently, Shelukhin has successfully used the barcode theory to answer several important open problems; see [START_REF] Shelukhin | Viterbo conjecture for Zoll symmetric spaces[END_REF], [START_REF] Shelukhin | Symplectic cohomology and a conjecture of Viterbo[END_REF] for his results on the Viterbo conjecture on spectral capacity and [START_REF] Shelukhin | On the Hofer-Zehnder conjecture[END_REF] for his result on the Hofer-Zehnder conjecture.

In fact, it turns out that, the C 0 -continuity of the spectral norm allows us to define barcodes for Hamiltonian homeomorphisms. Let's briefly see the mechanism. Denote the barcode corresponding to a Hamiltonian diffeomorphism φ ∈ Ham(M, ω) by B(φ). The bottleneck distance was estimated by using the spectral norm as follows [START_REF] Kislev | Bounds on spectral norms and barcodes[END_REF] 

φ 1 , φ 2 ∈ Ham(M, ω), d bot (B(φ 1 ), B(φ 2 )) 1 2 γ(φ -1 1 φ 2 ).
This inequality and the C 0 -continuity of the spectral norm imply the C 0 -continuity of barcodes i.e. (filtered) Floer homology only changes a little by a C 0 -perturbation of a Hamiltonian diffeomorphism. Now, for a Hamiltonian homeomorphism φ ∈ Ham(M, ω), one can define its barcode B(φ) by

B(φ) := lim k→+∞ B(φ k )
for any sequence of Hamiltonian diffeomorphisms

{φ k } such that φ k C 0 --→ φ.
The precise meaning of the limit is given in Section 3.3.2. Barcode B(φ) could be interpreted as the Floer homology of a Hamiltonian homeomorphism φ.

Barcodes for Hamiltonian homeomorphisms give us a hope to overcome the fundamental issue in C 0 -sympelctic topology, namely the lack of tools. For example, for Hamiltonian diffeomorphisms, Floer theory provides a very rich tool to study dynamics of them. However, Floer homology cannot be defined for Hamiltonian homeomorphisms and therefore it becomes more difficult to study Hamiltonian homeomorphisms. By interpreting barcodes for Hamiltonian homeomorphisms as the Floer homology for Hamiltonian homeomorphisms, Buhovsky-Humilière-Seyfaddini suggested a way to reformulate the Arnold conjecture for Hamiltonian homeomorphisms in [START_REF] Buhovsky | The action spectrum and C 0 -symplectic topology[END_REF]. They proved that, even though it was shown in their previous work that a Hamiltonian homeomorphism might possess only one single fixed point (see Theorem 5), the number of distinct half-infinite intervals should be more than the cup-length of the ambient manifold provided that a Hamiltonian homeomorphism possess finitely many fixed points and the ambient symplectic manifold is aspherical.

In Section 3.2.5 and Section 3.2.6, I extend the work of Buhovsky-Humilière-Seyfaddini to some non-aspherical symplectic manifolds and discuss the C 0 -Arnold conjecture.

Quasimorphisms

A celebrated result of Banyaga [START_REF] Banyaga | Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique[END_REF] which states that Ham(M, ω) is a simple group when (M, ω) is a closed symplectic manifold implies that there exists no non-trivial homomorphism on Ham(M, ω) (as if it did, then the kernel of the homomorphism will be a non-trivial normal subgroup). Nevertheless, Entov-Polterovich proved in the seminal paper [START_REF] Entov | Calabi quasimorphism and quantum homology[END_REF] that there exist "almost homomorphisms" on Ham(M, ω) when (M, ω) satisfies a certain condition. More formally, "almost homomorphisms" are called homogeneous quasimorphisms and are defined as follows.

Definition 13. A homogeneous quasimorphism on a group G is a map

µ : G → R which satisfies 1. ∃C > 0 s.t. ∀f, g ∈ G, |µ(f • g) -µ(f ) -µ(g)| C. 2. ∀k ∈ Z, ∀f ∈ G, µ(f k ) = k • µ(f ).
Quasimorphisms are used to study algebraic and topological (if G is a topological group) properties of G. After the discovery of Entov-Polterovich, an extensive research on the construction of other quasimorphisms as well as their applications to the study of geometric, algebraic and topological properties of Ham(M, ω) has been conducted by not only symplectic geometers but also dynamicists.

Entov-Polterovich's homogeneous quasimorphisms are constructed via spectral invariants. It follows easily from a basic property of spectral invariants that Entov-Polterovich's homogeneous quasimorphisms are continuous with respect to the Hofer metric. However, a remarkable property of Entov-Polterovich's homogeneous quasimorphisms called the Calabi property obstructs the C 0 -continuity.

The that is continuous with respect to the C 0 -topology?

2. If yes, can it be made Lipschitz with respect to the Hofer metric?

In the non-compact setting, there are examples (e.g. closed disks D 2n (1) ⊂ R 2n ) due to Entov-Polterovich-Py that answer both of the questions in the affirmative. In the closed setting, there is an example due to Gambaudo-Ghys [START_REF] Gambaudo | Enlacements asymptotiques[END_REF], [START_REF] Gambaudo | Commutators and diffeomorphisms of surfaces[END_REF] where they construct a homogeneous quasimorphism µ : Ham(Σ) → R (Σ denotes a closed surface of positive genus), that is C 0 -continuous but not Hofer continuous. However, no example of a closed symplectic manifold (M, ω) that answers two questions in the affirmative was known. In [START_REF] Kawamoto | Homogeneous quasimorphisms, C 0 -topology and Lagrangian intersection[END_REF], I constructed following homogeneous quasimorphisms which give the first examples of such closed symplectic manifolds.

Theorem 16. ([Kaw20])

Let Q n denote the complex n-dimensional quadric hypersurface:

Q n := {(z 0 : z 1 : • • • : z n ) ∈ CP n+1 : z 2 0 + z 2 1 + • • • + z 2 n = 0}.
There exist non-trivial homogeneous quasimorphisms

µ : Ham(Q n ) → R
for n = 2, 4 that satisfy the following three properties:

1. µ is Lipschitz continuous with respect to the Hofer metric.

2. µ is C 0 -continuous i.e. µ : (Ham(Q n ), d C 0 ) → R is continuous. 3. We have |µ| = γ
where γ denotes the asymptotic spectral norm:

γ : Ham(M, ω) → R γ(φ) := lim k→+∞ γ(φ k ) k .
An unexpected consequence of properties 2 and 3 in Theorem 16 is that the asymptotic spectral norm γ is C 0 -continuous for the 2-and 4-quadric hypersurfaces even though the C 0 -continuity of the spectral norm γ for these manifolds is not confirmed at the time of writing. In fact, our argument can be generalized as follows.

Theorem 17. Let (M, ω) be a monotone symplectic manifold such that QH * (M ; C) is semi-simple. Then,

γ : Ham(M, ω) → R is C 0 -continuous.
Remark 18. Under the condition of Theorem 17, if γ = 0, then it implies the existence of a non-trivial C 0 and Hofer Lipschitz continuous homogeneous quasimorphism on Ham(M, ω). However, we can show γ = 0 only for the 2-and 4-quadric hypersurfaces at the time of writing.

As a direct consequence of Theorem 16, we can answer the following question posed by Le Roux on the topology of the group of Hamiltonian diffeomorphisms for Q 2 and Q 4 in the affirmative where, according to [START_REF] Entov | On continuity of quasimorphisms for symplectic maps, With an appendix by Michael Khanevsky[END_REF], Le Roux's question "for closed simply connected manifolds (and already for the case of the 2-sphere) the question is wide open". The main idea in the proof of Theorem 16 was to use two different quantum cohomology rings: The first quantum cohomology that I considered is

QH * (M ; C) := H * (M ; C) ⊗ C C[t -1 , t|]
where C[t -1 , t|] is the field of Laurent series

C[t -1 , t|] := { k k0 a k t k : k 0 ∈ Z, a k ∈ C} and t represents a sphere that satisfies ω(t) = λ 0 , c 1 (t) = N M (Recall that ω, π 2 (M ) = λ 0 Z and c 1 , π 2 (M ) = N M Z).
The second quantum cohomology that I used is

QH * (M ; Λ) := H * (M ; C) ⊗ C Λ
where Λ is the universal Novikov field

Λ := { ∞ k=1 b k T λ k : b k ∈ C, λ k ∈ R, lim k→+∞ λ k = +∞}.
These two quantum cohomology rings have different advantages: The former QH * (M ; C) carries a Z-grading which makes it convenient to use spectral invariants as we can study the actions and the indices of theirs. On the other hand, the latter QH * (M ; Λ) is commonly used in the mirror symmetry community and many techniques involving Lagrangian Floer cohomology have been developed in this setting. In particular, I use some non-vanishing results of Lagrangian Floer cohomology which comes from superpotential techniques developed in the latter setting. A more detailed explanation about the difference of QH * (M ; C) and QH * (M ; Λ) is explained in Section 4.5.3 with some instructive examples.

Realizing the different advantages of these two quantum cohomology rings led me to answer a question of Polterovich and Wu posed in [START_REF] Wu | On an exotic Lagrangian torus in CP 2[END_REF]:

Question 20. (Question of Polterovich-Wu; Remark 5.2 in [START_REF] Wu | On an exotic Lagrangian torus in CP 2[END_REF])

Is it possible to distinguish the three Entov-Polterovich type quasimorphisms on Ham(CP 2 )?

We answer this in the negative.

Theorem 21. ([Kaw20])

The three Entov-Polterovich type quasimorphisms on Ham(CP 2 ) all coincide.

Remark 22. For the precise statement of the above result, see Section 4.5.6 and Theorem 82. Other examples where we can identify homogeneous quasimorphisms are also discussed in Section 4.5.6.

Poincaré duality and spectral invariants

In Section 1.3.3, I used two quantum cohomology rings that have (the same ground ring C but) different coefficient fields, namely the field of Laurent series and the universal Novikov field. This led me to the idea of comparing Floer homology groups defined with different ground rings. In collaboration with Egor Shelukhin, I have been studying the difference between γ Z and γ K where γ R denotes the spectral norm of the Floer homology of ground ring R and K is a field. We have observed the following unexpected phenomenon.

Theorem 23. ([KawSh])

For n = 2, 3 we have

sup φ∈Ham(CP n ,ω F S ) γ Z (φ) = +∞ while sup φ∈Ham(CP n ,ω F S ) γ K (φ) n n + 1
for any field K.

We also answer the generalized question of Entov-Polterovich-Py (see Question 15) for CP 2 , CP 3 .

Theorem 24. ([KawSh])

There exist non-trivial homogeneous quasimorphisms

µ : Ham(CP n ) → R
for n = 2, 3 that satisfy the following two properties:

1. µ is Lipschitz continuous with respect to the Hofer metric.

2. µ is C 0 -continuous i.e.

µ : (Ham(CP n ), d C 0 ) → R is continuous.
The phenomenon observed in Theorem 23 brought us to the following two directions of research.

Algebraic viewpoint

The finiteness of spectral norm for K-coefficients

sup φ∈Ham(CP n ,ω F S ) γ K (φ) n n + 1
is a consequence of the so-called "Poincaré duality formula for spectral invariants". Thus, sup

φ∈Ham(CP n ,ω F S ) γ Z (φ) = +∞
implies that the well-known "Poincaré duality formula for spectral invariants" no longer holds for spectral invariants with Z-coefficients. By considering the universal coefficient theorem for filtered Floer homology, Shelukhin and I have found that for some Hamiltonian H, the filtered Z-coefficient Floer homology HF τ (H; Z) possesses a torsion element at some filtration level τ ∈ R which disappears when the filtration level τ is sufficiently large.

Theorem 25. ([KawSh])

On CP n , n = 2, 3, there exists a Hamiltonian H such that for some filtration level τ ∈ R, we have T or(HF τ (H; Z)) = 0. This is a phenomenon that was not previously noticed and I plan to study this torsion part of the filtered Floer homology by using the language of barcodes that I explained in Section 3.3.2.

Dynamical viewpoint

We consider the following question. We have obtained the following partial result in this direction.

Theorem 27. ([KawSh])

If φ ∈ Ham(CP n , ω F S ) is a pseudo-rotation, we have

γ Z (φ) n n + 1 .
Recall that pseudo-rotations are Hamiltonian diffeomorphisms that possess the "minimal" number of periodic points. Pseudo-rotations are very important objects in dynamical systems and their relation to symplectic topology is becoming an active topic of research after the seminal works of Bramham [START_REF] Bramham | Periodic approximations of irrational pseudo-rotations using pseudoholomorphic curves[END_REF], [START_REF] Bramham | Pseudo-rotations with sufficiently Liouvillean rotation number are C 0 -rigid[END_REF]. We conjecture that the result of Theorem 137 holds in a broader generality.

Conjecture 28. Let (M, ω) be a monotone symplectic manifold admitting a pseudorotation. Any pseudo-rotation φ ∈ Ham(M, ω) satisfies

sup k∈Z γ Z (φ k ) < +∞.
Chapter 2

Preliminaries

Setting

In this section, we briefly review the notions and basic propositions needed later in the proof. For further details, we refer to [START_REF] Mcduff | J -holomorphic Curves and Symplectic Topology: Second Edition[END_REF].

Let (M, ω) be a symplectic manifold. A Hamiltonian H on M is a smooth time dependent function H : R/Z × M → R. We define its Hamiltonian vector field X Ht by -dH t = ω(X Ht , •). The Hamiltonian flow of H, denoted by φ t H , is by definition the flow of X H . A Hamiltonian diffeomorphism is a diffeomorphism which arises as the time-one map of a Hamiltonian flow. The set of all Hamiltonian diffeomorphisms is denoted by Ham(M, ω).

Denote the set of smooth contractible loops in M by LM and consider its universal cover. Two elements in the universal cover, say [z 1 , w 1 ] and [z 2 , w 2 ], are called equivalent if their boundary sum w 1 #w 2 i.e. the sphere obtained by gluing w 1 and w 2 along their common boundary with the orientation on w 2 reversed, satisfies

ω(w 1 #w 2 ) = 0, c 1 (w 1 #w 2 ) = 0.
We denote by L 0 M the space of equivalence classes. For a Hamiltonian H, define the action functional A H : LM → R by

A H ([z, w]) := 1 0 H(t, z(t))dt - D 2 w * ω
where w : D 2 → M is a capping of z : R/Z → M . Note that in general, the action functional depends on the capping and not only on the loop. Critical points of this functional are precisely the capped 1-periodic Hamiltonian orbits of H which will be denoted by P(H). The set of critical values of A H is called the action spectrum and is denoted by Spec(H):

Spec(H) := {A H ( z) : z ∈ P(H)}.
We briefly explain some notions of indices used later to construct Floer homology. 

ω| π2(M ) = κ • c 1 | π2(M )
for some monotonicity constant κ > 0 where c 1 = c 1 (T M ) denotes the first Chern class. In this paper, we only consider monotone symplectic manifolds unless mentioned otherwise. The positive generators of ω, π 2 (M ) and c 1 , π 2 (M ) ⊂ Z are respectively called the rationality constant and the minimal Chern number and will be respectively denoted by λ 0 and N M .

A Hamiltonian H on M is a smooth time dependent function H : R/Z × M → R. A Hamiltonian H is called mean-normalized if the following holds:

∀t ∈ R/Z, M H t (x)ω n = 0.
We define its Hamiltonian vector field X Ht by

-dH t = ω(X Ht , • ).
The Hamiltonian flow of H, denoted by φ t H , is by definition the flow of X H . A Hamiltonian diffeomorphism of H is a diffeomorphism which arises as the time-one map of a Hamiltonian flow and will be denoted by φ H . It is well-known that the set of Hamiltonian diffeomorphisms forms a group and will be denoted by Ham(M, ω). We denote its universal cover by Ham(M, ω).

Denote the set of smooth contractible loops in M by L 0 M and consider its universal cover. Two elements in the universal cover, say [z 1 , w 1 ] and [z 2 , w 2 ], are equivalent if z 1 = z 2 and their boundary sum w 1 #w 2 i.e. the sphere obtained by gluing w 1 and w 2 along their common boundary with the orientation on w 2 reversed, satisfies

ω(w 1 #w 2 ) = 0, c 1 (w 1 #w 2 ) = 0.
We denote by L 0 M the space of equivalence classes.

For a Hamiltonian H, define the action functional 

A H : L 0 M → R by A H ([z, w]) := 1 0 H(t,
d Hof (φ, ψ) := inf{ 1 0 (sup x H t (x) -inf x H t (x))dt : φ H = ψ -1 • φ} for φ, ψ ∈ Ham(M, ω).
The Hofer-topology is the topology induced by the Hofer metric.

The C 0 -distance of Hamiltonian diffeomorphisms φ, ψ ∈ Ham(M, ω) is defined by

d C 0 (φ, ψ) := max x∈M d(φ(x), ψ(x))
where d denotes the distance on M induced by the fixed Riemannian metric on M . The C 0 -topology is the topology induced by the C 0 -distance. Note that the C 0topology is independent of the choice of the Riemannian metric.

Hamiltonian Floer homology

We work with the ground field C in this paper. We say that a Hamiltonian H is nondegenerate if the diagonal set ∆ := {(x, x) ∈ M × M } and Γ φ H := {(x, φ H (x)) ∈ M × M } intersects transversally. We define the Floer chain complex of a non-degenerate Hamiltonian H, denoted by CF * (H) as follows:

CF * (H) := { z∈ P(H) a z • z : ∀τ ∈ R, #{ z : a z = 0, A H ( z) τ } < +∞}.
Floer chain complex CF * (H) is Z-graded by the so-called Conley-Zehnder index µ CZ . The differential map counts certain solutions of a perturbed Cauchy-Riemann equation for a chosen ω-compatible almost complex structure J on T M , which can be viewed as isolated negative gradient flow lines of A H . This defines a chain complex (CF * (H), ∂) called the Floer chain complex whose homology is called the Floer homology of (H, J) and is denoted by HF * (H, J). Often it is abbreviated to HF * (H) as Floer homology does not depend on the choice of an almost complex structure. Note that our convention of the Conley-Zehnder index is as follows: Let f denote a C 2 -small Morse function. For every critical point x of f , we require that µ CZ ([x,

w x ]) = i(x)
where i denotes the Morse index and w x is the trivial capping. Recapping a capped orbit z = [z, w] by gluing A ∈ π 2 (M ) changes the action and the Conley-Zehnder index as follows:

• A H ([z, w#A]) = A H ([z, w]) -ω(A). • µ CZ ([z, w#A]) = µ CZ ([z, w]) -2c 1 (A).
We extend the action functional A H as follows:

A H : CF * (H) → R A H ( z∈ P(H) a z • z) := max a z =0 A H ( z).
We then define the R-filtered Floer chain complex of H by the filtration of A H :

CF τ * (H) := {z ∈ CF * (H) : A H (z) < τ } = { z∈ P(H),A H ( z)<τ a z • z ∈ CF * (H)}.
As the Floer differential map decreases the action, (CF τ * (H), ∂) defines a chain complex whose homology is called the filtered Floer homology of H and is denoted by HF τ * (H).

Quantum (co)homology and semi-simplicity

Consider a monotone symplectic manifold (M, ω). Let the following denote the field of Laurent series of a formal variable s:

C[|s -1 , s] := { k k0 a k s k : k 0 ∈ Z, a k ∈ C}.
By identifying the variable s with the generator of Γ := π 2 (M )/ ∼ where the equivalence relation is defined by A, B ∈ π 2 (M ),

A ∼ B ⇐⇒ ω(A) = ω(B) satisfying ω(s) = λ 0 , c 1 (s) = N M ,
one can define the quantum homology ring QH * (M ; C) as

QH * (M ; C) := H * (M ; C) ⊗ C C[|s -1 , s].
Quantum homology ring has the following valuation:

ν : QH * (M ; C) → R ν( k k0 a k s k ) := max{k • ω(s) = k • λ 0 : a k = 0, k k 0 }.
Similarly, for a formal variable t, one can define the quantum cohomology ring

QH * (M ; C) as QH * (M ; C) := H * (M ; C) ⊗ C C[t -1 , t|]
where

C[t -1 , t|] := { k k0 b k t k : k 0 ∈ Z, b k ∈ C}.
Quantum homology ring and quantum cohomology ring has the following isomorphism called the Poincaré duality:

PD : QH * (M ; C) ∼ -→ QH 2n- * (M ; C) a := k k0 A k t k → PD(a) := k k0 A # k s -k
where # denotes the usual Poincaré duality between singular homology and singular cohomology. Note that t satisfies

ω(t) = λ 0 , c 1 (t) = N M .
Quantum cohomology ring has the following valuation:

ν : QH * (M ; C) → R ν( k k0 a k t k ) := min{k • ω(t) = kλ 0 : a k = 0, k k 0 }.
The ring structure of QH * (M ; C) (and of QH * (M ; C)) is given by the quantum product which is denoted by * . It is defined by a certain count of pseudo-homolorphic spheres. More precisely, in the case of It is known that Floer homology defined in Section 2.3 is canonically isomorphic to the quantum homology ring via the PSS-map:

QH * (M ; C), ∀a, b, c ∈ H * (M ), (a * b) • c := k∈Z GW 3,s k (a, b, c) ⊗ s k
P SS H : QH * (M ; C) ∼ -→ HF * (H).
Note that the PSS-map preserves the ring structure.

Hamiltonian Floer theory

We fix a ground field K of zero characteristic (see Remark 32). We say that a Hamiltonian

H is non-degenerate if the diagonal set ∆ := {(x, x) ∈ M × M } intersects transversally the graph of φ, Γ φ := {(x, φ(x)) ∈ M × M )}.
For a non-degenerate H, we define the Floer chain complex CF * (H) as follows:

CF * (H) := { z∈ P(H) a z • z : a z ∈ R, (∀τ ∈ R, #{ z : a z = 0, A H ( z) τ } < +∞)}.
The Floer chain complex has a Z-grading by the Conley-Zehnder index µ CZ . The boundary map counts certain solutions of a perturbed Cauchy-Riemann equation for a chosen ω-compatible almost complex structure J on T M , which can be viewed as isolated negative gradient flow lines of A H . This gives us a chain complex (CF * (H), ∂) called the Floer chain complex. Its homology is called the Floer homology of (H, J) and is denoted by HF * (H, J). Often it is abbreviated to HF * (H) as Floer homology does not depend on the choice of an almost complex structure.

Recapping of a capped orbit by A ∈ π 2 (M ) changes the action and the Conley-Zehnder index as follows:

• A H ([z, w#A]) = A H ([z, w]) -ω(A). • µ CZ ([z, w#A]) = µ CZ ([z, w]) -2c 1 (A).
We define the filtered Floer complex of H by

CF τ * (H) := { a z z ∈ CF * (H) : A H (z) < τ }.
Since the Floer boundary map decreases the action, (CF τ * (H), ∂) forms a chain complex. The filtered Floer homology of H which is denoted by HF τ * (H) is the homology defined by the chain complex (CF τ * (H), ∂). It is useful to clarify our convention of the Conley-Zehnder index since conventions change according to literature. We fix our convention by requiring that for a C 2 -small Morse function f :

M → R, each critical point x of f satisfy µ CZ ([x, w x ]) = i(x)
where i denotes the Morse index and w x is the trivial capping.

Quantum homology and Seidel elements

We sketch some basic definitions and properties concerning the quantum homology. Once again, we fix a ground field K. For further details of the concepts sketched in this section, we refer to [START_REF] Mcduff | J -holomorphic Curves and Symplectic Topology: Second Edition[END_REF].

Let (M, ω) be a closed symplectic manifold. Define

Γ := π 2 (M )/(Ker(ω) ∩ Ker(c 1 )).
The Novikov ring Λ is defined by

Λ := { A∈Γ a A ⊗ e A : a A ∈ K, (∀τ ∈ R, #{a A = 0, ω(A) < τ } < ∞)}.
The quantum homology of (M, ω) is defined by

QH * (M ; K) := H * (M ; K) ⊗ K Λ.
The quantum homology has a ring structure with respect to the quantum product denoted by * . It is defined as follows:

∀a, b, c ∈ H * (M ; K), (a * b) • c := A∈Γ GW 3,A (a, b, c) ⊗ e A
where • denotes the intersection index and GW 3,A denotes the 3-pointed Gromov-Witten invariant in the class A. See [START_REF] Mcduff | J -holomorphic Curves and Symplectic Topology: Second Edition[END_REF] for details.

When (M, ω) is either monotone or negative monotone, then the quantum homology ring QH * (M ; K) can be expressed in a simple way using the field of Laurent series. We first explain the case of monotone symplectic manifolds. In this case, Γ Z with a generator A such that

ω(A) = λ 0 , c 1 (A) = N M .
Thus the Novikov ring Λ is the ring of formal Laurent series

K[|s -1 , s] := { k k0 a k s k : a j ∈ K, k 0 ∈ Z}
where s := e A and the quantum homology ring QH * (M ; K) is

QH * (M ; K) = H * (M ; K) ⊗ K K[|s -1 , s].
The quantum product is expressed by

∀a, b ∈ H * (M ; K), a * b = a ∩ b + k>0 (a * b) k • s k .
The series on the right hand side runs over only non-positive powers since the elements of Γ appearing in the sum represents pseudo-holomophic spheres and pseudoholomophic spheres has non-negative ω-area (remember that s represents a sphere A such that ω(A) = λ 0 ). When (M, ω) is negative monotone, by denoting the generator A of Γ which satisfies ω(A) = +λ 0 , c 1 (A) = -N M and by denoting s := e A , we have

QH * (M ; K) = H * (M ; K) ⊗ K K[|s -1 , s]
just as in the monotone case.

Example 29. The quantum homology ring of (CP n , ω F S ) is expressed as follows:

QH * (CP n ; K) = K[|s -1 , s][h] h * (n+1) = [CP n ] • s -1
where h ∈ H 2n-2 (CP n ; K) denotes the projective hyperplane class, s denotes the generator of the Novikov ring and h * (n+1

) := u * u * • • • * u n+1-times .
There is a canonical isomorphism called the PSS-isomorphism between Floer homology and quantum homology which will be denoted by Φ:

Φ P SS,H;K : QH * (M ; K) ∼ -→ HF * (H).
PSS-isomorphism preserves the ring structure: for a, b ∈ QH * (M ; K),

Φ P SS,H;K (a) * pp Φ P SS,H;K (b) = Φ P SS,H;K (a * b)
where * pp denotes the pair-of-pants product.

Next, we briefly recall the definition of the Seidel element. The idea goes back to Seidel [START_REF] Seidel | π 1 of symplectic automorphism groups and invertibles in quantum homology rings[END_REF]. For a Hamiltonian loop ψ ∈ π 1 (Ham(M, ω)), we can define a Hamiltonian fiber bundle

(M, ω) → (M ψ , Ω ψ ) → (S 2 , ω area )
where, unit disks D 2 j , j = 1, 2,

M ψ := (D 2 1 × M ) (D 2 2 × M )/ ∼, (z 1 , x) ∼ (z 2 , y) ⇐⇒ z 1 = z 2 = e 2πit , y = ψ t (x).
The form Ω ψ is a family of symplectic form on T M vert ψ = Ker(dπ) parametrized by points of S 2 . We fix almost complex structures j on S 2 and J on M ψ such that dπ is pseudo-holomorphic i.e. j • dπ = dπ • J and for every z ∈ S 2 , J| π -1 (z) defines a Ω ψ -compatible almost complex structure on M ψ . For a section class σ ∈ π 2 (M ψ ), we denote the set of (j, J)-pseudo-holomorphic spheres in the class σ by SecCl(j, J, σ). The image of SecCl(j, J, σ) by the evaluation map ev : Spectral invariants were introduced by Viterbo [START_REF] Viterbo | Symplectic topology as the geometry of generating functions[END_REF] in terms of generating functions and later their counterparts in Floer theory were studied by Schwarz for aspherical symplectic manifolds [START_REF] Schwarz | On the action spectrum for closed symplectically aspherical manifolds[END_REF] and Oh for closed symplectic manifolds [START_REF] Oh | Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds[END_REF]. We list some basic properties of spectral invariants.

S 2 → M at z 0 ∈ S 2 defines a homology class [ev z0 (SecCl(j, J, σ))] of M . We thus define the Seidel element S ψ,σ ∈ QH * (M ; K) by S ψ,σ := A∈Γ [ev z0 (SecCl(j, J, σ + A))] ⊗ e A .

Hamiltonian spectral invariants

Proposition 30. Spectral invariants satisfy the following properties where H, G are Hamiltonians:

1. For any a ∈ QH * (M ; K)\{0},

E -(H -G) c(H, a) -c(G, a) E + (H -G)
where

E -(H) := 1 t=0 inf x H t (x)dt, E + (H) := 1 t=0 sup x H t (x)dt, E(H) := E + (H) -E -(H). 2. For any a ∈ QH * (M ; K)\{0}, c(H, a) ∈ Spec(H)
• for any Hamiltonian H when (M, ω) is rational.

• for any non-degenerate Hamiltonian H when (M, ω) is a general closed symplectic manifold.

For any

a, b ∈ QH * (M ; K)\{0}, c(H#G, a * b) c(H, a) + c(G, b). 4. Let U be a non-empty subset of M . c(H, [M ]) e(Supp(H)) := inf{E(G) : φ G (Supp(H)) ∩ Supp(H) = ∅}.
5. Let f : M → R be an autonomous Hamiltonian and a ∈ H * (M ; K). For a sufficiently small ε > 0, we have

c(εf, a) = c LS (εf, a) = ε • c LS (f, a)
where c LS (f, a) is the topological quantity defined by

c LS (f, a) := inf{τ : a ∈ Im(H * ({f τ }) → H * (M ))}.
6. For ψ ∈ π 1 (Ham(M, ω)), a section class σ of the Hamiltonian fiber bundle M ψ → S 2 , and a ∈ QH * (M ; K)\{0} we have

c(ψ * H, a) = c(H, S ψ,σ * a) + const(ψ, σ)
where

(ψ * H) t := (H t -K t ) • ψ t , ψ t := φ t K , φ t ψ * H = (ψ t ) -1 • φ t H
and const(ψ, σ) denotes a constant depending on σ and K.

7. For any ψ ∈ Symp 0 (M, ω) and a ∈ QH * (M ; K)\{0}, The spectral norm of H is defined by

c(H • ψ, a) = c(H, a). Remark 31. 1. For a set A, e(A) := inf{E(G) : φ G (A) ∩ A = ∅} is called the displacement energy of A.

Strictly speaking, spectral invariants c(H, •) can be defined only if

γ(H) := c(H, [M ]) + c(H, [M ])
where [M ] denotes the fundamental class. We also define a spectral norm for Hamiltonian diffeomorphisms by

γ : Ham(M, ω) → R γ(φ) := inf φ H =φ γ(H).
Remark 32. In this paper, we work with a fixed ground field K of zero characteristic but some results hold for other ground rings. More precisely, Theorem 37 and 39 hold for spectral norms respectively with any ground field K and with any ground ring R that is commutative and unital e.g. Z. In fact, Usher proved in [Ush08] that whenever one can define a Floer chain complex with a ground ring that is Noetherian, spectral invariants can be defined as above and satisfy properties listed in Proposition 30. For weakly-monotone symplectic manifolds, one can define Floer chain complexes with any ground field K [START_REF] Mcduff | J -holomorphic Curves and Symplectic Topology: Second Edition[END_REF]. Moreover, for monotone symplectic manifolds, one can define Floer chain complexes with any ground ring R that is commutative and unital [START_REF] Leclercq | Spectral invariants for monotone Lagrangians[END_REF], [START_REF] Zapolsky | The Lagrangian Floer-quantum-PSS package and canonical orientations in Floer theory[END_REF]. For general closed symplectic manifolds where one needs to use virtual cycle techniques in order to build Floer chain complexes [START_REF] Fukaya | Arnold conjecture and Gromov-Witten invariant[END_REF], [START_REF] Fukaya | Lagrangian intersection Floer theory: anomaly and obstruction[END_REF], [START_REF] Liu | Floer homology and Arnold conjecture[END_REF], the ground field K should have zero characteristic.

Cohomology version

In this subsection, we review spectral invariants defined for a quantum cohomology class. Everything is essentially the same as the previous section and the aim of this section is simply to avoid confusion of the notation. For a non-degenerate Hamiltonian H, let for any mean-normalized H such that the Hamiltonian path t → φ t H represents the homotopy class φ.

i τ * : CF τ * (H) → CF * (
The obvious relation to the spectral invariants defined in the previous section for quantum homology classes is the following: For a ∈ QH * (M ; C)\{0} and wtφ ∈ Ham(M, ω), we have c( φ, a) = ρ( φ, PD(a)).

We list further properties of spectral invariants.

Proposition 33. Spectral invariants satisfy the following properties where H, G are Hamiltonians:

1. For any a ∈ QH * (M ; C)\{0},

E -(H -G) ρ(H, a) -ρ(G, a) E + (H -G)
where

• E -(H) := 1 0 inf x∈M H t (x)dt, • E + (H) := 1 0 sup x∈M H t (x)dt, • E(H) := E + (H) -E -(H) = 1 0 { sup x∈M H t (x) -inf x∈M H t (x)}dt 2. If H is non-degenerate, then for any a ∈ QH * (M ; C)\{0}, ρ(H, a) ∈ Spec(H). Moreover, if a ∈ QH deg(a) (M ; C), then there exists z ∈ CF 2n-deg(a) (H) such that ρ(H, a) = A H (z). 3. For any a ∈ QH * (M ; C)\{0}, ρ(0, a) = ν(PD(a))
where 0 is the zero-function.

For any

a, b ∈ QH * (M ; C)\{0}, ρ(H#G, a * b) ρ(H, a) + ρ(G, b)
where

(H#G)(t, x) := H(t, x) + G(t, (φ t H ) -1 (x)) and satisfies φ t H#G = φ t H φ t G .
Remark 34. A priori spectral invariants ρ(H, • ) can be defined only if H is nondegenerate as they are defined via Floer homology of H. However, by the continuity property i.e. Proposition 30 (1), one can define ρ(H, • ) for any H ∈ C 0 (R/Z×M, R) by considering an approximation of H with non-degenerate Hamiltonians.

The spectral norm γ for Hamiltonians is defined as follows:

γ : C ∞ (R/Z × M, R) → R 0 γ(H) := ρ(H, 1) + ρ(H, 1)
where 1 ∈ QH 0 (M ; C) denotes the identity element of QH * (M ; C). We can see the spectral norm as a function on Ham(M, ω) as well:

γ : Ham(M, ω) → R 0 γ( φ) := ρ( φ, 1) + ρ( φ -1 , 1).
We also define the spectral norm for Hamiltonian diffeomorphisms by

γ : Ham(M, ω) → R 0 γ(φ) := inf φ H =φ γ(H).
Spectral invariants for Floer homology and quantum cohomology with Λ-coefficients were defined in a similar fashion in [START_REF] Fukaya | Spectral invariants with bulk, quasi-morphisms and Lagrangian Floer theory[END_REF] and it was proven to satisfy analogous properties listed in Proposition 30. We refer to [START_REF] Fukaya | Spectral invariants with bulk, quasi-morphisms and Lagrangian Floer theory[END_REF] for details.

Chapter 3

Comparing C 0 -distance and spectral distance

Abstract of the chapter

The purpose of this paper is to study the relation between the C 0 -topology and the topology induced by the spectral norm on the group of Hamiltonian diffeomorphisms of a closed symplectic manifold. Following the approach of Buhovsky-Humilière-Seyfaddini, we prove the C 0 -continuity of the spectral norm for complex projective spaces and negative monotone symplectic manifolds. The case of complex projective spaces provides an alternative approach to the C 0 -continuity of the spectral norm proven by Shelukhin. We also prove a partial C 0 -continuity of the spectral norm for rational symplectic manifolds. Some applications such as the Arnold conjecture in the context of C 0 -symplectic topology are also discussed. All the materials in this section are contained in [START_REF] Kawamoto | On C 0 -continuity of the spectral norm for symplectically non-aspherical manifolds[END_REF].

Introduction

The study of topological properties of the group of Hamiltonian diffeomorphisms of a symplectic manifold has been one of the central topics in symplectic topology. The group of Hamiltonian diffeomorphisms is known to carry different metrics such as the Hofer metric, the spectral metric and the C 0 -metric and their relations have been studied extensively. This paper studies the relation between the C 0 -topology and the topology induced by the spectral metric. More precisely, we study the C 0 -continuity of the spectral norm which has been already verified for certain cases: for R 2n by Viterbo [START_REF] Viterbo | Symplectic topology as the geometry of generating functions[END_REF], for closed surfaces by Seyfaddini [START_REF] Seyfaddini | C 0 -limits of Hamiltonian paths and the Oh-Schwarz spectral invariants[END_REF], for symplectically aspherical manifolds by Buhovsky-Humilière-Seyfaddini [START_REF] Buhovsky | The action spectrum and C 0 -symplectic topology[END_REF] and for complex projective spaces by Shelukhin [START_REF] Shelukhin | Viterbo conjecture for Zoll symmetric spaces[END_REF]. In this paper, we push the method developed by Buhovsky-Humilière-Seyfaddini [START_REF] Buhovsky | The action spectrum and C 0 -symplectic topology[END_REF] forward to the symplectically non-aspherical setting and confirm the C 0 -continuity of the spectral norm for negative monotone symplectic manifolds. We also obtain a partial C 0 -continuity of the spectral norm for rational symplectic manifolds and an alternative proof of the C 0 -continuity of the spectral norm for complex projective spaces. 37

Set-up

Throughout this paper, (M, ω) will denote a closed symplectic manifold. A symplectic manifold (M, ω) is called

• rational if ω, π 2 (M ) = λ 0 Z
for some constant λ 0 > 0. We refer to the constant λ 0 as the rationality constant.

• monotone (resp. negative monotone

) if ω| π2(M ) = λ • c 1 | π2(M )
for some positive (resp. negative) constant λ where c 1 := c 1 (T M ) denotes the first Chern class of T M . We refer to the constant λ as the monotonicity constant.

• symplectically aspherical when

ω| π2(M ) = c 1 | π2(M ) = 0.
The positive generator of c 1 , π 2 (M ) ⊂ Z is called the minimal Chern number

N M i.e. c 1 , π 2 (M ) = N M Z, N M > 0.
Example 35.

• The complex projective space equipped with the standard Fubini-Study form (CP n , ω F S ) is monotone and its minimal Chern number

N CP n is n + 1. • The degree k Fermat hypersurfaces of CP n+1 M := {(z 0 : z 1 : • • • : z n ) ∈ CP n+1 : z k 0 + z k 1 + z k 2 + • • • + z k n = 0} is negative monotone for k > n + 1. The minimal Chern number N M is |k - (n + 2)| if k = n + 2 and +∞ otherwise.
A Hamiltonian H on M is a smooth time dependent function H : R/Z × M → R. We define its Hamiltonian vector field X Ht by -dH t = ω(X Ht , •). The Hamiltonian flow of H, denoted by (φ t H ) t∈R , is by definition the flow of X H . Its time-one map φ 1 H is called the Hamiltonian diffeomorphism of H and will be denoted by φ H . The set of Hamiltonian diffeomorphisms and its universal cover will be denoted respectively by Ham(M, ω) and Ham(M, ω).

C 0 -topology

We define the C 0 -metric by

φ, ψ ∈ Ham(M, ω), d C 0 (φ, ψ) := max x∈M d(φ(x), ψ(x))
where d denotes the distance on M induced by the Riemannian metric on M . Note that the topology induced by the C 0 -distance is independent of the choice of a Riemannian metric. We denote the C 0 -closure of Ham(M, ω) in the group of homeomorphisms of M by Ham(M, ω). Their elements are called the Hamiltonian homeomorphisms.

Hamiltonian homeomorphisms are central objects in C 0 -symplectic topology.

Spectral norms

We roughly outline the notion of the spectral norm. For precise definitions, we refer to Section 2.7. First of all, a Hamiltonian

H ∈ C ∞ (R/Z × M, R) is called non- degenerate if for each x ∈ Fix(φ H ), the set of eigenvalues of dφ H (x) : T x M → T x M
does not include 1. For a non-degenerate Hamiltonian H and a fixed ground field K (see Remark 32 for more information about the choice of a ground field), one can define the Floer homology group HF (H) = HF (H; K) as well as their filtration with respect to the action functional which will be denoted by {HF τ (H)} τ ∈R . For each τ ∈ R, we denote the natural map induced by the inclusion map of the chain complex by i τ * : i τ * : HF τ (H) → HF (H). The quantum homology ring is defined by

QH * (M ; K) := H * (M ; K) ⊗ K Λ where Γ := π 2 (M )/Ker(ω) ∩ Ker(c 1 ), Λ := { A∈Γ a A ⊗ e A : a A ∈ K, (∀τ ∈ R, #{a A = 0 : ω(A) < τ } < +∞)}.
The ring structure of QH * (M ; K) is given by the quantum product * : for its definition, see Section 2.6). Floer homology group is ring isomorphic to the quantum homology ring QH * (M ; K) by the PSS-isomorphism

Φ P SS,H;K : QH * (M ; K) → HF (H).
For a Hamiltonian H and a ∈ QH * (M ; K)\{0}, the spectral invariant of H and a is defined by c(H, a) := inf{τ : Φ P SS,H;K (a) ∈ Im(i τ * )}. The spectral norm of a Hamiltonian H is defined by

γ(H) := c(H, [M ]) + c(H, [M ])
where H(t, x) := -H(t, φ t H (x)) which is a Hamiltonian that generates the Hamiltonian flow t → (φ t H ) -1 . Since γ is invariant under homotopy i.e. if φ t H ∼ φ t G rel. endpoints, then γ(H) = γ(G), it can be seen as a map defined on the universal cover of Ham(M, ω), namely

γ : Ham(M, ω) → R.
We define spectral norms for Hamiltonian diffeomorphisms by

γ : Ham(M, ω) → R, γ(φ) := inf φ=φ H γ(H).

Main results

Throughout the paper λ 0 > 0 denotes the rationality constant i.e. ω, π 2 (M ) = λ 0 Z. We first state our result for rational symplectic manifolds.

Theorem 36. Let (M, ω) be a rational symplectic manifold. For any ε > 0, there exists δ > 0 such that if

d C 0 (id, φ H ) < δ, then |γ(H) -l • λ 0 | < ε
for some integer l ∈ Z depending on H.

Theorem 36 gives us the candidates of the value of the spectral norm of a C 0 -small φ H . When the values of spectral norms are bounded by a number strictly smaller than λ 0 , then Theorem 36 implies the C 0 -continuity. The complex projective space CP n meets this condition.

Theorem 37. Let (CP n , ω F S ) be the complex projective space equipped with the Fubini-Study form.

1. For any φ ∈ Ham(CP n , ω F S ),

γ(φ) n n + 1 • λ 0
where λ 0 denotes the rationality constant.

2. The spectral norm is C 0 -continuous i.e.

γ : (Ham(CP n , ω F S ), d C 0 ) → R is continuous. Moreover, γ extends continuously to Ham(CP n , ω F S ).
Remark 38.

1. Theorem 37 is already proven in other papers: (1) appears as Theorem G (2) in [START_REF] Kislev | Bounds on spectral norms and barcodes[END_REF] and (2) appears as Theorem C in [START_REF] Shelukhin | Viterbo conjecture for Zoll symmetric spaces[END_REF]. Shelukhin's argument in [START_REF] Shelukhin | Viterbo conjecture for Zoll symmetric spaces[END_REF], which is different from ours, is based on barcode techniques and is specific for CP n .

2. We will prove an a priori more general result in Section 3.4.3.

For general monotone symplectic manifolds, instead of the C 0 -continuity, we only obtain the following C 0 -control of the spectral norm.

Theorem 39. Let (M, ω) be a monotone symplectic manifold.

1. For any ε > 0, there exists δ > 0 such that if

d C 0 (id, φ H ) < δ, then γ(H) < dim(M ) N M • λ 0 + ε. 2. If N M > dim(M ), then the spectral norm is C 0 -continuous i.e. γ : (Ham(M, ω), d C 0 ) → R
is continuous. Moreover, γ extends continuously to Ham(M, ω).

Remark 40.

1. The author does not know any example satisfying the assumptions in Theorem 39 (2). Note that Theorem 39 (2) follows immediately from Theorem 36 and Theorem 39 (1).

2. Theorem 39 applies to spectral norms of any ground ring R (i.e. a commutative ring with unit). See Remark 32 for a comment on the choice of ground rings/fields.

We now consider the case of negative monotone symplectic manifolds.

Theorem 41. Let (M, ω) be a negative monotone symplectic manifold.

1. For any ε > 0, there exists δ > 0 such that if

d C 0 (id, φ H ) < δ, then γ(H) < ε. In particular, if φ H = φ G for H, G ∈ C ∞ (R/Z × M, R), then γ(H) = γ(G) i.e. γ : Ham(M, ω) → R descends to γ : Ham(M, ω) → R. 2. The spectral norm is C 0 -continuous i.e. γ : (Ham(M, ω), d C 0 ) → R is continuous. Moreover, γ extends continuously to Ham(M, ω).
Remark 42. The independence of the spectral norm of the choice of Hamiltonian follows also from Lemma 3.2.(iv) in [START_REF] Mcduff | Monodromy in Hamiltonian Floer theory[END_REF].

Application 1: C 0 -continuity of barcodes

Barcodes are roughly speaking finite sets of intervals which are bounded from below but can be unbounded from above. The set of barcodes carries a metric called the bottleneck distance denoted by d bot . Barcodes have been a common tool in topological data analysis. Polterovich-Shelukhin brought barcodes into symplectic topology in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF] where they defined barcodes of (non-degenerate) Hamiltonian diffeomorphisms on symplectically aspherical manifolds and found applications to Hofer geometry. Later, as we will explain in Section 3.3.2, the definition of barcodes was extended to Hamiltonian diffeomorphisms on (negative) monotone symplectic manifolds [START_REF] Le Roux | Claude Viterbo, Barcodes and areapreserving homeomorphisms[END_REF], [START_REF] Polterovich | Vukasin Stojisavljević Persistence modules with operators in Morse and Floer theory[END_REF] after considering a completion of the set of barcodes with respect to the bottleneck distance which we will denote by Barcodes. An estimate of the bottleneck distance due to Kislev-Shelukhin [START_REF] Kislev | Bounds on spectral norms and barcodes[END_REF] (see the inequality ?? in Section 3.3.2) combined with the C 0 -continuity of the spectral norm implies the C 0 -continuity of barcodes for negative monotone symplectic manifolds.

Corollary 43. Let (M, ω) be a negative monotone symplectic manifold. The barcode map is C 0 -continuous i.e.

B : (Ham(M, ω), d C 0 ) → ( Barcodes, d bot )
is continuous. Moreover, B extends continuously to Ham(M, ω).

Remark 44. Of course, Theorem 37 (2) directly implies the C 0 -continuity of barcodes in the case of (CP n , ω F S ). This is proven by Shelukhin in Corollary 6 in [START_REF] Shelukhin | Viterbo conjecture for Zoll symmetric spaces[END_REF].

Application 2:

The C 0 -Arnold conjecture

The Arnold conjecture has been historically one of the central topics in symplectic geometry.

Conjecture 45. (The Arnold conjecture) Let (M 2n , ω) be a closed symplectic manifold.

1. For a non-degenerate φ ∈ Ham(M, ω),

#Fix(φ) j dim C H j (M ; C). 2. For φ ∈ Ham(M, ω), #Fix(φ) cl(M )
where

cl(M ) := # max{k + 1 : ∃a 1 , a 2 , • • • , a k ∈ H * <2n (M ) s.t. a 1 ∩ a 2 ∩ • • • ∩ a k = 0}
and ∩ denotes the intersection product.

Since the advent of Floer homology, there has been a huge progress in the two versions of the Arnold conjecture: (1) is now completely settled [START_REF] Fukaya | Arnold conjecture and Gromov-Witten invariant[END_REF], [START_REF] Liu | Floer homology and Arnold conjecture[END_REF] and (2) has been confirmed for symplectically aspherical manifolds [START_REF] Floer | Symplectic fixed points and holomorphic spheres[END_REF], CP n [For85] [ForW85] and negative monotone symplectic manifolds with

N M n [LO94].
It caught attention whether or not the Arnold conjecture is C 0 -robust i.e. if Hamiltonian homeomorphisms satisfy similar properties. For closed surfaces, this question was answered in the positive by Matsumoto [?]. However, Buhovsky-Humilière-Seyfaddini [START_REF] Buhovsky | A C 0 counter example to the Arnold conjecture[END_REF] discovered that in higher dimension, this turns out not to be the case.

Theorem 46. ([BHS18])

Let (M, ω) be any closed symplectic manifold of dimension 4. There exists a Hamiltonian homeomorphism φ ∈ Ham(M, ω) such that #Fix(φ) = 1.

In their subsequent paper [START_REF] Buhovsky | The action spectrum and C 0 -symplectic topology[END_REF], Buhovsky-Humilière-Seyfaddini have reformulated the Arnold conjecture in a way that is more suited to study the rigidity of Hamiltonian homeomorphisms when the ambient manifold is symplectically aspherical. We will follow their idea to obtain similar results for symplectic manifolds that are not symplectically aspherical by using the quantum product * of QH * (M ; K) (for its definition, see Section 2.6). For (M, ω) for which γ is C 0 -continuous (e.g. negative monotone symplectic manifolds and (CP n , ω F S )), σ a,a * b turns out to be C 0 -continuous and it extends continuously to Ham(M, ω): see Section 3.5.2 for details.

Theorem 48. Let (M 2n , ω) be either a negative monotone symplectic manifold or

(CP n , ω F S ). For φ ∈ Ham(M, ω), if there exist homology classes a, b ∈ H * (M ; K)\{0}, b = [M ] such that σ a,a * b (φ) = 0,
then Fix(φ) is homologically non-trivial, hence it is an infinite set.

Remark 49.

1. Recall that, a subset A ⊂ M is homologically non-trivial if for every open neighborhood U of A the map i * : H j (U ; K) → H j (M ; K), induced by the inclusion i : U → M , is non-trivial for some j > 0. Homologically non-trivial sets are infinite sets.

2. In [START_REF] Howard | Action Selectors and the Fixed Point Set of a Hamiltonian Diffeomorphism[END_REF], Howard considers the smooth version of this statement.

Application 3: The displaced disks problem

A topological group G is a Rokhlin group if it possesses a dense conjugacy class i.e. for some φ ∈ G, Conj(φ) := {ψ -1 φψ : ψ ∈ G} is dense. Béguin-Crovisier-Le Roux formulated the following question so-called the "displaced disks problem", in order to study whether or not the group of area-preserving homeomorphisms on a sphere is a Rokhlin group. This original question which was for (M, ω) = (S 2 , ω area ) was solved by Seyfaddini in [?] as a consequence of his earlier result on C 0 -continuity of spectral norms for closed surfaces [?]. Other cases, also deduced by C 0 -continuity of spectral norms, has also been considered: [START_REF] Buhovsky | The action spectrum and C 0 -symplectic topology[END_REF] deals with symplectically aspherical manifolds and [START_REF] Shelukhin | Viterbo conjecture for Zoll symmetric spaces[END_REF] treats CP n . Here we add the case of negative monotone symplectic manifolds.

Theorem 51. Let (M, ω) be a negative monotone symplectic manifold. For any r > 0, there exists δ > 0 such that if φ ∈ Ham(M, ω) displaces a symplectically embedded ball of radius r, then d C 0 (id, φ) > δ.

We obtain the following as a direct consequence.

Corollary 52. Let (M, ω) be a negative monotone symplectic manifold. The group Ham(M, ω) seen as a topological group with respect to the C 0 -topology is not a Rokhlin group.

Remark 53. The case of (CP n , ω F S ) was considered by Shelukhin in [START_REF] Shelukhin | Viterbo conjecture for Zoll symmetric spaces[END_REF].

Additional preliminaries

In this section, we provide some results that are relevant for the proofs of the results in this chapter but were not covered in Section 4.4. The results in this section will not be used in other chapters.

Some properties of capped orbits

The following elementary properties are often used to calculate the action.

Proposition 54. Let (M, ω) be a symplectic manifold. Assume the Hamiltonian paths generated by H and G are homotopic rel. end points i.e. there exists

W : [0, 1] × [0, 1] → Ham(M, ω) such that 1. W (0, t) = φ t H , u(1, t) = φ t G . 2. W (s, 0) = id, u(s, 1) = φ H = φ G . Let x ∈ Fix(φ H ) = Fix(φ G )
and w be a capping of the orbit φ t H (x). Then the action of the capped orbit [φ t G (x), w ] where w := w#W (W glued to x along φ t H (x)) coincides with the action of [φ t H (x), w]:

A H ([φ t H (x), w]) = A G ([φ t G (x), w ]) Proposition 55. Let (M, ω) be a symplectic manifold. 1. For any Hamiltonian H ∈ C ∞ (R/Z × M, R), H(t, x) := -H(t, φ t H (x)
) generates the Hamiltonian flow t → (φ t H ) -1 and has the time-1 map φ -1 H .

For any Hamiltonian

H ∈ C ∞ (R/Z × M, R), H(t, x) := -H(-t, x)
generates the Hamiltonian flow t → φ -t H and has the time-1 map φ -1 H .

3. Hamiltonian paths generated by H and H are homotopic rel. end points.

Proposition 56. Let (M, ω) be a symplectic manifold.

For any Hamiltonians

H, G ∈ C ∞ (R/Z × M, R), H#G(t, x) := H(t, x) + G(t, (φ t H ) -1 (x)) generates the Hamiltonian flow t → φ t H • φ t G
and has the time-1 map φ H • φ G .

For any Hamiltonians

H, G ∈ C ∞ (R/Z × M, R), H ∧ G(t, x) := G(2t, x) (0 t 1/2) H(2t -1, φ G (x)) (1/2 t 1)
generates the Hamiltonian flow

t → φ 2t G (0 t 1/2) φ 2t-1 H • φ G (1/2 t 1)
and has the time-1 map φ H • φ G .

3. Hamiltonian paths generated by H#G and H ∧ G are homotopic rel. end points.

The following two propositions will be used in Section 3.4.1. Proofs will be omitted as they follow from elementary arguments.

Proposition 57. Let (M, ω) be a symplectic manifold, U a simply connected nonempty open set and H a Hamiltonian such that φ H (p) = p for all p ∈ U . Take any x 0 ∈ U and a capping w 0 : D 2 → M of the orbit φ t H (x 0 ) and fix them. For any x ∈ U , define a capping w x : D 2 → M of the orbit φ t H (x) by

w x (se 2πit ) := φ t H (c(s))#w 0
where c : [0, 1] → M is a smooth path from x 0 to x and φ t H (c(s))#w 0 denotes the gluing of φ t H (c(s)) and w 0 along φ t H (x 0 ). Then we have the following:

1. A H ([φ t H (x), w x ]) = A H ([φ t H (x 0 ), w 0 ]). 2. µ([φ t H (x), w x ]) = µ([φ t H (x 0 ), w 0 ]
). Proposition 58. Let (M, ω) be a symplectic manifold, H a Hamiltonian and [φ t H (x), w] any capped 1-periodic orbit of H. Then 1. w : D 2 → M, w(se 2πit ) := w(se 2πi(-t) ) is a capping of the orbit φ -t

H (x) 2. µ([φ t H (x), w]) = -µ([φ -t H (x), w]) 3. A H ([φ t H (x), w]) = -A H ([φ t H (x), w]
) where H(t, x) = -H(-t, x).

Barcodes

In this subsection, we roughly explain how to define barcodes for Hamiltonian diffeomorphisms on (negative) monotone symplectic manifolds following [START_REF] Le Roux | Claude Viterbo, Barcodes and areapreserving homeomorphisms[END_REF]. We also refer to [START_REF] Polterovich | Vukasin Stojisavljević Persistence modules with operators in Morse and Floer theory[END_REF] and [START_REF] Usher | Persistent homology and Floer-Novikov theory[END_REF] for constructions of barcodes in symplectic topology.

A finite barcode is a finite set of intervals

B = {I j = (a j , b j ] : a j ∈ R, b j ∈ R ∪ {+∞}} 1 j N .
Two finite barcodes B, B are said to be δ-matched if, after deleting some intervals of length less than 2δ, there exists a bijective matching between the intervals of B and B such that the endpoints of the matched intervals are less than δ of each other. The bottleneck distance of B, B is defined as follows:

d bot (B, B ) := inf{δ > 0 : B and B are δ -matched}.
Barcodes of non-degenerate Hamiltonian diffeomorphisms were first defined in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF] for symplectic manifolds that are symplectically aspherical via filtered Floer homology. For symplectically non-aspherical manifolds, (filtered) Floer homology groups do not satisfy the "finiteness" condition and in order to overcome this issue, [START_REF] Polterovich | Vukasin Stojisavljević Persistence modules with operators in Morse and Floer theory[END_REF] defines barcodes for non-degenerate Hamiltonian diffeomorphisms on monotone symplectic manifolds by fixing a degree. Later, in order to define barcodes of degenerate Hamiltonian diffeomorphisms on spheres (their method applies more generally to (negative) monotone symplectic manifolds), in [START_REF] Le Roux | Claude Viterbo, Barcodes and areapreserving homeomorphisms[END_REF] Le Roux-Seyfaddini-Viterbo considered a completion of the set of finite barcodes with respect to the bottleneck distance in the following way:

Let Barcodes denote the set of a collection of intervals B = {I j } j∈N such that for any δ > 0 only finitely many of the intervals I j have lengths greater than δ. The bottleneck distance d bot extends to Barcodes. The space (Barcodes, d bot ) is indeed the completion of the space of finite barcodes. Given a barcode B = {I j } j∈N and c ∈ R, define B + c = {I j + c} j∈N , where I j + c is the interval obtained by adding c to the endpoints of I j . Define an equivalence relation ∼ by B ∼ B if B = B + c for some c ∈ R. We will denote the quotient space of Barcodes with the relation ∼ by Barcodes.

We explain briefly how to map a (possibly degenerate) Hamiltonian diffeomorphism on a (negative) monotone symplectic manifold to a barcode following [START_REF] Le Roux | Claude Viterbo, Barcodes and areapreserving homeomorphisms[END_REF]. Given a non-degenerate Hamiltonian H and an integer k ∈ Z, the filtered k-th Floer homology group {HF τ k (H)} τ ∈R forms a persistence module. For this filtered vector spaces, one can define a barcode in the same way as in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF] and we denote the barcode by B k (H). We define the barcode of H by

B(H) := k B k (H) ∈ Barcodes.
For two Hamiltonians H, G such that φ H = φ G , their Floer homology groups coincide up to shifts of index and action filtration i.e. HF τ * (H) HF τ +τ0 * +k0 (G) for some k 0 ∈ Z, τ 0 ∈ R. Thus B(H) = B(G) and therefore, we define the barcode map B as follows:

B : Ham(M, ω) → Barcodes.

B(φ) := B(H)

for any H such that φ H = φ. Kislev-Shelukhin [START_REF] Kislev | Bounds on spectral norms and barcodes[END_REF] proved the following inequality to estimate the bottleneck distance between barcodes of φ, ψ ∈ Ham(M, ω):

d bot (B(φ), B(ψ)) 1 2 γ(φ -1 ψ).
This implies that once we obtain the C 0 -continuity of γ, the map

B : (Ham(M, ω), d C 0 ) → ( Barcodes, d bot )
is continuous. Thus, Corollary 43 is a direct consequence of Theorem 41.

Proofs

In this section, we prove the results claimed in the introduction. We start from the case of negative monotone symplectic manifolds since the proof is based on a similar idea to the case of rational symplectic manifolds but it is simpler.

Proofs of Theorem 39 and 41

We prove Theorem 39 (1) and Theorem 41. It is achieved by combining the following Propositions 59 and 60.

Proposition 59. Let (M, ω) be a monotone or negative monotone symplectic manifold, U be a simply connected open subset of M . For any ε > 0, there exists δ > 0

such that if H ∈ C ∞ (R/Z × M, R) satisfies d C 0 (id, φ H ) < δ and φ H (x) = x for all x ∈ U , then • when (M, ω) is monotone, γ(H) < dim(M ) N M λ 0 + ε.
• when (M, ω) is negative monotone, γ(H) < ε.

Proposition 60. ([BHS21] Lemma 4.2) Let (M, ω) be any closed symplectic manifold. For any ε > 0, there exists a non-empty open ball B ⊂ M satisfying the following properties: its displacement energy is estimated by e(B) < ε and for any ε > 0, there exists δ > 0 such that if We postpone the proof of Proposition 59 and first briefly review the proof of Proposition 60 due to [START_REF] Buhovsky | The action spectrum and C 0 -symplectic topology[END_REF] as we will need some parts of the proof in the proof of Claim 67.

φ H ∈ Ham(M, ω), d C 0 (id M , φ H ) < δ , then there exist G ∈ C ∞ (R/Z × M × M, R) such that 1. γ(G) < ε 2. d C 0 (id M ×M , φ G ) < ε 3. (φ H × φ -1 H ) • φ G | B×B =

Proof. (of Proposition 60 by [BHS21])

Let ε > 0 and fix any non-empty open ball B whose displacement energy satisfies e(B ) < ε/4.

Claim 61. (Claim 4.3 [BHS21])

There exists a Hamiltonian Q on M × M and an open ball B in M such that

• Supp(Q) ⊂ B × B . • ∀(x, y) ∈ B × B , φ Q (x, y) = (y, x).
• Denote the origin point of the ball B by x 0 . The point (x 0 , x 0 ) is fixed by the flow of Q: ∀t, φ t Q ((x 0 , x 0 )) = (x 0 , x 0 ).

Now, define

G := (0 ⊕ H)#Q#(0 ⊕ H)#Q. (3.1)
This Hamiltonian G satisfies the following:

c(G, [M × M ]) = c((0 ⊕ H)#Q#(0 ⊕ H)#Q, [M × M ]) c((0 ⊕ H)#Q#(0 ⊕ H), [M × M ]) + c(Q, [M × M ]) = c(Q, [M × M ]) + c(Q, [M × M ]) e(Supp(Q)) + e(Supp(Q)) 2e(B × B )
and as the ball B was chosen so that e(B ) < ε/4, we get

c(G, [M × M ]) < ε/2. (3.2)
We can estimate c(G, [M × M ]) in the same way and we get γ(G) < ε.

Now, let B be a ball whose closure is included in B and make sure that the origin of B is the same as the origin of B , namely x 0 . If we require φ H to be C 0 -close enough to id so that φ H (B) ⊂ B , then for all (x, y) ∈ B × B, we have

(φ H × φ -1 H ) • φ G (x, y) = (x, y).
This finishes the proof of Proposition 60. Now, before proving Proposition 59, we prove Theorem 39 (1) and Theorem 41.

Proof. (of Theorem 39 (1) and Theorem 41) Note that if (M, ω) is (negative) monotone, then so is (M × M, ω ⊕ ω). Given any ε > 0, we can take a ball B in M as in Proposition 60. By Proposition 60, for any ε > 0, there exists δ > 0 such that if d C 0 (id M , φ) < δ , then there exist

G ∈ C ∞ (R/Z × M × M, R) such that 1. γ(G) < ε 2. d C 0 (id M ×M , φ G ) < ε 3. [(φ × φ -1 ) • φ G ]| B×B = id B×B
We take ε > 0 small enough so that

d C 0 (id M ×M , (φ × φ -1 ) • φ G ) < δ
is satisfied where δ > 0 is a positive number as in Proposition 59 which is determined by B × B and ε > 0. This is achievable as

d C 0 (id M ×M , (φ × φ -1 ) • φ G ) d C 0 (id M ×M , φ G ) + d C 0 (φ G , (φ × φ -1 ) • φ G ) = d C 0 (id M ×M , φ G ) + d C 0 (id M ×M , φ × φ -1 ) ε + 2δ . Now, take any Hamiltonian H generating φ: φ H = φ. Then (H ⊕ H)#G generates (φ × φ -1 ) • φ G so if by Proposition 59, we have • if (M, ω) is monotone, then γ((H ⊕ H)#G) < dim(M × M ) N M ×M λ 0 + ε = 2 • dim(M ) N M λ 0 + ε. • if (M, ω) is negative monotone, γ((H ⊕ H)#G) < ε.
As γ(H ⊕ H) = 2γ(H) (by Theorem 5.1. in [START_REF] Entov | Rigid subsets of symplectic manifolds[END_REF]), we have

2γ(H) = γ(H ⊕ H) γ((H ⊕ H)#G) + γ(G) = γ((H ⊕ H)#G) + γ(G) < γ((H ⊕ H)#G) + ε.
Therefore,

• if (M, ω) is monotone, then 2γ(H) < 2 • dim(M ) N M λ 0 + ε + ε, thus γ(H) < dim(M ) N M λ 0 + ε.
This proves Theorem 39 (1).

• if (M, ω) is negative monotone, then 2γ(H) < 2ε, thus γ(H) < ε.

This proves Theorem 41.

Proof. (of Theorem 41 (2)) Once we know that spectral norms are well-defined on Ham(M, ω), the C 0 -continuity at id follows directly from Theorem 41 (1). The C 0 -continuity at φ ∈ Ham(M, ω) is a consequence of the triangle inequality: for any ε > 0, if we take d C 0 (φ, ψ) small enough so that d C 0 (id, φ -1 • ψ) < δ where δ is taken as in Theorem 41 (1). Then,

|γ(ψ) -γ(φ)| γ(φ -1 • ψ) < ε.
By using the C 0 -continuity, we can define the spectral norm for Hamiltonian homeomorphisms in the following way: for φ ∈ Ham(M, ω), take a sequence φ k ∈ Ham(M, ω) that C 0 -converges to φ. Define γ(φ) := lim k→+∞ γ(φ k ). Note that any approximating sequence will give the same limit. This completes the proof of Theorem 41 (2).

We now prove Proposition 59.

Proof. (of Proposition 59)

Take a Morse function f : M → R whose critical points are located in U . We assume that f is C 2 -small enough so that its Hamiltonian flow does not admit any non-constant periodic points and that osc(f ) := max f -min f < ε. Since φ f has no fixed points in M \U , there exists δ > 0 such that ∀x ∈ M \U, d(x, φ f (x)) > δ.

We will now see that if φ H is C 0 -close enough to id, then

Crit(f ) = Fix(φ H • φ f ). First, Crit(f ) ⊂ Fix(φ H • φ f ) follows from ∀x ∈ U, φ H (x) = x. Next, we will see Fix(φ H • φ f ) ⊂ Crit(f ) if φ H is C 0 -close enough to id. Let x ∈ Fix(φ H • φ f ). 1. Assume x ∈ U. Then, φ f (x) = φ H • φ f (x) = x and since Crit(f ) = Fix(φ f ), we have x ∈ Crit(f ). 2. Assume x / ∈ U . Then, φ H (x) / ∈ U and d C 0 (x, φ H • φ f (x)) d C 0 (φ f (x), x) -d C 0 (φ f (x), φ H • φ f (x)) δ -d C 0 (id, φ H ).
If we take φ H to be C 0 -close enough to id so that the last equation become positive, then

x / ∈ Fix(φ H • φ f ). Thus x ∈ Fix(φ H • φ f ) implies x ∈ U and x = φ H • φ f (x) = φ f (x). Thus x ∈ Crit(f ).
We have proven that if φ H is C 0 -close enough to id, then

Crit(f ) = Fix(φ H • φ f ).
Thus, for such φ H and for any

x ∈ Crit(f ) = Fix(φ H • φ f ), its orbit is φ t H#f (x) = φ t H (x) and thus, Spec(H#f ) = {f (x) + A H ([φ t H (x), w]) : x ∈ Crit(f ), [φ t H (x)
, w] ∈ Crit(A H )}. Take any x 0 ∈ Crit(f ) and a capping w 0 : D 2 → M of the orbit φ t H (x 0 ) i.e. w 0 (e 2πit ) = φ t H (x 0 ). We fix this capped orbit [φ t H (x 0 ), w 0 ] in the sequel. For any x ∈ Crit(f ), define a capping w x : D 2 → M of the orbit φ t H (x) by w x (se 2πit ) := φ t H (c(s))#w 0 where c : [0, 1] → U is a smooth path from x 0 to x and φ t H (c(s))#w 0 denotes the gluing of φ t H (c(s)) and w 0 along φ t H (x 0 ).

Recall that γ(H) = c(H, [M ]) + c(H, [M ]) and we will estimate c(H, [M ]) and c(H, [M ]) separately.

By the triangle inequality,

c(H, [M ]) c(H#f, [M ]) + c(f , [M ]).
For the second term we know that

c(f , [M ]) = c(-f, [M ]) ε as f is C 2 -small and osc(f ) < ε. For the first term, c(H#f, •) ∈ Spec(H#f )
so there exists a point x ∈ Crit(f ) and a sphere A : S 2 → M such that

3.4. PROOFS • A H#f ([φ t H (x), w x #A]) = c(H#f, [M ]). • µ CZ ([φ t H (x), w x #A]) = deg([M ]) = 2n.
The sphere A plays the role of correcting the capping of the capped orbit [φ t H (x), w x ] to achieve the appropriate capped orbit which realizes the spectral invariant c(H#f, [M ]).

The action and the index can be rewritten in the following way where i denotes the Morse index:

• A H#f ([φ t H (x), w x #A]) = f (x) + A H ([φ t H (x), w x ]) -ω(A). • µ CZ ([φ t H (x), w x #A]) = i(x) + 2µ([φ t H (x), w x ]) -2c 1 (A).
Thus we get the following two equations.

c(H#f, [M ]) = f (x) + A H ([φ t H (x), w x ]) -ω(A).
(3.3a)

2n = i(x) + 2µ([φ t H (x), w x ]) -2c 1 (A). (3.3b)
In the same way, there exist a point y ∈ Crit(f ) and a sphere B :

S 2 → M such that c(H#f, [M ]) = f (y) + A H ([φ t H (y), w y ]) -ω(B). (3.4a) 2n = i(y) + 2µ([φ t H (y), w y ]) -2c 1 (B). (3.4b) 
Here, the capping w y is w y (se 2πit ) := w y (se 2πi(-t) ).

Thus, by adding the equations 3.3a and 3.4a, we obtain

γ(H) 2c(-f, [M ]) + c(H#f, [M ]) + c(H#f, [M ]) = 2c(-f, [M ]) + f (x) + f (y) + A H ([φ t H (x), w x ]) + A H ([φ t H (y), w y ]) -ω(A + B) 4ε -ω(A + B)
where Proposition 57 and 58 were used in the last line. In the same way, by adding the equalities 3.3b and 3.4b, we obtain

4n = i(x) + i(y) + 2µ([φ t H (x), w x ]) + 2µ([φ t H (y), w y ]) -2c 1 (A + B) = i(x) + i(y) -2c 1 (A + B).
Now, since i(x), i(y) are Morse indices, we have

0 i(x), i(y) 2n = dim(M )
and thus, 0 4n + 2c 1 (A + B) 4n.

Thus, -2n c 1 (A + B) 0.

Note that up to now, we have not used the (negative) monotonicity of (M, ω). Now,

• if (M, ω) is negative monotone, then

-ω(A + B) = -λ • c 1 (A + B) 0. • if (M, ω) is monotone, then -ω(A + B) = -λ • c 1 (A + B) 2nλ = 2n N M λ 0 .
Therefore,

• if (M, ω) is negative monotone, then γ(H) 4ε.

• if (M, ω) is monotone, then γ(H) 2n N M λ 0 + 4ε.
This completes the proof of Proposition 59.

Proof of Theorem 64

The goal of this subsection is to prove Theorem 64 which includes Theorem 36 as a special case. The argument is similar to the negative monotone case. We start by some additional definitions.

Definition 62. Let (M, ω) be any closed symplectic manifold and a, b ∈ H * (M ; K)\{0}.

We define the following: Theorem 64. Let (M, ω) be a rational symplectic manifold and a, b ∈ H * (M ; K)\{0}.

γ a,b : C ∞ (R/Z × M, R) → R,
For any ε > 0, there exists δ > 0 such that if

d C 0 (id, φ H ) < δ, then |γ a,b (H) -l • λ 0 | < ε
for some integer l ∈ Z depending on a, b ∈ H * (M ; K)\{0} and H.

Before proving Theorem 64, we will see the following consequence on the C 0continuity of the spectral norm.

Corollary 65. Let (M, ω) be a rational symplectic manifold. Assume that there exist constants 0 < κ < 1 and δ > 0

such that if φ ∈ Ham(M, ω), d C 0 (id, φ) δ , then γ(φ) κ • λ 0 . Then, γ : Ham(M, ω) → R is C 0 -continuous.
Corollary 65 will be used to obtain the C 0 -continuity of the spectral norm for CP n in Theorem 37.

Proof. (of Corollary 65)

It is enough to prove the continuity at id since |γ(φ) -γ(ψ)| γ(ψ -1 φ). For a given ε ∈ (0, 1 2 (1 -κ)λ 0 ), take δ > 0 as in Theorem 36. Let

φ ∈ Ham(M, ω), d C 0 (id, φ) < min{δ, δ }.
There exists a Hamiltonian H such that φ H = φ and

γ(H) < γ(φ) + ε < κ • λ 0 + 1 2 (1 -κ)λ 0 = 1 2 (1 + κ)λ 0 < λ 0 -ε.
Thus, by Theorem 36, γ(H) < ε.

Thus, γ(φ) γ(H) < ε.
This implies the continuity of γ at id and hence completes the proof of Corollary 65.

Now, we move to the proof of Theorem 64. The following Proposition will be needed.

Proposition 66. Let (M, ω) be a closed symplectic manifold. Fix an arbitrary point x 0 ∈ M . There exists a constant C > 0 satisfying the following property: For any point x ∈ M , there exists ψ ∈ Ham(M, ω) such that

1. ψ(x) = x 0 2. dψ -1 C
The proof is elementary and thus will be omitted.

Proof. (of Theorem 64)

The proof is similar to the proof of Theorem 41. For a given ε > 0, we take a ball B as in Proposition 60. We will denote the origin of the ball B by x 0 . For the open set B × B, consider a Morse function

F : M × M → R such that • Crit(F ) ⊂ B × B.
• F is C 2 -small enough so that Fix(φ F ) = Crit(F ) and that osc(F ) := max Fmin F < ε.

As φ F has no fixed points in M \(B × B), there exists δ > 0 such that for any

x ∈ M × M \(B × B), d(x, φ F (x)) > δ.
For any ε > 0, we can take δ > 0 as in Proposition 60. By Proposition 66, for x 0 , there exists a constant C > 0 such that for any x ∈ M , there exists ψ ∈ Ham(M, ω) such that

• ψ(x) = x 0 • dψ -1 C
We consider φ H so that d C 0 (id, φ H ) < δ /C. For any x * ∈ Fix(φ H ), we can take ψ ∈ Ham(M, ω) such that ψ(x * ) = x 0 and dψ -1 C. Let H := H • ψ -1 . We have

d C 0 (id, φ H ) = d C 0 (id, ψ -1 φ H ψ) = d C 0 (ψ -1 , ψ -1 φ H ) dψ -1 d C 0 (id, φ H ) C • δ /C = δ . By Proposition 60, there exists G ∈ C ∞ (R/Z × M × M ) such that • γ(G) < ε. • d C 0 (id M ×M , φ G ) < ε . • (φ -1 H × φ H ) • φ G | B×B = id B×B .
In addition, we have seen in the proof of Proposition 60 that G is defined by G = (0 ⊕ H )#Q#(0 ⊕ H )#Q where Q is an autonomous Hamiltonian on M × M whose flow fixes the point (x 0 , x 0 ) for all time t: φ t Q ((x 0 , x 0 )) = (x 0 , x 0 ). The spectral invariant of G was estimated as

c(G, [M × M ]) < 1 2 ε.
All these properties of G and Q will be used in the following.

We will now split the proof into four steps.

• Step 1: The aim of this step is to prove the following:

Claim 67. |c(H ⊕ H , a ⊗ b) -c((H ⊕ H )#G#F, a ⊗ b)| < 3 2 ε.
Proof. By the triangle inequality, we have

c((H ⊕ H )#G#F, a ⊗ b) -c(H ⊕ H , a ⊗ b) c(G#F, [M × M ]) c(G, [M × M ]) + c(F, [M × M ]) < 3 2 ε.
Note that the final inequality uses,

c(F, [M × M ]) max(F ) < ε and the estimate c(G, [M × M ]) < 1 2 ε.
The other side of the inequality follows from a similar estimate.

•

Step 2: The aim of this step is to prove the following:

Claim 68. c((H ⊕ H )#G#F, a ⊗ b) = F (x, y) + A (H ⊕H )#G ([φ t (H ⊕H )#G ((x, y)), w x,y ]) + (ω ⊕ ω)(A 1
) for some critical point (x, y) of F , some capping w x,y and some

A 1 ∈ π 2 (M × M ). Proof. As d C 0 (id, (φ -1 H × φ H ) • φ G ) d C 0 (id, φ G ) + d C 0 (φ G , (φ -1 H × φ H ) • φ G ) = d C 0 (id, φ G ) + d C 0 (id, φ -1
H × φ H ) ε + δ , we can take ε > 0 small enough so that

d C 0 (id, (φ -1 H × φ H ) • φ G ) δ. Therefore, as • for all x / ∈ B × B, d C 0 (x, φ F (x)) > δ, • d C 0 (id, (φ -1 H × φ H ) • φ G ) δ, • (φ -1 H × φ H ) • φ G | B×B = id B×B , we have Fix((φ -1 H × φ H ) • φ G • φ F ) = Crit(F ). Thus the spectral invariant c((H ⊕ H )#G#F, a ⊗ b) can be expressed as follows: c((H ⊕ H )#G#F, a ⊗ b) = F (x, y) + A (H ⊕H )#G ([φ t (H ⊕H )#G ((x, y)), w x,y ]) + (ω ⊕ ω)(A 1 ) where • (x, y) is a certain critical point of F which is located in B × B.
• w x,y denotes an arbitrary chosen capping of the orbit φ t (H ⊕H )#G ((x, y)). We fix this capping in the sequel.

• A 1 denotes the sphere which plays the role of correcting the capping w x,y

• Step 3: The aim of this step is to prove the following:

Claim 69. A (H ⊕H )#G ([φ t (H ⊕H )#G ((x, y)), w x,y ]) = (ω ⊕ ω)(A 2 ) for some A 2 ∈ π 2 (M × M ).
Proof. By Proposition 57 (2), we obtain

A (H ⊕H )#G ([φ t (H ⊕H )#G ((x, y)), w x,y ]) = A (H ⊕H )#G ([φ t (H ⊕H )#G ((x 0 , x 0 )), w x0,x0
]) where w x0,x0 is the capping of the orbit φ t (H ⊕H )#G ((x 0 , x 0 )) corresponding to the capping w x,y in the sense of Proposition 57 (2). As Q is a Hamitonian which generates a time-1 map that switches the coordinate i.e. (p, q) → (q, p) in B × B and satisfies ∀t, φ t Q ((x 0 , x 0 )) = (x 0 , x 0 ), we have

A (H ⊕H )#G ([φ t (H ⊕H )#G ((x 0 , x 0 )), w x0,x0 ]) = Q(φ t Q (x 0 , x 0 ))dt + (0 ⊕ H )(t, x 0 , φ t H (x 0 ))dt -ω(φ t H (x 0 ))+ Q(φ t Q (x 0 , x 0 )dt + (0 ⊕ H )(t, x 0 , φ t H (x 0 ))dt -ω(φ t H (x 0 )) + (ω ⊕ ω)(A 2 ) where • φ t H (x 0 )
denotes the capped orbit of φ t H (x 0 ) whose capping is chosen arbitrarily.

• φ t H (x 0 ) denotes the capped orbit of φ t H (x 0 ) whose capping is the same as the the capping of φ t H (x 0 ) chosen above. • A 2 denotes the sphere to which corrects the capping of the RHS so that it will meet the capping on the LHS.

Thus, by employing Proposition 58 (3) for H t (φ t H (x 0 ))dt and H t (φ t H (x 0 ))dt, we obtain,

A (H ⊕H )#G ([φ t (H ⊕H )#G ((x 0 , x 0 )), w x0,x0 ]) = (ω ⊕ ω)(A 2 ).
•

Step 4: The aim of this step is to complete the proof. By Step 2 and 3, we have

c((H ⊕ H )#G#F, a ⊗ b) = F (x, y) + (ω ⊕ ω)(A 2 ) + (ω ⊕ ω)(A 1 ) = F (x, y) + l • λ 0 for some integer l ∈ Z such that (ω ⊕ ω)(A 1 + A 2 ) = l • λ 0 and c(H ⊕ H , a ⊗ b) = γ a,b (H ) = γ a,b (H • ψ) = γ a,b (H)
where the last equality uses Proposition 30 (7).

By

Step 1, we conclude that

|γ a,b (H) -l • λ 0 | 5 2 ε.
Hence we complete the proof.

Proof of Theorem 37

The aim of this section is to prove Theorem 37. We prove the following a priori more general result.

Theorem 70. Let (M 2n , ω) be a monotone symplectic manifold with a minimal Chern number N M > n. Assume that there exist ψ ∈ π 1 (Ham(M, ω)) and a section class σ of the Hamiltonian fibration M ψ → S 2 , such that its Seidel element S ψ,σ ∈ QH * (M ; K) satisfies the following:

• (S ψ,σ ) * k = a 1 • [pt]
for some a 1 ∈ K\{0} and k ∈ N where [pt] denotes the point class in H 0 (M ; K).

• (S ψ,σ ) * k = a 2 • [M ]
• s -l for some a 2 ∈ K\{0} and k , l ∈ N where [M ] denotes the fundamental class and s denotes the generator of the Novikov ring of (M, ω).

Then the spectral norm satisfies the following.

For any

φ ∈ Ham(M, ω), γ(φ) n N M • λ 0 .
2. The spectral norm is C 0 -continuous i.e. .

By looking at the degree, we have

• deg(a * k ) = deg([pt]) = 0, • deg(a * k ) = deg([M ] • s -l ) = 2n -2N l , • For any m ∈ N, deg(a * m ) = m • deg(a) -(m -1) • 2n.
These equations will give us the following:

k k = N l n (3.5)
and our assumption N > n implies k > k. As N M > n and K is a field, the formula in [START_REF] Entov | Calabi quasimorphism and quantum homology[END_REF] Section 2.7 gives us

c(H, [M ]) = -c(H, [pt]),
and by Proposition 30, we get the following.

• γ(H) = c(H, [M ]) -c(H, [pt]) = c(H, [M ]) -c(H, a * k ), • γ(ψ * H) = c(H, S ψ,σ * [M ]) -c(H, S ψ,σ * a * k )) = c(H, a) -c(H, a * (k+1) ). • γ((ψ 2 ) * H) = c(H, a * 2 ) -c(H, a * (k+2) ). • • • • γ((ψ k -k ) * H) = c(H, a * (k -k) ) -c(H, a * k ) = c(H, a * (k -k) ) -c(H, [M ]) + l λ 0 . • γ((ψ k -k+1 ) * H) = c(H, a * (k -k+1) ) -c(H, a) + l λ 0 . • • • • γ((ψ k -1 ) * H) = c(H, a * (k -1) ) -c(H, a * (k-1) ) + l λ 0 .
We used that for j ∈ Z, c(H, a * (j+k ) ) = c(H, a * j ) -l λ 0 .

Adding up these k -equations will give us the following.

0 j k -1 γ((ψ j ) * H) = kl • λ 0 .
As γ(φ) γ((ψ j ) * H) for all 0 j k -1,

k • γ(φ) kl • λ 0 .
By equation 3.5, we conclude

γ(φ) kl k • λ 0 = n N • λ 0 .
The continuity of γ is a direct consequence of Corollary 65.

Theorem 37 is a direct consequence of Theorem 70.

Proof. (of Theorem 37)

We explain briefly that CP n meets the assumptions in Theorem 70. Consider a loop of Hamiltonian diffeomorphism of CP n defined by

ψ t ([z 0 : z 1 : • • • : z n-1 : z n ]) := [z 0 : e 2πit z 1 : e 2πit z 2 : • • • : e 2πit z n-1 : e 2πit z n ].
It is known that there exists a section class σ such that S ψ,σ = [CP n-1 ] where [CP n-1 ] denotes the generator of H 2n-2 (CP n ; K). See Example 9.6.1 and Proposition 9.6.4 in [START_REF] Mcduff | J -holomorphic Curves and Symplectic Topology: Second Edition[END_REF]. This shows that CP n satisfies the assumptions in Theorem 70.

Proofs of applications

The displaced disks problem

We prove Theorem 51. We use the following energy-capacity inequality proven by Usher in [START_REF] Usher | The sharp energy-capacity inequality[END_REF]. Notice that for (M, ω) for which the spectral norm is C 0 -continuous, Proposition 72 holds for Hamiltonian homeomorphisms as well.

Proof. (of Theorem 51)

By Theorem 41, we can apply Proposition 72 for Hamiltonian homeomorphisms. Let r > 0 and take δ > 0 so that if φ ∈ Ham(M, ω), γ(φ) πr 2 , then d C 0 (id, φ) > δ. Now, we will prove that if φ ∈ Ham(M, ω) displaces an embedded ball of radius r, then d C 0 (id, φ) > δ. By Proposition 72, we have γ(φ) πr 2 and from our choice of δ, this implies d C 0 (id, φ) > δ.

The C 0 -Arnold conjecture

We start by looking at properties of σ a,a * b defined earlier in Section 3.2.6.

Proposition 73. Let (M 2n , ω) be a symplectic manifold and a, b ∈ H * (M ; K)\{0}.

For Hamiltonians H, G, we have the following triangle inequality: for any H such that φ H = φ. Note that the well-definedness is due to Theorem 41. Similarly, we define the following for CP n : Let h := [CP n-1 ] and l 1 , l 2 ∈ N, l 1 < l 2 .

|σ a,a * b (H) -σ a,a * b (G)| γ(H#G). Proof. σ a,a * b (H) -σ a,a * b (G) = c(H, a) -c(H, a * b) -(c(G, a) -c(G, a * b)) c(G#H, [M ]) + c(H#G, [M ]) = γ(H#G).
σ h l 1 ,h l 2 : Ham(CP n , ω) → R σ h l 1 ,h l 2 (φ) := inf φ H =φ σ h l 1 ,h l 2 (H).
Corollary 74. Let (M 2n , ω) be either a negative monotone symplectic manifold or (CP n , ω F S ). For a, b ∈ H * (M ; K), we have the following triangle inequality: For

φ, ψ ∈ Ham(M, ω), |σ a,a * b (φ) -σ a,a * b (ψ)| γ(φ -1 ψ).
Proof. We only explain the case of (CP n , ω F S ) since the other is simpler. By Proposition 73,

σ h l 1 ,h l 2 (H#G) σ h l 1 ,h l 2 (H) + γ(G).
Take an infimum on both sides as in the definition.

σ h l 1 ,h l 2 (φψ) inf φ H =φ,φ G =ψ σ h l 1 ,h l 2 (H#G) σ h l 1 ,h l 2 (φ) + γ(ψ).
Since σ h l 1 ,h l 2 are finite,

σ h l 1 ,h l 2 (φψ) -σ h l 1 ,h l 2 (φ) γ(ψ).
This implies the triangle inequality

|σ h l 1 ,h l 2 (φ) -σ h l 1 ,h l 2 (ψ)| γ(φ -1 ψ)
where φ, ψ ∈ Ham(CP n , ω F S ). We are now ready to prove Theorem 48.

Proof. (of Theorem 48) Since the negative monotone case is simpler than the case of (CP n , ω F S ), we only prove the latter. We assume that for φ ∈ Ham(CP n , ω F S ) and l 1 < l 2 , we have

σ h l 1 ,h l 2 (φ) = 0.

It is enough to prove that an arbitrary open neighborhood

U of Fix(φ) is homologically non-trivial. Let f : M → R be a sufficiently C 2 -small smooth function such that f < 0 on M \U , f | U = 0 and c LS (f, •) = c(f, •). (See Proposition 30 (5) for the definition of c LS .)
First of all, take a sequence φ j ∈ Ham(M, ω), j ∈ N such that

d C 0 (φ, φ j ) 1/j.
The C 0 -continuity of γ allows us to take a subsequence {j k } k∈N so that for each k,

γ(φ -1 φ j k ) < 1/k.
Next, for each k, take a Hamiltonian H k which generates φ j k and

σ h l 1 ,h l 2 (H k ) σ h l 1 ,h l 2 (φ j k ) + 1/k.
We borrow the following claim proved in [START_REF] Buhovsky | The action spectrum and C 0 -symplectic topology[END_REF].

Claim 75. (Claim 5.3 in [BHS21]) Assume φ H k C 0 --→ φ.
For any a ∈ H * (M ; K)\{0}, there exists 0 < ε 0 < 1 and an integer k 0 such that for any k k 0 , we have

c(H k #ε 0 f, a) = c(H k , a).
From this Claim, there exist ε 0 > 0 and

k 0 ∈ N such that if k k 0 , then c(H k #ε 0 f, a) = c(H k , a) for all a ∈ H * (CP n ; K). For k k 0 , c(H k , h l2 ) = c(H k #ε 0 f, h l2 ) c(H k , h l1 ) + c(ε 0 f, h l2-l1 ) and thus, -σ h l 1 ,h l 2 (H k ) c(ε 0 f, h l2-l1 ) c(f, h l2-l1 ).
By our choices of φ j k and H k , we have the following.

σ h l 1 ,h l 2 (H k ) σ h l 1 ,h l 2 (φ j k ) + 1/k σ h l 1 ,h l 2 (φ) + γ(φ -1 φ j k ) + 1/k σ h l 1 ,h l 2 (φ) + 2/k = 2/k. Thus, -2/k -σ h l 1 ,h l 2 (H k ) c(f, h l2-l1 ).
By taking a limit k → +∞, we obtain

0 c(f, h l2-l1 ).
Thus,

0 c(f, h l2-l1 ) c(f, [M ]) 0.
The last inequality follows from f 0. Since f was taken to satisfy c LS (f,

•) = c(f, •), we have c LS (f, h l2-l1 ) = c LS (f, [M ])(= 0).
This implies that U is homologically non-trivial.

Chapter 4

Hofer Lipschitz and C 0 continuous quasimorphisms

Abstarct of the chapter

We construct an example of a non-trivial homogeneous quasimorphism on the group of Hamiltonian diffeomorphisms of the two and four dimensional quadric hypersurfaces which is continuous with respect to both the C 0 -metric and the Hofer metric. This answers a variant of a question of Entov-Polterovich-Py which is one of the open problems listed in the monograph of McDuff-Salamon. Throughout the proof, we make extensive use of the idea of working with different coefficient fields in quantum cohomology rings. As a by-product of the arguments in the paper, we answer a question of Polterovich-Wu regarding homogeneous quasimorphisms on the group of Hamiltonian diffeomorphisms of the complex projective plane and prove some intersection results about Lagrangians in the four dimensional quadric hypersurface. Most of the materials in this section are contained in [START_REF] Kawamoto | Homogeneous quasimorphisms, C 0 -topology and Lagrangian intersection[END_REF].

Introduction

A (real-valued) homogeneous quasimorphism on a group G is a map

µ : G → R which satisfies 1. ∃C > 0 s.t. ∀f, g ∈ G, |µ(f • g) -µ(f ) -µ(g)| C, 2. ∀k ∈ Z, ∀f ∈ G, µ(f k ) = k • µ(f ).
The study of homogeneous quasimorphisms is a very rich topic with numerous connections to other mathematical domains. For example, homogeneous quasimorphisms naturally appear in the theory of bounded cohomology, they play a crucial role in the study of the commutator length and they also have many applications in the study of algebraic and topological properties (in case G is a topological group) of G.

In the context of symplectic topology, the study of algebraic and topological properties of the group of symplectomorphisms and Hamiltonian diffeomorphisms has been an important subject. For a closed symplectic manifold (M, ω), denote the group of Hamiltonian diffeomorphisms by Ham(M, ω) and its universal cover by Ham(M, ω). One of the first groundbreaking results in this direction is due to Banyaga [START_REF] Banyaga | Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique[END_REF] which states that Ham(M, ω) is a simple group and Ham(M, ω) is a perfect group. This implies that there exist no non-trivial homomorphisms on Ham(M, ω) and Ham(M, ω). However, it was discovered that non-trivial (realvalued) homogeneous quasimorphisms on Ham(M, ω) and Ham(M, ω) do exist for some symplectic manifolds. Various constructions have been studied extensively as well as their applications to Hamiltonian dynamics. Just to mention a few, there are constructions by Barge-

Ghys [BG92], Borman [Bor12], Entov [Ent04], Entov- Polterovich [EP03], Gambaudo-Ghys [GG04], Givental [Giv90], McDuff [McD10],
Ostrover [START_REF] Ostrover | Calabi quasi-morphisms for some non-monotone symplectic manifolds[END_REF], Py [START_REF] Py | Quasimorphismes et invariant de Calabi[END_REF] and Shelukhin [START_REF] Shelukhin | The Action homomorphism, quasimorphisms and moment maps on the space of compatible almost complex structures[END_REF]. Contact counterparts are also considered by Givental [START_REF] Givental | Nonlinear generalization of the Maslov index from: "Theory of singularities and its applications[END_REF], Borman-Zapolsky [START_REF] Strom | Quasimorphisms on contactomorphism groups and contact rigidity[END_REF] and Granja-Karshon-Pabiniak-Sandon [START_REF] Granja | Givental's Non-linear Maslov Index on Lens Spaces[END_REF]. In particular, Entov-Polterovich [START_REF] Entov | Calabi quasimorphism and quantum homology[END_REF] introduced a Floer theoretic method to construct homogeneous quasimorphisms on Ham(M, ω)

ζ e : Ham(M, ω) → R
where (M, ω) is a closed monotone symplectic manifold which satisfies some property. Recall that a closed symplectic manifold (M, ω) is called monotone if there exists a constant κ > 0, which is referred to as the monotonicity constant, such that

ω| π2(M ) = κ • c 1 | π2(M )
where c 1 = c 1 (T M ) denotes the first Chern class. In this paper, we only consider monotone symplectic manifolds unless mentioned otherwise. The precise construction of ζ e is explained in Section 4.4.4. Moreover, (a certain normalization of) ζ e satisfies the so-called Calabi property which means, roughly speaking, that "locally" it coincides with the Calabi homomorphism: we refer to [START_REF] Entov | Calabi quasimorphism and quantum homology[END_REF] for the precise definition and its proof. In some cases, it is known that this homogeneous quasimorphism descends to Ham(M, ω). For an excellent survey of the theory of quasimorphisms in the symplectic context and their relations to other topics, we refer to [START_REF] Entov | Quasi-morphisms and quasi-states in symplectic topology[END_REF].

Main results

Homogeneous quasimorphisms

The following question concerning the continuity of quasimorphisms was posed by Entov that is continuous with respect to the C 0 -topology on Ham(S 2 )?

If yes, can it be made Lipschitz with respect to the Hofer metric?

Recall that the C 0 -topology on Ham(M, ω) is induced by the C 0 -metric of Hamiltonian diffeomorphisms φ, ψ ∈ Ham(M, ω), which is defined by

d C 0 (φ, ψ) := max x∈M d(φ(x), ψ(x)),
where d denotes the distance on M induced by a fixed Riemannian metric on M . See Section 2.2 for further remarks on C 0 -topology as well as the Hofer metric.

We provide some background and motivation concerning this question of Entov-Polterovich-Py.

• Hofer metric vs. C 0 -metric: The relation between C 0 -topology and the Hofer metric is very subtle. For example, C 0 -topology is not continuous with respect to the Hofer metric. Conversely, Entov-Polterovich-Py point out that on Ham(D 2n (1)), the group of compactly supported Hamiltonian diffeomorphisms of the closed unit ball D 2n (1) in R 2n , the Hofer metric is not C 0 -continuous. For some striking results that demonstrate rigidity and flexibility of symplectic objects with respect to C 0 -topology, see [START_REF] Buhovsky | A C 0 counter example to the Arnold conjecture[END_REF], [START_REF] Buhovsky | Some quantitative results in C 0 symplectic geometry[END_REF] and [START_REF] Vincent Humilière | Coisotropic rigidity and C 0 -symplectic topology[END_REF].

In fact, for closed surfaces of positive genus Σ, there are examples of homogeneous quasimorphisms defined on Ham(Σ) which are C 0 -continuous but not Hofer Lipschitz continuous: for their construction, see Gambaudo-Ghys [START_REF] Gambaudo | Enlacements asymptotiques[END_REF], [START_REF] Gambaudo | Commutators and diffeomorphisms of surfaces[END_REF] and for their discontinuity with respect to the Hofer metric, see [Kha19]. On the other hand, the aforementioned Entov-Polterovich type homogeneous quasimorphisms are Hofer Lipschitz continuous but are not C 0 -continuous: in fact, it is known that homogeneous quasimorphisms which have the Calabi property are not C 0 -continuous: for a proof, see [START_REF] Entov | On continuity of quasimorphisms for symplectic maps, With an appendix by Michael Khanevsky[END_REF].

• Homogeneous quasimorphisms on the group of Hamiltonian homeomorphisms: Given a symplectic manifold (M, ω), consider the C 0 -closure of Ham(M, ω) inside the group of homeomorphims of M . We denote it by Ham(M, ω) and call its elements Hamiltonian homeomorphisms. Hamiltonian homeomorphisms are central objects in C 0 -symplectic topology. A C 0 -continuous homogeneous quasimorphism defined on Ham(M, ω) will be useful to obtain information about the algebraic and topological properties of Ham(M, ω). In particular, when (M, ω) is either a 2-sphere S 2 or a 2-disk D 2 , Ham(M, ω) is the identity component of the group of area-preserving homeomorphisms. A (non-trivial) homogeneous quasimorphism on Ham(M, ω) can be naturally obtained as an extension of a C 0 -continuous (non-trivial) homogeneous quasimorphism on Ham(M, ω) (see [START_REF] Entov | On continuity of quasimorphisms for symplectic maps, With an appendix by Michael Khanevsky[END_REF]Proposition 1.4]). Therefore, the existence of a non-trivial C 0 -continuous homogeneous quasimorphism on Ham(S 2 ) and Ham(D 2 ) has a strong relation to a question concerning the simplicity of groups Ham(S 2 ) and Ham(D 2 ) where the standard area-forms are considered as symplectic forms. The latter was known under the name of the simplicity conjecture ([MS98, Chapter 14, Problem 42]) and has caught the attention of many mathematicians over the years. It has been recently settled by Cristofaro-Gardiner-Humilière-Seyfaddini [START_REF] Cristofaro-Gardiner | Proof of the simplicity conjecture[END_REF].

• Uniqueness of homogeneous quasimorphisms on Ham(S 2 ): Another motivation is the uniqueness of homogeneous quasimorphism on Ham(S 2 ). For example, an affirmative answer to the first question will imply the non-uniqueness of such maps, since Entov-Polterovich type homogeneous quasimorphisms are not C 0 -continuous.

For more background on this question, see [START_REF] Entov | On continuity of quasimorphisms for symplectic maps, With an appendix by Michael Khanevsky[END_REF]. Question 77. Does there exist a closed symplectic manifold (M, ω) which admits a non-trivial homogeneous quasimorphism on Ham(M, ω) which is C 0 -continuous? If yes, can it be Hofer Lipschitz continuous?

Entov-Polterovich-Py proved that the vector space consisting of non-trivial homogeneous quasimorphisms on Ham(D 2n (1)) that are both C 0 and Hofer Lipschitz continuous is infinite dimensional [EPP12, Proposition 1.9]. However, no example of a closed symplectic manifold (M, ω) which admits a homogeneous quasimorphism on Ham(M, ω) that is both Hofer continuous and C 0 -continuous is known by the time of writing. In fact, for closed symplectic manifolds, according to [START_REF] Entov | Quasi-morphisms and quasi-states in symplectic topology[END_REF], constructions of Givental, Entov-Polterovich and Borman are so far the only known examples of homogeneous quasimorphisms (on Ham(M, ω)) that are Hofer continuous. The Hofer continuity of Givental's homogeneous quasimorphisms was proven by Borman-Zapolsky [START_REF] Strom | Quasimorphisms on contactomorphism groups and contact rigidity[END_REF]. These examples all possess the Calabi property which implies that, in the case they descend to Ham(M, ω), they are not C 0 -continuousThe Calabi property of Givental's homogeneous quasimorphisms was proven by Ben Simon [START_REF] Ben | The nonlinear Maslov index and the Calabi homomorphism[END_REF].

Our main result provides such examples for the monotone n-quadric (Q n , ω) for n = 2, 4. Throughout the paper, we consider the standard monotone symplectic form

ω of Q n with the normalization Q n ω n = 2 so that the monotonicity constant κ is 1/N Q n = 1/n. Note that (Q 2 , ω) is symplectomorphic to the monotone product (S 2 × S 2 , σ ⊕ σ)
where σ is the area-form of S 2 with S 2 σ = 1 and (Q 4 , ω) is symplectomorphic to Gr C (2, 4) equipped with the standard monotone symplectic form with a certain normalization.

Precisely, we prove the following.

Theorem 78. (Theorem 16)

There exist non-trivial homogeneous quasimorphisms

µ : Ham(Q n ) → R
where n = 2, 4 that satisfy the following three properties:

1. µ is Lipschitz continuous with respect to the Hofer metric.

2. µ is C 0 -continuous i.e. µ : (Ham(Q n ), d C 0 ) → R is continuous.

We have |µ| = γ

where γ denotes the asymptotic spectral norm:

γ : Ham(M, ω) → R γ(φ) := lim k→+∞ γ(φ k ) k .
Obviously, properties 2 and 3 in Theorem 78 imply that the asymptotic spectral norm γ is C 0 -continuous for the 2-and 4-quadric hypersurfaces even though the C 0 -continuity of the spectral norm γ for these manifolds is not confirmed at the time of writing. In fact, our argument can be generalized as follows.

Theorem 79. (Theorem 17) Let (M, ω) be a monotone symplectic manifold such that QH * (M ; C) is semi-simple. Then,

γ : Ham(M, ω) → R is C 0 -continuous.
Remark 80.

1. If QH * (M ; C) is semi-simple and γ = 0, then it implies the existence of a non-trivial C 0 and Hofer Lipschitz continuous homogeneous quasimorphism on Ham(M, ω). However, we can show γ = 0 only for the 2-and 4quadric hypersurfaces.

2. Although it is not explicitly stated, the existence of a homogeneous quasimorphism on Ham(Q n ), ∀n ∈ N was essentially known since [START_REF] Entov | Calabi quasimorphism and quantum homology[END_REF]. The descent of Entov-Polterovich type homogeneous quasimorphisms to Ham(Q 2 ) and Ham(Q 4 ) was proven in [START_REF] Entov | Calabi quasimorphism and quantum homology[END_REF] and [START_REF] Branson | Symplectic manifolds with vanishing action-Maslov homomorphism[END_REF], respectively. The homogeneous quasimorphisms in Theorem 78 are different from the Entov-Polterovich type homogeneous quasimorphisms as they are defined as differences of two Entov-Polterovich type homogeneous quasimorphisms.

3. In the case of n = 2, if we compose µ : Ham(S 2 × S 2 ) → R with

Ham(S 2 ) → Ham(S 2 × S 2 ) φ → φ × φ,
we obtain a C 0 -continuous and Hofer Lipschitz continuous homogeneous quasimorphism on Ham(S 2 ) but this turns out to be trivial and thus does not answer the question of Entov-Polterovich-Py. See Remark 105 for further explanation.

4. In Section 4.5.5, we will discuss a generalization of Theorem 78.

Question of Polterovich-Wu

One of the key ideas in proving Theorem 78 and 117 is to work with quantum cohomology rings with different coefficient fields, namely the field of Laurent series and the universal Novikov field. The advantage of this idea in our context is explained in Section 4. Is it possible to distinguish the three homogeneous quasimorphisms {ζ j } j=1,2,3 ?

We answer this in the negative.

Theorem 82. The three homogeneous quasimorphisms {ζ j } j=1,2,3 coincide i.e.

ζ 1 = ζ 2 = ζ 3 .

Additional preliminaries

Let (M, ω) be a closed monotone symplectic manifold i.e.

ω| π2(M ) = κ • c 1 | π2(M )
for some monotonicity constant κ > 0 where c 1 = c 1 (T M ) denotes the first Chern class. In this paper, we only consider monotone symplectic manifolds unless mentioned otherwise. The positive generators of ω, π 2 (M ) and c 1 , π 2 (M ) ⊂ Z are respectively called the rationality constant and the minimal Chern number and will be respectively denoted by λ 0 and N M .

A Hamiltonian H on M is a smooth time dependent function H : R/Z × M → R. A Hamiltonian H is called mean-normalized if the following holds:

∀t ∈ R/Z, M H t (x)ω n = 0.
We define its Hamiltonian vector field X Ht by

-dH t = ω(X Ht , • ).
The Hamiltonian flow of H, denoted by φ t H , is by definition the flow of X Ht . A Hamiltonian diffeomorphism of H is a diffeomorphism which arises as the time-one map of a Hamiltonian flow and will be denoted by φ H . It is well-known that the set of Hamiltonian diffeomorphisms forms a group and will be denoted by Ham(M, ω). We denote its universal cover by Ham(M, ω).

Denote the set of smooth contractible loops in M by L 0 M and consider its universal cover. Two elements in the universal cover, say [z 1 , w 1 ] and [z 2 , w 2 ], are equivalent if z 1 = z 2 and their boundary sum w 1 #w 2 i.e. the sphere obtained by gluing w 1 and w 2 along their common boundary with the orientation on w 2 reversed, satisfies

ω(w 1 #w 2 ) = 0, c 1 (w 1 #w 2 ) = 0.
We denote by L 0 M the space of equivalence classes.

For a Hamiltonian H, define the action functional

A H : L 0 M → R by A H ([z, w]) := 1 0 H(t, z(t))dt - D 2 w * ω
where w : D 2 → M is a capping of z : R/Z → M . Critical points of this functional are precisely the capped 1-periodic Hamiltonian orbits of H which will be denoted by P(H). The set of critical values of A H is called the action spectrum and is denoted by Spec(H): Spec(H) := {A H ( z) : z ∈ P(H)}.

Quantum (co)homology and semi-simplicity

Consider a monotone symplectic manifold (M, ω). Let the following denote the field of Laurent series of a formal variable s:

C[[s -1 , s] := { k k0 a k s k : k 0 ∈ Z, a k ∈ C}.
70CHAPTER 4. HOFER LIPSCHITZ AND C 0 CONTINUOUS QUASIMORPHISMS By identifying the variable s with the generator of Γ := π 2 (M )/ ∼ where the equivalence relation is defined by A, B ∈ π 2 (M ),

A ∼ B ⇐⇒ ω(A) = ω(B) satisfying ω(s) = λ 0 , c 1 (s) = N M ,
one can define the quantum homology ring QH * (M ; C) as

QH * (M ; C) := H * (M ; C) ⊗ C C[[s -1 , s].
The quantum homology ring has the following valuation:

ν QH * : QH * (M ; C) → R ν QH * ( k k0 a k s k ) := max{k • ω(s) = k • λ 0 : a k = 0}.
Similarly, for a formal variable t, one can define the quantum cohomology ring

QH * (M ; C) as QH * (M ; C) := H * (M ; C) ⊗ C C[t -1 , t]]
where

C[t -1 , t]] := { k k0 b k t k : k 0 ∈ Z, b k ∈ C}.
The quantum homology and quantum cohomology rings are isomorphic under the Poincaré duality map:

PD : QH * (M ; C) ∼ -→ QH 2n- * (M ; C) a := k k0 A k t k → PD(a) := k k0 A # k s -k
where # denotes the usual Poincaré duality between singular homology and singular cohomology. Note that t satisfies

ω(t) = λ 0 , c 1 (t) = N M .
The quantum cohomology ring has the following valuation: It is known that the Floer homology defined in Section 2.3 is canonically isomorphic to the quantum homology ring via the PSS-map:

ν := ν QH * : QH * (M ; C) → R ν( k k0 a k t k ) := min{k • ω(t) = kλ 0 : a k = 0}.
P SS H : QH * (M ; C) ∼ -→ HF * (H).
Note that the PSS-map preserves the ring structure where the ring structure on RHS is given by the pair-of-pants product. See [START_REF] Mcduff | J -holomorphic Curves and Symplectic Topology: Second Edition[END_REF] for details.

The quantum cohomology ring QH * (M ; C) is called semi-simple if it splits into a finite direct sum of fields i.e.

QH * (M ; C) = Q 1 ⊕ Q 2 ⊕ • • • ⊕ Q l
for some l ∈ N where each Q j is a field. The identity 1 ∈ QH * (M ; C) can then be decomposed into a sum of units e j ∈ Q j :

1 = e 1 + e 2 + • • • + e l .
Remark 86. The notion of semi-simplicity depends on the algebraic set-up of the quantum (co)homology. The notion explained above is the same as the one in [START_REF] Entov | Calabi quasimorphism and quantum homology[END_REF] which is not suitable to non-monotone settings as the Novikov ring is no longer a field. A more general notion of semi-simplicity was introduced in [Ost06], [START_REF] Entov | Symplectic quasi-states and semisimplicity of quantum homology[END_REF]. [EP08, Theorem 5.1] states that in the monotone case, this generalized notion of semi-simplicity coincides with the one of [START_REF] Entov | Calabi quasimorphism and quantum homology[END_REF].

Examples of monotone symplectic manifolds whose quantum cohomology rings are semi-simple include CP n , 1, 2 and 3 point monotone blow-ups of CP 2 , complex Grassmanians Gr C (2, n) and their products: see [START_REF] Entov | Calabi quasimorphism and quantum homology[END_REF], [START_REF] Entov | Symplectic quasi-states and semisimplicity of quantum homology[END_REF].

Later, we will consider quantum cohomology with a different coefficient field, namely the universal Novikov field Λ defined by

Λ := { ∞ j=1 a j T λj : a j ∈ C, λ j ∈ R, lim j→+∞ λ j = +∞}.
Fukaya-Oh-Ohta-Ono [START_REF] Fukaya | Lagrangian intersection Floer theory: anomaly and obstruction[END_REF], [START_REF] Fukaya | Spectral invariants with bulk, quasi-morphisms and Lagrangian Floer theory[END_REF] study Floer theory with coefficients in Λ rather than in the field of Laurent series and considers the following quantum cohomology:

QH * (M ; Λ) := H * (M ; C) ⊗ C Λ.
It has the following valuation: 

ν : QH * (M ; Λ) → R ν( ∞ j=1 a j T λj ) := min{λ j : a j = 0}.

Quantum homology of quadrics

In this section, we review some information about the quantum homology ring structure of quadric hypersurfaces. For n 2, the n-quadric Q n is defined as a hypersurface in CP n+1 as follows:

Q n := {(z 0 : z 1 : • • • : z n+1 ) ∈ CP n+1 : z 2 0 + z 2 1 + • • • + z 2 n+1 = 0}.
Recall that the minimal Chern number N Q n of the n-quadric is n. It is well-known that Q 2 and Q 4 are respectively symplectomorphic to S 2 × S 2 and Gr C (2, 4). The ring structure of (quantum) homology of Q n can be found in [BC09, Section 6.3]. We just recall that QH * (Q n ; C) satisfies

[pt] * [pt] = [Q n ]s -2
where [pt] and [Q n ] denote respectively the point class and the fundamental class.

The semi-simplicity of the quantum homology ring of Q n follows from a result of Beauville [START_REF] Beauville | Quantum cohomology of complete intersections[END_REF]. In fact, it is easy to see that QH * (Q n ; C) splits into a direct sum of two fields by using that the minimal Chern number is

N Q n = n.
Proposition 87. For n 2, QH * (Q n ; C) splits into a direct sum of two fields Q ± :

QH * (Q n ; C) = Q + ⊕ Q -.

Lagrangian Floer cohomology with bounding cochain

In this section, we sketch the construction of Lagrangian Floer cohomology deformed by a bounding cochain due to Fukaya-Oh-Ohta-Ono [START_REF] Fukaya | Lagrangian intersection Floer theory: anomaly and obstruction[END_REF]. In this paper, we mainly consider monotone Lagrangian submanifolds but it is worth mentioning that the theory of Fukaya-Oh-Ohta-Ono sketched in this section applies to any closed oriented Lagrangian submanifold which is relatively spin. We refer to [START_REF] Fukaya | Lagrangian intersection Floer theory: anomaly and obstruction[END_REF], especially Chapter 3.1 for a detailed description of the material.

Let L be a closed oriented Lagrangian submanifold with a fixed relatively spin structure. Recall that an oriented Lagrangian submanifold is relatively spin if its second Stiefel-Whitney class w 2 (T L) is in the image of the restriction map H 2 (M ; Z/2Z) → H 2 (L; Z/2Z) ([FOOO09, Definition 3.1.1]). For example, if a Lagrangian is spin, then it is relatively spin and in particular, oriented Lagrangians are always relatively spin if dim R M 6.

Define the universal Novikov ring

Λ 0 := { ∞ j=1 a j T λj : a j ∈ C, λ j 0, lim j→+∞ λ j = +∞}.
The universal Novikov field is given by

Λ := { ∞ j=1 a j T λj : a j ∈ C, λ j ∈ R, lim j→+∞ λ j = +∞}.
Define also

Λ + := { ∞ j=1 a j T λj : a j ∈ C, λ j > 0, lim j→+∞ λ j = +∞}.
Lagrangian intersection Floer theory equips the Λ 0 -valued cochain complex of L with the structure of an A ∞ -algebra. By taking the canonical model, one obtains an A ∞ -structure {m k } 0 k ∞ on H * (L; Λ 0 ): we refer to [FOOO09, Section 5.4] for details. An element b ∈ H 1 (L; Λ + ) is called a weak bounding cochain (in the sequel, we will simply call them a bounding cochain) if it satisfies the weak Maurer-Cartan equation

∞ k=0 m k (b, b, • • • , b) = 0 mod Λ 0 • PD([L]).
(4.1)

The set of (weak) bounding cochains will be denoted by M weak (L). Note that M weak (L) might be an empty set. We say that the Lagrangian L is unobstructed if

M weak (L) = ∅.
In the case L is unobstructed, for any b ∈ M weak (L), one can twist the Floer differential as

m b 1 (x) := k,l 0 m k+l+1 (b ⊗k ⊗ x ⊗ b ⊗l ).
The Maurer-Cartan equation 4.1 implies 

m b 1 • m b 1 =

Quasimorphisms via spectral invariants

In this subsection, we recall the Floer theoretic construction of homogeneous quasimorphisms on Ham(M, ω) and the notion of (super)heaviness both due to Entov-Polterovich which are taken from [START_REF] Entov | Calabi quasimorphism and quantum homology[END_REF], [START_REF] Entov | Rigid subsets of symplectic manifolds[END_REF]. However, unlike their version, we use quantum cohomology instead of quantum homology.

Assume e ∈ QH 0 (M ; C) is an idempotent. Then we define the asymptotic spectral invariant

ζ e : C ∞ (R/Z × M, R) → R ζ e (H) := lim k→+∞ ρ(H k , e) k
where ρ(•, e) denotes the spectral invariant corresponding to e ∈ QH 0 (M ; C) and the k-times iterated Hamiltonian

H k := H#H# • • • #H k-times . Its restriction to C ∞ (M, R) i.e. ζ e | C ∞ (M,R) : C ∞ (M, R) → R is often referred to the symplectic quasi-state [EP06].
We can also see ζ e as a function of homotopy classes of Hamiltonian paths:

ζ e : Ham(M, ω) → R ζ e ( φ) := lim k→+∞ ρ( φk , e) k .
Recall that ρ( φ, • ) = ρ(H, • ) where H is the mean-normalized Hamiltonian such that the Hamiltonian path t → φ t H represents the homotopy class φ. It was first discovered by Entov-Polterovich that when some additional condition is satisfied, ζ e : Ham(M, ω) → R is a homogeneous quasimorphism. We will state their result as well as its variant due to Fukaya-Oh-Ohta-Ono.

We denote the even degree part of QH * (M ; C) as follows: for any H ∈ C ∞ (M, R).

QH even (M ; C) := k∈Z H 2k (M ; C) ⊗ C C[t -1 , t]].
Remark 91. In general, e-heaviness follows from e-superheaviness but not vice versa. In a special case where ζ e : Ham(M, ω) → R is a homogeneous quasimorphism, eheaviness and e-superheaviness are equivalent. See [START_REF] Entov | Rigid subsets of symplectic manifolds[END_REF] for discussions in this topic.

The following is a basic intersection property of (super)heavy sets from [START_REF] Entov | Rigid subsets of symplectic manifolds[END_REF].

Proposition 92. Let (M, ω) be any closed symplectic manifold and let e ∈ QH * (M ; C) be an idempotent. Let S 1 and S 2 be two disjoint subsets of M . If S 1 is e-superheavy, then S 2 is not e-heavy.

Proof. If we assume that S 2 is e-heavy, then by the definitions, we have

inf x∈S2 H(x) ζ e (H) sup x∈S1 H(x)
for any H ∈ C ∞ (M, R). As S 1 ∩ S 2 = ∅, one can take H to be larger on S 2 than on S 1 , which contradicts the inequality.

Closed-open map and heaviness

In this section, we review some properties of the closed-open map defined by Fukaya-Oh-Ohta-Ono in [FOOO09, Theorem 3.8.62]. Note that they also consider the case where the absolute and the relative Floer cohomology groups are deformed with a bulk. However, as bulk deformations are not relevant to the arguments in this paper, we only state a version without them. Denote the ring homomorphism called the closed-open map, which is a quantum analogue of the restriction map, by

CO 0 b : QH * (M ; Λ) → HF * ((L, b); Λ)
where b is a bounding cochain. Note that the original notation used in [START_REF] Fukaya | Lagrangian intersection Floer theory: anomaly and obstruction[END_REF] for CO 0 b is i * qm,b . Fukaya-Oh-Ohta-Ono proved the following in [START_REF] Fukaya | Spectral invariants with bulk, quasi-morphisms and Lagrangian Floer theory[END_REF] to detect the heaviness of the Lagrangian L, which generalizes the result of Albers [START_REF] Albers | On the extrinsic topology of Lagrangian submanifolds[END_REF] 

Flag manifolds and Gelfand-Cetlin systems

In this subsection, we provide a brief description of (partial) flag manifolds and Gelfand-Cetlin systems. Materials discussed in this section are only needed to precisely understand the statement of Theorem 115 and will not be used in other parts of the paper. Thus, readers can skip this section in order to read the other parts. Fix a sequence

0 = n 0 < n 1 < • • • < n r < n r+1 = n
of integers, and set

k i := n i -n i-1 for i = 1, 2, • • • , r + 1. The (partial) flag manifold F = F (n 1 , n 2 , • • • , n r , n) is a complex manifold parameterizing nested subspaces 0 ⊂ V 1 ⊂ V 2 ⊂ • • • ⊂ V r ⊂ C n , dimV i = n i . The dimension of F = F (n 1 , n 2 , • • • , n r , n) is given by dim C F (n 1 , n 2 , • • • , n r , n) = r i=1 (n i -n i-1 )(n -n i ) = r i=1 k i (n -n i ). (4.2) Let P = P (n 1 , n 2 , • • • , n r , n) ⊂ GL(n, C
) be the isotropy subgroup of the standard flag

C n1 × {0} ⊂ C n2 × {0} ⊂ • • • ⊂ C nr × {0} ⊂ C n .
Then, as

U (n) ∩ P (n 1 , n 2 , • • • , n r , n) = U (k 1 ) × U (k 2 ) × • • • U (k r+1 ), F (n 1 , n 2 , • • • , n r , n) is written as follows: F (n 1 , n 2 , • • • , n r , n) = GL(n, C)/P (n 1 , n 2 , • • • , n r , n) = U (n)/(U (k 1 ) × U (k 2 ) × • • • U (k r+1 )).
Remark 94. Note that this description gives the following different expression of the dimension formula 4.2:

dim C F (n 1 , n 2 , • • • , n r , n) = n 2 - r+1 i=1 k 2 i .
In this paper, we identify flag manifolds with (co)adjoint orbits. Using a U (n)invariant inner product on the Lie algebra u(n) of U (n), denoted by -, -, we identify the dual u(n) * of u(n) with the space √ -1 • u(n) of Hermitian matrices. We fix

λ = diag(λ 1 , λ 2 , • • • , λ n ) ∈ √ -1 • u(n) with λ 1 = • • • = λ n1 k1 > λ n1+1 = • • • = λ n2 k2 > • • • > λ nr+1 = • • • = λ n kr+1 .
Then F is identified with the adjoint orbit O λ of λ (i.e. a set of Hermitian matrices with fixed eigenvalues

λ 1 , λ 2 , • • • , λ n ) by F = U (n)/(U (k 1 ) × • • • × U (k r+1 )) ∼ -→ O λ [g] → gλg * .
O λ has a standard symplectic form ω λ called the Kirillov-Kostant-Souriau form. Recall that tangent vectors of O λ at x can be written as

ad ξ (x) = [x, ξ]
for ξ ∈ u(n) where [-, -] denotes the Lie bracket. Then the Kirillov-Kostant-Souriau form ω λ is defined by

ω λ (ad ξ (x), ad η (x)) := 1 2π x, [ξ, η] .
The following choice of λ gives us a monotone symplectic form ω λ on O λ :

λ = (n -n 1 , • • • k1 , n -n 1 -n 2 , • • • k2 , • • • , • • • , n -n r-1 -n r kr , -n r , • • • kr+1 ) + (m, • • • , m) n=k1+•••+kr+1
for any m ∈ R. When λ is of this form, we have k) is also a Hermitian matrix, it has real eigenvalues

c 1 (T O λ ) = [ω λ ]. For x ∈ O λ and k = 1, 2, • • • , n -1 let x (k) denote the upper-left k × k submatrix of x. Since x (
λ (k) 1 λ (k) 2 • • • λ (k) k . Let I = I(n 1 • • • , n r , n) denote the set of pairs (i, k) such that each λ (k) i
is nonconstant as a function of x. It follows that the number of such pairs coincides with dim C F i.e. |I| = dim C F . The Gelfand-Cetlin system is defined by

Φ : F → R dim C F Φ(x) := {λ (k) i (x)} (i,k)∈I Theorem 95. (Guillemin-Sternberg, [GS83])
The map Φ defines a completely integrable system on (F (n 1 , n 2 , • • • , n r , n), ω). The image ∆ := Φ(F ) is a convex polytope. A fiber of each interior point u ∈ Int(∆) is a Lagrangian torus:

Φ -1 (u) T n for any u ∈ Int(∆).

We call the convex polytope ∆ := Φ(F ), the Gelfand-Cetlin polytope. The major difference between Delzant polytopes of toric manifolds and Gelfand-Cetlin polytopes appears at fibers of points at the boundary of polytopes. While for a Delzant polytope, a fiber of a relative interior of a k-dimensional face is never Lagrangian, for a Gelfand-Cetlin polytope, a fiber of a relative interior point of a k-dimensional face can be a (non-torus) Lagrangian submanifold. Differences between the two types of polytopes are listed by Y. Cho-Y. Kim-Y-G. Oh in [START_REF] Cho | Lagrangian fibers of Gelfand-Cetlin systems[END_REF].

Proofs

Proof of Theorem 78-Part 1

The goal of this subsection is to prove the following result and to see how it leads to Theorem 78.

Theorem 96. Let (M, ω) be a monotone symplectic manifold. Assume its quantum cohomology ring QH * (M ; C) is semi-simple i.e.

QH * (M ; C) = Q 1 ⊕ Q 2 ⊕ • • • ⊕ Q l
for some l ∈ N where each Q j is a field. We decompose the identity 1 ∈ QH * (M ; C) into a sum of idempotents with respect to this split: 3. In the spirit of McDuff [START_REF] Mcduff | Monodromy in Hamiltonian Floer theory[END_REF], instead of the semi-simplicity we can pose a weaker assumption that QH * (M ; C) has two fields as a direct summand:

1 = e 1 + e 2 + • • • + e l , e j ∈ Q j .
QH * (M ; C) = Q 1 ⊕ Q 2 ⊕ A
where Q 1 , Q 2 are fields and no condition is posed on A.

We first show the following estimate.

Proposition 98. For any φ ∈ Ham(M, ω), we have

|µ( φ)| γ( φ).
Proof of Proposition 98. By the triangle inequality,

• ρ( φk , e 1 ) ρ( φk , 1) + ρ( ĩd, e 1 ),

• -ρ( φk , e 2 ) ρ(( φ-1 ) k , 1) -ρ( ĩd, e 2 ).

By adding these inequalities, we obtain As µ is homogeneous, we have

µ( φ) = lim
-µ( φ) = µ( φ-1 )
for any φ and thus -µ( φ) = µ( φ-1 ) γ( φ-1 ) = γ( φ).

Thus, |µ( φ)| γ( φ).
This completes the proof of Proposition 98.

One can strengthen the statement as follows. Ham(M, ω). This is for the following reason. Assume µ| π1(Ham(M,ω)) ≡ 0. Let φ, ψ be two homotopy classes of Hamiltonian paths having the same endpoint. For any k ∈ N, ( φ-1 ) k ψk defines a homotopy class of a Hamiltonian loop i.e. an element in π 1 (Ham(M, ω)). Since µ is a quasimorphism on Ham(M, ω), there exists a constant C > 0 such that

|µ(( φ-1 ) k ψk ) -µ( ψk ) -µ(( φ-1 ) k )| C
for any k ∈ N. From our assumption, the first term vanishes and

µ( ψk ) = k • µ( ψ), µ(( φ-1 ) k ) = -k • µ( φ). Thus, we have ∀k ∈ N, k • |µ( ψ) -µ( φ)| C.
Therefore, we attain µ( φ) = µ( ψ). Now, we prove µ| π1(Ham(M,ω)) ≡ 0. We make use of the following theorem proved in [START_REF] Kawamoto | On C 0 -continuity of the spectral norm for symplectically non-aspherical manifolds[END_REF]. We restate it with a special emphasis on a particular case which will be used in our argument: Let (M, ω) be a monotone symplectic manifold. For any ε > 0, there exists δ > 0

such that if d C 0 (id, φ H ) < δ, then γ(H) < dim(M ) N M • λ 0 + ε
where N M denotes the minimal Chern number.

In particular, for any ψ ∈ π 1 (Ham(M, ω)), we have

γ(ψ) dim(M ) N M • λ 0 .
Now we continue the proof of Proposition 99. Let ψ ∈ π 1 (Ham(M, ω)). For any k ∈ N, we have

k • |µ(ψ)| = |µ(ψ k )| γ(ψ k ) dim(M ) N M • λ 0 .
Thus,

|µ(ψ)| lim k→+∞ dim(M ) N M • λ 0 k = 0.
This completes the proof of the first assertion. The second follows immediately from Proposition 98.

Remark 102. The estimate of the spectral norm for Hamiltonian loops that appear in Theorem 101 can be deduced by using basic facts about the Seidel elements as well.

We will use the following criterion due to Shtern to detect the C 0 -continuity of homogeneous quasimorphisms, see [START_REF] Shtern | Remarks on pseudocharacters and the real continuous bounded cohomology of connected locally compact groups[END_REF] Let G be a topological group and µ : G → R a homogeneous quasimorphism. Then µ is continuous if and only if it is bounded on a neighborhood of the identity.

We now complete the proof of Theorem 96.

Proof of Theorem 96. By Propositions 99 and 103, the C 0 -continuity of µ : Ham(M, ω) → R is reduced to the boundedness of the spectral norm γ around a C 0 -neighborhood of id. Theorem 101 implies that the spectral norm is bounded around the identity of Ham(M, ω) (thus on Ham(M, ω) as well) with respect to the C 0 -topology when (M, ω) is monotone. This completes the proof of Theorem 96.

By Proposition 87, QH * (Q n ; C) is semi-simple and splits into a direct sum of two fields

QH * (Q n ; C) = Q + ⊕ Q -
and we decompose the identity element as follows:

1 = e + + e -.
By the Entov-Polterovich theory, we obtain homogeneous (Calabi) quasimorphisms

ζ e± : Ham(Q n ) → R ζ e± ( φ) := lim k→+∞ ρ( φ k , e ± ) k .
In the second part of the proof (Section 4.5.4), we will prove the following.

Theorem 104. For Q n (n = 2, 4),

ζ e+ = ζ e-.
Once we prove this, Theorems 96 and 104 imply that

µ := ζ e+ -ζ e-
defines a non-trivial homogeneous quasimorphism on Ham(Q n ) (n = 2, 4) which is both C 0 and Hofer Lipschitz continuous and we complete the proof of Theorem 78.

Remark 105. As remarked in Remark 80 (2), the composition of µ : Ham(S 2 ×S 2 ) → R and

Ham(S 2 ) → Ham(S 2 × S 2 ) φ → φ × φ
vanishes. This is because, by Proposition 99, we have

|µ(φ × φ)| γ(φ × φ) = 2γ(φ)
for any φ ∈ Ham(S 2 ). Note that the first and the second γ both denote the spectral norm but the former is for Ham(S 2 × S 2 ) and the latter is for Ham(S 2 ). As remarked in Remark 129, the spectral norm for Ham(S 2 ) is bounded and thus the homogeneity of µ implies µ(φ × φ) = 0 for any φ ∈ Ham(S 2 ).

Proof of Theorem 79

In this section, we prove Theorem 79.

Proof of Theorem 79. Denote the split of the semi-simple quantum homology ring

QH * (M ; C) by QH * (M ; C) = Q 1 ⊕ Q 2 ⊕ • • • ⊕ Q l .
We prove the following.

Claim 106. For any Hamiltonian H,

ρ 1 M (H) = max 1 j l ρ ej (H).
Before proving this Claim, we complete the proof of Theorem 79. This Claim implies that for any φ ∈ Ham(M, ω),

γ(φ) = max 1 i,j l µ i,j (φ)
where µ i,j (φ H ) = µ i,j (H) := ρ ei (H) -ρ ej (H).

In fact,

γ(φ H ) = ρ 1 M (H) + ρ 1 M (H) = max 1 i l ρ ei (H) + max 1 j l ρ ej (H) 82CHAPTER 4. HOFER LIPSCHITZ AND C 0 CONTINUOUS QUASIMORPHISMS = max 1 i,j l ρ ei (H) -ρ ej (H) = max 1 i,j l µ i,j (φ).
By Theorem 96, we know that for each i, j, µ i,j is C 0 -continuous and therefore, γ is C 0 -continuous.

We now prove the Claim. We first prove ρ 1 M (H) max 1 j l ρ ej (H). By the triangle inequality, we get ρ(H, 1 M ) + ν(e j ) ρ(H, e j ) for any j and Hamiltonian H and thus

ρ 1 M (H) ρ ej (H)
for any j and Hamiltonian H. Therefore,

ρ 1 M (H) max 1 j l ρ ej (H)
for any Hamiltonian H. Next, we prove ρ 1 M (H) max 1 j l ρ ej (H). A standard property of spectral invariants implies ρ(H, 1 M ) max

1 j l ρ(H, e j )
as 1 M = e 1 + e 2 + • • • + e l and thus

ρ 1 M (H) max 1 j l ρ ej (H)
for any Hamiltonian H. This completes the proof of the Claim.

Comparing different quantum cohomology rings

In the first part of the proof of Theorem 78, we have used the quantum cohomology ring denoted by QH * (M ; C) but in the second part of the proof, we work with a different quantum cohomology ring, namely the quantum cohomology ring with the universal Novikov field which is denoted by QH * (M ; Λ). In this section, we explain the different advantages of working with QH * (M ; C) and QH * (M ; Λ). Working with these two different quantum cohomology rings plays a crucial role not only in the proof of Theorem 78 but also in the proof of Theorem 82. We also compare spectral invariants of a quantum cohomology class in QH * (M ; C) and its embedded quantum cohomology class in QH * (M ; Λ). Note that results in this subsection concern not only the n-quadric but any monotone symplectic manifold. Let (M, ω) be a monotone symplectic manifold. Recall from Section 4.4.1 that QH * (M ; C) was defined by

QH * (M ; C) := H * (M ; C) ⊗ C C[t -1 , t|]
where the variable t represents an element in π 2 (M ) that satisfies and ι is a ring homomorphism.

ω(t) = λ 0 , c 1 (t) = N M .
We explain the different advantages of working with QH * (M ; C) and QH * (M ; Λ) as well as examples of cases where those advantages are used.

• The advantage of working with QH * (M ; C):

1. QH * (M ; C) carries a Z-grading while QH * (M ; Λ) does not. Thus, to use spectral invariants it is preferable to work with QH * (M ; C) than QH * (M ; Λ) as the Z-grading allows us to study both the action and the index of spectral invariants.

Example 107. Theorem 101, which plays a crucial role in the first part of the proof of Theorem 78, is proven by using the information of both the action and the index of spectral invariants and thus, it is proven only in the setting where we have a Z-grading of the quantum cohomology ring.

2. The algebraic structure of QH * (M ; C) tends to be simpler than that of QH * (M ; Λ).

Example 108. QH * (CP 2 ; C) is a field and QH * (CP 2 ; Λ) splits into a direct sum of three fields. QH * (S 2 × S 2 ; C) splits into a direct sum of two fields and QH * (S 2 × S 2 ; Λ) splits into a direct sum of four fields.

The quantum cohomology ring QH * (CP 2 ; C) being a field has important consequences as pointed out in Remark 129 which do not follow only from semisimplicity. This is precisely what we use in the proof of Theorem 82.

• The advantage of working with QH * (M ; Λ): With Λ-coefficients, we have a very rich Lagrangian Floer theory developed by Fukaya-Oh-Ohta-Ono. In particular, the superpotential techniques are very useful to detect Lagrangian submanifolds that have non-trivial Floer coholomogy groups.

Example 109. Finding certain Lagrangian submanifolds that have non-trivial Floer cohomology groups via superpotential techniques is a key step in the second part of the proof of Theorem 78 explained in Section 4.5.4.

To sum up, in the first part of the proof of Theorem 78 (Section 4.5.1), we need to work with QH * (M ; C) while in the second part of the proof of Theorem 78 (Section 4.5.4), we greatly benefit from the advantage of working with QH * (M ; Λ). In order to connect arguments in Part 1 and Part 2 which are done in different algebraic settings, we will need the following comparison between spectral invariants of a quantum cohomology class in QH * (M ; C) and its embedded quantum cohomology class in QH * (M ; Λ). Remark 111. A priori Lemma 110 (2) is not obvious as we do not know if ι(e) is a unit of a field factor of QH * (M ; Λ) i.e. ι(e) • QH * (M ; Λ) is a field (Theorem 88). For example, QH * (CP 2 ; C) is a field but QH * (CP 2 ; Λ) splits into a direct sum of three fields and the identity element 1 ∈ QH * (CP 2 ; C) embeds to 1 Λ ∈ QH * (CP 2 ; Λ) which is not an unit of a field factor.

Proof of Lemma 110.

1. Essentially the equality follows from [UZ16, Propositions 2.21, 6.6]. See also [START_REF] Biran | Rigidity and uniruling for Lagrangian submanifolds[END_REF]Section 5.4] where they also explain that spectral invariants are preserved under field extension. Nevertheless, we give a brief sketch of the proof.

By the continuity property of spectral invariants (Proposition 30 (1)), it is enough to prove the case where H is non-degenerate. Let a ∈ QH * (M ; C)\{0} and H be a non-degenerate Hamiltonian. Now, consider the natural embedding of the Floer chain complex CF * (H) into the Fukaya-Oh-Ohta-Ono type Floer chain complex CF * (H; Λ) HF τ * (H)

i τ * ----→ HF * (H) P SS H •P D ← -------QH * (M ; C)   j *   j *   ι HF τ * (H; Λ) i τ * ----→ HF * (H; Λ) P SS H,Λ •P D ←--------QH * (M ; Λ)
As j * preserves the action filtration, the diagram commutes and for tautological reasons, we get ρ(H, ι(a)) = ρ(H, a).

2. This follows immediately from (1).

We obtain the following from Lemma 110 (2).

Corollary 112. Let (M, ω) be a monotone symplectic manifold. Assume that e ∈ QH 0 (M ; C) is an idempotent and e • QH even (M ; C) is a field. If a subset S ⊂ M is ι(e)-heavy, then S is e-superheavy.

Proof of Corollary 112. Lemma 110 (2) implies that S is e-heavy. However, as e ∈ QH 0 (M ; C) is a unit of a field factor of QH even (M ; C), ζ e is a homogeneous quasimorphism so S is e-superheavy.

Proof of Theorem 78-Part 2

In this subsection, we prove Theorem 104 which was used to complete the proof of Theorem 78 in the end of Section 4.5.1.

Proof of Theorem 104. We argue the cases n = 2 and n = 4 separately.

• Case n = 2: In this case, ζ e+ = ζ e-was already proven by Eliashberg-Polterovich in [START_REF] Eliashberg | Symplectic quasi-states on the quadric surface and Lagrangian submanifolds[END_REF] by an approach different to what we discuss in this section. In this section, we will prove ζ e+ = ζ e-by using the following result of Fukaya-Oh-Ohta-Ono [START_REF] Fukaya | Toric degeneration and nondisplaceable Lagrangian tori in S 2 × S 2[END_REF], [START_REF] Fukaya | Spectral invariants with bulk, quasi-morphisms and Lagrangian Floer theory[END_REF]. The same argument will be used in the case where n = 4. 

0 ∈ H 1 (L 0 ; Λ 0 )/H 1 (L 0 ; 2πiZ).
2. The anti-diagonal in S 2 × S 2 denoted by L 1 is unobstructed and satisfies HF (L 1 ; Λ) = 0.

3. L 0 and L 1 are disjoint:

L 0 ∩ L 1 = ∅.
Now, consider the natural embedding

ι : QH * (Q 2 ; C) → QH * (Q 2 ; Λ).
As the closed-open map maps the identity element of the quantum cohomology ring to the identity element of the Lagrangian Floer cohomology group, we have

• CO 0 b (1) = PD([L 0 ]) = 0 ∈ HF * ((L 0 , b); Λ) • CO 0 (1) = PD([L 1 ]) = 0 ∈ HF * (L 1 ; Λ). 86CHAPTER 4. HOFER LIPSCHITZ AND C 0 CONTINUOUS QUASIMORPHISMS Since 1 = ι(e + ) + ι(e -),
it is CO 0 b (ι(e + )) = 0 or CO 0 b (ι(e -)) = 0. As ι(e ± ) are both idempotents, by Theorem 93, we deduce that L 0 is at least either ι(e + )-heavy or ι(e -)-heavy. Corollary 112 implies that L 0 is at least either e + -superheavy or e --superheavy. Next, by looking at the second equation, the same argument implies that L 1 is at least either e + -superheavy or e --superheavy. As L 0 and L 1 are disjoint, Proposition 92 implies that they cannot be both e + -superheavy or both e --superheavy at once. This implies

ζ e+ = ζ e-.
Remark 114. From this argument, it follows that either

• L 0 is e + -superheavy and L 1 is e --superheavy
• L 0 is e --superheavy and L 1 is e + -superheavy but it is not clear which one of the two actually holds. Eliashberg-Polterovich's approach shows that the former holds [START_REF] Eliashberg | Symplectic quasi-states on the quadric surface and Lagrangian submanifolds[END_REF].

•Case n = 4: The key of the proof is to find two disjoint Lagrangian submanifolds in Q 4 having non-vanishing Floer cohomology just as in the previous case. We use results of Nishinou-Nohara-Ueda and Nohara-Ueda which we will now briefly explain.

The relation between the superpotential and Lagrangian Floer cohomology has been studied extensively. After a pioneering work of Cho [START_REF] Cho | Holomorphic discs, spin structures and Floer cohomology of the Clifford torus[END_REF], Fukaya-Oh-Ohta-Ono computed the superpotential for toric symplectic manifolds in [START_REF] Fukaya | Lagrangian Floer theory on compact toric manifolds[END_REF]. Later, Nishinou-Nohara-Ueda computed the superpotential for symplectic manifolds admitting a toric degeneration in [START_REF] Nohara | Toric degenerations of Gelfand-Cetlin systems and potential functions[END_REF]. This lead Nohara-Ueda to study the Floer cohomology of non-torus fibers in partial flag manifolds in [START_REF] Nohara | Floer cohomologies of non-torus fibers of the Gelfand-Cetlin system[END_REF]. We state some of their results which will be relevant for us. Let Φ : Gr C (2, 4) → R 4 be the Gelfand-Cetlin system with the Gelfand-Cetlin polytope ∆ := Φ(Gr C (2, 4)). Denote the fiber of u ∈ ∆ by L(u):

L(u) := Φ -1 (u).
We identify Gr C (2, 4) with the adjoint orbit of λ = diag(4, 4, 0, 0) so that it is monotone. Remark 118. The existence of a homogeneous quasimorphism on Ham(Q n ×M ), n = 2, 4 (instead of on the universal cover) where (M, ω) is as in Theorem 117 was not known to the best of our knowledge. Note that examples of (M, ω) which satisfy the assumptions in Theorem 117 include CP n , 1, 2 and 3 point monotone blow-ups of CP 2 , Q n and their monotone products.

We start with some preliminary results on the product of semi-simple algebras. Let (M j , ω j ) (j = 1, 2) be monotone symplectic manifolds. Denote the generators of π 2 (M j )/Ker(ω j ) by s j which satisfy

ω j (s j ) = λ Mj , c 1 (T M j )(s j ) = N Mj
where λ Mj denotes the rationality constant and N Mj denotes the minimal Chern number of (M j , ω j ).

In the case where the monotonicity constants of (M j , ω j ) (j = 1, 2) coincide, one can consider their product (M 1 × M 2 , ω 1 ⊕ ω 2 ) which is also a monotone symplectic manifold. It has the same monotonicity constant as (M j , ω j ) (j = 1, 2) and its minimal Chern number N M1×M2 is the greatest common divisor of N M1 and N M2 . As above, we denote the generator of the π 2 (M 1 × M 2 )/Ker(ω 1 ⊕ ω 2 ) by s which satisfies

(ω 1 ⊕ ω 2 )(s) = λ M1×M2 , c 1 (T (M 1 × M 2 ))(s) = N M1×M2 .
Entov-Polterovich proved the following in [START_REF] Entov | Symplectic quasi-states and semisimplicity of quantum homology[END_REF].

Theorem 119. ([EP08, Theorem 5.1, Theorem 6.1])

Let (M j , ω j ) (j = 1, 2) be monotone symplectic manifolds. Assume that their quantum homology rings

QH even (M j ; C) = H even (M j ; C) ⊗ C[|s -1 j , s j ]
are both semi-simple and that at least one of M j , j = 1, 2 satisfies H 2k-1 (M j ; C) = 0 for all k ∈ Z. Then,

QH even (M 1 × M 2 ; C) = H even (M 1 × M 2 ; C) ⊗ C[|s -1 , s]
is semi-simple.

One can consider the following embedding:

σ : QH * (M 1 ; C) → QH * (M 1 × M 2 ; C) a • s 1 → a ⊗ [M 2 ] • s N M 1 /N M 1 ×M 2 .
Of course, one can consider an analogous embedding for M 2 .

We are now ready to prove Theorem 117. We will use the cohomological counterpart of the results above.

Proof of Theorem 117. As QH * (M ; C) is semi-simple, it splits into a direct sum of fields {Q j }:

QH * (M ; C) = Q 1 ⊕ Q 2 ⊕ • • • ⊕ Q l .
We decompose the identity element 1 M ∈ QH * (M ; C) with respect to this decomposition:

1 M = e 1 + e 2 + • • • + e l
for some λ > 0 where µ = µ L denotes the Maslov class. The minimal Maslov number N L is the positive generator of µ(π 2 (M, L)) i.e. µ(π 2 (M, L)) = N L Z. Recall that Λ denotes the universal Novikov field

Λ = { ∞ j=1 a j T λj : a j ∈ C, λ j ∈ R, lim j→+∞ λ j = +∞}.
All the Lagrangian submanifolds concerned in the following are assumed to be oriented and relatively spin (for its definition, see Section 4.4.3). The statements in this section include the notion of deformed Floer cohomology defined by Fukaya-Oh-Ohta-Ono [START_REF] Fukaya | Lagrangian intersection Floer theory: anomaly and obstruction[END_REF]. For a quick review, see Section 4.4.3.

The main statement for Lagrangian intersection is the following.

Theorem 123. In Q n (n = 2, 4), there exist two monotone Lagrangian submanifolds L 0 , L 1 that satisfy the following:

1. L 0 and L 1 are respectively diffeomorphic to

• T 2 and S 2 when n = 2.

• T 4 and S 1 × S 3 when n = 4.

2. L 0 and L 1 are disjoint.

3. Let L be a Lagrangian submanifold in Q n which is

• oriented when n = 2.

• oriented and relatively spin when n = 4.

If L is disjoint from both L 0 and L 1 i.e. if L ∩ (L 0 ∪ L 1 ) = ∅ then HF ((L, b); Λ) = 0
for any bounding cochain b.

Remark 124.

1. Under the symplectomophism between Q 2 and S 2 × S 2 , the Lagrangian submanifolds L 0 and L 1 in Theorem 123 correspond respectively to the so-called exotic torus defined by

{(x, y) ∈ S 2 × S 2 : x 1 y 1 + x 2 y 2 + x 3 y 3 = -1/2, x 3 + y 3 = 0}
which was studied in [START_REF] Entov | Rigid subsets of symplectic manifolds[END_REF], [START_REF] Fukaya | Toric degeneration and nondisplaceable Lagrangian tori in S 2 × S 2[END_REF] and the anti-diagonal {(x, y) ∈ S 2 × S 2 : x = -y}.

2. For more information about the two Lagrangian submanifolds in Theorem 123, see Theorems 113, 115 and related references.

For example, Theorem 123 can be applied to the following two well-known Lagrangians in Q 2 and Q 4 . In Q 2 , there is a Lagrangian torus T which corresponds to the product of equatorial circles S 1 × S 1 in S 2 × S 2 under the symplectomophism between Q 2 and S 2 × S 2 . In Q 4 , there is the standard Lagrangian sphere S 4 which appears as the real locus

S 4 = {(x 0 : • • • : x 4 ) ∈ CP 5 : x 2 0 + • • • + x 2 3 = x 2 4 , x j ∈ R, j = 0, • • • , 4}.
These Lagrangians T and S 4 are known to have non-trivial Floer cohomology groups HF (T ; Λ) = 0, HF (S 4 ; Λ) = 0.

Theorem 123 directly implies the following.

Corollary 125. Any Hamiltonian deformation of T in Q 2 or the standard Lagrangian sphere S 4 in Q 4 intersects either one of L 0 or L 1 in Theorem 123: For any φ ∈ Ham(Q 2 ),

L 0 ∩ φ(T ) = ∅ or L 1 ∩ φ(T ) = ∅.
For any φ ∈ Ham(Q 4 ),

L 0 ∩ φ(S 4 ) = ∅ or L 1 ∩ φ(S 4 ) = ∅.
Remark 126. In Theorem 123, it is crucial that we consider Floer cohomology without bulk-deformation. As it was studied by Fukaya-Oh-Ohta-Ono [START_REF] Fukaya | Toric degeneration and nondisplaceable Lagrangian tori in S 2 × S 2[END_REF] and Cho-Kim-Oh [START_REF] Cho | Lagrangian fibers of Gelfand-Cetlin systems[END_REF], there exist Lagrangians in Q n (n = 2, 4) intersecting neither L 0 nor L 1 that have non-trivial bulk-deformed Floer cohomology.

There are several ways to construct monotone Lagrangian submanifolds in Q n such as the Albers-Frauenfelder-type construction [START_REF] Albers | A nondisplaceable Lagrangian torus in T * S 2[END_REF] and the Biran-type construction [B01], [B06]. Their precise constructions and the relations among them are explained in [START_REF] Oakley | On certain Lagrangian submanifolds of S 2 × S 2 and CP n[END_REF]. In particular, Oakley-Usher constructs monotone Lagrangian submanifolds in Q 4 which are diffeomorphic to S 1 × S 3 by these methods in [OU16, Section 1.2] denoted by L Q 0,3 and S Q 0,3 , which turn out to be Hamiltonian isotopic (see [OU16, Theorem 1.4]). However, the monotone Lagrangian submanifold L 1 in Q 4 which appeared in Theorem 123 is not Hamiltonian isotopic to these examples due to Oakley-Usher as L 1 has minimal Maslov number 4 (see [NU16, Section 4.4]) and Oakley-Usher's Lagrangian submanifold has minimal Maslov number 2. Thus, we have the following.

Proposition 127. The 4-quadric Q 4 has two monotone Lagrangian submanifolds diffeomorphic to S 1 × S 3 which are not Hamiltonian isotopic.

Basically, Theorem 123 comes from the fact that the quantum cohomology ring

QH * (Q n ; C) = H * (Q n ; C) ⊗ C C[t -1 , t]
] splits into a direct sum of two fields. In the case where the quantum cohomology ring does not split i.e. itself is a field, we have a stronger rigidity result as follows.

Proposition 128. Let (M, ω) be a closed symplectic manifold for which the spectral pseudo-norm is bounded i.e. 1. When (M, ω) is monotone, if QH * (M ; C) is a field, then the spectral norm is bounded. Thus, Proposition 128 applies to CP n (see [START_REF] Entov | Calabi quasimorphism and quantum homology[END_REF]).

sup{γ(H

) : H ∈ C ∞ (R/Z × M, R)} < +∞.
2. Proposition 128 is not restricted to monotone symplectic manifolds. Examples of non-monotone symplectic manifolds for which the spectral norm is bounded includes a large one point blow-up of CP 2 and (S 2 × S 2 , σ ⊕ λσ) for λ > 1 where σ denotes an area form with S 2 σ = 1. See Section 4.5.7 for further remarks.

Proof of Theorem 123. We assume that there exists a bounding cochain b such that

HF ((L, b); Λ) = 0
and show that L must intersect either L 0 or L 1 . As the closed-open map maps the identity element of the quantum cohomology ring to the identity element of the Lagrangian Floer cohomology group, we have

CO 0 b (1) = PD([L]) = 0 ∈ HF * ((L, b); Λ). Since QH * (Q n ; C) := Q + ⊕ Q - 1 = e + + e -,
Theorem 93 implies that L (is either ι(e + )-heavy or ι(e -)-heavy so by Corollary 112) is either e + -superheavy or e --superheavy where

ι : QH * (Q n ; C) → QH * (Q n ; Λ).
(This was explained in more detail in the proof of Theorem 78.) If L intersects neither of L 0 , L 1 , then we have two disjoint sets which are either both e + -superheavy or both e --superheavy, which contradicts Proposition 92. Thus, L must intersect either L 0 or L 1 and this completes the proof.

We now prove Proposition 128.

Proof of Proposition 128. Assume there exist two Lagrangian submanifolds L 1 and

L 2 such that L 1 ∩ L 2 = ∅ and HF ((L 1 , b 1 ); Λ) = 0, HF ((L 2 , b 2 ); Λ) = 0.
Then by Theorem 93, L 1 and L 2 are both ζ 1 -heavy where ζ 1 denotes the asymptotic spectral invariant with respect to the idempotent 1 ∈ QH * (M ; Λ). Thus, for any Hamiltonian H we have

γ(H) = ρ(H, 1) + ρ(H, 1) ζ 1 (H) + ζ 1 (H) inf x∈L1 H(x) + inf x∈L2 H(x).
As L 1 ∩ L 2 = ∅, we can consider a Hamiltonian which is arbitrarily large on L 1 and arbitrarily small on L 2 which contradicts the assumption

sup{γ(H) : H ∈ C ∞ (R/Z × M, R)} < +∞.
This completes the proof.

As we have pointed out in Remark 129, examples of closed symplectic manifolds that satisfy sup{γ(H) :

H ∈ C ∞ (R/Z × M, R)} < +∞ include CP n , a large one point blow-up of CP 2 and (S 2 × S 2 , σ ⊕ λσ) with λ > 1.
We provide a brief explanation to these examples. One can easily check that, for any closed symplectic manifold (M, ω), the condition

sup{γ(H) : H ∈ C ∞ (R/Z × M, R)} < +∞ is equivalent to ρ( • , 1) : Ham(M, ω) → R
being a quasimorphism where 1 ∈ QH * (M ; C). When (M, ω) is monotone, then ρ(•, 1) is a quasimorphism when QH * (M ; C) is a field. Thus, the case of CP n follows. When (M, ω) is non-monotone, [Ost06, Theorem 1.3] or [EP08, Theorem 3.1] imply that ρ(•, 1) is a quasimorphism when "QH 0 (M ; C)" is a field where a different set-up of the quantum cohomology is considered. For a precise definition of this set-up, we refer to [START_REF] Ostrover | Calabi quasi-morphisms for some non-monotone symplectic manifolds[END_REF], [START_REF] Entov | Quasi-states and symplectic intersections[END_REF]. As pointed out in [Ost06, Lemma 3.1, Remark 3.4], "QH 0 (M ; C)" is a field when (M, ω) is a large one point blow-up of CP 2 or (S 2 × S 2 , σ ⊕ λσ) with λ > 1.

Proof of Application

In this section, we prove the following Theorem, which includes Theorem 84.

Theorem 130. Let (M, ω) be a symplectic manifold which is either symplectically aspherical or monotone with the same monotonicity constant as Q n , n = 2, 4 (we also allow it to be an empty set). For any R > 0, Chapter 5

Spectral norm and ground rings

Overview of the chapter

Floer homology is a powerful tool in symplectic topology but its construction is very technical and subtle. For example, they depend on the choice of the ground ring (e.g. RP n in CP n where n is odd has non-vanishing Floer homology with Z 2coefficients HF (RP n ; Z 2 ) = 0 whereas with C-coefficients), its Floer homology vanishes HF (RP n ; C) = 0) and sometimes one needs to twist the boundary map in order to obtain a non-trivial Floer homology (e.g. The Clifford torus T 2 Clif in CP 2 has vanishing Floer homology with the usual boundary map HF (T 2 Clif , C) = 0 but by twisting the boundary map with a certain local system b ∈ H 1 (T 2 Clif ; C), one gets a non-vanishing Floer homology HF ((T 2 Clif , b); C) = 0). There are also several different versions of Floer homology: First of all, there is the traditional one introduced by Floer [START_REF] Floer | Morse theory for Lagrangian intersections[END_REF] and developed by Oh [START_REF] Oh | Floer cohomology of Lagrangian intersections and pseudoholomorphic disks[END_REF]. Later on, Fukaya-Oh-Ohta-Ono built a massive theory that allows one to construct Floer homology on any closed symplectic manifold. The former and the latter use different coefficient fields in the construction of homology. It seems very difficult to decide if this dependence on the algebraic setting is just technical of rather conceptual.

The main results in Chapter 4 (Theorem 78 which answers a variant of a question of Entov-polterovich-Py on the C 0 and Hofer-Lipschitz continuous quasimorphisms and Theorem 82 which answers a question of Polterovich-Wu) were obtained by using Floer homologies with different algebraic setting. This led us to the following question.

Question 132. How does the behavior of the spectral norm γ R change according to the choice of the ground ring R? Note that the spectral norm is a Floer theoritic quanitty and the subscript R denotes the choice of the ground ring we use in order to define Floer homology. Our main observation is the following.

Theorem 133. ([KawSh])

For n = 2, 3 we have sup We will study this phenomenon from two different perspectives.

Algebraic viewpoint

The finiteness of spectral norm for K-coefficients

sup φ∈Ham(CP n ) γ K (φ) n n + 1
is a consequence of the so-called "Poincaré duality formula for spectral invariants". Thus, sup

φ∈Ham(CP n ) γ Z (φ) = +∞
implies that the well-known "Poincaré duality formula for spectral invariants" no longer holds for spectral invariants with Z-coefficients. We have found that for some Hamiltonian H, the filtered Z-coefficient Floer homology HF τ (H; Z) possesses a torsion element at some filtration level τ ∈ R which disappears when the filtration level τ is sufficiently large.

Theorem 134. ( [KawSh]) On CP n (n = 2, 3), there exists a Hamiltonian H such that for some filtration level τ ∈ R, we have T or(HF τ (H; Z)) = 0.

Dynamical viewpoint

The relation between the asymptotic of the spectral norm and the dynamics of a Hamiltonian diffeomorphism has caught attention of some symplectic geometers. For example, Ginzburg-Gurel proved the folllowing in [START_REF] Ginzburg | Hamiltonian pseudo-rotations of projective spaces[END_REF]. Moreover, can we say that sup k∈Z γ R (φ k ) < +∞ ?

We have obtained the following partial result in this direction. 

Set-up and notations

Throughout the chapter, we will denote Floer theoretic quantities with the choice of the ground ring as follows. Note that we only consider a closed monotone symplectic manifold (M, ω) in this chapter. For a ground ring R, define the Floer homology group as usual and denote it by HF (H; R). Similarly, we denote the quantum homology ring by When the choice of the ground ring is obvious, we sometimes lift it from the notation.

Proofs

Proof of Theorem 133

The quantum homology ring of CP n is a field for any ground field K so by Theorem ??, 

Apply Shtern's continuity criterion for quasimorphisms.

The issue in the current situation is that, as we work with quasimorphisms with two different ground fields, namely Z 2 and C, we do not get the estimate of the first step in the same way. In order to over come this issue, we will consider the following property of spectral invariants. γ Z (φ) = +∞.

Remark 140. We can alternatively use the following computations of Floer homologies as well:

• HF Zap (T 2 Ch ; C) = 0 for a certain choice of a local system for the Zapolsky-type Floer homology (see [START_REF] Zapolsky | The Lagrangian Floer-quantum-PSS package and canonical orientations in Floer theory[END_REF] and [START_REF] Leclercq | Spectral invariants for monotone Lagrangians[END_REF]).

• HF Zap (RP 2 ; Z 2 ) = 0 for the Zapolsky-type Floer homology (see [START_REF] Zapolsky | The Lagrangian Floer-quantum-PSS package and canonical orientations in Floer theory[END_REF]).

In comparison to Theorem 78, I pose the following question. 

Poincaré duality and spectral invariants

In this section, we prove a formula concerning spectral invarinats and Poincaré duality with Z-coefficients. The version with C-coefficients appeared in [START_REF] Entov | Calabi quasimorphism and quantum homology[END_REF].

Basic sequences

First of all, we introduce exact sequences which will be helpful to consider Poincaré duality for spectral invariants.

Proposition 142. We have the following exact sequences: Hom(HF -τ 2n-k (H), Z) 0

(5.5) Together with the exact sequence 5.5, we obtain the vertical sequence in Proposition 142.

Remark 143. If we work with a ground field K instead of Z, then we get a sequence similar to 142 with Z replaced with K. 1. G -τ is an isomorphism. This happens for example when

Two extreme cases

• The ground ring is a field.

• Ext(HF τ * -1 (H); Z) = 0 for all τ ∈ R e.g. φ H is a pseudo-rotation.

2. F -τ is an isomorphism. This happens if and only if a ∈ T or(QH * (M ; Z)).

In these two cases, what would the PD formulae be? 2. If F -τ is an isomorphism, then the formula becomes much more complicated: See Section 5.5.

Results for CP n

In this subsection, we prove the following Theorem.

Theorem 144. ( [KawSh]) On CP n , n = 2, 3, there exists a Hamiltonian H such that for some filtration level τ ∈ R, we have T or(HF τ (H; Z)) = 0. Remark 149. When we work with a ground field K, the asymptotic spectral invariant c K is this corolarry equals the so-called augmented action. This was shown by Ginzburg-Gürel in [START_REF] Ginzburg | Action and index spectra and periodic orbits in Hamiltonian dynamics[END_REF].

Dynamical results

Proof. For any H, we have c R (H) c Z (H). 

Closing remarks

In M := CP n , there might be b ∈ T or(HF τ (H)), which eventually disappears, such that c(H, We plan to study properties of this pairing and aim to refine the Poincaré duality formula for spectral invariants.

  following question was then posed by Entov-Polterovich-Py in [EPP12] which became an important open problem in this direction. This question appears under the name of "Problem 23 Quasimorphism question" in the famous Chapter "Open problems" in the monograph of McDuff-Salamon [MS98]. Question 14. ("Quasimorphism question" [EPP12],[MS98]) 1. Does there exist a nonzero homogeneous quasimorphism µ : Ham(S 2 ) → R that is continuous with respect to the C 0 -topology on Ham(S 2 )? 2. If yes, can it be made Lipschitz with respect to the Hofer metric? Instead of this original question, I considered the following variant. Question 15. ([Kaw20]) 1. Does there exist a closed symplectic manifold (M, ω) which admits a non-trivial homogeneous quasimorphism µ : Ham(M, ω) → R

Question 19 .

 19 (Le Roux [LeR10]) Let (M, ω) be any closed symplectic manifold. For any R > 0, does Ham R := {φ ∈ Ham(M, ω) : d Hof (id, φ) R} have a non-empty C 0 -interior?

Question 26 .

 26 What kind of dynamical features does a Hamiltonian diffeomorphism φ ∈ Ham(CP n , ω F S ) satisfying sup k∈Z γ Z (φ k ) < +∞ possess?

  where • denotes the usual intersection index in homology and GW 3,s k (a, b, c) denotes the 3-pointed Gromov-Witten invariant for a, b, c ∈ H * (M ) in the class A ∈ π 2 (M ) where [A] = s k ∈ Γ i.e. the count of pseudo-holomorphic spheres in the homotopy class A passing through cycles representing a, b, c ∈ H * (M ). See [MS98] for details.

2. 7 . 1

 71 Homology versionLet i τ : CF τ * (H) → CF * (H) be the natural inclusion map and denote by i τ * : HF τ * (H) → HF * (H) the induced map on homology. For a quantum homology class a ∈ QH * (M ; K), define the spectral invariant by c(H, a) = c(H, a; K) := inf{τ ∈ R : Φ P SS,H;K (a) ∈ Im(i τ * )}.

  H) be the natural inclusion map and denote its map induced on homology by i τ * : HF τ * (H) → HF * (H). For a quantum cohomology class a ∈ QH * (M ; C)\{0}, define its spectral invariant by ρ(H, a) := inf{τ ∈ R : P SS H • PD(a) ∈ Im(i τ * )}. Spectral invariants are invariant under homotopy rel. end points i.e. if t → φ t H and t → φ t G are homotopic paths in Ham(M, ω) where H and G are both meannormalized Hamiltonians, then ρ(H, •) = ρ(G, •). Thus, we can see spectral invariants as follows: ρ : Ham(M, ω) × QH * (M ) → R, ρ( φ, a) := ρ(H, a)

Definition 47 .

 47 Let (M 2n , ω) be a symplectic manifold. Let a, b ∈ H * (M ; K)\{0}. For a Hamiltonian H, define σ a,a * b (H) := c(H, a) -c(H, a * b) and for a Hamiltonian diffeomorphism φ, define σ a,a * b (φ) := inf φ H =φ σ a,a * b (H).

  Question 50. (Béguin-Crovisier-Le Roux) Let G r := {φ ∈ Ham(M, ω) : φ(f (B r )) ∩ f (B r ) = ∅} for any r > 0 where f : B r → (M, ω) is a symplectic embedding. Does the C 0 -closure of G r contain the identity element for some r > 0?

  id B×B Proposition 60, proven by Buhovsky-Humilière-Seyfaddini[START_REF] Buhovsky | The action spectrum and C 0 -symplectic topology[END_REF], claims that given a Hamiltonian diffeomorphism φ on M , one can always deform the Hamiltonian diffeomorphism φ × φ -1 to a Hamiltonian diffeomorphism on M × M that does not move any point on a certain open set by composing with a both C 0 -and γ-small Hamiltonian diffeomorphism on M × M .

  γ a,b (H) := c(H, a) + c(H, b). Remark 63. Of course, γ [M ],[M ] = γ where γ is the usual spectral norm.

γ

  : (Ham(M, ω), d C 0 ) → R is continuous. Moreover, γ extends continuously to Ham(M, ω). Remark 71. 1. Theorem 70 (1) is essentially contained in Proposition 15 in [KiSh18] where Kislev-Shelukhin considers Lagrangian spectral invariants instead of Hamiltonian ones. 2. So far, (CP n , ω F S ) seems to be the only example that satisfies the assumptions in Theorem 70. Proof. (of Theorem 70) Let φ ∈ Ham(M, ω) and take any Hamiltonian H such that φ H = φ. Let ψ ∈ π 1 (Ham(M, ω)) and σ be as in the statement. Denote a := S ψ,σ ∈ QH * (M ; K), a * k := a * a * • • • * a k-times

  Proposition 72. ([Ush10]) Let B := B(r) be an open ball in (R 2n , ω std ). If B(r) is symplectically embedded to (M, ω) f : B(r) → (M, ω) and φ(f (B)) ∩ f (B) = ∅ for φ ∈ Ham(M, ω), then πr 2 γ(φ).

  By changing the role of H and G, we get σ a,a * b (G) -σ a,a * b (H) γ(H#G) too. This completes the proof.Proposition 73 allows us to define the following: Let (M 2n , ω) be a negative monotone symplectic manifold and a, b ∈ H * (M ; K).

  σ a,a * b : Ham(M, ω) → R σ a,a * b (φ) := σ a,a * b (H)

  This corollary and the C 0 -continuity of γ implies the C 0 -continuity of σ a,a * b . This allows us to define σ a,a * b for Hamiltonian homeomorphisms i.e. for a Hamiltonian homeomorphism φ, define σ a,a * b (φ) := lim n→∞ σ a,a * b (φ n ) where φ n ∈ Ham(M, ω), φ n C 0 --→ φ.

  -Polterovich-Py in [EPP12]. This question appears also in the list of open problems in the monograph of McDuff-Salamon. Question 76. ([EPP12], [MS98, Chapter 14, Problem 23]) 1. Does there exist a nonzero homogeneous quasimorphism µ : Ham(S 2 ) → R
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 4 HOFER LIPSCHITZ AND C 0 CONTINUOUS QUASIMORPHISMS In this paper, we consider a generalized version of the question of Entov-Polterovich-Py:

  5.3. As another application of this idea, we answer a question of Polterovich-Wu which was posed in [Wu15, Remark 5.2]. We briefly review the question. Details of the question are postponed to Section 4.5.6. In [Wu15], Wu found three homogeneous quasimorphisms {ζ j } j=1,2,3 on Ham(CP 2 ) via the Entov-Polterovich construction for the quantum cohomology ring with the universal Novikov field. Polterovich posed the following question. Question 81. ([Wu15, Remark 5.2], see also Question 121)

  The ring structure of QH * (M ; C) (and of QH * (M ; C)) is given by the quantum product which is denoted by * . It is defined by a certain count of pseudo-homolorphic spheres. More precisely, in the case of QH * (M ; C), ∀a, b, c ∈ H * (M ), (a * b) • c := k∈Z GW 3,s k (a, b, c) ⊗ s k where • denotes the usual intersection index in homology and GW 3,s k (a, b, c) denotes the 3-pointed Gromov-Witten invariant for a, b, c ∈ H * (M ) in the class A ∈ π 2 (M ) where [A] = s k ∈ Γ i.e. the count of pseudo-holomorphic spheres in the homotopy class A passing through cycles representing a, b, c ∈ H * (M ). See [MS98] for details.

  By considering t → T +λ0 , one can embed QH * (M ; C) into QH * (M ; Λ): QH * (M ; C) → QH * (M ; Λ).

0

 0 and the resulting cohomology group HF ((L, b); Λ 0 ) := Ker(m b 1 : H * (L; Λ 0 ) → H * (L; Λ 0 )) Im(m b 1 : H * (L; Λ 0 ) → H * (L; Λ 0 )) will be called the Floer cohomology deformed by a (weak) bounding cochain b ∈ M weak (L). We also define HF ((L, b); Λ) := HF ((L, b); Λ 0 ) ⊗ Λ0 Λ.

  Theorem 88. ([EP03, Theorem 1.1], [FOOO19]) 1. If e ∈ QH 0 (M ; C) is an idempotent and e • QH even (M ; C) is a field, then ζ e : Ham(M, ω) → R is a homogeneous quasimorphism. 2. If e ∈ QH * (M ; Λ) is an idempotent and e • QH * (M ; Λ) is a field, then ζ e : Ham(M, ω) → R is a homogeneous quasimorphism. Remark 89. All the examples that appear in this paper satisfy QH even (M ; C) = QH * (M ; C). Definition 90. Let (M, ω) be any closed symplectic manifold and let e ∈ QH * (M ; C) be an idempotent. A subset S of M is called e-heavy or ζ e -heavy (resp. e-superheavy or ζ e -superheavy) if it satisfies the following: inf x∈S H(x) ζ e (H) (resp. ζ e (H) sup x∈S H(x))

  and Entov-Polterovich [EP09, Theorem 1.17]. Theorem 93. ([FOOO19, Theorem 1.6]) Assume HF * ((L, b); Λ) = 0 for a certain bounding cochain b. If CO 0 b (e) = 0 for an idempotent e ∈ QH * (M ; Λ), then L is e-heavy.

  Then for any i, j ∈ {1, 2, • • • , l}, µ := ζ ei -ζ ej defines a homogeneous quasimorphism on Ham(M, ω) which is C 0 -continuous i.e. µ : (Ham(M, ω), d C 0 ) → R is continuous. Moreover, it is Hofer Lipschitz continuous. Remark 97. 1. As we do not know if ζ ei = ζ ej , the resulting homogeneous quasimorphism µ : Ham(M, ω) → R might be trivial i.e. µ ≡ 0. Thus the point in proving Theorem 78 is to prove ζ e+ = ζ e-for the two idempotents e ± ∈ QH * (Q n ; C) (n = 2, 4). 2. For examples of monotone symplectic manifolds whose quantum cohomology ring is semi-simple, see Section 4.4.1.

  k→+∞ ρ( φk , e 1 ) -ρ( φk , e 2 ) k lim k→+∞ ρ( φk , 1) + ρ( ĩd, e 1 ) + ρ(( φ-1 ) k , 1) -ρ( ĩd, e 2 ) k = lim k→+∞ γ( φk ) + ν(e 1 ) -ν(e 2 ) k γ( φ).

Proposition 99 .

 99 The function µ : Ham(M, ω) → R descends to Ham(M, ω) i.e. if φ and ψ have the same endpoint, then µ( φ) = µ( ψ). Thus, for any φ ∈ Ham(M, ω), we defineµ(φ) := µ( φ)where φ ∈ Ham(M, ω) is any element having φ as the endpoint. We can thus define a map µ : Ham(M, ω) → R.It satisfies |µ(φ)| γ(φ)for any φ ∈ Ham(M, ω).Remark 100. The Hofer Lipschitz continuity of µ follows automatically from Proposition 99 since γ(φ) d Hof (id, φ).Proof of Proposition 99. It suffices to show µ| π1(Ham(M,ω)) ≡ 0 where we see π 1 (Ham(M, ω)) ⊂

  Theorem 101. ([Kaw21, Theorem 4(1)])

  and [EPP12, Proposition 1.3]. Proposition 103. ([Sht01], [EPP12, Proposition 1.3])

  On the other hand QH * (M ; Λ) is defined by QH * (M ; Λ) := H * (M ; C) ⊗ C Λ and one can embed QH * (M ; C) to QH * (M ; Λ) by ι : QH * (M ; C) → QH * (M ; Λ) t → T +λ0

Lemma 110 .

 110 Let (M, ω) be a monotone symplectic manifold. 1. For any a ∈ QH * (M ; C)\{0}, we have ρ(H, ι(a)) = ρ(H, a) for any Hamiltonian H.

2.

  Let e ∈ QH 0 (M ; C) be an idempotent. Assume that e • QH even (M ; C) is a field. Then, we haveζ ι(e) ( φ) = ζ e ( φ)for any φ ∈ Ham(M, ω). In particular,ζ ι(e) : Ham(M, ω) → Ris a homogenous quasimorphism.The value ρ(•, a) denotes the spectral invariant of a ∈ QH * (M ; C) while the value ρ(•, ι(a)) denotes the spectral invariant of its embedded element ι(a) ∈ QH * (M ; Λ).

j

  : CF * (H) → CF * (H; Λ) and the induced map on homology j * : HF * (H) → HF * (H; Λ). Note that P SS H,Λ • P D • ι = j * • P SS H • P D where P SS H on the right hand side denotes the PSS-isomorphism P SS H : QH * (M ; C) ∼ -→ HF * (H) while P SS H on the left hand side denotes the PSS-isomorphism P SS H,Λ : QH * (M ; Λ) ∼ -→ HF * (H; Λ) and P D denotes the Poincaré duality between quantum homology and quantum cohomology.

  Theorem 113. ([FOOO12, Lemma 23.3(1), Lemma 23.5] ) 1. In S 2 × S 2 , there exists a monotone Lagrangian submanifold L 0 diffeomorphic to T 2 such that HF ((L 0 , b 0 ); Λ) = 0 for a certain bounding cochain b

  Theorem 115. ([NNU10, Theorem 10.1, Section 11], [NU16, Theorem 1.2, Example 3.3])

  1. For u 0 := (2, 3, 1, 2) ∈ Int(∆), there exists a bounding cochain b ∈ H 1 (L(u 0 ); Λ) such that HF ((L(u 0 ), b); Λ) QH * (T 4 ; Λ).

Let L 1

 1 be a Lagrangian submanifold such that HF ((L 1 , b 1 ); Λ) = 0 for some bounding cochain b 1 . Then, any Lagrangian submanifold L 2 which is disjoint from L 1 has a vanishing Floer cohomology: HF ((L 2 , b 2 ); Λ) = 0 for any bounding cochain b 2 . Remark 129.

  Ham R := {φ ∈ Ham(Q n × M ) : d Hof (id, φ) R} has a non-empty C 0 -interior.Theorem 130 follows as a corollary of the following statement.
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 4 HOFER LIPSCHITZ AND C 0 CONTINUOUS QUASIMORPHISMS Theorem 131. Let (M, ω) be a monotone symplectic manifold. Assume that sup{γ(φ) : φ ∈ Ham(M )} = +∞. For any R > 0, Ham R := {φ ∈ Ham(M, ω) : d Hof (id, φ) R} has a non-empty C 0 -interior. Proof of Theorem 131. From the assumption, for any R > 0, we can find φ ∈ Ham(M, ω) such that γ(φ) > R + 2dim(M ) N M where N M is the minimal Chern number of M . By Theorem 101, there exists δ > 0such that if d C 0 (id, φ ) < δ, then γ(φ ) < 2dim(M ) N M. Thus, for any ψ ∈ Ham(M, ω) such that d C 0 (φ, ψ) < δ, we haveγ(ψ) > γ(φ) -γ(ψ • φ -1 ) > R + 2dim(M ) N M -2dim(M ) N M = Rthus, ψ ∈ Ham R . This completes the proof. Now Theorem 130 follows immediately.Proof of Theorem 130. From the Künneth formula for spectral invariants (see [EP09, Section 5.1]), we havesup{γ(φ) : φ ∈ Ham(Q n × M )} sup{γ(φ 1 × id) : φ 1 ∈ Ham(Q n ), id ∈ Ham(M )} = sup{γ(φ 1 ) : φ 1 ∈ Ham(Q n )} sup{µ(φ 1 ) : φ 1 ∈ Ham(Q n )} = +∞for n = 2, 4. Note that the last equality uses the non-triviality and the homogeneity from Theorem 78. Therefore, Theorem 130 follows directly from Theorem 131.

  φ∈Ham(CP n ) γ Z (φ) = +∞ while sup φ∈Ham(CP n ) γ K (φ) 197for any field K.

  Theorem 135. ([GG18])If φ ∈ Ham(CP n ) is a pseudo-rotation, then there exists a sequence n k +∞ such that limk→+∞ γ C (φ n k ) = 0.This result led us to the following question. Question 136. Let (M, ω) be a closed monotone symplectic manifold and R ∈ {C, Z} . If φ ∈ Ham(M, ω) is a pseudo-rotation, then do we have γ R (φ)(= lim k→∞ γ R (φ k ) k ) = 0 ?

Theorem 137 .

 137 ([KawSh]) For CP n , we have supφ:pseudo-rotation γ Z (φ) 1 even though sup φ∈Ham(CP n ) γ Z (φ) = +∞when n = 2, 3.

  QH * (M ; R) := H * (M ; R) ⊗ R R[|s -1 , s].Denote the PSS-map byP SS H,R : QH * (M ; R) ∼ -→ HF (H; R).

For

  any a ∈ QH * (M ; R)\{0} and a Hamiltonian H, we define the spectral invariant with respect to H and a by c(H, a; R) := inf{τ ∈ R : P SS H;R (a) ∈ Im(i τ * )} where i τ * : HF τ (H; R) → HF (H; R). We often abbreviate the spectral invariant of the fundamental class c R (H, [M ]) by c(H; R). We denote the asymptotic spectral invariant of an idempotent e ∈ QH * (M ; R) by c e (H; R) := lim k→+∞ c(H, e; R) k .

c

  K ( φ) := lim k→+∞ c( φ, [CP n ]; K) k defines a homogeneous quasimorphism on Ham(CP 2 ) for any ground field K. Proposition 138. For CP 2 , we have c Z2 = c C Proof. (of Proposition 138) In CP 2 , there are two disjoint monotone Lagrangians with non-vanishing Floer (co)homology, namely RP 2 and the Chekanov torus T 2Ch . These satisfy• HF (RP 2 ; Z 2 ) = 0 ([Oh93b]). • HF ((T 2 Ch , b); Λ) = 0where b is a certain bounding cochain ([Wu15]). Thus, by considering the closed-open map (Theorem 93), we deduce that RP 2 is c Z2 -superheavy and T 2 Ch is c 1Λ -superheavy. From the answer to the question of Polterovich-Wu (Theorem 82), T 2 Ch is c C -superheavy. As RP 2 and T 2 Ch are disjoint, we conclude thatc Z2 = c C .One might wonder we will obtain a C 0 and Hofer-Lipschitz continuous homogeneous homogeneous quasimorphism by definingµ := c C -c Z2 as in Chapter 4.However, there is one issue: Recall that the proof the C 0 continuity of a quasimorphism µ : Ham(Q n ) → R in Theorem 78 went through the following steps:1. Define µ := c e+ -c e-where e ± ∈ QH(M ; C) are units of field factors.2. Get the estimate |µ| γ C3. γ C is bounded in a C 0 -neiborhood of id in Ham(Q n ).

Proposition 139 .

 139 Let K be any field. For any φ ∈ Ham(M, ω), we havec( φ, [M ]; K) c( φ, [M ]; Z).

From

  this basic property, we getµ( φ) = c C ( φ) -c Z2 ( φ) = c C ( φ) + c Z2 ( φ -1 ) c Z ( φ) + c Z ( φ -1 ) γ Z ( φ).Thus, we obtain|µ| γ Z and we are in the position where we can apply the C 0 -control of the spectral norm (Theorem 12): For any ε > 0, there exists δ > 0 such that if d C 0 (id, φ) < δ, thenγ Z (φ) dim R (M ) N M + ε.Shtern's continuity criterion for quasimorphisms implies thatµ := c C -c Z2defines a non-trivial C 0 and Hofer-Lipschitz continuous homogeneous homogeneous quasimorphism. The estimate |µ| γ Z and the homogeniety implies sup φ∈Ham(CP 2 )

Question 141 .

 141 Does the homogeneous quasimorphism µ : Ham(CP 2 ) → R, µ := c C -c F2 satisfy γ Z = |µ| ??

  -τ 2n- * -1 (H), Z) HF * (H) H 2n- * (Hom(CF * (H)/CF -τ * (H)), Z) H * (CF (H)/CF τ (H))Hom(HF -τ 2n- * (H), Z) First of all, we have the following diagram which comes from Poincaré duality:CF τ k (H) Hom(CF -τ 2n-k (H), Z) CF k (H) Hom(CF 2n-k (H), Z) CF k (H)/CF τ k (H) Hom(CF 2n-k (H), Z)/Hom(CF -τ 2n-k (H), Z)) (5.2)and by usingHom(CF * (H), Z)/Hom(CF -τ * (H), Z) Hom(CF * (H)/CF -τ * (H), Z) (we do not use Hom(CF * (H)/CF -τ * (H), Z)Hom(CF -τ * (H), Z) as, if we did, then the following homology will not be defined) and passing to homology, we obtainHF τ k (H) HF 2n-k -τ (H) HF k (H) HF 2n-k (H) H k (CF (H)/CF τ (H)) H 2n-k (Hom(CF * (H)/CF -τ * (H)), Z)) (5.3) By the universal coefficient theorem for the chain complex (CF * (H)/CF -τ * (H), ∂ F loer ), we have 0 Ext(H 2n-k-1 (CF * (H)/CF -τ * (H), ∂ F loer )), Z) H 2n-k (Hom(CF * (H)/CF -τ * (H), Z)), δ F loer ) Hom(H 2n-k (CF * (H)/CF -τ * (H), ∂ F loer ), Z) 0 (5.4) Note that H 2n-k (CF * (H)/CF -τ * (H), ∂ F loer ) = HF -τ 2n-k (H) and thus 0 Ext(HF -τ 2n-k-1 (H), Z) H 2n-k (Hom(CF * (H)/CF -τ * (H), Z)), δ F loer )

Consider the following diagram: 0

 0 Ext(HF-τ 2n- * -1 (H); Z) H 2n- * (Hom(CF * (H)/CF -τ * (H)), Z) HF * (H) HF τ * (H) Hom(HF -τ 2n- * (H); Z) QH * (M ; Z) are two extreme cases: given a ∈ QH * (M ; Z), denote a # := P D • j τ • P SS H (a).

  1. If G -τ is an isomorphism, then c(H, a) = -inf{c(H, b) : a, b = 0}which recovers the formula in[START_REF] Entov | Calabi quasimorphism and quantum homology[END_REF].

Corollary 147 .

 147 (spectral bound for PR) If φ ∈ Ham(CP n ) is a pseudo-rotation, then γ Z (φ) λ 0 = ω F S , [CP 1 ] .Proof. (of Corollary 147)For a pseudo-rotationφ = φ H ∈ Ham(CP n ), γ Z (H) = c Z (H, [M ]) + c Z (H, [M ]) = c F2 (H, [M ]) + c F2 (H, [M ]) = γ F2 (H) ω F S , [CP 1 ] .Corollary 148. Let φ H ∈ Ham(CP n ) be a pseudo-rotation. For any ground ring R, we have c R (H) = c Z (H).

  Together withc R (H) + c R (H) 0, we obtain -c R (H) c Z (H).Now, for a pseudo-rotation φ H ∈ Ham(CP n ), we havec Z (H) = c F2 (H) = -c F2 (H),so all together, -c R (H) -c F2 (H).

  Thus, c F2 (H) c R (H) c Z (H) = c F2 (H).

  This impliesc R (H) = c Z (H).Proposition 150. For CP n , n = 2, 3, there exist l ∈ Z and a HamiltonianH such that c Z (H, l[M ]) < c Z (H, [M ]).Proof. As we have seen in Proposition 138, we havec F2 = c C .This implies that there exists H such thatc F2 (H, [M ]) < c C (H, [M ]).This implies that there exists l / ∈ 2Z such that c Z (H, l[M ]) < c Z (H, [M ]).

  [M ]) corresponds to -τ where P SS H ([pt])+b appears at HF τ (H). In order to understand this torsion class, together with Egor Shelukhin, I plan to study the "filtered quantum linking form" which the quantum counterpart of the linking form in singular homology theory (which is considered as the Poincaré pairing for the torsion classes) by taking the filtration into account. The non-filtered version of this looks likeL : QH * (M ; Z) ⊗ QH 2n-1- * (M ; Q/Z) → Q/Zwhich comes from the following operation: * : QH i (M ; Z) ⊗ T or(QH j (M ; Z)) → QH i+j-2n+1 (M ; Q/Z) (a, b) → a * β -1 (b) where β : QH j (M ; Q/Z) → QH j-1 (M ; Z) denotes the Bockstein homomorphism. We have for a ∈ QH i (M ; Z), b ∈ QH 2n-1-i (M ; Z), L(a, b) = a * b, 1 , 1 ∈ QH 0 (M ; Q/Z).
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Application: Le Roux's question

The relation between the Hofer-topology and the C 0 -topology on the group of Hamiltonian diffeomorphisms on closed symplectic manifolds still remains a mystery. In [START_REF] Le | Six questions, a proposition and two pictures on Hofer dis-tance for Hamiltonian diffeomorphisms on surfaces, In Symplectic topology and measure preserving dynamical systems[END_REF], Le Roux posed the following question. We answer to this question affirmatively for the quadric hypersurface Q n × M where n = 2, 4.

Theorem 84. For any R > 0, Ham R := {φ ∈ Ham(Q n ) : d Hof (id, φ) R} has a non-empty C 0 -interior where n = 2, 4.

Theorem 84 seems to be the first case where the question of Le Roux was verified for closed simply connected manifolds. In fact, according to [EPP12, Section 1.4], "for closed simply connected manifolds (and already for the case of the 2-sphere) the question is wide open".

Remark 85. Our proof applies to any closed monotone symplectic manifold for which the spectral norm can be arbitrarily large: see Theorem 131. See also Theorem 130 for a slightly generalized statement.

Strategy of the proof and structure of the paper

The strategy of the proof of Theorem 78, which divides into two parts, is as follows:

We first prove that a homogeneous quasimorphism on Ham(M, ω) which is obtained as the difference of any two Entov-Polterovich type homogeneous quasimorphisms descends to Ham(M, ω) and is bounded by the spectral norm γ. Next we show that it is C 0 -continuous by using a result on the C 0 -control of the spectral norm obtained by the author in [START_REF] Kawamoto | On C 0 -continuity of the spectral norm for symplectically non-aspherical manifolds[END_REF] (Theorem 101). This is the first part of the proof. Note that this part applies to any monotone symplectic manifold.

In the second part of the proof, we will see that in order to prove that the resulting homogeneous quasimorphism is non-trivial, it suffices to find two disjoint Lagrangian submanifolds with non-vanishing Floer cohomology. We use examples found by Fukaya-Oh-Ohta-Ono and Eliashberg-Polterovich for the case of Q 2 and by Nishinou-Nohara-Ueda and Nohara-Ueda for the case of Q 4 where the Floer cohomology of Lagrangian fibers of a Gelfand-Cetlin system was studied via superpotential techniques.

The crucial idea of the proof is to work with different quantum cohomology rings in Part 1 and 2. The differences of the two quantum cohomology rings as well as their advantages are explained in Section 4.5.3. In Section 4.5.6, we answer a question of Polterovich-Wu also by applying this idea. In Section 4.5.7, we discuss some consequences of the argument to Lagrangian intersections.

2. There exists u 1 ∈ ∂∆ such that its fiber L(u 1 ) is Lagrangian and diffeomorphic to U (2) S 1 × S 3 with non-trivial Floer cohomology:

HF ((L(u 1 ), ±πi/2 • e 1 ); Λ) QH * (S 1 × S 3 ; Λ)

for a bounding cochain b = ±πi/2 • e 1 where e 1 is the generator of H 1 (L(u 1 ); Z).

Remark 116.

1. Q 4 is symplectomorphic to Gr C (2, 4).

2. Theorem 115 (1) was proven for any identification of Gr C (2, 4) with O λ where λ = diag(2α, 2α, 0, 0),

for any α > 0. If we choose α = 2, the Kirillov-Konstant form ω λ defines a monotone symplectic form by the monotonicity criterion in Section 4.4.6.

3. Note that L(u 0 ) T 4 and L(u 1 ) U (2) S 1 × S 3 are both monotone since they are both located in the center of a Lagrangian facet of the Gelfand-Cetlin polytope. This follows from a result of Yunhyung Cho and Yoosik Kim [?] where they classify monotone fibers of Gelfand-Cetlin polytopes.

Let L(u 0 ), L(u 1 ) be as in Theorem 115. We argue exactly as in the case where n = 2. As the closed-open map maps the identity element of the quantum cohomology ring to the identity element of the Lagrangian Floer cohomology group, we have

the first equation and Theorem 93 imply that L(u 0 ) is e + -superheavy or e --superheavy.

We have used that by Corollary 112, ι(e ± )-heaviness is equivalent to e ± -superheaviness. Next, by looking at the second equation, the same argument implies that L(u 1 ) is e + -superheavy or e --superheavy. As L(u 0 ) and L(u 1 ) are disjoint (recall that they are fibers of distinct points in the Gelfand-Cetlin polytope), we conclude that they cannot be both e + -superheavy or both e --superheavy at once. This implies

Generalization of Theorem 78

In this section, we prove the following slight generalization of Theorem 78.

Theorem 117. Let (M, ω) be a monotone symplectic manifold (with the same monotonicity constant as Q n , n = 2, 4) such that QH * (M ; C) is semi-simple. Assume that there exists a Lagrangian submanifold L of (M, ω) such that HF ((L, b); Λ) = 0 for some bounding cochain b. Then, there exists a non-trivial homogeneous quasimorphism µ :

which is both C 0 -continuous and Hofer Lipschitz continuous where Q n × M (n = 2, 4) denotes the monotone product.

where e j is a unit of Q j . As we argued in the proof of Theorem 78, as

Proposition 93) implies that L is ι(e j )-heavy for some j ∈ {1, 2, • • • , l}. Without loss of generality, we assume j = 1. Moreover, Corollary 112 implies that L is actually e 1 -superheavy.

Recall that in the proof of Theorem 78, we have seen that in Q n , n = 2, 4, there exist two disjoint Lagrangian submanifolds L 0 and L 1 which satisfy either one of the following:

1. L 0 is e + -superheavy and L 1 is e --superheavy.

2. L 0 is e --superheavy and L 1 is e + -superheavy.

Without loss of generality, we assume the former. By [EP09, Theorem 1.7], L 0 × L is e + ⊗ e 1 -superheavy and L 1 × L is e -⊗ e 1 -superheavy. Now, as QH * (Q n × M ; C) is also semi-simple, we consider its decomposition into fields and the decomposition of the identity element

for some l ∈ N. As e + ⊗ e 1 and e -⊗ e 1 are idempotents of QH * (Q n × M ; C), by Theorem 1.5 (3) in [START_REF] Entov | Rigid subsets of symplectic manifolds[END_REF], there exist j 0 , j 1 ∈ {1, 2, • • • , l } such that L 0 × L is e j0 -heavy and L 1 × L is e j1 -heavy. For ζ e j 0

, ζ e j 1 : Ham(Q n × M ) → R both being homogeneous quasimorphisms, heaviness and superheaviness are equivalent for e j0 and e j1 , thus L 0 × L is e j0 -superheavy and L 1 × L is e j1 -superheavy. As L 0 × L and L 1 × L are disjoint, L 1 × L is not e j0 -superheavy. This implies

Thus, it follows from Theorem 96 that

defines a non-trivial homogeneous quasimorphism

which is both C 0 -continuous and Hofer Lipschitz continuous.

Proof of Theorem 82

In this subsection, we precisely state the question of Polterovich-Wu which appeared in Section 4.3.2 and prove Theorem 82 as an application of Lemma 110.

According to a computation due to Wu [START_REF] Wu | On an exotic Lagrangian torus in CP 2[END_REF], QH * (CP 2 ; Λ) is semi-simple and splits into a direct sum of three fields:

90CHAPTER 4. HOFER LIPSCHITZ AND C 0 CONTINUOUS QUASIMORPHISMS We denote the corresponding split of the identity element 1 Λ ∈ QH * (CP 2 ; Λ) as follows:

1 Λ = e 1 + e 2 + e 3 where {e j } j=1,2,3 are

u is the generator of H 2 (CP 2 ; C) and

Note that u satisfies u 3 = T λ0 .

These idempotents give rise to three homogenous quasimorphisms (or symplectic quasi-states) {ζ ej } j=1,2,3 :

Remark 120. It will not be used in this paper but we point out that ζ ej descends to Ham(CP 2 ) as π 1 (Ham(CP 2 )) = Z 3 .

Polterovich posed the following question:

Is it possible to distinguish the symplectic quasi-states/morphisms for the three idempotents of QH * (CP 2 ; Λ)? Note that ζ j which appeared in the statement of this question in Section 4.3.2 is precisely ζ ej defined above. We now prove Theorem 82 which answers this question in the negative.

Proof of Theorem 82. We will show that

for all j = 1, 2, 3 where 1 Λ ∈ QH * (CP 2 ; Λ). By the triangle inequality, we have

for any k ∈ N. Thus,

for φ ∈ Ham(CP 2 ). By Lemma 110, as QH * (CP 2 ; C) is a field, we have

where 1 ∈ QH * (CP 2 ; C). Thus, we have

and as ζ ej , ζ 1 are both homogeneous quasimorphisms, it follows that

Thus we have proven

Remark 122. A similar argument is applicable to the case where M := S 2 × S 2 : As we have seen in Section 4.4.2, QH * (S 2 × S 2 ; C) splits into a direct sum of two fields.

On the other hand, Fukaya-Oh-Ohta-Ono have computed in the proof of [FOOO19, Theorem 23.4], QH * (S 2 × S 2 ; Λ) splits into a direct sum of four fields. Denote the two units of field factors of QH * (S 2 × S 2 ; C) by e ± which satisfy

Denote the four units of the field factors of QH * (S 2 × S 2 ; Λ) by e (±,±) which satisfy

By using ι(e + ) = e (+,+) + e (+,-) , ι(e -) = e (-,+) + e (-,-) , we obtain

Results on Lagrangian intersections

In this section, we discuss consequences of the proof of Theorem 78 for Lagrangian intersections.

In proving Theorem 78, detecting disjoint Lagrangian submanifolds whose Floer cohomology is non-trivial is a crucial step which we discussed in Section 4.5.1. As a by-product, we obtain certain results on Lagrangian intersections.

A closed Lagrangian submanifold L is called monotone if it satisfies

Proof. Assume that for any Hamiltonian H, we have Ext(HF τ * -1 (H); Z) = 0, ∀τ ∈ R. Then, Proposition 142 implies