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Chapter 1

Introduction

1.1 Abstract and organization of the thesis
The main theme of this dissertation is the metric properties of the group of Hamilto-
nian diffeomorphisms. The group of Hamiltonian diffeomorphisms is known to possess
two remarkable bi-invariant metrics discovered by Hofer and Viterbo which are re-
ferred to as the Hofer metric and the spectral metric, respectively. A third metric
on Ham(M,ω) which has been of interest in symplectic topology is the C0 metric.
Roughly speaking, my research explores the deep and mysterious relation between
these three metrics. It might appear somewhat strange at first glance to consider C0

metric in symplectic topology which is a realm of differential topology.
The dissertation is structured as follows: In Section 1.2, I give a motivation to

study C0-symplectic topology by reviewing its development. In Section 1.3, I sum-
marize the main results of this thesis. In Section 3, I will explain results concerning the
comparison between the spectral metric and the C0 metric. Materials in this section
are taken from [Kaw21]. In Section 4, I explain a construction of quasimorphisms that
have some new types of continuity properties which are related to a famous question
of Entov-Polterovich-Py. Materials in this section are mostly taken from [Kaw20]. In
Section 5.1, I explain some new properties of the spectral norm. Materials in this
section are based on a work in progress with Egor Shelukhin [KawSh].

Each section is designed to be readable more or less independently from the other
sections and therefore there are some overlaps between different sections.

1.2 A biased introduction to C0-symplectic topology
Since the birth of modern symplectic topology, the study of algebraic and topological
properties of the group of Hamiltonian diffeomorphisms of a symplectic manifold
(M,ω), denoted by Ham(M,ω), has been one of the cornerstones of the field. This
direction of research has been strongly influenced by the discovery of two remarkable
bi-invariant metrics on Ham(M,ω) in the seminal works of Hofer and Viterbo which
are referred to as the Hofer distance and the spectral1 distance, respectively. A third
metric on Ham(M,ω) which has been of interest in symplectic topology is the C0

distance. Roughly speaking, my research explores the deep and mysterious relation
1The spectral distance is sometimes referred to as the γ distance.
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12 CHAPTER 1. INTRODUCTION

between these three metrics. My results outlined in Section 1.3.1 provide direct
comparisons between the C0 distance and the spectral distance. I have also obtained
results on the existence of certain homogeneous quasimorphisms on Ham(M,ω); see
Section 1.3.3.

Recall that these three norms which induce the three distances mentioned above
are defined as follows: The C0-norm of a Hamiltonian diffeomorphism φ ∈ Ham(M,ω)
is defined by

||φ||C0 := max
x∈M

dM (x, φ(x))

where dM denotes the distance induced by any choice of a Riemannian metric; any
two such distances are equivalent. The Hofer norm is the least “energy” required to
produce a given Hamiltonian diffeomorphism φ ∈ Ham(M,ω):

||φ||Hof := inf{
∫ 1

0

( sup
x∈M

Ht(x)− inf
x∈M

Ht(x))dt : φ = φH}.

The definition of the spectral norm γ : Ham(M,ω)→ R>0 is more involved than the
previous two: it utilizes the sophisticated machinery of Hamiltonian Floer homology.
Since its introduction in [Vit92], the spectral norm has been used extensively and has
found various applications.

The relation between the Hofer norm and the spectral norm is explained by the
following well-known inequality which follows easily from the very definition of the
spectral norm:

γ(φ) 6 ||φ||Hof .

On the other hand, the relation between the C0-norm and the other two norms has
been very poorly understood even though the significance of role of the C0-topology
in symplectic topology was recognized at a very early stage of modern symplectic
topology. But, before going into the story, why do we are we interested in the C0-
topology in the first place? We answer this is the next section.

1.2.1 Why C0?
All the basic notions one encounters in symplectic geometry are smooth objects e.g.
a symplectic manifold, a Hamiltonian, a Lagrangian submanifold and so on. Thus, it
might sound strange to talk about C0-topology at first sight. However, actually the
mysterious relationship between symplectic phenomenon and the C0-topology had
been discovered at the very first stage of modern symplectic toplogy, even before the
advent of pseudo-holomorphic curve theory of Gromov.

Theorem 1. (Eliashberg-Gromov)
Let (M,ω) be any symplectic manifold. Let {φn}n∈N be a sequence of symplectic

diffeomorphisms i.e. (φn)∗ω = ω for all n ∈ N. Assume

φn
C0

−−→ φ ∈ Diff(M).

Then, φ is symplectic i.e. φ∗ω = ω.

Notice that being symplectic is a condition that involves differentials (pulling-
back a differential form!) but here, we do not have any control on the differential
as the convergence is given only in the C0-topology. This C0-rigidity phenomenon
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opened up a new sub-field: C0-symplectic topology. The main aim of the sub-field is
to determine the border between the world of symplectic topology and the world of
(general) topology. More precisely and realistically, C0-symplectic topologists study
whether or not symplectic phenomena persist under C0-limits. With the C0-rigidity
of Eliashberg–Gromov, one might naively think that there is a better chance to expect
a rigidity, in other words, many of the symplectic phenomena do persist under C0-
limits. However, it turned out that the story is not that simple. Over the past
decade, C0-symplectic topology has seen a spectacular progress and it was revealed
that C0-rigidity appears often but not any more often than C0-flexibility. In the next
two sections, I will explain some of the main features of the two aspects through my
personal selection of important discoveries.

1.2.2 C0-flexibility
The first instance of the C0-flexibility was found by Buhovsky–Opshtein along with
their invention of the “quantitative h-principle”. They started from the following
question.

Question 2. Let (M,ω) be a symplectic manifold. Let S be a symplectic (resp.
isotropic, coisotropic, Lagrangian) submanifold. If a symplectic homeomorphism φ ∈
Symp(M,ω) maps S to a smooth submanifold i.e. if φ(S) is smooth, then will φ(S)
be symplectic (resp. isotropic, coisotropic, Lagrangian)?

Theorem 3. ([BO16])
Let d > m + 2. In Cd. For any open neighborhood U of (D2)d−m × {0} × {0},

there exists a symplectic homeomorphism φ ∈ Symp(Cd) such that

• Supp(φ) ⊂ U .

• φ|(D2)d−m×{0}×{0} = 1
2 id(D2)d−m×{0}×{0}.

This clearly answers Question 2 in the negative. By applying the “quantitative
h-principle”, Buhovsky–Humilière–Seyfaddini proved that the analogue of the Arnold
conjecture (a typical example of a symplectic rigidity) no longer holds in the C0

setting which is another instance of the the C0-flexibility. Let us first recall the
Arnold conjecture before stating the theorem of Buhovsky–Humilière–Seyfaddini.

Conjecture 4. (The Arnold conjecture)
Let (M2n, ω) be a closed symplectic manifold.

1. For a non-degenerate φ ∈ Ham(M,ω),

#Fix(φ) >
∑
j

dimCHj(M ;C).

2. For φ ∈ Ham(M,ω),
#Fix(φ) > cl(M)

where

cl(M) := # max{k+ 1 : ∃a1, a2, · · · , ak ∈ H∗<2n(M) s.t. a1 ∩ a2 ∩ · · · ∩ ak 6= 0}

and ∩ denotes the intersection product.
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Since the advent of Floer homology, there has been a huge progress in the two
versions of the Arnold conjecture: (1) is now completely settled [FO99], [LT98] and
(2) has been confirmed for symplectically aspherical manifolds [Fl89], CPn [For85]
[ForW85] and negative monotone symplectic manifolds with NM > n [LO94]. Al-
though the second verison of the conjecture has not yet been solved in full generality,
one can see that Hamiltonian diffeomorphisms tend to possess many fixed points.
What Buhovsky–Humilière–Seyfaddini observed is that, all these fixed points can be
smashed into a single fixed point which contrasts the case of Hamiltonian diffeomor-
phisms.

Theorem 5. ([BHS18])
On any symplectic manifold (M,ω) of dimension > 4, there exists a Hamiltonian

homeomorphism φ which possess only one fixed point: #Fix(φ) = 1.

Remark 6. On the other hand, the case that is not covered by this Theorem, namely
the 2 dimensional case was studied by Matsumoto [Mat00] and the turn out is that the
Arnold conjecture for Hamiltonian homeomorphisms do hold! In general, in dimension
2, symplectic features appear less often than in the higher dimensional case e.g. the
Gromov embedding theorem becomes a non-symplectic statement in dimension 2.

1.2.3 C0-rigidity
There are C0-rigidity results other than the Eliashberg–Gromov theorem. Leclercq–
Humilière–Seyfaddini answered Question 2 for cosiotropic submanifolds and proved
the C0-rigidity.

Theorem 7. ([HLS15])
Let (M,ω) be a symplectic manifold. Let C be a coisotropic submanifold. If a

symplectic homeomorphism φ ∈ Symp(M,ω) maps C to a smooth submanifold i.e. if
φ(C) is smooth, then φ(S) is coisotropic.

In the previous section, we have seen that the Arnold conjecture no longer holds
for Hamiltonian homeomorphisms but using the C0-continuity of the spectral norm,
Buhovsky–Humilière–Seyfaddini [BHS21].

Theorem 8. ([BHS21])
Let (M,ω) be a symplectically aspherical manifold. If the number of distinct spec-

tral invariants of a Hamiltonian homeomorphism φ is less than the cup-length cl(M),
then the set of fixed points Fix(φ) is homologically non-trivial hence is an infinite set.

Note that this statement is not rigorous as one cannot define spectral invariants
for a Hamiltonian homeomorphism φ. Yet, one can count the number of distinct
“spectral invariants” of a Hamiltonian homeomorphism on a symplectically aspherical
manifold by using the theory of barcodes, a notion coming from TDA (topological
analysis). Ever since Polterovich–Shelukhin [PS16] brought barcodes into symplec-
tic topology, the application of barcode theory has been a hot topic. According to
Polterovich–Shelukhin, given a Hamiltonian diffeomorphism φ, by looking at its fil-
tered Floer homology, one can construct a barcode B(φ). One nice feature of barcodes
is the notion of distance– the so-called bottle-neck distance dbot measures how far two
barcodes are. This allows us to talk about how far two filtered Floer homologies are.
In fact, this distance was estimated Kislev-Shelukhin [KiSh18] as follows:

dbot(B(φ1), B(φ2)) 6
1

2
γ(φ−1

1 φ2).
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This implies that the C0-continuity of the spectral norm γ will imply the C0-
continuity of barcodes which will even allow us to define barcodes for Hamiltonian
homeomorphisms as limits of barcodes of Hamiltonian diffeomorphisms. Now, we can
count the number of half-infinite intervals in the barcode of a Hamiltonian home-
omorphism with distance starting point and interpret the count as the number of
distinct spectral invariants for a Hamiltonian homeomorphism. The above theorem
of Buhovsky–Humilière–Seyfaddini should be understood in this way.

1.2.4 Practical application: 2D conservative dynamics
As mentioned earlier, 2 dimensional spaces are not the ideal place to capture symplec-
tic features: they appear less often than in the higher dimensional spaces. Neverthe-
less, from a practical point of view, C0-symplectic topology provides a powerful tool
to attack questions in 2 dimensional conservative dynamics namely questions con-
cerning area-preserving diffeomorphisms or homeomorphisms. This is because for a
2-sphere S2 or a 2-disk D2, Hamiltonian homeomorphisms are precisely the elements
of the identity component of the group of area-preserving homeomorphisms.

The very first success in this direction was a result of Seyfaddini which answers
the so-called “displaced disks problem”– a question in 2D dynamics – as a direct
consequence of a result in C0-symplectic topology.

The "displaced disks problem" posed by Béguin–Crovisier–Le Roux asks whether
or not a C0-small area-preserving homoemorphism can displace a disk of large area.

Question 9. (Béguin-Crovisier-Le Roux)
Let

Gr := {φ ∈ Homeo(S2, σarea) : φ(f(Br)) ∩ f(Br) = ∅}

for any r > 0 where f : Br → (M,ω) is a symplectic embedding. Does the C0-closure
of Gr contain the identity element for some r > 0?

It turned out that this is a direct consequence of the C0-continuity of the spectral
norm. More recently, Cristofaro-Gradiner–Humilière–Seyfaddini [CGHS20]. [CGHS21]
have settled the longstanding “simplicity conjecture” in a similar spirit – their crucial
step was to prove a C0-continuity of a relevant spectral invariant (more precisely,
spectral invariants of Hutchings’ periodic Floer homology).

Theorem 10. (Simplicity conjecture [CGHS20], [CGHS21])
The group of area-preserving homeomorphisms of a 2-disk/sphere is not simple.

1.2.5 Sum-up
The study of C0-symplectic topology had a significant progress during the past decade
and it seems fair to say that the need for studying the C0-topology in symplectic
topology is becoming more and more prominent. I present three pieces of evidence.

1. Recent developments in astrophysics claim that a notion of C0-Hamiltonian is
needed to study the N -body problem [Her19].

2. The C0-continuity of a certain Floer theoritic invariant played a crucial role in
the recent resolution of the historically famous “simplicity conjecture” [CGHS20]
which was a long standing conjecture that was studied by many symplectic
geometers and dynamicists.
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3. There were important discoveries in symplectic dynamics about the C0 behavior
of pseudo-rotations which are important objects in dynamical systems [Bra15a],
[Bra15b], [GG18].

1.3 Overview of the results in this thesis

1.3.1 Spectral metric and C0–metric

As mentioned in the introduction, not much was known about the relation between
the C0-metric and the Hofer or the spectral metrics apart from the C0-continuity
of the spectral metric for R2n [Vit92]. After this discovery, the question of whether
or not the C0-continuity of the spectral metric holds for every symplectic manifold
caught attention within the symplectic community. However, there was very little
progress on this question apart from the case of closed surfaces by Seyfaddini [Sey13a]
which was based on an argument specific to 2-dimensional manifolds. The case of
higher dimensions saw a significant progress in [BHS18] where Buhovsky–Humilière–
Seyfaddini proved the C0–continuity of the spectral norm for symplectically aspherical
manifolds. Later, Shelukhin confirmed the case of CPn in [Sh18]. In [Kaw21], by
following the approach of [BHS18] and adding an analysis of the pseudo-holomorphic
spheres which does not appear in the symplectically aspherical setting, I obtained
the following results (where my method for CPn is different from the approach of
Shelukhin).

Theorem 11. ([Kaw21])
The spectral norm γ : Ham(M,ω)→ R is C0–continuous when (M,ω) is either a

negative monotone symplectic manifold or (CPn, ωFS).

Although I could not achieve the C0–continuity for other classes of symplectic
manifolds, I have obtained the following partial results. Note that C0–continuity of
the spectral norm γ is equivalent to γ being small around the C0-neighborhood of
id ∈ Ham(M,ω).

Theorem 12. ([Kaw21])

1. Let (M,ω) be a monotone symplectic manifold. For any ε > 0, there exists
δ > 0 such that if φ ∈ Ham(M,ω) satisfies dC0(id, φ) < δ, then

γ(φ) 6
dim(M)

NM
+ ε

where NM denotes the minimal Chern number i.e. 〈c1(TM), π2(M)〉 = NMZ, NM >
0.

2. Let (M,ω) be a rational symplectic manifold i.e. 〈ω, π2(M)〉 = λ0Z for some
λ0 > 0. For any ε > 0, there exists δ > 0 such that if φ ∈ Ham(M,ω) satisfies
dC0(id, φ) < δ, then

|γ(φ)− l · λ0| < ε

for some l ∈ Z.
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The first result provides a uniform bound of the spectral norm for monotone
symplectic manifolds on a C0-neighborhood of id ∈ Ham(M,ω) which unexpectedly
played a crucial role in the proof of Theorem 78 which will appear later. The second
result gives candidates of values of the spectral norm of Hamiltonian diffeomorphisms
on a C0-neighborhood of id ∈ Ham(M,ω) for rational symplectic manifolds. The
cases considered above i.e. (negative) monotone and rational form important classes
of symplectic manifolds.

1.3.2 Persistent homology

Persistent homology (or barcode) is a tool that is broadly used and studied in TDA
(topological data analysis). Recently the language of barcodes was brought into sym-
plectic topology by Polterovich–Shelukhin [PS16] (see also [UZ16]) which allowed one
to define barcodes from (filtered) Floer homology groups under the assumption that
the ambient symplectic manifold is aspherical i.e. ω|π2(M) = c1|π2(M) = 0. One
remarkable feature about barcodes is the notion of distance called the bottleneck dis-
tance denoted by dbot. With the bottleneck distance, one can measure how “far” two
Floer homology groups are. Barcodes contain a lot of important information of Hamil-
tonian diffeomorphisms; for example, spectral invariants are the half-infinite intervals
in a barcode. It also reads the boundary depth à la Usher [Ush11], [Ush13] which
corresponds to the longest finite interval in a barcode. In addition to all these, bar-
codes contain also “short” finite intervals. Recently, Shelukhin has successfully used
the barcode theory to answer several important open problems; see [Sh18], [Sh19a] for
his results on the Viterbo conjecture on spectral capacity and [Sh19b] for his result
on the Hofer–Zehnder conjecture.

In fact, it turns out that, the C0-continuity of the spectral norm allows us to
define barcodes for Hamiltonian homeomorphisms. Let’s briefly see the mechanism.
Denote the barcode corresponding to a Hamiltonian diffeomorphism φ ∈ Ham(M,ω)
by B(φ). The bottleneck distance was estimated by using the spectral norm as follows
[KiSh18]

φ1, φ2 ∈ Ham(M,ω), dbot(B(φ1), B(φ2)) 6
1

2
γ(φ−1

1 φ2).

This inequality and the C0-continuity of the spectral norm imply the C0-continuity
of barcodes i.e. (filtered) Floer homology only changes a little by a C0-perturbation
of a Hamiltonian diffeomorphism. Now, for a Hamiltonian homeomorphism φ ∈
Ham(M,ω), one can define its barcode B(φ) by

B(φ) := lim
k→+∞

B(φk)

for any sequence of Hamiltonian diffeomorphisms {φk} such that φk
C0

−−→ φ. The pre-
cise meaning of the limit is given in Section 3.3.2. Barcode B(φ) could be interpreted
as the Floer homology of a Hamiltonian homeomorphism φ.

Barcodes for Hamiltonian homeomorphisms give us a hope to overcome the fun-
damental issue in C0-sympelctic topology, namely the lack of tools. For example,
for Hamiltonian diffeomorphisms, Floer theory provides a very rich tool to study dy-
namics of them. However, Floer homology cannot be defined for Hamiltonian home-
omorphisms and therefore it becomes more difficult to study Hamiltonian homeo-
morphisms. By interpreting barcodes for Hamiltonian homeomorphisms as the Floer
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homology for Hamiltonian homeomorphisms, Buhovsky–Humilière–Seyfaddini sug-
gested a way to reformulate the Arnold conjecture for Hamiltonian homeomorphisms
in [BHS21]. They proved that, even though it was shown in their previous work that a
Hamiltonian homeomorphism might possess only one single fixed point (see Theorem
5), the number of distinct half-infinite intervals should be more than the cup-length of
the ambient manifold provided that a Hamiltonian homeomorphism possess finitely
many fixed points and the ambient symplectic manifold is aspherical.

In Section 3.2.5 and Section 3.2.6, I extend the work of Buhovsky–Humilière–
Seyfaddini to some non-aspherical symplectic manifolds and discuss the C0-Arnold
conjecture.

1.3.3 Quasimorphisms

A celebrated result of Banyaga [Ban78] which states that Ham(M,ω) is a simple group
when (M,ω) is a closed symplectic manifold implies that there exists no non-trivial
homomorphism on Ham(M,ω) (as if it did, then the kernel of the homomorphism
will be a non-trivial normal subgroup). Nevertheless, Entov–Polterovich proved in
the seminal paper [EP03] that there exist “almost homomorphisms” on Ham(M,ω)
when (M,ω) satisfies a certain condition. More formally, “almost homomorphisms”
are called homogeneous quasimorphisms and are defined as follows.

Definition 13. A homogeneous quasimorphism on a group G is a map

µ : G→ R

which satisfies

1. ∃C > 0 s.t. ∀f, g ∈ G,

|µ(f · g)− µ(f)− µ(g)| 6 C.

2. ∀k ∈ Z,∀f ∈ G,
µ(fk) = k · µ(f).

Quasimorphisms are used to study algebraic and topological (if G is a topologi-
cal group) properties of G. After the discovery of Entov–Polterovich, an extensive
research on the construction of other quasimorphisms as well as their applications to
the study of geometric, algebraic and topological properties of Ham(M,ω) has been
conducted by not only symplectic geometers but also dynamicists.

Entov–Polterovich’s homogeneous quasimorphisms are constructed via spectral
invariants. It follows easily from a basic property of spectral invariants that Entov–
Polterovich’s homogeneous quasimorphisms are continuous with respect to the Hofer
metric. However, a remarkable property of Entov–Polterovich’s homogeneous quasi-
morphisms called the Calabi property obstructs the C0–continuity.

The following question was then posed by Entov–Polterovich–Py in [EPP12] which
became an important open problem in this direction. This question appears under
the name of “Problem 23 Quasimorphism question” in the famous Chapter “Open
problems” in the monograph of McDuff-Salamon [MS98].

Question 14. (“Quasimorphism question” [EPP12],[MS98])
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1. Does there exist a nonzero homogeneous quasimorphism

µ : Ham(S2)→ R

that is continuous with respect to the C0-topology on Ham(S2)?

2. If yes, can it be made Lipschitz with respect to the Hofer metric?

Instead of this original question, I considered the following variant.

Question 15. ([Kaw20])

1. Does there exist a closed symplectic manifold (M,ω) which admits a non-trivial
homogeneous quasimorphism

µ : Ham(M,ω)→ R

that is continuous with respect to the C0-topology?

2. If yes, can it be made Lipschitz with respect to the Hofer metric?

In the non-compact setting, there are examples (e.g. closed disks D2n(1) ⊂ R2n)
due to Entov-Polterovich-Py that answer both of the questions in the affirmative.
In the closed setting, there is an example due to Gambaudo-Ghys [GG97], [GG04]
where they construct a homogeneous quasimorphism µ : Ham(Σ) → R (Σ denotes
a closed surface of positive genus), that is C0-continuous but not Hofer continuous.
However, no example of a closed symplectic manifold (M,ω) that answers two ques-
tions in the affirmative was known. In [Kaw20], I constructed following homogeneous
quasimorphisms which give the first examples of such closed symplectic manifolds.

Theorem 16. ([Kaw20])
Let Qn denote the complex n-dimensional quadric hypersurface:

Qn := {(z0 : z1 : · · · : zn) ∈ CPn+1 : z2
0 + z2

1 + · · ·+ z2
n = 0}.

There exist non-trivial homogeneous quasimorphisms

µ : Ham(Qn)→ R

for n = 2, 4 that satisfy the following three properties:

1. µ is Lipschitz continuous with respect to the Hofer metric.

2. µ is C0-continuous i.e.

µ : (Ham(Qn), dC0)→ R

is continuous.

3. We have
|µ| = γ

where γ denotes the asymptotic spectral norm:

γ : Ham(M,ω)→ R

γ(φ) := lim
k→+∞

γ(φk)

k
.
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An unexpected consequence of properties 2 and 3 in Theorem 16 is that the asymp-
totic spectral norm γ is C0-continuous for the 2- and 4- quadric hypersurfaces even
though the C0-continuity of the spectral norm γ for these manifolds is not confirmed
at the time of writing. In fact, our argument can be generalized as follows.

Theorem 17. Let (M,ω) be a monotone symplectic manifold such that QH∗(M ;C)
is semi-simple. Then,

γ : Ham(M,ω)→ R

is C0-continuous.

Remark 18. Under the condition of Theorem 17, if γ 6= 0, then it implies the exis-
tence of a non-trivial C0 and Hofer Lipschitz continuous homogeneous quasimorphism
on Ham(M,ω). However, we can show γ 6= 0 only for the 2- and 4- quadric hyper-
surfaces at the time of writing.

As a direct consequence of Theorem 16, we can answer the following question posed
by Le Roux on the topology of the group of Hamiltonian diffeomorphisms for Q2 and
Q4 in the affirmative where, according to [EPP12], Le Roux’s question “for closed
simply connected manifolds (and already for the case of the 2-sphere) the question is
wide open”.

Question 19. (Le Roux [LeR10])
Let (M,ω) be any closed symplectic manifold. For any R > 0, does

Ham>R := {φ ∈ Ham(M,ω) : dHof(id, φ) > R}

have a non-empty C0-interior?

The main idea in the proof of Theorem 16 was to use two different quantum
cohomology rings: The first quantum cohomology that I considered is

QH∗(M ;C) := H∗(M ;C)⊗C C[t−1, t|]

where C[t−1, t|] is the field of Laurent series

C[t−1, t|] := {
∑
k>k0

akt
k : k0 ∈ Z, ak ∈ C}

and t represents a sphere that satisfies ω(t) = λ0, c1(t) = NM (Recall that 〈ω, π2(M)〉 =
λ0Z and 〈c1, π2(M)〉 = NMZ). The second quantum cohomology that I used is

QH∗(M ; Λ) := H∗(M ;C)⊗C Λ

where Λ is the universal Novikov field

Λ := {
∞∑
k=1

bkT
λk : bk ∈ C, λk ∈ R, lim

k→+∞
λk = +∞}.

These two quantum cohomology rings have different advantages: The formerQH∗(M ;C)
carries a Z-grading which makes it convenient to use spectral invariants as we can
study the actions and the indices of theirs. On the other hand, the latter QH∗(M ; Λ)
is commonly used in the mirror symmetry community and many techniques involving
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Lagrangian Floer cohomology have been developed in this setting. In particular, I
use some non-vanishing results of Lagrangian Floer cohomology which comes from
superpotential techniques developed in the latter setting. A more detailed explana-
tion about the difference of QH∗(M ;C) and QH∗(M ; Λ) is explained in Section 4.5.3
with some instructive examples.

Realizing the different advantages of these two quantum cohomology rings led me
to answer a question of Polterovich and Wu posed in [Wu15]:

Question 20. (Question of Polterovich–Wu; Remark 5.2 in [Wu15])
Is it possible to distinguish the three Entov-Polterovich type quasimorphisms on

Ham(CP 2)?

We answer this in the negative.

Theorem 21. ([Kaw20])
The three Entov-Polterovich type quasimorphisms on Ham(CP 2) all coincide.

Remark 22. For the precise statement of the above result, see Section 4.5.6 and
Theorem 82. Other examples where we can identify homogeneous quasimorphisms are
also discussed in Section 4.5.6.

1.3.4 Poincaré duality and spectral invariants
In Section 1.3.3, I used two quantum cohomology rings that have (the same ground
ring C but) different coefficient fields, namely the field of Laurent series and the
universal Novikov field. This led me to the idea of comparing Floer homology groups
defined with different ground rings. In collaboration with Egor Shelukhin, I have been
studying the difference between γZ and γK where γR denotes the spectral norm of the
Floer homology of ground ring R and K is a field. We have observed the following
unexpected phenomenon.

Theorem 23. ([KawSh])
For n = 2, 3 we have

sup
φ∈Ham(CPn,ωFS)

γZ(φ) = +∞

while
sup

φ∈Ham(CPn,ωFS)

γK(φ) 6
n

n+ 1

for any field K.

We also answer the generalized question of Entov–Polterovich–Py (see Question
15) for CP 2,CP 3.

Theorem 24. ([KawSh])
There exist non-trivial homogeneous quasimorphisms

µ : Ham(CPn)→ R

for n = 2, 3 that satisfy the following two properties:

1. µ is Lipschitz continuous with respect to the Hofer metric.
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2. µ is C0-continuous i.e.

µ : (Ham(CPn), dC0)→ R

is continuous.

The phenomenon observed in Theorem 23 brought us to the following two direc-
tions of research.

1.3.5 Algebraic viewpoint
The finiteness of spectral norm for K-coefficients

sup
φ∈Ham(CPn,ωFS)

γK(φ) 6
n

n+ 1

is a consequence of the so-called “Poincaré duality formula for spectral invariants”.
Thus,

sup
φ∈Ham(CPn,ωFS)

γZ(φ) = +∞

implies that the well-known “Poincaré duality formula for spectral invariants” no
longer holds for spectral invariants with Z-coefficients. By considering the univer-
sal coefficient theorem for filtered Floer homology, Shelukhin and I have found that
for some Hamiltonian H, the filtered Z-coefficient Floer homology HF τ (H;Z) pos-
sesses a torsion element at some filtration level τ ∈ R which disappears when the
filtration level τ is sufficiently large.

Theorem 25. ([KawSh])
On CPn, n = 2, 3, there exists a Hamiltonian H such that for some filtration level

τ ∈ R, we have
Tor(HF τ (H;Z)) 6= 0.

This is a phenomenon that was not previously noticed and I plan to study this
torsion part of the filtered Floer homology by using the language of barcodes that I
explained in Section 3.3.2.

1.3.6 Dynamical viewpoint
We consider the following question.

Question 26. What kind of dynamical features does a Hamiltonian diffeomorphism
φ ∈ Ham(CPn, ωFS) satisfying

sup
k∈Z

γZ(φk) < +∞

possess?

We have obtained the following partial result in this direction.

Theorem 27. ([KawSh])
If φ ∈ Ham(CPn, ωFS) is a pseudo-rotation, we have

γZ(φ) 6
n

n+ 1
.
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Recall that pseudo-rotations are Hamiltonian diffeomorphisms that possess the
“minimal” number of periodic points. Pseudo-rotations are very important objects
in dynamical systems and their relation to symplectic topology is becoming an ac-
tive topic of research after the seminal works of Bramham [Bra15a], [Bra15b]. We
conjecture that the result of Theorem 137 holds in a broader generality.

Conjecture 28. Let (M,ω) be a monotone symplectic manifold admitting a pseudo-
rotation. Any pseudo-rotation φ ∈ Ham(M,ω) satisfies

sup
k∈Z

γZ(φk) < +∞.
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Chapter 2

Preliminaries

2.1 Setting

In this section, we briefly review the notions and basic propositions needed later in
the proof. For further details, we refer to [MS04].

Let (M,ω) be a symplectic manifold. A Hamiltonian H on M is a smooth time
dependent function H : R/Z ×M → R. We define its Hamiltonian vector field XHt

by −dHt = ω(XHt , ·). The Hamiltonian flow of H, denoted by φtH , is by definition
the flow of XH . A Hamiltonian diffeomorphism is a diffeomorphism which arises as
the time-one map of a Hamiltonian flow. The set of all Hamiltonian diffeomorphisms
is denoted by Ham(M,ω).

Denote the set of smooth contractible loops in M by LM and consider its uni-
versal cover. Two elements in the universal cover, say [z1, w1] and [z2, w2], are called
equivalent if their boundary sum w1#w2 i.e. the sphere obtained by gluing w1 and
w2 along their common boundary with the orientation on w2 reversed, satisfies

ω(w1#w2) = 0, c1(w1#w2) = 0.

We denote by L̃0M the space of equivalence classes. For a Hamiltonian H, define the
action functional AH : L̃M → R by

AH([z, w]) :=

∫ 1

0

H(t, z(t))dt−
∫
D2

w∗ω

where w : D2 → M is a capping of z : R/Z → M . Note that in general, the action
functional depends on the capping and not only on the loop. Critical points of this
functional are precisely the capped 1-periodic Hamiltonian orbits of H which will be
denoted by P̃(H). The set of critical values of AH is called the action spectrum and
is denoted by Spec(H):

Spec(H) := {AH(z̃) : z̃ ∈ P̃(H)}.

We briefly explain some notions of indices used later to construct Floer homology.
The Maslov index

µ : π1(Sp(2n))→ Z

25
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maps a loop of symplectic matrices to an integer. For a capped periodic orbit of a
loop of Hamiltonian diffeomorphims ψ ∈ π1(Ham(M,ω)) denoted by [ψt(x), w], we
define its Maslov index µ([ψt(x), w]) via the trivialization of w∗TM and the loop
of symplectic matrices dψt(x) : TxM → Tψt(x)M. The definition of Maslov indices
cannot be directly applied to periodic orbits of a Hamiltonian H since given a periodic
orbit [φtH(x), w], dφtH(x) : TxM → TφtH(x)M might not define a loop. To overcome this
difficulty, Conley-Zehnder modified the definition of the Maslov index and introduced
the Conley-Zehnder index

µCZ : {A : [0, 1]→ Sp(2n)|det(A(1)− id) 6= 0} → Z

which maps paths of symplectic matrices to integers. Thus, as in the case of Maslov
indices, we define the Conley-Zehnder index of a non-degenerate periodic orbit of a
HamiltonianH [φtH(x), w] (i.e. dφH(x) : TxM → TxM is non-degenerate), denoted by
µCZ([φtH(x), w]), via the trivialization of w∗TM and the path of symplectic matrices
dφtH(x) : TxM → TφtH(x)M .

Let (M,ω) be a closed monotone symplectic manifold i.e.

ω|π2(M) = κ · c1|π2(M)

for some monotonicity constant κ > 0 where c1 = c1(TM) denotes the first Chern
class. In this paper, we only consider monotone symplectic manifolds unless men-
tioned otherwise. The positive generators of 〈ω, π2(M)〉 and 〈c1, π2(M)〉 ⊂ Z are
respectively called the rationality constant and the minimal Chern number and will
be respectively denoted by λ0 and NM .

A Hamiltonian H on M is a smooth time dependent function H : R/Z×M → R.
A Hamiltonian H is called mean-normalized if the following holds:

∀t ∈ R/Z,
∫
M

Ht(x)ωn = 0.

We define its Hamiltonian vector field XHt by

−dHt = ω(XHt , · ).

The Hamiltonian flow of H, denoted by φtH , is by definition the flow of XH . A
Hamiltonian diffeomorphism of H is a diffeomorphism which arises as the time-one
map of a Hamiltonian flow and will be denoted by φH . It is well-known that the set
of Hamiltonian diffeomorphisms forms a group and will be denoted by Ham(M,ω).
We denote its universal cover by H̃am(M,ω).

Denote the set of smooth contractible loops inM by L0M and consider its universal
cover. Two elements in the universal cover, say [z1, w1] and [z2, w2], are equivalent if
z1 = z2 and their boundary sum w1#w2 i.e. the sphere obtained by gluing w1 and
w2 along their common boundary with the orientation on w2 reversed, satisfies

ω(w1#w2) = 0, c1(w1#w2) = 0.

We denote by L̃0M the space of equivalence classes.
For a Hamiltonian H, define the action functional AH : L̃0M → R by

AH([z, w]) :=

∫ 1

0

H(t, z(t))dt−
∫
D2

w∗ω
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where w : D2 → M is a capping of z : R/Z → M . Critical points of this functional
are precisely the capped 1-periodic Hamiltonian orbits of H which will be denoted by
P̃(H). The set of critical values of AH is called the action spectrum and is denoted
by Spec(H):

Spec(H) := {AH(z̃) : z̃ ∈ P̃(H)}.

2.2 Hofer and C0 topology on Ham(M,ω)

Studying the topology of the group of Hamiltonian diffeomorphisms Ham(M,ω) is
an important topic in symplectic topology. In this section we recall two topologies of
Ham(M,ω).

Hofer metric (or distance) is defined by

dHof (φ, ψ) := inf{
∫ 1

0

(sup
x
Ht(x)− inf

x
Ht(x))dt : φH = ψ−1 ◦ φ}

for φ, ψ ∈ Ham(M,ω). The Hofer-topology is the topology induced by the Hofer
metric.

The C0-distance of Hamiltonian diffeomorphisms φ, ψ ∈ Ham(M,ω) is defined by

dC0(φ, ψ) := max
x∈M

d(φ(x), ψ(x))

where d denotes the distance on M induced by the fixed Riemannian metric on M .
The C0-topology is the topology induced by the C0-distance. Note that the C0-
topology is independent of the choice of the Riemannian metric.

2.3 Hamiltonian Floer homology
We work with the ground field C in this paper. We say that a Hamiltonian H is non-
degenerate if the diagonal set ∆ := {(x, x) ∈M ×M} and ΓφH := {(x, φH(x)) ∈M ×
M} intersects transversally. We define the Floer chain complex of a non-degenerate
Hamiltonian H, denoted by CF∗(H) as follows:

CF∗(H) := {
∑

z̃∈P̃(H)

az̃ · z̃ : ∀τ ∈ R, #{z̃ : az̃ 6= 0,AH(z̃) 6 τ} < +∞}.

Floer chain complex CF∗(H) is Z-graded by the so-called Conley-Zehnder index µCZ .
The differential map counts certain solutions of a perturbed Cauchy-Riemann equa-
tion for a chosen ω-compatible almost complex structure J on TM , which can be
viewed as isolated negative gradient flow lines of AH . This defines a chain complex
(CF∗(H), ∂) called the Floer chain complex whose homology is called the Floer ho-
mology of (H,J) and is denoted by HF∗(H,J). Often it is abbreviated to HF∗(H) as
Floer homology does not depend on the choice of an almost complex structure. Note
that our convention of the Conley-Zehnder index is as follows:

Let f denote a C2-small Morse function. For every critical point x of f , we require
that

µCZ([x,wx]) = i(x)

where i denotes the Morse index and wx is the trivial capping.
Recapping a capped orbit z̃ = [z, w] by gluing A ∈ π2(M) changes the action and

the Conley-Zehnder index as follows:
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• AH([z, w#A]) = AH([z, w])− ω(A).

• µCZ([z, w#A]) = µCZ([z, w])− 2c1(A).

We extend the action functional AH as follows:

AH : CF∗(H)→ R

AH(
∑

z̃∈P̃(H)

az̃ · z̃) := max
az̃ 6=0

AH(z̃).

We then define the R-filtered Floer chain complex of H by the filtration of AH :

CF τ∗ (H) := {z ∈ CF∗(H) : AH(z) < τ} = {
∑

z̃∈P̃(H),AH(z̃)<τ

az̃ · z̃ ∈ CF∗(H)}.

As the Floer differential map decreases the action, (CF τ∗ (H), ∂) defines a chain com-
plex whose homology is called the filtered Floer homology of H and is denoted by
HF τ∗ (H).

2.4 Quantum (co)homology and semi-simplicity
Consider a monotone symplectic manifold (M,ω). Let the following denote the field
of Laurent series of a formal variable s:

C[|s−1, s] := {
∑
k6k0

aks
k : k0 ∈ Z, ak ∈ C}.

By identifying the variable s with the generator of Γ := π2(M)/ ∼ where the
equivalence relation is defined by A,B ∈ π2(M),

A ∼ B ⇐⇒ ω(A) = ω(B)

satisfying
ω(s) = λ0, c1(s) = NM ,

one can define the quantum homology ring QH∗(M ;C) as

QH∗(M ;C) := H∗(M ;C)⊗C C[|s−1, s].

Quantum homology ring has the following valuation:

ν : QH∗(M ;C)→ R

ν(
∑
k6k0

aks
k) := max{k · ω(s) = k · λ0 : ak 6= 0, k 6 k0}.

Similarly, for a formal variable t, one can define the quantum cohomology ring
QH∗(M ;C) as

QH∗(M ;C) := H∗(M ;C)⊗C C[t−1, t|]

where
C[t−1, t|] := {

∑
k>k0

bkt
k : k0 ∈ Z, bk ∈ C}.
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Quantum homology ring and quantum cohomology ring has the following isomorphism
called the Poincaré duality:

PD : QH∗(M ;C)
∼−→ QH2n−∗(M ;C)

a :=
∑
k>k0

Akt
k 7→ PD(a) :=

∑
k>k0

A#
k s
−k

where # denotes the usual Poincaré duality between singular homology and singular
cohomology. Note that t satisfies

ω(t) = λ0, c1(t) = NM .

Quantum cohomology ring has the following valuation:

ν : QH∗(M ;C)→ R

ν(
∑
k>k0

akt
k) := min{k · ω(t) = kλ0 : ak 6= 0, k > k0}.

The ring structure of QH∗(M ;C) (and of QH∗(M ;C)) is given by the quantum
product which is denoted by ∗. It is defined by a certain count of pseudo-homolorphic
spheres. More precisely, in the case of QH∗(M ;C),

∀a, b, c ∈ H∗(M), (a ∗ b) ◦ c :=
∑
k∈Z

GW3,sk(a, b, c)⊗ sk

where ◦ denotes the usual intersection index in homology and GW3,sk(a, b, c) denotes
the 3-pointed Gromov-Witten invariant for a, b, c ∈ H∗(M) in the class A ∈ π2(M)
where [A] = sk ∈ Γ i.e. the count of pseudo-holomorphic spheres in the homotopy
class A passing through cycles representing a, b, c ∈ H∗(M). See [MS98] for details.

It is known that Floer homology defined in Section 2.3 is canonically isomorphic
to the quantum homology ring via the PSS-map:

PSSH : QH∗(M ;C)
∼−→ HF∗(H).

Note that the PSS-map preserves the ring structure.

2.5 Hamiltonian Floer theory
We fix a ground field K of zero characteristic (see Remark 32). We say that a Hamil-
tonian H is non-degenerate if the diagonal set ∆ := {(x, x) ∈ M ×M} intersects
transversally the graph of φ, Γφ := {(x, φ(x)) ∈ M ×M)}. For a non-degenerate H,
we define the Floer chain complex CF∗(H) as follows:

CF∗(H) := {
∑

z̃∈P̃(H)

az̃ · z̃ : az̃ ∈ R, (∀τ ∈ R, #{z̃ : az̃ 6= 0,AH(z̃) 6 τ} < +∞)}.

The Floer chain complex has a Z-grading by the Conley-Zehnder index µCZ . The
boundary map counts certain solutions of a perturbed Cauchy-Riemann equation for
a chosen ω-compatible almost complex structure J on TM , which can be viewed as
isolated negative gradient flow lines of AH . This gives us a chain complex (CF∗(H), ∂)
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called the Floer chain complex. Its homology is called the Floer homology of (H,J)
and is denoted by HF∗(H,J). Often it is abbreviated to HF∗(H) as Floer homology
does not depend on the choice of an almost complex structure.

Recapping of a capped orbit by A ∈ π2(M) changes the action and the Conley-
Zehnder index as follows:

• AH([z, w#A]) = AH([z, w])− ω(A).

• µCZ([z, w#A]) = µCZ([z, w])− 2c1(A).

We define the filtered Floer complex of H by

CF τ∗ (H) := {
∑

azz ∈ CF∗(H) : AH(z) < τ}.

Since the Floer boundary map decreases the action, (CF τ∗ (H), ∂) forms a chain com-
plex. The filtered Floer homology of H which is denoted by HF τ∗ (H) is the homology
defined by the chain complex (CF τ∗ (H), ∂).

It is useful to clarify our convention of the Conley-Zehnder index since conventions
change according to literature. We fix our convention by requiring that for a C2-small
Morse function f : M → R, each critical point x of f satisfy

µCZ([x,wx]) = i(x)

where i denotes the Morse index and wx is the trivial capping.

2.6 Quantum homology and Seidel elements
We sketch some basic definitions and properties concerning the quantum homology.
Once again, we fix a ground field K. For further details of the concepts sketched in
this section, we refer to [MS04].

Let (M,ω) be a closed symplectic manifold. Define

Γ := π2(M)/(Ker(ω) ∩Ker(c1)).

The Novikov ring Λ is defined by

Λ := {
∑
A∈Γ

aA ⊗ eA : aA ∈ K, (∀τ ∈ R,#{aA 6= 0, ω(A) < τ} <∞)}.

The quantum homology of (M,ω) is defined by

QH∗(M ;K) := H∗(M ;K)⊗K Λ.

The quantum homology has a ring structure with respect to the quantum product
denoted by ∗. It is defined as follows:

∀a, b, c ∈ H∗(M ;K), (a ∗ b) ◦ c :=
∑
A∈Γ

GW3,A(a, b, c)⊗ eA

where ◦ denotes the intersection index and GW3,A denotes the 3-pointed Gromov-
Witten invariant in the class A. See [MS04] for details.
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When (M,ω) is either monotone or negative monotone, then the quantum homol-
ogy ring QH∗(M ;K) can be expressed in a simple way using the field of Laurent series.
We first explain the case of monotone symplectic manifolds. In this case, Γ ' Z with
a generator A such that

ω(A) = λ0, c1(A) = NM .

Thus the Novikov ring Λ is the ring of formal Laurent series

K[|s−1, s] := {
∑
k>k0

aks
k : aj ∈ K, k0 ∈ Z}

where s := eA and the quantum homology ring QH∗(M ;K) is

QH∗(M ;K) = H∗(M ;K)⊗K K[|s−1, s].

The quantum product is expressed by

∀a, b ∈ H∗(M ;K), a ∗ b = a ∩ b+
∑
k>0

(a ∗ b)k · sk.

The series on the right hand side runs over only non-positive powers since the ele-
ments of Γ appearing in the sum represents pseudo-holomophic spheres and pseudo-
holomophic spheres has non-negative ω-area (remember that s represents a sphere A
such that ω(A) = λ0).

When (M,ω) is negative monotone, by denoting the generator A of Γ which sat-
isfies

ω(A) = +λ0, c1(A) = −NM
and by denoting s := eA, we have

QH∗(M ;K) = H∗(M ;K)⊗K K[|s−1, s]

just as in the monotone case.

Example 29. The quantum homology ring of (CPn, ωFS) is expressed as follows:

QH∗(CPn;K) =
K[|s−1, s][h]

〈h∗(n+1) = [CPn] · s−1〉

where h ∈ H2n−2(CPn;K) denotes the projective hyperplane class, s denotes the gen-
erator of the Novikov ring and h∗(n+1) := u ∗ u ∗ · · · ∗ u︸ ︷︷ ︸

n+1−times

.

There is a canonical isomorphism called the PSS-isomorphism between Floer ho-
mology and quantum homology which will be denoted by Φ:

ΦPSS,H;K : QH∗(M ;K)
∼−→ HF∗(H).

PSS-isomorphism preserves the ring structure: for a, b ∈ QH∗(M ;K),

ΦPSS,H;K(a) ∗pp ΦPSS,H;K(b) = ΦPSS,H;K(a ∗ b)

where ∗pp denotes the pair-of-pants product.
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Next, we briefly recall the definition of the Seidel element. The idea goes back
to Seidel [Sei97]. For a Hamiltonian loop ψ ∈ π1(Ham(M,ω)), we can define a
Hamiltonian fiber bundle

(M,ω) ↪→ (Mψ,Ωψ)→ (S2, ωarea)

where, unit disks D2
j , j = 1, 2,

Mψ := (D2
1 ×M)q (D2

2 ×M)/ ∼,

(z1, x) ∼ (z2, y)⇐⇒ z1 = z2 = e2πit, y = ψt(x).

The form Ωψ is a family of symplectic form on TMvert
ψ = Ker(dπ) parametrized by

points of S2. We fix almost complex structures j on S2 and J on Mψ such that dπ
is pseudo-holomorphic i.e. j ◦ dπ = dπ ◦ J and for every z ∈ S2, J |π−1(z) defines a
Ωψ-compatible almost complex structure on Mψ. For a section class σ ∈ π2(Mψ), we
denote the set of (j, J)-pseudo-holomorphic spheres in the class σ by SecCl(j, J, σ).
The image of SecCl(j, J, σ) by the evaluation map ev : S2 →M at z0 ∈ S2 defines a
homology class [evz0(SecCl(j, J, σ))] of M . We thus define the Seidel element Sψ,σ ∈
QH∗(M ;K) by

Sψ,σ :=
∑
A∈Γ

[evz0(SecCl(j, J, σ +A))]⊗ eA.

2.7 Hamiltonian spectral invariants

2.7.1 Homology version
Let iτ : CF τ∗ (H) → CF∗(H) be the natural inclusion map and denote by iτ∗ :
HF τ∗ (H) → HF∗(H) the induced map on homology. For a quantum homology class
a ∈ QH∗(M ;K), define the spectral invariant by

c(H, a) = c(H, a;K) := inf{τ ∈ R : ΦPSS,H;K(a) ∈ Im(iτ∗)}.

Spectral invariants were introduced by Viterbo [Vit92] in terms of generating functions
and later their counterparts in Floer theory were studied by Schwarz for aspherical
symplectic manifolds [Sch00] and Oh for closed symplectic manifolds [Oh05]. We list
some basic properties of spectral invariants.

Proposition 30. Spectral invariants satisfy the following properties where H,G are
Hamiltonians:

1. For any a ∈ QH∗(M ;K)\{0},

E−(H −G) 6 c(H, a)− c(G, a) 6 E+(H −G)

where

E−(H) :=

∫ 1

t=0

inf
x
Ht(x)dt, E+(H) :=

∫ 1

t=0

sup
x
Ht(x)dt,

E(H) := E+(H)− E−(H).

2. For any a ∈ QH∗(M ;K)\{0},

c(H, a) ∈ Spec(H)
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• for any Hamiltonian H when (M,ω) is rational.

• for any non-degenerate Hamiltonian H when (M,ω) is a general closed
symplectic manifold.

3. For any a, b ∈ QH∗(M ;K)\{0},

c(H#G, a ∗ b) 6 c(H, a) + c(G, b).

4. Let U be a non-empty subset of M .

c(H, [M ]) 6 e(Supp(H)) := inf{E(G) : φG(Supp(H)) ∩ Supp(H) = ∅}.

5. Let f : M → R be an autonomous Hamiltonian and a ∈ H∗(M ;K). For a
sufficiently small ε > 0, we have

c(εf, a) = cLS(εf, a) = ε · cLS(f, a)

where cLS(f, a) is the topological quantity defined by

cLS(f, a) := inf{τ : a ∈ Im(H∗({f 6 τ})→ H∗(M))}.

6. For ψ ∈ π1(Ham(M,ω)), a section class σ of the Hamiltonian fiber bundle
Mψ → S2, and a ∈ QH∗(M ;K)\{0} we have

c(ψ∗H, a) = c(H,Sψ,σ ∗ a) + const(ψ, σ)

where

(ψ∗H)t := (Ht −Kt) ◦ ψt, ψt := φtK , φ
t
ψ∗H = (ψt)−1 ◦ φtH

and const(ψ, σ) denotes a constant depending on σ and K.

7. For any ψ ∈ Symp0(M,ω) and a ∈ QH∗(M ;K)\{0},

c(H ◦ ψ, a) = c(H, a).

Remark 31. 1. For a set A, e(A) := inf{E(G) : φG(A) ∩ A = ∅} is called the
displacement energy of A.

2. Strictly speaking, spectral invariants c(H, ·) can be defined only if H is non-
degenerate since they are defined via Floer homology of H. However, by Propo-
sition 30 (1), one can define c(H, ·) for a degenerate Hamiltonian H by consid-
ering an approximation of H by non-degenerate Hamiltonians.

The spectral norm of H is defined by

γ(H) := c(H, [M ]) + c(H, [M ])

where [M ] denotes the fundamental class. We also define a spectral norm for Hamil-
tonian diffeomorphisms by

γ : Ham(M,ω)→ R

γ(φ) := inf
φH=φ

γ(H).
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Remark 32. In this paper, we work with a fixed ground field K of zero characteristic
but some results hold for other ground rings. More precisely, Theorem 37 and 39 hold
for spectral norms respectively with any ground field K and with any ground ring R
that is commutative and unital e.g. Z. In fact, Usher proved in [Ush08] that whenever
one can define a Floer chain complex with a ground ring that is Noetherian, spectral
invariants can be defined as above and satisfy properties listed in Proposition 30. For
weakly-monotone symplectic manifolds, one can define Floer chain complexes with any
ground field K [MS04]. Moreover, for monotone symplectic manifolds, one can define
Floer chain complexes with any ground ring R that is commutative and unital [LZ18],
[Zap15]. For general closed symplectic manifolds where one needs to use virtual cycle
techniques in order to build Floer chain complexes [FO99], [FOOO09], [LT98], the
ground field K should have zero characteristic.

2.7.2 Cohomology version
In this subsection, we review spectral invariants defined for a quantum cohomology
class. Everything is essentially the same as the previous section and the aim of this
section is simply to avoid confusion of the notation.

For a non-degenerate Hamiltonian H, let

iτ∗ : CF τ∗ (H) ↪→ CF∗(H)

be the natural inclusion map and denote its map induced on homology by

iτ∗ : HF τ∗ (H)→ HF∗(H).

For a quantum cohomology class a ∈ QH∗(M ;C)\{0}, define its spectral invariant
by

ρ(H, a) := inf{τ ∈ R : PSSH ◦ PD(a) ∈ Im(iτ∗)}.
Spectral invariants are invariant under homotopy rel. end points i.e. if t 7→ φtH

and t 7→ φtG are homotopic paths in Ham(M,ω) where H and G are both mean-
normalized Hamiltonians, then ρ(H, ·) = ρ(G, ·). Thus, we can see spectral invariants
as follows:

ρ : H̃am(M,ω)×QH∗(M)→ R,
ρ(φ̃, a) := ρ(H, a)

for any mean-normalized H such that the Hamiltonian path t 7→ φtH represents the
homotopy class φ̃.

The obvious relation to the spectral invariants defined in the previous section for
quantum homology classes is the following: For a ∈ QH∗(M ;C)\{0} and wtφ ∈
H̃am(M,ω), we have

c(φ̃, a) = ρ(φ̃,PD(a)).

We list further properties of spectral invariants.

Proposition 33. Spectral invariants satisfy the following properties where H,G are
Hamiltonians:

1. For any a ∈ QH∗(M ;C)\{0},

E−(H −G) 6 ρ(H, a)− ρ(G, a) 6 E+(H −G)

where
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• E−(H) :=

∫ 1

0

inf
x∈M

Ht(x)dt,

• E+(H) :=

∫ 1

0

sup
x∈M

Ht(x)dt,

• E(H) := E+(H)− E−(H) =

∫ 1

0

{ sup
x∈M

Ht(x)− inf
x∈M

Ht(x)}dt

2. If H is non-degenerate, then for any a ∈ QH∗(M ;C)\{0},

ρ(H, a) ∈ Spec(H).

Moreover, if a ∈ QHdeg(a)(M ;C), then there exists z̃ ∈ CF2n−deg(a)(H) such
that

ρ(H, a) = AH(z̃).

3. For any a ∈ QH∗(M ;C)\{0},

ρ(0, a) = ν(PD(a))

where 0 is the zero-function.

4. For any a, b ∈ QH∗(M ;C)\{0},

ρ(H#G, a ∗ b) 6 ρ(H, a) + ρ(G, b)

where
(H#G)(t, x) := H(t, x) +G(t, (φtH)−1(x))

and satisfies φtH#G = φtHφ
t
G.

Remark 34. A priori spectral invariants ρ(H, · ) can be defined only if H is non-
degenerate as they are defined via Floer homology of H. However, by the continuity
property i.e. Proposition 30 (1), one can define ρ(H, · ) for any H ∈ C0(R/Z×M,R)
by considering an approximation of H with non-degenerate Hamiltonians.

The spectral norm γ for Hamiltonians is defined as follows:

γ : C∞(R/Z×M,R)→ R>0

γ(H) := ρ(H, 1) + ρ(H, 1)

where 1 ∈ QH0(M ;C) denotes the identity element of QH∗(M ;C). We can see the
spectral norm as a function on H̃am(M,ω) as well:

γ : H̃am(M,ω)→ R>0

γ(φ̃) := ρ(φ̃, 1) + ρ(φ̃−1, 1).

We also define the spectral norm for Hamiltonian diffeomorphisms by

γ : Ham(M,ω)→ R>0

γ(φ) := inf
φH=φ

γ(H).

Spectral invariants for Floer homology and quantum cohomology with Λ-coefficients
were defined in a similar fashion in [FOOO19] and it was proven to satisfy analogous
properties listed in Proposition 30. We refer to [FOOO19] for details.
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Chapter 3

Comparing C0-distance and
spectral distance

3.1 Abstract of the chapter

The purpose of this paper is to study the relation between the C0-topology and the
topology induced by the spectral norm on the group of Hamiltonian diffeomorphisms
of a closed symplectic manifold. Following the approach of Buhovsky-Humilière-
Seyfaddini, we prove the C0-continuity of the spectral norm for complex projective
spaces and negative monotone symplectic manifolds. The case of complex projective
spaces provides an alternative approach to the C0-continuity of the spectral norm
proven by Shelukhin. We also prove a partial C0-continuity of the spectral norm for
rational symplectic manifolds. Some applications such as the Arnold conjecture in
the context of C0-symplectic topology are also discussed. All the materials in this
section are contained in [Kaw21].

3.2 Introduction

The study of topological properties of the group of Hamiltonian diffeomorphisms of
a symplectic manifold has been one of the central topics in symplectic topology. The
group of Hamiltonian diffeomorphisms is known to carry different metrics such as the
Hofer metric, the spectral metric and the C0-metric and their relations have been
studied extensively. This paper studies the relation between the C0-topology and the
topology induced by the spectral metric. More precisely, we study the C0-continuity of
the spectral norm which has been already verified for certain cases: for R2n by Viterbo
[Vit92], for closed surfaces by Seyfaddini [Sey13a], for symplectically aspherical man-
ifolds by Buhovsky-Humilière-Seyfaddini [BHS21] and for complex projective spaces
by Shelukhin [Sh18]. In this paper, we push the method developed by Buhovsky-
Humilière-Seyfaddini [BHS21] forward to the symplectically non-aspherical setting
and confirm the C0-continuity of the spectral norm for negative monotone symplectic
manifolds. We also obtain a partial C0-continuity of the spectral norm for rational
symplectic manifolds and an alternative proof of the C0-continuity of the spectral
norm for complex projective spaces.

37
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3.2.1 Set-up
Throughout this paper, (M,ω) will denote a closed symplectic manifold. A symplectic
manifold (M,ω) is called

• rational if 〈ω, π2(M)〉 = λ0Z for some constant λ0 > 0. We refer to the constant
λ0 as the rationality constant.

• monotone (resp. negative monotone) if ω|π2(M) = λ · c1|π2(M) for some positive
(resp. negative) constant λ where c1 := c1(TM) denotes the first Chern class
of TM . We refer to the constant λ as the monotonicity constant.

• symplectically aspherical when ω|π2(M) = c1|π2(M) = 0.

The positive generator of 〈c1, π2(M)〉 ⊂ Z is called the minimal Chern number
NM i.e.

〈c1, π2(M)〉 = NMZ, NM > 0.

Example 35. • The complex projective space equipped with the standard Fubini-
Study form (CPn, ωFS) is monotone and its minimal Chern number NCPn is
n+ 1.

• The degree k Fermat hypersurfaces of CPn+1

M := {(z0 : z1 : · · · : zn) ∈ CPn+1 : zk0 + zk1 + zk2 + · · ·+ zkn = 0}

is negative monotone for k > n + 1. The minimal Chern number NM is |k −
(n+ 2)| if k 6= n+ 2 and +∞ otherwise.

A Hamiltonian H on M is a smooth time dependent function H : R/Z×M → R.
We define its Hamiltonian vector field XHt by −dHt = ω(XHt , ·). The Hamiltonian
flow of H, denoted by (φtH)t∈R, is by definition the flow of XH . Its time-one map φ1

H

is called the Hamiltonian diffeomorphism of H and will be denoted by φH . The set
of Hamiltonian diffeomorphisms and its universal cover will be denoted respectively
by Ham(M,ω) and H̃am(M,ω).

3.2.2 C0-topology
We define the C0-metric by

φ, ψ ∈ Ham(M,ω), dC0(φ, ψ) := max
x∈M

d(φ(x), ψ(x))

where d denotes the distance on M induced by the Riemannian metric on M . Note
that the topology induced by the C0-distance is independent of the choice of a Rieman-
nian metric. We denote the C0-closure of Ham(M,ω) in the group of homeomorphisms
of M by Ham(M,ω). Their elements are called the Hamiltonian homeomorphisms.
Hamiltonian homeomorphisms are central objects in C0-symplectic topology.

3.2.3 Spectral norms
We roughly outline the notion of the spectral norm. For precise definitions, we refer
to Section 2.7. First of all, a Hamiltonian H ∈ C∞(R/Z × M,R) is called non-
degenerate if for each x ∈ Fix(φH), the set of eigenvalues of dφH(x) : TxM → TxM
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does not include 1. For a non-degenerate Hamiltonian H and a fixed ground field
K (see Remark 32 for more information about the choice of a ground field), one can
define the Floer homology group HF (H) = HF (H;K) as well as their filtration with
respect to the action functional which will be denoted by {HF τ (H)}τ∈R. For each
τ ∈ R, we denote the natural map induced by the inclusion map of the chain complex
by iτ∗ :

iτ∗ : HF τ (H)→ HF (H).

The quantum homology ring is defined by

QH∗(M ;K) := H∗(M ;K)⊗K Λ

where
Γ := π2(M)/Ker(ω) ∩Ker(c1),

Λ := {
∑
A∈Γ

aA ⊗ eA : aA ∈ K, (∀τ ∈ R,#{aA 6= 0 : ω(A) < τ} < +∞)}.

The ring structure of QH∗(M ;K) is given by the quantum product ∗: for its definition,
see Section 2.6). Floer homology group is ring isomorphic to the quantum homology
ring QH∗(M ;K) by the PSS-isomorphism

ΦPSS,H;K : QH∗(M ;K)→ HF (H).

For a Hamiltonian H and a ∈ QH∗(M ;K)\{0}, the spectral invariant of H and a is
defined by

c(H, a) := inf{τ : ΦPSS,H;K(a) ∈ Im(iτ∗)}.

The spectral norm of a Hamiltonian H is defined by

γ(H) := c(H, [M ]) + c(H, [M ])

where H(t, x) := −H(t, φtH(x)) which is a Hamiltonian that generates the Hamilto-
nian flow

t 7→ (φtH)−1.

Since γ is invariant under homotopy i.e. if φtH ∼ φtG rel. endpoints, then γ(H) =
γ(G), it can be seen as a map defined on the universal cover of Ham(M,ω), namely

γ : H̃am(M,ω)→ R.

We define spectral norms for Hamiltonian diffeomorphisms by

γ : Ham(M,ω)→ R,

γ(φ) := inf
φ=φH

γ(H).

3.2.4 Main results

Throughout the paper λ0 > 0 denotes the rationality constant i.e. 〈ω, π2(M)〉 = λ0Z.
We first state our result for rational symplectic manifolds.
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Theorem 36. Let (M,ω) be a rational symplectic manifold. For any ε > 0, there
exists δ > 0 such that if dC0(id, φH) < δ, then

|γ(H)− l · λ0| < ε

for some integer l ∈ Z depending on H.

Theorem 36 gives us the candidates of the value of the spectral norm of a C0-small
φH . When the values of spectral norms are bounded by a number strictly smaller
than λ0, then Theorem 36 implies the C0-continuity. The complex projective space
CPn meets this condition.

Theorem 37. Let (CPn, ωFS) be the complex projective space equipped with the
Fubini-Study form.

1. For any φ ∈ Ham(CPn, ωFS),

γ(φ) 6
n

n+ 1
· λ0

where λ0 denotes the rationality constant.

2. The spectral norm is C0-continuous i.e.

γ : (Ham(CPn, ωFS), dC0)→ R

is continuous. Moreover, γ extends continuously to Ham(CPn, ωFS).

Remark 38. 1. Theorem 37 is already proven in other papers: (1) appears as
Theorem G (2) in [KiSh18] and (2) appears as Theorem C in [Sh18]. Shelukhin’s
argument in [Sh18], which is different from ours, is based on barcode techniques
and is specific for CPn.

2. We will prove an a priori more general result in Section 3.4.3.

For general monotone symplectic manifolds, instead of the C0-continuity, we only
obtain the following C0-control of the spectral norm.

Theorem 39. Let (M,ω) be a monotone symplectic manifold.

1. For any ε > 0, there exists δ > 0 such that if dC0(id, φH) < δ, then

γ(H) <
dim(M)

NM
· λ0 + ε.

2. If NM > dim(M), then the spectral norm is C0-continuous i.e.

γ : (Ham(M,ω), dC0)→ R

is continuous. Moreover, γ extends continuously to Ham(M,ω).

Remark 40. 1. The author does not know any example satisfying the assumptions
in Theorem 39 (2). Note that Theorem 39 (2) follows immediately from Theorem
36 and Theorem 39 (1).
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2. Theorem 39 applies to spectral norms of any ground ring R (i.e. a commuta-
tive ring with unit). See Remark 32 for a comment on the choice of ground
rings/fields.

We now consider the case of negative monotone symplectic manifolds.

Theorem 41. Let (M,ω) be a negative monotone symplectic manifold.

1. For any ε > 0, there exists δ > 0 such that if dC0(id, φH) < δ, then

γ(H) < ε.

In particular, if φH = φG for H,G ∈ C∞(R/Z×M,R), then

γ(H) = γ(G)

i.e. γ : H̃am(M,ω)→ R descends to

γ : Ham(M,ω)→ R.

2. The spectral norm is C0-continuous i.e.

γ : (Ham(M,ω), dC0)→ R

is continuous. Moreover, γ extends continuously to Ham(M,ω).

Remark 42. The independence of the spectral norm of the choice of Hamiltonian
follows also from Lemma 3.2.(iv) in [McD10].

3.2.5 Application 1: C0-continuity of barcodes
Barcodes are roughly speaking finite sets of intervals which are bounded from below
but can be unbounded from above. The set of barcodes carries a metric called the
bottleneck distance denoted by dbot. Barcodes have been a common tool in topological
data analysis. Polterovich-Shelukhin brought barcodes into symplectic topology in
[PS16] where they defined barcodes of (non-degenerate) Hamiltonian diffeomorphisms
on symplectically aspherical manifolds and found applications to Hofer geometry.
Later, as we will explain in Section 3.3.2, the definition of barcodes was extended to
Hamiltonian diffeomorphisms on (negative) monotone symplectic manifolds [LSV18],
[PSS17] after considering a completion of the set of barcodes with respect to the
bottleneck distance which we will denote by ̂Barcodes. An estimate of the bottleneck
distance due to Kislev–Shelukhin [KiSh18] (see the inequality ?? in Section 3.3.2)
combined with the C0-continuity of the spectral norm implies the C0-continuity of
barcodes for negative monotone symplectic manifolds.

Corollary 43. Let (M,ω) be a negative monotone symplectic manifold. The barcode
map is C0-continuous i.e.

B : (Ham(M,ω), dC0)→ ( ̂Barcodes, dbot)

is continuous. Moreover, B extends continuously to Ham(M,ω).

Remark 44. Of course, Theorem 37 (2) directly implies the C0-continuity of barcodes
in the case of (CPn, ωFS). This is proven by Shelukhin in Corollary 6 in [Sh18].
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3.2.6 Application 2: The C0-Arnold conjecture
The Arnold conjecture has been historically one of the central topics in symplectic
geometry.

Conjecture 45. (The Arnold conjecture)
Let (M2n, ω) be a closed symplectic manifold.

1. For a non-degenerate φ ∈ Ham(M,ω),

#Fix(φ) >
∑
j

dimCHj(M ;C).

2. For φ ∈ Ham(M,ω),
#Fix(φ) > cl(M)

where

cl(M) := # max{k+ 1 : ∃a1, a2, · · · , ak ∈ H∗<2n(M) s.t. a1 ∩ a2 ∩ · · · ∩ ak 6= 0}

and ∩ denotes the intersection product.

Since the advent of Floer homology, there has been a huge progress in the two
versions of the Arnold conjecture: (1) is now completely settled [FO99], [LT98] and
(2) has been confirmed for symplectically aspherical manifolds [Fl89], CPn [For85]
[ForW85] and negative monotone symplectic manifolds with NM > n [LO94].

It caught attention whether or not the Arnold conjecture is C0-robust i.e. if Hamil-
tonian homeomorphisms satisfy similar properties. For closed surfaces, this ques-
tion was answered in the positive by Matsumoto [?]. However, Buhovsky-Humilière-
Seyfaddini [BHS18] discovered that in higher dimension, this turns out not to be the
case.

Theorem 46. ([BHS18])
Let (M,ω) be any closed symplectic manifold of dimension > 4. There exists a

Hamiltonian homeomorphism φ ∈ Ham(M,ω) such that

#Fix(φ) = 1.

In their subsequent paper [BHS21], Buhovsky-Humilière-Seyfaddini have reformu-
lated the Arnold conjecture in a way that is more suited to study the rigidity of
Hamiltonian homeomorphisms when the ambient manifold is symplectically aspheri-
cal. We will follow their idea to obtain similar results for symplectic manifolds that
are not symplectically aspherical by using the quantum product ∗ of QH∗(M ;K) (for
its definition, see Section 2.6).

Definition 47. Let (M2n, ω) be a symplectic manifold. Let a, b ∈ H∗(M ;K)\{0}.
For a Hamiltonian H, define

σa,a∗b(H) := c(H, a)− c(H, a ∗ b)

and for a Hamiltonian diffeomorphism φ, define

σa,a∗b(φ) := inf
φH=φ

σa,a∗b(H).
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For (M,ω) for which γ is C0-continuous (e.g. negative monotone symplectic man-
ifolds and (CPn, ωFS)), σa,a∗b turns out to be C0-continuous and it extends continu-
ously to Ham(M,ω): see Section 3.5.2 for details.

Theorem 48. Let (M2n, ω) be either a negative monotone symplectic manifold or
(CPn, ωFS). For φ ∈ Ham(M,ω), if there exist homology classes a, b ∈ H∗(M ;K)\{0}, b 6=
[M ] such that

σa,a∗b(φ) = 0,

then Fix(φ) is homologically non-trivial, hence it is an infinite set.

Remark 49. 1. Recall that, a subset A ⊂ M is homologically non-trivial if for
every open neighborhood U of A the map i∗ : Hj(U ;K) → Hj(M ;K), induced
by the inclusion i : U → M , is non-trivial for some j > 0. Homologically
non-trivial sets are infinite sets.

2. In [How12], Howard considers the smooth version of this statement.

3.2.7 Application 3: The displaced disks problem

A topological group G is a Rokhlin group if it possesses a dense conjugacy class i.e.
for some φ ∈ G, Conj(φ) := {ψ−1φψ : ψ ∈ G} is dense. Béguin-Crovisier-Le Roux
formulated the following question so-called the "displaced disks problem", in order to
study whether or not the group of area-preserving homeomorphisms on a sphere is a
Rokhlin group.

Question 50. (Béguin-Crovisier-Le Roux)
Let

Gr := {φ ∈ Ham(M,ω) : φ(f(Br)) ∩ f(Br) = ∅}

for any r > 0 where f : Br → (M,ω) is a symplectic embedding. Does the C0-closure
of Gr contain the identity element for some r > 0?

This original question which was for (M,ω) = (S2, ωarea) was solved by Seyfaddini
in [?] as a consequence of his earlier result on C0-continuity of spectral norms for closed
surfaces [?]. Other cases, also deduced by C0-continuity of spectral norms, has also
been considered: [BHS21] deals with symplectically aspherical manifolds and [Sh18]
treats CPn. Here we add the case of negative monotone symplectic manifolds.

Theorem 51. Let (M,ω) be a negative monotone symplectic manifold. For any
r > 0, there exists δ > 0 such that if φ ∈ Ham(M,ω) displaces a symplectically
embedded ball of radius r, then dC0(id, φ) > δ.

We obtain the following as a direct consequence.

Corollary 52. Let (M,ω) be a negative monotone symplectic manifold. The group
Ham(M,ω) seen as a topological group with respect to the C0-topology is not a Rokhlin
group.

Remark 53. The case of (CPn, ωFS) was considered by Shelukhin in [Sh18].
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3.3 Additional preliminaries
In this section, we provide some results that are relevant for the proofs of the results
in this chapter but were not covered in Section 4.4. The results in this section will
not be used in other chapters.

3.3.1 Some properties of capped orbits
The following elementary properties are often used to calculate the action.

Proposition 54. Let (M,ω) be a symplectic manifold. Assume the Hamiltonian
paths generated by H and G are homotopic rel. end points

i.e. there exists W : [0, 1]× [0, 1]→ Ham(M,ω) such that

1. W (0, t) = φtH , u(1, t) = φtG.

2. W (s, 0) = id, u(s, 1) = φH = φG.

Let x ∈ Fix(φH) = Fix(φG) and w be a capping of the orbit φtH(x). Then the action of
the capped orbit [φtG(x), w′] where w′ := w#W (W glued to x along φtH(x)) coincides
with the action of [φtH(x), w]:

AH([φtH(x), w]) = AG([φtG(x), w′])

Proposition 55. Let (M,ω) be a symplectic manifold.

1. For any Hamiltonian H ∈ C∞(R/Z×M,R),

H(t, x) := −H(t, φtH(x))

generates the Hamiltonian flow

t 7→ (φtH)−1

and has the time-1 map φ−1
H .

2. For any Hamiltonian H ∈ C∞(R/Z×M,R),

H̃(t, x) := −H(−t, x)

generates the Hamiltonian flow

t 7→ φ−tH

and has the time-1 map φ−1
H .

3. Hamiltonian paths generated by H and H̃ are homotopic rel. end points.

Proposition 56. Let (M,ω) be a symplectic manifold.

1. For any Hamiltonians H,G ∈ C∞(R/Z×M,R),

H#G(t, x) := H(t, x) +G(t, (φtH)−1(x))

generates the Hamiltonian flow

t 7→ φtH ◦ φtG
and has the time-1 map φH ◦ φG.
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2. For any Hamiltonians H,G ∈ C∞(R/Z×M,R),

H ∧G(t, x) :=

{
G(2t, x) (0 6 t 6 1/2)

H(2t− 1, φG(x)) (1/2 6 t 6 1)

generates the Hamiltonian flow

t 7→

{
φ2t
G (0 6 t 6 1/2)

φ2t−1
H ◦ φG (1/2 6 t 6 1)

and has the time-1 map φH ◦ φG.

3. Hamiltonian paths generated by H#G and H∧G are homotopic rel. end points.

The following two propositions will be used in Section 3.4.1. Proofs will be omitted
as they follow from elementary arguments.

Proposition 57. Let (M,ω) be a symplectic manifold, U a simply connected non-
empty open set and H a Hamiltonian such that φH(p) = p for all p ∈ U . Take any
x0 ∈ U and a capping w0 : D2 →M of the orbit φtH(x0) and fix them.

For any x ∈ U , define a capping wx : D2 →M of the orbit φtH(x) by

wx(se2πit) := φtH(c(s))#w0

where c : [0, 1] → M is a smooth path from x0 to x and φtH(c(s))#w0 denotes the
gluing of φtH(c(s)) and w0 along φtH(x0). Then we have the following:

1. AH([φtH(x), wx]) = AH([φtH(x0), w0]).

2. µ([φtH(x), wx]) = µ([φtH(x0), w0]).

Proposition 58. Let (M,ω) be a symplectic manifold, H a Hamiltonian and [φtH(x), w]
any capped 1-periodic orbit of H. Then

1. w : D2 →M, w(se2πit) := w(se2πi(−t)) is a capping of the orbit φ−tH (x)

2. µ([φtH(x), w]) = −µ([φ−tH (x), w])

3. AH([φtH(x), w]) = −AH̃([φt
H̃

(x), w]) where H̃(t, x) = −H(−t, x).

3.3.2 Barcodes
In this subsection, we roughly explain how to define barcodes for Hamiltonian diffeo-
morphisms on (negative) monotone symplectic manifolds following [LSV18]. We also
refer to [PSS17] and [UZ16] for constructions of barcodes in symplectic topology.

A finite barcode is a finite set of intervals

B = {Ij = (aj , bj ] : aj ∈ R, bj ∈ R ∪ {+∞}}16j6N .

Two finite barcodes B,B′ are said to be δ-matched if, after deleting some intervals
of length less than 2δ, there exists a bijective matching between the intervals of B
and B′ such that the endpoints of the matched intervals are less than δ of each other.
The bottleneck distance of B,B′ is defined as follows:

dbot(B,B
′) := inf{δ > 0 : B and B′ are δ −matched}.
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Barcodes of non-degenerate Hamiltonian diffeomorphisms were first defined in
[PS16] for symplectic manifolds that are symplectically aspherical via filtered Floer
homology. For symplectically non-aspherical manifolds, (filtered) Floer homology
groups do not satisfy the "finiteness" condition and in order to overcome this is-
sue, [PSS17] defines barcodes for non-degenerate Hamiltonian diffeomorphisms on
monotone symplectic manifolds by fixing a degree. Later, in order to define bar-
codes of degenerate Hamiltonian diffeomorphisms on spheres (their method applies
more generally to (negative) monotone symplectic manifolds), in [LSV18] Le Roux-
Seyfaddini-Viterbo considered a completion of the set of finite barcodes with respect
to the bottleneck distance in the following way:

Let Barcodes denote the set of a collection of intervals B = {Ij}j∈N such that
for any δ > 0 only finitely many of the intervals Ij have lengths greater than δ. The
bottleneck distance dbot extends to Barcodes. The space (Barcodes, dbot) is indeed
the completion of the space of finite barcodes. Given a barcode B = {Ij}j∈N and
c ∈ R, define B + c = {Ij + c}j∈N, where Ij + c is the interval obtained by adding c
to the endpoints of Ij . Define an equivalence relation ∼ by B ∼ B′ if B′ = B + c for
some c ∈ R. We will denote the quotient space of Barcodes with the relation ∼ by
̂Barcodes.
We explain briefly how to map a (possibly degenerate) Hamiltonian diffeomor-

phism on a (negative) monotone symplectic manifold to a barcode following [LSV18].
Given a non-degenerate Hamiltonian H and an integer k ∈ Z, the filtered k-th Floer
homology group {HF τk (H)}τ∈R forms a persistence module. For this filtered vector
spaces, one can define a barcode in the same way as in [PS16] and we denote the
barcode by Bk(H). We define the barcode of H by

B(H) := tkBk(H) ∈ Barcodes.

For two Hamiltonians H,G such that φH = φG, their Floer homology groups coincide
up to shifts of index and action filtration i.e. HF τ∗ (H) ' HF τ+τ0

∗+k0
(G) for some

k0 ∈ Z, τ0 ∈ R. Thus B(H) = B(G) and therefore, we define the barcode map B as
follows:

B : Ham(M,ω)→ ̂Barcodes.
B(φ) := B(H)

for any H such that φH = φ.
Kislev-Shelukhin [KiSh18] proved the following inequality to estimate the bottle-

neck distance between barcodes of φ, ψ ∈ Ham(M,ω):

dbot(B(φ), B(ψ)) 6
1

2
γ(φ−1ψ).

This implies that once we obtain the C0-continuity of γ, the map

B : (Ham(M,ω), dC0)→ ( ̂Barcodes, dbot)

is continuous. Thus, Corollary 43 is a direct consequence of Theorem 41.

3.4 Proofs
In this section, we prove the results claimed in the introduction. We start from the
case of negative monotone symplectic manifolds since the proof is based on a similar
idea to the case of rational symplectic manifolds but it is simpler.
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3.4.1 Proofs of Theorem 39 and 41
We prove Theorem 39 (1) and Theorem 41. It is achieved by combining the following
Propositions 59 and 60.

Proposition 59. Let (M,ω) be a monotone or negative monotone symplectic man-
ifold, U be a simply connected open subset of M . For any ε > 0, there exists δ > 0
such that if H ∈ C∞(R/Z ×M,R) satisfies dC0(id, φH) < δ and φH(x) = x for all
x ∈ U , then

• when (M,ω) is monotone,

γ(H) <
dim(M)

NM
λ0 + ε.

• when (M,ω) is negative monotone,

γ(H) < ε.

Proposition 60. ([BHS21] Lemma 4.2)
Let (M,ω) be any closed symplectic manifold. For any ε > 0, there exists a

non-empty open ball B ⊂ M satisfying the following properties: its displacement
energy is estimated by e(B) < ε and for any ε′ > 0, there exists δ′ > 0 such that if
φH ∈ Ham(M,ω), dC0(idM , φH) < δ′, then there exist G ∈ C∞(R/Z ×M ×M,R)
such that

1. γ(G) < ε

2. dC0(idM×M , φG) < ε′

3. (φH × φ−1
H ) ◦ φG|B×B = idB×B

Proposition 60, proven by Buhovsky-Humilière-Seyfaddini [BHS21], claims that
given a Hamiltonian diffeomorphism φ onM , one can always deform the Hamiltonian
diffeomorphism φ × φ−1 to a Hamiltonian diffeomorphism on M ×M that does not
move any point on a certain open set by composing with a both C0- and γ-small
Hamiltonian diffeomorphism on M ×M .

We postpone the proof of Proposition 59 and first briefly review the proof of
Proposition 60 due to [BHS21] as we will need some parts of the proof in the proof
of Claim 67.

Proof. (of Proposition 60 by [BHS21])
Let ε > 0 and fix any non-empty open ball B′ whose displacement energy satisfies

e(B′) < ε/4.

Claim 61. (Claim 4.3 [BHS21])
There exists a Hamiltonian Q on M ×M and an open ball B′′ in M such that

• Supp(Q) ⊂ B′ ×B′.

• ∀(x, y) ∈ B′′ ×B′′, φQ(x, y) = (y, x).

• Denote the origin point of the ball B′ by x0. The point (x0, x0) is fixed by the
flow of Q: ∀t, φtQ((x0, x0)) = (x0, x0).
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Now, define
G := (0⊕H)#Q#(0⊕H)#Q. (3.1)

This Hamiltonian G satisfies the following:

c(G, [M ×M ]) = c((0⊕H)#Q#(0⊕H)#Q, [M ×M ])

6 c((0⊕H)#Q#(0⊕H), [M ×M ]) + c(Q, [M ×M ])

= c(Q, [M ×M ]) + c(Q, [M ×M ])

6 e(Supp(Q)) + e(Supp(Q)) 6 2e(B′ ×B′)

and as the ball B′ was chosen so that e(B′) < ε/4, we get

c(G, [M ×M ]) < ε/2. (3.2)

We can estimate c(G, [M ×M ]) in the same way and we get

γ(G) < ε.

Now, let B be a ball whose closure is included in B′′ and make sure that the origin of
B is the same as the origin of B′, namely x0. If we require φH to be C0-close enough
to id so that φH(B) ⊂ B′′, then for all (x, y) ∈ B ×B, we have

(φH × φ−1
H ) ◦ φG(x, y) = (x, y).

This finishes the proof of Proposition 60.

Now, before proving Proposition 59, we prove Theorem 39 (1) and Theorem 41.

Proof. (of Theorem 39 (1) and Theorem 41)
Note that if (M,ω) is (negative) monotone, then so is (M ×M,ω ⊕ ω). Given

any ε > 0, we can take a ball B in M as in Proposition 60. By Proposition 60,
for any ε′ > 0, there exists δ′ > 0 such that if dC0(idM , φ) < δ′, then there exist
G ∈ C∞(R/Z×M ×M,R) such that

1. γ(G) < ε

2. dC0(idM×M , φG) < ε′

3. [(φ× φ−1) ◦ φG]|B×B = idB×B

We take ε′ > 0 small enough so that

dC0(idM×M , (φ× φ−1) ◦ φG) < δ

is satisfied where δ > 0 is a positive number as in Proposition 59 which is determined
by B ×B and ε > 0. This is achievable as

dC0(idM×M , (φ× φ−1) ◦ φG) 6 dC0(idM×M , φG) + dC0(φG, (φ× φ−1) ◦ φG)

= dC0(idM×M , φG) + dC0(idM×M , φ× φ−1) 6 ε′ + 2δ′.

Now, take any Hamiltonian H generating φ: φH = φ. Then (H⊕H)#G generates
(φ× φ−1) ◦ φG so if by Proposition 59, we have
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• if (M,ω) is monotone, then

γ((H ⊕H)#G) <
dim(M ×M)

NM×M
λ0 + ε = 2 · dim(M)

NM
λ0 + ε.

• if (M,ω) is negative monotone,

γ((H ⊕H)#G) < ε.

As γ(H ⊕H) = 2γ(H) (by Theorem 5.1. in [EP09]), we have

2γ(H) = γ(H ⊕H) 6 γ((H ⊕H)#G) + γ(G)

= γ((H ⊕H)#G) + γ(G) < γ((H ⊕H)#G) + ε.

Therefore,

• if (M,ω) is monotone, then

2γ(H) < 2 · dim(M)

NM
λ0 + ε+ ε,

thus

γ(H) <
dim(M)

NM
λ0 + ε.

This proves Theorem 39 (1).

• if (M,ω) is negative monotone, then 2γ(H) < 2ε, thus

γ(H) < ε.

This proves Theorem 41.

Proof. (of Theorem 41 (2))
Once we know that spectral norms are well-defined on Ham(M,ω), the C0-continuity

at id follows directly from Theorem 41 (1). The C0-continuity at φ ∈ Ham(M,ω) is
a consequence of the triangle inequality: for any ε > 0, if we take dC0(φ, ψ) small
enough so that dC0(id, φ−1 ◦ ψ) < δ where δ is taken as in Theorem 41 (1). Then,

|γ(ψ)− γ(φ)| 6 γ(φ−1 ◦ ψ) < ε.

By using the C0-continuity, we can define the spectral norm for Hamiltonian homeo-
morphisms in the following way: for φ ∈ Ham(M,ω), take a sequence φk ∈ Ham(M,ω)
that C0-converges to φ. Define γ(φ) := limk→+∞ γ(φk). Note that any approximating
sequence will give the same limit. This completes the proof of Theorem 41 (2).

We now prove Proposition 59.
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Proof. (of Proposition 59)
Take a Morse function f : M → R whose critical points are located in U . We

assume that f is C2-small enough so that its Hamiltonian flow does not admit any
non-constant periodic points and that osc(f) := max f −min f < ε. Since φf has no
fixed points in M\U , there exists δ > 0 such that

∀x ∈M\U, d(x, φf (x)) > δ.

We will now see that if φH is C0-close enough to id, then

Crit(f) = Fix(φH ◦ φf ).

First, Crit(f) ⊂ Fix(φH ◦ φf ) follows from ∀x ∈ U, φH(x) = x. Next, we will see
Fix(φH ◦ φf ) ⊂ Crit(f) if φH is C0-close enough to id. Let x ∈ Fix(φH ◦ φf ).

1. Assume x ∈ U. Then, φf (x) = φH ◦ φf (x) = x and since Crit(f) = Fix(φf ), we
have x ∈ Crit(f).

2. Assume x /∈ U . Then, φH(x) /∈ U and

dC0(x, φH ◦ φf (x)) > dC0(φf (x), x)− dC0(φf (x), φH ◦ φf (x))

> δ − dC0(id, φH).

If we take φH to be C0-close enough to id so that the last equation become
positive, then x /∈ Fix(φH ◦ φf ). Thus x ∈ Fix(φH ◦ φf ) implies x ∈ U and
x = φH ◦ φf (x) = φf (x). Thus x ∈ Crit(f).

We have proven that if φH is C0-close enough to id, then

Crit(f) = Fix(φH ◦ φf ).

Thus, for such φH and for any x ∈ Crit(f) = Fix(φH ◦ φf ), its orbit is φtH#f (x) =

φtH(x) and thus,

Spec(H#f) = {f(x) +AH([φtH(x), w]) : x ∈ Crit(f), [φtH(x), w] ∈ Crit(AH)}.

Take any x0 ∈ Crit(f) and a capping w0 : D2 → M of the orbit φtH(x0) i.e.
w0(e2πit) = φtH(x0). We fix this capped orbit [φtH(x0), w0] in the sequel.

For any x ∈ Crit(f), define a capping wx : D2 →M of the orbit φtH(x) by

wx(se2πit) := φtH(c(s))#w0

where c : [0, 1] → U is a smooth path from x0 to x and φtH(c(s))#w0 denotes the
gluing of φtH(c(s)) and w0 along φtH(x0).

Recall that γ(H) = c(H, [M ]) + c(H, [M ]) and we will estimate c(H, [M ]) and
c(H, [M ]) separately.

By the triangle inequality,

c(H, [M ]) 6 c(H#f, [M ]) + c(f, [M ]).

For the second term we know that

c(f, [M ]) = c(−f, [M ]) 6 ε

as f is C2-small and osc(f) < ε.
For the first term,

c(H#f, ·) ∈ Spec(H#f)

so there exists a point x ∈ Crit(f) and a sphere A : S2 →M such that
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• AH#f ([φtH(x), wx#A]) = c(H#f, [M ]).

• µCZ([φtH(x), wx#A]) = deg([M ]) = 2n.

The sphereA plays the role of correcting the capping of the capped orbit [φtH(x), wx] to
achieve the appropriate capped orbit which realizes the spectral invariant c(H#f, [M ]).

The action and the index can be rewritten in the following way where i denotes
the Morse index:

• AH#f ([φtH(x), wx#A]) = f(x) +AH([φtH(x), wx])− ω(A).

• µCZ([φtH(x), wx#A]) = i(x) + 2µ([φtH(x), wx])− 2c1(A).

Thus we get the following two equations.

c(H#f, [M ]) = f(x) +AH([φtH(x), wx])− ω(A). (3.3a)

2n = i(x) + 2µ([φtH(x), wx])− 2c1(A). (3.3b)

In the same way, there exist a point y ∈ Crit(f) and a sphere B : S2 → M such
that

c(H#f, [M ]) = f(y) +AH([φt
H

(y), wy])− ω(B). (3.4a)

2n = i(y) + 2µ([φt
H

(y), wy])− 2c1(B). (3.4b)

Here, the capping wy is

wy(se2πit) := wy(se2πi(−t)).

Thus, by adding the equations 3.3a and 3.4a, we obtain

γ(H) 6 2c(−f, [M ]) + c(H#f, [M ]) + c(H#f, [M ])

= 2c(−f, [M ]) + f(x) + f(y) +AH([φtH(x), wx]) +AH([φt
H

(y), wy])− ω(A+B)

6 4ε− ω(A+B)

where Proposition 57 and 58 were used in the last line. In the same way, by adding
the equalities 3.3b and 3.4b, we obtain

4n = i(x) + i(y) + 2µ([φtH(x), wx]) + 2µ([φt
H

(y), wy])− 2c1(A+B)

= i(x) + i(y)− 2c1(A+B).

Now, since i(x), i(y) are Morse indices, we have

0 6 i(x), i(y) 6 2n = dim(M)

and thus,
0 6 4n+ 2c1(A+B) 6 4n.

Thus,
−2n 6 c1(A+B) 6 0.

Note that up to now, we have not used the (negative) monotonicity of (M,ω). Now,
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• if (M,ω) is negative monotone, then

−ω(A+B) = −λ · c1(A+B) 6 0.

• if (M,ω) is monotone, then

−ω(A+B) = −λ · c1(A+B) 6 2nλ =
2n

NM
λ0.

Therefore,

• if (M,ω) is negative monotone, then

γ(H) 6 4ε.

• if (M,ω) is monotone, then

γ(H) 6
2n

NM
λ0 + 4ε.

This completes the proof of Proposition 59.

3.4.2 Proof of Theorem 64
The goal of this subsection is to prove Theorem 64 which includes Theorem 36 as a
special case. The argument is similar to the negative monotone case. We start by
some additional definitions.

Definition 62. Let (M,ω) be any closed symplectic manifold and a, b ∈ H∗(M ;K)\{0}.
We define the following:

γa,b : C∞(R/Z×M,R)→ R,

γa,b(H) := c(H, a) + c(H, b).

Remark 63. Of course, γ[M ],[M ] = γ where γ is the usual spectral norm.

Theorem 64. Let (M,ω) be a rational symplectic manifold and a, b ∈ H∗(M ;K)\{0}.
For any ε > 0, there exists δ > 0 such that if dC0(id, φH) < δ, then

|γa,b(H)− l · λ0| < ε

for some integer l ∈ Z depending on a, b ∈ H∗(M ;K)\{0} and H.

Before proving Theorem 64, we will see the following consequence on the C0-
continuity of the spectral norm.

Corollary 65. Let (M,ω) be a rational symplectic manifold. Assume that there exist
constants 0 < κ < 1 and δ′ > 0 such that if φ ∈ Ham(M,ω), dC0(id, φ) 6 δ′, then
γ(φ) 6 κ · λ0. Then, γ : Ham(M,ω)→ R is C0-continuous.

Corollary 65 will be used to obtain the C0-continuity of the spectral norm for CPn
in Theorem 37.



3.4. PROOFS 53

Proof. (of Corollary 65)
It is enough to prove the continuity at id since |γ(φ) − γ(ψ)| 6 γ(ψ−1φ). For a

given ε ∈ (0, 1
2 (1− κ)λ0), take δ > 0 as in Theorem 36. Let

φ ∈ Ham(M,ω), dC0(id, φ) < min{δ, δ′}.

There exists a Hamiltonian H such that φH = φ and

γ(H) < γ(φ) + ε < κ · λ0 +
1

2
(1− κ)λ0

=
1

2
(1 + κ)λ0 < λ0 − ε.

Thus, by Theorem 36,
γ(H) < ε.

Thus,
γ(φ) 6 γ(H) < ε.

This implies the continuity of γ at id and hence completes the proof of Corollary
65.

Now, we move to the proof of Theorem 64. The following Proposition will be
needed.

Proposition 66. Let (M,ω) be a closed symplectic manifold. Fix an arbitrary point
x0 ∈ M . There exists a constant C > 0 satisfying the following property: For any
point x ∈M , there exists ψ ∈ Ham(M,ω) such that

1. ψ(x) = x0

2. ‖dψ−1‖ 6 C

The proof is elementary and thus will be omitted.

Proof. (of Theorem 64)
The proof is similar to the proof of Theorem 41. For a given ε > 0, we take a ball

B as in Proposition 60. We will denote the origin of the ball B by x0. For the open
set B ×B, consider a Morse function F : M ×M → R such that

• Crit(F ) ⊂ B ×B.

• F is C2-small enough so that Fix(φF ) = Crit(F ) and that osc(F ) := maxF −
minF < ε.

As φF has no fixed points in M\(B × B), there exists δ > 0 such that for any
x ∈M ×M\(B ×B), d(x, φF (x)) > δ.

For any ε′ > 0, we can take δ′ > 0 as in Proposition 60. By Proposition 66, for x0,
there exists a constant C > 0 such that for any x ∈ M , there exists ψ ∈ Ham(M,ω)
such that

• ψ(x) = x0

• ‖dψ−1‖ 6 C
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We consider φH so that dC0(id, φH) < δ′/C. For any x∗ ∈ Fix(φH), we can take
ψ ∈ Ham(M,ω) such that ψ(x∗) = x0 and ‖dψ−1‖ 6 C.

Let H ′ := H ◦ ψ−1. We have

dC0(id, φH′) = dC0(id, ψ−1φHψ) = dC0(ψ−1, ψ−1φH)

6 ‖dψ−1‖dC0(id, φH′) 6 C · δ′/C = δ′.

By Proposition 60, there exists G ∈ C∞(R/Z×M ×M) such that

• γ(G) < ε.

• dC0(idM×M , φG) < ε′.

• (φ−1
H′ × φH′) ◦ φG|B×B = idB×B .

In addition, we have seen in the proof of Proposition 60 that G is defined by G =
(0⊕H ′)#Q#(0⊕H ′)#Q where Q is an autonomous Hamiltonian on M ×M whose
flow fixes the point (x0, x0) for all time t: φtQ((x0, x0)) = (x0, x0). The spectral
invariant of G was estimated as

c(G, [M ×M ]) <
1

2
ε.

All these properties of G and Q will be used in the following.
We will now split the proof into four steps.
• Step 1: The aim of this step is to prove the following:

Claim 67.

|c(H ′ ⊕H ′, a⊗ b)− c((H ′ ⊕H ′)#G#F, a⊗ b)| < 3

2
ε.

Proof. By the triangle inequality, we have

c((H ′ ⊕H ′)#G#F, a⊗ b)− c(H ′ ⊕H ′, a⊗ b)

6 c(G#F, [M ×M ]) 6 c(G, [M ×M ]) + c(F, [M ×M ]) <
3

2
ε.

Note that the final inequality uses,

c(F, [M ×M ]) 6 max(F ) < ε

and the estimate
c(G, [M ×M ]) <

1

2
ε.

The other side of the inequality follows from a similar estimate.

• Step 2: The aim of this step is to prove the following:

Claim 68.
c((H ′ ⊕H ′)#G#F, a⊗ b)

= F (x, y) +A(H′⊕H′)#G([φt
(H′⊕H′)#G((x, y)), wx,y]) + (ω ⊕ ω)(A1)

for some critical point (x, y) of F , some capping wx,y and some A1 ∈ π2(M ×M).
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Proof. As

dC0(id, (φ−1
H′ × φH′) ◦ φG) 6 dC0(id, φG) + dC0(φG, (φ

−1
H′ × φH′) ◦ φG)

= dC0(id, φG) + dC0(id, φ−1
H′ × φH′) 6 ε′ + δ′,

we can take ε′ > 0 small enough so that

dC0(id, (φ−1
H′ × φH′) ◦ φG) 6 δ.

Therefore, as

• for all x /∈ B ×B, dC0(x, φF (x)) > δ,

• dC0(id, (φ−1
H′ × φH′) ◦ φG) 6 δ,

• (φ−1
H′ × φH′) ◦ φG|B×B = idB×B ,

we have Fix((φ−1
H′ × φH′) ◦ φG ◦ φF ) = Crit(F ). Thus the spectral invariant c((H ′ ⊕

H ′)#G#F, a⊗ b) can be expressed as follows:

c((H ′ ⊕H ′)#G#F, a⊗ b)
= F (x, y) +A(H′⊕H′)#G([φt

(H′⊕H′)#G((x, y)), wx,y]) + (ω ⊕ ω)(A1)

where

• (x, y) is a certain critical point of F which is located in B ×B.

• wx,y denotes an arbitrary chosen capping of the orbit φt
(H′⊕H′)#G((x, y)). We

fix this capping in the sequel.

• A1 denotes the sphere which plays the role of correcting the capping wx,y

• Step 3: The aim of this step is to prove the following:

Claim 69.

A(H′⊕H′)#G([φt
(H′⊕H′)#G((x, y)), wx,y]) = (ω ⊕ ω)(A2)

for some A2 ∈ π2(M ×M).

Proof. By Proposition 57 (2), we obtain

A(H′⊕H′)#G([φt
(H′⊕H′)#G((x, y)), wx,y]) = A(H′⊕H′)#G([φt

(H′⊕H′)#G((x0, x0)), wx0,x0 ])

where wx0,x0
is the capping of the orbit φt

(H′⊕H′)#G((x0, x0)) corresponding to the
capping wx,y in the sense of Proposition 57 (2). As Q is a Hamitonian which generates
a time-1 map that switches the coordinate i.e. (p, q) 7→ (q, p) in B × B and satisfies
∀t, φtQ((x0, x0)) = (x0, x0), we have

A(H′⊕H′)#G([φt
(H′⊕H′)#G((x0, x0)), wx0,x0

])

=

∫
Q(φtQ(x0, x0))dt+

∫
(0⊕H ′)(t, x0, φ

t
H′(x0))dt− ω(φtH′(x0))+∫

Q(φt
Q

(x0, x0)dt+

∫
(0⊕H ′)(t, x0, φ

t
H′

(x0))dt− ω(φt
H′

(x0)) + (ω ⊕ ω)(A2)

where
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• φtH′(x0) denotes the capped orbit of φtH′(x0) whose capping is chosen arbitrarily.

• φt
H′

(x0) denotes the capped orbit of φt
H′

(x0) whose capping is the same as the
the capping of φtH′(x0) chosen above.

• A2 denotes the sphere to which corrects the capping of the RHS so that it will
meet the capping on the LHS.

Thus, by employing Proposition 58 (3) for
∫
H ′t(φ

t
H′(x0))dt and

∫
H ′t(φ

t
H′

(x0))dt, we
obtain,

A(H′⊕H′)#G([φt
(H′⊕H′)#G((x0, x0)), wx0,x0

]) = (ω ⊕ ω)(A2).

• Step 4: The aim of this step is to complete the proof.
By Step 2 and 3, we have

c((H ′ ⊕H ′)#G#F, a⊗ b) = F (x, y) + (ω ⊕ ω)(A2) + (ω ⊕ ω)(A1)

= F (x, y) + l · λ0

for some integer l ∈ Z such that (ω ⊕ ω)(A1 +A2) = l · λ0 and

c(H ′ ⊕H ′, a⊗ b) = γa,b(H
′) = γa,b(H ◦ ψ) = γa,b(H)

where the last equality uses Proposition 30 (7).
By Step 1, we conclude that

|γa,b(H)− l · λ0| 6
5

2
ε.

Hence we complete the proof.

3.4.3 Proof of Theorem 37
The aim of this section is to prove Theorem 37. We prove the following a priori more
general result.

Theorem 70. Let (M2n, ω) be a monotone symplectic manifold with a minimal Chern
number NM > n. Assume that there exist ψ ∈ π1(Ham(M,ω)) and a section class σ of
the Hamiltonian fibration Mψ → S2, such that its Seidel element Sψ,σ ∈ QH∗(M ;K)
satisfies the following:

• (Sψ,σ)∗k = a1 · [pt] for some a1 ∈ K\{0} and k ∈ N where [pt] denotes the point
class in H0(M ;K).

• (Sψ,σ)∗k
′

= a2 · [M ] · s−l′ for some a2 ∈ K\{0} and k′, l′ ∈ N where [M ] denotes
the fundamental class and s denotes the generator of the Novikov ring of (M,ω).

Then the spectral norm satisfies the following.

1. For any φ ∈ Ham(M,ω),

γ(φ) 6
n

NM
· λ0.
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2. The spectral norm is C0-continuous i.e.

γ : (Ham(M,ω), dC0)→ R

is continuous. Moreover, γ extends continuously to Ham(M,ω).

Remark 71. 1. Theorem 70 (1) is essentially contained in Proposition 15 in [KiSh18]
where Kislev-Shelukhin considers Lagrangian spectral invariants instead of Hamil-
tonian ones.

2. So far, (CPn, ωFS) seems to be the only example that satisfies the assumptions
in Theorem 70.

Proof. (of Theorem 70)
Let φ ∈ Ham(M,ω) and take any Hamiltonian H such that φH = φ. Let ψ ∈

π1(Ham(M,ω)) and σ be as in the statement. Denote

a := Sψ,σ ∈ QH∗(M ;K), a∗k := a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸
k−times

.

By looking at the degree, we have

• deg(a∗k) = deg([pt]) = 0,

• deg(a∗k
′
) = deg([M ] · s−l′) = 2n− 2Nl′,

• For any m ∈ N, deg(a∗m) = m · deg(a)− (m− 1) · 2n.

These equations will give us the following:

k′

k
=
Nl′

n
(3.5)

and our assumption N > n implies k′ > k. As NM > n and K is a field, the formula
in [EP03] Section 2.7 gives us

c(H, [M ]) = −c(H, [pt]),

and by Proposition 30, we get the following.

• γ(H) = c(H, [M ])− c(H, [pt]) = c(H, [M ])− c(H, a∗k),

• γ(ψ∗H) = c(H,Sψ,σ ∗ [M ])− c(H,Sψ,σ ∗ a∗k)) = c(H, a)− c(H, a∗(k+1)).

• γ((ψ2)∗H) = c(H, a∗2)− c(H, a∗(k+2)).

· · ·

• γ((ψk
′−k)∗H) = c(H, a∗(k

′−k))− c(H, a∗k′)

= c(H, a∗(k
′−k))− c(H, [M ]) + l′λ0.
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• γ((ψk
′−k+1)∗H) = c(H, a∗(k

′−k+1))− c(H, a) + l′λ0.

· · ·

• γ((ψk
′−1)∗H) = c(H, a∗(k

′−1))− c(H, a∗(k−1)) + l′λ0.

We used that for j ∈ Z,

c(H, a∗(j+k
′)) = c(H, a∗j)− l′λ0.

Adding up these k′-equations will give us the following.∑
06j6k′−1

γ((ψj)∗H) = kl′ · λ0.

As γ(φ) 6 γ((ψj)∗H) for all 0 6 j 6 k′ − 1,

k′ · γ(φ) 6 kl′ · λ0.

By equation 3.5, we conclude

γ(φ) 6
kl′

k′
· λ0 =

n

N
· λ0.

The continuity of γ is a direct consequence of Corollary 65.

Theorem 37 is a direct consequence of Theorem 70.

Proof. (of Theorem 37)
We explain briefly that CPn meets the assumptions in Theorem 70. Consider a

loop of Hamiltonian diffeomorphism of CPn defined by

ψt([z0 : z1 : · · · : zn−1 : zn]) := [z0 : e2πitz1 : e2πitz2 : · · · : e2πitzn−1 : e2πitzn].

It is known that there exists a section class σ such that Sψ,σ = [CPn−1] where [CPn−1]
denotes the generator of H2n−2(CPn;K). See Example 9.6.1 and Proposition 9.6.4 in
[MS04]. This shows that CPn satisfies the assumptions in Theorem 70.

3.5 Proofs of applications

3.5.1 The displaced disks problem
We prove Theorem 51. We use the following energy-capacity inequality proven by
Usher in [Ush10].

Proposition 72. ([Ush10])
Let B := B(r) be an open ball in (R2n, ωstd). If B(r) is symplectically embedded

to (M,ω)
f : B(r) ↪→ (M,ω)

and φ(f(B)) ∩ f(B) = ∅ for φ ∈ Ham(M,ω), then

πr2 6 γ(φ).
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Notice that for (M,ω) for which the spectral norm is C0-continuous, Proposition
72 holds for Hamiltonian homeomorphisms as well.

Proof. (of Theorem 51)
By Theorem 41, we can apply Proposition 72 for Hamiltonian homeomorphisms.

Let r > 0 and take δ > 0 so that if φ ∈ Ham(M,ω), γ(φ) > πr2, then dC0(id, φ) > δ.
Now, we will prove that if φ ∈ Ham(M,ω) displaces an embedded ball of radius r,
then dC0(id, φ) > δ. By Proposition 72, we have γ(φ) > πr2 and from our choice of
δ, this implies dC0(id, φ) > δ.

3.5.2 The C0-Arnold conjecture
We start by looking at properties of σa,a∗b defined earlier in Section 3.2.6.

Proposition 73. Let (M2n, ω) be a symplectic manifold and a, b ∈ H∗(M ;K)\{0}.
For Hamiltonians H,G, we have the following triangle inequality:

|σa,a∗b(H)− σa,a∗b(G)| 6 γ(H#G).

Proof.

σa,a∗b(H)− σa,a∗b(G) = c(H, a)− c(H, a ∗ b)− (c(G, a)− c(G, a ∗ b))

6 c(G#H, [M ]) + c(H#G, [M ]) = γ(H#G).

By changing the role of H and G, we get σa,a∗b(G)−σa,a∗b(H) 6 γ(H#G) too. This
completes the proof.

Proposition 73 allows us to define the following: Let (M2n, ω) be a negative mono-
tone symplectic manifold and a, b ∈ H∗(M ;K).

σa,a∗b : Ham(M,ω)→ R

σa,a∗b(φ) := σa,a∗b(H)

for any H such that φH = φ. Note that the well-definedness is due to Theorem 41.
Similarly, we define the following for CPn: Let h := [CPn−1] and l1, l2 ∈ N, l1 < l2.

σhl1 ,hl2 : Ham(CPn, ω)→ R

σhl1 ,hl2 (φ) := inf
φH=φ

σhl1 ,hl2 (H).

Corollary 74. Let (M2n, ω) be either a negative monotone symplectic manifold or
(CPn, ωFS). For a, b ∈ H∗(M ;K), we have the following triangle inequality: For
φ, ψ ∈ Ham(M,ω),

|σa,a∗b(φ)− σa,a∗b(ψ)| 6 γ(φ−1ψ).

Proof. We only explain the case of (CPn, ωFS) since the other is simpler. By Propo-
sition 73,

σhl1 ,hl2 (H#G) 6 σhl1 ,hl2 (H) + γ(G).

Take an infimum on both sides as in the definition.

σhl1 ,hl2 (φψ) 6 inf
φH=φ,φG=ψ

σhl1 ,hl2 (H#G) 6 σhl1 ,hl2 (φ) + γ(ψ).
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Since σhl1 ,hl2 are finite,

σhl1 ,hl2 (φψ)− σhl1 ,hl2 (φ) 6 γ(ψ).

This implies the triangle inequality

|σhl1 ,hl2 (φ)− σhl1 ,hl2 (ψ)| 6 γ(φ−1ψ)

where φ, ψ ∈ Ham(CPn, ωFS).

This corollary and the C0-continuity of γ implies the C0-continuity of σa,a∗b. This
allows us to define σa,a∗b for Hamiltonian homeomorphisms i.e. for a Hamiltonian

homeomorphism φ, define σa,a∗b(φ) := limn→∞ σa,a∗b(φn) where φn ∈ Ham(M,ω), φn
C0

−−→
φ.

We are now ready to prove Theorem 48.

Proof. (of Theorem 48)
Since the negative monotone case is simpler than the case of (CPn, ωFS), we only

prove the latter. We assume that for φ ∈ Ham(CPn, ωFS) and l1 < l2, we have

σhl1 ,hl2 (φ) = 0.

It is enough to prove that an arbitrary open neighborhood U of Fix(φ) is homologically
non-trivial. Let f : M → R be a sufficiently C2-small smooth function such that f < 0
on M\U , f |U = 0 and cLS(f, ·) = c(f, ·). (See Proposition 30 (5) for the definition of
cLS .)

First of all, take a sequence φj ∈ Ham(M,ω), j ∈ N such that

dC0(φ, φj) 6 1/j.

The C0-continuity of γ allows us to take a subsequence {jk}k∈N so that for each k,

γ(φ−1φjk) < 1/k.

Next, for each k, take a Hamiltonian Hk which generates φjk and

σhl1 ,hl2 (Hk) 6 σhl1 ,hl2 (φjk) + 1/k.

We borrow the following claim proved in [BHS21].

Claim 75. (Claim 5.3 in [BHS21]) Assume φHk
C0

−−→ φ. For any a ∈ H∗(M ;K)\{0},
there exists 0 < ε0 < 1 and an integer k0 such that for any k > k0, we have
c(Hk#ε0f, a) = c(Hk, a).

From this Claim, there exist ε0 > 0 and k0 ∈ N such that if k > k0, then

c(Hk#ε0f, a) = c(Hk, a)

for all a ∈ H∗(CPn;K). For k > k0,

c(Hk, h
l2) = c(Hk#ε0f, h

l2) 6 c(Hk, h
l1) + c(ε0f, h

l2−l1)

and thus,
−σhl1 ,hl2 (Hk) 6 c(ε0f, h

l2−l1) 6 c(f, hl2−l1).
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By our choices of φjk and Hk, we have the following.

σhl1 ,hl2 (Hk) 6 σhl1 ,hl2 (φjk) + 1/k 6 σhl1 ,hl2 (φ) + γ(φ−1φjk) + 1/k

6 σhl1 ,hl2 (φ) + 2/k = 2/k.

Thus,
−2/k 6 −σhl1 ,hl2 (Hk) 6 c(f, hl2−l1).

By taking a limit k → +∞, we obtain

0 6 c(f, hl2−l1).

Thus,
0 6 c(f, hl2−l1) 6 c(f, [M ]) 6 0.

The last inequality follows from f 6 0. Since f was taken to satisfy cLS(f, ·) = c(f, ·),
we have

cLS(f, hl2−l1) = cLS(f, [M ])(= 0).

This implies that U is homologically non-trivial.
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Chapter 4

Hofer Lipschitz and C0

continuous quasimorphisms

4.1 Abstarct of the chapter

We construct an example of a non-trivial homogeneous quasimorphism on the group
of Hamiltonian diffeomorphisms of the two and four dimensional quadric hypersur-
faces which is continuous with respect to both the C0-metric and the Hofer metric.
This answers a variant of a question of Entov–Polterovich–Py which is one of the
open problems listed in the monograph of McDuff–Salamon. Throughout the proof,
we make extensive use of the idea of working with different coefficient fields in quan-
tum cohomology rings. As a by-product of the arguments in the paper, we answer a
question of Polterovich–Wu regarding homogeneous quasimorphisms on the group of
Hamiltonian diffeomorphisms of the complex projective plane and prove some inter-
section results about Lagrangians in the four dimensional quadric hypersurface. Most
of the materials in this section are contained in [Kaw20].

4.2 Introduction

A (real-valued) homogeneous quasimorphism on a group G is a map

µ : G→ R

which satisfies

1. ∃C > 0 s.t. ∀f, g ∈ G, |µ(f · g)− µ(f)− µ(g)| 6 C,

2. ∀k ∈ Z,∀f ∈ G, µ(fk) = k · µ(f).

The study of homogeneous quasimorphisms is a very rich topic with numerous
connections to other mathematical domains. For example, homogeneous quasimor-
phisms naturally appear in the theory of bounded cohomology, they play a crucial
role in the study of the commutator length and they also have many applications in
the study of algebraic and topological properties (in case G is a topological group) of
G.

63
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In the context of symplectic topology, the study of algebraic and topological
properties of the group of symplectomorphisms and Hamiltonian diffeomorphisms
has been an important subject. For a closed symplectic manifold (M,ω), denote
the group of Hamiltonian diffeomorphisms by Ham(M,ω) and its universal cover
by H̃am(M,ω). One of the first groundbreaking results in this direction is due to
Banyaga [Ban78] which states that Ham(M,ω) is a simple group and H̃am(M,ω)
is a perfect group. This implies that there exist no non-trivial homomorphisms
on Ham(M,ω) and H̃am(M,ω). However, it was discovered that non-trivial (real-
valued) homogeneous quasimorphisms on Ham(M,ω) and H̃am(M,ω) do exist for
some symplectic manifolds. Various constructions have been studied extensively as
well as their applications to Hamiltonian dynamics. Just to mention a few, there
are constructions by Barge–Ghys [BG92], Borman [Bor12], Entov [Ent04], Entov–
Polterovich [EP03], Gambaudo–Ghys [GG04], Givental [Giv90], McDuff [McD10],
Ostrover [Ost06], Py [Py06] and Shelukhin [Sh14]. Contact counterparts are also
considered by Givental [Giv90], Borman–Zapolsky [BorZap15] and Granja–Karshon–
Pabiniak–Sandon [GKPS20]. In particular, Entov–Polterovich [EP03] introduced a
Floer theoretic method to construct homogeneous quasimorphisms on H̃am(M,ω)

ζe : H̃am(M,ω)→ R

where (M,ω) is a closed monotone symplectic manifold which satisfies some property.
Recall that a closed symplectic manifold (M,ω) is called monotone if there exists a
constant κ > 0, which is referred to as the monotonicity constant, such that

ω|π2(M) = κ · c1|π2(M)

where c1 = c1(TM) denotes the first Chern class. In this paper, we only consider
monotone symplectic manifolds unless mentioned otherwise. The precise construction
of ζe is explained in Section 4.4.4. Moreover, (a certain normalization of) ζe satisfies
the so-called Calabi property which means, roughly speaking, that “locally” it coin-
cides with the Calabi homomorphism: we refer to [EP03] for the precise definition
and its proof. In some cases, it is known that this homogeneous quasimorphism de-
scends to Ham(M,ω). For an excellent survey of the theory of quasimorphisms in the
symplectic context and their relations to other topics, we refer to [Ent14].

4.3 Main results

4.3.1 Homogeneous quasimorphisms
The following question concerning the continuity of quasimorphisms was posed by
Entov–Polterovich–Py in [EPP12]. This question appears also in the list of open
problems in the monograph of McDuff–Salamon.

Question 76. ([EPP12], [MS98, Chapter 14, Problem 23])

1. Does there exist a nonzero homogeneous quasimorphism

µ : Ham(S2)→ R

that is continuous with respect to the C0-topology on Ham(S2)?
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2. If yes, can it be made Lipschitz with respect to the Hofer metric?

Recall that the C0-topology on Ham(M,ω) is induced by the C0-metric of Hamil-
tonian diffeomorphisms φ, ψ ∈ Ham(M,ω), which is defined by

dC0(φ, ψ) := max
x∈M

d(φ(x), ψ(x)),

where d denotes the distance on M induced by a fixed Riemannian metric on M . See
Section 2.2 for further remarks on C0-topology as well as the Hofer metric.

We provide some background and motivation concerning this question of Entov–
Polterovich–Py.
• Hofer metric vs. C0-metric: The relation between C0-topology and the Hofer

metric is very subtle. For example, C0-topology is not continuous with respect to the
Hofer metric. Conversely, Entov–Polterovich–Py point out that on Ham(D2n(1)), the
group of compactly supported Hamiltonian diffeomorphisms of the closed unit ball
D2n(1) in R2n, the Hofer metric is not C0-continuous. For some striking results that
demonstrate rigidity and flexibility of symplectic objects with respect to C0-topology,
see [BHS18], [BO16] and [HLS15].

In fact, for closed surfaces of positive genus Σ, there are examples of homogeneous
quasimorphisms defined on Ham(Σ) which are C0-continuous but not Hofer Lipschitz
continuous: for their construction, see Gambaudo–Ghys [GG97], [GG04] and for their
discontinuity with respect to the Hofer metric, see [Kha19]. On the other hand,
the aforementioned Entov–Polterovich type homogeneous quasimorphisms are Hofer
Lipschitz continuous but are not C0-continuous: in fact, it is known that homogeneous
quasimorphisms which have the Calabi property are not C0-continuous: for a proof,
see [EPP12].
• Homogeneous quasimorphisms on the group of Hamiltonian homeomorphisms:

Given a symplectic manifold (M,ω), consider the C0-closure of Ham(M,ω) inside the
group of homeomorphims of M . We denote it by Ham(M,ω) and call its elements
Hamiltonian homeomorphisms. Hamiltonian homeomorphisms are central objects in
C0-symplectic topology. A C0-continuous homogeneous quasimorphism defined on
Ham(M,ω) will be useful to obtain information about the algebraic and topologi-
cal properties of Ham(M,ω). In particular, when (M,ω) is either a 2-sphere S2 or
a 2-disk D2, Ham(M,ω) is the identity component of the group of area-preserving
homeomorphisms. A (non-trivial) homogeneous quasimorphism on Ham(M,ω) can
be naturally obtained as an extension of a C0-continuous (non-trivial) homogeneous
quasimorphism on Ham(M,ω) (see [EPP12, Proposition 1.4]). Therefore, the exis-
tence of a non-trivial C0-continuous homogeneous quasimorphism on Ham(S2) and
Ham(D2) has a strong relation to a question concerning the simplicity of groups
Ham(S2) and Ham(D2) where the standard area-forms are considered as symplectic
forms. The latter was known under the name of the simplicity conjecture ([MS98,
Chapter 14, Problem 42]) and has caught the attention of many mathematicians over
the years. It has been recently settled by Cristofaro-Gardiner–Humilière–Seyfaddini
[CGHS20].
• Uniqueness of homogeneous quasimorphisms on Ham(S2): Another motivation

is the uniqueness of homogeneous quasimorphism on Ham(S2). For example, an
affirmative answer to the first question will imply the non-uniqueness of such maps,
since Entov–Polterovich type homogeneous quasimorphisms are not C0-continuous.

For more background on this question, see [EPP12].
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In this paper, we consider a generalized version of the question of Entov–Polterovich–
Py:

Question 77. Does there exist a closed symplectic manifold (M,ω) which admits a
non-trivial homogeneous quasimorphism on Ham(M,ω) which is C0-continuous? If
yes, can it be Hofer Lipschitz continuous?

Entov–Polterovich–Py proved that the vector space consisting of non-trivial ho-
mogeneous quasimorphisms on Ham(D2n(1)) that are both C0 and Hofer Lipschitz
continuous is infinite dimensional [EPP12, Proposition 1.9]. However, no example of
a closed symplectic manifold (M,ω) which admits a homogeneous quasimorphism on
Ham(M,ω) that is both Hofer continuous and C0-continuous is known by the time
of writing. In fact, for closed symplectic manifolds, according to [Ent14], construc-
tions of Givental, Entov–Polterovich and Borman are so far the only known examples
of homogeneous quasimorphisms (on H̃am(M,ω)) that are Hofer continuous. The
Hofer continuity of Givental’s homogeneous quasimorphisms was proven by Borman–
Zapolsky [BorZap15]. These examples all possess the Calabi property which implies
that, in the case they descend to Ham(M,ω), they are not C0-continuousThe Cal-
abi property of Givental’s homogeneous quasimorphisms was proven by Ben Simon
[BS07].

Our main result provides such examples for the monotone n-quadric (Qn, ω) for
n = 2, 4. Throughout the paper, we consider the standard monotone symplectic form
ω of Qn with the normalization

∫
Qn

ωn = 2 so that the monotonicity constant κ
is 1/NQn = 1/n. Note that (Q2, ω) is symplectomorphic to the monotone product
(S2×S2, σ⊕σ) where σ is the area-form of S2 with

∫
S2 σ = 1 and (Q4, ω) is symplec-

tomorphic to GrC(2, 4) equipped with the standard monotone symplectic form with
a certain normalization.

Precisely, we prove the following.

Theorem 78. (Theorem 16)
There exist non-trivial homogeneous quasimorphisms

µ : Ham(Qn)→ R

where n = 2, 4 that satisfy the following three properties:

1. µ is Lipschitz continuous with respect to the Hofer metric.

2. µ is C0-continuous i.e.

µ : (Ham(Qn), dC0)→ R

is continuous.

3. We have
|µ| = γ

where γ denotes the asymptotic spectral norm:

γ : Ham(M,ω)→ R

γ(φ) := lim
k→+∞

γ(φk)

k
.
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Obviously, properties 2 and 3 in Theorem 78 imply that the asymptotic spectral
norm γ is C0-continuous for the 2- and 4- quadric hypersurfaces even though the
C0-continuity of the spectral norm γ for these manifolds is not confirmed at the time
of writing. In fact, our argument can be generalized as follows.

Theorem 79. (Theorem 17) Let (M,ω) be a monotone symplectic manifold such that
QH∗(M ;C) is semi-simple. Then,

γ : Ham(M,ω)→ R

is C0-continuous.

Remark 80. 1. If QH∗(M ;C) is semi-simple and γ 6= 0, then it implies the ex-
istence of a non-trivial C0 and Hofer Lipschitz continuous homogeneous quasi-
morphism on Ham(M,ω). However, we can show γ 6= 0 only for the 2- and 4-
quadric hypersurfaces.

2. Although it is not explicitly stated, the existence of a homogeneous quasimor-
phism on H̃am(Qn),∀n ∈ N was essentially known since [EP03]. The de-
scent of Entov–Polterovich type homogeneous quasimorphisms to Ham(Q2) and
Ham(Q4) was proven in [EP03] and [Br11], respectively. The homogeneous
quasimorphisms in Theorem 78 are different from the Entov–Polterovich type
homogeneous quasimorphisms as they are defined as differences of two Entov–
Polterovich type homogeneous quasimorphisms.

3. In the case of n = 2, if we compose µ : Ham(S2 × S2)→ R with

Ham(S2)→ Ham(S2 × S2)

φ 7→ φ× φ,
we obtain a C0-continuous and Hofer Lipschitz continuous homogeneous quasi-
morphism on Ham(S2) but this turns out to be trivial and thus does not answer
the question of Entov–Polterovich–Py. See Remark 105 for further explanation.

4. In Section 4.5.5, we will discuss a generalization of Theorem 78.

4.3.2 Question of Polterovich–Wu
One of the key ideas in proving Theorem 78 and 117 is to work with quantum co-
homology rings with different coefficient fields, namely the field of Laurent series
and the universal Novikov field. The advantage of this idea in our context is ex-
plained in Section 4.5.3. As another application of this idea, we answer a question of
Polterovich–Wu which was posed in [Wu15, Remark 5.2].

We briefly review the question. Details of the question are postponed to Sec-
tion 4.5.6. In [Wu15], Wu found three homogeneous quasimorphisms {ζj}j=1,2,3 on
H̃am(CP 2) via the Entov–Polterovich construction for the quantum cohomology ring
with the universal Novikov field. Polterovich posed the following question.

Question 81. ([Wu15, Remark 5.2], see also Question 121)
Is it possible to distinguish the three homogeneous quasimorphisms {ζj}j=1,2,3?

We answer this in the negative.

Theorem 82. The three homogeneous quasimorphisms {ζj}j=1,2,3 coincide i.e.

ζ1 = ζ2 = ζ3.
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4.3.3 Application: Le Roux’s question
The relation between the Hofer-topology and the C0-topology on the group of Hamil-
tonian diffeomorphisms on closed symplectic manifolds still remains a mystery. In
[LeR10], Le Roux posed the following question.

Question 83. ([LeR10])
Let (M,ω) be any closed symplectic manifold. For any R > 0, does

Ham>R := {φ ∈ Ham(M,ω) : dHof(id, φ) > R}

have a non-empty C0-interior?

We answer to this question affirmatively for the quadric hypersurface Qn × M
where n = 2, 4.

Theorem 84. For any R > 0,

Ham>R := {φ ∈ Ham(Qn) : dHof(id, φ) > R}

has a non-empty C0-interior where n = 2, 4.

Theorem 84 seems to be the first case where the question of Le Roux was verified
for closed simply connected manifolds. In fact, according to [EPP12, Section 1.4],
“for closed simply connected manifolds (and already for the case of the 2-sphere) the
question is wide open”.

Remark 85. Our proof applies to any closed monotone symplectic manifold for which
the spectral norm can be arbitrarily large: see Theorem 131. See also Theorem 130
for a slightly generalized statement.

4.3.4 Strategy of the proof and structure of the paper
The strategy of the proof of Theorem 78, which divides into two parts, is as follows:

We first prove that a homogeneous quasimorphism on H̃am(M,ω) which is ob-
tained as the difference of any two Entov–Polterovich type homogeneous quasimor-
phisms descends to Ham(M,ω) and is bounded by the spectral norm γ. Next we
show that it is C0-continuous by using a result on the C0-control of the spectral norm
obtained by the author in [Kaw21] (Theorem 101). This is the first part of the proof.
Note that this part applies to any monotone symplectic manifold.

In the second part of the proof, we will see that in order to prove that the re-
sulting homogeneous quasimorphism is non-trivial, it suffices to find two disjoint
Lagrangian submanifolds with non-vanishing Floer cohomology. We use examples
found by Fukaya–Oh–Ohta–Ono and Eliashberg–Polterovich for the case of Q2 and
by Nishinou–Nohara–Ueda and Nohara–Ueda for the case of Q4 where the Floer coho-
mology of Lagrangian fibers of a Gelfand–Cetlin system was studied via superpotential
techniques.

The crucial idea of the proof is to work with different quantum cohomology rings
in Part 1 and 2. The differences of the two quantum cohomology rings as well as their
advantages are explained in Section 4.5.3. In Section 4.5.6, we answer a question
of Polterovich–Wu also by applying this idea. In Section 4.5.7, we discuss some
consequences of the argument to Lagrangian intersections.
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4.4 Additional preliminaries
Let (M,ω) be a closed monotone symplectic manifold i.e.

ω|π2(M) = κ · c1|π2(M)

for some monotonicity constant κ > 0 where c1 = c1(TM) denotes the first Chern
class. In this paper, we only consider monotone symplectic manifolds unless men-
tioned otherwise. The positive generators of 〈ω, π2(M)〉 and 〈c1, π2(M)〉 ⊂ Z are
respectively called the rationality constant and the minimal Chern number and will
be respectively denoted by λ0 and NM .

A Hamiltonian H on M is a smooth time dependent function H : R/Z×M → R.
A Hamiltonian H is called mean-normalized if the following holds:

∀t ∈ R/Z,
∫
M

Ht(x)ωn = 0.

We define its Hamiltonian vector field XHt by

−dHt = ω(XHt , · ).

The Hamiltonian flow of H, denoted by φtH , is by definition the flow of XHt . A
Hamiltonian diffeomorphism of H is a diffeomorphism which arises as the time-one
map of a Hamiltonian flow and will be denoted by φH . It is well-known that the set
of Hamiltonian diffeomorphisms forms a group and will be denoted by Ham(M,ω).
We denote its universal cover by H̃am(M,ω).

Denote the set of smooth contractible loops inM by L0M and consider its universal
cover. Two elements in the universal cover, say [z1, w1] and [z2, w2], are equivalent if
z1 = z2 and their boundary sum w1#w2 i.e. the sphere obtained by gluing w1 and
w2 along their common boundary with the orientation on w2 reversed, satisfies

ω(w1#w2) = 0, c1(w1#w2) = 0.

We denote by L̃0M the space of equivalence classes.
For a Hamiltonian H, define the action functional AH : L̃0M → R by

AH([z, w]) :=

∫ 1

0

H(t, z(t))dt−
∫
D2

w∗ω

where w : D2 → M is a capping of z : R/Z → M . Critical points of this functional
are precisely the capped 1-periodic Hamiltonian orbits of H which will be denoted by
P̃(H). The set of critical values of AH is called the action spectrum and is denoted
by Spec(H):

Spec(H) := {AH(z̃) : z̃ ∈ P̃(H)}.

4.4.1 Quantum (co)homology and semi-simplicity
Consider a monotone symplectic manifold (M,ω). Let the following denote the field
of Laurent series of a formal variable s:

C[[s−1, s] := {
∑
k6k0

aks
k : k0 ∈ Z, ak ∈ C}.
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By identifying the variable s with the generator of Γ := π2(M)/ ∼ where the
equivalence relation is defined by A,B ∈ π2(M),

A ∼ B ⇐⇒ ω(A) = ω(B)

satisfying
ω(s) = λ0, c1(s) = NM ,

one can define the quantum homology ring QH∗(M ;C) as

QH∗(M ;C) := H∗(M ;C)⊗C C[[s−1, s].

The quantum homology ring has the following valuation:

νQH∗ : QH∗(M ;C)→ R

νQH∗(
∑
k6k0

aks
k) := max{k · ω(s) = k · λ0 : ak 6= 0}.

Similarly, for a formal variable t, one can define the quantum cohomology ring
QH∗(M ;C) as

QH∗(M ;C) := H∗(M ;C)⊗C C[t−1, t]]

where
C[t−1, t]] := {

∑
k>k0

bkt
k : k0 ∈ Z, bk ∈ C}.

The quantum homology and quantum cohomology rings are isomorphic under the
Poincaré duality map:

PD : QH∗(M ;C)
∼−→ QH2n−∗(M ;C)

a :=
∑
k>k0

Akt
k 7→ PD(a) :=

∑
k>k0

A#
k s
−k

where # denotes the usual Poincaré duality between singular homology and singular
cohomology. Note that t satisfies

ω(t) = λ0, c1(t) = NM .

The quantum cohomology ring has the following valuation:

ν := νQH∗ : QH∗(M ;C)→ R

ν(
∑
k>k0

akt
k) := min{k · ω(t) = kλ0 : ak 6= 0}.

The ring structure of QH∗(M ;C) (and of QH∗(M ;C)) is given by the quantum
product which is denoted by ∗. It is defined by a certain count of pseudo-homolorphic
spheres. More precisely, in the case of QH∗(M ;C),

∀a, b, c ∈ H∗(M), (a ∗ b) ◦ c :=
∑
k∈Z

GW3,sk(a, b, c)⊗ sk

where ◦ denotes the usual intersection index in homology and GW3,sk(a, b, c) denotes
the 3-pointed Gromov-Witten invariant for a, b, c ∈ H∗(M) in the class A ∈ π2(M)
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where [A] = sk ∈ Γ i.e. the count of pseudo-holomorphic spheres in the homotopy
class A passing through cycles representing a, b, c ∈ H∗(M). See [MS98] for details.

It is known that the Floer homology defined in Section 2.3 is canonically isomorphic
to the quantum homology ring via the PSS-map:

PSSH : QH∗(M ;C)
∼−→ HF∗(H).

Note that the PSS-map preserves the ring structure where the ring structure on RHS
is given by the pair-of-pants product. See [MS04] for details.

The quantum cohomology ring QH∗(M ;C) is called semi-simple if it splits into a
finite direct sum of fields i.e.

QH∗(M ;C) = Q1 ⊕Q2 ⊕ · · · ⊕Ql

for some l ∈ N where each Qj is a field. The identity 1 ∈ QH∗(M ;C) can then be
decomposed into a sum of units ej ∈ Qj :

1 = e1 + e2 + · · ·+ el.

Remark 86. The notion of semi-simplicity depends on the algebraic set-up of the
quantum (co)homology. The notion explained above is the same as the one in [EP03]
which is not suitable to non-monotone settings as the Novikov ring is no longer a
field. A more general notion of semi-simplicity was introduced in [Ost06], [EP08].
[EP08, Theorem 5.1] states that in the monotone case, this generalized notion of
semi-simplicity coincides with the one of [EP03].

Examples of monotone symplectic manifolds whose quantum cohomology rings
are semi-simple include CPn, 1, 2 and 3 point monotone blow-ups of CP 2, complex
Grassmanians GrC(2, n) and their products: see [EP03], [EP08].

Later, we will consider quantum cohomology with a different coefficient field,
namely the universal Novikov field Λ defined by

Λ := {
∞∑
j=1

ajT
λj : aj ∈ C, λj ∈ R, lim

j→+∞
λj = +∞}.

Fukaya–Oh–Ohta–Ono [FOOO09], [FOOO19] study Floer theory with coefficients in
Λ rather than in the field of Laurent series and considers the following quantum
cohomology:

QH∗(M ; Λ) := H∗(M ;C)⊗C Λ.

It has the following valuation:

ν : QH∗(M ; Λ)→ R

ν(

∞∑
j=1

ajT
λj ) := min{λj : aj 6= 0}.

By considering
t 7→ T+λ0 ,

one can embed QH∗(M ;C) into QH∗(M ; Λ):

QH∗(M ;C) ↪→ QH∗(M ; Λ).
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4.4.2 Quantum homology of quadrics
In this section, we review some information about the quantum homology ring struc-
ture of quadric hypersurfaces. For n > 2, the n-quadricQn is defined as a hypersurface
in CPn+1 as follows:

Qn := {(z0 : z1 : · · · : zn+1) ∈ CPn+1 : z2
0 + z2

1 + · · ·+ z2
n+1 = 0}.

Recall that the minimal Chern number NQn of the n-quadric is n. It is well-known
that Q2 and Q4 are respectively symplectomorphic to S2 × S2 and GrC(2, 4). The
ring structure of (quantum) homology of Qn can be found in [BC09, Section 6.3]. We
just recall that QH∗(Qn;C) satisfies

[pt] ∗ [pt] = [Qn]s−2

where [pt] and [Qn] denote respectively the point class and the fundamental class.
The semi-simplicity of the quantum homology ring of Qn follows from a result of
Beauville [Bea95]. In fact, it is easy to see that QH∗(Qn;C) splits into a direct sum
of two fields by using that the minimal Chern number is NQn = n.

Proposition 87. For n > 2, QH∗(Qn;C) splits into a direct sum of two fields Q±:

QH∗(Q
n;C) = Q+ ⊕Q−.

4.4.3 Lagrangian Floer cohomology with bounding cochain
In this section, we sketch the construction of Lagrangian Floer cohomology deformed
by a bounding cochain due to Fukaya–Oh–Ohta–Ono [FOOO09]. In this paper, we
mainly consider monotone Lagrangian submanifolds but it is worth mentioning that
the theory of Fukaya–Oh–Ohta–Ono sketched in this section applies to any closed
oriented Lagrangian submanifold which is relatively spin. We refer to [FOOO09],
especially Chapter 3.1 for a detailed description of the material.

Let L be a closed oriented Lagrangian submanifold with a fixed relatively spin
structure. Recall that an oriented Lagrangian submanifold is relatively spin if its sec-
ond Stiefel-Whitney class w2(TL) is in the image of the restriction mapH2(M ;Z/2Z)→
H2(L;Z/2Z) ([FOOO09, Definition 3.1.1]). For example, if a Lagrangian is spin, then
it is relatively spin and in particular, oriented Lagrangians are always relatively spin
if dimRM 6 6.

Define the universal Novikov ring

Λ0 := {
∞∑
j=1

ajT
λj : aj ∈ C, λj > 0, lim

j→+∞
λj = +∞}.

The universal Novikov field is given by

Λ := {
∞∑
j=1

ajT
λj : aj ∈ C, λj ∈ R, lim

j→+∞
λj = +∞}.

Define also

Λ+ := {
∞∑
j=1

ajT
λj : aj ∈ C, λj > 0, lim

j→+∞
λj = +∞}.
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Lagrangian intersection Floer theory equips the Λ0-valued cochain complex of L
with the structure of an A∞-algebra. By taking the canonical model, one obtains
an A∞-structure {mk}06k6∞ on H∗(L; Λ0): we refer to [FOOO09, Section 5.4] for
details. An element b ∈ H1(L; Λ+) is called a weak bounding cochain (in the sequel,
we will simply call them a bounding cochain) if it satisfies the weak Maurer-Cartan
equation

∞∑
k=0

mk(b, b, · · · , b) = 0 mod Λ0 · PD([L]). (4.1)

The set of (weak) bounding cochains will be denoted by M̂weak(L). Note that
M̂weak(L) might be an empty set. We say that the Lagrangian L is unobstructed if

M̂weak(L) 6= ∅.

In the case L is unobstructed, for any b ∈ M̂weak(L), one can twist the Floer differ-
ential as

mb1(x) :=
∑
k,l>0

mk+l+1(b⊗k ⊗ x⊗ b⊗l).

The Maurer-Cartan equation 4.1 implies

mb1 ◦mb1 = 0

and the resulting cohomology group

HF ((L, b); Λ0) :=
Ker(mb1 : H∗(L; Λ0)→ H∗(L; Λ0))

Im(mb1 : H∗(L; Λ0)→ H∗(L; Λ0))

will be called the Floer cohomology deformed by a (weak) bounding cochain b ∈
M̂weak(L). We also define

HF ((L, b); Λ) := HF ((L, b); Λ0)⊗Λ0 Λ.

4.4.4 Quasimorphisms via spectral invariants

In this subsection, we recall the Floer theoretic construction of homogeneous quasi-
morphisms on H̃am(M,ω) and the notion of (super)heaviness both due to Entov–
Polterovich which are taken from [EP03], [EP09]. However, unlike their version, we
use quantum cohomology instead of quantum homology.

Assume e ∈ QH0(M ;C) is an idempotent. Then we define the asymptotic spectral
invariant

ζe : C∞(R/Z×M,R)→ R

ζe(H) := lim
k→+∞

ρ(Hk, e)

k

where ρ(·, e) denotes the spectral invariant corresponding to e ∈ QH0(M ;C) and the
k-times iterated Hamiltonian

Hk := H#H# · · ·#H︸ ︷︷ ︸
k-times

.
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Its restriction to C∞(M,R) i.e. ζe|C∞(M,R) : C∞(M,R)→ R is often referred to the
symplectic quasi-state [EP06].

We can also see ζe as a function of homotopy classes of Hamiltonian paths:

ζe : H̃am(M,ω)→ R

ζe(φ̃) := lim
k→+∞

ρ(φ̃k, e)

k
.

Recall that ρ(φ̃, · ) = ρ(H, · ) where H is the mean-normalized Hamiltonian such
that the Hamiltonian path t 7→ φtH represents the homotopy class φ̃. It was first
discovered by Entov–Polterovich that when some additional condition is satisfied,
ζe : H̃am(M,ω) → R is a homogeneous quasimorphism. We will state their result as
well as its variant due to Fukaya–Oh–Ohta–Ono.

We denote the even degree part of QH∗(M ;C) as follows:

QHeven(M ;C) :=
⊕
k∈Z

H2k(M ;C)⊗C C[t−1, t]].

Theorem 88. ([EP03, Theorem 1.1], [FOOO19])

1. If e ∈ QH0(M ;C) is an idempotent and e ·QHeven(M ;C) is a field, then

ζe : H̃am(M,ω)→ R

is a homogeneous quasimorphism.

2. If e ∈ QH∗(M ; Λ) is an idempotent and e ·QH∗(M ; Λ) is a field, then

ζe : H̃am(M,ω)→ R

is a homogeneous quasimorphism.

Remark 89. All the examples that appear in this paper satisfy

QHeven(M ;C) = QH∗(M ;C).

Definition 90. Let (M,ω) be any closed symplectic manifold and let e ∈ QH∗(M ;C)
be an idempotent. A subset S of M is called e-heavy or ζe-heavy (resp. e-superheavy
or ζe-superheavy) if it satisfies the following:

inf
x∈S

H(x) 6 ζe(H)

(resp. ζe(H) 6 sup
x∈S

H(x))

for any H ∈ C∞(M,R).

Remark 91. In general, e-heaviness follows from e-superheaviness but not vice versa.
In a special case where ζe : H̃am(M,ω) → R is a homogeneous quasimorphism, e-
heaviness and e-superheaviness are equivalent. See [EP09] for discussions in this
topic.

The following is a basic intersection property of (super)heavy sets from [EP09].
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Proposition 92. Let (M,ω) be any closed symplectic manifold and let e ∈ QH∗(M ;C)
be an idempotent. Let S1 and S2 be two disjoint subsets of M . If S1 is e-superheavy,
then S2 is not e-heavy.

Proof. If we assume that S2 is e-heavy, then by the definitions, we have

inf
x∈S2

H(x) 6 ζe(H) 6 sup
x∈S1

H(x)

for any H ∈ C∞(M,R). As S1 ∩ S2 = ∅, one can take H to be larger on S2 than on
S1, which contradicts the inequality.

4.4.5 Closed-open map and heaviness

In this section, we review some properties of the closed-open map defined by Fukaya–
Oh–Ohta–Ono in [FOOO09, Theorem 3.8.62]. Note that they also consider the case
where the absolute and the relative Floer cohomology groups are deformed with a
bulk. However, as bulk deformations are not relevant to the arguments in this paper,
we only state a version without them.

Denote the ring homomorphism called the closed-open map, which is a quantum
analogue of the restriction map, by

CO0
b : QH∗(M ; Λ)→ HF ∗((L, b); Λ)

where b is a bounding cochain. Note that the original notation used in [FOOO09] for
CO0

b is i∗qm,b.
Fukaya–Oh–Ohta–Ono proved the following in [FOOO19] to detect the heavi-

ness of the Lagrangian L, which generalizes the result of Albers [Alb05] and Entov–
Polterovich [EP09, Theorem 1.17].

Theorem 93. ([FOOO19, Theorem 1.6])
Assume

HF ∗((L, b); Λ) 6= 0

for a certain bounding cochain b. If

CO0
b(e) 6= 0

for an idempotent e ∈ QH∗(M ; Λ), then L is e-heavy.

4.4.6 Flag manifolds and Gelfand–Cetlin systems

In this subsection, we provide a brief description of (partial) flag manifolds and
Gelfand–Cetlin systems. Materials discussed in this section are only needed to pre-
cisely understand the statement of Theorem 115 and will not be used in other parts
of the paper. Thus, readers can skip this section in order to read the other parts.

Fix a sequence
0 = n0 < n1 < · · · < nr < nr+1 = n

of integers, and set
ki := ni − ni−1
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for i = 1, 2, · · · , r + 1. The (partial) flag manifold F = F (n1, n2, · · · , nr, n) is a
complex manifold parameterizing nested subspaces

0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vr ⊂ Cn, dimVi = ni.

The dimension of F = F (n1, n2, · · · , nr, n) is given by

dimCF (n1, n2, · · · , nr, n) =

r∑
i=1

(ni − ni−1)(n− ni) =

r∑
i=1

ki(n− ni). (4.2)

Let P = P (n1, n2, · · · , nr, n) ⊂ GL(n,C) be the isotropy subgroup of the standard
flag

Cn1 × {0} ⊂ Cn2 × {0} ⊂ · · · ⊂ Cnr × {0} ⊂ Cn.

Then, as

U(n) ∩ P (n1, n2, · · · , nr, n) = U(k1)× U(k2)× · · ·U(kr+1),

F (n1, n2, · · · , nr, n) is written as follows:

F (n1, n2, · · · , nr, n) = GL(n,C)/P (n1, n2, · · · , nr, n)

= U(n)/(U(k1)× U(k2)× · · ·U(kr+1)).

Remark 94. Note that this description gives the following different expression of the
dimension formula 4.2:

dimCF (n1, n2, · · · , nr, n) = n2 −
r+1∑
i=1

k2
i .

In this paper, we identify flag manifolds with (co)adjoint orbits. Using a U(n)-
invariant inner product on the Lie algebra u(n) of U(n), denoted by 〈−,−〉, we identify
the dual u(n)∗ of u(n) with the space

√
−1 · u(n) of Hermitian matrices. We fix

λ = diag(λ1, λ2, · · · , λn) ∈
√
−1 · u(n)

with

λ1 = · · · = λn1︸ ︷︷ ︸
k1

> λn1+1 = · · · = λn2︸ ︷︷ ︸
k2

> · · · > λnr+1 = · · · = λn︸ ︷︷ ︸
kr+1

.

Then F is identified with the adjoint orbit Oλ of λ (i.e. a set of Hermitian matrices
with fixed eigenvalues λ1, λ2, · · · , λn) by

F = U(n)/(U(k1)× · · · × U(kr+1))
∼−→ Oλ

[g] 7→ gλg∗.

Oλ has a standard symplectic form ωλ called the Kirillov–Kostant–Souriau form.
Recall that tangent vectors of Oλ at x can be written as

adξ(x) = [x, ξ]
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for ξ ∈ u(n) where [−,−] denotes the Lie bracket. Then the Kirillov–Kostant–Souriau
form ωλ is defined by

ωλ(adξ(x), adη(x)) :=
1

2π
〈x, [ξ, η]〉.

The following choice of λ gives us a monotone symplectic form ωλ on Oλ:

λ = (n− n1, · · ·︸ ︷︷ ︸
k1

, n− n1 − n2, · · ·︸ ︷︷ ︸
k2

, · · · , · · · , n− nr−1 − nr︸ ︷︷ ︸
kr

,−nr, · · ·︸ ︷︷ ︸
kr+1

)

+ (m, · · · ,m)︸ ︷︷ ︸
n=k1+···+kr+1

for any m ∈ R. When λ is of this form, we have

c1(TOλ) = [ωλ].

For x ∈ Oλ and k = 1, 2, · · · , n− 1 let x(k) denote the upper-left k × k submatrix
of x. Since x(k) is also a Hermitian matrix, it has real eigenvalues

λ
(k)
1 6 λ

(k)
2 6 · · · 6 λ

(k)
k .

Let I = I(n1 · · · , nr, n) denote the set of pairs (i, k) such that each λ
(k)
i is non-

constant as a function of x. It follows that the number of such pairs coincides with
dimCF i.e. |I| = dimCF . The Gelfand–Cetlin system is defined by

Φ : F → RdimCF

Φ(x) := {λ(k)
i (x)}(i,k)∈I

Theorem 95. (Guillemin–Sternberg, [GS83])
The map Φ defines a completely integrable system on (F (n1, n2, · · · , nr, n), ω).

The image ∆ := Φ(F ) is a convex polytope. A fiber of each interior point u ∈ Int(∆)
is a Lagrangian torus:

Φ−1(u) ' Tn

for any u ∈ Int(∆).

We call the convex polytope ∆ := Φ(F ), the Gelfand–Cetlin polytope. The major
difference between Delzant polytopes of toric manifolds and Gelfand–Cetlin polytopes
appears at fibers of points at the boundary of polytopes. While for a Delzant polytope,
a fiber of a relative interior of a k-dimensional face is never Lagrangian, for a Gelfand–
Cetlin polytope, a fiber of a relative interior point of a k-dimensional face can be a
(non-torus) Lagrangian submanifold. Differences between the two types of polytopes
are listed by Y. Cho–Y. Kim–Y-G. Oh in [CKO18].

4.5 Proofs

4.5.1 Proof of Theorem 78–Part 1
The goal of this subsection is to prove the following result and to see how it leads to
Theorem 78.
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Theorem 96. Let (M,ω) be a monotone symplectic manifold. Assume its quantum
cohomology ring QH∗(M ;C) is semi-simple i.e.

QH∗(M ;C) = Q1 ⊕Q2 ⊕ · · · ⊕Ql

for some l ∈ N where each Qj is a field. We decompose the identity 1 ∈ QH∗(M ;C)
into a sum of idempotents with respect to this split:

1 = e1 + e2 + · · ·+ el, ej ∈ Qj .

Then for any i, j ∈ {1, 2, · · · , l},

µ := ζei − ζej

defines a homogeneous quasimorphism on Ham(M,ω) which is C0-continuous i.e.

µ : (Ham(M,ω), dC0)→ R

is continuous. Moreover, it is Hofer Lipschitz continuous.

Remark 97. 1. As we do not know if ζei 6= ζej , the resulting homogeneous quasi-
morphism

µ : Ham(M,ω)→ R

might be trivial i.e. µ ≡ 0. Thus the point in proving Theorem 78 is to prove
ζe+ 6= ζe− for the two idempotents e± ∈ QH∗(Qn;C) (n = 2, 4).

2. For examples of monotone symplectic manifolds whose quantum cohomology ring
is semi-simple, see Section 4.4.1.

3. In the spirit of McDuff [McD10], instead of the semi-simplicity we can pose a
weaker assumption that QH∗(M ;C) has two fields as a direct summand:

QH∗(M ;C) = Q1 ⊕Q2 ⊕A

where Q1, Q2 are fields and no condition is posed on A.

We first show the following estimate.

Proposition 98. For any φ̃ ∈ H̃am(M,ω), we have

|µ(φ̃)| 6 γ(φ̃).

Proof of Proposition 98. By the triangle inequality,

• ρ(φ̃k, e1) 6 ρ(φ̃k, 1) + ρ(ĩd, e1),

• −ρ(φ̃k, e2) 6 ρ((φ̃−1)k, 1)− ρ(ĩd, e2).

By adding these inequalities, we obtain

µ(φ̃) = lim
k→+∞

ρ(φ̃k, e1)− ρ(φ̃k, e2)

k

6 lim
k→+∞

ρ(φ̃k, 1) + ρ(ĩd, e1) + ρ((φ̃−1)k, 1)− ρ(ĩd, e2)

k
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= lim
k→+∞

γ(φ̃k) + ν(e1)− ν(e2)

k
6 γ(φ̃).

As µ is homogeneous, we have

−µ(φ̃) = µ(φ̃−1)

for any φ̃ and thus
−µ(φ̃) = µ(φ̃−1) 6 γ(φ̃−1) = γ(φ̃).

Thus,
|µ(φ̃)| 6 γ(φ̃).

This completes the proof of Proposition 98.

One can strengthen the statement as follows.

Proposition 99. The function

µ : H̃am(M,ω)→ R

descends to Ham(M,ω) i.e. if φ̃ and ψ̃ have the same endpoint, then µ(φ̃) = µ(ψ̃).
Thus, for any φ ∈ Ham(M,ω), we define

µ(φ) := µ(φ̃)

where φ̃ ∈ H̃am(M,ω) is any element having φ as the endpoint. We can thus define
a map

µ : Ham(M,ω)→ R.
It satisfies

|µ(φ)| 6 γ(φ)

for any φ ∈ Ham(M,ω).

Remark 100. The Hofer Lipschitz continuity of µ follows automatically from Propo-
sition 99 since γ(φ) 6 dHof(id, φ).

Proof of Proposition 99. It suffices to show µ|π1(Ham(M,ω)) ≡ 0 where we see π1(Ham(M,ω)) ⊂
H̃am(M,ω). This is for the following reason.

Assume µ|π1(Ham(M,ω)) ≡ 0. Let φ̃, ψ̃ be two homotopy classes of Hamiltonian
paths having the same endpoint. For any k ∈ N, (φ̃−1)kψ̃k defines a homotopy class
of a Hamiltonian loop i.e. an element in π1(Ham(M,ω)). Since µ is a quasimorphism
on H̃am(M,ω), there exists a constant C > 0 such that

|µ((φ̃−1)kψ̃k)− µ(ψ̃k)− µ((φ̃−1)k)| 6 C

for any k ∈ N. From our assumption, the first term vanishes and

µ(ψ̃k) = k · µ(ψ̃),

µ((φ̃−1)k) = −k · µ(φ̃).

Thus, we have
∀k ∈ N, k · |µ(ψ̃)− µ(φ̃)| 6 C.

Therefore, we attain µ(φ̃) = µ(ψ̃).
Now, we prove µ|π1(Ham(M,ω)) ≡ 0. We make use of the following theorem proved

in [Kaw21]. We restate it with a special emphasis on a particular case which will be
used in our argument:
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Theorem 101. ([Kaw21, Theorem 4(1)])
Let (M,ω) be a monotone symplectic manifold. For any ε > 0, there exists δ > 0

such that if dC0(id, φH) < δ, then

γ(H) <
dim(M)

NM
· λ0 + ε

where NM denotes the minimal Chern number.
In particular, for any ψ ∈ π1(Ham(M,ω)), we have

γ(ψ) 6
dim(M)

NM
· λ0.

Now we continue the proof of Proposition 99. Let ψ ∈ π1(Ham(M,ω)). For any
k ∈ N, we have

k · |µ(ψ)| = |µ(ψk)| 6 γ(ψk) 6
dim(M)

NM
· λ0.

Thus,

|µ(ψ)| 6 lim
k→+∞

dim(M)

NM
· λ0

k
= 0.

This completes the proof of the first assertion. The second follows immediately from
Proposition 98.

Remark 102. The estimate of the spectral norm for Hamiltonian loops that appear
in Theorem 101 can be deduced by using basic facts about the Seidel elements as well.

We will use the following criterion due to Shtern to detect the C0-continuity of
homogeneous quasimorphisms, see [Sht01] and [EPP12, Proposition 1.3].

Proposition 103. ([Sht01], [EPP12, Proposition 1.3])
Let G be a topological group and µ : G→ R a homogeneous quasimorphism. Then

µ is continuous if and only if it is bounded on a neighborhood of the identity.

We now complete the proof of Theorem 96.

Proof of Theorem 96. By Propositions 99 and 103, the C0-continuity of µ : Ham(M,ω)→
R is reduced to the boundedness of the spectral norm γ around a C0-neighborhood
of id. Theorem 101 implies that the spectral norm is bounded around the identity
of H̃am(M,ω) (thus on Ham(M,ω) as well) with respect to the C0-topology when
(M,ω) is monotone. This completes the proof of Theorem 96.

By Proposition 87, QH∗(Qn;C) is semi-simple and splits into a direct sum of two
fields

QH∗(Qn;C) = Q+ ⊕Q−
and we decompose the identity element as follows:

1 = e+ + e−.

By the Entov–Polterovich theory, we obtain homogeneous (Calabi) quasimorphisms

ζe± : H̃am(Qn)→ R
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ζe±(φ̃) := lim
k→+∞

ρ(φ̃k, e±)

k
.

In the second part of the proof (Section 4.5.4), we will prove the following.

Theorem 104. For Qn (n = 2, 4),

ζe+ 6= ζe− .

Once we prove this, Theorems 96 and 104 imply that

µ := ζe+ − ζe−

defines a non-trivial homogeneous quasimorphism on Ham(Qn) (n = 2, 4) which is
both C0 and Hofer Lipschitz continuous and we complete the proof of Theorem 78.

Remark 105. As remarked in Remark 80 (2), the composition of µ : Ham(S2×S2)→
R and

Ham(S2)→ Ham(S2 × S2)

φ 7→ φ× φ

vanishes. This is because, by Proposition 99, we have

|µ(φ× φ)| 6 γ(φ× φ) = 2γ(φ)

for any φ ∈ Ham(S2). Note that the first and the second γ both denote the spectral
norm but the former is for Ham(S2×S2) and the latter is for Ham(S2). As remarked
in Remark 129, the spectral norm for Ham(S2) is bounded and thus the homogeneity
of µ implies µ(φ× φ) = 0 for any φ ∈ Ham(S2).

4.5.2 Proof of Theorem 79
In this section, we prove Theorem 79.

Proof of Theorem 79. Denote the split of the semi-simple quantum homology ring
QH∗(M ;C) by

QH∗(M ;C) = Q1 ⊕Q2 ⊕ · · · ⊕Ql.

We prove the following.

Claim 106. For any Hamiltonian H,

ρ1M (H) = max
16j6l

ρej (H).

Before proving this Claim, we complete the proof of Theorem 79. This Claim
implies that for any φ ∈ Ham(M,ω),

γ(φ) = max
16i,j6l

µi,j(φ)

where
µi,j(φH) = µi,j(H) := ρei(H)− ρej (H).

In fact,
γ(φH) = ρ1M (H) + ρ1M (H) = max

16i6l
ρei(H) + max

16j6l
ρej (H)
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= max
16i,j6l

ρei(H)− ρej (H) = max
16i,j6l

µi,j(φ).

By Theorem 96, we know that for each i, j, µi,j is C0-continuous and therefore, γ
is C0-continuous.

We now prove the Claim. We first prove ρ1M (H) > max16j6l ρej (H). By the
triangle inequality, we get

ρ(H, 1M ) + ν(ej) > ρ(H, ej)

for any j and Hamiltonian H and thus

ρ1M (H) > ρej (H)

for any j and Hamiltonian H. Therefore,

ρ1M (H) > max
16j6l

ρej (H)

for any Hamiltonian H.
Next, we prove ρ1M (H) 6 max16j6l ρej (H). A standard property of spectral

invariants implies
ρ(H, 1M ) 6 max

16j6l
ρ(H, ej)

as 1M = e1 + e2 + · · ·+ el and thus

ρ1M (H) 6 max
16j6l

ρej (H)

for any Hamiltonian H. This completes the proof of the Claim.

4.5.3 Comparing different quantum cohomology rings
In the first part of the proof of Theorem 78, we have used the quantum cohomology
ring denoted by QH∗(M ;C) but in the second part of the proof, we work with a
different quantum cohomology ring, namely the quantum cohomology ring with the
universal Novikov field which is denoted by QH∗(M ; Λ). In this section, we explain
the different advantages of working with QH∗(M ;C) and QH∗(M ; Λ). Working with
these two different quantum cohomology rings plays a crucial role not only in the
proof of Theorem 78 but also in the proof of Theorem 82. We also compare spectral
invariants of a quantum cohomology class in QH∗(M ;C) and its embedded quantum
cohomology class in QH∗(M ; Λ). Note that results in this subsection concern not
only the n-quadric but any monotone symplectic manifold.

Let (M,ω) be a monotone symplectic manifold. Recall from Section 4.4.1 that
QH∗(M ;C) was defined by

QH∗(M ;C) := H∗(M ;C)⊗C C[t−1, t|]

where the variable t represents an element in π2(M) that satisfies

ω(t) = λ0, c1(t) = NM .

On the other hand QH∗(M ; Λ) is defined by

QH∗(M ; Λ) := H∗(M ;C)⊗C Λ
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and one can embed QH∗(M ;C) to QH∗(M ; Λ) by

ι : QH∗(M ;C) ↪→ QH∗(M ; Λ)

t 7→ T+λ0

and ι is a ring homomorphism.
We explain the different advantages of working with QH∗(M ;C) and QH∗(M ; Λ)

as well as examples of cases where those advantages are used.
• The advantage of working with QH∗(M ;C):

1. QH∗(M ;C) carries a Z-grading while QH∗(M ; Λ) does not. Thus, to use spec-
tral invariants it is preferable to work with QH∗(M ;C) than QH∗(M ; Λ) as the
Z-grading allows us to study both the action and the index of spectral invariants.

Example 107. Theorem 101, which plays a crucial role in the first part of the
proof of Theorem 78, is proven by using the information of both the action and
the index of spectral invariants and thus, it is proven only in the setting where
we have a Z-grading of the quantum cohomology ring.

2. The algebraic structure ofQH∗(M ;C) tends to be simpler than that ofQH∗(M ; Λ).

Example 108. QH∗(CP 2;C) is a field and QH∗(CP 2; Λ) splits into a direct
sum of three fields. QH∗(S2 × S2;C) splits into a direct sum of two fields and
QH∗(S2 × S2; Λ) splits into a direct sum of four fields.

The quantum cohomology ring QH∗(CP 2;C) being a field has important con-
sequences as pointed out in Remark 129 which do not follow only from semi-
simplicity. This is precisely what we use in the proof of Theorem 82.

• The advantage of working with QH∗(M ; Λ): With Λ-coefficients, we have a very
rich Lagrangian Floer theory developed by Fukaya–Oh–Ohta–Ono. In particular, the
superpotential techniques are very useful to detect Lagrangian submanifolds that have
non-trivial Floer coholomogy groups.

Example 109. Finding certain Lagrangian submanifolds that have non-trivial Floer
cohomology groups via superpotential techniques is a key step in the second part of the
proof of Theorem 78 explained in Section 4.5.4.

To sum up, in the first part of the proof of Theorem 78 (Section 4.5.1), we need
to work with QH∗(M ;C) while in the second part of the proof of Theorem 78 (Sec-
tion 4.5.4), we greatly benefit from the advantage of working with QH∗(M ; Λ). In
order to connect arguments in Part 1 and Part 2 which are done in different algebraic
settings, we will need the following comparison between spectral invariants of a quan-
tum cohomology class in QH∗(M ;C) and its embedded quantum cohomology class
in QH∗(M ; Λ).

Lemma 110. Let (M,ω) be a monotone symplectic manifold.

1. For any a ∈ QH∗(M ;C)\{0}, we have

ρ(H, ι(a)) = ρ(H, a)

for any Hamiltonian H.
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2. Let e ∈ QH0(M ;C) be an idempotent. Assume that e ·QHeven(M ;C) is a field.
Then, we have

ζι(e)(φ̃) = ζe(φ̃)

for any φ̃ ∈ H̃am(M,ω). In particular,

ζι(e) : H̃am(M,ω)→ R

is a homogenous quasimorphism.

The value ρ(·, a) denotes the spectral invariant of a ∈ QH∗(M ;C) while the value
ρ(·, ι(a)) denotes the spectral invariant of its embedded element ι(a) ∈ QH∗(M ; Λ).

Remark 111. A priori Lemma 110 (2) is not obvious as we do not know if ι(e) is a
unit of a field factor of QH∗(M ; Λ) i.e. ι(e) ·QH∗(M ; Λ) is a field (Theorem 88). For
example, QH∗(CP 2;C) is a field but QH∗(CP 2; Λ) splits into a direct sum of three
fields and the identity element 1 ∈ QH∗(CP 2;C) embeds to 1Λ ∈ QH∗(CP 2; Λ) which
is not an unit of a field factor.

Proof of Lemma 110. 1. Essentially the equality follows from [UZ16, Propositions
2.21, 6.6]. See also [BC09, Section 5.4] where they also explain that spectral
invariants are preserved under field extension. Nevertheless, we give a brief
sketch of the proof.

By the continuity property of spectral invariants (Proposition 30 (1)), it is
enough to prove the case where H is non-degenerate. Let a ∈ QH∗(M ;C)\{0}
and H be a non-degenerate Hamiltonian. Now, consider the natural embedding
of the Floer chain complex CF∗(H) into the Fukaya–Oh–Ohta–Ono type Floer
chain complex CF∗(H; Λ)

j : CF∗(H) ↪→ CF∗(H; Λ)

and the induced map on homology

j∗ : HF∗(H)→ HF∗(H; Λ).

Note that
PSSH,Λ ◦ PD ◦ ι = j∗ ◦ PSSH ◦ PD

where PSSH on the right hand side denotes the PSS-isomorphism

PSSH : QH∗(M ;C)
∼−→ HF∗(H)

while PSSH on the left hand side denotes the PSS-isomorphism

PSSH,Λ : QH∗(M ; Λ)
∼−→ HF∗(H; Λ)

and PD denotes the Poincaré duality between quantum homology and quantum
cohomology.

HF τ∗ (H)
iτ∗−−−−→ HF∗(H)

PSSH◦PD←−−−−−−− QH∗(M ;C)yj∗ yj∗ yι
HF τ∗ (H; Λ)

iτ∗−−−−→ HF∗(H; Λ)
PSSH,Λ◦PD←−−−−−−−− QH∗(M ; Λ)



4.5. PROOFS 85

As j∗ preserves the action filtration, the diagram commutes and for tautological
reasons, we get

ρ(H, ι(a)) = ρ(H, a).

2. This follows immediately from (1).

We obtain the following from Lemma 110 (2).

Corollary 112. Let (M,ω) be a monotone symplectic manifold. Assume that e ∈
QH0(M ;C) is an idempotent and e ·QHeven(M ;C) is a field. If a subset S ⊂ M is
ι(e)-heavy, then S is e-superheavy.

Proof of Corollary 112. Lemma 110 (2) implies that S is e-heavy. However, as e ∈
QH0(M ;C) is a unit of a field factor of QHeven(M ;C), ζe is a homogeneous quasi-
morphism so S is e-superheavy.

4.5.4 Proof of Theorem 78–Part 2

In this subsection, we prove Theorem 104 which was used to complete the proof of
Theorem 78 in the end of Section 4.5.1.

Proof of Theorem 104. We argue the cases n = 2 and n = 4 separately.
• Case n = 2: In this case, ζe+ 6= ζe− was already proven by Eliashberg–Polterovich

in [EliP10] by an approach different to what we discuss in this section. In this sec-
tion, we will prove ζe+ 6= ζe− by using the following result of Fukaya–Oh–Ohta–Ono
[FOOO12], [FOOO19]. The same argument will be used in the case where n = 4.

Theorem 113. ([FOOO12, Lemma 23.3(1), Lemma 23.5] )

1. In S2 × S2, there exists a monotone Lagrangian submanifold L0 diffeomorphic
to T 2 such that

HF ((L0, b0); Λ) 6= 0

for a certain bounding cochain b0 ∈ H1(L0; Λ0)/H1(L0; 2πiZ).

2. The anti-diagonal in S2 × S2 denoted by L1 is unobstructed and satisfies

HF (L1; Λ) 6= 0.

3. L0 and L1 are disjoint:
L0 ∩ L1 = ∅.

Now, consider the natural embedding

ι : QH∗(Q2;C) ↪→ QH∗(Q2; Λ).

As the closed-open map maps the identity element of the quantum cohomology ring
to the identity element of the Lagrangian Floer cohomology group, we have

• CO0
b(1) = PD([L0]) 6= 0 ∈ HF ∗((L0, b); Λ)

• CO0(1) = PD([L1]) 6= 0 ∈ HF ∗(L1; Λ).
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Since
1 = ι(e+) + ι(e−),

it is
CO0

b(ι(e+)) 6= 0 or CO0
b(ι(e−)) 6= 0.

As ι(e±) are both idempotents, by Theorem 93, we deduce that L0 is at least ei-
ther ι(e+)-heavy or ι(e−)-heavy. Corollary 112 implies that L0 is at least either
e+-superheavy or e−-superheavy. Next, by looking at the second equation, the same
argument implies that L1 is at least either e+-superheavy or e−-superheavy. As L0

and L1 are disjoint, Proposition 92 implies that they cannot be both e+-superheavy
or both e−-superheavy at once. This implies

ζe+ 6= ζe− .

Remark 114. From this argument, it follows that either

• L0 is e+-superheavy and L1 is e−-superheavy

• L0 is e−-superheavy and L1 is e+-superheavy

but it is not clear which one of the two actually holds. Eliashberg–Polterovich’s ap-
proach shows that the former holds [EliP10].

•Case n = 4: The key of the proof is to find two disjoint Lagrangian submanifolds
in Q4 having non-vanishing Floer cohomology just as in the previous case. We use
results of Nishinou–Nohara–Ueda and Nohara–Ueda which we will now briefly explain.

The relation between the superpotential and Lagrangian Floer cohomology has
been studied extensively. After a pioneering work of Cho [Cho04], Fukaya–Oh–Ohta–
Ono computed the superpotential for toric symplectic manifolds in [FOOO10]. Later,
Nishinou–Nohara–Ueda computed the superpotential for symplectic manifolds ad-
mitting a toric degeneration in [NNU10]. This lead Nohara–Ueda to study the Floer
cohomology of non-torus fibers in partial flag manifolds in [NU16]. We state some of
their results which will be relevant for us.

Theorem 115. ([NNU10, Theorem 10.1, Section 11], [NU16, Theorem 1.2, Example
3.3])

Let Φ : GrC(2, 4) → R4 be the Gelfand–Cetlin system with the Gelfand–Cetlin
polytope ∆ := Φ(GrC(2, 4)). Denote the fiber of u ∈ ∆ by L(u):

L(u) := Φ−1(u).

We identify GrC(2, 4) with the adjoint orbit of

λ = diag(4, 4, 0, 0)

so that it is monotone.

1. For
u0 := (2, 3, 1, 2) ∈ Int(∆),

there exists a bounding cochain b ∈ H1(L(u0); Λ) such that

HF ((L(u0), b); Λ) ' QH∗(T 4; Λ).
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2. There exists u1 ∈ ∂∆ such that its fiber L(u1) is Lagrangian and diffeomorphic
to U(2) ' S1 × S3 with non-trivial Floer cohomology:

HF ((L(u1),±πi/2 · e1); Λ) ' QH∗(S1 × S3; Λ)

for a bounding cochain b = ±πi/2 ·e1 where e1 is the generator of H1(L(u1);Z).

Remark 116. 1. Q4 is symplectomorphic to GrC(2, 4).

2. Theorem 115 (1) was proven for any identification of GrC(2, 4) with Oλ where

λ = diag(2α, 2α, 0, 0),

u0 := (α, 3α/2, α/2, α) ∈ Int(∆)

for any α > 0. If we choose α = 2, the Kirillov-Konstant form ωλ defines a
monotone symplectic form by the monotonicity criterion in Section 4.4.6.

3. Note that L(u0) ' T 4 and L(u1) ' U(2) ' S1 × S3 are both monotone since
they are both located in the center of a Lagrangian facet of the Gelfand–Cetlin
polytope. This follows from a result of Yunhyung Cho and Yoosik Kim [?] where
they classify monotone fibers of Gelfand–Cetlin polytopes.

Let L(u0), L(u1) be as in Theorem 115. We argue exactly as in the case where
n = 2. As the closed-open map maps the identity element of the quantum cohomology
ring to the identity element of the Lagrangian Floer cohomology group, we have

• CO0
b(1) = PD([L(u0)]) 6= 0 ∈ HF ∗((L(u0), b); Λ)

• CO0
±πi/2·e1(1) = PD([L(u1)]) 6= 0 ∈ HF ∗((L(u1),±πi/2 · e1); Λ).

Since
1 = ι(e+) + ι(e−),

the first equation and Theorem 93 imply that L(u0) is e+-superheavy or e−-superheavy.
We have used that by Corollary 112, ι(e±)-heaviness is equivalent to e±-superheaviness.
Next, by looking at the second equation, the same argument implies that L(u1) is
e+-superheavy or e−-superheavy. As L(u0) and L(u1) are disjoint (recall that they
are fibers of distinct points in the Gelfand–Cetlin polytope), we conclude that they
cannot be both e+-superheavy or both e−-superheavy at once. This implies

ζe+ 6= ζe− .

4.5.5 Generalization of Theorem 78
In this section, we prove the following slight generalization of Theorem 78.

Theorem 117. Let (M,ω) be a monotone symplectic manifold (with the same mono-
tonicity constant as Qn, n = 2, 4) such that QH∗(M ;C) is semi-simple. Assume that
there exists a Lagrangian submanifold L of (M,ω) such that HF ((L, b); Λ) 6= 0 for
some bounding cochain b. Then, there exists a non-trivial homogeneous quasimor-
phism

µ : Ham(Qn ×M)→ R
which is both C0-continuous and Hofer Lipschitz continuous where Qn×M (n = 2, 4)
denotes the monotone product.
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Remark 118. The existence of a homogeneous quasimorphism on Ham(Qn×M), n =
2, 4 (instead of on the universal cover) where (M,ω) is as in Theorem 117 was not
known to the best of our knowledge. Note that examples of (M,ω) which satisfy the
assumptions in Theorem 117 include CPn, 1, 2 and 3 point monotone blow-ups of
CP 2, Qn and their monotone products.

We start with some preliminary results on the product of semi-simple algebras.
Let (Mj , ωj) (j = 1, 2) be monotone symplectic manifolds. Denote the generators

of π2(Mj)/Ker(ωj) by sj which satisfy

ωj(sj) = λMj
, c1(TMj)(sj) = NMj

where λMj
denotes the rationality constant and NMj

denotes the minimal Chern
number of (Mj , ωj).

In the case where the monotonicity constants of (Mj , ωj) (j = 1, 2) coincide, one
can consider their product (M1 ×M2, ω1 ⊕ ω2) which is also a monotone symplectic
manifold. It has the same monotonicity constant as (Mj , ωj) (j = 1, 2) and its minimal
Chern number NM1×M2

is the greatest common divisor of NM1
and NM2

. As above,
we denote the generator of the π2(M1 ×M2)/Ker(ω1 ⊕ ω2) by s which satisfies

(ω1 ⊕ ω2)(s) = λM1×M2
, c1(T (M1 ×M2))(s) = NM1×M2

.

Entov–Polterovich proved the following in [EP08].

Theorem 119. ([EP08, Theorem 5.1, Theorem 6.1])
Let (Mj , ωj) (j = 1, 2) be monotone symplectic manifolds. Assume that their

quantum homology rings

QHeven(Mj ;C) = Heven(Mj ;C)⊗ C[|s−1
j , sj ]

are both semi-simple and that at least one of Mj , j = 1, 2 satisfies H2k−1(Mj ;C) = 0
for all k ∈ Z. Then,

QHeven(M1 ×M2;C) = Heven(M1 ×M2;C)⊗ C[|s−1, s]

is semi-simple.

One can consider the following embedding:

σ : QH∗(M1;C) ↪→ QH∗(M1 ×M2;C)

a · s1 7→ a⊗ [M2] · sNM1
/NM1×M2 .

Of course, one can consider an analogous embedding for M2.
We are now ready to prove Theorem 117. We will use the cohomological counter-

part of the results above.

Proof of Theorem 117. As QH∗(M ;C) is semi-simple, it splits into a direct sum of
fields {Qj}:

QH∗(M ;C) = Q1 ⊕Q2 ⊕ · · · ⊕Ql.

We decompose the identity element 1M ∈ QH∗(M ;C) with respect to this decompo-
sition:

1M = e1 + e2 + · · ·+ el
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where ej is a unit of Qj . As we argued in the proof of Theorem 78, as

CO0
b(1M ) = CO0

b(ι(e1)) + CO0
b(ι(e2)) + · · ·+ CO0

b(ι(el)) 6= 0,

Proposition 93) implies that L is ι(ej)-heavy for some j ∈ {1, 2, · · · , l}. Without loss
of generality, we assume j = 1. Moreover, Corollary 112 implies that L is actually
e1-superheavy.

Recall that in the proof of Theorem 78, we have seen that in Qn, n = 2, 4, there
exist two disjoint Lagrangian submanifolds L0 and L1 which satisfy either one of the
following:

1. L0 is e+-superheavy and L1 is e−-superheavy.

2. L0 is e−-superheavy and L1 is e+-superheavy.

Without loss of generality, we assume the former. By [EP09, Theorem 1.7], L0×L is
e+ ⊗ e1-superheavy and L1 × L is e− ⊗ e1-superheavy.

Now, as QH∗(Qn ×M ;C) is also semi-simple, we consider its decomposition into
fields and the decomposition of the identity element 1Qn×M ∈ QH∗(Qn×M ;C) with
respect to this split:

QH∗(Qn ×M ;C) = Q′1 ⊕Q′2 ⊕ · · · ⊕Q′l′

1Qn×M = e′1 + e′2 + · · ·+ e′l′

for some l′ ∈ N. As e+ ⊗ e1 and e− ⊗ e1 are idempotents of QH∗(Qn × M ;C),
by Theorem 1.5 (3) in [EP09], there exist j0, j1 ∈ {1, 2, · · · , l′} such that L0 × L is
e′j0-heavy and L1 × L is e′j1-heavy. For ζe′j0 , ζe′j1 : H̃am(Qn ×M) → R both being
homogeneous quasimorphisms, heaviness and superheaviness are equivalent for e′j0
and e′j1 , thus L0 × L is e′j0-superheavy and L1 × L is e′j1-superheavy. As L0 × L and
L1 × L are disjoint, L1 × L is not e′j0-superheavy. This implies

ζe′j0
6= ζe′j1

.

Thus, it follows from Theorem 96 that

µ := ζe′j0
− ζe′j1

defines a non-trivial homogeneous quasimorphism

µ : Ham(Qn ×M)→ R

which is both C0-continuous and Hofer Lipschitz continuous.

4.5.6 Proof of Theorem 82
In this subsection, we precisely state the question of Polterovich–Wu which appeared
in Section 4.3.2 and prove Theorem 82 as an application of Lemma 110.

According to a computation due to Wu [Wu15], QH∗(CP 2; Λ) is semi-simple and
splits into a direct sum of three fields:

QH∗(CP 2; Λ) = Q1 ⊕Q2 ⊕Q3.
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We denote the corresponding split of the identity element 1Λ ∈ QH∗(CP 2; Λ) as
follows:

1Λ = e1 + e2 + e3

where {ej}j=1,2,3 are

ej :=
1

3
(1Λ + θjuT−

1
3λ0 + θ2ju2T−

2
3λ0),

u is the generator of H2(CP 2;C) and

λ0 := 〈ωFS , [CP 1]〉, θ := e
2πi
3 .

Note that u satisfies
u3 = Tλ0 .

These idempotents give rise to three homogenous quasimorphisms (or symplectic
quasi-states) {ζej}j=1,2,3:

ζej : H̃am(CP 2)→ R

ζej (φ̃) := lim
k→+∞

ρ(φ̃k, ej)

k

for each j = 1, 2, 3.

Remark 120. It will not be used in this paper but we point out that ζej descends to
Ham(CP 2) as π1(Ham(CP 2)) = Z3.

Polterovich posed the following question:

Question 121. ([Wu15, Remark 5.2])
Is it possible to distinguish the symplectic quasi-states/morphisms for the three

idempotents of QH∗(CP 2; Λ)?

Note that ζj which appeared in the statement of this question in Section 4.3.2 is
precisely ζej defined above. We now prove Theorem 82 which answers this question
in the negative.

Proof of Theorem 82. We will show that

ζej = ζ1Λ

for all j = 1, 2, 3 where 1Λ ∈ QH∗(CP 2; Λ). By the triangle inequality, we have

ρ(φ̃k, ej) 6 ρ(φ̃k, 1Λ) + ν(ej)

for any k ∈ N. Thus,
ζej 6 ζ1Λ

where

ζ1Λ
(φ̃) := lim

k→+∞

ρ(φ̃k, 1Λ)

k

for φ̃ ∈ H̃am(CP 2). By Lemma 110, as QH∗(CP 2;C) is a field, we have

ζ1Λ = ζ1
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where 1 ∈ QH∗(CP 2;C). Thus, we have

ζej 6 ζ1

and as ζej , ζ1 are both homogeneous quasimorphisms, it follows that

ζej = ζ1.

Thus we have proven
ζe1 = ζe2 = ζe3 = ζ1 = ζ1Λ

.

Remark 122. A similar argument is applicable to the case where M := S2×S2: As
we have seen in Section 4.4.2, QH∗(S2×S2;C) splits into a direct sum of two fields.
On the other hand, Fukaya–Oh–Ohta–Ono have computed in the proof of [FOOO19,
Theorem 23.4], QH∗(S2 × S2; Λ) splits into a direct sum of four fields. Denote the
two units of field factors of QH∗(S2 × S2;C) by e± which satisfy

PD(e±) =
[M ]± [pt× pt]s

2
.

Denote the four units of the field factors of QH∗(S2 × S2; Λ) by e(±,±) which satisfy

PD(e(+,±)) =
[M ] + P · Tλ0

4
± (A+B)Tλ0/2

4
,

PD(e(−,±)) =
[M ]− P · Tλ0

4
± (A−B)Tλ0/2

4

where
[M ] := [S2 × S2], P := [pt× pt],

A := [S2 × pt], B := [pt× S2].

By using
ι(e+) = e(+,+) + e(+,−),

ι(e−) = e(−,+) + e(−,−),

we obtain
ζe+ = ζι(e+) = ζe(+,+)

= ζe(+,−)
,

ζe− = ζι(e−) = ζe(−,+)
= ζe(−,−)

.

4.5.7 Results on Lagrangian intersections
In this section, we discuss consequences of the proof of Theorem 78 for Lagrangian
intersections.

In proving Theorem 78, detecting disjoint Lagrangian submanifolds whose Floer
cohomology is non-trivial is a crucial step which we discussed in Section 4.5.1. As a
by-product, we obtain certain results on Lagrangian intersections.

A closed Lagrangian submanifold L is called monotone if it satisfies

ω|π2(M,L) = λ · µ|π2(M,L)
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for some λ > 0 where µ = µL denotes the Maslov class. The minimal Maslov number
NL is the positive generator of µ(π2(M,L)) i.e. µ(π2(M,L)) = NLZ. Recall that Λ
denotes the universal Novikov field

Λ = {
∞∑
j=1

ajT
λj : aj ∈ C, λj ∈ R, lim

j→+∞
λj = +∞}.

All the Lagrangian submanifolds concerned in the following are assumed to be
oriented and relatively spin (for its definition, see Section 4.4.3). The statements in
this section include the notion of deformed Floer cohomology defined by Fukaya–Oh–
Ohta–Ono [FOOO09]. For a quick review, see Section 4.4.3.

The main statement for Lagrangian intersection is the following.

Theorem 123. In Qn (n = 2, 4), there exist two monotone Lagrangian submanifolds
L0, L1 that satisfy the following:

1. L0 and L1 are respectively diffeomorphic to

• T 2 and S2 when n = 2.

• T 4 and S1 × S3 when n = 4.

2. L0 and L1 are disjoint.

3. Let L be a Lagrangian submanifold in Qn which is

• oriented when n = 2.

• oriented and relatively spin when n = 4.

If L is disjoint from both L0 and L1 i.e. if

L ∩ (L0 ∪ L1) = ∅

then
HF ((L, b); Λ) = 0

for any bounding cochain b.

Remark 124. 1. Under the symplectomophism between Q2 and S2 × S2, the La-
grangian submanifolds L0 and L1 in Theorem 123 correspond respectively to the
so-called exotic torus defined by

{(x, y) ∈ S2 × S2 : x1y1 + x2y2 + x3y3 = −1/2, x3 + y3 = 0}

which was studied in [EP09], [FOOO12] and the anti-diagonal

{(x, y) ∈ S2 × S2 : x = −y}.

2. For more information about the two Lagrangian submanifolds in Theorem 123,
see Theorems 113, 115 and related references.
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For example, Theorem 123 can be applied to the following two well-known La-
grangians in Q2 and Q4. In Q2, there is a Lagrangian torus T which corresponds to
the product of equatorial circles S1 × S1 in S2 × S2 under the symplectomophism
between Q2 and S2 × S2. In Q4, there is the standard Lagrangian sphere S4 which
appears as the real locus

S4 = {(x0 : · · · : x4) ∈ CP 5 : x2
0 + · · ·+ x2

3 = x2
4, xj ∈ R, j = 0, · · · , 4}.

These Lagrangians T and S4 are known to have non-trivial Floer cohomology
groups

HF (T ; Λ) 6= 0, HF (S4; Λ) 6= 0.

Theorem 123 directly implies the following.

Corollary 125. Any Hamiltonian deformation of T in Q2 or the standard Lagrangian
sphere S4 in Q4 intersects either one of L0 or L1 in Theorem 123:

For any φ ∈ Ham(Q2),

L0 ∩ φ(T ) 6= ∅ or L1 ∩ φ(T ) 6= ∅.

For any φ ∈ Ham(Q4),

L0 ∩ φ(S4) 6= ∅ or L1 ∩ φ(S4) 6= ∅.

Remark 126. In Theorem 123, it is crucial that we consider Floer cohomology with-
out bulk-deformation. As it was studied by Fukaya–Oh–Ohta–Ono [FOOO12] and
Cho–Kim–Oh [CKO18], there exist Lagrangians in Qn (n = 2, 4) intersecting neither
L0 nor L1 that have non-trivial bulk-deformed Floer cohomology.

There are several ways to construct monotone Lagrangian submanifolds in Qn

such as the Albers–Frauenfelder-type construction [AF08] and the Biran-type con-
struction [B01], [B06]. Their precise constructions and the relations among them are
explained in [OU16]. In particular, Oakley–Usher constructs monotone Lagrangian
submanifolds in Q4 which are diffeomorphic to S1 × S3 by these methods in [OU16,
Section 1.2] denoted by LQ0,3 and SQ0,3, which turn out to be Hamiltonian isotopic (see
[OU16, Theorem 1.4]). However, the monotone Lagrangian submanifold L1 in Q4

which appeared in Theorem 123 is not Hamiltonian isotopic to these examples due
to Oakley–Usher as L1 has minimal Maslov number 4 (see [NU16, Section 4.4]) and
Oakley–Usher’s Lagrangian submanifold has minimal Maslov number 2. Thus, we
have the following.

Proposition 127. The 4-quadric Q4 has two monotone Lagrangian submanifolds
diffeomorphic to S1 × S3 which are not Hamiltonian isotopic.

Basically, Theorem 123 comes from the fact that the quantum cohomology ring
QH∗(Qn;C) = H∗(Qn;C) ⊗C C[t−1, t]] splits into a direct sum of two fields. In the
case where the quantum cohomology ring does not split i.e. itself is a field, we have
a stronger rigidity result as follows.

Proposition 128. Let (M,ω) be a closed symplectic manifold for which the spectral
pseudo-norm is bounded i.e.

sup{γ(H) : H ∈ C∞(R/Z×M,R)} < +∞.
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Let L1 be a Lagrangian submanifold such that

HF ((L1, b1); Λ) 6= 0

for some bounding cochain b1. Then, any Lagrangian submanifold L2 which is disjoint
from L1 has a vanishing Floer cohomology:

HF ((L2, b2); Λ) = 0

for any bounding cochain b2.

Remark 129. 1. When (M,ω) is monotone, if QH∗(M ;C) is a field, then the
spectral norm is bounded. Thus, Proposition 128 applies to CPn (see [EP03]).

2. Proposition 128 is not restricted to monotone symplectic manifolds. Examples
of non-monotone symplectic manifolds for which the spectral norm is bounded
includes a large one point blow-up of CP 2 and (S2×S2, σ⊕λσ) for λ > 1 where
σ denotes an area form with

∫
S2 σ = 1. See Section 4.5.7 for further remarks.

Proof of Theorem 123. We assume that there exists a bounding cochain b such that

HF ((L, b); Λ) 6= 0

and show that L must intersect either L0 or L1. As the closed-open map maps
the identity element of the quantum cohomology ring to the identity element of the
Lagrangian Floer cohomology group, we have

CO0
b(1) = PD([L]) 6= 0 ∈ HF ∗((L, b); Λ).

Since
QH∗(Qn;C) := Q+ ⊕Q−

1 = e+ + e−,

Theorem 93 implies that L (is either ι(e+)-heavy or ι(e−)-heavy so by Corollary 112)
is either e+-superheavy or e−-superheavy where

ι : QH∗(Qn;C) ↪→ QH∗(Qn; Λ).

(This was explained in more detail in the proof of Theorem 78.) If L intersects neither
of L0, L1, then we have two disjoint sets which are either both e+-superheavy or both
e−-superheavy, which contradicts Proposition 92. Thus, L must intersect either L0

or L1 and this completes the proof.

We now prove Proposition 128.

Proof of Proposition 128. Assume there exist two Lagrangian submanifolds L1 and
L2 such that

L1 ∩ L2 = ∅

and
HF ((L1, b1); Λ) 6= 0, HF ((L2, b2); Λ) 6= 0.
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Then by Theorem 93, L1 and L2 are both ζ1-heavy where ζ1 denotes the asymptotic
spectral invariant with respect to the idempotent 1 ∈ QH∗(M ; Λ). Thus, for any
Hamiltonian H we have

γ(H) = ρ(H, 1) + ρ(H, 1) > ζ1(H) + ζ1(H)

> inf
x∈L1

H(x) + inf
x∈L2

H(x).

As L1 ∩ L2 = ∅, we can consider a Hamiltonian which is arbitrarily large on L1 and
arbitrarily small on L2 which contradicts the assumption

sup{γ(H) : H ∈ C∞(R/Z×M,R)} < +∞.

This completes the proof.

As we have pointed out in Remark 129, examples of closed symplectic manifolds
that satisfy

sup{γ(H) : H ∈ C∞(R/Z×M,R)} < +∞

include CPn, a large one point blow-up of CP 2 and (S2 × S2, σ ⊕ λσ) with λ > 1.
We provide a brief explanation to these examples.

One can easily check that, for any closed symplectic manifold (M,ω), the condition

sup{γ(H) : H ∈ C∞(R/Z×M,R)} < +∞

is equivalent to
ρ( · , 1) : H̃am(M,ω)→ R

being a quasimorphism where 1 ∈ QH∗(M ;C). When (M,ω) is monotone, then
ρ(·, 1) is a quasimorphism when QH∗(M ;C) is a field. Thus, the case of CPn follows.
When (M,ω) is non-monotone, [Ost06, Theorem 1.3] or [EP08, Theorem 3.1] imply
that ρ(·, 1) is a quasimorphism when “QH0(M ;C)” is a field where a different set-up of
the quantum cohomology is considered. For a precise definition of this set-up, we refer
to [Ost06], [EP06]. As pointed out in [Ost06, Lemma 3.1, Remark 3.4], “QH0(M ;C)”
is a field when (M,ω) is a large one point blow-up of CP 2 or (S2 × S2, σ ⊕ λσ) with
λ > 1.

4.5.8 Proof of Application

In this section, we prove the following Theorem, which includes Theorem 84.

Theorem 130. Let (M,ω) be a symplectic manifold which is either symplectically
aspherical or monotone with the same monotonicity constant as Qn, n = 2, 4 (we
also allow it to be an empty set). For any R > 0,

Ham>R := {φ ∈ Ham(Qn ×M) : dHof(id, φ) > R}

has a non-empty C0-interior.

Theorem 130 follows as a corollary of the following statement.
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Theorem 131. Let (M,ω) be a monotone symplectic manifold. Assume that

sup{γ(φ) : φ ∈ Ham(M)} = +∞.

For any R > 0,

Ham>R := {φ ∈ Ham(M,ω) : dHof(id, φ) > R}

has a non-empty C0-interior.

Proof of Theorem 131. From the assumption, for anyR > 0, we can find φ ∈ Ham(M,ω)
such that

γ(φ) > R+
2dim(M)

NM

where NM is the minimal Chern number of M . By Theorem 101, there exists δ > 0

such that if dC0(id, φ′) < δ, then γ(φ′) < 2dim(M)
NM

. Thus, for any ψ ∈ Ham(M,ω)
such that dC0(φ, ψ) < δ, we have

γ(ψ) > γ(φ)− γ(ψ ◦ φ−1) > R+
2dim(M)

NM
− 2dim(M)

NM
= R

thus, ψ ∈ Ham>R. This completes the proof.

Now Theorem 130 follows immediately.

Proof of Theorem 130. From the Künneth formula for spectral invariants (see [EP09,
Section 5.1]), we have

sup{γ(φ) : φ ∈ Ham(Qn ×M)} > sup{γ(φ1 × id) : φ1 ∈ Ham(Qn), id ∈ Ham(M)}

= sup{γ(φ1) : φ1 ∈ Ham(Qn)} > sup{µ(φ1) : φ1 ∈ Ham(Qn)} = +∞

for n = 2, 4. Note that the last equality uses the non-triviality and the homogeneity
from Theorem 78. Therefore, Theorem 130 follows directly from Theorem 131.



Chapter 5

Spectral norm and ground rings

5.1 Overview of the chapter
Floer homology is a powerful tool in symplectic topology but its construction is
very technical and subtle. For example, they depend on the choice of the ground
ring (e.g. RPn in CPn where n is odd has non-vanishing Floer homology with Z2-
coefficients HF (RPn;Z2) 6= 0 whereas with C-coefficients), its Floer homology van-
ishes HF (RPn;C) = 0) and sometimes one needs to twist the boundary map in order
to obtain a non-trivial Floer homology (e.g. The Clifford torus T 2

Clif in CP 2 has
vanishing Floer homology with the usual boundary map HF (T 2

Clif ,C) = 0 but by
twisting the boundary map with a certain local system b ∈ H1(T 2

Clif ;C), one gets a
non-vanishing Floer homology HF ((T 2

Clif , b);C) 6= 0). There are also several different
versions of Floer homology: First of all, there is the traditional one introduced by
Floer [Fl88] and developed by Oh [Oh93a]. Later on, Fukaya-Oh-Ohta-Ono built a
massive theory that allows one to construct Floer homology on any closed symplectic
manifold. The former and the latter use different coefficient fields in the construction
of homology. It seems very difficult to decide if this dependence on the algebraic
setting is just technical of rather conceptual.

The main results in Chapter 4 (Theorem 78 which answers a variant of a question
of Entov-polterovich-Py on the C0 and Hofer-Lipschitz continuous quasimorphisms
and Theorem 82 which answers a question of Polterovich-Wu) were obtained by using
Floer homologies with different algebraic setting. This led us to the following question.

Question 132. How does the behavior of the spectral norm γR change according to
the choice of the ground ring R?

Note that the spectral norm is a Floer theoritic quanitty and the subscript R
denotes the choice of the ground ring we use in order to define Floer homology. Our
main observation is the following.

Theorem 133. ([KawSh])
For n = 2, 3 we have

sup
φ∈Ham(CPn)

γZ(φ) = +∞

while
sup

φ∈Ham(CPn)

γK(φ) 6 1

97
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for any field K.

We will study this phenomenon from two different perspectives.

5.1.1 Algebraic viewpoint

The finiteness of spectral norm for K-coefficients

sup
φ∈Ham(CPn)

γK(φ) 6
n

n+ 1

is a consequence of the so-called “Poincaré duality formula for spectral invariants”.
Thus,

sup
φ∈Ham(CPn)

γZ(φ) = +∞

implies that the well-known “Poincaré duality formula for spectral invariants” no
longer holds for spectral invariants with Z-coefficients. We have found that for some
Hamiltonian H, the filtered Z-coefficient Floer homology HF τ (H;Z) possesses a tor-
sion element at some filtration level τ ∈ R which disappears when the filtration level
τ is sufficiently large.

Theorem 134. ([KawSh])
On CPn (n = 2, 3), there exists a Hamiltonian H such that for some filtration

level τ ∈ R, we have
Tor(HF τ (H;Z)) 6= 0.

5.1.2 Dynamical viewpoint

The relation between the asymptotic of the spectral norm and the dynamics of a
Hamiltonian diffeomorphism has caught attention of some symplectic geometers. For
example, Ginzburg-Gurel proved the folllowing in [GG18].

Theorem 135. ([GG18])
If φ ∈ Ham(CPn) is a pseudo-rotation, then there exists a sequence nk ↗ +∞

such that
lim

k→+∞
γC(φnk) = 0.

This result led us to the following question.

Question 136. Let (M,ω) be a closed monotone symplectic manifold and R ∈ {C,Z}
. If φ ∈ Ham(M,ω) is a pseudo-rotation, then do we have

γR(φ)(= lim
k→∞

γR(φk)

k
) = 0 ?

Moreover, can we say that
sup
k∈Z

γR(φk) < +∞ ?

We have obtained the following partial result in this direction.
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Theorem 137. ([KawSh])
For CPn, we have

sup
φ:pseudo−rotation

γZ(φ) 6 1

even though
sup

φ∈Ham(CPn)

γZ(φ) = +∞

when n = 2, 3.

5.1.3 Set-up and notations
Throughout the chapter, we will denote Floer theoretic quantities with the choice of
the ground ring as follows. Note that we only consider a closed monotone symplectic
manifold (M,ω) in this chapter.

For a ground ring R, define the Floer homology group as usual and denote it by
HF (H;R). Similarly, we denote the quantum homology ring by

QH∗(M ;R) := H∗(M ;R)⊗R R[|s−1, s].

Denote the PSS-map by

PSSH,R : QH∗(M ;R)
∼−→ HF (H;R).

For any a ∈ QH∗(M ;R)\{0} and a HamiltonianH, we define the spectral invariant
with respect to H and a by

c(H, a;R) := inf{τ ∈ R : PSSH;R(a) ∈ Im(iτ∗)}

where
iτ∗ : HF τ (H;R)→ HF (H;R).

We often abbreviate the spectral invariant of the fundamental class cR(H, [M ]) by
c(H;R).

We denote the asymptotic spectral invariant of an idempotent e ∈ QH∗(M ;R) by

ce(H;R) := lim
k→+∞

c(H, e;R)

k
.

When the choice of the ground ring is obvious, we sometimes lift it from the
notation.

5.2 Proofs

5.2.1 Proof of Theorem 133
The quantum homology ring of CPn is a field for any ground field K so by Theorem
??,

cK(φ̃) := lim
k→+∞

c(φ̃, [CPn];K)

k

defines a homogeneous quasimorphism on H̃am(CP 2) for any ground field K.
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Proposition 138. For CP 2, we have

cZ2 6= cC

Proof. (of Proposition 138)
In CP 2, there are two disjoint monotone Lagrangians with non-vanishing Floer

(co)homology, namely RP 2 and the Chekanov torus T 2
Ch. These satisfy

• HF (RP 2;Z2) 6= 0 ([Oh93b]).

• HF ((T 2
Ch, b); Λ) 6= 0 where b is a certain bounding cochain ([Wu15]).

Thus, by considering the closed-open map (Theorem 93), we deduce that RP 2 is
cZ2 -superheavy and T 2

Ch is c1Λ -superheavy. From the answer to the question of
Polterovich-Wu (Theorem 82), T 2

Ch is cC-superheavy. As RP 2 and T 2
Ch are disjoint,

we conclude that
cZ2 6= cC.

One might wonder we will obtain a C0 and Hofer-Lipschitz continuous homoge-
neous homogeneous quasimorphism by defining

µ := cC − cZ2

as in Chapter 4.
However, there is one issue: Recall that the proof the C0 continuity of a quasi-

morphism µ : Ham(Qn)→ R in Theorem 78 went through the following steps:

1. Define µ := ce+ − ce− where e± ∈ QH(M ;C) are units of field factors.

2. Get the estimate |µ| 6 γC

3. γC is bounded in a C0-neiborhood of id in Ham(Qn).

4. Apply Shtern’s continuity criterion for quasimorphisms.

The issue in the current situation is that, as we work with quasimorphisms with
two different ground fields, namely Z2 and C, we do not get the estimate of the first
step in the same way. In order to over come this issue, we will consider the following
property of spectral invariants.

Proposition 139. Let K be any field. For any φ̃ ∈ H̃am(M,ω), we have

c(φ̃, [M ];K) 6 c(φ̃, [M ];Z).

From this basic property, we get

µ(φ̃) = cC(φ̃)− cZ2
(φ̃) = cC(φ̃) + cZ2

(φ̃−1) 6 cZ(φ̃) + cZ(φ̃−1) 6 γZ(φ̃).

Thus, we obtain
|µ| 6 γZ
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and we are in the position where we can apply the C0-control of the spectral norm
(Theorem 12): For any ε > 0, there exists δ > 0 such that if dC0(id, φ) < δ, then

γZ(φ) 6
dimR(M)

NM
+ ε.

Shtern’s continuity criterion for quasimorphisms implies that

µ := cC − cZ2

defines a non-trivial C0 and Hofer-Lipschitz continuous homogeneous homogeneous
quasimorphism. The estimate |µ| 6 γZ and the homogeniety implies

sup
φ∈Ham(CP 2)

γZ(φ) = +∞.

Remark 140. We can alternatively use the following computations of Floer homolo-
gies as well:

• HFZap(T
2
Ch;C) 6= 0 for a certain choice of a local system for the Zapolsky-type

Floer homology (see [Zap15] and [LZ18]).

• HFZap(RP 2;Z2) 6= 0 for the Zapolsky-type Floer homology (see [Zap15]).

In comparison to Theorem 78, I pose the following question.

Question 141. Does the homogeneous quasimorphism µ : Ham(CP 2) → R, µ :=
cC − cF2 satisfy

γZ = |µ| ??

5.3 Poincaré duality and spectral invariants
In this section, we prove a formula concerning spectral invarinats and Poincaré duality
with Z-coefficients. The version with C-coefficients appeared in [EP03].

5.3.1 Basic sequences
First of all, we introduce exact sequences which will be helpful to consider Poincaré
duality for spectral invariants.

Proposition 142. We have the following exact sequences:

0 HF τ∗ (H)

Ext(HF−τ2n−∗−1(H),Z) HF∗(H)

H2n−∗(Hom(CF∗(H)/CF>−τ
∗ (H)),Z) H∗(CF (H)/CF τ (H))

Hom(HF−τ2n−∗(H),Z)

0

iτ

Fτ jτ

Gτ

PD

(5.1)
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Proof. First of all, we have the following diagram which comes from Poincaré duality:

CF τk (H) Hom(CF>−τ
2n−k(H),Z)

CFk(H) Hom(CF2n−k(H),Z)

CFk(H)/CF τk (H) Hom(CF2n−k(H),Z)/Hom(CF>−τ
2n−k(H),Z))

(5.2)

and by using

Hom(CF∗(H),Z)/Hom(CF>−τ
∗ (H),Z) ' Hom(CF∗(H)/CF>−τ

∗ (H),Z)

(we do not use Hom(CF∗(H)/CF>−τ
∗ (H),Z) ' Hom(CF−τ∗ (H),Z) as, if we did,

then the following homology will not be defined) and passing to homology, we obtain

HF τk (H) HF 2n−k
−τ (H)

HFk(H) HF 2n−k(H)

Hk(CF (H)/CF τ (H)) H2n−k(Hom(CF∗(H)/CF>−τ
∗ (H)),Z))

(5.3)

By the universal coefficient theorem for the chain complex (CF∗(H)/CF>−τ
∗ (H), ∂Floer),

we have

0 Ext(H2n−k−1(CF∗(H)/CF>−τ
∗ (H), ∂Floer)),Z) H2n−k(Hom(CF∗(H)/CF>−τ

∗ (H),Z)), δFloer)

Hom(H2n−k(CF∗(H)/CF>−τ
∗ (H), ∂Floer),Z) 0

(5.4)
Note that

H2n−k(CF∗(H)/CF>−τ
∗ (H), ∂Floer) = HF−τ2n−k(H)

and thus

0 Ext(HF−τ2n−k−1(H),Z) H2n−k(Hom(CF∗(H)/CF>−τ
∗ (H),Z)), δFloer)

Hom(HF−τ2n−k(H),Z) 0

(5.5)
Together with the exact sequence 5.5, we obtain the vertical sequence in Proposi-

tion 142.

Remark 143. If we work with a ground field K instead of Z, then we get a sequence
similar to 142 with Z replaced with K.
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5.3.2 Two extreme cases

Consider the following diagram:

0

Ext(HF−τ2n−∗−1(H);Z)

H2n−∗(Hom(CF∗(H)/CF>−τ
∗ (H)),Z) HF∗(H) HF τ∗ (H)

Hom(HF−τ2n−∗(H);Z) QH∗(M ;Z)

0

F−τ

G−τ

PD◦jτ iτ

PSSH

(5.6)

There are two extreme cases: given a ∈ QH∗(M ;Z), denote a# := PD ◦ jτ ◦
PSSH(a).

1. G−τ is an isomorphism. This happens for example when

• The ground ring is a field.

• Ext(HF τ∗−1(H);Z) = 0 for all τ ∈ R e.g. φH is a pseudo-rotation.

2. F−τ is an isomorphism. This happens if and only if

a ∈ Tor(QH∗(M ;Z)).

In these two cases, what would the PD formulae be?

1. If G−τ is an isomorphism, then

c(H, a) = − inf{c(H, b) : 〈a, b〉 6= 0}

which recovers the formula in [EP03].

2. If F−τ is an isomorphism, then the formula becomes much more complicated:
See Section 5.5.

5.3.3 Results for CP n

In this subsection, we prove the following Theorem.

Theorem 144. ([KawSh])
On CPn, n = 2, 3, there exists a Hamiltonian H such that for some filtration level

τ ∈ R, we have
Tor(HF τ (H;Z)) 6= 0.
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Proof. Assume that for any Hamiltonian H, we have Ext(HF τ∗−1(H);Z) = 0,∀τ ∈ R.
Then, Proposition 142 implies

c(H, [M ];Z) = − inf{c(H, b;Z) : 〈[M ], b〉 6= 0}

= − inf{c(H, k · [pt];Z) : k ∈ Z}

Note that we have used that NCPn = n+ 1 and therefore QH0(CPn;Z) = Z〈[pt]〉.
The following implies that this cannot happen.

Claim 145. On M := CPn, there exists a Hamiltonian H such that

c(H, [M ];Z) > − inf{c(H, k · [pt];Z) : k ∈ Z}.

Proof. (of Claim 145) By the Poincaré duality formula, we know that for any H,

−c(H, [M ];Z) 6 inf
k∈Z

c(H, k · [pt];Z).

Assume that we have the equality

−c(H, [M ];Z) = inf
k∈Z

c(H, k · [pt];Z)

for any H. Then,

−c(H, [M ];Z) = inf
k∈Z

c(H, k · [pt];Z) > c(H, [pt];C) = −c(H, [M ];C).

Note that the last equality is a consequence of the Poincaré duality formula for C-
coefficients. Thus,

c(H, [M ];Z) 6 c(H, [M ];C).

On the other hand, by the property of the ground ring, we know that

c(H, [M ];Z) > c(H, [M ];C).

These put together, we obtain

c(H, [M ];Z) = c(H, [M ];C)

for any H, which contradicts Proposition 138. This finishes the proof of Claim 145.

Thus we conclude that there exists a Hamiltonian H such that for some filtration
level τ ∈ R, Ext(HF τ∗−1(H);Z) 6= 0.

Question 146. Then what is cZ(H, [M ]) in terms of cZ(H, ·)?
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5.4 Dynamical results

Corollary 147. (spectral bound for PR)
If φ ∈ Ham(CPn) is a pseudo-rotation, then

γZ(φ) 6 λ0 = 〈ωFS , [CP 1]〉.

Proof. (of Corollary 147)
For a pseudo-rotation φ = φH ∈ Ham(CPn),

γZ(H) = cZ(H, [M ]) + cZ(H, [M ])

= cF2
(H, [M ]) + cF2

(H, [M ]) = γF2
(H) 6 〈ωFS , [CP 1]〉.

Corollary 148. Let φH ∈ Ham(CPn) be a pseudo-rotation. For any ground ring R,
we have

cR(H) = cZ(H).

Remark 149. When we work with a ground field K, the asymptotic spectral invari-
ant cK is this corolarry equals the so-called augmented action. This was shown by
Ginzburg-Gürel in [GG09].

Proof. For any H, we have
cR(H) 6 cZ(H).

Together with
cR(H) + cR(H) > 0,

we obtain
−cR(H) 6 cZ(H).

Now, for a pseudo-rotation φH ∈ Ham(CPn), we have

cZ(H) = cF2
(H) = −cF2

(H),

so all together,
−cR(H) 6 −cF2

(H).

Thus,
cF2(H) 6 cR(H) 6 cZ(H) = cF2(H).

This implies
cR(H) = cZ(H).

Proposition 150. For CPn, n = 2, 3, there exist l ∈ Z and a Hamiltonian H such
that

cZ(H, l[M ]) < cZ(H, [M ]).
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Proof. As we have seen in Proposition 138, we have

cF2 6= cC.

This implies that there exists H such that

cF2
(H, [M ]) < cC(H, [M ]).

This implies that there exists l /∈ 2Z such that

cZ(H, l[M ]) < cZ(H, [M ]).

5.5 Closing remarks
In M := CPn, there might be b ∈ Tor(HF τ (H)), which eventually disappears, such
that c(H, [M ]) corresponds to −τ where PSSH([pt])+b appears at HF τ (H). In order
to understand this torsion class, together with Egor Shelukhin, I plan to study the
”filtered quantum linking form” which the quantum counterpart of the linking form in
singular homology theory (which is considered as the Poincaré pairing for the torsion
classes) by taking the filtration into account. The non-filtered version of this looks
like

L : QH∗(M ;Z)⊗QH2n−1−∗(M ;Q/Z)→ Q/Z

which comes from the following operation:

©∗ : QHi(M ;Z)⊗ Tor(QHj(M ;Z))→ QHi+j−2n+1(M ;Q/Z)

(a, b) 7→ a ∗ β−1(b)

where
β : QHj(M ;Q/Z)→ QHj−1(M ;Z)

denotes the Bockstein homomorphism.
We have for a ∈ QHi(M ;Z), b ∈ QH2n−1−i(M ;Z),

L(a, b) = 〈a©∗ b, 1〉, 1 ∈ QH0(M ;Q/Z).

We plan to study properties of this pairing and aim to refine the Poincaré duality
formula for spectral invariants.
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ABSTRACT


The group of Hamiltonian diffeomorphisms is known to possess two remarkable bi-
invariant metrics called the Hofer metric and the spectral metric. A third metric on the 
group which has been of interest in symplectic topology is the C^0 metric. Roughly 
speaking, this thesis explores the deep and mysterious relation between these three 
metrics. Results contain the comparison between the spectral metric and the C^0 metric, 
a construction of quasimorphisms that have some new types of continuity properties 
which are related to a famous question of Entov-Polterovich-Py, and some new properties 
of the spectral norm.

MOTS CLÉS


Homologie de Floer, difféomorphismes hamiltoniens, géométrie d’Hofer, invariants 
spectraux, quasimorphismes, cohomologie quantique. 

RÉSUMÉ


Le groupe des difféomorphismes hamiltoniens possède deux métriques bi-invariantes 
remarquables, notamment la métrique d'Hofer et la métrique spectrale. La 
troisième métrique de ce groupe qui a attiré l'intérêt en topologie symplectique est la 
métrique C^0. Cette thèse étudie les relations mystérieuses entre ces trois métriques. 
Les résultats incluent la comparaison entre la métrique spectrale et la métrique C^0 dans 
le cas non-asphérique, une construction de quasimorphismes qui possèdent un nouveau 
type de continuité inspiré par une question célèbre d'Entov-Polterovich-Py, et quelques 
nouvelles propriétés de la norme spectrale.
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Floer homology, Hamiltonian diffeomorphisms, Hofer geometry, spectral invariants, 
quasimorphisms, quantum coholomogy.


