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Domaine
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Abstract

This thesis aims to propose a new constitutive model that can describe the elastic-

plastic deformation, time-dependent deformation, and induced damage in clayey rocks

under hydro-mechanical coupling. To this end, the macroscopic elastic tensor and plastic

yield criterion are determined by two steps of homogenization, considering the transversely

isotropic solid clay matrix, pores, and inclusions at three distinct scales. The effective

elastic properties of clayey rocks are estimated by using the Mori-Tanaka scheme. And

the key step in calculating the effective elastic properties of clayey rocks is to use an

efficient numerical method to determine the Hill’s tensor of the spheroidal inclusions in

the transversely isotropic matrix at mesoscale and the Hill’s tensor of the pores inside

the porous matrix at the microscale. Then, the damage of rocks due to the debonding of

matrix-inclusions interfaces is taken into account and coupled with both the elastic and

plastic properties. Further, the time-dependent behavior of clayey rocks is also considered

as the delayed plastic strain. Moreover, the effect of water saturation on the elastic and

plastic behavior of clayey rocks is investigated. The methodology for the determination

of parameters involved in the model is presented.

Based on this model and identified parameters, a series of laboratory tests have been

simulated, including lateral decompression tests with constant mean stress, conventional

triaxial compression tests with different water saturation degrees, and creep tests. Besides,

the proposed model is implemented in a finite element code considering hydromechani-

cal processes, and then applied to studying hydromechanical responses during in situ

experiments realized in the underground research laboratory of ANDRA. Variations and

distributions of displacement and pore pressure around the gallery are investigated and

compared with in situ measurements.

Keywords: Clayey rocks; anisotropic rocks; plasticity; damage; viscoplasticity; microme-

chanics.



Résumé

Cette thèse vise à proposer un nouveau modèle constitutif qui peut décrire la déformation

élastique-plastique, la déformation en fonction du temps et l’endommagement induit dans

les roches argileuses sous couplage hydromécanique. À cette fin, le tenseur élastique macro-

scopique et le critère de plasticité sont déterminés par deux étapes d’homogénéisation, en

considérant la matrice argileuse solide isotrope transverse, les pores, et les inclusions à

trois échelles distinctes. Les propriétés élastiques effectives des roches argileuses sont

estimées en utilisant le schéma de Mori-Tanaka. Et l’étape clé dans le calcul des pro-

priétés élastiques effectives des roches argileuses est de proposer une méthode numérique

efficace pour déterminer le tenseur de Hill des inclusions sphéröıdales dans la matrice

isotrope transverse à l’échelle mésoscopique et le tenseur de Hill des pores à l’intérieur de

la matrice poreuse à l’échelle microscopique. Ensuite, l’endommagement des roches dû au

décollement des interfaces matrice-inclusions est pris en compte et couplés aux propriétés

élastiques et plastiques. De plus, le comportement des roches argileuses en fonction du

temps est également étudié comme la déformation plastique retardée. De plus, l’effet de

la saturation en eau sur le comportement élastique et plastique des roches argileuses est

étudié. La méthodologie pour la détermination des paramètres introduits dans le modèle

est présentée.

Sur la base de ce modèle et des paramètres identifiés, une série de tests de labora-

toire ont été simulés, y compris des tests de décompression latérale avec une contrainte

moyenne constante, des tests de compression triaxiale conventionnelle avec différents de-

grés de saturation en eau, et des tests de fluage. En outre, le modèle proposé est im-

plémenté dans un code d’éléments finis prenant en compte les processus hydromécaniques,

puis appliqué à l’étude des réponses hydromécaniques lors des expériences in situ réalisées

dans le laboratoire de recherche souterrain de l’ANDRA. Les variations et les distribu-

tions du déplacement et de la pression interstitielle autour de la galerie sont étudiées et

comparées aux mesures in situ.

Mots clés: Roches argileuses; roches anisotropes; plasticité; endommagement; viscoplas-

ticité; micromécanique.
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Notations

Common notations

σ̃,σ Local stress tensor in solid clay phase and in porous clay matrix

Σ Macroscopic stress tensor

d Local strain rate of porous clay matrix

D Macroscopic strain rate

ε̂m,ε̂i Local strain tensor of porous clay matrix and inclusions

ε̃p Equivalent plastic strain in the solid clay phase

Ee,Ep,Evp,E Macroscopic elastic, plastic, viscoplastic, and total strain tensor

Ehom Macroscopic Young’s modulus

νhom Macroscopic Poisson’s ratio

Ghom Macroscopic shear modulus

K Macroscopic Bulk modulus

λ̇ Plastic multiplier

Cs,Ci,Cpm Local elastic tensor of the solid clay phase, inclusions, and porous matrix

Chom,S Macroscopic elastic stiffness and flexibility matrix

Lpm Local tangent elastic-plastic operator of the porous matrix

Ctan Macroscopic tangent elastic-plastic stiffness tensor

Ã Transformation matrix

A Localization tensor

G Green’s function

P Hill’s tensor

SE Eshelby’s tensor



vi Notations

Model parameters

c Cohesion

ϕ Frictional angle

f Porosity

ρ Volumetric fraction of inclusion

h Hydrostatic tensile yield stress

b1,b2,bvp Plastic and viscoplastic parameters

T ,t Frictional coefficients

η Scalar parameter

θ Angle between the loading direction and the bedding plane

l Normalized loading orientation vector

L Loading vector

η1,m Parameters controlling the evolution of viscoplastic strain rate

S0,M Parameters controlling the debonding degree

Slq Saturation

Hr Relative humidity

pcp Capillary pressure

i Hydraulic gradient

Mol
vp Molar mass of vapor

R Universal gas constant

Tabs Absolute temperature

ρlq Volumetric mass of liquid

Q Flow rate

k Permeability

K Hydraulic conductivity in the flow direction

g Acceleration due to gravity

µlq Dynamic viscosity of the fluid mass

B Second-order tensor of macroscopic Biot’s coefficient

β1,β2 Parameters controlling the hydraulic effect



General Introduction

Clayey rocks are often encountered in many underground projects. Due to their stable

physical-mechanical properties and low permeability, they are used as a potential geo-

logical formation for nuclear waste disposal. Therefore, it is of great value to study the

physical and mechanical properties of clayey rocks. The clayey rocks are characterized

by complex mineralogical compositions and multi-scale micro-structures. At the usually

called mesoscopic scale (from hundreds of micrometers to mm), these different mineral

compositions with different sizes and shapes are randomly distributed in the porous clay

matrix and bonded with the clay matrix to bear the external loads. At the microscopic

scale (tens of micrometers), with the help of different kinds of techniques, the clay ma-

trix is found to consist of solid clay phase and pores. Even at smaller scales, such as

nanometers, the solid clay particle also has a complex structure. On the basis of previous

research, a number of macroscopic multi-scale models have been developed, but most of

these models ignore the influence of pores inside the clay matrix. In this thesis, clayey

rocks are considered to contain mineral particles, pores and solid clay phase at two rel-

evant scales (i.e., mesoscopic and microscopic scales), and two homogenization steps are

introduced to study their mechanical properties. The first homogenization step is realized

to estimate the effective elastic properties and to establish the effective plastic criterion of

the porous matrix by considering the effect of pores. The second homogenization step is

devoted to estimating the macroscopic elastic properties and formulating the macroscopic

plastic criterion of the inclusion-reinforced clay composite.

On the other hand, many of the multi-scale models developed so far are based on the

assumption of isotropic materials. However, due to the presence of the bedding plane

and the random distribution of mineral grains, the clayey rocks exhibit different kinds

of inherent anisotropy. For the study of the physical and mechanical behavior of clayey

rocks, it is important and complex to propose a numerical simulation model that can

consider their anisotropy from microscopic scale to macroscopic scale, especially when the

simulation model needs to take into account both the mineral particles, the solid matrix
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and the pores inside the clay matrix. An important step in the homogenization proce-

dure for anisotropic materials is to establish a suitable relation between the macroscopic

strain and the local strain. Therefore, the Mori-Tanaka scheme is selected to estimate

the elastic properties of the anisotropic clayey rocks. Besides, the Eshelby and Hill polar-

ization tensors are introduced to consider the influence of embedded minerals and pores

in the anisotropic porous matrix. And these polarization tensors depend on the shape of

the mineral particles or pores and elastic properties of the porous clay matrix. In addi-

tion, for plastic deformation calculation, the macroscopic strength criterion for anisotropic

claystone is much more complex than the classical Drucker-Prager criterion and many in-

fluencing factors need to be taken into account. This thesis proposes a macroscopic yield

criterion that considers the anisotropy of the clay matrix, which also takes into account the

influence of mineral particles and voids inside the clay matrix. The degree of anisotropy

of the clayey rocks in this macroscopic yield criterion can be achieved by adjusting the

value of η.

The damage in this multi-scale anisotropic model is mainly considered to be caused by

the debonding of the interface between the inclusions and the surrounding clay matrix. In

the initial state, the interface is assumed to be perfectly bonded in the elastic regime. The

interface is completely debonded after the damage is activated. The degree of damage is

evaluated by a Weibull’s probability distribution function. When the interface between

the mineral particle and clay matrix is debonded, this mineral particle is considered to

be a void that can’t bear the load any longer. On the other hand, with the progress of

interface debonding, the porosity increases while the volumetric fraction of mineral parti-

cles decreases. Besides, changes in porosity will also have an impact on the macroscopic

effective stiffness. Therefore, for the multi-scale model in this thesis, the damage caused

by the interfacial debonding is a complex process that affects the simulation results of

macroscopic elastic and plastic deformation of the clayey rocks.

Considering the actual complex geological conditions, the hydro-mechanical coupling

effect is also considered in the multi-scale model of this thesis. We assume that the effective

elastic modulus of the porous clay matrix and the plastic frictional coefficient will vary

with the pore water pressure. Another, pore pressure (or saturation) affects the plastic and

potential functions by using the net stress tensor in this thesis. Further, a mechanism for

time-dependent behavior is proposed in this thesis: viscoplastic strain. The viscoplastic

strain also is considered to be anisotropic and depends on the loading orientation.

This thesis aims to propose an anisotropic multi-scale model that can be used to

describe the elastic-plastic deformation, time-dependent deformation, and induced damage
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in clayey rocks under hydro-mechanical coupling conditions. And this thesis is divided into

five chapters and organized as follows:

In Chapter I , a bibliographic review is first presented about the basic physical-

mechanical properties of anisotropic clayey rocks. The complex characteristics of the

clayey rocks in the actual geological environment are presented in terms of the size and

distribution of mineral particles and voids, as well as the permeability of clayey rocks.

Secondly, several different types of anisotropic structures are discussed because of the

anisotropy of clayey rocks in the actual geological environment. They are transversely

isotropic, orthorhombic, and monoclinic materials. And the elastic properties of inherent-

ly isotropic structure is also presented in this section. The final section presents the main

research objectives and issues of this thesis.

In Chapter II , firstly, the macroscopic stress-strain relations of clayey rocks are

expressed using the two homogenization steps. Secondly, two different homogenization

schemes for calculating the effective macroscopic stiffness tensor are presented, and each

scheme considers different material microstructures. For the multi-scale anisotropic model

of this thesis, taking into account the interactions between the minerals and pores inside

the clay matrix, the Mori-Tanaka scheme is chosen. This section also introduces the basic

theory of Green’s function in order to consider the anisotropic characteristics of porous

clay matrix. Finally, the influence of hydraulic on the elastic properties of clayey rocks is

considered.

In Chapter III , macroscopic plastic yield criterion is determined by two steps of

homogenization, taking into account the isotropic solid clay phase, pores, and mineral

particles. An extension of the macroscopic yield criterion is then defined, including the

macroscopic criterion that takes into account clayey rocks anisotropy, time-dependent

deformation, damage, and hydro-mechanical coupling effects. In this section, the relation

between the pore pressure and the maximum frictional coefficient is established.

Chapter IV focuses on the simulations of laboratory experiments using the multi-scale

anisotropic model presented in Chapters II and III . For this chapter, three sections are

presented. The first section mainly deals with the determination of the model’s parameters.

The second section involves three different experimental simulations, including the lateral

decompression tests with different loading orientations, the normal triaxial compression

tests with different relative humidity, and the creep tests. The last section deals with

further analysis and related conclusions.

Chapter V presents the simulation results about the excavation disturbance zone

around the gallery using the multi-scale anisotropic model presented in Chapters II and
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III . For this chapter, three sections are presented. The first section is a review of the

background and objective of excavation simulation. The second section introduces the

simulation model, including parameters determination, mesh, dimensions of the excava-

tion model, and the stress distribution. The last section deals with presenting the results

of the excavation simulations, divided into two cases: excavation simulations under purely

mechanical conditions and excavation simulations under hydro-mechanical coupling con-

ditions.



Chapter I

Introduction of COx clayey rocks

and research objective of the

thesis

Contents

1 General information about COx clayey rocks . . . . . . . . . . . . . 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Macroscopic behavior of inherently anisotropic clayey rocks under

hydro-mechanical coupling . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Micro-mesoscopic properties of inherently anisotropic clayey rocks . . 9

2 Mechanical behavior of the anisotropic material . . . . . . . . . . . 13

2.1 Transversely isotropic material . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Orthotropic materials and Monoclinic materials . . . . . . . . . . . . . 17

2.3 Isotropic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Industrial context and objective of this thesis . . . . . . . . . . . . 19

4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1 General information about COx clayey rocks

1.1 Context

At present, several countries (e.g., French, Belgium, Switzerland, Canada) consider the

deep geological repository as a relative security disposal solution for high- and long-lived

radioactive wastes. In order to ensure that nuclear waste does not pollute the surrounding
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environment, the deep buried geological repository method should have several functions

as follows:

⋆ The geological repository is away from human habitation;

⋆ The geological rocks that wrap the nuclear waste should have better impermeability to

prevent nuclear waste pollutants into the groundwater;

⋆ Long-term creep performance should be stable.

The Callovian-Oxfordian (COx) clayey rocks are disposed at depth of about 420m to

550m [Andra, 2005b] and have an inherent anisotropic property. Due to its extremely

low permeability and relatively high compressive strength, it has been selected as a can-

didate host rock for the potential repository. Therefore, the study of its physical and

mechanical behavior is an essential research project. Over the past few years, a large

number of experimental tests have been carried out on the clayey rocks. For example,

the French national agency for radioactive waste management (ANDRA) constructed the

Meuse/Haute-Marne URL (completed in the year 2000), which is located about 300 kilome-

ters northeast of Paris. Many in situ experiments have been completed. The experimental

drifts are mainly at the depth of 490m and 445m, generally (as shown in Figure I .1).

As shown in Figure I .1, the experimental drifts at 445m are not at the same level as

the main level 490m. In situ experiments illustrate that the drifts at 445m does not exhibit

the significantly induced fracture networks by the excavation at depth of 490m. Therefore,

some relatively intact samples can be drilled from this layer for laboratory testing.

Figure I .1: Meuse/Haute-Marne URL drifts network [Armand et al., 2014]
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Drifts in the main level can be divided into two different types. One is excavation

along with the horizontal major stresses, and the other is excavation along with the minor

stresses. The fractures caused by the two different types of excavation are completely

different. And this part will be presented in Chapter V .

As shown in Figure I .2, the vertical plan of the geological layers near the URL is

presented. The clayey rocks can be found at depths of 417.29m to 508m with a thickness

of at least 90m. And the main mineral types can also be seen in this figure.

Numerous in situ experiments have shown that clayey rocks in geo-environment are

not perfectly homogeneous materials and exhibit inherent anisotropic characteristics. It

can also be seen in Figure I .2 that the mineral content of the clayey rocks varies with

depth. And the γ-Ray also changes with depth.

1.2 Macroscopic behavior of inherently anisotropic clayey rocks under

hydro-mechanical coupling

The properties of geo-materials have been investigated by many researchers and many

valuable experimental research results have been obtained. As shown in Figure I .3,

Abou-Chakra Guéry [2007] shows the pattern of compressive strength and elastic Young’s

modulus with depth. From this figure, it can be seen that the peak strength tends to

decrease with depth, especially in the clay-rich layer of about 490m, where the peak

strength is around 16MPa. Young’s modulus tends to increase with depth. As can be seen

from Figure I .2, geo-materials at different depths have different mineral compositions.

Therefore, the variation of the peak strength and Young’s modulus with depth indicates

that the mineral composition affects the mechanical properties of the geo-material.

On the other hand, geo-materials in complex underground environments, such as clay-

rich rocks, cannot be considered in terms of homogeneous, isotropic material theory due to

the variety of environmental factors. Figure I .4 shows the different experimental results

[Zhang et al., 2019] on the variation of mechanical strength of clayey rocks with the loading

orientation. As shown in these figures, the strength of rock reaches its maximum value

when the loading direction is parallel or perpendicular to the bedding plane ( θ = 0◦

or θ = 90◦). The strength of rock reaches its minimum value when θ = 30◦ to 60◦.

Where the θ represents the angle between the load orientation and the bedding plane.

Actually, there are many such experimental results have been obtained (e.g., [Al-Harthi,

1998, Allirot et al., 1979, Liu et al., 2018a, Niandou et al., 1997]). Besides, it’s worth

noting that the peak strength of θ = 0◦ and θ = 90◦ are not exactly the same. This is

also due to the anisotropic behavior of the geo-materials.
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Figure I .2: Geological layer distribution in borehole EST205 [Gaucher et al., 2004]
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Figure I .3: Compressive strength and Young’s modulus of geomaterials vary with depth

[Abou-Chakra Guéry, 2007]
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Figure I .4: Peak strength changes with loading orientation [Zhang et al., 2019]

Geo-materials in the deep underground have a complex structure, and their anisotropy

is mainly influenced by the texture and structure of the principal rock-forming minerals

[Ullemeyer et al., 2006]. Singh et al. [1989] provided anisotropic parameters for different

types of anisotropic rocks to reflect the degree of anisotropy of rocks, as shown in Table

I .1. And according to Bagheripour et al. [2011], there are three main reasons for the

anisotropy of geo-materials as follows:

(1) Minerals inside the geo-materials have an irregular shape in their natural state.

This may be due to the natural orientation caused by their flat/long surfaces. The random
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distribution of these mineral particles gives them different mechanical properties;

(2) As a result of sedimentation over time, such as clayey rocks, shale or sandstone, it

exhibits a layered structure. This structure will make the rock anisotropic. On the other

hand, different layers or different minerals with different grain sizes will also cause their

mechanical anisotropy;

(3) Anisotropy of rock is caused by geological activity and other reasons. For example,

the volcanic magma eruption can form anisotropic rocks. The distribution of pores inside

the rock matrix can cause anisotropy as well.

anisotropic ratio class type of rock

> 1.0 ∩ < 1.1 isotropic sandstone

> 1.1 ∩ < 2.0 slightly anisotropic sandstone, argillite

> 2.0 ∩ < 4.0 anisotropic argillite, slate, phyllite

> 4.0 ∩ < 6.0 strongly anisotropic slate, phyllite

> 6.0 very strongly anisotropic slate, phyllite

Table I .1: Anisotropic ratio of different anisotropic rocks [Singh et al., 1989]

Further, the hydro-mechanical coupling behavior is also an important factor affecting

the mechanical properties of the clayey rocks. Numerous experimental studies [Chiarelli,

2000, Hoxha and Auvray, 2004, Pham, 2006, Zhang et al., 2007] have shown that there

are three main effects of hydraulic action on clayey rocks, as follows: First, the hydraulic

behavior affects the elastic modulus (i.e., Young’s modulus and Poisson’s ratio) of clayey

rocks; Second, the hydraulic behavior affects the transition point of clayey rocks from

elastic to plastic deformation; and Finally, the hydraulic behavior affects the compressive

and tensile strength of clayey rocks.

As shown in Figure I .5(a), the peak strength of the clayey rocks gradually decreases as

the water content increases. The effective Young’s modulus of samples with water content

equal to 7 ∼ 8% is smaller than that of samples with water content equal to 4 ∼ 5% and

5 ∼ 6%. And it is also clear from this figure that the transition point from elastic to

plastic deformation is smaller at water content w = 7 ∼ 8% than at w = 4 ∼ 5% and

w = 5 ∼ 6% conditions. Also, the volume deformation under high water content content

conditions is smaller under the same stress conditions.
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(b) Evolution of Young’s modulus and Poisson’s ratio

Figure I .5: Triaxial compression tests for clayey rocks under different water content

[Chiarelli et al., 2003]

The Figure I .5(b) shows the evolution of the corresponding Young’s modulus and

Poisson’s ratio for clayey rocks at different water contents. The confining pressure for

these tests are equal to 2MPa. Young’s modulus decreases significantly when the water

content is lower than 5%, and the rate of decline decreases when the water content is

higher than 5%. Similarly, Poisson’s ratio increases with increasing water content, and

increases significantly when the water content is less than 5%, and the rate of increase

of Poisson’s ratio gradually decreases when the water content exceeds 5%. This indicates

that at low water content, the water content has a greater influence on the mechanical

properties of clayey rocks. This is mainly due to the effect of hydraulic on the internal

structure of the rock during the loading process.



8 Introduction of COx clayey rocks and research objective of the thesis

Zhang et al. [2012] also found that the mechanical properties of clayey rocks are strong-

ly influenced by water saturation and loading orientation, as shown in Figure I .6.
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Figure I .6: Evolution of Young’s ratio and strength with different orientation and

humidity

It can be seen from Figure I .6(a), the peak strength of the load direction parallel to

the bedding plane is greater than the strength of the load direction perpendicular to the

bedding plane under the low humidity conditions. This difference gradually disappears

as the humidity increases. Young’s modulus also gradually decreases with increasing

humidity, and there exist differences between the different loading directions, as shown in

Figure I .6(b).

As mentioned above, when studying the mechanical behavior of clayey rocks, it is
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often necessary to consider their hydro-mechanical coupled properties due to the presence

of groundwater and anisotropy. In unsaturated clayey rocks, the capillary pressure (i.e.,

negative pore pressure) will be involved. It is mainly due to the surface tension present at

the pore surface. As the water content or relative humidity of the clayey rocks decreases,

the capillary force increases accordingly.

In addition, the permeability of geo-materials is also an essential parameter for their

mechanical properties, as it can be used to reflect the development of fractures inside the

rock. In the case of low permeability materials, it is difficult to measure the permeabil-

ity due to the low flow rate inside the rock. In situ permeability measurement methods

include, for example, the constant level measuring system, Slug Test, and pumping well-

s. Plenty of experimental tests are performed in the laboratory. Many studies [Armand

et al., 2017a, Enssle et al., 2011, Menaceur et al., 2015] have found that there exist differ-

ences in permeability parallel and perpendicular to the bedding plane. The difference in

permeability along the two directions indicates that the development of fractures inside

the rocks is heterogeneous.

1.3 Micro-mesoscopic properties of inherently anisotropic clayey rocks

Clayey rocks exhibit anisotropic characteristics at the macroscopic scale, which are directly

related to their microstructure. As described in the previous sections, at the mesoscopic

scale, the clayey rocks are considered to be composed of clay matrix and mineral particles,

where the clay matrix consists of solid clay phase and pores at microscopic scales. The

shape and size of mineral particles and pores were found to be non-uniform, and their

distribution in the subsurface was not completely uniform. Therefore, this factor can lead

to the anisotropic characteristic of the clayey rocks.

As shown in Figure I .7, Robinet [2008] provides the distribution of the mineral par-

ticles inside the clayey rocks. And this sample was drilled at 439m in the COx argillite

layer. As can be seen form this figure, the shape and distribution of the minerals are

irregular. Besides, the clay matrix shown in this figure has some voids inside, which are

not interconnected. The existence of these voids will provide space for the storage and

transport of groundwater.
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Figure I .7: Mineral distribution image from SEM [Robinet, 2008]

Figure I .8 illustrates the variation of mineralogical composition depth from 423m to

503m. The experimental data were measured in a vertical borehole, which 12.7km away

from the URL. It can be seen that the carbonate decreases with the depth, while the clay

matrix increases with the depth. And it can also be seen from this figure that when the

depth range from 540m to 620m, the mineral grains account for about 40% of the total

volume, and the clay matrix accounts for about 60% of the total volume. For clayey rocks,

the mineral composition exhibits a non-uniform distribution with depth, which leads to

variations in macroscopic physical and mechanical properties of clayey rocks with depth.

Figure I .8: Mineralogical composition changes with depth [Guéry et al., 2010]
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(a) Variation of quartz content (b) Variation of coarseness

(c) Distribution of rock composition

Figure I .9: Rock composition changes with depth [Gaucher et al., 2004]
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Gaucher et al. [2004] analyzed the rock composition of the clay-rich layer, including

mineral composition, porosity, and density, and its depth ranges from 417m to 508m

through two 510m boreholes (i.e., EST205 and EST103) drilled by ANDRA. The Figure

I .9 shows material composition distribution and particle size distribution of the clay-rich

layer. In Figure I .9(a), the ratio of the horizontal axis satisfies the equation: ratio =

(quartz + feldspar)/silt, showing the comparison of the mineral particles (in this case,

mainly quartz) with the total silt content. And one can see that the quartz content is

enriched sharply at depths less than 445m.

(a) EST 20405 (b) EST 26059

(c) EST 26095

Figure I .10: Pore distribution of the claystone varies with depth [Robinet, 2008]

And in Figure I .9(b) shows that the mineral particles are getting finer when the depth

is less than 445m, and the ratio on the horizontal axis satisfies the equation: ratio =

clay minerals/(< 4µm particles size). Figure I .9(c) shows that the content of sand

decreases with depth. And the silt content increases with depth at a depth of less than

485.97m and decreases with depth at a depth of greater than 489.11m. The content of
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clay varies slightly with increasing depth.

Besides, the distribution of pores inside the rock also causes the complex geological

environment of the clay-rich layers. It is assumed that the gas in the pores (unsaturated

solids) is infinitely compressible. Therefore, the pore distribution will affect the mechanical

properties of clayey rocks.

Robinet [2008] found that the pores are mainly located inside the clay matrix and that

these pores are very small relative to the size of the mineral grains. Pieces of literature

have shown that the porosity of clayey rocks is estimated to be 15% to 20%. Figure I .10

shows the results of scanning electron micrographs (SEM) and porosity variation curves

for three claystone specimens (i.e., EST21405, EST20659, and EST26095) corresponding

to depths ranging from −431.10m to −507.10m. These test results are available from

Robinet [2008].

Figure I .11 is obtained from Andra [2005a] and shows the pore size distribution curve

for clayey rocks. It illustrates that most of the pore sizes is 20nm, and the second one

is around 3 ∼ 4nm. This small average pore diameter is one of the reasons for the low

permeability of the claystone.

Figure I .11: Pore size distribution of the COx argillite [Andra, 2005a]

2 Mechanical behavior of the anisotropic material

For linear elastic materials, the stress can be calculated by a linear constitutive equation,

as shown in Equation I .1.

dσ = C : dε (I .1)
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where dσ and dε denote the stress and strain increments. C represents the stiffness tensor

of the material. The flexibility matrix S is the inverse tensor of the stiffness matrix C,

which is also frequently encountered in later chapters. The stress σ and strain ε in different

direction are contained within the stress vector σi and strain vector εj :

σi = [σx, σy, σz, σxy, σyz, σzx]
⊤

εj = [εx, εy, εz, εxy, εyz, εzx]
⊤

(I .2)

Due to the symmetry of stress and strain in space (i.e., σxy = σyx, σxz = σzx, σyz = σzy,

εxy = εyx, εxz = εzx, εyz = εzy), the stiffness matrix C and flexibility matrix S can be

characterized by 36 dependent components in the general form satisfing Cijkl = Cjikl and

Cijkl = Cijlk. The general form of the stiffness matrix C can be written as:

Cijkl =

























C1111 C1122 C1133

√
2C1123

√
2C1113

√
2C1112

C2211 C2222 C2233

√
2C2223

√
2C2213

√
2C2212

C3311 C3322 C3333

√
2C3323

√
2C3313

√
2C3312√

2C2311

√
2C2322

√
2C2333 2C2323 2C2313 2C2312√

2C1311

√
2C1322

√
2C1333 2C1323 2C1313 2C1312√

2C1211

√
2C1222

√
2C1233 2C1223 2C1213 2C1212

























(I .3)

The flexibility matrix S is similar to the stiffness matrix. The anisotropic materials at

the macroscopic scale include the following three common types, which can be found in

Figure I .12:

(a) transversely isotropic (b) orthotropic (c) monoclinic

Figure I .12: Three typical structural models of anisotropic materials

The first material structural model in Figure I .12(a) is symmetrical in terms of spa-

tial coordinate axis (i.e., e2). This type of material is more common in sedimentary rocks,

such as the clayey rocks, which will be analyzed in the following sections. When the load
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direction has an angle with the axis of symmetry e2 of the material, a coordinate transfor-

mation method is generally required. It will correspond to the transformation matrix Ã,

as shown in Equation (I .4). And this structural model is relatively easier to analyze than

the other types of structure. The orthotropic material in Figure I .12(b) is a material in

which there are two orthogonal planes of symmetry. Their physical and mechanical prop-

erties will change when the instrument is measured in different orientations. The third

type concerns the monoclinic material. This type is complex and has an axis of symmetry

and a perpendicular plane, as shown in Figure I .12(c).

In Voigt notation, the transformation matrix Ã can be expressed as a 6 × 6 tensor,

given as follows:

Ã =

























A2
11 A2

12 A2
13 A12A13 A11A13 A11A12

A2
21 A2

22 A2
23 A22A23 A21A23 A21A22

A2
31 A2

32 A2
33 A32A33 A31A33 A31A32

2A21A31 2A22A32 2A23A33 A22A33 +A23A32 A21A33 +A23A31 A21A32 +A22A31

2A11A31 2A12A32 2A13A33 A12A33 +A13A32 A11A33 +A13A31 A11A32 +A12A31

2A11A21 2A12A22 2A13A23 A12A23 +A13A22 A11A23 +A13A21 A11A22 +A12A21

























(I .4)

Therefore, the stiffness tensor C for considering matrix transformations can be ex-

pressed as follows:

C = Ã
T : C : Ã (I .5)

In fact, the geo-materials in nature also include approximately isotropic materials

(assumed to be isotropic materials) and rock materials that have no axis of symmetry. As

many basic theories are based on isotropic materials, the isotropic materials will also be

presented in the third part of this section. Rock materials without an axis of symmetry

will not be presented.

2.1 Transversely isotropic material

As the studied material in the following chapters is clayey rocks, a detailed analysis of

transversely isotropic materials will be presented in this part. In Figure I .12(a), the

transversely isotropic material is symmetrical with respect to a certain axis e2, therefore,

a matrix Ã used in Equation I .4 can be written as:

Ã =









cosθ sinθ 0

−sinθ cosθ 0

0 0 1









(I .6)
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Therefore, the transformation matrix Ã can be written as:

Ã =

























cos2θ sin2θ 0 0 0 cosθ·sinθ
sin2θ cos2θ 0 0 0 −cosθ·sinθ
0 0 1 0 0 0

0 0 0 cosθ −sinθ 0

0 0 0 sinθ cosθ 0

−2cosθ·sinθ 2cosθ·sinθ 0 0 0 cos2θ − sin2θ

























(I .7)

For transverse isotropic materials, the stiffness matrix is rotated on the e2 axis and

the stiffness matrix remains unchanged. So a simplified form of the stiffness matrix is

obtained:

C =

























C1111 C1122 C1133 0 0 0

C1122 C2222 C1122 0 0 0

C1133 C1122 C1111 0 0 0

0 0 0 2C2323 0 0

0 0 0 0 C1111 − C1133 0

0 0 0 0 0 2C2323

























(I .8)

For simplicity, the expression of the stiffness tensor C can be expressed in the following

way:

C1111 = C3333 = C11, C2222 = C22, C1313 = C55

C1122 = C2211 = C2233 = C3322 = C12, C1133 = C3311 = C13

C1212 = C2323 = C1221 = C2332 = C1221 = C3223 = C2121 = C2323 = C44

(I .9)

The value of the stiffness matrix can be calculated from the Young’s modulus and

Poisson’s ratio of the material.

C11 = −
1− ν221

Ẽ1

Ẽ2

(1 + ν13)
(

2ν2
21

Ẽ2

− 1−ν12
Ẽ1

)

C22 = −
Ẽ2

(

1−ν13
Ẽ1

)

2ν2
21

Ẽ2

− 1−ν13
Ẽ1

C12 = − ν21
2ν2

21

Ẽ2

− 1−ν13
Ẽ1

C13 = −
ν13 + ν221

Ẽ1

Ẽ2

(1 + ν13)
(

2ν2
21

Ẽ2

− 1−ν12
Ẽ1

)

C44 = G12

C55 =
C11 − C13

2

(I .10)
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The compliance matrix S is written as:

S1111 = S3333 =
1

Ẽ1

, S2222 =
1

Ẽ2

S1122 = −ν21
Ẽ2

, S1133 = −ν13
Ẽ1

S1313 =
1 + ν13

2Ẽ1

, S2323 = S1212 =
1

4G12

(I .11)

where the Ẽ1 and Ẽ2 denote the Young’s modulus of transversely isotropic material along

the e1 and e2 axes, respectively. The ν13 and ν21 are the Poisson’s ratio between the e1

and e3 directions and between the e1 and e2 directions, respectively. G12 represents shear

modulus. Comparing the Equations I .10 and I .11 reveals that the compliance matrix is

simpler, and it will be used frequently in the following chapters.

The Young’s modulus and Poisson’s ratio along the e1 and e2 are measured by exper-

imental tests in the laboratory. Ẽ2 and ν21 are determined by uniaxial compression tests

which the load along the e2 axis. And the Ẽ1 and ν13 can be determined by the tests

where the load is along the e1 axis. As shown in Figure I .13.

Figure I .13: Uniaxial compression tests in different load directions.

2.2 Orthotropic materials and Monoclinic materials

Orthotropic materials are often encountered in theoretical analyses. The transversely

isotropic material described in the previous section is one of the types of orthotropic

materials, as shown in Figure I .12(b), and the transformation matrix Ã can be expressed
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as follows:

Ã =

























1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 1

























(I .12)

The same method (as shown in Equation I .8) can be used here to simplify the stiffness

matrix in Equation I .3 for orthogonal materials.

C =

























C1111 C1122 C1133 0 0 0

C2211 C2222 C2233 0 0 0

C3311 C3322 C3333 0 0 0

0 0 0 2C2323 0 0

0 0 0 0 2C3131 0

0 0 0 0 0 2C1212
























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The compliance tensor S can be calculated by S = (C)−1, and the expression can be

written as:

S =

























1
Ẽ1

−ν21
Ẽ2

−ν31
Ẽ3

0 0 0

−ν12
Ẽ2

1
Ẽ2

−ν32
Ẽ3

0 0 0

−ν13
Ẽ3

−ν23
Ẽ2

1
Ẽ3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G31

0

0 0 0 0 0 1
G12

























(I .14)

For the monoclinic symmetry materials, there is only one plane of material symmetry,

as shown in Figure I .12(c). One can consider the case of the monoclinic symmetry with

respect to the (e1,e2) plane. The expression of the transformation matrix is similar to

Equation I .12. In addition, considering the symmetry of the monoclinic materials, the

relation Cijkl = −Cijkl can be obtained. According to the contracted notation, one can

get:

C1123 = C2311 = C2223 = C2322 = C3323 = C2333 = 0

C1113 = C1311 = C2213 = C1322 = C3313 = C1333 = 0

C1223 = C2312 = C1213 = C1312

(I .15)



Industrial context and objective of this thesis 19

Therefore, the stiffness matrix of the monoclinic symmetry materials can be written as:

Cijkl =

























C1111 C1122 C1133 0 0
√
2C1112

C2211 C2222 C2233 0 0
√
2C2212

C3311 C3322 C3333 0 0
√
2C3312

0 0 0 2C2323 2C2313 0

0 0 0 2C1323 2C1313 0
√
2C1211

√
2C1222

√
2C1233 0 0 2C1212

























(I .16)

2.3 Isotropic materials

Isotropic materials are the simplest type of material and have the same properties in all

directions. Therefore, there is no need to consider the rotation of structural coordinates.

The stiffness matrix of the isotropic materials can be written as:

Cijkl =

























C1111 C1122 C1122 0 0 0

C1122 C1111 C1122 0 0 0

C1122 C1122 C1111 0 0 0

0 0 0 2C2323 0 0

0 0 0 0 2C2323 0

0 0 0 0 0 2C2323
























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The corresponding flexibility matrix can be represented as follows:

S =

























1
Ẽ

− ν
Ẽ

− ν
Ẽ

0 0 0

− ν
Ẽ

1
Ẽ

− ν
Ẽ

0 0 0

− ν
Ẽ

− ν
Ẽ

1
Ẽ

0 0 0

0 0 0 2(1+ν)

Ẽ
0 0

0 0 0 0 2(1+ν)

Ẽ
0

0 0 0 0 0 2(1+ν)

Ẽ
























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In general, shear k and volume modulus µ are introduced to represent the stiffness tensor:

C = 3kJ+ 2µK (I .19)

where k = Ẽ
3(1−2ν) and µ = Ẽ

2(1+ν) . J and K are fourth-order projections that satisfy:

J = 1
3δijδkl, K = I− J. The δij is the Kronecker delta.

3 Industrial context and objective of this thesis

Extensive research work has been carried out on clayey rocks, mainly due to their complex

structure and relatively stable physical and mechanical properties. For instance, due to
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their extremely low permeability, many countries have chosen the hard claystone as a

potential geological material for nuclear waste protection. These rocks are characterized

by complex mineralogical composition and micro-structure, which has been described in

the previous section. In order to study the physical and mechanical properties of clay

rocks under multiphysical coupling conditions, a large number of in-situ and laboratory

experiments have been carried out. These experiments results are important for analysing

the mechanical properties of the clayey rocks at the macroscopic scale.

On the other hand, a number of numerical simulation models have been proposed for

clay-rich rocks and the corresponding simulation results have been obtained, including

numerical simulations of laboratory tests and structural calculations for underground con-

struction. These numerical simulation models will be presented in the Chapters II and III

. However, many of these models for clayey rocks take into account the influence of mineral

particles in the clayey rocks on their physics and mechanics, while ignoring the influence

of the internal pores inside the clay matrix. In addition, many numerical models haven’t

considered the anisotropy of clayey rocks and the role of hydro-mechanical coupling in the

physical and mechanics of the clayey rocks.

Therefore, the main objective of this thesis is to propose a new constitutive model

for describing the elasto-plastic deformation, time-dependent deformation, and the dam-

age in clayey rocks under hydro-mechanical coupling conditions. In order to achieve this

objective, the following chapters are organized as follows: Chapter II and Chapter III

will present the multi-scale model for calculating the elastic deformation and the plastic-

viscoplastic deformation of the clayey rocks, respectively; and Chapters IV and V will

show the simulation results of laboratory tests and structure calculations for gallery exca-

vation to verify the correctness of the proposed multi-scale model.

4 Conclusions

This chapter focuses on the anisotropy analysis of geo-materials under complex geological

conditions. The rock distribution, mineral composition, and pore distribution at a depth

of around 490m underground were presented and discussed through extensive literature in

this chapter. The effects of hydro-mechanical coupling effects on the physical and mechan-

ical properties of clayey rocks were also presented. In addition, the anisotropic structure of

geo-materials, especially the transverse isotropy clayey rocks, was analyzed and illustrat-

ed. This chapter was divided into three parts. The first section was a brief introduction

to the engineering context of this thesis based on the available literature, focusing on the



Conclusions 21

COx claystone (one of the nuclear waste repository geomaterials). The anisotropic and

hydraulic characteristics of the geomaterial in the actual complex geological environment

were presented in terms of the size and distribution of mineral particles and pores and the

permeability of the clayey rocks. The second section presented several different anisotropic

structures. They are transversely isotropic, orthorhombic, and monoclinic materials. The

final section was an introduction to the industrial context and objectives of this thesis.
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1 Introduction

As discussed in Chapter I , the size and content of mineral particles vary with the depth.

The porosity also exhibits a variation in depth. For the clayey rocks, it ranges from

about −417m to −508m underground and has a thickness of about 90m. It is one of the
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geo-materials used as a geological barrier for radionuclides. Its macroscopic properties

are strongly influenced by its mineralogy composition [Guéry et al., 2010, Liu et al.,

2018a] and porosity conditions. As a common type of sedimentary rock, clayey rocks

also contain a layered morphology with parallel bedding planes at the macro- to micro-

scale. This generally leads to transversely isotropic behavior at the macroscopic scale

[Liu et al., 2015, Niandou et al., 1997, Yang et al., 2013, Zhang et al., 2012]. Therefore,

in this chapter, clayey rocks are studied as a transversely isotropic geomaterial, and the

influence of mineral particles and pores on their physical and mechanical properties will

be considered.

In order to consider the influence of the mineral compositions and pores inside the

clayey rocks on their macro-physical mechanics, Eshelby and Hill polarization tensors

[Eshelby, 1957] will be introduced in this chapter to establish a link between micro-

deformation and macro-deformation.

The purpose of this chapter is to develop a unified micro-mechanics of clayey rock-

s based constitutive model using the Eshelby and Hill polarization tensors, while also

considering the effect of hydro-mechanical coupling effects on their physico-mechanical

properties. Therefore, in this chapter, we will first present the macroscopic stress-strain

relations of claystone and introduce several different homogenization schemes. Then, the

Eshelby and Hill polarization tensors will be introduced, and the Green’s function also

will be presented. Finally, we will present the hydraulic properties of the clayey rocks.

2 Effective elastic property of COx claystone

Clayey rocks are considered to be mixed geological materials consisting of various mineral

grains and clay matrix. At the microscopic scale (nm ∼ µm), the clay matrix has many

different sized pores (between about 4nm to 20nm), which are very small compared to

the mineral particles. These pores vary with depth. For simplicity, these pores will be

considered to be uniformly distributed in the clay matrix for the multiscale anisotropy

model. At the mesoscopic scale (µm∼cm), the claystone is assumed to be composed of

the porous matrix and mineral grains. At the macroscopic scale (cm∼dm), the mixture of

porous matrix and mineral grains is considered to be a continuous medium with transverse

isotropy. Therefore, a typical simplified Representative Elementary Volume (REV) of

clayey rocks is selected and illustrated in Figure II .1.

In generally, different families of mineral particles can be found such as carbonate,

quartz, pyrite, etc. For the sake of simplicity, we assume that the different families of
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particles are merged into a single inclusion phase, which exhibits a linear elastic behavior.

For convenience, let Ωi being the volume of the inclusion phase, Ωp the volume of voids

and Ωs that of solid clay phase. The porosity f and the volumetric fraction of inclusion ρ

are then given by:

f =
Ωp

Ωs +Ωp
, ρ =

Ωi

Ωi +Ωs +Ωp
(II .1)

Figure II .1: Simplified Representative Elementary Volume (REV) of clayey rocks

2.1 Determination of elastic properties

We assume that a macroscopic uniform strain field E acts on the boundary of the REV

and that the REV achieves equilibrium. The average local stress and strain in the REV

can be obtained:

〈σ〉 = 1

V

∫

V
σ(z)dz = Σ; 〈ε〉 = 1

V

∫

V
ε(z)dz = E (II .2)

where V denotes the volume of the REV, σ(z) and ε(z) denote the local stress and strain

for different phases (mainly for the pore matrix and mineral inclusions) corresponding to

the position vector z. The 〈·〉 is the average volume of the domain Ω for the different

phases. The macroscopic stress and macroscopic strain follows a fundamental function:

Σ = C
hom : Ee = C

hom : (E −Ep) (II .3)

where Σ denotes the macroscopic stress tensor, E the macroscopic total strain tensor, Ee

the macroscopic elastic strain tensor and Ep the macroscopic plastic strain tensor, which

will be mentioned in the next chapter. Chom is the macroscopic elastic stiffness tensor. For

different phases inside the REV, the local linear elastic constitutive function is satisfied

as:

σ(z) = C(z) : ε(z) (II .4)
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In order to study the mechanical behavior of each phase at the microscopic scale. It

is necessary to determine the relations between local strain ε(z) (or local stress σ(z))

and macroscopic strain E (or macroscopic stress Σ). Therefore, a localization tensor A

is introduced to establish a relation between the local strain and macroscopic strain, as

shown in following form:

ε(z) = A(z) : E (II .5)

Putting together Equations (II .2), (II .4) and (II .5) delivers the relational equations

for the local stiffness tensor of the different phases and macroscopic stiffness tensor.

C
hom = 〈C : A〉 (II .6)

The clayey rocks, which contain the pore matrix and mineral inclusions. The effect

elastic stiffness tensor Chom is determined by a two-step homogenization. In this study,

we adopt the homogenization approach based on the method of Zaoui [2002].

At the microscopic scale, the elastic behavior of the homogeneous porous medium can

be expressed in the following way:

σ = C
pm : εe (II .7)

where σ is the averaged stress tensor of the porous medium and εe the corresponding

elastic strain tensor. The homogenized elastic tensor of the porous medium is denoted as

Cpm and is calculated from the following relation [Giraud et al., 2007]:

C
pm = C

s : (I− fAp) (II .8)

In this relation, I is the fourth rank unit tensor. Cs is the elastic tensor of the solid

clay phase. Ap represents the strain concentration tensor linking the average strain tensor

specified on the homogenized porous medium ε to the local strain field inside the solid

clay phase.

After the effective elastic tensor of porous clay matrix Chom is known, the macroscopic

elastic tensor Chom can be determined in the second homogenization step by consider-

ing the effect of the inclusion phase. Again, by using the same method as above, the

macroscopic elastic tensor of the homogenized equivalent medium is given by the follow-

ing relation:

C
hom = C

pm + ρ
(

C
i − C

pm
)

: Ai (II .9)

where Ci is the isotropic elastic tensor of the merged inclusion phase. Ai is the strain con-

centration tensor relating the local strain tensor of the inclusion phase to the macroscopic

strain tensor.
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2.2 Localization tensor A

For the Equations II .8 and II .9, the most important thing is to determine the localization

tensor A. In this section, two widely used schemes will present: the Dilute scheme and

the Mori-Tanaka scheme.

2.2.1 Dilute scheme

The Dilute scheme is a relatively simple form. The Dilute scheme is mainly used in

cases where the mineral particles inside the material are small and relatively sparsely

distributed. As mentioned above, this chapter does not distinguish between the different

types of minerals and treats them as a single mineral phase. These mineral particles are

assumed to have a uniform ellipsoidal shape and their stiffness tensor is denoted by Ci.

If it is assumed that the mineral particles inside the material are small enough that they

have sufficient distance with other mineral particles. The interactions between the mineral

particles will not be taken into account.

The localization tensor Ai can be written as following form [Eshelby, 1957]:

A
i =

(

I+ P
i : (Ci − C

pm)
)−1

(II .10)

where the Pi is the fourth-order Hill’s tensor for the inclusion-reinforced composite. The

components of Pi depend on the shape and orientation of inclusions and the elastic prop-

erties of porous clay matrix Cpm.

At the microscopic scale, the porous clay matrix is viewed as consisting of pores and

clay particles. For the Dilute scheme, it is assumed that the pores inside the clay matrix

are particularly small and uniformly distributed in the clay matrix. Therefore, we assume

there is no interaction between the different pores. Similar to the Equation II .10, but

here the stiffness tensor of pores is considered to be zero. The localization tensor Ap can

be expressed as follows:

A
p = (I− P

p : Cs)−1 (II .11)

where Pp represents the Hill tensor of the porous medium. Similar to Pi, the components

of Pp are influenced by the shape and orientation of voids and the elastic properties of

solid clay phase Cs.

Putting the Equations II .10 and II .11 into the Equations II .9 and II .8, respectively,

the macroscopic elastic tensor Chom and elastic tensor of the porous medium Cpm can be

obtained:






Chom = Cpm + ρ
(

Ci − Cpm
)

:
(

I+ Pi : (Ci − Cpm)
)−1

Cpm = Cs :
(

I− f (I− Pp : Cs)−1
) (II .12)
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2.2.2 Mori-Tanaka scheme

In general, the inclusions are not completely isolated inside the clay matrix. The inter-

action between the different inclusions should be considered. This section will propose

the effective stiffness tensor using Mori-Tanaka scheme based on the Mori-Tanaka method

[Mori and Tanaka, 1973].

Considering the existence of interactions between the different inclusions, an interme-

diate prescribed macroscopic strain E∞ is introduced at the external boundary of the

REV. The local strain of inclusion is written as follows:

εi = A
i : E∞ =

(

I+ P
i : (Ci − C

pm)
)−1

: E∞ (II .13)

In addistion, according to the average condition in Equation II .2, the relations between

the intermediate prescribed macroscopic strain E∞ and macroscopic strain E can be

written as:

E∞ =
[

(1− ρ)I+ ρ
(

I+ P
i : (Ci − C

pm)
)−1

]−1
: E (II .14)

Substitution the Equation II .14 into the Equation II .13 derives the expression for the

localization tensor Ai:

A
i =

(

I+ P
i : (Ci − C

pm)
)−1

:
[

(1− ρ)I+ ρ
(

I+ P
i : (Ci − C

pm)
)−1

]−1
(II .15)

where Pi has the same meaning as that expressed in the Equation II .10. Again, the

expression of Ap depends on the elastic tensor of the solid clay phase, while the elastic

tensor of the void is assumed to be zero. And we can derive the expression of the strain

concentration tensor Ap with:

A
p = (I− P

p : Cs)−1 :
[

(1− f)I+ f (I− P
p : Cs)−1

]−1
(II .16)

where the components of Pp depend on the shape and orientation of the voids and the

elastic properties of the solid clay phase, as indicated by Pp in Equation II .11.

Putting Equations II .15 and II .16 into Equations II .9 and II .8, respectively, the

macroscopic effective elastic tensor Chom and effective elastic tensor of porous medium

Cpm corresponding to the Mori-Tanaka scheme can be given by the following equation:










Chom = Cpm + ρ
(

Ci − Cpm
)

:
(

I+ Pi : (Ci − Cpm)
)−1

:
[

(1− ρ)I+ ρ (I− Pp : Cs)−1
]−1

Cpm = Cs :
(

I− f (I− Pp : Cs)−1
)

:
[

(1− f)I+ f (I− Pp : Cs)−1
]−1

(II .17)

For the calculation of the effective elastic tensor, there are other widely used schemes,

such as the Self-consistent scheme [Fassi-Fehri et al., 1989] and the PCWmodel [Castañeda
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and Willis, 1995]. These different schemes consider different types of geomaterials, mainly

their mineral particle distribution and microstructure.

In this chapter, the Mori-Tanaka scheme is chosen to calculate the macroscopic effective

elastic tensor Chom and the effective elastic tensor of porous medium Cpm. As can be seen

from Figure I .7, the proportion of minerals in the claystone is not low, and the volume

fraction of mineral inclusions is about 40% according to laboratory experiments, which

can be presented in Chapter I of this thesis. As can also be seen from Figure I .9, for

the claystone layers (−472.5m to −508m), the quartz content starts to increase (quartz

has a relatively large particle size). In addition, Figure I .7 shows that the mineral grains

are relatively close to each other. Therefore, it is necessary to take into account the

interaction effect of mineral grains under external loading. Therefore, in this chapter, the

Mori-Tanaka scheme will be more appropriate. Hill’s tensor P will be described in the

next section.

3 Eshelby’s solution for isotropic inclusions

As shown in the previous section, we assume that the inclusions are linearly elastic, and

the Hill’s tensor Pi will be easily obtained for the case where the porous clay matrix is

isotropic. And the Hill’s tensor can be expressed as Pi = SE : Spm. The SE and Spm

represent the Eshelby tensor and compliance tensor of the porous matrix. And the Hill’s

tensor Pi can be given as follows:

P
i =

α

3k
J+

β

2µ
K

α =
3k

3k + 4µ
, β =

6(k + 2µ)

5(3k + 4µ)

(II .18)

where the shear and bulk moduli (k and µ) has been expressed in Equation I .19. The

fourth-order projections J and K can be seen in Chapter I .

In the case of anisotropic porous matrix, the Hill’s tensor is not easily determined. In

this section, a widely used approach [Mura, 1987, Qi, 2016] is presented by defining an

inhomogeneous region Ω∗ inside the porous matrix. As shown in Figure II .2, the initial

heterogeneous porous matrix is divided into two domains, a homogeneous matrix region

Ω and a heterogeneous matrix region Ω∗. The elastic stiffness of the homogeneous matrix

is denoted by C
pm
iso , and the stress and strain in this homogeneous region are denoted by

σiso and εiso, respectively. The stress and strain of this inhomogeneity are denoted by σ∗

and ε∗, respectively.
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Figure II .2: Equivalent problem of anisotropic porous matrix

So the following equations can be obtained:







σiso = C
pm
iso : εiso, (X1, X2) ∈ Ω

σ∗ = C
pm
iso : ε∗, (X1, X2) ∈ Ω∗

(II .19)

For anisotropic materials, the stresses σ∗ and σiso are usually unequal. Therefore, the

stresses in the heterogeneous region will affect the surrounding domains. In this section,

we can use an equivalent approach. As can be shown in Figure II .2, we assume that an

equivalent force f∗ is distributed on the boundary surface of the heterogeneous region.

f∗ = −C
pm
iso : (ε∗ − εiso) · n(∂I) (II .20)

where n is a unit vector perpendicular to the boundary surface of the heterogeneous region

Ω∗. ∂I is subdomain of the boundary surface of the heterogeneous region.

Since the claystone contains both inclusions and porous matrix, the equivalent treat-

ment of the anisotropic matrix also needs to consider the effect of force f∗ on the isotropic

inclusions. In this section, Green’s function will be introduced to solve this problem.

3.1 Green’s function for transversely isotropic matrix

The Green’s function expresses the displacement at point z (here the point z is assumed

as an interior-point which inside the elastic inclusion) is induced by a concentrated force

f∗(z′). The point z′ here is assumed as an exterior point outside the inclusion. As shown

in the following equation:

uinti (z) = Gij(z, z
′) · f∗j (z′) (II .21)
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where the subscript in the Equation II .21 denotes the force f∗ applied on the point z′

along the j-direction, which causes displacement components uint along the i-direction.

When the inclusions are considered to be elliptical shapes, the Equation II .21 can be

rewritten in the following form:

uinti (z) =

∫

dΩi

Gij(z, z
′) · f∗j (z′)(∂I)−1ds (II .22)

where the s denotes the integral boundary surface of the inclusion dΩi. The Ωi denotes

the ellipsoidal inclusion as seen in Figure II .3.

Figure II .3: An ellipsoidal inclusion inside the porous matrix

with,
x21
a21

+
x22
a22

+
x23
a23

= 1 (II .23)

where ai (i = 1, 2, 3) denotes the radius of the ellipsoidal inclusion along the three axes.

Putting the Equation II .20 into the Equation II .22, we can get the updated form:

uint(z) = −
∫

dΩi

G(z, z′) : Cpm
iso : (ε∗ − εiso) · nds

= − ∂

∂n

∫

Ωi

G(z, z′)dΩi · Cpm
iso : (ε∗ − εiso)

(II .24)

Therefore, the strain inside the inclusion induced by force f∗ can be obtained:

ε̂iij = − ∂

∂nknl

∫

Ωi

Gij(z, z
′)dΩi : (Cpm

iso )klmn : ((ε∗)mn − (εiso)mn) (II .25)

In addition, Green’s function has two important properties for elastic medium:

Gij(x, y) = Gij(x− y) (II .26a)

Gij(x− y) = Gij(y − x) (II .26b)

Therefore, Hill’s tensor can be defined in a simple form [Giraud et al., 2007] as follows:

Pijkl = − ∂

∂xkxl

(∫

Ωi

Gij(x− y) dy

)

, ∀x ∈ Ωi (II .27)
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3.2 Hill’s tensor for transversely isotropic matrix

According to the existing literatures [Mura, 2013, Nemat-Nasser et al., 1996], the Hill’s

tensor P in Equation II .27 can be written in the following form:

Pijkl(z) =
1

4
(Mkijl(z) +Mkjil(z) +Mljik(z) +Mljki(z)) , z ∈ Ωi

with

Mijkl(z) = − ∂

∂zl

∫

Ωi

∂Gij(z − z′)
∂zk

dΩi

(II .28)

where the volume integral Ωi can be expressed as a surface integral based on the shape of

ellipsoidal inclusion as follows:

dΩi = dΩi(r) = drdS = r2drdω, r = |z′ − z| (II .29)

where the point z′ and z have already been explained above, and they denote the exterior

and interior points of inclusion, respectively. The dω denotes the elementary area on the

unit ellipsoidal surface. Here, a component gijk is introduced to express the derivatives of

Green’s function [Giraud et al., 2007].

gijk(l) = r2(l)
∂

∂zk
Gij(z − z′) = −r2(l) ∂

∂zk
Gij(r(l)) (II .30)

where the unit vector l is defined as a unit vector from point z′ to point z:

l =
z′ − z

|z′ − z| = (l1, l2, l3) (II .31)

Putting the Equation II .30 into the Equation II .29, M can be rewritten as:

Mijkl(z) = − ∂

∂zl

∫

Ωi

r(l)gijk(l)dω (II .32)

The boundary surface of ellipsoidal inclusion Ωi have been expressed by Equation II

.23, which can also be written in another form.

(z1 + rl1)
2 + (z3 + rl3)

2

a21
+

(z2 + rl2)
2

a22
= 1 (II .33)

where r(l) can be shown that:

r(l) = − f

f1
+

(

f2

f21
+

e

f1

)1/2

(II .34)
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where

f =
z1l1 + z3l3

a21
+
z2l2
a22

f1 =
l21 + l23
a21

+
l22
a22

e = 1−
(

z21 + z23
a21

+
z22
a22

)

(II .35)

Combining the Equations II .32 and II .34, the M can be updated as follows:

Mijkl(z) =
∂

∂zl

∫

Ωi

(

f

f1

)

gijk(l)dω − ∂

∂zl

∫

Ωi

(

f2

f21
+

e

f1

)1/2

gijk(l)dω (II .36)

The latter term in the Equation II .36 can be calculated to be equal to zero, so we get

a simpler form:

Mijkl(z) =
∂

∂zl

∫

Ωi

(

f

f1

)

gijk(l)dω (II .37)

For simplicity, the inclusion is assumed as an unit sphere. Therefore, a1 = a2 in

Equation II .33. So, we can get:

Mijkl(z) =
∂

∂zl

∫

Ωi

(z1l1 + z2l2 + z3l3) gijk(l)dω =

∫

Ωi

llgijk(l)dω (II .38)

and the Hill’s tensor P can be written as follows:

Pijkl =
1

4

∫

Ωi

(llgkij(l) + llgkji(l) + lkglij(l) + lkglji(l)) dω (II .39)

In summary, Hill’s tensor P depends mainly on the shape of the inclusion and the elastic

properties of the porous clay matrix. Since the size of inclusion is very small compared to

the macroscopic structure, this thesis considers the inclusion to be a spherical shape. The

calculation of P is based on the previous works [Giraud et al., 2007, Mura, 1987, Pan and

Chou, 1976] and will be presented in this section.

The vector l in Equation II .39 defines the unit outward normal of the inclusion, and

its components can be expressed in terms of two basic angles, ψ ∈ [0, π], ζ ∈ [0, 2π], of the

spherical coordinates frame shown as follows:



















l1 = sin(ψ)cos(ζ)

l2 = cos(ψ)

l3 = sin(ψ)sin(ζ)

(II .40)
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The calculation of Hill’s tensor for inclusions can be explicitly calculated after making

the following integrals:

C∗i
12 = (Cpm

11 C
pm
22 )1/2, D =

1

4πCpm
44 ν3

I1(i) = 2πνi

∫ 1

0

1− x2

x2(1− ν2i ) + ν2i
dx

I2(i) =
4π

νi

∫ 1

0

x2

x2(1− ν2i ) + ν2i
dx

I12 =
3πν1
2

∫ 1

0

(1− x2)2

x2(1− ν21) + ν21
dx

(II .41)

Finally, the components of Hill’s tensor are given as follows by considering two different

cases:

(a) If C∗i
12 − Cpm

12 − 2Cpm
44 = 0

P i
11 = 3

(

Cpm
12

Cpm
12 + Cpm

44

)

A1I1(1)− 6A1I12 +
D

4
I1(3)

P i
12 = 2A1

[

−3I1(1) + ν21I2(1) + 4I12
]

P i
13 =

(

Cpm
13

Cpm
12 + Cpm

44

)

A1I1(1)− 2A1I12 −
D

4
I1(3)

P i
22 = 4ν21A1

[

3I1(1)−
(

Cpm
11

Cpm
12 + Cpm

44

)

I2(1)− 4I12

]

P i
44 = −A1

[

3 + ν21

(

3 +
Cpm
44

Cpm
12 + Cpm

44

)]

I1(1) +
A1ν

2
1

2

(

Cpm
12

Cpm
12 + Cpm

44

)

I2(1) + 4A1(1 + ν21)I12 +
D

8
ν23I2(3)

(II .42)

where:

ν1 = ν2 =

(

Cpm
11

Cpm
22

)1/4

, ν3 =

√

(

Cpm
11 − Cpm

13

2Cpm
44

)

k1 = k2 = 1

B1 = −ν1
Cpm
12 + Cpm

44

16πCpm
11 C

pm
44

(II .43)
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(b) If C∗i
12 − Cpm

12 − 2Cpm
44 6= 0
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3

2
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νiAiI1(i) +
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4
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∑
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2
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2
∑
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k2i ν
5
i AiI2(i)

P i
44 =

1

4

2
∑

i=1

(1 + ki)ν
3
i Ai[I2(i)− 2kiI1(i)] +

Dν23I2(3)

8

(II .44)

where:

ν1 =

√

(C∗i
12 − Cpm

12 )(C∗i
12 + Cpm

12 + 2Cpm
44 )

4Cpm
22 C

pm
44

+

√

(C∗i
12 + Cpm

12 )(C∗i
12 − Cpm

12 − 2Cpm
44 )

4Cpm
22 C

pm
44

ν2 =

√

(

Cpm
11 − Cpm

13

2Cpm
44

)

ν3 =

√

(C∗i
12 − Cpm

12 )(C∗i
12 + Cpm

12 + 2Cpm
44 )

4Cpm
22 C

pm
44

+

√

(C∗i
12 + Cpm

12 )(C∗i
12 − Cpm

12 − 2Cpm
44 )

4Cpm
22 C

pm
44

ki =

Cpm
11

ν2i
− Cpm

44

Cpm
12 + Cpm

44

A1 = − Cpm
44 − ν21C

pm
22

8π(ν22 − ν21)ν
2
1C

pm
22 C

pm
44

A2 = − Cpm
44 − ν22C

pm
22

8π(ν22 − ν21)ν
2
2C

pm
22 C

pm
44

(II .45)

It is worth noting that the subscript 1, 2 and 3 directions in the above equations are

the directions of the X1-, X2- and X3-axes in Figure II .3, respectively. The Hill’s tensor

can be calculated by Equations II .41 to II .45. This is a simplified calculation method

based on the assumption that the shape of the inclusion particle is spherical. In general,

when considering the case that the shape of inclusions is an ellipsoid, the Hill’s tensor can

be calculated according to the basic Equation II .39. More complex cases of the shape of

inclusions can be investigated in the future.

For this multi-scale anisotropic model, the pores embedded in the porous matrix also

need to be considered at the microscopic scale. Here, the Pp (in Equation II .16) will be



36

Linear homogenization method considering initial anisotropy and water saturation

effect applied to COx claystone

calculated using the same calculation method as Pi. The pores inside the clayey matrix

are also considered to be spherical shape. It is worth noting that the stiffness tensor Cpm

in Equations II .41 to II .45 should be replaced by the stiffness tensor of solid clay phase

Cs.

4 Hydraulic properties of claystone

As described in Chapter I , internal pores are found to exist in the clayey rocks, and the

range of internal pore size in the clay-rich rocks is presented in Figure I .11. Besides,

the variation of porosity of the clay-rich rocks with depth is presented in Figure I .10. In

general, these pores will provide space for groundwater and gases. Therefore, in complex

environments, the effect of hydro-mechanical coupling on their properties needs to be

considered.

When the geo-materials is unsaturated, capillary forces often need to be considered.

The role of capillary forces in the hydro-mechanical coupling of clayey rocks is analyzed

by Jia et al. [2010], including three main factors. First, there are similarities between

the capillary forces and the confining pressure in the triaxial experiments. The capillary

forces will cause the closure of the interface of microcracks inside the clay matrix. This

leads to an increase in the strength of the clayey rocks due to the decrease of the water

content. Secondly, when these microcracks in clayey rocks are closed due to the presence

of capillary forces, the frictional strength of the crack interface will be increased. Finally,

these microcracks or pores inside the clay matrix are inhomogeneous in shape and size,

which can generate the heterogeneity of capillary force inside the sample. And this is one

of the reasons for the anisotropy of the macro-mechanical properties of the clayey rocks.

Anisotropic characteristics can affect the physical and mechanical properties of the clayey

rocks.

At the macroscopic scale, the clay matrix inside the clayey rocks is considered as a

homogenized porous medium, saturated by a liquid fluid (water) and a gas phase which is

a mixture of dry air and water vapor. Let pl denoting the pressure of liquid and pg that of

the gas mixture. We also introduce the capillary pressure as pcp = pg − pl. By using the

nonlinear poroelastic theory for partially saturated media [Alonso et al., 1990, Coussy,

2004, Coussy et al., 1998, Fredlund and Rahardjo, 1993], the macroscopic poroelastic

relations can be expressed as follows:

Σ = C
hom : Ee −B[pg − Slpcp] (II .46)

where B denotes the second order tensor of macroscopic Biot’s coefficients and Sl the
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water (liquid) saturation degree. The macroscopic Biot’s tensor can be determined by the

linear homogenization procedure and can be expressed as a function of the macroscopic

elastic stiffness tensor Chom [Dormieux et al., 2006, 2002]:

B = (I− S
s : Chom) (II .47)

where Ss = (Cs)−1 is the elastic compliance tensor of the solid clay phase. It is worth

noticing that the Biot’s coefficients are functions of the macroscopic elastic tensor Chom,

which is affected by porosity. Thus, the Biot’s coefficients can be affected by the porosity

increase induced by the interface-debonding related damage. Further, the capillary pres-

sure pcp is related to the saturation degree Sl through the water retention curve. This

one can be affected by micro-structural evolution of porous materials including porosity

change due to induced damage process. However, this specific issue is not discussed here

and can be investigated in future.

As shown in Figure I .5(b), the elastic stiffness of clayey rocks varies with different

humidities, so the effect of relative humidity on the elastic stiffness of clayey rocks will

be considered. For clayey rocks, the elastic properties of inclusions are almost insensitive

to water saturation, so the water sensitivity of elastic properties is attributed to the solid

clay phase in the clayey rocks. Moreover, due to the layered micro-structure of solid clay

phase, the water saturation change leads to the compaction or opening of inter-layer space.

Consequently, among the five elastic parameters (i.e., Es
⊥, E

s
‖, ν

s
⊥‖, ν

s
‖‖, G

s
⊥‖), the elastic

modulus perpendicular to layer planes Es
⊥ is the most sensitive one to water saturation

degree. Therefore, it is assumed that this modulus increases with the capillary pressure

by the following relation:

Es
⊥(pcp) = Es

⊥0

(

1 + β1
pcp
h

)

(II .48)

where Es
⊥0 is the value of Es

⊥ for pcp = 0 at the saturated condition. The parameter β1

controls the variation of Es
⊥ and the cohesion coefficient h is used to normalize the value

of pcp.

On the other hand, the capillary pressure pcp can be related to the relative humidity

Hr through the Kelvin’s law:

ln(Hr) =
Mol

vp

RTabsρlq
pcp (II .49)

where Mol
vp is the molar mass of vapor, R the universal gas constant, Tabs the absolute

temperature and ρlq the volumetric mass of liquid. Further, in some previous studies [Liu

and Shao, 2016, Valès et al., 2004, Zhang, 2017], it is found that the macroscopic elastic

stiffness of clay-rich rocks can increase with the decrease of water saturation.
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In addition, the inherent permeability of the clayey rocks need to be taken into ac-

count when considering the hydro-mechanical coupling effect on their physical-mechanical

properties. And the variation of permeability can be used to accumulate damage inside

the clayey rocks. On the other hand, the flow of fluids inside the rock can also have an

effect on the physical and mechanical properties of the rock. The fluid diffusion inside the

porous medium is described by using the Darcy’s law:

Q = KiA (II .50)

where Q is the flow rate through the material, i and A denote the hydraulic gradient

and cross-sectional area of the material, and K is the hydraulic conductivity in the flow

direction. The value of hydraulic conductivity is determined by the permeability of the

porous medium:

K =
kρlqg

µlq
(II .51)

where ρlq denotes the volumetric mass of liquid, g denotes the acceleration due to gravity,

and µlq is the dynamic viscosity of the fluid mass.

5 Conclusions

In this chapter, a homogenization method that can be used to reflect the mechanical and

hydraulic properties of clayey rocks was developed based on their physical and mechanical

properties and the related theoretical background.

Here, two different homogenization schemes were introduced firstly in this chapter,

including the Dilute scheme and the Mori-Tanaka scheme. The Mori-Tanaka scheme was

selected to use in the multi-scale anisotropy model described above. The most important

aspect of the homogenization method was the calculation of Hill’s tensor. For this reason,

the second section of this chapter was focused on the detailed solution of Hill’s tensor.

In addition, this part also presented the basic theory of Green’s function. It is worth

noting that the Green’s function was used in Hill’s tensor equation mainly because of

the anisotropic characteristics of the porous clay matrix. Finally, the hydro-mechanical

coupling behavior of the clayey rocks was considered.

This chapter mainly consider the elastic properties of clayey rocks, whose plastic prop-

erties will be presented in the next chapter.



Chapter III

Nonlinear homogenization method

applied to COx claystone that

considers the macroscopic

plastic-viscoplastic criterion,

hydraulic effects, and damage

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Description of macroscopic plastic criterion . . . . . . . . . . . . . 41

3 Extension of the macroscopic yield criterion . . . . . . . . . . . . . 46

3.1 Macroscopic yield criterion considering anisotropic effects . . . . . . . 46

3.2 Constitutive model for long-term behavior of clayey rocks . . . . . . . 53

3.3 Description of damage . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Effect of hydro-mechanical coupling on plastic deformation of clayey

rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

1 Introduction

As mentioned in Chapter I , the mechanical properties of claystone are closely related

to their complex structure at the micro-macro scales. Under the application of load,
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the position of mineral particles inside the claystone will change, and the pores inside

the clay matrix will also change. Some fractures can be induced in this process. And this

phenomenon will lead to changes in the mechanical properties of clayey rocks. In addition,

their mechanical properties are sensitive to water saturation degree [Liu and Shao, 2016,

Valès et al., 2004, Zhang, 2017]. Time-dependent deformation is also an important feature

of clayey rocks [Armand et al., 2017b, Fabre and Pellet, 2006, Gasc-Barbier et al., 2004,

Liu et al., 2018b]. Two principal mechanisms are often invoked: namely, the viscoplastic

deformation and time-dependent cracking between inclusions and clay matrix [Bikong

et al., 2015, Farhat et al., 2017]. The mechanical properties of claystone can also be

affected by the variation of temperatures, such as the decrease of elastic modulus and

failure strength with the rise of temperature [Liu et al., 2019, Masri et al., 2014, Menaceur

et al., 2015, Zhang, 2018].

On the other hand, in order to identify the main physical mechanisms of clayey rocks

deformation and failure, different kinds of microscopic and mesoscopic experimental s-

tudies have been performed. Both post-mortem analysis of tested samples and in situ

tests have been carried out by using different kinds of imaging techniques such as X-ray

tomography [Bornert, 2010, Desbois et al., 2017, Lenoir et al., 2007]. According to those

results, plastic deformation and damage of clayey rocks are two principal inelastic mech-

anisms. Plastic deformation occurs mainly inside the clay matrix, while damage is due to

micro-cracks around stiff mineral particles and inside the clay phase [Bornert et al., 2010,

Wang et al., 2015].

Based on the literature mentioned above, macroscopic constitutive models should first

be formulated for different types of clay-rich rocks [Chiarelli et al., 2003, Hoxha et al.,

2007, Jia et al., 2010, Shao et al., 2006]. The structural anisotropy has been taken into

account in some models [Pietruszczak et al., 2002], as well as the water saturation degree

[Jia et al., 2010] and the creep deformation [Farhat et al., 2017, Pietruszczak et al., 2004].

These phenomenological models are generally fitted from macroscopic laboratory tests

and not able to systematically incorporate the effects of mineralogy. In order to improve

and enrich the macroscopic modeling, micro-mechanics based models have recently been

developed. For instance, various homogenization schemes have been used to estimate the

macroscopic elastic properties [Giraud et al., 2007, Guéry et al., 2010, Shen and Shao,

2015b]. With the help of limit analysis technique and variational principles, analytical

macroscopic plastic yield criteria have been established for porous and inclusions-reinforced

geological materials [Barthélémy and Dormieux, 2004, Guo et al., 2008, He et al., 2013,

Jeong, 2002, Maghous et al., 2009, Shen et al., 2020, 2014, 2013b, 2012a, 2017]. These
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criteria are explicitly dependent on the porosity and content of mineral particles and take

the form of the yield functions to formulate complete micro-mechanics based plastic models

for clayey rocks, mostly with the isotropic assumption [Bignonnet et al., 2016, Shen et al.,

2013a, 2012b, 2018].

The objective of this chapter is to develop a unified micromechanics-based constitutive

model, dealing with plastic, viscoplastic strain, and damage evolution of anisotropic clayey

rocks. And the effect of hydro-mechanical coupling on the performance of clayey rocks

will be also considered. For this purpose, two homogenization steps will be considered:

⋆ The first step of homogenization is to propose an effective plastic criterion for the porous

matrix by considering the effect of pores;

⋆ The second step is to estimate the macroscopic mechanical properties and formulate the

macroscopic plasticity criterion for the inclusion-reinforced clay composites. The effects

of the structural anisotropy of the solid clay phase and the influence of water saturation

on the mechanical properties are considered.

2 Description of macroscopic plastic criterion

As for the elastic behavior, the plastic strains are affected by pores and inclusions at

the two scales. For this purpose, the macroscopic plastic criterion is first determined by

conducting two steps of homogenization. The obtained criterion is then used as the plastic

yield function. However, unlike the homogenization of elastic tensor including directly the

anisotropy of solid clay phase, the homogenization of the macroscopic plastic criterion

is realized in a simplified way. Indeed, it is very hard to analytically complete the two

steps of nonlinear homogenization by considering a transversely isotropic solid clay phase

at the microscopic scale. Therefore, the macroscopic plastic criterion is first determined

analytically for an isotropic solid clay phase. The obtained macroscopic criterion is then

heuristically modified to include the anisotropy of the solid clay phase.

The macroscopic plastic strain of clay-rich rocks is usually attributed to the irreversible

sliding of clay particles at the microscopic scale. The plastic yield function is characterized

by the linear Drucker-Prager criterion written as:

φm(σ̃) = σ̃d + T (σ̃m − h)≤0 (III .1)

where σ̃ denotes the local stress tensor in the solid clay phase, σ̃m = trσ̃/3 is the mean

stress, and σ̃d =
√
σ̃′ : σ̃′ the equivalent stress, with σ̃′ = σ̃ − σ̃m1. The 1 is the second-
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order unit tensor. The parameter h defines the hydrostatic tensile yield stress while T

corresponds to the frictional coefficient of the solid clay phase. The two strength parame-

ters can be related to the frictional angle ϕ and cohesion c in the sense of Mohr-Coulomb

criterion: T = 2
√
6sinϕ

3±sinϕ and h = c arctanϕ. The Drucker-Prager surface subscribes or in-

scribes the Mohr-Coulomb’s one if the positive or negative sign is taken in the calculation

of T .
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Figure III .1: Effect of parameters of h and T on the Drucker-Prager criterion

Here, we evaluate the effect of two parameters (T and h) on the mechanical response

of the solid clay phase. Figures III .1(a) and III .1(b) show that T affects the slope of the

plastic yield criterion and h affects the extension of the plastic yield criterion, respectively.

By using the modified secant method proposed by [Maghous et al., 2009], the effective

plasticity criterion for homogenized porous media at the microscopic scale is established
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and express as follows:

φpm(σ, f, T ) =
1 + 2f/3

T 2
σ2d +

(

3f

2T 2
− 1

)

σ2m + 2(1− f)hσm − (1− f)2h2 = 0 (III .2)

where σm = trσ/3 is the local mean stress of the homogenized porous medium while

σd =
√
σ′ : σ′ is the deviatoric stress, with σ′ = σ − σm1. One can see that the effective

plastic criterion of homogenized porous medium (as shown in Equation III .2) depends

explicitly on the porosity f . This effective plastic criterion is already used by several

researchers [Farhat et al., 2017, Huang et al., 2014, Shen et al., 2013a].
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Figure III .2: Effect of parameters of h and T on the effective plasticity criterion of the

porous clay matrix

Again, we evaluate the effect of two parameters (i.e., T and h) on the effective plasticity
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criterion of the porous clay matrix, as shown in Figure III .2. And the reference value of

the parameter used is: f = 0.16. It can be seen that these two parameters have different

degrees of influence on the yield surface of the porous clay matrix.

According to the plasticity criterion Equation III .2 for porous media, the strain rate

of porous matrix can be expressed as follows [Shen and Shao, 2015b]:

d = χ̇
∂Φpm

∂σ

=
T 2dd

(1 + 2f/3)2σd

[

1 + 2f/3

T 2
2σ′ +

(

3f

2T 2
− 1

)

2

3
σm1+

2(1− f)h

3
1

] (III .3)

where dd =
√
d′ : d′, and d′ = d − dm1. The multiplier of porous medium is χ̇ =

d′/
(

∂Φpm

∂σ′

)

. The convex and closed surface of strength domain Φpm can be character-

ized by its support function as follows:

πpm = d : σ

=
T 2dd

(1 + 2f/3)2σd

[

1 + 2f/3

T 2
2σ2d +

(

3f

2T 2
− 1

)

2σ2m + 2(1− f)hσm

] (III .4)

In combination with the Equations III .2 and III .3, the local stress of porous clay

matrix in Equation III .4 can be replaced. The support function can be rewritten as

follows:

πpm = (1−f)h
√

(

3fT 2

(3f − 2T 2)(1 + 2f/3)

)(

d2d +
1 + 2f/3

3f/2− T 2
trd2

)

−(1−f)h 2T 2

3f − 2T 2
trd

(III .5)

With the help of the support function πpm expression, the local stress in the porous

clay matrix can be obtained in the following form:

σ =
∂πpm

∂d
= C

pm(dd, trd) : d− (1− f)h
2T 2

3f − 2T 2
1

C
pm(dd, trd) = 3kpm(dd, trd)J+ 2µpm(dd, trd)K

kpm =
1 + 2f/3

3f/2− T 2

N

M
, µpm =

N

2M

N = (1− f)h

√

3fT 2

(1 + 2f/3)(3f − 2T 2)
, M =

√

d2d +
1 + 2f/3

3f/2− T 2
trd

(III .6)

As the strain rate d is non-uniform, the mean value of d can be chosen as the effective

strain rate [Maghous et al., 2009]:

deffd =
√

〈d2d〉, (trd)eff =
√

〈(trdeff )2〉 (III .7)
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Therefore, the local stress of porous clay matrix in Equation III .6 can be rewritten as:

σ = C
pm(deffd , (trd)eff ) : d− (1− f)h

2T 2

3f − 2T 2
1

C
pm(deffd , (trd)eff ) = 3kpmeq (deffd , (trd)eff )J+ 2µpmeq (deffd , (trd)eff )K

(III .8)

Since the clayey rocks are composed of porous matrix and mineral inclusions as shown

in the Figure II .1. The macroscopic stress of clayey rocks (without considering the

hydraulic effect) can be expressed as:

Σ = C
hom : D − (1− f)h

2T 2

3f − 2T 2
1

C
hom = 3khomJ+ 2µhomK

(III .9)

According to the Barthélémy and Dormieux [2004] research, the effective strain rate

is related to the bulk and shear modulus of the macroscopic claystone and the porous

matrix. This can be expressed as:

1

2
(1− ρ)((trd)eff )2 =

1

2

∂khom

∂kpmeq
(trD)2 +

∂µhom

∂kpmeq
D2

d

(1− ρ)(deffd )2 =
1

2

∂khom

∂µpmeq
(trD)2 +

∂µhom

∂µpmeq
D2

d

(III .10)

where Dd =
√
D′ : D′ with D′ = D − Dm1. As for the isotropic porous medium, the

homogenized secant moduli khom and µhom can be determined by Equation III .11, which

can be shown as follows:

khom =
3kpmeq + 4ρµpmeq

3(1− ρ)

µhom = µpmeq
kpmeq (6 + 9µ) + µpmeq (12 + 8ρ)

6(1− ρ)(kpmeq + 2µpmeq )

(III .11)

By substituting the local stress σ of the porous matrix into the macroscopic stress Σ

and combining the Equations III .9, III .10 and III .11, an analytical macroscopic plastic

criterion for the clayey rocks can be obtained as follows:

Φ(Σ, f, ρ, T ) = ΘΣ2
d +

(

3f

2T 2
− 1

)

Σ2
m + 2(1− f)hΣm − 3 + 2f + 3fρ

3 + 2f
(1− f)2h2 = 0

with

Θ =

1+2f/3
T 2 + 2

3ρ
(

3f
2T 2 − 1

)

4T 2−12f−9
6T 2−13f−6

ρ+ 1

(III .12)
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where Σm = trΣ/3 and Σd =
√
Σ′ : Σ′, with Σ′ = Σ− Σm1, are respectively the macro-

scopic mean and deviatoric stresses.

As the main advantage with respect to classical phenomenological plastic criterion, the

micro-mechanics based macroscopic plastic criterion [Bornert, 2010] explicitly takes into

account the effects of porosity f and of inclusions ρ. During plastic deformation, the values

of f and ρ can change, and this result in the variation of yield stress. For instance, when

the porosity decreases, the yield stress increases and one gets plastic hardening. Inversely,

the increase of porosity leads to plastic softening. Therefore, the use of micro-mechanics

based plastic criterion allows naturally considering plastic hardening or softening due to

the evolution of porosity and inclusion fraction. However, according to previous studies

[Shen et al., 2013a, Shen and Shao, 2016, Shen et al., 2012b], the evolutions of porosity and

inclusion fraction alone cannot fully describe the plastic hardening or softening. It is found

that the frictional coefficient of the solid clay phase T evolves with plastic deformation

history. We assume that T is a function of the equivalent plastic strain of the solid clay

phase denoted by the variable ǫ̃p:

T = Tm − (Tm − T0)e
−b1ǫ̃p (III .13)

where T0 and Tm define the initial threshold and asymptotic value of the frictional co-

efficient respectively. b1 is the parameters that controls the kinetics of hardening. The

evolution of ǫ̃p is related to that of macroscopic plastic strain and is detailed below.

It is noting that the theory of the macroscopic yield criterion for isotropic clay-rich

rocks presented above is based on the research results of Shen et al. [2013a].

3 Extension of the macroscopic yield criterion

3.1 Macroscopic yield criterion considering anisotropic effects

The effect of anisotropy of the solid clay phase is now introduced into the homogenized

macroscopic plasticity criterion [Bornert, 2010]. For the sake of clarity, the solid clay

phase is assumed to have an transversely isotropic structure. As randomly distributed

pores and inclusions are considered here, the transversely isotropic structure is assumed

to be conserved at the macroscopic scale. For the sake of convenience, a second-order

fabric tensor a is introduced to characterize the transversely isotropic material structure

[Pietruszczak et al., 2002, Pietruszczak and Mroz, 2000, 2001]. The principal frame of a

coincide with that of the transversely isotropic material and is specified by the unit vectors
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ek(k = 1, 2, 3). The components of aij are then given by:

aij = ã1e
1
i e

1
j + ã2e

2
i e

2
j + ã3e

3
i e

3
j (III .14)

where ã1, ã2 and ã3 are the principal values of the fabric tensor, as shown in Figure III

.3. On the other hand, for any macroscopic stress tensor Σ projected onto the principal

frame of a, one can calculate the magnitudes of the stress traction along the three frame

vectors, Lk(k = 1, 2, 3):


















L1 = (Σ2
11 +Σ2

12 +Σ2
13)

1/2

L2 = (Σ2
21 +Σ2

22 +Σ2
23)

1/2

L3 = (Σ2
31 +Σ2

32 +Σ2
33)

1/2

(III .15)

Figure III .3: The microstructure tensor a and the loading vector L

Then, one defines a normalized loading orientation vector l with the following compo-

nents li(i = 1, 2, 3):

li =
Li

(LkLk)1/2
(III .16)

With these components in hand, the following scalar parameter η is introduced [Pietruszcza-

k et al., 2002, Pietruszczak and Mroz, 2000, 2001]:

η = aijlilj (III .17)

η physically represents the projection of the fabric tensor a onto the loading orientation

l. Its value changes with the loading orientation. In practice, like any second rank tensor,
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the fabric tensor can be decomposed into a spherical part and a deviatoric part:

η̂ =
akk
3
, âij = (aij − η̂δij)/η̂ (III .18)

δij is the Kronecker delta. Physically, η̂ is the mean value of ãk(k = 1, 2, 3) while âij

represents the deviations from the mean value.

With this decomposition, the scalar parameter η can be approximated by the following

polynomial form:

η = aijlilj = η̂
[

1 + âijlilj + c1(âijlilj)
2 + c2(âijlilj)

3 + ...
]

(III .19)

The coefficients ck(k = 1, 2, ...) are introduced to characterize the degree of material

anisotropy. It is noticed that for an isotropic material, the fabric tensor reduces to a

spherical tensor and one gets âij = 0. Consequently, the parameter η = η̂ is constant and

independent of loading orientation.

For the clay-rich rocks studies here, it is assumed that the maximum value of frictional

coefficient of the solid clay phase Tm, controlling the macroscopic failure strength, is

dependent on loading orientation [Shen and Shao, 2015b]. Therefore, Tm is taken as a

function of the loading parameter η in the following form:

Tm(η) = T̂m
[

1 + âijlilj + c1(âijlilj)
2 + c2(âijlilj)

3 + ...
]

(III .20)

where T̂m represents the mean value of Tm.

Accordingly, the macroscopic plastic yield function is now dependent on the loading

parameter η and then extended to anisotropic materials:

Φp(Σ, f, ρ, T, η) = ΘΣ2
d +

(

3f

2T (η)2
− 1

)

Σ2
m + 2(1− f)hΣm − 3 + 2f + 3fρ

3 + 2f
(1− f)2h2 = 0

with

Θ =

1+2f/3
T (η)2

+ 2
3ρ

(

3f
2T (η)2

− 1
)

4T (η)2−12f−9
6T (η)2−13f−6

ρ+ 1

(III .21)



Extension of the macroscopic yield criterion 49

-4 -3 -2 -1 0 1 2 3

-1.5

-1.0

-0.5

0.5

1.0

1.5

Σ
m
 /MPa

Σ
d
 /MPa

 

 T
m
=0.1, h=10 MPa 

 T
m
=0.1, h=15 MPa

 T
m
=0.1, h=20 MPa

(a) Different h

-10 -8 -6 -4 -2 0 2 4

-3

-2

-1

1

2

3

Σ
m
 /MPa

 T
m
=0.1, h=10 MPa

 T
m
=0.2, h=10 MPa

 T
m
=0.3, h=10 MPa

Σ
d
 /MPa

(b) Different T̂m

Figure III .4: Effect of parameters of h and T̂m on the macroscopic plasticity criterion

As shown in Figure III .4, we investigate the effect of the parameters of h and T̂m on

the macroscopic mechanical behavior of clayey rocks. The used plasticity parameters of

clayey rocks are: T0 = 0.01, b1 = 100, and the equivalent plastic strain of solid clay phase

ǫ̃p = 0.01. The porosity and volume fraction of the inclusions are defined as: f = 0.1 and

ρ = 0.3, respectively. It can be seen from Figure III .4(a) that the increase in h causes the

plastic yield surface to expand approximately isotropically. The difference is that in the

Figure III .4(b), the expansion of the elliptical yield surface in the negative direction of

the horizontal axis (i.e., Σm) is greater than the expansion in the positive direction, which

indicates that the effect of T̂m on the yield surface is mainly to enhance the compressive

strength.

In addition, this section also considers the effect of porosity f and ρ on the macroscopic
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plasticity criterion of the clayey rocks, as shown in Figure III .5. The parameters used are

the same as in Figure III .4 above, i.e., T0 = 0.01, b1 = 100, and ǫ̃p = 0.01. T̂m and h are

kept constant at 0.3 and 10 MPa, respectively.
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Figure III .5: Effect of porosity f and volume fraction of inclusions ρ on the macroscopic

plasticity criterion

From Figure III .5(a), it can be seen that with the increase in porosity, there is a

clear pattern of smaller yield surfaces. This phenomenon is mainly due to the increase

in porosity, which weakens the strength of the claystone and makes it easier to produce

plastic deformation under the same stress conditions. In addition, the change in the value

of ρ has little effect on the macroscopic plastic yield surface, as can be shown in Figure

III .5(b).
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On the other hand, for most geological materials, a non-associative plastic flow rule may

be necessary to better describe the plastic volumetric strain, for instance, the compressibility-

dilatancy transition. Therefore, a non-associative macroscopic plastic potential should

be determined, ideally by rigorous homogenization procedures as for the homogenized

macroscopic plastic criterion III .21. However, this is a very delicate task for materials

containing heterogeneities at two different scales like clay-rick rocks studied here. There-

fore, a heuristic approach is here adopted. Indeed, in the previous study [Maghous et al.,

2009] devoted to plastic homogenization of porous materials composed of a solid matrix

obeying the Drucker-Prager criterion and a non-associated flow rule, an effective plastic

potential of homogenized porous media was obtained by using a rigorous modified secant

method (corresponding to the homogenized porous matrix at the mesoscopic scale in this

study, see Figure II .1). The expression of the obtained potential is very similar to that

of the effective plastic criterion III .21, just by replacing the term T 2 by Tt with t being

the microscopic dilatancy coefficient. As the same homogenization method (the modified

secant method) is used for the second step of homogenization here to consider the effect

of mineral inclusions, it is assumed that this property is conserved for the macroscopic

plastic potential. That allows postulating that the macroscopic plastic potential can be

heuristically deduced form the macroscopic plastic yield function III .21 replacing the term

T 2 by Tt. Therefore, the heuristic macroscopic plastic potential is given by:

Gp(Σ, f, ρ, T, t, η) = ΘΣ2
d +

(

3f

2T (η)t(η)
− 1

)

Σ2
m + 2(1− f)hΣm − 3 + 2f + 3fρ

3 + 2f
(1− f)2h2

with

Θ =

1+2f/3
T (η)t(η) +

2
3ρ

(

3f
2T (η)t(η) − 1

)

4T (η)t(η)−12f−9
6T (η)t(η)−13f−6ρ+ 1

(III .22)

Similar to the frictional coefficient T , the dilatancy coefficient t is also a function of

the equivalent plastic strain of the solid clay phase ǫ̃p:

t = tm − (tm − t0)e
−b2ǫ̃p (III .23)

where b2 is the parameter controlling the evolution of t from its initial value t0 to the

maximum one tm . Further, the macroscopic plastic flow rule should also depend on loading

orientation for anisotropic materials. Therefore, in a similar way as for the frictional

coefficient, it is assumed that the maximum value of the coefficient t, tm , is a function of

the loading parameter η:

tm(η) = t̂m
[

1 + âijlilj + c1(âijlilj)
2 + c2(âijlilj)

3 + ...
]

(III .24)
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With the macroscopic plastic yield function and potential in hand, the macroscopic

instantaneous plastic strain rates can be determined by the following non-associated flow

rule:

Ėp = λ̇p
∂Gp

∂Σ
(III .25)

The plastic multiplier λ̇p can be classically calculated from the plastic consistency

condition: Φ̇p = 0. And its expression can be written as follows:

λ̇p =
∂Φp

∂Σ : Chom : Ė

Hep

with

Hep =
∂Φp

∂Σ
: Chom :

∂Gp

∂Σ
− ∂Φp

∂f





∂Gp

∂Σm

1− f

ρ
− t

Σ :
∂Gp

∂Σ

(1− ρ)
(

Th+ (t− T ) Σm

1−f

)



+
∂Φp

∂ρ
ρ
∂Gp

∂Σm

− ∂Φp

∂T

∂T

∂ε̃p
Σ :

∂Gp

∂Σ

(1− f)(1− ρ)
(

Th+ (t− T ) Σm

1−f

)

(III .26)

After calculating the plastic multiplier, the macroscopic tangent elastic-plastic stiffness

tensor Ctan can also be determined such as Σ̇ = Ctan : Ė. Considering the plastic loading-

unloading conditions, the expression for the tangent elastic-plastic stiffness tensor Ctan

can be calculated as:

C
tan =







Chom if Φp < 0 or Φp = 0 ∪ Φ̇p < 0

Chom − Chom:
∂Gp
∂Σ

⊗ ∂Φp
∂Σ

:Chom

Hep
if Φp = 0 ∪ Φ̇p = 0

(III .27)

The equivalent plastic strain ˙̃ǫp of the solid clay phase is finally calculated by consid-

ering the energy equivalence condition:

˙̃ǫp =
Σ : Ėp

(1− f)(1− ρ)
[

Th+ (t− T ) Σm

1−f

] (III .28)

The evolution of porosity is determined by making use of the Kinematic condition

[Shen et al., 2013a]:

ḟ =
1− f

1− ρ
trĖp − (1− f)t ˙̃ǫp (III .29)

It is found that the evolution of porosity is either related to the macroscopic plastic

volumetric strain and the equivalent plastic strain of the solid clay phase at the microscopic

scale.
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3.2 Constitutive model for long-term behavior of clayey rocks

When clayey rocks are subjected to stress changes, a part of plastic deformation occurs

instantaneously as described above. But another part evolves in time. Therefore, the

time-dependent plastic deformation is seen as the delayed plastic one and here described

in the viscoplastic theory. Both instantaneous and delayed plastic strains are described

by a unified formulation [Farhat et al., 2017, Zhou et al., 2008]. The evolution of vis-

coplastic loading surface is delayed with respect to the plastic yielding surface. In order

to describe this process, a specific viscoplastic hardening function is introduced and its

evolution is lower than that of the instantaneous plastic hardening function given in III

.13. Consequently, the viscoplastic loading function is expressed as follows:

Φvp(Σ, f, ρ, Tvp, η) = ΘΣ2
d +

(

3f

2T 2
vp

− 1

)

Σ2
m + 2(1− f)hΣm − 3 + 2f + 3fρ

3 + 2f
(1− f)2h2 ≥ 0

with

Θ =

1+2f/3
T 2
vp

+ 2
3ρ

(

3f
2T 2

vp
− 1

)

4T 2
vp−12f−9

6T 2
vp−13f−6

ρ+ 1

(III .30)

The viscoplastic hardening function Tvp verifies the condition Tvp(ε̃
p) ≤ T (ε̃p). The

evolution of Tvp(ε̃
p) is described by the same function as that for T (ε̃p):

Tvp = Tm(η)− (Tm(η)− T0)e
−bvpε̃p (III .31)

It is worth noticing that the viscoplastic hardening function is bounded by the max-

imum friction coefficient Tm(η), given in III .20 as a function of loading orientation pa-

rameter η. Therefore, it is here assumed that the viscoplastic loading function exhibits

the same anisotropic property as the plastic yield function. The parameter bvp controls

the evolution of viscoplastic hardening and fits the condition bvp ≤ b1.

Under a constant stress state like in a creep test, the instantaneous plastic strains

do not evolve. But the time-dependent plastic strains can evolve if Φvp > 0. The value

of Tvp increases with time and progressively approaches that of T . When Tvp = T , the

plastic yield and viscoplastic loading surfaces coincide and the viscoplastic flow vanishes.

One reaches the stationary state of viscoplastic flow. Similarly, the non-associated plastic

potential III .22 is adapted for the viscoplastic deformation. Further, it is also assumed

that the viscoplastic flow rule exhibits the same anisotropy than that of plastic one. The

same dilatancy coefficient t is used for the viscoplastic potential. Thus, the viscoplastic
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potential is given by:

Gvp(Σ, f, ρ, Tvp, t, η) = ΘΣ2
d +

(

3f

2Tvp(η)t(η)
− 1

)

Σ2
m + 2(1− f)hΣm − 3 + 2f + 3fρ

3 + 2f
(1− f)2h2

with

Θ =

1+2f/3
Tvp(η)t(η)

+ 2
3ρ

(

3f
2Tvp(η)t(η)

− 1
)

4Tvp(η)t(η)−12f−9
6Tvp(η)t(η)−13f−6ρ+ 1

(III .32)

Thus the viscoplastic strains rates are given by:

Ėvp = λ̇vp
∂Gvp

∂Σ
(III .33)

The viscoplastic multiplier λ̇vp (in 1/(Pa · s)) is here calculated by using the over-

stress concept and Perzyna formulation. The viscoplastic flow occurs only if Φvp > 0. The

viscoplastic multiplier is a function of the positive value of Φvp. The following power is

proposed:

λ̇vp =
1

η1

(〈Φvp〉
h2

)2

(III .34)

The parameter η1 (in Pa ·s) represents the coefficient of viscosity controlling the initial

creep rate while m is a parameter controlling the evolution of viscoplastic strain rate. The

hydrostatic tensile yield stress h is here used to normalize the value of the loading function

Φvp in the power term. When the instantaneous plastic and time-dependent viscoplastic

flows occur simultaneously, the equivalent plastic strain in the solid clay phase becomes:

˙̃εp =
Σ : Ėp

(1− f)(1− ρ)
[

Th+ (t− T ) Σm

1−f

] +
Σ : Ėvp

(1− f)(1− ρ)
[

Tvph+ (t− Tvp)
Σm

1−f

] (III .35)

The evolution of porosity is accordingly given by:

ḟ =
1− f

1− ρ

(

trĖp + trĖvp
)

− (1− f)t ˙̃εp (III .36)

3.3 Description of damage

As mentioned above, clayey rocks are also susceptible to damage process due to the nu-

cleation and propagation of micro-cracks [Bornert et al., 2010, Wang et al., 2015]. In this

study, a micro-structure based modeling strategy is adopted. Damage is seen as a mech-

anism of microstructure evolution. More precisely, damage is directly related to interface

debonding between mineral inclusions and porous clayey matrix at the meso-scopic scale.

When an initially perfectly bonded inclusion is debonded, it is assumed to be completely
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detached from the surrounding clayey matrix and behaves like a void, as shown in Figure

III .6. Therefore, the debonding process leads to the increase of porosity and decrease of

inclusion volume fraction. As a consequence, both the macroscopic elastic stiffness and

plastic yield strength are weakened by the debonding-related damage process.

Figure III .6: Schematic representation of interfacial debonding process at the meso-

scopic scale

Further, according to some previous studies [Shen and Shao, 2015a, Wang et al., 2015],

the interface debonding is usually due to the strong strain and stress concentration around

stiff inclusions. It is therefore reasonable to assume that the debonding-related damage

process is driven by the strain difference (or contrast) between the inclusions and clayey

matrix. For this purpose, the following scalar variable ε̂im is introduced to represent the

strain contrast:

ǫ̂im =
√

(ε̂i − ε̂m) : (ε̂i − ε̂m) (III .37)

As defined above, ε̂i and ε̂m are respectively the local strain tensors of the merged

inclusion phase and porous clayey matrix at the mesoscopic scale.

Further, it is assumed that the Kinetics of debonding process is controlled by the

following Weibull’s probability distribution function [Weibull, 1951]:

Pd = 1− exp

[

−
(

ǫ̂im

S0

)M
]

(III .38)

S0 and M are two parameters controlling the evolution of Pd from the perfectly bonded

state (Pd = 0) to fully debonded state (Pd = 1). Then, the volume fraction of debonded

inclusions ρd is given by:

ρd = ρiniPd = ρini

{

1− exp

[

−
(

ε̂im

S0

)M
]}

(III .39)

ρini denotes the initial volume fraction of bonded inclusions. Accordingly, the current

volume fraction of remaining bonded inclusions ρ and porosity f are calculated by:

ρ = ρini − ρd, f =
f ini + ρd
1− ρ

(III .40)
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where f ini denotes the initial value of porosity.

The key step here is the calculation of local strain tensors of the inclusion and porous

clayey matrix, ε̂i and ε̂m. To this end and being consistent with the homogenization

method used above for the macroscopic elastic properties, the two local strain fields are

calculated by making use of strain concentration tensor. However, as a basic difference

with the strain concentration tensor given in II .10 for the elastic homogenization, the

repartition of macroscopic strain increment between the porous clayey matrix and inclusion

phase is now affected by the plastic strain. In order to account for the plastic strain effect,

the concept developed in the Hill’s incremental method [Hill, 1965] for nonlinear composite

materials is here employed. For this purpose, the rate form of constitutive model of the

homogenized porous clayey matrix is expressed as follows:

σ̇ = L
pm : ε̇ (III .41)

The fourth rank tensor Lpm denotes the tangent elastic-plastic operator of the porous

matrix, depending on plastic deformation history. This tensor can be strongly anisotropic.

The calculation of the corresponding Hill’s tensor becomes delicate. For the sake of effi-

ciency for numerical implementation of the proposed model, and inspired by the previous

studies denoted to incremental modeling of rock-like materials [Guéry et al., 2008, Shen

and Shao, 2016, Shen et al., 2012b], the so-called isotropization procedure is here used.

The basic idea is to extract an isotropic part from Lpm so that the Hill’s tensor can be

easily calculated by using analytical formula and the extracted isotropic part. Among

different isotropization methods available, the method proposed in [Bornert et al., 2001] is

adopted here due to its mathematical and computing simplicity. Therefore, the isotropic

part denoted as Lpm
iso is extracted from Lpm through the following operation:

L
pm
iso = (J :: Lpm) J+

1

5
(K :: Lpm)K = 3kpmt J+ 2µpmt K

with

kpmt =
1

3
(J :: Lpm), µpmt =

1

10
(K :: Lpm)

(III .42)

By using this isotropic part Lpm
iso , it is now possible to analytically calculate the Eshel-

by’s tensor Siso and Hill’s tensor Piso by the following relations:

S
iso =

3kpmt
3kpmt + 4µpmt

J+
6(kpmt + 2µpmt )

15kpmt + 20µpmt
K

P
iso = S

iso : (Lpm
iso )

−1

(III .43)

It is worth noticing that the isotropization method used here is similar to propositions

of volumetric/deviatoric decompositions of anisotropic tensors reported in the literature,
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for instance [Lebensohn et al., 2004]. Finally, by using again the Mori-Tanaka scheme,

the rates of local strain tensors in the porous matrix and inclusion phase are calculated

explicitly:

˙̂εm =
[

(1− ρ)I+ ρ
(

I+ P
iso : (Ci − L

pm
iso )

)−1
]−1

: Ė (III .44)

˙̂εi =
1

ρ

[

Ė − (1− ρ) ˙̂ǫm
]

(III .45)

Finally, the tangent elastic-plastic operator Lpm can be calculated from the plastic flow

rule of the homogenized porous matrix with the yield criterion (III .2). In consistency with

the non-associative macroscopic plastic flow rule, the plastic flow rule of the homogenized

porous matrix is also non-associative. The corresponding effective plastic potential is

issued from the first step of homogenization with the modified secant method [Maghous

et al., 2009]. It is expressed in the following form:

gpm(σ, f, T, t) =
1 + 2f/3

Tt
σ2d +

(

3f

2Tt
− 1

)

σ2m + 2(1− f)hσm (III .46)

Accordingly, the evolution of equivalent plastic strain of the solid clay phase and that

of porosity can be related to the plastic strain tensor of the homogenized porous matrix

by:

˙̃εp =
σ : ε̇p

(1− f)
[

Th+ (t− T ) σm

1−f

] (III .47)

ḟ = (1− f)
[

trε̇p − t ˙̃εp
]

(III .48)

By using the plastic consistency condition φ̇pm = 0, one can readily get:

L
pm =







Cpm if φpm < 0 or φpm = 0 ∪ φ̇pm < 0

Cpm − Cpm: ∂g
pm

∂σ
⊗ ∂φpm

∂σ
:Cpm

Hpm
ep

if φpm = 0 ∪ φ̇pm = 0

with

Hpm
ep =

∂φpm

∂σ
: Cpm :

∂gpm

∂σ
− ∂φpm

∂f





∂gpm

∂σm
(1− f)− t

σ : ∂gpm

∂σ
(

Th+ (t− T ) σm

1−f

)





− ∂φpm

∂T

∂T

∂ε̃p
σ : ∂gpm

∂σ

(1− f)
(

Th+ (t− T ) σm

1−f

)

(III .49)

Macroscopic elastic stiffness tensor Chom varies with the value of porosity f and volume

fraction of inclusion ρ (as shown in equation (II .9). Therefore, the debonding process can

change the macroscopic elasticity of clay rock. Thus, after the debonding process, we
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need to put the updated macroscopic stiffness tensor Chom into the constitutive relation

function to update the macroscopic stress and strain. The flowchart of the debonding

calculation algorithm can be seen in Table III .1.

Input f ini ,ρini, Ci, Cpm|n, Chom|n
Output f |n+1, ρ|n+1, C

pm|n+1, C
hom|n+1

(I) Initialization: set z = 0; ρd|zn+1 = ρd|n; ρp|zn+1 = ρp|n
(II) Calculate the deviatoric strain ǫ̂im|zn+1

(III) Calculate distribution function:

Pd|zn+1 = 1− exp

[

−
(

ǫ̂im|zn+1

S0

)M
]

(IV) Update ρp|zn+1: ρp|zn+1 = ρini(1− Pd|zn+1)

(V) Perform convergence chacking:

If
∣

∣(ρp|zn+1 − ρp|z−1
n+1)/ρp|z−1

n+1

∣

∣ 6 TOL(i.e.10−8) then
∣

∣

∣

∣

update the following parameters:
∣

∣

∣

∣

ρd|n+1 = ρd|zn+1; ρp|n+1 = ρp|zn+1;
∣

∣

∣

∣

ǫ̂im|n+1 = ǫ̂im|zn+1
∣

∣

∣

∣

ρ|n+1 = ρini − ρd|n+1; f |n+1 =
f ini+ρd|n+1

1−ρ ;

Else
∣

∣

∣

∣

set z=z+1, goto step (II)

End if

(VI) Update the Cpm|n+1,C
hom|n+1

(VII) End

Table III .1: Flowchart of debonding calculation algorithm

In order to show the influences of the damage parameters S0 and M on the overal-

l mechanical behavior, in Figures III .7 and III .8, one shows the stress-strain curves,

the volume fraction evolutions of debonded inclusions and Young’s modulus in a triaxial

compression test with different values of S0 and M .
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Figure III .7: Stress-strain curves and damage evolutions in triaxial compression test

for different values of damage parameter S0



60

Nonlinear homogenization method applied to COx claystone that considers the

macroscopic plastic-viscoplastic criterion, hydraulic effects, and damage

-8 -6 -4 -2 0 2 4 6 8

10

20

30

40

50 Deviatoric stress /MPa

E
axial

 /%E
radial

 /%

H
r
=98% ,Pc=12.8 MPa

 Perfectly bonded

 S
0
=0.1 M=10

 S
0
=0.1 M=5

 S
0
=0.1 M=2

 S
0
=0.1 M=1

 Completely debonded

(a) Stress-strain curves

0.00 -0.02 -0.04 -0.06 -0.08

0.1

0.2

0.3

0.4

0.5

E
axial

ρ
d

H
r
=98% ,Pc=12.8 MPa

 

 S
0
=0.1 M=10

 S
0
=0.1 M=5

 S
0
=0.1 M=2

 S
0
=0.1 M=1

(b) Volume fraction of debonded inclusions ρd

0 2 4 6 8

2000

3000

4000

5000

6000

E
axial

 /%

E
hom

axial
 /MPa

H
r
=98%, Pc=12.8 MPa, θ=90

o

 Perfectly bonded  S
0
=0.1 M=10

 S
0
=0.1 M=5  S

0
=0.1 M=2

 S
0
=0.1 M=1  Completely debonded

(c) Variation of macroscopic axial modulus
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for different values of damage parameter M
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Due to the large number of parameters involved in this sensitivity simulation, the

selected parameters are from Tables IV .1 and IV .2, S0 and M are not included in these

Tables.

It is found that for a given value of M , a smaller value of S0 enhances the kinetics of

interface debonding and thus damage process. With the progressive increase of debonded

inclusion fraction, the material stiffness and strength are weakened, leading to the pro-

gressive softening of material. A more intuitive representation can be seen in the variation

law of Young’s modulus with different value of S0. There is a transition from the perfect-

ly bonded state to completely debonded state. The value of S0 largely affects the peak

strength but almost not the post-peak softening rate.

On the other hand, for a given value of S0, the change of M affects the evolution

form of the debonded inclusion fraction. For a high value of M , the debonding starts

very slowly but then increases suddenly to its maximum value, while for a low value of

M , the debonding starts rapidly and then its evolution rate decreases. The value of M

significantly affects both the peak strength value and the softening rate in the post-peak

regime. In the same figures, we also show the variations of macroscopic axial elastic

modulus, denoted as Ehom
axial, as functions of prescribed axial strain. One can see that

the macroscopic elastic modulus is progressively deteriorated by the interface-debonding

related damage evolution.

3.4 Effect of hydro-mechanical coupling on plastic deformation of clayey

rocks

Due to the presence of clay minerals, the mechanical behavior of clay-rich rocks is generally

sensitive to waster saturation degree [Liu and Shao, 2016, Shen et al., 2014, Valès et al.,

2004, Zhang, 2017]. At the same time, in many engineering applications, there exist both

saturated and partially zones. For instance, during the excavation of an underground

cavity in an initially saturated geological formation, a desaturated (or partially saturated)

zone is created around the cavity. This zone can be further resaturated due to the water

flow from the far-field. Therefore, the water saturation degree can vary in space and evolve

in time. It is needed to take into account the influence of water saturation change on the

mechanical behavior of clay-rich rocks.

In addition, the effects of hydro-mechanical coupling on the elastic properties of the

anisotropic clayey rocks have been described in Chapter II . Therefore, this chapter will

focus on the effect of hydraulic and mechanical coupling on the plastic deformation part.

The plastic behavior of clay-rich rocks is influenced by water saturation. Different
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kinds of approaches have been proposed for modeling partially saturated soils and rocks,

for instance by introducing extended effective stress [Coussy, 2004, Coussy et al., 1998]

or using the so-called net stress concept [Alonso et al., 1990]. This concept has been

successively applied to clays and clay-rich rocks [Jia et al., 2010] and it is also employed

in this study. It is assumed that the plastic yield function Φp in III .21 and potential Gp

III .22 can be expressed in terms of the net stress tensor Σ′ defined by:

Σ′ = Σ+Bpg (III .50)

Further, the plastic functions are also influenced by the capillary pressure or saturation

degree. This dependency is usually identified from experimental evidences. For clay-

rich rocks, as the water sensitivity of mechanical behavior is mainly attributed to the

clay phase. Therefore, it is here assumed that the average value of maximum frictional

coefficient T̂m is a function of the capillary pressure [Jia et al., 2010]:

T̂m(pcp) = T̂m0

(

1 + β2
pcp
h

)

(III .51)

where T̂m0 is the value of T̂m for pcp = 0 at the saturated condition. The parameter β2

controls the variation T̂m and the cohesion h is again used to normalize the value of pcp.

In a similar manner, the value of the dilatancy coefficient t̂m also depends on the

capillary pressure through the same variation law:

t̂m(pcp) = t̂m0

(

1 + β2
pcp
h

)

(III .52)

where T̂m0 is the value of T̂m for pcp = 0 at the saturated condition.

4 Conclusions

In combination with the previous Chapter II and this chapter, an anisotropic macroscop-

ic elasto-plastic model was established for simulating the mechanical behavior of clayey

rocks. In this chapter, both anisotropy and damage during loading were taken into ac-

count. In addition, viscoplastic parameters were introduced in this chapter to consider

the time-dependent deformation. Also, the effects of hydro-mechanical coupling were also

considered.

The macroscopic plastic criterion in this model can reflect the anisotropic deformation

by assuming the maximum value of the frictional coefficient of the solid clay phase varies

with the loading orientation. On the other hand, a non-associative macroscopic plasticity

potential was established mainly to better describe the plastic volume strain. As for the
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time-dependent deformation, the parameter bvp was introduced to control the evolution of

the viscoplastic hardening.

In the initial state, the mineral inclusions and the clay matrix were considered bonded

perfectly. This model introduced Weibull’s probability distribution function to estimate

the damage degree. When the difference strain between the inclusions and porous matrix

exceeded a certain value, it was considered that the inclusions have been separated from

the porous matrix and it will no longer be loaded.

For the hydro-mechanical coupling of clay rock, this chapter established the relations

between pore pressure with the maximum frictional coefficient T̂m of the clay rock.

The next Chapter IV will present several numerical simulation works. It will be shown

that the simulation results have a good agreement with the experiments.
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1 Introduction

In France, clayey rocks are investigated as potential geological formations for underground

waste disposal. Numerous experimental studies have been carried out on these clayey

rocks. According to the mineralogical analysis [Robinet et al., 2012], the COx claystone

consists of 40% to 50% clay phase, 20% to 30% carbonate, and 20% to 30% quartz. The

overall porosity varies from 11% to 14%. The majority of the pores are embedded in the
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porous clay matrix. The local porosity can be calculated by dividing the volume of the

pores by the volume of the porous clay matrix. The typical value is about f = 15% to 20%.

The detailed description of the distribution of mineral inclusions in the deep subsurface

has been presented in Chapter I .

This chapter aims to simulate the laboratory experiments based on the multi-scale

multi-physics anisotropic model (as shown in Chapters II and III ) and will analyze the

influence of model parameters on the simulation results. For this chapter, two parts will

be presented. The first part will focus on the determination of the model parameters.

This part will be divided into the determination of the elastic-plastic parameters and the

hydro-mechanical coupling parameters. The second part will deal with three different

experimental tests, including the lateral decompression tests with different loading ori-

entations, normal triaxial compression tests with different relative humidity, and creep

tests.

2 Identification of model’s parameters

The laboratory experiments of the specimens of COx claystone collected by ANDRA from

the underground research laboratory (URL) at Bure in France at a depth of approximately

490m. And these specimens have an initial water content of 6.2%, an initial saturation of

90.4%, and an initial density of 2.69g/cm3 in the laboratory environment.

2.1 Elastic parameters

According to the homogenization scheme employed in this thesis, the macroscopic elastic

tensor in Equation II .9 is calculated based on the local elastic properties of the solid clay

phase and inclusions, porosity, and the volume fraction of inclusions. For simplicity, it

is assumed that the mineral particles consist of a mixed inclusion phase of quartz and

carbonate with isotropic elastic behavior. The elastic properties of the inclusion phases

can be estimated from literature [Guéry et al., 2008, Lide, 2004, Panet et al., 1976]. For

instance, the typical values of Young’s modulus and Poisson’s ratio for calcite and quartz

are equal to Ecalcite = 95000MPa, νcalcite = 0.27 and Equartz = 101000MPa, νquartz =

0.06, respectively. For simplicity, the equivalent inclusion phase is chosen with Ei =

98000MPa and νi = 0.15, respectively [Shen et al., 2013a].

The values of porosity and volume fraction of inclusions are measured by the miner-

alogical analysis. The key issue in the calculation of macroscopic elastic stiffness tensor of

clayey rocks of the anisotropic model is to determine the local elastic behavior of the solid
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clay phase at the microscopic scale. The solid clay phase is considered to be transversely

isotropic, and its elastic parameter values need to be determined. It is generally very dif-

ficult to measure these elastic parameters directly using microscopic tests. An alternative

indirect method is usually adopted.

For this chapter, the values of five macroscopic elastic parameters (i.e., Ehom
1 , Ehom

3 ,

νhom12 , νhom31 , Ghom
13 ) are determined from the linear parts of stress-strain curves obtained

from the macroscopic triaxial compression test (or other equivalent test). These tests

take into account the different drilling orientations of the specimen relative to the bedding

plane. Then, the average porosity and volume fraction of inclusion are measured. With

these data mentioned above, the five elastic parameters of the solid clay phase (i.e., Es
1,

Es
3, ν

s
12, ν

s
31, G

s
13) can be determined by numerically inverting of the relations II .8 and II

.9.

f = 0.16, ρ = 0.4, Ei = 98000MPa, νi = 0.15, Slq = 90.4%

Elastic Ehom
1 (MPa) Ehom

3 (MPa) νhom12 νhom31 Ghom
13 (MPa)

Measured macroscopic value 8128 4919 0.34 0.27 1294

Solid clay phase 5160 2820 0.35 0.33 1060

Calculated macroscopic value 8275 4960 0.29 0.27 1273

Table IV .1: List of elastic parameters for transversely isotropic COx claystone

Figure IV .1: Definition of structural and global frames and loading orientation angle θ

Table IV .1 gives the typical elastic parameters values (corresponding to a relative

humidity of 96%) for the samples in the laboratory conditions, including the measured

experimental values of the macroscopic elasticity and the values calculated using the E-

quations II .8 and II .9. A quite good agreement is observed. The five elastic parameters
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are defined in the structural frame (0, S1, S2, S3), as shown in Figure IV .1. The isotropic

bedding plane is represented by the axis 0S2S3, while the axis S1 is perpendicular to the

bedding plane. In this figure, the loading orientation for the triaxial compression test θ is

defined by the angle between the axial stress (X1-axis) and the bedding plane.

With the five elastic parameters (as shown in Table IV .1) in hand, it is possible to

calculate the axial elastic modulus in any triaxial compression test by using the following

relation [Niandou et al., 1997]:

1

Ehom
axial(θ)

=
sin4θ

Ehom
3

+

(

1

Ghom
13

− 2
νhom12

Ehom
3

)

sin2θcos2θ +
cos4θ

Ehom
1

(IV .1)

It worth noting that the Equation IV .1 is derived from the Equation Chom(θ) = AT :

Chom : A. Where the A has already been described in Equation I .7. AT is the transpose

matrix of A.

In Figure IV .2, one compares the experimental values of the axial elastic modulus

measured by triaxial compression tests under five different loading angles at a constant

mean stress of 12MPa with the values calculated by the Equation IV .1. The initial

elasticity parameters are taken from the Table IV .1. As can be seen, the variation of

axial modulus with loading orientation is correctly described.
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Figure IV .2: Variation of axial elastic modulus Eaxial: comparison between theoretical

values and experimental data (f = 0.16, ρ = 0.4, Hr = 96%)

2.2 Plastic, viscoplastic and damage parameters

The plastic parameters in the proposed model include the initial and maximum friction-

al coefficients T0 and Tm, the hydrostatic tensile strength h and the plastic hardening
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coefficient b1. All these parameters are related to the solid clay phase. Like the elastic

parameters, it is very difficult to carry out microscopic tests directly on the clay phase.

The plastic parameters are also numerically fitted from macroscopic laboratory tests. It

is well known that most clay materials have a very small initial plastic yield stress, and its

value does not significantly affect the overall mechanical responses. Therefore a constant

small value is here taken for the parameter T0. For a given loading orientation (a given

value of angle θ), the values of Tm and h can be conveniently calibrated from the peak

stresses of triaxial compression tests. It is noticed that in the present study, the value

of h is assumed to be independent of θ. Only the value of Tm is dependent on θ. As an

example, one considers uniaxial compression tests along the axis X1 as shown in Figure IV

.1, with the corresponding stress Σ2 = Σ3 = 0, Σ1 = Σaxial < 0. Due to the transversely

isotropy of material, the principal values of the fabric tensor verify â2 = â3 = −0.5â1.

Thus, one gets:

âijlilj = â3(1− 3l21), l21 = sin2θ (IV .2)

According to III .20, the variation of Tm with the loading angle θ is given by:

Tm(θ) = T̂m
[

1 + â3(1− 3sin2θ) + c1(â2(1− 3sin2θ))2 + c2(â3(1− 3sin2θ))3 + ...
]

(IV .3)

In practice, from the value of Tm identified from different values of θ, it is possible

to calibrate the values of T̂m, â3, c1 and c2. For the COx claystone, in Figure IV .3(a),

one shows the evolution of peak differential stress with loading orientation in triaxial

compression tests with constant mean stress on the samples under Hr = 96%. One can

see that the maximum strength is obtained for θ = 0◦ (parallel to bedding planes) while

the minimum one is found between θ = 30◦ and θ = 60◦. However, the value for θ = 45◦

is abnormally high compared with those of θ = 30◦ and θ = 60◦. This may be related to

experimental artifact or a high volume fraction of quartz and carbonate in that sample

(note that the mineralogy was not measured individually on each sample but on each

batch drilled at a given depth). Thus, the value of peak strength for θ = 45◦ was not

used for the calibration of the anisotropy parameters. In Figure IV .3(b), the variation of

Tm with θ is presented. It is found that the third-order approximation provides a good

description of material anisotropy. Therefore, the values of T̂m, â3, c1 and c2 are calibrated

and presented in Table IV .2.
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Plastic T0 = t0 = 0.01,b1 = b2 = 150, h = 16MPa

Viscoplastic η1 = 1015Pa.s, bvp = 60, m = 2

Debonding S0 = 0.1, M = 2

Anisotropy T̂m = t̂m = 0.69, â3 = 0.1362, c1 = 7.63, c2 = 4.52

Table IV .2: Typical set of parameters for anisotropic COx claystone (f ini = 0.16,

ρini = 0.40, Hr = 96%)
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Figure IV .3: Variation of peak differential stress and corresponding Tm

The hardening parameter b1 can be calibrated from the pre-peak parts of axial strain

versus differential stress curves of triaxial compression tests. The parameters involved
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in the plastic potential, namely t0, b2 and t̂m control the plastic volumetric strains. In

practice, an associated plastic flow rule is first adopted by taking t0 = T0, b2 = b1 and

t̂m = T̂m. Then, by comparing numerical results with experimental data in terms of

volumetric or lateral strain, the values of these parameters can be eventually readjusted.

For the case of COx claystone, it seems that the associated plastic flow rule provides

satisfactory predictions. Finally, the damage parameters S0 and M mainly control the

post-peak stress-strain curves. Their values are then calibrated from the post-peak parts

in triaxial compression tests.

In Table IV .2, the typical set of parameters for the COx claystone is presented for the

samples under the relative humidity of 96%. Finally, three parameters (i.e., η1, bvp, m)

are involved in the viscoplastic law. They are generally fitted from the variation of strains

during creep tests.

It should be noted that the determination of the model parameters in this chapter is

based on the experimental results, and it is difficult to maintain the same saturation in

laboratory experiments as in situ environment. Therefore, the initial saturation of exper-

imental specimens in the laboratory often uses special methods to maintain a constant

value of saturation close to that of the in situ environment.

2.3 Hydro-mechanical coupling parameters for partially saturated me-

dia

As mentioned above (Equations II .48, III .51 and III .52), the effect of water saturation

on the mechanical behavior of clay-rich rocks is explained here in terms of the variation of

the mean frictional coefficient T̂m and the perpendicular elastic modulus Es
⊥ of the solid

clay phase at the microscopic scale. Their values are related to the macroscopic elastic

modulus and peak strength.

Therefore, five triaxial compression tests are performed on the samples with different

water contents obtained by the equilibrium with the different values of the relative hu-

midity of salt solution around the samples (i.e. 15%, 59%, 70%, 85% and 98%). All the

samples were drilled in the perpendicular direction with θ = 90◦.

From these tests, the values of macroscopic axial modulus and different peak strengths

were measured. By using the analytical relations issued from homogenization for the

elastic stiffness tensor and peak strength presented above, the corresponding values of Es
⊥

and T̂m are calculated for each value of relative humidity, as shown in Table IV .3. The

values from the triaxial tests with constant mean stress and under Hr = 96% are also

added. From all these values, it is now readily to calibrate the values of the parameters
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(Es
⊥, T̂m0, β1 and β2), as given in Table IV .3.

Hr/% 15 59 70 85 96 98

Es
⊥/MPa 3950 3084 2964 2956 2820 2781

T̂m = t̂m 1.18 0.79 0.76 0.70 0.69 0.62

Es
⊥0 = 2769MPa, T̂m0 = t̂m0 = 0.62, β1 = −0.025, β2 = −0.061

Table IV .3: Typical values of parameters for partially saturated materials

In Figure IV .4, one shows the fitting of the variations of Es
⊥ and T̂m with capillary

pressure. In order to appreciate the effect of water saturation on the macroscopic mechan-

ical behavior, in Figure IV .5, one shows the stress-strain curves for triaxial compression

tests on samples under different values of relative humidity. And the parameters of the

model for this simulation test are taken from the Tables IV .1 and IV .3. It is found

that the saturation degree significantly affects the peak strength, the pre- and post-peak

responses. There is a transition from ductile to brittle behavior when the samples are

dried.
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responses in triaxial compression tests on perpendicular samples (θ = 90◦)

In order to verify the correctness of the ABAQUS simulation of hydro-mechanical cou-

pling, two different classical consolidation tests are simulated.

Consolidation test simulation

This section presents a one-dimensional consolidation test simulation. As shown in

Figure IV .6, the deformation of the sides and bottom of the cubic column is fixed, and

then a load is applied to the top surface.

Figure IV .6: Schematic of one dimensional consolidation

The Young’s modulus and Poisson’s ratio are provided as 100MPa and 0.33, respec-

tively. The hydraulic conductivity is equal to 9.996× 10−6m/s, with the initial void ratio

of 0.556. It is assumed that the fluid is incompressible and therefore, the Biot’s coefficient
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is equal to 1.
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Figure IV .7: Pore pressure dissipation law with boundary drainage

As in Figure IV .7, a good agreement is attained between the consolidation simulation

results with the theoretical values. The theoretical values of pore pressure at any position

(z) and any time (t) are derived from [Biot, 1941] by the following equation:

pl(z, t) =
4P0

π

∞
∑

n=0

1

2n+ 1
sin

(

(2n+ 1)π · z
2n

)

· exp
(

−(2n+ 1)2π2

4
Tv

)

(IV .4)

with

Tv =
Cv · t
n2

, Cv =
K · Es

γl
, Es = E/

(

1− 2ν2

1− ν

)

(IV .5)

where Tv represents the time factor, Cv (m/s) represents the consolidation coefficient, and

Es (Pa) represents the compression modulus of soil.

Consolidation test simulation considering different Biot’s coefficient

Biot’s coefficient in ABAQUS is equal to 1 in the initial state. For soil materials, the

Biot’s coefficient is close to 1. In the case of rocks, the Biot’s coefficient is often less than

1. Therefore, the condition of b < 1 needs to be considered.

As shown in Figure IV .8, triaxial compression simulations are performed on the units

with different Biot’s coefficient values. The Young’s modulus and Poisson’s ratio of this

isotropic material are equal to E = 10000MPa and ν = 0.25, and hydraulic conductive

K = 10−9m/s. By adjusting the bulk modulus of solid, the simulation results for different

Biot’s coefficient conditions are obtained (as shown in Figure IV .9).
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Figure IV .8: Schematic of one unit for different Biot’s coefficient conditions
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Figure IV .9: Consolidation consider different Biot’s coefficient considtions

3 Comparisons between numerical and experimental results

In this section, a series of laboratory experimental tests on the COx claystone, including

lateral decompression tests, triaxial compression tests with different water saturation, and

creep tests, are carried out by using the multi-scale mechanical model and the param-

eters determined above. The comparisons of the numerical simulation results with the

experiments are also presented.
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3.1 Lateral decompression test
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Figure IV .10: Stress-strain curves in lateral decompression tests with different loading

angles θ: comparison between model’s predictions and experimental data
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This part is about the lateral decompression test. The lateral decompression test is a

particular triaxial compression test with a constant mean stress. In this test, the sample

is first subjected to a hydrostatic stress or confining pressure. Then, the axial stress is

increased while the lateral stress or confining pressure is decreased by keeping the mean

stress unchanged. This stress path is seen as relevant for representing stress changes

around a cavity during excavation.

In the present study, five tests are performed on the samples with different drilling

orientations, i.e. θ = 0◦, 30◦, 45◦, 60◦ and 90◦. All the samples are equilibrated with a

relative humidity of 96%. The values of the elastic and plastic parameters are selected

from Tables IV .1, IV .2, and IV .3. The constant mean stress used is Pc = 12MPa. The

comparisons between model’s simulations and test data are presented in Figure IV .10.

In a general way, one observes a good concordance. The main features of COx claystone

behavior are correctly reproduced by the proposed model. In particular, the influence of

structural anisotropy or loading orientation on the claystone behavior is well taken into

account. The material softening due to induced damage is also properly described.

3.2 Triaxial compression tests with different water saturation

The influence of water content on the mechanical behavior of COx claystone is now consid-

ered. For this purpose, five triaxial compression tests are performed on the perpendicular

samples with θ = 90◦, and which are equilibrated with different values of relative humid-

ity, namely 15%, 59%, 70%, 85% and 98%. The confining pressure used in these tests is

12.8MPa. And the values of the elastic and plastic parameters are selected from Tables

IV .1, IV .2, and IV .3.

In Figure IV .11, the macroscopic stress-strain curves are presented. One can see that

the model’s predictions are globally in good agreement with the experimental data for all

the tests. It seems that the influences of water content on the elastic and plastic properties

of the claystone are correctly taken into account by the proposed model. Moreover, in

order to verify the impact of confining stress, two other tests are carried out on the

nearly saturated samples with Hr = 98%, and respectively under a confining pressure of

8MPa and 4.5MPa. The comparisons between the numerical and experimental results

are provided in Figure IV .12. Again, a quite good concordance is observed. The proposed

model is able to consider the effect of confining pressure on the macroscopic mechanical

behavior of the claystone. However, in some tests, quite large scatters are observed between

the numerical and experimental results in the pos-peak regime. It should be pointed out

that the mechanical response of tested sample in the pos-peak regime is driven by several
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factors.
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Figure IV .11: Mechanical responses in triaxial compression tests on perpendicular

samples (θ = 90◦) equilibrated with values of relative humidity
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In general, there is the onset of strain localization bands or macroscopic fractures.

After the onset of such discontinuity surfaces, the tested sample cannot be any longer

considered as a representative material volume, but it behaves rather like a small structure

subjected to specific boundary conditions. The macroscopic responses of this structure

should be determined by solving an appropriate boundary values problem by using a

suitable numerical method able to deal with discontinuous fields. This feature will be

considered in future studies.
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Figure IV .12: Mechanical responses on triaxial compression tests under two different

confining pressure and on perpendicular samples (θ = 90◦) equilibrated with Hr = 90%
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3.3 Time-dependent plastic deformation simulation results

Finally, the time-dependent strain of claystone is investigated. For this purpose, creep

tests under different stress levels are performed on the samples respectively drilled in

θ = 30◦ and θ = 90◦, and with a water saturation degree corresponding to Hr = 96%. All

the creep tests are performed under a constant mean stress. In practice, the samples are

first subjected to an initial confining stress, namely 12MPa or 12.5MPa. The axial stress

is then decreased to a desired value while the radial one is accordingly increased so that

the mean stress remains unchanged. The stresses are then kept constant for a period and

the variations of axial and radial strains are measured.
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Figure IV .13: Evolution of axial strain and radial strain in two creep tests with different

loading orientation angles θ and Hr = 96%



Conclusions 81

The stress steps adopted in two creep tests are detailed in Table IV .4. And the model’s

parameters are selected from Tables IV .1, IV .2, and IV .3.

The evolutions of strains predicted by using the proposed model are compared with

experimental data in Figures IV .13(a) and IV .13(b). The sharp changes of strains in the

figures correspond to the instantaneous variations induced by the stress increases. Despite

some scatters, in particular for θ = 90◦, one can observe a quite good agreement between

the numerical results and experimental data. It is noted that important fluctuations are

obtained in experimental data. This is mainly due to the disturbances of environmental

conditions such as temperature variation. More creep tests will be welcome in order to

get a deep validation of the proposed model.

θ(◦) = 30 Σaxial(MPa) = 12.5
moment−→ 6.25

creep−→ 6.25
moment−→ 3.69

creep−→ 3.69
moment−→

1.88
creep−→ 1.88

Σradial(MPa) = 12.5
moment−→ 15.63

creep−→ 15.63
moment−→ 16.91

creep−→ 16.91
moment−→

17.81
creep−→ 17.81

total creep time=377.44h

θ(◦) = 90 Σaxial(MPa) = 12.0
moment−→ 6.15

creep−→ 6.15
moment−→ 3.11

creep−→ 3.11
moment−→

1.62
creep−→ 1.62

Σradial(MPa) = 12.0
moment−→ 14.90

creep−→ 14.90
moment−→ 16.36

creep−→ 16.36
moment−→

17.14
creep−→ 17.14

total creep time=1389.78h

Table IV .4: Condition of the creep test (Hr = 96%)

4 Conclusions

In this chapter, several experiments were simulated using the multi-scale anisotropy model

presented in previous chapters. The performance between the simulation results and the

experimental results showed a good agreement.

The experimental simulations in this chapter considered the features of multi-scale

anisotropic model proposed in the previous chapters, and the effects of the sample loading

orientation and water saturation on its physical-mechanical properties were considered

during the simulations. In addition, viscoplastic parameters were introduced in this chap-

ter to account for the time-dependent deformation. The simulations include moment

triaxial compression tests and creep tests, and there were good agreement between the

simulation and experimental results. And some conclusions were obtained: Firstly, water
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saturation weakens the strength of clay rocks. Secondly, the elasticity of clay rocks does

not change much with increasing water saturation when the water saturation exceeds a

certain value. Plasticity increases significantly with increasing water saturation. Finally,

the viscoplastic deformation has a delayed character and increases with creep time.



Chapter V

Simulations of in-situ experiments

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2 Background and research objectives . . . . . . . . . . . . . . . . . . 84

3 Presentation of excavation model . . . . . . . . . . . . . . . . . . . . 88

3.1 Identification of elastic, plastic and viscoplastic parameters . . . . . . 88

3.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3 Verification of numerical accuracy . . . . . . . . . . . . . . . . . . . . 94

4 Numerical modeling of excavation deformation zones . . . . . . . . 95

4.1 Excavation simulations under purely mechanical conditions . . . . . . 95

4.2 Excavation simulations under hydro-mechanical coupling conditions . 99

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

1 Introduction

For the disposal of nuclear waste, deep burial is now recognized as one of the reliable

methods to prevent pollution of the surrounding environment. It is important to study

the stability of the surrounding rocks around the gallery. As shown in Figure I .1, different

galleries are excavated at a certain depth to study the deformation and stress distribution

around the gallery.

This chapter is mainly to simulate the stresses and deformations in the clayey rocks

around the gallery caused by the excavation. These simulations are based on the multi-

scale model presented in previous chapters. The model’s parameters have been determined

in Chapter IV , except for the elastic parameters and the frictional coefficient (i.e., T̂m
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and t̂m), which need to be updated. In this chapter, three sections will be presented.

The first section will present the background of gallery excavation construction and the

research objectives of this chapter. The second section will present the simulation model,

including parameter determination, introduction of the boundary conditions of the exca-

vation model, and verification of the model’s accuracy. The last section will present the

simulation results on the clayey rocks surrounding the excavation gallery, including stress

and deformation distribution. This chapter will also consider the effects of hydraulic and

mechanical coupling on the clayey rocks.

2 Background and research objectives

For the excavation simulations in this chapter, it is important to characterise the mechan-

ical and hydraulic coupling properties of rocks (i.e., clay-rich rocks) and their response

to different excavation directions. ANDRA has conducted many in situ and laboratory

experiments on gallery at depths of 445m and 490m (as shown in Figure I .1). And many

investigations have been completed on the development of fracture zones near the gallery

wall.

Figure V .1: Conceptual model of the fracture networks around the gallery along the

major stress σH direction (Armand et al. [2014])
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According to the mineralogical analysis of the COx claystone by Armand et al. [2014],

the minerals include 55% of I/S (illite–smectite interstratified minerals), 30% of illite, and

15% of kaolinite and chlorite. The average porosity of claystone is equal to 18 ± 1% at

the main level (490m depth). In the in situ experiments of Wileveau et al. [2007], the

anisotropy of the clay-rich rocks in the excavation layer was verified. The results shown

that the orientation range of the major principal stress (σH) is N150E±10◦ at a depth

of 490m, which is greater than the stress in the other directions. The horizontal minor

principal stress (σh) is almost equal to the vertical stress (σv). The ratio of the major

stress to the minor stress is close to 1.3.

Due to the anisotropy of the claystone, the types of fractures and displacements caused

by excavation in different directions are theoretically different. Figures V .1 and V .2 show

the development of fractures around the gallery caused by excavation along σH and σh,

respectively.

Figure V .2: Conceptual model of the fracture networks around the gallery along the

minor stress direction. (Armand et al. [2014])

It can be found that shear and traction fracture zones occur mainly in the horizontal

direction when the excavation direction is along with the major stress (σH). The shear

fractures extend over about 0.8 times of drift diameter. The traction fractures zone is

relatively small. When the excavation direction is along with the minor stress (σh), the

shear and tensile fractures occur mainly in the vertical direction. And the extent of the

impact of excavation is shown in Figure V .2.
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In order to quantify the changes in pore pressure and deformation of the clayey rocks

around the gallery wall, many different types of test instruments were fixed around the

tested gallery at least two months before excavation. And these instrumentations are used

to record the displacement field, stress field, and pore pressure field of the clay-rich rock-

s around the gallery. As shown in Figure V .3, there are 15 instrumentation boreholes

that are drilled in the surrounding drifts (i.e., GAT and GLS). As shown in this figure,

nine boreholes are used to measure the pore pressure around the GCS drift, covering an

area from the GCS gallery wall to 50m away. These boreholes are marked in blue color

as OHZ1521, OHZ1522, OHZ1523, OHZ1524, OHZ1525, OHZ1526, OHZ1121, OHZ1122,

OHZ1123. In addition, there are three extensometers to measure radial and axial displace-

ments in the horizontal plane and three inclinometers to measure vertical displacements.

They are OHZ1501, OHZ1502, OHZ1701, OHZ1111, OHZ1511, and OHZ1512. In addi-

tion, there are a number of boreholes that are not shown in this figure.

Figure V .3: Schematic diagram of the boreholes for GCS gallery experimental testing

([Armand and Su, 2006])

The hydraulic conductivity of the GCS gallery was measured by several boreholes with

a length of 6m from gallery wall, as shown in Figure V .4. In Figure V .4(a) shows that

the maximum vertical hydraulic conductivity of clayey rocks near the gallery wall reaches

about 8 × 10−8m/s. The vertical hydraulic conductivity decreases from 7 × 10−12m/s to

2 × 10−13m/s in the area ranges from 0.5m to 6m to the gallery wall. In Figure V .4(b),

the maximum horizontal hydraulic conductivity of clay rocks is about 1.7× 10−9m/s. In

the area ranges form 0.5m to 6m to the gallery wall, the horizontal hydraulic conductivity

varies from 1× 10−11m/s to 1× 10−12m/s. It can be seen that the hydraulic conductivity
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is larger in the horizontal direction than in the vertical direction. This is mainly due to

the development of fractures.

(a) Vertical hydraulic conductivity

(b) Horizontal hydraulic conductivity

Figure V .4: Hydraulic conductivity in GCS gallery [Armand et al., 2014]

Since the implementation of the ANDRA project, a number of constitutive models have

been used to study the deformation and stress distribution of the clayey rocks around the

gallery during excavation [Bian et al., 2017, Cuvilliez et al., 2017, Mánica et al., 2017,

Pardoen and Collin, 2017, Souley et al., 2017, Van den Eijnden et al., 2017, Yao et al.,

2017]. These simulation models have many advantages to be learned. However, most of

the research models are based on isotropic materials. And some research models only

consider deformation and damage under purely mechanical conditions.
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Therefore, this chapter aims to simulate the deformation and pore pressure changes

in the rocks around the gallery caused by the gallery excavation using the anisotropic

multi-scale model that considers the effects of anisotropy and hydro-mechanical coupling

proposed in previous chapters, with the hope of obtaining good simulation results.

3 Presentation of excavation model

3.1 Identification of elastic, plastic and viscoplastic parameters

For this chapter, the elastic parameters (mainly representing Young’s modulus and Poisson

ratio) of the clayey rocks (i.e., undisturbed COx argillite) around the excavated gallery at

a depth of 490m are derived from the extensive literature [Andra, 2005a, Charlier et al.,

2013], as shown in Table V .1. The elastic parameters of the solid clay phase are calculated

by the Equation II .9 in a reverse way. And the calculated macroscopic elastic parameters

are also presented in Table V .1. Other unchanged parameters are shown in Table IV .1.

Physical parameters f = 0.173

Elastic Ehom
1 (MPa) Ehom

3 (MPa) νhom12 νhom31 Ghom
13 (MPa)

Measured macroscopic value 5000 4000 0.30 0.24 1920

Solid clay phase 3158.78 2506.51 0.35 0.28 1003.6

Calculated macroscopic value 5002.84 4028.21 0.30 0.23 1728

Table V .1: List of elastic parameters for transversely isotropic COx claystone in the

undisturbed state

In the same way as the plasticity parameters were determined in Chapter IV , the

plasticity parameters for the excavation model in this chapter can also be obtained by

fitting the results of macroscopic laboratory tests. All of the experimental data comes

from the Armand et al. [2017b]. Due to the deconfinement and sample preparation, the

specimens in the Armand et al. [2017b] experiment become unsaturated, corresponding to

a relative humidity of 90%. It is worth noting that for the plasticity parameters, only the

frictional coefficient T̂m and t̂m need to be updated. The other plastic parameters are the

same as in Chapter IV .

In order to determine the values of T̂m and t̂m, two triaxial compression tests at

confining pressure of 6MPa and 12MPa are used. The rest of the model parameters are

taken from Tables V .1 and IV .3. And the simulation results are shown as follows:
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Figure V .5: Triaxial compression tests with different confining pressure under the Hr =

90%

It’s worth noting that the axial axis is perpendicular to the bedding plane (θ = 90◦). A

good performance is obtained between the simulation results and the experimental data,

as shown in Figure V .5. Therefore, the parameters T̂m = t̂m = 0.527 for the excavation

model are determined.
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Figure V .6: Creep tests at stress levels of 50%, 75% and 90% of peak strength under

the Hr = 90%

In addition, for excavation construction, the time-dependent deformation of the rocks

near the gallery must be taken into account to predict the stability of the gallery wall. In

order to determine the model parameters of the viscoplastic strain (i.e., η1, bvp, and m),

three simulations will be performed in this section using experimental data from Armand
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et al. [2017b]. And the elastic and plastic parameters are taken from Tables V .1 and IV

.3 (here T̂m = t̂m = 0.527).

Figure V .6 shows the simulation results of the creep test. The creep stresses are equal

to 50%, 75%, and 90% of the peak strength. The load direction is parallel to the bedding

plane, which is the same as the situation in Figure V .5. The simulation results perform

relatively well, thus, the viscoplastic parameters can be determined as η1 = 1015Pa · s,
bvp = 60, m = 2. And the values of these parameters are also shown in Table IV .3.

On the other hand, it is often necessary to consider the hydraulic properties of the rocks

around the excavation gallery when carrying out excavation simulations. To this end, the

permeability and Biot’s coefficient are important parameters that should be taken into

account. According to Figure V .4, except for the hydraulic conductivity near the gallery

wall, the hydraulic conductivity is 1×10−11m/s to 1×10−12m/s in the horizontal direction

and 7 × 10−12m/s to 2 × 10−13m/s in the vertical direction. In addition, by referring to

the existing literature [Andra, 2005a, Charlier et al., 2013], hydraulic parameters can be

obtained for clayey rocks at a depth of 490m. These parameters are shown in Table V .2.

Permeability (m2) k1 = 4× 10−20, k3 = 1.33× 10−20

Biot’s coefficient B1 = 0.6, B3 = 0.67

Table V .2: Typical values of permeability and Biot’s coefficient

3.2 Boundary conditions

3.2.1 Model size and mesh distribution

As the geo-material near the gallery is transversely isotropic, a quarter of the gallery

section is selected. Under the assumption of small disturbances, the presented excavation

model is assumed to be a plane-strain model. The radius of the gallery is 2.6m. For the

mesh of this model, a higher density is used in a ring of 7.8m width contiguous with the

gallery wall in order to more accurately simulate the deformation of the rocks around the

gallery wall, as shown in Figure V .7.
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Figure V .7: Mesh and boundary conditions

OHZ1501 borehole OHZ1707 borehole OHZ1521,1522 boreholes
(horizontal displacement) (vertical displacement) (pore pressure)

Name X(m) Y(m) Name X(m) Y(m) Name X(m) Y(m)

1501-02 3.21 0 1707-01 0 4.84 1521-02 3.7 0

1501-03 4.21 0 1707-02 0 6.34 1521-03 4.5 0

1501-04 5.71 0 1707-03 0 7.84 1521-04 7.2 0

1501-05 7.21 0 1707-04 0 10.84 1521-05 12.5 0

1501-06 8.21 0 1707-05 0 13.84 1522-01 2.8 7.4

1501-07 13.21 0 1707-06 0 17.84 1522-02 0.8 6.9

1501-08 17.21 0 1707-07 0 32.47 1522-03 −0.6 6.5

1501-09 21.21 0 1522-04 −2.1 6.0

1501-10 27.21 0 1522-05 −4.1 5.5

Table V .3: Coordinates of the measurement points in the surrounding rock

As can be seen from the introduction of gallery in the previous section, many different

types of test instruments were fixed in advance around the tested gallery to measure the

deformation of the rocks around the gallery and the changes in pore pressure caused by
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excavation. And the coordinates of each measurement point in the coordinate system (as

shown in Figure V .7) are given in Table V .3.

3.2.2 Stress distributions

For this excavation model, the most important thing is to determine the stress distribution

of the gallery wall. For anisotropic material, the analysis of the stress distribution on the

gallery wall is relatively complex. In addition, the stress path of the element located on

the gallery wall is not as simple as that of the ordinary element. In fact, as the excavation

progresses, the radial stress in the element located on the gallery wall decrease. At the

same time, the hoop stress increases to keep the mean stress constant. It can be seen

from Figure V .8 that in the unsupported case, the vertical component stress at point

A decreases to zero after excavation, while the horizontal component stress increases.

And the situation at the point B is opposition, where the component stress along the

horizontal direction decreases to zero and the component stress along with the vertical

direction increases. The stress at the point C varies with the θ.

Figure V .8: The loading paths at three different points in the excavation process [Bian

et al., 2017]

In this chapter, a local coordinate is established with the center (i.e., (X,Y ) = (0, 0))

of the gallery as the coordinate origin, as shown in Figure V .8. The horizontal axis is the

r-axis, and the vertical direction represents θ = 90◦, as shown in Figure V .8. The load
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on the gallery wall in this chapter can be expressed as follows:

σr = σxx(cosθ)
2 + σyy(sinθ)

2

σθ = (σyy − σxx)cosθsinθ
(V .1)

For the anisotropy of the clayey rocks near the gallery, several factors should be consid-

ered in the anisotropic multi-scale model described above. The first factor is θ (as shown

in Figure IV .1), which defines the angle between the structural coordinates and the di-

rection of the load. Since the excavation direction is along the major stress σH (or minor

stress σh), the load direction is consistent with the structural coordinates. Therefore, the

angle θ can be ignored. The second factor involves the anisotropic properties of the plastic

deformation caused by excavation, which in this case mainly refers to the frictional coeffi-

cients Tm(η) and tm(η). The scalar parameter η (in Equation III .19) is different for each

Gaussian integration point of the excavation model. Therefore, the loading orientation

vector l must be calculated using the Equation III .16 instead of the Equation IV .2.

In this excavation simulation works, the entire excavation process is carried out over

28 days. And the excavation front through the study section is at 14th day. The type

of support at the gallery wall is flexible support. The radial support stress at the gallery

wall is constant at 0.3MPa after the 25th day of excavation. In addition, the initial pore

pressure is equal to 4.7MPa. Here, the gravity-induced gradient is neglected in this section.

The pore pressure decreases sharply from 4.7MPa to zero between the 13th day and 15th

day with a linear curve to consider the excavation front through the study section. The

external boundaries of the model are in the drained state (i.e., the pore pressure is constant

and equal to 4.7MPa) in this section.
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Figure V .9: Deconfinement curve
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The excavation is modeled by reducing the stresses applied on the gallery wall and

pore pressure with a deconfinement curve [Seyedi et al., 2017] (as shown in Figure V

.9). In addition, the total stress at the boundary in the normal direction is constant.

These details are consistent with the actual project [Souley et al., 2017]. In this section,

the stress distribution of the excavation model includes two cases: galleries GCS and GED.

⋆ Gallery GCS

The gallery GCS is excavated along the major stress σH , with horizontal and vertical

stresses equal to σxx = σh = 12.4MPa and σyy = σv = 12.7MPa, respectively. The

direction of the gallery axis is parallel to the Z-axis. The stress on the gallery axis is equal

to 16.12MPa. For simplicity, the gravity-induced body forces are ignored.

⋆ Gallery GED

The GED gallery is excavated along the minor stress axis σh, which differs from the

GCS gallery. The horizontal and vertical stresses are σxx = σH = 16.12MPa and σyy =

σv = 12.7MPa, respectively. The stress along the GED gallery axis (i.e., Z-axis) is

12.4MPa.

3.3 Verification of numerical accuracy

The purpose of this part is to verify the correctness of the stress distribution on the

excavation model presented above. For simplicity, it is assumed that these transversely

isotropic clayey rocks are isotropic with Young’s modulus E = 5000MPa and Poisson’s

ratio ν = 0.33. The external stress along the X-axis is σxx = 12.4MPa and along the

Y -axis is σyy = 12.7MPa. The stress on the gallery wall is calculated by the Equation V

.1, which decreases with the deconfinement curve (as shown in Figure V .9(a)).

Therefore, the stress distributed on the gallery wall can be calculated using the theo-

retical Equation V .2, as shown below:

σr =
σxx + σyy

2

(

1− R2

r2

)

+
σxx − σyy

2
cos(2θ)

(

1− R2

r2

)(

1− 3
R2

r2

)

σθ =
σxx + σyy

2

(

1 +
R2

r2

)

− σxx − σyy
2

cos(2θ)

(

1 + 3
R4

r4

) (V .2)

where r represents the distance from the measurement point to the coordinate origin.

Figures V .10(a) and V .10(b) show the comparison of simulation and theoretical stress

values of measurement points along the horizontal and vertical directions. The stress

distributions for the excavation model used in this part follows the stress distribution

method described in the previous section.
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Figure V .10: Comparison of simulation and theoretical stress values along the horizontal

and vertical directions

4 Numerical modeling of excavation deformation zones

The purpose of this section is to present the simulation results of the gallery excavation.

The model for this excavation simulation takes into account the multi-scale and anisotrop-

ic properties of clayey rocks, which has been presented in Chapters II and III . For the

gallery excavation simulations, two different excavation cases will be considered in this

section:

⋆ Case 1: Excavation simulations under purely mechanical conditions;

⋆ Case 2: Excavation simulations under hydro-mechanical coupling conditions.

4.1 Excavation simulations under purely mechanical conditions

In this section, the excavation simulation takes into account elastic-plastic deformation,

viscoplastic deformation, and the damage of clayey rocks surrounding the gallery wall

induced by excavation. In this section deals with the excavation simulation under purely

mechanical conditions, taking two main objectives into account. The first objective is

to analyze the excavation under purely mechanical conditions. Another, the simulation

results can be compared with the results of excavation simulations under hydro-mechanical

coupling conditions, which can be used to analyze the effect of pore pressure on the

deformation of clayey rocks.
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The excavation model used in this section has been described in the previous section,

which can be shown in Figure V .7. The model’s parameters are shown in Tables V .1 and

IV .3 (here T̂m = t̂m = 0.527).

Gallery GCS

Figure V .11 illustrates the elasto-plastic strain and stress distribution. It can be seen

that the strain along the horizontal direction is greater than the strain along the vertical

direction. In addition, the strain and stress distribution in Figure V .11 are quantified

by selecting the simulation results for several nodes, whose coordinates correspond to

the coordinates of the measurement points in Table V .3. In fact, since the mesh is not

infinitely small, the coordinates of the selected nodes will not be exactly equal to the

coordinates of measured points in Table V .3. In this section, the linear interpolation

method will be used to obtain relatively accurate simulation results of the measurement

points (mainly for comparison with the simulation results in the following section).

(a) ealsto-platic strian distribution (b) Stress distribution

Figure V .11: Elasto-plastic strain and stress distribution at the end of excavation for

transversely isotropic clayey rocks (GCS)

Figure V .12 shows the vertical and horizontal convergences of the gallery wall during

excavation, indicated by the red and blue lines, respectively. The solid line in this figure

shows the convergences considering elastic-plastic strain and damage-induced strain. The

dashed line indicates the convergences of the elastic strain part only. The convergence of

the purely elastic part clearly shows that the convergence in the vertical direction is greater

than the convergence in the horizontal direction. This is mainly due to the fact that the



Numerical modeling of excavation deformation zones 97

stiffness of clayey rocks at a depth of 490m in the vertical direction is smaller than that

in the horizontal direction. The opposite phenomenon occurs for plastic convergences. As

shown in Figure V .12, the plastic strain (i.e., convergences) in the horizontal direction

is significantly greater than the plastic strain in the vertical direction. This plastic strain

also includes the strain induced by damage during excavation, which coincides with the

actual situation.
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Figure V .12: Convergence evolutions of GCS
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Figure V .13: Displacement evolutions of selected points (GCS)

Figure V .13 shows the change in displacement of the selected points during the simu-

lated excavation. It can be seen that the further away the measurement point is from the

gallery wall, the smaller the displacement occurs. It is consistent with the actual situation.
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Gallery GED

Figure V .14 shows the distribution of elasto-plastic strain and stress zones. It can

be seen that the strain along the vertical direction is larger than the strain along the

horizontal direction. Figure V .15 shows the convergences of the gallery along with the

horizontal and vertical directions (represented by solid lines). As shown in Figure V .15,

the dashed lines represent the convergences of the purely elastic part. The convergence

of pure elasticity in the horizontal direction is larger than that in the vertical direction.

This is mainly because the σH is greater than the σv. The convergence value, considering

the effect of plasticity and damage, in the vertical direction is larger than that in the

horizontal direction, which is consistent with the actual situation. Figure V .16 shows the

simulation results about the displacement of the measured points.

(a) ealsto-platic strian distribution (b) Stress distribution

Figure V .14: Elasto-plastic strain and stress distribution at the end of excavation for

transversely isotropic clayey rocks (GED)

The simulation results show that the multi-scale anisotropic model proposed above

is suitable for simulating the excavation-induced deformation of clayey rocks near the

gallery. As the clayey rocks in the actual environment are saturated at a depth of 490m,

the excavation simulations under hydro-mechanical coupling conditions will be considered

in the next section.
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Figure V .15: Convergence evolutions of GED
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Figure V .16: Displacement evolutions of selected points (GED)

4.2 Excavation simulations under hydro-mechanical coupling conditions

Similar to the previous section, this section also considers two cases of excavation along

with the major and minor stresses directions (i.e., galleries GCS and GED). In addition,

the effect of hydro-mechanical coupling are also considered in this section. The bound-

ary conditions for these two cases have been described in the previous section. For the

GCS gallery, extensive in situ experiments were carried out on the displacement and pore

pressure of the clayey rocks around the excavated gallery. However, relatively few in situ

experiments conducted on the clayey rocks around the GED gallery. Therefore, in this

section, the numerical simulations of the displacement and pore pressure in the clayey
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rocks surrounding the GCS gallery will be compared with the in situ experiments. Nu-

merical simulations of the clayey rocks surrounding the GED gallery will then be presented

without comparison with the in situ experimental results.

Gallery GCS

The excavation simulation results of the GCS gallery considering hydro-mechanical

coupling condition show that the deformation of the clayey rocks around the gallery caused

by the excavation is greater in the horizontal direction than in the vertical direction. It is

consistent with the actual engineering situation (as shown in V .1). The displacement dis-

tribution and pore pressure distribution of the clayey rocks around the gallery at different

time periods can be found in Figures VII .1 and VII .2 in Appendix B. Before the 14th day

of excavation, the pore pressure near the gallery wall remains constant as it’s not affected

by excavation. And the displacement around the gallery is not changed significantly as a

result of the excavation. When the excavation time exceeds 14 days, there is a decrease in

pore pressure around the gallery, as shown in Figure V .9(b). When the excavation date

is more than 28 days, the gallery excavation is considered completed and the stresses on

the gallery wall remain at a small value. The deformation of the rocks around the gallery

is mainly caused by the change of pore pressure and viscoplastic deformation.

It is worth noticing that the pore pressure decreases significantly in the horizontal

direction near the gallery wall after 28th days. Besides, it can be observed that the pore

pressure of the clayey rocks near the gallery wall has an increase zone in the vertical

direction (i.e., red area). There are two main factors responsible for this phenomenon.

The first is that the permeability of the clayey rocks is not completely symmetrical in the

horizontal and vertical directions. For the GCS gallery, the permeability in the vertical

direction is equal to 1.3×10−20m2, and the permeability in the horizontal direction is

equal to 4×10−20m2, as shown in Table V .2. The second factor is that the stiffness tensor

in horizontal and vertical directions are different, which leads to different elastic-plastic

deformations in the horizontal and vertical directions. The skeletal deformation of the

clay solid phase is directly related to the internal pore pressure.

Figure V .17 shows the convergences between the numerical simulation results and

the in situ experiments. The numerical simulation results take into account the hydro-

mechanical coupling conditions. From this figure, one can notice that the difference be-

tween the horizontal and vertical deformation is relatively small in the pre-excavation

period (i.e., 28 days). As the creep time increases, the difference in deformation gradually

increases. In situ experiments shown that horizontal convergence caused by gallery excava-
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tion is greater than the vertical convergence. The simulation results using the multi-scale

anisotropy model are consistent with the in situ experiments.
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Figure V .17: Variation in horizontal and vertical convergences for GCS gallery
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Figure V .18: Variation in horizontal and vertical radial displacements of GCS gallery

Figure V .18 shows the experiments and numerical simulation results in the horizontal

and vertical directions. In particular, the measurement data are taken from measurement

points in horizontal and vertical boreholes OHZ1501 and OHZ1707 (as shown in Figure V

.3). The experimental data on deformation at the measurement points during the excava-

tion are monitored and recorded by high-precision measuring equipment. The coordinates

of the measurement points are presented in Table V .3.
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Figure V .19: Variation in pore pressure in horizontal and inclined boreholes

Figure V .19 shows the in situ experimental and numerical simulation data for pore

pressure. The coordinates of the measurement points located in the horizontal and in-

clined boreholes are shown in Table V .3. In Table V .3, we can find some measurement

points with negative X-coordinates. This is mainly due to the special location of the

inclined borehole OHZ1522, as shown in Figure V .3. Since this simulation work uses a

quarter-symmetric model (as shown in Figure V .7), the X-coordinate here can be directly

used as a positive value.

Gallery GED

In situ experiments show that gallery excavation along the minor stress σh, such as the

GED gallery, the displacement in the vertical direction around the GED gallery is greater

than that in the horizontal direction. The displacement distribution and pore pressure

distribution of clayey rocks around the gallery at different time periods are shown in

Figures VII .3 and VII .4 in Appendix B. In this section, the effect of pore pressure inside

the clay matrix on the deformation of the structure during the excavation is considered.

The permeability and Biot’s coefficient have been determined in previous section and are

shown in Table V .2. The simulation time is considered to be 1000 days. When the

excavation is completed (i.e., 28 days), the stresses on the gallery wall remain unchanged.

As the creep time increases, the viscoplastic deformation gradually increases. The pore

pressure inside the clay matrix also varies with creep time, and the pressure of the gas

mixture pg in the gallery is equal to standard atmospheric pressure.
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Figure V .20: Horizontal and vertical convergences for two excavation types, GCS and

GED gallery

Figure V .20 shows the comparison of horizontal and vertical convergences of the two

excavation types, i.e., galleries GCS and GED. The solid line in this figure represents the

convergence of the GED gallery, and the dashed line represents the convergence of the

GCS gallery. It can be observed that excavation along with the minor stress σh causes

larger convergence than excavation along with the major stress σH . The excessive vertical

deformation around the gallery means that more measures are needed to support the GED

gallery.
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Figure V .21: Variation in horizontal and vertical radial displacements for GED gallery
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(a) Pore pressure in the horizontal borehole O-

HZ1521
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Figure V .22: Variation in pore pressure in horizontal and inclined borehole for GED

gallery

Figures V .21 and V .22 are the displacement curves and pore pressure variation curves

of the measurement points near the GED gallery wall. The selected measurement points

are the same as in the GCS gallery, and their coordinates are shown in Tables V .3.
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Figure V .23: Comparison of convergence of the galleries considering H-M coupling

condition (Case 2) and purely mechanical condition (Case 1)

Figure V .23 represents the comparative results about the convergence of the galleries

considering hydro-mechanical coupling (i.e., Case 2) and purely mechanical conditions

(i.e., Case 1). This figure shows the convergences of the gallery wall in horizontal and

vertical directions during the excavation period (28days). As can be seen from this figure,
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there is a slight decrease in convergence due to the presence of pore pressure. Due to the

relatively low pore pressure compared to the mechanical forces at a depth of 490m and

the relatively low permeability of the clayey rock, the pore pressure has little effect on

convergence during the excavation process (time less than 28 days).

5 Conclusions

This chapter presented the excavation simulations considering both purely mechanical and

hydro-mechanically coupled conditions. The simulations used the multi-scale anisotropy

model presented in the previous chapters. The simulation results performed well com-

pared to in situ experiments, which indicated that this anisotropic model can be used for

stability prediction in actual excavation construction. In this chapter, the first section was

about introducing the background of excavation and the main objective of this chapter.

The second section was about the presentation of the excavation simulation model. The

description of the boundary conditions in this section mainly included the description of

stress distribution and mesh types and distribution. The determination of the model pa-

rameters was also described in this section. The last section was about the excavation

simulations. And several conclusions were obtained as follows: 1. The deformation of

clayey rocks around the gallery is greater in the horizontal direction than in the vertical

direction when the excavation direction is along the major stress σH ; 2. The deformation

of the clayey rocks around the gallery is larger in the vertical direction than in the hor-

izontal direction when the excavation along the minor stress σh; 3. The deformation of

the surrounding rocks of the gallery caused by excavation along the minor stress is greater

than that caused by excavation along with the major stress.
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Chapter VI

Conclusions and perspectives

1 Conclusions

As an important potential rock, clayey rocks are often encountered in projects such as

the geological disposal of radioactive waste, shale gas production, and acid gas sequestra-

tion. The deformation and damage of clayey rocks under complex geo-conditions, such as

hydro-mechanical coupling, is an important research project that needs to be investigat-

ed. Besides, the clayey rocks at the underground depth of around 490m are considered to

be transversely isotropic materials. To this end, a multi-scale model has been develope-

d which takes into account the anisotropic and hydro-mechanical coupling properties of

clayey rocks. This multi-scale model can be used to describe the elasto-plastic, viscoplas-

tic, and induced damage in clayey rocks. The main conclusions of this thesis are presented

as follows:

• An effective elastic anisotropic model was proposed to simulate the elastic properties

of clayey rocks under multi-scale, multi-physical (i.e., Hydro-Mechanical) conditions.

In order to establish the relationship between macroscopic, mesoscopic, and micro-

scopic strains in this elastic model, a localization tensor A was introduced. This

localization tensor A was calculated using the Mori-Tanaka scheme, which takes

into account the interaction of mineral particles (mesoscale) or pores (microscale).

The Hill’s tensor and Green’s function were also used in the calculation of the elas-

tic model. On the other hand, in this elastic model, the effect of hydro-mechanical

coupling on clayey rock mechanics was considered.

• Plastic deformation plays an important role in the mechanics of clayey rocks. There-

fore, an anisotropic macroscopic elasto-plastic model was proposed in this section.
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A two-step of the homogenization process was used to determine the macroscopic

yield criterion. This yield criterion considered the transverse isotropic properties of

clayey rocks. Hydraulic effects were also considered in this plastic yield function,

which relies on the relationship between the pore pressure and the maximum fric-

tional coefficient. Besides, time-dependent deformation was also considered in this

multi-scale model.

• In this thesis, the damage of clayey rocks assumes directly related to the interface

debonding between the mineral particles and porous clay matrix. When the ini-

tially perfectly bonded inclusions are debonded, they are assumed to be completely

detached from the surrounding clayey matrix and behave as voids. The Weibull’s

probability distribution function was introduced to reflect the debonding degree.

• With the support of the ANDRA and many research results, several laboratory

tests and GCS excavation tests have been investigated and used by our multi-scale

model. The model’s parameters were determined based on the laboratory tests and

used in the excavation simulation work. The numerical prediction of the excavation

simulation results was in good agreement with the in situ observations.

2 Perspectives

Although the multi-scale anisotropic model under hydro-mechanical coupling has been

studied in the previous chapters and obtained good simulation results, there are still a lot

of works that need to be investigated. In the future, some aspects of the improvement of

the proposed model are described below:

• In future works, the proposed model can be coupled with a regularization method for

dealing with the transition from diffuse damage and plastic deformation to localized

cracking.

• The geological environment of clayey rocks is complex, and the effect of tempera-

ture on the mechanical behavior of clay-rich rocks is also an important issue to be

investigated.
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Appendix

A. Several tensor representations and operations used in this

thesis

• The tensor representations (illustrated with a as an example):

a scalar

a vector

a second-order tensor

A fourth-order tensor

• The tensor operations:

〈·〉 Average value

. Simple contraction

: Double contraction

⊗ tensor product (a⊗ b)ijkl = aijbkl

⊗ tensor product (a⊗b)ijkl =
1
2(aikbjl + ailbjk)

B. Excavation simulation results

This section is about the excavation simulation results of displacement and pore

pressure zones at different time period for GCS and GED gallery.
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(a) Initial (b) 14days

(c) 28days (d) 100days

(e) 500days (f) 1000days

Figure VII .1: Displacement distribution at different excavation periods for GCS gallery
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(a) Initial (b) 14days

(c) 28days (d) 100days

(e) 500days (f) 1000days

Figure VII .2: Pore pressure distribution at different excavation periods for GCS gallery
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(a) Initial (b) 14days

(c) 28days (d) 100days

(e) 500days (f) 1000days

Figure VII .3: Displacement distribution at different excavation periods for GED gallery
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(a) Initial (b) 14days

(c) 28days (d) 100days

(e) 500days (f) 1000days

Figure VII .4: Pore pressure distribution at different excavation periods for GED gallery
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Gasc-Barbier, M., Chanchole, S., and Bérest, P. (2004). Creep behavior of bure

clayey rock. Applied Clay Science, 26(1-4):449–458.

Gaucher, E., Robelin, C., Matray, J., Negrel, G., Gros, Y., Heitz, J., Vinsot, A.,

Rebours, H., Cassagnabère, A., and Bouchet, A. (2004). Andra underground

research laboratory: interpretation of the mineralogical and geochemical data

acquired in the callovian–oxfordian formation by investigative drilling. Physics

and Chemistry of the Earth, Parts A/B/C, 29(1):55–77.

Giraud, A., Huynh, Q. V., Hoxha, D., and Kondo, D. (2007). Application of re-

sults on eshelby tensor to the determination of effective poroelastic properties of

anisotropic rocks-like composites. International journal of solids and structures,

44(11-12):3756–3772.
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68(4):281–289.

Liu, Z., Xie, S., Shao, J.-F., and Conil, N. (2015). Effects of deviatoric stress and

structural anisotropy on compressive creep behavior of a clayey rock. Applied Clay

Science, 114:491–496.

Maghous, S., Dormieux, L., and Barthélémy, J.-F. (2009). Micromechanical ap-
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