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Chapter 1

Introduction

1.1 Présentation du problème et de la stratégie
Plusieurs structures combinatoires admettent, au sens large, une notion d’irréductibilité. Par irréduc-
tibilité, nous entendons qu’une structure composée peut être décomposée en une collection de petits
morceaux qui ne peuvent pas être décomposés davantage. En particulier, divers objets sur lesquels on
peut canoniquement définir une topologie admettent une décomposition en composantes connexes.
Par exemple, un graphe simple est une union disjointe de graphes connexes. On peut aussi penser
à différents modèles de surfaces discrètes qui peuvent être connexes ou pas. L’irréductibilité appa-
rait aussi lorsqu’on cherche à décomposer un objet en une séquence d’objets irréductibles. À titre
d’exemple important, mentionnons les permutations qui peuvent être représentées comme des con-
caténations des permutations indécomposables (notez que les permutations peuvent également être
décomposées en unions disjointes de cycles). Mentionnons aussi les tournois, c’est-à-dire, des graphes
orientés obtenus en orientant chaque arête d’un graphe complet non orienté. La liste des structures
irréductibles semble innombrable; pour les classifier, on peut utiliser une approche basée sur des
partitions qui a été développée par Beissinger [5].

Cette thèse porte en grande partie sur la question suivante. Choisissons un objet aléatoire
de taille n d’une classe combinatoire étiquetée qui admet une notion d’irréductibilité. Quelle est la
probabilité que cet objet soit irréductible, lorsque sa taille tend vers l’infini ? Pour de nombreuses
classes connues, cette probabilité tend vers 1. Par exemple, c’est le cas des graphes connexes [41], des
tournois irréductibles [68] et des permutations indécomposables [21]. Dans d’autres cas, la probabilité
limite est 0, comme pour les permutations constituées d’exactement un cycle ou pour les partitions
d’ensembles constituées d’exactement une partie. Parfois, la probabilité limite d’irréductibilité est
strictement comprise entre 0 et 1. Dans de nombreux cas, cette probabilité s’exprime en fonction
de e. Par exemple, une forêt étiquetée aléatoire est connexe avec une probabilité limite de 1/

√
e [88],

alors qu’un diagramme de cordes aléatoires est connexe avec une probabilité de 1/e [51, 95] et une
permutation aléatoire est simple avec une probabilité de 1/e2 [2], respectivement. Cependant, on
peut rencontrer des valeurs plus retorses, comme le nombre d’or (

√
5−1)/2 pour la probabilité limite

qu’un poset de N-arbre aléatoire soit connexe [32, 92], ou 1/2, 997 . . . = 0, 3367 . . . pour la probabilité
limite qu’une forêt aléatoire non étiquetée soit un arbre [79], voir aussi [10].

Au milieu des années 1960, Wright [99] s’est demandé comment distinguer ces limites. Il a
considéré des classes des objets non étiquetés decomposables en composantes connexes. Les suites
(an) et (cn) comptant, respectivement, les objets de taille n et les objets connexes de taille n, satisfont
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la formule
∞∑
n=0

anz
n = exp

(
∞∑
n=1

cnz
n

)
. (1.1)

Wright a démontré [99, 100] que

n−1∑
k=1

akan−k = o(an) ⇔
n−1∑
k=1

ckcn−k = o(cn)

et les deux conditions peuvent être utilisées comme nécessaires et suffisantes pour que la probabilité
limite soit égale à 1, c’est-à-dire, que lim

n→∞
(cn/an) = 1. Il a aussi indiqué la condition nécessaire

suivante : la fonction génératrice

A(z) =
∞∑
n=0

anz
n

doit diverger pour tout z non nul, ce qui équivaut à lim
n→∞

(an−1/an) = 0 dans le cas où an 6= 0. Des
conditions similaires ont été obtenues dans le cas étiqueté (voir aussi [16]).

Au cours des décennies suivantes, plusieurs auteurs ont développé l’approche de Wright comme,
par exemple, Bell, Bender, Cameron, Compton, Odlyzko et Richmond [6, 10, 16, 20], voir aussi [52].
La recherche a abouti à l’article de Bell, Bender, Cameron et Richmond [7] qui a prouvé le résul-
tat suivant. Supposons que la limite ρ = lim

n→∞
(cn/an) existe, alors sa valeur est liée au rayon de

convergence R de la fonction génératrice

C(z) =
∞∑
n=0

cnz
n :

• ρ = 1 ⇔ R = 0,

• ρ = 0 ⇔ R > 0 et C(R) diverge,

• 0 < ρ < 1 ⇔ R > 0 et C(R) converge.

De plus, ils ont étudié le cas où la limite n’existe pas, et ont décrit le comportement de lim sup(cn/an)
et lim inf(cn/an) en fonction de R. Dans cette thèse, nous nous concentrons sur le premier cas : les
suites (an) et (cn) croissent rapidement et les fonctions génératrices A(z) et C(z) ont un rayon de
convergence nul.

Nous ne nous intéresserons pas seulement à la probabilité limite. Un de nos objectifs est
d’établir le développement asymptotique complet pour la probabilité qu’un objet aléatoire soit irré-
ductible. Autrement dit, on souhaite avoir une expression du type

cn
an

= ρ
(

1 + f1(n) + f2(n) + . . .+ fr(n) + o
(
fr(n)

))
, (1.2)

où fk+1(n) = o
(
fk(n)

)
pour tout k ∈ N, lorsque n → ∞. D’une manière générale, on pourrait

atteindre cet objectif à l’aide du principe d’inclusion-exclusion (nous verrons comment cela fonctionne
pour différentes constructions combinatoires dans les sections 5.1, 6.1 et 7.1). Cependant, en pratique,
cette méthode est peu maniable et principalement utilisée pour trouver les premiers termes. C’est
par exemple le cas des permutations simples [2] et de certaines classes de surfaces connexes [15, 83].
Une autre méthode, bien que similaire dans son esprit, a été développée à la fin des années 1960 par
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Wright qui utilisait les récurrences pour obtenir les asymptotiques. Par exemple, il a montré [102]
que si les suites (cn) et (an) satisfont la formule exponentielle (1.1), alors les conditions

lim
n→∞

an−1

an
= 0 et

n−r∑
k=r

akan−k = O(an−r) (1.3)

valables pour un entier r impliquent

cn = an +
r−1∑
k=1

αkan−k +O(an−r), (1.4)

et vice versa. Ici, la suite (αn) est définie récursivement par α0 = a0 = 1 et

n∑
k=0

αkan−k = 0. (1.5)

Cette méthode a permis à Wright d’obtenir des expressions asymptotiques pour les nombres de
graphes connexes [102], de tournois irréductibles [103] et de graphes orientés fortement connexes [104].
Robinson a utilisé l’approche de Wright pour trouver des asymptotiques de graphes orientés acy-
cliques [90].

Les nombreux résultats de Wright ont été repensés et généralisés en 1975 par Bender [9]. Par
rapport aux travaux de Wright, l’avantage de l’approche de Bender est le passage des récurrences
aux fonctions génératrices. En particulier, la suite (αn) de la relation (1.5) a été déterminée en
différenciant certaines séries entières. Comme nous le verrons plus tard, ce fait nous permet de
comprendre la structure des asymptotiques et d’interpréter (αn) de manière combinatoire. Nous
discutons de l’approche de Bender en détail dans la section 2.2.

Il est important de souligner que la méthode utilisée par Bender [9] ne fonctionne bien que dans
un certain nombre de cas. Selon la nature de la fonction génératrice, différentes techniques peuvent
être nécessaires pour obtenir les asymptotiques souhaitées. Plus précisément, supposons qu’une
fonction F (z) soit analytique dans un certain voisinage de l’origine et qu’une série formelle A(z) ait
des coefficients croissant suffisamment vite (c’est-à-dire, satisfaisant les conditions (1.3) pour tout
r ∈ N). Alors la méthode de Bender convient pour établir le développement asymptotique complet
des coefficients de la composition F

(
A(z)

)
. D’autre part, si nous cherchons les asymptotiques de

A
(
F (z)

)
ou de A−1(z), nous devrions utiliser une approche différente développée par Bender et

Richmond [11] (ce sont les idées de [9] combinées avec la formule d’inversion de Lagrange). Un cas
intéressant est étudié par Borinsky [13] : dans ses recherches, les deux fonctions impliquées dans la
composition sont divergentes, mais leur taux de croissance n’est pas trop rapide. Plus précisément,
Borinsky a établi des formules pour le comportement asymptotique du produit F (z)G(z) et de la
composition F

(
G(z)

)
, où les coefficients de F (z) et G(z) admettait un développement asymptotique

de la forme
αn+β Γ(n+ β)

(
d0 +

d1

(n+ β − 1)
+

d2

(n+ β − 1)(n+ β − 2)
+ . . .

)
pour certaines constantes α, β ∈ R>0 et dk ∈ R.

D’autres méthodes sont à appliquer dans le cas où la fonction génératrice traitée a un rayon de
convergence non nul. Selon les cas, on peut utiliser la méthode de Darboux (voir par exemple [22, 77,
98]) ou l’analyse des singularités [37] basée sur la méthode du point col et les articles de Hayman [48],
Harris et Schoenfeld [47], Flajolet, Odlyzko et Richmond [36, 73, 75]. Pour en savoir plus, nous
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renvoyons le lecteur aux revues de la littérature de Bender [8] et Odlyzko [74] et aux livres de
De Bruijn [25] et Flajolet et Sedgewick [38].

Ainsi, nous nous intéressons à l’asymptotique de la probabilité qu’un objet aléatoire d’un
certain type soit irréductible. Dans notre recherche, nous poursuivons deux objectifs. Tout d’abord,
nous aimerions obtenir le développement asymptotique complet de cette probabilité d’une manière
commune, adaptée à différentes structures. En nous limitant aux classes d’objets dont les suites de
comptage croissent assez rapidement, nous nous retrouvons dans une situation obéissant au théorème
de Bender [9]. Le second objectif découle de l’observation que les coefficients du développement (1.2)
sont entiers. Notamment, nous souhaitons avoir une interprétation combinatoire des constantes
impliquées dans le développement asymptotique.

La stratégie pour atteindre les deux objectifs mentionnés ci-dessus consiste à forcer plusieurs
techniques à interagir. Dans une première étape, nous interprétons les structures combinatoires en
termes de fonctions génératrices. L’origine de cette idée importante est cachée dans la profondeur
des siècles ; on peut voir des fonctions génératrices émerger sur la base des récurrences correspon-
dantes dans les travaux de Bernoulli, Euler, Cayley, etc. Comme exemple d’une importance partic-
ulière, il convient de mentionner la contribution de Pólya [84, 85], dont les travaux ont été consacrés
à l’énumération des objets sous l’action du groupe symétrique. Les approches contemporaines de
l’analyse combinatoire, y compris la théorie de Pólya, peuvent être trouvées, par exemple, dans
des livres d’auteurs tels que Comtet [22], Goulden et Jackson [42], Lando [55], Stanley [93, 94] et
Wilf [98]. Notre premier choix est la méthode symbolique [38] qui est plutôt simple et assez accessible.
Selon cette méthode, les structures composées sont obtenues à partir de structures simples à l’aide
des constructions combinatoires comme : la séquence SEQ, le cycle CYC et l’ensemble SET. Le
fait qu’un objet soit irréductible par rapport à l’une des trois constructions mentionnées s’interprète
directement en termes de fonctions génératrices via des relations correspondantes.

Dès que nous avons des relations pour les fonctions génératrices, nous pouvons nous attaquer au
premier objectif, c’est-à-dire, obtenir les développements asymptotiques. Comme nous l’avons déjà
noté, notre méthode est basée sur le théorème de Bender qui nous permet d’établir un comportement
asymptotique des coefficients de série formelle dans le cas où la série désirée est exprimée comme
la composée d’une fonction analytique et de la série initiale. Le théorème de Bender est applicable
pour les séries dont les coefficients croissent suffisamment vite. Ce fait nous limite à considérer des
classes combinatoires étiquetées dont les suites de comptage satisfont (1.3) pour tout r ∈ N. Notons
que dans ce cas, pour la question de connexité (alias irréductibilité par rapport à la construction
combinatoire SET), on peut garantir qu’une structure aléatoire est presque sûrement connexe [6, 7].

Le second objectif est plus délicat. À notre connaissance, le seul exemple de coefficients asymp-
totiques interprétés combinatoirement dans la littérature, dans l’esprit de notre travail, est le suivant.
En 2005, Dixon [28] a montré que la probabilité tn qu’une paire aléatoire de permutations à partir
de Sn génère un groupe transitif pouvait être représentée par la série asymptotique

tn = 1 +
c1

n
+
c2

n2
+ . . .+

cm
nm

+O

(
1

nm+1

)
. (1.6)

Dixon a indiqué les premières valeurs des constantes ck, de sorte que cette asymptotique avait la
forme

tn = 1− 1

n
− 1

n2
− 4

n3
− 23

n4
− 171

n5
− 1542

n6
− . . . . (1.7)

En prouvant les asymptotique ci-dessus, Dixon a utilisé le théorème de Bender et a établi que

tn = 1 +
r−1∑
k=1

dk
(n)k

+O

(
1

nr

)
(1.8)
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pour tout entier strictement positif r, où (n)k = n(n − 1) . . . (n − k + 1) désignent les factorielles
descendantes et les coefficients (dk) sont définis par

∞∑
k=0

dkz
k =

(
∞∑
k=0

k!zk

)−1

.

En 2009, Cori [23] a montré que (−dk) était la suite de comptage des permutations indécomposables.
Pour obtenir une interprétation combinatoire de ce type, nous avons besoin d’une technique qui

relie les opérations sur les séries formelles et les structures combinatoires. Il y a plusieurs façons de le
faire. Le moyen le plus naturel est d’utiliser à nouveau la méthode symbolique. Ainsi, nous décrivons
d’abord l’irréductibilité des objets combinatoires en termes des fonctions génératrices à l’aide de la
méthode symbolique. Cela nous permet de passer aux développements asymptotiques via le théorème
de Bender. Finalement, après avoir obtenu les coefficients asymptotiques, nous appliquons encore
fois la méthode symbolique, dans le sens inverse, pour leur donner une interprétation combinatoire.

Bien que la méthode symbolique soit claire et facile à utiliser, elle possède certaines limites.
Dans certains cas, les coefficients obtenus ne peuvent pas être interprétés directement en termes de
classes combinatoires. Par exemple, c’est le cas lorsque certains d’entre eux sont strictement négatifs.
Pour surmonter cet obstacle, nous utilisons la théorie des espèces [12, 49]. On peut considérer
cette théorie comme un langage différent qui pourrait servir le même objectif de traduction des
décompositions de structures en opérations de fonctions génératrices et vice versa. Comparée à la
méthode symbolique, la théorie des espèces est plus générale et puissante, bien qu’elle soit plus
abstraite et plus difficile à mettre en œuvre. Un rôle clé dans la théorie des espèces est réservé
à l’opération de substitution, qui embrasse toutes les constructions précédemment citées. Le principal
avantage que nous utilisons activement est le concept d’espèces virtuelles. De la même façon que les
entiers prolongent l’ensemble des nombres naturels, l’anneau des espèces virtuelles est l’extension du
demi-anneau des espèces de structures. L’usage des espèces virtuelles nous permet de donner un sens
combinatoire à plus d’expressions, y compris des suites à coefficients négatifs, et permet de passer
à l’inverse sous substitution.

1.2 Contribution de la thèse
Les résultats de ce travail sont ou seront présentés dans les articles [30, 63, 64, 65]. Au cours de cette
thèse, des résultats sur d’autres sujets ont également été obtenus, qui ne sont pas inclus ici afin de
préserver l’unité du manuscrit. En particulier, dans un article commun avec Ivan Reshetnikov [71],
nous fournissons des résultats sur des décompositions de fonctions définies sur des ensembles fi-
nis. Dans un autre article en collaboration avec Alexander Povolotsky [70], nous étudions l’analyse
asymptotique des fonctions de corrélation non locales.

Cette thèse poursuit deux objectifs principaux. Le premier d’entre eux est de fournir une
manière générale d’établir la probabilité asymptotique que de grands objets combinatoires soient
connexes ou irréductibles dans un sens précis que nous définirons plus loin (voir les définitions 3.1.31,
3.1.39 et 3.1.46). Le second, en quelque sorte plus intéressant, est d’indiquer la signification combina-
toire des coefficients impliqués dans les développements asymptotiques obtenus et d’en comprendre
les raisons sous-jacentes. Pour donner au lecteur une idée du type de résultats qui nous intéresse,
nous commençons par un exemple qui sera discuté en détail au chapitre 10.

Considérons le modèle Erdős–Rényi des graphes aléatoires G(n, 1/2) : pour tout entier positif n,
on munit l’ensemble des graphes simples non orientés sur l’ensemble [n] = {1, . . . , n} de la mesure
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de probabilité uniforme. Autrement dit, dans ce modèle, un graphe de taille n apparaît avec une
probabilité 1/2(n

2). La probabilité pn qu’un graphe aléatoire soit connexe tend vers 1 lorsque n tend
vers ∞. En 1959, Gilbert [41] a fourni une estimation plus précise montrant que

pn = 1− 2n

2n
+O

(
n2

23n/2

)
.

En 1970, Wright [102] a calculé les quatre premiers termes du développement asymptotique de cette
probabilité :

pn = 1−
(
n

1

)
1

2n−1
− 2

(
n

3

)
1

23n−6
− 24

(
n

4

)
1

24n−10
+O

(
n5

25n

)
.

La méthode de Wright peut être utilisée pour calculer plusieurs termes, pas à pas. Cependant, il
ne donne ni la structure du développement asymptotique complet ni l’interprétation des coefficients
1, 2, 24, . . . .

Notre but est de fournir une telle structure : nous allons démontrer que le k-ième terme du
développement asymptotique de pn est de la forme

itk · 2k(k+1)/2 ·
(
n

k

)
· 1

2kn
,

où itk compte le nombre de tournois étiquetés irréductibles de taille k (voir la définition 10.2.2).
Nous exprimons ce résultat, ainsi que tous les autres résultats que nous verrons plus tard, à l’aide
de deux notations. La première d’entre elles est le symbole ≈ pour le développement asymptotique,
(voir la notation 2.2.1 pour la signification précise). La seconde est la probabilité asymptotique,
pn = P

(
G est connexe

)
, où G est un graphe aléatoire de taille n (pour le concept de probabilité

asymptotique, voir la définition 3.1.2). En utilisant ces notations, on obtient le résultat annoncé sous
la forme suivante.

Théorème 10.1.10. La probabilité asymptotique qu’un graphe simple étiqueté aléatoire G avec
n sommets soit connexe satisfait

P
(
G est connexe

)
≈ 1−

∑
k>1

itk ·
(
n

k

)
· 2k(k+1)/2

2kn
, (1.9)

où itk est le nombre de tournois irréductibles de taille k.

La preuve du théorème 10.1.10 est basée sur le théorème de Bender (théorème 2.2.5) et plutôt
courte : nous exprimons la fonction génératrice exponentielle des graphes connexes en termes de fonc-
tion génératrice exponentielle des graphes, différencions cette expression pour obtenir l’asymptotique
et notons que, d’une certaine manière, nous pouvons faire apparaitre la fonction génératrice exponen-
tielle des tournois irréductibles dans le résultat. Cependant, le théorème 10.1.10 présente un nouveau
résultat. L’explication de ce fait réside dans la relation entre les graphes et les tournois, cachée dans
leurs structure. Bien que l’énumération des graphes connexes ait été donnée par Wright en 1970, il
n’a pas fourni de signification combinatoire des coefficients. Le fait que (itk) soit la suite de comptage
des tournois irréductibles est facile à obtenir empiriquement aujourd’hui, avec l’aide de l’encyclopédie
en ligne des suites de nombres entiers [76] qui n’était pas disponible il y a cinquante ans. Néanmoins,
même découvert, le lien entre graphes connexes et tournois irréductibles est plutôt non direct. En
termes de classes combinatoires étiquetées, on peut décrire ce lien de la manière suivante. Compte
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tenu des classes combinatoires étiquetées CG des graphes connexes et IT des tournois irréductibles,
respectivement, il existe un isomorphisme combinatoire des structures composées

SET(CG) ∼= SEQ(IT ). (1.10)

Dans cette formule, l’utilisation de la construction SET reflète le fait qu’un graphe est l’union de
ses composants connexes. De la même manière, l’utilisation de la construction SEQ signifie qu’un
tournoi peut être représenté comme une séquence de tournois irréductibles. Ainsi, la relation (1.10)
peut être interprétée comme un isomorphisme combinatoire des classes combinatoires étiquetées
G des graphes et T des tournois, respectivement, ce qui signifie que leurs les suites de comptage sont
les mêmes. Nous devons souligner ici que le concept d’isomorphisme combinatoire n’est rien d’autre
que la coïncidence des nombres de structures de même taille (voir définition 3.1.11) : le nombre gn
de graphes de taille n et le nombre tn de tournois de taille n sont tous deux égaux à

gn = tn = 2(n
2).

Alors que les deux tournois étiquetés de taille deux sont isomorphes (en échangeant les sommets), les
deux graphes étiquetés de taille deux ne le sont pas (l’un est connexe, pas l’autre). En particulier,
toute bijection entre G et T est un peu artificielle, car elle ne préserve pas les classes d’isomorphisme.

Maintenant, nous comprenons deux ingrédients de base se trouvant sous le théorème 10.1.10 :
le théorème de Bender et l’interaction de deux structures différentes (graphes et tournois). Cela
nous permet d’énoncer une généralisation pour les classes combinatoires arbitraires. Similaire à la
relation (1.10), nous supposons qu’une classe combinatoire étiquetée U admet deux décompositions
différentes:

U = SET(V) = SEQ(W)

(pour simplifier, on parle d’égalité, bien qu’en pratique on ait généralement un isomorphisme combi-
natoire, SET(V) ∼= SEQ(W)). Alors, sous certaines conditions, le développement asymptotique de la
probabilité qu’un objet aléatoire appartenant à U est SET-irréductible peut être exprimée en fonction
de la suite de comptage de U , et les coefficients ont un sens combinatoire impliquant W . Ici, grosso
modo, la notion de SET-irréductibilité signifie qu’un objet de la classe U est connexe. Autrement
dit, un objet de la classe U est SET-irréductible si et seulement s’il appartient à la classe V aussi.
En ce qui concerne les conditions, la méthode fonctionne pour les classes combinatoires étiquetées
dont les suites de comptage grossissent suffisamment vite (nous appelons ces classes gargantuesques,
voir la définition 3.1.72). Plus précisément, le résultat est le suivant.

Théorème 7.2.1. Soit U une classe combinatoire étiquetée gargantuesque à coefficients stricte-
ment positifs, telle que U = SET(V) et U = SEQ(W) pour certaines classes combinatoires étiquetées
V et W. Supposons que u ∈ U soit un objet aléatoire de taille n. Alors

P(u est SET-irréductible) ≈ 1−
∑
k>1

wk ·
(
n

k

)
· un−k

un
, (1.11)

où (un) et (wn) sont les suites de comptage des classes U et W, respectivement.

Le théorème 7.2.1 admet un certain nombre d’applications qui lient des structures de nature
différente. Nous avons déjà vu ce genre de lien entre graphes connexes et tournois irréductibles
(théorème 10.1.10). De manière similaire, on obtient des liens entre les multigraphes connexes et les
multitournois irréductibles (proposition 10.1.18) et les (multi)digraphes faibles et les multitournois
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irréductibles (proposition 10.3.23). Dans tous les cas ci-dessus, la seconde structure apparaît sous
forme de coefficients dans le développement asymptotique de la probabilité asymptotique pour la
première structure.

Un autre exemple significatif est fourni par les surfaces à petits carreaux connexes et les per-
mutations indécomposables. Le modèle des surfaces à petits carreaux, également appelé origamis,
peut être obtenu comme suit [105]. Étant donné n ∈ N, prenons une collection de carrés unitaires
énumérés par des entiers de 1 à n et identifions leurs côtés par translation, de sorte que le résultat
soit une surface de translation, c’est-à-dire une surface avec les notions globalement définies de nord,
ouest, sud et est. Toutes les surfaces possibles qui peuvent être obtenues par la procédure décrite
constituent la classe combinatoire étiquetée O des surfaces à petits carreaux. Le fait que toute surface
est une collection de surfaces connexes peut être interprété par la relation

O = SET(CO),

où CO désigne la sous-classe des surfaces à petits carreaux connexes. D’autre part, une identification
de côtés de carreau dans le modèle ci-dessus correspond au couple de permutations (σv, σh) ∈ S2

n tel
que le côté droit du k-ième carré est identifié au côté gauche du σv(k)-ème carré et le côté supérieur
du k-ème carré est identifié au côté inférieur du σh(k)-ème carré. La classe combinatoire des paires de
permutations de même taille est combinatoirement isomorphe à la classeML(2) des paires d’ordres
linéaires de même taille, ce qui signifie que leurs suites de comptage sont les mêmes : (n!)2. La classe
ML(2) peut être décomposée en une suite,

ML(2) = SEQ
(
IML(2)

)
,

où ML(2) est la classe combinatoire étiquetée des paires irréductibles d’ordres linéaires de même
taille. Sa suite de comptage coïncide avec n! · ipn, où ipn compte les permutations indécomposables
de taille n. Ainsi, l’isomorphisme combinatoire

SET(CO) ∼= SEQ
(
IML(2)

)
permet d’appliquer le théorème 7.2.1 qui nous donne le nouveau résultat suivant étroitement lié
à la relation (1.8).

Théorème 11.1.8. La probabilité asymptotique qu’une surface à petits carreaux S obtenue en
collant n carreaux unitaires au hasard soit connexe satisfait

P
(
S est connexe

)
≈ 1−

∑
k>1

ipk
(n)k

, (1.12)

où (n)k = n(n − 1)(n − 2) . . . (n − k + 1) sont les factorielles descendantes et ipk est le nombre de
permutations indécomposables de taille k.

Notons qu’une surface à petits carreaux de taille n est connexe si et seulement si la paire de
permutations correspondante génère un sous-groupe transitif de Sn. Ainsi, le développement asymp-
totique de la probabilité qu’une surface à petits carreaux aléatoire soit connexe peut être dérivé des
résultats de Dixon [28] et Cori [23] mentionnés dans la section précédente. Cependant, l’apparition
de permutations indécomposables dans ce contexte était plutôt surprenante et demandait à être ex-
pliquée. L’application de notre approche et du théorème 7.2.1 apporte un nouvel éclairage sur cette
histoire. Nous divulguons le raisonnement sous-jacent en plaçant la structure et en montrant le lien
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entre les surfaces à petits carreaux et les permutations indécomposables dans un cadre général. Il
ressort de notre approche que la décomposition (1.6) de tn en asymptotique sur la base 1/(n)k est
plus naturelle que (1.7) sur la base 1/nk. Elle se généralise aussi plus facilement. L’une d’entre
elles dévoile l’interaction entre les cartes combinatoires et les couplages parfaits indécomposables
(théorème 11.2.4). Une autre donne les liens entre constellations et multipermutations indécompos-
ables (théorème 11.3.6).

Après ce résultat sur l’asymptotique de la probabilité qu’un objet soit SET-irréductible (c’est-
à-dire, connexe), nous pouvons étendre ce résultat aux constructions symboliques SEQ et CYC
(théorèmes 5.2.1 et 6.2.1 respectivement). De plus, on peut vouloir obtenir des asymptotiques pour
des constructions restreintes à un nombre fixe de composants irréductibles. Par exemple, pour
tout m ∈ N, la construction SEQm produit des séquences de m composants irréductibles. De la
même manière, les constructions CYCm et SETm sont réservées pour les cycles et les ensembles
de m composants irréductibles respectivement. Pour chaque construction ci-dessus, nous établis-
sons la probabilité asymptotique qu’un objet aléatoire se décompose exactement en m composantes
irréductibles. Notons que toutes les trois ont une interprétation naturelle en termes de principe
d’inclusion-exclusion.

Pour donner une idée de ce à quoi ressemblent les résultats mentionnés ci-dessus, voici notre
théorème général pour la construction SEQm.

Théorème 5.3.1. Soit U une classe combinatoire étiquetée gargantuesque à coefficients stricte-
ment positifs, telle que U = SEQ(W) pour une classe combinatoire étiquetéeW. Supposons que u ∈ U
soit un objet aléatoire de taille n. Alors pour tout m ∈ N,

P(u a m composants SEQ-irréductibles) ≈
∑
k>0

m
(
w

(m−1)
k − 2w

(m)
k + w

(m+1)
k

)
·
(
n

k

)
· un−k

un
, (1.13)

où
(
w

(m)
k

)
est la suite de comptage de SEQm(W).

Ainsi, nous obtenons un outil qui nous permet d’obtenir des probabilités asymptotiques pour
différentes structures ainsi qu’une interprétation combinatoire des coefficients impliqués. Tous les
exemples déjà mentionnés dans cette section sont traitables, y compris les tournois irréductibles,
les permutations indécomposables et les couplages parfaits indécomposables. Par exemple, nous
montrons que les tournois irréductibles satisfont le théorème suivant.

Corollaire 10.2.12. La probabilité asymptotique qu’un tournoi aléatoire étiqueté T avec
n sommets soit irréductible satisfait

P
(
T est irréductible

)
≈ 1−

∑
k>1

(
2itk − it

(2)
k

)
·
(
n

k

)
· 2k(k+1)/2

2kn
, (1.14)

où itk et it(2)
k sont les nombres de tournois irréductible de taille k et de tournois de taille k composés

par deux parties irréductibles respectivement.

Le corollaire 10.2.12 illustre une différence significative entre les développements asymptotiques
pour les constructions SET et SEQ. Alors que, dans les conditions du théorème 7.2.1, les coefficients
du développement asymptotique (1.11) sont toujours positifs, les coefficients de (1.13) pourraient
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être strictement négatifs même dans le cas m = 1. C’est d’ailleurs cas pour les tournois irréductibles,
car (

2itk − it
(2)
k

)
= 2, −2, 4, 32, 848, 38 032, 3 039 136, 446 043 008, . . . .

En conséquence, il n’y a aucun espoir d’attendre que ces coefficients énumèrent les objets d’une
classe combinatoire. D’autre part, il arrive souvent que des classes combinatoire étiquetées gar-
gantuesques U et V satisfassent U = SET(V), mais qu’il n’y ait pas de classe W telle que
U = SEQ(W), de sorte que le théorème 7.2.1 ne peut pas être appliqué directement. Nous auri-
ons besoin d’un opérateur “anti-SEQ” qui produirait une classe combinatoire étiquetée W telle que
U = SEQ(W). Bien que la classe souhaitée W puisse ne pas exister, il existe encore des développe-
ments asymptotiques et leurs coefficients doivent être interprétés.

Toutes les observations ci-dessus sont la raison pour passer du langage des classes combinatoires
au langage des espèces. Ce dernier nous permet, en considérant des espèces virtuelles, d’étendre le
concept de suite de comptage à des suites dont les coefficients peuvent être strictement négatifs et
de construire un opérateur “anti-SEQ”. Plus précisément, les actions des opérateurs SEQ, CYC et
SET se traduisent dans la théorie des espèces, à l’aide de compositions avec les espèces L des ordres
totaux, CP des permutations cycliques et E des ensembles, respectivement :

SEQ(A)  L ◦ A,
CYC(A)  CP ◦ A,
SET(A)  E ◦ A.

L’espèce L+ = L − 1 admet un inverse pour la substitution, et son inverse L(−1)
+ est utilisée dans la

généralisation du théorème 7.2.1 pour la théorie des espèces.

Théorème 8.3.4. Soit A une espèce (pondérée) gargantuesque, telle que A = E ◦ B, où B est
une espèce (pondéréé) quelconque. Soit s ∈ A une A-structure sur [n], où n ∈ N. Alors

P(s ∈ B) ≈ 1−
∑
k>1

ck ·
(
n

k

)
· an−k

an
, (1.15)

où an et cn sont les poids totaux sur [n] des espèces A et C = E−1◦B ≡
(
1−L(−1)

+

)
◦A+ respectivement.

Un exemple important d’application du théorème 8.3.4 est le calcul de la probabilité asymp-
totique qu’un graphe aléatoire soit connexe dans le modèle Erdős–Réniy G(n, p). Rappelons que,
selon ce modèle, un graphe étiqueté G à k arêtes est choisi parmi l’ensemble de tous les graphes
à n sommets avec probabilité

pkq(
n
2)−k,

où q = 1−p. Dans le cas p = q = 1/2, nous avons la situation décrite dans le théorème 10.1.10. Dans
le cas général, nous perdons le lien entre les graphes et les tournois. Néanmoins, nous pouvons décrire
la structure combinatoire des coefficients du développement asymptotique de la probabilité qu’un
graphe aléatoire soit connexe. Dans ce contexte plus général, le nombre de tournois irréductibles de
taille k sera remplacé par un polynôme Pk évalué au point p/(1− p). À cet effet, définissons le poids
des graphes G à k arêtes par

w(G) = ρk, où ρ =
p

q
.

16



Par exemple, les poids des graphes dont la taille ne dépasse pas 3 sont indiqués sur la figure 1.1. Nous
utilisons ces poids pour définir l’espèce pondérée Gw des graphes. Cette espèce peut être représentée
comme la composition

Gw = E ◦ CGw,
où CGw est l’espèce pondérée des graphes connexes. En appliquant le théorème 8.3.4 à cette dernière
relation, nous obtenons le résultat suivant.

1

w = 1

1 2

w = ρ

1 2

w = 1

1

2 3

w = ρ3

1

2 3

w = ρ2

1

2 3

w = ρ2

1

2 3

w = ρ2

1

2 3

w = 1

1

2 3

w = ρ

1

2 3

w = ρ

1

2 3

w = ρ

Figure 1.1: Poids des graphes étiquetés dont la taille ne dépasse pas 3.

Théorème 10.4.6. Soit p ∈ (0, 1). La probabilité asymptotique qu’un graphe aléatoire G dans
le modèle d’Erdős–Rényi G(n, p) soit connexe satisfait

P(G est connexe) ≈ 1−
∑
k>1

Pk(ρ) ·
(
n

k

)
· qnk

qk(k+1)/2
, (1.16)

où q = 1− p, ρ = p/q et
Pk(ρ) =

∑
H∈Gw[k]

(−1)π0(H)−1w(H)

est la somme des poids de tous les graphes H ∈ Gw[k] pris avec le signe (−1)π0(H)−1, où π0(H) est le
nombre de composantes connexes du graphe H.

Indiquons explicitement les premiers termes du développement asymptotique de la probabilité
qu’un graphe aléatoire du modèle d’Erdős–Rényi soit connexe. Pour cela, calculons Pk(ρ) pour
k = 1, 2, 3. Puisqu’il n’y a qu’un graphe de taille 1, qui est connexe et dont le poids est 1, on a

P1(ρ) = 1.

Pour le deuxième polynôme, on a

P2(ρ) = w

(
1 2

)
+ w

(
1 2

)
= ρ− 1.

De la même manière, comme on le voit sur la figure 1.1, il y a huit graphes de taille 3. Parmi eux, un
est connexe et est de poids ρ3, trois sont connexes et sont de poids ρ2, trois ont deux composantes
connexes et sont de poids ρ, et le dernier a trois composantes connexes et est de poids 1. Ainsi, on
obtient

P3(ρ) = ρ3 + 3ρ2 − 3ρ+ 1.
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Ce calcul nous donne les quatre premiers termes du développement asymptotique :

P(G est connexe) = 1−
(
n

1

)
qn−1 − (ρ− 1)

(
n

2

)
q2n−3 − (ρ3 + 3ρ2 − 3ρ+ 1)

(
n

3

)
q3n−6 +O(n4q4n).

En particulier, on reconnait les deux premiers termes obtenus par Gilbert [41].
En plus de SEQ, les constructions combinatoires CYC, SET, SEQm, CYCm et SETm peuvent

être traduites dans le langage de la théorie des espèces. Chacune d’elles correspond à une compo-
sition avec certaines espèces de structures. Ce fait nous permet d’énoncer des résultats asympto-
tiques généraux qui peuvent être considérés comme des analogues d’espèces du théorème 7.2.1 et du
théorème 5.3.1 par exemple. Dans ces résultats, les coefficients impliqués dans les développements
asymptotiques ont une signification combinatoire en tant que suites de comptage de certaines espèces
virtuelles dépendant de structures initiales (théorèmes 8.1.1, 8.1.2, 8.2.1, 8.2.2 et 8.3.6).

Le dernier résultat à mentionner dans cette introduction concerne la probabilité asymptotique
de graphes orientés fortement connexes. Le premier résultat pour cette probabilité a été obtenu par
Wright [104]. Avec Sergey Dovgal, nous obtenons une simplification significative en imposant une
structure aux coefficients.

Théorème 10.3.16. La probabilité asymptotique qu’un graphe orienté étiqueté aléatoire D
avec n sommets soit fortement connexe satisfait

P
(
D est fortement connexe

)
≈
∑
k>0

ssdk ·
(
n

k

)
· 2k(k+1)/2

2n(n−1)/2
· itn−k

2nk
, (1.17)

où itk et ssdk sont respectivement les nombres de tournois irréductibles et de graphes orientés semi-
forts de taille k.

La forme d’asymptotique (1.17) est assez simple, mais elle dépend du nombre de tournois
irréductibles tn−k. Dans le cas où nous voulons obtenir une décomposition par puissances de deux,
nous pouvons encore utiliser l’asymptotique (1.14) qui nous amène au résultat suivant.

Corollaire 10.3.18. La probabilité asymptotique qu’un graphe orienté étiqueté aléatoire D
avec n sommets soit fortement connexe satisfait

P
(
D est fortement connexe

)
=

2r−1∑
k=0

2k(k+1)/2

2kn

[k/2]∑
ν=0

(
n

ν, k − 2ν

)
ssdνβk−2ν

2ν(k−ν)
+O

(
n2r

22nr

)
, (1.18)

où ssdk est le nombre de graphes orienté semi-forts de taille k,

βk =

{
1, si k = 0,

−2itk + it
(2)
k , si k 6= 0,

itk et it(2)
k sont les nombres de tournois irréductibles de taille k et de tournois de taille k composés

de deux parties irréductibles respectivement.

La preuve du théorème 10.3.16 ne peut être déduite des théorèmes généraux mentionnés ci-
dessus. Pour établir le résultat, nous appliquons directement le théorème de Bender, ainsi que
des techniques supplémentaires. En particulier, nous utilisons une méthode d’énumération pour les
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graphes fortement connexes qui a été développée en 1973 par Robinson [90], et plus tard, indépendam-
ment, par de Panafieu et Dovgal [29]. Nous pouvons voir que le développement asymptotique (1.17)
a une forme moins simple que les développements précédentes. En particulier, il y a trois structures
qui interagissent : les graphes fortement connexes, les graphes semi-forts et les tournois irréductibles.
On peut espérer avoir une interprétation de la formule ci-dessus en termes de principe d’inclusion-
exclusion. Malheureusement, nous n’en avons pas trouvé. Ce problème reste un défi pour les projets
futurs.

1.3 Plan de la thèse
Ce manuscrit est structuré linéairement autour de parties et de chapitres dans un flux plutôt tradi-
tionnel qui passe des outils aux théorèmes généraux puis aux applications. Néanmoins, une lecture
non linéaire à travers les chapitres est également possible. On peut le faire soit en considérant un
type particulier d’objets qui apparaissent dans toutes ces sections, soit en se focalisant sur une con-
struction particulière ou un formalisme particulier. Par exemple, si on s’intéresse aux asymptotique
liées à la construction SEQ, alors il suffit de se limiter au chapitre 5 et à la section 8.1 de partie II
ainsi qu’au chapitre 9 et à la section 10.2 de la partie III. De la même manière, si notre curiosité nous
porte vers les tournois, nous pouvons aller directement aux sections 5.2, 5.3 et 10.2, en s’appuyant
si besoin sur les outils correspondants de la partie I.

Décrivons la structure de la thèse. Dans la partie I, nous introduisons tous les outils nécessaires
à notre recherche. Cette partie introductive est suffisamment illustrative et remplie d’exemples et
de détails. Elle est destinée à être conviviale et, au delà ce ça, à servir aux étudiantes et étudiants
qui découvrent le domaine pour se familiariser avec le matériel et les techniques. La majeure partie
du contenu des chapitres 2–4 est bien connue, et le lecteur qui est familier peut ignorer les sujets
correspondants sans perte de compréhension. La seule exception concerne le concept de séquences
gargantuesques (ainsi que les classes combinatoires gargantuesques et les espèces gargantuesques qui
en découlent), que nous définissons pour simplifier la présentation (voir les sections 2.1, 3.1.15, 3.2.6
et 4.2.4).

La partie II est consacrée aux résultats généraux. Dans les chapitres 5–7, nous travaillons
avec la méthode symbolique. Premièrement, nous discutons, d’un point de vue combinatoire, les
probabilités qu’un objet aléatoire soit irréductible en termes de décompositions par rapport aux con-
structions combinatoires SEQ, CYC et SET. Pour ces probabilités, nous établissons empiriquement
les développements asymptotiques accompagnés de la signification combinatoire des coefficients im-
pliqués. Ici, c’est le principe d’inclusion-exclusion qui joue le rôle clé pour obtenir les interprétations
combinatoires. Deuxièmement, nous prouvons rigoureusement le résultat obtenu, via le théorème de
Bender. Troisièmement, nous faisons de même pour les constructions restreintes SEQm, CYCm et
SETm. Enfin, au chapitre 8, nous généralisons les résultats obtenus dans le cadre de la théorie des
espèces.

Dans la partie III, nous discutons de nombreuses applications. Le chapitre 9 est consacré aux
permutations et aux objets associés. Nous établissons les développements asymptotiques pour les
probabilités qu’une permutation, un couplage parfait ou une multipermutation aléatoire soit indé-
composable. Le chapitre 10 porte sur différents types de graphes. Nous montrons comment obtenir
les probabilités qu’un graphe aléatoire soit connexe, qu’un tournoi aléatoire soit irréductible, qu’un
graphe orienté aléatoire soit faiblement ou fortement connexe, etc. En particulier, nous le faisons
pour le modèle d’Erdős–Rényi G(n, p). Dans le chapitre 11, nous discutons de plusieurs modèles de
surfaces. Nous étudions les surfaces à petits carreaux, les cartes combinatoires et les constellations et
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indiquons leurs connexions avec des permutations, des couplages parfaits et des multipermutations,
respectivement. Pour tous les modèles mentionnés, nous fournissons des développements asympto-
tiques pour les probabilités qu’une surface aléatoire soit connexe ou consiste en un nombre fixe de
composantes connexes.

Enfin, nous discutons de plusieurs directions possibles pour de futures recherches dans la par-
tie IV.
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Chapter 1

Introduction

1.1 Presentation of the problem and strategy
Various combinatorial structures admit, in a broad sense, a notion of irreducibility. Here, by irre-
ducibility we mean that a compound structure can be decomposed into a collection of small pieces
that cannot be decomposed further. As an example, various objects admit a decomposition into
connected components. For instance, a simple graph is a disjoint union of connected ones, while
directed graphs admit the notion of weak and strong connectedness. Also, one could refer to various
models of discrete surfaces that can be connected or not. Another type of irreducibility is given
by the decomposition of an object into a sequence of irreducible ones. As important examples, we
must mention permutations, which can be represented as concatenations of indecomposable ones,
and tournaments. Note that permutations can also be decomposed as disjoint unions of cycles. The
list of irreducible structures looks countless; a unified approach to them based on partitions was
developed by Beissinger [5].

We are interested in the following question. Pick a random object of size n from a labeled
combinatorial class that admits a notion of irreducibility. What is the probability that this object
is irreducible, as its size tends to infinity (say, what is the probability that a random graph with
n vertices is connected, as n → ∞)? For many known classes, this limiting probability tends
to 1. For example, this is the case for connected graphs [41], irreducible tournaments [68] and
indecomposable permutations [21]. In other cases, the limiting probability is 0, as for permutations
consisting of exactly one cycle or for set partitions consisting of exactly one part. Sometimes, the
limiting probability of irreducibility is strictly between 0 and 1. In many cases, it involves e. For
instance, the limiting probability is 1/

√
e for a random labeled forest to be connected [88], while it

is 1/e for a random chord diagram to be connected [51, 95] and 1/e2 for a random permutation to
be simple [2], respectively. However, one could imagine more tricky values as well, as the golden
ratio (

√
5 − 1)/2 for the limiting probability that a random N-tree poset is connected [32, 92], or

1/2.997 . . . = 0.3367 . . . for the limiting probability that a random unlabeled forest is a tree [79], see
also [10].

Back in the mid-sixties, Wright [99] posed the question of how to distinguish between these
cases. He limited himself to the connectedness case described by the exponential formula. In other
words, he considered sequences (cn) and (an) counting connected and all unlabeled object of some
kind, respectively, such that

∞∑
n=0

anz
n = exp

(
∞∑
n=1

cnz
n

)
. (1.1)
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Wright showed [99, 100] that
n−1∑
k=1

akan−k = o(an) ⇔
n−1∑
k=1

ckcn−k = o(cn)

and both conditions can be used as necessary and sufficient for lim
n→∞

(cn/an) = 1, i.e. for the limiting
probability to be equal to 1. Also, he indicated the following necessary condition: the generating
function

A(z) =
∞∑
n=0

anz
n

must diverge for any non-zero z, which is equivalent to lim
n→∞

(an−1/an) = 0 in the case when an 6= 0.
Similar conditions were obtained for the labeled case (see also [16]).

During the following decades, several authors developed Wright’s approach as, for instance
Bell, Bender, Cameron, Compton, Odlyzko and Richmond [6, 10, 16, 20], see also [52]. The research
culminated in the paper of Bell, Bender, Cameron and Richmond [7] who proved the following result.
Assuming that the limit ρ = lim

n→∞
(cn/an) exists, its value is in the following correspondence with the

radius of convergence R of the generating function C(z):

• ρ = 1 ⇔ R = 0,

• ρ = 0 ⇔ R > 0 and C(R) diverge,

• 0 < ρ < 1 ⇔ R > 0 and C(R) converge.

Moreover, they studied the case when the limit does not exist, and described the behavior of
lim sup(cn/an) and lim inf(cn/an) depending on the parameter R. In our investigation, we con-
centrate on the first case: the sequences (an) and (cn) grow rapidly and the generating functions
A(z) and C(z) have a radius of convergence R = 0.

Our interest is not limited to the limiting probability. One of our aims is to establish the full
asymptotic expansion for the probability that a random object is irreducible. In other words, we
wish to have an expression of the type

cn
an

= ρ
(

1 + f1(n) + f2(n) + . . .+ fr(n) + o
(
fr(n)

))
, (1.2)

where fk+1(n) = o
(
fk(n)

)
for every k ∈ N, as n → ∞. Generally speaking, one could reach

this aim with the help of the inclusion-exclusion principle (we will see how this works for different
combinatorial constructions in Sections 5.1, 6.1 and 7.1). However, in practice, this method is
unwieldy and mainly used for finding the first few terms. For example, it is the case for simple
permutations [2] and some classes of connected surfaces [15, 83]. Another, though similar in spirit,
method was developed in the late sixties by Wright who used recurrences to get the asymptotics.
For instance, he showed [102] that if sequences (cn) and (an) satisfy exponential formula (1.1), then
the conditions

lim
n→∞

an−1

an
= 0 and

n−r∑
k=r

akan−k = O(an−r), (1.3)

holding for some integer r, imply

cn = an +
r−1∑
k=1

αkan−k +O(an−r), (1.4)

22



and vice versa. Here, the sequence (αn) is defined recursively by α0 = a0 = 1 and

n∑
k=0

αkan−k = 0. (1.5)

This method allowed Wright to get asymptotic expressions for the number of connected graphs [102],
irreducible tournaments [103] and strongly connected digraphs [104]. Also, Robinson used the ap-
proach of Wright for finding asymptotics of directed acyclic graphs [90].

The numerous results of Wright were rethought and generalized in 1975 by Bender [9]. Com-
pared to the work of Wright, the advantage of Bender’s approach is the transition from recurrences
to generating functions. In particular, the sequence (αn) from relation (1.5) was determined by dif-
ferentiating some power series. As we will see later, this fact allows us to understand the structure
of asymptotics and to interpret (αn) combinatorially. We discuss Bender’s approach in detail in
Section 2.2.

It is important to emphasize that the method Bender used in [9] works well only in a number of
cases. Depending on the nature of the generating function, different techniques may be required to
obtain the desired asymptotics. More precisely, let a function F (z) be analytic in some neighborhood
of the origin and a formal power series A(z) have coefficients growing sufficiently fast (i.e. satisfying
conditions (1.3) for all r ∈ N). Then Bender’s method suits for establishing the full asymptotic
expansion of the coefficients of the composition F

(
A(z)

)
. On the other hand, if we need to find the

asymptotics of A
(
F (z)

)
or A−1(z), we should use different approach developed by Bender and Rich-

mond [11] (these are the ideas of [9] combined with the Lagrange inversion formula). An interesting
case is studied by Borinsky [13]: in his research, both functions involved in the composition are
divergent, but their rate of growth is not too fast. More precisely, Borinsky established formulas for
the asymptotic behavior of the product F (z)G(z) and composition F

(
G(z)

)
, where the coefficients

of F (z) and G(z) admitted an asymptotic expansion of the form

αn+β Γ(n+ β)

(
d0 +

d1

(n+ β − 1)
+

d2

(n+ β − 1)(n+ β − 2)
+ . . .

)
for some constants α, β ∈ R>0 and dk ∈ R.

Other methods are to be applied in the case when the treated generating function has a non-
zero radius of convergence. Depending on the situation, one can use Darboux’s method (see, for
example, [22, 77, 98]) or the singularity analysis [37] based on the saddle point method and the
papers of Hayman [48], Harris and Schoenfeld [47], Flajolet, Odlyzko and Richmond [36, 73, 75]. To
find out more about this, we refer the reader to the surveys of Bender [8], Odlyzko [74] and books of
De Bruijn [25], Flajolet and Sedgewick [38].

So, we are interested in the asymptotics of the probability that a random object of a certain
kind is irreducible. In our investigation, we pursue two goals. First, we would like to obtain the full
asymptotic expansion of this probability in a common manner, suitable for different structures. Lim-
iting counting sequences of the object classes to grow rapidly enough, we find ourselves in a situation
obeying Bender’s theorem [9]. Moreover, it turns out that the constants involved in expansion (1.2)
in this case are integers. The second goal that we pursue follows from this observation. Namely, we
wish to have a combinatorial interpretation of the constants involved in the asymptotic expansion.

The strategy for achieving the two above mentioned goals is in forcing several techniques to
interplay. Our first step is to interpret combinatorial structures in terms of generating functions.
The origin of this basic idea is hidden in the depth of centuries; one can see generating functions
arising on the basis of corresponding recurrences in works of Bernoulli, Euler, Cayley etc. As an
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example of particular importance, we should mention the contribution of Pólya [84, 85], whose
work was devoted to the enumeration of objects under group symmetry action. The contemporary
approaches to combinatorial analysis, including Pólya theory, can be found, for instance, in books of
such authors as Comtet [22], Goulden and Jackson [42], Lando [55], Stanley [93, 94] and Wilf [98].
Our first choice is the symbolic method [38] that is rather simple and clear enough. According to
this method, compound structures are obtained from simpler ones using combinatorial constructions,
such as sequence SEQ, cycle CYC and set SET. The fact that an object is irreducible with respect
to one of the three mentioned constructions is directly interpreted in terms of generating functions
via corresponding relations.

Once we have relations for generating functions, it becomes possible to proceed with the first
goal, that is, with obtaining the asymptotic expansions. As we have just mentioned, our way is
based on Bender’s theorem which permits us to establish asymptotic behavior of formal power series
coefficients in the case when the target power series is expressed in terms of the initial power series
by means of an analytic function. Bender’s theorem is applicable for series whose coefficients grow
sufficiently fast. This fact limits us to considering labeled combinatorial classes whose counting
sequences satisfy (1.3) for all r ∈ N. Note that in this case, for the question of connectedness (aka
irreducibility with respect to the combinatorial construction SET), one can guarantee that a random
structure is almost surely connected [6, 7].

The second goal is more tricky. As far as we know, the only example of combinatorially
interpreted asymptotic coefficients in the literature, in the spirit of our work, is the following. In 2005,
Dixon [28] showed that the probability tn that a random pair of permutations from Sn generates
a transitive group could be represented as the asymptotic series

tn = 1 +
c1

n
+
c2

n2
+ . . .+

cm
nm

+O

(
1

nm+1

)
. (1.6)

Dixon indicated the first several values of constants ck, so that this asymptotics had the form

tn = 1− 1

n
− 1

n2
− 4

n3
− 23

n4
− 171

n5
− 1542

n6
− . . . . (1.7)

While proving the above asymptotics, Dixon used Bender’s theorem and established that

tn = 1 +
r−1∑
k=1

dk
(n)k

+O

(
1

nr

)
(1.8)

for any positive integer r, where (n)k = n(n − 1) . . . (n − k + 1) were the falling factorials and the
coefficients (dk) were defined by

∞∑
k=0

dkz
k =

(
∞∑
k=0

k!zk

)−1

.

In 2009, Cori [23] showed that (−dk) was the counting sequence for indecomposable permutations.
To achieve such a combinatorial interpretation of coefficients, we need a technique that bridges

between operations on power series and underlying combinatorial structures. There are several ways
to do it. The most natural way is to use the symbolic method again. Thus, first we describe the
irreducibility of combinatorial objects in terms of generating functions with the help of the symbolic
method. This allows us to pass to asymptotic expansions via Bender’s theorem. Having obtained the
asymptotic coefficients, we apply the symbolic method once again, in the opposite direction. This
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allows to prescribe a structure for the asymptotic expansion and give the coefficients a combinatorial
meaning.

Although the symbolic method is rather clear and easy to use, it does not always give satis-
factory results. Sometimes the obtained coefficients cannot be interpreted in terms of combinatorial
classes directly. For example, this is the case when some of them are negative (it is so, say, for irre-
ducible tournaments). To cope with this obstacle, we use the theory of species [12, 49]. The reader
can consider this theory as a different language that could serve the same aim of translating structure
decompositions to generating function operations and vice versa. Compared to the symbolic method,
the theory of species is more general, though it is more abstract and more difficult to implement.
A key role in the theory of species is reserved for the substitution operation, that encompass all
the previously discussed constructions. The main advantage that we actively use is the concept of
virtual species. The same way as integers extend the set of natural numbers, the ring of virtual
species is the extension of the semi-ring of species of structures. Using virtual species allows us to
give combinatorial meaning to more expressions, including sequences with negative coefficients, and
permits to pass to the inverse under substitution.

1.2 Contribution of the thesis
This work is based on the investigation, the results of which are presented in the papers [30, 63,
64, 65]. During the course of this PhD work, results on other topics were obtained as well, that
are not included here in order to preserve the manuscript’s unity. Thus, in a joint paper with Ivan
Reshetnikov [71], we provide results on decompositions of functions defined on finite sets. In another,
joint paper with Alexander Povolotsky [70], we study the asymptotic analysis of non-local correlation
functions of the watermelon type.

The thesis pursue two main goals. The first of them is to provide a general way of establishing
the asymptotic probability that large combinatorial objects are connected or irreducible in a precise
sense that we will define later (see Definitions 3.1.31, 3.1.39 and 3.1.46). The second, somehow
more interesting, is to indicate the combinatorial meaning of the coefficients involved in the obtained
asymptotic expansions and to understand the underlying reasons. To give the reader an idea of what
kind of results we are interested in, we start with an example that will be discussed in detail in
Chapter 10.

Let us consider the Erdős–Rényi model of random graphs G(n, 1/2): for each non-negative
integer n, we endow the set of undirected simple graphs on the set [n] = {1, . . . , n} with the uniform
probability. In other words, within this model, each graph of size n appears with probability 1/2(n

2).
The probability pn that such a random graph is connected goes to 1 as n tends to ∞. In 1959,
Gilbert [41] provided a more accurate estimation showing that

pn = 1− 2n

2n
+O

(
n2

23n/2

)
.

In 1970, Wright [102] calculated the first four terms of the asymptotic expansion of this probability:

pn = 1−
(
n

1

)
1

2n−1
− 2

(
n

3

)
1

23n−6
− 24

(
n

4

)
1

24n−10
+O

(
n5

25n

)
.

Wright’s method can be used to compute more terms, one by one. However, it gives neither the
structure of the full asymptotic expansion nor the interpretation of the coefficients 1, 2, 24, . . . .
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Our main goal is to provide such a structure: the k-th term of the asymptotic expansion of pn
is of the form

itk · 2k(k+1)/2 ·
(
n

k

)
· 1

2kn
,

where itk counts the number of irreducible labeled tournaments of size k (see Definition 10.2.2). We
express this result, as well as all the other results that we will see later, with the help of two notations.
The first of them is the symbol ≈ for the asymptotic expansion (see Notation 2.2.1 for the precise
meaning). The second is the asymptotic probability, pn = P

(
G is connected

)
, where G is a random

graph of size n (for the asymptotic probability concept, see Definition 3.1.2). Using these notations,
we get the announced result in the following form.

Theorem 10.1.10. The asymptotic probability that a random labeled simple graph G with
n vertices is connected satisfies

P
(
G is connected

)
≈ 1−

∑
k>1

itk ·
(
n

k

)
· 2k(k+1)/2

2kn
, (1.9)

where itk is the number of irreducible tournaments of size k.

The proof of Theorem 10.1.10 is based on Bender’s theorem (Theorem 2.2.5) and rather short:
we express the exponential generating function of connected graphs in terms of the exponential
generating function of graphs, differentiate this expression to obtain the asymptotics and notice
that, somehow, the result involves the exponential generating function of irreducible tournaments.
However, Theorem 10.1.10 presents a new result. The explanation of this fact lies in the relation
between graphs and tournaments hidden in their structures. Although enumeration of connected
graphs was given by Wright in 1970, he did not provide a combinatorial meaning of the coefficients.
The fact that (itk) is the counting sequence of irreducible tournaments is easy to get empirically
nowadays, with the help of the on-line encyclopedia of integer sequences [76], but it was concealed
back in the seventies. Nevertheless, even when discovered, the link between connected graphs and
irreducible tournaments is rather non-direct. In terms of labeled combinatorial classes, one can
describe this link in the following way. Given the labeled combinatorial classes CG of connected
graphs and IT of irreducible tournaments, respectively, there is a combinatorial isomorphism of
compound structures

SET(CG) ∼= SEQ(IT ). (1.10)

Here, the use of construction SET reflects the fact that any graph is the union of its connected
components. In a similar way, using the construction SEQ means that any tournament can be repre-
sented as a sequence of irreducible ones. Thus, relation (1.10) can be interpreted as a combinatorial
isomorphism of the labeled combinatorial classes G of graphs and T of tournaments, respectively,
meaning that their counting sequences are the same. Here, we are obliged to emphasize that the
combinatorial isomorphism concept is nothing more than the coincidence of the numbers of struc-
tures of the same size (see Definition 3.1.11): the number gn of graphs of size n and the number tn
of tournaments of size n both are equal to

gn = tn = 2(n
2).

While two different labeled tournaments of size two are isomorphic by swapping the vertices, two
different labeled graphs of size two are not. In particular, any bijection between G and T is kind of
artificial, since it does not preserve isomorphism classes.
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Now, we understand two basic ingredients lying under Theorem 10.1.10, namely, Bender’s
theorem and the interplay of two different structures (graphs and tournaments). This allows us to
state a generalization for arbitrary combinatorial classes. Similar to relation (1.10), we suppose that
a labeled combinatorial class U admits two different decompositions:

U = SET(V) = SEQ(W)

(for simplicity, we are talking about equality, although, in practice, one usually has a combinatorial
isomorphism, SET(V) ∼= SEQ(W)). Then, under certain conditions, the asymptotic expansion for the
probability that a random object from U is SET-irreducible can be expressed in terms of the counting
sequence of U , and the coefficients have precise combinatorial meaning. Here, roughly speaking, the
notion of SET-irreducibility means that an object from the class U is connected. In other words,
the object from the class U is SET-irreducible if and only if it belongs to the class V as well. As for
the conditions, the method works for labeled combinatorial classes whose counting sequences grow
sufficiently fast (we call such classes gargantuan, see Definition 3.1.72). More precisely, the new result
that we establish is as follows.

Theorem 7.2.1. Let U be a gargantuan labeled combinatorial class with positive coefficients,
such that U = SET(V) and U = SEQ(W) for some labeled combinatorial classes V and W. Suppose
that u ∈ U is a random object of size n. Then

P(u is SET-irreducible) ≈ 1−
∑
k>1

wk ·
(
n

k

)
· un−k

un
, (1.11)

where (un) and (wn) are the counting sequences of the classes U and W, respectively.

Theorem 7.2.1 admits a number of applications that link structures of different nature. We
have already seen this kind of link between connected graphs and irreducible tournaments (The-
orem 10.1.10). In a similar way, we obtain links between connected multigraphs and irreducible
multitournaments (Statement 10.1.18) and weak (multi)digraphs and irreducible multitournaments
(Statement 10.3.23). In all the above cases, the second structure arises as coefficients in the asymp-
totic expansion of the asymptotic probability for the first structure.

Another significant example refers to connected square-tiled surfaces and indecomposable per-
mutations. The model of square-tiled surfaces, also called origamis, can be obtained as follows [105].
Given n ∈ N, take a collection of unit squares enumerated by integers from 1 to n and identify
their sides by translation, so that the result is a translation surface, i.e. a surface with the globally
defined notions of north, west, south and east. All the possible surfaces that can be obtained by the
described procedure constitute the labeled combinatorial class O of square-tiled surfaces. The fact
that any surface is a collection of connected ones can be interpreted by the relation

O = SET(CO),

where CO denotes the subclass of connected square-tiled surfaces. On the other hand, each identifi-
cation of square sides in the above model corresponds to the pair of permutations (σv, σh) ∈ S2

n such
that the right side of the k-th square is identified to the left side of the σv(k)-th square and the top
side of the k-th square is identified to the bottom side of the σh(k)-th square. The combinatorial
class of pairs of permutations of the same size is combinatorially isomorphic to the classML(2) of
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pairs of linear orders of the same size, meaning that their counting sequences are the same: (n!)2.
The classML(2) can be decomposed as a sequence,

ML(2) = SEQ
(
IML(2)

)
,

whereML(2) is the labeled combinatorial class of irreducible pairs of linear orders of the same size.
Its counting sequence coincide with n! · ipn, where ipn is the number of indecomposable permutations.
Thus, the combinatorial isomorphism

SET(CO) ∼= SEQ
(
IML(2)

)
allows us to apply Theorem 7.2.1 which gives the following new result closely related to (1.8).

Theorem 11.1.8. The asymptotic probability that a square-tiled surface S obtained by gluing
n unit squares randomly is connected satisfies

P
(
S is connected

)
≈ 1−

∑
k>1

ipk
(n)k

, (1.12)

where (n)k = n(n − 1)(n − 2) . . . (n − k + 1) are the falling factorials and ipk is the number of
indecomposable permutations of size k.

Note that a square-tiled surface of size n is connected if and only if the corresponding pair of
permutations generates a transitive subgroup of Sn. Thus, the asymptotic expansion for the proba-
bility that a random square-tiled surface is connected can be derived from the results of Dixon [28]
and Cori [23] mentioned in the previous section. However, the appearance of indecomposable permu-
tations in this context was rather surprising and needed to be explained. Applying our approach and
Theorem 7.2.1 sheds a new light on this story. We disclose the underlying reasoning by putting the
structure and enclosing the link between square-tiled surfaces and indecomposable permutations in
a general framework. It is seen from our approach that the decomposition (1.6) of tn into asymptotics
over the basis 1/(n)k is more natural than (1.7) over the basis 1/nk. It also allows us to pass easily
to the generalizations. One of them unveils the interplay between combinatorial maps and indecom-
posable perfect matchings (Theorem 11.2.4). Another one provides the links between constellations
and indecomposable multipermutations (Theorem 11.3.6).

Once we have a result producing the asymptotic probability for SET-irreducible (aka connected)
objects, it is reasonable to extend this result to other combinatorial structures, such as sequences SEQ
and cycles CYC. It is possible, indeed, and we obtain asymptotic probabilities for SEQ-irreducible
and CYC-irreducible objects (Theorem 5.2.1 and Theorem 6.2.1, respectively). Moreover, we get
asymptotics for constructions restricted to the fixed number of irreducible components. For example,
for any m ∈ N, the construction SEQm produces sequences of m irreducible components. The same
way, CYCm and SETm are reserved for cycles and sets of m irreducible components, respectively.
For each of the above three constructions, we establish the asymptotic probability that a random
object consists of exactly m irreducible components (Theorems 5.3.1, 6.3.1 and 7.3.1). Note that all
of them have a natural interpretation in terms of inclusion-exclusion principle.

To give the reader an idea of what the above mentioned new results look like, here is our general
theorem for the construction SEQm.

28



Theorem 5.3.1. Let U be a gargantuan labeled combinatorial class with positive coefficients,
such that U = SEQ(W) for some labeled combinatorial class W. Suppose that u ∈ U is a random
object of size n. Then for any m ∈ N,

P(u has m SEQ-irreducible components) ≈
∑
k>0

m
(
w

(m−1)
k − 2w

(m)
k + w

(m+1)
k

)
·
(
n

k

)
· un−k

un
, (1.13)

where
(
w

(m)
k

)
is the counting sequence of SEQm(W).

Thus, we obtain a tool that permits us to get asymptotic probabilities for various structures
together with combinatorial interpretation of the involved coefficients. All the examples already men-
tioned in this section are tractable, including irreducible tournaments, indecomposable permutations
and indecomposable perfect matchings. For instance, we show that irreducible tournaments satisfy
the following theorem.

Corollary 10.2.12. The asymptotic probability that a random labeled tournament T with
n vertices is irreducible satisfies

P
(
T is irreducible

)
≈ 1−

∑
k>1

(
2itk − it

(2)
k

)
·
(
n

k

)
· 2k(k+1)/2

2kn
, (1.14)

where (itk) and
(
it

(2)
k

)
are counting sequences for irreducible tournaments and tournaments with two

irreducible parts, respectively.

Corollary 10.2.12 illustrates a significant difference between asymptotic expansions for proba-
bilities for SET-irreducible and SEQ-irreducible objects. While, under conditions of Theorem 7.2.1,
the coefficients in asymptotic expansion (1.11) are always non-negative, the coefficients in (1.13)
could be negative even in the case m = 1, and it is actually the case for irreducible tournaments,
since (

2itk − it
(2)
k

)
= 2, −2, 4, 32, 848, 38 032, 3 039 136, 446 043 008, . . . .

As a consequence, there is no hope to expect that these coefficients (and even more so the coeffi-
cients involved in the asymptotic expansions for probabilities that an object has exactlym irreducible
components, regardless of whether it is SET, SEQ or CYC-irreducible) enumerate objects of a combi-
natorial class. On the other hand, it often happens that gargantuan labeled combinatorial classes U
and V satisfy U = SET(V), but there is no classW such that U = SEQ(W), and thus, Theorem 7.2.1
cannot be implemented directly. We would need an “anti-SEQ” operator constructing a labeled com-
binatorial classW such that U = SEQ(W). Though a desired classW , possibly, does not exist, there
are still asymptotic expansions and their coefficients are to be interpreted.

All the above observations are the reason to proceed from the language of combinatorial classes
to the language of species. The latter allows us, by considering virtual species, to extend the concept
of counting sequence to sequences with negative coefficients and to create an “anti-SEQ” operator.
Moreover, by considering weighted virtual species, we extend it to real numbers. More precisely,
the actions of the operators SEQ, CYC and SET in the symbolic method translate in the theory of
species to the composition with the species L of linear orders, CP of cyclic permutations and E of
sets, respectively:

SEQ(A)  L ◦ A,
CYC(A)  CP ◦ A,
SET(A)  E ◦ A.
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The species L+ = L− 1 admits an inverse under substitution, and we show that L(−1)
+ is involved in

the generalization of Theorem 7.2.1 for the theory of species as follows.

Theorem 8.3.4. Let A be a gargantuan (weighted) species of structures, such that A = E ◦ B
for some (weighted) species B. Suppose that s ∈ A is a random A-structure on [n], where n ∈ N.
Then

P(s ∈ B) ≈ 1−
∑
k>1

ck ·
(
n

k

)
· an−k

an
, (1.15)

where an and cn are the total weights on [n] of the species A and C = E−1 ◦ B ≡
(
1 − L(−1)

+

)
◦ A+,

respectively.

An important example of the use of Theorem 8.3.4 is establishing the asymptotic probability
that a random graph is connected in the Erdős–Rényi model G(n, p). Recall that, according to
this model, a labeled graph G with k edges is picked from the set of graphs with n vertices with
probability

pkq(
n
2)−k,

where q = 1−p. In the case p = q = 1/2, we have the situation described in Theorem 10.1.10. In the
general case, we lose the connection between graphs and tournaments. However, we can still indicate
the combinatorial structure for the coefficients of the asymptotic expansion of the probability that
a random graph is connected. Namely, in this general case, the number of irreducible tournaments
of size k will be replaced by a polynomial Pk evaluated at p/(1 − p). To this end, we can use the
weight w(G) of a graph G with k edges, defined as

w(G) = ρk, where ρ =
p

q
.

For example, the weights of graphs whose size does not exceed 3 are indicated on Fig. 1.1. Defining
the weight as above allows us to proceed to the weighted species Gw of graphs. This species can be
represented as the composition

Gw = E ◦ CGw,
where CGw is the weighted species of connected graphs. Applying Theorem 8.3.4 to the latter relation,
we obtain the following result.

1

w = 1

1 2

w = ρ

1 2

w = 1

1

2 3

w = ρ3

1

2 3

w = ρ2

1

2 3

w = ρ2

1

2 3

w = ρ2

1

2 3

w = 1

1

2 3

w = ρ

1
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w = ρ

1

2 3

w = ρ

Figure 1.1: Weights of labeled graphs whose size does not exceed 3.
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Theorem 10.4.6. Let p ∈ (0, 1). The asymptotic probability that a random graph G in the
Erdős–Rényi model G(n, p) is connected satisfies

P(G is connected) ≈ 1−
∑
k>1

Pk(ρ) ·
(
n

k

)
· qnk

qk(k+1)/2
, (1.16)

where q = 1− p, ρ = p/q and

Pk(ρ) =
∑

H∈Gw[k]

(−1)π0(H)−1w(H)

is the sum of weights of graphs H ∈ Gw[k] taken with the sign (−1)π0(H)−1, where π0(H) is the number
of connected components of the graph H.

Let us explicitly indicate the first several terms of the asymptotic expression for the probability
that a random graph in the Erdős–Rényi model is connected. For this purpose, calculate Pk(ρ) for
k = 1, 2, 3. Since there is the only one graph of size 1 which is connected and whose weight is 1, we
have

P1(ρ) = 1.

For the second polynomial, one has

P2(ρ) = w

(
1 2

)
+ w

(
1 2

)
= ρ− 1.

The same way, as it is seen from Fig. 1.1, there are eight graphs of size 3. Among them, one is
connected of weight ρ3, three are connected of weight ρ2, three have two connected components and
weight ρ, and one has three connected components and weight 1. Thus, we obtain

P3(ρ) = ρ3 + 3ρ2 − 3ρ+ 1.

Hence,

P(G is connected) = 1−
(
n

1

)
qn−1 − (ρ− 1)

(
n

2

)
q2n−3 − (ρ3 + 3ρ2 − 3ρ+ 1)

(
n

3

)
q3n−6 +O(n4q4n).

In particular, we see the first two terms obtained by Gilbert [41].
As well as SEQ, combinatorial constructions CYC, SET, SEQm, CYCm and SETm can be

translated into the language of the theory of species. Each of them corresponds to a composition
with some species of structures. This fact permits us to state general asymptotic results that can be
viewed as species analogues of Theorem 7.2.1, Theorem 5.3.1 and others. In these results, the coeffi-
cients involved in the asymptotic expansions have a combinatorial meaning as counting sequences of
some virtual species depending on initial structures (Theorem 8.1.1, Theorem 8.1.2, Theorem 8.2.1,
Theorem 8.2.2, Theorem 8.3.6).

The last but not the least result to mention concerns the asymptotic probability of strongly
connected directed graphs. The first result for this probability was obtained by Wright [104]. To-
gether with Sergey Dovgal [30], we get a significant simplification by imposing a structure on the
coefficients.
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Theorem 10.3.16. The asymptotic probability that a random labeled directed graph D with
n vertices is strongly connected satisfies

P
(
D is strongly connected

)
≈
∑
k>0

ssdk ·
(
n

k

)
· 2k(k+1)/2

2n(n−1)/2
· itn−k

2nk
, (1.17)

where itk and ssdk are the numbers of irreducible tournaments and semi-strong directed graphs of
size k, respectively.

The form of asymptotics (1.17) is rather simple, but it depends on the number of irreducible
tournaments tn−k. In case we want to get a decomposition by powers of two, we can further use
asymptotics (1.14) that leads us to the following result.

Corollary 10.3.18. The asymptotic probability that a random labeled directed graph D with
n vertices is strongly connected satisfies

P
(
D is strong

)
=

2r−1∑
k=0

2k(k+1)/2

2kn

[k/2]∑
ν=0

(
n

ν, k − 2ν

)
ssdνβk−2ν

2ν(k−ν)
+O

(
n2r

22nr

)
, (1.18)

where ssdk is the number of semi-strong digraphs of size k,

βk =

{
1, if k = 0,

−2itk + it
(2)
k , if k 6= 0.

and (itk) and
(
it

(2)
k

)
are counting sequences for irreducible tournaments and tournaments with two

irreducible parts, respectively.

The proof of Theorem 10.3.16 cannot be deduced from the above mentioned general theorems.
To establish the result, we apply Bender’s theorem directly, together with some additional techniques.
In particular, we use an enumeration method for strong digraphs that was developed in 1973 by
Robinson [90], and later, independently, by de Panafieu and Dovgal [29]. We can see that the
asymptotic expansion (1.17) has a more complex form than we have seen before. In particular,
there are three structures that interplay: strong digraphs, semi-strong digraphs and irreducible
tournaments. It looks like there should be an interpretation of the above formula in terms of inclusion-
exclusion principle, but we did not find one. This problem remains a challenge for future projects.

1.3 Outline of the thesis
While the manuscript is structured linearly around parts and chapters in a rather traditional flow that
moves from tools to general theorem and then to applications, a transversal reading across chapters
is also possible. This is possible by either considering a particular kind of objects that appear in all
of these sections, but also a particular construction or a particular formalism. For instance, if we are
interested in the asymptotics related to the construction SEQ, then it is sufficient to limit ourselves
to Chapter 5 and Section 8.1 from Part II along with Chapter 9 and Section 10.2 from Part III. The
same way, if we are curious about tournaments, we can go directly to Sections 5.2, 5.3 and 10.2, with
the support of corresponding tools from Part I if necessary.
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Let us describe the structure of the thesis. In Part I, we introduce all the tools necessary for
our research. This introductory part is illustrative enough and filled with examples and details. It is
intended to be reader-friendly and, even more, to serve for students who are new to the field to get
acquainted with the material and techniques. Most of the material of Chapters 2–4 is well-known, and
the reader familiar with it can skip the corresponding topics without loss of comprehension. The only
exception concerns the concept of gargantuan sequences (as well as gargantuan combinatorial classes
and gargantuan species based on it), which we define to simplify the presentation (see Sections 2.1,
3.1.15, 3.2.6 and 4.2.4).

Part II is devoted to the general results. In Chapters 5–7, we work with the symbolic method.
First, we discuss, from a combinatorial point of view, the probabilities that a random object is
irreducible in terms of decompositions with respect to combinatorial constructions SEQ, CYC and
SET. For these probabilities, we establish empirically the asymptotic expansions accompanied by the
combinatorial meaning of the involved coefficients. Here, it is the inclusion-exclusion principle that
plays the key role for obtaining the combinatorial interpretations. Second, we prove the obtained
result rigorously, via Bender’s theorem. Third, we do the same for restricted constructions SEQm,
CYCm and SETm. Finally, in Chapter 8, we generalize the obtained results for the theory of species.

In Part III, we discuss numerous applications. Chapter 9 is devoted to permutations and related
objects. We establish the asymptotic expansions for the probabilities that a random permutation,
perfect matching or multipermutation is indecomposable. Chapter 10 refers to different kinds of
graphs. We show how to obtain the probabilities that a random graph is connected, a random
tournament is irreducible, a random digraph is weakly or strongly connected etc. In particular, we
do this for the Erdős–Rényi model G(n, p). In Chapter 11, we discuss several model of surfaces. We
study square-tiled surfaces, combinatorial maps and constellations and indicate their connections
with permutations, perfect matchings and multipermutations, respectively. For all the mentioned
models, we provide asymptotic expansions for the probabilities that a random surface is connected
or consists of a fixed number of connected components.

We finish our work with Part IV, discussing possible directions for further research.
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Part I

Tools
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Chapter 2

Gargantuan sequences and Bender’s theorem

In our investigation, we are interested in the asymptotic behavior of various combinatorial objects.
The goal of this chapter is to introduce the reader to Bender’s theorem [9] which is one of the key
ingredients for studying this behavior. The conditions of Bender’s theorem restrict the study to the
combinatorial classes whose counting sequences grow sufficiently fast. In order to clarify the meaning
of the words “sufficiently fast” and to simplify the presentation of the results of our research, we define
gargantuan sequences and study their properties.

The chapter consists of two sections. Section 2.1 is devoted to gargantuan sequences and
their properties. We define gargantuan and d-gargantuan sequences, establish several conditions for
a sequence to be gargantuan and show how it works through numerous examples. This material
is new, and represents the contribution of the author. In Section 2.2, we explain how to find the
asymptotic behavior of composite gargantuan sequences with the help of Bender’s theorem. We state
different forms of Bender’s theorem and provide numerous examples. This section is based on the
paper of Bender [9], but the material is adapted for the purposes of our research. The presentation
of the material of this chapter is self-contained and could serve as a student tutorial for those who
wish to get acquainted with the topic.

2.1 Gargantuan sequences
Definition 2.1.1. We will call a sequence (an) gargantuan, if for any integer r the following two
conditions hold:

(i)
an−1

an
→ 0, as n→∞; (ii)

n−r∑
k=r

|akan−k| = O
(
an−r

)
.

Example 2.1.2. The sequence an = n! is gargantuan. Indeed, the first condition of Definition 2.1.1
obviously holds. To verify the second condition, note that k!(n− k)! > (k + 1)!(n− k − 1)! as long
as k 6 (n− 1)/2. This observation implies that in the sum

n−r∑
k=r

akan−k =
n−r∑
k=r

k!(n− k)!

the terms are decreasing for k 6 (n− 1)/2 and increasing for k > (n− 1)/2. Hence, we can replace
all terms except the first and last by (r + 1)!(n− r − 1)! without diminishing the sum:

n−r∑
k=r

k!(n− k)! 6 2r!(n− r)! + (n− 2r + 1)(r + 1)!(n− r − 1)! = O
(
(n− r)!

)
= O(an−r).
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Remark 2.1.3. Example 2.1.2 provides a way of checking whether a sequence is gargantuan. Sim-
ilarly to n!, in many cases, a sequence (an) is positive and strongly increasing. For fixed integers n
and r < n/2, define a finite sequence

xk = akan−k,

where r 6 k 6 n− r. Thus, the second condition of Definition 2.1.1 reads

n−r∑
k=r

xk = O
(
an−r

)
.

Clearly, there is a symmetry xk = xn−k. Thus, if (xk) is decreasing for r 6 k < n/2, then

n−r∑
k=r

xk 6 2xr + (n− 2r − 1)xr+1.

Since xr = aran−r, we have xr = O(an−r). Hence, the condition (ii) of Definition 2.1.1 holds, as long
as nxr+1 = O(xr). As a consequence, to verify that (an) is gargantuan, it is convenient to replace
conditions (i) and (ii) of Definition 2.1.1 by two others that are stronger but easier to check. In
a rigorous way, we state these conditions in Lemma 2.1.4.

Lemma 2.1.4. If a sequence (an) satisfies the following two conditions

(i)’ nan−1 = O(an),

(ii)’ xk = |akan−k| is decreasing for k < n/2 and for all but finitely many n,

then (an) is gargantuan.

Proof. To check the first condition of Definition 2.1.1, it is sufficient to apply (i)’. To verify the second
condition, note that the value of xk is increasing for k < n/2 and decreasing otherwise. Hence, it
follows from (i)’ and (ii)’ that

n−r∑
k=r

|akan−k| = 2|aran−r|+
n−r−1∑
k=r+1

|akan−k| 6 2|aran−r|+ (n− 2r − 1)xr+1 = O(an−r).

Remark 2.1.5. Condition (i)’ in Lemma 2.1.4 can be replaced by the weaker one:

nαan−1 = O(an),

where 0 < α < 1. Indeed, let m be an integer such that mα > 1. Then

nan−m 6 nmαan−m = O
(
n(m−1)αan−m+1

)
= . . . = O(an).

As a consequence, condition (ii) of Definition 2.1.1 holds, since

n−r∑
k=r

akan−k 6 2
r+m−1∑
k=r

akan−k +
(
n− 2r − 2m− 1

)
ar+man−r−m = O(an−r).
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Remark 2.1.6. In order to check that (xk) is decreasing for k < n/2, one may prove that the
following equivalence takes place:

xk+1

xk
6 1 ⇔ k + 1 6 n− k.

Example 2.1.7. Let us show that the sequence

an =
2(n

2)

n!

is gargantuan. In order to do so, apply Lemma 2.1.4. First of all, as n→∞, we have

nan−1

an
= n · 2(n−1

2 )

(n− 1)!
· n!

2(n
2)

=
n

2n
→ 0,

and hence, condition (i)’ of Lemma 2.1.4 holds. Check condition (ii)’, i.e. verify that the sequence

xk = akan−k

is decreasing for k < n/2. For this goal, use Remark 2.1.6. In other words, consider

xk+1

xk
=
ak+1an−k−1

akan−k
=

(n− k)

(k + 1)
· 2k+1

2n−k
.

Since the function
f(x) =

2x

x
is increasing for large x, we have the following equivalences for large n:

xk+1

xk
6 1 ⇔ 2k+1

(k + 1)
6

2n−k

(n− k)
⇔ k + 1 6 n− k.

As a consequence, (xk) is decreasing for k < n/2, and, according to Lemma 2.1.4, (an) is gargantuan.

Lemma 2.1.8. If (an) and (bn) are two non-negative gargantuan sequences, then the sequence (anbn)
is non-negative gargantuan as well.

Proof. Let us check the conditions of Definition 2.1.1. The first condition trivially holds. The second
condition reads

n−r∑
k=r

(akbk)(an−kbn−r) 6

(
n−r∑
k=r

akan−k

)(
n−r∑
k=r

bkbn−k

)
= O(an−r)O(bn−r) = O(an−rbn−r).

The condition anbn > 0 is trivial.

Example 2.1.9. As we have seen in Examples 2.1.2 and 2.1.7, the sequences

an = n! and bn =
2(n

2)

n!

are gargantuan. Hence, the sequences

cn = anbn = 2(n
2)

and
dn = c2

n = 2n(n−1)

are gargantuan as well by Lemma 2.1.8.
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Lemma 2.1.10. If (an) is a gargantuan sequence and bn = b0c
n, where c 6= 0, then the sequence

(anbn) is gargantuan as well.

Proof. Let us check the conditions of Definition 2.1.1. The first condition holds, since

an−1bn−1

anbn
=

1

c
· an−1

an
→ 0,

as n→∞. The second condition reads
n−r∑
k=r

∣∣(akbk)(an−kbn−r)∣∣ = b2
0|c|n

n−r∑
k=r

|akan−k| = b2
0|c|n ·O(an−r) = O(an−rbn−r).

Therefore, (anbn) is gargantuan.

Example 2.1.11. As we have seen in Example 2.1.9, the sequence

an = 2n(n−1)

is gargantuan. Hence, the sequence
an · 2n = 2n

2

is gargantuan as well by Lemma 2.1.10.

Lemma 2.1.12. If (an) is a non-negative gargantuan sequence and bn = o(an), then, for any K > 0,
the sequence cn = Kan + bn is gargantuan.

Proof. Check the conditions of Definition 2.1.1. For the first condition, as n→∞, we have

cn−1

cn
=
Kan−1 + bn−1

Kan + bn
=
an−1

an

(
1 +

bn−1

Kan−1

)(
1 +

bn
Kan

)−1

→ 0.

To prove the second condition, note that there exists a constant M > 0 such that |bn| < Man for all
n ∈ N. Hence, |cn| 6 (K +M)an and we have

n−r∑
k=r

|ckcn−k| 6 (K +M)2

n−r∑
k=r

akan−k = O(an−r) = O(cn−r).

Since both conditions hold, the sequence (cn) is gargantuan.

Example 2.1.13. Let
an = 2n

2

and bn = 2n.

As we have seen in Example 2.1.11, the sequence (an) is gargantuan. Since bn = o(an), Lemma 2.1.12
implies that the sequence

an + bn = 2n
2

+ 2n

is gargantuan as well.

Definition 2.1.14. Let d ∈ N. We will call a sequence (an) d-gargantuan, if

an 6= 0, ⇔ n = dk for some k ∈ Z>0

and the subsequence adk is gargantuan.
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Example 2.1.15. The sequence

an =

{
(n− 1)!!, if n is even,
0, if n is odd.

is 2-gargantuan. Indeed,

an 6= 0, ⇔ n = 2k for some k ∈ Z>0,

meaning that the first condition of Definition 2.1.14 holds. Check that a2n = (2n−1)!! is gargantuan
with the help of Lemma 2.1.4. The condition (i)’ reads

na2n−2 = n(2n− 3)!! = O
(
(2n− 1)!!

)
= O(a2n).

As for the condition (ii)’, consider the sequence

x2k = a2ka2n−2k.

If k 6 (n− 1)/2, then

x2k+2

x2k

=
(2k + 1)!!(2n− 2k − 3)!!

(2k − 1)!!(2n− 2k − 1)!!
=

2k + 1

2n− 2k − 1
6 1.

Hence, (x2k) is decreasing for k 6 (n− 1)/2. Thus, the conditions of Lemma 2.1.4 hold and (a2n) is
gargantuan.

2.2 Bender’s theorem
In this section, we discuss our main tool for obtaining asymptotics. To simplify the presentation of
the material, we widely use the following notation (which we have already seen in Section 1.2).

Notation 2.2.1. For a sequence (an) and an integer m, we write

an ≈
∑
k>m

fk(n),

if, for any integer r > m+ 1, one has

an =
r−1∑
k=m

fk(n) +O
(
fr(n)

)
and the sequence (fk) satisfies fk+1(n) = o

(
fk(n)

)
for any integer k. In most of the cases, we have

m = 0 or m = 1.

In order to give a motivation for Bender’s theorem and to explain how one could figure it out,
let us start with two examples.
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Example 2.2.2. Let

A(z) =
∞∑
n=1

anz
n

be a formal power series such that the sequence (an) is gargantuan. Suppose that we are interested
in the asymptotic behavior of the coefficients of B(z) =

(
A(z)

)2. Clearly,

bn = a1an−1 + a2an−2 + . . .+ an−1a1,

and since (an) is gargantuan, for any fixed r ∈ N we have

bn = 2a1an−1 + 2a2an−2 + . . .+ 2ar−1an−r+1 +O(an−r).

Note that in this example we can express B(z) in terms of A(z) as B(z) = F
(
A(z)

)
, where F (y) = y2.

It turns out that the coefficients of the asymptotics satisfy

bn ≈
∑
k>0

ckan−k,

where
C(z) = 2A(z) =

[
∂

∂y
F (y)

]
y=A(z)

.

Example 2.2.3. A natural generalization of Example 2.2.2 is provided by the function F (y) = ym,
where m is a positive integer. In this case, we consider a formal power series

A(z) =
∞∑
n=1

anz
n,

whose sequence (an) is gargantuan, and we are interested in the asymptotic behavior of the formal
power series

B(z) = F
(
A(z)

)
=
(
A(z)

)m
.

Since we have
bn = mam−1

1 an−m+1 +m(m− 1)am−2
1 a2an−m + . . . ,

one can guess that
bn ≈

∑
k>0

ckan−k,

where
C(z) =

[
∂

∂y
F (y)

]
y=A(z)

= m
(
A(z)

)m−1
.

That is, indeed, the case. To verify this fact, we can use the following Lemma 2.2.4 proved by Bender
in 1975 [9, Lemma 2].

Lemma 2.2.4. Suppose that (an) is a gargantuan sequence such that a0 = 0 and an > 0 for n > 0.
For any fixed m and any vector k = (k1, . . . , km) ∈ Zm>0, denote ak = ak1 . . . akm. Then there exist
constants C > 0 and Cs > 0 such that ∑

Km,n

ak 6 Cm−1an−m+1, (2.1)
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and for any fixed integer s ∈ Z>0, ∑
Km,n,s

ak 6 Cm−1
s an−s, (2.2)

where the first sum runs over

Km,n = {k = (k1, . . . , km) | k1 + . . .+ km = n},

while the second sum runs over

Km,n,s = {k = (k1, . . . , km) | k1 + . . .+ km = n, ki 6 n− s}.

Proof. Deduce (2.1) by induction on m. For m = 1 we have an 6 an, which is true. For m = 2
condition (2.1) reads

n−1∑
j=1

ajan−j 6 Can−1,

which is true for sufficiently large C ∈ R, since (an) is gargantuan. In general, we have

∑
Km+1,n

ak =
n∑
j=1

aj
∑

Km,n−j

ak

6 Cm−1

n∑
j=1

ajan−j−m+1 (by (2.1) for m)

6 Cman−m (by (2.1) for m = 2).

In a similar way, we establish (2.2). Clearly, it holds for m = 1. For m = 2, we have

n−s∑
j=s

ajan−j 6 C ′san−s

for some C ′s, since (an) is gargantuan. In the general case, define

Cs = max(C ′s, C + a1 + . . .+ as−1).

Then, by induction on m,

∑
Km+1,n,s

ak =
n−s∑
j=1

aj
∑

Km,n−j,s

ak

6 Cm−1

n−s∑
j=s

ajan−j + Cm−1
s

s−1∑
j=1

ajan−s (by (2.1) and (2.2) for m)

6 Cm−1Csan−s + Cm−1
s (a1 + . . .+ as−1)an−s (by (2.2) for m = 2)

6 Csan−s.

As a natural generalization of Example 2.2.3, one can obtain the following simple form of
Bender’s theorem [9, Theorem 2].
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Theorem 2.2.5. Consider the formal power series

A(z) =
∞∑
n=1

anz
n

and a function F (y) which is analytic in some neighborhood of origin. Define

B(z) =
∞∑
n=0

bnz
n = F

(
A(z)

)
and C(z) =

∞∑
n=0

cnz
n =

[
∂

∂y
F (y)

]
y=A(z)

.

Assume that the sequence (an) is gargantuan and an 6= 0 for any n > 0. Then

bn ≈
∑
k>0

ckan−k

and the sequence (bn) is gargantuan.

Example 2.2.6. Let

A(z) =
∞∑
n=1

anz
n

be a formal power series such that the sequence (an) is gargantuan. Suppose that we are interested
in the asymptotic behavior of the coefficients of B(z) = exp(A(z)

)
. Then, applying Theorem 2.2.5

for F (y) = ey, we have
C(z) = exp

(
A(z)

)
= B(z)

and
bn ≈

∑
k>0

bkan−k.

Example 2.2.7. Let

A(z) =
∞∑
n=1

anz
n

be a formal power series such that the sequence (an) is gargantuan. If we study the asymptotic
behavior of the coefficients of B(z) = log(1 + A(z)

)
, then we need to apply Theorem 2.2.5 for the

function F (y) = log(1 + y). In this case, we have

bn ≈
∑
k>0

ckan−k,

where (ck) are the coefficients of the formal power series

C(z) =
∞∑
n=0

cnz
n =

1

1 + A(z)
.

Let us also state more general versions of Bender’s theorem [9, Theorem 2].
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Theorem 2.2.8. a) Consider the formal power series

A(z) =
∞∑
n=1

anz
n

and a function F (x, y) which is analytic in some neighborhood of (0; 0). Define

B(z) =
∞∑
n=0

bnz
n = F

(
z, A(z)

)
and C(z) =

∞∑
n=0

cnz
n =

[
∂

∂y
F (x, y)

]
y=A(z)

.

Assume that the sequence (an) is gargantuan and an 6= 0 for any n > 0. Then

bn ≈
∑
k>0

ckan−k

and the sequence (bn) is gargantuan.
b) Let

A(z) =
∞∑
n=1

anz
n

be a formal power series such that the sequence (an) is gargantuan and an 6= 0 for any n > 0.
Suppose, that a function H(x, y) converges in a neighborhood of the origin and, for some λ ∈ (0; 1),
the coefficients of the power series

D(x) =
∞∑
m=0

dmz
m

satisfy |dn| = O(a[λn]). Then A(z) and F (x, y) = H
(
D(x), y

)
satisfy the conditions of Theo-

rem 2.2.8 a).
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Chapter 3

The symbolic method

As we have already mentioned, we are interested in the asymptotic behavior of combinatorial objects.
In the previous chapter, we have discussed the first tool necessary for studying asymptotics. The
second ingredient of our investigation is a technique for counting combinatorial objects that allows
us to translate the internal structure of the objects to formulas and vice versa. In this section, we
introduce the symbolic method [4, 38] which is one of the simplest techniques of this kind.

The core principle of the symbolic method is to provide a translation scheme between com-
binatorial constructions and generating functions operations. Classes of combinatorial structures
are created from simpler classes as from bricks, using elementary combinatorial constructions. The
translation scheme allows us to express generating functions of compound combinatorial classes in
terms of simpler ones. However, the converse is also true: if we have an expression that depends on
the generating function of some combinatorial class, it is often possible to interpret this expression
as a generating function of a more sophisticated combinatorial structure. The latter idea underlies
the combinatorial interpretation of coefficients obtained using Bender’s theorem.

Let us describe the structure of this chapter. Section 3.1 is devoted to labeled combinatorial
structures and intended to be self-contained and filled with examples. Here, we mostly follow the
book of Flajolet and Sedgewick [38], so that the reader familiar with it can skip the corresponding
paragraphs without loss of understanding (see also [4]). In first twelve paragraphs, our only contribu-
tion is definitions of SEQ, CYC and SET-irreducible objects, which is done in order to simplify the
presentation later. The last four paragraphs stand apart. In first of them, we define the Hadamard
product of labeled combinatorial classes that happens to appear in different contexts later. Another
one is devoted to graphic generating functions which is crucial for studying asymptotics of directed
graphs (here, we follow papers of Robinson [90] and de Panafieu and Dovgal [29]). Finally, we end
the exposition of labeled structures by defining gargantuan combinatorial classes and adapting Ben-
der’s theorem for them. The content of these two paragraphs is new and represents the author’s
contribution.

In Section 3.2, we outline unlabeled combinatorial structures. Here, we do not go deeply into
details, limiting ourselves to an overview of concepts that differ from the labeled case, and some
examples. The same way as in the first part, we follow [38], except the last paragraph, which is
devoted to the adaptation of Bender’s theorem to unlabeled combinatorial classes.

The last thing to mention before passing to the material is our notations. Usually, to designate
a combinatorial class of some structures, we use the first letters of its name written in calligraphic
in capital letters. For example, the combinatorial class of graphs is denoted by G, while the com-
binatorial class of connected graphs is denoted by CG. For designating the corresponding counting
sequences, we use the same letters, but written in Gothic, say, cgn (the reason to use Gothic is to dis-
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tinguish a single sequence denoted by several letters from the product of several items). Most of the
notations are consistent with those of the book of Flajolet and Sedgewick [38]. Nevertheless, we allow
ourselves to make some deviations. Thus, the combinatorial class of urns (or totally disconnected
graphs) is denoted by E instead of U . This is done to draw a parallel to a corresponding species
of sets (see Chapter 4), and, at the same time, it is consistent with the fact that the exponential
generating function of urns is the exponent ez. The neutral combinatorial class is denoted by N ,
rather than E . Finally, the class of cyclic permutations is designated by CP , which is consistent with
our principle, but differs from the notation C of [38].

3.1 Labeled combinatorial structures

3.1.1 Combinatorial classes

Definition 3.1.1. A combinatorial class is a finite or countable set A equipped with a size function

| · | : A → Z>0

such that the number an of elements of any given size n is finite. Each combinatorial class A is
associated with its counting sequence (an). For a given integer n ∈ Z>0, we denote by An the
subclass of A consisting of objects of size n.

Definition 3.1.2. Let A be a combinatorial class and n ∈ Z>0. If an 6= 0, we suppose that the
subclass An is endowed with the uniform probability. In other words, each object of size n appears
with probability 1/an. In the case when each object from A may satisfy some additional property Q,
we write

P
(
a random object (from A) satisfies Q

)
≈
∑
k>m

fk(n), (3.1)

if
P
(
a random object from An satisfies Q

)
≈
∑
k>m

fk(n)

for some integer m and some sequence
(
fk
)
depending on n. We will call the right hand side of (3.1)

the asymptotic probability that a random object from A satisfies Q.

Remark 3.1.3. In principle, one can consider more exquisite probability measures on An than
uniform probability measures. However, for this purpose we will use the language of the theory of
combinatorial species (see Remark 4.1.6 and Example 4.1.7).

Example 3.1.4. A neutral combinatorial class N consists of a single element of size 0. This object
is often called neutral and denoted by ε.

Example 3.1.5. An atomic combinatorial class Z consists of a single element of size 1.

3.1.2 Labeled combinatorial classes

The rest of Section 3.1 is devoted to combinatorial classes that are referred to as labeled and comprised
of labeled combinatorial objects. It is supposed that a labeled object of size n possesses n distin-
guishable atoms that bear labels from 1 to n (each atom bears its own label). For simplicity, the
reader can think about labeled objects of size n as graphs whose set of vertices is [n] = {1, . . . , n}.
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Here, we use the word “graph” in broad sense. It should encompass many different structures, such
as simple graphs, directed graphs, multigraphs, permutations, partitions, combinatorial maps, etc.
In particular, we distinguish this broad sense from the one used in Example 3.1.14 below, where we
refer to simple undirected graphs only.

In most of the cases, we deal with labeled combinatorial classes that satisfy the following
additional homogeneity property : if a labeled object α belongs to a labeled combinatorial class A,
then any object α′ obtained from α by permuting its labels belongs to A as well. However, in
some cases, this natural property does not take place. What to do in such cases, we will discuss in
Section 3.2.

Definition 3.1.6. The exponential generating function of the labeled combinatorial class A is the
formal power series

A(z) =
∞∑
n=0

an
zn

n!
.

Example 3.1.7. The exponential generating functions of labeled combinatorial classes N and Z are

N(z) = 1 and Z(z) = z,

respectively.

Example 3.1.8. The labeled combinatorial class E of totally disconnected graphs comprises graphs
with no edges. For each n ∈ Z>0, there is a unique totally disconnected graph of size n (the order of
labels does not matter, see Fig. 3.1). Hence, the exponential generating function of E is

E(z) =
∞∑
n=0

zn

n!
= ez.

The reader can think about the class E as the class of urns, where an urn of size n contains n different
balls labeled by integers from 1 to n. Another useful point of view is to consider E as the class of
sets of the form [n], where n ∈ Z>0.

1 2 3 4

Figure 3.1: Totally disconnected graph of size 4.

Example 3.1.9. Denote by P the labeled combinatorial class of permutations, that is, bijections of
the form [n] → [n], where n ∈ N. For a fixed integer n, the subclass Pn consists of permutations of
size n, i.e. Pn = Sn. The counting sequence of P is given by pn = n!, and hence, its exponential
generating function is

P (z) =
∞∑
n=0

n!
zn

n!
=

1

1− z
.

Given n ∈ N, we can represent σ ∈ Sn as a directed graph whose edges go from k to σ(k),
where k ∈ [n] (see Fig. 3.2). This graph is a collection of cycles, possibly of size one (i.e. loops).
Denote by CP the labeled combinatorial subclass of P consisting of cyclic permutations . Then each

46



element in CPn consists of a single cycle of maximal length. In particular, the counting sequence
of CP is cpn = (n− 1)! and its exponential generating function is

CP (z) =
∞∑
n=0

(n− 1)!
zn

n!
= log

1

1− z
.

3

1

2

4

Figure 3.2: Labeled permutation
(

1 2 3 4
3 1 2 4

)
as a collection of cycles.

Example 3.1.10. Let us consider the labeled combinatorial class L of linear orders . A linear order
≺= (l1 ≺ l2 ≺ . . . ≺ ln) on the set [n] can be represented as a linear directed graph whose edges go
from lk+1 to lk, where k ∈ [n− 1] (see Fig. 3.3). It is clear that the counting sequence of the class L
satisfy ln = n!. For any n ∈ N, there is the following natural bijection:

Ln → Sn, (l1 ≺ l2 ≺ . . . ≺ ln) 7→
(

1 2 . . . n
l1 l2 . . . ln

)
.

3 1 2 4

Figure 3.3: Linear order (3 ≺ 1 ≺ 2 ≺ 4) as a linear graph.

3.1.3 Combinatorially isomorphic classes

Definition 3.1.11. Two labeled combinatorial classes A and B are combinatorially isomorphic if
their counting sequences are identical. In other words, there exists a bijection A → B which preserves
size.

Notation 3.1.12. For combinatorially isomorphic combinatorial classes, we write A ∼= B.

Example 3.1.13. It follows from Example 3.1.10, that labeled combinatorial classes P of permu-
tations and L of linear orders are combinatorially isomorphic. However, this equality is somewhat
artificial, because the underlying structures are different. All linear orders of the same size are iso-
morphic to each other, meaning that we can obtain one from another by changing labels of the
underlying graphs. On the other hand, the isomorphism type of a permutation is determined by
its decomposition into a product of cycles. In particular, even two permutations of size 2 are not
isomorphic, since their decompositions are different: one of them is a cycle of size 2, and another is
two cycles of size 1 each.
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Example 3.1.14. Let G be the labeled combinatorial class of (simple undirected) graphs . The
vertices of graphs of size n bear integer labels from 1 to n and any two vertices are either joined by
an edge or not. Hence, the counting sequence (gn) of graphs satisfies

gn = 2(n
2).

On the other hand, let T be the labeled combinatorial class of tournaments , i.e. complete directed
graphs (each pair of vertices is joined by a directed edge). The same way as for the graphs, the
vertices of a tournament of size n bear integer labels from 1 to n. Meanwhile, two vertices i and j are
joined by an edge which goes either from i to j or in the opposite direction. Therefore, the counting
sequence (tn) of tournaments satisfies

tn = 2(n
2),

meaning that tn = gn and T ∼= G. However, as well as in Example 3.1.13, we could call this equality
artificial. Indeed, the two labeled tournaments of size 2 are isomorphic (by swapping the vertices),
while the two labeled graphs are not.

Remark 3.1.15. Let A and B be two combinatorially isomorphic classes. It is natural to say that
A and B are isomorphic, if for any n ∈ Z>0 there is a bijection An → Bn that is preserved under
relabeling. We normally do not distinguish such classes and write simply A = B. The concepts of
combinatorially isomorphic and isomorphic classes are much more developed within the framework
of the theory of species (compare with Definitions 4.1.28 and 4.1.31).

3.1.4 Admissible constructions

Definition 3.1.16. An m-ary combinatorial construction Φ that associates a class A to a collection
of classes B(1), . . . ,B(m) is admissible if and only if the counting sequence (an) of A depends on the
counting sequences (b

(1)
n ), . . . , (b

(m)
n ) of B(1), . . . ,B(m) only.

Remark 3.1.17. The advantage of admissible constructions is that they can be directly translated
into generating functions. In our investigation, we limit ourselves to considering unary and binary
admissible combinatorial constructions (in other words, we havem = 1 orm = 2 in Definition 3.1.16).

3.1.5 Disjoint union

Definition 3.1.18. Suppose that labeled combinatorial classes A and B are disjoint: A ∩ B = ∅.
The disjoint union construction produces the class C = A + B with the consistent size function:
for γ ∈ C,

|γ|C =

{
|γ|A, if γ ∈ A,
|γ|B, if γ ∈ B.

In terms of counting sequences and exponential generating functions, one has

cn = an + bn and C(z) = A(z) +B(z).

Remark 3.1.19. The notation A+B instead of A∪B is used to emphasize that the union of labeled
combinatorial classes A and B is disjoint. The same way, we may write B = C − A, meaning that
A ⊂ C and the labeled combinatorial class B consists of the elements of C that do not belong to A.

48



Remark 3.1.20. If two labeled combinatorial classes A and B have non-empty intersection, then
their union is not an admissible construction. Indeed, in the general case,

|An ∪ Bn| = |An|+ |Bn| − |An ∩ Bn|,

meaning that the counting sequence of A∪B depends on the internal structures of initial classes, not
only on their counting sequences. On the other hand, one can form the disjoint union construction
for any pair of combinatorial classes (A,B) by taking

A+ B =
(
{1} × A

)
∪
(
{2} × B

)
.

Here, technically, first we should rigorously define the labeled combinatorial classes {1} × A and
{2} × B. This can be done naturally: the second element in a pair (1, α) ∈ {1} × A inherit all the
properties of α ∈ A (such as the size, structure and labels), while the first element is considered as
an additional label of the object.

3.1.6 Labeled product

Definition 3.1.21. Let A and B be two labeled combinatorial classes. The labeled product con-
struction produces the labeled class C = A ? B obtained by considering all the ordered pairs from
A× B and relabeling them in every possible order-consistent way. The size of an object γ = (α, β)
is defined by

|γ|C = |α|A + |β|B.

Remark 3.1.22. In contrast with Remark 3.1.20, the objects of the labeled product inherit the
structures of both factors. The order-consistency condition means that if two atoms x and y of an
object α ∈ A or β ∈ B bear labels lx and ly such that lx < ly, then their labels l′x and l′y as atoms of
γ = (α, β) possess the same relation: l′x < l′y. If objects α ∈ A and β ∈ B are of sizes k and (n− k),
respectively, then there are

(
n
k

)
order-consistent relabelings of the pair γ = (α, β). Indeed, there

are n atoms in γ, and hence, each of them bears a label from the set [n]. By choosing k labels
for the atoms of the first element in the pair, we completely determine the labeling of γ due to the
order-consistency condition. Thus, the counting sequence of the class C = A × B is given by the
binomial convolution formula

cn =
n∑
k=0

(
n

k

)
akbn−k. (3.2)

As a consequence, the exponential generating function of C is

C(z) = A(z) ·B(z).

Example 3.1.23. Let A = B = E be the labeled combinatorial class of sets of the form [n], where
n ∈ Z>0. Then A ? B = E2 is the labeled combinatorial class of partitions of [n] into two, possibly
empty, parts (the order is important). Indeed, let us look at, say, (A ? B)3. There are four distinct
objects of size 3 in the Cartesian product A× B, namely,

({1, 2, 3}, ∅), ({1, 2}, {1}), ({1}, {1, 2}), (∅, {1, 2, 3})

The first and last pairs are already well-labeled (meaning that their elements bear labels 1, 2 and 3
with no repetition), so they are elements of A ? B as well. For the pair ({1, 2}, {1}), there are three
different order-consistent relabelings:

({1, 2}, {3}), ({1, 3}, {2}) and ({2, 3}, {1}).
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The same way, there are three order-consistent relabelings for the pair ({1}, {1, 2}). Eventually, we
have eight objects in (A ?B)3 that we can consider as partitions of the set {1, 2, 3} into two ordered
subsets. (see Fig. 3.4). In the general case, for an arbitrary n ∈ Z>0 , there are 2n objects in (A?B)n.
Indeed, for a pair

(
[k], [n− k]

)
, there are

(
n
k

)
order-consistent relabelings, and

n∑
k=0

(
n

k

)
= 2n.

Note that it is consistent with the fact that A(z) ·B(z) = ez · ez = e2z.

1 2 3
∅

1 2 3 1 3 2 2 3 1

1 2 3
∅

1 2 3 2 1 3 3 1 2

Figure 3.4: Objects of size 3 in E2.

Remark 3.1.24. Binomial convolution formula (3.2) is the reason why, dealing with labeled com-
binatorial classes, we need to work with exponential generating functions rather than ordinary ones
of the form

∞∑
n=0

anz
n.

To understand how we could guess the form of an appropriate generating function, let us consider
a generating function of the indefinite form

A(z) =
∞∑
n=0

anψ(n)zn,

where ψ is a function to determine. In the general case, the product C(z) = A(z) ·B(z) gives us the
number cn of pairs of size n as

cn =
1

ψ(n)

n∑
k=0

akbn−kψ(k)ψ(n− k).

Since we wish cn to be consistent with formula (3.2), it is sufficient that

ψ(k)ψ(n− k)

ψ(n)
=

(
n

k

)
.

In our case, we can put ψ(n) = 1/n!. Indeed, for k = 1, we have
ψ(1)ψ(n− 1)

ψ(n)
= n,

and hence,
ψ(n) = nψ(1)ψ(n− 1) = n!

(
ψ(1)

)n
.

Putting ψ(1) = 1, one has

ψ(n) =
1

n!
,

and direct calculations show that this function works well with binomial convolution (3.2).
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3.1.7 Sequences

Definition 3.1.25. Let m be a non-negative integer and A be a labeled combinatorial class. In
this case, the m-sequence construction SEQm produces all possible m-tuples of labeled combinatorial
objects from A:

SEQm(A) = A ?A ? . . . ?A.
Due to Definition 3.1.21, the size of an element β = (α1, . . . , αm) is defined by

|β| = |α1|+ . . .+ |αm|.

Remark 3.1.26. The particular cases of m-sequences for m = 0 and m = 1 are

SEQ0(A) = N = {ε} and SEQ1(A) = A.

Note that we do not distinguish classes A and SEQ1(A), identifying objects α ∈ A and sequences
(α) ∈ SEQ1(A) comprising of one object (see also Remark 3.1.15).

Lemma 3.1.27. If A and B are labeled combinatorial classes such that B = SEQm(A), then their
exponential generating functions satisfy

B(z) =
(
A(z)

)m
.

Proof. Follows directly from the binomial convolution rule (3.2) for the labeled product construction.

Definition 3.1.28. Let A be a labeled combinatorial class that contains no object of size 0. The
sequence construction generates the disjoint union of all the possible tuples of labeled combinatorial
objects from A:

SEQ(A) =
∞∑
m=0

SEQm(A).

Lemma 3.1.29. If A and B are labeled combinatorial classes such that B = SEQ(A), then their
exponential generating functions satisfy

B(z) =
1

1− A(z)
.

Proof. Follows directly from the definition of the sequence construction and Lemma 3.1.27, since

B(z) =
∞∑
m=0

(
A(z)

)m
=

1

1− A(z)
.

Remark 3.1.30. If a labeled combinatorial class A contains objects of size 0, then the sequence
construction is not admissible. Indeed, for this case, even the number of objects of size 0 in SEQ(A)
in not finite, since it is equal to

1 + a0 + a2
0 + a3

0 + . . .

and a0 6= 0. We will see in the next paragraphs that there are two more constructions with the same
restriction, namely, cycles CYC and sets SET. To apply any of above-mentioned constructions to
a class A, we need to demand that a0 = 0. Otherwise, the construction is not admissible.
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Definition 3.1.31. Let B = SEQ(A). Each object from SEQ1(A)∩B will be called SEQ-irreducible.
Also, we will say that an object b ∈ SEQm(A) ∩ B has exactly m SEQ-irreducible components .

Example 3.1.32. It follows directly from Example 3.1.10 that a linear order is a sequence of atoms.
In other words,

L = SEQ(Z).

Consequently, a linear order is SEQ-irreducible, if it consists of one atom, i.e. it is the trivial: (1).

Example 3.1.33. A tournament is irreducible, if for any partition A t B of the set of its vertices
there exist an edge from A to B and an edge from B to A (equivalently, a tournament is irreducible
if and only if it is strongly connected, see [87, 91]). Denote by IT the labeled combinatorial class of
irreducible tournaments. Then we have

T = SEQ(IT ).

Indeed, if a tournament T is not irreducible, then it consists of two nonempty subtournaments A
and B, such that any edge between A and B is directed from A to B. Each of A and B is either
irreducible or can be decomposed the same way further. Applying the induction, we obtain a decom-
position of T into a sequence of irreducible subtournaments T1, . . . , Tk, such that for every pair i < j
all edges go from Ti to Tj (Fig. 3.5). This decomposition is unique, since the subtournaments Ti are
the strongly connected components of the initial tournament T .

1

23

4

5 6

 4 5 31
2
6

Figure 3.5: Decomposition of a tournament into a sequence of irreducible components.

3.1.8 Cycles

Definition 3.1.34. Let m be a non-negative integer and A be a labeled combinatorial class. In this
case, the m-cycle construction CYCm produces all possible m-cycles of labeled combinatorial objects
from A.

Remark 3.1.35. Cycles are tuples taken up to a circular shift. Rigorously, one can define m-cycle
construction as

CYCm(A) = SEQm(A)/S,

where S is the equivalence relation between m-sequences such that

(α1, . . . , αm)S(α′1, . . . , α
′
m)

if and only if there exists a cyclic permutation τ such that α′j = ατ(j) for all j.
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Lemma 3.1.36. If A and B are labeled combinatorial classes such that B = CYCm(A), then their
exponential generating functions satisfy

B(z) =
1

m

(
A(z)

)m
.

Proof. Follows directly from Lemma 3.1.27 and the fact that each m-cycle corresponds to m different
m-sequences.

Definition 3.1.37. Let A be a labeled combinatorial class that contains no object of size 0. The
cycle construction generates the disjoint union of all the possible cycles of labeled combinatorial
objects from A:

CYC(A) =
∞∑
m=1

CYCm(A).

Lemma 3.1.38. If A and B are labeled combinatorial classes such that B = CYC(A), then their
exponential generating functions satisfy

B(z) = log
1

1− A(z)
.

Proof. Follows directly from the definition of the cycle construction and Lemma 3.1.36, since

B(z) =
∞∑
m=1

(
A(z)

)m
m

= log
1

1− A(z)
.

Definition 3.1.39. Let B = CYC(A). Each object from CYC1(A)∩B will be called CYC-irreducible.
Also, we will say that an object b ∈ CYCm(A) ∩ B has exactly m CYC-irreducible components .

Example 3.1.40. Consider the labeled combinatorial class CP of cyclic permutations introduced in
Example 3.1.9. Since any cyclic permutation can be considered as a cycle of atoms, we have

CP = CYC(Z).

3.1.9 Sets

Definition 3.1.41. Let m be a non-negative integer and A be a labeled combinatorial class. The
m-set construction SETm produces all possible m-sets of labeled combinatorial objects from A.

Remark 3.1.42. Sets are tuples taken up to a permutation. In other words, m-set construction
generates the labeled combinatorial class

SETm(A) = SEQm(A)/R,

where R is the equivalence relation between m-sequences such that

(α1, . . . , αm)R(α′1, . . . , α
′
m)

if and only if there exists a permutation σ such that α′j = ασ(j) for all j.
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Lemma 3.1.43. If A and B are labeled combinatorial classes such that B = SETm(A), then their
exponential generating functions satisfy

B(z) =
1

m!

(
A(z)

)m
.

Proof. Follows directly from Lemma 3.1.27 and the fact that each m-set corresponds to m! different
m-sequences.

Definition 3.1.44. Let A be a labeled combinatorial class that contains no object of size 0. The
set construction applied to A generates a new labeled combinatorial class

SET(A) =
∞∑
m=0

SETm(A).

Lemma 3.1.45. If A and B are labeled combinatorial classes such that B = SET(A), then their
exponential generating functions satisfy

B(z) = exp
(
A(z)

)
.

Proof. Follows directly from the definition of the set construction and Lemma 3.1.43, since

B(z) =
∞∑
m=0

(
A(z)

)m
m!

= exp
(
A(z)

)
.

Definition 3.1.46. Let B = SET(A). Each object from SET1(A)∩B will be called SET-irreducible.
Also, we will say that an object b ∈ SETm(A) ∩ B has exactly m SET-irreducible components .

Example 3.1.47. As we have seen in Example 3.1.9, any permutation is a collection of cyclic
permutations. This fact can be represented by the relation

P = SET(CP).

At the same time, it has been discussed in Example 3.1.40 that CP = CYC(Z). As a consequence,

P = SET(CYC(Z)).

The SET-irreducible components of a permutation are cycles, and hence, a permutation is SET-
irreducible if and only if it consists of one cycle only.

Remark 3.1.48. It follows from Examples 3.1.13, 3.1.32 and 3.1.47 that

SEQ(Z) = L ∼= P = SET(CYC(Z)).

This particular case reflects the general rule: for any labeled combinatorial class A, the combinatorial
constructions SEQ and SET(CYC) produce combinatorial isomorphic classes:

SEQ(A) ∼= SET(CYC(A)).

Note that, in terms of the corresponding exponential generating functions, the above relation trans-
lates into

1

1− A(z)
= exp

(
log

1

1− A(z)

)
.
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Example 3.1.49. Let G and CG be the labeled combinatorial classes of graphs and connected graphs,
respectively. Since any graph is an unordered collection of its connected components, we have

G = SET(CG).

In terms of Definition 3.1.46, the SET-irreducible components of a graph are its connected compo-
nents. In particular, a graph is SET-irreducible if and only if it is connected.

Example 3.1.50. Similarly to Example 3.1.49, we can consider the subclass T R ⊂ CG of trees, that
is, connected graphs without cycles. Applying the construction SET to this class,

F = SET(T R),

we obtain the labeled combinatorial class F of forests, i.e. graphs without cycles.

3.1.10 Restricted constructions

Definition 3.1.51. Let A be a labeled combinatorial class and Ω be a predicate over the non-
negative integers. In this case, we define SEQΩ(A) to be the labeled combinatorial class of sequences
whose number of elements satisfies Ω. In other words,

SEQΩ(A) =
∑

m satisfies Ω

SEQmA.

Example 3.1.52. If A is a labeled combinatorial class and k be a positive integer, then the notation

SEQ>k(A)

is reserved for the sequences whose number of components is larger than k. Similarly,

SEQodd(A) and SEQeven(A)

refer to sequences with odd and even number of components, respectively.

Remark 3.1.53. The same way, for a labeled combinatorial class A and a predicate Ω over the
non-negative integers, we define

CYCΩ(A), and SETΩ(A).

3.1.11 Pointing

Definition 3.1.54. Let A be a labeled combinatorial class. The pointing construction generates
a new labeled combinatorial class

ΘA =
∞∑
n=0

An × {1, . . . n}.

In other words, any object of ΘA is an object from A such that one of its labels is pointed.
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Remark 3.1.55. The intuitive interpretation of pointing is that for any object α ∈ An we point
at one of its atoms. Since there are n possible choices to distinguish an atom of α, the counting
sequence of the labeled combinatorial class B = ΘA satisfies

bn = n · an,

while its exponential generating function is determined by

B(z) = z
d

dz
A(z).

Example 3.1.56. If A is a labeled combinatorial class, then one has

ΘCYC(A) ∼= ΘA ? SEQ(A).

Indeed, let a pointed cycle consist of objects α0, . . . , αl ∈ A, where α0 contain the pointed atom.
Extracting α0 from the cycle, we obtain the pair

(
α0, (α1, . . . , αl)

)
, whose first element is a pointed

object fromA and second element belongs to SEQ(A) (Fig. 3.6). Another way to establish the desired
combinatorial isomorphism is to verify the equality of the corresponding exponential generating
functions,

z
d

dz
ln

1

1− A(z)
=

(
z
d

dz
A(z)

)
1

1− A(z)
,

which can be verified by direct calculations.

. . .

α0

α1 α2 αl−1 αl

 . . .α1 αlα0 ?

Figure 3.6: Bijection ΘCYC(A)→ ΘA ? SEQ(A).

One more relation of such a type would be

ΘCYC>1(A) ∼= A ?ΘCYC(A).

Indeed, let a pointed cycle consist of at least two objects α0, . . . , αl ∈ A, where α0 contain the
pointed atom. Now we extract α1 from the cycle, so that the rest is the cycle (α0, α2, α3, . . . , αl) with
the pointed element α0 (Fig. 3.7). In terms of exponential generating functions, the isomorphism
corresponds to the equality

z
d

dz

(
ln

1

1− A(z)
− A(z)

)
=

(
z
d

dz
A(z)

)
A(z)

1− A(z)
= A(z)

(
z
d

dz
ln

1

1− A(z)

)
.

For a generalization for ΘCYC>m(A), see Lemma 6.1.3.
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. . .

α0

α1 α2 αl−1 αl

 

. . .

α0

α2 αl

α1 ?

Figure 3.7: Bijection ΘCYC>1(A)→ A ?ΘCYC(A).

3.1.12 Substitution

Definition 3.1.57. Let A and B be two labeled combinatorial classes such that B contains no object
of size 0. The substitution of B into A (or composition of A and B) is a labeled combinatorial class
defined by

A ◦ B =
∞∑
m=0

Am × SETm(B).

Remark 3.1.58. We can consider each element of A ◦ B as an object α ∈ A whose atoms are
replaced by arbitrary objects of B. However, given an m-set β ∈ SETm(B), it is a priori unclear
what part of β should replace a node labeled by value r ∈ {1, . . . , n}. One of possible methods of
determining this part is the following. First, establish the “leader” of each part, that is, the value of
its smallest label. Second, reorder the parts of β by the value of their “leader”. Finally, substitute
the part with “leader” of rank r to the node labeled by value r.

Remark 3.1.59. It follows directly from the definition of the substitution construction that if C =
A ◦ B, then

C(z) =
∞∑
m=0

am ·
(
B(z)

)m
m!

= A
(
B(z)

)
.

Example 3.1.60. The standard constructions SEQ, CYC and SET can be expressed in terms of
substitution. Indeed, for any labeled combinatorial class A containing no object of size 0, one has

SEQ(A) ∼= L ◦ A, CYC(A) ∼= CP ◦ A, SET(A) ∼= E ◦ A.

The analogues of these representations will be widely used when applying theory of species (see also
the introduction to Chapter 8).

3.1.13 Hadamard product

Definition 3.1.61. Let A(z) and B(z) be two exponential generating functions,

A(z) =
∞∑
n=0

an
zn

n!
and B(z) =

∞∑
n=0

bn
zn

n!
.

Their exponential Hadamard product is the formal power series

A(z)�B(z) =
∞∑
n=0

anbn
zn

n!
.
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Definition 3.1.62. Let A and B be two labeled combinatorial classes. Define their Hadamard
product as a new labeled combinatorial class C = A� B comprised by the pairs of the same size:

A� B = {(α, β) ∈ A× B | |α|A = |β|B}.

The size function of an object γ = (α, β) equals to the size of its components:

|γ|C = |α|A = |β|B.

As a consequence, the counting sequence (cn) of the Hadamard product C = A� B satisfy

cn = an · bn,

and the following relation for exponential generating functions holds:

C(z) = A(z)�B(z).

Remark 3.1.63. The reader can think of an object γ = (α, β) ∈ A � B as a labeled graph whose
edges bear two colors, say, red and blue. The set of red edges, together with all vertices, represent
the graph α, while the set of blue edges give rise to the graph β.

Example 3.1.64. Some elements of the labeled combinatorial classes G �G and T �T are depicted
on Fig. 3.8. We denote these classes byMG(2) andMT (2) and call the objects belonging to them
multigraphs and multitournaments (of rank 2), respectively.

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Figure 3.8: Some elements of the labeled combinatorial classes G � G and T � T .

Multigraphs possess a naturally defined notion of connectivity, as well as multitournaments
have a notion of irreducibility. Similarly to Examples 3.1.49 and 3.1.33, we have

MG(2) = SET
(
CMG(2)

)
and MT (2) = SEQ

(
IMT (2)

)
, (3.3)

where CMG(2) and IMT (2) are the labeled combinatorial classes of connected multigraphs and
irreducible multitournaments, respectively.

Example 3.1.65. LetML(2) = L � L be the labeled combinatorial class of pairs of linear orders
of the same size. This class admits a natural SEQ-decomposition. Indeed, if we consider an object
L ∈ ML(2) as a multitournament, then the desired decomposition can be seen as a particular case
of the second identity of (3.3) (see Fig. 3.9).

We can state the condition of irreducibility of L directly (compare with the condition for
a tournament to be irreducible, see Example 3.1.33). Let

L =
(

(l1 ≺1 . . . ≺1 ln), (l′1 ≺2 . . . ≺2 l
′
n)
)

be an object of size n. In this case, L is reducible, if there exists a partition [n] = A t B such that
every pair of elements a ∈ A and b ∈ B satisfy

a ≺1 b and a ≺2 b.

Otherwise, L is referred to as irreducible.
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Figure 3.9: Decomposition of a pair of linear orders into a sequence of irreducibles.

3.1.14 Graphic generating functions

Definition 3.1.66. Let A be a labeled combinatorial class. Its graphic generating function is

Â(z) =
∞∑
n=0

an
zn

n! 2(n
2)
.

Notation 3.1.67. We denote by ∆ the operator converting exponential generating function of a la-
beled combinatorial class A into its graphic generating function:

∆A(z) = Â(z).

Remark 3.1.68. In the literature, graphic generating functions are also called special generating
function [90] or chromatic generating function [94].

Remark 3.1.69. Graphic generating functions are widely used for different kinds of directed graphs.
They are based on the idea of strong connectivity : a directed graph is strongly connected if for any
two vertices there is a directed path from the first vertex to the second one. Each directed graph can
be decomposed into a collection of strongly connected components. This leads us to the convolution
rule

cn =
n∑
k=0

(
n

k

)
2k(n−k)akbn−k (3.4)

called the arrow product . In contrast with binomial convolution rule (3.2), there is a supplementary
factor 2k(n−k) corresponding to possible edges from one strongly connected component to another.

We could deduce the form of the generating function consistent with arrow product as follows.
Consider a generating function of the indefinite form

A(z) =
∞∑
n=0

anψ(n)zn,

where ψ is a function to determine. The necessary condition to have the relation

C(z) = A(z) ·B(z)

is that

cnψ(n) =
n∑
k=0

akbn−kψ(k)ψ(n− k).

In our case, this means that
ψ(k)ψ(n− k)

ψ(n)
=

(
n

k

)
2k(n−k). (3.5)
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In particular, for k = 1,

ψ(n) =
ψ(1)ψ(n− 1)

n2n−1
=

(
ψ(1)

)n
n!2(n

2)
.

Putting ψ(1) = 1, we have

ψ(n) =
1

n!2(n
2)
,

and direct calculations show that (3.5) holds indeed.

Remark 3.1.70. Sometimes it is convenient to interpret the action of the operator ∆−1 as Hadamard
multiplication by the exponential generating function G(z) of the labeled combinatorial class G of
graphs. In other words, for any labeled combinatorial class A,

∆−1Â(z) = Â(z)�G(z) = A(z).

Example 3.1.71. Let D be the labeled combinatorial class of directed graphs. In a directed graph,
for each ordered pair of different vertices (i, j), there are two possibilities: they are either joined by
a directed edge

−→
ij or not. Hence, the number of directed graphs of size n is dn = 2n(n−1) and the

exponential generating function of the class D is

D(z) =
∞∑
n=0

2n(n−1) z
n

n!
.

We can see from this relation that

D(z) = G(z)�G(z) and D̂(z) = G(z).

In particular, there is a combinatorial isomorphism

D ∼= G � G ∼= T � T .

One can establish a bijection between Dn and (G � G)n the following way. Take a directed graph
from Dn. Replacing each directed edge

−→
ij by a red edge in the case when i < j, and by a blue edge

otherwise, we get an element of (G �G)n (Fig. 3.10). The similar way, we obtain a bijection between
Tn and Gn by replacing each directed edge

−→
ij by an edge in the case when i < j (and just erasing it

otherwise).

1

2

3

 1

2

3

 1

2

3

Figure 3.10: Bijections between D, G � G and T � T .
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3.1.15 Gargantuan labeled combinatorial classes

Definition 3.1.72. We will call a labeled combinatorial class A gargantuan, if the sequence (an/n!)
is gargantuan. In other words, A is gargantuan, if for any integer r the following two conditions hold:

(i) n · an−1

an
→ 0 as n→∞; (ii)

n−r∑
k=r

(
n

k

)
akan−k = O

(
nran−r

)
.

Example 3.1.73. As we have seen in Example 3.1.14, counting sequences for labeled graphs and
labeled tournaments are the same:

gn = tn = 2(n
2).

On the other hand, it has been shown in Example 2.1.7 that the sequence

gn
n!

=
tn
n!

=
2(n

2)

n!

is gargantuan. Hence, labeled combinatorial classes G and T are gargantuan.

Example 3.1.74. The labeled combinatorial class T R of trees is not gargantuan. Indeed, it is
well-known that the counting sequence of the class T R satisfies

trn = nn−2

(for various proofs, see [18], [66] or [86]). Therefore,

trn−1

(n− 1)!
· n!

trn
=

(
n− 1

n

)n−3

→ 1

e
6= 0,

as n → ∞. Hence, the first condition of Definition 2.1.1 does not hold for the sequence
(
trn/n!

)
,

meaning that it is not gargantuan. As a consequence, by Definition 3.1.72, the class T R is not
gargantuan either.

Example 3.1.75. The sequence
n · pn−1

pn
= 1

does not tend to 0 as n tends to infinity. Hence, the labeled combinatorial class P of permutations
is not gargantuan.

Replacing ordinary power series by exponential generating functions, we obtain the follow-
ing adaptation of Bender’s lemma and theorem for labeled combinatorial classes whose counting
sequences are gargantuan.

Lemma 3.1.76 (Bender’s lemma for labeled combinatorial classes). Let A be a gargantuan labeled
combinatorial class such that a0 = 0 and an > 0 for n > 0. Then there exist constants C > 0 and
Cs > 0 such that ∑

Km,n

(
n

k1, . . . , km

)
ak1 . . . akm 6 Cm−1nm−1an−m+1, (3.6)

and for any fixed integer s ∈ Z>0,∑
Km,n,s

(
n

k1, . . . , km

)
ak1 . . . akm 6 Cm−1

s nsan−s, (3.7)
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where the first sum runs over

Km,n = {(k1, . . . , km) | k1 + . . .+ km = n}

and the second sum runs over

Km,n,s = {(k1, . . . , km) | k1 + . . .+ km = n, ki 6 n− s}.

Proof. Since A is gargantuan, we can apply Lemma 2.2.4 to the sequence
(
an/n!

)
. Due to (2.1),

there exists a constant C such that∑
Km,n

ak1
k1!

. . .
akm
km!
6 Cm−1 an−m+1

(n−m+ 1)!
,

while (2.2) gives us ∑
Km,n,s

ak1
k1!

. . .
akm
km!
6 Cm−1

s an−s(n− s)!

for a family of constants Cs, s ∈ Z>0. Now, to obtain (3.6) and (3.7), it is sufficient to multiply these
two inequalities by n! and note that for any non-negative integer s holds

n!

(n− s)!
6 ns.

Definition 3.1.77. Let d ∈ N. We will call a labeled combinatorial class A d-gargantuan, if the
sequence (an/n!) is d-gargantuan.

Lemma 3.1.78. Let d ∈ N and A be a labeled combinatorial class.
a) The class A is d-gargantuan if and only if for any integer r the following two conditions hold:

(i) nd ·
ad(n−1)

adn
→ 0 as n→∞; (ii)

n−r∑
k=r

(
dn

dk

)
adkad(n−k) = O

(
ndrad(n−r)

)
.

b) The class A is d-gargantuan if for any integer r the following two conditions hold:

(i)’ nd+1ad(n−1) = O(adn), as n→∞,

(ii)’ xk =

(
dn

dk

)
|adkad(n−k)| is decreasing for k < n/2,

Proof. a) By definition 2.1.14 it means, that the sequence

bn =
adn

(dn)!

is gargantuan. The first condition of (bn) to be gargantuan reads

bn−1

bn
=

(dn)!

(dn− d)!
·
ad(n−1)

adn
→ 0,
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which is equivalent to condition (i). For the second condition, note that

n−r∑
k=r

bkbn−k =
1

(dn)!

n−r∑
k=r

(
dn

dk

)
adkad(n−k).

Hence, the identity
n−r∑
k=r

bkbn−k = O(bn−r)

is equivalent to condition (ii).
b) Suppose that conditions (i)’ and (ii)’ hold. Then (i) holds as well. To verify (ii), note that

(n− 2r − 1)

(
dn

d(r + 1)

)
= O

(
nd+1

(
dn

dr

))
.

Hence, we have

n−r∑
k=r

(
dn

dk

)
adkad(n−k) = 2

(
dn

dr

)
adrad(n−r) +

n−r−1∑
k=r+1

(
dn

dk

)
adkad(n−k)

6 2

(
dn

dr

)
adrad(n−r) + (n− 2r − 1)

(
dn

d(r + 1)

)
ad(r+1)ad(n−r−1)

= O
(
ndrad(n−r)

)
.

3.1.16 Bender’s theorem for labeled combinatorial classes

Theorem 3.1.79 (Bender’s theorem for labeled combinatorial classes). a) Let A be a gargantuan
labeled combinatorial class such that a0 = 0 and an 6= 0 for n > 0. Suppose that B is a labeled
combinatorial class whose exponential generating function has the form

B(z) = F
(
A(z)

)
,

where F (y) is a function analytic in some neighborhood of origin. Then the class B is gargantuan
and

bn ≈
∑
k>0

(
n

k

)
ckan−k,

where (ck) are the coefficients of exponential power series

C(z) =
∞∑
n=0

cn
zn

n!
=

[
∂

∂y
F (y)

]
y=A(z)

.

b) Let A be a d-gargantuan labeled combinatorial class such that a0 = 0 and adn 6= 0 for n > 0.
Suppose that B is a labeled combinatorial class whose exponential generating function has the form

B(z) = F
(
A(z)

)
,
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where F (y) is a function analytic in some neighborhood of origin. Then the class B is d-gargantuan
and

bdn ≈
∑
k>0

(
dn

dk

)
cdkad(n−k),

where (cdk) are the coefficients of exponential power series

C(z) =
∞∑
n=0

cdn
zdn

(dn)!
=

[
∂

∂y
F (y)

]
y=A(z)

.

Proof. Since a gargantuan labeled combinatorial class is d-gargantuan for d = 1, it is sufficient to
proof Theorem 3.1.79 for d-gargantuan classes. To this aim, in the statement of Theorem 2.2.5,
consider a replacement

an 7→
adn

(dn)!
.

Consistently, the product akbn−k is replaced by

akbn−k 7→
adkbd(n−k)

(dk)!(dn− dk)!
=

1

(dn)!

(
dn

dk

)
adkbd(n−k).

As a consequence, the asymptotic expansion takes a form

bdn
(dn)!

≈ 1

(dn)!

∑
k>0

(
dn

dk

)
cdkad(n−k).

Multiplying both sides by (nd)!, we get the desired result.

Remark 3.1.80. The reader may wonder why we need two different parts of Theorem 3.1.79. Indeed,
instead of d-gargantuan labeled combinatorial class A, it would be natural to consider the gargantuan
labeled combinatorial class U whose counting sequence satisfy un = adn. It turns out, however, that
we cannot proceed this way. The reason is hidden in the nature of labeled objects, namely, in the
binomial convolution rule (3.2). Making a substitution n→ dn, we must change this rule as well in
the following way: (

n

k

)
→
(
dn

dk

)
.

Indeed, it is so, since the gargantuan sequence an/n! is to be replaced by adn/(dn)! which satisfies
the conditions of Lemma 3.1.78, see the proof of Lemma 3.1.78.

Example 3.1.81. Let A be a gargantuan labeled combinatorial class such that a0 = 0 and an 6= 0
for n > 0. Apply Theorem 3.1.79 for the class A and the function F (y) = ey. In this case,

B(z) = F
(
A(z)

)
= exp

(
A(z)

)
can be interpreted as the exponential generating function for B = SET(A). Since

C(z) =

[
∂

∂y
F (y)

]
y=A(z)

= B(z),

Theorem 3.1.79 implies that B = SET(A) is gargantuan and

bn ≈
∑
k>0

(
n

k

)
bkan−k.

Similar statements can be obtained for other combinatorial constructions as well.
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3.2 Unlabeled combinatorial structures
In this section, we discuss unlabeled combinatorial structures. We would like to warn the reader
that the use of the word “unlabeled” here is very relative. In fact, there are two different cases that
can be treated with the help of methods described below. First of all, we mean “truly unlabeled”
structures, which can be considered as labeled ones with erased labels, so that objects are taken
up to isomorphism. A typical example to be mentioned here is unlabeled graphs. Another case
refers to objects that possess labels but cannot be treated by the approach of Section 3.1. This
is inherent to labeled combinatorial classes that are not stable under relabeling of the atoms, for
instance, indecomposable permutations.

Let us mention the differences between the unlabeled and labeled universes. In the unlabeled
case, the “standard” Cartesian product is used instead of labeled product, which leads to employing
ordinary generating functions instead of exponential ones. This also leads to some changes in defin-
ing combinatorial constructions. In particular, the set construction splits into two. This becomes
possible, since the components of unlabeled combinatorial objects are indistinguishable. Depending
on whether repetitions are allowed or not, we get two different constructions: MSET and PSET.

Nevertheless, apart from the above changes, the concept of the symbolic method is the same
for the unlabeled and labeled cases. Therefore, in this section, we allow ourselves to outline the
material, without going into details. As well as in the previous section, we mostly follow the book of
Flajolet and Sedgewick [38], which we recommend to the reader who wants to learn the topic more
deeply (see also [4] for rather short introduction). The only exception is the last paragraph devoted
to gargantuan unlabeled combinatorial classes and Bender’s theorem.

3.2.1 Unlabeled combinatorial classes

By an unlabeled combinatorial class we mean a combinatorial class in the sense of Definition 3.1.1
equipped with the ordinary generating function defined below.

Definition 3.2.1. The ordinary generating function of an unlabeled combinatorial class A is the
formal power series

A(z) =
∞∑
n=0

anz
n.

Example 3.2.2. The ordinary generating functions of unlabeled combinatorial classes N and Z are

N(z) = 1 and Z(z) = z,

respectively. It is seen that they coincide with the exponential generating functions of the corre-
sponding labeled combinatorial classes (see Example 3.1.7).

Example 3.2.3. Consider two different symbols, say, letters a and b. A binary word is a sequence
of elements taken from the set {a, b} comprising these two symbols. The number of elements in
the sequence is the size of the word. We denote by BW the unlabeled combinatorial class of binary
words:

BW = {ε, a, b, aa, ab, ba, bb, . . .}.
Its counting sequence is bwn = 2n, and hence, its ordinary generating function is

BW (z) =
∞∑
n=0

2nzn =
1

1− 2z
.
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Example 3.2.4. Let p be a prime number and Fp be the finite field of integers taken modulo p.
Denote by PO(p) the unlabeled combinatorial class of monic polynomials over Fp. In this case, the
counting sequence of PO(p) is pon(p) = pn. In particular, for p = 2,

pon(2) = 2n = bwn.

Similarly to labeled combinatorial classes, the coincidence of counting sequences allows us to say that
the corresponding unlabeled combinatorial classes are combinatorially isomorphic. In our case,

PO(2) ∼= BW .

Example 3.2.5. We can formally consider the combinatorial class P of permutations as an unlabeled
combinatorial class. To emphasize that we deal with the unlabeled case, we will designate the
corresponding substances with the lower index “u”. In this case (compare with Example 3.1.9), the
size of a permutation [n]→ [n] is n, the counting sequence of uP is still given by

upn = pn = n!,

but its ordinary generating function is

uP (z) =
∞∑
n=0

n!zn.

The reader may find this approach artificial, since the labels are somehow incorporated into the
definition of permutations as bijections [n] → [n]. However, we will see in Chapter 9 that this
approach can lead to some non-trivial results.

3.2.2 Cartesian product

Definition 3.2.6. Let A and B be two unlabeled combinatorial classes. The Cartesian product
construction generates the class

C = A× B = {γ = (α, β) | α ∈ A, β ∈ B}

with the size of an element γ = (α, β) defined by

|γ|C = |α|A + |β|B.

In terms of counting sequences and ordinary generating functions, one has

cn =
n∑
k=0

akbn−k and C(z) = A(z) ·B(z).

Example 3.2.7. Let us consider the unlabeled combinatorial atomic class Z which consists of a single
element of size 1. We can interpret the disjoint union Z + Z as a binary alphabet {a, b}. Put

A = B = Z + Z.

Then the Cartesian product
A× B = (Z + Z)2

represents the unlabeled combinatorial class of binary words of length two: {aa, ab, ba, bb}.
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3.2.3 Sequences

Definition 3.2.8. Let m be a non-negative integer and A be an unlabeled combinatorial class. In
this case, the m-sequence construction SEQm produces all possible m-tuples of objects from A:

SEQm(A) = A×A× . . .×A.

The size of an element β = (α1, . . . , αm) is defined by

|β| = |α1|+ . . .+ |αm|.

Definition 3.2.9. Let A be an unlabeled combinatorial class that contains no object of size 0. The
sequence construction generates the disjoint union of all the possible tuples of unlabeled combinatorial
objects from A, so that

SEQ(A) =
∞∑
m=0

SEQm(A) = {ε}+A+ (A×A) + (A×A×A) + . . . .

Remark 3.2.10. Let m ∈ Z>0 and A, B and C be unlabeled combinatorial classes satisfying

B = SEQ(A) and C = SEQm(A),

As well as in the labeled case, each object from A∩B will be called SEQ-irreducible, and we will say
that each object from C ∩ B has exactly m SEQ-irreducible components . The generating function
operations for constructions SEQ and SEQm are the same for labeled and unlabeled cases:

B(z) =
1

1− A(z)
and C(z) =

(
A(z)

)m
(see also [38, Theorems I.1 and I.3]).

Example 3.2.11. For any m ∈ Z>0, the unlabeled combinatorial class SEQm(Z) comprises the
unique object of size m that can be interpreted as the corresponding integer. Hence, the unlabeled
combinatorial class SEQ(Z) describes the set of non-negative integers. The only SEQ-irreducible
integer is 1, while any other positive integer can be represented as a “sum” of SEQ-irreducible
components.

Example 3.2.12. Given m ∈ Z>0, the unlabeled combinatorial class SEQm(Z + Z) consists of
binary words of length n (the particular case m = 2 was presented in Example 3.2.7). The union of
all these classes, according to Definition 3.2.9, is the unlabeled combinatorial class

BW = SEQ(Z + Z)

of binary words. In this example, a word SEQ-irreducible if and only if it is a letter, meaning
that its size equals 1. All other words, except the empty word, can be decomposed into a “sum” of
SEQ-irreducible components. Note that the order of components is important.

Example 3.2.13. A permutation σ : [n] → [n] is decomposable, if there exists a positive integer
k < n such that σ

(
[k]
)

= [k]. Otherwise, σ is said to be indecomposable. Given a permutation
σ ∈ Sn, we can indicate the maximal partition of [n] into consecutive intervals,

[n] = I1 + . . .+ Im,
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such that σ
(
Ik
)

= Ik for each k ∈ [m]. For any k, the restriction σ|Ik can be interpreted as an
indecomposable permutation

[
|Ik|
]
→
[
|Ik|
]
by the corresponding order-consisting relabeling. Hence,

any permutation can be represented as a concatenation of indecomposable parts in a unique way,
meaning that we have the relation

uP = SEQ(uIP)

for the unlabeled combinatorial classes uP of permutations and uIP of indecomposable permutations,
respectively.

Note that this result is very different from what we have seen for the labeled case. If we
consider labeled combinatorial classes P and IP , then we have P ∼= SEQ(Z), see Remark 3.1.48. At
the same time, the class IP is not invariant under relabeling. Indeed, let us consider a permutation
τ ∈ Sn as a graph whose set of vertices [n] lie on the number line and whose edges are arcs joining
k with τ(k), for all k ∈ [n]. From this point of view, τ is decomposable, if there exists a vertical line
x = x0 separating one component of the graph from others. For example, the permutation

τ =

(
1 2 3 4
3 1 2 4

)
is decomposable with the separating line x = 3.5 (see the left part of Fig. 3.11).

Now, let us see what happens when relabeling. When we permute labels, the natural order is
disrupted, and to restore it, we need to reorder the vertices of the graph. The restoration process
does not change the cyclic structure of the graph which is determined by στσ−1, where σ is the
permutation of labels. However, the relative position of the graph components on the plane may
change. In particular, a decomposable permutation may become indecomposable after relabeling,
and vice versa (see the central and right parts of Fig. 3.11).

1 2 3 4
 

2 4 1 3
 

1 2 3 4

Figure 3.11: Permutation
(

1 2 3 4
3 1 2 4

)
under relabeling (1, 2, 3, 4) 7→ (2, 4, 1, 3).

3.2.4 Cycles

Definition 3.2.14. Let m be a non-negative integer and A be an unlabeled combinatorial class.
The m-cycle construction CYCm produces all possible m-cycles of unlabeled combinatorial objects
from A. If A contains no object of size 0, then the cycle construction CYC generates the disjoint
union of all the possible cycles of unlabeled combinatorial objects from A:

CYC(A) =
∞∑
m=0

CYCm(A).

Remark 3.2.15. Let m ∈ Z>0 and A, B and C be unlabeled combinatorial classes satisfying

B = CYC(A) and C = CYCm(A),
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The same way as in the labeled case, each object from A ∩ B will be called CYC-irreducible, and
we will say that each object from C ∩ B has exactly m CYC-irreducible components . Contrary
to the labeled case, the generating functions operations for constructions CYCm and CYC have
more sophisticated form and need additional techniques to be established. One can prove that the
corresponding relations are:

B(z) =
∞∑
k=1

φ(k)

k
log

1

1− A(zk)
. and C(z) = [um]

∞∑
k=1

φ(k)

k
log

1

1− ukA(zk)

For the proof and further information, we refer interested readers to [38, Theorems I.1 and I.3].

3.2.5 Sets

Definition 3.2.16. Let m be a non-negative integer and A be an unlabeled combinatorial class.
In this case, the m-multiset construction MSETm produces all possible m-multisets of unlabeled
combinatorial objects from A, while the m-powerset construction PSETm produces the unlabeled
combinatorial class PSETm(A) ⊂ MSETm(A) such that involved multisets have no repetitions.

Definition 3.2.17. Let A be an unlabeled combinatorial class that contains no object of size 0. The
multiset and the powerset constructions applied to A generate new unlabeled combinatorial classes

MSET(A) =
∞∑
m=0

MSETm(A) and PSET(A) =
∞∑
m=0

PSETm(A),

respectively.

Remark 3.2.18. Regarding the generating functions operations, the behavior of unlabeled set con-
structions is also more complicated than the one of their labeled analogues. One can prove that if
unlabeled combinatorial classes A, B and C satisfy

B = MSET(A) and C = MSETm(A),

then the following relations hold for their ordinary generating functions:

B(z) =
∞∏
n=1

1

(1− zn)an
= exp

(
∞∑
k=1

A(zk)

k

)
.

and

C(z) = [um] exp

(
∞∑
k=1

uk

k
A
(
zk
))

On the other hand, if
B = PSET(A) and C = PSETm(A),

then

B(z) =
∞∏
n=1

(1 + zn)an = exp

(
∞∑
k=1

(−1)k−1A(zk)

k

)
.

and

C(z) = [um] exp

(
∞∑
k=1

(−1)k−1u
k

k
A
(
zk
))
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In both cases, each object from A∩B will be called SET-irreducible, and we will say that each object
from C ∩ B has exactly m SET-irreducible components . For the proof of the above relations and
further information, we refer interested readers to [38, Theorems I.1 and I.3].

Example 3.2.19. Let uG and uCG be unlabeled combinatorial classes of graphs and connected
graphs, respectively. In this case, they satisfy

uG = MSET(uCG).

Similarly, the unlabeled combinatorial classes uT of tournaments and uIT of irreducible tournaments,
respectively, satisfy

uT = SEQ(uIT )

(compare with Examples 3.1.33 and 3.1.49). However, in contrast with the labeled case,

uG � uT ,

since their counting sequences are different. Indeed, there are two unlabeled graphs of size 2, but the
unlabeled tournament of size 2 is unique.

3.2.6 Gargantuan unlabeled combinatorial classes

Definition 3.2.20. Let A be an unlabeled combinatorial class. We will call A gargantuan (respec-
tively, d-gargantuan), if its counting sequence (an) is gargantuan (respectively, d-gargantuan).

Example 3.2.21. As we have seen in Example 2.1.2, the sequence pn = n! is gargantuan. Hence,
the unlabeled combinatorial class P of permutations is gargantuan.

Theorem 3.2.22 (Bender’s theorem for unlabeled combinatorial classes). a) Let A be a gargantuan
unlabeled combinatorial class such that a0 = 0 and an 6= 0 for n > 0. Suppose that B is an unlabeled
combinatorial class whose ordinary generating function has the form

B(z) = F
(
A(z)

)
,

where F (y) is a function analytic in some neighborhood of origin. Then the class B is gargantuan
and

bn ≈
∑
k>0

ckan−k,

where (ck) are the coefficients of ordinary power series

C(z) =
∞∑
n=0

cnz
n =

[
∂

∂y
F (y)

]
y=A(z)

.

b) Let d ∈ N and A be a d-gargantuan unlabeled combinatorial class such that a0 = 0 and
adn 6= 0 for n > 0. Suppose that B is an unlabeled combinatorial class whose ordinary generating
function has the form

B(z) = F
(
A(z)

)
,

where F (y) is a function analytic in some neighborhood of origin. Then the class B is d-gargantuan
and

bdn ≈
∑
k>0

cdkad(n−k),
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where (cdk) are the coefficients of ordinary power series

C(z) =
∞∑
n=0

cdnz
dn =

[
∂

∂y
F (y)

]
y=A(z)

.

Proof. The proof follows from Theorem 2.2.5 the same way as the proof of Theorem 3.1.79.

Remark 3.2.23. In the unlabeled case, we could consider d-gargantuan unlabeled combinatorial
class A as a gargantuan class U comprised with the same objects, but with a different size function:

|α|U =
|α|A
d
.

The counting sequence and the ordinary generating function of the class U are

un = adn and U(z) = A
(
z1/d

)
,

respectively. Using this construction, one can see that the statement of Theorem 3.2.22 b) follows
from the part a). Thus, one could completely abandon the concept of d-gargantuan unlabeled
combinatorial classes and use the gargantuan ones only. However, to emphasize the analogy with the
labeled case, we prefer to state Theorem 3.2.22 in full generality. We will see the role of this analogy
in Section 9.2, discussing asymptotic behavior of indecomposable perfect matchings.
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Chapter 4

The theory of species

This chapter is devoted to the theory of species. As well as the symbolic method, the theory of species
allows us to translate the internal structure of combinatorial objects to generating series operations
and vice versa. However, it is more powerful and can be considered as a generalization of the symbolic
method (in particular, the labeled and unlabeled structures are united in a common framework). The
analysis of compound structures within species theory is purely algebraic and proceeds in terms of
transformations and combinations of simpler structures. At a deep level, the theory of species is
based on category theory that provides a language for its concepts. The high level of abstraction
gives the theory of species its power, but, at the same time, it makes this theory more difficult for
comprehension and for initial familiarity with.

Regarding our investigation, it is important to emphasize the following. Passing from the
symbolic method to the theory of species, we replace combinatorial constructions by substitutions.
Consequently, to move from an arbitrary structure to an irreducible one within the theory of species,
we must be able to inverse corresponding substitutional laws. This can be done with the help of
the concept of virtual species that has no analogues in the language of the symbolic method. The
closest analogy of the construction of virtual species from species of structures is the one of Z from N.
Defining the ring of virtual species fills up the absence of a combinatorial operation of subtraction (as
an inverse to disjoint union). Furthermore, having a combinatorial form of subtraction allows us to
give a combinatorial meaning to the multiplicative inverse and the inverse under substitution. Thus,
integer sequences that had no combinatorial interpretation within the framework of the symbolic
method acquire a new meaning in the theory of species.

The presentation of this chapter is intended to be reader-friendly and suitable for students who
take the first steps in mastering the basics of the theory of species. In Section 4.1, we discuss species
of structures, including weighted species, associated series and operations on species. Section 4.2 is
devoted to virtual species and its applications for multiplicative and substitutional inverses. To make
the material clearer, its presentation is provided with a number of examples and remarks. However,
we omit some details and proofs, otherwise the volume of the chapter would exceed all conceivable
limits. Most of the time, we follow the book of Bergeron, Labelle and Leroux [12], that the reader
is invited to consult in case of need to dive deeper. The only exception is the last paragraph where
we define gargantuan species and adapt Bender’s theorem for them. This paragraph is entirely the
contribution of the author.

Concerning notations, we also follow [12]. There are, however, some differences. We denote
by Z (instead of X ) the species of singletons to make clearer the parallel with the atomic combina-
torial class in the symbolic method. The same way, we denote by P and CP species of permutations
and cyclic permutations, while in [12] they are designated by S and C, respectively. Almost every-
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where, the nature of structures is reflected in notations written in first letters of their names. A small
exception is the species E of sets that came from the French word “ensemble” meaning “set”.

4.1 The theory of species of structures

4.1.1 Species of structures

Definition 4.1.1. A species of structures is a rule F such that

1. for each finite set U , F produces a finite set F [U ] (whose elements are F -structures on U);

2. for each bijection σ : U → V , F produces a transport function (of F -structures along σ)

F [σ] : F [U ]→ F [V ],

satisfying the following properties:

(a) for all bijections σ : U → V and τ : V → W ,

F [τ ◦ σ] = F [τ ] ◦ F [σ];

(b) for the identity map IdU : U → U ,

F [IdU ] = IdF [U ].

Notation 4.1.2. For simplicity, we use the following notations.

• σ · s is used to designate F [σ](s), where s ∈ F [U ] is an F -structure on the set U .

• F [n] is used to designate the set F
[
{1, . . . , n}

]
, where n ∈ N. Elements of F [n] are labeled

F -structures of order n.

Example 4.1.3. Let us describe the most commonly used species of structures.

• The empty species 0, defined by
0[U ] := ∅

for every finite set U , and equipped with the trivial transport function.

• The characteristic of the empty set , species 1, defined by

1[U ] =

{
{U}, if U = ∅,
∅, if U 6= ∅

and equipped with the trivial transport function.

• The characteristic of singletons, species Z, defined by

Z[U ] =

{
{U}, if |U | = 1,
∅, if |U | 6= 1

and equipped with the trivial transport function.
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• The species of sets E , defined by
E [U ] = {U}

for every finite set U , and equipped with the trivial transport function.

• The species of linear orders L, such that for any finite set U , the rule L produces the set L[U ]
of linear orders on U , and the transport function is defined in a natural way.

• The species of permutations P , defined by

P [U ] = {ψU : U → U | ψU is bijective}

and equipped with the transport function

P [U ]→ P [V ], ψU 7→ ψV = σψUσ
−1,

along the bijection σ : U → V of finite sets U and V .

• The species of cyclic permutations CP , defined by

CP [U ] = {ψU ∈ P [U ] | ψU is a cycle},

and equipped with the same transport function as P (which is well-defined for CP , since
conjugations preserve the cyclic type of permutations).

4.1.2 Weighted species

Let A be a ring of formal power series (in an arbitrary number of variables t1, t2, . . .) over a ring K.
In our investigation, K = Z or K = R, but in principle, it could be C as well. An A-weighted set is
a pair (A,w), where A is a (finite or countable) set and w is a function

w : A→ A

whose value w(a) ∈ A is the weight of the element a ∈ A. The set A is summable, if for any monomial
κ = (tn1

1 t
n2
2 . . .) the set

Wµ =
{
a ∈ A | [κ]w(a) 6= 0

}
is finite (here, [κ]w(a) designates the operation of extracting the coefficient of κ in the formal power
series w(a)). The total weight of the weighted set A is the element

|A|w =
∑
a∈A

w(a).

In particular, for any monomial κ,
[κ]|A|w =

∑
a∈A

[κ]w(a).

Definition 4.1.4. Let A be a ring of formal power series (in an arbitrary number of variables) over
a ring K. An A-weighted species is a rule F such that

1. for each finite set U , the rule F produces a finite or summable A-weighted set
(
F [U ], wU

)
;
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2. for each bijection σ : U → V , the rule F produces a transport function

F [σ] :
(
F [U ], wU

)
→
(
F [V ], wV

)
,

satisfying the following properties:

(a) F [σ] preserves the weights:
wU = wV ◦ F [σ];

(b) for all bijections σ : U → V and τ : V → W ,

F [τ ◦ σ] = F [τ ] ◦ F [σ];

(c) for the identity map IdU : U → U ,

F [IdU ] = IdF [U ].

Notation 4.1.5. To emphasize that a species F is weighted, we write F = Fw.

Remark 4.1.6. In the case when A ⊂ R and all weights are positive, there is a natural family of
probability measures that is assigned to an A-weighted species Fw. Namely, given an integer n ∈ Z>0,
we endow Fw[n] with the discrete probability by normalizing the weight of a structure by the total
weight ∣∣Fw[n]

∣∣
w

=
∑
s∈Fw

|w(s)|.

In other words, a random structure s ∈ Fw[n] appears with probability

P(s) =
w(s)∣∣Fw[n]

∣∣
w

.

Example 4.1.7. Consider the species G of graphs and an integer n ∈ Z>0. Fix a positive real number
ρ and define the weight of a graph G ∈ G to be

w(G) = ρ|E(G)|,

where |E(G)| is the number of edges in G. Then the naturally assigned probability measure on G[n]
takes the value

P(G) =
ρ|E(G)|

(1 + ρ)(
n
2)

on the graph G. Since there exist the unique pair (p, q) ∈ R2
>0 such that

p

q
= ρ and p+ q = 1,

we can rewrite the above probability as

P(G) = p|E(G)|q(
n
2)−|E(G)|.

The latter form has the following interpretation: to obtain a random graph, we can pick each edge
independently with probability p. This leads us to the Erdős–Rényi model [41] (see also [33]).

75



4.1.3 Isomorphism of structures

Definition 4.1.8. Let F be a species of structures and let U and V be two finite sets of the same
cardinality. Structures su ∈ F [U ] and sv ∈ F [V ] are isomorphic, if there exists a bijection σ : U → V
such that

sv = σ · su.

Remark 4.1.9. Since the transport function F [σ] is a bijection, for any structure sv ∈ F [V ] one
can find a structure su ∈ F [U ] such that sv and su are isomorphic. As a consequence, for studying
properties of species of structures up to isomorphisms, it is sufficient to consider sets of the form [n],
where n is a non-negative integer.

Example 4.1.10. Consider the species of permutations P . Since the transport function along σ is
a conjugation by σ, two permutation are isomorphic if and only if they have the same cycle type.

4.1.4 Exponential generating series

Definition 4.1.11. The exponential generating series of a species of structures F is the formal power
series

F (z) =
∞∑
n=0

fn
zn

n!
,

where fn =
∣∣F [n]

∣∣ is the number of labeled F -structures of order n.

Remark 4.1.12. For weighted species F = Fw, we need to take the formal power series

Fw(z) =
∞∑
n=0

∣∣F [n]
∣∣
w

zn

n!
,

where
∣∣F [n]

∣∣
w
is the total weight of the set of labeled Fw-structures on [n].

Remark 4.1.13. Following the book of Bergeron, Labelle and Leroux [12], we use the expression “ex-
ponential generating series” when talking about species, while the expression “exponential generating
function” is associated to the same concept attributed to labeled combinatorial classes.

Example 4.1.14. Let us list the exponential generating series of species of structures mentioned in
Example 4.1.3. In all the cases, the reader can verify the identities by direct enumeration.

• For the empty species 0, we have
0(z) = 0.

• For the species 1 of empty set, we have

1(z) = 1.

• For the species Z of singletons, we have

Z(z) = z.

• For the species E of sets, we have
E(z) = ez.
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• For the species L of linear orders, we have

L(z) =
1

1− z
.

• For the species P of permutations, we have

P(z) =
1

1− z
.

• For the species CP of cyclic permutations, we have

CP(z) = log
1

1− z
.

4.1.5 Type generating series

Definition 4.1.15. Let F be a species of structures and n ∈ Z>0. Structures s, t ∈ F [n] are
isomorphic or have the same isomorphism type, if there is an automorphism π : [n]→ [n] such that

t = π · s.

Isomorphism types of F -structures of order n (or unlabeled F -structures of order n) are equivalence
classes modulo ∼ of F -structures on [n], where the equivalence relation ∼ is defined by

s ∼ t ⇔ s and t are isomorphic.

Definition 4.1.16. The type generating series of a species of structures F is the formal power series

F̃ (z) =
∞∑
n=0

f̃nz
n,

where f̃n is the number of unlabeled F -structures of order n.

Remark 4.1.17. In the case of weighted structures, Definition 4.1.4 guarantees that isomorphic
structures have the same weight. Hence, the weight of an isomorphism type is well-defined, and we
can define the type generating series of Fw by

F̃w(z) =
∞∑
n=0

|F [n]/ ∼ |wzn,

where ∼ is the above discussed isomorphism relation and |F [n]/ ∼ |w is the total weight of unlabeled
Fw-structures on [n].

Remark 4.1.18. In contrast with exponential generating series, type generating series are “ordi-
nary”, there is no factorial at the denominator. This fact emphasize a parallel between species and
combinatorial classes. In each of these two cases, we use exponential series for labeled objects and or-
dinary series for unlabeled objects, respectively. The reason, as we have discussed in Remark 3.1.24,
is the binomial convolution rule for multiplication of labeled structures. In particular, as we will see
in Lemma 4.1.44, this choice of series is consistent with the operation of product of species.

77



Example 4.1.19. Let us list the type generating series of species of structures mentioned in Exam-
ples 4.1.3 and 4.1.14.

• For the empty species 0, we have
0̃(z) = 0.

• For the species 1 of empty set, we have

1̃(z) = 1.

• For the species Z of singletons, we have

Z̃(z) = z.

• For the species E of sets, we have

Ẽ(z) =
1

1− z
.

• For the species L of linear orders, we have

L̃(z) =
1

1− z
.

• For the species P of permutations, we have

P̃(z) =
∞∏
k=1

1

1− zk
.

• For the species CP of cyclic permutations, we have

C̃P(z) =
z

1− z
.

For all the above cases except cyclic permutations, the reader can verify the identities by direct enu-
meration. For evaluating the type generating series of cyclic permutations, the additional techniques
is needed, see Example 4.1.54.

4.1.6 Cycle index series

Definition 4.1.20. Let n ∈ N and σ ∈ Sn. The cycle type of σ is the sequence (σk), where σk is the
number of cycles of length k in the decomposition of σ into disjoint cycles.

Remark 4.1.21. Since σk = 0 for any k > n, we can write the cycle type of σ in the vector form
(σ1, . . . , σn).

Notation 4.1.22. For a bijection σ : U → U , we denote by

Fixσ = {u ∈ U | σ(u) = u}

the set of fixed points of σ.
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Definition 4.1.23. Let F be a species of structures. Its cycle index series is the formal power series
in an infinite number of variables z1, z2, z3 . . . of the form

ZF (z1, z2, z3, . . .) =
∞∑
n=0

1

n!

∑
σ∈Sn

|FixF [σ]| zσ11 z
σ2
2 z

σ3
3 . . . ,

where F [σ] is the transport function F [n]→ F [n].

Remark 4.1.24. The cycle type of F [σ],((
F [σ]

)
1
,
(
F [σ]

)
2
, . . .

)
,

depends on the cycle type (σ1, σ2, . . .) of the permutation σ only. As a consequence, in Defini-
tion 4.1.23, all permutations of the same cycle type make the same contribution. Given n ∈ N and
a cycle type (k1, . . . , kn), where k1 + 2k2 + . . .+ nkn = n, the number of permutations of size n with
this cycle type is equal to

n!

1k1k1! . . . nknkn!
.

Denote by fixF [k1, . . . , kn] the number of F -structures on [n] which are fixed under the action of any
permutation of cycle type (k1, . . . , kn). Then we obtain the following expression for the cycle index
series of the species F :

ZF (z1, z2, z3, . . .) =
∞∑
n=0

∑
Cn

fixF [k1, . . . , kn]
n!

1k1k1! . . . nknkn!
, (4.1)

where Cn =
{

(k1, . . . , kn) | k1 + 2k2 + . . .+ nkn = n
}
.

Remark 4.1.25. For weighted species F = Fw, the cycle index series takes the form

ZFw(z1, z2, z3 . . .) =
∞∑
n=0

1

n!

∑
σ∈Sn

|FixF [σ]|w zσ11 z
σ2
2 z

σ3
3 . . . ,

where |FixF [σ]|w is the total weight of the set of Fw-structures on [n] that are fixed under the
transport function F [σ].

Lemma 4.1.26. For any species of structures F , one has

F (z) = ZF (z, 0, 0, . . .)

and
F̃ (z) = ZF (z, z2, z3, . . .).

Proof. For the proof, see [12, Theorem 1.2.8].

Example 4.1.27. Let us list the cycle index series of species of structures mentioned in Exam-
ples 4.1.3, 4.1.14 and 4.1.19.

• For the empty species 0, we have
Z0(z1, z2, . . .) = 0.
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• For the species 1 of empty set, we have

Z1(z1, z2, . . .) = 1.

• For the species Z of singletons, we have

ZZ(z1, z2, . . .) = z1.

• For the species E of sets, we have

ZE(z1, z2, . . .) = exp

(
∞∑
k=1

zk
k

)
.

• For the species L of linear orders, we have

ZL(z1, z2, . . .) =
1

1− z1

.

• For the species P of permutations, we have

ZP(z1, z2, . . .) =
∞∏
k=1

1

1− zk
.

• For the species CP of cyclic permutations, we have

ZCP(z1, z2, . . .) =
∞∑
k=1

φ(k)

k
log

1

1− zk
,

where φ is Euler’s totient function. For all the above cases except cyclic permutations, the reader
can verify the identities by direct enumeration. For evaluating the cycle index series of cyclic per-
mutations, additional techniques are needed, see Example 4.1.54.

4.1.7 Equipotent and isomorphic species

Definition 4.1.28. Two species of structures F and G are equipotent if for any finite set U there is
a bijection

αU : F [U ]→ G[U ].

Notation 4.1.29. For equipotent species F and G, we write F ≡ G.

Remark 4.1.30. If species of structures F and G are equipotent, this immediately implies that their
exponential generating series coincide,

F (z) = G(z),

since |F [n]| = |G[n]| for any n ∈ Z>0. However, the fact that F ≡ G does not mean equality of
associated cycle index series and, moreover, equality of associated type generating series. In the
general case,

F̃ (z) 6= G̃(z),
ZF (z1, z2, . . .) 6= ZG(z1, z2, . . .).

The concept of equipotent species is a direct analogue of the concept of the combinatorial isomorphism
of labeled combinatorial classes.
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Definition 4.1.31. Two species of structures F and G are isomorphic if for any finite set U there
is a bijection αU : F [U ]→ G[U ] such that for any F -structure s ∈ F [U ] and any bijection σ : U → V
we have

σ · αU(s) = αV (σ · s).

In other words, the following diagram commutes:

F [U ]
αU−−−→ G[U ]

F [σ]

y yG[σ]

F [V ]
αV−−−→ G[V ]

Notation 4.1.32. For isomorphic species F and G, we write F ' G.

Remark 4.1.33. The concept of isomorphism is in the agreement with the series associated to
species of structures, meaning that if F ' G, then

F (z) = G(z),

F̃ (z) = G̃(z),
ZF (z1, z2, . . .) = ZG(z1, z2, . . .).

Example 4.1.34. An appropriate example of species of structures that are equipotent but not
isomorphic is served by permutations P and linear orders L (compare with Example 3.1.13). Indeed,
any two linear orders are isomorphic, while two permutations are isomorphic if and only if they have
the same cycle type, see Example 4.1.10. This fact is also reflected in the behavior of the associated
series. As we have seen in Examples 4.1.14 and 4.1.19, the exponential generating series of P and L
are equal,

P(z) =
1

1− z
= L(z),

but their type generating series do not coincide,

P̃(z) =
∞∏
k=1

1

1− zk
6= 1

1− z
= L̃(z).

Example 4.1.35. Another example of equipotent but non-isomorphic species is species of graphs G
and tournaments T (compare with Example 3.1.14). Indeed,

G(z) =
∞∑
n=0

2(n
2) z

n

n!
= T (z),

so that there is a bijection G[U ] → T [U ] for any finite set U . At the same time, the number
of unlabeled structures of order 2 is different: there are two unlabeled graphs with two vertices
(connected and disconnected), but the unlabeled tournament with two vertices is unique. Hence,

G̃(z) 6= T̃ (z).

Remark 4.1.36. For weighted species, Definitions 4.1.28 and 4.1.31 of equipotent and isomorphic
species remain the same, but with the additional restriction that all bijections αU have to preserve
weights.
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4.1.8 Sum of species of structures

Definition 4.1.37. Let F and G be two species of structures. The sum F + G is a new species of
structures that,

1. for each finite set U , produces a disjoint union

(F +G)[U ] = F [U ] +G[U ];

2. for each structure s ∈ (F+G)[U ] and each bijection σ : U → V , produces the transport function

(F +G)[σ](s) =

{
F [σ](s), if s ∈ F [U ],
G[σ](s), if s ∈ G[U ].

Remark 4.1.38. In the case when F [U ]∩G[U ] 6= ∅, we may proceed the same way as we have passed
for the disjoint union of combinatorial classes (see Remark 3.1.20). Namely, construct distinct non-
intersecting copies of the sets F [U ] and G[U ], say,

{1} × F [U ] and {2} ×G[U ].

Then it is sufficient to set

(F +G)[U ] =
(
{1} × F [U ]

)
∪
(
{2} ×G[U ]

)
.

Moreover, Definition 4.1.37 can be generalized onto summable families of species of structures, where
(Fi)i∈I is summable if for any finite set U , there is a finite number of indices i ∈ I such that Fi[U ] 6= ∅.
For the summable family (Fi)i∈I of species,(∑

i∈I

Fi

)
[U ] =

⋃
i∈I

{i} × Fi[U ]

and (∑
i∈I

Fi

)
[σ](s, i) =

(
Fi[σ](s), i

)
,

where σ : U → V is a bijection and

(s, i) ∈

(∑
i∈I

Fi

)
[U ].

Lemma 4.1.39. For any two species of structures F and G, the associated series of the species of
structures F +G satisfy

(F +G)(z) = F (z) +G(z),

˜(F +G)(z) = F̃ (z) + G̃(z),
ZF+G(z1, z2, . . .) = ZF (z1, z2, . . .) + ZG(z1, z2, . . .).

Proof. For the proof, see [12, Proposition 1.3.3].
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Remark 4.1.40. In the case of weighted species Fw and Gv, the weight of a sum structure is defined
by {

w(s), if s ∈ F [U ],
v(s), if s ∈ G[U ].

This permits to extend Lemma 4.1.39 onto series of weighted species as well [12, Proposition 2.3.11].

Example 4.1.41. Let F be a species of structures and n ∈ N. Denote the sum of n copies of F
by nF . For this sum, we have

(nF )(z) = nF (z),

(̃nF )(z) = nF̃ (z),
ZnF (z1, z2, . . .) = nZF (z1, z2, . . .).

In particular, if F = 1, then the species n1 possesses n structures on the empty set and no structure
on any other set. This fact can be interpreted as an embedding of the semi-ring of natural numbers
in the semi-ring of species.

Example 4.1.42. Any species of structures F can be canonically represented as a sum of a summable
family of species. Indeed, define a countable family (Fn)n>0 of species F restricted to cardinality n
by

Fn[U ] =

{
F [U ], if |U | = n,
∅, if |U | 6= n,

with the natural transport functions. Then the following canonical decomposition takes place:

F = F0 + F1 + F2 + F3 + . . . .

For instance, the species E of sets is decomposed into

E = E0 + E1 + E2 + E3 + . . . ,

where E0 = 1, E1 = Z and for any n ∈ Z>0 holds
∣∣E [n]

∣∣ = 1. This fact is reflected in formulas for
associated series that turn into the following identities:

ez = 1 +
z

1!
+
z2

2!
+ . . . ,

1

1− z
= 1 + z + z2 + . . . ,

exp

(
∞∑
k=1

zk
k

)
=

∞∑
n=1

∑
Cn

zk11 . . . zknn
1k1k1! . . . nknkn!

,

where Cn =
{

(k1, . . . , kn) | k1 + 2k2 + . . .+ nkn = n
}
.

4.1.9 Product of species of structures

Definition 4.1.43. Let F and G be two species of structures. The product F ·G is a new species of
structures such that any F ·G-structure on a finite set U is an unordered pair s = (f, g), where f is
an F -structure on a subset UF ⊂ U and g is a G-structure on a complement UG = U \ UF . In other
words,
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1. for each finite set U , the product F ·G produces a disjoint union of Cartesian products

(F ·G)[U ] =
∑

UF∪UG=U
UF∩UG=∅

F [UF ]×G[UG];

2. for each structure s = (f, g) ∈ (F · G)[U ] and each bijection σ : U → V , the product F · G
produces the transport function

(F ·G)[σ](s) =
(
F
[
σ|UF

]
(f), G

[
σ|UG

]
(g)
)
.

Lemma 4.1.44. For any two species of structures F and G, the associated series of the species of
structures F ·G satisfy

(F ·G)(z) = F (z) ·G(z),

˜(F ·G)(z) = F̃ (z) · G̃(z),
ZF ·G(z1, z2, . . .) = ZF (z1, z2, . . .) · ZG(z1, z2, . . .).

Proof. For the proof, see [12, Proposition 1.3.8].

Remark 4.1.45. For weighted species Fw and Gv, the weight of a product structure s = (f, g) is
defined by w(f)v(g). With this precision, Lemma 4.1.44 can be extended onto series of weighted
species as well [12, Proposition 2.3.11].

Example 4.1.46. Consider the species L of linear orders. Notice, that its restriction L2 to cardi-
nality 2 is isomorphic to Z ·Z. More generally, for species L restricted to cardinality n ∈ N, one has
Ln = Zn. This leads to the following canonical decomposition of L:

L = 1 + Z + Z2 + Z3 + . . . .

Example 4.1.47. Let DE be the species of derangements, that is, permutations without fixed points.
Then we have the relation

P = DE · E ,
since any permutation can be represented as a product of a derangement and a set of fixed points.
This relation leads us, with the help of Lemma 4.1.44, to the expressions for the series associated
to DE , namely,

DE(z) =
e−z

1− z
,

D̃E(z) =
∞∏
n=2

1

1− zk
,

ZDE(z1, z2, . . .) =
∞∏
k=1

exp
(
− zk/k

)
1− zk

.

Remark 4.1.48. The operations of addition and multiplication of species of structures are commu-
tative and associative up to isomorphism. Also, they possess as a neutral element the empty species 0
and the species 1 of empty set, respectively. Moreover, multiplication distributes over addition and
possesses the species 0 as absorbing element. Thus, the family of species taken up to isomorphisms
constitute a semi-ring.

Notation 4.1.49. We denote by Spe the semi-ring of species.
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4.1.10 Substitution of species of structures

Definition 4.1.50. Let F andG be two species of structures such thatG[∅] = ∅. The composite F ◦G
(or the substitution of G in F ) is a new species of structures such that any F ◦G-structure on a finite
set U is a triplet s =

(
π, ϕ, (γp)p∈π

)
, where π is a partition of U , ϕ is an F -structure on the set of

classes of π and γp is a G-structure on p. In other words,

1. for each finite set U , the composite F ◦G produces a disjoint union of Cartesian products

(F ◦G)[U ] =
∑

π partition of U
F [π]×

∏
p∈π

G[p];

2. for each structure s = (π, ϕ, γ) ∈ (F ◦G)[U ] and each bijection σ : U → V , the composite F ◦G
produces the transport function

(F ◦G)[σ](s) =
(
π̄, ϕ̄, (γ̄p̄)p̄∈π̄

)
,

where

• π̄ is the partition of V obtained by transport of π along σ,

• p̄ = σ(p) ∈ π̄ and σ induce the bijection σ̄ between sets of classes of π and π̄,

• the structure ϕ̄ is obtained from the structure ϕ by F -transport along σ̄,

• the structure γ̄p̄ is obtained from the structure γp by G-transport along σ|p.

Remark 4.1.51. The operation of substitution is associative up to isomorphism. The species Z is
a neutral element and 0 and 1 are absorbing elements, so that for any species F , we have

F ◦ Z = F,

and, if additionally F [∅] = ∅, then
Z ◦ F = F

and
0 ◦ F = 0 and 1 ◦ F = 1.

Note also, that the condition F [∅] = ∅ is equivalent to F ◦ 0 = 0.

Lemma 4.1.52. For any two species of structures F and G such that G[∅] = ∅, the associated series
of the species of structures F ◦G satisfy

(F ◦G)(z) = F
(
G(z)

)
,

˜(F ◦G)(z) = ZF
(
G̃(z), G̃(z2), G̃(z3), . . .

)
,

ZF◦G(z1, z2, . . .) = ZF
(
ZG(z1, z2, . . .), ZG(z2, z4, . . .), . . .

)
.

Proof. For the proof, see [12, Theorem 1.4.2].
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Remark 4.1.53. In the case of weighted species Fw and Gv, the weight of a composite structure
s =

(
π, ϕ, (γp)p∈π

)
is defined by

w(f)
∏
p∈π

v(γp).

For weighted species, the relation between exponential generating series in Lemma 4.1.52 remains
unchanged. As for cycle index series, we have

ZFw◦Gv(z1, z2, . . .) = ZFw

(
ZGv(z1, z2, . . .), ZGv2

(z2, z4, . . .), . . .
)
,

where the weighting v in the series ZG
vk

(zk, z2k, z3k, . . .) (in the ring A) is raised to the power k
(see [12, Proposition 2.3.11]).

Example 4.1.54. Since any permutation can be viewed as a collection of cycles, we have the following
representation:

P = E ◦ CP .

In terms of exponential generating series, this leads immediately to

CP(z) = log
1

1− z
.

For cycle index series, one has

∞∏
k=1

1

1− zk
= exp

∞∑
k=1

1

k
ZCP(zk, z2k, . . .),

which, after taking the logarithm and using properties of Möbius function, gives

ZCP(z1, z2, . . .) =
∞∑
k=1

φ(k)

k
log

1

1− zk
.

In particular, by Lemma 4.1.26,

C̃P(z) =
∞∑
k=1

φ(k)

k
log

1

1− zk
=

z

1− z
.

Note that

P̃(z) =
∞∏
k=1

1

1− zk
6= 1− z

1− 2z
= Ẽ

(
C̃P(z)

)
.

Thus, this example shows us that in the general case, the relation

F̃ ◦G(z) = F̃
(
G̃(z)

)
does not hold.
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4.1.11 Derivative of species of structures

Definition 4.1.55. Let F be a species of structures. The derivative F ′ is a new species of structures
such that any F ′-structure on a finite set U is an F -structure on U+ = U ∪ {∗U}, where ∗U /∈ U . In
other words,

1. for each finite set U , the derivative F ′ produces the set

F ′[U ] = F [U+];

2. for each structure s ∈ F ′[U ] and each bijection σ : U → V , the derivative F ′ produces the
transport function

F ′[σ](s) = F [σ+](s),

where σ+ : U+ → V + is such the bijection that

σ+(u) =

{
σ(u), if u ∈ U,
∗V , if u = ∗U .

Remark 4.1.56. The concept of derivation is consistent with other operations on species. Namely,
for all species F and G, one has

(F +G)′ = F ′ +G′,
(F ·G)′ = F ′ ·G+ F ·G′

and, if additionally G[∅] = ∅,
(F ◦G)′ = (F ′ ◦G) ·G′

(see [12, Remark 1.4.10]).

Lemma 4.1.57. For any species of structures F , the associated series of the species of structures F ′
satisfy

F ′(z) =
d

dz
F (z),

F̃ ′(z) =

(
∂

∂z1

ZF

)
(z, z2, z3 . . .),

ZF ′(z1, z2, z3 . . .) =

(
∂

∂z1

ZF

)
(z1, z2, z3, . . .).

Proof. For the proof, see [12, Proposition 1.4.8].

Remark 4.1.58. For weighted species, the weight of an F ′-structure s is simply w(s) and the
statement of Lemma 4.1.57 remains unchanged.

Example 4.1.59. Let us consider the derivative of the species E of sets. By Definition 4.1.55, an
E ′-structure on a finite set U is a set on U ∪ {∗U}. Removing ∗U , we obtain a set U again. Thus,

E ′ = E .

Note that for species En restricted to cardinality n ∈ N, the derivative produces the same species but
restricted to cardinality n− 1:

E ′n = En−1.
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Example 4.1.60. Let us consider the derivative of the species CP of cyclic permutations. By
Definition 4.1.55, a CP ′-structure on a finite set U is a CP-structure on U ∪ {∗U}. The latter can be
identified with a linear order on U by forgetting ∗U , and hence,

CP ′ = L.

This relation gives one more way to obtain the exponential generating series CP(z) by integrating

CP ′(z) = L(z) =
1

1− z
.

As for restrictions to a given cardinality n ∈ N, one has

CP ′n = Ln−1.

Example 4.1.61. Let us proceed with the derivative of the species L of linear orders. In this case,
a L′-structure on a finite set U is a linear order on U ∪{∗U}. Removing ∗U , we obtain a pair of linear
orders on a partition of U into two subsets. Thus,

L′ = L2.

This species identity translates into the following well-known identity of series:

d

dz

(
1

1− z

)
=

(
1

1− z

)2

.

Taking a look at the species Ln of cardinality n ∈ N, one notice that the following relation takes
place:

L′n = L0 · Ln−1 + L1 · Ln−2 + . . .+ Ln−1 · L0.

Since Ln = Zn, this identity can be rewritten in a pretty familiar form

L′n = (Zn)′ = nZn−1.

4.1.12 Pointing in a species of structures

Definition 4.1.62. Let F be a species of structures. The species F • produces pointed F -structures
of the form s = (f, u), where f is an F -structure on a finite set U and u ∈ U is a distinguished
element. In other words,

1. for each finite set U , the rule F • produces the set

F •[U ] = F [U ]× U ;

2. for each structure s = (f, u) ∈ F •[U ] and each bijection σ : U → V , the rule F • produces the
transport function

F •[σ](s) =
(
F [σ](f), σ(u)

)
.

Remark 4.1.63. The operation of pointing is related to derivation by the equation

F • = Z · F ′.
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Lemma 4.1.64. For any species of structures F , the associated series of the species of structures F ′
satisfy

F •(z) = z
d

dz
F (z),

F̃ •(z) = z

(
∂

∂z1

ZF

)
(z, z2, z3, . . .),

ZF •(z1, z2, z3, . . .) = z1

(
∂

∂z1

ZF

)
(z1, z2, z3, . . .).

Proof. For the proof, see [12, Proposition 2.1.2].

Remark 4.1.65. For weighted species, the weight of an F •-structure s = (f, u) is w(f) and the
statement of Lemma 4.1.57 remains valid.

Example 4.1.66. Let us consider the species CP of cyclic permutations. When we distinguish an
element of a cycle, it can be interpreted as a beginning of the row of elements determined by this
cycle. In other words, by distinguishing an element in a cycle, we get a linear order on these elements
(compare with Example 3.1.56). Hence, for any positive integer n,

CP•n = Ln and CP• = L − 1.

4.1.13 Cartesian product of species of structures

Definition 4.1.67. Let F and G be two species of structures. The Cartesian product F × G is
a new species of structures such that any F ×G-structure on a finite set U is a pair s = (f, g), where
f ∈ F [U ] and g ∈ G[U ]. In other words,

1. for each finite set U , the Cartesian product F ×G produces the set

(F ×G)[U ] = F [U ]×G[U ];

2. for each structure s = (f, g) ∈ (F ×G)[U ] and each bijection σ : U → V , the Cartesian product
F ×G produces the transport function

(F ×G)[σ](s) =
(
F [σ](f), G[σ](g)

)
.

Remark 4.1.68. Cartesian product of species possesses associativity and commutativity. The
species E serves as a neutral element for the Cartesian product, that is, for any species F , we
have

E × F = F × E = F.

Moreover, for any n ∈ N, the restriction to the cardinality n gives

En × F = F × En = Fn.

Besides, there are the following distributivity laws: for any species F , G and H, we have

F × (G+H) = F ×G+ F ×H

and
(F ×G)• = F • ×G = F ×G•.
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Definition 4.1.69. The Hadamard product of two index series

f(z1, z2, . . .) =
∞∑
n=0

∑
Cn

fk1,...,kn
zk11 . . . zknn

1k1k1! . . . nknkn!

and

g(z1, z2, . . .) =
∞∑
n=0

∑
Cn

gk1,...,kn
zk11 . . . zknn

1k1k1! . . . nknkn!

is defined by

(f � g)(z1, z2, . . .) =
∞∑
n=0

∑
Cn

fk1,...,kngk1,...,kn
zk11 . . . zknn

1k1k1! . . . nknkn!
,

where Cn =
{

(k1, . . . , kn) | k1 + 2k2 + . . .+ nkn = n
}
.

Lemma 4.1.70. For any two species of structures F and G, the associated series of the species of
structures F ×G satisfy

(F ×G)(z) = F (z)�G(z),

˜(F ×G)(z) = ZF×G(z, z2, . . .),
ZF×G(z1, z2, . . .) = ZF (z1, z2, . . .)� ZG(z1, z2, . . .).

Proof. For the proof, see [12, Proposition 2.1.7].

Remark 4.1.71. For weighted species Fw and Gv, the weight of the Cartesian product structure
s = (f, g) is defined by w(f)v(g). With this precision, Lemma 4.1.70 can be extended onto series of
weighted species as well (see also [12, Proposition 2.3.11]).

Example 4.1.72. We have seen in Example 4.1.34, that species L of linear orders and P of permu-
tations are equipotent, but not isomorphic. However, it turns out that there is an isomorphism

L × L ' L× P .

Indeed, for any n ∈ N and for any set U of cardinality n, the pair of orders

(u1 ≺1 u2 ≺1 . . . ≺1 un) and (ui1 ≺2 ui2 ≺2 . . . ≺2 uin)

naturally corresponds to the pair of linear order and permutation

(u1 ≺ u2 ≺ . . . ≺ un) and
(

1 2 . . . n
i1 i2 . . . in

)
,

respectively, and vice versa. The same way, for any m ∈ N,

L × L× . . .× L︸ ︷︷ ︸
m

≡ L× P × . . .× P︸ ︷︷ ︸
m

.
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4.2 Virtual species
Recall that we denote by Spe the semi-ring of species. In this section, we discuss its extension to
the ring of virtual species Virt . The construction of this extension is similar to the construction
of Z from N and serves the same goal, namely, to define an operation of subtraction. With the help
of this operation, we construct multiplicative and substitutional inverses and provide combinatorial
interpretations.

4.2.1 Definition of virtual species, operations and series

Definition 4.2.1. A virtual species is an element of the quotient set

Virt = (Spe × Spe )/ ∼,

where the equivalence relation ∼ is defined by

(F,G) ∼ (H,K) ⇔ F +K ' G+H,

F,G,H,K ∈ Spe .

Notation 4.2.2. We write F − G to designate the class of (F,G) modulo ∼, where F,G ∈ Spe .
The pair (F,G) is a representative of the class F −G.

Definition 4.2.3. Let F,G,H,K ∈ Spe , so that Φ = F −G and Ψ = H−K are two virtual species.
The operations are extended from Spe to Virt the following way:

• the sum of Φ and Ψ is
Φ + Ψ = (F +H)− (G+K),

• the product of Φ and Ψ is

Φ ·Ψ = (F ·H +G ·K)− (F ·K +G ·H),

• the derivative of Φ is
Φ′ = F ′ −G′,

the pointing of Φ is
Φ• = F • −G•,

• the Cartesian product of Φ and Ψ is

Φ×Ψ = (F ×H +G×K)− (F ×K +G×H).

Remark 4.2.4. The set Virt of virtues species is a commutative ring under the operations of addition
and multiplication. Species

0 = (0− 0) and 1 = (1− 0)

serve as zero and one of this ring, respectively. All the usual properties of the operations mentioned
in Definition 4.2.3, such as (Φ + Ψ)′ = Φ′ + Ψ′, remain valid.

Definition 4.2.5. Let Φ = F − G be a virtual species, where F,G ∈ Spe . There are the following
series associated to Φ:

91



• the exponential generating series is

Φ(z) = F (z)−G(z),

• the type generating series is
Φ̃(z) = F̃ (z)− G̃(z),

• the cycle index series is

ZΦ(z1, z2, . . .) = ZF (z1, z2, . . .)− ZG(z1, z2, . . .).

Remark 4.2.6. The behavior of the series associated to virtual species Φ+Ψ and Φ ·Ψ is consistent
with operations and independent of the choice of representatives Φ = F − G and Ψ = H − K. In
other words, these series satisfy the following natural properties:

(Φ + Ψ)(z) = Φ(z) + Ψ(z),

Φ̃ + Ψ(z) = Φ̃(z) + Ψ̃(z),
ZΦ+Ψ(z1, z2, . . .) = ZΦ(z1, z2, . . .) + ZΨ(z1, z2, . . .)

and
(Φ ·Ψ)(z) = Φ(z) ·Ψ(z),

Φ̃ ·Ψ(z) = Φ̃(z) · Ψ̃(z),
ZΦ·Ψ(z1, z2, . . .) = ZΦ(z1, z2, . . .) · ZΨ(z1, z2, . . .).

Definition 4.2.7. A virtual species Φ is written in reduced form Φ = F −G, if the species F and G
are unrelated , meaning that there is no isomorphic subspecies in F and G apart from the empty
species. Species F and G are the positive and negative parts of Φ, respectively.

Lemma 4.2.8. Every virtual species Φ can be written in reduced form Φ = Φ+ − Φ− in a unique
way.

Proof. For the proof, see [12, Proposition 2.5.7].

Remark 4.2.9. As well as species of structures, any virtual species of structures Φ can be canonically
decomposed into the sum of a summable family (Φn)n>0 with respect to cardinality. Moreover, if
Φ = F −G, then there is a decomposition of the form

Φ =
∞∑
n=0

(
Φ+
n − Φ−n

)
,

where for every n ∈ Z>0, we have Φ+
n = (Fn −Gn)+ and Φ−n = (Fn −Gn)−.

4.2.2 Multiplicative inverse

Lemma 4.2.10. If F is a species of structures satisfying F0 = 1 (meaning that there exists a unique
F -structure on the empty set), then the virtual species

F−1 =
∞∑
k=0

(−1)k(F+)k,

where F+ = F − 1, is the multiplicative inverse of F , meaning that

F · F−1 = F−1 · F = 1.
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Proof. For the proof, see [12, Exercise 2.5.7].

Remark 4.2.11. Lemma 4.2.10 remains valid for a virtual species Φ satisfying Φ0 = 1. Moreover,
for any integers m,n ∈ Z, one has

Φm · Φn = Φm+n,

where Φn = (F −G)n is defined by

Φn =
n∑
k=0

(−1)k
(
n

k

)
F n−k ·Gk.

Example 4.2.12. Consider the species L of linear orders. Since, according to Example 4.1.46,

L = 1 + Z + Z2 + Z3 + . . . ,

direct calculation shows that the multiplicative inverse L−1 has the following simple form:

L−1 = 1−Z.

The associated series are
L−1(z) = 1− z,
L̃−1(z) = 1− z,

ZL−1(z1, z2, . . .) = 1− z1.

Example 4.2.13. Consider the species E of sets. Since E0 = 1, by Lemma 4.2.10 there exists
a multiplicative inverse

E−1 = (1 + E+)−1 =
∞∑
k=0

(−1)k(E+)k.

The distribution law for the product over the sum gives us

E−1(z) = e−z,

Ẽ−1(z) = 1− z,

ZE−1(z1, z2, . . .) = exp

(
−
∞∑
k=1

zk

k

)
.

As for reduced form E−1 = (E−1)+ − (E−1)−, we have

(E−1)+ = 1 + (E+)2 + (E+)4 + . . .

and
(E−1)− = E+ + (E+)3 + (E+)5 + . . . .

4.2.3 Substitution of virtual species and its inverse

Definition 4.2.14. Let Φ = F −G and Ψ = H−K be two virtual species, where F,G,H,K ∈ Spe .
Suppose that Ψ0 = 0. The substitution Φ ◦Ψ is a virtual species

Φ ◦Ψ = Φ(X + Y)×
(
E(X ) · E−1(Y)

)
|X=H,Y=K ,

where X and Y are two different species of singletons.
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Remark 4.2.15. The reason for such a complicated form of Definition 4.2.14 comes from an extension
of the theory of species to the multisort context. Without diving into this theory deeply, let us say
that the idea of this generalization is to consider structures constructed on multisets, that is, sets
consisting of several sorts of elements. One can distinguish different sorts of elements by considering
different species of singletons, say, X , Y , Z, . . . Then the sum, say, X+Y , represents singletons of two
different kinds, and hence, if F is a (one-sort) species, then the substitution F (X + Y) is a two-sort
species. Moreover, we can set the proportion of elements of different sorts and, for m,n ∈ N, have

F (mX + nY) = F (X + Y)×
(
Em(X ) · En(Y)

)
. (4.2)

Now, for virtual species, it is natural to generalize (4.2) as

F (X − Y) = Φ(X + Y)×G
(
E(X ) · E−1(Y)

)
,

so that
F (Ψ) = F (H −K) = Φ(X + Y)×G

(
E(X ) · E−1(Y)

)
|X=H,Y=K ,

and extend it by linearity:
(F −G) ◦Ψ = F ◦Ψ−G ◦Ψ.

For details, we refer interested reader to [12, Section 2.4].

Remark 4.2.16. All the usual properties of the substitution remain valid for virtual species, includ-
ing those involving associated series series:

(Φ ◦Ψ)(z) = Φ
(
Ψ(z)

)
,

˜(Φ ◦Ψ)(z) = ZΦ

(
Ψ̃(z), Ψ̃(z2), . . .

)
,

ZΦ◦Ψ(z1, z2, . . .) = ZΦ

(
ZΨ(z1, z2, . . .), ZΨ(z2, z4, . . .), . . .

)
.

Lemma 4.2.17. If Ψ is a virtual species of structures satisfying Ψ0 = 0 and Ψ1 = Z, then there
exists a unique virtual species Ψ(−1) that is the inverse of Ψ under substitution, i.e.

Ψ ◦Ψ(−1) = Ψ(−1) ◦Ψ = Z.

Proof. For the proof, see [12, Proposition 2.5.19].

Remark 4.2.18. The explicit form of the substitutional inverse Ψ(−1) is

Ψ(−1) =
∞∑
k=0

(−1)k∆k
Ψ(Z),

where the linear operator ∆Ψ : Virt → Virt is defined by

∆Ψ(Φ) = Φ ◦Ψ− Φ.

In particular,

Ψ(−1) = Z − (Ψ−Z) + (Ψ ◦Ψ− 2Ψ + Z)− (Ψ ◦Ψ ◦Ψ− 3Ψ ◦Ψ + 3Ψ−Z) + . . . .

Example 4.2.19. Let Ψ be a virtual species of structures such that Ψ0 = 0 and Ψ1 = Z. Taking
a derivative of the identity

Ψ(−1) ◦Ψ = Z
leads us to the relation (

(Ψ(−1))′ ◦Ψ
)
·Ψ′ = 1.

As a consequence, we obtain the following expression for the derivative of the inverse under substi-
tution:

(Ψ(−1))′ = (Ψ′)−1 ◦Ψ(−1).
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4.2.4 Gargantuan species and Bender’s theorem

Definition 4.2.20. Let F be a (virtual, weighted) species of structures. We call F gargantuan if
the sequence

(
|F [n]|/n!

)
is gargantuan.

Theorem 4.2.21 (Bender’s theorem for species). Let A, B and F be three (virtual, weighted) species
of structures such that

• the species A is gargantuan,

• the total weight an = |A[n]| of the species A on the set [n] is nonzero for each n ∈ N,

• the exponential generating series F (z) is analytic in some neighborhood of the origin,

• B = F (A+), where A+ = A−A0.

Then the species B is gargantuan and the total weight bn = |B[n]| satisfies

bn ≈
∑
k>0

(
n

k

)
ckan−k,

where ck is the total weight of the species C = F ′ ◦ A+ on the set [k].

Proof. It is sufficient to apply Theorem 2.2.5 to the formal power series A(z) and analytic (in some
neighborhood of origin) function F (y).

Remark 4.2.22. The same way as it has been done for combinatorial classes, one can extend
Definition 4.2.20 and Theorem 4.2.21 to d-gargantuan species, d ∈ N.
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Part II

General results
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Preliminaries and the strategy
The second part of the presented thesis is devoted to establishing the asymptotic expansions for the
probabilities that a random object is SEQ, CYC or SET-irreducible. In this preliminary section, we
discuss the strategy that allows us to obtain all the desired results. To make the presentation less
abstract, we take SEQ-irreducibles as a model example.

Let U and W be two labeled combinatorial classes, such that

U = SEQ(W).

Pick a random object of size n from U (i.e. pick a random object from Un). What is the probability
that this object is SEQ-irreducible, as n → ∞? In other words, what is the asymptotic probability
that the sequence u consists of one element only?

The strategy to obtain the asymptotic expansion for this probability is as follows. First,
express the asymptotic behavior of wn in terms of (uk) with the help of Bender’s theorem for labeled
combinatorial classes. For this part of work, we use the relations between exponential generating
functions of U and W :

W (z) = 1− 1

U(z)
.

Second, divide the obtained expression by un. Thus, on the left hand side, we get the fraction wn/un
whose meaning is exactly the probability that a random object from U belongs toW , while the right
hand side stands for the desired asymptotics in terms of un.

The same way, for a fixed positive integer m, we may state a question about the probability
that a random labeled object u ∈ U belongs to the labeled combinatorial class

W(m) = SEQm(W).

To answer that questions, we implement the same method. As we will see, the results involve
coefficients of corresponding exponential generating functions

W (s)(z) =
∞∑
n=1

w(s)
n

zn

n!
=
(
W (z)

)s
for s ∈ {m− 1,m,m+ 1}.

Note what part of the work is common for the mentioned cases. Applying Bender’s theorem
for labeled combinatorial classes (i.e. Theorem 3.1.79), we need to indicate two input structures:
a gargantuan class A and a function F (y) which is analytic near the origin. While the taken function
varies from case to case, the gargantuan class is always the same: U minus a single element of size
zero whose exponential generating series is U(z)− 1. We denote this class by Ũ .

The structure of this part is the following. In Chapter 5 we discuss decompositions with
respect to the construction SEQ. We establish asymptotic expansions for the probabilities that
a random object is SEQ-irreducible or consists of exactly m SEQ-irreducible components. We show
that the involved coefficients have a combinatorial meaning and can be explained with the help of
the inclusion-exclusion principle. Also, we provide analogous results for the unlabeled case.

Chapters 6 and 7 are devoted to decompositions with respect to the constructions CYC and
SET, respectively. We establish the corresponding asymptotics and interpret their coefficients in
terms of the inclusion-exclusion principle. Note that for these two constructions, the same simple
method does not work for the unlabeled case. We discuss what we could do with that in Part IV.

Finally, in Chapter 8, we generalize the obtained results for species of structures and get the
interpretation of coefficients in terms of virtual species.
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Chapter 5

SEQ-irreducibles

The goal of this chapter is to establish asymptotic expansions for the probabilities concerning the
construction SEQ, as well as to interpret combinatorially the involved coefficients. In Section 5.1,
we discuss different approaches to this problem and obtain the desired results in a less formal way.
In Sections 5.2 and 5.3 we provide short proofs of the obtained results, while Sections 5.4 and 5.5
are devoted to generalizations.

Throughout the chapter, we consider two combinatorial classes U and W such that

U = SEQ(W). (5.1)

In Sections 5.1–5.3 these classes are gargantuan and labeled, while in Sections 5.4 and 5.5 they are
d-gargantuan labeled and gargantuan unlabeled, respectively. In all the cases, by Lemma 3.1.29
and Remark 3.2.10, formula (5.1) translates into the following relation of the exponential generating
functions:

W (z) = 1− 1

U(z)
. (5.2)

Also, we consider a family of labeled combinatorial classes

W(m) = SEQm(W), (5.3)

together with their counting sequences
(
w

(m)
n

)
, where m ∈ N. According to Lemma 3.1.29 and

Remark 3.2.10, the corresponding generating functions have the following form:

W (m)(z) =
(
W (z)

)m
. (5.4)

In particular, for m = 1, we have W (m)(z) = W (z).

5.1 SEQ-irreducibles and the inclusion-exclusion principle
Let U andW be two labeled combinatorial classes such that U is gargantuan and relation (5.1) holds,
that is,

U = SEQ(W).

Let us suppose that the behavior of U is known. Say, there is an explicit expression for its counting
sequence (un). Having the asymptotic expression for the counting sequence (wn), we can obtain the
asymptotic probability that a random element of U is SEQ-irreducible by dividing it by un. Hence,
our goal is to establish the behavior of W . Let us have a look at how this can be done.
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5.1.1 Recurrence relations

The first naive idea is to pass from (5.1) to the recurrence relation. We can rewrite the initial relation
as follows:

U = SEQ(W) =
∞∑
m=0

SEQm(W) = {ε}+
∞∑
m=1

SEQm(W) = {ε}+W ? U .

Hence, for any positive integer n,

un =
n∑
k=1

(
n

k

)
wkun−k.

Taking into account that u0 = 1, this gives us the following result.

Lemma 5.1.1. If U and W are labeled combinatorial classes such that U = SEQ(W), then for any
positive integer n,

wn = un −
n−1∑
k=1

(
n

k

)
wkun−k. (5.5)

Corollary 5.1.2. Let U and W be labeled combinatorial classes such that U = SEQ(W). Suppose
that u ∈ U is a random object of size n. Then

P
(
u is SEQ-irreducible

)
= 1−

n−1∑
k=1

(
n

k

)
wk

un−k
un

. (5.6)

The results of Lemma 5.1.1 and Corollary 5.1.2 possess two advantages: they are exact and
valid for all labeled combinatorial classes, not just gargantuan ones. However, we cannot accept the
obtained results as satisfactory enough. In the general case, all the summands in (5.6) may make
a significant contribution, and so we cannot even be sure that the leading term of the asymptotic
expansion is 1. For gargantuan classes, formula (5.5) shows that wn ∼ un, and hence,

P
(
u is SEQ-irreducible

)
= 1 +O

(
un−1

un

)
,

but we cannot get further precision directly, since the summands nw1un−1 and nwn−1u1 are com-
mensurate. It is possible, however, to obtain more terms recursively. Namely, replacing, in the first
approximation, wn−1 by un−1, we have two terms of the expansion:

wn = un − n(w1 + u1)un−1 +O(un−2).

Using this more accurate approximation, we can obtain the third term etc.

5.1.2 Using the underlying structure

Let us try a different approach now. In order to understand what are the first terms of the asymptotic
expansion of wn for the class U , let us focus on the structure of the objects included in this class. If
U is gargantuan, then the main contribution is made by objects that have a large SEQ-irreducible
part, and so we have the following relation:

un = wn +

(
n

1

)
λ1wn−1 +

(
n

2

)
λ2wn−2 +

(
n

3

)
λ3wn−3 + . . . .
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Here, the constants λk are determined by the possible structure of the object. Say, if a sequence
consists of two elements such that one of them is of size n − 1, then the second is of size 1. There
are two options for the mutual arrangement of elements, hence,

λ1 = 2w1.

The same way, if one of the elements of the sequence is of size n−2, then we have additionally either
an element of size 2 or two elements of size 1. Counting possible arrangements, we have

λ2 = 2w2 + 6w2
1,

and so on. This reasoning leads us to the following result.

Lemma 5.1.3. If U and W are labeled combinatorial classes such that U = SEQ(W), then for any
positive integer n,

un =
∑
Cn

n!

(1!)c1 · . . . · (n!)cn
· (c1 + . . .+ cn)!

c1! · . . . · cn!
·
(
wc1

1 · . . . ·wcn
n

)
, (5.7)

where Cn = {(c1, . . . , cn) | c1 + 2c2 + . . .+ ncn = n}.

Proof. Let us enumerate all possible structures in Un for any positive integer n. Each object in Un
is a sequence whose elements sizes are determined by the n-sequence (c1, . . . , cn) such that ck is the
number of elements of size k (and hence, c1 + 2c2 + . . .+ncn = n). Let us find the number of objects
determined by the same n-sequence. Given an n-sequence (c1, . . . , cn), we need to choose

1. the order of elements sizes:
(c1 + . . .+ cn)!

c1! · . . . · cn!
choices;

2. labels for each element:
n!

(1!)c1 · . . . · (n!)cn
choices;

3. elements themselves:
wc1

1 · . . . ·wcn
n choices.

Adding up, we get the desired expression (5.7).
Note that the same result can be obtained formally from the expression for the exponential

generating function of U as a geometric progression:

U(z) = 1 +W (z) +W 2(z) +W 3(z) + . . . .

Lemma 5.1.3 works well, if we wish to obtain the asymptotic behavior of U in terms of gar-
gantuan class W . However, for the inverse task, this lemma is not good enough. The same way, as
with the help of Lemma 5.1.1, we could get the asymptotic expansion recursively, term by term. The
result would be the same though written in slightly different form. For instance, the first two terms
of the asymptotics are

wn = un − 2nw1un−1 +O(un−2),

which is the same as we have seen above, since u1 = w1.
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5.1.3 The inclusion-exclusion principle

We have seen two ways presented in Lemmas 5.1.1 and 5.1.3 that lead us to the desired asymptotics.
As we have mentioned, they both do not permit to have all terms at once, meaning that we need a
recursive procedure to get one term after another. Nevertheless, the second proof of Lemma 5.1.3
suggests a possible solution for this obstacle.

Lemma 5.1.4. If U and W are labeled combinatorial classes such that U = SEQ(W), then for any
positive integer n,

wn =
∑
Cn

(−1)(c1+...+cn)−1 · n!

(1!)c1 · . . . · (n!)cn
· (c1 + . . .+ cn)!

c1! · . . . · cn!
·
(
uc11 · . . . · ucnn

)
, (5.8)

where Cn = {(c1, . . . , cn) | c1 + 2c2 + . . .+ ncn = n}.

Proof. With the help of relation (5.2), express the exponential generating function of W as follows:

W (z) = Ũ(z)− Ũ2(z) + Ũ3(z)− . . . ,

where Ũ(z) = U(z)−1. Now, the desired formula (5.8) can be derived from this relation directly.

For gargantuan classes, Lemma 5.1.4 immediately provides as many terms as we want. For
example, the first three terms of the asymptotic probability that a random object u ∈ U from
a gargantuan labeled combinatorial class U is SEQ-irreducible are

P
(
u is SEQ-irreducible

)
= 1− 2u1

(
n

1

)
un−1

un
−
(
2u2 − 6u2

1

)(n
2

)
un−2

un
+O

(
un−3

un

)
.

However, in this form the meaning of the involved coefficients is somehow hidden. To reach out this
meaning, use the inclusion-exclusion principle and rewrite the coefficients in terms of wk. The idea
is to enumerate un objects from Un according to their structure. Roughly speaking, any object is
either SEQ-irreducible or consists of at least two SEQ-irreducible components. In the latter case,
first, enumerate those objects whose first component is of size less than n/2. Second, list objects
with the last component of size less than n/2. Finally, we need to deduce objects counted twice,
since both their first and last components are smaller than n/2. In total, there are the following four
cases schematically depicted on Fig. 5.1.

k k p qn− k n− k n− p− qn

Figure 5.1: Schema for counting objects in Un.

1. There are wn SEQ-irreducible objects of size n.

2. For each k 6 n/2, there are
(
n
k

)
wkun−k objects decomposed into a sequence of length at least

two whose first element is of size k.
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3. For each k 6 n/2, there are
(
n
k

)
wkun−k objects decomposed into a sequence of length at least

two whose last element is of size k.

4. For each pair p, q 6 n/2, there are
(
n
p,q

)
wpwqun−p−q objects decomposed into a sequence of

length at least two whose first and last elements are of size p and q, respectively.

Summarizing, by the inclusion-exclusion principle, we obtain the following result.
Lemma 5.1.5. If U and W are labeled combinatorial classes such that U = SEQ(W), then for any
positive integer n,

un = wn + 2

[n/2]∑
k=1

(
n

k

)
wkun−k −

[n/2]∑
p=1

[n/2]∑
q=1

(
n

p, q

)
wpwqun−p−q. (5.9)

Corollary 5.1.6. Let U and W be labeled combinatorial classes such that U = SEQ(W). Suppose
that u ∈ U is a random object of size n. Then

P
(
u is SEQ-irreducible

)
= 1− 2

[n/2]∑
k=1

(
n

k

)
wk

un−k
un

+

[n/2]∑
p=1

[n/2]∑
q=1

(
n

p, q

)
wpwq

un−p−q
un

. (5.10)

Lemma 5.1.5, as well as Lemma 5.1.4, is valid for any labeled combinatorial classes U and W
such that U = SEQ(W). In the case when U is gargantuan, we obtain the asymptotic expansion
together with the combinatorial interpretation of the coefficients. Indeed, let r ∈ N and n is large
enough (it is sufficient to have n > 2r). Then, since wn 6 un for any n ∈ N, we have

2

[n/2]∑
k=1

(
n

k

)
wkun−k 6 2

r−1∑
k=1

(
n

k

)
wkun−k +

n−r∑
k=r

(
n

k

)
ukun−k = 2

r−1∑
k=1

(
n

k

)
wkun−k +O(nrun−r).

The same way, as

w
(2)
k =

k−1∑
p=1

(
k

p

)
wpwk−p,

one has the following estimation:
[n/2]∑
p=1

[n/2]∑
q=1

(
n

p, q

)
wpwqun−p−q 6

r−1∑
k=1

(
n

k

)
w

(2)
k un−k +

∑
r6p+q6n

(
n

p, q

)
upuqun−p−q.

According to Lemma 3.1.76, ∑
r6p+q6n

(
n

p, q

)
upuqun−p−q = O(nrun−r).

Hence, for any r ∈ N,

un = wn +
r−1∑
k=1

(
2wk −w

(2)
k

)(n
k

)
un−k +O(nrun−r).

Rearranging the summands and dividing by un, we get the asymptotic probability

P
(
u is SEQ-irreducible

)
≈ 1−

∑
k>1

(
2wk −w

(2)
k

)(n
k

)
un−k
un

.

We will give a short proof of this relation in Section 5.2 (see Theorem 5.2.1). The meaning of the
coefficient

(
2wk−w

(2)
k

)
is illustrated by Fig. 5.1: it is SEQ-irreducible objects of size k counted twice

minus ordered pairs of SEQ-irreducible objects of total size k.
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5.1.4 Several SEQ-irreducible components

The aim of this section is to generalize the statement of Lemma 5.1.5. We start with enumerating
objects consisting of two SEQ-irreducible parts. On the one hand, the number of such objects is w(2)

n .
On the other hand, let us apply the inclusion-exclusion principle to count them in a different way.
The idea is to enumerate objects with at least two SEQ-irreducible components with respect to the
sizes and then to deduce those with at least three components.

1. First, count objects whose first component has size k 6 n/2. There are
(
n
k

)
wkun−k of them.

2. Second, deduce all
(
n
k,p

)
wkwpun−k−p objects consisting of at least three components such that

the first and second components are of sizes k 6 n/2 and p 6 [(n− k)/2], respectively.

3. The same way, deduce all
(
n
k,p

)
wkwpun−k−p objects consisting of at least three components such

that the first and last components are of sizes k 6 n/2 and p 6 [(n− k)/2], respectively.

4. Finally, we need to add
(

n
k,p,q

)
wkwpwqun−k−p−q objects consisting of at least three components

such that the first, second and last components are of sizes k 6 n/2, p 6 [(n − k)/2] and
q 6 [(n− k)/2], respectively.

k k

k k

p

p p q

n− k n− p− q

n− p− q n− k − p− q

Figure 5.2: Schema for counting objects with two SEQ-irreducible components.

Schematically, we depict the structures of discussed objects on Fig. 5.2. Adding them up, we
obtain the number of objects consisting of two SEQ-irreducible components whose first component
is of the size k 6 n/2.

The same way, we get the number of objects with two SEQ-irreducible components, whose
second component is of the size k 6 n/2. Note that in the case when n is even, objects consisting of
two components of the same size are counted twice. Hence, we need to deduce them from the total
sum. Taking this observation into account, we obtain the following result.

Lemma 5.1.7. If U and W are labeled combinatorial classes such that U = SEQ(W), then for any
positive integer n,

w(2)
n = 2

[n/2]∑
k=1

wk

(
n

k

)un−k − 2

[(n−k)/2]∑
p=1

(
n− k
p

)
wpun−k−p +

[(n−k)/2]∑
p,q=1

(
n− k
p, q

)
wpwqun−k−p−q

− Λ,
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where

Λ =

{ ( n
n/2

)
w2
n/2, if n is even,

0, if n is odd.

In the case when U is gargantuan, we can pass from Lemma 5.1.7 to the asymptotic expansion
in a similar way that we have done for Lemma 5.1.5. Namely, for given r ∈ N, we suppose that n is
large enough, and hence, leaving only terms with factors un, un−1, . . . , un−r+1, we have

w(2)
n = 2

r−1∑
k=1

(
wk − 2w

(2)
k + w

(3)
k

)(n
k

)
un−k +O(nrun−r).

This lead us to the following asymptotic expansion for the probability that a random object u ∈ U
consists of two SEQ-irreducible components:

P(u has two SEQ-irreducible components) ≈ 2
∑
k>0

(
wk − 2w

(2)
k + w

(3)
k

)
·
(
n

k

)
· un−k

un
.

The reasoning leading to the approximation above can be generalize to objects consisting of the
arbitrary number m of SEQ-irreducible components. We will prove in Section 5.3 that the following
relation takes place:

P(u has m SEQ-irreducible components) ≈ m
∑
k>0

(
w

(m−1)
k − 2w

(m)
k + w

(m+1)
k

)
·
(
n

k

)
· un−k

un
.

5.2 Asymptotic probability of SEQ-irreducible objects
Theorem 5.2.1 (SEQ asymptotics). Let U be a gargantuan labeled combinatorial class with positive
coefficients, such that U = SEQ(W) for some labeled combinatorial class W. Suppose that u ∈ U is
a random object of size n. Then

P(u is SEQ-irreducible) ≈ 1−
∑
k>1

(
2wk −w

(2)
k

)
·
(
n

k

)
· un−k

un
. (5.11)

Proof. Let us apply Theorem 3.1.79 a) to the gargantuan labeled combinatorial class Ũ = U − {ε}
and the function

F (y) = 1− 1

1 + y
.

According to (5.2),

F
(
U(z)− 1

)
= 1− 1

U(z)
= W (z),

while, due to (5.4),

C(z) =
1(

U(z)
)2 =

(
1−W (z)

)2
= 2W (z)−W (2)(z).

Together with the statement of Theorem 3.1.79 a), this implies

wn ≈
∑
k>0

(
n

k

)
ckun−k = un −

∑
k>1

(
n

k

)(
2wk −w

(2)
k

)
un−k,

and it is sufficient to divide both sides by un to finish the proof.
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Example 5.2.2. As we have seen in Example 3.1.33, any tournament can be decomposed as a se-
quence of irreducible tournaments,

T = SEQ(IT ).

Since the labeled combinatorial class T is gargantuan (see Example 3.1.73), we can apply Theo-
rem 5.2.1 that gives us

P
(
tournament is irreducible

)
≈ 1−

∑
k>1

(
2itk − it

(2)
k

)
·
(
n

k

)
· 2k(k+1)/2

2nk
,

where the counting sequence of irreducible tournaments (A054946 in the OEIS [76]) is

(itk) = 1, 0, 2, 24, 544, 22 320, 1 677 488, 236 522 496, 64 026 088 576, . . .

and the counting sequences of tournaments consisting of two irreducible parts is(
it

(2)
k

)
= 0, 2, 0, 16, 240, 6 608, 315 840, 27 001 984, 4 268 194 560, . . .

In particular, as it was shown by Wright [103],

P
(
tournament is irreducible

)
= 1−

(
n

1

)
·22−n+

(
n

2

)
·24−2n−

(
n

3

)
·28−3n−

(
n

4

)
·215−4n+O

(
n5 ·2−5n

)
.

Remark 5.2.3. Theorem 5.2.1 provides us an indirect method of showing that a labeled combina-
torial class U is not gargantuan. Indeed, let U = SEQ(W) and u ∈ U be a random object of size n.
Suppose that

lim
n→∞

P
(
u is SEQ-irreducible

)
6= 1.

Then, in accordance with Theorem 5.2.1, U is not gargantuan.

Example 5.2.4. Consider the labeled combinatorial class L of linear orders. As we have seen in
Example 3.1.32,

L = SEQ(Z).

Since for n > 1 any linear order ≺∈ Ln is SEQ-reducible in terms of this decomposition, we have

P(≺ is SEQ-irreducible) = 0.

Hence, by Remark 5.2.3, L is not gargantuan. Note that this fact is consistent with Example 3.1.75.

5.3 Objects with several SEQ-irreducible components
Theorem 5.3.1 (SEQm asymptotics). Let U be a gargantuan labeled combinatorial class with positive
coefficients, such that U = SEQ(W) for some labeled combinatorial class W. Suppose that u ∈ U is
a random object of size n. Then for any m ∈ N,

P(u has m SEQ-irreducible components) ≈
∑
k>0

β
(m)
k ·

(
n

k

)
· un−k

un
, (5.12)

where
β

(m)
k = m

(
w

(m−1)
k − 2w

(m)
k + w

(m+1)
k

)
.
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Proof. Apply Theorem 3.1.79 a) to the gargantuan class Ũ = U − {ε} and the function

Fm(y) =

(
1− 1

1 + y

)m+1

.

According to (5.2) and (5.4),

Fm
(
U(z)− 1

)
=

(
1− 1

U(z)

)m
= W (m)(z),

while

Cm(z) =

(
1− 1

U(z)

)m−1
m(

U(z)
)2

= m
(
W (z)

)m−1(
1−W (z)

)2

= m
(
W (m−1)(z)− 2W (m)(z) +W (m+1)(z)

)
.

Hence, the statement of Theorem 3.1.79 a) gives us

w(m)
n ≈

∑
k>0

(
n

k

)
ckun−k =

∑
k>0

(
n

k

)
β

(m)
k un−k.

To finish the proof, divide the obtained formula by un.

Remark 5.3.2. Defining W (0)(z) =
(
W (z)

)0
= 1, we can see that Theorem 5.2.1 is the partic-

ular case of Theorem 5.3.1 for m = 1. The coefficients of asymptotic probabilities fit into the
general scheme depicted below. Here, in the left column, there are exponential generating func-
tions corresponding to the family of labeled combinatorial classes W(m), m ∈ Z>0, while the right
column represents the same functions multiplied by

(
1 − W (z)

)2. By Theorem 5.3.1, the coeffi-
cients involved into the asymptotic expansion ofW(m) constitute the exponential generating function
m
(
W (z)

)m−1(
1−W (z)

)2. This fact is reflected by solid arrows pointing from the left column to the
right one.

1

W (z)

W (2)(z)

W (3)(z)

(
1−W (z)

)2

W (z)
(
1−W (z)

)2

2W (2)(z)
(
1−W (z)

)2

3W (3)(z)
(
1−W (z)

)2

Remark 5.3.3. Every labeled combinatorial object u ∈ U = SEQ(W) has a fixed number m of
SEQ-irreducible components. This trivial fact implies the identity

un =
∞∑
m=1

w(m)
n
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for any positive integer n. As a consequence, in the proof of Theorem 5.3.1 the sum of the series Cm(z)
over all m > 1 should be equal to 1. We can check it directly as follows:

∞∑
m=1

Cm(z) =
∞∑
m=1

m
(
W (m−1)(z)− 2W (m)(z) +W (m+1)(z)

)
= W (0)(z) = 1.

Corollary 5.3.4. Let U be a gargantuan labeled combinatorial class with positive coefficients, such
that U = SEQ(W) for some labeled combinatorial class W. Suppose that u ∈ U is a random object
of size n. Then for any m ∈ N,

P(u has m SEQ-irreducible components) = m · (n)m−1 ·
um−1

1 un−m+1

un
+O

(
nm · un−m

un

)
, (5.13)

where (n)m = n(n− 1)(n− 2) . . . (n−m+ 1) are the falling factorials.

Proof. According to Theorem 5.3.1, we need to look at the leading term of the exponential generating
function m

(
W (m−1)(z)− 2W (m)(z) +W (m+1)(z)

)
. Taking into account that w1 = u1, we obtain

m
(
W (m−1)(z)− 2W (m)(z) +W (m+1)(z)

)
= m! · um−1

1 · zm−1

(m− 1)!
+ . . .

As a consequence, the first non-zero coefficient in asymptotic probability (5.12) turns out to be

m! · um−1
1

((
n

m− 1

)
· un−m+1

un

)
= m · (n)m−1 ·

um−1
1 un−m+1

un
.

Example 5.3.5. Apply Theorem 5.3.1 for tournaments (it is possible, since T = SEQ(IT ) and
T is gargantuan, see Example 5.2.2). In this case, we have the family of labeled combinatorial
classes IT (m) of tournaments consisting ofm irreducible parts, wherem runs over all positive integers.
The counting sequences of IT (m) for m 6 5 are listed in Table 5.1.

n 1 2 3 4 5 6 7 8 9(
itn
)

1 0 2 24 544 22 320 1 677 488 236 522 496 64 026 088 576 . . .(
it(2)
n

)
0 2 0 16 240 6 608 315 840 27 001 984 4 268 194 560 . . .(

it(3)
n

)
0 0 6 0 120 2 160 70 224 3 830 400 366 729 600 . . .(

it(4)
n

)
0 0 0 24 0 960 20 160 758 016 46 448 640 . . .(

it(5)
n

)
0 0 0 0 120 0 8 400 201 600 8 628 480 . . .

Table 5.1: Counting sequences
(
it(m)
n

)
for m 6 5.

According to Theorem 5.3.1, the asymptotic probability, that a random tournament of size n
has exactly m irreducible parts, reads

P
(
tournament has m irreducible parts

)
≈
∑
k>0

β
(m)
k ·

(
n

k

)
· 2k(k+1)/2

2nk
,

where β(m)
k = m

(
it

(m−1)
k − 2it

(m)
k + it

(m+1)
k

)
. Sequences

(
β

(m)
k

)
for m 6 5 are listed in Table 5.2.
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k 0 1 2 3 4 5 6 7 8(
β

(1)
k

)
1 −2 2 −4 −32 −848 −38 032 −3 039 136 −446 043 008 . . .(

β
(2)
k

)
0 2 −8 16 −16 368 22 528 2 232 064 372 697 856 . . .(

β
(3)
k

)
0 0 6 −36 120 0 9 744 586 656 60 297 600 . . .(

β
(4)
k

)
0 0 0 24 −192 960 960 153 216 10 063 872 . . .(

β
(5)
k

)
0 0 0 0 120 −1 200 8 400 16 800 2 177 280 . . .

Table 5.2: Asymptotic coefficients for tournaments.

In particular, according to Corollary 5.3.4, the leading term of this asymptotic probability is

P
(
tournament has m irreducible parts

)
= m · (n)m−1 ·

2m(m−1)/2

2(m−1)n
+O

(
nm

2nm

)
.

Note that in Table 5.2, the sum over any column is zero (see Remark 5.3.3).

5.4 Asymptotics for d-gargantuan classes
The goal of this section is to generalize the results of Sections 5.2 and 5.3 to d-gargantuan labeled
combinatorial classes for any d ∈ N.

Theorem 5.4.1. Let d be a positive integer and U be a d-gargantuan labeled combinatorial class,
such that U = SEQ(W) for some labeled combinatorial class W. Suppose that u ∈ U is a random
object of size dn. Then

P(u is SEQ-irreducible) ≈ 1−
∑
k>1

(
2wdk −w

(2)
dk

)
·
(
dn

dk

)
·
ud(n−k)

udn
. (5.14)

Proof. It is sufficient to apply Theorem 3.1.79 b) to the d-gargantuan labeled combinatorial class
Ũ = U − {ε} and the function

F (y) = 1− 1

1 + y
.

Theorem 5.4.2. Let d be a positive integer and U be a d-gargantuan labeled combinatorial class,
such that U = SEQ(W) for some labeled combinatorial class W. Suppose that u ∈ U is a random
object of size dn. Then for any m ∈ N,

P(u has m SEQ-irreducible components) ≈
∑
k>0

β
(m)
dk ·

(
dn

dk

)
·
ud(n−k)

udn
, (5.15)

where
β

(m)
dk = m

(
w

(m−1)
dk − 2w

(m)
dk + w

(m+1)
dk

)
.

In particular, the leading term of (5.15) is

P(u has m SEQ-irreducible components) =

= m · (dn)!

(d!)m−1(d(n−m+ 1))!
·
um−1
d ud(n−m+1)

udn
+O

(
ndm ·

ud(n−m)

udn

)
. (5.16)
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Proof. To establish (5.15), it is sufficient to apply Theorem 3.1.79 b) to the d-gargantuan labeled
combinatorial class Ũ = U − {ε} and the function

Fm(y) =

(
1− 1

1 + y

)m+1

.

Let us evaluate the leading term of asymptotic expansion (5.15). To this end, we need to look at the
exponential generating function

W (m−1)(z)− 2W (m)(z) +W (m+1)(z)

which determines its behavior. Among three summands, it is sufficient to look at the behavior of the
smallest one, namely, W (m−1)(z). Since the first non-zero coefficient in the exponential generating
functions W (z) is equal to wd = ud, we have

W (m−1)(z) =
(
W (z)

)m−1

= um−1
d · z

d(m−1)

(d!)m−1
+ . . .

=

((
d(m− 1)

)
!

(d!)m−1
· um−1

d

)
· zd(m−1)(
d(m− 1)

)
!

+ . . . .

Thus, using formula (5.15), we obtain the first non-zero coefficient in the asymptotic probability that
a random object has exactly m SEQ-irreducible components which is((

dn

d(m− 1)

)
·
ud(n−m+1)

udn

)
·m ·

((
d(m− 1)

)
!

(d!)m−1
· um−1

d

)
.

Regrouping factors, we obtain exactly (5.16).

5.5 Asymptotics for unlabeled classes
The goal of this section is to generalize the results of Sections 5.2 and 5.3 to unlabeled combinatorial
classes. Since a gargantuan class is d-gargantuan for d = 1, we state theorems for d-gargantuan
unlabeled combinatorial classes directly.

Theorem 5.5.1. Let d ∈ N and U be a d-gargantuan unlabeled combinatorial class with positive
coefficients, such that U = SEQ(W) for some unlabeled combinatorial class W. Suppose that u ∈ U
is a random object of size dn. Then

P(u is SEQ-irreducible) ≈ 1−
∑
k>1

(
2wdk −w

(2)
dk

)
·
ud(n−k)

udn
. (5.17)

Proof. Apply Theorem 3.2.22 to the d-gargantuan unlabeled combinatorial class Ũ = U − {ε} and
the function

F (y) = 1− 1

1 + y
.
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Theorem 5.5.2. Let d ∈ N and U be a d-gargantuan unlabeled combinatorial class with positive
coefficients, such that U = SEQ(W) for some unlabeled combinatorial class W. Suppose that u ∈ U
is a random object of size dn. Then for any m ∈ N,

P(u has m SEQ-irreducible components) ≈
∑
k>0

m
(
w

(m−1)
dk − 2w

(m)
dk + w

(m+1)
dk

)
·
ud(n−k)

udn
. (5.18)

In particular, the leading term of (5.18) is

P(u has m SEQ-irreducible components) = m ·
um−1
d ud(n−m+1)

udn
+O

(
ud(n−m)

udn

)
. (5.19)

Proof. Apply Theorem 3.2.22 to the d-gargantuan unlabeled combinatorial class Ũ = U − {ε} and
the function

Fm(y) =

(
1− 1

1 + y

)m+1

.

The formula for the leading term follows from the fact that W (m)(z) = umd z
dm + . . ..

Example 5.5.3. As we have seen in Example 3.2.13, any permutation can be decomposed as a se-
quence of indecomposable permutations. We can formally consider the combinatorial classes uP of
permutations and uIP of indecomposable permutations as unlabeled, meaning that they satisfy

uP = SEQ(uIP).

Also, we consider the family of unlabeled combinatorial classes uIP(m) of permutations consisting
of m indecomposable parts, where m runs over all positive integers. The counting sequences

(
ip(m)
n

)
of uIP(m) for m 6 5 are listed in Table 5.3.

n 1 2 3 4 5 6 7 8 9 10 11(
ipn
)

1 1 3 13 71 461 3 447 29 093 273 343 2 829 325 31 998 903 . . .(
ip(2)
n

)
0 1 2 7 32 177 1 142 8 411 69 692 642 581 6 534 978 . . .(

ip(3)
n

)
0 0 1 3 12 58 327 2 109 15 366 125 316 1 135 329 . . .(

ip(4)
n

)
0 0 0 1 4 18 92 531 3 440 24 892 200 344 . . .(

ip(5)
n

)
0 0 0 0 1 5 25 135 800 5 226 37 690 . . .

Table 5.3: Counting sequences
(
ip(m)
n

)
for m 6 5.

Since the unlabeled combinatorial class uP is gargantuan (see Example 3.2.21), we can apply
Theorem 5.5.1. Taking into account that

pn−k
pn

=
1

(n)k
,

where (n)k = n(n− 1) . . . (n− k + 1) are the falling factorials, the theorem gives us

P
(
permutation is indecomposable

)
≈ 1−

∑
k>1

2ipk − ip
(2)
k

(n)k
.
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In particular, as it was shown by Comtet [21],

P
(
permutation is indecomposable

)
=

= 1− 2

n
− 1

(n)2

− 4

(n)3

− 19

(n)4

− 110

(n)5

− 745

(n)6

− 5752

(n)7

− 49775

(n)8

− 476994

(n)9

− 5016069

(n)10

+O

(
1

n11

)
.

The same way, we can apply Theorem 5.5.2 and, for every m ∈ N, obtain

P
(
permutation has m indecomposable parts

)
≈
∑
k>1

β
(m)
k

(n)k
.

where β(m)
k = m

(
ip

(m−1)
k − 2ip

(m)
k + ip

(m+1)
k

)
. Sequences

(
β

(m)
k

)
for m 6 5 are listed in Table 5.4.

n 0 1 2 3 4 5 6 7 8 9(
β

(1)
n

)
1 −2 −1 −4 −19 −110 −745 −5 752 −49 775 −476 994 . . .(

β
(2)
n

)
0 2 −2 0 4 38 330 2 980 28 760 298 650 . . .(

β
(3)
n

)
0 0 3 0 6 36 237 1 740 14 172 127 200 . . .(

β
(4)
n

)
0 0 0 4 4 20 108 672 4 728 37 144 . . .(

β
(5)
n

)
0 0 0 0 5 10 45 240 1 470 10 140 . . .

Table 5.4: Asymptotic coefficients for permutations.

In particular,

P
(
permutation has m indecomposable parts

)
=

m

(n)m−1

+O

(
1

nm

)
.
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Chapter 6

CYC-irreducibles

In this chapter, we study the asymptotic probabilities that a random object is CYC-irreducible or
consists of a fixed number of cycles. Section 6.1 is devoted to less formal discussion of the topic. We
follow rather intuitive way to get the desired expansions for gargantuan labeled classes and explain
combinatorially the obtained coefficients. In Sections 6.2 and 6.3 we prove the empirically obtained
results more formally, with the help of Bender’s theorem. Section 6.4 is devoted to the generalization
for d-gargantuan labeled combinatorial classes. Unlike the previous chapter, we do not mention
unlabeled combinatorial classes whose asymptotic behavior cannot be treated by Theorem 3.1.79.
What is the problem with unlabeled classes, and what could be the approach to solving it, we will
discuss in part IV.

Throughout the chapter, we use the following notations. We designate by V andW two labeled
combinatorial classes, such that

V = CYC(W), (6.1)

meaning that their exponential generating functions are connected by the relation

V (z) = ln
1

1−W (z)
⇔ W (z) = 1− e−V (z). (6.2)

Also, we consider labeled combinatorial classes

W [m] = CYCm(W) (6.3)

and their exponential generating functions

W [m](z) =
∞∑
n=1

w[m]
n

zn

n!
=

(
W (z)

)m
m

, (6.4)

where m runs over the set of positive integers and
(
w

[m]
n

)
is the counting sequences of the classW [m].

Note that in the particular case m = 1, we have W [1] =W and, consequently, W [1](z) = W (z).

6.1 CYC-irreducibles and the inclusion-exclusion principle
Let us start this chapter with the combinatorial reasoning and the underlying inclusion-exclusion
principle. Here, the basic ideas are the same as in Section 5.1. That is why we allow ourselves
to make a presentation more concise. We suppose that the labeled combinatorial classes V and W
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satisfy (6.1) and that the behavior of V is known. Our goal is to express the behavior of W in terms
of V and establish asymptotic expansions in the case when V is gargantuan.

The first idea is that, for gargantuan class V , the main contribution in the asymptotic behavior
is made by objects that have a large CYC-irreducible part. Accordingly, we can approximate vn by the
sum over wk, where k = n, n−1, n−2, . . .. The coefficients rely on the structure of objects constructed
with the help of CYC-operation. For instance, the first three terms of the above decomposition are

vn = wn + w1

(
n

1

)
wn−1 + (w2 + 2w1)

(
n

2

)
wn−2 +O

(
n3wn−3

)
.

Similarly to Lemmas 5.1.3 and 5.1.4, we obtain the following result.

Lemma 6.1.1. If V and W are labeled combinatorial classes such that V = CYC(W), then for any
positive integer n,

vn =
∑
Cn

n!

(1!)c1 · . . . · (n!)cn
· (c1 + . . .+ cn − 1)!

c1! · . . . · cn!
·
(
wc1

1 · . . . ·wcn
n

)
(6.5)

and
wn =

∑
Cn

(−1)(c1+...+cn)−1 · n!

(1!)c1 · . . . · (n!)cn
· 1

c1! · . . . · cn!
·
(
vc11 · . . . · vcnn

)
, (6.6)

where Cn = {(c1, . . . , cn) | c1 + 2c2 + . . .+ ncn = n}.

Proof. The first formula comes from the expression for the exponential generating function of V in
terms of the exponential generating function of W (see (6.2)):

V (z) = 1 +W (z) +
W 2(z)

2
+
W 3(z)

3
+ . . .

The second formula can be derived from the inverse relation

W (z) = V (z)− V 2(z)

2!
+
V 3(z)

3!
− . . . .

Remark 6.1.2. As well as (5.1.3), relation (6.5) admits a purely combinatorial explanation coming
from the enumeration of all possible structures in Vn, n ∈ N. Indeed, any cycle in Vn determines the
n-sequence (c1, . . . , cn) such that ck is the number of elements of size k in this cycle. The number of
objects with the same n-sequence (c1, . . . , cn) is determined by the choice of

1. the order of elements sizes:
(c1 + . . .+ cn − 1)!

c1! · . . . · cn!
choices;

2. labels for each element:
n!

(1!)c1 · . . . · (n!)cn
choices;

3. elements themselves:
wc1

1 · . . . ·wcn
n choices.

113



Adding up, we obtain the desired expression (6.5).

Relations in the statement of Lemma 6.1.1 hold for any labeled combinatorial classes, not just
gargantuan. However, if V is gargantuan, then formula (6.6) provides the asymptotic expansion with
as many terms as we want. For instance, we can get the following first three terms of the asymptotic
probability that a random object v ∈ V is CYC-irreducible:

P
(
v is CYC-irreducible

)
= 1− v1

(
n

1

)
vn−1

vn
−
(
v2 − v2

1

)(n
2

)
vn−2

vn
+O

(
vn−3

vn

)
.

In order to interpret combinatorially the involved coefficients, we rewrite them in terms of wk. For
this goal, we need to come back to the asymptotic expansion for vn rewritten in a different form.
Also, we need the following additional observation.

Lemma 6.1.3. If W is a labeled combinatorial class and m is a positive integer, then

ΘCYC>m(W) ∼= SEQm(W) ?ΘCYC(W).

Proof. Assume that a pointed cycle consist of l + 1 objects ω0, . . . , ωl ∈ W , where l > m and ω0

contain the pointed atom. Extract the subsequence (ω1, . . . , ωm) from the cycle. Thus, the rest is
equivalent to the cycle (ω0, ωm+1, ωm+2, . . . , ωl) with the pointed atom belonging to ω0 (Fig. 6.1).
Clearly, we obtain a bijection.

. . . . . .

ω0

ω1 ωm ωl

 

. . .

. . .

ω0

ωm+1 ωl

ω1 ωm ?

Figure 6.1: Mapping ΘCYC>m(W)→ SEQm(W) ?ΘCYC(W).

Remark 6.1.4. Lemma 6.1.3 can be verified directly with the help of exponential generating func-
tions. Indeed, the exponential generating function of SEQm(W) ?ΘCYC(W) is

(
W (z)

)m(
z
d

dz
ln

1

1−W (z)

)
=

(
z
d

dz
W (z)

) (
W (z)

)m
1−W (z)

.

On the other hand, the exponential generating function of ΘCYC>m(W) turns out to be

z
d

dz

(
ln

1

1−W (z)
−

m∑
k=1

(
W (z)

)k
k

)
=

(
z
d

dz
W (z)

)
1

1−W (z)
−
(
z
d

dz
W (z)

) m∑
k=1

(
W (z)

)k−1

=

(
z
d

dz
W (z)

) (
W (z)

)m
1−W (z)

.

We have seen another combinatorial isomorphism of this kind in Example 3.1.56,

ΘCYC(W) ∼= ΘW ? SEQ(W),
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meaning that a cycle with a distinguished element is equivalent to the pair consisting of this element
and a sequence. In our case, we are interested in the asymptotic behavior of vn, and the significant
contribution is made by large CYC-irreducible components which play the role of distinguished
elements. More precisely, let us say that we wish to obtain first r terms of the asymptotic expansion,
where r is an arbitrary positive integer. Then for sufficiently large n (say, n > 2r) each object v ∈ Vn
either has a CYC-irreducible component of size at least (n− r) or makes a negligible contribution.

Now, to enumerate CYC-irreducible objects, we deduce objects with at least two components
from all the objects. According to Lemma 6.1.3, an object with at least two components, one of
which is large, corresponds to the pair of the CYC-irreducible element and the object with large
component. Hence, we have the approximation

wn ≈ un −
∑
k>1

wk

(
n

k

)
vn−k

leading to the asymptotic probability for a random object v ∈ V to be CYC-irreducible:

P(v is CYC-irreducible) ≈ 1−
∑
k>1

wk ·
(
n

k

)
· vn−k

vn
.

Note that, on the contrary to the case of SEQ-irreducibles, we do not provide the exact formula
for wn that could be an analogue of (5.9). We do not need to go deeply into the precise behavior of
negligible “tails”, so we “kill” symmetries for simplifying the computations.

In the same way, we can obtain the asymptotic expansion for the probability that a random
object v ∈ V has several CYC-irreducible components. Here, we use the observation that

CYC>m(W) = CYCm(W) + CYC>m(W).

Together with Lemma 6.1.3, this allows us to obtain the following asymptotics:

P(v has m CYC-irreducible components) ≈
∑
k>0

(
w

(m−1)
k −w

(m)
k

)
·
(
n

k

)
· vn−k

vn
,

where
(
w

(m)
k

)
is the counting sequence of the labeled combinatorial class

W(m) = SEQmW .

The reader will find the short proof of the above relation in Sections 6.2 and 6.3.

6.2 Asymptotic probability of CYC-irreducible objects
Theorem 6.2.1 (CYC asymptotics). Let V be a gargantuan labeled combinatorial class with positive
coefficients, such that V = CYC(W) for some labeled combinatorial class W. Suppose that v ∈ V is
a random object of size n. Then

P(v is CYC-irreducible) ≈ 1−
∑
k>1

wk ·
(
n

k

)
· vn−k

vn
. (6.7)
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Proof. Let us apply Theorem 3.1.79 a) to the gargantuan labeled combinatorial class V and the
function

F (y) = 1− e−y.
According to (6.2),

F
(
V (z)

)
= 1− e−V (z) = W (z),

while, due to (6.4),
C(z) = e−V (z) = 1−W (z).

Together with the statement of Theorem 3.1.79, this implies

wn ≈
∑
k>0

(
n

k

)
ckvn−k = vn −

∑
k>1

(
n

k

)
wkvn−k.

Since wn/vn is the probability that v is CYC-irreducible, it is sufficient to divide both sides by vn
to finish the proof.

6.3 Objects with several CYC-irreducible components
Theorem 6.3.1 (CYCm asymptotics). Let V be a gargantuan labeled combinatorial class with positive
coefficients, such that V = CYC(W) for some labeled combinatorial class W. Suppose that v ∈ V is
a random object of size n. Then for any m ∈ N,

P(v has m CYC-irreducible components) ≈
∑
k>0

(
w

(m−1)
k −w

(m)
k

)
·
(
n

k

)
· vn−k

vn
. (6.8)

where
(
w

(m)
k

)
is the counting sequence of the labeled combinatorial class W(m) = SEQm(W).

Proof. Apply Theorem 3.1.79 a) to the gargantuan class V and the function

Fm(y) =

(
1− e−y

)m
m

.

According to (6.2) and (6.4),

Fm
(
V (z)

)
=

(
1− e−V (z)

)m
m

=

(
W (z)

)m
m

= W [m](z),

while

Cm(z) =
(
1− e−V (z)

)m−1
e−V (z)

=
(
W (z)

)m−1(
1−W (z)

)
= W (m−1)(z)−W (m)(z).

Hence, the statement of Theorem 3.1.79 gives us

w[m]
n ≈

∑
k>0

(
n

k

)
ckvn−k =

∑
k>0

(
n

k

)(
w

(m−1)
k −w

(m)
k

)
vn−k.

To finish the proof, divide the obtained formula by vn.
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Remark 6.3.2. SinceW (m)(z) = mW [m](z) for every positive integerm, we can rewrite formula (6.8)
in terms of counting sequences

(
w

[m−1]
k

)
and

(
w

[m]
k

)
:

P(v has m CYC-irreducible components) ≈
∑
k>0

(
(m− 1)w

[m−1]
k −mw

[m]
k

)
·
(
n

k

)
· vn−k

vn
.

Remark 6.3.3. DefiningW [0](z) =
(
W (z)

)0
= 1, we can see that Theorem 6.2.1 is the particular case

of Theorem 6.3.1 for m = 1. The coefficients of asymptotic probabilities fit into the general scheme
depicted below. The left column corresponds to the exponential generating functions of labeled
combinatorial classes W [m], m ∈ Z>0. The right column represents the same functions multiplied by
m
(
1−W (z)

)
. According to Theorem 6.3.1, the coefficients involved into the asymptotic expansion

of W [m] constitute the exponential generating function W (m−1)(z)
(
1−W (z)

)
. This fact is reflected

by solid arrows pointing from the left column to the right one.

1

W (z)

W [2](z)

W [3](z)

(
1−W (z)

)
W (z)

(
1−W (z)

)
2W [2](z)

(
1−W (z)

)
3W [3](z)

(
1−W (z)

)

Corollary 6.3.4. Let V be a gargantuan labeled combinatorial class with positive coefficients, such
that V = CYC(W) for some labeled combinatorial class W. Suppose that v ∈ U is a random object
of size n. Then

P(v has m CYC-irreducible components) =

(
n

m− 1

)
· v

m−1
1 vn−m+1

vn
+O

(
nm · vn−m

vn

)
. (6.9)

Proof. According to Theorem 6.3.1, we need to look at the leading term of the exponential generating
function

(
W (z)

)m−1 −
(
W (z)

)m. Since w1 = v1, we have

(
W (z)

)m−1 −
(
W (z)

)m
= vm−1

1 · zm−1

(m− 1)!
+ . . .

As a consequence, the first non-zero coefficient in asymptotic probability (6.8) turns out to be

vm−1
1

((
n

m− 1

)
· vn−m+1

vn

)
=

(
n

m− 1

)
· v

m−1
1 vn−m+1

vn
.

Remark 6.3.5. Every labeled combinatorial object v ∈ V = CYC(W) has a fixed number m of
CYC-irreducible components. This fact implies the natural identity

vn =
∞∑
m=1

w[m]
n
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for any positive integer n. As a consequence, in the proof of Theorem 6.3.1 the sum of the series Cm(z)
over all m > 1 should be equal to 1. We can check it directly:

∞∑
m=1

Cm(z) =
∞∑
m=1

((
W (z)

)m−1 −
(
W (z)

)m)
=
(
W (z)

)0
= 1.

6.4 Asymptotics for d-gargantuan classes
The aim of this section is to generalize the results of Sections 6.2 and 6.3 to d-gargantuan labeled
combinatorial classes, d ∈ N.

Theorem 6.4.1. Let d be a positive integer and V be a d-gargantuan labeled combinatorial class,
such that V = CYC(W) for some labeled combinatorial class W. Suppose that v ∈ V is a random
object of size dn. Then

P(v is CYC-irreducible) ≈ 1−
∑
k>1

wdk ·
(
dn

dk

)
·
vd(n−k)

vdn
. (6.10)

Proof. It is sufficient to apply Theorem 3.1.79 b) to the d-gargantuan labeled combinatorial class V
and the function

F (y) = 1− e−y.

Theorem 6.4.2. Let d be a positive integer and V be a d-gargantuan labeled combinatorial class,
such that V = CYC(W) for some labeled combinatorial class W. Suppose that v ∈ V is a random
object of size dn. Then for any m ∈ N,

P(v has m CYC-irreducible components) ≈
∑
k>0

(
w

(m−1)
dk −w

(m)
dk

)
·
(
dn

dk

)
·
vd(n−k)

vdn
, (6.11)

where
(
w

(m)
k

)
is the counting sequence of the labeled combinatorial class W(m) = SEQm(W). In

particular, the leading term of (6.11) is

P(v has m CYC-irreducible components) =

=
(dn)!

(d!)m−1(d(n−m+ 1))!
·
vm−1
d vd(n−m+1)

vdn
+O

(
ndm ·

vd(n−m)

vdn

)
. (6.12)

Proof. To establish (6.11), it is sufficient to apply Theorem 3.1.79 b) to the d-gargantuan labeled
combinatorial class V and the function

Fm(y) =
(1− e−y)m

m
.

In accordance with (6.11), the leading term of the desired asymptotics is determined by the expo-
nential generating function

W (m−1)(z)−W (m)(z).
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Since the first non-zero coefficient in the exponential generating functions W (z) is equal to wd = vd,
we have

W (m−1)(z)−W (m)(z) =
(
W (z)

)m−1(
1−W (z)

)
= vm−1

d · z
d(m−1)

(d!)m−1
+ . . .

=

((
d(m− 1)

)
!

(d!)m−1
· vm−1

d

)
· zd(m−1)(
d(m− 1)

)
!

+ . . . .

Hence, formula (6.11) implies that the first non-zero coefficient in the asymptotic probability that
a random object has exactly m CYC-irreducible components is((

dn

d(m− 1)

)
·
vd(n−m+1)

vdn

)
·

((
d(m− 1)

)
!

(d!)m−1
· vm−1

d

)
=

(dn)!

(d!)m−1(d(n−m+ 1))!
·
vm−1
d vd(n−m+1)

vdn
.
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Chapter 7

SET-irreducibles

This chapter is devoted to asymptotic expansions of the probabilities concerning SET-decompositions
of gargantuan labeled combinatorial classes. As in the previous two chapters, the first section (Sec-
tion 7.1) constitutes of rather informal discussion. With the help of the inclusion-exclusion principle,
we establish exact formulas that lead to desired approximations together with the combinatorial
interpretation of the involved coefficients. In Sections 7.2 and 7.3, we use Bender’s theorem to prove
rigorously the obtained results. Section 7.4 is related to the generalization for d-gargantuan labeled
combinatorial classes. Finally, some partial results related to unlabeled combinatorial classes are
discussed in Section 7.5.

Let us describe the notations that we use in this chapter. We designate by U , V and W three
labeled combinatorial classes, such that1

U = SET(V) and U = SEQ(W). (7.1)

Consequently, their exponential generating functions satisfy the following relations:

U(z) = exp
(
V (z)

)
and U(z) =

1

1−W (z)
. (7.2)

Also, we study the family of labeled combinatorial classes

V{m} = SETm(V) (7.3)

parametrized by a positive integer m. The corresponding exponential generating functions are

V {m}(z) =
∞∑
n=1

v{m}n

zn

n!
=

(
V (z)

)m
m!

, (7.4)

where
(
v
{m}
n

)
is the counting sequences of the class V{m}. In particular, V{1} = V and V {1}(z) = V (z).

7.1 SET-irreducibles and the inclusion-exclusion principle
The same way as we have it done in the previous chapters, we start with some exact formulas that
can serve for establishing asymptotics for gargantuan labeled combinatorial classes.

1To be rigorous, we should have written U = SET(V) ∼= SEQ(W), but for simplicity, we use the sign of equality.
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Lemma 7.1.1. If U and V are labeled combinatorial classes such that U = SET(V), then for any
positive integer n,

un =
∑
Cn

n!

(1!)c1 · . . . · (n!)cn
· 1

c1! · . . . · cn!
·
(
vc11 · . . . · vcnn

)
(7.5)

and
vn =

∑
Cn

(−1)(c1+...+cn)−1 · n!

(1!)c1 · . . . · (n!)cn
· (c1 + . . .+ cn − 1)!

c1! · . . . · cn!
·
(
uc11 · . . . · ucnn

)
, (7.6)

where Cn = {(c1, . . . , cn) | c1 + 2c2 + . . .+ ncn = n}.

Proof. Both formulas come from the relation U(z) = exp
(
V (z)

)
. To obtain the first formula, it is

sufficient to use the decomposition of the exponent into the series:

U(z) = 1 + V (z) +
V 2(z)

2!
+
V 3(z)

3!
+ . . .

and then to pass to the summation over partitions. The second formula can be derived in a similar
way from the inverse relation

V (z) = Ũ(z)− Ũ2(z)

2
+
Ũ3(z)

3
− . . . ,

where Ũ(z) = U(z)− 1.

Remark 7.1.2. As well as (5.1.3) and (6.5), relation (7.5) can be explained with the help of pure
combinatorial reasoning. Indeed, for each n ∈ N, any set in Un determines the n-sequence (c1, . . . , cn)
such that ck is the number of elements of size k in this set. The number of objects with the same
n-sequence (c1, . . . , cn) is determined by the choice of

1. labels for each element:
n!

(1!)c1 · . . . · (n!)cn
choices;

2. elements themselves:
vc11 · . . . · vcnn choices.

Note that we need to divide the product of the above numbers by c1! · . . . · cn!, because the order of
elements in the set is not important. Taking the sum over Cn, we obtain the desired expression (6.5).

In the case when U is gargantuan, one can use (7.6) to obtain the asymptotic expansion. Indeed,
in this case uk = o(uk+1) for any k ∈ N. Therefore, fixing an arbitrary r ∈ N, we can consider the
linear combination of vk, where k = n, (n − 1), (n − 2), . . . , (n − r), as an approximation of un for
large n. For example, for r = 2, we have

vn = un − u1

(
n

1

)
un−1 − (u2 − 2u2

1)

(
n

2

)
un−2 −O

(
n3un−3

)
.

Yet, a combinatorial interpretation of the coefficients is not clear for this formula. In order to
understand the meaning of the involved values, we need to do some preliminary work.
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Let us fix a large positive integer n. For each k 6 n and for every partition λ = (λ1, . . . , λl(λ))
of the integer k, define Bλ,n to be the number of labeled objects in Un containing SET-irreducible
components of sizes λ1, λ2, . . . , λl(λ) with respect to the labels. For example, if n = 3, k = 2 and
λ = (1, 1), then the only possible structure of the object consists of three SET-irreducible components
of size 1, so that the total amount of such objects is v3

1. On the other hand, each object enters
into B(1,1),3 exactly three times because there are three possible ways to choose two components out
of three. Thus, B(1,1),3 = 3v3

1.
More generally, a partition λ is determined by the tuple (c1, . . . , ck) of non-negative integers

satisfying c1 + 2c2 + . . . + kck = k = |λ|. In terms of this tuple, the number Bλ,n is determined by
the following sequence of choices.

1. Choose k vertices among given n labeled vertices:(
n

k

)
choices.

2. Distribute these k vertices into l(λ) = c1+. . .+ck groups, such that ck groups contain k elements:

k!

(1!)c1 · . . . · (k!)ck
· 1

c1! · . . . · ck!
choices.

3. For every group, choose a SET-irreducible labeled object of appropriate size:

vc11 · . . . · v
ck
k choices.

4. For the remaining (n− k) vertices, choose a labeled object of size (n− k):

un−k choices.

Thus, Bλ,n satisfy the following relation:

Bλ,n =

(
n

k

)
· k!

(1!)c1 · . . . · (k!)ck
· v

c1
1 · . . . · v

ck
k

c1! · . . . · ck!
· un−k.

As a consequence, the number of labeled objects of size n in U , due to the inclusion-exclusion
principle, is provided with the formula

un =
∑

λ : |λ|6n

(−1)l(λ)−1Bλ,n.

Explicitly, we have the following result.

Lemma 7.1.3. If U and V are labeled combinatorial classes such that U = SET(V), then for any
positive integer n,

un =
n∑
k=1

∑
Ck

(−1)(c1+...+ck)−1 ·
(
n

k

)
· k!

(1!)c1 · . . . · (k!)ck
· v

c1
1 · . . . · v

ck
k

c1! · . . . · ck!
· un−k, (7.7)

where Ck = {(c1, . . . , ck) | c1 + 2c2 + . . .+ kck = k}.
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Let us factor out of the second sum in (7.7) the factors depending on n, and denote by wk the
rest. In other words, we define wk by the relation:

wk =
∑
Ck

(−1)(c1+...+ck)−1 · k!

(1!)c1 · . . . · (k!)ck
· v

c1
1 · . . . · v

ck
k

c1! · . . . · ck!
. (7.8)

With this notation, we can rewrite expression (7.7) as

un =
n∑
k=1

wk ·
(
n

k

)
· un−k.

Note that, in terms of exponential generating functions, we have

U(z) = 1 + U(z) ·W (z) ⇔ W (z) = 1− 1

U(z)

where

W (z) =
∞∑
n=0

wn ·
zn

n!
.

This observation means that if there is a combinatorial classW such that U = SEQ(W), then (wn) is
the counting sequence of W .

Now, let us come back to the asymptotics of vn in the case when U is gargantuan. The main
idea is the same as in Sections 5.1 and 6.1: the contribution into the asymptotic expansion is made
by objects that have a large SET-irreducible component. To be precise, fix a positive integer r and
assume that n is large enough (say, n > 2r). Then any object that makes a contribution into first
r terms of the asymptotics is either SET-irreducible or has a component of size greater then (n− r).
The number of SET-irreducible objects is vn. On the other hand, by the inclusion-exclusion principle,
the asymptotics of the number of objects containing a sufficiently large component is determined by
the summands corresponding to k < r in (7.7). This fact implies that

un = vn +
∑
k>1

wk ·
(
n

k

)
· un−k +O(nrun−r).

Rearranging the terms and dividing by un, we get the asymptotic expansion for the probability that
a random object u ∈ U is SET-irreducible:

P(u is SET-irreducible) ≈ 1−
∑
k>1

wk ·
(
n

k

)
· un−k

un
.

We provide a short proof of this informally obtained approximation in the next section.

7.2 Asymptotic probability of SET-irreducible objects
Theorem 7.2.1 (SET asymptotics). Let U be a gargantuan labeled combinatorial class with positive
coefficients, such that U = SET(V) and U = SEQ(W) for some labeled combinatorial classes V
and W. Suppose that u ∈ U is a random object of size n. Then

P(u is SET-irreducible) ≈ 1−
∑
k>1

wk ·
(
n

k

)
· un−k

un
. (7.9)
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Proof. Apply Theorem 3.1.79 a) to the gargantuan labeled combinatorial class Ũ = U − {ε} and the
function

F (y) = ln(1 + y).

Then, according to (7.2),
F
(
U(z)− 1

)
= ln

(
U(z)

)
= V (z),

while
C(z) =

1

U(z)
= 1−W (z).

Hence, the statement of Theorem 3.1.79 a) gives us

vn ≈
∑
k>0

(
n

k

)
ckun−k = un −

∑
k>1

(
n

k

)
wkun−k.

Dividing by un, we obtain desired formula (7.9).

Example 7.2.2. As we have discussed in Examples 3.1.14, 3.1.33 and 3.1.49, the labeled combina-
torial classes of graphs and tournaments are combinatorially equivalent,

G ∼= T ,

while any graph is a collection of connected graphs,

G = SET(CG),

and any tournament can be represented as a sequence of irreducible subtournaments,

T = SEQ(IT ).

Together with the fact that the class G is gargantuan (see Example 3.1.73), this means that we can
apply Theorem 5.2.1 to this class. Since a graph is SET-irreducible if and only if it is connected,
Theorem 5.2.1 implies that

P
(
graph is connected

)
≈ 1−

∑
k>1

itk ·
(
n

k

)
· 2k(k+1)/2

2nk
,

where the counting sequence of irreducible tournaments (A054946 in the OEIS [76]) is

(itk) = 1, 0, 2, 24, 544, 22 320, 1 677 488, 236 522 496, 64 026 088 576, . . .

In particular, as it was shown by Wright [102],

P
(
graph is connected

)
= 1−

(
n

1

)
· 21−n − 2 ·

(
n

3

)
· 26−3n − 24 ·

(
n

4

)
· 210−4n +O

(
n5 · 2−5n

)
.

Remark 7.2.3. Theorem 7.2.1 can serve as an indirect method of showing that a labeled combina-
torial class U is not gargantuan. Indeed, let U = SET(V) and u ∈ U be a random object of size n.
Suppose that

lim
n→∞

P(u is SET-irreducible) 6= 1.

Then Theorem 7.2.1 implies that U is not gargantuan.
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Example 7.2.4. Consider the labeled combinatorial class F of forests. As we have seen in Exam-
ple 3.1.50, any forest is a collection of trees, meaning that

F = SET(T R),

where T R is the labeled combinatorial class of trees. It is well-known [18] that the counting sequence
of trees is trn = nn−2. Hence, for large n,

trn+1

trn
= (n+ 1)

(
1 +

1

n

)n−2

∼ en.

On the other hand, the total amount of forests of size (n+ 1) satisfies

fn+1 > trn+1 + (n+ 1) · trn.

Indeed, among the all forests of size (n + 1), there are trees (of size (n + 1)) and forests with two
components of size n and 1. Therefore,

P(forest is a tree) =
trn+1

fn+1

6
trn+1

trn+1 + (n+ 1)trn
∼ e

e+ 1
< 1,

meaning that, in accordance with Remark 7.2.3, F is not gargantuan. Note that this observation is
in accordance with Example 3.1.74 showing that the class T R of trees is not gargantuan either, as
well as with results of Bell, Bender, Cameron and Richmond [6, 7].

7.3 Objects with several SET-irreducible components
Theorem 7.3.1 (SETm asymptotics). Let U be a gargantuan labeled combinatorial class with positive
coefficients, such that U = SET(V) and U = SEQ(W) for some labeled combinatorial classes V
and W. Suppose that u ∈ U is a random object of size n. Then for any m ∈ N,

P(u has m SET-irreducible components) ≈
∑
k>0

α
{m}
k ·

(
n

k

)
· un−k

un
, (7.10)

where α{m}k are the coefficients of the exponential generating function

V {m−1}(z)
(
1−W (z)

)
=

∞∑
s=m−1

(−1)s+m−1

(
s

m− 1

)
V {s}(z).

Proof. Apply Theorem 3.1.79 a) to the gargantuan labeled combinatorial class Ũ = U − {ε} and the
function

Fm(y) =

(
ln(1 + y)

)m
m!

.

According to (7.2) and (7.4),

Fm
(
U(z)− 1

)
=

(
ln
(
U(z)

))m
m!

= V {m}(z),
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while

Cm(z) =

(
ln
(
U(z)

))m−1

(m− 1)!U(z)
= V {m−1}(z)

(
1−W (z)

)
.

Hence, the statement of Theorem 3.1.79 a) gives us

v{m}n ≈
∑
k>0

(
n

k

)
ckun−k =

∑
k>0

(
n

k

)
α
{m}
k un−k.

Dividing by un, we get desired formula (7.10).
To verify the last identity of the statement, we use relations (7.2) together with (7.4):

V {m−1}(z)
(
1−W (z)

)
=

(
V (z)

)m−1

(m− 1)!

∞∑
k=0

(−1)k
(
V (z)

)k
k!

= (−1)m−1

∞∑
k=0

(−1)k+m−1

(
k +m− 1

m− 1

)(
V (z)

)k+m−1

(k +m− 1)!

=
∞∑

s=m−1

(−1)s+m−1

(
s

m− 1

)
V {s}(z).

Remark 7.3.2. In the statement of Theorem 7.3.1, to obtain the asymptotic expansion (7.10), we
do not need to have a labeled combinatorial class W such that U = SEQ(W). In the case of absence
an appropriate class, in the proof of the theorem, we use the exponential generating function W (z)
formally as a function defined by

W (z) = 1− 1

U(z)
.

For a fixed k ∈ N, the coefficient α{m}k does not depend on W (z) and can be represented as the finite
linear combination of the form

α
{m}
k =

k∑
s=m−1

(−1)s+m−1

(
s

m− 1

)
v
{s}
k .

Remark 7.3.3. Let us define V (0)(z) =
(
V (z)

)0
= 1. With such a notation, we have Theorem 7.2.1

to be the particular case of Theorem 7.3.1 for m = 1. The coefficients of asymptotic probabilities fit
into the general scheme depicted below. In this scheme, the left column represents to the exponential
generating functions of labeled combinatorial classes V{m}, where m runs over Z>0. The right column
corresponds to the same functions multiplied by

(
1 −W (z)

)
. As we have seen in Theorem 7.3.1,

the coefficients involved into the asymptotic expansion of V{m} constitute the exponential generating
function V {m−1}(z)

(
1 −W (z)

)
. To illustrate this fact we draw solid arrows pointing from the left

column to the right one.
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1

V (z)

V {2}(z)

V {3}(z)

(
1−W (z)

)
V (z)

(
1−W (z)

)
V {2}(z)

(
1−W (z)

)
V {3}(z)

(
1−W (z)

)

Corollary 7.3.4. Let U be a gargantuan labeled combinatorial class with positive coefficients, such
that U = SET(V) and U = SEQ(W) for some labeled combinatorial classes V and W. Suppose that
u ∈ U is a random object of size n. Then for any m ∈ N,

P(u has m SET-irreducible components) =

(
n

m− 1

)
· u

m−1
1 un−m+1

un
+O

(
nm · un−m

un

)
. (7.11)

Proof. According to Theorem 7.3.1, we need to look at the leading term of the exponential generating
function V {m−1}(z)

(
1−W (z)

)
. Since v1 = u1, we have

V {m−1}(z)
(
1−W (z)

)
=

(
V (z)

)m−1(
1−W (z)

)
(m− 1)!

= um−1
1 · zm−1

(m− 1)!
+ . . .

Hence, the first non-zero coefficient in asymptotic probability (7.10) is

um−1
1 ·

(
n

m− 1

)
· un−m+1

un
.

Remark 7.3.5. Every labeled combinatorial object u ∈ U = SET(V) has a fixed number m of
SET-irreducible components. Therefore, for any positive integer n considered as the size of u, we
have the identity

un =
∞∑
m=1

v{m}n .

As a consequence, in the proof of Theorem 7.3.1 the sum of the series Cm(z) over all m > 1 equals
one. We can verify this property directly:

∞∑
m=1

Cm(z) =
(
1−W (z)

)
·
∞∑
m=1

(
V (z)

)(m−1)

(m− 1)!
=

exp
(
V (z)

)
U(z)

= 1.

Example 7.3.6. As we have seen in Example 7.2.2, the labeled combinatorial class of graphs is
gargantuan and can be represented as a set of the labeled combinatorial class of connected graphs,

G = SET(CG).
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Hence, we can apply Theorem 7.3.1 to it. As a result, for any m ∈ N, we obtain the asymptotic
probability that a random graph belongs to the labeled combinatorial classes CG{m}, meaning that
this graph has exactly m connected components:

P
(
graph has m connected components

)
≈
∑
k>0

α
{m}
k ·

(
n

k

)
· 2k(k+1)/2

2nk
,

where

α
{m}
k =

k∑
s=m−1

(−1)s+m−1

(
s

m− 1

)
cg
{s}
k .

For m 6 5, sequences
(
cg
{m}
n

)
and

(
α
{m}
n

)
are listed in Table 7.1 and Table 7.2, respectively.

n 1 2 3 4 5 6 7 8 9(
cgn
)

1 1 4 38 728 26 704 1 866 256 251 548 592 66 296 291 072 . . .(
cg
{2}
n

)
0 1 3 19 230 5 098 207 536 15 891 372 2 343 580 752 . . .(

cg
{3}
n

)
0 0 1 6 55 825 20 818 925 036 76 321 756 . . .(

cg
{4}
n

)
0 0 0 1 10 125 2 275 64 673 3 102 204 . . .(

cg
{5}
n

)
0 0 0 0 1 15 245 5 320 169 113 . . .

Table 7.1: Counting sequences
(
cg
{m}
n

)
for m 6 5.

n 1 2 3 4 5 6 7 8 9(
α
{1}
n

)
−1 0 −2 −24 −544 −22 320 −1 677 488 −236 522 496 −64 026 088 576 . . .(

α
{2}
n

)
1 −1 1 14 398 18 552 1 505 644 222 306 448 61 826 469 776 . . .(

α
{3}
n

)
0 1 0 7 115 3 238 156 576 13 457 052 2 131 689 876 . . .(

α
{4}
n

)
0 0 1 2 25 455 13 783 711 788 65 405 368 . . .(

α
{5}
n

)
0 0 0 1 5 65 1 330 43 673 2 400 363 . . .

Table 7.2: Asymptotic coefficients for graphs.

7.4 Asymptotics for d-gargantuan classes
In this section, we generalize the results of Sections 7.2 and 7.3 to d-gargantuan labeled combinatorial
classes, d ∈ N.

Theorem 7.4.1. Let d be a positive integer and U be a d-gargantuan labeled combinatorial class,
such that U = SET(V) and U = SEQ(W) for some labeled combinatorial classes V and W. Suppose
that u ∈ U is a random object of size dn. Then

P(u is SET-irreducible) ≈ 1−
∑
k>1

wdk ·
(
dn

dk

)
·
ud(n−k)

udn
. (7.12)
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Proof. Apply Theorem 3.1.79 b) to the d-gargantuan labeled combinatorial class Ũ = U − {ε} and
the function

F (y) = ln(1 + y),

and repeat the reasoning of the proof of Theorem 7.2.1.

Theorem 7.4.2. Let d be a positive integer and U be a d-gargantuan labeled combinatorial class,
such that U = SET(V) and U = SEQ(W) for some labeled combinatorial classes V and W. Suppose
that u ∈ U is a random object of size dn. Then for any m ∈ N,

P(u has m SET-irreducible components) ≈
∑
k>0

α
{m}
dk ·

(
dn

dk

)
·
ud(n−k)

udn
, (7.13)

where α{m}dk are the coefficients of the exponential generating function

V {m−1}(z)
(
1−W (z)

)
=

∞∑
s=m−1

(−1)s+m−1

(
s

m− 1

)
V {s}(z).

In particular, the leading term of (7.13) is

P(u has m SEQ-irreducible components) =

=
1

(m− 1)!
· (dn)!

(d!)m−1(d(n−m+ 1))!
·
um−1
d ud(n−m+1)

udn
+O

(
ndm ·

ud(n−m)

udn

)
. (7.14)

Proof. To establish (7.13), apply Theorem 3.1.79 b) to the d-gargantuan labeled combinatorial class
Ũ = U − {ε} and the function

Fm(y) =

(
ln(1 + y)

)m
m!

and repeat the reasoning of the proof of Theorem 7.3.1. According to (7.13), the leading term of the
desired asymptotics is determined by the exponential generating function

V {m−1}(z)
(
1−W (z)

)
.

Since the first non-zero coefficient in the exponential generating functions V (z) is equal to vd = ud,
we have

V {m−1}(z)
(
1−W (z)

)
=

(
V (z)

)m−1

(m− 1)!

(
1−W (z)

)
=

um−1
d

(m− 1)!
· z

d(m−1)

(d!)m−1
+ . . .

=

((
d(m− 1)

)
!

(d!)m−1
· um−1

d

(m− 1)!

)
· zd(m−1)(
d(m− 1)

)
!

+ . . . .

Thus, formula (7.13), provides us the first non-zero coefficient in the asymptotic probability that a
random object has exactly m SET-irreducible components:((

dn

d(m− 1)

)
·
ud(n−m+1)

udn

)
·

((
d(m− 1)

)
!

(d!)m−1
· um−1

d

(m− 1)!

)
.

Regrouping factors, we obtain exactly (7.14).
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7.5 Asymptotics for unlabeled classes
The aim of this section is to generalize the results of Section 7.2 to unlabeled combinatorial classes. In
this goal, we succeed only partially. We obtain asymptotic probability concerning the constructions
MSET and PSET, but we fail to do this for the restricted constructions. Another disadvantage
is that we do not have interesting applications. Nevertheless, it seems important to introduce the
reader to the obtained results, since they are based on Theorem 2.2.8 rather than Theorem 2.2.5.
The initial idea goes back to Bender [9], while we fill it with a new interpretation, similar to what
we have seen in Theorem 7.2.1.

Theorem 7.5.1 (MSET/PSET asymptotics). Let U be a gargantuan unlabeled combinatorial class
with positive coefficients, such that U = MSET(V) (or U = PSET(V)) and U = SEQ(W) for some
unlabeled combinatorial classes V and W. Suppose that u ∈ U is a random object of size n. Then

P(u is SET-irreducible) ≈ 1−
∑
k>1

wk ·
un−k
un

. (7.15)

Proof. We carry out the proof for the construction MSET only, since for PSET the reasoning is the
same. The idea is to apply Theorem 2.2.8 b) to the ordinary generating function

A(z) = U(z)− 1

and the functions
H(x, y) = ln(1 + y)− x

and

D(x) =
∞∑
k=2

V (xk)

k
.

In is possible, indeed, since the sequence (un) is gargantuan and

|dn| <
n∑
k=2

a[n/k] = O(a[λn])

whenever λ > 1/2. Hence,

H
(
D(z), A(z)

)
=
∞∑
k=1

V (zk)

k
−
∞∑
k=2

V (zk)

k
= V (z),

while
C(z) =

1

U(z)
= 1−W (z),

and, according to the statement of Theorem 2.2.8 b),

vn ≈
∑
k>0

ckun−k = un −
∑
k>1

wkun−k.

Dividing by un, we obtain desired formula (7.15).
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Chapter 8

Asymptotic theorems in terms of species

In the previous chapters, we have established the asymptotic expansions for the probabilities con-
cerning structure decompositions with respect to different combinatorial constructions. We have
seen that the involved coefficients could be interpreted in terms of initial and related combinatorial
classes. However, in most cases, the interpretation has been possible rather in terms of linear com-
binations of counting sequences of some combinatorial classes, than in terms of counting sequences
themselves. Moreover, for the construction SET, we have used the additional supposition that the
initial combinatorial class could be constructed with the help of the construction SEQ as well, not
just SET. All these observations show the limited applicability of the symbolic method.

The aim of this chapter is to cope with the above mentioned disadvantages with the help of
the theory of species. Within this theory, one replaces combinatorial constructions of the symbolic
method by substitutions. More precisely, we have the following list of correspondences between
decompositions of labeled combinatorial classes and species substitutions, including restricted con-
structions (compare to Example 3.1.60).

combinatorial classes species of structures
A = SEQ(B)
A = CYC(B)
A = SET(B)
A = SEQm(B)
A = CYCm(B)
A = SETm(B)

⇔

A = L ◦ B
A = CP ◦ B
A = E ◦ B
A = Lm ◦ B
A = CPm ◦ B
A = Em ◦ B

In Section 8.1, we discuss asymptotics related to substitutions with L and Lm. Section 8.2 is de-
voted to substitutions with CP and CPm. Finally, in Section 8.3, we establish results concerning
substitutions with E and Em.

The reader may notice that, discussing combinatorial constructions in terms of substitution,
Flajolet and Sedgewick [38] indicated the combinatorial isomorphism for the construction SEQ in
the form

SEQ(B) ∼= P ◦ B.
It is reasonable, however, to use species L of linear orders instead of species P of permutations
equipotent to L. By doing so, we extend the applicability limits of this substitution to unlabeled
structures as well.

In order to simplify the presentation of the chapter and to make it consistent with the previous
ones, we use the following notations for constructions restricted to cardinality m ∈ N:

B(m) = Lm ◦ B, B[m] = CPm ◦ B, B{m} = Em ◦ B.
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8.1 Asymptotic probability for SEQ-irreducibles
Theorem 8.1.1. Let A be a gargantuan (weighted) species of structures, such that A = L ◦ B for
some (weighted) species B. Suppose that s ∈ A is a random A-structure on [n], where n ∈ N. Then

P(s ∈ B) ≈ 1−
∑
k>1

ck ·
(
n

k

)
· an−k

an
, (8.1)

where an and cn are the total weight on [n] of the species A and C = (1− B)2, respectively.

Proof. First of all, express the species B in terms of A. Since A = A+ + 1, one has

A+ = (L+ + 1) ◦ B − 1 = L+ ◦ B,

and hence,
B = L(−1)

+ ◦ A+.

Second, apply Theorem 4.2.21 for the species A and F = L(−1)
+ . We obtain

bn ≈
∑
k>0

(
n

k

)
ckan−k, (8.2)

where ck is the total weight of C = F ′ ◦ A+ on the set [k]. Since (L+)′ = L2 (see Example 4.1.61),
the following relations hold:

C =
(
L(−1)

+

)′ ◦ A+ =
(
(L+)′

)−1 ◦ L(−1)
+ ◦ A+ = L−2 ◦ B.

Taking into account that L−1 = 1−Z (see Example 4.2.12), we get

C = (1− B)2.

Now, using the relation P(s ∈ B) = bn/an, divide (8.2) by an to finish the proof.

Theorem 8.1.2. Let A be a gargantuan (weighted) species of structures, such that A = L ◦ B for
some (weighted) species B. Suppose that s ∈ A is a random A-structure on [n], where n ∈ N. Then
for any m ∈ N,

P
(
s ∈ B(m)

)
≈
∑
k>0

ck ·
(
n

k

)
· an−k

an
, (8.3)

where an and cn are the total weight on [n] of the species A and C = mBm−1(1− B)2, respectively.

Proof. Let us notice the following relations. First,

B(m) = Bm = Zm ◦ B = Zm ◦ L(−1)
+ ◦ A+.

Second, (
Zm ◦ L(−1)

+

)′
=
(
mZm−1 ◦ L(−1)

+

)
·
((

(L+)′
)−1 ◦ L(−1)

+

)
.

Third, as we have seen in the proof of Theorem 8.1.1,(
(L+)′

)−1 ◦ L(−1)
+ ◦ A+ = L−2 ◦ B = (1− B)2.
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As a consequence, (
Zm ◦ L(−1)

+

)′ ◦ A+ = mBm−1 · (1− B)2.

Therefore, applying Theorem 4.2.21 for the species A and F = Lm ◦ L(−1)
+ , we obtain

b(m)
n ≈

∑
k>0

(
n

k

)
ckan−k,

where ck is the total weight of

C = F ′ ◦ A+ = mBm−1 · (1− B)2

on [k]. Now, dividing this asymptotic relation by an, we get the desired asymptotic probability.

8.2 Asymptotic probability for CYC-irreducibles
Theorem 8.2.1. Let A be a gargantuan (weighted) species of structures, such that A = CP ◦ B for
some (weighted) species B. Suppose that s ∈ A is a random A-structure on [n], where n ∈ N. Then

P(s ∈ B) ≈ 1−
∑
k>1

ck ·
(
n

k

)
· an−k

an
, (8.4)

where an and cn are the total weight on [n] of the species A and C = (1− B), respectively.

Proof. Since A0 = 0, we can express the species B as

B = CP(−1) ◦ A.

Apply Theorem 4.2.21 for the species A and F = CP(−1). We obtain

bn ≈
∑
k>0

(
n

k

)
ckan−k, (8.5)

where ck is the total weight of C = F ′ ◦ A on the set [k]. Since (CP)′ = L (see Example 4.1.60), the
species C has the following form:

C =
(
CP(−1)

)′ ◦ A =
(
CP ′

)−1 ◦ CP(−1) ◦ A = L−1 ◦ B.

Taking into account that L−1 = 1−Z (see Example 4.2.12), we get

C = 1− B.

Now, using the relation P(s ∈ B) = bn/an, divide (8.5) by an to finish the proof.

Theorem 8.2.2. Let A be a gargantuan (weighted) species of structures, such that A = CP ◦ B for
some (weighted) species B. Suppose that s ∈ A is a random A-structure on [n], where n ∈ N. Then
for any m ∈ N,

P
(
s ∈ B[m]

)
≈
∑
k>0

ck ·
(
n

k

)
· an−k

an
, (8.6)

where an and cn are the total weight on [n] of the species A and C = Bm−1(1− B), respectively.
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Proof. Let us notice the following relations. First,

B[m] = CPm ◦ B = CPm ◦ CP(−1) ◦ A.

Second, (
CPm ◦ CP(−1)

)′
=
(
CP ′m ◦ CP(−1)

)
·
(

(CP ′)−1 ◦ CP(−1)
)
.

Third, CP ′m = Lm−1. Finally, as we have seen in the proof of Theorem 8.2.1,

(CP ′)−1 ◦ CP(−1) ◦ A = L−1 ◦ B = 1− B.

As a consequence, (
CPm ◦ CP(−1)

)′ ◦ A = Bm−1 · (1− B).

Therefore, applying Theorem 4.2.21 for the species A and F = CPm ◦ CP(−1), we obtain

b[m]
n ≈

∑
k>0

(
n

k

)
ckan−k,

where ck is the total weight of
C = F ′ ◦ A = Bm−1 · (1− B)

on [k]. Dividing this asymptotic relation by an, we get the desired asymptotic probability.

8.3 Asymptotic probability for SET-irreducibles
Lemma 8.3.1. The virtual species E−1 is equipotent to the alternating sum

E−1 ≡ 1− E1 + E2 − E3 + . . .

Proof. This follows from the fact that the corresponding exponential generating series are equal to
each other:

1

ez
= e−z = 1− z +

z2

2!
− z3

3!
+ . . .

Remark 8.3.2. There is no isomorphism between the species mentioned in Lemma 8.3.1, since the
corresponding type generating series are different:(

1

1− z

)−1

= 1− z 6= 1

1 + z
= 1− z + z2 − z3 + . . .

Lemma 8.3.3. The virtual species E−1 ◦ E (−1)
+ and

(
1− L(−1)

+

)
are equipotent.

Proof. To verify the target equipotency, it is sufficient to check that the corresponding exponential
generating series are the same. Indeed,

E−1(z) = e−z, E (−1)
+ (z) = log(1 + z), L(−1)

+ (z) =
z

1 + z
.

Hence,

E−1
(
E (−1)

+ (z)
)

+ L(−1)
+ (z) =

1

1 + z
+

z

1 + z
= 1.
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Theorem 8.3.4. Let A be a gargantuan (weighted) species of structures, such that A = E ◦ B for
some (weighted) species B. Suppose that s ∈ A is a random A-structure on [n], where n ∈ N. Then

P(s ∈ B) ≈ 1−
∑
k>1

ck ·
(
n

k

)
· an−k

an
, (8.7)

where an and cn are the total weights on [n] of the species A and C = E−1 ◦ B ≡
(
1 − L(−1)

+

)
◦ A+,

respectively.

Proof. The same way as in the proof of Theorem 8.1.1, we can express the species B in terms of A:

B = E (−1)
+ ◦ A+.

Apply Theorem 4.2.21 for the species A and F = E (−1)
+ . We obtain

bn ≈
∑
k>0

(
n

k

)
ckan−k, (8.8)

where ck is the total weight of C = F ′◦A+ on [k]. Since (E+)′ = E (see Example 4.1.59), the following
relations hold:

C =
(
E (−1)

+

)′ ◦ A+ =
(
(E+)′

)−1 ◦ E (−1)
+ ◦ A+ = E−1 ◦ B.

Using the relation P(s ∈ B) = bn/an, divide (8.2) by an to obtain the desired asymptotics. To finish
the proof, notice, that

C = E−1 ◦ B = E−1 ◦ E (−1)
+ ◦ A+ ≡

(
1− L(−1)

+

)
◦ A+

by Lemma 8.3.3.

Remark 8.3.5. Due to Lemma 8.3.1, we can consider E−1 ◦ B as the alternate sum

1− E1 ◦ B + E2 ◦ B − E3 ◦ B + . . . = 1− B{1} + B{2} − B{3} + . . .

Interpreting the species B as a subclass of the species A consisting of connected species, we obtain
the following meaning: the species E−1 ◦ B consists of the same structures as A, but a structure is
considered negative if the number of its connected components is odd.

Theorem 8.3.6. Let A be a gargantuan (weighted) species of structures, such that A = E ◦ B for
some (weighted) species B. Suppose that s ∈ A is a random A-structure on [n], where n ∈ N. Then
for any m ∈ N,

P
(
s ∈ B{m}

)
≈
∑
k>0

ck ·
(
n

k

)
· an−k

an
, (8.9)

where an and cn are the total weight on [n] of the species A and C = B{m−1}(E−1 ◦ B), respectively.

Proof. Let us notice the following relations. First,

B{m} = Em ◦ B = Em ◦ E (−1)
+ ◦ A+.

Second, (
Em ◦ E (−1)

+

)′
=
(

(Em)′ ◦ E (−1)
+

)
·
((

(E+)′
)−1 ◦ E (−1)

+

)
.

135



Third, as we have seen in the proof of Theorem 8.1.1,(
(E+)′

)−1 ◦ E (−1)
+ ◦ A+ = E−1 ◦ B.

As a consequence, taking into account that (Em)′ = Em−1, we have(
Em ◦ E (−1)

+

)′ ◦ A+ = B{m−1} · (E−1 ◦ B).

Therefore, applying Theorem 4.2.21 to the species A and F = Em ◦ E (−1)
+ , we obtain

b{m}n ≈
∑
k>0

(
n

k

)
ckan−k,

where ck is the total weight of

C = F ′ ◦ A+ = B{m−1} · (E−1 ◦ B)

on [k]. Now, dividing this asymptotic relation by an, we get the desired asymptotic probability.

Remark 8.3.7. The same way as in Remark 8.3.5, we can consider B{m−1} ·(E−1◦B) as the alternate
sum

B{m−1} − B{m−1} · B{1} + B{m−1} · B{2} − B{m−1} · B{3} + . . .

Hence, the B{m−1} ·(E−1◦B)-structures are the A-structures whose connected components are divided
into two groups such that the first group contains (m − 1) connected components. A structure is
considered negative if the number of connected components in the second group is odd.

Remark 8.3.8. As well as for the symbolic method, we could additionally define d-gargantuan
species and obtain results similar to what we have had in Sections 5.4, 6.4 and 7.4.
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Part III

Applications
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Chapter 9

Permutations

In this chapter, we apply the theory developed in Part II to various classes of permutations. We have
seen in Example 3.2.13 that the combinatorial class of permutations formally considered as unlabeled
admits a decomposition with respect to the construction SEQ. Following [22, p. 262], we call the SEQ-
irreducible permutations under this decompositions indecomposable. In the literature, the reader can
also find such designations as irreducible permutations [50, 62] or connected permutations [31, 53].

It looks like that the concept of indecomposable permutations arose, for the first time, within
the monoid theory in the work of Lentin [57]. In 1972, Comtet [21] showed that their counting
sequence appeared as coefficients of the multiplicative inverse of the formal power series comprised
by factorials:

∞∑
n=1

ipnz
n = 1−

(
∞∑
n=0

n!zn

)−1

.

Moreover, he established the asymptotic expansion for the probability that a random permutation
of size n ∈ N is indecomposable (see also [22]):

P
(
permutation is indecomposable

)
=

= 1− 2

n
− 1

(n)2

− 4

(n)3

− 19

(n)4

− 110

(n)5

− 745

(n)6

− 5752

(n)7

− 49775

(n)8

− 476994

(n)9

− 5016069

(n)10

+O

(
1

n11

)
.

Note that there are bijections between indecomposable permutations and a number of other com-
binatorial objects, such as labeled Dyck paths [23] and rooted hypermaps [78]. They are also used
for enumeration of certain kind of Feynman diagrams [24] and appear as indices of the basis of the
Malvenuto–Reutenauer Hopf algebra [1, 31].

We start the exposition of our results with Section 9.1 showing that the above asymptotic
expansion of Comtet can be established within the general framework (Theorem 9.1.11). First,
we discuss the result of Comtet regarding permutations as unlabeled objects. On this way, we
also obtain the asymptotic expansions for the probabilities, that a random permutation consists
of exactly m ∈ N indecomposable parts, as well as the combinatorial interpretation of coefficients
involved in the asymptotics. Although this point of view is practical for obtaining a short proof, it
is somewhat artificial to consider permutations to be unlabeled, since the atoms of a permutation
of size n are already labeled by integers from 1 to n by definition. On the other hand, the notion
of indecomposability is heavily dependent on these natural labels and is not stable under relabeling.
In order to cope with this obstacle, we pass to another combinatorial class, namely, pairs of linear
orders L � L. We establish the SEQ-decomposition for this class, as well as the correspondence
between SEQ-irreducible objects from the class L�L and indecomposable permutations. Note that,
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as a bonus of using our general results related to the labeled case, we obtain important connections
with other combinatorial objects (see Chapter 11).

Section 9.2 is devoted to perfect matchings. The reader might be familiar with the concept of
perfect matching in a graph as a union of edges in this graph passing through each vertex exactly
once (see, for example, [56, p. 374]). In our study, we focus on the case corresponding to complete
labeled graphs. This allows us to consider perfect matchings as a subclass of the combinatorial
class of permutations that consists of involutions without fixed points. In particular, the concept of
indecomposability is applicable to perfect matchings as well. All the methods described in Section 9.1
work well in this case, so that we obtain asymptotic expansions for the probabilities that a perfect
matching is indecomposable or comprises a fixed number of indecomposable parts, together with the
combinatorial interpretation of the involved coefficients. In addition, we will see in Chapter 11 that
indecomposable perfect matchings have connections with the combinatorial map model of surfaces.
Note that the number of perfect matchings of size n is a double factorial (2n − 1)!! that appear in
a variety of contexts.

In Section 9.3, we generalize the developed study to multipermutations. It is worth mentioning
that, in our investigation, we introduce a multipermutation as a tuple of permutations of the same
size. Thus, this notion is different from the one of Comtet [22, p. 235] and from the concept of
permutations of multisets that are often called multipermutations as well. The concept of indecom-
posability can be naturally generalized for multipermutations, while Theorems 5.5.1 and 5.5.2 allow
to obtain asymptotic expansions for the corresponding probabilities together with the combinatorial
interpretation. We will see in Chapter 11 that multipermutations arise as the coefficients of the
asymptotic probability that a random tuple of permutations forms a constellation.

Finally, in Section 9.4, we shortly discuss further generalizations that can be obtained within
the framework of the approach considered in this chapter.

In order to make the presentation of the material more clear and self-contained, we recall all
necessary definitions and properties of permutations and related objects.

9.1 Permutations

9.1.1 Permutations: definitions and properties

Definition 9.1.1. A permutation of size n is a bijection from the set [n] onto itself.

Notation 9.1.2. We designate by P the labeled combinatorial class of permutations. Sometimes
we formally consider permutations as unlabeled objects. In the latter case, we denote it using the
corresponding index: uP . Given n ∈ N, the restriction Pn of the class P to cardinality n is the
standard set of permutations Sn of size n.

Remark 9.1.3. The number of permutations of size n is

pn = n!,

meaning that the exponential generating function of the class P is

P (z) =
∞∑
n=0

zn =
1

1− z
.

Regarding P as the unlabeled combinatorial class, we have its ordinary generating function to be

uP (z) =
∞∑
n=0

n!zn.
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Lemma 9.1.4. The unlabeled combinatorial class uP of permutations is gargantuan.

Proof. The statement of Lemma 9.1.4 follows from the fact that the sequence pn = n! is gargantuan
(see Example 2.1.2).

Remark 9.1.5. The sequence
n · pn−1

pn
= 1

does not tend to 0 as n tends to infinity. Hence, the labeled combinatorial class P is not gargantuan.

9.1.2 Indecomposable permutations

Definition 9.1.6. A permutation σ ∈ Sn is decomposable, if there exists a positive integer k < n such
that [k] is invariant under action of σ, i.e. σ

(
[k]
)

= [k]. Otherwise, σ is said to be indecomposable.

Notation 9.1.7. We denote the labeled combinatorial class of indecomposable permutations by IP .
The corresponding counting sequence is (ipn).

Lemma 9.1.8. The unlabeled combinatorial classes uP of permutations and uIP of indecomposable
permutations satisfy the relation

uP = SEQ(uIP).

Proof. Let n ∈ N and σ ∈ Sn. Consider the partition of [n] into a maximal number of consecutive
intervals

[n] = I1 + . . .+ Im,

such that σ(Ik) = Ik for each k ∈ [m]. The restriction of σ to Ik can be considered as an indecompos-
able permutation of size |Ik|. Hence, σ corresponds to a sequence of m indecomposable permutations
and vice versa (Fig. 9.1).

1 2 3 4 5 6
 

1 2 3
×

1
×

1 2

Figure 9.1: Decomposition of the permutation
(

1 2 3 4 5 6
3 1 2 4 6 5

)
into a sequence.

Remark 9.1.9. It follows from Lemma 9.1.8 that indecomposable parts of a permutation coincide
with its SEQ-irreducible parts. In particular, a permutation is SEQ-irreducible, if and only if it is
indecomposable.

Notation 9.1.10. For any m ∈ N, we denote by IP(m) the labeled combinatorial class consisting of
permutations that have exactly m indecomposable parts. For unlabeled classes, we have the relation

uIP(m) = SEQm(uIP)

We designate as ip(m)
n the number of permutations of size n with m indecomposable parts.
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9.1.3 Asymptotic probabilities for indecomposable permutations

Theorem 9.1.11. Let n ∈ N. The asymptotic probability that a random permutation σ ∈ Sn is
indecomposable satisfies

P
(
σ is indecomposable

)
≈ 1−

∑
k>1

2ipk − ip
(2)
k

(n)k
. (9.1)

Proof. Let us formally consider P as an unlabeled combinatorial class. According to Lemma 9.1.8,
uP = SEQ(uIP), meaning that a permutation is SEQ-irreducible if and only if it is indecomposable.
On the other hand, by Lemma 9.1.4, the class uP is gargantuan. Hence, we can apply Theorem 5.5.1.
Taking into account that

pn−k
pn

=
1

n(n− 1) . . . (n− k + 1)
=

1

(n)k
,

the statement of Theorem 5.5.1 implies exactly (9.1).

Theorem 9.1.12. Let m,n ∈ N. The asymptotic probability that a random permutation σ ∈ Sn
consists of m indecomposable parts satisfies

P
(
σ has m indecomposable parts

)
≈
∑
k>0

β
(m)
k

(n)k
, (9.2)

where β(m)
k = m

(
ip

(m−1)
k − 2ip

(m)
k + ip

(m+1)
k

)
. In particular,

P
(
σ has m indecomposable parts

)
=

m

(n)m−1

+O

(
1

nm

)
.

Proof. Again, consider P as an unlabeled combinatorial class. As we have just mentioned in the
proof of Theorem 9.1.11, uP = SEQ(uIP) and the class uP is gargantuan. Hence, we can apply
Theorem 5.5.2 that implies exactly relation (9.2). As for the behavior of the leading term, it follows
from (5.19) and the fact that ip1 = 1.

Remark 9.1.13. For m = 1, asymptotic probability (9.2) takes the form of (9.1) with

β
(1)
k =

{
1, if k = 0,

−2ipk + ip
(2)
k , if k 6= 0.

9.1.4 Pairs of linear orders

As we have seen in Example 3.2.13, the labeled class IP is not stable under relabeling. Nevertheless,
it is possible to obtain asymptotic results (9.1) and (9.2) in the framework of labeled universe. For
this aim, we use the labeled class of pairs of linear orders L � L.

The motivation comes from the fact that

L � L = L � P
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(see Example 4.1.72). From this point of view, a permutation

τ =

(
1 2 . . . n
i1 i2 . . . in

)
can be identified with the pair (≺, τ) ∈ L � P , where ≺= (1 ≺ 2 ≺ . . . ≺ n). In the spirit of the
theory of species, the structure of an object does not depend on labels: we could replace the set of
labels [n] by any other set U via some transport function [u] → U . In particular, any relabeling
corresponds to U = [n]. For example, if

τ =

(
1 2 3 4
2 4 3 1

)
,

then the relabeling (1, 2, 3, 4) 7→ (3, 4, 1, 2) produces the transport

τ 7→
(

3 4 1 2
4 2 1 3

)
=

(
1 2 3 4
1 3 4 2

)
and pairs(

(1 ≺ 2 ≺ 3 ≺ 4),

(
1 2 3 4
2 4 3 1

))
and

(
(3 ≺ 4 ≺ 1 ≺ 2),

(
1 2 3 4
1 3 4 2

))
represent the same permutation τ . Understanding permutations in this way, we represent IP as
a subclass of L � L, which is stable under relabelings and can be treated with Theorems 5.2.1
and 5.3.1.

Definition 9.1.14. A pair of linear orders (≺1,≺2) of size n is reducible if there exists a partition
[n] = A tB such that every pair of elements a ∈ A and b ∈ B satisfy

a ≺1 b and a ≺2 b.

Otherwise, we call (≺1,≺2) irreducible.

Notation 9.1.15. We denote byML(2) the combinatorial class of pairs of linear orders. Also, we
denote by IML(2) its subclass of irreducible pairs of linear orders. The corresponding counting
sequences are designated as

(
mln(2)

)
and

(
imln(2)

)
, respectively.

Remark 9.1.16. The reason for the notationML(2) is that pairs of linear orders are the particular
case of what we call multiple linear orders, see Definition 9.3.16.

Lemma 9.1.17. The labeled combinatorial classML(2) of pairs of linear orders is gargantuan.

Proof. This follows from the fact that the sequence

mln(2)

n!
= n!

is gargantuan (see Example 2.1.2).

Lemma 9.1.18. The labeled combinatorial classesML(2) and IML(2) satisfy

ML(2) = SEQ
(
IML(2)

)
,

meaning that any pair of linear orders can be uniquely decomposed as a sequence of irreducible ones.
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Proof. Let (≺1,≺2) ∈ MLn(2) be a pair of linear orders. In this case, the set [n] can be uniquely
decomposed into the partition of minimal possible number of components,

[n] = A1 t . . . t Am,

such that for each k < l and for any a ∈ Ak and a′ ∈ Al:

a ≺1 a
′ and a ≺2 a

′.

After relabeling, the restriction of (≺1,≺2) to every Ak becomes an object from IML|Ak|(2).

Notation 9.1.19. For any m ∈ N, we denote by IML(m)(2) the labeled combinatorial class con-
sisting of pairs of linear orders that have exactly m irreducible parts:

IML(m)(2) = SEQm

(
IML(2)

)
.

The corresponding counting sequence is
(
iml(m)

n (2)
)
.

Lemma 9.1.20. For any m ∈ N, the counting sequence of the class IML(m)(2) satisfy

iml(m)
n (2) = n! · ip(m)

n .

In particular,
imln(2) = n! · ipn.

Proof. Let us consider the mapML(2)→ P defined as(
(u1 ≺1 u2 ≺1 . . . ≺1 un), (ui1 ≺2 ui2 ≺2 . . . ≺2 uin)

)
7→
(

1 2 . . . n
i1 i2 . . . in

)
.

This map translates irreducible (respectively, consisting of m irreducible parts) pairs of linear orders
into indecomposable (respectively, consisting of m indecomposable parts) permutations. Moreover,
any indecomposable permutation of size n has exactly n! preimages, which differ from each other by
relabeling. This implies the statement of the lemma.

Proof of Theorems 9.1.11 and 9.1.12. We have seen that the classML(2) is gargantuan and can be
represented as SEQ

(
IML(2)

)
(see Lemmas 9.1.17 and 9.1.18). Hence, Theorem 5.2.1 gives us

imln(2)

mln(2)
≈ 1−

∑
k>1

(
2mlk(2)−ml

(2)
k (2)

)(n
k

)
mln−k(2)

mln(2)
.

Here, (
n

k

)
mln−k(2)

mln(2)
=

1

k!(n)k
.

Besides, by Lemma 9.1.20,

imln(2)

mln(2)
=

ipn
pn

and
2mlk(2)−ml

(2)
k (2)

k!(n)k
=

2ipk − ip
(2)
k

(n)k
.

Thus, we obtain desired asymptotics (9.1). Theorem 9.1.12 is proved in a similar way.
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9.2 Perfect matchings

9.2.1 The concept of a perfect matching

Definition 9.2.1. A perfect matching of size n is an involution of the set [n] without fixed points.
In other words, it is a permutation from Sn whose cycles are transpositions.

Notation 9.2.2. We denote the labeled combinatorial class of perfect matchings byM.

Remark 9.2.3. The number of perfect matchings of size n is

mn =

{
(n− 1)!!, if n is even,
0, if n is odd.

Lemma 9.2.4. The unlabeled combinatorial class uM of perfect matchings is 2-gargantuan.

Proof. The statement of Lemma 9.2.4 follows from the fact that the sequence mn is 2-gargantuan
(see Example 2.1.15).

Remark 9.2.5. The sequence
n · m2n

m2n

=
n

2n− 1

does not tend to 0 as n tends to infinity. As a consequence, the labeled combinatorial classM is not
2-gargantuan.

9.2.2 Indecomposable perfect matchings

Definition 9.2.6. A perfect matching σ ∈ Sn is indecomposable, if it is indecomposable as a per-
mutation.

Notation 9.2.7. We denote the labeled combinatorial class of indecomposable perfect matchings
and its counting sequence by IM and (imn), respectively.

Lemma 9.2.8. The unlabeled combinatorial classes uM of perfect matchings and uIM of indecom-
posable perfect matchings satisfy the relation

uM = SEQ(uIM).

Proof. For the proof, repeat the reasoning applied in the proof of Lemma 9.1.8 or take a restriction
of the identity uP = SEQ(uIP) to the subclass of perfect matchings.

Remark 9.2.9. Indecomposable parts of a perfect matching coincide with its SEQ-irreducible parts.
In particular, a perfect matching is SEQ-irreducible, if and only if it is indecomposable.

Notation 9.2.10. For any m ∈ N, we denote by

uIM(m) = SEQm(uIM)

the unlabeled combinatorial class consisting of perfect matchings that have exactlym indecomposable
parts. The corresponding counting sequence is designated as

(
im(m)

n

)
.
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9.2.3 Asymptotic probabilities for indecomposable perfect matchings

Theorem 9.2.11. The asymptotic probability that a random perfect matching σ ∈ S2n is indecom-
posable satisfies

P
(
σ is indecomposable

)
≈ 1−

∑
k>1

(
2im2k − im

(2)
2k

)(2(n− k)− 1
)
!!

(2n− 1)!!
. (9.3)

Proof. According to Lemma 9.2.4, the unlabeled combinatorial class uM is 2-gargantuan, while, by
Lemma 9.2.8, uM = SEQ(uIM). Hence, applying Theorem 5.5.1, we get the desired result.

Theorem 9.2.12. Let m,n ∈ N. The asymptotic probability that a random perfect matching σ ∈ S2n

consists of m indecomposable parts satisfies

P
(
σ has m indecomposable parts

)
≈
∑
k>0

β
(m)
2k

(
2(n− k)− 1

)
!!

(2n− 1)!!
, (9.4)

where β(m)
2k = m

(
im

(m−1)
2k − 2im

(m)
2k + im

(m+1)
2k

)
. In particular,

P
(
σ has m indecomposable parts

)
= m ·

(
2(n−m) + 1

)
!!

(2n− 1)!!
+O

(
1

nm

)
.

Proof. As we have just mentioned in the proof of Theorem 9.2.11, uM = SEQ(uIM) and uM is
2-gargantuan. Hence, we can apply Theorem 5.5.2 that implies exactly relation (9.4). The behavior
of the leading term follows from (5.19) and the fact that im2 = 1.

Remark 9.2.13. The same way as it has been done for permutations, it is possible to prove The-
orems 9.2.11 and 9.2.12 with the help of the labeled combinatorial class ML(2) of pairs of linear
orders. WithinML(2), we distinguish the 2-gargantuan subclassMLM(2) satisfying the following
property. For any (≺1,≺2) ∈MLM(2), the transform

(≺1,≺2) 7→ (≺2,≺1)

coincides with some relabeling (1, . . . , n) 7→ (1, . . . , n) that is an involution without fixed point.
Defining one more subclass to be

IMLM(2) =MLM(2) ∩ IML(2),

we have
MLM(2) = SEQ

(
IMLM(2)

)
(9.5)

and the corresponding counting sequences satisfy

mlmn(2) = n! ·mn and imlmn(2) = n! · imn.

In other words, the subclasses MLM(2) and IMLM(2) correspond to perfect matchings and
indecomposable perfect matchings, respectively, in the same way as the classesML(2) and IML(2)
correspond to permutations and indecomposable permutations, respectively. All these observations
allows us to apply Theorems 5.4.1 and 5.4.2 toMLM(2), which gives us asymptotics (9.3) and (9.4).
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9.3 Multipermutations

9.3.1 The concept of a multipermutation

Definition 9.3.1. We call a multipermutation of rank N and size n an N -tuple of permutations

(σ1, . . . , σN) ∈ SNn .

In other words, a multipermutation is an element of the Hadamard product P � . . .� P .

Remark 9.3.2. The reader can think of a multipermutation as a directed graph whose edges are
colored. In this representation, each permutation σk of a tuple (σ1, . . . , σN) corresponds to edges of
color ck, so that the indegree and outdegree of each color for every vertex equal to 1. For example,
the graphical representation of the multipermutation (σ1, σ2) with

σ1 =

(
1 2 3 4 5 6 7
4 1 3 2 7 5 6

)
and σ2 =

(
1 2 3 4 5 6 7
3 1 2 4 6 5 7

)
is shown on Fig. 9.2.

1 2 3 4 5 6 7

Figure 9.2: Multipermutation of rank 2 and size 7.

Notation 9.3.3. We denote byMP(N) and
(
mpn(N)

)
the labeled combinatorial class of multiper-

mutations of rank N and its counting sequence, respectively.

Remark 9.3.4. The counting sequence
(
mpn(N)

)
of the classMP(N) satisfies

mpn(N) = (n!)N .

Lemma 9.3.5. For any N ∈ N, the unlabeled combinatorial class uMP(N) of multipermutations of
rank N is gargantuan.

Proof. Recall that the sequences
an = n!

is gargantuan (see Example 2.1.2). Applying Lemma 2.1.8, we have the sequence

mpn(N) = (n!)N = aNn

to be gargantuan as well. Hence, the classMP(N) is gargantuan.
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9.3.2 Indecomposable multipermutations

Definition 9.3.6. We call a multipermutation (σ1, . . . , σN) ∈ SNn of rank N decomposable, if there
exists a positive integer k < n such that σj

(
[k]
)

= [k] for all j ∈ [N ]. Otherwise, (σ1, . . . , σN) is said
to be indecomposable.

Remark 9.3.7. Let us consider multipermutations as directed graphs with colored edges (see Re-
mark 9.3.2), whose vertices lie on the number line and whose edges are arcs. Then a multipermutation
is decomposable, if there exists a vertical line x = x0 separating one component of the graph from
others. For example, the multipermutation discussed in Remark 9.3.2 is decomposable with the
separating line x = 4.5 (Fig. 9.3).

1 2 3 4 5 6 7

Figure 9.3: Decomposition of multipermutation of rank 2 and size 7.

Notation 9.3.8. We denote by IMP(N) and
(
impn(N)

)
the labeled combinatorial class of inde-

composable multipermutations of rank N and its counting sequence, respectively.

Remark 9.3.9. The counting sequence
(
impn(N)

)
of the class IMP(N) has the following form:(

impn(N)
)

= 1, (2N − 1), (6N − 2N+1 + 1), (24N − 2 · 6N − 4N + 3 · 2N − 1), . . .

Lemma 9.3.10. The unlabeled combinatorial classes uMP(N) of multipermutations of rank (N)
and uIMP(N) of indecomposable multipermutations of rank (N) satisfy the relation

uMP = SEQ(uIMP).

Proof. The proof is the same as the proof of Lemma 9.1.8.

Remark 9.3.11. As well as for the unlabeled combinatorial class of permutations, indecompos-
able parts of a multipermutation of rank N coincide with its SEQ-irreducible parts. In particular,
a multipermutation is SEQ-irreducible, if and only if it is indecomposable.

Notation 9.3.12. For any m ∈ N, we denote by

uIMP(m)(N) = SEQm

(
uIMP(N)

)
the unlabeled combinatorial class consisting of multipermutations of rank N that have exactly m in-
decomposable parts. The corresponding counting sequence is designated as

(
imp(m)

n (N)
)
.
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9.3.3 Asymptotic probabilities for indecomposable multipermutations

Theorem 9.3.13. The asymptotic probability that a random multipermutation σ = (σ1, . . . , σN) of
rank N and size n is indecomposable satisfies

P
(
σ is indecomposable

)
≈ 1−

∑
k>1

2impk(N)− imp
(2)
k (N)(

(n)k
)N . (9.6)

Proof. The structure of the proof is similar to the proof of Theorem 9.1.11. We notice that uMP(N)
is gargantuan (by Lemma 9.3.10) and that uMP(N) = SEQ

(
uIMP(N)

)
(by Lemma 9.3.5). These

two facts allows us to apply Theorem 5.5.1 that provides a result.

Remark 9.3.14. Asymptotic coefficients 2impk(N)− imp
(2)
k (N) for the first few values of n are

2, (2N+1 − 3), (2 · 6N − 3 · 2N + 4), (2 · 24N − 6N+1 − 3 · 4N + 3 · 2N+2 − 5), . . .

Theorem 9.3.15. Let m,n,N ∈ N. The asymptotic probability that a random multipermutation
σ = (σ1, . . . , σN) consists of m indecomposable parts satisfies

P
(
σ has m indecomposable parts

)
≈
∑
k>0

β
(m)
k (N)(
(n)k

)N , (9.7)

where β(m)
k (N) = m

(
imp

(m−1)
k (N)− 2imp

(m)
k (N) + imp

(m+1)
k (N)

)
. In particular,

P
(
σ has m indecomposable parts

)
=

m(
(n)m−1

)N +O

(
1

nmN

)
.

Proof. The same way as before, we notice that uMP(N) is gargantuan (by Lemma 9.3.10) and that
uMP(N) = SEQ

(
uIMP(N)

)
(by Lemma 9.3.5). Hence, Theorem 5.5.2 gives us a result. The

behavior of the leading term follows from (5.19) and the fact that imp1(N) = 1.

Another method to prove Theorems 9.3.13 and 9.3.15 uses tuples of linear orders. This can be
done in a similar way to the second proof of Theorems 9.1.11 and 9.1.12 in Section 9.1. Here, we
outline the key definitions and lemmas, but omit some details.

Definition 9.3.16. We call a multiple linear order of rank N and size n an N -tuple of linear orders

(≺1, . . . ,≺N) ∈ L � . . .� L.

Definition 9.3.17. A tuple of linear orders L = (≺1, . . . ,≺N) of size n is reducible if there exists
a partition [n] = A tB such that each k ∈ [n] and every pair of elements a ∈ A and b ∈ B satisfy

a ≺k b.

Otherwise, we call L irreducible.

Notation 9.3.18. We denote the labeled combinatorial class of multiple linear orders of rank N
and its subclass of irreducible multiple linear orders by ML(N) and IML(N), respectively. The
corresponding counting sequences are

(
mln(N)

)
and

(
imln(N)

)
, respectively.

148



Lemma 9.3.19. If N > 2, then the classML(N) of multiple linear orders is gargantuan.

Proof. This follows from Lemma 2.1.8 and Example 2.1.2 (see also Lemma 9.3.5).

Lemma 9.3.20. The labeled combinatorial classesML(N) and IML(N) satisfy

ML(N) = SEQ
(
IML(N)

)
.

Proof. This can be done the same way as the proof of Lemma 9.1.18.

Notation 9.3.21. For any m,N ∈ N, we denote by IML(m)(N) the labeled combinatorial class
consisting of multiple linear orders that have exactly m irreducible parts:

IML(m)(N) = SEQm

(
IML(N)

)
.

The corresponding counting sequence is
(
iml(m)

n (N)
)

Lemma 9.3.22. For any m,N ∈ N, we have

iml(m)
n (N + 1) = n! · imp(m)

n (N).

In particular,
imln(N + 1) = n! · impn(N).

Proof. This can be done the same way as the proof of Lemma 9.1.20.

Proof of Theorems 9.3.13 and 9.3.15. Since the class ML(N + 1) is gargantuan and can be repre-
sented as SEQ

(
IML(N + 1)

)
(see Lemmas 9.3.19 and 9.3.20), we can use Theorems 5.2.1 and 5.3.1.

Applying Lemma 9.3.22 to the obtained asymptotics, we get desired (9.6) and (9.7).

9.4 Other generalizations
Asymptotic results stated in Theorems 9.1.11 and 9.1.12 can be extended to many subclasses of the
class P of permutations. In Section 9.2 we have studied the subclassM of perfect matchings, that
is, involutions without fixed points. A perfect matching of size 2n is a product of n transpositions,
i.e. cycles of length 2. From this point of view, a natural generalization of the concept of the perfect
matching would be a product of n cycles of length d, d ∈ N. Let us denote by PC(d) the labeled
combinatorial class of products of cycles of length d. Then its counting sequence is

pcn(d) =

{
(dk)!

dkk!
, n = dk,

0, n 6= dk,

and uPC(d) is d-gargantuan (the proof is similar to one of Lemma 9.2.4). On the other hand, by
analogy of Lemma 9.2.8, one has

uPC(d) = SEQ
(
uIPC(d)

)
,

where IPC(d) is the labeled combinatorial class of the products of cycles of length d that are inde-
composable. Let us denote, the same way as before,

uIPC(m)(d) = SEQm

(
uIPC(d)

)
and let

(
ipcn(d)

)
and

(
ipc(m)

n (d)
)
be the counting sequences of the combinatorial classes uIPC(d)

and uIPC(m)(d), respectively. This allows us to state the following theorem.
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Theorem 9.4.1. The probability that a random object σ ∈ PC(d), i.e. a random product of n cycles
of length d, is indecomposable satisfies

P
(
σ is indecomposable

)
≈ 1−

∑
k>1

(
2ipcdk(d)− ipc

(2)
dk (d)

)
· d

k(n)k
(dn)dk

, (9.8)

while the probability that σ consists of m indecomposable parts, where m ∈ N, is

P
(
σ has m indecomposable parts

)
≈
∑
k>0

β
(m)
dk (d) · d

k(n)k
(dn)dk

(9.9)

where β(m)
dk (d) = m

(
ipc

(m−1)
dk (d)− 2ipc

(m)
dk (d) + ipc

(m+1)
dk (d)

)
. In particular,

P
(
σ has m indecomposable parts

)
= m(d!)m−1 · (n)m−1

(dn)d(m−1)

+O

(
1

n(d−1)m

)
.

In Section 9.3, we have seen the generalization of the concept of permutations to multiper-
mutations. The same way, we can consider multiple perfect matchings. Namely, we call a multiple
perfect matchings of rank N and size n an N -tuple

(σ1, . . . , σN) ∈ SNn ,

where σk is a perfect matching for any k ∈ [n]. The labeled combinatorial classMM(N) of multiple
perfect matchings of rank N , formally considered as unlabeled class, is 2-gargantuan and satisfies
the relation

uMM(N) = SEQ
(
uIMM(N)

)
,

where IMM(N) is the subclass of indecomposable multiple perfect matchings of rank N . For any
positive integer m, let us denote

uIMM(m)(N) = SEQm

(
uIMM(N)

)
and let

(
mmn(N)

)
,
(
immn(N)

)
and

(
imm(m)

n (N)
)
be the counting sequences of the combinato-

rial classes uMM(N), uIMM(N) and uIMM(m)(N), respectively. With these notations, The-
orems 5.5.1 and 5.5.2 imply the following result.

Theorem 9.4.2. The probability that a random object σ = (σ1, . . . , σN) ∈ MM(N), i.e. a random
multiple perfect matching of rank N of size 2n, is indecomposable satisfies

P
(
σ is indecomposable

)
≈ 1−

∑
k>1

(
2imm2k(N)− imm

(2)
2k (N)

)((2(n− k)− 1
)
!!

(2n− 1)!!

)N

, (9.10)

while the probability that σ consists of m indecomposable parts, where m ∈ N, satisfies

P
(
σ has m indecomposable parts

)
≈
∑
k>0

β
(m)
2k (N)

((
2(n− k)− 1

)
!!

(2n− 1)!!

)N

, (9.11)

where β(m)
2k (N) = m

(
imm

(m−1)
2k (N)− 2imm

(m)
2k (N) + imm

(m+1)
2k (N)

)
. In particular,

P
(
σ has m indecomposable parts

)
= m

((
2(n−m) + 1

)
!!

(2n− 1)!!

)N

+O

(
1

nmN

)
.
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Compiling the results of Theorems 9.4.1 and 9.4.2, one can proceed to the labeled combinatorial
classMPC(d,N) consisting of N -tuples

(σ1, . . . , σN) ∈ SNdn

such that σk is a product of n cycles of length d for any k ∈ [n]. The similar way, one can show that
uMPC(d,N) is d-gargantuan and that

uMPC(d,N) = SEQ
(
uIMPC(d,N)

)
,

where IMPC(d,N) is the subclass of indecomposable objects. With the help of the natural notations(
mpcn(d,N)

)
,
(
impcn(d,N)

)
and

(
impc(m)

n (d,N)
)
for the counting sequences of the combinatorial

classes uMPC(d,N), uIMPC(d,N) and uIMPC(m)(d,N) = SEQm

(
uIMPC(d,N)

)
, respectively,

we obtain the following result.

Theorem 9.4.3. Let d, n,N ∈ N. The probability that a random object σ ∈ MPC(d,N) is inde-
composable satisfies

P
(
σ is indecomposable

)
≈ 1−

∑
k>1

(
2impcdk(d,N)− impc

(2)
dk (d,N)

)
·
(
dk · (n)k
(dn)dk

)N
, (9.12)

while the probability that σ consists of m indecomposable parts, where m ∈ N, is

P
(
σ has m indecomposable parts

)
≈
∑
k>0

β
(m)
dk (d,N) ·

(
dk · (n)k
(dn)dk

)N
(9.13)

where
β

(m)
dk (d,N) = m

(
impc

(m−1)
dk (d,N)− 2impc

(m)
dk (d,N) + impc

(m+1)
dk (d,N)

)
.

In particular,

P
(
σ has m indecomposable parts

)
= m

(
(d!)m−1 · (n)m−1

(dn)d(m−1)

)N
+O

(
1

n(d−1)mN

)
.
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Chapter 10

Graphs

This chapter is devoted to the applications of the theory developed in Part II to various models of
labeled graphs, such as undirected graphs, directed graphs, directed acyclic graphs, tournaments, etc.
We recall key definitions and properties, but often leave the details omitted as a standard well-known
material (in the case of need, we refer the reader, say, to [46] and [62]).

The asymptotic results of this chapter can be divided into four groups that differ from each
other in origin. The first of them comes from the well-known exponential formula for various types
of connected graphs (maybe, first explicitly mentioned in the dissertation of Riddell [89]). In the
language of symbolic method, the exponential formula is interpreted with the help of the construc-
tion SET. Say, for the labeled combinatorial class G of simple unlabeled graphs, we have

G = SET(CG) ⇔ G(z) = exp
(
CG(z)

)
,

where CG is the labeled combinatorial class of connected (simple undirected) graphs. In Section 10.1,
we dwell on this case in detail, since simple unlabeled graphs are the easiest and, at the same time, the
most striking example from the first group. We establish the asymptotic expansions of the probabil-
ities that a random graph is connected (Theorem 10.1.10) or consists of a given number of connected
components (Theorem 10.1.11). The method used for studying connected (simple unlabeled) graphs
is transferred almost unchanged to the other models, such as multigraphs (Statements 10.1.18 and
Statement 10.1.19) and weakly connected graphs of various types (Statements 10.3.23 and 10.3.28).

In Section 10.2, we present another group of results which relies on the construction SEQ.
Here, we illustrate the general rule by the example of tournaments,

T = SEQ(IT ) ⇔ T (z) =
1

1− IT (z)
,

where T and IT are the labeled combinatorial classes of tournaments and irreducible tournaments,
respectively. The main result concerns the asymptotic expansion of the probability that a random
tournament can be decomposed as a sequence of a given number of irreducible subtournaments (The-
orem 10.2.11). Also, we generalize this result to the case of multitournaments (Statement 10.2.18).

The main result of Section 10.3 consists in establishing the asymptotic expansion of the proba-
bility that a random directed graph is strongly connected (Theorem 10.3.16). Unlike the others, this
result does not rely on Part II, but comes directly from the symbolic method developed for strongly
connected digraphs and Bender’s theorem for labeled classes. Another difference is that there is no
direct generalization to the probability that a random directed graph consists of a given number of
strongly connected components. The reason for this obstacle is that the structure of a directed graph
is determined not only by its strongly connected components, but also by the relations between them.
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Finally, in Section 10.4, we discuss the Erdős–Rényi model G(n, p) in the sense of Gilbert [41]
(rather than in the sense of Erdős and Rényi [33]): there are n vertices in a graph, and each edge
is taken with probability p independently. Graphs and connected graphs within this model are
linked by the exponential formula, but the use of the combinatorial classes and constructions in the
way presented in Section 10.1 is problematic. In order to cope with this obstacle, we translate the
exponential formula into the language of species, so that

Gw = E ◦ CGw,

where Gw and CGw are weighted species of graphs and connected graphs, respectively. Thus, we
obtain the asymptotic expressions of the probabilities that a random graph in G(n, p) is connected
(Theorem 10.4.6) or consists of a given number of connected components (Theorem 10.4.7) with the
interpretation of the involved coefficients in terms of virtual species.

10.1 Undirected graphs
Let us consider the labeled combinatorial class of graphs G. Pick a random graph G of size n from
it. In this section, we are interested in the asymptotic probability that G is connected.

The traces of the beginning of this story is hidden in the depth of time. It has been known
for a long time that this probability goes to 1 as n goes to ∞. In 1959, Gilbert [41] provided the
following estimation up to the second term for this probability:

P(G is connected) = 1− 2n

2n
+O

(
n2

23n/2

)
.

Later, in 1970, Wright [102] computed the first four terms of the asymptotic expansion of the prob-
ability that a random graph is connected:

P(G is connected) = 1−
(
n

1

)
1

2n−1
− 2

(
n

3

)
1

23n−6
− 24

(
n

4

)
1

24n−10
+O

(
n5

25n

)
.

Wright found a recursive way to get any finite number of asymptotic terms (a more general recur-
sion in terms of inversion polynomial was obtained later in the paper of Konvalinka and Pak [54]).
Nevertheless, there was no method to obtain them all at once. Besides, there was no combinatorial
interpretation of coefficients which turned out to be integers. The first gap could be filled by methods
of Bender [9], though, personally, he did not mention such an opportunity. The second gap has been
filled recently in our work [65] which constitutes the main result of this section.

The structure of the section presentation is the following. We begin with recalling all necessary
concepts and properties. Most of them have been already used in the previous chapters as examples.
Thus, here we only need to put them together and fill the gaps in order to make the presentation
consistent. Having finished this task, we proceed to the main goal, namely, to the asymptotic
expansions for the probabilities that a random graph is connected or consists of a fixed number of
connected components, and to the combinatorial interpretation of the involved coefficients. Finally,
we discuss a natural generalization of these results for multigraphs.

10.1.1 Definitions and properties

Definition 10.1.1. A labeled (simple undirected) graph of size n consists of the set of vertices
[n] = {1, . . . , n} together with a set E of edges that are unordered pairs of distinct vertices. A graph
is connected , if any two its vertices are joined by a path.

153



Remark 10.1.2. Rigorously, one usually define adjacent vertices (as vertices joined by an edge)
first, and then a path (as a sequence of vertices such that consecutive vertices are adjacent). Next
step is to define an equivalence relation ∼ on the set of vertices, such that i ∼ j if and only if the
vertices i and j are joined by a path. Then connected components of a graph are equivalence classes
under ∼. We do not go into the details, since it is well-known; the reader can consult the material,
for example, in [46].

Notation 10.1.3. We denote the labeled combinatorial class of graphs and of connected graphs
by G and CG, respectively. Their counting sequences are designated as (gn) and (cgn), respectively.

Remark 10.1.4. The number of labeled graphs of size n is determined by the cardinality of the set
of unordered pairs of {1, . . . , n} which is

(
n
2

)
. Since any pair can be either present or absent in a

graph, the counting sequence (gn) of G satisfies

gn = 2(n
2).

Lemma 10.1.5. The labeled combinatorial class G of graphs is gargantuan.

Proof. This follows directly from the fact, proved in Example 2.1.7, that the sequence

gn
n!

=
2(n

2)

n!

is gargantuan (see also Example 3.1.73).

Lemma 10.1.6. Any graph can be uniquely decomposed into an unordered collection of connected
components, meaning that

G = SET(CG).

Proof. Let us count all graphs of size n ∈ N. To this end, for each graph, consider an n-sequence
(c1, . . . , cn) such that ck is the number of graph connected components of size k (in particular,
c1 + 2c2 + . . . + ncn = n). Given an n-sequence (c1, . . . , cn), how many graphs correspond to it? To
choose an appropriate graph, we need to choose

1. labels for each element:
n!

(1!)c1 · . . . · (n!)cn
choices;

2. elements themselves:
cgc11 · . . . · cgcnn choices.

Since the order of components is not important, we need to divide the product of the two above
factors by c1! · . . . · cn!. Summing up over all possible n-sequences (c1, . . . , cn), we get

gn =
∑
Cn

n!

(1!)c1 · . . . · (n!)cn
· 1

c1! · . . . · cn!
·
(
cgc11 · . . . · cgcnn

)
.

In terms of exponential generating functions, this relation turns into

G(z) = eCG(z),

meaning that G = SET(CG).
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Remark 10.1.7. It follows from Lemma 10.1.6 that connected components of a graph coincide
with its SET-irreducible components. In particular, a graph is SET-irreducible, if and only if it is
connected.

Notation 10.1.8. For any m ∈ N, we denote by

CG{m} = SETm(CG)

the labeled combinatorial class consisting of labeled graphs that have exactly m connected compo-
nents. The corresponding counting sequence is

(
cg
{m}
n

)
.

Example 10.1.9. There are eight labeled graphs of size 3, see Fig. 10.1. Four of them depicted
at the top row of Fig. 10.1 are connected. On the contrary, the four graphs at the bottom row
are disconnected. First of them is totally disconnected, meaning that its number of connected
components coincides with the size. Three other disconnected graphs of size 3 have two connected
components each.
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Figure 10.1: Labeled graphs of size 3.

10.1.2 Asymptotic probabilities for simple connected graphs

Theorem 10.1.10. The asymptotic probability that a random labeled simple graph G with n vertices
is connected satisfies

P
(
G is connected

)
≈ 1−

∑
k>1

itk ·
(
n

k

)
· 2k(k+1)/2

2kn
. (10.1)

Proof. Due to Lemma 10.1.5, the labeled combinatorial class G is gargantuan. On the one hand,
G = SET(CG) by Lemma 10.1.6. On the other hand, as we have seen in Examples 3.1.14 and 3.1.33,
the labeled combinatorial class of graphs is combinatorially equivalent to the labeled combinatorial
class of tournaments, G ∼= T , and any tournament can be represented as a sequence of irreducible
subtournaments, T = SEQ(IT ) (see also Lemma 10.2.7). Hence, we can apply Theorem 7.2.1 which
gives us

P
(
G is SET-irreducible

)
≈ 1−

∑
k>1

itk ·
(
n

k

)
· gn−k

gn
.

To finish the proof, we use the fact that a labeled graph is SET-irreducible if and only if it is connected
and the relation

gn−k
gn

=
2k(k+1)/2

2kn
.
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Theorem 10.1.11. The asymptotic probability that a random labeled simple graph G with n vertices
consists of m ∈ N connected components satisfies

P
(
G has m connected components

)
≈
∑
k>1

α
{m}
k ·

(
n

k

)
· 2k(k+1)/2

2kn
, (10.2)

where

α
{m}
k =

∞∑
s=m−1

(−1)s+m−1

(
s

m− 1

)
cg
{s}
k (z).

In particular,

P
(
G has m connected components

)
=

(
n

m− 1

)
2m(m−1)/2

2(m−1)n
+O

(
nm

2mn

)
.

Proof. The same way, as in the proof of Theorem 10.1.10, we notice that the labeled combinatorial
classes G ∼= T are gargantuan, while G = SET(CG) and T = SEQ(IT ). As a consequence, the
asymptotic probability (10.2) can be obtained with the help of Theorem 7.3.1. To establish the
leading term of this asymptotics, we apply Corollary 7.3.4.

Remark 10.1.12. For m = 1, asymptotic probability (10.2) takes the form of (10.1) with

α
(1)
k =

{
1, if k = 0,

−itk, if k 6= 0.

10.1.3 Multigraphs and their asymptotics

Definition 10.1.13. We call a (labeled) multigraph of rank N an element of the Hadamard product
G � . . . � G of N copies of the class G. In other words, a multigraph of rank N and size n is an
N -tuple of graphs

(G1, . . . , GN) ∈ GNn
such that the vertices with the same labels are identified with each other.

Remark 10.1.14. In the general case, one usually defines a labeled multigraph of size n as a function
from the set of unordered pairs

{
{i, j} | i, j ∈ [n]

}
to the set of non-negative integers (see [80]). With

this definition, two vertices in a labeled multigraph may be joined by any finite number of edges;
however, loops are forbidden. Even more generally, one can consider graphs endowed with edge-
weight functions, assigning real weights to their edges.

The reader may think about a multigraph of rank N as a multigraph whose edges bear colors
from the set {1, . . . , N}. The concept of connectivity is transferred to multigraphs of rank N in
a natural way. Comparing to the general case, multigraphs of rank N possess the additional restric-
tion: fixing a color c ∈ [N ] and removing all the edges of other colors, we get the remaining structure
to be a simple graph.

Notation 10.1.15. We denote the labeled combinatorial class of multigraphs of rank N and its
subclass of connected multigraphs byMG(N) and CMG(N), respectively. We designate the corre-
sponding counting sequences as

(
mgn(N)

)
and

(
cmgn(N)

)
, respectively.
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Figure 10.2: Some labeled multigraphs of size 3.

Example 10.1.16. Some labeled multigraphs of rank 2 and size 3 are presented on Fig. 10.2. The
first two of them consist of two connected components each, while the other four multigraphs are
connected.

All the above discussed properties of simple graphs are generalized to the case of multigraphs
in a natural way. Thus, the counting sequence

(
mgn(N)

)
of the classMG(N) satisfies

mgn(N) = (gn)N = 2N(n
2).

Also, any multigraph of rankN can be uniquely decomposed into an unordered collection of connected
multigraphs of rank N , meaning that

MG(N) = SET
(
CMG(N)

)
. (10.3)

As for simple graphs, the connected components of a multigraph of rank N coincide with its SET-
irreducible parts. In particular, a multigraph is SET-irreducible if and only if it is connected. Simi-
larly, we denote by

CMG{m}(N) = SETm

(
CMG(N)

)
the labeled combinatorial class consisting of labeled multigraphs of rank N that have exactly m con-
nected components, wherem is an arbitrary positive integer, and

(
cmg

{m}
n (N)

)
its counting sequence,

respectively. Finally, the classMG(N) is gargantuan. We highlight the latter property as a separate
lemma, for its proof is not a direct generalization of the proof of Lemma 10.1.5.

Lemma 10.1.17. For any N ∈ N, the labeled combinatorial classMG(N) of multigraphs of rank N
is gargantuan.

Proof. Recall, that sequences

an = n! and bn =
2(n

2)

n!

are gargantuan (see Examples 2.1.2 and 2.1.7). Taking into account Lemma 2.1.8, this implies that
the sequence

mgn(N)

n!
= aN−1

n bNn =
2N(n

2)

n!

is gargantuan as well. Hence, in accordance with Definition 3.1.72, the classMG(N) is gargantuan.

All the mentioned properties allow us to state the results concerning the asymptotic behavior of
multigraphs. These results naturally generalize the statements of Theorem 10.1.10 and 10.1.11. This
is the reason why we omit their proofs that proceed exactly the same way. The only thing we need to
mention is that, in this case, the involved coefficients

(
imtk(N)

)
count irreducible multitournaments,

i.e. the structure that generalizes the concept of irreducible tournaments (see Section 10.2 and,
particularly, Definition 10.2.14).
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Statement 10.1.18. The asymptotic probability that a random labeled multigraph G of rank N with
n vertices is connected satisfies

P
(
G is connected

)
≈ 1−

∑
k>1

imtk(N) ·
(
n

k

)
· 2Nk(k+1)/2

2Nkn
. (10.4)

Statement 10.1.19. The asymptotic probability that a random labeled multigraph G of rank N with
n vertices consists of m ∈ N connected components satisfies

P
(
G has m connected components

)
≈
∑
k>0

α
{m}
k ·

(
n

k

)
· 2Nk(k+1)/2

2Nkn
, (10.5)

where

α
{m}
k =

∞∑
s=m−1

(−1)s+m−1

(
s

m− 1

)
cmg

{s}
k (N).

In particular,

P
(
G has m connected components

)
=

(
n

m− 1

)
2Nm(m−1)/2

2N(m−1)n
+O

(
nm

2Nmn

)
.

10.2 Tournaments
In this section, we consider the labeled combinatorial class of tournaments T . Pick a random tour-
nament T of size n from it. What is the asymptotic probability that T is irreducible?

In 1962, Moon and Moser [68] gave a first estimation of this probability:∣∣∣∣P(T is reducible)− 2n

2n−1

∣∣∣∣ < 1

2n−1
for n > 14.

Few years later, it Moon [67] improved the above result and obtained∣∣∣∣P(T is reducible)− 2n

2n−1

∣∣∣∣ < 1

2

( n

2n−1

)2

.

In 1970, Wright [103] computed the first four terms of the asymptotic expansion of the probability
that a labeled tournament is irreducible:

P(T is irreducible) = 1−
(
n

1

)
22−n +

(
n

2

)
24−2n −

(
n

3

)
28−3n −

(
n

4

)
215−4n +O

(
n52−5n

)
.

AlthoughWright found a way to get as many terms of asymptotics as one would like, his method relied
on a recursion. In other words, it was impossible, using this method, to have all the terms at once.
Besides, one could see that all the coefficients were integers, but they were not given a combinatorial
interpretation. The both gaps have been filled recently in our work [65], which constitutes the main
content of this section.

The structure of this section is similar to the one of Section 10.1. First, we recall all concept and
properties. Second, we establish the main result, i.e. Theorem 10.2.11. Third, we discuss a natural
generalization for multitournaments.
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10.2.1 Definitions and properties

Definition 10.2.1. A (labeled) tournament of size n is a directed graph with the set of vertices [n],
such that each pair of vertices i 6= j is joined by exactly one of two directed edges

−→
ij or

−→
ji .

Definition 10.2.2. A tournament is reducible, if there exists a partition of its vertices into two
nonempty parts A and B such that any pair of vertices (a, b) ∈ A × B are joined by the edge that
goes from A to B, i.e

−→
ab. A tournament is irreducible, if it is not reducible.

Remark 10.2.3. A tournament T is irreducible if and only if it is strongly connected as a directed
graph (see Definition 10.3.1). Indeed, if T is reducible, then there is a partition of its vertices
AtB, such that A is not reachable from B, and hence, A and B are in different strongly connected
components. Conversely, if T is not strongly connected then there is a pair of vertices a and b, such
that a is not reachable from b. Let B be the set of vertices that can be reached from B, and A be
the rest. Then, on the one hand, a ∈ A and b ∈ B, and hence, A and B are nonempty. On the other
hand, all edges go from A to B, meaning that T is reducible.

Notation 10.2.4. We denote the labeled combinatorial classes of tournaments and irreducible tour-
naments by T and IT , respectively. The corresponding counting sequences are (tn) and (itn),
respectively.

Remark 10.2.5. Since for any pair of vertices there are two ways of choosing the direction of the
edge that joins these vertices, the counting sequence (tn) satisfies

tn = 2(n
2).

Lemma 10.2.6. The labeled combinatorial class T of tournaments is gargantuan.

Proof. This follows from Lemma 10.1.5, since the counting sequences of the classes T and G are the
same (see also Example 3.1.73).

Lemma 10.2.7. Any tournament can be uniquely decomposed into a sequence of irreducible tourna-
ments, meaning that

T = SEQ(IT ).

Proof. For the proof, see Example 3.1.33 (see also [65]).

Remark 10.2.8. The notion of SEQ-irreducibility for tournaments coincides with the one of irre-
ducibility.

Notation 10.2.9. For any m ∈ N, we denote by

IT (m) = SEQm(IT )

the labeled combinatorial class consisting of labeled tournaments that have exactly m irreducible
parts. We designate its counting sequence as

(
it(m)
n

)
.

Example 10.2.10. All possible eight labeled tournaments of size 3 are depicted on Fig. 10.3. Among
them, the only irreducible tournaments are cycles: the second tournament at the top row and the
third one at the bottom row. The other six tournaments can be interpreted as sequences of three
irreducible tournaments of size 1 each. For instance, the top left tournament corresponds to the
sequence {2} → {1} → {3}.
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Figure 10.3: Labeled tournaments of size 3.

10.2.2 Asymptotic probabilities for irreducible tournaments

Theorem 10.2.11. The asymptotic probability that a random labeled tournament T with n vertices
consists of m ∈ N irreducible parts satisfies

P
(
T has m irreducible parts

)
≈
∑
k>0

β
(m)
k ·

(
n

k

)
· 2k(k+1)/2

2kn
, (10.6)

where β(m)
k = m

(
it

(m−1)
k − 2it

(m)
k + it

(m+1)
k

)
. In particular,

P
(
T has m irreducible parts

)
= m · (n)m−1 ·

2m(m−1)/2

2(m−1)n
+O

(
nm

2mn

)
.

Proof. Due to Lemma 10.2.6, the labeled combinatorial class T is gargantuan. At the same time,
T = SEQ(IT ) by Lemma 10.2.7. Hence, in accordance with Theorem 5.3.1, we have

P
(
T has m SEQ-irreducible parts

)
≈
∑
k>0

β
(m)
k ·

(
n

k

)
· tn−k

tn
.

To finish the proof, note that SEQ-irreducibility of a labeled tournament coincides with its irre-
ducibility, and

tn−k
tn

=
2k(k+1)/2

2kn
.

The behavior of the leading term of this asymptotics follows from Corollary 5.3.4.

Corollary 10.2.12. The asymptotic probability that a random labeled tournament T with n vertices
is irreducible satisfies

P
(
T is irreducible

)
≈ 1−

∑
k>1

(
2itk − it

(2)
k

)
·
(
n

k

)
· 2k(k+1)/2

2kn
. (10.7)

Remark 10.2.13. For m = 1, asymptotic expression (10.6) in the statement of Theorem 10.2.11
takes the form of (10.7) with

β
(1)
k =

{
1, if k = 0,

−2itk + it
(2)
k , if k 6= 0.
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10.2.3 Multitournaments and their asymptotics

Definition 10.2.14. We call a (labeled) multitournament of rank N an element of the Hadamard
product T � . . . � T of N copies of the class T . In other words, a multitournament of rank N of
size n is an N -tuple of tournaments

(T1, . . . , TN) ∈ T Nn
such that the vertices with the same labels are identified with each other.

Remark 10.2.15. The concept of multitournaments generalizes the concept of tournaments the
same way as multigraphs generalize simple graphs (see Remark 10.1.14 and Remark 10.3.21). In
particular, the usual notion of (ir)reducibility can be used. Namely, a multitournament is reducible,
if there exists a partition of its vertices into two nonempty parts A and B such that any pair of
vertices (a, b) ∈ A×B are joined by N edges that go from A to B, and irreducible otherwise.

Notation 10.2.16. We denote the labeled combinatorial class of multitournament of rank N and
its subclass of irreducible multitournament by MT (N) and IMT (N), respectively. We designate
their counting sequences as

(
mtn(N)

)
and

(
imtn(N)

)
, respectively.

The properties of tournaments are transferred to multitournaments in a natural way. Thus,
any multitournament of rank N can be uniquely decomposed into a sequence of irreducible multi-
tournaments of rank N , meaning that

MT (N) = SEQ
(
IMT (N)

)
. (10.8)

As a consequence, as well as for simple tournaments, irreducible parts of a multitournament of rank N
coincide with its SEQ-irreducible parts. In particular, a multitournament is SEQ-irreducible, if and
only if it is irreducible. We denote the labeled combinatorial class consisting of labeled multigraphs
of rank N that have exactly m irreducible parts, where m is a positive integer, by

IMT (m)(N) = SEQm

(
IMT (N)

)
.

The corresponding counting sequence is designated as
(
imt(m)

n (N)
)
.

Example 10.2.17. Some of the 64 labeled multigraphs of rank 2 of size 3 are depicted on Fig. 10.4.
The first of them is identified with the sequence of three irreducible multitournaments of size 1 each.
The second and the third are decomposed into a sequence of two irreducible parts, while the last
three multitournaments are irreducible. Note that the fourth multitournament is irreducible, but
both its restrictions on the first and second element of the tuple are reducible. In other words, both
the tournament with red edges and the tournament with blue edges are reducible.

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Figure 10.4: Some labeled multitournaments of size 3.

The counting sequence
(
mtn(N)

)
of the classMT (N) satisfies

mtn(N) = mgn(N) = (gn)N = 2N(n
2).
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In particular, there is a combinatorial equivalence

MT (N) ∼=MG(N),

implying by Lemma 10.1.17, that the class MT (N) is gargantuan. Taking into account decom-
position (10.8), this fact, due to Theorem 5.3.1, leads to the following result which generalizes
Theorem 10.2.11.

Statement 10.2.18. The asymptotic probability that a random labeled multitournament T of rank N
with n vertices consists of m ∈ N irreducible parts satisfies

P
(
T has m irreducible parts

)
≈
∑
k>0

β
(m)
k ·

(
n

k

)
· 2Nk(k+1)/2

2Nkn
, (10.9)

where β(m)
k = m

(
imt

(m−1)
k (N)− 2imt

(m)
k (N) + imt

(m+1)
k (N)

)
. In particular,

P
(
T has m irreducible parts

)
= m · (n)m−1 ·

2Nm(m−1)/2

2N(m−1)n
+O

(
nm

2Nmn

)
.

Corollary 10.2.19. The asymptotic probability that a random labeled multitournament T of rank N
with n vertices is irreducible satisfies

P
(
T is irreducible

)
≈ 1−

∑
k>1

(
2imtk(N)− imt

(2)
k (N)

)
·
(
n

k

)
· 2Nk(k+1)/2

2Nkn
. (10.10)

10.3 Directed graphs
Tournaments discussed in the previous section are the particular case of directed graphs. In this
section, we discuss other subclasses of the labeled combinatorial class D of directed graphs, including
strongly connected, weakly connected and directed acyclic graphs.

Among the topics of this section, the most interesting question, probably, relates to the enu-
meration of strongly connected digraphs. This question arose in 1960 in the paper of Harary [44],
see also [45]. The first approach was made in 1966, when Moon and Moser [69] showed that the
number sdn of strongly connected digraphs of size n satisfies

sdn ∼ 2n(n−1),

as n → ∞. Three years later, Liskovets [58] provided three recurrences allowing to calculate the
sequence (sdn) iteratively, see also [59]. Basing on the results of Liskovets, in 1971, Wright [104]
established the asymptotic behavior of the number of strongly connected digraphs in the form

sdn = 2n(n−1)

(
r−1∑
k=0

2−knωk(n)
n!

(n+ [k/2]− k)!
+O

(
nr2−rn

))
, (10.11)

where

ωk(n) =

[k/2]∑
ν=0

γνξk−2ν2
k(k+1)/2−ν(k−ν)(n+ [k/2]− k) . . . (n+ ν + 1− k),
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the numbers γν are defined recursively by

γ0 = 1, γν =
ν−1∑
s=0

γsηn−s
(ν − s)!

, (10.12)

the numbers ξν are the coefficients of the formal power series

∞∑
ν=0

ξνz
ν =

(
1−

∞∑
n=0

ηn
2n(n−1)/2

zn

n!

)2

(10.13)

and the numbers ηn are defined recursively by

η1 = 1, ηn = 2n(n−1) −
n−1∑
t=1

(
n

t

)
2(n−1)(n−t)ηt. (10.14)

According to Wright, the polynomials ωk(n) up to k = 5 are

ω0(n) = 1, ω1(n) = −4, ω2(n) = 4(2n− 1),

ω3(n) = −32(4n− 5)

3
, ω4(n) = −64(64n2 − 326n+ 393)

3
,

ω5(n) = −1024(3392n2 − 2372n+ 40659)

15
.

Also, he mentioned that he had not found any combinatorial interpretation of involved coefficients
though the recurrences looked as if they should possess one.

Further simplifications were done by Robinson [90] who showed that ηn are the coefficients of
the exponential generating function

H(z) = ∆−1

(
1− 1

∆D(z)

)
,

and Bender [9] who provided a simple proof of Wright’s result, using exponential generating functions
instead of recurrences. The direct interpretation of ηn in terms of tournaments was given in 1975
by Liskovets [60] who indicated that 2−(n

2)ηn is the number of irreducible tournaments of size n; see
also recent paper of Archer, Gessel, Graves and Liang [3] who showed that, after dividing by 2(n

2),
(10.14) becomes a well-known formula

it1 = 1, itn = 2(n
2) −

n−1∑
t=1

(
n

t

)
2(n−t

2 )itt

for irreducible tournaments [68, (1)]. Thus, ηn = tnitn.
In this section, relying on the enumerative methods of Robinson [90] and Dovgal and de

Panafieu [29], we make further simplifications and rewrite (10.11) in a shorter form. We give combi-
natorial interpretation to all the terms involved into our asymptotic expansion as well as for Wright’s
coefficients γn, ξn and ηn. In addition, we need to indicate that Wright’s expression for ω5(n) contains
a typo. The correct version should be

ω5(n) = −1024(3392n2 − 23724n+ 40659)

15
,
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while in Wright’s version the last digit in the number 23724 is omitted.
Another problem that is worth mentioning is the enumeration of weakly connected directed

acyclic graphs. Using the recursive approach of Wright [102], Robinson [90] showed that the number
of weakly connected directed acyclic graphs satisfies

wdagn ≈ dagn +
∑
k>1

gk

(
n

k

)
dagn−k,

where gk are the coefficients of the exponential generating function g(z) such that

DAG(z)
(
1 + g(z)

)
= 1.

We put this result of Robinson in the general context, give interpretation to the coefficients gn and
generalize it by establishing the probability that a random directed acyclic graph consists of a given
number of weakly connected components.

The structure of the section is the following. First, we recall necessary definitions and proper-
ties of directed graphs. In the second part of the section, we discuss the symbolic method for strongly
connected graphs and the asymptotic expansions for the probability that a random directed graph
is strongly connected. Next, we establish the asymptotic probability that a random directed graph
consists of a fixed number of weakly connected components and generalizes this result for multidi-
graphs. Finally, we finish this section providing asymptotics and interpretations for the probability
that a random directed acyclic graph has a given number of weakly connected components.

10.3.1 Definitions and properties

Definition 10.3.1. A (labeled) directed graph (or simply digraph) of size n consists of the set of
vertices [n] = {1, . . . , n} together with a set E of (directed) edges that are ordered pairs of distinct
vertices. Among different type of digraphs, we consider the following:

• weakly connected digraphs , that is, digraphs whose underlying undirected graphs are connected,

• strongly connected digraphs , which are determined by the property that every vertex can be
reached from any other vertex by a directed path,

• semi-strong digraphs whose weakly connected components are strongly connected,

• acyclic digraphs that do not contain directed cycles.

Notation 10.3.2. For different labeled combinatorial classes and their counting sequences, we em-
ploy the following notations.

• For directed graphs, we use D and (dn), respectively.

• For weakly connected directed graphs, we use WD and (wdn), respectively.

• For strongly connected directed graphs, we use SD and (sdn), respectively.

• For semi-strong directed graphs, we use SSD and (ssdn), respectively.

• For directed acyclic graphs, we use DAG and (dagn), respectively.

• For weakly connected directed acyclic graphs, we use WDAG and (wdagn), respectively.
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Remark 10.3.3. The number of labeled digraphs of size n is determined by the cardinality of the
set of ordered pairs of [n] = {1, . . . , n} which is n(n − 1). Since any pair can be either present or
absent in a graph, the counting sequence (dn) of the class D satisfies

dn = 2n(n−1).

As a consequence, there is a combinatorial equivalence

D ∼=MG(2)

and the graphic generating function of D coincides with the exponential generating function of G:

∆(z) = G(z) =
∞∑
n=0

2(n
2) z

n

n!
.

Lemma 10.3.4. The labeled combinatorial class D of directed graphs is gargantuan.

Proof. Since dn = mgn(2), the statement of this lemma follows from Lemma 10.1.17.

Remark 10.3.5. The concept of weakly connectedness of digraphs is similar to the concept of
connectedness of undirected graphs. In particular, the following decompositions take place:

D = SET(WD), (10.15)

SSD = SET(SD), (10.16)

and
DAG = SET(WDAG). (10.17)

Hence, as for undirected graphs, weakly connected components of a directed graph coincide with its
SET-irreducible parts. For any m ∈ N, we denote by

WD{m} = SETm(WD) and WDAG{m} = SETm(WDAG)

the labeled combinatorial classes consisting of digraphs and acyclic digraphs, respectively, that have
exactly m weakly connected components. Their counting sequences are

(
wd
{m}
n

)
and

(
wdag

{m}
n

)
,

respectively.
The concept of strongly connectedness is less ordinary. On the one hand, any digraph can

be uniquely decomposed into a finite collection of strongly connected components, i.e. the strongly
connected subgraphs that are maximal in the sense of inclusion. On the other hand, two different
components may be joined by edges, but, in this case, all the edges go in the same direction. Enu-
merating strongly connected graphs is a non-trivial task; we shortly discuss it in the next subsection
(see Lemma 10.3.14).

Remark 10.3.6. Due to relations (10.3) and (10.15),

SET(WD) = D ∼=MG(2) = SET
(
CMG(2)

)
.

Hence, for every m ∈ N, we have the combinatorial equivalences

WD ∼= CMG(2) and WD{m} ∼= CMG{m}(2).
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Figure 10.5: Some labeled digraphs of size 3.

Example 10.3.7. Some of the 64 labeled directed graphs of size 3 are depicted on Fig. 10.5. The
last of them is strongly connected. The second and fifth digraphs contain two strongly connected
components, namely, {1, 2} and {3}. For the other three digraphs, the connected components coincide
with their vertices.

Example 10.3.8. The undirected graphs which are underlying the labeled directed graphs from
Fig. 10.5 are depicted on Fig. 10.6. The first two of them are disconnected, while the others are
connected. Hence, on Fig. 10.5, the last four digraphs are weakly connected and the first two contain
two connected components each. At the same time, the second and last digraphs are semi-strong.
The first digraph is not semi-strong, since it has the weakly connected component {1, 2} which is not
strongly connected. The same way, the other three digraphs are weakly connected, but not strongly
connected, and hence, they are not semi-strong.
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Figure 10.6: Undirected graphs underlying the labeled digraphs from Fig. 10.5.

Example 10.3.9. On Fig. 10.7, we depict some acyclic digraphs of size 3. The last four of these
digraphs are weakly connected, while the first and second contain three and two weakly connected
components, respectively. Note that Fig. 10.7 illustrates all possible structures, meaning that any
acyclic digraph of size 3 can be obtained from one of the depicted digraphs by relabeling.
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Figure 10.7: Some labeled acyclic digraphs of size 3.

10.3.2 Asymptotic probabilities for strongly connected digraphs

Lemma 10.3.10. Let A ⊂ SD be a labeled combinatorial subclass of strongly connected digraphs
and let DA be the labeled combinatorial class of digraphs whose connected components belong to A.
In this case, we have

∆DA(z) =
(
∆e−A(z)

)−1
.
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Proof. For the proof we invite the reader to consult [29, Theorem 3.4] or [90, Theorem 1].

Notation 10.3.11. Denote by H the subclass of the labeled combinatorial class MT (2) of multi-
tournaments of rank 2 whose second element is irreducible. In other words,

H = T � IT .

The corresponding counting sequence is designated as (hn).

Remark 10.3.12. The counting sequence (hn) of the class H satisfies

hn = tnitn,

and its exponential generating function has the form

H(z) = T (z)� IT (z).

Lemma 10.3.13. The labeled combinatorial class H is gargantuan.

Proof. Recall, that the sequences
an = n!

and
bn =

tn
n!

are gargantuan (see Example 2.1.2 and Lemma 10.2.6, respectively). Since

itn = tn + o(tn)

by Corollary 10.2.12, Lemma 2.1.12 implies that the sequence

cn =
itn
n!

is gargantuan as well. Hence, by Lemma 2.1.8, their product

hn
n!

= anbncn

is gargantuan, meaning that the class H is gargantuan indeed.

Lemma 10.3.14. The exponential generating functions of the labeled combinatorial classes SD of
strongly connected directed graphs and SSD of semi-strong directed graphs satisfy

SD(z) = − log
(

1−H(z)
)

and
SSD(z) =

1

1−H(z)
,

respectively.
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Proof. Apply Lemma 10.3.10 to the class A = SD. Then

∆DA(z) =
(
∆e−A(z)

)−1
=
(
∆e−SD(z)

)−1
.

On the other hand,
∆DA(z) = ∆D(z) = G(z).

Hence,

SD(z) = − log

(
∆−1 1

∆DA(z)

)
= − log

(
G(z)� 1

G(z)

)
.

Meanwhile, by Lemma 10.2.7,
1

G(z)
=

1

T (z)
= 1− IT (z).

Therefore,

G(z)� 1

G(z)
= T (z)�

(
1− IT (z)

)
= 1− T (z)� IT (z) = 1−H(z),

that implies the first part of the lemma. To finish the proof, note that the expression for SSD(z)
follows from the expression for SD(z) and relation (10.16).

Remark 10.3.15. Lemma 10.3.14 means that there are combinatorial isomorphisms of the following
combinatorial classes:

SD ∼= CYC(H) and SSD ∼= SEQ(H).

In 2020, in their work [3], Archer, Gessel, Graves and Liang noticed that the equality

SD(z) = − log
(

1− T (z)� IT (z)
)
.

could be explained combinatorially by a bijection from strongly connected directed graphs to cycles
of strong tournaments with some additional structure. Unfortunately, they were not able to find
such a bijection, neither were we, so far.

Theorem 10.3.16. The asymptotic probability that a random labeled directed graph D with n vertices
is strongly connected satisfies

P
(
D is strong

)
≈
∑
k>0

ssdk ·
(
n

k

)
· 2k(k+1)/2

2n(n−1)/2
· itn−k

2nk
. (10.18)

Proof. Let us apply Theorem 3.1.79 to the gargantuan labeled combinatorial classH and the function

F (x, y) = log
1

1− y
.

According to Lemma 10.3.14, we have

B(z) = log
1

1−H(z)
= SD(z)

and
C(z) =

1

1−H(z)
= SSD(z).
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Therefore, Theorem 3.1.79 gives the following asymptotics:

sdn ≈
∑
k>0

ssdk

(
n

k

)
hn−k.

Now, to obtain the target probability, it is sufficient divide both sides of the above formula by the
number of digraphs dn of size n and to notice that

hn−k
dn

=
2k(k+1)/2

2n(n−1)/2
· itn−k

2nk
.

Remark 10.3.17. Since dn = mtn(2) and

hn−k
dn

=

(
tn−k
tn

)2
itn−k
tn−k

=
2k(k+1)

22nk
· itn−k
tn−k

,

we can rewrite the statement of Theorem 10.3.16 as

P
(
D is strong

)
≈
∑
k>0

ssdk ·
(
n

k

)
· mtn−k(2)

mtn(2)
· itn−k
tn−k

or as

P
(
D is strong

)
≈
∑
k>0

ssdk ·
(
n

k

)
· 2k(k+1)

22nk
· itn−k
tn−k

.

Corollary 10.3.18. The asymptotic probability that a random labeled directed graph D with n vertices
is strongly connected satisfies

P
(
D is strong

)
=

2r−1∑
k=0

2k(k+1)/2

2kn

[k/2]∑
ν=0

(
n

ν, k − 2ν

)
ssdνβk−2ν

2ν(k−ν)
+O

(
n2r

22nr

)
, (10.19)

where

βk =

{
1, if k = 0,

−2itk + it
(2)
k , if k 6= 0.

Proof. As we have seen in Remark 10.3.17,

P
(
D is strong

)
≈
∑
ν>0

ssdν ·
(
n

ν

)
· 2ν(ν+1)

22nν
· itn−ν
tn−ν

.

On the other hand, Corollary 10.2.12 provides us the asymptotic behavior for

itn−ν
tn−ν

≈ 1−
∑
s>1

(
2its − it(2)

s

)
·
(
n− ν
s

)
· 2s(s+1)/2

2s(n−ν)
,

since it is the probability that a random tournament of size (n − ν) is irreducible. Using the se-
quence (βs), we can rewrite it in the form

itn−ν
tn−ν

≈
∑
s>0

βs ·
(
n− ν
s

)
· 2s(s+1)/2

2s(n−ν)
.

Substitute this ratio into the initial formula for the probability thatD is strongly connected. Denoting
k = s+ 2ν and changing the order of summation, we obtain exactly (10.19).
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Remark 10.3.19. Asymptotic probability (10.19) is a simpler form of (10.11) found by Wright [104].
The main advantage of (10.19) is that all involved terms have precise combinatorial sense. Let us
determine the meaning of Wright’s coefficients γn, ξn, ηn. As we have already mentioned, it follows
from [3] and [90] that

ηn = hn = tnitn.

Also, we can see it directly from (10.14). Indeed, relation (10.14) can be interpreted as a decompo-
sition of any object of MT (2) with respect to its second element. More precisely, for any pair of
tournaments (T ′, T ) ∈ MT (2), decompose T into a sequence (T1, T2) where T1 is irreducible. Then
(T ′1, T1) ∈ H, while (T ′2, T2) ∈MT (2), and hence,

mtn(2) =
n∑
t=1

(
n

t

)
htmtn−t(2),

which is exactly (10.14).
Next, with the help of identity ηn = hn, recurrent relation (10.12) can be rewritten in terms of

exponential generating functions as

∞∑
n=0

γnz
n =

1

1−H(z)
.

According to Lemma 10.3.14, this means that

γn =
ssdn
n!

.

Finally, using the same identity ηn = hn, we can interpret relation (10.13) as

∞∑
n=0

ξnz
n =

(
1− IT (z)

)2
= 1− 2IT (z) + IT (2)(z),

which immediately gives us

ξn =
βn
n!

=

 1, if n = 0,

−2itn + it(2)
n

n!
, if n 6= 0.

10.3.3 Asymptotic probabilities for weakly connected digraphs

Studying the asymptotic behavior of weakly connected directed graphs is similar to the case of
connected undirected graphs. That is why we do it in the utmost generality, i.e. for weakly connected
multidigraphs, and omit some details.

Definition 10.3.20. We call a (labeled) multidigraph of rank N an element of the Hadamard product
D � . . . � D of N copies of the class D. In other words, a multidigraph of rank N and size n is an
N -tuple of directed graphs

(D1, . . . , DN) ∈ DNn
such that the vertices with the same labels are identified with each other.
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Remark 10.3.21. In the general case, one can define a labeled multidigraph of size n as a function
from the set of ordered pairs

{
(i, j) | i, j ∈ [n]

}
to the set of non-negative integers (compare to

Remark 10.1.14). The same way as for multigraphs, it is convenient to think about a multidigraph
of rank N as a multidigraph whose edges bear colors {1, . . . , N}, such that the restriction to the
set of edges of a fixed color is a digraph. The concepts of weakly connected and strongly connected
multidigraphs of rank N are defined naturally.

Notation 10.3.22. We denote the labeled combinatorial class of multidigraphs of rank N and
its subclasses of weakly connected and strongly connected multidigraphs by MD(N), WMD(N)
and SMD(N), respectively. Their counting sequences are

(
mdn(N)

)
,
(
wmdn(N)

)
and

(
smdn(N)

)
,

respectively.

The counting sequence
(
mdn(N)

)
of the classMD(N) satisfies

mdn(N) = (dn)N = 2Nn(n−1).

In particular,
MD(N) ∼=MG(2N)

andMD(N) is gargantuan for any N ∈ N. Any multidigraph of rank N can be uniquely decomposed
into an unordered collection of weakly connected components, meaning that

MD(N) = SET
(
WMD(N)

)
. (10.20)

Similarly to other combinatorial classes, for any m ∈ N, we denote by

WMD{m}(N) = SETm

(
WMD(N)

)
and

(
wmd

{m}
n (N)

)
the labeled combinatorial class consisting of labeled multidigraphs of rank N

that have exactly m weakly connected components and its counting sequence, respectively. For any
N ∈ N,

SET
(
WMD(N)

)
=MD(N) ∼=MG(2N) = SET

(
CMG(2N)

)
,

hence, we have combinatorial equivalences

WMD(N) ∼= CMG(2N)

and, for every m ∈ N,
WMD{m}(N) ∼= CMG{m}(2N).

As an example, some labeled multidigraphs of rank 2 and size 3 are depicted on Fig. 10.8. All
of them, except for the first one, are weakly connected. The first and second multidigraphs have
three strongly connected components of size 1 each. The third and fourth multidigraphs have two
strongly connected components, namely, {1, 2} and {3}. Finally, the last two multidigraphs are
strongly connected.

SinceMD(N) ∼=MG(2N) and WMD(N) ∼= CMG(2N), Statements 10.1.18 and 10.1.19 give
us the following result.

Statement 10.3.23. The asymptotic probability that a random labeled multidigraph D of rank N
and size n is weakly connected satisfies

P
(
D is weakly connected

)
≈ 1−

∑
k>1

imtk(2N) ·
(
n

k

)
· 2Nk(k+1)

22Nkn
. (10.21)
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Figure 10.8: Some multidigraphs of rank 2 of size 3.

Moreover, for any m ∈ N, the asymptotic probability that D consists of m weakly connected compo-
nents satisfies

P
(
D has m weakly connected components

)
≈
∑
k>0

α
{m}
k ·

(
n

k

)
· 2Nk(k+1)

22Nkn
, (10.22)

where

α
{m}
k =

∞∑
s=m−1

(−1)s+m−1

(
s

m− 1

)
wmd

{s}
k (N).

In particular,

P
(
D has m weakly connected components

)
=

(
n

m− 1

)
2Nm(m−1)

22N(m−1)n
+O

(
nm

22Nmn

)
.

Corollary 10.3.24. The asymptotic probability that a random labeled digraph D with n vertices is
weakly connected satisfies

P
(
D is weakly connected

)
≈ 1−

∑
k>1

imtk(2) ·
(
n

k

)
· 2k(k+1)

22kn
. (10.23)

Moreover, for any m ∈ N, the asymptotic probability that D consists of m weakly connected compo-
nents satisfies

P
(
D has m weakly connected components

)
≈
∑
k>0

α
{m}
k ·

(
n

k

)
· 2k(k+1)

22kn
, (10.24)

where

α
{m}
k =

∞∑
s=m−1

(−1)s+m−1

(
s

m− 1

)
wd
{s}
k .

In particular,

P
(
D has m weakly connected components

)
=

(
n

m− 1

)
2m(m−1)

22(m−1)n
+O

(
nm

22mn

)
.

10.3.4 Asymptotic probabilities for weakly connected acyclic digraphs

As we have seen before, directed acyclic graphs satisfy relation (10.17). This implies that the prob-
ability that a random directed acyclic graph is weakly connected can be established with the help
of our standard schema by Theorem 7.2.1. However, unlike the cases discussed above, there is no
explicit expression for the counting sequence (dagn). This fact makes the analysis of the asymptotic
behavior of the target probability more complicated. Here, we trace out the way leading to the result.
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Lemma 10.3.25. The graphical generating function of DAG satisfies

∆DAG(z) =
(
∆e−z

)−1
.

Proof. Apply Lemma 10.3.10, taking into account that an directed acyclic graph is strongly connected
if and only if its size is equal to 1.

Lemma 10.3.26. The counting sequence of the labeled combinatorial class DAG satisfies

dagn = n!2(n
2)
∞∑
k=0

ck
znk
,

where 0 < z0 < z1 < z2 < . . . are zeros of

∞∑
k=0

(−1)kzk

k!2(k
2)

= 0

and constants ck are bounded by

0 < |ck| <
1

2(k+1
2 )

∞∏
j=0

(
1− 1

2j

)−2

.

Proof. For the proof, see [90].

Lemma 10.3.27. The labeled combinatorial class DAG of directed acyclic graphs is gargantuan.

Proof. Since the sequences

an = n! and bn =
2(n

2)

n!

are gargantuan (see Examples 2.1.2 and 2.1.7), so is the sequence

anbnc0

zn0
=
c02(n

2)

zn0

by Lemmas 2.1.8 and 2.1.10. To finish the proof, notice that

dagn
n!

=
anbnc0

zn0
+ o

(
a2
nbn
zn0

,

)
and hence, we can apply Lemma 2.1.12.

Statement 10.3.28. The asymptotic probability that a random labeled directed acyclic graph A with
n vertices consists of m ∈ N weakly connected components satisfies

P
(
A has m weakly connected components

)
≈
∑
k>0

α
{m}
k ·

(
n

k

)
·
dagn−k
dagn

, (10.25)

where

α
{m}
k =

∞∑
s=m−1

(−1)s+m−1

(
s

m− 1

)
wdag

{s}
k .
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In particular,

P
(
A has m weakly connected components

)
=

zm−1
0

(m− 1)!
· 2m(m−1)/2

2(m−1)n
+O

(
1

2mn

)
,

where z0 = 1.4880785 . . . is the lowest root of the equation

∞∑
k=0

(−1)kzk

k!2(k
2)

= 0.

Proof. By Lemma 10.3.27, the labeled combinatorial class DAG is gargantuan. At the same time,
according to (10.17), DAG = SET(WDAG). Hence, we can apply Theorem 7.3.1 providing us
relation (10.25).

Let us determine the leading term of (10.25). It follows from Corollary 7.3.4 that

P
(
A has m weakly connected components

)
=

(
n

m− 1

)
dagn−m+1

dagn
+O

(
nm ·

dagn−m
dagn

)
.

According to Lemma 10.3.26,

dagn = n!2(n
2)
∞∑
k=0

ck
znk
,

where 0 < z0 < z1 < z2 < . . . are zeroes of

∞∑
k=0

(−1)kzk

k!2(k
2)

= 0

and the set of constants {ck | k ∈ Z>0} is bounded. Hence, calculations give us(
n

m− 1

)
dagn−m+1

dagn
=

zm−1
0

(m− 1)!
· 2m(m−1)/2

2(m−1)n
+O

(
1

2(m−1)n

(
z0

z1

)n)
.

At the same time,

nm ·
dagn−m
dagn

= O

(
1

2mn

)
.

Also, Robinson showed in [90] that z1 > 2z0. Therefore,

1

2mn
>

1

2(m−1)n

(
z0

z1

)n
,

and as a consequence,(
n

m− 1

)
dagn−m+1

dagn
+O

(
nm ·

dagn−m
dagn

)
=

zm−1
0

(m− 1)!
· 2m(m−1)/2

2(m−1)n
+O

(
1

2mn

)
.
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10.4 The Erdős–Rényi model
Let p ∈ (0, 1) be a fixed real number and let n ∈ N. The Erdős–Rényi model G(n, p) of a random
labeled graph with n vertices is constructed as follows. Each pair of vertices is joined by an edge
independently with probability p. In particular, a labeled graph with n vertices and k edges is picked
with probability

pkq(
n
2)−k,

where q = 1− p.
In this section, we are interested the following question. Let G be a random graph in the

Erdős–Rényi model G(n, p). Fix the parameter p and tend n to infinity. What is the asymptotic
probability that G is connected and, more generally, for a fixed m ∈ N, what is the asymptotic
probability that G consists of exactly m connected components?

In 1959, Gilbert [41] provided the following estimation for this probability:

P(G is connected) = 1− nqn−1 +O
(
n2q3n/2

)
.

We provide the whole asymptotic expansion and explain the meaning of the involved coefficients.
In order to do so, first, we assign weights to the graphs within the Erdős–Rényi model. Second, we
show that this assigning allows us to get gargantuan weighted species of graphs. Finally, we proceed
with obtaining the asymptotic probabilities that a random graph G consists of a given number of
connected components and providing the interpretation of the coefficients.

10.4.1 Definition and properties of the Erdős–Rényi model

Let G be a graph in G(n, p) model. If we denote by E(G) the set of its edges, then the probability
to pick this particular graph G can be written in the following form

P(G) = p|E(G)|q(
n
2)−|E(G)| =

p|E(G)|q(
n
2)−|E(G)|

(p+ q)(
n
2)

=
(p/q)|E(G)|(

(p/q) + 1
)(n

2)
.

If we also use the notation
ρ =

p

q
= q−1 − 1,

then, in terms of the parameter ρ, we have

P(G) =
ρ|E(G)|

(ρ+ 1)(
n
2)
.

This leads us to the following definition (see also Example 4.1.7).

Definition 10.4.1. The weighted species Gw of graphs is the species G of graphs with the assigned
weight

w(G) = ρ|E(G)|.

The weighted species CGw of connected graphs is the subspecies CG ⊂ G with the above defined
weight function.

Remark 10.4.2. For every n ∈ N, the total weight of Gw[n] is

|Gw[n]| = (ρ+ 1)(
n
2) = q−(n

2).
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Figure 10.9: Weights of the labeled graphs whose size does not exceed 3.

Example 10.4.3. On Fig. 10.9, we indicate the graphs of size 3 and less, together with their weights.

Lemma 10.4.4. The weighted species Gw of graphs and CGw of connected graphs satisfy the relation

Gw = E ◦ CGw.

Proof. This follows from the construction of the Erdős–Rényi model and from the definition of the
weight.

Lemma 10.4.5. The weighted species Gw of graphs is gargantuan.

Proof. According to Definition 4.2.20, we need to show that the sequence

an =
|Gw[n]|
n!

=
(ρ+ 1)(

n
2)

n!

is gargantuan. For the case ρ = 1, which corresponds to p = 1/2, we have seen the proof in
Example 2.1.7 (see also Lemma 10.1.5). In the general case, the proof is pretty similar, so we just
remind the key steps. The main idea is to apply Lemma 2.1.4. In order to do so, we need to check
two conditions. The first of them reads

nan−1

an
=

n

(1 + ρ)n
→ 0,

as n→∞. For the second, verify that the sequence

xk = akan−k

is decreasing for k < n/2. Indeed, for large n, we have

xk+1

xk
6 1 ⇔ (1 + ρ)k+1

(k + 1)
6

(1 + ρ)n−k

(n− k)
⇔ k + 1 6 n− k,

since the function
f(x) =

(1 + ρ)x

x

is increasing for large x (see Remark 2.1.6). Hence, Lemma 2.1.4 is applicable and (an) is gargantuan.
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10.4.2 Asymptotic probabilities in the Erdős–Rényi model

Theorem 10.4.6. Let p ∈ (0, 1). The asymptotic probability that a random graph G in the Erdős–
Rényi model G(n, p) is connected satisfies

P(G is connected) ≈ 1−
∑
k>1

Pk(ρ) ·
(
n

k

)
· qnk

qk(k+1)/2
, (10.26)

where q = 1− p, ρ = p/q,
Pk(ρ) =

∑
H∈(Gw)k

(−1)π0(H)−1w(H)

is the sum of weights of graphs H ∈ (Gw)k taken with the sign (−1)π0(H)−1, where π0(H) is the number
of connected components of the graph H.

Proof. According to Lemma 10.4.4, the weighted species Gw of graphs and CGw of connected graphs
are linked with the relation

Gw = E ◦ CGw.
Due to Lemma 10.4.5, Gw is gargantuan. Hence, we can apply Theorem 8.3.4, which gives us

P(G ∈ CGw) ≈ 1−
∑
k>1

Pk ·
(
n

k

)
· |Gw[n− k]|
|Gw[n]|

,

where Pk = Pk(ρ) is the total weight of (E−1 ◦ CGw)[k]. Since, |Gw[n]| = q−(n
2), we have

|Gw[n− k]|
|Gw[n]|

= q(
n
2)−(n−k

2 ) =
qnk

qk(k+1)/2
.

On the other hand, due to Lemma 8.3.1,

E−1 ≡ 1− E1 + E2 − E3 + . . .

As long as the composition Em ◦ CGw = CG{m}w consists of weighted graphs with m connected com-
ponents, the total weight of (Em ◦ CGw)[k] is∣∣(Em ◦ CGw)[k]

∣∣ =
∑

H∈(Gw)k
π0(H)=m

(−1)m−1w(H).

Moving on to the sum over all m ∈ N, we get exactly

Pk =
∣∣(E−1 ◦ CGw)[k]

∣∣ =
∑

H∈(Gw)k

(−1)π0(H)−1w(H).

Theorem 10.4.7. Let p ∈ (0, 1) and m ∈ N. The asymptotic probability that a random graph G in
the Erdős–Rényi model G(n, p) has m connected components satisfies

P(G has m connected components) ≈
r−1∑
k>0

P
{m}
k (ρ) ·

(
n

k

)
· qnk

qk(k+1)/2
, (10.27)
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where q = 1− p, ρ = p/q,

P
{m}
k (ρ) =

∑
H∈(Gw)k

(−1)π0(H)−m
(
π0(H)

m− 1

)
w(H)

and π0(H) is the number of connected components of the graph H. In particular,

P(G has m connected components) =

(
n

m− 1

)
· qn(m−1)

qm(m−1)/2
+O(nmqmn).

Proof. The proof is proceeding the same way as for Theorem 10.4.7, but we use Theorem 8.3.6 instead
of Theorem 8.3.4. To obtain the leading term of (10.27), note that it comes from the smallest graphH
such that π0(H) = m− 1, that is, from the totally disconnected graph with m− 1 vertices.

Remark 10.4.8. The polynomials P {m}k (ρ) for small values of m and k are listed in Table 10.1. In
particular,

P(G is connected) = 1−
(
n

1

)
qn−1 − (ρ− 1)

(
n

2

)
q2n−3 − (ρ3 + 3ρ2 − 3ρ+ 1)

(
n

3

)
q3n−6 +O(n4q4n).

P
{m}
k (ρ) k = 0 k = 1 k = 2 k = 3 k = 4
m = 1 1 −1 −ρ+ 1 −ρ3 − 3ρ2 + 3ρ− 1 −ρ6 − 6ρ5 − 15ρ4 − 12ρ3 + 15ρ2 − 6ρ+ 1
m = 2 0 1 ρ− 2 ρ3 + 3ρ2 − 6ρ+ 3 ρ6 + 6ρ5 + 15ρ4 + 8ρ3 − 30ρ2 + 18ρ− 4
m = 3 0 0 1 3ρ− 3 4ρ3 + 15ρ2 − 18ρ+ 6
m = 4 0 0 0 1 6ρ− 4
m = 5 0 0 0 0 1

Table 10.1: Polynomials P {m}k (ρ) for k 6 4 and m 6 5.
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Chapter 11

Surfaces

In this chapter, we discuss the applications of our main theorems to various surface models. In
particular, Sections 11.1 and 11.2 are devoted to square-tiled surfaces and combinatorial map model,
respectively. The common idea for these two sections is to obtain a surface by gluing together
a collection of polygons in accordance with certain rules. In general, the resulting surface can be
disconnected, but the probability of this event tends to 0, as the size of surface tends to infinity.
We establish the asymptotic expansion for the probabilities that a random surface is connected
or consists of a fixed number of connected components and indicate combinatorial meaning of the
involved coefficients.

Both connected square-tiled surfaces and combinatorial maps can be thought as particular
cases of more general objects, namely, constellations. In Section 11.3, we study the probability to
obtain a constellation by picking a random tuple of permutations. Also, we discuss the model of
(D + 1)-colored graphs whose asymptotic probability to be connected shows a similar behavior.

11.1 Square-tiled surfaces
This section is devoted to square-tiled surfaces, also known as origamis. Roughly speaking, each
object, within the considered model, is obtained by gluing several unit squares such that the result
is a so-called translation surface (possibly, not connected), i.e. a surface with the globally defined
notions of north, west, south and east. According to Zmiaikou [105], the concept of connected square-
tiled surfaces appeared in 1970-1980s in works of Thurston [96] and Veech [97] on the moduli spaces
of curves. It looks like that the name “square-tiled surface” was proposed by Eskin and used for
the first time by Zorich [106] for counting the Teichmüller volumes of the moduli spaces of Abelian
differentials. The name “origami” is ascribed to Lochak [61] who studied the moduli spaces of curves.

We are interested in the asymptotic probability that a surface randomly glued from n unit
squares is connected. From the algebraic point of view this question is equivalent to the following.
Pick a random pair (σ, τ) ∈ S2

n of permutations. What is the probability tn that the subgroup 〈σ, τ〉
is transitive? For the first time, this question was studied by Dixon [27], who showed in 1969 that

tn = 1− 1

n
+O

(
1

n2

)
.

In 2005, Dixon [28] improved his own result and obtained the full asymptotics expansion in the form

tn ∼ 1− 1

n
− 1

n2
− 4

n3
− 23

n4
− 171

n5
− 1542

n6
− . . . .
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Along the way, he proved that

tn ∼ 1− 1

(n)1

− 1

(n)2

− 3

(n)3

− 13

(n)4

− 71

(n)5

− 461

(n)6

− . . . .

and it followed from the work of Comtet [21] that the coefficients in numerators counted indecom-
posable permutations (see also [23]).

In this section, we explain how to obtain the latter result within the general framework. Also,
we establish the asymptotic expansion for the probability that a random square-tiled surface consists
of a fixed number of connected components (in terms of group action, we find the probability that
a random pair of permutations generates a group whose action has a fixed number of orbits). As
usual, we indicate the combinatorial interpretation of coefficients as well.

11.1.1 Definitions and properties

Definition 11.1.1. A square-tiled surface or origami is a finite collection of labeled unit squares
whose sides are identified in such a way that

• the right side of each square is identified to the left side of some square (possibly, the same
one),

• the top side of each square is identified to the bottom side of some square.

The size of a square-tiled surface is the number of unit squares constituting this surface.

Notation 11.1.2. We denote by O the labeled combinatorial class of (possibly, not connected)
square-tiled surfaces. The subclass of connected ones is designated by CO. We designate the corre-
sponding counting sequences as (on) and (con), respectively.

Remark 11.1.3. We can identify square-tiled surfaces of size n with labeled directed graphs of size n
with colored edges. To do this, we join vertices i and j of the graph by a red (respectively, blue)
edge

−→
ij , if and only if the right (respectively, top) side of the square i is identified with the left

(respectively, bottom) side of the square j. Note that this graph can have loops and multiple edges,
but any vertex has the ingoing and outgoing degrees of each color equal to one.

Each square-tiled surface of size n ∈ N can be encoded by a pair of permutations (σv, σh) ∈ S2
n.

These two permutations determine the identification rule for vertical and horizontal sides of unit
squares, respectively. More precisely, unit squares bear labels from 1 to n, and

• σv(i) = j, if the right side of the i-th square is identified to the left side of the j-th square,

• σh(i) = j, if the top side of the i-th square is identified to the bottom side of the j-th square.

As a consequence, the counting sequence (on) of the class O satisfies

on = (n!)2.

Since the classML(2) has the same counting sequence, we get the following lemma.

Lemma 11.1.4. The labeled combinatorial classes O of square-tiled surfaces andML(2) of pairs of
linear orders are combinatorially isomorphic.
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Corollary 11.1.5. The labeled combinatorial class O of square-tiled surfaces is gargantuan.

Proof. Follows directly from Lemmas 9.1.17 and 11.1.4.

Lemma 11.1.6. The labeled combinatorial classes O of square-tiled surfaces and CO of connected
square-tiled surfaces satisfy

O = SET(CO).

Proof. The proof proceed in the same way as the proof of Lemma 10.1.6.

Notation 11.1.7. For any m ∈ N, we denote by

CO{m} = SETm(CO)

the labeled combinatorial class consisting of square-tiled surfaces that have exactly m connected
components. The corresponding counting sequence is

(
co
{m}
n

)
.

11.1.2 Asymptotic expansions

Theorem 11.1.8. The asymptotic probability that a square-tiled surface S obtained by gluing n unit
squares randomly is connected satisfies

P
(
S is connected

)
≈ 1−

∑
k>1

ipk
(n)k

. (11.1)

Proof. Apply Theorem 7.2.1 to the labeled combinatorial class O ∼=ML(2). It is possible, since

• O = SET(CO) by Lemma 11.1.6,

• ML(2) = SEQ
(
IML(2)

)
by Lemma 9.1.18,

• O is gargantuan by Corollary 11.1.5.

In the case in hand, asymptotic formula (7.9) has the form

P(S is SET-irreducible) ≈ 1−
∑
k>1

imlk(2) ·
(
n

k

)
· on−k

on
.

Taking into the account that imlk(2) = k! · ipk by Lemma 9.1.20 and(
n

k

)
· on−k

on
=

n!

k!(n− k)!
·
(
(n− k)!

)2

(n!)2
=

1

k! · (n)k
,

we get exactly (11.1).

Theorem 11.1.9. The asymptotic probability that a square-tiled surface S obtained by gluing n unit
squares randomly has m connected components satisfies

P(S has m connected components) ≈
∑
k>0

α
{m}
k

k! · (n)k
, (11.2)
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where

α
{m}
k =

∞∑
s=m−1

(−1)s+m−1

(
s

m− 1

)
co
{s}
k .

In particular,

P(S has m connected components) =
1

(m− 1)!
· 1

(n)m−1

+O

(
1

nm

)
.

Proof. We have seen that, by Corollary 11.1.5 and Lemma 11.1.6, the class O is gargantuan and
O = SET(CO). Hence, we can apply Theorem 7.3.1, which gives us exactly (11.2). To get the main
term of the asymptotics, it is sufficient to apply Corollary 7.3.4.

11.2 Combinatorial map model
In this section, we discuss the concept of connectedness within different models of random surfaces
that have relations with combinatorial maps. Our aim is to provide asymptotic expansions that
a random surface is connected or consists of a fixed number of connected components.

The simplest version of such a random surface model was introduced in 2004 by Brooks and
Makover [14] in order to study the “typical” Riemann surfaces with high genus. Almost at the
same time, the same model was independently investigated by Pippenger and Schleich [83] who were
motivated by the needs of quantum gravity. Pippenger and Schleich showed that a random gluing of
n equal triangles formed a connected surface with probability

1− 5

18n
+O

(
1

n2

)
(11.3)

and studied their topological characteristics.
Next, came the time for generalizations. First, Gamburd [40] replaced triangles by p-gons for

the fixed integer p > 3. Second, Chmutov and Pittel [19] extended the model to polygons with
different number of sides. Namely, they glued together l polygons of total perimeter n and showed
that the probability to get a connected surface was

1−O
(

1

n

)
.

Finally, in 2019, Budzinski, Curien and Petri [15] considered a model with 1-gons and 2-gons per-
mitted, and found that the probability to obtain a connected surface was

1− 1

n
+O

(
1

n2

)
. (11.4)

The main goal of the above authors was to study topological characteristics of the proposed models,
such as Euler characteristic, genus, diameter, etc.

In all the mentioned models, glued polygons are assumed to be oriented and the identified sides
are oriented opposite-wise. In the model introduced by Budzinski, Curien and Petri a collection of
polygons of total perimeter n, together with the identification of sides, corresponds to the pair of
permutations (σ, α) ∈ S2

n, such that α is a perfect matching. Connected surfaces within this model
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are in one-to-one correspondence with combinatorial maps. In this case, the family of probability
measures are uniform measures on Pn ×Mn. For this reason, we call it combinatorial map model.

The model of Chmutov and Pittel is slightly different. They fix the set of all possible numbers
of sides J and all the numbers lj of polygons with j ∈ J sides. This choice determines the cycle
structure of the permutation σ completely. The probability measures in this case are uniform on the
corresponding conjugacy classes. Note that the models of Gamburd and of Pippenger and Schleich
are the particular cases for J = {k} and J = {3}, respectively.

We start our exposition with drawing parallels between surfaces glued from polygons and
combinatorial maps. Discussing combinatorial maps, we follow the book of Lando and Zvonkin [56]
which we could recommend to the reader for an extensive account of this topic. We show that
any surface is determined by the pair (σ, α) ∈ Pn �Mn and that connected surfaces correspond to
combinatorial maps. In the second subsection, we establish asymptotics for the combinatorial map
model of Budzinski, Curien and Petri and show that the involved coefficients count indecomposable
perfect matchings. The last subsection is devoted to the asymptotics within the models of Pippenger
and Schleich and of Gamburd.

11.2.1 Surfaces and combinatorial maps

Let us start with an informal construction of the combinatorial map model introduced by Budzinski,
Curien and Petri [15]. Our initial object is a collection of polygons of total perimeter n whose sides
are labeled with integers from 1 to n (1-gons and 2-gons are permitted). We represent each polygon
with k sides as a vertex on the plane with k half-edges attached to this vertex. Half-edges are labeled
with the same labels as the corresponding polygon sides (we draw a label to the left of the half-
edge, see Fig. 11.1). The cyclic order of half-edges is important and corresponds to one of polygon
sides. Taking half-edges in the counter-clockwise direction, we associate with the initial collection of
polygons the permutation σ ∈ Sn. For example, the permutation σ = (1, 3, 5, 6)(2)(4) is associated
to the collection of two 1-gons and a square shown on Fig. 11.1.

56

1 3

2 4

 

5
6

1
3

2 4

Figure 11.1: From a collection of polygons to vertices and half-edges.

Gluing sides of polygons together corresponds to identifying half-edges. This process is natu-
rally encoded by the perfect matching α, that is, a convolution without fixed points. For example,
the gluing depicted on Fig. 11.2 corresponds to α = (1, 2)(3, 4)(5, 6). If the resulting surface is con-
nected, then the corresponding object is a combinatorial map. That is why we call the described
model of surfaces the combinatorial map model. In terms of permutations, connectedness of a surface
means that the subgroup 〈σ, α〉 ⊂ Sn acts transitively on [n].

Every combinatorial map is uniquely determined by two permutations σ and α, such that α is
a perfect matching. On the other hand, the converse is false: it is necessary to additionally require
the underlying graph to be connected. Also, note that a combinatorial map is not determined by the
underlying graph with labels in a unique way. We illustrate this fact on Fig. 11.3, presenting two
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Figure 11.2: From gluing polygons to combinatorial maps.

different combinatorial maps with the same underlying graph. The combinatorial map depicted on
the left-hand side corresponds to the pair

σ = (1, 3, 5, 6)(2)(4) and α = (1, 2)(3, 4)(5, 6),

while the one on the right-hand side is determined by

σ = (1, 5, 3, 6)(2)(4) and α = (1, 2)(3, 4)(5, 6).

1

2

3 4
5

6

6= 1

23

4
5

6

Figure 11.3: Different combinatorial maps with the same underlying graph.

We invite the reader to pay attention the way we draw the labels on the above figures. If we
start at a vertex and move along a half-edge, then we draw its label on the left-hand side. Gluing
two half-edges, we get an edge marked with two labels which are located on different sides of the
edge (see Fig. 11.4). This allows us to associate one more permutation with a combinatorial map.

1

2

1

2

1

2
+ =  

Figure 11.4: Nature of half-edges.

Indeed, each combinatorial map divide the plane into several faces, i.e. connected parts of the
plane. The faces are bounded by half-edges, and hence, can be represented as cycles of half-edges
taken in the counter-clockwise direction. We denote by ϕ the product of these cycles. For example,
for combinatorial maps depicted on Fig. 11.3, ϕ are equal to

(1, 2, 6, 3, 4)(5) and (1, 2, 6)(3, 4, 5).
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Given a combinatorial map, the permutation ϕ is determined by σ and α by

ϕ = α−1σ−1.

This observation lead us to the following definition.

Definition 11.2.1. A combinatorial map is a triple (σ, α, ϕ) ∈ S3
n, where n ∈ N, such that

• α is a perfect matching;

• the group 〈σ, α, ϕ〉 acts transitively on the set [n];

• σαϕ = id is the identity permutation.

Notation 11.2.2. We denote by CM and (cmn) the labeled combinatorial class of combinatorial
maps and its counting sequence, respectively.

Lemma 11.2.3. The set of the class CM of combinatorial maps is combinatorially isomorphic to
the subclassMLM(2) ⊂ML(2):

SET(CM) ∼=MLM(2).

Proof. The counting sequence of the class MLM(2) is mlmn(2) = n! · mn (see Remark 9.2.13). In
particular, MLM(2) is combinatorially isomorphic to the class P �M of pairs of permutations
(σ, α) of the same size, such that α is a perfect matching. Any pair of such type represents a gluing
of collection of polygons which can be interpreted as a graph with additional structure. If the graph
is connected, then the pair determines a combinatorial map. Hence, to establish the desired result,
we can use the reasoning of the proof of Lemma 10.1.6.

11.2.2 Asymptotics for the combinatorial map model

In this section, we study random surfaces within the combinatorial map model of Budzinski, Curien
and Petri. We establish the asymptotic expansion for the probability that a random surface is
connected or consists of a fixed number of connected components. Given n ∈ N, we suppose that
a surface is generated by a pair of permutations (σ, α) ∈ Pn � Mn taken at random uniformly.
Then the probability that this surface is connected corresponds to the fact that the group 〈σ, α〉 acts
transitively on [n] or, in other words, that (σ, α, α−1σ−1) is a combinatorial map. The asymptotics
of this probability as the following form.

Theorem 11.2.4. The asymptotic probability that a random surface S obtained by gluing polygons
of total perimeter 2n within the combinatorial map model is connected satisfies

P
(
S is connected

)
≈ 1−

∑
k>1

im2k ·
(
2(n− k)− 1

)
!!

(2n− 1)!!
. (11.5)

Proof. Let us apply Theorem 7.4.1 to the labeled combinatorial class MLM(2) ∼= P �M. It is
possible, since

• MLM(2) ∼= SET(CM) by Lemma 11.2.3,

• MLM(2) = SEQ
(
IMLM(2)

)
by Remark 9.2.13,
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• MLM(2) is 2-gargantuan by Remark 9.2.13.
In the case in hand, asymptotic formula (7.12) turns into

P(S is SET-irreducible) ≈ 1−
∑
k>1

imlm2k ·
(

2n

2k

)
·
mlm2(n−k)

mlm2n

.

Taking into the account that mlm2n = (2n)!(2n− 1)!!, imlm2k = (2k)! · im2k and(
2n

2k

)
·
mlm2(n−k)

mlm2n

=
1

(2k)!
·
(
2(n− k)− 1

)
!!

(2n− 1)!!
,

we get exactly (11.5).
Corollary 11.2.5. Let (σ, α) ∈ P2n�M2n be a random pair of permutations such that α is a perfect
matching. Denote ϕ = α−1σ−1. In this case, the asymptotic probability that (σ, α, ϕ) is a combina-
torial map satisfies

P
(
(σ, α, ϕ) is a combinatorial map

)
≈ 1−

∑
k>1

im2k ·
(
2(n− k)− 1

)
!!

(2n− 1)!!
. (11.6)

Remark 11.2.6. The counting sequence (imn) of indecomposable perfect matchings is given by

(imn) = 1, 2, 10, 74, 706, 8 162, 110 410, 1 708 394, 29 752 066, 576 037 442, . . .

(A000698 in the OEIS [76]). This leads to the following asymptotic probability to obtain a connected
surface by gluing random polygons of total perimeter n:

1− 1

(n− 1)
− 2

(n− 1)(n− 3)
− 10

(n− 1)(n− 3)(n− 5)
− 74

(n− 1)(n− 3)(n− 5)(n− 7)
− . . .

or, in the more standard form,

1− 1

n
− 3

n2
− 19

n3
− 191

n4
− 2551

n5
− . . .

In particular, as we could expect, the first two terms coincide with asymptotics (11.4) found by
Budzinski, Curien and Petri.
Theorem 11.2.7. The asymptotic probability that a random surface S obtained by gluing polygons
of total perimeter 2n within the combinatorial map model has m connected components satisfies

P(S has m connected components) ≈
∑
k>0

α
{m}
2k

(2k)!
·
(
2(n− k)− 1

)
!!

(2n− 1)!!
, (11.7)

where

α
{m}
2k =

∞∑
s=m−1

(−1)s+m−1

(
s

m− 1

)
cm
{s}
2k

and
(
cm
{s}
n

)
is the counting sequence of the labeled combinatorial class CM{s} = SETs(CM) that

corresponds to surfaces consisting of s connected components. In particular,

P(S has m connected components) =
1

(m− 1)!
·
(
2(n−m) + 1

)
!!

(2n− 1)!!
+O

(
1

nm

)
.

Proof. We have seen that SET(CM) ∼= MLM(2) and the class MLM(2) is 2-gargantuan (see
Lemma 11.2.3 and Remark 9.2.13). Hence, we can apply Theorem 7.4.2. Taking into account
the calculations made in the proof of Theorem 11.2.4, we obtain (11.7). The leading terms comes
from (7.14).
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11.2.3 Asymptotics for other models

In this subsection, we shortly discuss the asymptotic expansions for the probability that a random
surface generated within the model of Gamburd consists of a fixed number m ∈ N of components.
In particular, for m = 1, we have the probability that a random surface is connected.

First of all, recall the model we are interested in. Fix an integer p > 3. Denote by S(p)
and

(
sn(p)

)
the labeled combinatorial class of orientable surfaces generated by identifying sides

of labeled p-gons together and its counting sequence, respectively. More precisely, to obtain an
orientable surface of size n, we take n oriented p-gons and, respecting the orientation, identify their
pn sides in pairs. In particular, for p = 3, we get the model studied by Pippenger and Schleich.

The behavior of the counting sequence
(
sn(p)

)
depends on the parity of p. If p is even, then

sn(p) = (pn− 1)!!,

and we can show with the help of Lemma 2.1.4 that the class S(p) is gargantuan. In the case when
p is odd, we have

sn(p) =

{
(pn− 1)!!, p is even,
0, p is odd,

and S(p) is 2-gargantuan. In both cases,

S(p) = SET
(
CS(p)

)
,

where CS(p) is the corresponding labeled combinatorial subclass of connected surfaces. As usual, for
any positive integer m, we denote by

CS{m}(p) = SETm

(
CS(p)

)
the labeled combinatorial subclass of surfaces consisting of exactly m connected components. Also,
we designate as

(
csn(p)

)
and

(
cs
{m}
n (p)

)
the counting sequences corresponding to the classes CS(p)

and CS{m}(p), respectively. All these observations allow us to apply Theorems 7.3.1 and 7.4.2 for
obtaining the following result.

Theorem 11.2.8. If p > 4 is even, then the asymptotic probability that a surface S obtained by
gluing n unit p-gons randomly has m connected components satisfies

P(S has m connected components) ≈
∑
k>0

α
{m}
k ·

(
n

k

)
· (p(n− k)− 1)!!

(pn− 1)!!
. (11.8)

If p > 3 is odd, then the asymptotic probability that a surface S obtained by gluing 2n unit p-gons
randomly has m connected components satisfies

P(S has m connected components) ≈
∑
k>0

α
{m}
2k ·

(
2n

2k

)
· (2p(n− k)− 1)!!

(2pn− 1)!!
, (11.9)

In both cases,

α
{m}
k =

∞∑
s=m−1

(−1)s+m−1

(
s

m− 1

)
cs
{s}
k

and CS{s} is the subclass of S that comprise surfaces with exactly s connected components.
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Example 11.2.9. For p = 3 and m = 1, the first few elements of the sequence
(
α
{m}
2k

)
are(

α
{m}
2k

)
= 15, 9 045, 30 085 425, 282 543 711 975, . . .

Hence, the asymptotic probability that a random surface obtained by gluing n unit triangles is

1−
(
n

2

)
15

(3n− 1)(3n− 3)(3n− 5)
−
(
n

4

)
9045

(3n− 1)(3n− 3)(3n− 5)(3n− 7)(3n− 9)(3n− 11)
− . . .

This also can be rewritten in a standard form as

1− 5

18n
− 695

648n2
− . . .

In particular, we can see the first two terms of (11.3) found by Pippenger and Schleich.

11.3 Higher dimensional models
This section is devoted to two higher dimensional models. First of them, constellations, can be
considered as a generalization for both square-tiled surfaces and combinatorial maps. The first ideas
leading to the model date back to the eighteenth century and concern some classical results, for
instance, Euler’s polyhedron formula for the numbers of vertices, edges and faces of a polyhedron.
Nowadays, combinatorial maps and constellations are objects of interest not only for combinatorialists
and topologists, but also for the specialists in various domains that are often far from each other,
such as algebraic number theory, quantum physics, Galois theory. For further information and
bibliography, we refer the reader to [56].

The second model, (D+ 1)-colored graphs, appeared in the work of Pezzana and his group [81,
82], regarding piecewise topological structures. Their main goal was to find a “minimal” atlas for
topological manifolds, which led them to the concept of “contracted triangulation” and to the graph-
theoretical tool that they called “crystallization” (see also survey [35]). An important subclass to
study was bipartite (D + 1)-colored graphs, since they encode D-dimensional orientable colored
complexes (see [39]). In the last decades, (D + 1)-colored graphs attracted attention of theoretical
physicists with respect to quantum gravity and colored tensor models (see review [43]). The topo-
logical characteristics of (D + 1)-colored graphs with a fixed number of vertices n was studied by
Carrance [17]. In particular, she showed that a random (D + 1)-colored graph is connected with
probability

1− 1

nD−1
+O

(
1

n2(D−1)

)
. (11.10)

In the first part of this section, we establish the asymptotic probability that a random tuple of
permutations of the same size forms a constellation, as the size tends to infinity, and provide a combi-
natorial interpretation for its terms. In the second part, we discuss the asymptotic probabilities that
a random (D+ 1)-colored graph is connected or consists of a fixed number of connected components.
Also, we do the same for the subclass of bipartite (D + 1)-colored graphs.

11.3.1 Asymptotic expansions for constellations

Definition 11.3.1. Let N ∈ N. An N -tuple (σ1, . . . , σN) ∈ SNn of permutations of the same size n
is called N -constellation (or simply constellation), if the following two conditions hold:
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• the group 〈σ1, . . . , σN〉 acts transitively on the set [n],

• the product of σk is the identity permutation, i.e. σ1 . . . σN = id.

Example 11.3.2. For N = 1, the only constellation is (id) and it exists if and only if n = 1. For
N = 2, every constellation has the form (σ, σ−1), where σ is a cyclic permutation. As a particular
example of 3-constellation, we can consider any combinatorial map.

Each N -constellation is uniquely determined by the first (N−1) permutations. Hence, we could
consider constellations as a subclass of the labeled combinatorial classMP(N − 1) of multipermu-
tations of rank (N − 1). In order to understand when a tuple of permutations form a constellation,
let us come back to square-tiled surfaces. We have seen that each square-tiled surface is determined
by two permutations σv and σh of the same size, and that the surface is connected if and only if the
group

〈σv, σh〉 = 〈σv, σh, σ−1
h σ−1

v 〉

is transitive. This facts allows to establish a bijection between connected square-tiled surfaces and
3-constellations. The same way, we can consider the correspondence between N -constellations of
size n and connected translation manifolds obtained by gluing n unit (N − 1)-dimensional cubes.
Each gluing is determined by (N − 1) permutations (σ1, . . . , σN−1) of size n each, and the result is
connected if and only if

(σ1, . . . , σN−1, σ
−1
N−1 . . . σ

−1
1 )

is an N -constellation.

Notation 11.3.3. We denote by CN (N) the labeled combinatorial class of N -constellations (that
correspond to connected translation manifolds obtained by gluing (N − 1)-dimensional cubes). We
designate its counting sequence as

(
cnn(N)

)
.

Lemma 11.3.4. Let N > 3. The labeled combinatorial classes CN (N) of N-constellations and
ML(N − 1) of multiple linear orders of rank (N − 1) satisfy the following relation:

SET
(
CN (N)

) ∼=ML(N − 1).

Proof. The class SET
(
CN (N)

)
is combinatorially isomorphic to the labeled combinatorial class of

all possible translation gluings of (N − 1)-dimensional cubes. Since there is a bijection between
such gluings of n unit (N − 1)-dimensional cubes and SN−1

n , the counting sequence of SET
(
CN (N)

)
is (n!)N−1. To finish the proof, note that the classML(N − 1) has the same counting sequence.

Remark 11.3.5. Another proof of Lemma 11.3.4 can be derived from Dixon [27] and [28].

Theorem 11.3.6. Let N > 3. The asymptotic probability that a random collection σ = (σ1, . . . , σN)
of N permutations of size n is a constellation satisfies

P
(
σ is a constellation

)
≈ 1−

∑
k>1

impk(N − 2)(
(n)k

)N−2
. (11.11)

Proof. Let us apply Theorem 7.2.1 to the labeled combinatorial class ML(N − 1). It is possible,
since N > 3, and hence,

• ML(N − 1) ∼= SET
(
CN (N)

)
by Lemma 11.3.4,
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• ML(N − 1) = SEQ
(
IML(N − 1)

)
, see Lemma 9.3.20,

• ML(N − 1) is gargantuan, see Lemma 9.3.19.

In the case in hand, asymptotic formula (7.9) turns into

P(σ is SET-irreducible) ≈ 1−
∑
k>1

imlk(N − 1) ·
(
n

k

)
· mln−k(N − 1)

mln(N − 1)
.

Taking into the account that imlk(N − 1) = k! · impk(N − 2) by Lemma 9.3.22 and(
n

k

)
· mln−k(N − 1)

mln(N − 1)
=

n!

k!(n− k)!
·
(
(n− k)!

)(N−1)

(n!)(N−1)
=

1

k! ·
(
(n)k

)(N−2)
,

we get exactly (11.11).

Remark 11.3.7. The question whether a collection of permutations generates a transitive group was
studied by Dixon [28]. He showed the way to obtain the asymptotic expression for the probability
that the generated group is transitive which was similar to (11.11). However, the meaning of the
coefficients was not known.

11.3.2 Asymptotic expansions for colored graphs

Definition 11.3.8. A labeled graph is called (D + 1)-colored, if each vertex has a degree (D + 1)
and each edge is colored into one of (D + 1) colors such that every vertex is incident to edges of all
colors. Additionally, a (D + 1)-colored labeled graph is bipartite, if the set of its vertices is divided
into two equal parts of “positive” and “negative” vertices such that each edge links the vertices of
different type.

Notation 11.3.9. For different labeled combinatorial classes and their counting sequences, we em-
ploy the following notations.

• For (D + 1)-colored graphs, we use COG(D + 1) and
(
cogn(D + 1)

)
, respectively.

• For bipartite (D + 1)-colored graphs, we use BCG(D + 1) and
(
bcgn(D + 1)

)
, respectively.

• For connected (D + 1)-colored graphs, we use CCOG(D + 1) and
(
ccogn(D + 1)

)
, respectively.

• For connected bipartite (D + 1)-colored graphs, we use CBCG(D + 1) and
(
cbcgn(D + 1)

)
,

respectively.

Remark 11.3.10. Since the set of edges of any fixed color determines a perfect matching, the
counting sequence of the class COG(D + 1) satisfies

cogn(D + 1) =

{ (
(2k − 1)!!

)D+1
, n = 2k,

0, n = 2k + 1.

On the other hand, each (D + 1)-colored bipartite labeled graph consists of two parts of the same
size k ∈ N. To determine the graph, first of all, we need to fix the labels of these parts. Then the
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graph is described by a set of (D + 1) permutations, meaning that the number of graphs with 2k
vertices is (

2k

k

)
· (k!)D+1 = (2k)! · (k!)D−1.

Hence, the counting sequence of the class BCG(D + 1) satisfies

bcgn(D + 1) =

{
(2k)! · (k!)D−1, n = 2k,
0, n = 2k + 1.

Lemma 11.3.11. If D > 2, then the labeled combinatorial classes COG(D+ 1) and BCG(D+ 1) are
2-gargantuan.

Proof. We have seen in the proof of Lemma 9.3.5, that for D > 2, the sequence (n!)D−1 is gargan-
tuan. This fact implies directly that the labeled combinatorial class BCG(D+ 1) is 2-gargantuan by
Definition 2.1.14. To prove that the class COG(D+1) is 2-gargantuan, let us apply Lemma 3.1.78 b).
In this case, condition (i)’ reads

n3cog2n−2(D + 1) = O
(
cog2n(D + 1)

)
,

which is true, since D > 2. To verify condition (ii)’, we need to check that, for fixed large integer n,
the sequence (

2n

2k

)
cog2k(D + 1)cog2(n−k)(D + 1)

is decreasing for k < n/2. Indeed,(
2n

2k

)
cog2k(D + 1)cog2(n−k)(D + 1) >

(
2n

2(k + 1)

)
cog2(k+1)(D + 1)cog2(n−k−1)(D + 1) ⇔(

2(n− k)− 1
)D+1

n− k
>

(
2(k + 1)− 1

)D+1

k + 1
⇔

(n− k) > (k + 1).

This is true, since the function (2x− 1)D+1/x is increasing for x > 0. Hence, the class COG(D + 1)
is 2-gargantuan.

Lemma 11.3.12. The labeled combinatorial class COG(D + 1) of (D + 1)-colored graphs and its
subclasses CCOG(D + 1), BCG(D + 1) and CBCG(D + 1) satisfy the following relations:

COG(D + 1) = SET
(
CCOG(D + 1)

)
and BCG(D + 1) = SET

(
CBCG(D + 1)

)
.

Proof. The proof proceeds the same way as the proof of Lemma 10.1.6.

Notation 11.3.13. For any m ∈ N, we denote by

CCOG{m}(D + 1) = SETm

(
CCOG(D + 1)

)
and CBCG{m}(D + 1) = SETm

(
CBCG(D + 1)

)
the labeled combinatorial classes consisting of (D + 1)-colored graphs and bipartite (D + 1)-colored
graphs, respectively, that have exactly m connected components. The corresponding counting se-
quences are

(
ccog

{m}
n (D + 1)

)
and

(
cbcg{m}n (D + 1)

)
, respectively.
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Theorem 11.3.14. a) Let D > 2. The asymptotic probability that a random (D+1)-colored graph G
of size 2n has m connected components satisfies

P(G has m connected components) ≈
∑
k>0

α
{m}
2k ·

(
2n

2k

)
·

((
2(n− k)− 1

)
!!

(2n− 1)!!

)D+1

, (11.12)

where

α
{m}
2k =

∞∑
s=m−1

(−1)s+m−1

(
s

m− 1

)
ccog

{s}
2k (D + 1).

In particular,

P(G has m connected components) =
(2n)2(m−1)

2m−1(m− 1)!
·

((
2(n−m) + 1

)
!!

(2n− 1)!!

)D+1

+O

(
1

n(D−1)m

)
.

b) Let D > 2. The asymptotic probability that a random bipartite (D + 1)-colored graph Gb of
size 2n has m connected components satisfies

P(Gb has m connected components) ≈
∑
k>0

β
{m}
2k

(2k)!! ·
(
(n)k

)D−1
, (11.13)

where

β
{m}
2k =

∞∑
s=m−1

(−1)s+m−1

(
s

m− 1

)
cbcg

{s}
2k (D + 1).

In particular,

P(Gb has m connected components) =
1

(m− 1)!
· 1(

(n)m−1

)D−1
+O

(
1

n(D−1)m

)
.

Proof. We have seen that, by Lemma 11.3.11, the labeled combinatorial classes COG(D + 1) and
BCG(D+1) are 2-gargantuan whenever D > 2. At the same time, COG(D+1) = SET

(
CCOG(D+1)

)
and BCG(D + 1) = SET

(
CBCG(D + 1)

)
by Lemma 11.3.12. Hence, we can apply Theorem 7.4.2 in

the case d = 2 to COG(D + 1) and BCG(D + 1), which gives us (11.12) and (11.13), respectively.
The leading terms come from formula (7.14).

In the case of bipartite (D + 1)-colored graphs, there is a connection with indecomposable
multipermutations, which finds its reflection in the following theorem.

Theorem 11.3.15. Let D > 2. The asymptotic probability that a random bipartite (D + 1)-colored
graph Gb of size 2n is connected satisfies

P(Gb has m connected components) ≈ 1−
∑
k>1

impk(D − 1)(
(n)k

)D−1
. (11.14)

Proof. According to Lemma 11.3.11, the labeled combinatorial class BCG(D+ 1) is 2-gargantuan for
D > 2. Moreover, by Lemma 11.3.12, BCG(D + 1) = SET

(
CBCG(D + 1)

)
. At the same time, the

exponential generating function of the class BCG(D + 1) coincide with the exponential generating
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function of the labeled combinatorial classML(D) of multiple linear orders of rank D taken at the
point z2:

BCG(D + 1)(z) =
∞∑
n=0

(2n)!(n!)D−1 z2z

(2n)!
=
∞∑
n=0

(n!)D
z2z

n!
= ML(D)(z2).

Taking into account that
ML(D) = SEQ

(
IML(D)

)
(see Lemma 9.3.20) and

imln(D) = n! · impn(D − 1)

(see Lemma 9.3.22), we have

ML(D)(z2) = exp

(
∞∑
n=0

imln(D) · z
2z

n!

)
= exp

(
∞∑
n=0

(2n)! · impn(D − 1) · z
2z

(2n)!

)
.

Hence, repeating the reasoning of Theorem 7.4.1, we get

cbcg2n(D + 1) ≈ 1−
∑
k>1

(
2n

2k

)
·
(
(2k)! · impk(D − 1)

)
· bcg2(n−k)(D + 1).

Dividing the above relation by bcg2n(D + 1) and using the equality(
2n

2k

)
· (2k)! ·

(2n− 2k)! ·
(
(n− k)!

)D−1

(2n)! · (n!)D−1
=

1(
(n)k

)D−1
,

we obtain exactly (11.14).

Remark 11.3.16. Both Theorems 11.3.14 and 11.3.15 are in agreement with asymptotics (11.10)
and extend results of Carrance by establishing full asymptotic expansions and their structures.
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Part IV

Conclusion
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Chapter 12

Possible directions for further research

In this chapter, we discuss open problems related to the thesis and outline directions for further
research. Section 12.1 is devoted to those of them that come from the general results described
in Part II. The most important of them concern probabilities whose asymptotic expansions are
currently unknown. First of all, we need to mention probabilities related to unlabeled constructions
(Section 12.1.1) and species (Section 12.1.2). Second, we discuss the structures defined with the help
of different compositions, including those that are given implicitly (Section 12.1.4). Finally, there
are a quantum analogue of the construction SEQ and related problems (Section 12.1.5. Also, it is
worth mentioning algorithmic aspects related to the developed theory.

In Section 12.2 we discuss questions related to some concrete applications. More precisely,
Section 12.2.2 is devoted to strongly connected directed graphs, and Section 12.2.3 concerns open
problems related to the Erdős–Rényi model.

12.1 Possible generalizations of the main results

12.1.1 Asymptotics for unlabeled constructions

As we have mentioned before, the universe of the symbolic method consists of structures of two
different types: labeled and unlabeled. In Part II we have obtained the asymptotic probabilities
and combinatorial interpretation of their coefficients for labeled combinatorial classes regarding the
principal constructions SEQ, CYC and SET, as well as the restricted constructions SEQm, CYCm

and SETm, where m is an arbitrary positive integer. The situation related to the unlabeled part of
the universe is not so encouraging. There are results regarding the constructions SEQ, MSET, PSET
and SEQm only. Thus, we come to the following question.

Question 12.1.1. Let V be a gargantuan unlabeled combinatorial class, such that V = CYC(W)
for some unlabeled combinatorial class W. What is the asymptotic expansion of the probability that
a random object v ∈ V belongs to W as well (that is, v is CYC-irreducible)? The same question for
the constructions CYCm, MSETm and PSETm, where m ∈ N.

The obstacle consists in the applicability of Bender’s theorem. In the labeled case, the asymp-
totics are obtained with the help of its simplest version (i.e. Theorem 2.2.5) and the way to do it
is straightforward. So is the case for the constructions SEQ and SEQm of the unlabeled universe,
which is caused by rather simple forms of the corresponding relations for the generating functions.
In contrast to this, the relations for the other constructions are complicated and cannot be treated
by Theorem 2.2.5. Thus, we need to implement Theorem 2.2.8 b) which is not direct, meaning that
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the implementation is not determined by the relation in a unique way: the outer function in the com-
position can be chosen in different ways. However, we cannot choose this function in a completely
arbitrary way, since there are certain restrictions imposed on it. Following Bender [9], we make such
a choice for the constructions MSET and PSET, but for the others the question is still open.

12.1.2 Asymptotics for species

Another question related to the unlabeled case concerns the theory of species. We have seen that the
language of species somehow encloses the labeled and unlabeled cases together. Thus, it is natural
to unite asymptotic results for the labeled and unlabeled constructions within the species theory. In
other words, we have the following question.

Question 12.1.2. Can we combine the results for labeled and unlabeled cases within the framework
of the theory of species? What could be conditions for that?

For instance, for the construction SEQ the view and interpretation of the coefficients do not
depend on the type of combinatorial classes (labeled or unlabeled): Theorems 5.2.1 and 5.5.1 give
the same sequence. This fact allows us to conjecture that, under certain conditions, Theorem 8.1.1
could serve as a generalization for them both. The case related to the construction SET looks
similar, though it is more complicated (see Theorems 7.2.1, 7.5.1 and 8.3.4). For most of the other
constructions, before making guesses, we need to answer Question 12.1.1.

One more question related to species comes from Lemma 8.3.3.

Question 12.1.3. Is it true that the virtual species E−1 ◦ E (−1)
+ and

(
1− L(−1)

+

)
are equal?

Lemma 8.3.3 states the equipotency of the above species. If the answer to Question 12.1.3 is
positive, then there is a simple form of the “anti-SEQ” operator L(−1)

+ which possibly describes the
unlabeled case as well.

12.1.3 Positivity question

Theorem 7.2.1 states that if a gargantuan labeled combinatorial class U has two different decompo-
sitions

U = SET(V) and U = SEQ(W),

then the coefficients wk (which are positive) arise in the asymptotic expansion of the probability
that a random object u ∈ U is SET-irreducible. However, it is reasonable to ask whether u is SET-
irreducible even in the case when there is no labeled combinatorial class W such that U = SEQ(W).
In the latter case, the asymptotics is given by Theorem 8.3.4 and the involved coefficients relate
to the virtual species L(−1)

+ . In terms of the symbolic method, the composition with L(−1)
+ can be

considered as a construction that is the inverse of the construction SEQ. This leads to the following
question.

Question 12.1.4. Is it true that if U is a gargantuan labeled combinatorial class then there exists
a labeled combinatorial class W such that U = SEQ(W)? If not, what could be conditions for the
existence of such a class? The same in terms of species: is it true that if A is a gargantuan species
of structures then L(−1)

+ ◦ A is positive (i.e. coincides with its positive part)?
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The property of a sequence to be gargantuan does not depend on any fixed finite number of its
elements. On the other hands, the first several terms of the asymptotics depend on the beginning of
the counting sequence (un) only. This is the reason why the answer to the first part of Question 12.1.4
is negative. For example, if the counting sequence of the class V starts with

(vn) = 0, 3, 2, 2, . . . ,

then the beginning of the counting sequence of U = SET(V) is

(un) = 1, 3, 11, 47, . . .

and the formal power series

W (z) = 1− 1

U(z)
= 3 · z − 7 · z

2

2!
+ 11 · z

3

3!
+ . . .

possesses at least one negative coefficient. Thus, it is the second part of the question which is
significant and of interest.

12.1.4 Asymptotics of compositions

Let us have a look to Bender’s theorem from another point of view. Roughly speaking, its essence is
to establish the asymptotic behavior of the composition F (A(z)), where F (z) and A(z) are known.
In the initial work [9], reflected in Theorems 2.2.5 and 2.2.8, the function F (z) is analytic, while
the coefficient of A(z) form a gargantuan sequence. In other words, the coefficients of the outer
function F (z) grow slowly, while the coefficients of the inner function A(z) grow very fast. However,
one can imagine a different behavior. For instance, in 1982, Bender and Richmond [11] established
the following result.

Theorem 12.1.5. Let A(z) be a formal power series whose coefficients satisfy nan−1 = o(an). Let,
furthermore, F (z) be a power series with non-zero radius of convergence, such that f0 = 0 and f1 6= 0.
Then for every r ∈ N, the asymptotic behavior of B(z) = A(F (z)) satisfies

bn =
r−1∑
k=0

ekan−k +O(fn1 n
ran−r),

where ek = [zn]
(
F (z)

)n−k.
In other words, comparing to Bender’s theorem, we can obtain the asymptotic behavior for

the inverse situation, the coefficients of the outer function A(z) grow very fast, while the coefficients
of the inner function F (z) grow slowly. This observation, with the help of Lagrange inversion,
allowed Bender and Richmond to obtain asymptotic behavior of various combinatorial structures
whose generating functions were defined implicitly. In particular, as it was mentioned in [11], this
method could be applied for irreducibilities coming from “noncrossing compositions” of Beissinger [5]
whose ordinary generating functions satisfy

A(z) = 1 + I
(
zA(z)

)
(12.1)

(here, A(z) and I(z) are ordinary generating functions of some combinatorial class and its irreducible
subclass, respectively). The list of possible applications includes irreducible partitions and permuta-
tions without invariant subintervals whose generating functions satisfy (12.1), and, more generally,
different subclasses of graphs such as biconnected and bridgeless graphs.
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Question 12.1.6. Can we have any combinatorial interpretation for the coefficients arising in the
asymptotic expansions for the probability that a random object is irreducible in the sense of (12.1)
or, more generally, in the sense of other generating functions defined implicitly (such as bridgeless
graphs and biconnected graphs)?

The composition of two generating functions shows a much more complex asymptotic behavior
in the case when both functions are of the same growth rate. There is no known result in the general
case. However, Borinsky [13] obtained the asymptotic behavior of the composition F

(
G(z)

)
in the

case when both F (z) and G(z) belong to class R[[z]]αβ of generating functions whose coefficients have
the growth of

αn+βΓ(n+ β)

(
d0 +

d1

(n+ β − 1)
+

d2

(n+ β − 1)(n+ β − 2)
+ . . .

)
,

where α, β ∈ R>0 and dk ∈ R. Let Aαβ : R[[z]]αβ → R[[z]] be a linear map which maps a power series
to its own asymptotic expansion. Borinsky showed that Aαβ is a derivation satisfying a Leibniz rule(

Aαβ(F ·G)
)
(z) = F (z) ·

(
AαβG

)
(z) +

(
AαβF

)
(z) ·G(z)

and a chain rule(
Aαβ(F ◦G)

)
(z) = F

(
G(z)

)
·
(
AαβG

)
(z) +

(
z

G(z)

)β
· exp

(
G(z)− z
αzG(z)

)
·
(
AαβF

)(
G(z)

)
.

In particular, one has the following relation for the compositional inverse:(
AαβG−1

)
(z) = −

(
G−1

)′
(z) ·

(
z

G−1(z)

)β
· exp

(
G−1(z)− z
αzG−1(z)

)
·
(
AαβG

)(
G−1(z)

)
.

With the help of the above formulas, Borinsky obtained asymptotic expansions of connected chord
diagrams and simple permutations (also called connected, see [50]). In particular, the probability
that a random chord diagram C is connected can be written in the form

P(C is connected) ≈ 1

e

(
1−

∑
k>1

c2k

ch2(n−k)

ch2n

)
, (12.2)

where ch2n = (2n − 1)!! is the number of chord diagrams with 2n points and the first several terms
of the sequence (c2k) are

5

2
,

43

8
,

579

16
,

44477

128
,

5326191

1280
, . . .

In the same way, the probability that a random permutation σ is simple has the form

P(σ is simple) ≈ 1

e2

(
1−

∑
k>1

dk
pn−k
pn

)
, (12.3)

where the first terms of the sequence (dk) are

4, −2,
40

3
,

182

3
, . . .

Except for the constants e−1 and e−2, asymptotic expansions (12.2) and (12.3) look very similar
to those expressed by Theorems 5.2.1, 6.2.1 and 7.2.1. This observation leads us to the following
question.
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Question 12.1.7. Can we have any combinatorial interpretation for the coefficients (c2k) involved
in asymptotic relation (12.2)? More generally, can we have any combinatorial interpretation for the
coefficients involved in the asymptotic expansions obtained by Borinsky’s approach?

Note that a possible combinatorial explanation should be contained in the above mentioned
chain rule. Note also, that the constant e−1 comes from the particular form of the implicit relation
that determines the ordinary generating function of connected chord diagrams. This situation differs
from the behavior of structures defined by the construction SET. For the latter, Bell [6] showed that
a non-trivial constant does not occur when the radius of convergence is zero.

Another, more ambitious, question concerns the asymptotic behavior of the compositions of
larger classes of generating functions.

Question 12.1.8. Can we obtain any analogue of Borinsky’s results for the composition F
(
G(z)

)
in

the case when coefficients of generating functions F (z) and G(z) asymptotically behave as 2(n
2)/n!?

Can we find an analogue for any other class of functions?

An answer to Question 12.1.8 would give another opportunity to get the asymptotic expansions
for different subclasses of graphs whose generating functions are defined implicitly.

12.1.5 Quantum analogues

Let us denote by
n!q = 1 · (1 + q) · (1 + q + q2) · . . . · (1 + q + . . .+ qn−1)

the q-factorials, with 0!q = 1, and (
n

k

)
q

=
n!q

k!q(n− k)!q

the q-binomial coefficients. These q-analogues of factorials and binomial coefficients play significant
role in generalizations of various combinatorial constructions. Typically, they are used for specifica-
tions. For instance, let pn,k be the number of permutations with k inversions. Then the corresponding
ordinary generating function has the form

P (z, q) =
∞∑
n=0

(n
2)∑

k=0

pn,kq
kzn =

∞∑
n=0

n!qz
n.

In this case, the decomposition
P = SEQ(IP)

is preserved and the relation

IP (z, q) = 1− 1

P (z, q)

for generating functions is valid, where IP (z, q) is the ordinary generating function for indecompos-
able permutations (see [26] and [94, Ex 1.129]). The same way, we can consider the Erdős–Rényi
model as a q-deformation of undirected graphs with

G(z, q) =
∞∑
n=0

(n
2)∑

k=0

gn,kq
k z

n

n!
=
∞∑
n=0

(1 + q)(
n
2) z

n

n!
,
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where gn,k and cgn,k are the numbers of graphs and connected graphs, respectively, with n vertices
and k edges, and G(z, q) and CG(z, q) are the corresponding exponential generating functions.1 The
decomposition

G = SET(CG)

is preserved in this case, so that
G(z, q) = exp

(
CG(z, q)

)
.

However, in certain cases, passing to the specifications, we need to change the standard con-
struction. In 2020, Archer, Gessel, Graves and Liang [3] presented their work devoted to counting
labeled directed graphs by descents, where a descent is a directed edge −→st such that s > t. Let us
denote by tn,k and itn,k the number of tournaments and irreducible tournaments, respectively, with
n vertices and k descents. Then it turns out that the standard SEQ-decomposition for tournaments
is transformed into

�T (z, q) =
1

1− �IT (z, q)
,

where

�T (z, q) =
∞∑
n=0

(n
2)∑

k=0

tn,kq
k z

n

n!q
=
∞∑
n=0

(1 + q)(
n
2) z

n

n!q

and

�IT (z, q) =
∞∑
n=0

(n
2)∑

k=0

itn,kq
k z

n

n!q

are so-called Eulerian generating functions of tournaments and irreducible tournaments, respectively.
The similar way, one can obtain generalizations in terms of Eulerian generating functions for strongly
connected directed graphs and directed acyclic graphs.

Question 12.1.9. Can we obtain an interesting generalization of Theorem 5.2.1 for q-deformed
SEQ-decompositions?

The use of the Eulerian generating functions is caused by the special form of convolution rule,

cn =
n∑
k=0

(
n

k

)
q

akbn−k,

which is needed for counting directed graphs by descents. In particular, this is the reason why the
numbers of tournaments counted by descents differ from the asymptotic coefficients in the Erdős–
Rényi model.

12.1.6 Algorithmic aspects

In Section 7.1 we have discussed the combinatorial approach to establishing the asymptotic expansion
for the probability that a random element u ∈ U is SET-irreducible. The idea was that the main
contribution is given by reducible objects possessing large irreducible components. In other words,
the first approximation is determined by the objects whose components are of sizes (n − 1) and 1.

1Note that in Chapter 10 the parameter q has different meaning. Here, we denote by q the value that was denoted
by ρ in Chapter 10.
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To find the second approximation, one has additionally to take into account objects possessing an
irreducible component of size (n− 2), etc. To obtain first terms of the asymptotic expansion, we can
go from the other side and count objects possessing small irreducible components, which is easier.
For example, in the case of undirected graphs, a random graph G of size n contains at least one
isolated vertex with a probability of

n∑
k=1

(−1)k−1

(
n

k

)
gn−k
gn

,

while the probability that G has exactly m isolated vertices is
n∑

k=m

(−1)k+m

(
n

k

)(
k

m

)
gn−k
gn

=

(
n

m

) n−m∑
k=0

(−1)k
(
n−m
k

)
gn−m−k

gn
.

Also, with the help of the symbolic method or the inclusion-exclusion principle, one can find the
probability that G possesses a given subconfiguration of size k. This probability is of order nkgn−k/gn.

This observation potentially may lead to an algorithm for generating random connected graphs.
In principle, this problem is hard, since the notion of connectedness is a global property of a graph.
However, one can think about the rejection method: to generate random connected graphs, we
typically generate a random graph and reject until we find a connected one. If we pick a random
graph from Gn, we get a disconnected graph with a probability of order n · 2−n, which is not much
for large n. However, if we create a procedure eliminating graphs with isolated vertices, then we get
a disconnected graph with probability of smaller order, n2 · 2−2n, etc. The more subconfigurations
we eliminate, the closer to 1 the probability to obtain a connected graph is.

Question 12.1.10. Can we create a rejection algorithm for producing connected graphs randomly,
so that we reject with a probability of a smaller order?

The same question takes place for SEQ-irreducibles and CYC-irreducibles.

12.2 Applications and concrete problems

12.2.1 Applicability of theorems

In the labeled case, our general results relate to the constructions SEQ, CYC and SET, as well as the
restricted constructions SEQm, CYCm and SETm for any m ∈ Z>0. While Theorems 5.2.1 and 7.2.1
concerning SEQ and SET, respectively, have numerous applications studied in Part III, we do not
know any natural application of Theorem 6.2.1.

Question 12.2.1. Is there any application of Theorem 6.2.1 that would be of interest? In other
words, is there any interesting gargantuan labeled combinatorial class that admits a decomposition
with respect to the construction CYC?

As for the unlabeled case, the situation is even more complicated. The problem is that explicit
expressions for the counting sequences of unlabeled combinatorial classes are quite rare. Thus, for
instance, it is known due to the results of Oberschelp [72] and Wright [101] that the unlabeled
combinatorial class uG of graphs is gargantuan and that its counting sequence (ugn) satisfies

ugn ≈
gn
n!

(
1 +

∑
k>1

ϕk(n)

2kn

)
, (12.4)
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where ϕk(n) is a polynomial of degree 2k in n possessing the factor (n)k+1 = n(n − 1) . . . (n − k).
This means that we could apply Theorem 7.5.1 to the class uG, so that we obtain the probability for
a random unlabeled graph G of size n to be connected to be

P(G is connected) ≈ 1−
∑
k>1

wk
ugn−k

ugn
. (12.5)

However, the behavior of this expression is not as visible as in the labeled case; to understand it, we
need to apply (12.4) first. Moreover, in the unlabeled case, the number ugn of graphs of size n differs
from the number of tournaments utn of the same size (see Example 3.2.19). For instance, if n = 2,
then

ug2 = 2 6= 1 = ut2.

Hence, there is no combinatorial equivalence of the corresponding classes, uG � uT . As a conse-
quence, the meaning of coefficients wk in (12.5) is rather abstract, it is not the number of irreducible
tournaments anymore.

Similar observations, which take place in other cases, lead us to the following question.

Question 12.2.2. Does there exist any application of Theorem 7.5.1 that would be of interest? In
particular, are there two rather interesting unlabeled combinatorial classes uV and uW such that

SET(uV) ∼= SEQ(uW)?

12.2.2 Strongly connected directed graphs

As we have discussed in Remark 10.3.15, and as it was mentioned by Archer, Gessel, Graves and
Liang [3], the result of Lemma 10.3.14, i.e.

SD(z) = − log
(

1−G(z)� IT (z)
)
,

means that there is a combinatorial isomorphism between the labeled combinatorial classes SD of
strongly connected directed graphs and CYC(T � IT ), where T and IT represents the classes of
tournaments and irreducible tournaments, respectively. The same way, the relation

SSD(z) =
1

1−G(z)� IT (z)

means that the labeled combinatorial classes SSD of semi-strong directed graphs and SEQ(T �IT )
are combinatorially isomorphic as well.

Question 12.2.3. Given a positive integer n, is there a natural bijection between

• SDn and
(
CYC(T � IT )

)
n
, i.e. between strongly connected digraphs of size n and cycles of

pairs of tournaments of size n (such that the second tournament is irreducible),

• SSDn and
(
SEQ(T �IT )

)
n
, i.e. between semi-strong digraphs of size n and sequences of pairs

of tournaments of size n (such that the second tournament is irreducible)?

Another question comes from formula (10.19). The asymptotic probability for strongly con-
nected digraphs looks rather complicated and involves semi-strong digraphs and irreducible tourna-
ments. There should be a combinatorial reason for the particular form of this expression, just the
same way as the asymptotic probability coefficients of connected graphs and irreducible tournaments
can be explained with the help of the inclusion-exclusion principle.
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Question 12.2.4. What is an explanation of the components of relation (10.19) in terms of the
inclusion-exclusion principle?

The underlying idea is the same as in Sections 5.1, 6.1 and 7.1: the main contribution to
asymptotics (10.19) is made by large components. The obstacle is that the structure of a directed
graph is determined not only by the number of strongly connected components, but also by the way
they interact with each other.

The same problem occurs when trying to answer the following question.

Question 12.2.5. Could we find the full asymptotic expansion for the probability that a random
directed graph consists of a given number of strongly connected components?

12.2.3 The Erdős–Rényi model

Relation with tournaments

As we have seen in Theorem 10.1.10, the coefficients involved in the asymptotic expression for
connected graphs count irreducible tournaments. Since simple graphs of size n are the particular case
of the Erdős–Rényi model G(n, p) with p = 1/2, it is reasonable to ask whether the coefficients Pk(ρ)
appearing in the asymptotics given by (10.26) can be, somehow, interpreted in terms of tournaments.

Question 12.2.6. Can we interpret the coefficients Pk(ρ) involved in asymptotic expression (10.26)
for connected graphs within the Erdős–Rényi model as a generalization of irreducible tournaments?

We have already mentioned in Section 12.1.5 that the most natural generalization does not
take place. In other words, these coefficients are not coincide with irreducible tournaments counted
by descents (see [3]). Thus, a possible generalization should be of a more complicated form.

Phase transition

Another question concerns the phase transition of the Erdős–Rényi model G(n, p). In the case when
p ∈ (0, 1), q = 1 − p and ρ = p/q are constants, formula (10.26) is well-defined. The situation
becomes more complicated if p decrease with n → ∞. Since the work of Erdős and Rényi [34] it is
known that

p =
lnn

n

is a sharp threshold for the connectedness of G(n, p). In other words, for any ε > 0, if

p >
(1 + ε) lnn

n
,

then a random graph in the Erdős–Rényi model is almost surely connected, while in the case

p <
(1− ε) lnn

n
,

a graph almost surely contains isolated vertices. It is seen that our asymptotics is in agreement with
these results. Indeed, for

p =
(1 + ε) lnn

n
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the k-th term of (10.26) can be approximated as

fk(n) = Pk(ρ) ·
(
n

k

)
· qnk

qk(k+1)/2
∼ n−εk, (12.6)

since

ln fk(n) = ln

(
n

k

)
+ ln

(
1− (1 + ε) lnn

n

)nk (
1 + o(1)

)
+O

(
lnn

n

)
= k lnn+ kn

(
−(1 + ε) lnn

n

)(
1 + o(1)

)
= −εk lnn

(
1 + o(1)

)
.

In particular, fk+1(n) = o
(
fk(n)

)
in this case. On the other hand, for p = lnn/n, formulas (10.26)

and (12.6) are no longer valid.

Question 12.2.7. Can we build a fruitful theory of phase transition for asymptotic expansions?
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IP indecomposable permutations, 138
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IP(m) permutations with m indecomposable parts, 138
IPC(d) indecomposable products of cycles of length d, 147
IT irreducible tournaments, 157
IT (m) tournaments with m irreducible parts, 157
L linear orders, 45
M perfect matchings, 142
MD(N) multidigraphs of rank N , 169
MG(N) multigraphs of rank N , 154
ML(2) pairs of linear orders, 140
ML(N) multiple linear orders of rank N , 146
MLM(2) pairs of linear orders represented by perfect matchings, 143
MM(N) multiple perfect matchings of rank N , 148
MP(N) multipermutations of rank N , 144
MPC(d,N) multiple products of cycles of length d of rank N , 149
MT (N) multitournaments of rank N , 159
N neutral, 43
O square-tiled surfaces, 178
P permutations, 137
PC(d) products of cycles of length d, 147
S(p) surfaces generated by p-gons, 184
SD strongly connected directed graphs, 162
SMD(N) strongly connected multidigraphs of rank N , 169
SSD semi-strong directed graphs, 162
T tournaments, 157
T R trees, 53
WD weakly connected directed graphs, 162
WD{m} directed graphs with m weakly connected components, 163
WDAG weakly connected directed acyclic graphs, 162
WDAG{m} directed acyclic graphs with m weakly connected components, 163
WMD(N) weakly connected multidigraphs of rank N , 169
WMD{m}(N) multidigraphs of rank N with m weakly connected components, 169
Z atomic, 43
W(m) class SEQm(W), where W is a given labeled combinatorial class and m ∈ N, 96
W [m] class CYCm(W), where W is a given labeled combinatorial class and m ∈ N,

110
W{m} class SETm(W), whereW is a given labeled combinatorial class and m ∈ N, 118
Unlabeled combinatorial classes
BW binary words, 63
N neutral, 43
PO(p) monic polynomials over Fp, 64
Z atomic, 43
uCG connected graphs, 68
uG (simple undirected) graphs, 68
uIM indecomposable perfect matchings, 142
uIM(m) perfect matchings with m indecomposable parts, 142
uIMM(N) indecomposable multiple perfect matchings of rank N , 148
uIMM(m)(N) multiple perfect matchings of rank N with m indecomposable parts, 148
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uIMP(N) indecomposable multipermutations of rank N , 145
uIMP(m)(N) multipermutations of rank N with m indecomposable parts, 145
uIMPC(d,N) indecomposable multiple products of cycles of length d of rank N , 149
uIMPC(m)(d,N) multiple products of cycles of length d of rank N with m indecomposable parts,

149
uIP indecomposable permutations, 138
uIP(m) permutations with m indecomposable parts, 138
uIPC(d) indecomposable products of cycles of length d, 147
uIPC(m)(d) products of cycles of length d with m indecomposable parts, 147
uIT irreducible tournaments, 68
uM perfect matchings, 142
uMM(N) multiple perfect matchings of rank N , 148
uMP(N) multipermutations of rank N , 145
uMPC(d,N) multiple products of cycles of length d of rank N , 149
uP permutations, 137
uPC(d) products of cycles of length d, 147
uT tournaments, 68
Counting sequences
bcgn(D + 1) bipartite (D + 1)-colored graphs, 188
bwn binary words, 63
cbcgn(D + 1) connected bipartite (D + 1)-colored graphs, 188
cbcg{m}n (D + 1) bipartite (D + 1)-colored graphs with m components, 189
ccogn(D + 1) connected (D + 1)-colored graphs, 188
ccog

{m}
n (D + 1) (D + 1)-colored graphs with m components, 189

cgn connected graphs, 152
cg
{m}
n graphs with m connected components, 153

cgn,k connected graphs with k edges, 196
chn chord diagrams, 195
cmn combinatorial maps, 182
cm
{m}
n surfaces with m connected components from the combinatorial map model, 184

cmgn(N) connected multigraphs of rank N , 154
cmg

{m}
n (N) multigraphs of rank N with m connected components, 155

cnn(N) N -constellations, 187
con connected square-tiled surfaces, 178
co
{m}
n square-tiled surfaces with m connected components, 179

cogn(D + 1) (D + 1)-colored graphs, 188
cpn cyclic permutations, 45
csn(p) connected surfaces generated by p-gons, 185
cs
{m}
n (p) surfaces generated by p-gons with m connected components, 185

dn directed graphs, 162
dagn directed acyclic graphs, 162
gn (simple undirected) graphs, 152
gn,k graphs with k edges, 196
hn product tnitn, 165
imn indecomposable perfect matchings, 142
im(m)

n perfect matchings with m indecomposable parts, 142
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imln(2) irreducible pairs of linear orders, 140
imln(N) irreducible multiple linear orders of rank N , 146
iml(m)

n (2) pairs of linear orders with m irreducible parts, 141
iml(m)

n (N) multiple linear orders of rank N with m irreducible parts, 147
imlmn(2) irreducible pairs of linear orders represented by perfect matchings, 143
immn(N) indecomposable multiple perfect matchings of rank N , 148
imm(m)

n (N) multiple perfect matchings of rank N with m indecomposable parts, 148
impn(N) indecomposable multipermutations of rank N , 145
imp(m)

n (N) multipermutations of rank N with m indecomposable parts, 145
impcn(d,N) indecomposable multiple products of cycles of length d of rank N , 149
impc(m)

n (d,N) multiple products of cycles of length d of rank N with m indecomposable parts,
149

imtn(N) irreducible multitournaments of rank N , 159
imt(m)

n (N) multitournaments of rank N with m irreducible parts, 159
ipn indecomposable permutations, 138
ip(m)
n permutations with m indecomposable parts, 138

ipcn(d) indecomposable products of cycles of length d, 147
ipc(m)

n (d) products of cycles of length d with m indecomposable parts, 147
itn irreducible tournaments, 157
it(m)
n tournaments with m irreducible parts, 157

ln linear orders, 45
mn perfect matchings, 142
mdn(N) multidigraphs of rank N , 169
mgn(N) multigraphs of rank N , 154
mln(2) pairs of linear orders, 140
mln(N) multiple linear orders of rank N , 146
mlmn(2) pairs of linear orders represented by perfect matchings, 143
mmn(N) multiple perfect matchings of rank N , 148
mpn(N) multipermutations of rank N , 144
mpcn(d,N) multiple products of cycles of length d of rank N , 149
mtn(N) multitournaments of rank N , 159
on square-tiled surfaces, 178
pn permutations, 137
pn,k permutations with k inversions, 196
pcn(d) products of cycles of length d, 147
pon(p) monic polynomials over Fp, 64
sn(p) surfaces generated by p-gons, 184
sdn strongly connected directed graphs, 162
smdn(N) strongly connected multidigraphs of rank N , 169
ssdn semi-strong directed graphs, 162
tn tournaments, 157
tn,k irreducible tournaments with k descents, 197
tn,k tournaments with k descents, 197
trn trees, 59
wdn weakly connected directed graphs, 162
wd
{m}
n directed graphs with m weakly connected components, 163

wdagn weakly connected directed acyclic graphs, 162
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wdag
{m}
n directed acyclic graphs with m weakly connected components, 163

wmdn(N) weakly connected multidigraphs of rank N , 169
wmd

{m}
n (N) multidigraphs of rank N with m weakly connected components, 169

w
(m)
n counting sequence of combinatorial class W(m), 96

w
[m]
n counting sequence of combinatorial class W [m], 110

w
{m}
n counting sequence of combinatorial class W{m}, 118

Labeled constructions
CYC cycle, 51
CYCm m-cycle, 50
CYCΩ cycle restricted to Ω, 53
SEQ sequence, 49
SEQm m-sequence, 49
SEQΩ sequence restricted to Ω, 53
SET set, 52
SETm m-set, 51
SETΩ set restricted to Ω, 53
Θ pointing, 53
+ disjoint union, 46
◦ substitution, 55
� Hadamard product, 56
? labeled product, 47
Unlabeled constructions
CYC cycle, 66
CYCm m-cycle, 66
MSET multiset, 67
MSETm m-multiset, 67
PSET powerset, 67
PSETm m-powerset, 67
SEQ sequence, 65
SEQm m-sequence, 65
× Cartesian product, 64
Species of structures
0 empty species, 71
1 characteristic of the empty set, 71
CGw connected weighted graphs, 173
CP cyclic permutations, 72
DE derangements, 82
E sets, 72
Gw weighted graphs, 173
G graphs, 79
L linear orders, 72
P permutations, 72
T tournaments, 79
Z characteristic of singletons, 71
B(m) species Lm ◦ B, where B is a given species of structure and m ∈ N, 129
B[m] species CPm ◦ B, where B is a given species of structure and m ∈ N, 129
B{m} species Em ◦ B, where B is a given species of structure and m ∈ N, 129
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Ψ(−1) substitutional inverse of the virtual species Ψ satisfying Ψ0 = 0 and Ψ1 = Z, 92
F−1 multiplicative inverse of the species F satisfying F0 = 1, 90
F+ species F − 1, where F is a given species of structure satisfying F0 = 1, 90
Species operations and generating series
F (z) exponential generating series of a species of structures F , 74
nF sum of n copies of the species F , 81
ZF (z1, z2, z3, . . .) cycle index series of a species of structures F , 77
F̃ (z) type generating series of a species of structures F , 75
′ derivative, 85
+ sum, 80
· product, 81
◦ substitution, 83
× Cartesian product, 87
• pointing, 86
Other symbols
Fixσ set of fixed points of the permutation σ, 76
IdX identity map X → X, 71
Spe semi-ring of species, 82
Virt ring of virtual species, 89
G(n, p) Erdős–Rényi model, 173
(n)k falling factorials, that is, n(n− 1) . . . (n− k + 1), 22
[n] the set {1, . . . , n}, 43
Â(z) graphic generating function of the labeled combinatorial class A, 57
∆ operator converting an exponential generating function to the graphic generating

function, 57
ε neutral object, 43
π0(G) number of connected components of the graph G, 175
≈ asymptotic behavior, 37
∼= combinatorial isomorphism, 45
≡ equipotency of species of structures, 78
� Hadamard product (of formal power series), 55
' isomorphism of species of structures, 79
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Index

asymptotic probability, 43

combinatorial class, 43
atomic, 43
labeled, 43
d-gargantuan, 60
combinatorially isomorphic, 45
gargantuan, 59

neutral, 43
unlabeled, 63
d-gargantuan, 68
gargantuan, 68

combinatorial construction
admissible, 46
labeled
cycle, 51
disjoint union, 46
Hadamard product, 56
labeled product, 47
m-cycle, 50
m-sequence, 49
m-set, 51
pointing, 53
sequence, 49
set, 52
substitution, 55

restricted, 53
unlabeled
Cartesian product, 64
cycle, 66
m-cycle, 66
m-multiset, 67
m-powerset, 67
m-sequence, 65
multiset, 67
powerset, 67
sequence, 65

combinatorial map, 181, 184
combinatorial object

labeled, 43

CYC-irreducible, 51
SEQ-irreducible, 50
SET-irreducible, 52

unlabeled
CYC-irreducible, 67
SEQ-irreducible, 65
SET-irreducible, 68

component
labeled
CYC-irreducible, 51
SEQ-irreducible, 50
SET-irreducible, 52

unlabeled
CYC-irreducible, 67
SEQ-irreducible, 65
SET-irreducible, 68

constellation, 186–187

descent, 197

edge, 151
directed, 162

falling factorials, 22, 105, 108, 139
formula

binomial convolution, 47
function

generating
Eulerian, 197
exponential, 44
graphic, 57
ordinary, 63

transport, 71

graph, 46, 59, 68, 79, 125–126, 151–153
(D + 1)-colored, 187–190
bipartite, 187–190
connected, 189
connected bipartite, 189, 190

connected, 53, 122, 151, 153–154, 196, 198
directed, 58, 162–164
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acyclic, 162, 170–172
semi-strong, 162, 165–168, 199
strongly connected, 57, 162, 164–168, 199
weakly connected, 162, 170

forest, 53, 123
totally disconnected, 44
tree, 53, 59, 123

linear order, 45, 79, 103
multiple, 56, 139–141, 143, 146–147, 178, 187
irreducible, 56, 140, 179, 187
reducible, 140

model
combinatorial map, 180–184
Erdős–Rényi, 73, 172–176, 199–200

multidigraph, 168
strongly connected, 169
weakly connected, 169

multigraph, 56, 154–156
connected, 56, 154, 156

multipermutation, 144
decomposable, 145
indecomposable, 144–147, 187, 190

multitournament, 56, 158–160
irreducible, 56, 156, 159, 160, 169, 170
reducible, 159

operation on species
addition, 80, 89
Cartesian product, 87, 89
derivative, 85, 89
inverse
multiplicative, 90
under substitution, 92

multiplication, 81, 89
pointing, 86, 89
substitution, 83, 91

origami, 178

perfect matching, 142, 183
indecomposable, 142–143, 183, 184
multiple, 148
indecomposable, 148

permutation, 44, 50, 52, 59, 64, 68, 74, 79, 137–
138, 196

cyclic, 44, 51
decomposable, 65, 138

indecomposable, 65–66, 108–109, 138–139, 179
product of cycles of length d, 147
indecomposable, 147
multiple, 149

polynomial
monic, 64

product
arrow, 57
Hadamard
exponential, 55
of index series, 88

representative, 89

sequence
d-gargantuan, 36–37
counting, 43
gargantuan, 33–36

series
cycle index, 77, 90
generating
exponential, 74, 90
type, 75, 90

species, 71
characteristic of singletons, 71, 74, 76, 78
characteristic of the empty set, 71, 74, 76, 78
empty, 71, 74, 76, 77
equipotent, 78
gargantuan, 93
isomorphic, 79
linear orders, 72, 75, 76, 78, 82, 86, 88, 91
permutations, 72, 75, 76, 78, 88
cyclic, 72, 75, 76, 78, 84, 86, 87
derangements, 82

restricted to a given cardinality, 81
sets, 72, 74, 76, 78, 85, 91
unrelated, 90
virtual, 89
in reduced form, 90

weighted, 72
structure, 71

isomorphic, 74, 75
labeled, 71
pointed, 86
unlabeled, 75

surface
generated by p-gons, 184–185
connected, 185
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square-tiled, 178–179
connected, 178, 179

theorem
Bender’s, 39–41, 61–62, 68–69, 93
CYCm-asymptotics, 114, 116, 131
CYC-asymptotics, 113, 116, 131
MSET/PSET-asymptotics, 128
SEQm-asymptotics, 103, 106, 108, 130
SEQ-asymptotics, 102, 106, 107, 130
SETm-asymptotics, 123, 126, 133
SET-asymptotics, 121, 126, 133

tournament, 46, 59, 68, 79, 105–106, 156–158
irreducible, 50, 103, 153, 157, 158, 165–168,

197
reducible, 157
strongly connected, 157

type
cycle, 76
isomorphism, 75

vertex, 151, 162

weight
of a set (total weight), 72
of an element, 72

word
binary, 63–65
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Titre : Irréductibilité des objets combinatoires : probabilité asymptotique et interprétation
Mots-clés : Expansion asymptotique, probabilité, classe combinatoire, espèces de structures, fonc-

tion généra-trice, théorème de Bender, permutation indécomposable, couplage parfait, graphe connexe,
tournoi irréduc-tible, graphe orienté fortement connexe, graphe orienté acyclique, modèle Erdős-Rényi, sur-
face à petits carreaux, carte combinatoire, constellation, multigraphe, multitournoi, multipermutation.

Résumé : De nombreuses structures combinatoires admettent, au sens large, une notion d’irréducti-
bilité : les graphes peuvent être connexes, les permutations indécomposables, les polynômes irréductibles,
etc. Dans cette thèse, nous nous intéressons à la probabilité qu’un tel objet pris au hasard soit irréductible,
lorsque sa taille tend vers l’infini. On obtient des développements asymptotiques complets pour ces prob-
abilités ; l’irréductibilité est comprise à travers les constructions combinatoires SET, SEQ et CYC dans le
contexte de la méthode symbolique. Nous appliquons notre approche aux graphes connexes, aux tournois
irréductibles, aux permutations indécomposables et aux couplages parfaits. En outre, nous établissons des
asymptotiques pour plusieurs modèles de surfaces connexes comprenant les surfaces à petits carreaux, les
cartes combinatoires et certains objets de dimension supérieure tels que les constellations et les modèles de
tenseurs colorés. Nous montrons que les coefficients apparaissant dans ces asymptotiques sont entiers et
qu’ils peuvent être interprétés comme des suites de comptage d’autres classes combinatoires « dérivées ».
Par exemple, les graphes connexes conduisent aux tournois irréductibles, les surfaces à petits carreaux aux
permutations indécomposables, les cartes combinatoires aux couplages parfaits indécomposables. De plus,
nous obtenons certaines probabilités asymptotiques qu’un objet combinatoire aléatoire ait un nombre donné
de composantes irréductibles. Passant de la méthode symbolique à la théorie des espèces, nous traitons
également le modèle G(n, p) de Erdős–Rényi. Nous établissons également la probabilité qu’un graphe ori-
enté aléatoire soit fortement connexe en utilisant une décomposition plus complexe qui implique des graphes
acycliques orientés.

Title: Irreducibility of combinatorial objects: asymptotic probability and interpretation
Key words: Asymptotic expansion, probability, combinatorial class, species of structures, generating

function, Bender’s theorem, indecomposable permutation, perfect matching, connected graph, irreducible
tournament, strongly connected directed graph, directed acyclic graph, Erdős-Rényi model, square-tiled
surface, combinatorial map, constellation, multigraph, multitournament, multipermutation.

Abstract: Various combinatorial structures admit, in a broad sense, a notion of irreducibility:
graphs can be connected, permutations can be indecomposable, polynomials can be irreducible, etc. In
this thesis, we are interested in the probability that any such object picked randomly is irreducible, as
its size tends to infinity. We obtain complete asymptotic expansions for these probabilities; irreducibility
is understood via the combinatorial constructions SET, SEQ, and CYC within the symbolic method. We
apply our approach to connected graphs, irreducible tournaments, indecomposable permutations, and perfect
matchings. Also, we establish asymptotics for several models of connected surfaces, including square-tiled
surfaces, combinatorial maps, and higher dimensional objects such as constellations, and colored tensor
models. We show that the coefficients appearing in those asymptotics are integers and can be interpreted
as the counting sequences of other “derivative” combinatorial classes. For instance, connected graphs lead
to irreducible tournaments, square-tiled surfaces lead to indecomposable permutations, combinatorial maps
lead to indecomposable perfect matchings. Moreover, we obtain asymptotic probabilities that a random
combinatorial object has a given number of irreducible components. Switching from the symbolic method to
the theory of species, we treat the Erdős–Rényi G(n, p) model as well. We also establish the probability that
a random directed graph is strongly connected using a more complex decomposition that involves directed
acyclic graphs.


	Introduction
	Présentation du problème et de la stratégie
	Contribution de la thèse
	Plan de la thèse
	Introduction
	Presentation of the problem and strategy
	Contribution of the thesis
	Outline of the thesis
	I Tools
	Gargantuan sequences and Bender's theorem
	Gargantuan sequences
	Bender's theorem

	The symbolic method
	Labeled combinatorial structures
	Combinatorial classes
	Labeled combinatorial classes
	Combinatorially isomorphic classes
	Admissible constructions
	Disjoint union
	Labeled product
	Sequences
	Cycles
	Sets
	Restricted constructions
	Pointing
	Substitution
	Hadamard product
	Graphic generating functions
	Gargantuan labeled combinatorial classes
	Bender's theorem for labeled combinatorial classes

	Unlabeled combinatorial structures
	Unlabeled combinatorial classes
	Cartesian product
	Sequences
	Cycles
	Sets
	Gargantuan unlabeled combinatorial classes


	The theory of species
	The theory of species of structures
	Species of structures
	Weighted species
	Isomorphism of structures
	Exponential generating series
	Type generating series
	Cycle index series
	Equipotent and isomorphic species
	Sum of species of structures
	Product of species of structures
	Substitution of species of structures
	Derivative of species of structures
	Pointing in a species of structures
	Cartesian product of species of structures

	Virtual species
	Definition of virtual species, operations and series
	Multiplicative inverse
	Substitution of virtual species and its inverse
	Gargantuan species and Bender's theorem



	II General results
	SEQ-irreducibles
	SEQ-irreducibles and the inclusion-exclusion principle
	Recurrence relations
	Using the underlying structure
	The inclusion-exclusion principle
	Several SEQ-irreducible components

	Asymptotic probability of SEQ-irreducible objects
	Objects with several SEQ-irreducible components
	Asymptotics for d-gargantuan classes
	Asymptotics for unlabeled classes

	CYC-irreducibles
	CYC-irreducibles and the inclusion-exclusion principle
	Asymptotic probability of CYC-irreducible objects
	Objects with several CYC-irreducible components
	Asymptotics for d-gargantuan classes

	SET-irreducibles
	SET-irreducibles and the inclusion-exclusion principle
	Asymptotic probability of SET-irreducible objects
	Objects with several SET-irreducible components
	Asymptotics for d-gargantuan classes
	Asymptotics for unlabeled classes

	Asymptotic theorems in terms of species
	Asymptotic probability for SEQ-irreducibles
	Asymptotic probability for CYC-irreducibles
	Asymptotic probability for SET-irreducibles


	III Applications
	Permutations
	Permutations
	Permutations: definitions and properties
	Indecomposable permutations
	Asymptotic probabilities for indecomposable permutations
	Pairs of linear orders

	Perfect matchings
	The concept of a perfect matching
	Indecomposable perfect matchings
	Asymptotic probabilities for indecomposable perfect matchings

	Multipermutations
	The concept of a multipermutation
	Indecomposable multipermutations
	Asymptotic probabilities for indecomposable multipermutations

	Other generalizations

	Graphs
	Undirected graphs
	Definitions and properties
	Asymptotic probabilities for simple connected graphs
	Multigraphs and their asymptotics

	Tournaments
	Definitions and properties
	Asymptotic probabilities for irreducible tournaments
	Multitournaments and their asymptotics

	Directed graphs
	Definitions and properties
	Asymptotic probabilities for strongly connected digraphs
	Asymptotic probabilities for weakly connected digraphs
	Asymptotic probabilities for weakly connected acyclic digraphs

	The Erdos–Rényi model
	Definition and properties of the Erdos–Rényi model
	Asymptotic probabilities in the Erdos–Rényi model


	Surfaces
	Square-tiled surfaces
	Definitions and properties
	Asymptotic expansions

	Combinatorial map model
	Surfaces and combinatorial maps
	Asymptotics for the combinatorial map model
	Asymptotics for other models

	Higher dimensional models
	Asymptotic expansions for constellations
	Asymptotic expansions for colored graphs




	IV Conclusion
	Possible directions for further research
	Possible generalizations of the main results
	Asymptotics for unlabeled constructions
	Asymptotics for species
	Positivity question
	Asymptotics of compositions
	Quantum analogues
	Algorithmic aspects

	Applications and concrete problems
	Applicability of theorems
	Strongly connected directed graphs
	The Erdos–Rényi model


	List of Figures
	List of Tables
	List of Symbols
	Index
	Bibliography



