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Abstract

This manuscript presents a study of the interaction between amphipathic helices (AH) and phop-

holipid lipid membranes. Membranes surround the cell and the different organelles and can have

a variety of lipid compositions. Amphipathic helices (AH) are key protein motifs that are capable

of interacting with lipid membranes. They are normally unfolded in water and they fold into an

α-helix in the water / bilayer interface. This α-helix is amphipathic: it has a polar side exposed to

the solvent and a hydrophobic side which residues are inserted within the membrane. The affinity

of the AH for the membrane will depend on the membrane composition and structure (notably flat

or curved). AH dynamics and their interaction with membranes is the main focus of this research

work. Our predilection methods are computational techniques, particularly molecular dynamics

(MD). The first objective of this Ph.D was to determine the best suited force field (FF) to study

AH / membrane interactions. We also aimed at designing a novel strategy to study AH dynam-

ics. Specifically, we combined temperature-replica exchange molecular dynamics (T-REMD) and

Markov State Models (MSM) to extract the structural, kinetic and thermodynamic properties of

AH action mechanism. We first worked with a well-known model system, the mastoparan from

wasp venom. It allowed us to optimize our protocols to apply them to other more complex system

later, specifically, to the study of the oncolytic peptide LTX-315, a promising strategy in cancer

research, that is being developed by the company LytixBiopharma. During this Ph.D, we have

also studied how membrane composition affect its physico-chemical properties and, in consequence,

their interaction with peptides. To sum up, this Ph.D work represents and advance in MD research

for AH / membrane systems and we obtained novel information about their action mechanism. Our

work will be very useful for designing new AHs to be used in the biomedical and pharmaceutical

domains.
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Résumé en français:
Étude des interactions entre des hélices amphipatiques et des

membranes lipidiques par des simulations computationelles. Application

au peptide anticancéreux LTX-315

Ce manuscrit contient mon travail de doctorat de 3 ans que j’ai effectué sous la supervision de Pa-

trick Fuchs. Patrick et moi nous intéressons aux hélices amphipathiques (AH) et à leur interaction

avec les membranes, plus particulièrement avec la bicouche lipidique. Dans cette introduction géné-

rale, je vais présenter les aspects biologiques les plus importants de cette recherche, les principales

techniques employées et la structure du manuscrit, avec un aperçu général de chaque chapitre.

Les membranes cellulaires sont des bicouches lipidiques qui entourent la cellule et les différents

organites. Elles protègent la cellule et la divisent en compartiments ayant des fonctions différentes.

Elles sont composées principalement de lipides et de protéines. Elles contiennent trois types prin-

cipaux de lipides : les phospholipides, les glycolipides et les stérols. Dans la majorité des cas, les

phospholipides sont les plus abondants, par exemple, dans la membrane plasmique ils representent

50% de tous les lipides. Les glycolipides ne sont pas très abondants (< 2%) et les 48% restants

sont des stérols [148]. Le cholestérol est le principal stérol présent dans les membranes cellulaires.

D’autre part, deux types de protéines sont présentes dans les membranes : les protéines intégrales,

qui traversent la bicouche, et les protéines périphériques, qui sont situées dans l’un des feuillets.

Les différentes compositions et ratios lipides/protéines dépendent du type d’organite et de cellule

et sont liés à leurs fonctions. Par exemple, la composition de la membrane plasmique est d’environ

50/50 lipides/protéines en poids. Les membranes sont très dynamiques. À part leur rôle passif et

protecteur, elles participent activement aux fonctions de la cellule, comme le transport des solutés

et les voies de signalisation. Les membranes sont essentielles à l’équilibre et à la survie de la cellule.

Des connaissances fondamentales sur leur composition, leur structure et leur propriétés sont in-

cluses dans cette introduction. Les bicouches lipidiques sont présentes dans tous les projets réalisés

au cours de cette thèse.

Les hélices amphipathiques (AH) sont des motifs protéiques clés capables d’interagir avec les

membranes lipidiques. Leur séquence est courte et elles sont normalement dépliées dans l’eau.

Lorsqu’elles interagissent avec une membrane, elles s’insèrent dans l’interface membrane/eau en

se repliant en une hélice α [222]. Cette hélice α est amphipatique : elle possède un côté polaire

exposé au solvant et un côté hydrophobe dont les résidus sont insérés dans la membrane. L’affinité
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de l’AH pour la membrane dépend de la composition et de la structure de cette dernière [10]. La

dynamique des AH et leur interaction avec les membranes est l’objet principal de notre recherche.

Nous avons travaillé avec différents peptides et compositions membranaires qui seront présentés

plus tard dans ce chapitre.

Nos méthodes de prédilection sont les techniques computationelles, en particulier la dynamique

moléculaire (MD). La majorité des résultats de cette thèse sont obtenus à partir de simulations MD.

Elles permettent de décrire le comportement d’un système moléculaire au cours du temps. La MD

consiste à générer des simulations qui permettent de prédire la dynamique d’un système moléculaire

dans de conditions précises. Elles peuvent fournir des informations détaillées sur un modèle molécu-

laire qui ne sont pas observables par des tests expérimentaux. Cependant, les informations obtenues

par MD doivent être validées. En général, cette validation se fait par comparaison avec des données

expérimentales. Les applications de cette technique sont nombréuses : étude de la dynamique des

protéines et des membranes, interactions membrane/protéine, interactions protéine/protéine, etc.

Dans ce manuscrit, les simulations MD sont utilisées pour étudier le comportement des AH et les

interactions AH/membrane.

Le modèle moléculaire détermine le niveau de détail dans lequel le système moléculaire est

décrit. Le modèle tout-atome (AA) est le plus détaillé, il représente une particule pour chaque

atome de la molécule. Dans un modèle atomes-unis (UA), chaque atome lourd est représenté avec

ses atomes d’hydrogène dans une seule particule (par exemple, une particule CH3). Le modèle

gros-grains (CG) représente une particule pour quelques atomes lourds proches (avec leurs atomes

d’hydrogène correspondants) ; par exemple, dans le modèle MARTINI, 4 atomes lourds sont gé-

néralement fusionnés en une seule particule [146, 109]. Le choix du modèle dépend de différents

facteurs comme le niveau de détail choisi. Si l’on veut étudier les interactions au niveau atomique,

on choisit un modèle AA. Cependant, le modèle CG diminue le coût computationel des simulations

et permet d’observer des processus plus lents. Au cours de ma thèse, j’ai utilisé de préférence des

modèles AA, bien que j’aie du employer des modèles CG lorsque nous voulions observer des échelles

de temps plus longues.

La Temperature-Exchange molecular dynamics (T-REMD) est une technique d’échantillonnage

augmenté qui permet d’observer de longs processus moléculaires dont les échelles de temps sont

trop élevées pour être observées par la MD classique. En général, dans une simulation MD classique,

une réplique est simulée à une température constante, normalement physiologique. En revanche,

dans les simulations T-REMD, un grand nombre de répliques identiques sont simulées en même

temps. Cependant, chaque réplique est lancée à une température différente. La température la

plus basse est normalement la température physiologique et la température la plus haute peut être

extrêmement élevée (par exemple, environ 600 K). Tout au long de la simulation, les répliques

voisines peuvent échanger leurs températures. Les échanges entre les températures donnent au

système une hausse d’énergie qui l’aide à surmonter les barrières énergétiques plus élevées. Pour

qu’un échange de température ait lieu, un critère de Metropolis est appliqué afin que le système
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suive une distribution de Boltzmann aux deux températures. De cette façon, nous assurons la

fiabilité des conformations observées. Enfin, chaque réplique suit une marche aléatoire dans l’espace

des températures permettant de franchir les barrières d’énergie libre à haute température. La T-

REMD est utilisée dans plusieurs projets de ce manuscrit car elle permet d’explorer un ensemble

conformationnel plus large du système d’intérêt que les simulations MD classiques. Cependant, les

changements de température de chaque réplique biaisent la dynamique observée, il est donc très

difficile de déduire la cinétique du système parce qu’elle est dépendante de la température.

Une autre méthode de calcul importante que nous allons présenter dans ce manuscrit sont

les modèles d’état de Markov (MSM). Un MSM est un formalisme mathématique qui permet de

décrire la dynamique d’un système en moléculaire [94]. Il est possible de construire un MSM à partir

de simulations MD. L’objectif est de regrouper les conformations observées dans les simulations

en grands clusters structurels. Ensuite, la probabilité d’observer chaque cluster est calculée, ainsi

que les probabilités de transition entre les clusters. De cette façon, en construisant un MSM, il

est possible de déchiffrer les propriétés structurelles, cinétiques et thermodynamiques du système.

Normalement, les dynamiques les plus intéressantes pour l’activité moléculaire sont les processus

lents. Le MSM facilite leur extraction à partir de simulations de MD complexes. Dans ce manuscrit,

nous présenterons l’application des MSM à l’étude des interactions AH/membrane.

Bien que ce doctorat soit principalement axé sur les techniques computationelles, les techniques

expérimentales sont également présentes. Elles sont primordiales pour avoir une compréhension

approfondie des systèmes moléculaires et ont également un rôle clé dans la validation des résultats

de MD. Ainsi, au cours de ma première année, j’ai effectué des expériences de fluorescence et de

dichroïsme circulaire (CD).

La spectroscopie de fluorescence est une technique experimentale qui permet d’étudier les pro-

prietés des molecules et son environemment grâce à sa capacité d’émettre de la fluorescence. La

fluorescence est un type de luminescence causé quand un faisceau de lumière excite les électrons

des molécules d’intérêt et les amène à émettre de la lumière. Cette lumière est dirigée vers un filtre

et sur un détecteur pour être mesurée, donnant l’information sur le système moléculaire d’intérêt.

Le CD est une technique essentielle utilisée pour analyser les caractéristiques structurelles des

macromolécules. C’est une technique utile pour déterminer la structure secondaire des protéines.

Elle est basée sur la différence d’absorption de la lumière polarisée circulairement à gauche et à

droite dans les substances optiquement actives.

Grâce à la collaboration de nos collègues de laboratoire, le Dr Olivier Lequin et son doctorant

Edward Chalouhi, des essais de résonance magnétique nucléaire (RMN) sont également présentés.

La RMN est une technique en biophysique qui se base sur les caractéristiques magnétiques de la

matière. Elle fournit des informations structurelles et dynamiques sur des systèmes moléculaires,

en particulier des protéines. L’échantillon est exposé à un champ magnétique puissant, ainsi les

données générées pendant les expériences sont collectées, traitées et analysées afin d’obtenir des

informations sur les positions relatives des atomes de la molécule.
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Ce projet de doctorat est axé sur l’étude des AH et de son interaction avec les membranes.

D’une part, nous avons effectué une recherche approfondie sur le comportement des AH au niveau

moléculaire et atomique. Nous avons étudié leurs propriétés structurales dans le solvant et dans les

membranes pour mieux comprendre leur paysage conformationnel. Nous avons également cherché à

comprendre leur mécanisme d’insertion dans la membrane et à extraire la cinétique et la thermody-

namique des processus. D’autre part, nous avons étudié l’impact des propriétés physico-chimiques

de la membrane sur l’affinité des AH, comme les charges électrostatiques ou les interactions hydro-

phobes. Enfin, nous avons voulu mieux comprendre l’importance des propriétés structurelles de la

membrane dans l’interaction avec les AH, comme le degré de courbure, la compacité et la présence

de défauts de packing.

Au total, ce manuscrit est divisé en 7 chapitres différents. Dans cette introduction, je présentarai

les systèmes moléculaires étudiés pendant mon doctorat, ainsi que l’état de l’art de la recherche et

l’importance des techniques employées et leur évolution. Dans le chapitre Matériaux et Méthodes,

on explique les techniques computationelles et in vitro, ainsi que les méthodes d’analyse qui ont

été employées. Il y a cinq chapitres de résultats, un pour chacun des projets que nous avons

menés pendant ce doctorat. Dans chaque chapitre de résultats, des informations spécifiques sur les

protocoles sont données ainsi que les résultats les plus importants de nos travaux. Un aperçu de

chaque projet est donné ci-dessous.

Dans le premier chapitre, nous avons comparé differents champs de forces (FF) pour déter-

miner leur fiabilité à simuler des sysèmes de AH/membrane. Le FF est l’ensemble des équations

et paramètres utilisés dans la MD pour prédire le comportement du système. Aujourd’hui, dif-

férents FF sont disponibles pour simuler des lipides et des protéines : CHARMM36m, OPLS,

GROMOS et AMBER99SB-ILDN/Berger combinés pour les protéines/lipides. Le choix du FF est

une étape délicate car la fiabilité des résultats dépend de la bonne paramétrisation des molécules.

Dans ce chapitre, nous avons effectué des simulations de T-REMD avec quatre FF différents pour

deux systèmes moléculaires. L’objectif est de déterminer le FF le plus précis pour les simulations

AH/membrane. Les simulations avec OLPS, GROMOS et AMBER99SB-ILDN/Berger ont été réa-

lisées précédemment par Patrick et ses anciens étudiants. J’ai effectué des simulations en utilisant

CHARMM36m FF pour les lipides et les protéines [123, 93]. L’objectif était d’observer les proprié-

tés structurelles et dynamiques de deux AH dans une bicouche lipidique et de comparer les résultats

avec des expériences in vitro. Le FF produisant les résultats les plus fiables est utilisé pour le reste

des projets de cette thèse. Les deux systèmes employés étaient ALPS et le mastoparan dans une

bicouche DOPC/DOG 60/10. ALPS est un domaine protéique présent dans différentes protéines

périphériques, nécessaire pour cibler la membrane et s’attacher à la bicouche lipidique. ALPS est

un senseur de courbure, cela signifie que son affinité pour la bicouche dépend du degré de courbure

de la membrane [10]. Le côté hydrophobe de l’ALPS présente de grandes chaînes latérales (résidus

aromatiques). Afin de s’insérer dans la membrane, elles ont besoin de gros défauts packing. Dans

les membranes fortement courbées, les têtes polaires des lipides sont plus éloignées, ce qui génère
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de plus grands défauts de packing. C’est pourquoi ALPS est un senseur de courbure. Le masto-

paran est un peptide amphipatique provenant du venin de guêpe. Il possède une courte séquence

de 14 résidus. Son structure dans la membrane a été résolue par des expériences de RMN [91]. Il

perturbe l’activité cellulaire en interférant avec la voie de signalisation médiée par la protéine G.

Le mastoparan est un peptide simple de chaine courte. P. Fuchs étudie son comportement depuis

des années, c’est donc un bon modèle pour étudier les interactions AH/membrane. Le mastoparan

est présent dans 3 chapitres de cette thèse.

Dans le second chapitre, nous avons étudié l’insertion du mastoparan dans la membrane par

des simulations de MD. Dans le précédent, quatre FF différents ont été utilisés et les résultats ont

été comparés aux données expérimentales. Nous avons déterminé que les deux FF les plus fiables

étaient AMBER99SB-ILDN/Berger et CHARMM36m. L’objectif maintenant est de vérifier s’ils

parviennent également à prédire correctement le mécanisme d’insertion et de repliement de l’AH

dans la membrane. Dans ce but, des simulations de T-REMD ont été lancées pour les deux FF. Le

peptide est initialement placé déplié dans le solvant, dans un système qui contient une bicouche

DOPC/DOG 60/10. Les simulations permettent d’observer le processus d’insertion et pliement à

l’échelle atomique. Les résultats ont été comparés aux données de RMN et de CD afin de déterminer

la fiabilité des simulations. CHARMM36m FF a été sélectionné pour le reste des projets.

Dans le troisième chapitre, nous présenteons une nouvelle stratégie de recherche. Un protocole

combinant la T-REMD avec les MSM est conçu pour étudier les propriétés structurelles, cinétiques

et thermodynamiques des AH. Le mastoparan est utilisé comme système modèle et CHARMM36m

comme FF car il a été considéré comme le plus fiable dans les deux chapitres précédents. L’objectif

est d’établir un protocole solide qui pourrait être appliqué à d’autres systèmes par la suite. Deux

MSM ont été construits, un pour le mastoparan dans l’eau et un second pour le mastoparan dans

la membrane. Dans cette stratégie, nous utilisons d’abord la T-REMD pour explorer le paysage

conformationnel du système. Un clustering structurel est effectué pour toutes les conformations

trouvées à 300 K. Les cluster sont utilisés pour sélectionner des structures de départ pour lancer

des simulations de MD classiques non biaisées a 300 K. Plusieurs simulations sont donc lancées

pour chaque conformation avec différentes vitesses initiales. De cette façon, nous maximisons l’ex-

ploration du paysage énergétique du système. Ces simulations sont ensuite utilisées pour construire

le MSM. Le MSM vise à expliquer les propriétés dynamiques du système moléculaire. Deux MSM

satisfaisants ont été construits : le mastoparan dans l’eau et dans une bicouche DOPC/DOG 60/10.

L’utilisation du mastoparan comme système modèle a permis de préparer et valider le protocole

de cette nouvelle stratégie qui servira à étudier des systèmes moléculaires plus complexes dans le

futur.

Dans le quatrième chapitre de résultats, nous avons étudié le peptide oncolytique LTX-315 et

son interaction avec des membranes grace à des techniques expérimentales et computationnelles

[204]. Il s’agit d’une AH développé par LytixBiopharma pour traiter le sarcome, un type de tumeur

maligne rares qui se développe aux dépens des tissus de soutien. Le LTX-315 a une séquence de
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9 résidus avec un acide aminé non standard, la diphénylalanine (di-Phe), qui est similaire à la

phénylalanine mais avec deux cycles aromatiques [86]. Il est capable d’interagir avec la membrane

plasmique en pénétrant dans la cellule. Ensuite, il cible la mitochondrie et perturbe sa membrane

en induisant la mort cellulaire. Il a une affinité préférentielle pour les cellules cancéreuses bien qu’il

interagisse également avec les cellules normales. Il est actuellement en phase II d’essais cliniques en

Europe et aux États-Unis. Cependant, nous manquons d’informations sur son mécanisme d’action

d’un point de vue moléculaire. Simuler un acide aminé non standard est un défi pour la MD et

une clé pour comprendre son comportement. En premier lieu nous avons réalisé des expériences de

fluorescence et de CD afin d’obtenir des informations prélimiaires sur ses propriétés structurelles

et de liaison. Nos collaborateurs, le Dr Olivier Lequin et son étudiant en thèse Edward Chalouhi,

ont effectué des expériences de RMN pour déterminer sa structure secondaire, son orientation

dans la membrane ainsi que la position relative des cycles aromatiques de la di-Phe. Enfin, des

simulations T-REMD du peptide dans l’eau et dans une bicouche lipidique ont été réalisées. La

paramétrisation de la di-Phe fut un réel défi. Elle a été réalisée de trois manières différentes. Tout

d’abord, nous avons utilisé des outils de prédiction pour obtenir des valeurs approximatives pour

ensuite a lancé des simulations d’essai du système dans le vide. Enfin, nos collaborateurs Rodolphe

Vuilleumier et Ari Seitsonen à l’ENS ont effectué des calculs de mécanique quantique (MQ) dans

l’objectif de paramétrer la di-Phe. Au même moment, les développeurs de CHARMM FF ont

publié de nouveaux paramètres officiels sur une multitude d’acides aminés non standard, dont la

di-Phe [54]. Ces derniers ont été utilisés pour lancer nos simulations de T-REMD. La prochaine

étape consistera à appliquer le protocole présenté dans le chapitre précédent et d’établir un modèle

thermodynamique du LTX-315.

Le dernier chapitre présente une collaboration qui a eu lieu au sein de notre laboratoire et à

laquelle j’ai pu participer : la pénétratine et son interaction avec les lipides PIP2. La pénétratine

est un membre de la famille des peptides pénétrants (CPP). Ce sont de courtes séquences d’acides

aminés capables de pénétrer dans les cellules et de délivrer des molécules biologiquement actives.

La pénétratine est un peptide de 16 acides aminés responsable de la translocation de l’homéodo-

maine Antennapedia [108]. PI(4,5)P2 est un lipide anionique portant entre 3 et 5 charges négatives

au pH physiologique [147]. Le PI(4,5)P2 a des fonctions multiples telles que précurseur de second

messager, régulateur de la polymérisation de l’actine, trafic membranaire, etc [118]. Il est princi-

palement localisé dans le feuillet interne de la membrane plasmique, où il pourrait être impliquée

dans la régulation de l’adhésion cellulaire et de la motilité [231]. Cette collaboration est dirigée par

le Dr Astrid Walrant et le Dr Emmanuelle Sachon. Nous avons travaillé ensemble pour présenter

un modèle structurel de la pénétratine dans la membrane et ses interactions spécifiques avec les

lipides PIP2. Le point fort de ce projet est la combinaison de techniques expérimentales et com-

putationnelles en biologie et biophysique qui génèrent des résultats solides et une compréhension

plus profonde de son comportement. Tous les résultats ne sont pas présentés dans ce manuscrit,

seulement les résultats de MD et RMN. Nous avons effectué des simulations CG-MD de la péné-

tratine avec deux compositions de bicouches : POPC/POPS/PI(4,5)P2 (80/15/5) et POPC/POPS
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(80/20), et deux avec la même composition membranaire mais sans pénétratine comme systèmes

contrôle. Un back-mapping de ces simulations a été fait pour avoir un modèle AA et des simulations

AA-MD ont été lancées. Edward Chalouhi, doctorant du LBM et son directeur de thèse Olivier

Lequin ont réalisé des expériences de RMN-H avec trois échantillons différents : peptide dans un

tampon, peptide avec des micelles et peptide avec des bicelles. L’ensemble de ces résultats permet

de comprendre la structure et l’orientation de la pénétratine dans la membrane et son affinité

spécifique pour les lipides PIP2. Une publication du projet est sur le point d’être soumise.

Cette thèse a été centrée dans l’étude des interactions AH/membranes. Nous avons commencé

par une étude comparative de la capacité des différents FF de reproduire les propriétés struc-

turales des AH dans la membrane. Les FF les plus fiables, CHARMM36m et AMBER99SB-

ILDN/Berger, on été sélectionnés pour réaliser un projet sur l’insertion du mastoparan dans la

membrane, dont on a pu observer son mécanisme d’interaction avec des détails à niveau atomique.

Ensuite, CHARMM36m à été sélectionné pour poursuivre les travaux de thèse, pour sa fiabilité et

le grand ensemble de paramètres qu’il contient pour tous les types de biomolécules. Après cela, une

nouvelle stratégie très prometteuse à été développée pour étudier le comportement des AH. Un

protocole combinant la T-REMD et les MSM a été mis au point pour étudier la thermodynamique

et la cinétique des AH. Deux modèles ont été générées : le mastoparan dans la membrane et le

mastoparan dans le solvant. Après cette première étape de la thèse centrée dans la méthodologie,

nous avons travaillé sur le sujet principal de ce doctorat, le peptide oncolytique LTX-315. Grâce à

la combinaison des techniques computationnelles et expérimentales, nous avons réussi à proposer

un premier modèle d’intéraction entre le peptide et la bicouche lipidique, dont on a pu observer

son interaction directe avec les lipides et son affinité pour les membranes chargés négativement.

Enfin, nous avons utilisé nos compétences en MD pour participer à une collaboration au sein de

notre laboratoire. On a étudié la penetratine, un peptide pénétrant capable d’interagir avec les

bicouches lipidiques. Dans cette collaboration, nous avons approfondi nos connaissances sur son

interaction avec les lipides, concrètement avec PIP2 . Ces travaux de thèse ont permis de participer

à l’évolution des méthodes computationnelle utilisées dans l’étude d’interactions AH-membrane,

et ont approfondi nos connaissances sur la dynamique des à niveau atomique.
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Acronyms

• AA Amino Acid

• AH Amphipathic Helices

• ALPS Amphipathic Lipid Packing Sensor

• AMP Antimicrobial Peptide

• APL Area per lipid

• Arf1 ADP-ribosylation factor 1

• ArfGAP1 Arf GTPase-Activating Protein 1

• ATP Adenosine Triphosphate

• BB Backbone

• CD Circular Dichroism

• CO Cut Off

• COM Center of mass

• COPI Coat Protein I

• COPII Coat Protein II

• CPP Cell Penetrating Peptide

• DAG Diacylglycerol

• DHPC 1,2-diheptanoyl-sn-glycero-3-phosphocholine

• DLS Dynamic Light Scattering

• DMPC 1,2-dimyristoyl-sn-glycéro-3-phosphocholine

• DMPG 1 2-dimyristoyl-sn-glycero-3-phosphoglycerol

• DOG 1,2-dioleoyl-sn-glycerol
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• DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine

• DPPC 1,2-dipalmitoyl-sn-glycéro-3-phosphocholine

• DSSP Define Secondary Structures of Proteins

• EM Electron microscopy

• ER Endoplasmic Reticulum

• FF Force Field

• H-REMD Hamiltonian-Replica Exchange Molecular Dynamics

• LINCS Linear Constraint Solver

• LUV Large Unilamellar Vesicle

• MD Molecular Dynamics

• MLV Multilamellar Vesicles

• MRE Mean Residue molar Ellipticity

• MSM Markov State Model

• NMR Nuclear Magnetic Resonance

• PBC Periodic Boundary Conditions

• PC phosphatidylcholine

• PDB Protein Data Bank

• PIP phosphoinositide

• PME Particle Mesh Ewald

• PMF Potential of Mean Force

• POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

• POPS 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine

• RMSD Root Mean Square Deviation

• SC Side Chain

• SDS Sodium Dodecyl Sulfate

• SS Secondary structure

• SUV Small Unilamellar Vesicle

• T-REMD T-REMD Temperature-Replica Exchange Molecular Dynamics

• US Umbrella Sampling
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Chapter 1

Introduction

1.1 General introduction

This manuscript contains my 3 years Ph.D work that I carried out under Patrick Fuchs’ supervision.

Patrick and I are interested in amphipathic helices (AH) and their interaction with membranes,

specifically with the lipid bilayer. In this general introduction, I will present the most import-

ant biological aspects of this research, the main techniques employed and the structure of the

manuscript, with a general overview of each chapter.

Cell membranes are lipid bilayers that surround the cell and the different organelles. They pro-

tect the cell and divide it in compartments with different functions. They are composed mainly by

lipids and proteins. Three main lipid types are present: phospholipids, glycolipids, and sterols. In

the majority of cases, phospholipids are the most abundant, for example they generally contribute

for over 50% of all lipids in the plasma membrane. Glycolipids are not very abundant (< 2%) and

the remaining 48 % are sterols [148]. Cholesterol is the main sterol present in cell membranes.

On the other hand, there are two protein types present in membranes: integral proteins, which

cross the bilayer; and peripheral proteins, which are located in one of the leaflets. The different

lipid and protein compositions and ratios depend on the organelle and cell type and is related to

their functions. For example, the composition of the plasma membrane is about half lipids and

half proteins by weigh [29]. Membranes are highly dynamic. Apart from the passive, protective

role, they actively participate to cell’s functions as solute transport and in signaling pathways.

Membranes are essential to cell’s equilibrium and survival. Fundamental knowledge about mem-

brane composition, structure and properties are included in this introduction and lipid bilayers are

present in all the projects carried out during this Ph.D thesis.

Amphipathic helices (AH) are key protein motifs that are capable of interacting with lipid

membranes. Their sequence is short and they are normally unfolded in water. When they interact

with membranes, they insert into the membrane/water interface while folding into an α-helix [222].

This α-helix is amphipathic: it has a polar side exposed to the solvent and a hydrophobic side
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which residues are inserted within the membrane. The affinity of the AH for the membrane will

depend on the membrane composition and structure [10]. AH dynamics and their interaction with

membranes is the main focus of this Ph.D research. We have worked with different peptides and

membrane compositions that will be presented later on this chapter.

Our predilection methods are computational techniques, particularly molecular dynamics (MD).

The major part of the results of this work are obtained fromMD simulations. They allow to describe

the behaviour of a molecular system through time. MD consist in computer simulations which allow

the prediction of the dynamics of a molecular system within certain conditions. They can provide

detailed information about a molecular model not observable with experimental assays. However,

the information obtained computationally must be validated. In general, this validation is done by

comparison to experimental data. The number of applications of this technique are countless: study

of protein or membrane dynamics, membrane/protein interactions, protein/protein interactions,

etc. In this manuscript, MD simulations are used to study AH behaviour and AH/membrane

interactions.

The molecular model determines the degree of detail in which the molecular system is described.

The all-atom (AA) model is the more detailed one, it represents one particle for each atom of the

molecule. In a united-atom model, each heavy atom is represented with its apolar hydrogen atoms

in a single particle (e.g. a CH3 particle). A coarsed-grained (CG) model represents one bead

for a few heavy nearby atoms (together with their corresponding hydrogen atoms); for example,

in the MARTINI model, 4 heavy atoms are generally merged into a single bead [146, 109]. The

choice of the model depends on different factors as the degree of detail needed. If we aim to

study interactions at atomic level, an AA model is chosen. However, coarse-graining the model

decreases the computational cost of the simulations and allows to observe slower processes and

larger systems. During my Ph.D I preferentially used AA models although I employed CG models

when we wanted to observe longer time scales.

One central technique that we used in different subrpojects of myt thesis is Temperature replica-

exchange molecular dynamics (T-REMD) [151]. T-REMD is an enhanced sampling technique that

allows to reduce the computational cost of simulating long molecular processes whose time scales

are too elevated to be observed by classical MD. Generally, in a classical MD simulation one replica

is simulated at a constant physiological temperature. However, in T-REMD simulations, a high

number of identical replicas are simulated at the same time. However, each replica is launched at

a different temperature. The bottom temperature is normally the physiological one and the upper

temperature can be extremely high (e.g. around 600 K). Throughout the simulation, neighbour

replicas can exchange temperatures. The exchanges between the temperatures give the system

boost of energy that help to overcome higher energetic barriers. For a temperature exchange to

take place, a Metropolis criterion is used so that the system follows a Boltzmann distribution at

both temperatures. This way we ensure the reliability of the conformations observed. Finally,

each replica follows a random walk in temperature space allowing to cross free energy barriers at

34



high temperatures. T-REMD is used in several projects of this manuscript as it helps to explore a

wider conformational ensemble of the system of interest than classical MD simulations. However,

the changes in the temperature of each replica bias the observed dynamics, so it is very difficult to

infer the kinetics of the system (i.e. the kinetics depends on temperature).

Another important computational method that we are going to present in this manuscript are

the Markov State Models (MSM). A MSM is a mathematical formalism that allows to describe

the dynamics of a changing system [94]. It is possible to construct an MSM from MD simulations.

The aim is to group the conformations observed in the simulations in structural clusters. Then,

the probability of observing each cluster is calculated, and also the probabilities of transitioning

between the clusters. This way, by constructing an MSM it is possible to decipher the system

structural, kinetic and thermodynamic properties. Normally, the most interesting dynamics for

molecular activity are the slow processes. MSM facilitates their extraction from complex MD

simulations. In this manuscript, we present the novel application of MSM to study AH/membrane

interactions.

Although we mainly use computational techniques, experimental assays are also present. They

are very important to have a deep understanding of the molecular systems and they also have a

key role validating the computational results. During my first year, I carried out fluorescence and

circular dichroism (CD) assays. Also, thanks to collaborations, I will present some results from

NMR experiments as well as internalization assays performed by some colleagues from our lab.

This Ph.D project is based on the study of AH and their interactions with membranes. First,

we focus on the methodology. The first objective is to determine the best suited FF to study AH

/ membrane interactions. We also aim to design and test novel protocols to study AH dynamics.

This way, we will have optimized computational techniques to study our systems of interest. From

a biological point of view, we would like to address several questions. First, we want to have a

better picture of AH conformational landscape in buffer and in the membrane. We also aim to

understand their mechanism of insertion into the membrane at atomic level and to extract the

kinetics and thermodynamics of the process. Membranes also have a very important role in this

research, as the affinity of AH for the bilayers depends on their composition. During this Ph.D

thesis, we have studied how membrane composition affect its physico-chemical properties and, in

consequence, their interaction with peptides. To sum up, with this Ph.D work will optimize MD

research for AH / membrane systems and we will obtain novel information about their action

mechanism. Our long term goal is to be able to computationally predict if a given AH can interact

with a given membrane with a specific lipid composition under a certain state (flat, curved, under

tension, etc.). As more and more medicines/drugs are based on peptides, our research has some

perspectives in biomedicine and drug design where AH are involved.

In total, this manuscript is divided into 7 different chapters. In this introduction, the molecular

systems that have been studied during my Ph.D are presented, as well as the state of the art of the

research and the evolution and importance of the employed techniques. Chapter 2, Materials and
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Methods, explains the computational and in vitro techniques as well as the methods that have been

employed. Specific information about the protocols are given in each chapter of results. There are

five chapters of results, one for each of the projects we carried out during this Ph.D. The main

results are presented and discussed. An overview of each project is given below.

In chapter 3, we did a Force Field (FF) comparison for AH/membrane systems. The FF

is the ensemble of equations and parameters used in MD to predict the behaviour of the sys-

tem. Nowadays different FF are available to simulate lipids and proteins: CHARMM36m, OPLS,

GROMOS and AMBER99SB-ILDN/Berger combined for proteins/lipids. The choice of the FF is

a delicate step when doing MD as the reliability of the results depends on the correct parametriz-

ation of the molecules. In this chapter we carried out T-REMD simulations with four different FF

for two molecular systems in order to determine the most accurate FF(s) for AH/membrane sim-

ulations. The two AHs employed were ALPS (a membrane curvature sensor) and the mastoparan

(from wasp venom) in a DOPC/DOG 85/15 bilayer. The aim was to observe the structural and

dynamic properties of two AH in a lipid bilayer and compare the results with in vitro assays to

classify the FF by accuracy.

In chapter 4, we studied mastoparan insertion in the membrane by MD simulations. In the

previous chapter four different FF were compared to study AH behaviour in the membrane and

results were compared to experimental data. We determined that the two most reliable FF were

AMBER99SB-ILDN/Berger and CHARMM36m. The objective of this chapter was to check if

they also manage to correctly predict AH partition and folding mechanism. T-REMD simulations

of mastoparan insertion were launched for the two FFs. The aim was to observe the structural and

dynamic properties of two AH in a lipid bilayer and compare the results with in vitro assays.

In chapter 5, we present a novel research strategy on AH folding within a membrane. A protocol

combining T-REMD with MSM was designed to study AH structural, kinetic and thermodynamic

properties. In this strategy, we first used T-REMD to explore the conformational landscape of the

system. From the T-REMD simulations, we selected an ensemble of conformations that were used

as starting structure for non-bias classical MD simulations. The MD simulations were then used

for MSM construction. This strategy was first employed with the mastoparan as model system to

validate and optimize the protocol that will serve to study more complex molecular systems in the

future.

In chapter 6, we studied the LTX-315 oncolytic peptide and his interaction with membranes by

experimental and computational assays. It is an AH developed by the company LytixBiopharma

to treat sarcoma disease. We have started a collaboration with Øystein Rekdal the CEO of Lytix-

Biopharma who sent us some peptide allowing us to perform some experiments. LTX-315 has a

9 residues sequence with one non-standard amino acid, the diphenylalanine (DiP), which is sim-

ilar to the phenylalanine but with two aromatic rings [86]. We lack information about LTX-315

action mechanism with membrane from a molecular point of view. The fact that it presents a

non-standard amino acid is a challenge for computational research and a key to understand its be-
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haviour. I first carried out fluorescence and CD assays myself as a first approach to its structural

and and binding properties. I also performed T-REMD simulations of the peptide in water and in a

lipid bilayer. Our collaborators, Olivier Lequin and his Ph.D student Edward Chalouhi performed

NMR assays to resolve its membrane-bounded structure, its orientation in the membrane as well

as the relative position of the DiP aromatic rings. Finally, another collaborators from our Lab,

Françoise Illien and Sandrine Sagan, applied a novel protocol to carry out internalization assays,

where she studied the LTX-315 penetration capacity and preferred pathways.

Chapter 7, the last one, presents a collaboration that took place in our lab where I had the

opportunity to participate: the penetratin and its interaction with PIP2 lipids. The penetratin is a

member of the cell-penetrating peptides (CPPs) family, able to enter cells and to deliver biologically

active molecules. PI(4,5)P2 is an anionic lipid with multiple functions such as second-messenger

precursor, regulator of actin polymerization, membrane trafficking, etc [118]. This collaboration is

headed by two other collaborators in the lab Astrid Walrant and Emmanuelle Sachon. We have

worked together to present an structural model of the penetratin in the membrane and its specific

interactions with PIP2 lipids. The strength of this project is the combination of experimental

and computational techniques in biology and biophysics that generate solid results and a deeper

understanding of its behaviour. We carried out CG and AA-MD simulations of the penetratin

with different bilayer compositions. Edward Chalouhi, Ph.D student of the LBM and his PhD

Director Olivier Lequin carried out H-NMR experiments of the peptide in buffer and in presence

of lipids. All together, these results help to understand penetratin structure and orientation in the

membrane and its specific affinity for PIP2 lipids. A publication of the whole project is about to

be submitted.

At the end of the manuscript, a general conclusion chapter is included, where the main results

are summed up and discussed. We highlight how we answered the main questions raised in this

introduction and propose new perspectives for AH/membrane interaction research.
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1.2 The Eukaryotic cell and its membranes

An Eukaryotic cell is any cell or unicellular organism that possesses a clearly defined nucleus.

They are isolated from the external medium thanks to the plasma membrane. Internally, they

present different organelles. Each one has its own membrane and particular function and they are

illustrated in figure 1.1.

The plasma membrane

The plasma membrane separates the interior of the cell from the outside environment. It is com-

posed by lipids and proteins. It provides protection for the cell and fixed environment inside the

cell. It actively participates in the regulation of the transport of materials entering and exiting the

cell: nutrients are internalized into the cell and toxic substances are transported out of the cell.

They are also important for the cell communication: they have attached proteins to interact with

other molecules and cells. The plasma membrane has different compositions depending on the cell

type and organism.

The nucleus

It contains and protects the DNA, the hereditary information of the cell. The nucleus controls the

activities of the cell by regulating the protein synthesis: the information encoded in the DNA is

transcribed into messenger RNA (mRNA) in the nucleus and then the mRNA is translated into

proteins in the cytoplasm. The nucleus is surrounded by the nuclear envelope, a double membrane

that isolates the nucleus from the cytoplasm. The outer membrane is continuous with the endo-

plasmic reticulum. Both membranes contain pores which control the movement of substances in

and out of the nucleus: the mRNA is transported into the cytoplasm, and proteins are selectively

transported into the nucleus.

The endoplasmatic reticulum and the Golgi

The endoplasmatic reticulum (ER) and the Golgi apparatus are two organelles implied in molecule

synthesis and intracellular transport. Their functions are combined to produce proteins and lipids,

and subsequently transport them into vesicles to their target organelle. This process is called

vesicle trafficking.

The synthesis of proteins and lipids takes place in the endoplasmatic reticulum (ER), which is

located next to the nucleus. There are two types of ER, the smooth and the rough. The rough

ER has attached ribosomes, which are small, round organelles which synthesize the proteins from

the mRNA that comes from the nucleus. The smooth ER helps produce and concentrate other

substances needed by the cell. Once the molecules are synthesized, the ER actively participate

in molecule transport across the cell. Molecules are packed into transport vesicles and moved
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along the cytoskeleton toward their destination. If they need modifications, as post-traductional

maturation in proteins, the vesicles are delivered to the Golgi apparatus. Secretory proteins and

glycoproteins, cell membrane proteins, lysosomal proteins, and some glycolipids all pass through

the Golgi apparatus at some point in their maturation.

In the Golgi, protein maturation and sorting takes place. The Golgi apparatus is a membrane-

bound organelle made up of flattened, stacked pouches called cisternae (4 to 8 per Golgi). The

cisternae are held together by matrix proteins, and the whole of the Golgi apparatus is supported

by cytoplasmic microtubules. It is divided in three compartments with different functions. The

"cis" cisternae are the closest to the ER, where the vesicles deliver the proteins and lipids. Then,

these molecules pass to the "medial" zone, where they are modified into functional molecules and

marked to be delivered in a specific intracellular or extracellular locations. There are different

type of modifications, as glycosilation or fatty acid addition. Finally, in the "trans" cisternae (the

farthest from the ER), proteins and lipids are sorted and packaged again into vesicles. The vesicles

are sent into their final destination, that can be another organelle, the plasma membrane or the

extracellular medium. In the last case, they are released by exocytosis. The vesicle traffic is an

essential mechanism for the cell growth and maintenance and it is based on membrane fusion,

fission and vesicle formation.

The mitochondrion

The mitochondrion is the powerhouse of the cell: it produces energy in form of ATP. In 1967, Lynn

Margulis published the Endosymbiosis theory. She postulated that originally, the mitochondria

was a prokaryotic organism in symbiosis in an eukaryotic cell [183]. This prokaryotic organisms

progressively lost its autonomy becoming an organelle of the host cell. The main evidences for this

theory is that the mitochondria possesses its own circular genome, it divides independently from

the cell, it produces some proteins on its own and it has a double membrane system.

This double membrane system is fundamental for the energy production and the survivor of

the cell. The outer membrane has a thickness of 60-75 Å and recovers all the organelle. It is highly

permeable to ions and small molecules. The inner membrane presents a big surface because it

bends in many folds called cristae. It is not permeable as the outer membrane and it has higher

protein concentration. In the inner membrane energy is produced in form of ATP [84]. Between the

two membranes there is a zone called the intermembrane space. The matrix is in the interior of the

inner membrane where the Krebs cycle takes place. It is a series of chemical reactions that produces

NADH. The NADH is fed into the oxidative phosphorylation (electron transport) pathway, which

takes place in the inner membrane. In the electron transport pathway, an electron jumps between

membrane’s protein complexes until its ultimate acceptor, the oxygen, creating water. During

the electron transport, the protein complexes push protons from the matrix to the intermembrane

space, creating an electron gradient. This gradient is used by the enzyme ATS syntase to create

energy in form of ATP. If the double membrane system is damaged, the mitochondrion is not
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capable to produce energy and cell death is induced.

Lysosomes

Lysosomes are cell organelles present in the cytoplasm of eukaryotic cells. They are in charge of the

intracellular digestion. They eliminate non-useful or toxic molecules thanks to their high content in

digestive enzymes as lipases, peptidases and nucleases. The lysosomal membrane contains transport

proteins (permeases), ionic channels for chloride ions, and proton pumps. The ion channels and

proton pumps maintain a low pH inside of the lysosomes (between 4.5 and 5), which is essential

for the enzymatic activity. The membrane assures the functioning of the lysosomes and protects

the cell from its low pH and the digestive enzymes at the same time.

Lipid droplets

Lipid droplets are the main place for storing cellular fats in the form of triglycerides or esters of

cholesterol. Lipid droplets are peculiar organelles since their interior is an oil while the exterior is an

aqueous environment (cytoplasm). Therefore they are surrounded by a monolayer of phospholipids,

which is unique among all organelles. A monolayer has very different properties compared to a

regular bilayer, e.g. it can be pulled without disrupting. Here surface tension play a key role in

the property of lipid droplets, which depend on many factors but mainly the degree of exposure

of hydrophobic parts. Depending on this, Lipid droplets are highly fusogenic, but on the other

hand they are wrapped by proteins, notably long amphipathic helices such as perilipins, which

may moderate their fusogenicity.

Figure 1.1 – Eukaryotic cell diagram. Image from: https://www.w3spoint.com/.
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Conclusions

Membranes fundamental for the survivor of the cell. They divide the cell in compartments, so

multiple chemical reactions can take place simultaneously. This increases the biochemical efficiency

and prevents the dissemination of reaction products while the cell is functioning like a single unit.

Apart from the passive, protective role, membranes are highly dynamic. They have active roles in

energy production, intracellular membrane trafficking, fission and fusion, cell division, etc. Because

of their importance in cells, they are becoming a target in biomedical research. There are more

and more drug design projects based on membrane-interacting molecules.

Fundamental knowledge in membrane mechanism and functionalities is essential to understand

cell processes and to understand their response to external agents. Membranes are one of the

main focus of this Ph.D research. In this manuscript we are going to talk about their different

compositions, physico-chemical properties and dynamics, and how these characteristics impact

their interactions with other molecules, specifically with peptides.

1.3 Membranes

Cellular membranes are lipid bilayers that surround the cell and the different organelles. They

protect the cell and divide it in compartments with different functions. They are composed by

lipids and proteins, which can be integral or peripheral. Membranes are highly dynamic and they

actively participate to cell’s functions as solute transport and signaling pathways. Membranes are

essential to cell’s equilibrium and survival.

1.3.1 Historical context

Robert Hooke discovered cells in 1665. He proposed the Cell Theory where he stated that all

cells contain hard cell wall since only plant cells could be observed at the time. This theory

was maintained for more than 150 years until advances in microscopy where made. In the early

19th century, cells were recognized as being separate entities and studies were extended to include

animal cells to suggest a universal mechanism for cell protection and development. At the end of

the century, the existence of a cell membrane in animal cells, different to the plan wall was inferred

but they were not considered vital to the cell survival, being just a secondary structure. Later

discoveries on osmosis and permeability made the cell membranes gain more recognition. In 1895,

Ernest Overton proposed that cell membranes were composed by lipids.

The lipid bilayer hypothesis was proposed in 1925 by Gorter and Grendel based on crystallo-

graphic studies and soap bubble observations. They extracted lipids from blood cells and measure

its area. Then, the lipids were compressed on a water surface to create a monolayer. The surface

was reduced a 50 %. The single possible explanation for this was that the lipids of the initial

membrane where organised in a bilayer as it was drawn in their fist model 1.2a.
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In 1935, be the paucimolecular model of Davson and Danielli became popular and it dominated

cell membrane studies for the following 30 years. This model stands that membranes are composed

by a central region of hydrophobic lipids with variable thickness, surrounded by a phospholipid

bilayer which polar heads are orientated towards the outside, and an external layer composed by

globular proteins [56]. A scheme of this model is shown in figure 1.2b

This model became rivaled by the fluid mosaic model of Singer and Nicolson in 1972. They

published a membrane model where they described the structure of the plasma membrane as a

mosaic of components in a fluid state [200]. The bilayer was modeled as a two dimensional pseudo

liquid where proteins and lipids associate with enough freedom of movement to be functional as in

figure 1.2c.

(a) Membrane model by Gorter and Grendel

(1925). Image from [150].

(b) Paucimolecular membrane

model (1925). Image from [56].

(c) Membrane fluid model by Singer (1972). Im-

age from [150].

Figure 1.2 – Relevant membrane models in history.

The importance of Singer’s model is that it is the first model to describe the membrane as

a dynamic system. It has evolved through the years to adapt to more recent discoveries and

to the specific properties of each cell type and organelle. In 1978, Israelachvili proposed a non-

homogeneous model where the protein concentration is not constant throughout the surface. The

protein types and concentration also depend on the membrane localisation and are related to

the organelle function. Also membrane’s the structure is variable: some important features are

the curvature and the thickness. 1995, Sackmann, described the presence of a cytoskelete and
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glycocalix. A modern membrane model is showed in figure 1.3.

Figure 1.3 – Modern cell membrane model. By LadyofHats Mariana Ruiz - Own

work. Image renamed from File:Cell membrane detailed diagram.svg, Public Domain, ht-

tps://commons.wikimedia.org/w/index.php?curid=6027169

In the past decades, biochemical and biophysical findings have provided a detailed model of the

composition and structure of membranes. In 2009, van Meer et al. published a very interesting

and detailed review of the lipid diversity within the cell [148]. The different lipid compositions

and ratios depend on the organelle and cell type. The scheme they published reporting on the

composition of cell membranes is shown in figure 1.4.

1.3.2 Membrane composition

The cell membrane is composed by lipids and proteins. Three lipid types are present: phospholipids,

glycolipids, and sterols. As it is shown in figure 1.4, the lipid composition depends on the membrane

type. In the majority of cases phospholipids are the most abundant, often contributing for over 50%

of all lipids in plasma membranes. Glycolipids are not very abundant (< 2%) and the remaining

50 % are sterols. There are two protein types present in membranes: integral, which cross the

bilayer; and peripheral, which are located in one of the leaflets. The protein/lipid ratio depends

on the cell type and organelle. For example, the composition of plasma membranes is about half

lipids and half proteins by weigh [29]. The main types of molecules composing cell membranes will

be discussed in this section.

Phospholipids

Phospholipids are the principal component of the lipid bilayer. They are composed by a glycerol

molecule, with two aliphatic chains attached in positions sn-1 and sn-2 and a phosphoric acid in

sn-3 position. Phospholipids are amphipathic: the two aliphatic chains constitute the non-polar

tails and the phosphoric acid the polar head. A scheme of the structure is shown in figure 1.6 The
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Figure 1.4 – Lipid diversity in the Eukaryotic cell. The barplots indicate the lipid composition

of each organelle in mammals (dark blue) and yeast (light blue). Cholesterol/phospholipid and

ergosterol/phospholipid ratio is indicated for mammals and yeast respectively. Blue circles mark

synthesis sites and red circles the lipid related to signaling pathways (less than the 1%) Image from

[148]

phosphoric acid can be bonded or not to a hydroxyl group which determines the different types of

polar heads that exist. Depending on the polar head, it is possible to classify the phospholipids

in two major groups: charged or neutral (zwitterionic). The principal polar head structures are

shown in table 1.1 [138].

Hidroxyl group Structure Phospholipid type Abbreviation Charge

Hydrogen H Phosphatidic acid PA Negative

Choline Phosphatidylcholine PC Zwitterionic

Ethanolamine Phosphatidylethanolamine PE Zwitterionic

Serine Phosphatidylserine PS Negative

Glycerol Phosphatidylglycerol PG Negative

Inositol Phosphatidylinositol PI Negative

Table 1.1 – Diversity of polar head’s structures present in phospholipids

Regarding the aliphatic chains, they are a sequence of enchained carbons and their correspond-

ent hydrogen atoms attached to a carboxyl group (-COOH). The length and number of insatur-
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ations is variable. Most of the phospholipids present one saturated and one insaturated chain.

Table 1.2 shows a selection of the most frequent ones and the nomenclature used to describe them.

The unsaturations can be in cis, when the hydrogen atoms are located on the same side of the

aliphatic chain or in trans when they are in opposite sides. In nature, the major part of the lipids

havecisinsaturations because they contribute positively to membrane’s fluidity while trans insat-

urations decrease lipid mobility rigidifing the membrane. The two structures are show in figure

1.5) [179].

Figure 1.5 – Aliphatic chains with an insaturation in (A) trans and (B) cis. Image from Wikipedia.

Fatty acid Length:Insaturations (Position-Conformation)

Lauric 12:0

Myristic 14:0

Palmitic 16:0

Palmitoleic 16:1 (9-cis)

Stearic 18:0

Oleic 18:1 (9-cis)

Vaccenic 18:1 (11-cis)

Linoleic 18:2 (9-cis, 12-cis)

γ-Linoleic 18:3 (6-cis, 9-cis, 12-cis)

α-Linoleic 18:2 (9-cis, 12-cis, 14-cis)

Arachidic 20:0

Behenic 22:0

Arachidonic 20:4 (5-cis, 8-cis, 11-cis, 14-cis)

Table 1.2 – Most common aliphatic chains present in phospholipids.

Different polar heads and aliphatic chains are combined to form different phospholipid types.

There is a great diversity although not all the combinations are present in nature. The variation

in headgroups and aliphatic chains allows the existence of > 1000 different lipid structures in

eukaryotic organisms.
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The polar head phosphatidilcholine (PC) is the most abundant one and is present in all mem-

branes of all eukaryotic organisms, as described in van Meer’s model (Fig. 1.4). POPC accounts

for > 50% of the phospholipids in most eukaryotic membranes. It self-organizes spontaneously as

a planar bilayer with the lipid tails facing each other and the polar headgroups interfacing with

the aqueous phase as it is shown in figure 1.6. The impact of lipid’s physico-chemical properties

in membrane’s general structure will be discussed in the next section.

Figure 1.6 – . Phospholipid schematic representation and bilayer formation by its aggregation.

Image from: https://www.creative-proteomics.com.

Cholesterol

Sterols are another lipid type present in cellular membranes. Its concentration in the membrane is

variable depending on the cellular type and organelle. The most important sterol in lipid bilayers

is cholesterol. It is composed by four carbon cycles with a small carbon chain attached on one

side and a polar head on the other side (Fig.1.7). The carbon chain is composed by 8 carbons and

their respective hydrogen atoms. The polar head is only composed by a hydroxyl group (-OH)

although sometimes it is esterified by a fatty acid forming a cholesteryl ester (this last form is the

way of storing cholesterol within lipid droplets). Cholesterol increases membranes’ lipid diversity.

As the polar head is small and can be esterified, the cholesterol is a very hydrophobic molecule.

In mammals, mitochondrial membranes present less than 5% of cholesterol, the Golgi apparatus a
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8% and the plasma membrane between a 20% and a 50%, depending on the cell type (Fig. 1.4)

[138].

Figure 1.7 – Cholesterol’s structure

The cholesterol concentration has a big impact in membrane’s structure and dynamics. It

has a role as natural regulator of membrane’s fluidity. It has a cohesive effect on phospholipids:

it increases the rigidity of the membrane general structure, forming highly ordered membranes.

Membranes presenting high cholesterol concentration will be more condensed, less fluid and more

difficult to cross by small molecules. This is the reason why high concentrations are present in the

plasma membrane, it protects the cell against the entry of small molecules.

Integral proteins

Integral membrane proteins span across the bilayer. They have one domain exposed to the outside

(extracellular space or cytosol), another domain on the inside (cytosol or lumen) and a transmem-

brane domain highly hydrophobic that interact with the lipid aliphatic chains. There are multiple

types with various functions: connection between the interior and exterior of the cell, functions re-

lated to cell communication and signalisation pathways, ion channel transport, protein G coupled

receptor, etc. They are of great interest in pharmaceutics because they serve as receptors for

drugs [90]. Their presence and concentration differ depending on the organelle and also on the cell

type. For example, 18 % of membrane’s components are integral proteins in neuron plasma mem-

brane but 75 % in mitochondrial internal membrane. This is because in the inner mitochondrial

membrane they have a key role in energy production.

Peripheral Proteins

Peripheral proteins are just attached to one of the layers and do not have a transmembrane domain

crossing the bilayer. The interaction with the membrane is normally transient and the attachment

is regulated by hydrophobic or electrostatic interactions. These proteins target specific membranes

to interact with them. The affinity depends on membrane physico-chemical properties. Four

different interaction mechanisms are showed in figure 1.8, but some other exist [120]. The first one

is the specific recognition of a lipid’s polar head as it was described by Lemmon for globular protein

interaction with phospholipids [132]. Examples include the conserved region-1 (C1) domains, which
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specifically recognize diacylglycerol. Membrane binding by these domains is typically dictated

simply by the presence or absence of the target lipid in membranes. Some proteins insert into the

membrane upon lipid modification that penetrates the membrane (esterification of an aliphatic

chain over a residue), as the proteins from the myristoylated family [164]. A very common type

of interaction are the electrostatic-driven interactions. Protein cationic chains insert into the

membrane surface because it can present negative charges [223, 230]. Finally, the partition of an

amphipathic helix (AH) into the membrane can also serve to target peripheral proteins [26].

Figure 1.8 – Peripheral proteins’ mechanisms to bind lipid membranes. Image [10]

All these strategies are principally driven by stereospecificity, hydrophobicity and electrostatic

attraction. However, AH insertion into the membrane is a more complex process where the insertion

is coupled to helix folding. AH and its insertion mechanism is one of the main focus of this research

and it will be treated more extensively in the next section.

1.3.3 Membrane Structure and dynamics

The general structure of the lipid bilayer is directly impacted by the lipid composition, water

to lipid ratio and temperature. The lipid shape depends on the relationship between the size of

the polar head and the size of the aliphatic chain. There are three possibilities: cylinder, cone

and inverted cone 1.9. Lipids have a cylindrical structure when the head and the chains have

approximately the same width, as it is the case of the POPC. A cone structure is formed when

the polar head is smaller than the chains width and the inverted cone when the polar head is

bigger [102]. Accordingly, the packing parameter p describes the lipid shape with a single number

which basically relates the volume of the polar head and the aliphatic tails: p 1 for cylindrical

lipids , p < 1 for conical lipids and p > 1 for inverted conical lipids. The abundance on those

three classes of lipids can lead to the following shapes: flat, positively curved (convex), negatively

curved (concave) respectively.

All this properties can be applied to another group of compounds with an amphiphilic structure,

the detergents. They also have a hydrophilic (polar) head and a long hydrophobic (non-polar) tail.
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The properties of detergents are dependent on the molecular structure of the monomer. Some of

them aggregate in water to form micelles, which have a hydrophobic core. The hydrophobic core

can enclose different molecules, as grease, protein or soiling particles. Thanks to this property they

have a key role in protein purification assays, so they are necessary for in vitro protein synthesis.

Figure 1.9 – Lipid shapes and the structures they can form. (a) Inverted conical lipids can aggregate

in micelles, (b) cylindrical lipids form bilayers and (c) conical lipids can generate reverse hexagonal

phase. Image from: [102]

Phospholipids are amphipathic molecules. In water they form emulsions where the hydrophobic

tails aggregate to minimize exposition to water while the hydrophobic heads keep exposed to water.

This mechanism helps to decrease surface tension which means that the phospholipids are surface-

active molecules (i.e. surfactants). The way they self-assemble (i.e. the phase) critically depends on

the lipid shape: cylindrical lipids generally form bilayers, conical lipids may form reverse hexagonal

phases and inverted conical lipids can form micelles (Fig. 1.6 and 1.9). In Biology, the various

cellular lipids form most of the time bilayers, although some other phases are possible during

specific events (e.g. membrane fusion). Importantly, the relative abundance of the various lipid

shapes in a biological membrane has a direct impact on their curvature, which plays a key role in

its interaction with proteins. High membrane curvature is encountered for example in vesicular

trafficking, neurotransmitter vesicles, etc.

The fluidity of the membrane also depends on lipid dynamics and is critical for its permeability.

The lipids are able to diffuse in the membrane plane. The structure and dynamics of the aliphatic

chains depend on their length and number of unsaturations. Unsaturations rigidify the structure

and increase the volume they occupy. In consequence, unsaturations decrease the fluidity. In

addition, the increase of the volume of the chains separate the polar heads, creating small cavities

that expose the hydrophobic chains to the solvent. These cavities are called Packing Defects, a

scheme is shown in figure 1.10. Packing Defects have a key role in membrane interactions with

peptides as they need hydrophobic cavities to insert their bulky hydrophobic amino-acids into the

membrane [216]. Packing defects are also critical for membrane fusion [73], especially for the first
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part of the process which is called hemifusion (i.e. when the two outer leaflets fuse).

Figure 1.10 – Packing defects’ schematic representation. The red arrows point to the defects.

Image by Patrick Fuchs.

Another factor that influences membrane dynamics is temperature. The phase transition tem-

perature, is the temperature at which lipids change physical properties from gel phase Lβ (rigid)

to liquid crystalline Lα phase (fluid). If the temperature is higher, lipids are disorganized and

the membrane gets more fluid. If the temperature is lower, lipids are highly organized and, in

consequence, the membrane is more rigid. The transition temperature between the two, also called

melting temperature, depends on the number of unsaturations: the higher the number of unsatur-

ations, the more space between the lipids and so the lower the melting temperature. For example,

the melting temperatures for DSPC, SOPC and DOPC are 55.6, 6.7 and -40.3°C, and they have

0, and 2 insaturations respectively.

Figure 1.11 – Phase transition in lipid bilayers. As the temperature increases, the membrane

“melts”, going from an ordered solid-like bilayer (left) to a disordered, fluid one (right). Around

the melting temperature Tc, the two phases coexist. Image from [202].

1.3.4 Membrane systems in research

In nature, cell membranes are very complex system of various compositions and properties. Al-

though research in this field have evolved a lot in the past decades, the different membrane compos-
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itions, dynamics and functions are not fully yet understood. There are in vivo assays that allow to

study cell membranes but they are normally limited in spatial resolution [10]. In vitro assays (e.g.

electron microscopy (EM)) are commonly used to study membrane behaviour in a more detailed

way. To study membrane containing systems, simplified bilayers are commonly used. The idea is

to create a bilayer with a reduced number of lipid types that mimic the physico-chemical prop-

erties of the membrane of interest. This reduces the high costs and also the technical difficulties

of producing lipid bilayers. Some of the most popular membrane structures used for experimental

assays are micelles and bicelles, shown in figure 1.12. Bicelles are bilayer-mimetics composed by

long phospholipids in the central part and detergents (phospholipids with short chains such as

DHPC) in the extremes, where the structure needs to be be curved. The q factor describes the

size of the bicelle. When there are only detergents present, there is no bilayer formation, only an

spherical structure called micelle with q = 0. Both structures are commonly used for experimental

assays, especially in NMR experiments because the sample need to tumble fast.

Figure 1.12 – Micelle and bicelle structure. In orange and purple, long chain lipids of different

nature. In blue, detergent molecules. Bicelles are formed by a central planar bilayer composed

by long chain lipids with the edges stabilized by either short-chain lipids or detergents. Different

lipids can be used. The q value represents the extension of the bilayer. The larger q, the larger the

bilayer. Micelles can be described as a bicelle with a q value equal to 0. Image from [45]

Normally, lipid bilayers contain one to four lipid types. This way, it is possible to construct in

vitro bilayers to study their behaviour and interactions with peptides and proteins, solute trans-

port, etc. For example, in 1999 S. White deduced the density profile of a pure DOPC lipid bilayer

by X-Ray diffraction assays [92]. The density profile gives information about atom groups relative

positions and membrane thickness. Results are shown in figure 1.19 and will be discussed deeply in

the next section. Solid state NMR spectroscopy also provides valuable information regarding the

structural fluctuations of lipid bilayers, including both the equilibrium properties and dynamics.

From the NMR data, it is possible to extract the order parameters (OP) of the lipids. OP are

a measure of the degree of order of the aliphatic chains. OP are then used to deduce structural
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parameters of the lipid bilayer, such as the thickness or area per lipid (APL) [166, 167]. Fluor-

escence Correlation Spectroscopy (FCS) and Fluorescence recovery after photobleaching (FRAP)

are a standard method used to study the dynamics of lipids and proteins, giving information about

lipid diffusion [169].

In silico research is also concerned with membrane studies. The evolution of computational

techniques in the last years have also positively impact this field. There are more and more

computational research teams interested in membranes because of their importance for cellular

activity. Molecular dynamics (MD) is one of the main computational techniques employed to

study membranes [211]. For MD simulations, simplifications of the membrane are generally used,

as in vitro assays. A set of lipid structures are chosen and a precise ratio to better represent

the membrane characteristics of interest, such as the charge or packing defects for example. The

simplification of the model reduces the computational cost of the simulation and allows the research

to be focused in an small number of variables. The results from the simulations are compared to

in vitro assays to validate the reliability of the data.

A good example of the symbiosis between in vitro and in silico research is the open-science

collaborative project called NMRLipids [http://nmrlipids.blogspot.com/]. The aim of NMRLipids

is to carry out MD simulations of lipid bilayers with different compositions and conditions and

then compare them to experimental results. This way, the authors get to determine the reliability

of the Force Field (FF) (ensemble of equations and parameters used to compute the simulations).

In their first project, they simulated phosphatidylcholine (PC) lipid bilayers with 13 different all-

atom models, and compared simulations to NMR experiments in terms of the highly structurally

sensitive C-H bond vector order parameters (OP). Focusing on the glycerol backbone and choline

headgroups, they showed that the OP comparison can be used to judge the structural accuracy

of the FF [34]. I had the opportunity of participating on the last project with Patrick, where we

worked with pure POPE and mixed POPC/POPE bilayers. The manuscript has been published

recently [14]. MD is the principal technique employed during this Ph.D so we will be talking

extensively about membrane MD simulations in this manuscript.

1.4 Amphipathic Helices

Amphipathic helices (AH) are key protein motifs that are capable of interacting with lipid mem-

branes. Their sequence is short and they are normally unfolded in water. When they interact

with the membrane, they fold into an α-helix and get inserted in the membrane/water interface.

They are called amphipathic because they have two sides, a polar one exposed to the solvent and

a hydrophobic one which residues are inserted within the membrane. The hydrophobic side chains

establish hydrophobic contacts with the lipid aliphatic chains. The affinity of the AH for the mem-

brane will depend on membrane physico-chemical properties as the degree of curvature, the charge

and the packing defects. AH dynamics and their interaction with membranes is the main focus of
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this Ph.D research. We have worked with different peptides and membrane compositions that will

be presented later on this chapter.

Physico-Chemical Properties

The first representation of an AH was done in 1967 by Shiffer, he design the helical wheel rep-

resentation [191]. He drew a circle where the lateral chains of the residues are projected each

100 ◦ because there are 3.6 residues per helix turn. This representation allows to see the relative

positions of the residues in the helix and determine which side is polar and which side is non-polar.

Most often, the division is not perfect but in all cases it is easy to distinguish the two sides. The

first helical wheel ever published is shown in figure 1.13

Figure 1.13 – First helical wheel ever published. It corresponds to one segment of the whale sperm

myoglobin, described by M. Schiffer in 1967 [191]. The residue number is written next to each

amino acid and the hydrophobic amino acids are surrounded by a circle.

In 1982, Eisenberg proposed to quantify the amphipathicity of the helix by calculating the

helical hydrophobic moment [66] :

〈µH〉 =
|
∑N
i=1 Hi|
N

(1.1)

Where Hi is the vector which goes from the center of the helix in the direction of the lateral

side chain projection; |Hi| corresponds to the hydrophobic value in Eisenberg scale; and N is the

total number of hydrophobic residues. A high 〈µH〉 value indicates high amphipathicity, which

means that the polar and non-polar residues are well divided in two different sides of the helix.

Although useful to get a first glance, we know nowadays that the mechanism of action of the

AH is more complex than a simple helical wheel description. This latter and hydrophobic moment

are not enough to describe the complex dynamics of AH: the free energy of partitioning does not

depend upon the hydrophobic moment [3]. To have a real comprehension of AH mechanism of

action, they need to be observed with atomic detail. The key is to understand how the shape, the

volume and the exposed area of each face of the helix match the complex chemical environment

made by the membrane. The affinity of the AH for the membrane depends on the complementary
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structural and chemical characteristics between the peptide and the bilayer. For example, big

hydrophobic lateral chains need more space in the membrane, which is related to higher curvature

and more packing defects. In their paper [62], Drin and Antonny point to computational methods

such as MD simulations as the best fitted methods to study AH dynamics in a detailed atomic

way.

Functions

Among others, AH can be classified in four important families: peripheral protein targeting to

membranes, Antimicrobial Peptides (AMP), Cell-Penetrating Peptides (CPPs) and venom pep-

tides. This classification is based in AH different functions and we are going to use it in this

manuscript to talk about AH. However, other classifications are possible, as physical-chemical and

structural based ones [196].

AH targeting peripheral proteins to membranes When targeting peripheral membranes,

the AH will be a domain of a bigger sequence. This AH domains have specific affinity for membranes

leading the protein to interact with a specific organelle. One example is the protein SAR involved

in membrane trafficking. It is a monomeric small GTPase found in COPII vesicles. It regulates the

assembly and disassembly of COPII coats. When it is interacting with GTP (Sar1-GTP complex),

it bounds to the Golgi’s membrane thanks to an AH motif. Its insertion provokes an area difference

between the two layers creating a local curvature which is the first step in vesicle secretion [232].

Some AH that target peripheral membranes are also curvature sensors. This means that they

have different affinities for membranes depending on its degree of curvature. Membrane curvature

sensors participate in very diverse reactions, such as lipid transfer between membranes, the teth-

ering of vesicles at the Golgi apparatus, and the assembly-disassembly cycle of protein coats [10].

One well-know curvature sensor is ALPS, a protein motif present in multiple proteins. ALPS motifs

are supple sequences of 20 to 40 amino acids with no intrinsically defined structure. In ArfGAP1,

it sensors the membrane to participate to the disassemble of COP1. [26]. In the presence of large

liposomes (R > 100 nm) containing cylindrical lipids, ALPS motifs are mostly soluble but the

liposomes have a radius below 50 nm, ALPS peptides bind onto them by folding into an α-helix as

illustrated in figure 1.14. It also has high affinity for liposomes containing lipids with small polar

heads and/or high number of mono-unsaturated acyl chain. It seems that due to the presence

of big hydrophobic chains and few charged residues in its sequence, it senses the defects in lipid

packing that arise from the mismatch between the actual curvature of the bilayer and the shape

of the lipids. The interaction between ALPS motif and the bilayer is driven by hydrophobic inter-

actions rather than electrostatic attraction. ALPS motifs are present in proteins that function in

the early secretory pathway and the nuclear envelope [63, 61]. These membranes are characterized

by a low surface charge, low levels of cholesterol, and phospholipids with largely monounsaturated

fatty acid side chains. This suggest that membrane curvature is not only the consequence of the
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mechanical or enzymatic work of proteins, but also an effector and spatial information used by the

cell [172, 10]. ALPS is one of the peptides studied during this Ph.D and it will be studied in one

of the results chapters.

Figure 1.14 – ALPS’ sensitivity for membrane curvature. Image from [10]

Membrane curvature sensors have diverse structures and chemistries, suggesting that they might

have the intrinsic capacity to discriminate between different types of vesicles in cells. Unlike ALPS

motifs, α-synuclein has a poorly developed hydrophobic face so it uses electrostatic interactions to

overcome the minimal contribution of its hydrophobic face. This explains its dual sensitivity to

negatively charged lipids and to membrane curvature [10]. Its precise function is not known, but

it is expressed primarily in neurons, in which it localizes to synaptic vesicles and it is related to

Parkinsons disease [157, 159, 11]. Comparison of ALPS and α-synuclein lipid-binding properties

in vitro confirms that their differences in chemistry translate into specific binding to liposomes

of different composition, complementary to the chemical properties of each curvature sensor (Fig.

1.15). This underlines the importance of properly mimicking the lipid composition and ratio of

the bilayers in in vitro and in silico assays.

Another interesting model of AH targeting peripheral membranes are the sensors of membrane

composition. This AH are able to detect changes in the lipid ratio, enhancing or decreasing their

affinity for the membrane. A very interesting example is the AH of the regulatory enzyme CCT.

This enzyme is in charge of maintaining the PC density of the bilayer, having a key role on the

homeostatic control of the membrane. CTT binds bilayers that are deficient in PC, catalysing its

synthesis. The CCT AH recognises the physico-chemical properties of cell membranes deficient in

PC, specifically the high number of packing defects and the increase of negative charge density.

This two properties increase the affinity of the AH for the membrane, that partitions and folds into

the bilayer promoting PC synthesis. When PC content increases, the number of packing defects

and the negative charge density decreases leading to CCT dissociation and a lower rate of PC

synthesis [52].

Antimicrobial peptides (AMP) Apart from being a protein motif used by peripheral mem-

branes, AH are also peptides that interact with membranes independently. The Antimicrobial

peptides (AMP) are cationic peptides present in multi cellular organisms that are important for

the immune defense of the organism. They are present in both animals and plants [75, 131, 37].

Not all AMPs are AH, they can present other structures as β-sheet, extended and looped although
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Figure 1.15 – ALPS and α-synucleine structure and membrane affinity. ALPS insertion is promoted

by hydrophobic interactions because it presents big hydrophobic lateral chains while α-synucleine

insertion is lead by electrostatic interactions due to its positive charges. Image from [10]

they are all cationic and amphipathic [229]. They are capable of interacting with pathogens’ mem-

branes, disrupting the bilayer and inducing the cell death [134, 236]. The exact mechanism is

not yet known but the principal hypothesis propose that the peptides aggregate forming pores

that increases the permeability of the membrane until it is disrupted [228]. Different disruption

mechanisms are presented in figure 1.16. Independently of the chosen membrane perturbation

model, an implicit concentration threshold is always required for disruption. Many peptides in this

class are being intensively researched not only as antibiotics, but also as antivirals templates for

cell-penetrating peptides, immunomodulators and antitumoural drugs [149].

Cell penetrating peptides (CPP) CPP are also short cationic peptides that are capable of

crossing the bilayer without damaging the cell membrane [124]. They have a median length of 14

residues and a median charge of +5. Cell membranes have selective permeability that limits the ac-

cess of exogenous compounds to the interior of cell. CPPs are able to cross the membrane without

energy or a receptor, so they represent an interesting strategy in drug design for drug delivery

[119]. In general, they have low hydrophobicity and low amphipathicity, which is not favorable for

spontaneous partitioning into zwitterionic membranes [182]. For most CPPs, membrane binding

requires electrostatic interactions. Its internalization depends mainly fixed factors that include

peptide sequence and physico-chemical properties but also on variable factors such as local peptide

concentration, local lipid composition and the properties of the cargo. [119]. The internalisation

mechanisms are variable and can be passive (energy-independent) or active (energy-dependent).

The direct translocation occurs when the peptide passively passes across membranes, at low con-

centration significant membrane disruption. The CPP can also be internalised by transient plasma

membrane disruption, where peptide and cargo are delivered, but the disruption is not significant
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Figure 1.16 – Proposed AMPs’ insertion mechanisms. (a) Barrel-stave pore: peptides insert

perpendicularly in the bilayer and parallel to the aliphatic chains and form a pore. (b) Carpet

mechanism: peptides adsorb parallel to the bilayer, they aggregate and produce a detergent-like

effect that disrupts the membrane. Specific peptide–peptide interactions are not required. (c)

Toroidal pore: peptides insert perpendicularly in the bilayer, induce a local membrane curvature

and the pore lumen is lined partly by peptides and partly by phospholipid headgroups. A continuity

between inner and outer leaflets is established. (d) Disordered toroidal pore: modification to the

toroidal pore where the peptide conformations and orientations are less-rigid. The pore lumen is

lined by the phospholipid head groups. Image from [149]

enough to cause large-scale cytotoxicity. Finally, CPP can be actively internalized by endocyt-

osis: the cargo is targeted to membrane-bound endosomes that are taken up into the cytosol. An

schematic representation of these mechanisms is showed in figure 1.17 [178].

CPPs have several applications in biomedicine. They are use for drug delivery, for example,

in cancer treatment. CPPs have been effectively conjugated to siRNAs,increasing the ability of

the siRNA to enter the cell and modulate selectivity for cancer cells over healthy cells [33]. Also,

it is believed that some CPP have therapeutic properties themselves: Chang et al. published a

study that demonstrated that optimised stapled a-helical peptides can work as dual inhibitors of

the MDM2 and MDMX p53 regulatory proteins resulting in suppression of tumour growth in vivo

[41, 178].

Penetratin is one important peptide of the CPP family. It comes from the antennapedia homeo-

protein (pAntp) of Drosophilia. When this helical sequence is mutated, the homeoprotein can not

be internalized in vitro. It has 16 residues and it has been proven to be the minimal motif for

internalization. The mechanisms of entry are variable although it has been shown to enter cells

via direct translocation and also by endocytosis. Internalization also depends on experimental

conditions, especially peptide concentration, and on the presence of glycosaminoglycans (GAGs)
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[104] and on membrane domains created by either cholesterol depletion or ceramide formation in

cell membranes [119]. At low concentrations, below 1µM , the peptide enters by direct translo-

cation (disruption of the plasma membrane). At high concentrations of the peptide, endocytosis

is preferred. There is one chapter dedicated exclusively to Penetratin where we will be talking

extensively about its interaction with lipid bilayers.

Figure 1.17 – Examples of internalization mechanisms of CPPs and its cargo.(A) Spontaneous

membrane translocation across the plasma membrane. The membrane is not disrupted. (B)

Transient plasma membrane permeabilization. (C) Endocytosis of membrane-bound peptide–cargo

complex, along with unattached small and large molecule cargoes. (D) Endosomal membrane

lysis and CPP–cargo and co-encapsulated cargo release. (E) Translocation across the endosomal

membrane delivers CPP and attached cargo, but not co-encapsulated cargo. (F) CPP and cargo

are rapidly degraded if release does not take place. The mechanisms depicted are not mutually

exclusive; they can happen concurrently. Image from [119]

Venom peptides Venom peptides are AH present in insects venom, upon biting this compounds

are injected into the host. In this AH family, there are some peptides that penetrate the host cell

without damaging it and others that disrupt cell’s membranes. Two well-known examples are the

Melittin, from bee venom, and the mastoparan from wasp venom. Melittin is the main component

of bee venom (40–60% of the dry weight). It is a pain producer and it is responsible of the tissue

damage in the host. It has a 26 amino-acid sequence that forms a tetramer in water but it also can

spontaneously integrate itself into cell membranes as an AH [208]. The mastoparan is a toxin from

wasp venom that has a short sequence of 14 amino acids. Its action mechanism implies interactions

with proteins from the hots cell: the mastoparan interferes with G protein activity. It stimulates

the GTPase activity, shortening the lifetime of the active G protein. It also promotes dissociation

of any bound GDP from the protein, enhancing GTP binding: the GTP turnover of G proteins

is greatly increased by mastoparan. The resultant G protein-mediated signaling cascade leads to

intracellular IP3 release and the resultant influx of Ca2+, leading to cell death. Its secondary
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structure has been resolved by NMR assays. In micelles, it forms a 3 turns α-helix. By solid-NMR

assays its orientation in the bilayer was also determined: the mastoparan binds mainly in the

membrane/water interface as expected in AH behaviour [91]. During my Ph.D, the mastoparan

has been used as a model system to study AH dynamics.

Other AH There exist AH that do not fit into this four-groups classification. Nowadays, new

AH peptides are being developed with biomedical purposes. Because of their simplicity and their

capability of interacting with membranes, they are interesting models for drug design. LTX-315

from Lytix-Biopharma is an oncolitic peptide that is being developed to treat sarcoma disease.

In its 9 residues sequence, it presents one non-natural amino-acid, the diphenylalanine, which is

similar to the phenylalanine but presents two aromatic rings [86]. This small peptide is capable

of penetrating the cell membrane, with a slight affinity for cancer cells. Once entered in the

cell, it targets the mitochondrial membrane and permeabilizes it, disrupting the electron gradient

and inducing the necrosis of the cell [204]. This mechanism not only kills the cancer cells but

also stimulates the immune system response generating immune memory. LTX-315 represents a

very promising strategy to treat cancer and is actually in phase II of clinical assays in Europe

and US [https://www.lytixbiopharma.com/]. We have dedicated a part of this research work to

study its action mechanism with a combination of experimental and computational techniques in

collaboration with a Norwegian company LytixBiopharma and its CEO Oystein Rekdall. MD

simulations are a key to the understanding of the peptide action mechanism. This technique can

shed light on LTX-315 structural and dynamic characteristics with atomic detail. This information

is crucial to understand its biomedical properties, and in the future it can serve to design new drugs

of the same family.

There are still a lot to know about AH behaviour and functions: the specific contribution of

the lipids to the match or mismatch between a sensor and a membrane; the “footprints” of the

peptides in the membrane; the atomic interactions between the lateral chains and the lipids, etc.

Neither a detailed NMR structure of a peptide in a detergent micelle nor a CD spectrum of the

same peptide with a relevant lipid bilayer will give the answer. MD simulation are one of the most

promising approaches to give detailed information at an atomic level of these processes.

AH/membrane interaction

When talking about AH, the mechanism of interaction and insertion into the membrane is called

partitioning. The concept was established by Stephen White, a researcher who studied in depth AH

thermodynamics using experimental methods [222]. Partitioning means that the thermodynamics

of the system is not described such as a ligand (AH) which binds to a protein (membrane), but

rather the AH can reside either in the aqueous phase or the membrane (such as in two phase

systems, e.g. water / octanol). S. White described the thermodynamics of AH partitioning and

folding in lipid bilayers. In solution AH, are normally unfolded [26, 222, 2]. S. White described the
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partitioning and folding into the membrane as a coupled mechanism. In other words, they take

place simultaneously.

Figure 1.18 – Amphipathic helix/membrane interaction phases described by Seelig [195].

The general mechanism of AH/membrane interaction can be described in three steps: attrac-

tion, adsorption and folding (Fig. 1.18) [195]. The first step is the attraction, where the peptide

approaches the membrane. This step is driven by electrostatic interactions mainly: the peptide is

positively charged and the membrane generally presents negatively charged lipids. If the peptide

sequence is not charged, the attraction will be driven by hydrophobic forces: the non-polar residues

will tend to insert their hydrophobic chains between the aliphatic chains of the bilayer to avoid

interacting with water. The closer the peptide to the membrane, the stronger the attraction.

The second step is the adsorption, where the peptide locates parallel to the membranes surface.

The first interactions take place, but the residues are not inserted yet. As the peptide is still in

the solvent, it presents an extended conformation.

Finally, the peptide will partition into the membrane while folding at the same time. Depending

on the peptide properties, the insertion begins from one of the terminal ends or the center of the

peptide. The residues are then inserted sequentially into the membrane. The hydrophobic ones will

insert their side chains into deeper into the membrane while the polar ones will orientate their side

chains to the solvent, trying to continue the interactions with water. This phenomenon will drive

the folding of the peptide into an α-helix, so this is why the folding is coupled to the partitioning

[223]. A model called nucleation propagation process was proposed to describe this mechanism:

one hydrophobic residue gets inserted into the membrane and serves as a nucleation point for the

helix folding. If the helix displays a repetitive pattern (similar composition of each turn), all of

the folding steps should be associated with the same free energy [10].

Once it is partitioned and folded, the helix is positioned parallel to the membrane surface, on

the lipid/water interface, at the glycerol level. The position and orientation of an AH was first
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described in 1999 by experimental methods, specifically by X-Ray scattering [92]. The results are

shown in figure 1.19.

Figure 1.19 – Ac-18A-NH2 partitioning in a DOPC bilayer. The first image is the peptide helical

wheel. The colors correspond to the ones established in Wimley and White’s hydrophobicity scale

(see next section). The dotted line shows the helix central axis that separates the polar and non-

polar sides. The bottom figure is the electron density profile where the density of the main elements

of the system are plotted on the z (vertical) axis of the membrane. This figure shows that the

peptide is located at the glycerol level. Image from [92]

The thermodynamics of partitioning and folding

Describing the thermodynamics of the partitioning and folding of AH into the membranes is a

key step in the understanding of its dynamics and its mechanism of action. In 1996, Wimley and

White constructed a so-called hydrophobicity scale based on experimental assays on short peptides

[223]. This scale describes the partitioning of the 20 amino-acids (AA) into the bilayer and it is

based on the calculation of the free energy of binding of peptides whom sequence is Ac-WLXLL

(where X is any of the 20 natural AA). Importantly, these peptides being very short, they can

form any specific regular secondary structure, they are thus always in a coil conformation. In

the scale, a value is attributed to each AA (Fig. 1.20). Lower values indicate higher tendency to

partition into the membrane. In other words, the lower the value the more hydrophobic the residue.

These values were determined from the partitioning of two series of small model peptides into the

interfaces of neutral (zwitterionic) phospholipid membranes. Partition coefficients were measured

using equilibrium dialysis and HPLC. Pure POPC LUVs were used as lipid bilayers. Nowadays,

the White and Wimley hydrophobic scale is very much used and is a reference as important as

other scales such as Kyte and Doolittle.
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Figure 1.20 – Hydrophobicity scale detrmined by Wimley and White in 1996 [223].

The results shown in figure 1.20 indicate that the aromatic residues (tryptophan, phenylalanine

and tyrosine) are highly hydrophobic and tend to insert their lateral chains into the membrane.

However, the charged residues glutamate, aspartate, lysine and arginine present a positive free

energy value, which means that they prefer to keep their lateral chains exposed to the solvent. As

the free energy of partitioning is described for the 20 amino acids, this scale allows to calculate

the free energy of partitioning of a peptide independently from the folding, and it has been used

in literature to study the thermodynamics of binding of numerous peptides [2]

Two years later, S. White and co-workers proposed a way to evaluate, using experimental

information, the free energy of folding of an AH in the membrane [222]. As the partitioning

and folding is coupled, he proposed an innovative strategy to calculate the free energy of folding

separately. First, he designed a thermodynamic cycle to describe the peptide thermodynamics

(Fig. 1.21). The peptide presents three states: unfolded in water, unfolded in the membrane and
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folded in the membrane. Using the Melittin as a model system, he calculated the thermodynamics

of transitioning between the states. He first calculated the free energy of partitioning/folding

coupling using titration CD assays (-8 kcal/mol). Then, he used the hydrophobic scale described

above to calculate the free energy of partitioning independently (-3 to -2 kcal/mol). As stated

above, the scale was determined for residues in a coil conformation, thus using the scale describes

the process of inserting the peptide in a random coil conformation from water to the membrane.

We know that the peptide is unfolded in water (from CD experiments), but up to this point

the peptide is in a hypothetical state unfolded in the membrane. Thus it needs to fold to close

the thermodynamic cycle. Therefore, we can deduce the difference between the free energy of

partitioning and the free energy of the partitioning/folding coupling process, corresponding to the

free energy of folding in the membrane: -6 to -11 kcal/mol.

Figure 1.21 – Thermodynamics of an Amphipathic Helix partition and folding by S. White [222]

In 2012 the model was updated by Almeida et al., using the Melittin from bee venom as model

system. They described a four-states thermodynamic cycle shown in figure 1.22. The two reference

states are the unfolded structure in water (A) and the folded structure in the membrane (D). State

A is a hypothetical state, because peptides in aqueous solution usually have some, even if small,

amounts helical structure. They also described two intermediate states: an ensemble of extended

and folded structures in water (C), where the extended ones are predominant and an unfolded

structure in the membrane (B). ∆GAB is calculated using the Wimley-White hydrophobicity scale

explained above, which gives a free energy value for the partitioning of each peptide into the

water / membrane interface (assuming unfolded conformations). By adding the free energies of

each residues of the peptide, the free energy of partitioning (∆GAB) is calculated. The energies

∆GCD and ∆GAC are accessible experimentally, for example by circular dichroism (CD). ∆GCD

represents the insertion/folding coupling of the peptide and can be evaluated by CD titration

(recording CD spectra with increasing amount of liposomes). ∆GAC is the energy required to

constrain the peptide in state A from the ensemble C, and it is calculated by doing titration

experiments of the peptide in water with various amounts of TFE (trifluoroethanol). By fitting

the final curve, we can get the equilibrium constant Kα and the final free energy from A to C is
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computed with ∆GAC = −RTln(1 +Kα). Finally, once we have these three free energies, we can

deduce the one we are interested, that is, the free energy of folding in the membrane, thanks to

the thermodynamic cycle: ∆GBD = ∆GAC + ∆GCD −∆GAB .

From this model, Almeida et al. determined a free energy value for the folding of any single

amino acid in the membrane: ∆Gres = -0.37 +/- 0.02 kcal/mol [3]. ∆Gres does not depend upon on

the hydrophobic moment (µ(H)), as it is ascribed to the formation of backbone hydrogen bonds.

This is a very relevant information for AH research as it provides thermodynamic information

calculated experimentally that can be used as reference for computational research, as it will be

shown later in this manuscript.

Figure 1.22 – Thermodynamic cycle of AH partitioning and folding in the membrane [3]. (A)

Unfolded structure in water. (B) Unfolded structure in the membrane. (C) Ensemble of folded

and unfolded structures in water. (D) Folded structure in the membrane. States A and B are

transition conformations not stable enough to be observed by experimental assays. ∆GAB is

computed using Wimley and White Hydrophobic scale. The other free-energy differences are

determined experimentally.

1.5 AH/membrane interactions studied by MD

Molecular dynamics (MD) is a computational technique that consists in performing computer

simulations of a molecular system to predict its structural and dynamic properties. The first step

is to construct a 3D model of the molecular system of interest. Then, we use a Force Field (FF)

to compute the potential energy of the system. FF is an ensemble of parameters and equations

that allow to predict many properties of our system. By applying the algorithm of MD (solving
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Newton’s equation of motion), we get access to the movement of the system particles. This way,

we get to observe the behaviour of the molecules through time in certain conditions. Lots of

different conditions and analyses can be applied and the quantity of information that we get about

the system is huge. This technique is having a fast evolution, becoming a key tool in biophysical

research. One talk now of computational biophysics. Studying all complex biological phenomena

in silico is a dream, bypassing the enormous experimental challenges and their associated costs.

MD already achieved some great successes such as protein folding, protein-protein interactions,

peptide/membrane interactions, membrane fusion, etc., all at atomic resolution. For example, MD

simulations have succeeded in capturing the partitioning, folding and pore formation of membrane-

active peptides (MAPs) into a lipid bilayer [12]. The advance in computational power, the increase

in the efficiency of algorithms and techniques and the clever accelerated sampling schemes decrease

the cost of MD simulations and allow to study more complex processes and longer time scales.

Also the more accurate parametrization of the chemical interactions improved the reliability of the

results [211].

MD simulations have succeeded in accurately capturing the process of peptide binding, folding,

and partitioning into lipid bilayers as well as revealing how channels form spontaneously from poly-

peptide fragments and conduct ionic and other cargo across membranes, all at atomic resolution,

in microsecond-timescales [43].

Experimental methods have been used to study membrane dynamics. However, these methods

can reveal only stable structures that persist over long time scales while membranes dynamics often

involve transient structures because of the fluid nature of the lipid bilayer. For example, very stable

structures have been resolved by crystallographic techniques but no transient structures formed by

peptides and proteins that inhabit both aqueous and membrane domains [211]. Also, experimental

techniques are often limited by spatial and temporal resolution [43].

The first bilayer simulations were done using implicit membrane models (IMMs) [69, 213]. It

consists in introducing a planar hydrophobic (i.e., solvent-excluded) zone. This reduces the num-

ber of atomic interactions needed to be evaluated, decreasing the computational cost and vastly

increasing the simulation time scales. This method allowed to simulate peptide/membrane in-

teractions with successful applications to, e.g., the M2 helices of influenza A and the nicotinic

acetylcholine receptor, virus protein U, sarcolipin, glycophorin A, and individual helices of bac-

teriorhodopsin. However, important atomic details of protein/lipid and protein/water hydrogen

bonding are missing so it is difficult to mimic different membrane compositions with these kind of

models. Despite these difficulties, Laziridis and co-workers could design smart methods that take

the effect of lateral pressure/curvature stress in implicit membrane models [237].

One popular approach is the application of models that simplifies the molecule representation

as Coarse-Grained (CG), hybrid, and multiscale methods to study membrane phenomena (Fig.

1.23). In these methods, the reduced representation allows for much-extended sampling time scale

[32].
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Figure 1.23 – All-atom and coarse-grained model comparison. First, two lipid structures are

showed: AA DMPC and CG DPPC. The fd phage coat protein is also shown in AT and CG

format. In AA, he colors are relative to the atom type. In the CG models the particles are coloured

according to the following scheme: green, mixed polar/non-polar bead; cyan, hydrophobic bead;

red/blue, negative/positive, charged bead; and pink, polar bead. Image from [32]

CG models, in which small groups of atoms are merged into larger particles (called beads),

enable extended timescales to be studied. They have been used to characterize a number of

peptides and proteins interactions with lipid bilayers [211]. For example, CG–MD was used to

simulate the insertion of synthetic model membrane peptides (WALPs and LS3) into a lipid (PC)

bilayer. WALP peptides insert in a transmembrane orientation, while the LS3 peptide adopts an

interfacial location, both in agreement with experimental biophysical data. This approach was

extended to a transmembrane fragment of the Vpu protein from HIV-1, and to the coat protein

from fd phage showed in figure 1.23 [32]. Again, simulated protein/membrane interactions are

in good agreement with solid state NMR data for these proteins. Taken together, these results

demonstrate the utility of CG–MD simulations for studies of membrane/protein interactions.

Even if CG-MD simulations have been proven useful to study protein/membrane interactions,

understanding some mechanism require atomic representation of the molecules. For these reas-

ons, enhanced-sampling techniques for all-atom (AA) simulations were developed. In 2005, van

der Spoel research group used Temperature-Replica Exchange Molecular Dynamics (T-REMD) to

study the folding of a polypeptide [197] (This technique is explained in depth in Materials and

Methods chapter). They used both, classical MD simulations and enhanced T-REMD simulations

in explicit solvent. From the classical simulations the folding time was estimated to 1–2 µs. The

REMD simulations allow enough sampling to deduce the folding free energy. The global minimum

of the energy landscape corresponds to the structure resolved by NMR assays. Starting from an

extended state it takes about 50 ns before the native structure appears in the REMD simulations,

about an order of magnitude faster than conventional MD.
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The same year, a T-REMD simulation of an α-helical peptide within an explicit lipid bilayer

was carried out [158]. They studied the interactions between a model peptide (WALP-16) and

an pure DPPC membrane bilayer. They observed the insertion and folding of the peptide with a

transbilayer orientation. The free energy surface suggests that the insertion of the peptide precedes

secondary structure formation. They suggested that membrane peptides may have a diversity of

insertion/folding behaviors depending on the exact membrane composition.

Unfortunately, T-REMD simulations go through temperature changes which render difficult

to evaluate the kinetics. To overcome this problem, a trivial strategy was used, the elevated-

temperature MD folding-partitioning simulation method, a useful tool for revealing the atomic-

detail mechanisms for thermostable peptides. The advantage of this method is that it allows

precise quantification of folding-partitioning kinetics as well as membrane transfer free energies

while enhancing the sampling. Elevated-temperature simulations can be applied to membrane

peptides because the bilayer protects peptides secondary structure, preventing denaturation. It

acts as a conformational restraint on the peptide structure that can be exploited to vastly speed

up the kinetics. Another important fact is that in MD simulations, the solvent retains liquid-

state conditions above the boiling point of water because phase transitions are not possible using

conventional pressure and temperature coupling algorithms. The solvent acts then as a super

heated liquid, allowing reliable simulations up to 200°C and the membrane remains intact at these

temperatures [212, 44, 211].

Martin and Jakob Ulmschneider have been pioneers in the use of this approach [212, 44]. They

applied elevated-temperature simulations to two cases of study: synthetic peptides from WALP

family (W16 and W23) and melittin. With WALP peptides, they observed the whole process of

insertion and folding in the membrane (Fig. 1.24 ) at 80°C and 200°C. The structural results were

validated with CD assays at high temperature (45-90°C). This first set of experiments proved the

thermostability of the peptides in DCCP LUVs [212]. Melittin simulations were carried out at

120°C to observe its interaction and folding in the membrane/water interface. CD assays where

again carried out at high temperature (25-95°C) in POPC LUVs. Results showed the spectra of

a thermostable α-helix. Its positioning in the simulations (density profile) also agrees with X-ray

scattering data [44].

Thermodynamic information was calculated from the simulations. They assumed that the

kinetics follows the Arrhenius law to extrapolate the transition rates at high temperature to 30°C.

When a process follows Arrhenius kinetics, the log of the rate has a linear dependence with the

inverse of the temperature. Kinetics of WALP peptides insertion were deduced to last for more than

100 ms at physiological temperature, a time scale which is impossible to reach using conventional

MD simulations at present. Similar time scales were deduced for Melittin insertion. This enhanced

sampling technique allowed to observe slow process at an atomic level with low computational cost.

Although interesting and easy to apply, we believe this approach has some important draw-

backs. First, it is applicable to thermostable peptides only. By definition, if the peptide is not
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thermostable, high temperature simulations will not stabilize the most stable conformation at room

temperature. Second, the behavior of water and (even more) lipids can be questioned at such el-

evated temperatures for which the FF has not necessarily be designed for. Ideally, a method that

works at room temperature or that would relax the lipids to the room temperature would avoid

this issue. Last, assuming the kinetics follows an Arrhenius law is absolutely not guaranteed for

complex systems such as AH/lipids. For all these reasons, new biased or non-biased techniques are

needed to be developed to obtain thermodynamic and kinetic data of AH partitioning/folding.

Figure 1.24 – Snapshots of WALPS simulations at 80 and 200°C. On the left, results for W16

peptide. On the right, results for W23 peptide. These simulations show the acceleration of the

processes when the temperature increases. Bigger time scales are observed at high temperatures.

Image adapted from [212]

The number of enhanced sampling techniques for MD simulations are numerous. Greg Voth

employed in 2011 metadynamics to study the mechanism of membrane curvature sensing by AH

[55]. Metadynamics is another approach to speed up slow processes where a history-dependent

bias potential is imposed on the system during the simulation, encouraging the system to visit

configurations which have not already been sampled along one (or more) collective variable(s).

This way, the system is forced to sample all available conformations and generate a complete free

energy landscape for the chosen collective variables [135, 127]. This method was applied to study

the amphipathic N-terminal helix of endophilin (H0), which targets curved membranes by binding

to packing defects which increase in number with increasing membrane curvature. It was found

that in the presence of large defects, folding of H0 is favored by 3 kcal/mol approximately, while

in bulk solvent H0 folding is disfavored by 2 kcal/mol. When large defects are rare like in flat

membranes, H0 binds the membrane in an unfolded configuration, becoming kinetically trapped

and unable to find the folded state [55].

Some other works used umbrella sampling and the MARTINI coarse-grained force field. The

idea was to calculate a PMF (potential of mean force) for inserting the helix (TM or AH) from

the bulk to the membrane [31, 46, 81]. Self-assembly simulations were used as well [85]. This

approach may be appealing in terms of sampling, coarse-grained PMFs are easier to converge, but
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it presents a major drawback: the helix in MARTINI has to be maintained rigid. Thus the free

energy obtained is between a hypothetical fully helical state in water, and the inserted fully helical

state in the membrane. A more interesting approach used H-REMD (Hamiltonian REMD) and

another CG force field (named PLUM), which allow the secondary structure to change, on the

insertion and folding of WALP (TM) peptides [22]. The free energy of folding (from coil to helix)

of WALP peptides could be evaluated in water and in the membrane. In the membrane, the helix

is as expected preferred (between 15 to 30 kcal/mol). More surprising is the case in water: the

helix is preferred as well (between 10 to 23 kcal/mol), however the authors note the need to be

cautious with this result partly confirmed by all-atom simulations. Unfortunately, this approach

with the PLUM CG FF has never been applied to AHs.

(a) Two-dimensional energy landscape of H0

peptide in bulk solvent. The most stable state

is the center of the three basins, the extended

conformation.

(b) Two-dimensional energy landscape of H0

peptide in a curved membrane. Large packing

defects promote folding of H0 into an α-helix.

Figure 1.25 – Study of AH sensing membrane curvature by metadynamics simulations. The

number of hydrogen bonds and the Alpha-beta similarity were chosen as reaction coordinates [55].

To conclude with the enhanced sampling techniques, Kalathingal et al. have recently published

a study of the membrane insertion process of pTB explored in detail combining non-biased AA-MD

simulations with replica exchange umbrella sampling simulations (REUS) [115]. Umbrella sampling

(US) simulations use harmonic biasing potentials, which is referred to as umbrella potentials.

Adding the umbrella potential forces a chosen reaction coordinate to adopt a value on a certain

range so the system gets to explore a region of the energy landscape which may not be visited

during regular MD simulations. REUS simulations are similar to T-REMD but the temperature

of each replica has the same value and different umbrella potentials are exchanged [99]. In the

publication, they used REUS simulations to calculate the free energy of the insertion and the

showed that there is a small barrier of 4.3 kcal/mol for the membrane insertion of pTB from bulk

water [115].

Apart from the enhanced sampling techniques, there are other methods that help exploit inform-

ation obtained from MD simulations. Markov State Models (MSM) are a mathematical formalism

that can be applied to classical non-biased MD simulations to extract kinetic, thermodynamical

69



and structural information. They have been applied to study numerous systems. In 2017, the first

protein-protein interaction model was build [170], describing barnase-barstar interactions from

non-biased AA simulations. In 2018, Gerhard Stock designed a novel strategy to study protein dy-

namics by combining metadynamics with MSM [28]. He used metadynamics simulations to obtain

well-distributed initial structures that served to launch classical MD simulations for MSM con-

struction. This way, he optimized MSM construction. This approach was inspiring and a similar

strategy will be presented in this manuscript.

MD simulations techniques are constantly evolving and improving. Providing reliable pre-

dictions of peptide/membrane phenomena is now a reality and is transforming the way peptide

sequences are designed, selected, and optimized for biomedical applications. Also simple model

membranes are increasingly being replaced by natural membranes containing the full plethora of

different lipid types, proteins, and auxiliary molecules thanks to the computational cost decrease

of the simulations. Validating the simulations with data obtained in vitro is a key step in compu-

tational research. However, matching in vivo measurements is much more challenging and will be

the ultimate test of the utility of MD as a general research tool [211].
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Chapter 2

Materials and Methods

2.1 Computational Methods

2.1.1 Molecular Dynamics

Introduction

Molecular Dynamics (MD) is the main technique employed in this PhD project. It allows to

describe the behaviour of a molecular system through time. MD consist in performing computer

simulations that predict the dynamics of molecules within certain conditions. The simulations

allow the study of the dynamical behaviour of molecules with an atomic description and short time

scales. MD can provide detailed and useful information about a molecular model not reachable with

experimental assays as shown in figure 2.1. However, the information is obtained computationally

and it must be validated. Normally, the validation is done by comparison with experimentally

obtained information. The number of application of this techniques are countless: study of protein

or membrane dynamics, membrane / protein interactions, protein / protein interactions, etc.

Molecular Models

The molecular model determines the degree of detail in which the molecular system is described.

Figure 2.2 shows the different possibilities. The All-Atom (AA) model is the more detailed one.

It represents one bead for each atom of the molecule. In a United-Atom model, each heavy atom

is represented with its apolar hydrogen atoms merged in a single bead. Polar hydrogen atoms are

still explicit, which is useful for simulating hydrogen-bonds. One way to simplify even more is to

use Coarse-Grained (CG) models. Here, a few (e.g. four) heavy atoms with their corresponding

hydrogen atoms are represented as one bead. One can go even further in the simplification with a

Super Coarse-Grain Model, where many heavy atoms and their hydrogen atoms are merged into

a single bead. There are many different other ways to coarse-grain a system (e.g. using a lattice,
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Figure 2.1 – Spatio-temporal resolution of various biophysical techniques. MD time scales are

compared to those from experimental techniques. Time scales achievable by MD simulations are

much smaller that the ones from experimental assays. Image from [64]

etc.). The choice of the model depends on the detail level required for the study, not all the

properties need to be studied at an atomic level. In addition to this, by simplifying the system the

computational cost decreases and so the simulation time and system size can be increased.

Figure 2.2 – Molecular Models used in MD simulations. Credit image: http://2015.igem.org/

The Force Field

The Force Field (FF) used for performing an MD simulation is the ensemble of parameters and

equations that serve to evaluate the potential energy of the system. The potential energy is very

important as it dictates the distribution of the conformations of the molecular system and allows

to predict structural, thermodynamic and kinetic properties.

In MD, we use empirical FFs that allow to calculate the potential energy from the particle’s

coordinates of the molecular system. They are composed of two classes of terms: bonded and non-

bonded interactions (Fig. 2.3). There are four bonded terms: the bonds between two consecutive
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Figure 2.3 – Force Field terms illustration.

atoms, the angles between three consecutive atoms, the dihedral angles between four consecutive

atoms and the improper dihedrals. The improper dihedrals are angles between four atoms that are

meant to keep the planarity of planar groups as aromatic rings or prevent molecules from flipping

over to their mirror images. The non-bonded terms are the electrostatic and van der Waals (VdW)

interactions. The sum of the bonded and non-bonded terms gives the potential energy of the

system:

Vpotential =
∑
bonds

kl
2

(l − l0)2 +
∑
angles

kθ
2

(θ − θ0)2

+
∑

dihedrals

M∑
m=1

Vm
2

[1 + cos(mω − γ)] +
∑

impropers

kΩ

2
(Ω− Ω0)2

+

N−1∑
i=1

N∑
j=i+1

4εij [(
σij
rij

)12 − (
σij
rij

)6] +

N−1∑
i=1

N∑
j=i+1

qiqj
4πε0rij

(2.1)

where:

• (Bonds) l is the actual distance between the atoms, l0 is the equilibrium bond length and kl

is the force constant.

• (Angles) θ is the angle between the atoms, θ0 the equilibrium angle and kθ the force constant.

• (Dihedrals) Vm is the dihedral amplitude, m is the dihedral multiplicity ω is the dihedral

angle and γ is a phase factor .

• (Impropers) kω is the force constant, ω is the improper angle value and ω0 is the value at

the equilibrium.

• (VdW) i and j are the two atoms , εij the Lennard-Jones well-depth, rij is the the distance

between two atoms and σ the Lennard-Jones radius.

• (Electrostatic) qi and qj are the partial atomic charges and ε0 the dielectric constant.
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It is important to know that non-bonded interactions are not calculated between atoms that

are directly bonded or separated by two apart. For pairs of atoms that are three bonds apart, the

non-bonded terms are attenuated. These are generally called 1-4 interactions. These 1-4 terms are

usually here to supplement the dihedral angles in order to get the right dihedral distributions. The

way the 1-4 interactions are attenuated with respect to normal non-bonded interactions is force

field dependant. For example, in OPLS [112], 1-4 interactions are merely divided by 2 compared

to regular electrostatic and van der Waals interactions.

In principle, we should calculate the non-bonded interactions between all possible atom pairs.

However, because these interactions decay quite rapidly with interatomic distance, one usually

uses a cut-off (CO) distance. The idea is to avoid the calculation of interactions that are further

apart the CO. This allows to decrease the computational cost and the use of Periodic Boundary

Conditions (see section 2.1.1) or PBCs. PBCs are very convenient for the simulations of liquids.

In order to avoid a step function, which is problematic when deriving the potential energy for force

calculations (because it is not continuous), one usually uses shift or switch functions (see figure

2.4).

However, the use of a finite CO produces severe artefacts on highly charged systems [9] (e.g.

nucleic acids, lipids, ionic liquids, etc.). Pairs of charged molecules tend to accumulate at the

CO distances, while they should not. One accepted solution which is commonly used nowadays is

the Particle Mesh Ewald (PME) algorithm [57, 67]. The idea dates back to the so-called Ewald

summation [68] with some further optimizations to reduce the computational cost. The principle

is to compute the contribution beyond the cutoff (see figure 2.4) using some computational tricks.

The simulation box is assumed to be replicated in all directions of space like in a crystal. The

total electrostatic interactions are then divided in two parts: a first part which is calculated in real

space using the classical coulomb law (Eq. 2.1) up to a rather short cutoff (usually 10 Å), and

a second part for all atoms beyond the CO which is calculated in Fourier space (as in a crystal).

This last part is calculated using a grid (hence the term Mesh in PME) allowing the use of the fast

Fourier transform (FFT) leading to an N logN complexity (where N is the number of atoms). In

this project, PME is used for electrostatic interactions and a switch function for vdW interactions.

No existing FF possesses all the required parameters for simulating any possible molecules.

There exist different FF specialized in some ensemble of molecules / macromolecules. For example,

AMBER [53] is specialized in nucleic acids and proteins (among others). These FF are usually

called "empirical" because they rely on simple functional form (see equation above) generally fitted

against experimental data and/or more sophisticated quantum calculations. Two FFs are used to

carry out the MD simulations presented in this manuscript. CHARMM36 [123] FF is employed

for All-Atom (AA) simulations as is one of the most reliable FF existing today and it contains the

wider ensemble of molecules. Martini22 [109] is used for Coarse-Grained (CG) simulations as it

allows to simplify the systems and increase the timescales (Fig. 2.2). The difference between AA

and CG simulations is explained in "Molecular Models" paragraph.
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Figure 2.4 – Cut-off application for long-range electrostatic interactions. Shift (red) progressively

modifies the potential to arrive to a null value at the CO distance. Switch (blue) establish a cut-on

distance to make the interruption of the potential smoother. PME (green) is a way to take into

account the neglected part beyond the CO.

The molecular dynamics principle

The FF allows to calculate the potential energy (Vpotential) of the system, which we can simply call

V in the following. It is possible to compute the force, Fi = (Fix,Fiy,Fiz), acting on any atom i

in the system by deriving the potential energy with respect to its position ri = (xi, yi, zi) :

Fi = −∂V
∂ri

(2.2)

This force can then be injected in Newton’s equation (second law):

Fi = mi · ai (2.3)

We can rewrite Newton’s equation knowing that the position of a particle i is the second

derivative of its acceleration ai:

Fi
mi

=
∂2ri
∂t2

(2.4)

This means that knowing the mass mi of a particle and the force Fi acting on it, it is possible

to obtain its new position ri after a small fraction of time δt (i.e. the time step, see below). The

Newton equation is a differential equation which needs to be solved. This can be done analytically

for simple systems (such as the harmonic oscillator), but most of the time is is solved numerically

with specific algorithms (see below). By successively iterating between equation 2.4 which give

new positions, and equation 2.2 which compute forces on a given system conformation, one thus

obtains a molecular dynamics trajectory, that is, a succession of frames allowing the observation
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of the system dynamics. There are several algorithms to integrate numerically equation 2.4. In

this project, the Leap Frog algorithm [88] is applied (Fig. 2.5). It calculates the positions of the

particles at a time t, and the velocities at time t+ δt:

vi(t+
1

2
δt) = vi(t−

1

2
δt) + δtai(t)

ri(t+ δt) = ri(t) + vi(t+
1

2
δt)δt

(2.5)

δt is called the time step. It is a critical parameter in MD and needs to be chosen carefully.

It must be higher than the fastest movement but not too high to avoid abrupt results. Normally,

the fastest movements are the bond vibrations. In the simulations showed in this manuscript they

have been "frozen" to increase the time step and decrease the computational cost of the simulation.

The algorithm employed here is called LINCS [87] as implemented in the MD software GROMACS

[215, 1] used throughout this thesis. The time step used in this project is 2 fs and 20 fs, for

all-atom and coarse-grained molecular models respectively.

Figure 2.5 – Leap Frog algorithm. Image adapted from: http://www.physics.drexel.edu

Energies of the system

The total energy of the system is the sum of the kinetic energy and the potential energy:

Etot = Ekin + Epot (2.6)

The kinetic energy comes from the particles movement and depends on their masses and velo-

cities:

Ekin =
1

2

N∑
i=1

miv
2
i (2.7)

where mi is the mass of particle i, and vi its speed (i.e. the magnitude of the velocity vector).

According to the theorem of equipartition of energy, Ekin can also be written:

Ekin =
1

2
NdfkBT

Ndf = 3N −Nc
(2.8)
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where Ndf is the number of degrees of freedom, kB the Boltzmann constant, T the absolute

temperature, N the number of particles and Nc the number of constraints. A constraint is a

degree of freedom that has been frozen by forcing the variable to adopt a fixed value preset by the

modeler (e.g. constraints on bonds of fixed length or removing the global motion of the system

center of mass). For example, in the CHARMM36 force field, all bonds involving an a heavy

atom / hydrogen atom are constrained. In this work, the LINCS algorithm [87] has been used

for that. Equation 2.8 shows how the energy of the system is related to the temperature. The

total energy Etot is a central quantity in statistical mechanics. When the system we simulate is

completely closed, no exchange of energy with the exterior (see microcanonical ensemble in the

next paragraph below), Etotal should be constant. By default, solving Newton’s equation as shown

above produces such an ensemble. When developing new algorithms, such as integration schemes,

this energy conservation is an absolutely required test. In the so-called canonical ensemble (see

next paragraph below), Etot is directly related to the probability (pi) of observing the system in a

certain state i at a temperature T and defines the Boltzmann distribution:

pi =
e−

Ei
kT

Z
(2.9)

where kB is the Boltzmann constant and Z is a normalization constant called the partition

function, Ei is the total energy of conformation i. This central equation in statistical mechanics

clearly shows that the probability of conformation is directly related to its energy: the lower Ei

the higher pi. Unfortunately, the partition function Z is extremely difficult to calculate on real

systems. Some special techniques have been developed though. As for a given molecular system Z

is constant, one can immediately see that we can get an accurate probability ratio pi/pj between

two conformations i and j since the Z cancel out (assuming the thermodynamics parameters are

identical).

Thermodynamic Ensembles

A thermodynamic ensemble is a group of macroscopic conditions that should be maintained during

an MD simulation. Newton’s dynamics defines a closed system where there is no energy exchange

with the exterior, neither in form of heat or work, giving thus a constant total Energy (see previous

paragraph). In this case, simulations are carried out in so-called NVE conditions, other way called

the microcanonical ensemble. The number of particles (N), the volume of the box (V) and the

(total) energy of the system (E) remain strictly constant throughout the simulation. Newton’s

conditions are interesting at the theoretical point of view, however, one would like to recreate

conditions closer to the physiological ones or those of a test tube, more generally of the experimental

methods we want to compare the simulations with. To recreate these conditions, we have to

control temperature and pressure. Normally, the pressure is set at 1 bar and the temperature

at 300 K approximately. The thermodynamic ensembles determine the conditions that are going

to be controlled. In this project two thermodynamic ensembles are used: the canonical and the
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isothermal / isobaric ones. The canonical ensemble corresponds to NVT conditions where the

temperature (T) maintained constant instead of the total energy. Therefore, the system has to

exchange heat with a reservoir. The isothermal / isobaric corresponds to NPT conditions, where

the volume varies but the pressure (P) is maintained constant instead. Here the system exchanges

work with a reservoir. It is important to keep in mind that in NPT conditions, maintaining

temperature and pressure (of temperature alone for NVT) still leads to fluctuations of both of

them (of temperature for NVT). The use of a thermostat and barostat is useful when one wants

to impose some specific conditions of an experiment, e.g. heating or cooling a system.

The Temperature Temperature is related to kinetic energy as shown in equations 2.7 and 2.8.

In consequence, thermostats scale velocities to control the temperature. Scaling up the velocities

corresponds to heating, scaling down to cooling. In this project two different algorithms have

been used for the thermostat. Berendsen thermostat [23] adjusts the temperature at each step

of the simulation of a ratio proportional to the difference between the current temperature and

the reference temperature. It achieves quickly the desired temperature but does not reproduce

properly the real temperature fluctuations. V-rescale [38] is the other thermostat that has been

employed. It is slower at relaxing to the wanted temperature than Berendsen, but it uses an

additional stochastic term in the equation of motion to assure reliable temperature fluctuations.

The Pressure The pressure (P) of the system is related to the volume (V ) of the box and is

calculated as a tensor product (⊗):

P =
1

V

N∑
i=1

mivi ⊗ vi +
∑
i<j

rij ⊗ Fij (2.10)

where the first term corresponds to the kinetic energy and the second to the virial (contribution

due to cohesive forces between particles), vi is the velocity vector of particle i, rij the distance

vector between particles i and j, Fij is the force acting on i due to j. In consequence, the pressure

is a 3x3 tensor that represents the pressure in all the directions space.

P =


Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz

 (2.11)

One can define a scalar pressure P = trace(P)/3. In general, the off-diagonal values are

maintained to zero to avoid deformations of the simulation box such as in shear flows (the box no

longer stays a cube or parallelepiped).

To control the pressure, the volume and the relative positions of the particles are re-adjusted.

There are different ways to do this. If the volume adjustment is equal in the three directions

of space, the coupling is isotropic. The isotropic coupling is generally used to simulate isotropic
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liquids such as water. In this project it was used for systems containing a peptide in a water

box. If the volume adjustment is coupled in the x, y directions but scaled independantly in z, the

coupling is semiisotropic. It is more appropriated for membrane simulations as it allows to impose

a zero surface tension on the membrane, corresponding to equilibrium conditions. Under these

conditions, the membrane structure should relax its area to its equilibrium value. This is a good

test for lipid force fields when simulating a single lipid composition, as the area per lipid should

relax to the experimental value (see section 2.1.2). When the volume scaling is independent in the

three directions of the space the coupling is anisotropic. Anisotropic coupling is not used in this

project.

Two different barostats are employed for this research. Berendsen barostat [23] uses the same

principle as Berendsen thermostat but adjusts the volume. It relaxes quickly to the desired pres-

sure but it has wrong fluctuations. Parrinello-Rahman barostat [160] introduces an additional

term to the equation of motion to control pressure. As v-rescale, it is slower at relaxing to the

desired pressure than Berendsen algorithm, but produces more reliable fluctuations, maintaining

the isothermal / isobaric ensemble.

Water Models

Water is a difficult molecule to model. Solvent atoms are the most numerous in the simulation box

and computing their interactions represent a big part of the computational cost of the simulation.

For this reason, it is crucial to chose a water model that behaves in a reliable way with the smallest

computational cost possible. There are two classes of solutions for simulating solvent: implicit or

explicit. When modeling an implicit solvent, an extra term is be added to the potential energy

calculation but no particles are represented. In fact, the effect of the solvent is sum not its atoms

themselves. The computational cost decreases but also the reliability of the simulations. With

explicit solvent, one represents each water molecule (or any other solvent, e.g. methanol) in the

simulation box. In this project only explicit solvents are employed, specifically the TIP3 model

[113], which represents the water molecule as three particles in AA simulations. Importantly, TIP3

is a rigid water model. In GROMACS [1], the rigidity is enforced with the SETTLE algorithm

[153].

Periodic Boundary Conditions

Another issue in MD simulations is how to manage the interactions with the boundaries. If the

simulation box has solid borders, the molecules of the system will interact with them, biasing the

results and increasing the computational cost. The solution to this problem is to establish Periodic

Boundary Conditions (PBCs). The simulation box is replicated in all the directions of space as

shown in Fig. 2.6. In a molecule leaves the box, it re-enters by the opposite side. Interactions can

be computed between particles of neighbours boxes, so the simulation box should be big enough to
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prevent the molecules to interact with themselves. PBCs require the use of a CO which has to be

shorter than the smallest half-box length. PBCs are especially well suited for simulating molecular

liquids. One thus get a kind of infinite systems, even though the box size can have artefacts on

some properties.

Figure 2.6 – Periodic Boundary Conditions (PBCs). The pink particle moving to the neighbour

box on the left will re-enter the box by the right side. Image from [81]

The Protocol

Figure 2.7 – Illustrative scheme of the different phases of an MD protocol.

System Construction Before launching an MD simulation, the system needs to be prepared

(Fig. 2.7). The first step is to construct the system. One can use, among others, the GROMACS

software [215] or the CHARMM-GUI web server [105]. During my PhD I used CHARMM-GUI as

a general rule. The first thing to do is to choose the molecules to include in the system. It can be

a small system, like a single peptide in a water box or a bigger one like a lipid bilayer, a peptide

partitioned into a lipid bilayer, etc. To create a lipid bilayer, we first need to chose the number of
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lipids and lipid types of the system. They will be placed randomly in the bilayer. When including a

peptide, the position and orientation respect to the membrane can be chosen. The shape of the box

should be chosen too. Due to bilayers shape, a simulation box containing a bilayer will be always

cubic. However, if the system only contains a peptide, a rhombic dodecahedron box suits better,

as it minimizes the number of solvent particles needed to fill the space (Fig. 2.8). Parameters can

be also adjusted to get the desired number of water molecules and ion concentration. The output

is adapted to the software and FF employed and it contains all the files needed to carry out the

MD simulation.

Figure 2.8 – Box shapes: cubic on the left and rhombic dodecahedron on the right. Credit im-

ages: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=613268; CC BY-SA

3.0, https://commons.wikimedia.org/w/index.php?curid=38689

Energy Minimization Once the system is constructed and all the necessary files are prepared,

the system needs to be relaxed to carry out a reliable MD simulation. First, the energy minimiza-

tion takes place, where the bonds, angles, dihedrals, and atoms distances are relaxed. This is done

by using a mathematical algorithm that minimizes the potential energy of the system. Restraints

can be employed to force the system to adopt specific relative positions. It is important to know

that minimization does not use an MD algorithm. There are several algorithms to carry out an

energy minimization. In this project, Steepest Descent (SD) algorithm is used [173], which searches

for the local minimum of the current conformation (Fig. 2.9.A) using the first derivative of the

energy function. Two parameters are needed to stop the minimization: the maximum force of the

whole gradient (i.e. the derivative of Vpot with respect to the coordinates of each atom) and the

maximum number of steps for the algorithm (number of times the algorithm proceeds). Once one

of these two conditions is accomplished the minimization stops. At each step, SD will modify the

structure in order to decrease the potential energy following the opposite of the gradient. To this

aim, it needs the step length, λ which is usually done with a "line search" procedure [173]. An

example is showed in figure 2.9.B. The new conformation (b) must have a lower energy than the

previous conformation (a) and also lower energy than the conformation that will be obtained if λ

is increased (c). If line search is employed, the molecular system will move in successive orthogonal

directions on the energy landscape (Fig. 2.9.C). SD is a good energy minimization method for bad
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structures (with steric clashes) as it assures the decrease of the potential energy. The downside is

that it has problems of converge and sometimes it keeps oscillating round a minimum due to the

orthogonality of the successive directions. However, SD is largely sufficient before an MD. Properly

minimizing before an MD is required to avoid high forces which would make the algorithm crash.

Figure 2.9 – Energy minimization important concepts. (A) Example of a 2D energy landscape

with four local minima and one global minimum. Credit image: https://vitalflux.com (B) Line

Search example (C) Steepest Descent example. Credit image: http://trond.hjorteland.com

Equilibration Phase Once the energy minimization is accomplished, the equilibration phase

takes place. A short MD trajectory of a few nanoseconds is carried out to heat the system and

allow the molecules to move in order to adopt more reliable conformations and relative positions.

The generation of the temperature is done by assigning random velocities to the particles following

a Maxwell-Boltzmann distribution. Position restraints can also be settled to direct the movements

of the molecules. For example, one can restrain the peptide / protein in order to let the water

molecules relax around them. Equilibration can be started by an NVT phase followed by a NPT

phase, although is not always the case. Berendsen thermostat and barostat are chosen for this

phase as they arrive really fast to the desired temperature and pressure. The fact that they do not

produce reliable fluctuations can be neglected as the equilibration phase is never used for result

analysis.

Production Phase Finally, the production phase takes place. The actual trajectory that is

employed for the analyses is computed. It is done in NPT conditions, with v-rescale thermostat
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and Parinello-Rahman barostat because they reproduce the correct fluctuations. The first frame

of this trajectory is considered as the "time 0" of the simulation. Normally, during the first ns the

system is still equilibrating so they are discarded for the analyses.

GROMACS 2018.6 [1] was employed to compute all the MD simulations that are showed in

this manuscript. For most of the all-atom simulations carried out in this work, we employed

the machine Occigen from the french national facility CINES. For coarse-grained simulations, we

employed our local computers equipped with 40 cores and one GPU.

2.1.2 MD Analysis

Analysis for lipid membranes

Area Per Lipid The Area Per Lipid (APL) is one of the most common analyses applied to lipid

membrane MD simulations. To calculate the APL, the layers are analysed separately. For simple

monocomposition, one can just divide the xy area per the number of lipids per leaflet. However,

it gets more difficult with more complex lipid compositions. In this thesis, we used instead an

approach based on Voronoi tessellations which is convenient as it allows to compute the APL of all

the lipids in case of complex membranes. Each individual lipid is represented like a single point.

Normally, the coordinates of the point correspond to the phosphorous atom position (P). These

positions are projected into the X, Y plane. Then, a Voronoi tessellations as the one shown in Fig.

2.10 is calculated to evaluate the APL. The Voronoi diagrams are one of the simplest interpolation

methods and they use the euclidean distance. The first step to draw the diagram is to connect the

adjacent points in the plane. Then, the bisector of the union is traced. The intersection of the

bisectors determine an ensemble of polygons in the bi-dimensional space, surrounding the points.

The area of each polygon correspond to the area occupied by the lipid. Then, the mean area of

each lipid type is computed. This process is carried out for each frame and the results are normally

plotted in a graph like the one showed in 2.11. This graph shows the APL fluctuations throughout

the simulation, helping to determine how many time the system takes to reach equilibrium and

which interval of time should be used to forward analyses.

Once the APL is calculated for each frame, the mean for the whole trajectory can be computed,

obtaining a global APL value for each lipid structure. This value is useful for validating the

simulations and the FF used. The APL can be determined by experimental methods (by X-ray

scattering [166]) and these quantitative results are easy to compare to experimental ones. The

agreement between them is one of the methods commonly used to check the reliability of MD

simulations.

All the APL results showed in this manuscripts have been calculated using FatsLim[36] software.

Density Profiles Computing the density profiles is also one of the classical analysis that you

do routinely when analysing a MD simulation containing a lipid bilayer. The density of each type
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Figure 2.10 – Euclidean voronoi diagram by Balu Ertl - Own work, CC BY-SA 4.0, ht-

tps://commons.wikimedia.org/w/index.php?curid=38534275

of molecule is computed in every Z position of the simulation box. The X and Y positions are not

taken into account. As a result, a density plot is obtained where one can observe the distribution

of the molecules along the Z axis of the simulation box (Fig. 2.12) .

The interpretation of the density plots if quite easy. When the two monolayers have the same

lipid composition, the plot is symmetrical. Regarding the lipids, the first peak normally corresponds

to the phosphorous groups and the density reduction in the middle of the plot corresponds to the

intermembrane space. The density profile of water is also shown and allows to find the position of

the mean interface water/membrane. It is considered that the interface is located where the water

and lipid curves cross each other. The density of the ions can also be computed and it helps to

understand the behaviour of the ions toward the membrane. When simulating a peptide in the

membrane, this plot is useful to see its mean partitioning with respect to the bilayer (see section

2.1.2 below). Last, the plotted densities are generally mass densities (mass per unit of volume), but

is is also possible to plot number densities (number of particles per unit of volume). The densities

showed in this manuscript are computed with GROMACS software (program gmx density), version

2018.5.

Thickness The membrane thickness is calculated from the density profiles, considering that the

space occupied by the membrane starts and ends at the interfaces with water. All the lipids of the

system are merged into a single group and its density along the z axis is computed, obtaining the

membrane density (Fig. 2.12). Then, we search for the z positions of the two membrane/water

interfaces. The distance between them is the thickness of the membrane.

The study of the membrane thickness is helpful to understand the influence an specific lipid

type on the membrane structure. It is also important to know that the APL is closely related to

the thickness. Generally, small APL values are related to highly ordered aliphatic chains, so the

corresponding thickness is normally high. On the contrary, high APL values are generally related
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Figure 2.11 – Model APL graph: APL values are plotted against the simulation time. The data

was obtained from a pure POPC simulation with CHARMM36 FF at 303,15 K

to disordered aliphatic chains and this decreases the thickness value. The study of the thickness is

another tool to validate the simulations.

Radial Distribution Function The Radial Distribution Function (RDF), also noted g(r), is a

classical tool for describing the "structure" of a liquid. Here we use it in 2D in the plane of each

monolayer. RDF allows to evaluate the arrangement of lipids along the layer, describing how lipids

are laterally distributed. For a given pair of particles A and B (POPC phosphorous and POPS

phosphorous, for example), g(r) is calculated as the ratio between the local B density ρ at a distance

r from any particle A with respect to the global B density in the whole membrane (Eq. 2.12).

Note that here the number density is considered, that is, number of particles per unit volume.

The RDF value varies typically around 1 and the obtained peaks give the position of the different

shells of particles B around A (Fig. 2.13). The height of the peaks is directly proportional to the

amount of particles in the corresponding shell. In this manuscript 2D RDF results are presented

(that means all distances between lipids are calculate as 2D euclidean distances, i.e. within the

plane of the monolayer), not taking into account the distances with respect to the z axis.

g(r) = ρ(r)/ρ(bulk) (2.12)

Analysis for amphipathic helices

Secondary Structure and Helicity content The first thing to study when simulation protein

systems is the secondary structure (SS) the peptide or protein can adopt. A program commonly

known as DSSP (Define Secondary Structure of Proteins) [114, 110] implements a method to check
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Figure 2.12 – Model density graph. The densities in the z axis are plotted for each molecule type.

On the left, the two lipid types are plotted separately (gray and red). The water is represented in

blue and the ions in yellow. On the right, the different lipid types were merged in a single group

(black) to visualize the water/membrane interface. The data was obtained from a POPC/POPS

50/50 simulation with CHARMM36 FF at 303,15 K

the secondary structures adopted during an MD simulation. It first identifies the intra backbone H-

bonds. It uses an electrostatic definition of the H-bonds, where charges of −0.42, +0.20, +0.42 and

−0.20 are attributed to the carbonyl oxygen, amide hydrogen, carbonyl carbon and amide nitrogen

respectively. Then, equation 2.13 is applied, where the different r are the distances between the

backbone atoms. If the energy obtained is bigger than 0.5 Kcal/mol, an H-bond is assigned.

E = 0.084(
1

rON
+

1

rCH
− 1

rOH
− 1

rCN
) · 332 (2.13)

Once all backbone hydrogen bonds are calculated, DSSP assigns eight different SS states de-

pending on the H-bond pattern found. The SS can be grouped in three ensembles: helices, β-sheets

and loops. The helices present a repetitive sequence of H-bonds where residues are 3, 4 or 5 times

apart depending on the type of helix: 310-helix, α-helix or π-helix respectively. Parallel or antipar-

allel β-sheet structures present a set of H-bonds that grow in parallel or in the reverse direction

respectively. All the remaining states belong to loops. If there is a unique H-bond between two

strands, a β-bridge is assigned. Finally, three different types of unfolded structures can be identi-

fied: turns, if a unique H-bond is found with an helical pattern; a high backbone curvature region,

if large angles are detected between consecutive residues; generic coil, if no H-bond or backbone

curvature is observed.
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Figure 2.13 – (A) In red: reference particle. In purple: particles at a distance r from the reference

that are taken into account to calculate ρ(r). In yellow: particles a at a distance other than r from

the reference. Both yellow and purple particles will be taken into account to calculate ρ(bulk).

The brown circle represents the density shell. (B) Model graph from RDF analysis. If the peak is

higher than 1.0 means than the particle density of the shell is higher than the density of the bulk.

Credit images: https://commons.wikimedia.org

DSSP is implemented in GROMACS an it is very useful for simulation analysis. The SS adopted

by each residue can be checked through time. In addition to this, in this research DSSP is employed

to calculate the peptide helix content. The helix content (or helicity) is the percentage of residues

forming an α-helix within the sequence. It can be plotted through time to observe the SS evolution

during the simulation. It is also possible to obtain the mean helicity of a simulation for the whole

peptide or per residue.

Root-Mean-Square deviation The Root-Mean-Square deviation (RMSD) is one of the most

commons analysis used to compare molecular structures, specially proteins. It is a measure of the

structural distance between two conformations of the same molecule. First, the two structures

are superposed. If working with proteins or peptides, only the Cα or the backbone atoms are

generally taken into account for the alignment. Then, the distances (δ) between identical atoms

of different conformations of the molecule(s) are calculated (for example, the distance between the

Cα of residue 1 in structure 1 and the Cα of residue 1 in structure 2). Having these distances, the

RMSD can be calculated using the following equation:

RMSD =

√√√√ 1

N

N∑
i=i

δ2
i (2.14)

Where N is the number of atoms participating in the RMSD calculation. This value gives
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an idea of the structural similarity between two conformations: the lower, the more similar the

structures. Normally, the initial superposition is chosen in order to minimize the RMSD value.

There are different programs that are able to calculate the RMSD. GROMACS implements the

RMSD calculation (gmx rms), and it can be done between a single structure and a reference or

between a whole simulation and a reference. In the second case, a plot of the evolution of the

RMSD trough time is obtained.

Radius of Gyration The Radius of Gyration (RG) of a protein or a peptide, is a measure of the

compactness of the structure. Mathematically it is calculated as the root-mean-square deviation

between the particles of the molecule and the Center Of Mass (COM):

RG =

√√√√ 1

M

N∑
i=i

mr2
i (2.15)

where ri is the distance between the particle i and the COM, mi the mass of particle i and

M the sum of the masses of all the particles considered for the calculation. Normally, only the

Cα or the backbone atoms are taken into account. The lower the RG, the more compact the

structure. RG is especially useful for monitoring folding / unfolding events, where it grows or

decreases respectively. RG calculation is implemented in GROMACS software (gmx gyr).

Analyses for Amphipathic helices in membranes

Residue partitioning Generally, an amphipathic helix (AH) that is inserted into a membrane

has its principal axis parallel to the lipid / water interface (x, y plane). However, the exact position

of the helix, determined by the degree of insertion and its tilt angle, depends on different factors,

such as the amino acid sequence composition or the lipid types present in the membrane. Studying

the details of the partitioning helps understand the behaviour of the AH in the membrane. To

this aim, we have developed a R script that analyses the partitioning of an AH into the membrane

from MD-CG simulations.

The script aims to generate a boxplot reporting on the partitioning as the one showed in figure

2.14, where the position of the α-helix is plotted against some membrane reference positions,

determining the degree of insertion and the tilt of the helix. The script first calculates the reference

positions. An ensemble of lipid beads are selected, as the ones containing the Phosphorous atom.

The mean z position of these beads is calculated throughout the trajectory, giving a description

of the membrane position in z. Thus no matter the bilayer moves in z, we always get the relative

position of each residue with respect to the bilayer center. Then, for each amino acid of the peptide,

the z position of the backbone bead is monitored throughout the simulation. As a final result, a

boxplot is generated. For each residue z position, a box is drawn corresponding to the distribution

of z between the first and third quartile, while the whiskers correspond to the values beyond the

quartiles. Outliars are not represented for clarity. The position of the lipid beads are added to the
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plot to have the reference positions of the membrane (Fig. 2.14).

Figure 2.14 – Example of partitioning plot taken from the RW16 CPP (taken from Jobin et al.

[107]).

This analysis helps to better understand the peptide behaviour in the membrane and also to

validate the simulations. We can judge if the peptide is correctly positioned if the hydrophobic

residues tend to be embedded and the polar ones exposed. In addition to this, the results are

comparable to NMR experiments performed in presence of a paramagnetic probe. The positions

are computed from the trajectory with GROMACS software 2018.5 (program gmx traj ) version

and the script is written in R 3.4.4 version.

Lipid recruitment Membrane structure can be altered by the partitioning of an AH. One of

the characteristics that can be altered is the lipid lateral distribution. The peptide sequence can

contain charged amino acids that can attract or repel some of the lipids composing the membrane.

We have created a python script that allows to analyse the lipid recruitment by an inserted

peptide from MD simulations. The program first calculates the relative distance between the

backbone beads of the residues and the phosphorous beads of all the lipids. It draws an histogram

to determine at which cut-off distance from the peptide the first shell of lipids is located. We

consider that the lipids located in this first shell are interacting with the peptide.

Once the distance cut-off (CO) is determined, the program examines the trajectory and for each

frame it counts the lipids that are located closer to the peptide than the CO. The mean number

for each lipid type is computed. Then, we can compute the ratio of each lipid type surrounding the

peptide. This ratio is compared to the ratio of the whole box to determine if the peptide recruits

preferentially one type of lipid.
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This analysis is complementary to the RDF (see "Radial Distribution Function" section) and

it helps understand the impact of the AH on the global membrane structure and dynamics.

The script is written in Python 3.8.6 version and the MDAnalysis module is employed to analyse

the trajectory.

2.1.3 Temperature-Replica Exchange Molecular Dynamics

The Temperature-Replica Exchange Molecular Dynamics (T-REMD) [151] is an enhanced sampling

technique. In certain cases, it allows the observation of long molecular processes whose time scales

are too elevated to be observed by classical MD at room temperature. Normally, in a classical MD

simulation one replica is simulated for a certain period of time at a constant temperature. However,

in T-REMD simulations, a high number of replicas is simulated at the same time. Each replica is

launched at a different temperature. The bottom temperature is normally the physiological one and

the upper temperature can be extremely high (e.g. 400 K) but on the same system. It is possible to

give different starting structures at each temperature. The random seed of each replica is different

for a better effectiveness. Throughout the simulation, the replicas can exchange temperatures.

GROMACS periodically attempts to exchange temperatures between neighboring replicas (i.e.

with consecutive temperatures) and accept or reject the exchange with a defined probability. One

fundamental criterion for the exchange is that the resulting ensemble of conformations at each

temperature should follow a Boltzmann distribution at equilibrium (Eq. 2.9). To ensure this, the

Metropolis criterion is imposed for each exchange:

Pi←→j = min(1, exp[(
1

kTi
− 1

kTj
)(Ei − Ej)]) (2.16)

where Pi←→j is the probability of exchanging the temperatures Ti and Tj between replicas i and

j; Ei and Ej are the corresponding potential energies and kB the Boltzmann’s constant. To under-

stand the meaning of equation 2.16, consider Tj > Ti. If Ei > Ej , the exponential in the equation

above is higher than 1, thus the exchange is always accepted: Pi←→j = 1. If Ei < Ej , which is

more often the case (higher temperatures correspond to higher potential energies, see figure 2.16),

the exponential will be comprised between 0 and 1 corresponding thus to the probability Pi←→j .

Its value will be compared to a random number taken between 0 and 1 in a uniform distribution. If

the random number is lower than Pi←→j , the exchange is accepted, if not it is rejected. The higher

the difference of energy and / or the higher the difference of temperature, the closer Pi←→j to 0.

One immediately understands that to get a chance to have the exchange accepted, the Gaussian

distributions of energy need to overlap (see figure 2.16).

The choice of the Metropolis criterion in equation 2.16 leads to a proper equilibrium Boltzmann

distribution because it fulfils the so-called "detailed balance" condition[151]:
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Pi←→jP (X) = Pj←→iP (Y ) (2.17)

where P (X) is the probability of finding the system in state X (X represents the state of all

replicas, it can be seen as a vector of states X = (i, j)) before the exchange i←→ j has proceeded,

P (Y ) is the probability of finding the system in state Y after the exchange i←→ j has proceeded.

The detailed balance simply means that we should have the same probability of exchanging i←→ j

starting from state X than exchanging j ←→ i starting from state Y .

Equation 2.16 is used when simulating in the canonical ensemble (NVT). In the isothermal-

isobaric ensemble (NPT), we also have to take the pressure and volume of the replicas into account

[156]. For convenience, we define inverse temperatures βi = 1
kBTi

and βj = 1
kBTj

. The probability

to accept an exchange then becomes:

Pi←→j = min(1, exp[(βi − βj)(Ei − Ej) + (βiPi − βjPj)(Vi − Vj)]) (2.18)

where Pi and Pj are the pressure of replicas i and j respectively, and Vi and Vj the correspond-

ing system volumes. In general, the term due to volume fluctuations does not contribute much to

Pi←→j at low pressure [161].

Finally, if the exchange is accepted, velocities are adjusted to match the new temperature. The

REMD principle is shown in figure 2.15.

Simulating at different temperatures allows the system to explore multiple conformational en-

sembles while maintaining a physical distribution. In addition to this, the increase of temperature

gives a boost of kinetic energy to the molecular system, enabling it to cross higher free energy

barriers more effectively than at physiological temperature. Furthermore, these free energy bar-

riers may also be lowered at high temperature (for example, above the melting temperature of a

peptide) giving even more efficiency to the process. In consequence, we get to explore a richer

conformational ensemble by increasing the sampling. The downside of this technique is that the

system kinetics is altered by the temperature modifications so it is generally difficult to extract

kinetic information.

When preparing an REMD simulation, we have to make important choices. The total number

of replicas needed and their temperature depend on the molecular system of interest. Patriksson

and van der Spoel proposed a method to predict these [161]. They also provide a useful web-page

: Temperature Generator. To determine the replica temperatures, the server proceeds like this.

First, the user determines the extreme temperatures, here we chose between 300 and 400 K. Some

RE[MD ]of peptides in water have been performed at way higher temperatures than 400 K [233].

Here we chose 400 K as a compromise, high enough to enhance sampling, but not too high to
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Figure 2.15 – Illustrative image of the T-REMD technique. A number n of replicas is simulated.

During trajectory calculation there are several attempts of temperature exchanging that can be

accepted as the one between replica 0 and replica 1, or rejected as the one between replica 3 and

replica 4.

keep the bilayer intact. In literature, it was shown that temperatures above 500 K made a DMPC

bilayer explode. To avoid this explosion some authors added restraints on lipids [158]. We decided

not to reach these extreme solutions. One may argue that 400 K is already high. However, the

bilayer remains intact at this temperature and the time it takes for a replica at 400 K to reach the

bottom temperature (a few tens of ns), the bilayer has time to relax and to resemble a real bilayer

at room temperature. To sum up, 400 K was a good compromise between enhanced sampling and

bilayer integrity. Then the user has to enter the number of atoms and constraints (rigid bonds,

rigid water molecules). Then the mean probability of acceptance of each exchange has to be chosen.

Here we use 0.20 which is a standard value used in literature [151]. The server then predicts the

different temperatures by computing a predicted (Gaussian) distribution of the potential energy,

and ensuring that two consecutive temperatures present some overlap. The degree of overlap is

directly connected to the final probability of acceptance of exchanges. In figure 2.16 is shown

an example of the potential energy distributions after an REMD we have performed. The final

probabilities of exchange in this REMD are between 0.26 and 0.30, though we requested 0.20. This

shows that the prediction made by the web-server model is not exact, it remains a prediction, but

the final probabilities are in an acceptable range.

GROMACS 2018.6 was employed to carry out all the T-REMD simulations that are showed in

this manuscript.
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Figure 2.16 – Potential energy distributions of the molecular system at each temperature. Each

curve belongs to a temperature used in the REMD simulations, from the bottom temperature (300

K, curve on the left) to the upper temperature (400K, curve on the right)

2.1.4 Markov State Models

Introduction

A Markov Chain is a stochastic model that describes a sequence of events where the probability

of each event depends only on the previous state. This principle is applicable to studies of many

different domains: physics, engineering, biophysics, etc. If a changing system behaves like a Markov

Chain, it is possible to design a Markov State Model (MSM) to describe its behaviour. The MSM

describes the different states of the system and the changing mechanisms [94].

Figure 2.17 – Example of a simple MSM process with two states: A and E. Each number represents

the probability of changing from one state to another. Credit image: By Joxemai4 - Own work,

CC BY-SA 3.0, https://commons.wikimedia.org
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Figure 2.17 shows a simple example of an imaginary system with two states: A and E, each

state representing and structural ensemble.If the system is in state A, it has a probability of 0.6

of staying in state A, and 0.4 probability of changing to state E. If the system is in state E, it has

a probability of 0.3 of staying in state E, and 0.7 probability of changing to state A. Interestingly,

these probabilities are directly connected to the kinetic rates of transitioning from one state to

the other. This way, the MSM helps understand the system dynamics. The MSM principle is

applicable to MD simulations when they fulfil two conditions: behave like a Markov Chain and

present reversible dynamics (any state can be attained independently of the starting point). The

aim is to decipher the system structural, kinetic and thermodynamic properties. Normally, the

dynamical information we are the most interested in are the slow processes. MSM facilitates their

extraction from complex MD simulations.

The principle at a glance

An MSM can be constructed from one single long MD simulation or from several short MD traject-

ories (Fig. 2.18.a). The second option is the most popular as we can generally get more sampling

(each trajectory has a different starting point and can be launched on different computers in paral-

lel). In many cases, MSM are employed to study systems at equilibrium, although it is possible to

apply them to non-equilibrium systems. In this work we used MSM only for systems at equilibrium.

In such a case, the system has to fulfil detailed balance condition:

pijπi = pjiπj (2.19)

where pij and pji are the probabilities to have a transition between states i to j or j to i

respectively, πi and πj are the stationary probabilities of states i and j respectively. Assuming

detailed balance has some great advantages when constructing an MSM (see below).

The conformations observed in the trajectories are classified in different so-called "microstates"

(Fig. 2.18.b). This classification is normally based on the structural similarity of the conformations.

By doing this, the number of possible states is reduced and it becomes easier to study the molecular

system. The number of microstates depend on the system, although the most common values are

between 50 and 150 [170].

Once the system is decomposed into discrete (non overlapping) microstates, the transition count

matrix (Fig. 2.18.c) is computed. This matrix stores the number of transitions between each pair

of states occurring after a certain lag time τ . For example: the system went 11 times from green

to green and 1 time from green to blue between times t and t+ τ . Note that some transitions may

never occur. τ is a critical parameter of an MSM and has to be carefully chosen and validated. The

transition probability matrix, usually called P(τ), can then be computed from the transition count

matrix (Fig. 2.18.d). It contains the same information but in terms of probability (probabilities

of the system changing between the states). The adjusted populations (Fig. 2.18.e) can also be
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obtained from the state discretization. They express the quantity of time that the system stays in

a certain conformation.

At this point, lot of information about the system dynamics has been deduced: the structural

properties (discrete states), the kinetics (probability matrix) and the thermodynamics (adjusted

populations). Normally, the most interesting processes are the slowest ones (higher time scales).

The information about the time scales of the processes are contained in the eigenvectors of the

transition probability matrix. If we rank the eigenvalues of the matrix by descending order, the

first one (λ1) corresponds to the equilibrium distribution. The second one (λ2) corresponds to

the slowest process observed. (λ3) corresponds to the second slowest process observed, etc. When

we talk about slow process, we mean that each eigenvector describes a conformational change of

the system, ordered by "slowness". Each eigenvector contains n values corresponding to the n

microstates. The magnitudes and signs of these elements explain which states are contributing

to the process identified by the eigenvalue. In general, we are only interested in a few of these

processes, the slowest ones.

Figure 2.18 – MSM principle at a glance. Image obtained from [95]

As said above, the number of microstates is generally high and it is not always easy to disen-

tangle what is going on. To deal with that, a second clusterization is often carried out (Fig. 2.19).

After the clustering into microstates from raw data, one does another clustering called PCCP (for

"Perron Cluster Clustering Analysis") [180]. The idea is to group the microstates into metastable

states, that we call macrostates. The slows processes we are interested in are then described by

the transitions between the macrostates.

It is also important to notice that MSM modeling is an iterative process. The MSM construc-

tion is repeated recursively to increase the sampling or to adjust the parameters. The model is

progressively refined to obtain the most reliable result possible.

The protocol

In this section the protocol followed for MSM modeling is explained in depth. MSM are construc-

ted using PYEMMA [190] and DeepTime [89] software. Figures used as examples are obtained
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Figure 2.19 – MSM clusterization process

from PYEMMA software tutorial [221]. In the tutorial, 25 trajectories of a system containing a

pentapeptide were simulated with CHARMM36 FF and implicit solvent and the trajectories were

saved every 0.1 ns (Fig 2.20.a). Some of the theoretical parts shown in this section are extracted

from: http://docs.markovmodel.org/

Step 1 - Featurization First, the ensemble of geometrical features that will be used for the

clustering are chosen. The choice is done intuitively at first, applying the previous knowledge about

the system dynamics. Some common ones are the dihedral angles, Cα positions, Cα distances, etc.

It is also necessary to make an initial choice for the lag time τ that will be applied for dimensionality

reduction with TICA (see next step).

Then, the features are ranked by means of the VAMP2 score which measures the kinetic variance

contained in these features [224]. The minimum value of this score is 1, which corresponds to the

equilibrium. The higher the value, the higher the variance contained in the selected features. Figure

2.20.b shows a VAMP2 score ranking for the pentapeptide system. With a 0.5 ns lag time, backbone

torsions (dihedral angles) represent higher kinetic variance than backbone positions or distances.

In consequence, backbone torsions are the first features employed for the MSM construction. This

choice can be refined latter if necessary. Notice that the features employed in MSM construction

can also be a combination of various geometrical features: backbone torsions + backbone distances,

for example. Other popular features for peptide systems are the RMSD and the Radius of gyration

explained before.

Step 2 - Dimensionality Reduction The feature space is normally of high dimensionality.

To simplify the model construction and reduce its computational cost, the number of dimen-

sions should be reduced while avoiding variance loss. In MSM construction, an algorithm called

Time-lagged Independent Component Analysis (TICA) [165] is often used. It performs a linear

transformation of some (usually high-dimensional) set of input coordinates to some (usually low-

dimensional) set of output coordinates, maximizing the autocorrelation of the given coordinates.

The final number of dimensions to keep should be as small as possible but high enough to capture

96



Figure 2.20 – MSM protocol: featurization and dimensionality reduction with TICA.(a)

Pentapeptide 3D structure. (b) VAMP2 scores of the backbone torsions, positions and distances

at a lag time of 0.5 ns.(c) Pentapeptide conformational landscape projected onto the first two

independant components (ICs). The color is related to the structure free energy. (d) Values of the

two first ICs throughout the trajectory. Images obtained from [221]

the important events. Normally, the protocols chose to keep the 95% variability. The fundamental

TICA distinctive characteristic compared to other algorithms is that it takes into account the vari-

ation of the features in time: it attempts to detect the "slowest coordinates", the ones that variate

at larger time scales. It first computes two covariance matrices, the instantaneous C(0) and the

time-lagged C(τ) ones:

cij(0) =
1

N − 1

N∑
t=1

(xi(t)− µi)(xj(t)− µj)

cij(τ) =
1

N − 1− τ

N−τ∑
t=1

(xi(t)− µi)(xj(t+ τ)− µj)

(2.20)

where i and j are two different features; µ the mean value of the feature during the simulation;

N the total number of frames; t the time and τ the lag time. Then, the time-lagged matrix obtained

from the data Cd(τ) must be diagonalized (the instantaneous matrix is already diagonal):

C(τ) =
1

2
(Cd(τ) + CT

d (τ)) (2.21)

Having the two covariance matrices, the eigenvalue problem can be solve directly by an appro-
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priate generalized eigenvalue solver:

C(τ)U = C(0)UΛ (2.22)

where U is the eigenvector-matrix containing the Independent Components (ICs) and Λ is the

diagonal eigenvalue matrix. Now, the data can be projected onto the TICA space:

zT (t) = rT (t)U (2.23)

where r is the coordinate vector and z the independent components. In this step, the dimen-

sionality reduction is performed by selecting only a sub-matrix U consisting of the first m columns

of the full-rank U, transforming the features into a set of slow coordinates. An example of the

result of this process is shown in figure 2.20. Figure 2.20.d shows the values of the two first ICs

of the pentapeptide MSM model. The first ICs are the slowest coordinates and they contain the

biggest part of the variance of the system. Figure 2.20.c is a projection of the conformations of

the trajectory in a 2D space generated by the two first ICs. Each point of the graph corresponds

to one frame of the trajectory and the color is related to the sample free energy.

Step 3 - Discretization The aim of this step is to cluster conformations found in the trajectory

into a set of discrete microstates, structural clusters generated with the IC information obtained

from TICA. A geometric clustering is carried out based on the TICA projection (Eq. 2.23). The

first thing to do is to choose the number of microstates. The standard number used in literature

is 100. To improve the reliability of the results it is better to find a number of microstates

adapted to the system of interest. For a first guess, VAMP2 score algorithm can be applied [224].

This algorithm calculates the quantity of variance that is preserved depending on the number of

microstates used. Increasing the number of microstates increases the variance of the model until

a plateau is attained (Fig. 2.21.a). The result presenting the smallest number of microstates and

while maximizing the VAMP2 score is chosen. This method allows to find a balance between low

computational effort (minimize the number of microstates) and the preservation of the the dynamic

information content.

Once the number of microstates (k) is set, a K-means algorithm is carried out [143]. It par-

titions the ensemble of conformations in k clusters. It first assigns randomly the centroids: the

conformations that are going to be the centers of the clusters. The grouping of the conformations

resembles Voronoi’s partition (Fig. 2.10): each conformation is assigned to the cluster it resembles

the most (minor difference between its projected features and the centroid projected features).

Then, the centroids are re-assigned: the center of each cluster becomes the new centroid (the

conformation with the minor difference respect to all the other observations of the same cluster).

This process is repeated in an iterative way until the assignment of the centroids stop changing.

In figure 2.21.b the centroids are highlighted in orange in the conformational landscape.
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Figure 2.21 – MSM protocol: discretization. (a) VAMP2 Score analysis of the number of micro-

states. The score is saturated at 75 states. (b) Trajectory conformations projected onto the two

first ICs. The darkness of the color is proportional to the density of the region. The centroids of

the microstates are marked in orange. Image obtained from [221]

Step 4 - Transition Matrix Now that the conformations are divided into microstates, the

MSM can be generated: the state populations and pairwise transition probabilities are determined.

Remember that the the dynamics must be reversible and the system memory less at the chosen lag

time (the pathway by which the system enters any state does not affect the transition probabilities).

The transition probability matrix is usually constructed with a maximum likelihood approach or

a Bayesian procedure:

Pij(τ) =
Nij(τ)∑
kNik(τ)

(2.24)

where Pij(τ) is the probability of changing from microstate i to microstate j, Nij the number

of transitions from i to j and Nik the number of transitions from i to any other microstate. From

the transition matrix P(τ) the eigenvectors (ψi) and eigenvalues (λi) are obtained:

P(τ)ψi = λi(τ)ψi (2.25)

If the system is at equilibrium, the matrix is symmetric. Usually the procedures to compute

P(τ) enforces its symetrization which in the end fulfils the detailed balance condition. In such a

case, λ1 is equal to 1 and the corresponding (first) eigenvector describes the Boltzmann distribution.

λ2, λ3, etc., have decreasing values lower that 1, each one describing a kinetic process. The implied

time scale (ITS) of each process depends on the eigenvalue and the lag time. They represent the

relaxation time scales of the dynamic processes and are calculated as follow:
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ITSi = − τ

ln |λi(τ)|
(2.26)

The larger the eigenvalue, the slower the time scale and so the process is more interesting. The

magnitude and the sign of each element of the eigenvectors explains which states contribute to the

process. Eigenvalues can be used for a first estimation of the number of macrostates: include the

first eigenvectors until there is a large gap between the value of two consecutive eigenvalues. For a

number N of eigenvectors chosen, N + 1 macrostates are created. Each macrostate is a metastable

state that has the property of capturing the dynamics for long times before jumping to another set.

It should be noticed that this is just an helpful trick for a first model construction. The number

of macrostates must be adapted later on based on the previous knowledge of the system and the

MSM results obtained.

Step 5 - Validation of the Lag Time The lag time (τ) is a central quantity in MSMs, so it

must be validated. The validation is done through the estimation of Implied Time Scales (ITS)

convergence. They are computed from the eigenvalues of the transition matrix as shown in equation

2.26. Thus, we look for ITS convergence and choose τ accordingly. Normally, there is a range of

τ where the ITS are invariant.

Figure 2.22 – MSM protocol: model validation.(a) ITS validation through convergence at increasing

lag times. (b) A Passing Chapman-Kolmogorov (CK) test. When doing a CK test, PyEMMA

automatically estimates a new MSM transition matrix at lag time kτ and propagates the original

transition matrix by the k-th power. In the image, the diagonal values of these two matrices are

plotted for 5 different values of k. 1->1 is the transition from macrocluster 1 to macrocluster 1

and so on. As the estimated and the predicted curve coincide, the test is passed. Image obtained

from [221]

Figure 2.22.a shows an example of ITS validation for a pentapeptide MSM, where the ITS of the

four slowest processes are studied. Each solid line correspond to one ITS calculated by a maximum

likelihood approach. The sample means are given by dashed lines. They converged quickly, a lag

time between 0.5 and 2 ns can be chosen. The confidence intervals of the implied timescales are
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quantified according to a Bayesian scheme and it is shown with the colored shaded areas around

the curves. The lag time also represents the time resolution limit of the estimated Markov model,

shown by the grey zone of the graph.

Step 6 - Validation of the Markovianity of the Model The markovianity of the model must

also be checked. This means that the systems has to behave like a Markov Chain. The validation

is done through a Chapman-Kolmogorov (CK) test. It compares the right and the left side of the

Chapman-Kolmogorov equation:

P(kτ) = Pk(τ) (2.27)

with P(kτ) being the transition matrix at lag time τ . The original transition matrix is propag-

ated by the kth power estimating consecutive transition matrices at lag time kτ .

An example is shown in figure 2.22.b where the CK test is applied to pentapeptide’s MSM.

The CK test is carried out at 5 different values of k. The transition probability matrix has a size

of 5x5 because the system was coarse-grained into 5 macrostates (see below how this is done). In

the figure, the results of the CK test for the diagonal of the probability matrix are shown. Each

square shows the probability to transition from on state to another (1 to 1, 2 to 2, etc.) at different

lag times. The estimated and predicted values (right and left side of the equation) coincide, so it

is a passing the CK test. The shaded areas show the confidence interval calculated according to a

Bayesian scheme.

Step 7 - Coarse-Graining into Macrostates Now the lag time and the markovianity of the

model for a certain number of macrostates is validated, it is time to coarse-grain the macrostates

into macrostates to sum up the essential properties of the system kinetics. There are to ways

for this coarse-graining: the fuzzy assignment or the discrete assignment. The fuzzy assignment

computes the probability of the microstates to belong to each macrostate. The discrete assignment

assigns each microstate to one single macrostate. Normally, both are carried out and if they agree,

the discrete assignment is kept.

The discrete assignment is done using an algorithm called the Perron Cluster Analysis (PCCA)

[175]. It uses the eigenvectors of the transition matrix to define the long-lived metastable sets.

The dominant eigenvectors (higher associated eigenvalues) transport the probabilities of the slow

kinetics so they can be used to decompose the system into macrostates.

The eigenvectors of the transition matrix work as a step function, changing from positive to

negative values at a saddle point. The values of the first eigenvector can be plotted along one axis

(Fig. 2.23.a). Notice that they are organized depending on the vector value, no the number of

microstate. By partitioning the line in the middle, the two most metastable sets are generated.

They exchange at the slowest time scale. It is possible to differentiate between smaller substates by
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Figure 2.23 – PCCA algorithm. r2, r3 and r4 are the second, third and fourth dominant eigen-

vectors respectively. Image adapted from: http://docs.markovmodel.org/

considering more eigevectors. In figure 2.23.b two eigenvectors are used to divide the microstates

into three macrostates and in figure 2.23.c three eigenvectors are used to divide the microstates

into four macrostates. In this way, the number of macrostates can be increased progressively.

The original PCCA method was introduced in [194] although today, PCCA+ [59] or PCCA++

[181] algorithms are used.

Using the PCCA algorithm, the clusterization into macrostates is obtained. An example is

shown in figure 2.24 for the pentapeptide MSM. First, the energy landscape of the pentapeptide

is shown if figure 2.24.a. Then, the landscape is divided into 5 macrostates to visualize their

location (Fig. 2.24.b). It is also possible to plot the eigenvectors values to show how they affect

the landscape clusterization (Fig. 2.24.c). Figure 2.24.d shows the transition path from state 2 to

state 4 (Transition Path Theory (TPT) is explained in next section).

At this point, it is important to keep in mind that the MSM construction is an iterative

process. This can be after incorporating new simulations or by changing some critical parameters

of the MSM (e.g. choice of features, etc.). Normally, the model is re-constructed several times by

applying the new knowledge obtained. The feature selection and different parameters are optimized

to improve the reliability of the model. The final pentapeptide model is shown in figure 2.25

Step 8 - Compute various properties There are several information that can be extracted

from an MSM. The free energy of the macrostates (Gi) is calculated from the stationary weights

of the microstates (j) within the macrostate (i):

Gi = −kBT ln
∑
j∈Si

πj (2.28)

where Si is the ensemble of microstates that belong to an specific macrostate i, pj is the
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Figure 2.24 – MSM Analysis. (a) Energy landscape. (b) Coarsed-grain model into 5 macrostates.

(c) Second right eigenvector of the model . It shows the second slowest process of the model. The

first slowest process is not shown as it correspond to the system total dynamics. (d) TPT: how

the system transitions from state 2 to state 4. Image obtained from [221]

stationary distribution of microstate j, kB the Boltzmann’s constant and T the temperature.

Macrostates with the lowest free energy are the most stable and so the preferred for the system.

Mean first passage time (MFPT) between each pair of macrostates is also computed. It allows

to deduce the kinetics between metastable states. Comparing the MFPT between states it is

possible to calculate the life times of each of them.

The Transition Path Theory (TPT) analyzes the most probable transition paths between two

macrostates. It allows to have a better understanding of how the system behaves and the structures

evolves. An example is shown in figure 2.25, where the transition path from macrostate 2 to

macrostate 4 in a pentapeptide MSM is described.

It is also possible to compute expectation values for experimental observables: helix ratio,

radius of gyration, atom relative positions, etc. The structural and dynamic information explained

with the model is compared to the information obtained by experimental assays. It is at the same

time a way of validating the reliability of the model and a way to explain in depth experimental

information that is sometimes difficult to interpret.

The MSM of this project were constructed using PYEMMA [190] and DeepTime (https://github.com/deeptime-

ml/deeptime.git) software.
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Figure 2.25 – MSM resulting model. An ensemble of representative structures are shown for each

macrostate. The transition path to evolve from state 2 to state 4 is marked with the arrows. The

width of the arrow is proportional to the probability of the state to change. The probability is

written in float numbers over the corresponding arrow. Image adapted from [221].

2.2 Experimental methods

2.2.1 Circular Dichroism

The oscillations of electric and magnetic fields produce electromagnetic waves, commonly known as

electromagnetic radiation or light. When the vector of the electric field oscillates in a straight line

we talk about plane polarised or linearly polarised waves (PPW). The superposition in a different

phase of two PPW that oscillates in perpendicular planes and that have the same amplitude and

wave length, produces a third type of wave: Circular Polarised Wave (CPW). This wave can be

left or right polarised. Curiously, when a right and la left CPW of the same amplitude and wave

length are superposed, a PPW is obtained.

Light interacts with matter. This interaction can change light properties and give information

about matter structure. The two basic phenomena of this interaction are the absorption and

the decrease of the velocity of the light. The absorption is the reduction of the wave amplitude

because matter absorbs part of the light. The decrease of the light velocity happens because of

the refraction index ratio between the velocity in vacuum and the velocity in the specific material.

There are two special properties that materials can have regarding the interaction with light:

Circular Dichroism (CD) and Circular Birefringence (CB). CD is observed when matter absorbs

differently right and left CPW. As it was said before, a PPW is formed by the superposition of

a right and a left CPW of the same amplitude. When a PPW traverses a medium that possesses

CD, its properties will be modified because its components are absorbed differently. The resulting

vector does not oscillate in a plane but in an ellipsoid path. This wave is called elliptically polarised

light (Fig. 2.26).

Another special property matter can present is the Circular Birefringence (CB). CB happens
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Figure 2.26 – CD principle. The PPW is drawn in cyan and its to components, the right CPW

and the left CPL are drawn in red and green respectively. The image on the left shows the effect

on the three waves of traversing a material (orange box) with CD. On the right, a representative

scheme of the three vectors and the resulting ellipticity.

when matter has different refraction index for right and left CPW. In consequence, CB rotates the

plane of polarisation of the PPW.

This two phenomenon normally occur together, it is rare to find materials that just present one

of both. The combination of these two phenomenon transform a PPW into an elliptical polarised

light with its big axis rotated. They are both caused by the molecular asymmetry of matter and

they serve to extract important information about the structural properties of macromolecules.

The differential absorption measured is usually very small, from a few 1/100ths to a few 1/10ths

of a percent. However, it can be determined accurately. Equation 2.29 serves to calculate the

ellipticity of the sample from the raw data:

θd =
2.303

4
· (AL −AR) · 180

π
· [deg] (2.29)

However, we need to normalize the data to be able to compare the ellipticity values. Equa-

tion 2.30 calculates the mean molar ellipticity per residue (MRE or [θ]), that considers the path

length (l), the concentration (C), the molecular mass (M) and the number of peptide bonds nr.

Accordingly, we can compare the MRE between protein of different lengths.

[θ] = θd ·
M

C · l · nr
(2.30)

In this manuscript, CD assays are carried out to study the Secondary Structure (SS) of peptides.

Peptide bonds present CD and the intensity of the transitions depend on the φ and ψ angles. This
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means that the absorbance obtained from a CD spectra will vary depending on the peptide SS:

random coil, α-helix or β-sheet (Fig. 2.27). The problem faced with CD assays is that the spectra

can be altered by some factors as the presence of aromatic residues or disulphide bonds. Phe, Trp

and Tyr present aromatic rings in their lateral chains with absorption bands between 250 and 320

nm. This residues can complicate the interpretation of CD results in the far UV spectra. Of note,

we perform CD experiments on samples that contain liposomes which diffuse light. Accordingly,

our Jasco J-815 spectrometer was unable to go below 200 nm because of too much noise.

Figure 2.27 – Model of a CD spectra applicable to peptides and proteins: in yellow, the resulting

CD curve of an α-helix, in blue the CD curve of a β-sheet and in red the CD curve of a random

coil. Image adapted from: https://www.creative-proteomics.com/

2.2.2 Fluorescence

Fluorescence is a phenomenon caused by the capability of certain molecular systems to absorb and

emit light. A molecular system that presents fluorescence is called a fluorophore. A fluorophore

can absorb light of high energy (short wave length). This light excites the electrons and makes

them transit from the grounded state to the excited state. When the electrons relax, they loose a

small quantity of energy and then they release the stored energy, emitting a photon at a different

wavelength. The lag time between the absorption and the emission last several nanoseconds and

it is called fluorescence lifetime. The emitted light has lower energy (larger wave length) than

the absorbed light. The difference between the two is called Stokes shift. This phenomenon is

illustrated in figure 2.28

Some proteins have fluorescence properties, being able to emit light on a range of a few 10’s of

nm wideness. The reasons a protein can be a fluorophore are diverse. One of the most common

106



Figure 2.28 – Illustrative image of the fluorescence phenomenon

reason is the presence of Trp in its sequence. Protein fluorescence is a very interesting property

because the obtained spectra varies depending of the fluorophore environment. This enables to

design assays to determine protein interactions with other molecules like lipid membranes.

2.2.3 NMR

Nuclear Magnetic Resonance (NMR) is a biophysical technique used to study structural and dy-

namic properties of matter. Atomic nuclei with an odd number of neutrons or protons like 1H or
13C, present a property called spin that is used in NMR spectroscopy. In the case of hydrogen

isotope 1H, its nucleus has one proton and no neutrons. Hydrogen presents a positive charge and

a charge rotating in space creates its own magnetic field. This phenomenon is called spin magnetic

moment. In a sample of protons, each nucleus has its magnetic moment oriented in a different

direction. If an external strong magnetic field is applied, the magnetic moments will align either

parallel or antiparallel to the magnetic field direction and they will precess like a spinning top (Fig.

2.29.A). If they are aligned with the sense of the magnetic field they are in an α-spin state and if

they align against the sense of the magnetic field they are in a β-spin state. The α-spin state has

slightly lower energy and, in consequence, it is more stable. The difference in energy (∆E) between

the α state and the β state is proportional to the precession frequency of the magnetic moment,

also called Larmor frequency (ν0):

∆E = hν0 (2.31)

where h is Plank’s constant. This frequency depends on the strength of the applied magnetic

field (B0) and it is specific of each atom nucleus type:

ν0 =
γ

2π
B0 (2.32)

where γ is the gyro-magnetic ratio of the particular nucleus. It is possible to force a nucleus to
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switch from α state to β state. To do this, the sample needs to be irradiated with radio-frequency

magnetic waves (B1 field). The frequency of the pulse should be equal (or close) to the precession

frequency of the spin. When the spin falls back to the α state, it emits radio frequency energy. If

the spins are constantly flipping back and forward between the two states, a phenomenon called

resonance is produced, giving the name to this technique. The signal is detected by a receiver

coil as a time domain signal, called Free Induction decay (FID), which yields an NMR spectrum

after Fourier transformation. The resonance frequency of a specific nucleus relative to a reference

frequency of a standard compound is called chemical shift. The chemical shift is independent on

the applied field B0 and depends only on the nucleus type and its molecular environment. Only

chemically equivalent atoms with the same molecular environment will present identical chemical

shifts. Irradiation pulses can have different nature and duration. Depending on the sequence of

pulses applied, different properties of spins can be studied. Figure 2.29.B shows a one-dimenstional
1H-NMR spectrum of ethanol, where the chemical shifts for the three equivalent proton groups

are observed. In practice, one-dimensional NMR spectra of macromolecules cannot be accurately

analysed because of the crowding of spectra. To overcome this problem, 2D NMR experiments have

been designed. NOESY, COSY and TOCSY are different pulse sequences that generate 2D NMR

spectra. NOESY experiments give information about the distances between the nuclei within the

molecule. This information is called dipolar coupling and it helps to calculate the 3D structure

of the molecule. It is also used in MD simulations to validate the reliability of the results. It is

also possible to deduce the sequence specific assignment from the dipolar coupling as the spectra

record interactions between H atoms from adjacent residues. COSY and TOCSY experiments give

information about covalently connected hydrogens. This connection is called scalar coupling J and

is typically transmitted via one, two or three covalent bonds between coupled nuclei. Three-bond

J couplings allow to calculate the values for the dihedral angles. These values can be used to

generate restraints for MD simulations or to validate the MD FF.

The applications of NMR spectroscopy are numerous: analysis of molecular structures, identific-

ation of unknown molecular substances, analysis of mixtures, etc. In this manuscript computational

results are frequently compared to NMR data to validate the simulation protocols.
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Figure 2.29 – NMR Spectroscopy. (A) NMR principle. A magnetic field is applied to a hydrogen

nucleus. The magnetic moment of the nucleus is aligned with the magnetic field in an α-spin state.

The spin of the nuclei presents a precession motion. (B) NMR spectrum model. The number of

chemical shifts (peaks) is equal to the number of equivalent proton groups. The signal integration

is proportional to the number of protons in the group. The multiplicity of peaks within each massif

is due to the spin-spin scalar coupling and it is related to through-bond interactions between nuclei

in the molecule. Image adapted from: https://www.jeol.co.jp
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Chapter 3

Force Field Comparison for

Amphipathic Helices

3.1 Introduction

Molecular dynamics (MD) simulations need to have reliable force fields (FF) to accurately repro-

duce the structural and dynamic properties of the system of interest. For the scientific community

it is very important to have FF comparison studies to choose the one that better fits to describe

a specific molecular system. To this aim, we have carried out a project of FF comparison on

our system of interest for AH/membrane simulations. The objective is to perform simulations of

amphipathic helices (AH)/membrane interactions with different FF, and then compare the results

with experimental data to determine the accuracy of the FF. Comparing simulations results with

experimental data is an excellent approach to validate simulation models, interpret experimental

results at the atomic level or for FF calibration. Citing ref [188] of Sapay and Tieleman in 2008,

they were warning the community for "the urgent need for experimental data that allows a critical

validation of simulation approaches" on lipid protein interactions.

In literature, we can find many papers assessing the quality of force fields for proteins / pep-

tides on one hand, or lipids on the other hand, but the combination of both at the same time

has not been tested so much. We can still mention these following works. The most complete

was published in 2017 by the team of Böckmann compared 4 different FF (or combination of FF),

namely GROMOS54a7, CHARMM36 and the two force field combinations Amber14sb/Slipids and

Amber14sb/Lipid14 [185]. They studied several different properties: the conservation of the sec-

ondary structure of transmembrane proteins, the orientation of transmembrane peptides in the

lipid bilayer, the insertion depth of unfolded peptides at the membrane interface, and the free en-

ergy of insertion energies of Wimley-White peptides [223]. The conclusion shows that CHARMM36

and Amber14sb/Lipid14 give overall the best results, while GROMOS54a7 present more important
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deviations. This work was very interesting because it was one of the first to test some properties

on membrane proteins and peptides. Two other works assessed the AH melittin (an antimicro-

bial peptide). In 2013 Anderson et al. showed that melittin in DOPC was better represented

by CHARMM36 than OPLS [8]. Another work from Fox et al. in 2018 tested many combina-

tions of force fields and water models (namely using the same FF acronyms than the authors,

ff99/tip3p, ff14SB/tip3p, c22/tip3p, c22/tips3p, c36/tip3p, c36/tips3p, c36m/tip3p, c36m/tips3p,

and g53a6/spc using the same FF acronyms than the authors, tips3p is the tip3p specific to

CHARMM [142] on melittin in water or in a POPC membrane [72]. They utilized H-REMD

(Hamiltonian Replica-Exchange Molecular Dynamics) and also performed some CD experiments.

Their conclusions show that the combinations c22/tips3p and c36/tips3p give the best results.

Amber99SB and GROMOS53a6 appear to be biased toward beta-sheets structures. Some oddities

appear in this work though: the very low content of helix in POPC (16 %), the lipid composition

which is different between the CD and the H-REMD, the FF that are not properly cited, etc.

Since we are interested in AH, we wanted to go further in the testing of the different FFs

peptides / lipids. We were especially interested to test the Berger lipid force field, which is a

united-atom (UA) FF, and the different way to combine it with other protein FF. To explain the

context, this project was started by my Ph.D director, Patrick Fuchs, around 10 years ago. At

that moment, the Berger FF [24] was one of the most used FF for lipids. At that time, there

were not as many lipid FF as now. For example, CHARMM36 [123] had just been published and

before that there was CHARMM27 [70, 122] for which one had to impose a surface tension to get

a fluid bilayer. One great advantage of Berger was/is the fact that it is a united-atom (UA) FF.

This means that CH3 and CH2 groups are represented with a single bead, a simplification of the

system compared to all-atom (AA) models. UA models decrease the computational cost of the

simulation while in general keeping the reliability [199]. Since phospholipids possess many aliphatic

hydrogen atoms, this can divide up to almost 3 the number of lipid particles to simulate. Berger

lipids were parametrized independently but were in fact a mixture of different FF: GROMOS87

bonded parameters [49], Lennard-Jones parameters from OPLS-UA [162], partial charges from

Chiu et al. [47]. The aliphatic tails were improved in the Berger paper using simulations of

long alkanes with the Ryckaert-Bellemans potential [24], that is, a cosine power series in which

there is no 1-4 interactions (see Materials and Methods chapter for definitions). The improvement

was achieved by targeting the alkane experimental density and heat of vaporization. Although this

mixture of different FF, Berger lipids were working quite well and were massively used at that time.

Even though Berger initially contained parameters for lipids only, some authors showed that it

was possible to combine them with other FF for proteins. In the late 90s, Tieleman and Berend-

sen made a great contribution to the community of membrane proteins. They combined Berger

lipids with the GROMOS family of force fields [210]. Initially, the protein FF was GROMOS96

[83] but other successor (notably GROMOS54A7 [192, 121]) are also compatible and were used
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in literature (e.g. ref [235]). One key for the success of Berger lipids was the fact it had been

made available on Peter Tieleman’s web page, which prompted many people to use them! Later

on, Monticelli and Tieleman [209] showed that Berger lipids were also compatible with all-atom

OPLS FF [111] for proteins. One can note here that the protein is AA and the lipids UA, which is

perfectly doable as long as the interactions between the two are properly parametrized. Sapay and

Tieleman [189] made some tests in 2010 between the so-called "Calgary lipids", UA lipids largely

based on Berger but with some improvements, and CHARMM22 force field for proteins [142].

They found it was possible to mix both but some further tests were necessary to fully validate

this approach. It offered a way to use CHARMM FF for proteins with UA lipids simulable at zero

surface tension. Although this combination was very attractive to our community, it has not been

used so much in literature since a year later the complete reparametrization of CHARMM lipids,

coined CHARMM36 and usable at zero surface tension, went out [123]. Later on, Cordomi et al.

[51] showed that Berger lipids were also compatible with the AMBER family of force fields such

as AMBER99SB-ILDN [139]. Some serious and convincing tests were done on the free energy of

partitioning of residues as well as on some membrane proteins. Furthermore, it offered a way to

simulate AMBER membrane proteins / peptides with UA lipids (there are AMBER FF for lipids

but they are all-atom [60]). For both reasons, the work of Cordomi et al. was another attractive

combination for our community.

The other important alternative to Berger for united-atom (UA) lipids is the CHARMM-UA

parameter set. Hénin et al. developed in 2008 a UA version of acyl-chains [234] usable with

CHARMM22 proteins [142] making them an interesting alternative to CHARMM27 all-atom lip-

ids [70, 122]. Consistent with CHARMM27 all-atom lipids, it was necessary to use a non-zero

surface tension to get the right area per lipid (around 30 mN/m) or to simulate at constant area.

In 2010, CHARMM36 all-atom lipids were released [123]. It was a real change of paradigm since

it was then possible to simulate bilayers at zero surface tension compared to CHARMM27 lipids.

In 2013, CHARMM-UA lipids were updated (coined C36UA) which made them usable under zero

surface tension [129]. They were further refined very recently in the set C36UAr [234].

We see in this short literature survey that many efforts were put in the development of UA

lipids. In the years 2010, Berger were by far the most used UA lipids. Possible reasons for that

can be attributed to i) the availability of parameters on Peter Tieleman’s web page at that time

(at that time CHARMM-GUI [105] did not exist!), ii) the fact they were usable at zero surface

tension, iii) despite some possible issues they were giving overall reasonable results. In this context,

Patrick was intertested in testing different combination of protein force fields together with Berger

lipids: GROMOS54A7/Berger, OPLS/Berger and AMBER99SB-ILDN/Berger to see which one(s)

reproduced more accurately experimental results on AH/membrane interactions. The first REMD

simulations were done with his previous Ph.D students, Dr. Lydie Vamparys and Dr. Amélie Bacle.
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In 2021, the context has evolved a lot. The computer power has progressed enormously as well

as the MD software. Simulating all-atom force fields on rather small systems such as small AH /

membrane is less of an issue than 10 years ago. Furthermore, the CHARMM family of FF is one of

the, or the most popular FF. It contains the widest ensemble of parameters for biomolecules among

all FF, including, proteins [123] and lipids [234]. The community is very active and regularly some

new lipids are published enabling the simulation of complex membranes [154, 133]. CHARMM-

GUI [105] allows now to very easily construct membrane system with any lipid composition by

simple mouse clicks. Very recently, some new parameters for non-natural amino-acids attracted

our interest even more on the CHARMM family of FF [54] (see LTX315 Chapter 6). Last but not

least, CHARMM36 stands out for its capability to accurately reproduce lipid structural properties.

An open collaboration project called NMRLipids, compares lipids simulations of different FF with

NMR experimental data to classify them by reliability. In all the publications, CHARMM36 has

been classified as one of the most reliable FF of our days [34, 14]. For all these reasons, Patrick

and I decided to also test CHARMM36 regarding its performances on AH/membrane systems we

are interested in.

Regarding the simulations, we decided to use an enhanced sampling technique to carry out

this project. The objective was to explore the conformational space of the system finding a good

trade-off between the computational cost / efficacy of sampling. We believe Temperature-Replica

exchange molecular dynamics (T-REMD) was the most appropriate technique for this project. It

increases the sampling by simulating several replicas at the same time (the number of replicas

depends on the system) at different temperatures. Neighbour replicas exchange temperatures

throughout the simulation to boost the kinetic energy of the system and increase the sampling.

Furthermore, it allows to assess the thermal response of the AH, i.e. whether it is thermostable.

The temperature range depends on the time-scales of the physical process that we want to observe,

normally the bottom temperature is physiological and the upper temperature is very high (400-

600 K). T-REMD was used in 2005 to describe a peptide insertion in a membrane for the first

time [158]. WALP-16 was used as a model peptide and the bilayer was composed of DPPC

lipids. They observed the insertion and folding of the peptide with a transbilayer orientation.

Using T-REMD simulations we make sure the simulations perform an in depth exploration of the

conformational space of the AH in the membrane. To have a detailed description of this method

and our justification of choice 300-400 K for the temperature range, please consult the Materials

and Methods chapter.

To perform the FF comparison, two different peptides were simulated in a membrane: the

mastoparan and the ALPS23 from ArfGap1. Mastoparan (form L studied here) is a small peptide

of 14 residues derived from wasp venom, its sequence is INLKALAALAKKIL-NH2 (uncharged C-

term which is amidated). It is a well-known peptide commonly used as a model for AH studies [62].

Moreover, we know its secondary structure [91]: its small size α-helix. Because of its high helix
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content, we consider it as a "strong" α-helix. The helical wheel in figure 3.1.b, shows a beautiful

AH with a hydrophobic side presenting small residues, and a polar side with charged residues. The

mastoparan presents a well-balanced amino acid (aa) distribution that facilitates its partition and

folding in the membrane.

ALPS (Amphipathic Lipid Packing Sensor) is a general motif found in many peripheral proteins.

It has been shown to bind only to curved membranes [63] or more generally to bilayers enriched

in packing defects [216, 141]. We simulated the ALPS23 peptide, which is an ALPS motif derived

from the ArfGAP1 protein involved in vesicular trafficking. It is 23 residues long, its sequence

is DFLNSAMSSLYSGWSSFTTGASK. Its secondary structure in SDS micelles has been resolved

by NMR assays and it is available in the PDB with the code 2M0W (results unpublished). Some

CD experiments showed it is moderately helical [REPORT the perc of helix in Vanni 2013] when

bound to a lipid bilayer [216]. Previous studies [26, 27, 63] have shown that ALPS23 is a curvature

sensor: it specifically binds to highly curved membranes. This sensitivity was ascribed to his

particular amino-acid (AA) sequence [63]. This can be seen on its helical wheel presented in figure

3.1.a. The hydrophobic side presents residues with large side chains (Ile, Leu, Phe) that need a

lot of free space to partition in the membrane. The polar side contain many small residues (Ser,

Thr) and it is barely charged. This particular AA distribution makes ALPS23 a weak helix, with

difficulties to bind and fold in membranes. It needs highly curved membranes, or more generally

large and numerous packing defects. As its polar side chains are small and mostly non-charged,

ALPS23 electrostatic interactions with the membrane are scarce. For these reasons, ALPS23 (or

any ALPS motif) acts as a curvature sensor. Because it does not bind to all lipid compositions

and its low helix content when bound to liposomes, we consider it as a "weak" helix. Because of

this "weakness", ALPS23 represents a real challenge for lipid / protein FFs.

Figure 3.1 – ALPS23 and mastoparan helical wheels predicted with heliquest [77].

The mastoparan and ALPS23 are AH with very different properties: the mastoparan is a short

and strong helix with high binding capacity and ALPS23 motif is a longer and weak helix, difficult

to insert in bilayers. The use of these two very different systems for the FF comparison will try

out the FF reliability for AH/membrane systems.
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We used the same membrane composition for both peptides. It was composed of 1,2-dioleoyl-

sn-glycero-3-phosphocholine (DOPC) and 1,3-dioleoyl-glycerol (DOG) lipids at 85/15 molar ratio.

A common problem of membrane systems is that simulated bilayers are flat. It is very difficult

to reproduce the interactions with peptides that bind preferably to curved membranes like ALPS.

Including DOG lipids in a flat membrane has been proven to mimic the properties of a curved

membrane: DOG is a conical lipid with a small head that increases the number of the packing

defects in the bilayer, as if the membrane was curved [141]. In consequence, DOG lipids facilitate

the insertion of curvature sensors. For the initial conformation, the peptides were placed folded

(full α-helix) in the membrane/water interface, with the hydrophobic side towards the aliphatic

chains. This way, we can focus our efforts on analysing the FF capacity to reproduce the peptide

structural properties in the membrane by comparison to experimental data.

3.2 Materials and Methods

3.2.1 Molecular Systems

Two system were simulated: mastoparan and ALPS23 both in the membrane. Mastoparan system

was composed by one peptide, 60 DOPC lipids, 10 DOG, 40 water molecules per lipid and ions

to neutralize the system (4 Cl-). ALPS23 system was composed by 86 DOPC lipids, 14 DOG,

40 water molecules per lipid and ions to neutralize the system (10 Cl-). ALPS23 system contains

more lipids because the helix is longer than the mastoparan, as you can see in figure 3.3.

3.2.2 Force fields

In the following I describe the simulations I performed using the CHARMM family of FF, the

other ones (OPLS[111]/Berger, AMBER99SB-ILDN[139]/Berger, GROMOS54A7[192, 121]/Ber-

ger) were done by previous Ph.D students Lydie Vamparys [214] and Amélie Bacle [13]. The

CHARMM36m for the peptide [93] and the CHARMM36 lipids [234] were used. For DOG, we

used the parameters described in the PackMem paper [78]. The modified TIP3P water model for

CHARMM was used for water [142].

3.2.3 REMD simulations

Two T-REMD simulations were carried out, one on Mastoparan and one on ALPS23. To be

comparable, the conditions in these simulations are equal to those performed by Lydie and Amélie

with the other FF combinations: temperature range between 300 and 400 K, 0.2 probability of

exchange and pressure set at 1 bar. For CHARMM36 simulations, 33 replicas were needed. For

the starting structure, the peptides were initially placed already folded in the membrane/water

interface, as it is shown in figure 3.2.
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(a) (b)

Figure 3.2 – T-REMD initial structures for (a) ALPS23and (b) mastoparan systems. The images

show a front and an upper view. Peptides are shown in purple, DOPC lipids in blue and DOG

in green. DOPC phosphor atoms are represented with a bead. The images are extracted from

CHARMM36m simulations.

3.2.4 MD simulations of the membrane only

To compare the effect of the peptide on lipids, one classical MD simulation of a system containing

only the membrane was launched using CHARMM36 FF [123]. The composition of the membrane

was the same used for the simulations with the mastoparan: 60 DOPC, 10 DOG, and 40 water

molecules per lipid (TIP3P model [142]). Temperature was maintained constant at 300 K and

pressure was set at 1 bar. The simulation is 500 ns long.

3.3 Experimental information

Mastoparan secondary structure was solved by NMR assays in the presence of detergent and a

DMPC/DMPG membrane(code PDB 1D7N [91]). The structure is shown in figure 3.3b. In the

membrane, the mastoparan is folded in an α-helix with unfolded termini, with an helicity value

of 71%. Circular dichroism (CD) titration assays of the mastoparan were also performed in the

presence of DOPC/DOG LUV (85/15 molar ratio) by our collaborator Guillaume Drin (Nice,

Sophia-Antipolis). The results are shown in figure 3.4.a. The spectra have two minimum located

at 208 and 222 nm, which is characteristic of an α-helix. The minimum presents lower values

with increasing lipid concentration. This means that the peptide is more helical when peptide

concentration increases. From the ellipticity value obtained at 222 nm, it is possible to extract the

helicity. Figure 3.4.b shows the relationship the lipid/peptide ratio in terms of concentration and

mastoparan helicity. As it was said before, mastoparan helicity increases with lipid concentration:

at the highest lipid concentration, 7.5 mM , the mastoparan is folded at 80%, which is slightly

overestimated compared to the NMR structure. This probable overestimation comes from the
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difficulty of determining its concentration since it contains no Trp, it is thus required to do some

other assays (BCA test). All in all, we see that mastoparan helicity is high (>70%).

(a) ALPS23 motif in SDS micelles. Code

PDB 2M0W.

(b) Mastoparan in

DMPC/DMPG bicelles. Code

PDB 1D7N.

Figure 3.3 – NMR resolved structures.

Figure 3.4 – CD assays of the mastoparan in DOPC/DOG 85/15 LUVs. (a) CD spectra at dif-

ferent lipid compositions. (b) Helicity plot with respect to the lipid/peptide ratio in terms of

concentration. Unpublished data.

There is also experimental information available for ALPS23. Its structure has been resolved

by NMR assays in SDS micelles and it is published with the PDB code 2M0W (publication not

available yet) by a collaborator from Rennes (Liza Mouret). The structure is shown in figure

3.3a. Micelles are highly curved structures with only one lipid layer where a curvature sensor

like ALPS23 can easily get inserted thanks to the big packing defects. Thanks to micelles curved

structure, ALPS23 helicity is 73.9%. ALPS23 is a weak helix, it really needs favorable conditions

to get folded. Unfortunately, no structure has been resolved in bicelles, which are structures
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much similar to the membranes we simulate in MD. CD assays were also done for ALPS23 in

DOPC/DOG 85/15 large unilamelar vesicles (LUV) by L. Vamparys and G. Drin. The results are

shown in figure 3.5. When there are no lipid present, the spectra shows an unfolded peptide in

buffer. ALPS23 helicity increases when lipids are added to 27 %. At a lipid concentration of 7.5

mM, ALPS23 CD spectra corresponds to an α-helical structure with the two negative peaks at 210

and 222 nm.

Figure 3.5 – ALPS23 CD spectra in DOPC/DOG 85/15 liposomes. Lipid concentration increases

from 0 to 7.5 mM.

There is also CD data available for ALPS35 in membranes, which is a longer sequence of

the same peptide. Assays were carried out by Dr. Lydie Vamparys, previous PhD student of

Patrick Fuchs. They performed CD spectra on small unilamelar vesicles (SUVs), composed of

DOPC 3.6.a); and large unilamelar vesicles (LUVs), composed of pure DOPC or DOPC/DOG at

85/15 molar ratio 3.6.b) [216]. The SUVs used had an average radius of 20 nm, measured by

DLS (Dynamic Light Scattering). The curvature of the membrane surface is very high. In this

configuration, we see that ALPS35 binds to the vesicles and folds into an α-helix with a helix

rate of 38 %, as shown by the two negative peaks at 208 and 222 nm in the spectrum. In the

second CD experiment performed, LUV vesicles, with an average radius of 100 nm were used. At

this size, the membrane surface is locally perceived as flat for the peptide. When the vesicle is

composed of DOPC only, ALPS35 barely binds and folds. However, including DOG molecules

in the composition increases ALPS35 binding and helicity to 29 %. This is because DOG is a

conical lipid with a small head which increases the number of packing defects of the membrane,

facilitating the insertion of ALPS35 big lateral chains [216]. However, the helicity is still quite low,

showing again ALPS35 "weak helix" nature. Comparing results in SUVs and LUVs, the value at

222 nm is larger for SUVs of pure DOPC, showing that ALPS35 is less helical at the LUV surface

of DOPC/DOG than at the SUV surface of pure DOPC.

Thanks to these experimental data, we have information of mastoparan and ALPS23structural

properties in the membrane. The mastoparan is a strong helix that easily binds membranes of
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Figure 3.6 – ALPS35 CD assays in SDS micelles. First, an scheme of SUV and LUV relative size

is shown. (a) CD spectra of ALPS35 in buffer and pure DOPC SUVs. (b) CD spectra of ALPS35

in buffer, in pure DOPC LUVs and DOPC/DOG LUVs at 85/15 molar ratio. Image from [216]

any composition. In contrast, ALPS23 is a weak helix. For ALPS23 to bind flat membranes,

conical lipids are needed to increase the number of packing defects. For this reason, the membrane

composition chosen for all T-REMD simulations was DOPC/DOG at 85/15 molar ratio.

3.4 Computational results

In this section, we are going to compare the results of the four T-REMD simulations carried out

with the different FF. The comparison is focused on AH secondary structure, to check whether the

FF are able to reproduce the peptide helicity in the membrane or not. For this analysis, we are

going to use the conformations simulated at 300 K. This means that we do not follow continuous

replicas over the temperatures, we only use the ensemble of conformations that have been simulated

at the bottom temperature. This is because we want the peptide to follow the same Boltzmann

distribution than in the experimental assays: the probability (pi) of observing the peptide in a

certain state i, with a total energy (Ei), depends on the temperature T . Figure 3.7 shows the

secondary structure analysis for all the FF and for the two molecular systems at 300 K. On the

left, the results for the mastoparan are showed and, on the right, for ALPS23. On the graph, the

secondary structures are shown with different colors per residue and through time. The blue colour

represents the α-helix. Therefore, the more present the blue in the graph, the more the FF retains

the helical structure of the peptide. Helicity mean values are shown in table 3.1.

For the mastoparan, the NMR structure shows that it is 71% helical. When using GROMOS54A7
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FF, the α-helix quickly disappears. The mean helicity value is 3%, very far from experimental val-

ues. On the contrary, the OPLS, AMBER99SB-ILDN and CHARMM36m FF, preserve the α-helix

along the simulation with 67 and 71, and 76% of helix content. They all reproduce the experimental

value very well.

We performed the same simulations and analyses for the ALPS23 peptide. Once again, GROMOS54A7

FF is not capable to maintain the initial helix during the simulation, retaining only 6% of helicity.

However, the process is slower. Surprisingly, OPLS FF also fails to reproduce ALPS23 second-

ary structure, retaining also 6% of the helicity. However AMBER99SB-ILDN and CHARMM36m

FF succeed in maintaining ALPS23 helicity, with 67 and 77.05 % of helix content respectively.

AMBER99SB-ILDN and CHARMM36m FF give the more reliable results compared to NMR and

CD data.
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Figure 3.7 – Secondary structure analysis. The peptide secondary structure is plotted through

time by residue. For these analyses, T-REMD conformations at 300K are used. We do not follow

a continuous replica over the temperatures. On the left, results for the mastoparan; on the right,

results for ALPS23. Analysis for the four FF are shown: CHARMM36m, AMBER99SB-ILDN,

OPLS and GROMOS54A7. Color white is for random coil, black for β-bridges, green for bends,

yellow for turns, blue for α-helices and grey for 310-helices.
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ALPS Mastoparan

Force Field Helicity (%) STDV Helicity (%) STDV

CHARMM36m 76 7 76 5

AMBER99SB-ILDN 67 11 71 21

OLPS 6 10 67 19

GROMOS54A7 6 9 3 9

Table 3.1 – Helix content for mastoparan and ALPS23 peptide in the membrane simulated with

different FF. Only the conformations found at 300K are taken into account.

Interestingly, CHARMM36m FF seems to overestimate the helicity compared to experimental

results. For both peptides, CHARMM36m FF reproduces a strong and stable α-helix with high

helix content, which is surprising for ALPS23. To have more information about this, the helicity

was calculated at all the temperatures for CHARMM36m and AMBER99SB-ILDN simulations.

The mean values are shown in figure 3.8. CHARMM36m predicts higher helicity for both peptides

at all temperatures. The helix content is maintained constant although temperature increases,

variations are minimum. Regarding AMBER99SB-ILDN for both peptides, the mean helicity

values is slightly lower and matches better the experimental results. Helicity decreases slightly with

the increase of the temperature, although a quite high helix content is maintained. Interestingly,

we observe a few conformations completely unfolded at high temperature (400 K), explaining

the decrease of the mean helix content with increasing temperature, but they remain quite rare.

The presence of these fully unfolded conformations explains the important standard deviations

compared to CHARMM36m. To sum up, CHARMM36m predicts a very thermostable peptide for

both mastoparan and ALPS23. For AMBER99SB-ILDN, we observe an effect of temperature, but

not a complete melting as if we had two populations folded and unfolded. The accuracy of these

results is discussed in the Discussion section below.

3.5 Membrane properties in CHARMM36m simulations

I carried out CHARMM36m/CHARMM36 T-REMD simulations for this project. I have been

using this FF frequently during my Ph.D. For this reason, I have special interest in validating the

reliability of this FF. In the previous section, we have checked the FF capability of reproducing

AH structural properties in the membrane. In this section, we study CHARMM36m/CHARMM36

capability of reproducing membrane structural properties, specifically the two most common, the

area per lipid (APL) and the thickness. To this aim, we carried out one classical MD simulation

containing the membrane exclusively. The results are compared to experimental data and also to

the values found in mastoparan T-REMD simulations at 300 and 400 K.
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Figure 3.8 – (a) Mastoparan and (b) ALPS23 helicity per temperature. The conformations found in

CHARMM36m (red) and AMBER99SB-ILDN (blue) simulations were classified by temperature.

The mean helicity values are given in the plots with points, the lines represent the standard

deviations.

3.5.1 Area Per Lipid

The area per lipid (APL) is one of the most common descriptors of a lipid bilayer structural

properties. It can be measured by experimental assays and is also a good estimator of the FF

reliability. X-ray scattering data of DOPC bilayers at 30°C determined a mean APL of 67.4 A2

[125]. Table 3.2, shows the APL values found in the MD and the T-REMD simulations. The MD

simulation of the membrane without peptide at 300 K, reproduces exactly the APL value found

experimentally for pure DOPC membranes. Unfortunately there is no experimental data available

for DOPC:DOG membranes. In T-REMD simulations, mastoparan is present. Conformations

at 300 K show a DOPS APL of 0.62A2, a bit smaller than the simulations without peptide.

Mastoparan seems to slightly pack the lipids decreasing their area. However, at 400 K the APL

increases notably. DOPC mean APL is 0.76A2. Increasing the temperature increases lipid motility

and separates them away in the membrane. DOG follows the same tendency than the DOPC.
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Simulation Temperature (K) Lipids APL (nm2) STDV (nm2)

REMD with peptie

300
DOPC 0.62 0.01

DOG 0.48 0.04

400
DOPC 0.76 0.04

DOG 0.63 0.08

MD without peptide 300
DOPC 0.67 0.01

DOG 0.52 0.04

Table 3.2 – Area Per Lipid values for DOPC and DOG in MD and T-REMD simulations. In

T-REMD simulations, the mastoparan is present, inserted in the membrane/water interface.

Thickness

The thickness is another important membrane structural property, closely related to the area:

when a membrane reduces its area, the thickness increases and vice-versa. MD simulations without

peptide show a membrane thickness of 4.22 nm. The results are consistent with the APL values

discussed before. The thickness decreases when the peptide is present: the lipid are more compact

so they need to order their aliphatic chains, increasing the bilayer global thickness. However, in

the simulations at 400 K, the thickness decreases to 3.80 nm. As the lipids occupy more lateral

space, their aliphatic chains are less ordered and the thickness decreases.

Simulation Temperature (K) Thickness (nm) STDV (nm)

REMD
300 4.24 0.13

400 3.80 0.09

MD 300 4.22 0.07

Table 3.3 – Thickness values for DOPC and DOG in MD and T-REMD simulations. In T-REMD

simulations, the mastoparan is present, inserted in the membrane/water interface

3.6 Discussion

In this chapter, we have presented a FF comparison project for AH/membrane simulations. The

reliability of reproducing AH structural properties in the membrane was assessed for four differ-

ent FF combinations: GROMOS54A7/Berger, OPLS/Berger and AMBER99SB-ILDN/Berger and

CHARMM36m/CHARMM36 for peptide/lipids. The results were conclusive, GROMOS54A7/Berger

combination fails to reproduce neither mastoparan or ALPS23 experimental data. OPLS/Berger

simulated mastoparan structural properties correctly but failed with a weak helix like ALPS23.

In literature, the Ulmschneider brothers already observed the failure of OPLS to reproduce the

helicity of melittin in DOPC [8]. The two FF that reproduced better the structural properties of
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both peptides were AMBER99SB-ILDN/Berger combination and CHARMM36m. They predicted

correctly the helicity values observed by NMR and CD assays. However, CHARMM36m slightly

overestimates the helix content, especially for ALPS23. Regarding the secondary structure graph

in figure 3.7, it seems that CHARMM36m predicts the folding of residues that are normally unfol-

ded even in the membrane, as the two termini or the Gly in the case of ALPS23. This should be

taken into account for future projects when extracting structural information from CHARMM36m

simulations. Strangely, a recent work on melittin in DOPC found that CHARMM36 predicts an

helicity slightly lower than those measured by CD, while CHARMM36m predicts a very low con-

tent of helix [72]. However in this work, the case is very peculiar since the helix content measured

in their CD experiment is only 16 %. Furthermore the sources of the force field they used seem

untraceable.

CHARMM36 reproduces correctly membrane structural properties in terms of APL and thick-

ness as shown in the initial paper [123]. It also reproduces the decrease of APL when mastoparan is

embedded in the membrane, a phenomenon that has been observed many times in literature such

as in a recent ref. [240]. Its accuracy in reproducing lipid bilayer structural properties has also

been checked in other projects such as NMRLipids [34, 14], where the order parameters of the polar

heads (on the glycerol and choline carbon atoms) predicted by different FF were compared to solid

state NMR data. CHARMM36m out-stands for its capacity to reproduce membrane structural

properties and it is currently one of the most reliable FF for lipids.

In this project we have also used the ability of DOG-containing membranes of mimicking

curved membranes structural properties [141]. CD assays showed that ALPS35 was capable of

binding slightly curved membranes containing DOG but with less affinity than highly curved

membranes [141]. In the simulations, ALPS23 stayed inserted into the membrane / water interface

in an α-helical conformation during the simulations. As it is a weak helix, it cannot fold in flat

bilayers. Including DOG in the membrane composition allow to carry out membrane simulation

with properties similar to curved membranes facilitating curvature sensors binding and folding.

All the simulations were carried out using the enhanced sampling technique T-REMD. Simula-

tions at high temperature showed that the peptide is thermostable in the membrane. Apparently,

some AH are thermostable in the membrane because the bilayer acts as a conformational restraint,

maintaining the peptide folded. The Ulmshcneider brothers were the first to describe AH ther-

mostability in MD simulations. They carried out elevated-temperature simulations of peptide /

membrane systems and they were able to reproduce correctly the peptide structural properties in

the membrane [212, 44]. They showed that melittin (an antimicrobial peptide) in POPC resists up

to 95°C and keeps its helicity intact [44]! Regarding mastoparan, its thermostability was tested a

few months ago up to 54°C by NMR assays [152]. The authors carried out studies on conformation

and stability of mastoparan in methanol. Methanol was considered to be appropriate as a mem-

brane mimetic for mastoparan. They observed that at low temperatures, mastoparan folds into

an α-helix from residue 5 to residue 12 and the helix is maintained even at 54°C. Since Mastopa-
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ran is an α-helix close to Melittin (their sequence has a related amino-acid composition), we can

speculate it is probably thermostable up to higher temperatures than 54 °C. Mastoparan thermo-

stability is also observed in this project up to 400 K with CHARMM36m. Figure 3.8 shows that

the mean helix content barely varies when temperature increases. However, the helicity decreases

a bit with AMBER99SB-ILDN. Thus, we can conclude that the thermostability of mastoparan is

better reproduced by CHARMM36m than AMBER99SB-ILDN.

Regarding ALPS23, the peptide remains folded at all temperatures for CHARMM36m. For

AMBER99SB-ILDN, the helicity decreases a bit when the temperature increases. As said above,

predicting a thermostable peptide is expected for mastoparan. However, it is not for ALPS23.

CD assays of ALPS35 in presence of DOPC/DOG (85/15) liposomes at increasing temperatures

showed that this peptide is progressively denatured between 25 and 80°C [216]. At 80°C (353 K),

there is almost no helicity left. Here we have a shorter version ALPS23, but we can expect it

is not thermostable as well in liposomes. These results question the reliability of CHARMM36m

to reproduce ALPS23 SS at high temperatures. We need to be cautious with structural informa-

tion obtained at high temperatures and mainly focus on the results obtained at the physiological

conditions. AMBER99SB-ILDN would be more in phase with experiments regarding its thermal

response, even if it is probably still too stable at high temperatures. One might question whether

we simulated long enough. The convergence of ALPS23 helicity with AMBER99SB-ILDN at the

highest temperature (400 K) is presented in figure 3.9. We observe a relative convergence of

the smoothed curve, although it is difficult to be really sure it has converged. It would be very

interesting to prolong this REMD to at least 400 ns.

All in all, we showed in this chapter that REMD is definitely interesting for validating AH /

membrane FF. It is a much more stringent test to pass than simply launching regular MD at room

temperature. If the FF does not predict a stable helix, the ensemble of structures at the bottom

temperature will show very rapid helicity loss. If on the other hand, the helix is maintained for

a few hundreds of ns, its is a solid indication that the helix is predicted as stable by the FF. In

literature, there have been many tests of FF on soluble proteins / peptides [100, 192], or pure lipids

[133]. But the combination of both proteins and lipids are less tested [186, 98]. Here, the AH test

is very challenging as it involves subtle details in the protein FF and in its interactions with the

lipid FF. Reproduce the folding of AH is already difficult, but it is probably a greater challenge to

properly reproduce AH sensitivity to temperature. Some delicate balance between the amino-acid

composition, the AH fine interactions with lipids and most likely water, are all involved in a tricky

way. The choice of T-REMD among all the enhanced sampling techniques is discussed further in

next chapter.

To come back to the beginning of the chapter, Sapay and Tieleman were asking for more

experimental data and more tests on protein / lipid systems [188]. We think AH / lipid systems

assessed by REMD is a good step forward in that direction and it should be generalized for

protein/lipid FF developments.
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Figure 3.9 – Convergence of ALPS23 helicity with AMBER99SB-ILDN at the highest temperature

(400 K). Each black symbol represents the helicity for each frame at 400 K. Because it can only

take discrete values, it is hard to judge of its relative convergence. We thus added a smoothed

curve in red using the lowess() function in R with a smoother span of 0.01.

Next chapter is a continuation of this project. The two more reliable FF found in this project,

AMBER99SB-ILDN/Berger and CHARMM36m, will be tested to check if they are able to repro-

duce correctly AH insertion and folding in membranes. With these two projects, we will be able

to determine which is the best existing FF for AH/membrane simulations.
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Chapter 4

Computational study on mastoparan

insertion in the membrane

4.1 Introduction

Amphipathic Helices (AH) are generally extended in the solvent and they fold into an α-helix upon

binding to the membrane. When talking about AH, the insertion mechanism is called partitioning

[222] (For a further description of this process, please consult introduction section 1.4). The par-

titioning mechanism was described by Seelig in three phases: attraction, adsorption and folding

[195]. During the attraction, the peptide approaches the membrane driven by electrostatic or hy-

drophobic interactions. The adsorption occurs when the peptide locates parallel to the membranes

surface. The first interactions take place, but the residues are not inserted yet, so the peptide is still

unfolded. Finally, the AH partitions in the membrane while folding at the same time. Depending

on the peptide sequence, the insertion begins from one of the terminal ends or the center of the

peptide and then the rest of the sequence partitions sequentially. The folding is coupled to the

partitioning [223], they take place at the same time. The nucleation propagation model describes

this mechanism: one hydrophobic residue gets inserted and the folding starts. Folding propagates

thought the sequence while the rest of the residues partition [136, 10].

Understanding the partitioning and folding process is a fundamental basis to decipher AH

action mechanism. It has numerous applications, as, for example, in biomedicine. AH peptides

are becoming more and more popular in drug design because of their simplicity and capacity

of crossing cell membranes and deliver cargos. For example, designed AH peptides are being

used as lead compounds to inhibit NUPR1 interactions, a multifunctional intrinsically disordered

protein (IDP) involved in the development of pancreatic ductal adenocarcinoma (PDAC) [187].

Another example is the oncolitic peptide LTX-315, which is being developed by LytixBiopharma

as treatment for sarcoma disease [204].
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Numerous research groups have studied peptide/membrane interactions by computational tech-

niques. Molecular Dynamics (MD) has enormously evolved in the past years, increasing the reliab-

ility of the results and decreasing the computational costs [211]. Within MD techniques, enhanced

sampling methods have been developed to increase the amount of information obtained from the

simulations. These methods allow to study long time scale processes and have been applied to pep-

tide/membrane interaction research. Temperature-Replica exchange molecular dynamics (REMD)

was used in 2005 to describe a peptide insertion in a membrane for the first time. WALP-16 was

used as model peptide and the bilayer was composed of DPPC lipids. They observed the insertion

and folding of the peptide with a transbilayer orientation. The results suggest that the insertion

of the peptide precedes secondary structure formation [158]. The Ulmschneider brothers applied

elevated-temperature simulations to study the interactions of two different peptide types with the

membrane: synthetic transmembrane peptides from WALP family (W16 and W23) and melittin

(interfacial peptide). Elevated-temperature simulations can be applied to membrane peptides be-

cause the bilayer protects peptides secondary structure, preventing denaturation. From these

simulations they succeeded in observing the partitioning and folding of the peptides at atomic

level, a process that is not possible to simulate yet with classical MD simulations due to the long

time scales involved ( microsecond-timescales) [212, 44, 43]. In 2011 metadynamics were used to

study the mechanism of membrane curvature sensing by amphipathic helices [55], specifically, the

amphipathic N-terminal helix of endophilin (H0), which targets curved membranes rich in pack-

ing defects. Last but not least, a recent article published in 2021, showed the novel application of

replica-exchange umbrella sampling (REUS) simulations to study the insertion of a transmembrane

peptide called pTB in the membrane. They succeeded in calculating the free energy of insertion,

showing that there is a small barrier of 4.3 kcal/mol for the insertion from bulk water [115]. For

further information about these researches and techniques, please consult the introduction chapter.

MD simulations have succeeded in accurately capturing the process of peptide binding, folding,

and partitioning into lipid bilayers. In this chapter, the AH mastoparan from wasp venom, which

has been presented in the previous chapter, is used as model system to study the insertion mechan-

ism of AH in membranes. T-REMD simulations are carried out to observe the partitioning/folding

process. First, T-REMD simulations of the peptide in water are launched to explore its conform-

ational space in water. This simulations give reliable starting structures that we use afterwards

to launch the simulations of the insertion. For the T-REMD of insertion, the peptide is initially

placed in the solvent, a few nm away from the membrane. The peptide is free to move in the

simulation box and to approach and bind the membrane. These enhanced sampling simulations

are a good approach to explore the insertion mechanism and the secondary structures involved at

atomic level. All simulations were done twice with two different force fields (FF): CHARMM36m,

AMBER99SB-ILDN when the peptide is in a water box and AMBER99SB-ILDN/Berger combined

for peptide/lipids where lipids are present. These FF were determined to be the most accurate

for reproducing AH structural properties in the membrane in the previous chapter. Now, we want

to test which one reproduces better the dynamics of the insertion. AMBER99SB-ILDN/Berger
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simulations were done by Dr. A. Bacle under Patrick Fuchs supervision and CHARMM36m ones

were done during this Ph.D by myself.

4.2 Materials and Methods

4.2.1 Simulations in water

In water, one T-REMD was launched with CHARMM36m FF, being the starting conformation

the NMR structure 1D7N, which is folded into an α-helix. Two T-REMD were launched with

AMBER99SB-ILDN FF, one also with 1D7N model as starting structure and the other one with an

unfolded conformation. The starting structures are shown in figure 4.2.a. The three T-REMD were

carried out with the same conditions for the results to be comparable: minimum temperature of 300

K, maximum temperature of 400 K, pressure set at 1 bar and 20 % probability of exchange between

replicas. The systems are composed by one peptide, 2455 water molecules for CHARMM36m

simulation, 3357 for AMBER99SB-ILDN’s ones, and 4 chloride ions to neutralize the system.

TIP3P water model was used for both FF [113, 142]. CHARMM36m simulation last for 500 ns

and AMBER99SB-ILDN’s for 100 ns. This is because CHARMM36m simulation takes longer

to stabilize as seen in figure 4.2. For CHARMM36m system, 27 replicas were needed, 31 for

AMBER99SB-ILDN. This difference was due to the difference in the number of water molecules.

In both cases exchanges are attempted every 2 ps.

4.2.2 Simulations in the membrane

Two T-REMD of mastoparan insertion are presented in this chapter. One was carried out by myself

using CHARMM36m FF. The other one was done by A. Bacle and combines AMBER99SB-ILDN

FF for the peptide, TIP3P [145] for the solvent molecules and Berger for the lipids. CHARMM36m

and AMBER99SB-ILDN are AA FF and Berger a UA FF. The two REMD were done with the same

conditions for the results to be comparable: minimum temperature of 300 K, maximal temperature

of 400 K, pressure set at 1 bar and 0.2 probability of exchange between replicas. The systems are

composed by one peptide, 60 DOPC and 10 DOG lipids, 2800 water molecules for CHARMM36m

simulation, 2796 for AMBER99SB-ILDN/Berger one, and 4 cloride ions. TIP3P water model was

used for both FF [113, 142]. The bilayer composition was the same used in the previous chapter

(Force Field comparsion Chp. 3.1) as it was demonstrated that it mimics curved-bilayer properties

[216]. The simulations last for 300 ns. Exchanges were attempted every 2 ps. 33 replicas are

needed for CHARMM36 simulation and 36 for AMBER99SB-ILDN/Berger. There is a difference

between the number of replicas because Berger FF is a UA FF. Also, the number and size of the

particles employed vary so do the number of replicas needed. The initial structures are extracted

from the "mastoparan in water" simulations. AMBER99SB-ILDN’s initial structure corresponds

to the most populated cluster in water (Fig. 4.1.b). For CHARMM36m’s T-REMD, two structures
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are used, alternating between replicas. They correspond to the second and third most populated

conformations and they are very similar: unfolded with one turn (Fig. 4.1.a).

Figure 4.1 – Molecular system at time 0 ns for (a) CHARMM36m and (b) AMBER99SB-ILDN

T-REMD insertion simulations. For CHARMM36m simulations, two different conformations al-

ternate between replicas.

4.3 Mastoparan in water

4.3.1 Helicity content

The first thing to check on the simulations is the helicity content. Figure 4.2.b shows the evolution

of the helicity through time at the bottom temperature for CHARMM36m and AMBER99SB-

ILDN simulations. Notice that we are going to use the conformations simulated at 300 K. This

means that we do not follow continuous replicas over the temperatures, we only use the ensemble

of conformations that have been simulated at the bottom temperature. Comparing the two T-

REMD with a folded initial structure, the behaviour is similar with both FF. The percentage

of helicity decreases at the beginning of the simulation until is stabilizes around 20 % with high

fluctuations. In AMBER99SB-ILDN’s simulation with the unfolded starting structure, the helix

content increases until it is stabilized at the same values than the previous two curves. Results are

consistent: using different FF and starting structures, the mastoparan finally presents the same

helicity content. Table 4.1 shows the statistics. Only the fraction of the simulations where the

systems are equilibrated is considered for the analysis. Results are again consistent, they are very

similar between the FF and independent from the starting structures. The standard deviation are

very high, which means that the system is very dynamic and the peptide explores a wide range of

conformations. CD assays carried out by our collaborations (Guillaume Drin, CNRS, Université

de Nice) showed an helicity content of 20 % for the mastoparan in water (data not published yet),

so our structural results are validated by experimental data, supporting the reliability of the FF

employed.
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Figure 4.2 – T-REMD in water.(a) Initial structures used to launch the REMD simulations: the

folded structure was employed with both FF. The unfolded one was only used with AMBER99SB-

ILDN FF. (b) Mastoparan helicity content through time. The ensemble of conformations at 300 K

is analyzed, no replica is followed over the temperatures. On the left, results for the CHARMM36m

simulation; on the right, results for the two AMBER99SB-ILDN simulations. In the three simula-

tions, the system takes several ns to get equilibrated. Only the fraction of the simulations where

the system is equilibrated is used for the analysis and it is shown with the black dotted line.

4.3.2 Structural clustering

To get a deeper knowledge about the conformational ensemble of mastoparan in water, a structural

clustering is carried out for the three simulations. The clusterization is done using GROMACS

software and uses the RMSD value between the conformations as reaction coordinate. The RMSD

only takes into account the positions of the α-carbons. Only conformations founded at 300 K are

considered. For CHARMM36m simulations, the Cut-Off (CO) for the RMSD value was set at 0.5

nm. The conformations were divided in 5 different clusters. The most populated one contains 80.5

% of the conformations and the central structure is shown in figure 4.3. For AMBER99SB-ILDN

simulations, a CO of 0.22 nm was used. More than 40 clusters were found for both simulations. The

most populated clusters contain the same conformation in both simulations and it is also shown

in figure 4.3, where it is aligned with the structure extracted from CHARMM36m simulation.

This structure represents 46.3 % of the conformations in the simulation with the extended starting

structure and 39 % in the simulation with the folded starting structure. Notice that the CO

used for AMBER99SB-ILDN and for CHARMM36m differ, so we can not compare the number of

different clusters that we obtain or the populations of the clusters. However, the conformations
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that stand out for the simulations of the two FF are very similar. The RMSD value between them

is 2.37 Å. The conformations are partially folded with a helix content of 57.1 % for CHARMM36M

and 42.86 % for AMBER99SB-ILDN. This means that the peptide can also be found forming a

partial α-helix in water.

Force Field Helicity (%) STDV

CHARMM36m 18.0 24.8

AMBER99SB-ILDN 19.0 7.6

Table 4.1 – Mastoparan mean helicity in water. Information extracted from "mastoparan in water"

T-REMD conformations at 300 K.

Overall, CHARMM36m and AMBER99SB-ILDN results agree and are independent of the

starting structure employed. Regarding the helicity content, the computational results also match

experimental ones. This validates the reliability of both FF employed and confirms that they are

a good choice to perform further simulations to observe mastoparan insertion in the membrane.

AMBER99SB-ILDN major conformation shown in figure 4.3 is employed to launch the REMD

simulation of the insertion. However, CHARMM36’s major structure presents higher helicity

that AMBER99SB-ILDN major structure. As seen in the previous chapter, CHARMM36 tends to

slightly overestimate the helicity content. For this reason, the starting structures of CHARMM36m

T-REMD of insertion are unfolded. Two conformations are employed that alternate between the

replicas: the central structures of the second and third most populated clusters. They are both

similar, unfolded with one turn (Fig. 4.1). This strategy is used so that the "helix overestimation"

effect is counterblanced.

Figure 4.3 – Mastoparan in water most populated conformations found in CHARMM36m (blue)

and AMBER99SB-ILDN (green) simulations.
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4.4 Mastoparan partitioning into the membrane

4.4.1 Insertion in the membrane

In this section, a detailed analysis of mastoparan partition in the membrane is presented. The

analysis is based on the results showed in table 4.2. Table 4.2 presents the detailed results of the

partitioning process. The partitioning is studied per residue and results for both FF are compared.

The first column shows the time that each residue takes to insert into the membrane for the first

time. We consider that a residue is inserted when the z position of its Cα stays for more than 15

ns under the phosphorous level. For CHARMM36m FF, the minimum time is 16.51 ns and the

maximal 30.89 ns. The N-terminus shows the lowest values, and it increases along the sequence.

This means that the N-terminus gets inserted before the central residues, and the central residues

get inserted before the C-terminus. This was expected as the N-terminus presents positive charges

that are attracted towards the negative charges of the membrane, as the phosphor atoms. A similar

tendency is observed for AMBER99SB-ILDN/Berger REMD. However, its time scales are shorter

than CHARMM36m ones, ranging between 11.42 ns and 21.6 ns. May be, this is an artifact caused

by Berger FF. As the lipid model is simplified (united-atom), the dynamics are accelerated.

The second information that is shown on table 4.2 is the number of times that each residue

gets inserted. Once they partition into the membrane, the residues are able to get out back to the

solvent and then get inserted again. In the simulations, if the z position of the Cα of a residue

spends more than 15 ns over the phosphor level, we consider that the residue is no longer inserted.

The less stable is the interaction, the more times it can get in and out of the membrane. Both

simulations show that the residues close to the N-termini have less number of insertions, which

means that the insertion is more stable, as expected because of its positive charges. Residues of

the C-termini present higher number of insertions which means that the interaction is less stable.

To finish the analysis, table 4.2 shows the percentage of time that each residue spends inserted

into the membrane. In general, the percentages are very high for both FF and for all the residues,

which confirms the affinity of the peptide for the membrane. In both simulations, the N-termini

presents the higher values and the residues having the lower percentage of time inserted are the

two terminal ones: ILE13 and the LEU14.

Overall, the results show that the insertion is initialized by the N-termini, followed by the

central residues and then by the C-termini. The N-termini has more affinity for the membrane

and its insertion is more stable and last longer compared to C-termini insertion.
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CHARMM36m AMBER99SB-ILDN

Residue First insertion

(ns)

Number of

insertions

Time inserted

(%)

First insertion

(ns)

Number of

insertions

Time inserted

(%)

ILE1 16.5 1.9 91.2 12.4 1.5 90.3

ASN2 19.8 2.1 90.0 11.4 1.2 95.2

LEU3 23.2 1.7 90.1 15.7 1.8 88.7

LYS4 23.6 2.6 89.1 13.1 1.7 94.1

ALA5 25.8 2.3 88.8 1.0 1.9 91.0

LEU6 25.5 1.8 89.7 18.9 1.4 88.2

ALA7 25.7 2.3 89.4 18.2 2.2 89.5

ALA8 23.5 2.4 88.7 19. 2.1 90.0

LEU9 28.2 2.3 88.0 21.6 2.0 87.6

ALA10 23.0 4.0 84.8 17.0 3.8 83.1

LYS11 23.6 5.3 82.4 15.0 2.3 92.1

LYS12 28.8 4.0 81.7 12.1 2.5 92.6

ILE13 30.8 3.9 77.8 20.3 2.8 80.9

LEU14 29.8 3.5 77.8 19.8 3.2 80.0

Table 4.2 – Statistics of mastoparan partitioning times in the membrane. The position of the z

coordinate of each α-carbon is taken for the analysis. Results for two different FF (CHARMM36m

and AMBER99SB-ILDN) are compared.

4.4.2 Partitioning/Folding coupled mechanism

Having a look at the simulations, one easily realize that the partitioning and the folding are

related. Indeed, the partitioning/folding mechanism is coupled and it is observable in the T-

REMD simulations. Of note, the results shown in this section are just an illustrative example

of mastoparan behaviour observed in our simulations. One of the CHARMM36m replicas has

been selected to study the partitioning / folding in the membrane. Figure 4.4 shows mastoparan

insertion along time. The z coordinate of mastoparan center of mass (COM) is plotted with respect

to the mean z position of the phosphorous atoms of the upper layer. The peptide approaches the

membrane, and starts partitioning around 100 ns. Then, it goes out from the membrane for a

moment and partitions again at 250 ns approximately. In the graph, the helicity content of the

peptide is showed too. There is a direct relationship between the partitioning and the helicity

content. This content increases when the peptide gets inserted and decreases when it is out of the

membrane. At the end of the simulation, there is a 30 % of helix, which is quite low. This means

that in the 50 last ns of simulation the peptide has not suceeded in realizing the full process of

partitioning / folding into the membrane, so the replica need to be prolonged to observe the whole

process.
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Figure 4.4 – Illustrative example of the partitioning / folding coupled mechanism. The information

is extracted from one of the CHARMM36m T-REMD replicas. The plot shows mastoparan COM

z coordinate through time (red), with respect to the mean z position of the phosphorous atoms of

the upper layer (black). In the same graph, the evolution of the helicity through time is plotted

(green).

4.4.3 Helix content

The objective now is to check if there is a relationship between the dynamic information extracted

from table 4.2 and the secondary structure of the peptide. Figure 4.5 shows mastoparan helicity

per residue for both FF. In both cases, the extreme residues have lower helicity values than the

central residues. For both FF, the C-terminus is the less-structured part of the peptide. A the same

time, the C-terminus presented the less-stable binding with the membrane as saw in the previous

section. Together, these results suggest relationship between the insertion and the capacity of

folding: the more stable the partition, the more stable the folding. These results also agree with

the NMR-resolved structure [91], where mastoparan also presents unfolded termini. CHARMM3m

FF seems to overestimate the helicity content,as discussed in the previous chapter: it predicts the

folding of residues that are normally random-coil.
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Figure 4.5 – Mastoparan’s helicity per residue in CHARMM36m and AMBER99SB-ILDN REMD

insertion simulations. AMBER99SB-ILDN (pink) predicts an α-helix from residue LEU3 to residue

ALA10 approximately. CHARMM36m (blue) predicts an α-helix from residue ASN2 to residue

LYS12

4.4.4 Orientation in the membrane

To end up with mastoparan insertion study, partitioning analyses are carried out to better under-

stand the orientation of the peptide in the membrane. This analyses are only done for CHARMM36m

T-REMD. Figure 4.6.a shows mastoparan helical wheel predicted by Heliquest [77]. The predicted

amphipathic helix is not perfect but still the two sides can be distinguished. Figure 4.6.b presents

the partitioning box plot: the z positions of the residues are plotted relative to the lipid phosphor-

ous mean positions. It is important to note that only inserted and folded conformations at 300 K

are used for the construction of this plot. Overall, the partition results agree with the predicted

helical wheel: the hydrophobic residues are located deeper in the membrane than the lysines which

are charged and able to interact with the solvent. The only residue that do not behave as predicted

is the ASN2, which is located higher than expected because it belongs to the unfolded N-terminus,

not following the helical structure.

Figure 4.6.c shows the process of insertion observed in one of the T-REMD replicas as an

example. Three residues are studied: one N-terminal residue, the ASN2, one central residue,

the ALA8, and one C-terminal residue, the LEU14. Their z coordinate is plotted through time.

During the first 50 ns, the insertion process takes place as deduced from table 4.2: the N-terminal

residues initiate the insertion, followed by the central residues and then by the C-termini. In this

replica, the insertion is very stable for the whole peptide. Once they are partitioned, the LEU14

is positioned much deeper than the other two residues, as illustrated in Fig.4.6.b. During this

simulation, the peptide folds very quickly into an stable α-helix, as reflected by the mean helicity

content (61.8% +/- 6.7). As the partitioning/folding is a couple process, the secondary structure
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results are coherent with the insertion.

Figure 4.6 – Analysis of mastoparan partitioning in the membrane. (a) Helical wheel model of the

mastoparan. (b) Box plot showing the partitioning per residue. The black and green lines mark

the phosphorous and glycerol levels respectively. (c) ASN2, ALA8 and LEU14 Z position through

time in one of the REMD replicas.

4.5 Discussion

In this chapter, T-REMD technique has been employed to study AH insertion in the membrane.

Using the mastoparan as model system, this enhanced sampling technique allowed us to perform

an in depth exploration of mastoparan insertion mechanism with atomic details. Compared to the

elevated-temperature technique used by the Ulmschneider brothers [212, 44], T-REMD provides

higher sampling because several replicas are launched at the same time. In addition to that, in

T-REMD the temperature is exchanged between replicas. The temperature jumps act as some

kinetic energy booster on the system, accelerating thereby the kinetics. Compared to REUS and

metadynamics simulations, which are biased along some reaction coordinates of the system, in T-

REMD simulations the system is free to explore any part of the energy landscape. Its dynamics is

accelerated thanks to the high temperatures, but no reaction coordinate is biased, which is preferred

to observe the partitioning/folding mechanism to assure that we explore in depth all the zones of

the conformational landscape without neglecting possible orthogonal processes. Unfortunately,

individual replicas of a T-REMD simulation have its temperature changed along time, accordingly

the kinetics is modified as well. Thus it is generally difficult to deduce kinetic information from

these simulations even though some methods have been proposed [225, 35, 48]. In the next chapter,

another strategy is presented to study the kinetics of mastoparan folding.
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Another important valuable information presented in this chapter is the FF comparison. To

have accurate, reliable FF is essential for the evolution of MD techniques. The FF is the basis

for the quality of the results. The scientific community needs to be aware which FF suits better

their molecular systems of interest. Specific projects are carried out to this aim, as the NMRLipids

project for lipids [34, 14], where CHARMM36m outstands for its capacity in reproducing lipid

structural and dynamic properties (Please consult the introduction for further information). In

this chapter, we successfully compared CHARMM36m and AMBER99SB-ILDN/Berger FF for

AH insertion in lipid bilayers. In general terms, results from both FF agree. CHARMM36m

seems to slightly overestimate the helix content of the α-helices compared to experimental results.

However, its evolution in the past years has been amazing, it grows very fast and nowadays presents

the widest ensemble of parameters among all FF. In addition to that,the developers have created

CHARMM-GUI, a web server where you can easily construct your molecular system of interest and

obtain the necessary files to launch MD simulations. CHARMM-GUI has simplified enormously

the work of generating MD simulations and its an advantage of using CHARMM36m FF. For all

these reasons, CHARMM36m is the FF that I have used the most during my Ph.D, and it will be

present in most of the chapters.

The T-REMD simulations in water describe a major extended conformation. In water, the

peptide is free to move as it has no restraints and explore a wide number of conformations. α-

helical structures are observed for both FF, although they are less common (approximately 20%)

and less stable, as we can deduce from the standard deviation values. Unpublished CD data from

our collaborators, validate the helicity observed computationally. From the structural clustering

carried out, we obtain a first big cluster of partially-folded helices. The main structure matches

between the two FF, a two-turn helix with an unfolded C-terminus part. The agreement between

the two FF supports the reliability of the results. From these first set of simulations, we can

conclude that both FF accurately predict mastoparan behaviour in water.

The T-REMD simulations of the insertion showed the partitioning and folding mechanism of

the mastoparan in the membrane. The peptide is mainly unfolded in water and folds into a

completely-folded α-helix while partitioning in the membrane. This insertion mechanism agrees

with the model proposed by S. White, who described the partitioning/folding process as a coupled

mechanism [222, 223]. The insertion is lead by the N-terminus part of the peptide. Mastoparan

N-terminus contains positive charges that are responsible of the attraction towards the phosphate

atoms of the membrane. This attraction is lead by electrostatic interactions, a mechanism largely

described in literature as, for example, in the case of the alpha-synucleine [10]. This phenomenon

is more obvious in CHARMM36m simulations than in AMBER99SB-ILDN/Berger simulations.

Once inserted, it folds into a stable α-helix. Structural results are similar for both FF and match

the NMR-resolved structure [91], as it was showed in the previous chapter. Peptide orientation in

the membrane was analyzed for CHARMM36m simulations. The orientation seems reasonable and

matches the relative positions predicted by the helical wheel. The hydrophobic residues partition
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deeper in the membrane to establish hydrophobic interactions with the aliphatic chains. At the

same time, polar residues keep the lateral chains towards the solvent to interact with water. The

AH is positioned under the phosphate group, at the glycerol level, as it was described in 1999 by

X-Ray diffraction [92]. During all the simulations, the N and C-termini stay unfolded. The N-

terminus partitioning is stable and long-lasting thanks to the positively-charged residues. However,

the C-termini is unfolded and has no charges, so its partitioning inside the membrane is weaker.

It keeps changing its structure and moving in and out of the membrane in most of the replicas.

Interestingly, when the C-terminus is partitioned in the membrane, it locates deeper than the rest

of the sequence.

To sum up, using T-REMD simulations we successfully achieved the prediction of mastoparan

insertion in the membrane. CHARMM36m and AMBER99SB-ILDN/Berger simulations repro-

duce the AH structural properties and the partition/folded mechanism as previously described in

literature. CHARMM36m FF slightly overestimates the helicity content but is the most reliable

FF for lipid simulations and contains the biggest ensemble of molecules. From now, CHARMM36m

will be used as a preferred FF to study AH/membrane molecular systems.
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Chapter 5

Mastoparan folding in the

membrane: Markov State Models to

decipher the mechanism

5.1 Introduction

A Markov State Model (MSM) is a mathematical formalism that describes the dynamics of a chan-

ging system. To build a MSM, the system needs to be markovian. This means that the probability

of each state of the system depends only on the present state, not on the events that occurred

before. This principle is very powerful and can be applied to molecular processes. Nowadays, it is

possible to construct an MSM from MD simulations. It helps describe the structural, kinetic and

thermodynamic properties of the system. The method is very powerful as it allows to study long

processes whose time scales are not reachable by simple MD simulations. Two research teams have

developed outstanding contributions to the theory and software for MSM construction from MD

simulations. Dr. Vijay Pande research team from the University of Stanford developed a python

library called MSMBuilder to provide statistical tools for MSM construction of long timescale dy-

namics of biomolecular systems [18]. Notable MSMs were constructed by this team, such as the

study of membrane fusion [117]. The study is focused in the fusion of neural and viral highly curved

membranes. The time scales and atomic details achieved were not previously reachable. They de-

scribed membrane fusion as a branched pathway with stalk-like and hemifusion intermediates on

a 6- to 9-ns time scale (Fig 5.1). The results were in good agreement with experimental ones and

they discovered intermediate states to unstable to be seen by experimental assays. Unfortunately

MSMBuilder is not maintained anymore and it has fallen in disuse.

Dr. Frank Noé, from the University of Berlin and his research team, have developed another

program to apply MSM theory to MD analyses. The program is called PYEMMA [190] and it is
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Figure 5.1 – Branching reaction pathway for vesicle fusion from an unfused starting state (a) to

the fully fused state (d). Two paths are described: (I) canonical pathway through a stalk-like early

intermediate (b) and a hemifused late intermediate (c) and (II) rapid fusion with just the stalk-like

intermediate.

developed as a python library. Easy to use, it is currently the main software for MSM construction

from MD simulations. Since its publication, it has served to study numerous molecular systems.

In 2017, the first protein-protein interaction model was built [170]. Constructing an AA model

of protein association and dissociation was a challenge for MD protocols because of the long time

scales of the process, especially the protein-protein dissociation. Dr. Noé’s team achieved the

construction of an MSM of the interaction between the ribonuclease barnase and its inhibitor

barstar from MD simulations. They produced a detailed model of the mechanics that describe

the intermediate structures, energies and kinetics. Figure 5.2 shows the last intermediates of the

model. The tightly bound model agrees with crystallographic observations. The publication of

this model is not only important for the description of the barnase-barstar interaction, but it

also demonstrates that by combining MD simulations with MSM building it is possible to describe

molecular interactions with atomic precision at the millisecond time scales. Numerous models have

been created since then to describe different types of interaction such as protein-ligand binding. The

dynamics of the oncoprotein fragment Mdm2 interaction with its nanomolar inhibitor, the peptide

PMI was described and for the first time direct estimates of the kinetics beyond the second time

scale were reported [163]. The model describes with high accuracy and precision the mechanism of

interaction by the strong binding of a variety of conformations with different hydrophobic contact

surfaces that interconvert at the millisecond timescale. This project represented a double challenge:

peptide exploration until reaching the active site and peptide folding within the binding pocket.

In this chapter, we present the novel application of MSM to the study of Amphipathic Helices

(AH) and their interaction with membranes. Dr. S. White studied the dynamics of folding peptides

in membranes [222], describing the partitioning and folding of the peptide as a coupled process

(called "partitioning/folding coupling"). He calculated Melittin partitioning-folding thermody-

namics by CD assays. However, to understand the insights of the process he wanted to determine

the thermodynamics of the partitioning and the folding independently. To this aim, he construc-

ted a hydrophobicity scale [223] and described the two processes separately (For more details,

check section 1.4). This experimental work is very useful for comparing computational results to

experimentally quantified thermodynamic and kinetic data.
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Figure 5.2 – Late steps of banase-barstar binding to loosely bound state. Two possible pathways

are presented depending on the interacting side of barstar. The major pathway (b - d - e) represents

the 95 % of the flux where barnase Arg 59 ‘anchors’ into barstar via Asp 35, Glu 76 and Trp 38.

The aim of this chapter is to use MSMs to describe AH behaviour based on S. White description

of the dynamics, that is the specific part dealing with the peptide folding within the membrane

(described by ∆GAC in figure 1.22 in section 1.4). A well-known peptide, the mastoparan from wasp

venom, is used as model system. Our strategy was designed so that it may be served to study more

complex systems in the future. In this strategy, REMD and MSM techniques are combined. We

got inspired from Dr. Gherard Stock, who developed a novel strategy by combining metadynamics

with MSM [28] (please check chapter 1.5 for further information). First, some REMD simulations

are launched to explore the conformational space of the system. From the REMD conformations

obtained at 300 K (bottom temperature), a set of conformations are selected and used as starting

structures to launch classical MD simulations for MSM construction. This allows to enhance the

sampling without biasing the final model and to obtain quantitative thermodynamic values of the

process that could be compared to White’s experiences. However, the time scales of the whole

partitioning/folding dynamics appeared too long to be simply solved like this. In consequence, we

divided the dynamics in sub-processes. Two models are presented. The first one, the mastoparan

in the membrane, shows the folding and unfolding of the already membrane inserted peptide. The
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second one is the mastoparan in water, where the peptide has a greater structural freedom and gets

to explore a higher number of conformations that would lead to its partitioning into the membrane.

5.2 Mastoparan in the membrane

5.2.1 Simulation details

The system

The system contains the mastoparan in the solvent, a few nm away from the membrane. Only

one molecule of the peptide is present. The membrane is composed by 60 DOPC molecules and

10 DOG molecules: 70 lipids in total. This composition was chosen to increase the number of

packing defects and mimic membrane curvature, as explained in the previous chapters (Chp. 3.1).

The solvent contains 2800 water molecules and 4 chloride ions to neutralize the system. The total

number of atoms is in the simulation box is 18083. The system is contained in a cubic box.

REMD

The first step of the strategy is to carry out REMD simulations of the system to explore in depth

its conformational space. From the 300 K simulation, starting structures are selected to launch

classical MD simulations that will serve for MSM construction. REMD initial structure is shown

in figure 5.3a Although the peptide is in the solvent, it partitions very quickly into the membrane

(less than 150 ns). The minimum temperature is set at 300 K and the maximum at 400 K. 33

replicas are simulated for 1 µs. Figure 5.3b shows the potential energy distribution of the system at

every temperature. Consecutive temperatures have an overlapping region. Temperature exchanges

between replicas are only allowed when the structure potential energies are in the overlapping

region. It ensures the two exchanged conformations are valid in terms of Boltzmann distribution

at the new temperatures.

For the MSM MD simulations, only conformations where the peptide is inserted are considered.

First, a structural clustering is done using GROMACS software. The RMSD between the structures

is used for clustering. Only Cα are considered. This method is employed to have a first overview

of the structural ensemble. Some of the cluster centers are picked as starting structures for regular

MDs which will served for the MSM construction. Other starting structures are chosen just by

exploring visually the simulations. The aim is to have very different starting points to maximize the

sampling. 10 different structures were chosen in total, from totally unfolded to perfect α-helices.

MSM simulations

40 MD classical simulations are used to construct the MSM, with 10 different starting points. Each

simulation is launched with random initial velocities. The simulations are 500 ns long, 20 µs are
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(b) Potential energy distributions of the molecular system at

each temperature. Each curve belongs to a temperature used in

the REMD simulations, from the bottom temperature (300 K,

curve on the left) to the upper temperature (400K, curve on the

right)

Figure 5.3 – REMD simulations of mastoparan partitioning in the membrane

simulated in total. CHARMM36m is used as FF, the temperature is set at 300 K and the pressure

at 1 bar. The simulations are done in NPT conditions.

5.2.2 Model Construction

Featurization and Dimensionality reduction

The features that better describe the system are the RMSD with respect to the NMR structure

(PDB code 1D7N) and the Radius of gyration (2 features are selected in total). By testing dif-

ferent features, we realized that these two gave the more reliable results in MSM construction for

mastoparan system. Although this number is already low, TICA is still used to extract the slow

coordinates with a lag time of 50 ns. The chose of this lag time is justified later, with the ITS

validation. After TICA application two ICs were obtained so there was not really a reduction of

dimensionality. However, TICA was still useful to extract slow ICs. Figure 5.4 shows the histogram

of the ICs values. It seems that the values are homogeneously distributed along the conformational

space. In the same figure, the first image of the conformational landscape is also shown where the

conformations of the simulations are projected onto the two ICs. The color of the map is related

to the free energy of the conformations. The conformational space seems well sampled, which is a

147



good sign regarding the convergence of the simulations. It is possible to distinguish about 3 energy

basins, one of them very deep on the left.
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Figure 5.4 – On the left, the histograms of the two IC obtained after TICA dimensionality

reduction. On the right, the conformational landscape projected on the two ICs. The color is

related to the structure’s free energy.

Discretization into microstates

VAMP2 score test is employed to choose the number of microstates. The score converges very

quickly at a low number of clusters. For this model, 30 microstates are created using k-means

algorithm. Figure 5.5 shows the conformational landscape with the center of the microstates

marked in black. They are well scattered along the conformational landscape. The background

color is related to the sample density. The high density regions correspond to the low energy

regions that stand out in figure 5.4. From this discretization, the transition probability matrix is

constructed. The number of jumps between microstates between time t and t+ τ (i.e. where τ is

the lag time) are counted, creating a transition matrix. The values of this first transition matrix

are then transformed into probabilities.

Validation

The transition probability matrix is calculated after discretization into microstates. This matrix

is employed for the model validation. First, the ITS convergence is checked from the eigenvectors

of the matrix. The ITS of each process depends on the eigenvalue and the lag time, and it is

calculated as follows:

ITSi = − τ

ln |λi(τ)|
(5.1)

The first eigenvectors represent the slowest dynamics of the system. The results of the test are

showed in figure 5.6a. It shows the timescale values for the first 10 eigenvectors at different lag

times. The gray region is the "non resolved area" because it corresponds to processes which are

faster than the lag time. For lag times higher than 50 ns, the ITS stabilize and the values keep
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Figure 5.5 – Trajectory conformations projected on the two ICs. The darkness of the color is

proportional to the density of the region. The structures were divided in 30 microstates. The

centroids are marked in black.

somehow constant with increasing lag times. This means that 50 ns was a good choice for the lag

time and that the ITS have converged.

The second part of the validation protocol is the Chapman-Kolmogorov (CK) test, that serves

to validate the markovianity of the model. It compares the right and the left side of the Chapman-

Kolmogorov equation:

P(kτ) = Pk(τ) (5.2)

The test is done for a theoretical model presenting two macrostates (macrostates will be presen-

ted in next section). As shown in figure 5.6b, the two sides of the CK equation coincide (the curves

overlap). In consequence, this is a passing CK test and the dynamics of the system are proved to

be markovian.

Coarse Graining into macrostates

Although conformations were clustered into microstates, the number of states is not small enough

to construct a simple model. For these reason, a second clusterization is carried out, to assemble

the microstates into big macrostates. The selection of the number of macrostates of the system

is based on the ITS values of the transition probability matrix eigenvectors. The comparison of

the ITS are shown in figure 5.7. Clearly the first eigenvector plotted (which corresponds to the

second eigenvector of the matrix) stands out among the others so it is the only one employed for

the coarse-graning. In consequence, the model only shows two macrostates.

Now, we search for better understanding of the process described by the first eigenvector. To do

this, the conformations are projected onto the two ICs as done before, but now the color is related

to the value of of the first eigenvector (Fig. 5.8). Recall, each eigenvector component corresponds

to a microstate, thus the colors in Fig. 5.8 tell us to which microstate each conformation belongs
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different values for k were chosen. For each trans-
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Figure 5.6 – Model validation

to. In this figure it is easy to distinguish the extreme values of the eigenvector: the purple cluster

on the bottom left and the green cluster on the top center. The rest of the conformations may

belong to transition states between the two clusters.

Using the information contained in the first eigenvector we can proceed to the coarse-graining.

First, a "fuzzy assignment" is computed, where each point of the conformational space is given

a probability of belonging to macrostate 1 and macrostate 2. Results are presented in figure 5.9.

They show a big central cluster that also contains the right side of the conformational space and

a small cluster on the left. This division is a bit surprising because the two extremes of the first

eigenvector observed in figure 5.8 have a high probability of belonging to the first macrostate.

To have concrete results, the discrete assignment is also carried out (Fig. 5.10), where each

conformation is assigned to one single cluster. This division matches better the eigenvector inform-

ation and it is not very different from the fuzzy assignment. It divides the conformational space in

a big cluster containing the central and the right side and a small cluster containing the left side.

This division is satisfactory and better matches the eigenvector information saw in figure 5.8 so it

is kept for the model construction.
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Figure 5.7 – eigenvectors comparison throughout the ITS. On the left, direct ITS comparison. On

the right, ITS differences between consecutive vectors.

Figure 5.8 – Trajectory conformations projected on the two ICs. The color is related to the value

of the conformation on the first eigenvector.

The model

So far, the model has been validated and coarse-grained, so it is time to compute the model

properties. The first step is to study the structural characteristics of the two macrostates. Figure

5.11 shows the superposition of 10 representative structures of each cluster. State 1 contains

unfolded structures and some partially folded while state 2 contains perfectly folded α-helices,

similar to the experimentally-resolved structure. The first eigenvector (slowest process) corresponds

to the folding of the peptide.

It is also possible to calculate the stationary probability of the states pfolded and punfolded. The

folded structure is the most frequent in the membrane, 65% vs 35 % for the unfolded one. The

numbers next to the arrows correspond to the MFPT between the structures, being the folding

more than 2 times faster than the unfolding. Finally, converting these stationary probabilities

into a free energy of folding ∆Gfolding = −RTln(pfolded/punfolded) gives a value of -0.37 kcal/mol.

Although the sign is right, this very small value was somewhat of a surprise. This questions whether
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Figure 5.9 – . Fuzzy assignment. On the left, probability of the conformations of belonging to

the first macrostate. On the right, probability of the conformation of belonging to the second

macrostate.
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Figure 5.10 – Discrete assignment. Trajectory conformations are projected on the two ICs. The

model was coarse-grained into 2 macrostates. The purple zone marks the first macrostate and the

yellow zone the second one.

there could be an error in the evaluation of the stationary probabilities. We comment more on this

very small ∆Gfolding value in the section discussion below.

5.3 Mastoparan in water MSM

5.3.1 Simulation details

The system

The system contains the mastoparan in water. Only one molecule of the peptide is present. The

solvent contains 2455 water molecules and 4 chloride ions to neutralize the system. The total

number of atoms in the simulation box is 7608. The shape of the simulation box is a rhombic

dodecahedron.
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Figure 5.11 – MSM of the mastoparan in the membrane

REMD

As in the previous model, an REMD is done first to explore the system conformational space and

to obtain the initial structures to launch MD classical simulations for MSM construction. REMD

initial structure is the first model of the NMR structure with PDB code 1D7N. The minimum

temperature is set at 300 K and the maximum at 400 K. 27 replicas are simulated for 500 ns.

The potential energy distribution of the system at different temperatures also overlap as shown in

figure 5.3b. Consecutive temperatures have an overlapping region and exchanges are only allowed

when the structure potential energies are in the overlapping region. The conformations at 300 K

are used to obtain the starting structures for MSM simulations. A clustering based on the RMSD

values is used to classify the structures using GROMACS software. The RMSD value used as

cut-off is 0.45 nm. 9 clusters where created and the center of each cluster was used to launch the

simulations.

MSM simulations

30 classical MD simulations are used to construct the MSM, with 15 different starting points. The

9 first starting points are obtained from the REMD simulation and 18 MD simulations of 500

ns each were launched. With this simulations a first MSM was constructed, which contained 6

macrostates. One structure was selected for each of the macrostates and they were used to launch

12 new simulations of 1 µs. The 18 first simulations were also extended to 1 µs.

Each simulation is launched with random initial velocities. 30 µs are simulated in total.

CHARMM36m is used as FF, the temperature is set at 300 K at the pressure at 1 bar. The

simulations are done in NPT conditions.
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5.3.2 Model Construction

Featurization and Dimensionality reduction

The MSM of the mastoparan in water is constructed using the same features than the model in the

membrane: the RMSD with respect to the experimental structure and the Radius of gyration. They

also seem the best features to describe the peptide in water and it makes the model comparison

easier. The lag time of this model is higher compared to the model in membrane: 300 ns. TICA

was applied and the number of dimensions was reduced to 1, so the model is constructed with

a single IC. For these reason, the 2D landscapes showed in the previous model are replaced by

1D graphs this time. The values of the IC for the first MD replica are showed in figure 5.12.

Two different set of conformations are easily distinguished. The system takes long time scales to

switch from one state to the other. Just by looking at the IC, we can already obtain interesting

information about the system dynamics.
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Figure 5.12 – IC values through time for the first MD simulation. Two different ensembles of

conformations are easily distinguished (bimodal distribution).

Discretization into microstates

VAMP2 score test is employed to choose the number of microstates. The score converges very

quickly, at a low number of clusters. For this model, 30 microstates are created using k-means

algorithm. The transition probability matrix is calculated from this discretization.

Validation

The transition probability matrix needs to be validated before finishing the model construction.

First, the ITS convergence is checked from the eigenvectors of the matrix. Results are shown in

figure 5.13a. After multiple tests, we needed to go to quite long lag times. In these conditions,

the grey area (processes which are faster than the lag time) expands a lot implying that only
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one process can be resolved at the chosen lag time. This means that the model will only have 2

macrostates. Overall, the ITS seem to be converged.

The CK test is showed in figure 5.13b. The two curves (predicted and estimated) overlap so

the system can be considered as markovian.

100 200 300 400
lag time / ns

10 1

100

101

102

tim
es

ca
le

 / 
ns

(a) ITS validation through convergence at increasing

lag times. Each eigenvector is plotted with a differ-

ent color. The grey zone is the "unresolved area",

processes that are faster than the lag time. Using a

lag time of 300 K, only one eigenvector is out of the

grey zone, meaning that only one slow process can be

resolved.

(b) Passing CK test for a two states model. When

doing a CK test, we estimate a new MSM transition

matrix at lag time kτ and propagates the original

transition matrix by the k-th power. In this case, 5

different values for k were chosen. For each trans-

ition between states (1->1, 1->2, 2->1 and 2->2),

the estimated and the predicted values are plotted

together. The curves overlap, meaning that the sys-

tem is markovian and the CK test positive.

Figure 5.13 – Model validation

Coarse Graining into macrostates

The system is coarse-grained into 2 macrostates by discrete assignment. Figure 5.14 shows the

energy landscape of the system where the IC values are plotted against their corresponding free

energy. 4 energy basins are observed and it is interesting to see the different energy barriers between

them. The colors are used to show the division into the two macrostates: state 1 in yellow and

state 2 in purple. Each macrostate contains 2 energy basins, which means that there is a lot of

structural diversity within the macrostates.
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Figure 5.14 – Energy landscape. Conformations are projected on the single IC of the model. Two

macrostates where created: state 1 in yellow and state 2 in purple.

The model

The final model is shown in figure 5.15. In this model, the state 1 corresponds to folded con-

formations and the state 2 to unfolded structures. The unfolded structures are preferred in water

(71%). The presence of helices in water is minimal and the structures are only partially folded

(1 or 2 turns). The MFPT show that the fastest processes is the unfolding, which represents the

major flux of the dynamics. We converted the stationary probabilities into a free energy of folding

∆Gfolding in water and obtained a value of +0.53 kcal/mol. Again, the sign is right, which means

the folding is not favored in water, but the value remains very small as for the membrane case

presented above. We comment on it in the section discussion below.

Figure 5.15 – MSM of the mastoparan in water
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5.4 Constructing a model without TICA

The features used for the construction of the two models are the RMSD respect to the experimental

structure and the Radius of Gyration. The total number of coordinates is two. Working with two

dimensions is easy and no dimensionality reduction is needed to construct the model. To study the

importance of TICA in MSM construction, a second model of the mastoparan in the membrane is

constructed without it, using the two features directly as coordinates. The parameters are the exact

same ones as those used in the previous model: lag time of 50 ns, 30 microstates, 2 macrostates,

etc. This way the two models are comparable.

The values of the two features are first normalized by centering them at 0. The histogram of the

values are shown in figure 5.16.a. Then, the conformations are projected into the two coordinates

to visualize the energy landscape (Fig. 5.16.b) The shape of the landscape is very similar to the

one obtained with the ICs (5.4) but it seems to be turned by 90◦. This is because even though

the dimensionality is not reduced in the model of the mastoparan in the membrane, TICA does a

linear combination of the two coordinates to extract the slowest dynamics. To better understand

the effect of this linear combination in the model, the construction of the model is continued

hereafter. The validation protocol is applied and the model passes the two test (Fig.5.16.c and

d) although the ITS seem not to be as well converged as in the previous model. Figures 5.16.e

and f show the landscape clusterization in microstates and macrostates respectively. The number

of microstates is 30 as in the previous model and the centers of clusters are well spread along

the conformational landscape. Regarding the division into macrostates, the clusterization seems

similar as the one obtained in the first model. In addition to this, the adjusted populations are

the same: 35 % for state 1, the unfolded structures in the membrane; and 65 % for state 2, the

folded structures. However, taking a look at the structures that belong to each of the clusters in

figure 5.17, one realizes very fast that the structural clusterization of the conformations is poorly

done: extended and folded structures are mixed. Regarding these results we can conclude that the

exclusion of TICA algorithm of the model construction has decreased the quality of the model.

5.5 Mastoparan free energy landscapes comparison

To conclude with this research, we aimed to carry out a comparison between the model in water

and the model in the membrane. To do this, the data of the two sets of simulations (the trajectories

in water and in the membrane) are combined in a single set and TICA is applied. The algorithm

takes into account the information of the two systems to perform the linear combination of the

features. The lag time is set at 50 ns and two ICs are obtained. Then, the conformations of the

trajectories are projected onto the two ICs to design the conformational landscape and the free

energies are calculated (Fig. 5.18). The shapes of the two landscapes are very similar but there

are three interesting observations:
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• First, the mastoparan explores a wider conformational landscape in water than in the mem-

brane. Peptide conformational changes in cell membranes are more complicated because of

the presence of three chemically distinct environments, where folding occurs, namely, the

aqueous phase, the chemically heterogenous region of the lipid headgroups, and the hy-

drophobic environment of the hydrocarbon lipid tails. The membrane interfaces and the

lipid tails represent spatially and chemically non-trivial fluid environments that react to the

presence of a peptide. Partitioning between these environments is typically dependent and

intricately linked to the conformation of the peptide. In consecuence, LTX-315 in water

presents a wider conformational ensemble than in the membrane.

• Second, the major energy basin of the model in the membrane is not present in water. This

basin corresponds to the folded structures. As it was already shown, they are the most

frequent in the membrane but they are barely present in water.

• Third and last, the energy basins corresponding to the unfolded structures are deeper in

water where the folding is not favored. There is even an energy basin in water that is not

even explored in the membrane.

5.6 Discussion

The major conformation of the model in membrane is a perfectly folded α-helix similar to the NMR

structure 1D7N. This validates the structural aspect of this 2 states model. However, it would be

interesting to construct a 3 states model of the system, where we could observe intermediate

structures and better understand the folding pathway. This has not been possible yet using MSM

because the 3 states model did not pass the CK test. Increasing the sampling could help the

construction of this new model.

Regarding the MSM in water, the structural information matches CD assays done by our

collaborators (see figure 3.4). This results showed a presence of ∼ 20% of helix in water. Even

though the structural information is experimentally validated, the lag time employed for the model

construction is very high compared to the values that are normally seen in literature [170]. An

increase of the sampling could allow to use smaller lag time values.

Comparing the two models, the dynamics of the peptide in water is much faster than in the

membrane. This is normal because when the peptide is inserted in the membrane its movements

are restricted by the contact with lipids and its dynamics are slowed down. The free energy barrier

in the membrane for the peptide folding seems to be very high, whereas in water all the areas of

the conformational landscape are easily accessible with small free energy barriers, the free energy

landscape is smoother. In consequence, the peptide has greater freedom of movement in water, it

gets to explore a wider conformational ensemble, and the kinetics is accelerated.

Apart of comparing the structural aspects of the model with experimental results, we need to
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compare and validate the predicted thermodynamic values to experiments. The calculated free

energy of folding we found in the membrane is amazingly small (-0.37 kcal/mol). If we compare

this value to the model of Almeida and White [3], these authors determined a value for the free

energy of folding per residue (∆Gres) of -0.37 kcal/mol (check the introduction section 1.4 for a

detailed explanation). Thus we see that our value of -0.37 makes no sense as it would correspond

to the contribution of one residue only. According to the model of Almeida and White, taking 70%

of helicity for the Mastoparan according to our CD experiments and ∆Gres) of -0.37 kcal/mol, the

free energy of folding of Mastoparan in the membrane would be ∼ -3.6 kcal/mol. It is possible

that using our computational models the free energy of folding may be underestimated (e.g. -2

kcal/mol), but not this much. The value we find in water is too low as well (+0.53 kcal/mol).

By turning things over in our head, we probably think we made an error in the extraction of

the stationary probabilities pfolded and punfolded. Unfortunately we did not succeed in finding the

culprit before finishing this manuscript, but we are actively searching.

It is also interesting to compare the kinetics obtained with our MSM to experiments and other

computational works. Experimentally, a first work used stopped-flow fluorescence to study the

kinetics of insertion and folding of mastoparan-X [206]. They could fit their data to a double

exponential and obtain rates on the order of ∼ 160s−1 and ∼ 10s−1. However they attribute the

first rate to the binding of the peptide on the membrane, they propose then that the folding is

very fast (a few hundreds of ns) and then the second rate would correspond to some more buried

insertion of the folded peptide. It is thus difficult to compare our results to theirs. However it is

is interesting to see that they propose that peptide binding to the membrane occurs first followed

by its folding within the membrane. A second interesting study used T-jump experiments on

mastoparan-X binding to DPPC vesicles [193]. T-jump is interesting as it can go down to faster

timescales and does not have the issue of "dead-time" mixing of stopped-flow. In this study, the

authors took advantage of the transition temperature of DPPC from gel to fluid (Tm = 37°C).

The authors fit their data with a double exponential with two lifetimes. A fast lifetime around

∼ 10µs which is attributed to the binding to the lipids (in the gel phase) and folding but with

minimal membrane insertion, and a slower lifetime of a few hundreds of µs which would correspond

to the insertion of the whole helix more deeply into the membrane (in the fluid phase). Although

interesting, this is not easy to compare our data to theirs since their experimental setup probed

different phenomenons than those we simulated (notably a lipid phase change).

Regarding computational works, Chen et al. performed some high temperature simulations of

melittin in POPC. Using a temperature of 120 °C, they could observe the full insertion and folding

of the peptide. They did not calculate kinetic rates as they did not observed sufficient events, but

the order of magnitude of the full folding was ∼ 1.3µs at 120 °C. Melittin is 26 residues long thus

it takes longer to fold within the membrane than mastoparan. However, using our value of 1.6 µs

for mastoparan to fold, it seems we predict faster folding kinetics.

At the computational point of view, another important conclusion from this research is the
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importance of TICA algorithm in MSM construction. TICA is a dimensionality reduction algorithm

that of reduces the number of features’ coordinates to simplify the model construction. But most

importantly, it does a linear combination of the coordinates to extract the slow dynamics of the

system. Even if the number of coordinates of the system is small, TICA must be applied when

looking for long time scale processes. In this chapter, it has been proved that TICA has a key

role in MSM construction. For the model of the mastoparan in water, the dimensionality is not

reduced after TICA is applied but the two obtained ICs are a linear combination of the RMSD

and the Rgyr more appropriate to do a structural clustering of the system. This way, TICA helps

to improve the quality of the structural clustering, and, in consequence, the quality of the model.

In this project, Patrick and I have designed an effective strategy to study AH dynamics. It

is the first time a MSM has been constructed for this type of molecular systems. First, the

REMD simulations served to explore in depth the conformational landscape of the system. Some

structures were selected to launch classical MD simulations at 300 K to construct an MSM. This

way, we constructed a non-biased dynamic model of the system from which we can obtained

thermodynamical information at physiological temperature. This is an evolution compared to the

elevated-temperature MD strategy [211], where thermodynamic values at physiological temperature

needed to be inferred from values at high temperature. The inferred values are less reliable and

the physics of the lipids and the solvent are unnatural, so we consider that combining REMD with

MSM construction is a better strategy to study the kinetics of molecular systems. Moreover, it

can be applied to non-thermostable systems unlike the high temperature strategy.

In the future the aim will be to construct a model of the whole partitioning process, where we

get to see the peptide approaching the membrane, getting inserted and folded. The computational

cost of doing this with classical MD simulation is enormous. Especially, the peptide desorption

from the membrane is a so slow process that it is highly unlikely to be observed within a classical

MD trajectory at room temperature. One possible solution would be to use an adaptive strategy

where a first set of simulations is launched, then we select the one that has progressed the most

to launch another set of simulations. Using a strategy like that Noé and collaborators have been

able to reach processes on the millisecond time scale such as protein/protein dissociation [170].

However, we believe that a more efficient and promising strategy would be to use a technique called

transition-based reweighting analysis method (TRAM) developed by Noé’s group [226]. TRAM is

a statistically optimal approach that combines large ensembles of short MD classical simulations

with enhanced sampling techniques. As the enhanced sampling techniques are biased, the unbiased

thermodynamics are calculated with reweighting estimators. This technique allows to construct

an MSM from a combination of classical MD simulations and REMD simulations. This way, the

sampling could be enhanced with a reduced computational cost.
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Figure 5.16 – MSM of the mastoparan in membrane using the RMSD and the Rgyr instead of

TICA ICs. (a) Histograms of features. (b) Energy landscape. (c) ITS validation. (d) CK test.

(e) Conformational landscape with the center of microclusters plotted as black dots. The color

is related to the density. (f) Conformational landscape divided in two macrostates, purple and

yellow.
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Figure 5.17 – Ten representative structures of set 1 (purple) and set 2 (yellow) obtained from the

model constructed without applying TICA.

Figure 5.18 – Landscape comparison. Mastoparan landscape in the membrane (left) is compared

to the landscape in water (right). The ICs are shared between the two systems. The conformations

of the trajectories are plotted onto the ICs.
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Chapter 6

Multidisciplinary study on LTX-315

interaction with membrane

6.1 Introduction

Cancer is the second leading cause of death globally. It caused nearly 10 million deaths in 2020

[71]. According to the World Health Organization, about 1 in 6 deaths is due to cancer. For this

reason, scientific research is devoted to study cancer, create new and more advanced therapies and

design novel drugs as treatment. In 2018, the Nobel prize of medicine was attributed to James P.

Allison and Tasuku Honjo for their research in new inmmunotherapies against cancer.

The Norwegian company LytixBiopharma is developing proprietary oncolytic peptides as a

novel immune therapy to fight cancer. Their lead compound is a 9-residues oncolytic peptide

called LTX-315 (KKWWKKW-Dip-K). In its sequence, it presents a non-standard aminoacid, the

Di-Phenylalanine (Dip), which is similar to the Phenylalanine but with two aromatic rings (Fig.

6.1). LTX-315 represents a very promising strategy to treat cancer and is actually in phase II of

clinical assays in Europe and US [https://www.lytixbiopharma.com/].

LTX-315 presents pro-inflammatory and pro-immunogenic properties. It is able to cross the

plasma membrane to get into the cytosol. Once there, it is enriched in mitochondria, where it pro-

duces the Mitochondrial Outer Membrane permeabilization (MOMP) (Fig. 6.2) [204]. LTX-315

disrupts the mitochondrial network and dissipates inner transmembrane potential. The mitochon-

drial intermembrane proteins are then released into the cytosol and necrosis is induced. There are

evidences of BAX and BAK implication in this mechanism [238]. Unregulated necrosis favors the

regression of solid tumors and the release of Danger Associated Molecules (DAMPS) [201]. This

mean that a systemic tumor specific immune response is produced and that it is possible to create

specific immune memory for cancer cells.

Despite the advances in LTX-315 development and clinical research, we lack of knowledge
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Figure 6.1 – Amino acid sequence of the oncolytic peptide LTX-315. The sequence is mostly

composed by Lysines and Tryptophans. Notice the presence of a non-standard amino acid, the

Di-Phenylalanine in position 8. Image from [201]

about its action mechanism from a molecular point of view. Regarding its structure, Haug et al.

predicted it as an amphipathic helix (AH) by Haug (Fig. 6.3) [86]. As it is capable of getting

internalized into the cell, it may be part of the Cell Penetrating Peptides (CPP) family [124].

However, there is no detailed information about LTX-315 interaction with membranes, like how

it binds the plasma membrane or how it specifically targets the mitochondrial membrane. We

have dedicated a part of this research work to study its action mechanism with a combination of

experimental and computational techniques in collaboration with LytixBiopharma and its CEO

Øystein Rekdal.

Øystein Rekdal could send us some mg of pure LTX-315 at the beginning of my thesis. With the

help of our colleague Nicolas Rodriguez, I could carry out myself some fluorescence affinity assays

to study LTX-315 interaction with Large Unilamellar Vesicles (LUVs). The aim was to study the

impact of charged lipids in LTX-315 affinity for membranes. Then, I performed circular dichroism

(CD) assays as a first approach LTX-315 structural properties in the solvent and in presence

of LUVs. CD assays can shed light on LTX-315 AH behaviour. T-REMD simulations were also

performed to observe the peptide in water and in the presence of neutral and charged lipid bilayers.

MD simulations are a key to the understanding of the peptide action mechanism and technique

can shed light on LTX-315 structural and dynamic characteristics with atomic detail. The diP

parametrization was a challenge. It was done in three different ways. First, I used predictive

tools to get approximate values and I launched in-void test simulations of the system. Then,

our collaborators Dr. Rodolphe Vuilleumier and Dr. Ari Seitsonen from the ENS (département

de Chimie) carried out some Quantum Mechanics (QM) calculations to help us parametrize the

di-Phe. Unfortunately, we did not have time to assemble and present these results within this

manuscript. However, at the same time the CHARMM FF developers published some new official

CHARMM36 parameters on a wealth of non-standard amino acids, including di-Phe [54]. The last

one was used to launch our T-REMD simulations.

We had the chance establish two collaborations with colleagues of our laboratory that have

provided valuable information to this project. Our colleague Olivier Lequin and his Ph.D student
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Figure 6.2 – Mitochondrial Outer Membrane permeabilization (MOMP). LTX-315 penetrates into

the cell and targets the mitochondrion. The disruption of the mitochondrial outer membrane

induces necrosis. Image from [201]

Edward Chalouhi carried out NMR experiments to study LTX-315 structural properties in buffer

and in the presence of lipids. They aimed to describe the peptide secondary structure at residue

level and give specific information about DiP behaviour and LTX-315 orientation in the membrane.

Further in time, our collaborator Øystein Rekdal (CEO of Lytix) could send us some LTX-315

labeled with a fluorescent probe (Pacific blue). Our colleagues Françoise Illien and Sandrine Sagan

could then carry out internalization assays, where she studied the LTX-315-Pacific blue penetration

capacity and preferred pathways. By combining all these in vitro and in silico techniques, we

aimed to construct a model of LTX-315 interaction with membranes to start deciphering its action

mechanism. This information is crucial to understand its biomedical properties, and in the future

it can serve to design new drugs of the same family. Also, this is the first study on Dip behaviour

at a molecular and atomic level, giving light to the understanding of its intramolecular interactions

and its contribution to the general structure of the peptide.

6.2 Materials and Methods

6.2.1 Liposome preparation

Large Unilamellar Vesicles (LUVs) are used in this project to perform fluorescence and Circular

Dichroism (CD) assays. They are prepared as follows. An appropriate volume of the lipid of
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Figure 6.3 – LTX-315 putative structure as an amphipathic α-helix. (A) Helical wheel scheme.

(B) 3D representation of the secondary structure. Image adapted from [86]

interest is dissolved in chloroform are dried in glass tubes under a N2 flow. Final traces of solvent

are removed in a vacuum chamber during 30 min. The obtained films are then hydrated using

an appropriate amount of buffer (PBS buffer, NaCl=140 mM, pH=7.4) and vortexed extensively.

The amount of buffer added depends on the final concentration wanted. In this case, we searched

for a lipid concentration of 0.5 mM. The Multilamellar Vesicles (MLVs) thus obtained are then

submitted to ten freeze/thaw cycles and the homogeneous lipid suspension is passed 15 times

through a mini extruder equipped with a polycarbonate membrane perforated by multiple 200 µm

width pores. LUVs of approximately 200 µm of diameter are obtained (the real size distribution

was not checked though). Finally, the concentration of the samples is controlled with the Rouser

technique detailed below.

6.2.2 Lipid quantification: the Rouser Technique

The Rouser technique allows to calculate the lipid concentration of a sample by measuring the

concentration of the phosphorous atoms present in the lipids polar heads. This experience is

performed after the generation of the LUVs. It is essential to know the exact LUV concentration

of the samples to be able to measure the fluorescence and the CD at specific lipid:peptide ratios

The first step is to prepare samples of the LUVs by triplicate. The buffer used to generate the

LUVs also contains phosphate ions. In consequence, samples of the buffer should also be measured

to subtract the buffer contribution from that of the LUVs. Furthermore, twelve samples of a

0.5 mM phosphate solution are prepared to produce a calibration curve. Each sample contains a

different volume of the stock phosphate solution, producing the different concentrations that will

generate the calibration curve.

Once the samples are prepared, they are exposed to high temperatures to evaporate the solvent.

Then, they are treated with 300 µL of perchloric acid to break the covalent bonds that bind the

phosphorous atom to the rest of the lipid structure, liberating the phosphorous ions. A sand

bath is used to accelerate this reaction. Then, 1 mL of water, 0.4 mL of ammonium molybdate

and 0.4 mL of ascorbic acid is added to the samples in this order. The ammonium molybdate
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forms a complex with the phosphorous ions called phosphomolybdic acid. This complex interacts

then with the ascorbic acid generating a reduced complex of phosphomolybdate which presents a

blue color. The intensity of the color (optical density) is directly proportional to the phosphorous

concentration and its absorbance can be measured at 797 nm.

Once the absorbance of the calibration samples is measured, the calibration curve can be traced.

Knowing the absorbance of the LUV and buffer samples its concentrations can be inferred using

the calibration curve. Then, the resulting concentration of the buffer is subtracted from the LUVs

concentration to get the real lipid concentration of the samples. This quantification technique

allows to calculate the exact lipid concentration of the sample so the ratio peptide:lipid can be

precisely controlled.

An UNICAM UV300 spectrometer has been used for this assay.

6.2.3 Peptide quantification method

The NanoDrop 2000C spectrophotometer from Thermo Scientific is a device that allows to precisely

quantify the peptide concentration of a sample. It works for amino acids and nucleic acids, and it

allow to quantify the concentration of the sample from really small volumes of just a few microliters

(from 0,5 to 2,0 µL). This is achieved by placing the sample directly in the top of the detection

surface, using the surface tension to create a column between the ends of the optical fibers, which

forms the measurement optical path. The spectral range of the device goes from 190 to 840 nm and

it is possible to scan all the wave lengths. Its speed, simplicity and robust performance make this

device adequate to measure the concentrations of the peptides used in this manuscript. LTX-315

contains 3 tryptophan residues in its sequence and these latter have a very specific absorption at

280 nm. The intensity of the absorbance at 280 nm corresponded to a peptide concentration of 41

µM .

6.2.4 Tryptophan-Fluorescence

Emission fluorescence spectra of LTX315 in phosphate buffer (150 mM of NaCl, pH=7.4) were

measured at room temperature from 300 to 450 nm (excitation at 280 nm) in a 200-µL quartz cell

with or without LUVs of POPC, POPS or POPC/POPS mixture 50:50 at various concentrations

(from 2 to 1000 µM). The different concentrations and ratios are shown in table 6.1 . We started

to record the first spectrum of the peptide at 20 µM in pure buffer. For the next spectra, we

added progressively some lipids (from some stock lipid solutions) to obtain the wanted (increasing)

lipid concentrations. Conversely, the peptide concentration decreases (from 20 to 15 mM) when

the lipid concentration increases (from 0 to 1000 µM). Since our goal was to get a first overview

of LTX315 interaction with lipids, this way of proceeding had the advantage of consuming less

peptide. But it is important to have this in mind when interpreting the spectra: we shall reason on

wavelength variations rather than on intensity variations. Last, we did not subtract the spectrum
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containing the solution without peptide since the intensity was systematically very low (below 0.01

a.u.).

Samples [Lipid] (µM) [Peptide] (µM) Lipid:Peptide ratio

PBS 0 0 0:0

0 0 20 0:1

1 200 20 10:1

2 400 20 20:1

3 1000 20 50:1

4 2000 20 100:1

5 3000 20 150:1

6 4000 20 200:1

Table 6.1 – Ensemble of samples measured by fluorescence. The table contains the lipid and peptide

concentrations used and the lipid:peptide ratios. These 6 different samples were prepared for each

of the LUVs compositions (POPC; POPS; 50/50 POPC/POPS). The samples corresponding to

the buffer and the peptide in buffer were measured once.

6.2.5 Circular Dichroism

CD experiments presented in this manuscript were done on a Jasco J-815 spectrometer at room

temperature with a quartz cell of 0.1 cm path length. Each spectrum is the average of 5 scans

recorded from 200 to 250 nm with a bandwidth of 1 nm, a step size of 0.5 nm and a scan speed

of 50 nm min −1. Spectra of LTX315 at 50 µM were recorded with and without LUVs of POPC,

POPS and POPC/POPS (50:50) at 2500 µM (Tab. 6.2). The ratio peptide to lipid ratio was

thus 1:50. Control spectra of buffer with or without LUVs were systematically subtracted from the

peptide+lipids spectra. The final spectra are shown in units of molar ellipticity per residue [θ]M

(deg cm2dmol−1res−1) as a function of the wavelength λ (nm).

[Lipid] (µM) [Peptide] (µM)

Blank 0 0

Peptide 0 50

POPC 2500 0

Peptide + POPC 2500 50

POPS 2500 0

Peptide + POPS 2500 50

Mixture POPC/POPS (50:50) 2500 0

Peptide + Mixture POPC/POPS (50:50) 2500 50

Table 6.2 – Summary of the samples analyzed by Circular Dichroism.
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6.2.6 NMR

LTX-315 was studied in three different conditions by NMR assays: buffer, micelles and bicelles.

Samples in buffer contained 1 mM of LTX-315 and were of a volume of 300 µM . We used 50 mM

of sodium succinate buffer at pH 5.6 dissolved in H2O/D2O (90:10, v/v).

Experiments in micelles were carried out in 50 mM sodium succinate buffer at pH 5.6. with

300 µL of H2O/D2O (90:10, v/v) in Shigemi tubes also containing 1 mM LTX-315 peptide and in

the presence of 80 mM deuterated dodecyl phosphocholine DPC-d38 (Avanti Polar Lipids).

Bicelles samples were prepared in a volume of 300 µL in Shigemi tubes and contained 1 mM

LTX-315 peptide, 75 mM dihexanoyl phosphatidylcholine (DHPC) and 25 mM DMPC and/or

DMPS in 50 mM sodium phosphate, pH 6.05, 100 mM sodium chloride, 10% D2O, 0.02% (w/v)

NaN3.

NMR experiments were recorded on a Bruker Avance III 500 MHz spectrometer equipped with

a 5 mM 1H/ 13C / 15N / 2H TCI cryoprobe. 1H resonances were assigned using 2D TOCSY

(DIPSI-2 isotropic sequence of 40 and 60 ms) and 2D NOESY spectra (75 and 150 ms mixing

times) recorded at 35°C. Because of the use of non-deuterated lipids, experiments in bicelles were

acquired using a double pulsed field gradient spin echo with band-selective pulses (90°read pulse

of 4 ms duration and G4 shape and 180 °REBURP pulses of 3 ms duration) centered on the

amide / aromatic region. For the paramagnetic experiments, 1-palmitoyl-2-stearoyl-(5-doxyl)-sn-

glycero-3-phosphocholine (5-doxylPC, Avanti Polar Lipids) was added at a final concentration of

0.25 mM.

6.2.7 Quantification assays by fluorimetry

LTX-315-Pacific blue internalization in Chinese hamster ovary cells (CHO) was quantified by fluoro-

metry. A fluorescent probe called Pacific Blue was attached to LTX-315 sequence to as the peptide

is not fluorescent itself. The structure is shown in figure 6.4. Assays were carried out by our

collaborators Françoise Illien and Sandrine Sagan. The protocol she used is detailed bellow and a

descriptive scheme is shown in figure 6.5.

Cytoxicity assay (CCK8 assay) Cytotoxicity was determined with the Cell Counting Kit 8

(CCK-8) from Dojindo Molecular Technologies (Sigma aldrich). This colorimetric assay allows to

measure the viability of cells. 96-well plates were inoculated with 100 µL/well of a suspension of

CHO cells (2.100 cells/well). After 24 hours of incubation (37°C, 5 % CO2) different concentration

of peptide (0.1, 0.25, 0.5; 1, 2.5; 5; 10 and 20 µM final) were added and the plate was further

incubated for 3 hours at 37°C. After incubation, cells were washed and were incubated with 100

µL of 10% CCK-8 in DMEM for 3 hours at 37°C. The absorbance was measured at 450 nm with a

microplate reader (Polarstar Optima). Controls corresponded to untreated cells (negative control,

100% viability) and cells treated with 0.2% of Triton X-100 (positive control, 0% viability)
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Figure 6.4 – Pacific Blue probe structure scheme. This probe was attached to the LTX-315 C-

terminus to carry out quantification assays by fluorimetry. Image by Ed (Edgar181) - Own work,

Public Domain, https://commons.wikimedia.org/w/index.php?curid=66991761

Quantification assays in adherents cells 12 well plates were inoculated with 1 ml/ well of

suspension of CHO cell (500 000 cells/well). After 24 h incubation (5% CO2 at 37°C), adherents and

confluent cells (106 cells /well) were incubated one hour at 37°C or 4 °C with different concentrations

of the peptide (1. 2.5; 5 and 10 µM) in 1 mL DMEM. To access internalized peptides, after washing

cells with HBSS, (0.05%) 500 µL trypsin/EDTA (37°C, 5 min) or (0.05%) pronase (4°C, 10 min)

was added for 5 min to hydrolyze the remaining extracellular and the membrane-bound peptide

and to detach cells. After addition of enzyme inhibitors (100 µL at 37°C of trypsin inhibitor at

5 mg/ml; and at 4°C Complete Mini tablet, Roche, in 2.5 mL PBS) mixed with 100 µL bovine

serum albumin (1 mg/mL), cells were transferred into a microtube, centrifuged, washed with 1 mL

50 mM Tris buffer pH 7.4, 0.1% BSA, and lysed in 200 µL 50 mM Tris pH 7.4, 1 M NaCl, Triton

1%. The samples were then sonicated for 30 min and centrifuged 10 min at 16,000 g.

To obtain the value of the total cell-associated peptide (internalized and membrane-bound spe-

cies), after washing cells with HBSS, cells were directly lysed in 50 mM Tris pH 7.4, 1 M NaCl,

triton 1%. The samples were then sonicated for 30 min and centrifuged 10 min at 16,000 g.

Fluorescence intensity in the supernatants was monitored with a MOS 200 M fluorimeter (Biologic

SAS, France). The samples were excited at 414 nm and the intensity fluorescence was measured

between 425 et 500 nm (0.2 sec/0.5 nm), and the maximal intensity was detected around 460 nm.

The maximal intensity around 460 nm was retained for the calibration curve and for quantifica-

tion of samples. The amounts of total or internalized peptide were calculated by comparing the

fluorescence intensity of the sample with a calibration curve.

Samples for the calibration curve were prepared in parallel. For this, 10 different amounts

(from 2 to 500 pmoles) of LTX-315 were added to one million cells suspended in 200 µL lysis

buffer. We prepared a range of peptide amounts in the lysis buffer (50 mM Tris pH 7.4, 1 M

NaCl, triton 1%). The samples were sonicated 30 min and centrifuged at 16,000 g for 10 min.

Fluorescence was then measured in supernatants. The amounts of total or internalized peptide

were calculated by comparing the fluorescence intensity of the sample with the calibration curve.

For each experimental condition we used duplicate wells, and the experiments were all repeated

independently at least two times, as indicated.
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Figure 6.5 – Protocol of the quantification by fluorimetry of the internalization of LTX-315 peptide.

6.2.8 Molecular Dynamics

Generation of LTX-315 PDB file

First, we modeled the Dip structure from scratch. There are several programs and web servers that

allow to do this. We used MolView [25] [http://molview.org/], a web server were you can easily

draw any small molecule and download the structure in a .mol file. Then, we opened DIP.mol file

with pymol and generated a .pdb file for the structure (Fig. 6.6).

Then, using pymol we constructed a PDB file for the whole LTX-315 sequence but with a Phe

instead of the Dip, as non-standard amino acids are not available in pymol. Then, we proceed

to replace the Phe for the Dip structure we generated previously with MolView. The first step

is to align the LTX-315.pdb structure with the DIP.pdb structure to move the DIP atoms to

the right coordinates: the aim is to align the DIP backbone and one of the benzene rings with

the Phe residue. The easiest way to do this, is to use the program ProFit, which is specifically

created for the alignment of proteins. You can download and install the program from this link:

http://acrmwww.biochem.ucl.ac.uk/programs/profit/index.html. Having the DIP coordinates in

the correct position, we substituted the Phe for the Dip in a copy of the LTX-315.pdb file. The

Phe coordinates for the backbone were maintained. Dip atom positions were be included from the

Cβ . This way, we constructured a PDB file for LTX-315 structure from scratch.
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Figure 6.6 – Dip structure generated with MolView. Image generated with pymol.

T-REMD in water

In water, one T-REMD was launched with CHARMM36m FF [93]. For Dip we used the recent

parameters of ref [54]. 33 replicas were simulated for 170 ns (the first 50 ns were discarded for the

analysis). The starting structure was constructed from scratch as explained before. The minimum

temperature was set at 300 K and the maximum at 400 K. Pressure was set at 1 bar and the

probability of exchange between replicas was 20 %. The system was composed by one peptide,

3693 water molecules for CHARMM36m simulation, and an ion concentration of 50 mM to match

NMR experimental conditions.

T-REMD of insertion

T-REMD simulations of LTX-315 insertion were also carried out. Initially, the peptide was place

in the solvent, a few nm away from the bilayer as shown in figure 6.7. The bilayer was composed by

DMPC/DMPS 50:50. There were 72 lipids in total, 2829 water molecules and an ion concentration

of 50 mM. This composition was chosen to match NMR experimental conditions. CHARMM36

was the selected FF for lipids [234]. The minimum temperature was set at 300 K and the maximum

at 400 K. Pressure was set at 1 bar and the probability of exchange between replicas was 20 %.

6.3 Experimental Results

6.3.1 LTX-315 interacts with lipid membranes

We carried out fluorescence assays of LTX-315 in POPC, POPS or POPC/POPS LUVs to observe

its interaction with bilayers. The spectra are shown in figure 6.8. In POPC LUVs, the fluorescence

spectra slightly shift to the blue with the increase of lipid concentration (Fig. 6.8a). This variation

of Trp fluorescence clearly indicates a change in their environment as a result of the binding of LTX-

315 to the LUVs. The peptide reaches its maximum binding capacity when POPC concentration

arrives to 3000 µM . This means that at a POPC:peptide ratio of 150:1, all the LTX-315 molecules

are bound to the LUVs. In POPS LUVs we observe the same shift to the blue (Fig. 6.8b). However,
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Figure 6.7 – Initial structure for LTX-315 T-REMD simulations of insertion. The peptide backbone

is represented in pink cartoon, DMPC lipids in silver lines and DMPS lipids in blue lines. The

phosphorous atoms of the polar heads are shown in spheres.

the maximum binding capacity is reached with at a POPS concentration of 400 µM (POPS:peptide

ratio of 20:1). When using POPS LUVs, the saturation is reached at a lipid concentration 7 times

lower compared to POPC. This means that LTX-315 has higher affinity for POPS as the peptide

is rich in lysines (net charge of +6) and POPS is a negatively charged lipid. The third fluorescence

spectra correspond to the samples of LTX-315 with POPC/POPS (50/50) LUVs and the same shift

to the blue is observed (Fig. 6.8c). In this case, the maximum binding capacity is reached with

1000 µM of LUVs, corresponding to a LUVs:peptide ratio of 50:1. LTX-315 also presents higher

affinity for POPC/POPS LUVs than for POPC, showing again the impact of the electrostatic

attraction on its binding capacity.

Figure 6.8d presents the maximum intensity of each spectrum as a function of lipid concentra-

tion. This plot gives a simple visual representation of the affinity of LTX-315 for the three LUV

compositions. As it was shown previously, saturation for POPC, POPS and POPC/POPS LUVs

is reached at 3000 µM , 400 µM and 1000 µM , respectively. LTX-315 presents higher affinity for

negative lipids as it is rich in lysines. Interestingly, the curve for the mixture POPC/POPS is

closer to that for POPS than that for POPC. It means that LTX-315 affinity for the membrane

is not linearly correlated to the amount of charged lipids. A small fraction of negatively charged

lipid is probably sufficient to get an affinity increase.

These fluorescence assays of LTX-315 interaction with LUVs are the first in vitro evidence of the

peptide direct interaction with lipid bilayers and its electrostatic-driven attraction for membranes.
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Figure 6.8 – Fluorescence spectra of LTX-315 in absence or presence of LUVs of (a) POPC, (b)

POPS and (c) at different concentrations (from 200 to 4000 µM). Each cross represents the

maximum of the spectrum. The dotted line is pure buffer, the red line corresponds to the peptide

in buffer, then each other color line shows the peptide with lipids at various concentrations. The

values in the legends indicates the lipid concentration in units of µM .

6.3.2 Structural properties

Figure 6.9 shows the CD spectra of LTX-315 in absence or presence of LUVs in the UV region. The

UV region in CD usually reports on the secondary structure content of the peptide. However, LTX-

315 is particularly rich in Trp (3 amino-acids out of 9, representing 33% of the whole sequence).

Trp also has a contribution in the UV region, which gives rise to the unusual band centered between
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225 and 230 nm. Already in buffer without lipids, this band seems to exist, and it increases when

LUVs are added to the samples. This is a clear sign that the environment of Trp changes, which is

fully consistent with the fluorescence experiments shown in the previous section, where we shown

that LTX-315 is capable of binding to lipid bilayers.

Figure 6.9 – CD spectra of LTX315 in the UV region in absence or presence of POPC, POPS and

POPC/POPS (50:50) LUVs. An smoothed curve of each spectra is shown to ease the view.

In buffer (black curve in figure 6.9), LTX-315 presents the typical spectra of a random coil,

with the ellipticity close to 0 from 210 nm to 250 nm, and a negative band centered on 200 nm.

The noise is extremely high below 200 nm, we thus decided not to include this region in the figure.

Unfortunately, it is hard to infer any increase of helical content based on the blue, red and

green spectra given the band due to Trp content as well as the important noise caused by the

double bond of the oleoyl aliphatic chain at low wavelengths. Thus, we cannot definitely conclude

on the secondary structure of the peptide. However, from the peak caused by the presence of the

Trp it is possible to extract some interesting information. The peak of the samples containing

POPS LUVs is more intense than the peak of the samples containing POPC LUVs. This is due

to the higher affinity of LTX-315 for POPS LUVs than for POPC LUVs, as seen in fluorescence

assays. But which is more interesting is that the spectra of the POPC/POPS mixture is closer to

the POPS one than to the POPC one. The LTX-315 affinity for charged membranes is not linear:

a small concentration of negative charges is sufficient to increase the affinity, as it was also seen

with fluorescence assays.

To have more information about LTX-315 structural properties, NMR experiments were carried

out by our collaborators Olivier Lequin and his Ph.D student Edward Chalouhi. They studied LTX-

315 secondary structure in buffer, in micelles and in zwitterionic bicelles (a description of these

structures is given in the introduction chapter 1.3.4).

They assigned the chemical shifts of the Cα of the peptide. A chemical shift is the offset in
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resonance frequency of an specific nucleus relative to a reference frequency, divided by the Larmor

frequency. It depends only on the nucleus type and its molecular environment. From the chemical

shifts, they obtained the chemical shift deviations (CSD), which are calculated as the difference

between the experimental chemical shift observed on the spectra and the chemical shift of the same

residue in a random coil structure. CSDs were used to infer the secondary structures adopted by

the peptide. The values used as reference were the Wishart set obtained from GGXAGG peptides.

Results of CSD calculations of the peptide in buffer, micelles and zwitterionic bicelles are shown in

figure 6.10. For a given residue, if the CSD values for the Cα are higher than +1 ppm, it tends to

adopt an α-helical structure. Values lower than -1 ppm correspond to β-sheets and values close to

0 ppm correspond to unfolded conformations. Results show that, in buffer, the peptide is unfolded,

showing mostly random coil chemical shifts. In micelles and bicelles, the peptide seems to fold

into an α-helix mostly towards the C-terminal. Unfortunately, CSD cannot be calculated for Dip

residue because there are no available data to be used as reference of its chemical shift in random

coil.

Figure 6.10 – CSD of LTX-315 Cα nuclei in buffer, micelles or bicelles. CSD was not calculated

for Dip8 residue.

In order to understand the impact of the environment in the Dip conformation, they calculated

the difference between the chemical shift of the residue in buffer and in micelles or bicelles. Results

are shown in figure 6.11. The Dip shows a negative chemical shift difference between values in

buffer and in a lipid environment. It has an opposite behaviour compared to the residues forming

an α-helix. Results suggest that the Dip does not fold into an α-helix neither in the solvent or

interacting with lipids. This could be due to a steric effect of the two big aromatic rings of its side

chain.

Fluorescence and CD experiments showed that LTX-315 presents higher affinity for negatively-

charged bilayers than for non-charged bilayers. For these reasons, NMR experiments on the peptide

in anionic bilayers were recorded, specifically in bicelles containing 50% DMPS. Unfortunately, due

to some experimental difficulties, CSD could not be obtained for Cα. Instead, CSD for Hα are

presented (Fig. 6.12). When using Hα nuclei, the propensity is determined to be towards an

α-helical structure when the CSD value is lower than -0.1 ppm. LTX-315 seems to fold into an

α-helix in anionic bilayers. Compared to the results in zwitterionic bilayers, residues K2, W3 and

W4 present a more stabilized helix in anionic conditions.
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Figure 6.11 – Difference between LTX-315 chemical shifts in buffer and in (a) micelles or (b)

bicelles.

Figure 6.12

6.3.3 Orientation in the membrane

Apart from chemical shifts, other data that can be obtained from NMR experiments. The para-

magnetic relaxation enhancement experiments provide information about the peptide position with

respect to the membrane surface. A paramagnetic probe is attached to a modified phospholipid.

The strong magnetic interaction between the radical electron spin and nearby nuclear spins causes

enhanced nuclear spin relaxation, giving rise to signal broadening and intensity decrease. This

paramagnetic relaxation enhancement effect (PRE) is monitored by calculating residual intens-

ity and gives information about the peptide orientation and proximity to the paramagnetic lipid.

This information is a key in the understanding of AH/membrane interactions. O. Lequin and E.

Chalouhi carried out this experiment to study LTX-315 orientation in anionic bicelles. First, they

inserted a paramagnetic probe at carbon 5 of the fatty acid chain of the doxyl-PC lipid. Atoms

were divided in two groups to interpret the signal: backbone and side chain. The higher the in-

tensity of the signal, the lower the degree of insertion. Results are shown in figure 6.13. As we can

see, residues W3, W4, W7 and Dip are more affected by the presence of the paramagnetic probe

than residues K5 and K6, the least affected. This means that the hydrophobic residues are inserted

deeper in the membrane than the two lysines. In addition to that, the hydrophobic residues have

their side chains more affected than their backbone, so the aromatic rings are the group of atoms
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more inserted of the peptide. However K6 side chain presents the higher signal, meaning that

it is the least inserted of all the side chains of the peptide. Interestingly, K9 backbone presents

a lower signal, so it is deeply embedded. Unfortunately, because of experimental conditions, no

signal was obtained for the first two residues. From these results we can conclude that the peptide

is positioned parallel to the membrane/water interphase with an α-helical secondary structure as

the sequence of intensity is well correlated with the periodicity of an α-helix. The peptide seems

to be slightly tilted with his C-terminal more embedded than the N-terminal.

Figure 6.13 – Residual intensity calculated from the paramagnetic relaxation enhancement exper-

iments in anionic lipids. In black, results for the backbone; in blue, results for the side chains.

6.4 Computational results

Simulations in water A first T-REMD simulation of LTX-315 was carried out to observe its

behaviour in water. In this section, we analyze the replica at 300 K. The first 50 ns of the simulation

were discarded. Regarding the secondary structure, LTX-315 in the solvent stays unfolded, with a

mean helicity of 0.2% +/- 3.0. This value is so low that we can tell that the peptide is not helical

in water. A deeper analysis is presented in figure 6.14a, were the secondary structure is determined

by residue through time. The peptide is mostly in random coil. It sometimes presents small turns

or loops but never an α-helical structure. The two extremes, including the Dip residue, are always

in random coil.

We used the conformation shown at 300 K to perform an structural clustering. The RMSD

between the Cα were compare and the cutoff was set at 0.2 nm. 40 structural clusters were

obtained. The biggest one contained 35.3% of the conformations. The central structure is shown

in figure 6.14b. It is a completely extended structure, as expected regarding the secondary structure

analysis. Results match the NMR results in buffer shown in the previous section, validating the

reliability of our structural analysis. For this reason, the structure shown in figure 6.14b was used

then as initial structure for the simulations of the insertion in the membrane.

178



(a) LTX-315 secondary structure thought time by residue in T-REMD simulations in water Color green

is for the bends, black for β-bridges, grey for 310-helices, yellow for turns and white for random coil. No

α-helix is present. For this analysis, T-REMD conformations at 300 K are used. We do not follow a

continuous replica over the temperatures.

(b) Major conformation found in water at

300 K. The image correspond to the cent-

ral structure of the biggest cluster which

contains 35.3 % of the conformations.

Figure 6.14 – LTX-315 T-REMD simulations in water. Only conformations at 300 K are considered.

Insertion simulations LTX-315 was initially place in the solvent, a few nm away from the

bilayer, composed by DMPC / DMPS 50 / 50. The T-REMD simulations last for 180 ns. Unfor-

tunately, we haven’t had the time to make them longer. Although we are going to extend them,

preliminary results are shown in this chapter. Only the conformations at 300 K have been taken

into account. In the simulation, the peptide takes about 50 ns to partition into the membrane. This

process is very fast. For this reason, the first 50 ns of simulation were discarded for the analysis.

The secondary structure analysis shows an unfolded peptide in the membrane. Although it parti-

tions very fast into the membrane, it presents a helicity of 0% during the whole simulation. The

secondary structure graph is shown in figure 6.15a, and we can see that the peptide only presents

some bends and turns but there is no helical content. We carried out a structural clustering using

the RMSD between the conformations and a cutoff of 0.2 nm. 19 clusters were found. The first one

contains 23.4% of the conformations. The central structure is shown in figure 6.15b. As we can see

it is an unfolded structure, very similar to the one found in water (Fig. 6.14b). Apparently, even

if LTX-315 approaches very quickly to the membrane, simulations are not long enough to capture

the peptide folding.

Even though the peptide does not fold in the simulated time, we wanted to have further

information about the partitioning. Figure 6.16 shows the mean z position of LTX-315 center of

mass (COM) (Fig. 6.16a) and of Dip side chain COM (Fig. 6.16b). In the first plot, one can

see that LTX-315 insertion is fast and stable. For all the simulations, it takes about 50 ns to get
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(a) LTX-315 secondary structure thought time by residue in T-REMD simulations of insertion. Color

green is for the bends, yellow for turns and white for random coil. No α-helix is present. For this analysis,

T-REMD conformations at 300K are used. We do not follow a continuous replica over the temperatures.

(b) Major conformation found in the mem-

brane. The image corresponds to the cent-

ral structure of the biggest cluster which

contains 23.4 % of the conformations.

Figure 6.15 – LTX-315 insertion T-REMD simulation. Only conformations at 300 K are considered.

inserted. Once inserted, it does not go out from the membrane. Notice that there are points at

both layers. This is because we are analyzing conformations at 300 K, so structures from all the

replicas are being plotted. Some replicas bind the upper leaflet, some others the lower one. When

looking at the Dip z positions, one realizes that it partitions very deep in the membrane. Figure

6.17 shows a snapshot at 144.5 ns of simulation. The Dip is the most embedded residue of all and

its position is very deep towards the center of the membrane, even the BB is below the phosphorous

level.
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Figure 6.16 – z positions of (a) LTX-315 COM (pink) and (b) Dip SC COM (blue). Phosphorous

atoms mean position is plotted in black. For this analysis, T-REMD conformations at 300K are

used. We do not follow a continuous replica over the temperatures.

Figure 6.17 – Snapshot of LTX-315 T-REMD simulation of insertion at 144.5 ns and 300 K. Dip

is the most buried residue.

6.5 Penetration into the cell

Internalization assays were carried by our collaborator Françoise Illien to observe LTX-315-Pacific

blue penetration capacity. She has designed a novel protocol relying on fluorometry to quantifiy

fluorescent peptide inside cells. This robust method performs an absolute quantification of the

peptide internalized, and it is possible to distinguish endocytosis from direct membrane translo-

cation [96]. Part of this protocol has been applied to study LTX-315-Pacific blue internalization
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mechanism. First, she carried out cytotoxicity assays to check the range of concentrations at which

the peptide kills cells. Cytotoxicity assays were done with two cell lines: SK-OV3 (human ovarian

cancer cell line) and CHO-K1 (Chinese hamster ovary cells). Results are shown in figure 6.18a.

Between 0.25 and 0,5 µM , cell viability is over the 50 %. LTX-315-Pacific blue starts being cyto-

toxic between 10 and 20 µM . It does not seem to be more cytotoxic for cancer cells compared to

normal cells.

(a) Cytoxicity test of LTX-315 peptide in SK-

OV3 (human ovarian cancer cell line) and CHO-K1

(Chinese hamster ovary cells).

(b) Quantitative fluorescence spectroscopy of LTX-

315 internalization at two different temperatures: 4°C

and 37°C.

Figure 6.18 – Internalization assays

Considering cytotoxicity results, internalization assays were done for four different concentra-

tions of the peptide: 0.25, 0.5, 1 and 2.5 µM in CHO cells. LTX-315-Pacific blue concentration was

not increased over 2,5 µM because cells need to be viable to observe the internalization. Quanti-

fication was done by quantitative fluorescence spectroscopy at 4 and 37°C. Internalization results

are shown in figure 6.18b. At low concentrations of peptide (0.25 and 0.5 µM), we observe a small

quantity of internalized peptide at both temperatures. At 1 µM , internalization slightly increases,

especially at 37°C. The highest internalization amounts are obtained at a peptide concentration of

2.5 µM : about 20 pmol at 4°C and more than 60 pmol at 37°C. The quantity of internalized pep-

tide is much higher at physiological temperature than at low temperature. This is because at 4°C,

only direct translocation through the membrane takes place. There is no ATP production in the

mitochondrion at low temperature, so no active (energy consuming) internalization can take place

[218]. However, at 37°C the peptide can penetrate the cell by endocytosis, which consumes energy,

and by translocation at the same time. Quantitative results are shown in table 6.3. They show

that LTX-315 optimal concentration for internalization is 2.5 µM , as it was seen by cytotoxicity

assays. Also, the peptide is clearly more internalized at physiological temperature as it can use

both pathways, direct translocation and endocytosis. Finally, results show that the peptide uses

active endocytosis as a preferred internalization pathway. This study allowed us to quantify LTX

315-Pacific blue peptide in the cell at 37 and 4°C. The results showed that it behaves like a CPP:

it is able to enter the cell by direct interaction with the lipid bilayer and preferably by endocytosis
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when the peptide concentration and the temperature are high enough.

[Peptide]

(µM)

37°C

Endocytosis + Translocation

(pmoles)

4°C

Translocation

(pmoles)

Endocytosis

(pmoles)

0.25 0.9 +/- 0.05 0.9 +/- 0.05 /

0.5 2.8 +/- 0.03 2.2 +/- 0.01 /

1.0 14.3 +/- 1.7 5.1 +/- 0.5 9.2 +/- 1.8

2.5 62.7 +/- 4.1 18.4 +/- 1.7 44.3 +/- 4.5

Table 6.3 – Calculation of the quantity of LTX-315 internalized by translocation and endocytosis

6.6 Discussion

The LTX-315 peptide represents a promising strategy to treat sarcoma disease. It is part of a family

of oncolytic peptides developed by LytixBioPharma and they all share similarities in their sequence.

Despite all the clinical assays that have been carried out, there is a lack of information about his

action mechanism from a molecular point of view. In this research project, we have combined in

vitro and in silico assays to construct a model of LTX-315 interaction with membranes.

We presented the first evidences of LTX-315 direct interaction with lipid bilayers. Fluorescence,

CD and NMR assays proved the interaction between the peptide and lipid membranes without

intermediates. They also showed LTX-315 preferred affinity for negatively-charged membranes

due to its high content in Lys. Electrostatic forces seem to have a major role in this interaction

with membrane, as it has been seeing by other AH as the α-synucleine [10]. However, hydrophobic

interactions are also present and are important as it is capable of binding neutral membranes.

This project represents an advance on the insights of LTX-315 structural properties and be-

haviour. Unfortunately, no structural information was obtained from CD assays but NMR assays

has proven that LTX-315 behaves as an amphipathic helix as predicted by Haug [86]. Unfolded in

the solvent, it folds into an alpha helix when it partitions into the membrane. In the solvent, it is

completely unfolded without any α-helical structure, as it was also seen by T-REMD simulations.

When it partitions into the membrane, it folds into an α-helix with unfolded termini. This is the

case of most of the AH, as for example, the mastoparan [91]. The secondary structure seems to

be stabilized by when the membrane contains negative charges as seen by NMR assays. The Dip

always stays in a random coil configuration. This can be because it is located in the C-terminal

but may be the presence of two big aromatic rings can have an steric effect that prevents the Dip

from folding. Unfortunately, T-REMD simulation of the insertion in DMPC/DMPS membrane

was not long enough to observe its folding. LTX-315 partitions very quickly in the membrane

but stays unfolded. The presence of large hydrophobic side chains (Trp and Dip) in its sequence

makes the folding in the membrane more slow. For example, in chapter 4 we observed that the
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mastoparan was folded after 100 ns of T-REMD simulation of insertion approximately (Fig. 4.2).

The mastoparan has no aromatic rings in its sequence, so it has less steric restrictions and thus

folds more quickly.

Thanks to NMR assays we also studied LTX-315 orientation in the membrane. In fact, the

C-terminal partitions deeper in the bilayer that the N-terminal. In consequence, the helix is tilted.

In T-REMD simulations we observed that the Dip partitions very deep into the membrane, even

when the peptide is unfolded. Maybe, the presence of Dip large hydrophobic side chain of the C-

terminal provokes the helix tilt. The two aromatic rings establish strong hydrophobic interactions

with the aliphatic chains burying the C-terminal deeper. In literature, other AH present a tilted

insertion in the membrane due to its non-homogeneous sequence as, for example, the penetratin

[137]. Anyhow, these first REMD data seem to show that Dip is probably a key residue in the

insertion mechanism of LTX-315.

LTX-315 penetration in cells was also studied by a novel strategy developed by our collaborators

Françoise Illien and Sandrine Sagan [96]. She first carried out a cytotoxicity test and determined

that LTX-315 is capable of killing cells at low concentration (from 0.5 µM) at establish range of

concentrations adequate for the peptides efficacy (from 0.5 to 2.5 µM). This concentration is lower

than the one they needed to study the penetratin [96]. In these assays, the peptide was not more

cytotoxic for cancer than for normal cells.

Then, she carried out quantification assays by fluorimetry to study LTX-315 internalization

pathways at 4 and 37 °. At 4°C, only direct translocation takes place; as it does not consume

energy, it is independent from temperature [19]. With a peptide concentration of 2.5 muM , 18.3

pmoles of the peptide are internalized by direct translocation. Notice that this pathway may be

underestimated as it was measured at 4 °C, where the plasma membrane is less dynamic and more

rigid. These results agree with previous observations published by LM. Eike et al.. They observed

that LTX-315 was able to disintegrate the plasma membrane at low temperature (4 °C), pointing

toward a direct interaction with the plasma membrane [65]. Even though it is able to penetrate the

cell by translocation, the peptide is mainly internalized by endocytosis. With a peptide concen-

tration of 2.5 muM , 62.7 pmoles of the peptide are internalized by endocytosis. Endocytosis takes

place in two steps: endocytic entry followed by endosomal escape. In the endosomal vesicle the

peptide risks to be degraded by enzymes, so the escape crucial step for the peptide to be efficient.

The favorable conditions for endosomal escape, as the influence of the peptide physico-chemical

properties, are not yet known, giving an additional reason for studying AH/membrane interactions

[19]. From this internalizations results, we could determine that LTX-315 is a CPP, a family of

short cationic peptides that are capable of crossing the plasma membrane [124]. CPPs are more

and more used in biomedicine, usually because they can efficiently transport biologically active

molecules inside living cell, being promising devices for medical and biotechnological developments

[19]. LTX-315 in an example of CPP used in biomedicine not as a transporter but because of his

own oncolytic properties.

184



The presence of a non-natural amino acid, the Dip, have been a challenge for this project. There

was no previous information about its behaviour, the relative positioning of the two aromatic rings,

its intramolecular interactions or the way it impacts the peptide secondary structure. Thanks

to a collaboration with Rodolphe Vuilleumier and Ari Seitsonen we obtained a parametrization

for the Dip that we used to launch preliminary simulations. Then, the publication of the new

parameters for non-standard amino acids in June 2021 allowed us to perform LTX-315 simulations

using exclusively CHARMM36m FF [54]. It is also important to mention that LytixBioPharma,

provided samples of the peptide that allowed us to carry out the experimental assays.

Summing up, thanks to the combination of experimental and computational techniques we

have constructed a first model of LTX-315 behaviour: LTX-315 is an AH, unfolded in water,

folded in the membrane/water interface, part of the CPP family and able to interact with lipid

bilayers with preferred affinity for anionic membranes. The non-standard residue, the Dip, stays

unfolded independently from the environment. Unfortunately, we didn’t have time to finish and

fully analyze the T-REMD simulations. They are going to be extended to increase the sampling

and new analyses concerning SC interactions will be included. We hope to observe the folding of

the peptide. We also plan to perform REMD simulations of LTX-315 insertion in pure DMPC. It

will be interesting to compare these results to DMPC/DMPS.

In a longer term, it would be interesting to construct an MSM of LTX-315 action mechanism

applying the protocol presented in the previous chapter (Chapter 5. Mastoparan folding in the

membrane: Markov State Models to decipher the mechanism).
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Chapter 7

Involvement of PIP2 in the

internalization of the cell-penetrating

peptide Penetratin

7.1 Penetratin

7.1.1 Introduction

Cell-penetrating peptides (CPPs) are defined as short amino acid sequences able to enter cells

and to deliver biologically active molecules such as nucleic acids, proteins, nanoparticles, drugs

or diagnostic agents, in cells and tissues. In 1991, evidence of the translocation of the 60 amino

acid Antennapedia homeodomain was reported [108]. Thereafter, the short 16 residue peptide

sequence, pAntp(43-58), called Penetratin (sequence 43RQIKIWFQNRRMKWKK58-NH2), was

proved to be responsible of this translocation property [58]. Penetratin, together with the Tat

peptide, responsible of the translocation of the HIV Tat protein [217], were the first described

members of the so-called CPP family, which have been widely studied.

CPPs have been found to follow two distinct pathways for their internalization in cells: endo-

cytosis and direct translocation [119]. An illustrative scheme is shown in the Introduction chapter

(section 1.4). They can use these two routes concomitantly, in different proportions, depending on

their nature, cell type and various environmental factors. Aside from the well described endocytic

routes, many models have been proposed to explain how CPPs could cross the hydrophobic core of

the plasma membrane. The variability in internalization efficiency according to the cell type and

peptide sequence implies that CPPs associate with various interaction partners at the membrane

surface. The negatively charged lipids and carbohydrates (Glycosylaminoglycanes or GAGs) are

considered to be the first molecular partners to be encountered by positively charged CPPs [219].
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Many studies have investigated the interaction of Penetratin with negatively charged model mem-

branes through various methods. It is now clearly admitted that Penetratin strongly interacts with

anionic lipids [5, 239], and that they are involved in Penetratin translocation through membranes

[205, 207, 79].

PI(4,5)P2 is an anionic lipid carrying 3 to 5 negative charges at physiological pH [147]. PI(4,5)P2

has multiple functions such as second-messenger precursor, regulator of actin polymerization, mem-

brane trafficking, etc [118]. It is mostly localized in the inner leaflet of the plasma membrane, even

though up to 2% of PI(4,5)P2 can be found in the outer leaflet [39, 76], where it could be involved

in the regulation of cell adhesion and motility [231].

Several studies have brought the focus on the unique role of PI(4,5)P2 in unconventional se-

cretion pathways for the HIV-1 Tat Protein [177], the Fibroblast Growth Factor (FGF2) [203] and

more recently the homeoprotein Engrailed-2 (En-2) [7]. PI(4,5)P2 has been shown to be the target

of cytotoxic membrane-active peptides such as the plant defensins NaD1 [171, 16], TPP3 [17] and

NoD173 [128] or the chimeric peptide TAT-RasGAP317-326 [198]. PI(4,5)P2 has also been shown

to be a binding partner for cyclic CPPs and has been proposed to play a role in their uptake

mechanism [40]. Interestingly, another phosphoinositide, PI(3)P, has been shown to mediate the

entry of pathogen effector proteins containing RXLR-like motifs into plant and animal cells [116].

Previous work carried out in our laboratory, has suggested a role for PI(4,5)P2 in the kinetics

of Penetratin internalization [104]. Very recently, a direct involvement of PI(4,5)P2 in the intern-

alization of En-2 was demonstrated [7]. This is of high significance as Penetratin is derived from a

homeoprotein, Antennapedia, highly related to En-2. The cell-penetrating sequence derived from

En-2 shares 81% similarity with Penetratin and has very close behavior in terms of internalization

and interactions in a membrane-mimicking environment [15].

This present work aims to analyze the role of the negatively charged lipid PI(4,5)P2 as a binding

partner of the CPP Penetratin and as a potential effector of Penetratin internalization, combining

experimental and computational techniques. It is part of a bigger collaboration, headed by Dr.

Astrid Walrant and Dr. Emmanuelle Sachon. Penetratin structure, orientation and insertion in

PI(4,5)P2-containing model membranes was studied by NMR assays performed by our collabora-

tions Dr. O. Lequin and E. Chalouhi. Then, MD-CG simulations were performed to observe the

binding of Penetratin to PI(4,5)P2, and its effect on the lateral organization of the lipids. Finally,

from the conformations observed in the CG simulations, a back-map of the system was carried out

to launch MD All-Atom simulations that allowed to study the PI(4,5)P2-Penetratin interaction

with atomic detail. Other in vitro assays that are not shown in this chapter were carried out. A

publication containing the whole ensemble of results will be published soon.
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7.1.2 Materials and Methods

MD CG Simulations

Coarse-grained (CG) molecular dynamics (MD) simulations were carried out using the MARTINI

force field for lipids [146] and proteins [155] (version 2). Both electrostatic and Lennard-Jones

interactions were computed using a 1.2 nm cut-off with a switch function and the relative dielectric

constant for the medium was set to 15. The temperature for each group (peptide, lipid, water)

was maintained at 310.15 K using the v-rescale temperature coupling algorithm [38] with a time

constant of 1 ps. The pressure was kept constant using the Parrinello-Rahman algorithm [160] with

a semi-isotropic pressure coupling (x and y dimensions, the bilayer plane, coupled independently

from the z dimension) and a time constant of 12 ps. The integration time step was 20 fs and

structures were saved every 100 ps for analysis. Four different systems were constructed using

the CHARMM-GUI web server [105]: two Penetratin containing systems with lipid compositions

POPC/POPS/PI(4,5)P2 (80/15/5) and POPC/POPS (80/20), and two with the same membrane

composition but without Penetratin as control systems. Each system had 200 lipids (100 per

leaflet) and 13-14 water beads per lipid. Sodium and chloride beads were added to get the system

neutral and reach a salt concentration of 150 mM . For the simulations with Penetratin, we put

one peptide per leaflet. This enabled to get twice the sampling at almost no computational cost.

The initial structure was the fully-helical conformation determined by NMR in the presence of

PI(4,5)P2 by our collaborators. The α-helix was inserted into the lipid membrane at the glycerol

level with the hydrophobic face oriented towards the bilayer interior and the polar face towards

water. Since the MARTINI CG force field has no specific term describing hydrogen-bonding, the

helical conformation was maintained throughout the whole simulations using a specific dihedral

term on all four consecutive backbone beads which were part of the α-helix. Each system was first

energy minimized and equilibrated with position restraints on the peptide for 10 ns. Production

simulations were then run for 10 µs for each system. The first µs was systematically discarded for

the analyses. All simulations were carried out using GROMACS 2018.5 [1].

MD AA Simulations

All-Atom (AA) MD simulations were performed with GROMACS 2018.5 [1] using the CHARMM36m

FF [123, 234] for lipids and CHARMM36m [93] for Penetratin. For constructing the system, we

took the final frame (at 10 µs) of the first trajectory of our CG MD simulations. This CG system

was back-mapped to AA using the CHARMM-GUI web server [105].

Since we used a back-mapping strategy, the AA system is identical to the CG one in terms of

composition, that is, 2 Penetratines (one per leaflet), 160 POPC, 10 PI(4,5)P2 and 30 POPS. The

system had 10704 water TIP3P molecules and an NaCl concentration of 150 mM . The system was

then equilibrated using the CHARMM-GUI protocol, which consists in an energy minimization

followed by several short MD simulations with position restraints on lipids that are progressively
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released. Two trajectories of 100 ns with different starting velocities were then performed in

the NPT ensemble. An integration time step of 2 fs was used. Electrostatic interactions were

calculated with the particle-mesh-Ewald (PME) method [57, 67], with a real-space cutoff of 1 nm.

Van der Waals interactions were computed using a Lennard-Jones force-switching function over 10

to 12 Å. Bond lengths were constrained using the LINCS algorithm [87]. Water molecules were

kept rigid with the SETTLE algorithm [153]. The system was coupled to a Bussi thermostat [38] at

a temperature of 313.15 K and to a semi-isotropic Parrinello–Rahman barostat [160] at a pressure

of 1 bar. MD frames were saved every 10 ps. The first 10 ns of each trajectory were systematically

discarded for the different analyses. A partitioning plot, showing the position of each side-chain

center of mass with respect to the bilayer center, was computed by averaging each position over

the two trajectories.

NMR assays

A collaboration was established with Edward Chalouhi, PhD student of the LBM and his PhD

Director Olivier Lequin. They carried out H-NMR experiments to study Penetratin’s interaction

with lipids with three different samples: peptide in buffer, peptide with micelles and peptide with

bicelles.

NMR samples were prepared in 5 mm Shigemi tubes using a volume of 300 µL. Peptide and

peptide/micelles samples contained 1mM peptide in 50mM sodium buffer, pH = 5.6, 0.02 % (w/v)

NaN3, 0.11 mM sodium 2,2-dimethyl-2-silapentane-5-sulfonate-d6, in 90/10 (v/v) H2O/D2O. Mi-

celles were composed by DPC and its concentration was 80mM .Peptide/bicelles samples contained

1 mM peptide in 50 mM sodium phosphate buffer, pH 6.05, 0.02 % (w/v) NaN3, 0.11 mM sodium

2,2-dimethyl-2-silapentane-5-sulfonate-d6, in 90/10 (v/v) H2O/D2O. Bicelles samples contained 75

mM DHPC and 25 mM DMPC.

Two different experiments were carried out : 2D 1H-1H TOCSY and 2D 1H-1H NOESY.

They were recorded at 35◦C on a Bruker Avance III 500 MHz spectrometer equipped with a TCI

cryoprobe. Band-selective pulses were used in both experiments to improve the sensitivity [176].

They were applied to selectively observe the amide/aromatic region in the acquisition dimension.

NMR data were processed with TopSpin 3.6 program and analyzed with NMRFAM-SPARKY

[130].

7.1.3 Membrane Structural properties

The MD-CG simulations allow to study the structural properties of the membrane. We studied

the effect of including PI(4,5)P2 lipid in the membrane, the impact of penetratin insertion and the

two of them combined.

The first analysis carried out was the Area Per Lipid (APL) calculation. The results are

shown in table 7.1. First, we checked POPC and DOPS values in the control simulations without
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penetratin. Both lipids present normal values already seen in the literature [126, 168]. This a way

of validating the reliability of the FF employed as the APL values obtained match the experimental

information. The insertion of penetratin in the membrane does not seem to have a big impact in

membrane APL, neither the inclusion of PI(4,5)P2. POPC and DOPS APL values do not variate

despite the changes in the system composition.

PI(4,5)P2 APL values give more interesting information with respect to the membrane struc-

tural properties. PI(4,5)P2 shows the higher APL values among the three lipid structures. This

could be due to the high number of unsaturations present in one of its aliphatic chains (18:0/20:4).

Unsaturations make the aliphatic chains less ordered and, in consequence, they occupy more lateral

space. The inclusion of penetratin also makes a remarkable difference. PI(4,5)P2 APL increases

notably when the peptide is inserted. This could be a consequence of penetratin PI(4,5)P2 recruit-

ment. PI(4,5)P2 lipids enrich around the peptide, concentrating in the same zone of the membrane

and increasing the area they occupy. This increase of APL is counter-intuitive, since most of the

time amphipathic helices (AH) lower the APL of the neighboring lipids [240]. Here, PI(4,5)P2

contain many negative charges and probably repel each other explaining this increase of APL.

PIP2 Simulations Control Simulations

Lipid Without Penetratin With Penetratin Without Penetratin With Penetratin

POPC 0.64 +/- 0.0001 0.64 +/- 0.01 0.64 +/- 0.01 0.65 +/- 0.01

DOPS 0.66 +/- 0.0003 0.66 +/- 0.02 0.66 +/- 0.02 0.68 +/- 0.02

PIP2 0.68 +/- 0.0005 0.79 +/- 0.05 - -

Table 7.1 – Membrane APL values calculated from CG-MD simulations.

Studying the thickness of the membrane also gives valuable information about its structure.

Membrane thickness is directly related to the APL. Table 7.2 shows that the insertion of penetratin

has no effect on membrane thickness. However, PI(4,5)P2 has a great impact as the membrane

thickens when it is included. This effect seems logical as it has longer aliphatic chains (18:0/20:4)

compared to POPC (16:0/18:1) or DOPS (18:1) ones. The long aliphatic chain needs more space

in the s dimension of the membrane, increasing the global thickness. In literature, it has been

suggested that that PIP2 induces a rearrangement and reorganization of the lipids around because

it has long, ordered aliphatic chains and because its big polar head interacts with the other lipids,

changing the global membrane conformation [140].

PIP2 Simulations Control Simulations

Without Penetratin With Penetratin Without Penetratin With Penetratin

4.29 +/- 0.01 4.29 +/- 0.1 4.17 +/- 0.08 4.16 +/- 0.1

Table 7.2 – Membrane thickness values calculated from CG-MD simulations.
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7.1.4 Penetratin structure and partitioning into the membrane

Penetratin behaviour in solution and in membranes was first studied by NMR assays by our

collaborators Dr. Olivier Lequin and his Ph.D student Edward Chalouhi. Bicelles were used

as membrane mimetics. The ratio between long chain and short chain lipids was set to 0.3 in

order to get small isotropically tumbling bicelles compatible with high resolution liquid state NMR

studies. Two bicelles compositions were used: zwitterionic bicelles made of 75 mM DHPC and 25

mM DMPC and anionic bicelles with the same DHPC/DMPC composition and incorporating 5%

PI(4,5)P2. The secondary structure of Penetratin was probed at the residue level by measuring the

chemical shift deviations (CSDs) of Hα protons. Random coil values were compared to the results

obtained for the penetratin in the bicelles. (Fig. 7.1a). Penetratin residues display small negative

Hα CSDs in aqueous solution (average value of –0.10 ppm), indicative of a weak helical propensity

in water. In the presence of zwitterionic bicelles, the CSDs become strongly negative throughout

the sequence (average of –0.28 ppm), showing that Penetratin interacts with zwitterionic bicelles

and adopts a stable helical structure. The CSDs get even more negative upon the addition of 5%

PI(4,5)P2 (average of –0.30 ppm), indicating that the interaction with PI(4,5)P2 further stabilizes

the helical conformation. NMR structures were calculated using φ and ψ dihedral angle restraints

based on Hα SDs analysis and distance restraints inferred from 1H-1H NOEs. Penetratin adopts a

well-defined helical structure with numerous van der Waals interactions between i/i+3 and i/i+4

residues, as inferred from the NOEs. In order to get information on the position of Penetratin

with respect to the lipid bilayer surface, NMR assays with a paramagnetic probe, 5-doxyl-PC were

carried out. These assays allow to measure the paramagnetic relaxation enhancements (PREs),

which give information about the relative position between the peptide and the bilayer. The

paramagnetic tag is buried inside the hydrophobic core of the membrane, on the C5 carbon of the

acyl chain, ensuring a positioning close to the bilayer surface. PREs were measured by comparing

the intensities of selected cross-peaks on 2D TOCSY spectra in the absence and in the presence

of 5-doxyl-PC. The residual intensities are shown for each residue in Figure 7.1b, by selecting

protons close to the backbone or protons lying further in side chains. PREs are characterized by

a periodic variation delineating two faces within the helix, residues I45, W48, F49, R53 and M54

being strongly affected while residues K46, I47, Q50, N51, R52, K55, K57, K58 are less affected.

This periodic profile is in accordance with the regular helical secondary structure of Penetratin

and indicates that the helix is positioned parallel to the membrane surface. A small tilt in the

helix orientation can be deduced from the larger residual intensities observed in the C-terminal

part of Penetratin, suggesting that the N-terminus is buried deeper in the membrane whereas the

C-terminal residues are closer to the membrane surface. Accordingly, W56 turns out to be less

buried than the central W48 and F49 residues. Finally, interproton NOEs were observed between

the aromatic residues of Penetratin and the lipid acyl chains, indicating that the aromatic side

chains are embedded within the hydrocarbon core of the membrane.

MD simulations can also provide information on the partitioning of the peptide within the
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(a) NMR 1Hα chemical shift deviation (CSD) of Pen-

etratin residues in 3 media: aqueous solution (black),

zwitterionic DHPC/DMPC bicelles (blue) and bi-

celles containing 5% PI(4,5)P2 (green).

(b) Paramagnetic relaxation enhancements (PREs)

induced by the addition of 5-doxyl PC. PREs were

calculated by comparing the intensities of 2D TOCSY

cross-peaks, before and after addition of the para-

magnetic probe. Selected cross-peaks involve protons

close to the backbone (HN-Hα and HN-Hβ correla-

tions) or protons lying further in side chains.

(c) Chemical shift perturbation (CSP) induced by 5%

PI(4,5)P2 of backbone HN protons (black) or side

chain protons (grey). In the case of side chain pro-

tons, the maximal observed CSP is reported

Figure 7.1 – NMR results.

membrane (Fig. 7.2a). Regarding the global partitioning of the peptide, we also observe the slight

tilt of the α-helix, with the N-terminal residues more buried than the C-terminal ones. Comparing

the results in presence or absence of PI(4,5)P2 lipids, the relative position of the residues in both

simulations are very similar. Since the secondary structures are maintained throughout the whole

simulations, this indicates that Penetratin has a similar mean partitioning in both conditions. In

contrast, we can see higher vertical fluctuations in the presence of PI(4,5)P2, suggesting a possible

influence of this lipid on the partitioning dynamics.

The analysis of side chain partitioning shows that Penetratin helix is far from being perfectly

amphipathic. In particular, it can be clearly seen on a helical wheel representation (Fig. 7.2b) that

R52 projects its side chain on the hydrophobic face of the helix. Therefore, Penetratin immersion

within the membrane leads to a positioning of R52 side chain below the membrane surface. As
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(a) Partitioning of Penetratin residues with respect to the mem-

brane calculated on CG-MD simulations. The horizontal lines

mark the mean position of lipid atoms, notably the P2 from

PIP2 (lime), and the N (cyan), P (pink) and C1B (grey) from

POPC and POPS lipids.

(b) Penetratin helical wheel predicted with

heliquest web server [77]

Figure 7.2 – Study of Penetrain’s orientation in the bilayer by computational techniques.

revealed by MD simulations, R52 is indeed the most buried cationic residue. This could be an

snorkeling effect, were the basic residues of a partitioned peptide can snorkel toward the mem-

brane interface and maintain the hydration shell around their charged groups, like transmembrane

proteins [101].

In order to identify the environment changes brought by PI(4,5)P2 in NMR, our collaborations

O. Lequin and E. Chalouhi analyzed the chemical shift perturbations (CSPs) induced by the

addition of 5% PI(4,5)P2 (Fig. 7.1c). These CSPs enable probing changes for each residue,

which can result either from direct interaction with PI(4,5)P2 lipids or from local conformational

rearrangements. The protons that are the most sensitive to environment changes are the backbone

amide protons. The chemical shift perturbations are observed all along the backbone, the NH

protons of R43, Q44, F49, Q50, R52, K55 being the most affected. This suggests that residues

that are implicated in PI(4,5)P2 binding are distributed along the whole peptide sequence. On the

other hand, the side chain aliphatic and aromatic protons exhibit smaller chemical shift variations,

with the notable exception of R52 CH22γ protons. The large chemical shift variation (0.08 ppm)

observed in this case may reflect a conformational rearrangement of the aromatic core of Penetratin.

Indeed, the side chain protons of R52 experience a ring current shielding effect, induced by their

close proximity to W48 aromatic ring (as evidenced by several W48/R52 NOEs). It is likely that

the interaction of R52 with PI(4,5)P2 leads to a reorientation of R52 side chain with respect to

the aromatic moiety. It should be mentioned in this analysis that the terminal groups of LYS

and ARG side chains, which are most likely to interact with PI(4,5)P2 phosphate groups, are not

visible on NMR spectra due to their fast exchange with water protons.
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In order to get a better description of the interactions of the Penetratin residues with PI(4,5)P2

lipids at an atomic resolution, we performed a back-mapping of the coarse-grained POPC/ POPS/

PI(4,5)P2/ Penetratin systems obtained after 1 µs dynamics into all atoms models. Then AA-

MD simulations were further run for a duration of 100 ns. Results of these simulations show

that Penetratin adopts a stable helical conformation and a parallel orientation with respect to

the membrane, which is similar to CG-simulations (Fig. 7.3a). A slight tilt of the α-helix is also

observed, with the N-terminal residues being more buried than the C-terminal ones. These results

are in good agreement with NMR PRE data. Penetratin is positioned within the membrane at

the level of glycerol groups (Figure 7.3b). The most buried residues are I45, W48 and F49, which

interact with the first methylene groups of lipid acyl chains. Most Lys and Arg side chains are

found at the level of lipid polar head groups. Interestingly, R52 side chain partitions deeper in the

membrane, at the level of glycerol atoms.

The analysis of distances between PI(4,5)P2 lipids and Penetratin residues shows that hydrogen

bonds and electrostatic interactions are favored between the PI(4,5)P2 phosphate groups and Lys

and Arg cationic groups (data not shown). One PI(4,5)P2 lipid can interact simultaneously with

several residues far apart in the peptide sequence, as seen in figure 7.1c. The different partitioning

of Lys and Arg residues on the two faces of the peptide leads to specific interactions with PI(4,5)P2

phosphate groups (Fig. 7.1c). Notably, most Lys and Arg residues interact with the surface exposed

phosphate groups in positions 4 and 5 of PI(4,5)P2. In contrast, R52 interacts exclusively with

the more buried phosphate group in position 1 (linked to the glycerol group). The conformational

space of R53 enables this residue to interact with phosphate groups of inositol at all positions.

(a) Partitioning of Penetratin residues with respect to the mem-

brane.

(b) Selected snapshot of an AA MD sim-

ulation showing the interaction of Penet-

ratin residues with a PIP2 lipid

Figure 7.3 – Penetratin/bilayer interactions studied by AA-MD simulations.

7.1.5 PIP2 recruitment

In this section, we used CG-MD simulations to study PIP2 recruitment. CG simulations are

better suited for this analysis as dynamics are faster, allowing to observe the whole recruitment
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process. Two snapshots of the POPC/POPS/PI(4,5)P2/Penetratin simulation are presented in

figure 7.4. They correspond to an upper view of the bilayer taken at 0 and 5416 ns of the production

phase, showing the initial and final placement of the peptide relative to the lipids. In the system

construction, all lipids were placed randomly so that there was no bias in the relative position

of the lipids within the system. At 0 ns of the production phase, two PI(4,5)P2 molecules were

already located in the Penetratin surroundings. In fact, these two molecules already approached

Penetratin during the equilibration phase of 10 ns, prior to the production phase. Once the

production proceeded, all five PI(4,5)P2 lipids approached Penetratin, and eventually stayed within

its immediate surroundings. This phenomenon happened very quickly (within the first 100 ns) and

the enrichment was maintained until the end of the simulation. The second snapshot shows the

system at 5416 ns, where the enrichment of PI(4,5)P2 around Penetratin can clearly be observed.

(a) Simulation snapshot at 0 ns (b) Simulation snapshot at 5416 ns

Figure 7.4 – Snapshots of the MD simulation (top view of the bilayer). Penetratin is showed in

purple spheres, PC in blue, PS in magenta and PI(4,5)P2 in green.

To have a quantitative measurement of this clustering, the ratio of each lipid type in the box at

the end of the simulation is compared to its ratio around Penetratin in Figure 7.5b. Lipids located

at a distance of 6.5 Å or smaller are considered as interacting with Penetratin. The plot on the

left shows lipid ratios in POPC/POPS/PI(4,5)P2/Penetratin simulation. The ratio of PI(4,5)P2

around Penetratin is 5.9 times higher than the global ratio of PI(4,5)P2 in the simulation box.

The plot on the right shows the same analyses applied to the control POPC/POPS simulation. In

the absence of PI(4,5)P2, Penetratin interacts slightly more with POPS due to its negative charge,

though no clear enrichment of PS in its immediate environment is observed.

It is also interesting to analyze the effect of Penetratin on PI(4,5)P2 to PI(4,5)P2 relative

position. Intuitively, the negative charges carried by PI(4,5)P2 should prevent these lipids to cluster
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together, but this is not the case. Figure 7.5b shows the radial distribution function (RDF) between

PI(4,5)P2 molecules in the presence or absence of Penetratin. This RDF represents the probability

of finding another PI(4,5)P2 molecule as a function of the distance relative to a PI(4,5)P2 molecule.

In the absence of Penetratin, a peak around 1 nm that reaches an RDF value of around 3 can

already be observed. It reflects the intrinsic tendency of PI(4,5)P2 to cluster. This phenomenon

has already been observed previously in MARTINI simulations [97] as well as experimentally on

giant unilamellar vesicles [184]. Interestingly, this peak at 1 nm is 1.5 times higher when Penetratin

is added. This means that PI(4,5)P2 molecules will be on average closer to each other thanks to

the positive charges of Penetratin. All these results show that PI(4,5)P2 is a privileged interaction

partner for Penetratin, and that Penetratin is able to reorganize a lipid bilayer containing low

amounts of PI(4,5)P2 by creating PI(4,5)P2 clusters.
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Figure 7.5 – Study on penetratin effect on PI(4,5)2 relative position in the membrane by CG-MD

simulations.

7.1.6 Discussion

Penetratin and its interactions with negatively charged membrane partners of diverse molecular

nature have been studied for more than 20 years [219]. In particular, negatively charged lipids

have been the focus of numerous studies. PG is usually used as a model negatively charged

lipid for such studies despite its poor biological relevance. PG is indeed essentially found in

bacterial membranes. It is cheap, easy to handle, available with a broad variety of fatty acid

chains, and forms stable lamellar structures, which explains its popularity as a simple model lipid.

PG-based models allowed important advances in the molecular characterization of Penetratin and
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its interactions with membranes. Penetratin interacts preferentially with PG over PC [5, 103, 6],

it adopts an α-helical structure in the presence of PG, though an α to β transition can be observed

at high charge density or peptide concentration [144]. Penetratin also tends to form peptide-rich

regions at the surface of PG liposomes [5]. Finally, PG appears as a permissive lipid for direct

translocation across pure lipid membranes [207, 79, 205]. As opposed to PG, PS is a biologically

relevant lipid when investigating internalization mechanisms of CPPs in mammalian cells, as it is

a major lipid of the inner leaflet of the plasma membrane but it has been more scarcely used in

model membranes studies. Penetratin has a higher affinity for PS-containing membranes than just

PC, and adopts an α-helical structure in its presence [50]. Regarding direct translocation, the role

of PS is not clear, as it was shown to allow direct translocation [207] or not [79], depending on the

experimental setup.

Interactions of Penetratin with model membranes incorporating PI(4,5)P2 have never been

studied, though it was shown that direct translocation could occur in liposomes composed of

PC, PI and PI-phosphates [207]. In the present study, we sought to characterize the molecular

interactions of Penetratin with model membranes incorporating either PI(4,5)P2 or PS. We showed

that Penetratin has a more stable secondary structure when there is PI(4,5)P2 present in the

membrane. The preference for PI(4,5)P2 over PS could be due to a charge-density effect, or the

chemical nature of the moiety carrying the negative charge (phosphate or carboxylate), or the

presence of a positive charge on the amine of serine, most probably a combination of these factors.

Interestingly, a charge density effect has already been reported as an important factor for binding

when studying CPP/GAGs interactions [239, 20, 174].

NMR experiments and MD simulations gave us more detailed molecular insight on the inter-

action between Penetratin and PI(4,5)P2-containing membranes. In the presence of PI(4,5)P2 ,

Penetratin adopts a stabilized α-helical structure. The helix is oriented parallel to the lipid bilayer

and is slightly tilted, leading to a more peripheral positioning of the highly cationic C-terminal

part (K55, K57, K58). The hydrophobic residues I45, W48, F49 and W56 are anchored within

the membrane, as shown by PREs experiments, NOEs and MD simulations. However, Penetratin

is not deeply inserted in the membrane as its backbone is positioned at the level of lipid glycerol

atoms. This mode of interaction appears to be quite similar to that observed by NMR for a Pen-

etratin/anionic PG bicelle system [137]. A rather shallow insertion of Penetratin had previously

been suggested by photocrosslinking experiments using PG model membranes [21, 103].

Such shallow insertion and parallel orientation has also been reported for (R/W)9, a CPP

derived from Penetratin [220]. As revealed by MD simulations, R52 is indeed the most buried

cationic residue. The localisation of R52 within the hydrophobic sector of Penetratin helix may

explain the small depth of Penetratin insertion as the burial of a charged group in the hydrophobic

interior of the membrane would be energetically unfavorable. The analysis of all atoms simulations

also reveals a peculiar mode of interaction of R52 with PI(4,5)P2 lipids, in contrast to other

cationic residues. Indeed, R52 side chain interacts exclusively with the phosphate group of inositol
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in position 1 whereas the other Lys and Arg interact with the phosphate groups in positions 4 and

5 of inositol, which lie closer to the surface. Trp has been recognized as an amino-acid playing a

key role in the cell uptake of homeodomain-derived peptides as well as Arg and Trp-rich CPPs.

Beside its favorable partitioning properties at water/lipid interfaces, Trp may establish cation-π

interactions, as proposed for Penetratin [15] and for RW9 peptide [4]. More recently, Trp has been

involved in ion pair-π interactions, which consist in energetically favorable tripartite interactions

between the aromatic indole ring, a cationic guanidinium group and a negatively charged moiety of

the ligand [80]. The NMR structures reveal that R52 side chain makes van der Waals interactions

with W48, as evidenced by several i/i+4 interproton NOEs. The strong shielding observed for

the methylenic βγδ protons of R52 can be ascribed to an aromatic ring current effect and also

supports a favored interaction with W48 indole group. Nevertheless, the residue contact analysis

in MD trajectories indicates that cation-π or ion pair-π interactions may form transiently but

are not persistent over the whole simulations. Figure 7.3b shows that W48 indole group may

stabilize the interaction between R52 and PI(4,5)P2 not only by establishing favorable van der

Waals interactions with R52 side chain but also by donating a hydrogen bond to the carbonyl

group of lipid acyl chain.

When considering the effect of Penetratin on the organization of the membrane, our MD sim-

ulations show that it can modify the lateral organization of PI(4,5)P2 -containing membranes

by recruiting PI(4,5)P2 (Fig. 7.4 and 7.5). Previous DSC-based studies showed that Penetratin

could recruit cardiolipin and that it induced lateral partitioning in liposomes composed of DPPC

and cardiolipin [106]. Cationic peptides have been found to induce PI(4,5)P2 clustering in model

membranes [82]. Experiments using model membranes and analysis by fluorescence spectroscopy

suggest that basic peptides are able to sequester multivalent PI(4,5)P2 but not monovalent PS, sup-

posing that the density of charge of the PI(4,5)P2 polar heads is a key factor for such interactions

and PI(4,5)P2 clustering.

Recruitment of negatively charged lipids at the cell surface and CPP accumulation in these

domains could be a key factor for CPP internalization. The propensity of PI(4,5)P2 to form

clusters in the plasma membrane has been evidenced through binding with specific proteins [42,

74, 30]. These proteins usually contain clusters of basic residues that serve as binding site to interact

electrostatically with acidic lipids of the plasma membrane, and in particular with PI(4,5)P2 polar

head groups, recruiting several PI(4,5)P2 to form clusters. One example of PI(4,5)P2 lateral

segregation is the one induced by the HIV-1 Gag protein, responsible for the assembly of HIV-1

particles, through its matrix domain (MA). Coarse-grained simulations of the HIV-1 myristoylated

MA interaction with the membrane revealed that PI(4,5)P2 head group binds with a highly basic

region (HBR) of the domain via interactions with arginine and lysine residues [42] and suggests that

specific interaction between the PI(4,5)P2 polar head and the HBRmotif leads to lateral segregation

of PI(4,5)P2 in the membrane. It was latter shown that Gag protein self-assembly would drive

the formation of PI(4,5)P2 /cholesterol clusters, rather than assembling on pre-existing domains
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[227]. Altogether, these results strongly suggest that CPPs, as cationic sequences, could be able

to recruit PI(4,5)P2 through electrostatic interactions and induce PI(4,5)P2 clustering, or amplify

its natural tendency to cluster on its own [184].

In conclusion, our study clearly identifies PI(4,5)P2 as a major effector of Penetratin internaliz-

ation. Our results suggest different contributions of the intra- and extra-cellular pools of PI(4,5)P2.

Penetratin can drive the formation of PI(4,5)P2 clusters but how PI(4,5)P2 contributes to Penet-

ratin internalization remains to be determined.
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Chapter 8

General conclusions

This Ph.D project is focused on the study of AH and their interaction mechanism with membranes.

It has two main axes, the methodology development and biological research. We first focused on

MD techniques, we aimed to study different FF to determine their capacity in reproducing AH

/ membrane properties and to optimize new protocols to study their action mechanism. From a

biological point of view, we wanted to answer several questions about AH. We wanted to study their

conformational landscape, their partitioning / folding mechanism in lipid bilayers and to extract

kinetic and thermodynamical information of the process. We were also interested in studying the

membrane properties that impact AH affinity for the bilayer, such as the electrostatic charges or

the curvature. In general terms, this work represent an advance for MD techniques to study AH

/ membrane systems and we have obtained novel information about their action mechanism that

could be used in biomedicine and in drug design.

In chapter 3 dealing with FF comparison, we showed that REMD is an appropriate technique

for validating AH / membrane FF. FF accuracy is essential for MD reliability. Having FF tests is

essential for the evolution of the field. The capacity of reproducing AH structural properties in the

membrane was assessed for four different FF combinations: GROMOS54A7/Berger, OPLS/Berger

and AMBER99SB-ILDN/Berger and CHARMM36m/CHARMM36 for peptide/lipids (in the fol-

lowing we will simplify CHARMM36m/CHARMM36 to CHARMM36). The results were conclus-

ive, GROMOS54A7/Berger combination fails to reproduce neither mastoparan or ALPS23 exper-

imental data. OPLS/Berger simulated mastoparan structural properties correctly but failed with

a weak helix like ALPS. We determined that CHARMM36m and AMBER99SB-ILDN are the two

best FF to reproduce AH structural properties in the membrane. However, CHARMM36m slightly

overestimates the helix content, even at high temperatures, where the two peptides maintain the

helicity content. Mastoparan thermostability has already been proved by experimental assays [152],

but ALPS motif is denatured at high temperatures [216]. This should be taken into account for

future projects when extracting structural information from CHARMM36m simulations.

In chapter 4, we presented the mastoparan insertion. We used T-REMD simulations to success-
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fully insert mastoparan in the membrane with atomic details. CHARMM36m and AMBER99SB-

ILDN/Berger simulations reproduce accurately the AH structural properties and the partition/folded

mechanism: the peptide is mainly unfolded in water and folds into a completely-folded α-helix while

partitioning in the membrane. The results agree with AH model proposed by S. White [222, 223].

Again, CHARMM36m FF slightly overestimates the helicity content. However, it is the most reli-

able FF for lipid simulations [34] and contains the largest ensemble of molecules. For these reasons,

we decided to use CHARMM36m as a preferred FF to study AH / membrane molecular systems.

In chapter 5, we presented a novel strategy that Patrick and I designed to study AH dynamics

by combining T-REMD simulations with MSM construction. First, the REMD simulations served

to explore in depth the conformational landscape of the system. Some structures were selected to

launch classical MD simulations at 300 K to construct an MSM. This way, we constructed a non-

biased dynamic model of the system from which we can obtained thermodynamical information

at physiological temperature. Two models were constructed: the mastoparan in water and the

mastoparan in the membrane. As expected, the mastoparan in water is mainly unfolded, with a

20% of helix in water, as saw by CD assays. The free energy of folding in water is positive, meaning

that the folding is disfavored. The major conformation of the model in membrane is a perfectly

folded α-helix similar to the NMR-resolved structure [91]. The free energy of folding is negative,

meaning that the folding is favored. The estimation of the exact value of these free energies is

ongoing. Comparing the kinetics between the two models, the dynamics of the peptide in water

is much faster than in the membrane. In the membrane, peptide movement is restricted by the

complicated the lipid polar heads and the aliphatic chains creating some friction, where there is the

aqueous phase peptide motion is more free. The conformational energy barriers in the membrane

are higher than in water. Eventually, this novel strategy will allow us to extract structural, kinetic

and thermodynamic information of a AH / membrane system that we expect in agreement with

experimental assays.

In chapter 6, we combined experimental and computational assays to construct a first model of

LTX-315 dynamics with atomic details. CD and fluorescence assays and MD simulations carried out

by myself, NMR assays performed by O. Lequin and E. Chalouhi, and internalization assays done

by F. Illien were presented. Experimental and computational assays agree, LTX-315 behaves like an

AH, it is unfolded in water and folds into an α-helix when interacting with the lipid bilayer. It has

a higher affinity for anionic membranes. This project allowed us to classify LTX-315 as part of the

CPP family, a group of peptides capable of interacting directly with the bilayer and penetrating into

the cell, preferably, by endocytosis but also by direct translocation. Internalisation assays allowed

us to quantify how much the two pathways are used at low and physiological temperatures. The

presence of a non-standard amino acid, the Dip, has been a challenge for this project. Some REMD

simulations are still ongoing and new results will be shortly accumulated before the defense. To

sum up, experimental and computational results agree, the Dip stays unfolded independently from

the environment.

202



Chapter 7 presents a collaboration that took place in our laboratory, headed by A. Walrant and

E. Sanchon, where we studied Penetratin behaviour in the membrane and its interaction with PIP2

lipids. Only the MD simulations that I carried out and the NMR spectra done by O. Lequin and

E. Chalouhi were presented. The results demonstrate that Penetratin can drive the formation of

PI(4,5)P2 clusters and clearly identifies PI(4,5)P2 as a major effector of Penetratin internalization.

These two last chapters highlight the importance of combining experimental and computational

assays. They are complementary and by combining them we get to explore in depth the molecular

system of interest.

In the future, we would like to continue developing our novel strategy and construct MSM of

the whole partitioning / folding mechanism. The most efficient and promising strategy would be

to use a technique called transition-based re-weighting analysis method (TRAM) developed by F.

Noé’s group [226]. This technique allows to construct an MSM from a combination of classical MD

simulations and T-REMD simulations, helping to enhance the sampling. This new protocol could

be used to study LTX-315 to better understand its action mechanism and use this knowledge to

improve its development as drug to treat sarcoma disease or to study similar oncolytic peptides of

the same family.
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