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Titre: Diagnostic des Défauts Non-Francs dans les Réseaux Filaires Complexes
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Résumé: Les câbles électriques sont utilisés dans
tous les secteurs pour transférer de l’énergie ou
de l’information. Pendant le fonctionnement, les
câbles peuvent être sujets à des défauts francs (cir-
cuit ouvert ou court-circuit) ou des défauts non-
francs (endommagement de l’isolant, pincement,
etc.) dus à une mauvaise utilisation, aux condi-
tions environnementales ou au vieillissement. Ces
défauts doivent être détectés à leur stade le plus
précoce pour éviter une interruption de la fonc-
tion ou des conséquences plus graves. Parmi les
méthodes de diagnostic des réseaux filaires qui ont
été étudiées dans la littérature, la réflectométrie
électrique a été considérée la plus efficace surtout
dans le cas d’un défaut franc. Cependant, cette
méthode s’avère moins fiable en présence d’un
défaut non-franc caractérisé, généralement, par
une signature de faible amplitude sur le réflec-
togramme qui dépend non seulement de la vari-
ation de l’impédance caractéristique du câble au
niveau du défaut mais également de la configu-
ration du signal de test telle que sa bande pas-
sante. En effet, l’augmentation de la fréquence
maximale du signal de test améliore la résolution
“spatiale” de l’information des défauts non-francs.
Cependant, elle accentue, en même temps, les
phénomènes d’atténuation et de dispersion du sig-
nal de test rendant ainsi la détection de ces défauts

moins fiable, et surtout dans le cas des réseaux fi-
laires complexes où la réflectométrie pourrait souf-
frir de problèmes d’ambiguïté liée à la localisa-
tion des défauts. Dans ce cadre, la réflectométrie
distribuée où plusieurs capteurs sont installés aux
extrémités du réseau sous test est appliquée en-
traînant l’apparition d’autres problématiques telles
que le partage des ressources, la fusion de cap-
teurs pour la prise de décision, la consommation
d’énergie, etc.
Dans ce contexte, cette thèse propose de dévelop-
per deux approches : la première permet de choisir
la meilleure fréquence maximale à appliquer au
signal de test pour la détection des défauts non-
francs. La seconde approche a pour objectif de
choisir les capteurs les plus pertinents pour leur di-
agnostic dans les réseaux filaires complexes. Pour
cela, une combinaison entre les données basées sur
la réflectométrie et l’algorithme d’analyse en com-
posantes principales (PCA) est utilisée. Le modèle
de la PCA est développé pour détecter les défauts
non-francs existants. Associés à une analyse statis-
tique basée sur Hotelling’s T 2 et Squared Predic-
tion Error (SPE), les paramètres requis sont iden-
tifiés. Une étude expérimentale est réalisée, et une
analyse de leurs performances en environnement
bruité est effectuée.
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Abstract: Electrical cables are used in all sectors
to transfer energy or information. During oper-
ation, the cables may be subject to hard faults
(open circuit, short circuit) or soft faults (isola-
tion damage, pinching, etc.) due to misuse, en-
vironmental conditions, or aging. These faults
must be detected at their earliest stage to avoid
interruption of the function or more serious con-
sequences. Even though several electric and non-
electric wire diagnosis methods have been studied
and developed throughout the last few decades,
reflectometry-based techniques have provided ef-
fective results with hard faults. However, they have
been shown to be less reliable whenever soft faults
are addressed. Indeed, soft faults are character-
ized by a small impedance variation, resulting in a
low amplitude signature on the corresponding re-
flectograms. Accordingly, the detection of these
faults depends strongly on the test signal config-
uration, such as its bandwidth. Although the in-
crease of the maximal frequency of the test signal
enhances the soft fault’s “spatial” resolution, its
performance is limited by signal attenuation and
dispersion. Moreover, although reflectometry of-

fers good results in point-to-point topology net-
works, it suffers from ambiguity related to fault
location in more complex wired networks (Multi-
branched). As a solution, distributed reflectometry
method, where sensors are implemented in the ex-
tremities of the network under test, is used. How-
ever, several issues are enforced, from the comput-
ing complexities and sensors fusion problems to the
energy consumption.
In this context, this Ph.D. dissertation proposes to
develop two approaches: the first selects the best
maximal frequency for soft fault detection, and the
second selects the most relevant sensors to monitor
and diagnose those faults in multi-branched wired
networks. The proposed solution is based on a
combination between reflectometry and Principal
Component Analysis (PCA). The PCA model cou-
pled with statistical analysis based on Hotelling’s
T 2 and Squared Prediction Error (SPE) is used to
detect the soft faults and select the required pa-
rameters. Experimental validation is carried out,
and performance analysis in the presence of noise
is investigated.
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General Introduction

Electrical cables are used in all industrial sectors to transfer energy or information. In
the last few decades, there has been increasing electrification of several functions in industrial
systems. This increase in the usage of electrical components was joined with an increase in the
demand for electrical cables, e.g., in transportation systems, industrial machinery, power plants,
infrastructures, in addition to most of nowadays’ human facilities and utilities. Thus, the length
and the complexity of wired networks have also grown. For example, the combined length of
electrical wires in a modern car is more than 4 km compared to a few hundred meters 30 years
ago, higher than 40 km in modern fighter aircraft, nearly 200 km in high-speed trains, and 400

km in recent civil planes. In a country with over 40000 km of railways, almost 1 million km of
electrical cables are used for the infrastructures. Therefore, electrical wires play a critical role
in networks that are becoming fundamental subsystems whose operation is crucial.

The cable in a network will at some point show signs of weakness due to either external
causes, such as chemical contamination, mechanical vibration, moisture penetration, etc., or
internal causes such as defective manufacturing, local heating, etc. Under these conditions,
more or less severe faults can appear, from a simple crack in the sheath to a cable cut. Among
the most frequent wiring faults are short and open circuits, usually referred to as hard faults,
characterized by the fact that the functionality is lost. On the other side, any minor alteration
that affects a cable is classified as a soft fault, namely insulation damage, cracks, etc. The
latter can be of very different kinds and are more difficult to detect. At first glance, they
seem harmless and without significant consequences for the system. However, cable aging,
mechanical stresses, and hostile environments can evolve soft faults into hard ones.

There are electrical wires dedicated to safety and control operations, so any shortening
in their performance due to a fault might be extremely costly, both in terms of human lives
and economics. The National Transportation Safety Board (NTSB) investigation revealed that
the Boeing 747 TWA Flight 800 disaster in 1996 and the Swissair MD-11 disaster in 1998
were both caused by electrical wiring faults, which resulted in hundreds of deaths. Many other
incidents were noted, which did not result in catastrophic accidents, but were attributed to
wiring failures such as Boeing 757 of AA (2008) and Airbus340 of VA (2009) [16]. Based on
the data collected by the Air Force Safety Agency (AFSA) [17], cables’ faults are the main
cause of aircraft accidents, with 29%.

Thus, to ensure the reliable use of cables, it is necessary to detect faults that might jeopar-
dize the whole system. Different methods have been developed to improve the reliability of wired
networks to detect and locate certain types of faults in cables. Among these methods, we can
distinguish the classical visual inspection, X-ray, capacitive and inductive measurements [18,19],
and reflectometry techniques that are widely used and easily embedded. Even though several
electric and non-electric wire diagnosis methods have been studied and developed throughout
the last few decades [20,21], reflectometry-based techniques are still in the center stage of re-
search and industrial applications. They have been introduced since the middle of the twentieth
century. Their general concept relies on the propagation of an electromagnetic waveform in
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the wired network to be tested, followed by the analysis of the reflected signals to detect the
presence, position, and nature of an impedance discontinuity possibly caused by a fault [21].

Depending on the analysis domain of the reflected wave, reflectometry methods can be
categorized into two main families: Time Domain Reflectometry (TDR) [22] and Frequency
Domain Reflectometry (FDR) [23]. They have provided effective results with hard faults due to
their high reflection coefficients, but they have shown poorer performance whenever soft faults
are addressed [24, 25]. As a matter of fact, soft faults that are usually characterized by small
reflection coefficients, produce weak echoes compared to those caused by junctions within a
network for example. In addition, the energy of the test signal may be significantly attenuated
due to the presence of cable inhomogeneity, junctions, coupling, splices, etc., making the
detection of soft faults (i.e., chafing, bending radius, pinching) more complex. Moreover, the
soft fault detection is disturbed by environmental conditions such as vibration, high temperature,
crosstalk, noise disturbance, etc. Additionally, the signature of such fault can be masked in
complex networks because of multiple echoes in the reflected signal resulting from the presence
of junctions and impedance discontinuities in the network.

As a solution, further development is needed to make the reflectometry method sensitive
enough to detect and locate soft faults efficiently. In this context, several post-processing meth-
ods have been proposed [26–29]. However, these methods are prone to test signal attenuation
and dispersion phenomena [30]. Indeed, the phenomena of attenuation and dispersion signif-
icantly reduce the location accuracy when the propagation distance is important [9]. Hence,
the choice of the test signal bandwidth is critical and affects the diagnosis performance. Addi-
tionally, the maximal frequency of the reflectometry signal is a critical parameter in detecting
and locating a fault in a cable. Indeed, the higher the frequency, the better the reflectogram’s
resolution and the localization accuracy of small faults. However, in the case of fault detection
on long cables, increasing the signal frequency is not recommended as it introduces dispersion
and increases signal attenuation [31, 32]. In practice, the expert configures and calibrates the
Vector Network Analyzer (VNA) at a given frequency and records the healthy cable measure-
ment. Measurements at the same frequency are then done on a faulty cable. Analysis of the
measurements is established at this frequency on the computer. If the fault is not detected, this
operation must be repeated. Therefore, there is a loss of information and time in addition to the
subjectivity of the decision-making. Hence, more accurate and not-user dependent technique
should be proposed to cope with this problem.

The problems associated with diagnosis, described previously, are aggravated in the case
of a multi-branched network [33]. In such networks, using a single sensor may be no longer
possible to monitor the whole network due to signal attenuation and connection complexity.
As a solution, distributed reflectometry is used to overcome ambiguity problems and maximize
the diagnosis coverage. It consists of performing reflectometry measurements at different ex-
tremities of the Network Under Test (NUT). However, the injection of multiple signals leads to
computational complexities and sensors fusion problems [11]. Moreover, energy consumption
is a major drawback regarding environmental constraints. The study on the reduction of the
sensors’ number in complex networks and its impact on the diagnosis quality is provided in [34].
However, it has revealed other challenges related to bandwidth allocation, communication pro-
tocol, and noise interference mitigation. Thus, in [35], the cable life profile is included (such
as, environmental stress (temperature, vibration, moisture, etc.), cable type, cable age, channel
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noise, diagnosis method, etc.), allowing to reduce the diagnosis cost by avoiding the use of
too many sensors in the network. With this solution, the reliability of the sensors in emission
and reception is considered in the obtained statistics. This reliability differs from a sensor to
another and impacts the fault location [34]. In fact, the reflectometer’s reliability in terms of
injection or reception impacts the fault characterization. For example, in the case of an unre-
liable reflectometer, an erroneous test signal may be injected. Then, a false interpretation of
the reflectogram is done involving unnecessary intervention. Hence, solutions for solving these
problems are hot topics in wire diagnosis.

This thesis proposes to address these two main problems in soft fault wire diagnosis using
reflectometry. Hence, we propose a particular way to combine statistical analysis with reflec-
tometry. In this study, the principal component analysis (PCA) is considered the statistical tool
to improve reflectometry’s soft fault detection problem.
PCA is a multivariate data-driven statistical modeling technique [36]. It uses information re-
dundancy in a high-dimensional correlated input space to project the original data set into a
lower-dimensional subspace defined by the principal components (PCs).
Although the combination of reflectometry and PCA in the literature was proposed for an effi-
cient reduction of the reflectometry data space [37], the application of PCA on reflectometry-
based data has not been used, so far, for fault diagnosis in wired networks. For fault detection,
the PCA model of the system is developed in our work, based on healthy operating system
data, and then used to check new measurement data.

This work intends to improve the soft fault diagnosis in multi-branched networks using
this PCA-based reflectometry method. Two main research questions are tackled. The first is
related to the best frequency selection (chapter 3) to be used in the TDR construction, and
the second one is related to the sensor selection (chapter 4) in multi-branched wiring networks
using the distributed reflectometry. For both, the performances and limitations of the proposal
are studied. The influence of disturbance noise is considered. The results are derived using
simulated data and validated using an experimental bench.

On this basis, the organization of this dissertation into four chapters is as follows:

• Chapter 1 presents the context of this study, which is the on-board diagnostic of com-
plex wired networks for the detection and localization of soft faults. To do this, we
first present the different types of cables and their fields of application. Secondly, we
introduce the typologies of faults, such as hard or soft faults. To better understand the
principle of reflectometry, we recall the concepts of line theory. Finally, the reflectometry
limitations and drawbacks are discussed considering the two main families proposed in
the literature: Time Domain Reflectometry (TDR) and Frequency Domain Reflectome-
try (FDR). Highlighting some main limitations, we then discuss the main trends in the
literature and introduce this work proposal to cope with some well-identified problems.

• Chapter 2 details the problematic of this work. It starts with presenting the soft fault de-
tection and localization problems in wired networks using reflectometry methods. Then it
discusses several post-processing methods proposed in the literature and their limitations
concerning the test signal attenuation and dispersion phenomena, which are discussed in
detail, and the frequency selection problem is introduced. Next, the challenges associated
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with diagnosis in the case of a multi-branched network related to distributed reflectom-
etry are explained, and the need to reduce the number of the sensors is established.
Finally, the PCA for Fault Detection and Diagnosis (FDD) is introduced.

• Chapter 3 introduces a new approach for frequency selection in the case of soft fault
diagnosis. The proposed method permits to configure and calibrate the VNA at dif-
ferent frequencies. It performs measurements on different frequencies for the healthy
case. After which, the PCA model is established. It performs the new measurements
at different frequencies. If a dissimilarity is detected between the model and the new
data, the contribution of each variable (i.e., frequencies) to this variation is calculated.
The algorithm allows then to choose the most relevant frequency to monitor the soft
fault. The relevance of this choice is validated by studying the performance of noisy
signals. The advantages of the proposal are thus time-saving and enabling automatic
computerized decision-making.

• Chapter 4 introduces the new approach for selecting the relevant sensors to monitor
and diagnose soft faults in multi-branched wired networks. It combines TDR distributed
reflectometry with PCA. Indeed, for a given NUT, a distributed reflectometry approach is
considered where the sensors perform their reflectometry measurements. These collected
data are used to establish a PCA model coupled with statistical tests to evaluate new
measurements status. Whenever a fault is detected, the relevant sensors for monitoring
and diagnosis are identified with high accuracy. Based on these results, the sensor’s
number could be reduced, and the non-selected ones could be inactivated temporarily,
reducing energy consumption, computing complexities, and sensor fusion problems. As
for the previous chapter, the performance and limitations of the proposed technique are
studied in a noisy environment and validated experimentally.

The manuscript ends with a section devoted to drawing the main conclusions and proposing
several perspectives.
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1.1 . Introduction

In the era of wireless networks, the use of electrical cables’ remains inevitable in almost all
modern systems. They play a primary role in energy and signal transportation, where wiring
networks have become essential subsystems whose proper functioning is of critical importance.
After installation, electrical cables age and may show signs of weakness, leading to the ap-
pearance of faults. They can also be exposed to aggressive environmental factors (humidity,
heating, corrosion, etc.) or aggressive operating conditions (mechanical attacks). In this case,
they lose their function and may cause serious flaws. Therefore, it is necessary to establish a
diagnosis system to detect and locate faults in the cable. In this context, reflectometry is a
promising method to meet this demand.

This chapter aims to present the problems encountered in electric cables and the different
diagnosis methods used to detect and locate faults. After a brief introduction to the growing
need for electrical cables in today’s modern systems, the different types of cables and their
domain of application is first introduced. Then, the various faults encountered that can pose
significant safety issues with severe economic impacts are presented. According to their severity,
we can distinguish two types of faults: hard and soft. Next, several methods designed to detect
and locate cable faults are introduced where their advantages and limitations are discussed.

In the literature, lots of work dedicated to fault detection are based on the use of reflec-
tometry [22,23,38,39]. This technique uses the same principle as Radar. Its main idea consists
of injecting a signal into the cable under study and letting it flow through it with respect to
the physics propagation laws. When an impedance discontinuity occurs, part of the signal is
back-propagated, and the analysis of this reflected signal can be used to characterize the fault.
In our work, we consider this principle combined with statistical signal processing to propose
an efficient fault detection and diagnosis solution.

In the following, the reflectometry technique is presented. Its limitations and drawbacks
are discussed considering the two main families proposed in the literature: TDR and FDR.
Highlighting some main limitations, we then discuss the main trends in the literature and
introduce this work proposal to cope with some well-identified problems.

1.2 . Electrical Cables and their Applications

With the evolution of electrical systems, the use of electrical cables has become manda-
tory. Their existence is essential for energy and information transmission, ensuring the normal
behavior and optimal system’s performance.

According to [1], the global cable market size in 2018 is estimated to be 164.94 billion
of US Dollars. It is expected to grow at a Compound Annual Growth Rate (CAGR) of 4.9%

over the forecast period (2019 − 2025). Figure 1.1 shows the global cables market share, by
end-use, in 2018. High demand for these cables by end-users (such as aerospace & defense
[22,40], building & construction, oil & gas, energy & power [40], Information Technology (IT)
& telecommunications and industrial machinery [41]) is expected to be a leading factor in this
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market’s growth over the forecast period.

7%
25%10%

36%
12%

10%

Aerospace & DefenseBuilding & Construction
Oil & GasEnergy & Power
IT & telecommunicationOthers

Figure 1.1 – Global wires and cablesmarket share, by end-use, 2018 [1]

Huge attention on the widespread use of electrical wires had been noticed with the increasing
complexity of modern systems such as automotive and avionics industries. For example, leisure
and entertainment facilities have been added in today’s vehicles (such as Air Conditioner (AC),
radio, Television (TV), and navigation systems), which require wiring networks. Furthermore,
a new concept has emerged in the automotive industry; “X-by-wire” technology. The idea is
to replace the main mechanical and hydraulic control systems (such as motors and Anti-lock
Braking System (ABS)) by electrical or electro-mechanical systems. This has the effect to
considerably increase the number of on-board systems to be interconnected. This need for
on-board electronics has evolved considerably in recent years, from 2% to 30% rising a car
production cost between 1920 and 2000 and have reached 35%, or even 40% in 2015 [11].
This trend has strengthened, leading to increased in complexity and mass (from 1% to 5% of
the weight of a vehicle) as well as the volume of electrical harnesses. In thirty years, the length
of the cables carried on an automobile has more than tenfold, passing from nearly 200 to more
than 4000 meters [17]. Today, it is common to have in a vehicle nearly 4 kilometers (km) of
cables combined, weighing more than 80 kilograms (kg). At the same time, the number of
connections has increased from 200 to over 2000. While the advent of “X-by-Wire” technology
is a major revolution in the automotive industry, issues of cost, wiring, connectivity, reliability
and control have arisen.

A typical cable network in a modern car shows bundles of long cables and their connectors,
referred as the automotive wire harness (Figure 1.2). About 35% of the entire automobile
infrastructure is related to electrical systems [42]. As the number of Electronic Control Units
(ECU) and sensors distributed throughout the vehicle continues to grow, manufacturers have
resorted to multiplexing in order to reduce the amount of cables. This technology consists of
exchanging several information among the different components with a single physical medium
(i.e. a bus) instead of passing each information through a dedicated wire. For this, we need to
define with accuracy: the transmission medium (wires, twisted pair, coaxial cable, optical fiber,
etc.), the types of information (power signals, control signals, high frequency signals, digital
signals , etc.) and the communication protocol.

The Automotive industry is not the only industry in which wires’ length has increased
significantly. Figure 1.3 presents the cumulative lengths of cable in different applications, from
40 km in a civil helicopter and to 5, 000 km in a nuclear power plant. This number can reach
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40, 000 km in the railway infrastructure of wide countries. In new infrastructures, it is expected
to be 1, 000, 000 km long [9]. This increase has resulted in complexity making the maintenance
operation very complex [22].

Figure 1.2 – A complete network of electrical cables of a typical mod-ern car [2]

Figure 1.3 – Cumulative cable lengths in various applications [3]
In each of the above applications, the types of cable depend on the nature of the signal

to be transmitted and the environment in which the system operates. The transmitted signal
can be analog or digital with low or high power and propagating at low, medium, or high
frequency [43]. Environment, on the other hand, varies widely. The cable could be in the
air as for power transmission networks, in the sea or buried for underwater and underground
connections [44].

To illustrate this latter purpose, Figure 1.4 presents an example of different types of elec-
trical cables used in high-speed train. Medium and high-voltage cables are used for energy
transmission, coaxial cables for high-frequency transmission systems (radio, radar, and data),
low and high-temperature power cables to provide energy and deal with extreme temperatures
and weight constraints. Moreover, two main types of cables are used for computer networks:
coaxial cables [45] and twisted pair cables [46].
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Based on this example, we can identify the three most common cables: coaxial, twisted
pair, and power cables. Their main specificities are described in the following subsections.

1.2.1 . Coaxial Cable

Coaxial cables, invented in 1930 by Herman Affel [47], are perhaps the most common,
basic, and easy to understand cables of common transmission line designs. It uses an inner
conductor made up of a single copper strand or several twisted strands to conduct electrical
power. An insulating dielectric material surrounds this core to avoid contact with the braided
metal shield (operating as a ground). This shielding protects data against electromagnetic
disturbance and ensures high-speed transmission over long distances [48]. Finally, the cable is
often protected from the external environment by an insulating outer sheath or jacket, as shown
in Figure 1.5. The term “coaxial” is derived from the fact that the core and the shield share
the same geometric axis.

The advantage of the coaxial design is that the electric and magnetic fields are confined in
the dielectric, and there is almost no leakage outside the shielding layer. Signals inside the cable
are protected from electromagnetic interference with outside electric and magnetic fields. This
feature makes coaxial cable an ideal choice for carrying high-power signals that are not allowed
to radiate or couple to adjacent structures and weak signals that cannot tolerate environment
interference [48].

The applications for this cable are mainly Radio Frequency (RF), microwave transmission,
video cabling, CATV distribution, computer, and instrumentation data connections [49]. Gen-
erally, this cable’s use is extended to any application domains where the signal must undergo
minimal attenuation and distortion, such as telecommunications, aerospace, and military [49].

1.2.2 . Twisted Pair Cable

Introduced in 1881 by Alexander Graham Bell [50], twisted-pair cable, is made up of two
twisted strands of copper (a forward and a return conductor of a single circuit). This twisting
aims to maintain the distance between the wires and reduce cross-talk (or electromagnetic
interference) between neighboring pairs due to nearby sources [51].

Twisted pair is used as a transmission medium for on-board local networks, such as the
FlexRay network, new communication protocols for “X-by-wire” applications, and the Controller
Area Network (CAN) used in automobiles.

Depending on the shielding, twisted pairs could be divided into several categories such as
Unshielded Twisted Pair (UTP), Shielded Twisted Pair (STP), Foiled Twisted Pair (FTP)
(Figure 1.6). UTP is often used in Ethernet networking and has no shield. On the contrary,
for STP typically used in Token Ring networks, each twisted pair is surrounded by a conductive
shielding layer giving more immunity against electromagnetic interference. Finally, for FTP, a
common shielding sheath encloses all the twisted pairs. The latter cable is used in telephone
and computer networks applications.
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Figure 1.4 – A map showing different cable types with their functionin the railway industry [2]
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Figure 1.5 – Front cut of the coaxial cable showing its different layers[4]

Figure 1.6 – Twisted-pair cables examples [5]

1.2.3 . Power Cable

The first power distribution system has been developed by Thomas Edison in 1882. These
cables are frequently used at high voltage to transmit electrical power, whether in the Alternating
current (AC) or Direct current (DC) mode. One of their characteristics is that the insulation
should withstand high voltage stress.

Figure 1.7 displays a cross-section cut view of a high voltage cable, with its main layers.
An inner conductor is rounded by an insulator. Then the insulator is covered by an external
semiconductor with a metallic screen and finally with and outer protective sheath. During cable
laying for a given application, the inner conductor should tolerate pulling stresses. The metallic
screen provides mechanical protection for the cable during installation. The latter is insulated
from the surrounding medium and protected from corrosion through the outer protective sheath
made from a polymer material [2].

It is important to note that, in this work, coaxial cables are used through their numerical
model to validate the proposed methodology but also physically in the conducted experimental
measurements for proof of concept. Then the comparison could then be made between simu-
lated data and measured ones. In fact, the selection of this kind of cable was motivated by the
fact that they are very commonly used in a wide range of applications.
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Figure 1.7 – A cross-section cut of a high-voltage power cable: (1):Conductor, (2): internal semi-conductor, (3): insulation, (4): exter-nal semi-conductor, (5): metallic screen and (6): outer protectivesheath [6]

As shown from the above examples, the extensive use of wiring networks in today’s systems
has become crucial. Whatever the application domain, cables are victims of the environments
they operate in and often face aggressive conditions (thermal, mechanical, electrical, and envi-
ronmental). Hence, one day or another, they will show signs of weakness or aging, resulting in
the appearance of anomalies, usually referred to as wiring faults. These anomalies may cause
system dysfunctions and induce severe consequences, especially if these cables are part of a
critical system where safety is an issue.

Therefore, in the next section, the main types of faults affecting a cable will be described,
as well as the main reason for their appearance.

1.3 . Faults in Electrical Cables

For many years, cables have been considered as elements that could be installed and oper-
ates for the system’s life [52]. However, this changes rapidly as signs of cable failure appear.
These failures may cause more or less severe anomalies, such as loss of electrical signal, infor-
mation distortion, power surge, system malfunction, smoke, fire, etc. According to the fields
of application, the consequences of the faults or failures can be catastrophic or even fatal. For
example, studies conducted in the avionics industry indicated that the crashes of both Boeing
747 of TWA 800 (1996) and the MD-11 of Swissair 111 (1998) were related to the faulty wiring
systems [22]. Many other incidents were noted, which did not result in catastrophic accidents,
but were attributed to wiring failures such as Boeing 757 of AA (2008) and Airbus340 of VA
(2009) [16]. Based on the data collected by the AFSA [17], cables’ faults are the main cause
of aircraft accidents, with 29% followed by connectors’ faults with 14%.

The maintenance of cables also comes with a significant cost. The US Navy, for example,
spends 1.8 million person-hours per year troubleshooting and repairing aircraft wiring systems.
Approximately 1077 missions aborts and 147, 674 non-mission-capable hours per year are lost
due to cable incidents [53]. The delivery of Airbus’ flagship aircraft A380 had been delayed due
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Figure 1.8 – A pie chart showing detailed types of faults in aeronauti-cal cables from the data collected between 1980 and 1999 by the USNAVY [7]

to wiring problems, resulting in $6 billion extra cost [54].

In this context, assessment of the most prominent faults in electrical wiring had been made
using programs of the United States Coast Guard, NAVAIR1, NASA2, and the FAA3. Even
though each of the mentioned agencies has its own maintenance practices, data collection
methods, and operating environments, they all experience similar cable problems. Figure 1.8
represents the data collected by the US NAVY concerning wiring faults discovered during main-
tenance operations between 1980 and 1999 [7]. It is noted that wire chafing represents roughly
37%, followed by short circuits with 18%, and open circuits with 11%. Figure 1.9 shows an
example of an aircraft cable with progressive chaffing that might lead to catastrophic casualties
if not early detected.

Generally, the leading causes of cable degradation and faults may be due to external or in-
ternal factors [55,56]. External factors include chemical contamination, mechanical aggression
(e.g., vibration), an incorrect application, maintenance operations (e.g., human interventions),
corrosion due to humidity, and oxidation due to chemicals and environmental effects (e.g., tem-
perature). Internal factors include insulation aging [57, 58], undetected manufacturing faults,
and local heating (Figure 1.10).

These factors are responsible for modifications in the cable’s parameters, resulting in signal
propagation perturbation: the cable is considered faulty. According to their severity assessment,
faults in cables are generally classified into two main families: hard faults and soft faults
(Figure 1.11).

1Naval Air Systems Command2National Aeronautics and Space Administration3Federal Aviation Agency
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(a) (b) (c)
Figure 1.9 – A progressive shield-chafing fault in an aircraft cablewhere (a) chafing 6Thousands (K) cycles beyond initial shield expo-sure, (b) chafing after 8K cycles, (c) chafing after 10K cycles. Ruler ticksindicate millimeters [7]

(a) (b) (c)
Figure 1.10 – Faults of different origins: (a) mechanical, (b) thermal,and (c) chemical [8]

(a) (b)
Figure 1.11 – Example of faults: (a) open circuit (hard fault), (b) insula-tion damage (soft fault) [8]

1.3.1 . Hard Faults

Among the most commonly encountered faults one can mention short circuits and open
circuits, which are the source of many fires or signal losses [18, 59]. A short circuit results
from the low resistance connection of two or more conductors due to insulation damage. On
the other hand, due to the cable’s mechanical damage or violent movement, one or more
conductors rupture will lead to an open circuit. They are known as “hard faults”. These faults
cause considerable variation in the cable characteristic impedance and appear as a complete
interruption of the flow of energy or information. Thus, it profoundly affects the performance
of the system. Hard faults give rise to tragic accidents following sudden system malfunction.
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1.3.2 . Soft Faults

Soft faults are characterized by a small impedance variation of the cable, making them
difficult to detect. They do not prevent energy or information circulation, but the quality of its
transmission will depend on the state of degradation of the cable. Consequently, these faults
do not always result in a severe breakdown. In general, any fault that is not considered hard
shall be defined as a soft one; these include crack of the sheath, insulation damage, frays, etc.
However, the origins of the mentioned degradations, such as aging, mechanical stresses, and
hostile environment, can make the faults progressive, leading to severe accidents. If they are
not detected within a short time, they can evolve into hard faults.

Proper and efficient wire diagnosis methods that detect faults as quickly as possible, espe-
cially before they become critical, can guarantee “faithful” management of the system’s proper
functioning. Thus, the objective is to detect and locate faults with spatial precision to avoid
unnecessary costly interventions. To address this challenge, industry and academia have started
to study and develop smart fault detection, diagnosis, and prevention systems in electric cables.
Then these studies help to better define condition based maintenance and then preserve in the
maximum the remaining useful life of the cable.

It shall be important to point out here that the two main families of wiring faults, hard
and soft faults, are basically permanent faults, that will appear continuously once they occur.
With this in mind, there exist wiring faults that occur commonly in aircrafts, and referred
to as intermittent arc faults (about 37%). These are the most frustrating, mysterious and
extremely difficult faults to detect and locate because they can appear in a few milliseconds
due to vibrations for example and then disappear [60].

In our work, we propose to mainly focus on the detection and diagnosis of soft faults.

1.4 . Cable Fault Detection and Localisation by Reflectometry

There is a need for new and practical wire diagnosis methods ensuring the reliable use
of cables and enabling the detection and localization of faults. There are several wire-based
diagnosis methods that have been developed.

These include visual inspection, X-ray, infrared thermal imaging, capacitance and inductive
measurements, etc [20, 21]. Although visual inspection is the most intuitive technique that
relies entirely on the primitive visual intervention of human sensibility, the increasing complex-
ity of wired networks made it non-efficient. Since a large portion of the cable network are
positioned in hard-to-reach places, generally hidden by massive structures like electric panels,
components, or other cables [61], only 25% of the existing faults in an aircraft could be de-
tected by this method [7]. The X-ray inspection method depends upon heavy equipment usage,
needs direct cable access, and human intervention for post-acquisition data analysis leading
to non-practicability in many cases. Infrared thermal imaging is not able to characterize all
the fault types [18]. Capacitive and inductive methods are based on the cable’s capacitance
and inductance measurement. Even though they are robust and easy when used to diagnose a
point-to-point cable [19], they are not suitable in many cases: complex network analysis, cable
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Visualinspection X-Rays Capacitiveandinductivemethods

Frequencydomain re-flectometry
Time domainreflectome-try

Long cable (i.e., >30m) / / - , ,
Buried cable / / - , ,
Hard fault , , , , ,
Soft fault - , / - -

Intermittent fault / / / - -
Online Diagnosis / - / , ,
Complex networks / / / / -

Table 1.1 – Comparison of diagnosis methods: ,: themethod detectsthe fault. -: the method detects the fault under conditions. /: themethod does not detect the fault [14]
in operation, soft faults.

Table 1.1 [14] presents the main advantages and disadvantages of these methods. Despite
their limitations, these methods remain inexpensive and straightforward and can provide the
location of hard faults. They are ideal for integration into handheld test equipment and are an
easy-to-use alternative to manual search methods.

Although several electric and non-electric wire diagnosis methods have been developed,
reflectometry-based techniques are the most promising. Reflectometry methods in the time
and frequency domains make it possible to detect and locate hard faults due to their significant
signatures, which may be detectable by measurement devices. However, these current methods
are generally not effective for the detection of soft faults where there is only a slight variation in
the properties of the cable [24, 25]. The conclusion drawn from the table is that reflectometry
in its different methodologies seems the most efficient method to detect soft faults for most of
the given combinations. This technology and its capabilities are detailed in the following.

1.4.1 . Principle of Reflectometry

Reflectometry is a high-frequency method commonly used for monitoring the condition of
cables. It can provide information for the detection, location and characterization of electrical
faults. It uses the principle of a radar (Figure 1.12) based on the propagation of electromagnetic
waves within a system or medium to be diagnosed (in our case, a cable): a probe signal is
injected at one end of the system to diagnose, this signal flows under the propagation laws of
the current medium, and a part of its energy is reflected back to the injection point whenever
an impedance discontinuity (junction or fault) is encountered (Figure 1.13). Analyzing the
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Figure 1.12 – Radar systems using reflectometry principle for locatingtargets

(a) (b)
Figure 1.13 – Principle of reflectometry [9]

reflected signal allows to have information about the presence, the position, and the type of
discontinuity [21]. This knowledge is then very useful for maintenance operators.

Let us consider a transmission line, of length l, supplied at one end by a voltage generator
of impedance Zg and at the other end, closed by a load impedance Zl as shown in Figure 1.14.
At low frequency, the wavelength λ is greater than that of line l and the electromagnetic wave
is almost constant at any point of the line, whatever the load impedance Zl. Hence, it is
unnecessary to introduce the propagation notion. On the other hand, at high frequency, since
the wavelength λ is shorter than that of line l, the amplitude of the wave is no longer constant
throughout the line. In this case, the propagation phenomenon must be taken into account.
Reflectometry is inspired by this phenomenon to extract information on the condition of the
transmission line.

In the case of a simple model of a transmission line, the channel response is approximated by
a succession of Dirac pulses. Each pulse represents the echo of the incident signal returned by
an impedance discontinuity. Each pulse is delayed by a propagation time τi, which corresponds
to the time required to make the round trip between the injection point and the discontinuity
i, and weighted by an attenuation coefficient αi. The channel impulse response h(t) is given
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Figure 1.14 – Model of a transmission line of length l and characteris-tics impedance Zc
by:

h(t) =
∑
i

αiδ(t− τi) (1.1)
The injection of a signal e(t) at the input of the line with a channel response h(t) gives rise to
a reflected signal s(t) expressed as follows:

s(t) = e(t) ∗ h(t) =
∑
i

αie(t) ∗ δ(t− τi) =
∑
i

αie(t− τi) (1.2)
The operator (∗) represents the inner product. The amplitude of the incident signal e(t) is
therefore attenuated by a factor αi and delayed by τi at each discontinuity i. Analysis following
echoes can detect, locate and characterize the nature of the discontinuity.

As reflectometry methods are based on the propagation of electrical signals in a transmission
line and in order to better understand how it is applied to wire diagnosis, a preliminary reminder
of the theory of transmission lines is necessary to understand the phenomenon of propagation
of an electromagnetic wave in a transmission line. For this, the use of a physical model of the
wired network and the numerical simulation of reflectometry are very useful.
Many authors [7, 9, 62, 63] rely on a 4-parameter model (RLGC) to describe the propagation
of a wave (with associated voltage V and current I) inside a cable, from which come the well-
known telegrapher’s equations [64]. The RLCG model of a transmission line is the subject of
the next section.

1.4.1.1 RLCG Model of a Transmission Line

At high frequency, a transmission line can be modeled by the “RLCG model” [65], which
divides a transmission line of length l into several consecutive elementary segments of length
dx. Each of them is represented by the equivalent electric model of Figure 1.15. It consists
of the following parameters: resistance (R), inductance (L), capacitance (C) and conductance
(G), often given as per unit length values. The RLCG elements are referred to as the primary
parameters of a propagation line and are defined linearly as follows:

• Linear resistance R expressed in (Ω/m), which depends on the electrical resistivity and
the section of the transmission line.
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• Linear inductance L expressed in (Henry/m), which breaks down into two parts: an
interior inductance and an exterior inductance. The inner inductance is due to the mag-
netic field inside the conductors and the external inductance is due to the magnetic field
between conductors. The linear inductance depends on the diameter of the conductors,
the distance between the two conductors and the permeability of the materials.

• Linear capacitance C expressed in (Farad/m), which depends on the permittivity of the
insulation placed between the two conductors.

• Linear conductance G expressed in (Siemens/m), which represents a leakage current
flowing between two conductors when the insulation separating these two conductors is
not perfect.

Figure 1.15 – Diagram of the RLCG model equivalent to a segmentof a transmission line
Reflectometry is inspired by the phenomenon of reflection to ensure the diagnosis of cables. In
what follows, the process to find the reflection coefficient Γ(x) is described.
The application of Kirchhoff’s laws provides the following equations:

v (x+ dx, t)− v (x, t) = −Rdxi(x, t)− Ldx∂i(x, t)
∂t

(1.3)

i (x+ dx, t)− i (x, t) = −Gdxv(x, t)− Cdx∂v(x, t)

∂t
(1.4)

where v and i represent the voltage and the current, respectively, at the instant t in the segment
of the line of length dx. By applying the partial derivative, we obtain the two differential
equations, known as the Telegraphists equations [66], as follows:

∂v(x, t)

∂x
= −Ri(x, t)− L∂i(x, t)

∂t
(1.5)

∂i(x, t)

∂x
= −Gv(x, t)− C∂v(x, t)

∂t
(1.6)

We propose to solve (1.5) and (1.6) in harmonic regime, by considering that the line is subjected
to a sine wave of pulsation ω = 2πf(rad/s) where f is the frequency [67]. In this case, the
current and voltage waves are given, respectively, by:

v(x, ω, t) = V (x, ω)ejωt (1.7)
i(x, ω, t) = I(x, ω)ejωt (1.8)
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where V (x, ω) and I(x, ω) represent the complex amplitudes associated with the voltage v(x, t)

and the current i(x, t) respectively. By replacing v(x, t) and i(x, t) in (1.5) and (1.6) by their
respective complex expressions, we get:

∂V (x, t)

∂x
= − (R+ jωL) I(x, t) (1.9)

∂I(x, t)

∂x
= − (G+ jωC)V (x, t) (1.10)

By deriving (1.10) with respect to x, we can write:

∂2I(x, t)

∂x2
= − (G+ jωC)

∂V (x, t)

∂x
(1.11)

By injecting (1.9) into (1.11), we find (1.12):

∂2I(x, t)

∂x2
= (G+ jωC) (R+ jωL) I(x, t) (1.12)

In the same way, we can obtain (1.13):

∂2V (x, t)

∂x2
= (G+ jωC) (R+ jωL)V (x, t) (1.13)

We thus obtain the following two propagation equations:

∂2I(x, t)

∂x2
− γ2I(x, t) = 0 (1.14)

∂2V (x, t)

∂x2
− γ2V (x, t) = 0 (1.15)

Where γ, the propagation constant, is defined as follows:

γ =
√

(G+ jωC) (R+ jωL) = α+ jβ (1.16)
with α, the attenuation constant (Neper/m) and β, the phase constant (radians/m). In
(1.16), the first term α represents the attenuation of the amplitude of the wave during its
propagation while the second term jβ represents the rotation of the phase of this wave. Solving
these equations in the case of a harmonic regime, gives the following expressions:

V (x, t) = V +e−γx + V −eγx (1.17)
I(x, t) = I+e−γx + I−eγx (1.18)

Equation (1.17) shows that there are two waves: a traveling wave V +e−γx, which propagates
towards the load impedance Zl (in the positive direction x) and a reflected wave V −eγx, which
propagates towards the generator (in the negative direction of x) after a reflection at the level
of the load impedance Zl as shown in Figure 1.15. The voltage V (x, t) and current I(x, t)

waves are connected by a characteristic impedance Zc expressed as follows:

Zc = V (x, t)/I(x, t) =

√
R+ jωL

G+ jωC
(1.19)
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In the case of a lossless transmission line, R = 0 and G = 0. With these approximations, the
propagation constant becomes:

γ = jω
√
LC = jβ (1.20)

Note that the attenuation constant (α) is zero. Regarding the characteristic impedance, its
expression becomes:

Zc =

√
L

C
(1.21)

The presence of a reflected wave in (1.17) can be explained by the presence of a discontinuity
in the characteristics of the line or if the load impedance is different from the characteristic
impedance at the end of the line (Zc 6= Zl). In addition, the variation in the intrinsic character-
istics of the line following a fault can also lead to the appearance of reflections. The reflection
coefficient Γ(x) is defined by the ratio of a reflected wave to an incident wave as follows:

Γ(x) =
Vreflected
Vincident

=
V −eγx

V +e−γx
=
Zl − Zc
Zl + Zc

(1.22)
Reflectometry is inspired by this phenomenon of reflection to ensure the diagnosis of cables. In
the case of a hard fault (open circuit or short circuit), it is very easy to determine the nature
of the discontinuity according to the value of the load impedance Zl.

• If |Zl| = 0Ω, then the incident wave encounters a short circuit and is reflected with a
coefficient Γ(l) = −1. The reflected wave has the same amplitude as the incident one
but with an opposite sign.

• If |Zl| = ∞, then the incident wave encounters an open circuit and is reflected with a
coefficient Γ(l) = 1. The reflected wave has the same amplitude and the same sign as
the incident one.

• If |Zl| = |Zc|, then the incident wave will never be reflected (Γ(l) = 0). In this case, it
is considered that the end of the line is adapted.

Reflectometry makes it possible not only to determine the nature of the discontinuity but also
to locate it according to the following relation:

d =
τvp
2

(1.23)
where τ is the time required to travel the line (round-trip); vp, the speed of propagation in the
line. In the case of a lossless line, it is given as follows:

β = ω
√
LC ⇒ vp =

ω

β
=

1√
LC

(1.24)
As the knowledge of L and C is not guaranteed, vp is often given by the cable manufac-
turer. R2RLCG method [10] is an iterative method to go back to the RLCG parameters of
a uniform cable section from a Time Domain Reflectometry (TDR) or Frequency Domain Re-
flectometry (FDR) measurement. There are methods described by some articles [68–71] to
extract RLCG from S parameters measurements but mainly on a thinner frequency band than
R2RLCG method. This one was developed for its main advantages:
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Figure 1.16 – Presentation of the method R2RLCG [10]
• Measure at one point of the cable

• Rapidity of calculus

It is based on the following prerequisites:

• Knowledge of the cable length noted l

• Knowledge of the input impedance noted Z0

• Absence of strong reflections on the cable

• Knowledge of the load at the end of the line noted Zl

This method is also based on another assumption as to the shape of the desired RLCG

parameters. Conventionally, for standard cables, it is possible to show a dependence in the
square root of the frequency for R and a linear dependence of G with respect to the frequency.
L and C are almost constant over the reflectometry working frequency band. This choice has
consequences on the resulting parameters. The attenuation has a frequency dependence which
is the sum of a term proportional to the root of the frequency and a term proportional to the
frequency [10]. The phase factor is taken as proportional to the frequency, which is often the
case for the frequency band considered. Likewise, a consequence of these choices is that the real
part of the characteristic impedance is almost constant over the entire frequency band. This
method will provide the RLCG parameters over the entire frequency band and, consequently,
the attenuation, the speed, and the complex characteristic impedance with high precision.

The detailed operation of this method is given in Figure 1.16. From the TDR measurement,
the first estimation of the characteristic impedance of the cable Zc is estimated based on the
following equation:

Zc1 = Z0
1 + ΓE1

1− ΓE1
(1.25)

where Z0 = 50Ω and ΓE1 is the given reflection coefficient at the input of the cable. The
calculation of Zc1 and given Zl permits to calculate an estimation of the reflection coefficient
at the end of the cable Γl. Consequently, it is possible to make a first estimation of the
propagation constant γ1, such that:

γ1 = α+ jβ (1.26)
where α is the cable attenuation and β is the phase constant. It is certain that these ap-
proximations do not permit to obtain the exact results. Whenever the first estimate of γ is
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calculated, a corrective phase based on the assumed form of alpha(α) and beta (β) is applied.
As a reminder, it is assumed that [10]:

α(f) = a0
√
f + a1f (1.27)

β(f) = b0f (1.28)
By regressing the entire frequency band using the least squares criterion, a0, a1, and b0 are
extracted. Once the parameters α, β, and Zc1 are obtained, a first estimate of the RLCG
parameters is calculated. As shown in Figure 1.16, these parameters are used to make a
reconstruction of the reflectogram using the transfer function of the cable expressed as follows:

H(f) = ΓE +
(1− ΓE

2)Γle
−2γl

1 + ΓEΓle−2γl
(1.29)

The reconstructed reflectogram is then compared to the measurement. The parameters are
also used to make a new estimation of the characteristic impedance Zc, and a repetition of
the previous calculation with the new values is made (Usually, the calculus is done for 40

times to cover a good range of the convergence, but in fact when there is a convergence, it is
done in two or three iterations). The algorithm uses several iterations set by the user. At the
output, the parameters are kept, which made it possible to obtain the best likelihood coefficient
between the reconstructed and the measured reflectogram. Figure 1.17 shows the evolution of
the correlation factor when applying the R2RLCG method on a coaxial cable type RG59 of 5

meters length. It shows that the correlation coefficient is quite good with one iteration but it
becomes better with some more (even though the benefit is small) and starts regressing after
too much operation [10].

Figure 1.17 – Evolution of the correlation factor for R2RLCG on an ex-ample of coaxial cable

In the case of a soft fault, a very low reflection is resulted compared to the case of a
hard fault. Indeed, only a part of the wave is reflected to the injection point while the other
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part continues to propagate in the line. According to [12], impedance discontinuities greater
than 10% are relatively easy to identify and locate just by looking at the response or using
relatively simple algorithms to detect the fault’s response automatically. Impedance differences
below 10% become progressively more difficult to identify, as their response is much smaller.
Eventually, the peaks from the reflection are smaller than the measurement error and cannot
be detected.

The RLCG model makes it possible to determine the primary {R, L, C and G} and
secondary {Zc, γ} parameters of a transmission line. To better understand the operating mode
of reflectometry, a frequency model is used in this work to simulate the presence of a hard or
soft fault in a simple topology or a complex one (Y network, star network, etc.).

There are several methods that can be used to model wire networks [72–74]. Among these
methods we have identified two particularly interesting methods: the ABCD matrix in the
frequency domain and the finite difference method in the time domain (FDTD).

1.4.1.2 Time Domain Analysis

Time-domain simulation allows to follow the reflectometry signals as they travel along the
wires of the network. In this work, we have employed a commercial microwave simulator: CST
(Computer Simulations Technology) Microwave Studio for the 3D Electromagnetic (EM) model
of a coaxial cable. This software performs a high fidelity simulation of Maxwell’s equations using
the Finite-Difference Time-Domain (FDTD) method [75]. The simulator allows for detailed 3D
geometric modeling enabling accurate removal of shapes of shielding. It also enables arbitrary
wave-shapes to be induced and the corresponding reflections and transmissions to be measured.
FDTD method provides a quick result, as it only requires a 1D mesh of the wire [76]. FDTD
simulation can help understand the propagation of signals along the wire [75] or in a bundle
[77]. FDTD techniques work in the time domain, which makes them suitable for transient
analysis. In particular, the simulation of TDR equipment is a natural implementation in an
FDTD simulation.

1.4.1.3 Simulation of a Soft Fault by the Chain Matrix

Several methods have been developed to model wired networks. The most common method
consists of using the matrix of parameters S, called the distribution matrix or “Scattering
matrix” [78, 79]. Although the distribution matrix is efficient for the simulation of a hard
fault in the network, the formalism of the ABCD matrix [80, 81] is preferable in the case of a
branched network. Indeed, the ABCD matrix makes it possible to model a branched network by
a simple cascade of ABCD matrices corresponding to the different branches which constitute it.
The ABCD formalism makes it possible to take into account soft faults. It allows to simulate
the local variations of one of the parameters R, L, C or G. To take into account three-
dimensional radiation phenomena (couplings, cross-talk, etc.), “full-wave” approaches such as
finite differences [82] or finite volumes [83] can also be considered. In this work, the simulation
of a soft fault by the ABCD matrix is used.
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The ABCD matrix is only defined in the case of a two port network as shown in Figure 1.18.
It is used to connect the inputs of a circuit to the outputs as follows:

Figure 1.18 – Notations for the ABCD matrix formalism
[
V1
I1

]
=

[
A B
C D

] [
V2
−I2

]
(1.30)

V1 and I1 represent the voltage and current at port 1, respectively. For port 2, V2 and I2
also represent the voltage and the current. For a transmission line, of length l, characteristic
impedance Zc and propagation constant γ, the matrix ABCD is defined as:[

A B
C D

]
=

[
cosh γl Zc sinh γl(
1
Zc

)
sinh γl cosh γl

]
(1.31)

The value of the ABCD matrix comes from the fact that one can reproduce complex structures
with only basic circuits. In the case of a short-circuit at the end of the line (i.e. V2 = 0), its
equivalent impedance is obtained by:

Zsc =
B

D
(1.32)

In the case of an open circuit at the end of the line (i.e. I2 = 0), its equivalent impedance is
obtained by:

Zoc =
A

C
(1.33)

Using the ABCD matrix formalism in the frequency domain, we can derive a simple model
for a soft fault. We assume that a soft fault, at the distance l1 and over the length Lf of a
point-to-point line of length l� Lf . To position a soft fault on a homogeneous line of length
l = l1 + Lf + l2, it suffices to cascade 3 sections: a faultless section of length l1, the fault
of length Lf and another faultless section of length l2. The two faultless sections are defined
by primary parameters R, L, C and G or secondary parameters Zc and vp. The soft fault is
defined as a local variation of these parameters. The matrices of these sections are written
according to (1.31). They are then multiplied to obtain the matrix ABCD equivalent to the
line: [

A B
C D

]
=

[
A B
C D

]
l1

.

[
A B
C D

]
Lf

.

[
A B
C D

]
l2

(1.34)
Equation (1.31) for the faulty portion could be simplified because of the assumption | γdLf |� 1

to: [
A B
C D

]
Lf

=

[
1 ZdγdLf

γdLf
Zd

1

]
(1.35)

Let ε = Zd
Zc
− 1, the amplitude of the soft fault signature is γdLf ε, which is very small and

it explains why such a fault is difficult to detect using reflectometry, as verified experimentally
in [84].
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Figure 1.19 – Reflectogram of a transmission line with a soft fault andan open circuit [11]

Figure 1.19 shows a lossless transmission line of length 60m and characteristic impedance
Zc = 100Ω. The line has a soft fault at a distance 19.5m from the injection point and an
open-circuit (hard fault) at its end. The amplitude of the soft fault is very small compared
to that of the hard fault, which makes its detection and localization difficult under certain
conditions. The amplitude of the soft fault increases with the increase in the variation of the
characteristic impedance of the cable.

In the case of a more complex network such as a Y-shaped network, the ABCD matrix is
of great interest for the detection of a soft fault. In fact, the ABCD matrix makes it possible
to take into account changes in the line by cascading the matrices of the different sections
and thus facilitates the calculation of the reflection coefficient. For example, we consider a
Y network made up of three branches B1, B2 and B3 of lengths l1 = 50m, l2 = 65m and
l3 = 110m. A soft fault of 50cm length situated at a distance 70m from the injection point
is present on branch B2. Figure 1.20 shows the corresponding reflectogram. The first peak
corresponds to the first junction. Then, there is the weak amplitude peak, which corresponds
to a soft fault. Then, we observe the two peaks due to the open circuits at the end of the
lines B2 and B3. The other peaks are round trips of the incident signal in the network until its
attenuation. The simulation window in this case is set at 350m.

In practice, wired networks are more complex than a simple generic form (transmission line,
Y network and star network). To make the interpretations more complex, we can extend the
network in Y into a more complex network with n (n > 2) lines. In this case, reflectometry gives
rise to complex signals that are very difficult to analyze and the reflectogram analysis becomes
more and more complex, especially in the case of the presence of a fault in one or more lines of
the network. Reflectrometry therefore requires certain computational power and a good mastery
to draw useful conclusions. For this, several reflectometry methods have been proposed in order
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Figure 1.20 – Variation of the impedance of the soft fault [11]
to overcome the difficulties encountered by reflectometry in certain circumstances. Some of
these methods are presented in the next section.

1.4.2 . Introduction of the Reflectometry Methods

The difference between reflectometry methods lies in the nature of the injected signal and
the reflected one. Two main families are distinguished: FDR and TDR.

1.4.2.1 Reflectometry based on the Frequency-Domain Analysis

FDR injects a set of sine waves whose frequency varies linearly over time [23]. This signal is
known as the “chirp” signal c(t). The following equations define this signal:

c(t) = A cos(θ(t) + φ) (1.36)
θ(t) =

∫ t

0
πf(u)du (1.37)

f(t) = Fmin +
Fmax − Fmin

tmax
t, 0 ≤ t ≤ tmax (1.38)

This signal is characterized by its amplitude A, its phase φ, and its frequency θ (t) [59] as
shown in Figure 1.21.

To locate the impedance discontinuity, the analysis of one of the chirp signal characteristics
(amplitude, frequency, and phase) is made, resulting in three variants of the FDR method:
Standing Wave Reflectometry (SWR), Frequency Modulated Continuous Wave (FMCW), and
Phase Detection Frequency Domain Reflectometry (PDFDR). SWR measures maxima and nulls
in the standing wave caused by the superposition of the injected and the reflected signals
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Figure 1.21 – Chirp signal for a linear frequency FDR implementation
to provide location information of the impedance discontinuity [85]. FMCW measures the
frequency shift ∆F between the incident and the reflected signals delayed in time by ∆t by
varying the sine wave quickly, in a ramp function. With the knowledge of the wave propagation
velocity vp, the estimation of the fault location r is made as in (1.39) and (1.40) where the
bandwidth of the injected signal is δF and T is the signal’s period [85]. PDFDR [86] measures
the phase shift instead of the frequency one. Reflectometry methods in-depth study is provided
in [33].

∆F =
∆t

T
δF (1.39)

r =
vpT∆F

2δF
(1.40)

The reflectometry methods in the frequency domain have the advantage of allowing a spec-
tral analysis, and of exploiting the frequency behavior of the network for which the processing
such as calibration and compensation operations (encountered in VNA) are immediate. In
addition, they can be applied on cables under operation [33]. However, as FDR analyzes the
standing wave caused by the injected and reflected signals’ superposition, it is more difficult
to understand and interpret [59] and it requires advanced processing techniques. For simple
point-to-point cables, this analysis is relatively easy. However, it becomes too complicated for
complex networks due to the difficulty of analyzing the interaction of a significant number of
shifted waves [9]. In addition, since the final analysis of the fault is done in the time domain,
complex processing of frequency-time transitions is required.

1.4.2.2 Reflectometry based on the Time-Domain Analysis

TDR method is the most well known reflectometry method used for fault detection and location
[22]. It is based on the injection of a specific probe signal in the form of a Gaussian pulse or
voltage step. The measured signal at the injection point mainly consists of multiple copies of
this signal delayed in time. The delay is the round trip time between the injection point and
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the discontinuity encountered for each copy. This composite signal is called a “reflectogram”.
Accordingly, the obtained reflectogram analysis can locate the discontinuity, provided that the
propagation speed is known. Besides, the shape and the amplitude of this signal helps to identify
the nature of the discontinuity. When the emitted signal is a Gaussian function centered at
zero, it is written in the following form:

g(t) = A exp

(
−1

2

(
t

σ

)2
)

(1.41)
where A, the amplitude of the Gaussian and σ, the spreading factor. It defines the width
at half height of the Gaussian pulse equal to 2

√
2 ln(2)σ. Note that the simulations of the

reflectometry response that were done in section 1.4.1.3 used a Gaussian pulse. This explains
the presence of Gaussian form peaks in the reflectogram.

The propagation of the TDR pulse at a high frequency (up to 200 MHz, sometimes higher
than 1GHz) in a cable can undergo two phenomena: dispersion and attenuation [30]. Signal
attenuates mainly due to the cable resistance. It is observed by the reduction in the amplitude
of the signal during propagation. Consequently, it limits the diagnosis performance in terms
of cable length. Dispersion results in impulse deformation and spreading. It is explained by
the variation of the propagation constant, therefore of the propagation velocity, which depends
on the frequency: for a test signal with extended frequency support (Gaussian or rectangular
pulse, for example), its low-frequency components propagate slower than the high-frequency
ones. This leads to the location accuracy reduction, especially in long-distance cables [9].
Dispersion and attenuation phenomenons will be explained in details in chapter 2.

Furthermore, the energy of the pulse signal of standard TDR is limited by its duration T .
So, to deal with the pulse attenuation problem as it propagates, one needs to increase the
signal’s energy. Notably, this can be accomplished by using Pulse compression [87]. It is done
by injecting a pseudo-random binary signal [88], then calculating the correlation between the
injected and the measured signal to get the reflectogram. Linking TDR and spread spectrum
techniques, known in the digital communication field, results in new reflectometry methods
using the pseudo-random binary sequences [89] as a testing signal. These new methods are
called Sequence Time Domain Reflectometry (STDR) [38] and Spread Spectrum Time Domain
Reflectometry (SSTDR) [39, 61]. These two methods have disadvantages related to spectrum
flexibility lacking, precision loss, blind zone presence, and they are limited to hard faults [90].

For a cable under operation, the basic time-domain reflectometry method is not recom-
mended, as the power of the injected signal can disrupt or damage electronic systems connected
to the cable [91]. So, to deal with this problem several diagnostic methods which are derived
from TDR have been developed, such as STDR, SSTDR, Multi-Carrier Time Domain Reflec-
tometry (MCTDR) [92], Orthogonal Multi-tone Time Domain Reflectometry (OMTDR) [11],
Chaos Time Domain Reflectometry (CTDR) [93, 94] and Binary Time Domain Reflectometry
(BTDR) [95,96]. These methods are presented in detail in [90]. The MCTDR suffers from the
presence of side-lobes in the case of cancellation of certain sub-carriers. In addition, OMTDR
suffers from the presence of a blind zone around each peak with post-processing and filtering
issues. On the other hand, the side lobes constitute the CTDR/BTDR methods’ limits and
can become troublesome in the detection and localization of hard and soft faults. Future work
on the robustness of the methods to noise and the reduction of interference noise between the
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sensors is necessary to overcome these limitations and make the detection of soft faults more
efficient.

TDR methods are very suitable for diagnosing complex topology networks. They allow
constructing a reflectogram where each peak is associated with a discontinuity present on the
network [9]. The considerable development and improvement of electronic components during
the last decade have simplified the implementation of TDR-based methods. These methods
are very well suited to detect and locate hard and soft faults. In addition, the construction of
a reflectogram in the time domain makes it possible to easily locate and identify the type of
faults, where each echo is associated with a fault present in the cable. In addition, time-domain
measurements can be much faster than frequency methods. Besides, over the last decade,
a massive improvement of electronic components (Field-Programmable Gate Array (FPGA)
and Digital Signal Processor (DSP), high bandwidth converters, etc.) has been observed. This
made it simpler to implement TDR based methods. For this reason, methods derived from Time
Domain Reflectometry are generally preferred for cable diagnostics, especially when on-board.
Consequently, in this work, we will focus on the time domain reflectometry methods.

1.4.3 . Performances of Reflectometry

The performance of a diagnosis method is evaluated by its ability to detect and locate faults
accurately. Once the fault is detected, a maintenance operator must access the faulty cable to
repair or replace it. This kind of intervention can be quite tricky, especially in complex systems,
such as avionics, where thousands of kilometers of cables are hidden under heavy structures. In
addition, it requires the deployment of multiple resources (time, money, personnel, equipment,
etc.). Therefore, to avoid unnecessary intervention, it is essential to have accurate information
about the fault location. This underscores the fact that the reflectometry-based troubleshooting
tool must be linked to or used in conjunction with a Computer-Aided Design (CAD) model of
the wiring harness inside the system because wires may take complicated paths.

The reflectometry method has been proven to effectively allow the detection and location
of faults in wired networks, even in complex topologies (Y network, CAN bus, etc.). Nonethe-
less, they face certain constraints inherent to the method itself or the physics. For instance:
measurement noise, location ambiguity, blind zone, propagation inhomogeneity, interference
problems [12, 14, 17] etc. The problems of soft fault detection and localization in wiring net-
works using reflectometry is elaborated in chapter 2.

Most TDR methods described above face location accuracy problem that manifests with
increasing cable length [30]. Indeed, long cables suffer from attenuation and dispersion under-
gone by the test signal during its propagation, significantly reducing the location accuracy [9].
These two phenomena will be detailed in chapter 2. In this context, the choice of the test signal
frequency presents a real challenge and is of high importance. In fact, reflectogram peaks must
be very sharp to provide an accurate estimation of their location. However, sharp peaks require
high-frequency usage (in standard TDR) or high data rate signals (for STDR based methods).
In our work, we propose to address the frequency selection problem and present in chapter 3
the proposed methodology and the related results.

Another limitation is due to the fact that faults close to a connector or junctions are hard
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to locate accurately. Furthermore, if the TDR system is not matched to the cable’s intrinsic
impedance, a part of the injected signal energy is reflected to the injection point without
even going inside the cable. This leads to the appearance of a peak at the beginning of the
reflectogram, which can mask the presence of another fault close to the injection point (blind
zone). Hence, it is essential to either refine the methods by a specific choice of the test signal
or make measurements at different network extremities. This is referred to as “distributed
reflectometry” [17]. This method is explained in details in chapter 2. It solves the location
ambiguity and the blind zone problems. Nevertheless, it reveals many constraints related to
diagnosis cost, interference problems and sensor fusion problems, etc. In this context, chapter 4
will deal with the sensor selection for distributed reflectometry-based soft fault detection where
the most relevant sensors for monitoring and diagnosing soft faults occurred in the network are
identified with high accuracy.

What’s more, is that the signal knowledge of the propagation speed vp can influence the
location accuracy. A TDR system measures the round trip time τ and then calculates the
distance to the fault using equation (1.23). Any uncertainty on the value of vp results in
accuracy reduction on the fault location. It has been shown earlier that vp depends on the
frequency. Thus, if the test signal bandwidth is quite large, vp is not possible to be defined
accurately. Besides, vp depends on the condition of the cable. For example, the aging of
the cable can cause the propagation speed to vary [97]. Other parameters can influence the
accuracy of locating a fault. This will be further elaborated in chapter 2.

1.5 . Conclusion

This chapter presents an overview of the different types of electrical cables that have been
widely used in almost all modern systems. In many employed networks today, their cumulative
length may exceed hundreds of kilometers, increasing networks’ complexity. Moreover, cables’
exposure to various aggressive stresses results in faults that make them non-operational. Two
major families of faults have been distinguished: hard faults (open or short circuits) and soft
faults. Soft faults feature minor changes, such as insulation wearing. In this case, signals
can still propagate along the cable. However, a partial wearing may evolve into more severe
degradation and eventually becomes a hard fault. This chapter underlined some faults that
could have tragic consequences when cables are part of critical systems for which safety is an
issue. Therefore, as an early-warning approach to ensure critical infrastructures’ safe operation,
it is essential to develop robust methods for identifying and locating faults.

In this context, two main groups for fault detection and location methods have been high-
lighted: non-reflectometry methods and reflectometry-based ones. This chapter has described
the propagation phenomena in transmission lines to better understand how reflectometry works
and the concrete implementation of fault detection (the RLCG Model of a Transmission Line).
It has been seen that reflectometry-based methods are the most suitable for this job and can
be distinguished according to the reflected signals’ analysis domain. Precisely, we have seen
time-domain (TDR) and frequency domain (FDR) reflectometry methods.

Ultimately, reflectometry-based-methods performance evaluation has been elaborated. Al-
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though these methods show great performance, they witness several limitations. They almost
shared an inability to provide efficient results with the increased network complexity. Indeed,
the difficulty of analyzing the reflectometry response increases with the network’s complexity
involving the presence of one or several junctions, discontinuities, mismatched loads, etc. This
leads to the degradation of the localization precision and consequently the quality of the diag-
nosis. In the case of soft faults, this problem will be more serious, and the fault may be hidden
in various echoes of the signal.

Based on this chapter presentation, we have underlined that the main issues we will focus
on concern soft fault diagnosis using time-domain reflectometry. For that, the next chapter will
be devoted to presenting soft fault detection and localization problems in wiring networks using
reflectometry methods. Then a throughout study about the existing methods in the literature
for their detection and their limitations is presented. After which, the problematic of this thesis
work and the raised research questions is elaborated.
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2.1 . Introduction

Wire diagnosis addresses the problem of electrical fault detection, localization, and charac-
terization. Various techniques are used to resolve this issue. However, the lights are spotted
widely on the Time Domain Reflectometry (TDR) discussed in chapter 1, which uses a fast rise
time pulse and deals with most industry’s wiring issues.

However, the energy of the test signal may be significantly attenuated due to the presence
of cable in-homogeneity, junctions, coupling, splices, etc. This attenuation makes the detection
of electrical faults complex. This complexity increases in the presence of soft faults (i.e.,
chafing, bending radius, pinching). Indeed, soft faults are characterized by a small impedance
variation leading to a low amplitude signature on the reflectogram. Moreover, fault detection is
made even more difficult in the presence of nuisances as vibration, high temperature, crosstalk,
etc. In this chapter, section 2 presents soft fault detection and localization problems in wiring
networks using reflectometry methods. As a solution, further development is needed to make
the reflectometry method sensitive enough to detect and locate soft faults. In this context,
several post-processing methods have been proposed and will be discussed. However, these
methods are prone to test signal attenuation and dispersion phenomena. Hence, these two
phenomena will also be discussed in detail.

The problems associated with diagnosis, described previously, are aggravated in the case of
a multi-branched network. In such networks, using a single sensor may no longer be relevant to
cover the whole network due to signal attenuation and connection complexity. As a solution,
distributed reflectometry method is used to remove ambiguities and improve the localization. It
consists in performing reflectometry measurements at different extremities of the Network Under
Test (NUT). However, the injection of multiple signals leads to computational complexities
and sensor fusion problems. Moreover, energy consumption is a major drawback regarding
environmental constraints. This subject is addressed in section 4.

To overcome the constraints in sections 3 and 4 and enhance the detection and location of
soft faults in multi-branched topologies, section 4 presents the enhanced methods that have been
used. These tools combined with distributed reflectometry allow automatic detection, location,
and characterization of several faults for different types and topologies of wired networks.
However, each of them has its limitations.

Therefore, in section 6, the principal component analysis (PCA) is considered the statis-
tical tool to improve reflectometry’s soft fault detection problem. Although the combination
of reflectometry and PCA in the literature was proposed for an efficient reduction of the re-
flectometry data space [37], the application of PCA on reflectometry-based data has not been
used, so far, for fault detection and diagnosis in wired networks.

Finally, section 7 presents the problematic of this thesis and the main research questions.
We are then paving the way to the methods proposed in chapters 3 and 4.

2.2 . Reflectometry Acquisition System
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When a cable encounters operational problems, the maintenance operator must locate the
abnormality and repair it. For this, all he has to do is to connect the diagnosis system to the
faulty cable. Therefore, it can indicate the location and nature of the possible fault. This type
of diagnosis is called “off-board diagnosis” and it is of low cost. However, the main challenge
is to provide helpful information for maintenance operators. This is not always guaranteed
because the reflectogram complexity depends not only on the network’s topology but also on
the fault characteristics. Indeed, the measured signal can be very complex in the case of multi-
branched networks due to the interconnections and the numerous round trips. The complexity
is exacerbated when there are multiple faults. This may lead the maintenance operator to
misinterpret the reflectogram, thereby reducing the performance of the diagnosis.

On-board diagnosis involves integrating diagnosis functions into the local environment of
the wired network. It, however, reveals severe limitations in the cost, scale, and complexity of
diagnosis. In addition, ease of integration and processing complexity are two main criteria to
be considered when designing an on-board diagnosis system. Not to forget, compliance with
standards related to the target system on which the wired network operates is a significant
issue.

TDR is a suitable diagnosis solution for an on-board application. On the one hand, the
required analog electronics are simple, and the measurement is fast. On the other hand, the
final fault analysis is done in the time domain. The architecture of the TDR diagnosis system is
mainly composed of three modules: the generation of the test signal, the signal acquisition at a
sampling frequency Fs respecting Shannon’s theorem (Fs ≥ 2Fmax), where Fs is the sampling
rate and Fmax is the maximum-frequency component of the analog signal to be sampled, and
the processing module to build the reflectogram, which is analyzed for the monitoring.

In Figure 2.1, the fault detection process can be summarized as follows: the signal generator
emits the test signal (e.g., a step-like pulse) that is sent through a coupler in the transmission
line under test where R is the load. The slightest discontinuity encountered by the incident
wave creates a reflected wave and whenever the reflected wave returns to the injection point,
the oscilloscope will record its amplitude variation over time.

Figure 2.1 – Basic architecture of a TDR application
The processing phase consists of various operations carried out on the reflected signals

to estimate the impulse response of the network h(t) defined in (1.1) and extract the fault
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information from it. It also includes signal processing to improve the quality of the measurements
to facilitate the reflectogram analysis. For example, in the presence of noise, digital filtering
could be applied to eliminate artifacts from acquisition devices, Electromagnetic Compatibility
(EMC), crosstalk, loss of information, etc. Deconvolution can also be applied to retrieve the
network’s transfer function, which includes information on the detection and location of the
fault. Although deconvolution improves localization accuracy, it is complex in multi-branched
networks and can provide unstable results in noisy network [21]. Finally, the extraction of weak
signals, such as those caused by soft faults, requires appropriate processing [98].

At present, the TDR and FDR reflectometry methods enable hard faults to be detected
relatively well. However, several challenges are imposed in the presence of soft faults, as
underlined in [12]. Why such a difficulty? A soft fault results in a very low characteristic
impedance variation and therefore a very low reflection coefficient. Therefore, a signal reflecting
on such degradation will be of very low amplitude. It can therefore be easily drowned in noise or
masked by its proximity to another pulse of greater amplitude. Moreover, depending on whether
the cable is stationary or vibrating, the reflection on the fault will be more or less detectable.

In the following, the problems of soft fault detection and localization using reflectometry
methods will be discussed.

2.3 . Problems of Soft Fault Detection and Localization in Wiring Net-
works using Reflectometry

The data in section 2.2 are displayed on a control screen for interpretation, and the accuracy
of the obtained results is linked to several factors such as the frequency of the incident signal
where Fs plays an essential role in the fault location accuracy:

∆x =
νp

2Fs
(2.1)

Where ∆x is the variation of the position around the current fault location, and vp is the
speed of propagation in the cable. For example, for a propagation speed equal to 2 ∗ 108m/s,
the sampling frequency of 1GHz can give an accuracy of almost 10cm. Other factors are
the precision of time measurement, signal sampling and digitization, and the measurement or
propagation noise.

In addition to electrical noise in the system, other sources of nuisances can limit practical
reflectometry applications. Reflections are caused by impedance variation in the system such
as mechanical vibration, temperature, moisture (e.g., being partially immersed in water), con-
necting and reconnecting wires, moving them around, etc. These factors can change the local
impedance of cables [12]. These changes will cause additional, often time-varying reflections
that increase perturbations in the reflectograms.

It is observed that noises due to vibrations or wire movement is an important factor in the
capacity of soft fault detection based on reflectometry. Figure 2.2 gives a direct comparison of
the peak values for different forms of discontinuities. For example, the amplitude of the peaks
corresponding to frays are lower than the noise level. Hence, they may be masked by the noise,
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making them undetectable. Only the peaks due to hard faults such as open or short circuits
are significant, and can be definitively located using TDR.

Figure 2.2 – Peak values for different frays. (1) Hardware noise; (2)movement noise; (3) 0.15 mm cut from top; (4) 0.45 mm cut fromtop; (5) 0.76 mm cut from top; (6) 0.15 mm cut from side; (7) 0.45 mmcut from side; (8) 0.75mm cut from side; (9) insulation removed fromsingle side; (10) water on good wire; (11) 1/4 conductor damaged; (12)water on cable with insulation removed; (13) open circuit; (14) shortcircuit [12]

According to [12], impedance discontinuities greater than 10% are relatively easy to identify
and locate just by looking at the response or using relatively simple algorithms. Impedance
differences below 10% become progressively more difficult to identify, as their response is much
smaller. Eventually, the peaks from the reflection are smaller than the measurement error
and cannot be detected. Reflections for damaged insulation on electrical cables are virtually
invisible from the original reflectometry signature. Locating these types of faults requires the
use of baselines and more advanced signal processing tools.

2.3.1 . Post processing Methods

Several signal processing methods have been proposed for improving the detection and
location of soft faults. It is shown that the use of signal processing tools, such as the application
of a time-frequency cross-correlation function using the Wigner-Ville transform (WVT). It is
referred to as Joint Time Frequency Domain Reflectrometry (JTFDR) [26]. According to the
Gabor-Heisenberg inequality, a signal cannot be perfectly localized both in time and frequency.
Thus, in TDR as in FDR, a compromise must be found between temporal and frequency
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resolution [98]. The JTFDR has been developed to allow more flexibility and to adapt to the
characteristics of the cable to be diagnosed [99], [100]. This is a three-step process:

Step 1: Injection of a chirp signal in frequency, defined in such a way as to minimize the
distortions during its propagation in the cable.

Step 2: Measurement of the reflectogram and calculation of its Wigner Ville transform.

Step 3: Application of a normalized time-frequency inter-correlation function, the peaks of
which correspond to the discontinuities of the cable.

Authors in [101] and [102] have shown that it allows to detect soft faults in a coaxial cable.
However, limitations related to the complexity and the false alarms caused by cross-terms
generated by the quadratic form of the Wigner Ville transform are encountered. In order
to reduce or cancel the cross-terms, authors in [27] focused on the false alarm problem by
improving the time-frequency method. The method is called the Cluster Time Frequency
Domain Reflectometry (CTFDR). It is made up of 3 major steps:

Step 1: TDR measurements on all the wires of the bundle.

Step 2: Application of the Time-Frequency Correlation (TFC) on the TDR results.

Step 3: Clustering of the TFC results.

Its purpose is to take advantage of the additional information given by near end crosstalk
signals in order to ease soft fault detection. As the pulses reflected on such faults are of very
low amplitudes, they may not be visible enough in TDR results. To emphasize them, another
tool is used: the TFC, which is a normalized time frequency cross correlation. The TFC is
computed after applying the Pseudo Wigner Ville Transform (PWVT) on TDR results. The
PWVT was preferred to the WVT to mitigate the cross-term that can mask the real peaks or
generate false positives. The last step is to apply a clustering method on the data obtained
for all the lines. Its goal is to take benefit of all the available information, including near end
crosstalk signals. By doing so, the risk of “missing” the presence of a fault in the bundle is
decreased.

Despite the effectiveness of these algorithms, they are complex and complicated in terms
of calculation time, especially for test signals with more than 1000 samples (more than 7 min-
utes for a computer with 15.9 GB of memory). Hence, the Self-Adaptive Correlation Method
(SACM) [28] is used to amplify the signatures of soft faults and make them more easily de-
tectable. It amplifies any signature correlated with the injection pulse. SACM has made an
important gain on the amplitude of the soft fault signature. However, the gain decreases with
noise when the robustness of this method was tested by adding White Gaussian Noise to the
reflectogram. It has been concluded that this gain is sensitive to noise presence on the reflec-
togram. A Signature Magnification by Selective Windowing (SMSW) method is proposed in [29]
to select the critical zone based on a predetermined window. The performance of the SMSW
however depends strongly on the window width. Although those methods seem promising to
locate soft faults, they are prone to false alarms since they are able to confuse the signature of
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soft fault with other inhomogeneities in the cable. As a solution, an innovative approach based
on advanced post-processing data fusion methods is introduced.

In [13], a fusion approach of several post-processing results is proposed where a probabilistic
model is developed and used to detect the soft fault. The proposed approach described in
Figure 2.3 includes several steps. After the reflectograms construction, a difference between

Figure 2.3 – Data fusion algorithm [13]
healthy and faulty cable reflectograms is performed to eliminate inhomogeneities related to
cable manufacturing, installation, etc. Here, several peaks are present in the reflectogram,
leading to diagnosis ambiguity. Hence, a post-processing method is called in step 3, such as the
SACM, the SMSW, etc. After that, windowing is performed on the post-processed reflectogram
to eliminate the peaks related to the impedance mismatch present at the cable extremities.
Since the post-processing methods are heterogeneous, their results are adapted to make them
consistent for further data fusion. To do so, a normalization step is performed with respect to
the optimum values of the remaining samples. In step 6, a dynamic threshold is updated. Then,
step 7 converts each reflectogram obtained at step 5 into a signal where the amplitude of each
sample represents the percentage of satisfied thresholds. In fact, it is noticed that each post-
processing method may introduce a slight delay. As a solution, a spatial discretization is called
in step 8, where the cable length is divided into short sections based on predetermined spatial
intervals, and the amplitude of the samples of the same interval are then summed. In step
9, the signal is converted into a measure of the probability of fault presence for each section.
The probabilities close to 1 indicate the fault presence. The probability of 0.5 means that the
section’s two states (faulty and healthy) are equally likely. Finally, measured probabilities of
fault presence according to post-processing methods are gathered, under the assumption that
the selected post-processing methods are sequentially performed, and are entirely independent.



41 Chapter 2 - Soft Fault Diagnosis in Multi-branched Network Typologies: Methods andLimitations

Table 2.1 – Summary table of some post-processing methods
Method Advantage(s) Inconvenience(s)

Joint Time Frequency
Domain Reflectrometry (JTFDR)

- Allows more flexibility- Allows detecting soft faults in a coaxial cable -Complexity-False alarms
Cluster Time Frequency

Domain Reflectometry (CTFDR)
Mitigate the cross-term that can maskthe real peaks or generate false positives -Complexity-Calculation time

Self-Adaptive
Correlation Method (SACM)

Made an important gain on theamplitude of the soft fault signature -Gain sensitivityto noise
Signature Magnification by
Selective Windowing (SMSW)

-Don’t need to increase the poweror the bandwidth of the injection signal-Robust to noise
-Performance depends stronglyon the window width

Fusion Algorithm
- Eliminates false alarms-Automated (decision making is basedon a probability of detection)

-The performance depends onthe weight affected to eachpost-processing algorithm

The detailed mathematical calculations are found in [13]. The result of this method for a 30m

shielded twisted pair TWINLINK 50 FA with a shield fault of −8mm long and 3mm wide
present at 10.9m from the injection point, shows the efficiency of the developed demonstrator
to detect and locate the soft fault with high accuracy (1%).

Table 2.1 summarizes the post-processing methods above, with their advantages and in-
conveniences. Although several interesting methods have been proposed to enhance soft fault
diagnosis, they are prone to test signal attenuation and dispersion phenomena.

2.3.2 . Attenuation and Dispersion

The propagation of the TDR pulse at a high frequency in a cable can undergo two phe-
nomena 1: dispersion and attenuation [30], as shown in Figure 2.4 where the reflected signal
obtained has undergone deformation and attenuation. This section will introduce these two
phenomena.

Figure 2.4 – Reflectogram of a 100m coaxial cable terminated with anopen circuit. A Gaussian pulse is injected into the cable
1A third and frequent phenomenon concerns transmission lines arranged in close proximity toeach other. This is crosstalk: part of the energy that travels on one line is transmitted to the otherone by electromagnetic coupling. Two types of crosstalk could be distinguished [103], the effectsof which overlap: capacitive crosstalk and inductive crosstalk.
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2.3.2.1 Attenuation

Signal attenuation is mainly due to the cable resistance. It is observed by an exponential
decrease in the amplitude of the signal during propagation. Consequently, it limits the diagnosis
performance in terms of cable length. Attenuation is a limiting factor for reflectometry methods.

In order to demonstrate the attenuation phenomenon caused by the cable length, a shielding
fault defined by the following parameters: length lf = 5mm and width θf = 180°, is placed
at the middle of a 10m and a 100m cable. The simulations consist of injecting a Gaussian
pulse Ui, of unit amplitude, in the frequency band [0; 4GHz], into one extremity of the wire
and then recording the reflected signals at the injection point. Figure 2.5 shows the amplitude
variation of this fault for the different cable lengths. It is shown that, as the length of the
cable increases, the attenuation of the signal increases and the amplitude of the fault signature
decreases as described by (1.16) in chapter 1.

(a) 10m cable (b) 100m cable
Figure 2.5 – Soft fault signature for different cables’ length

The cable resistance increases with the used test signal frequency, so the narrower the pulse
(wide-band), the greater the attenuation. For a coaxial cable, the resistance R is given by the
following equation:

R =
1

2

√
fµ0
Π

(
1

Rext
√
σext

+
1

Rint
√
σint

)
(2.2)

where µ0 is the magnetic permeability of vacuum, Rint is the radius of the inner conductor
and Rext is the radius of the outer conductor of the coaxial cable, σint and σext are the inner
and outer conductor conductivity’s, respectively. Figure 2.6 shows how varying the maximal
frequency will cause the resistance variation of the cable and thereby affecting the soft fault
signature. Here, the soft fault is the shielding damage introduced above at 70m in a 100m

coaxial cable. It is obvious that the fault signature amplitude is affected by the excitation
frequency. As the frequency increases, the attenuation increases.

In multi-branched wiring networks, using a single sensor may no longer be relevant. The
signal attenuation may explain this due to the distance and multiple junctions. Although
the distance between the injection point and the fault may be determined, identifying the
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Figure 2.6 – Soft fault signature at four different excitation frequen-cies in a 100m cable
faulty branch remains ambiguous. To illustrate this, we consider the multi-branched network in
Figure 2.7 with five branches Bi; i ∈ {1, 2, 3, ..., 5} with the same characteristics. The branches
B2, B4 and B5 are terminated by open circuits. An open circuit is observed on branch B3 at
25m from the injection point. Only one reflectometer is placed at the extremity of B1 to
diagnose the whole network. Figure 2.8 shows the reflectogram corresponding to the network
presented in Figure 2.7. It is obtained by injecting a Gaussian pulse at the input of the network.
The first negative peak corresponds to the first junction at 20m from the injection point. Next,
a fault is detected at a distance of 25m from the reflectometer. From the reflectogram, the
detected fault could be located either on branch B2 or branch B3. Although the distance
between the injection point and the fault may be determined, identifying the faulty branch
remains ambiguous.

Figure 2.7 – Fault location ambiguity in a branched network [14]
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Figure 2.8 – Multi-branched network reflectogram using TDR [14]
This ambiguity becomes worse if there are other faults in the network. In addition, the test

signal will be attenuated due to the multiple reflections. This makes the detection of a fault
at a significant distance from the injection point difficult if not impossible, especially in the
case of a soft fault represented by a peak of very low amplitude. Moreover, the ramifications
can obscure the detection of a fault when it is found in a blind zone [17]. If the TDR system
is not matched to the intrinsic impedance of the cable, a part of the energy of the injected
signal is directly sent back, without even going inside the cable. This creates an additional high
amplitude peak (impedance mismatch) at the beginning of the reflectogram which may hide a
fault close to the injection point.

2.3.2.2 Dispersion

Dispersion is the consequence of the absorption of the high frequencies of the signal by the
cable. The narrower the pulse (wide-band), the greater the dispersion [31, 32]. In the general
case, the presence of the factor β is equivalent to introducing a variation in the speed of
the signals as a function of their frequency; thus, a non-sinusoidal signal associating a set of
harmonics of different frequencies is deformed.

In the case of dispersive lines, the propagation speed (vp) depends on the frequency as
shown in equation (2.3), where ω = 2πf(rad/s) is the frequency and β(radian/m), defines the
phase constant, causing the high-frequency components of the test signal to propagate at a
faster speed, faster than low-frequency components. This further distorts the reflected signal
and leads to the location accuracy reduction, especially for long-distance cables [9].

vp(f) =
ω

β
(2.3)

In order to show the effect that the cable length can have on the fault location accuracy,
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Figure 2.5 demonstrates this phenomenon for longer cables where the obtained reflected signal
has undergone deformation. The whole problem lies in the fact that in a dispersive medium
(such as an electric cable), the propagation time of an electromagnetic wave varies with the
frequency, which deforms the reflected signal all the more as the path traveled by the wave is
large, thus seriously affecting the quality of the measurement. This deformation affects the fault
location accuracy. Scattering on a pulse signal, for example, turns that fault signature more
flattened. However, when we want to locate a singularity (or even a fault), we must measure
the peak abscissa position of the injection point and that of the echo to calculate the difference
“∆(t)” which is used to determine the distance separating the wave generator from the fault.
Nevertheless, if the reflected signal is very distorted, choosing the exact peak abscissa position
of the echo is tricky. The obtained localization error is not constant but varies according to the
distance.

The effect of frequency variation on the fault signature, the dispersion is observed between
the signatures of the same fault at different frequencies on the reflectogram in Figure 2.6.
Therefore, improvements in measurement and processing are necessary to overcome these lim-
itations and make the use of the reflected signal more efficient.

In addition to the application of particular processing techniques, the choice of the mode
and type of injection (nature of the signal, rise time, duration) can also improve the detection
performance. Thus [33] has shown that in TDR the detection of a soft fault required the
use of a signal presenting a low rise time and therefore wide band. This is however limited
by the frequency losses and the dispersion. This is therefore difficult to apply for long cables
or presenting significant losses (the reflected signal will be strongly attenuated). In addition,
increasing frequency requires more expensive equipment.

Some wave-forms are more suitable and more robust to propagation effects in cables. It
is shown that the exponential-looking wave-forms are optimized to introduce the smallest dis-
tortion compared to a rectangular pulse. In [33], it is shown that, at the same bandwidth,
the distortion rate introduced by a Gaussian pulse is better than that of a rectangular pulse,
especially for longer lengths. Therefore, the Gaussian pulse is more robust to the propagation
and better suited for an application in time domain reflectometry. Therefore, in our study, we
will use Gaussian pulse.

In the literature, we have found a method to reduce signal dispersion as it propagates
in a transmission line. This method involves injecting a type of wave called “Speedy Delivery
(SD)” [104], shown in Figure 2.9. This signal is minimally distorted and preserves the waveform
as it travels through the cable. This exponential wave family improves measurement accuracy
and resolution, ensuring the better fault detection and localization.
Another more efficient method to overcome the limitations (attenuation, robustness to noise,
etc.) of the “Speedy Delivery” method to better compensate for signal dispersion is known as
the adaptive correlation method [97]. This method performs the correlation operation more
cleverly, so-called “dynamic or adaptive” correlation, where the signal that we use as a reference
is deformed equivalently iteratively as a function of the correlation step. Indeed, if we know
the laws of the signal dispersion in the cable (propagation equations), we know that the more
we go towards the cable end, the more the signal dispersion will be important. So, if we con-
sistently modify the curve that we use as a reference to consider the dispersion for each point
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Figure 2.9 – “Speedy Delivery” waveform
(or group of points), we will obtain better results (this process increases the injected/reflected
signal ratio). The advantages provided by this method over existing methods are its ability
to locate the fault with better precision, and robustness to noise. Also it does not require to
know the length of the tested cable. However, the major disadvantage is that it requires large
memory resources to store the propagated signals for a given cable model. For this reason, it
is not considered in this work.
Recently, authors in [105] have proposed a new post-processing approach that aims to com-
pensate the dispersion effect of the wave during its propagation in the cable. It includes three
steps:

1. Estimate the cable propagation velocity vp.

2. Make a first injection (without dispersion compensation) of the test signal into the cable:
fault position estimation.

3. Make a second injection of the test signal by compensating the dispersion undergone by
the signal at the fault position pre-estimated in step (2): fault position correction.

The test results have shown the advantages of this new approach in fault localization with
better precision, especially for long-distance cables. This suggested method can be applied to
any test signal injected in the wire under test. However, this approach was only validated in
the point-to-point cable. It should be evaluated in the case of multi-branched networks. For
this reason, it is also not considered in this work.

Table 2.2 summarizes the methods used to reduce signal dispersion, their advantages, and
inconveniences.

The problems associated with diagnosis, described previously, are aggravated in the case
of a multi-branched network and a simple measurement at the single injection point is not
sufficient. Indeed, this result alone can lead to ambiguities about the exact location of a fault.
Distributed reflectometry seems to be a good candidate to address this problem. This is the
subject of the next section.
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Table 2.2 – Summary table of the methods used to reduce signal dis-persion
Method Advantage(s) Inconvenience(s)

Speedy Delivery (SD)
- Preserves the waveform as it travelsthrough the cable-Improves measurement accuracy and resolution

-Attenuation-Robustness to noise
Adaptive Correlation -Locate the fault with better precision-Robustness to noise

Requires large memory resourcesto store the propagated signalsfor a given cable model
Method to Improve

Fault Location Accuracy
Against Cables Dispersion Effect

Locate the fault with better precision,especially for long-distance cables Only validated in thepoint-to-point cable case

2.4 . Distributed Reflectometry for Soft Fault Detection and Location

From the previous section, we have shown that there may be fault location ambiguity that
worsens if there are other faults in the network. In the case of a branched wire network affected
by multiple faults, only the first fault closest to the reflectometer can be detected and located.
The others can be interpreted as secondary echoes. In addition, the test signal is affected by
attenuation and dispersion phenomena. These phenomena make it challenging to detect a fault
located at a significant distance from the injection point, especially in the case of a soft fault
characterized by a peak of very low amplitude.

Distributed reflectometry [9,33,92] addresses this problem very well. It consists of measuring
several points of the network. Each reflectometer provides a different view of the network, thus
making it possible to cover the blind area [21] and remove ambiguities as to the location of a
fault.

In the case of Figure 2.7 in section 2.3.2.1, it is possible to add another reflectometer
(sensor) at the end of B2 using distributed diagnosis. The ambiguity disappears thanks to this
new sensor but would recur upon the occurrence of a new fault on B4. So, another sensor should
be added to overcome this ambiguity. Then, distributed reflectometry is a suitable method to
overcome ambiguity problems. However, this implementation technique in a multi-branched
wired network raises new challenges related to the number of sensors such as computational
complexities, sensor fusion and energy consumption.

A minimum number of sensors is required to set up a distributed reflectometry system in
a multi-branched network. These sensors must be placed at strategic points in the network
to precisely locate a fault. Generally, for any junction jun connecting Nb(jun) branches, it
is sufficient to place (Nb(jun) − 1) sensors. In a network with Njun junctions, the minimum
number of sensors depends on the number of junctions and the number of branches at each
junction. The minimum number of sensors required is given by the following relation [92]:

Ns =

Njun−1∑
jun=0

(Nb(jun)− 1) (2.4)

Figure 2.10 shows an example of the placement of sensors in a multi-branched network where
Ns = 6. Therefore, it is sometimes advisable to reduce the cost of the diagnosis by optimizing
the number of sensors without degrading the quality of the diagnosis.
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Figure 2.10 – Placement of sensors (in blue) in a multi-branched net-work

In order to overcome these constraints in section 2.3 and to enhance the detection and
location of soft faults in multi-branched topologies, several methods have been used in the
literature and are introduced in section 2.5. These tools combined with distributed reflectometry
are used for the detection, location, and characterization of several faults in different types and
topologies of wired networks.

2.5 . Enhanced Methods for Soft Fault Diagnosis

Reflectometry methods make it possible to test wire networks by injecting an electromag-
netic wave. This test is done by examining the observation data either from the measurement
or from an analytical or numerical model. Obtaining observation data related to the condition
of the cables and the configuration of the considered networks is commonly called the forward
problem. However, in most applications, what is of interest to an engineer or scientist is to in-
spect the condition of the cable. Observation data must allow the physical parameters of these
cables to be traced. The means of obtaining electrical parameters of cables or the structure
of networks from observation data is called inverse problem. In the case of a hard fault, these
parameters are the lengths of the branches and the loads at the end of the lines. In the case of
a soft fault, these parameters are the impedance and the position of the fault.

In the 2 thesis studies, [90, 106], two methods are used to solve the inverse problem: iter-
ative or direct inversion. The first type uses Genetic Algorithm (GA). The second method is
based on the response from a parametric inverse model. To achieve this inverse model, Artificial
Neural Networks (ANN) are used.

Recently in [90], the authors presents a method [107] to solve ambiguities due to multiple
paths and to detect and locate accurately electrical faults in a multi-branched network. It is
based on the combination of distributed reflectometry and graph theory.

The following subsections describe these mentioned techniques and their pros and cons
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given in the literature.

2.5.1 . Genetic Algorithm

Iterative inversion uses genetic algorithm to minimize the error between the response es-
timated by the direct model (FDTD modelization), and the measurement [15, 77, 108, 109].
Genetic algorithms are global optimization techniques based on the principles of genetics, and
natural selection [110]. This algorithm is applied iteratively until a stop condition is satisfied.
It is generally linked either to the number of iterations or to the error criterion, which must be
less than a predefined threshold. The flow chart of the characterization method used in [15] is
presented in Figure 2.11. The detailed process is explained in the following:

Figure 2.11 – Characterization method [15]

1. First, three-dimensional numerical modeling of coaxial cable is developed and validated
by distributed parameters, including the frequency-dependent effects such as the skin
effects. The TDR response noted Vsim is obtained based on the computed R, L, C, G
parameters.

2. Second, the reflectometry response of the faulty NUT is measured. The signature for
the faulty network is denoted as Vmes.

3. Third, the baselining approach will be applied as it enhances the weak signature of the
soft faults. A NUT may mask a soft fault by other impedance discontinuities such as
splices, loads, etc. By performing the difference between the faulty system and the ref-
erence one, baselining will enhance the visibility of the existing soft faults. The baselined
reflectometry response will be computed as VB = Vmes−Vsim, where Vmes is the reflec-
tometry response of the faulty NUT containing the signature of the soft fault (stage 2)
and Vsim is the reflectometry response containing the contribution of the healthy NUT
(i.e. splices, loads, etc.) (stage 1).



Chapter 2 - Soft Fault Diagnosis in Multi-branched Network Typologies: Methods andLimitations 50

4. At the end of step 3, soft faults are detected and located. This step proposes to estimate
its characteristics: determine its per-unit length parameters such as the resistance, the
capacitance, the inductance, and conductance. For this, a GA is applied as it proves its
efficiency in calculation time and simplicity. It has been applied with success to the blind
reconstruction of black-boxed unknown complex wire networks [111].

The proposed algorithm considers three set of variables to run:

(a) Nature = {R,L,C,G} corresponds to the nature of the fault where a vector
includes the starting values (in the case of a healthy cable): the resistance R,
the inductance L, the capacitance C and the conductance G. These variables are
computed in step 1 of the considered methodology.

(b) O = {Lf , xf} is the fault parameters, where Lf is the fault length and xf is the
fault position.

(c) ∆v is the variation with respect to the RLCG parameters of the cable under test.
Here, ∆v is a vector of 4 elements including the variation of R, the variation of
L, the variation of C and the variation of G. i.e. ∆v = [∆R ∆L ∆C ∆G].
At the output, one can define, for example, the resistance of the fault as Rd =

R(1 + ∆v(1)/100).

The algorithm iteratively improves the simulated baselined reflectometry response V B
sim

by changing the set of variables {Nature}, {O} and {∆v} in order to reduce the
differences between the hypothesized faulty network model and the baselined measured
one demonstrated by VB in step 3. An objective function fval is a set that contains the
difference between V B

sim and VB. This optimization algorithm aims to minimize fval by
varying the set of variables of the soft fault. Once the algorithm converges to a minimum,
that is to say, fval ≈ 0, the algorithm is stopped, and the best candidates of the soft
fault properties are reached. Based on the electrical faults parameters obtained from the
GA, i.e. the resistance Rd, the inductance Ld and the capacitance Cd, the impedance
of the fault Zd is calculated.

5. The final step of the proposed methodology is to reconstruct a NUT based on the
data gathered from the previous procedures. The described methodology can blindly
characterize the soft fault in the network and reconstruct the NUT embedding it, with
the lengths of the branches composing it and the load impedance connected to the NUT.

The major drawback of this type of inversion is its computation time which strongly depends
on the complexity of the network topology. Therefore, it is not suitable for real-time diagnosis.

2.5.2 . Artificial Neural Networks

The ANN training (adjustment of their internal parameters) requires the use of datasets.
In cable diagnosis, the datasets are constituted of examples linking the reflectometry response
of the transmission line to the position of the fault. In [112], ANN is used to localize and
characterize the fault (impedance) of hard faults in complex networks. However, they cannot
solve the problem of fault location ambiguity using a single measuring point [106], especially in
the case of a soft fault characterized by little variation. To overcome this limitation, authors in
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[113] propose to distribute the measurements to several points of the network and, consequently,
to merge the data between the distributed reflectometers using and ANN. Figure 2.12 illustrates
the block diagram of this method.
For a complex wired network monitored by several reflectometers Si, i ∈ {1, ..., N}, N is

Figure 2.12 – Block diagram of the fault location procedure using ANN
the number of the distributed reflectometers. This is done by using Multi-Layer Perceptron
Neural Networks (MLP-NN). At first, to facilitate the reflectogram analysis, each sensor must
calculate the difference between the response of a healthy and faulty network. This processing
avoids the different peaks caused by the nodes in the network. Then, only the main peaks are
detected, and for each peak, their magnitude and location (distance from the origin) is stored.
These peaks of each sensor are then injected into the ANN. Its output gives information about
the detection and location of the soft faults.

In order to select the main peaks in the differential reflectogram, detection thresholds is
used to detect positive and negative peaks. These thresholds are represented by an exponential
decay according to the cable attenuation coefficient. Their equation are as follows:

positive threshold =
Amine

e−2αL

(1− Γ2
0)

(2.5)
negative threshold = −Amine

e−2αL

(1− Γ2
0)

(2.6)
Where Amin = 3.10−3v is the sensor minimum detection threshold. (1 − Γ2

0) represents the
coupling compensation term between the sensor and the network. L is the length of the network,
and α is the linear attenuation.

A neural network is formed for each fault parameter to be estimated. The number of output
neurons corresponds to the number of estimated quantities. For the ANN design for an example
network of five branches, a fully connected three-layer (input, hidden, and output) feed-forward
neural network has been used with hyperbolic tangent activation functions in the hidden layer,
and an output layer constituted of five neurons having a linear activation function.

The output layer of the network is composed of five neurons corresponding to the number of
branches in the wiring network. It provides information about the faulty branch and accurately
locates the soft faults in the network. If a soft fault is detected, the corresponding NN output
gives the location of the soft fault on the faulty branch; otherwise, it is “zero”.
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The architecture type, number of neurons, size of the hidden layer, and training dataset
size play a key role in determining the best NN architecture [114]. The design of the NN has to
be achieved carefully with the appropriate number of hidden neurons. An NN with insufficient
neurons will not learn the training database correctly. On the other hand, using too many
neurons can lead to an over-fitting phenomenon.

First, the training data set examples are presented to the ANN. After a first training iter-
ation, the output of the ANN is compared to the one contained in the data set. To reduce
the error obtained at the output, the variables of the ANN are adjusted according to Lev-
enberg–Marquard algorithm. Finally, the generalization capability of the ANN is assessed by
calculating the Mean Square Error (MSE) obtained on the test set, which evaluates the quality
estimation of the ANN.

The major disadvantage of the ANN method used in [112] is the significant time required for
database creation, network settings adjustment, and training (approximately 2 hours using a PC
equipped with Pentium 4 Core Due Processor and 4 GB of RAM for a Y-network increase to 4

hours for a network with five branches). However, the inversion step is quick (about 1second).
Even though in [113], by working with most significant peaks of differential reflectogram rather
than the whole reflectometry response, they were able to reduce the size of the required data and
consequently the number of neurons in hidden layer and the time of processing. However, they
require the knowledge of the topology of the network and its components (socket, connector,
junctions, cable, etc.). Moreover, it requires increasing the number of examples in the database
and optimizing the number of neurons in the hidden layer. Generally, these responses have a
high dimension, leading to complex ANN including a lot of internal parameters to be adjusted.
As a result, a large number of examples is needed in the database. This corresponds to the
“cruse of dimensionality”. Moreover, a high sensitivity to noise can be expected.

2.5.3 . Graph Theory

The objective of the developed method in [90] is to combine the MCTDR method with the
graph theory in distributed diagnosis architecture. The main idea is to represent the complex
wired network by a graph with nodes and edges. Several graph theory algorithms are used to
facilitate the faulty branch’s decision-making. Then, a connection matrix is used to ensure the
connection between different nodes.

Graph theory is a mathematical representation of a network that describes the relationship
between lines and points [115]. Graph theory is considered a useful tool that allows graphs
to represent many practical problems. It deals with problems that have a graph or network
structure.

A graph Gr = (No E) can represent a complex wired network. The loads, junctions,
and reflectometers can be identified as the nodes ‘No’, and the connecting transmission lines
can be modeled as the edges ‘E’. The wired network topology can be modeled by the use of
nNo × nNo connection matrix cm = aij , also known as adjacency matrix, where nNo is the
number of nodes in the network. The component aij indicates a connection from node j and
to node i. A length Bij of a line at a position (i; j) indicates that the node i is adjacent to
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node j. Therefore we define cm by:

aij =

{
Bij if there is an edge from node j to node i,

0 else.
(2.7)

The different reflectometers diagnose the complex network. Then, the result is sent to
a central processing unit that processes the reflectograms to decide the fault location. To
facilitate the reflectogram analysis, each reflectometer must calculate the difference between
healthy and faulty network responses. This processing avoids the different peaks caused by
the ramifications in the network. To identify faults peaks, post-processing is necessary. Two
reflectometers at a minimum must confirm the detection of faults peaks. Then, the fault
distance from the different injection points is calculated to locate a fault, and then the faulty
branch is identified. This can be done in the following steps:

(a) Analyze the reflectograms obtained to detect different faults peaks.

(b) Model the wired network as defined above and represent the distance between different
nodes in a connection matrix cm.

(c) Use the reflectogram of the first reflectometer and the graph theory’s different algorithms
to find the first node connected to the faulty branch, noted j.

(d) Simplify the network with only the nodes connected to the node j (explained below). The
simplified network can be stored in a vector bj , containing the jth row values of cm.

(e) From the reflectogram of the second reflectometer and the different algorithms of the graph
theory, the second node connected to the faulty branch is founded, noted i.

(f) Simplifies the network with only the nodes connected to the node i (explained below). The
simplified network can be stored in a vector bi, containing the ith column values of cm.

(g) The intersection between two vectors obtained in steps (d) and (f) gives the faulty branch
connected to nodes j and i.

The information obtained by the different distributed reflectometers is merged. This fusion
is performed using different graph theory algorithms such as: Breadth-First Search (BFS),
which is an algorithm that explores all accessible nodes in a graph from the source node [116].
Dijkstra’s algorithm, is a graph search algorithm that solves the shortest path problem from
a single source to many destinations [117], and Nearest Neighbor Algorithm (NAA), which
pre-processes a given dataset da in such a way that for an arbitrary forthcoming query vector
q we can quickly find its nearest neighbors in da, where nodes correspond to the elements of
da, and each node is connected to its nearest neighbors by directed edges. Then, for a given
q, one first takes an element in da (either random or fixed predefined) and makes greedy steps
towards q on the graph: at each step, all neighbors of a current node are evaluated, and the
one closest to q is chosen [118].

The disadvantages of the graph theory application to distributed diagnosis is that it requires
knowledge of the topology of the network and its components (socket, connector, junctions,
cable, etc.).
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These tools combined with distributed reflectometry allow detection, location, and char-
acterization of several faults in different types and topologies of wired networks. The major
disadvantage of these method is the significant time required for database creation, network
settings adjustment, and training. In addition, they lack autonomy in the analysis and inter-
pretation of measurements to extract the state of the wired network. Moreover, some of them
requires knowledge of the topology of the network and its components (socket, connector,
junctions, cable, etc.). For this, in this work, we need a simple technique which allows to save
time, reduce the computing complexities and doesn’t require the knowledge of the topology of
the network.
Data-driven models are implicit empirical models derived from analysis of available data. Their
derivation requires a minimal a priori knowledge about process physics, but a significant amount
of historical process data which may contain faults and their symptoms. It is mainly based on
computational intelligence and machine learning methods, which are referred to as data-driven
methods. These include multivariate statistical projection methods such as Principal Compo-
nent Analysis (PCA), Independent Component Analysis (ICA) and Linear Discriminant Analysis
(LDA), Artificial Neural Networks (ANN) and Support Vector Machines (SVM). PCA is a simple
multivariate data-driven statistical modeling method, which has gained a remarkable acceptance
in industry for statistical monitoring and control of multivariate processes [119].
Although the combination of the reflectometry and PCA in the literature was proposed for an
efficient reduction of the reflectometry data space [37], the application of PCA on reflectometry-
based data has not been used, yet, for fault detection and diagnosis in wired networks.
The following section will present the PCA method for wire Fault Detection and Diagnosis
(FDD).

2.6 . Principal Component Analysis for Wire Fault Detection and Diag-
nosis

2.6.1 . PCA Principles

PCA is a multivariate data-driven statistical modeling technique [36]. It uses information
redundancy in a high-dimensional correlated input space to project the original data set into
a lower-dimensional subspace defined by the principal components (PCs). One of the main
research objectives of PCA is dimensionality reduction. It considers, in several cases, a sub-
stantial variability percentage in the data that can be interpreted using a limited number of
components.

The PCA analysis begins with the data matrixX∗ ∈ Rn×m = [x∗
1, . . . ,x

∗
m] which consists of

m variables of the system, with n observations (n > m). In our work, each variable corresponds
to the reflectometry response of the studied network at a specific excitation frequency.

Data pre-processing is important; First centering: mean center the X∗ variables (subtract
the mean value of each variable from its true values). Using uncentered data will have unfa-
vorable effects on the statistical tests’ confidence limits. Second, scaling: it is used to affect
the magnitude of the data by applying a scaling factor to the centered data of each variable.
The purpose is to make the numerical values of each variable equally significant (on average).
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Since PCA (and other related techniques) is based on the concept of maximizing the variance
of the principal components, which are linear combinations of the original data, it is natural to
scale the x∗-variables to make their variances equal. This is obtained by dividing the data of
each variable by the standard deviation of the variable data.

After normalizing X∗ to a matrix X0 with zero mean and unit variance, PCA determines
the optimal linear transformation as follows:

CM =
1

n− 1
X0

TX0 (2.8)
where CM is the covariance matrix of X0, and by means of Singular Value Decomposition
(SVD), one can write CM as:

CM = PΛP T , where P TP = Im (2.9)
where P = [p1,p2, ...,pm] ∈ Rm×m is the PCA loading matrix such that its columns pj

are the orthonormal eigenvectors associated to the eigenvalues λj of the covariance matrix
CM for 1 6 j 6 m, and Λ = diag(λ1, λ2, ..., λm) is the diagonal eigenvalues matrix with
decreasing order. Each eigenvalue represents the amount of variance that has been captured
by one component.

According to [120–122], PCA decomposes the data matrix into two parts; the first explains
the system main variation while the second encapsulates the residual information (noise):

X0 = TP T = TkP
T
k + T̃ P̃ T (2.10)

where T = [t1, t2, ..., tm] ∈ Rn×m is the score matrix, highlighting the relationship between
the samples in X0. The superscript (˜) is the residual matrix operator and k (k 6 max(n,m)),
is the number of Principal Components (PC).

The data matrix X0 is decomposed as the principal space and the residual one. It is of great
importance to decide how many components to retain in each space. k is determined using one
of the proposed approaches in the literature: the scree plot, [123,124], Cross-validation method
[125], Kaiser- Guttman method [126], Parallel analysis method [127, 128], and Cumulative
Percent Variance (CPV) method [129]. CPV is commonly used in fault detection, retaining k
components having a cumulated variance greater than a prescribed threshold (as an example
90%) of the total variance. The variance of the PC scores, preferably given in percent of the
total variance of the original variables, is an important indicator of how many PCs to include.

CPV (k) = 100

∑k
i=1 λi∑m
i=1 λi

(2.11)
In this study, we preferably use this latter criterion to define the size of the principal subspace.
As proposed in the literature [36], we consider the Principal subspace defined with CPV higher
or equal than 90%.

2.6.2 . PCA-based Fault Detection and Diagnosis

For fault detection, the PCA model of the system is developed based on healthy operating
system data and then used to check new measurement data X. After scaling and centering the
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new data, the residuals between the new measurement data and their projections in ((2.12) and
(2.13)) are then analyzed through statistical test. Usually the Q statistic ((2.14)), also known as
Squared Prediction Error (SPE), and the Hotelling’s T 2 statistic ((2.15)) are used to represent
the variability in the residual subspace and principal component subspace, respectively [130].

Tnewk = XPk (2.12)
˜Tnew(m−k) = X(I − PkP Tk ) (2.13)

Q = ˜Tnew(m−k)
˜Tnew(m−k)

T (2.14)
T 2 =

k∑
1

tj
λj

2 (2.15)

The Q statistic method shows how well a new sample fits into the PCA model. It mea-
sures the difference (residual) between the sample and its projection onto the m − k residual
components retained in the model. The T 2 statistic method detects variation within the PC
subspace information. T 2 represents the squared length of the projection of the current sample
into the space spanned by the PCA model. It indicates how the PCA estimate of the sample is
far from the multivariate mean of the data, i.e., the intersection of the principal components.
Therefore, if a sample has an abnormal value of T 2 but a Q value below the limit, it is not
necessarily a fault – it can also be a change of the operating region [121].

Hence, Q and T 2 statistical values are used for evaluating the fault presence. In the case of
an abnormal event, the Q and T 2 statistic values will be greater than the confidence limits Qα
and T 2

α, respectively. Those limits ((2.16) and (2.19)) are calculated using the healthy original
data X∗ that is used to build the PCA model.

Qα = z1[
cα
√

2z2h0
2

z1
+ 1 +

z2h0(h0 − 1)

z12
]

1
h0 (2.16)

zi =
m∑
k+1

λij , i = 1, 2, 3 (2.17)
h0 = 1− 2z1z3

3z22
(2.18)

T 2
α =

k(n− k)

n− k
Fk,n−k,α (2.19)

where cα is the critical value of the normal distribution at α significance level and Fk,n−k,α is
the Fisher–Snedecor distribution critical value [121].

The PCA model can be used with new system data to detect changes in the system. After
detecting a probable outlier due to extreme T 2 or Q values, we can investigate the inputs
(responsible variables) that highly influence their residual. Contribution plots are used for this
purpose.

PCA is used in the literature for process fault detection and diagnosis, as in [36, 131,132].
In the literature, the combination of the reflectometry and PCA was proposed in [37] for an
efficient reduction of the reflectometry data space where the significant parameters of the
reflectometry response data are extracted using PCA. However, so far, PCA has not been used
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for fault detection and diagnosis in wired networks.
PCA meets our needs in terms of simplicity, which allows us to save time, reduce the computing
complexities, and don’t require the knowledge of the network’s topology. Furthermore, it enables
automatic computerized decision-making for the considered networks in the presence of faults.

2.7 . Problematic

This work intends to improve the soft fault diagnosis in multi-branched networks using this
PCA-based reflectometry method. Two main research questions are tackled. The first is related
to the best frequency selection (chapter 3) to be used in the TDR construction, and the second
one is related to the sensor selection (chapter 4) in multi-branched wiring networks using the
distributed reflectometry.

2.7.1 . Best Frequency Selection for Reflectometry-based Soft Fault Diagnosis
using PCA

The frequency of the reflectometry signal is a critical parameter in detecting and locating
a fault in a cable. Indeed, the higher the frequency of the reflectometry signal, the better is
the resolution of the reflectogram and the localization accuracy of small faults. However, in
the case of fault detection in long cables, increasing the signal frequency is not recommended
as it introduces dispersion and increases signal attenuation, as discussed in section 2.3.2.

Although interesting methods have been proposed to enhance soft fault diagnosis in section
2.3, most of them are prone to test signal attenuation and dispersion phenomena. Moreover, the
signature of the soft fault may be invisible on the corresponding reflectogram. Hence, the choice
of the test signal bandwidth is critical and affects the diagnosis performance. Although band-
width increases the resolution for detecting soft faults, it provides more attenuation. Thereby,
a compromise between those two quantities should be done.

In practice, the expert configures and calibrates the Vector Network Analyzer (VNA) at
a given frequency and records the healthy cable measurement. Measurements at the same
frequency are then done on a faulty cable. Analysis of the measurements is established at
this frequency on the computer. If the fault is not detected, this operation must be repeated.
Therefore, there is a loss of information and time in addition to the subjectivity of the decision-
making.

In this context, chapter 3 introduces a new approach for frequency selection in the case
of soft fault diagnosis. The proposed method permits to configure and calibrate the VNA at
different frequencies. It performs measurements at different frequencies for the healthy case.
After which, the PCA model is established. It performs the new measurements at different
frequencies. If a difference is detected between the model and the new data, the contribution
of each variable (i.e., frequencies) to this difference is calculated. The algorithm then chooses
the most relevant frequency to monitor the soft fault. The advantages are thus time saving
and objectivity of the decision-making.
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2.7.2 . Sensors Selection for Distributed Reflectometry-based Soft Fault Diag-
nosis using PCA

As it have been explained in section 2.4, the distributive measurements is the best solution
to remove ambiguities in fault location. However, the injection of multiple signals into the NUT
leads to computational complexities and sensor fusion problems. Moreover, energy consumption
is a significant drawback of this method with respect to environmental constraints. The study
on the reduction of the sensors’ number in complex networks and its impact on the diagnosis
quality is provided in [34]. However, it shows further challenges related to bandwidth allocation,
communication protocol, and noise interference mitigation.

Thus, in [35], the cable life profile is included, allowing to reduce the diagnosis cost by
avoiding the use of too many sensors in the network. With this solution, the reliability of the
sensors in emission and reception is considered in the obtained statistics. This reliability differs
from a sensor to another, and impacts the fault location.

In this context, chapter 4 introduces a new approach for selecting the relevant sensors to
monitor and diagnose soft faults in multi-branched wired networks. It combines TDR distributed
reflectometry with PCA. Indeed, for a given NUT, a distributed reflectometry approach is con-
sidered where the sensors perform their reflectometry measurements. These collected data are
used to establish a PCA model coupled with statistical analysis tests to evaluate new measure-
ments status. Whenever a fault is detected, the relevant sensors for monitoring and diagnosis
are identified with high accuracy. Based on these results, the sensor’s number could be reduced,
and the non-selected ones could be inactivated temporarily, reducing energy consumption, com-
puting complexities, and sensor fusion problems.

For this study, we assume that a reference network exists, for which the PCA model is
established based on its TDR response and will be used to examine new measured data.

2.8 . Conclusion

Reflectometry methods are well suited to diagnosing wired networks. However, there are
several limitations inherent to the method or physics of the problem, such as the measurement
noise, in-homogeneity of propagation, blind zone, ambiguity of localization, attenuation and
dispersion phenomena. Soft faults are challenging to detect because a very weak signature
characterizes them. They are often the premises of a more severe fault, which can appear in a
short period of time, and will be a potential source of incidents or accidents. The diagnosis of
soft faults is, therefore, an important objective of research.

This chapter has discussed the different problems of soft fault detection and localization in
multi-branched networks. Several post-processing methods have been revised. However, they
remain prone to the attenuation and dispersion phenomenon. The limitations concerning the
location accuracy can sometimes be very troublesome, especially in the case of very long cables.
Indeed, the phenomena of attenuation and dispersion significantly reduce the location accuracy
when the propagation distance is important. Hence, the choice of the test signal bandwidth is
critical and affects the diagnosis performance. Although a wide bandwidth increases the reso-
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lution for detecting soft faults, it provides more attenuation. Thereby, a compromise between
those two quantities have to be done.

In the case of a multi-branched network, distributed reflectometry is used to solve the loca-
tion ambiguities. However, several challenges related to bandwidth allocation, communication
protocol, and noise interference mitigation are presented. Thus, reducing the number of sensors
in the network is relevant to reduce energy consumption, computing complexities, and sensor
fusion problems.

Finally, a throughout study about the existing enhanced methods in the literature for soft
fault detection, localization, and characterization as well as their limitations is presented. This
state of the art has made it possible to identify the main weaknesses of these methods, linked in
particular to complex topologies and the detection of soft faults. Thus new tools used for fault
detection and diagnosis are needed; for that, Principal Component Analysis (PCA) principle is
presented. PCA meets our needs in terms of the simplicity which allows to save time, reduce the
computing complexities and it doesn’t require the knowledge of the topology of the network.

In this context, this work intends to improve the soft fault diagnosis in multi-branched net-
works using this PCA-based reflectometry method. Two main research questions are tackled.
The first is related to the best frequency selection (chapter 3) to be used in the TDR construc-
tion, and the second one is related to the sensor selection (chapter 4) in multi-branched wiring
networks using the distributed reflectometry.
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3.1 . Introduction

This chapter introduces an approach to select the best test signal frequency for soft fault
detection in wired networks. In the literature, the reflectometry method has been well investi-
gated to deal with the problem of soft fault diagnosis (i.e., chafing, bending radius, pinching,
etc.). A small impedance variation characterizes soft faults resulting in a low amplitude sig-
nature on the corresponding reflectograms. Accordingly, the detection of those faults depends
strongly on the test signal frequency. The increase of test signal frequency enhances the soft
fault “spatial” resolution, to the detriment of signal attenuation and dispersion. A combination
of reflectometry-based data and Principal Component Analysis (PCA) algorithm is proposed
to address this problem. The data are obtained from TDR responses of 3D based-models of
faulty coaxial cable RG316 and shielding damages have been simulated at different frequencies.
A PCA model is developed and used to detect the existing soft faults based on the obtained
reflectograms. The method aims to determine the best frequency of the test signal to have the
best soft fault diagnosis performance.

With this approach, we show how to automatically proceed with the frequency selection
to detect changing impedance and shielding damage due to common chafing causes in coaxial
wire geometry before any possible shorting or open condition in the conductors.

In this chapter, we develop an analytical model of the fault detection performances (Prob-
ability of Detection (Pd) and Probability of False Alarm (PFA)), where the simulation results
will highlight the impact of different network elements on the method’s performance. An ex-
perimental validation will show the method’s advantages regarding frequency selection for soft
fault diagnosis.

In this context, the modeling of the cable is presented: 3D EM with Computer Simulations
Technology (CST) for short cables and an RLCG model for long cables. Experimental results
are provided to validate the models for healthy and faulty cables. Next, the proposed method-
ology for best test signal frequency selection is illustrated. After which, simulation results in
the case of short and long cables are presented. Experimental validation is performed next to
show the method’s advantages regarding frequency selection for soft fault diagnosis. Finally,
performance analysis is inducted to study the efficiency of the proposed method in the presence
of noise.

3.2 . Faulty Coaxial Cable Modeling and Electromagnetic Simulations

Although there is a great variety of cable types and faults of potential interest, in this
work we focus on coaxial cable and “chafe” faults. Chafe first ablates outer insulation, then
shield, leaving inner conductors intact that typically results from vibration or forced translation
of the cable against an external component or another cable. As a result of the chafe, the
signal return path of a signal on the cable can be disturbed. Fortunately, this disturbance is
detectable thanks to time-domain reflectometry.

Underlining the importance of the numerical modeling of soft faults, we will first consider
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the precise electromagnetic characterization of a cable zone located near a soft fault. It will be
then a question of modeling the phenomena and its propagation along the cable.

The study of numerical methods in electromagnetism must be based on the fundamental
basis of electromagnetism represented by Maxwell’s equations. Numerical methods are used to
solve them in an approximate way. These equations are used in particular way to model the
problems of propagation of electromagnetic waves. The results of these methods will lead to a
precise expression of the disturbances generated by the fault on the propagation of the signals
along the line.

3.2.1 . Coaxial Cable Modeling and Simulation

To validate and generate noise-free data, we have employed a commercial microwave simula-
tor: CST (Computer Simulations Technology) Microwave Studio. Coaxial cables are considered
in this work, where they are used for the numerical model to validate the proposed method and
in the conducted experimental measurements. These cables are widely used, so the comparison
can be made between the simulated and the measured data.

A 3D EM model of a coaxial cable is developed using CST as shown in Figure 3.1. This is a
healthy RG316 coaxial cable model. The cross-section shows four concentric cylinders defining
the geometry: outer plastic jacket, shield, inner dielectric insulator made from PTFE, and the
core. The coaxial cable construction specifications are listed in Table 3.1.

Figure 3.1 – The developed 3D EM model of a shielded coaxial
The external diameter of the inner conductor is d = 0.51mm and the internal diameter of

the outer conductor is D = 1.52mm. The conductors are made of copper with a conductivity
σ = 5.81× 10−7(S/m). The insulation is made with Teflon (PTFE) with a relative permittivity
εr = 2.1, a relative permeability µr = 1. The thickness of the shielding is 0.54mm. Finally,
there is an outer Teflon sheath of thickness 0.43mm which envelops all the components. The
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Table 3.1 – RG-316 Coaxial cable construction specifications
RG-316 coaxial cable Material Diameter [mm]Inner conductor (Core) Copper 0.51Dielectric Polytetrafluoroethylene (PTFE) 1.52Outer conductor (Shield) Copper 2.06Jacket Fluorinated Ethylene Propylene (FEP) 2.49

Figure 3.2 – The 3D model port
length of the model is l = 1m. The cable characteristic impedance is Zc ≈ 45Ω using the
following equation:

Zc =
138× log10

(
D
d

)
√
εr

(3.1)
A discrete port with a Z0 = 50Ω impedance connects the two conductors through the center
point as shown in Figure 3.2 to inject a test signal and receive the reflected one. The trans-
mission line is supposed to be left open-circuited at its end, and the power supply is a Gaussian
excitation source located at x= 0 with a maximum frequency of 4GHz, lower than the cable
cut-off frequency (fc ≈ 15GHz) to avoid the propagation of the higher modes [133]. The
simulations consisted of injecting a Gaussian pulse into the wire and recording the reflected
signals.

Figure 3.3 represents the TDR response for the fault-free cable that is recorded at the
injection point. The signal propagates from the source point to the end. As there is no
discontinuity along the transmission line, the perfect transmission of the electric field signal
through a faultless medium is observed. The peak at 0m is due to the reflection from the
impedance mismatch between the cable and the test circuitry (the port), such that the reflection
coefficient at the input of the cable (ΓE = Zc−Z0

Zc+Z0
= −0.0538). The peak at 1m corresponds

to the open circuit at the end of the cable. As mentioned in section 1.4.1.1, in case of an
open circuit, Zl = ∞ thus Γl = 1, here in practice Γl < 1 due to attenuation through the
transmission line. The amplitude of the peak at the end of the cable is equal to 0.83V , compared
to the amplitude of the Gaussian pulse 1V .

There are several sources of perturbations in reflectometry measurements, such as the per-
turbation caused by the connectors, as seen above. Since the reflectometer must be connected
to a wide variety of cables or anchors, it is not generally feasible to match the impedance of
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Figure 3.3 – TDR simulation result for the 1mmodeled coaxial cablewith an open circuit at the transmission line end

the reflectometer to the wire. This means there will always be a reflection between the testing
system and the wire under test. The test-lead, connectors, adapters, etc., all contribute to this
reflection in different ways. However, these perturbations can be reduced by using baselines,
where comparing the response of the faulty network with either the pre-measured or simulated
response of its (known) healthy condition is done [59].

3.2.2 . RLCG based Model

For the cable modeled in the previous section, the R2RLCG method explained in section
1.4.1.1 is applied to extract its RLCG parameters. Figure 3.4 presents the extracted RLCG
parameters. The results are consistent with the previous assumption as they show the depen-
dence on the square root of the frequency of the resistance R, and a linear dependence of the
conductance G with respect to the frequency. The capacitance C = 1.08×10−10(Farad/m)

and inductance L = 2.18×10−7(Henry/m) are constant over the reflectometry working fre-
quency band. Indeed, this measurement had to be made with the VNA which stopped at
3.6GHz. For the constant values (L, C and Zc) we will have the same values at 4GHz and
for R and G, it would be necessary to look at the leading coefficients of the trends (line for G
and square root for R) to know the values. Figure 3.5 shows the real and the imaginary parts
of the characteristic impedance as a function of the frequency. It is shown that Zc tends to be
constant at high frequency and the effects of R and G in Zc tends to disappear.

Figure 3.6 shows the TDR reflectograms of the RLCG-based model and the 3D EM models.
For these simulations, the used bandwidth is ranged from DC to 4GHz, and the width of
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Figure 3.4 – Variation of estimated cable RLCG parameters as afunction of the frequency

Figure 3.5 – Variation of the characteristic impedanceZc as a functionof the frequency

the Gaussian pulse, used as a test signal, is 250ps. The inset in this figure represents the
difference between the two reflectograms resulting from the calculated RLCG model and the
3D model. The correlation coefficient is used to evaluate the similarity between the two models.
The correlation coefficient between the two reflectograms resulting from the calculated RLCG
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model and the 3D model equals 0.9584. Here, it is considered that the data is strongly correlated
if the correlation coefficient is between 0.9 and 1 [15]. One can thus consider that the correlation
coefficient is strong. It validates the model with distributed constants. Therefore, the computed
R, L, C, and G parameters of the healthy cable will be used for soft fault characterization in
the next section.

Figure 3.6 – TDR reflectograms of the RLCG-based model and 3DEM model

3.2.3 . Soft Fault Modeling and Simulation

In Section 1.3, an assessment of the most prominent faults in electrical wiring has been
made. The Federal Aviation Agency (FAA), Naval Systems Air Command (NAVAIR), and
National Aeronautics and Space Administration (NASA) have all identified wire chafing as the
most significant factor contributing to electrical wiring and interconnect system failures [7].
This fault type is a precursor to more significant problems such as open and short circuits, and
arcing, which cause smoking, fires, etc. In this context, our case study will use this fault type.

TDR is an industry-standard method used for detecting chafing faults. Given the input
signal, the cable dimensions, and materials, the model estimates the signal reflected by the
wire. This estimation is derived from Maxwell’s equations using numerical methods and minimal
assumptions.

This part aims to study this type of degradation, which is among the most representative of
the faults encountered. We will focus on the impact of the degradation of the cable shielding,
taking into account the three-dimensional characteristics of the faults. Figure 3.7 shows a
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Figure 3.7 – Coaxial cablemodel with a shielding fault between x1 andx2
coaxial transmission line with a discontinuity on the outer conductor of length Lf . The model
presents the damaged area located between x1 and x2.

As the size of the fault and the degree of opening on the shield increase, the radiation losses
due to the propagation of waves through the opening of the shield may also increase. The more
severely the cable shielding breaks, the closer the fault will approach an open circuit. The
faulty area will then have an impedance Zf different from the cable’s characteristic impedance
Zc. Therefore, when the incident wave enters the faulty zone, there will be reflections (at
the beginning and end of the fault) with positive and then negative signs on the P1 and P2

interfaces (Figure 3.7), respectively.

The coaxial cable modeled in section 3.2.1 is degraded (a portion of the shield is removed).
A representation of the faulty coaxial cable is depicted in Figure 3.8.

Figure 3.8 – Coaxial cable with a shielding damage model

The fault is characterized by three different parameters: the position xf =x1, the length
Lf and the angular cutaways θf . We will seek to understand the influence for each parameter
on the shape of the reflectogram. We consider here the case where only the cable’s shield is
degraded with different widths (θf ) and constant length (Lf ). Holes ranging from θf = 45° to
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θf = 180° in width are created in the shielding for individual simulations to emulate the growth
of experimentally created shield flaws.

The considered cable length is l = 1m and a soft fault occurs at xf = 0.5m from the
beginning of the transmission line, with length Lf = 5mm, and various widths (θf ) of 45°,
90°, and 180°, as shown in Figure 3.8. The simulations consist of injecting a Gaussian pulse Ui,
of unit amplitude, in the frequency band [0; 4GHz], into one extremity of the wire and then
recording the reflected signals at the injection point. The reflectometry response will reveal
the disturbance generated by the fault on the signal propagation along the line. Figure 3.9
presents the TDR response for the faulty case of θf = 180°. Due to the fault presence, when
the incident signal arrives at the discontinuity of length Lf between the points x1= 0.5m and
x2=0.505, multiple reflections between the two interfaces and the defective zone are produced.
The signal amplitude at the end of the cable illustrates that the incident signal still propagates
along the line but with a lower amplitude due to the reflections in the faulty zone.

Figure 3.9 – TDR response of a shielding fault with xf = 0.5m, Lf =
5mm and θf = 180°

Figure 3.10 illustrates the TDR fault signature as a function of the angular cutaways of the
damaged shield. The shape of the reflected signal exhibits positive and negative reflections due
to the sign of the reflection coefficient at the discontinuity interfaces at P1 and P2. The shape
and amplitude of the time domain response due to the fault depend on the nature and severity
of the fault. Moreover, as shown in this figure, the amplitude of the reflected waves is generally
very small (here about 5% of Ui ), and therefore, the reflected pulse cannot be detected easily
by means of the measurement devices. The reflected signal can change significantly due to the
radiation leakage that increases with the width of the shielding fault θf .
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Figure 3.10 – Shielding fault signatures for different fault width’s at
xf = 0.5m and Lf = 5mm

In CST Studio Suite, the accuracy of the solution is strongly related to the number of
meshes. As a consequence, for long cables (≈ 100m cables), the number of meshes is very high,
which increases the computational burden and the simulation time. Therefore, at first, CST
will be used for the 1m faulty coaxial cable modeled in this section. Then the fault parameters
are extracted using a characterization method [15], and are implemented in a Mathwork’s
Matlab©language code to simulate different scenarios where the following parameters are
changed:

• The cable length l

• The fault position xf

The simulation results of this method are compared to the output of the CST simulator with
a high degree of success, and the Matlab code was tested for its ability to retrieve (estimate)
the TDR response. The detailed process of the characterization method has been presented in
chapter 2, section 2.5.1. The first step has been done in section 3.2.2 where the RLCG-based
model is developed and validated. The RLCG-based model TDR response in the flowchart
Figure 3.6 is Vsim defined in the Figure 2.11 in chapter 2: the reflectometry response containing
the contribution of the healthy NUT. Second, we propose to study the effect of increasing the
width θf and the length Lf of the shielding fault on the RLCG parameters. The three faults
previously defined in this section are used, with a constant length of the fault (Lf = 5mm).
Figure 3.10 is used as the Vmes in the flowchart: the reflectometry response of the faulty NUT
containing the signature of the soft faults. For these simulations, the maximum frequency
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of the signal is 4GHz. Third, the baselined signature of the three fault cases is obtained.
Fourth, based on the electrical faults parameters obtained from the Genetic Algorithm (GA),
the impedance Zd of the fault is calculated. From the results in Table 3.2, we can observe an
increase of the variation of the characteristic impedance and the reflection coefficient when the
fault width increases.

Table 3.2 – The estimated parameters of the shielding damage fordifferent widths
Width of the fault xf Lf ∆Zc Γ

θf = 45° 0.5m 5mm 5Ω 0.0526
θf = 90° 0.5m 5mm 23Ω 0.2987
θf = 180° 0.5m 5mm 27Ω 0.3698

The results in Table 3.3 show the absence of the impact of the fault length on the impedance
variation when the fault width is set constant at 45°. Nevertheless, the increase of the fault
length Lf increases the amplitude of the fault signature based on equation (1.35).

Table 3.3 – The estimated parameters of the shielding damage fordifferent lengths
Length of the fault xf θf ∆Zc

Lf = 5mm 0.5m 45° 5Ω
Lf = 10mm 0.5m 45° 5Ω
Lf = 20mm 0.5m 45° 5Ω

To sum up, the characterization method within the Matlab code was tested against the
commercial 3D simulator (CST) by simulating a cable which had a shielding fault. The TDR
results from CST as well as the Matlab code for three different widths are depicted in Figure 3.11.
The correlation coefficients for the different cases are = 0.9841, 0.9839 and 0.9797 respectively.
The outputs of both the simulator and characterization method code are nearly identical (from
the correlation coefficient calculations). These encouraging results prove that we can retrieve
the TDR response for longer cables from the Matlab code, which is far less time consuming
than using CST.

Figure 3.12 shows the TDR fault signatures at 4GHz for the following fault (θf = 180° and
Lf = 5mm) located at xf = 0.5m, 5m and 50m, for 1m, 10m and 100m cables, respectively.
Table 3.4 shows the amplitude variation of the soft fault signature with the change in the fault
position along the cable. It illustrates the attenuation phenomenon explained in chapter 2 and
hence, the selection of frequency issue addressed in the following sections.

3.2.4 . Model Validation with Experimental Results

This section aims at validating the developed models with experimental results. Experi-
mental results are encouraging for finding shielding flaws before any disruptive damage of the
inner conductors. The experimental data collection starts with focusing on the coaxial cable
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(a) (b)

(c)
Figure 3.11 – Signatures of the reconstructed and simulated fault withwidth (a) θf = 45°, (b) θf = 90° and (c) θf = 180°

(a) 1m cable (b) 10m cable (c) 100m cable
Figure 3.12 – Fault signature for different cable lengths

Table 3.4 – Variation of the Fault (θf = 180° and Lf = 5mm) ampli-tude with its position along the cable
Cable length lf [m] 1 10 100
Fault position xf [m] 0.5 5 50

Amplitude [V] 0.036 0.012 0.00012
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type, measuring the TDR response of the healthy cable, then the cable is damaged using an
abrasive apparatus to chafe a small section of the wire and finally measure the TDR response of
the faulty cable. In the study described here, we are interested in how the TDR signal changes
as a function of the width of chafing into the shielding. At θf = 180°, the shielding has worn
away sufficiently to expose the inner core conductor insulation.

The measurement was carried out using an RG-316 coaxial cable (Zc = 50∓2Ω at 4GHz).
The exterior insulation on the cable has a relative permittivity of around 2.1. In this study, we
are not interested in measuring scrapes of the exterior insulation, but instead, we are interested
when chafing starts to create holes in the shielding. In this part, the results of the simulation
with CST are compared to the experimental ones.

A 5mm long, 180° wide shielding damage is created at 0.5m from the injection point as
shown in Figure 3.13. The length of the Cable Under Test (CUT) is 1m. In Figure 3.14, the

Figure 3.13 – Experimental chafed cable

Figure 3.14 – Experimental Setup
cable input terminal was attached with a 50Ω N series RF coaxial cable connector. The other
end is left open-ended. The reflected signals and the corresponding reflectograms are obtained
using a VNA Agilent E5071C, with calibration to acquire highly accurate measurements. A
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TDR signal is considered on a total bandwidth defined from DC to a maximal frequency fmax
(1GHz, 2GHz, 3GHz and 4GHz).

Figure 3.15 represents reflections from TDR Gaussian input by the digital simulation in CST
and the experiment in a no-fault case. Figure 3.16 represents reflections from TDR Gaussian

Figure 3.15 – Healthy TDR responses
input by the digital simulation in CST and the experiment in the case of the shielding fault
defined in Figure 3.13. The inset in this figure represents the difference between the simulation
and the experimental TDR responses. The difference at the input is due to the presence of
a connector and a generator in the experiments connected to the cables’ input, whereas in
simulations, only a generator is used without a connector. Three sections are considered in
the experimental and simulation TDR responses: input, faulty part, and the end (here, open
circuit). Thus, s(t), defined in chapter 1 (1.2) as the reflected signal, is divided into three
sections. The spectral energy density of each section is given by Es and it is calculated using
equation (3.2) and is presented in Table 3.5. It shows that the energy of the input section is
identical for both the experimental and the simulation responses, regardless of the difference in
the signature shape and its amplitude. The difference in the amplitude at the cable end is due
to the open circuit impedance in the experiment, which is different from the infinite value used
for the simulations.

Es = |X(f)|2 (3.2)
whereX(f) is the Fourier transform of s(t). Since the signal s(t) is in volts, then the dimensions
of X(f) would become [volts ∗ seconds] and Es would be in [v2 ∗ s2], so this gets us to
[power ∗ s/Hz], that is [J/Hz].

The Root Mean Square Error (RMSE) between the two reflectograms in Figure 3.16 is
equal to 0.024. This value is relatively low since the observations mean is 0.168. The RMSE
based only on the fault signature section is 0.001. Since it constitutes only 4% of the total
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Figure 3.16 – Faulty TDR responses
RMSE (0.024), the majority of the error is due to the output section. This plot shows that we
are within the same range of magnitude between the simulation and the experiments.

Table 3.5 – Energy calculations
Energy [J/Hz] Input Fault (middle) Cable end
Simulation 0.31 0.11 71.65

Experimental 0.31 0.11 67.06

Now that the model is validated, it can be used to generate the data used to evaluate the
frequency selection approach, presented in the following sections.

3.3 . Frequency Selection Algorithm for Soft Fault Diagnosis

In practice, the expert configures, calibrates a VNA, selects the excitation frequency and
records healthy cable measurement. Measurements at the same frequency are done on a faulty
cable. These four steps are repeated as long as the fault is not detected. Therefore, there is a
loss of information and time in addition to the subjectivity of the decision-making.

Our objective is to propose a method for selecting the best test signal frequency for soft fault
detection. It performs measurements at different frequencies for the healthy case. After which,
the PCA model is established. Then, new measurements are performed at different frequencies.
If a difference is detected between the model and the new test data, the contribution of each
variable (i.e., frequencies) to this difference is calculated. The algorithm then chooses the
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most relevant frequency to monitor the soft fault. The advantages are thus time saving and
objectivity of the decision-making. Furthermore, this methodology could be able to monitor
the evolution of detected faults in the prognosis perspective.

The first step here is to have the healthy operating data upon which the PCA model will
be established. This model is then used to evaluate new measurement data. Two statistical
methods are used here; the Q (or SPE) and the Hotelling T 2 statistics [121]. If a fault is
detected, the best frequency corresponding to the ones with the highest contribution in the
detection is then selected. Figure 3.17 shows the flowchart of the proposed method, which

Figure 3.17 – Flowchart of the proposed approach
consists of the following steps:

Step 1: Collect training data representing healthy process operations and scale(normalize) them
using their mean and standard deviation (Training phase).

Step 2: Develop a statistical PCA model for the system using the singular value decomposition
(Training phase).

Step 3: Define a confidence level α and calculate the upper control limits forQ and T 2 statistics
(Training phase).
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Step 4: Acquire new sample measurement and scale it using the same factors (mean and stan-
dard deviation) from step one (Monitoring phase).

Step 5: Generate Q and T 2 statistics based on the obtained PCA model (Monitoring phase).

Step 6: Decide if the new sample is considered faulty when one or more residuals exceeds the
threshold (Monitoring phase).

Step 7: Inspect the inputs (original variables) that highly influence the residual. Contribution
plots are used for this purpose, and the best frequency is then selected (Best frequency
selection phase).

This method consists of three phases:

1. Training phase, where data X∗ are collected during fault-free operation, and the PCA
model is developed as in section 2.6.1. After developing a model using healthy (training)
data, the reduced dimension model can be used to detect and diagnose abnormalities.

2. Monitoring phase, i.e., fault detection, is handled using the monitoring statistics T 2

and Q test. For fault detection, the developed PCA model based on healthy operating
system data is used to check new measurement data X as explained in section 2.6.2. If
the Q or T 2 value falls outside the confidence limit at a specific sample, then there is an
abnormality.

3. Best frequency selection phase, where fault diagnosis will be managed through contribu-
tion plots. Since the reference matrix, X∗ is built so that each variable corresponds to a
specific frequency; then one can inspect the inputs (frequencies in this case) that highly
influence the abnormal sample Q or T 2 value. After which, the most relevant frequency
to monitor the detected soft fault is selected. For this purpose, contribution plots are
used. It is necessary to find the variable (frequency) that contributes the most to the Q
or T 2 value. We can look at the contribution of each input to this large statistical value.
This analysis can determine which variable is responsible for the unusual behavior of Q
or T 2 and, hence, the most relevant frequency is retained.

3.4 . Simulation Results

3.4.1 . Short Cable Analysis

3.4.1.1 Training phase

The 1m 3D coaxial cable model developed using CST in section 3.2.1 is used. The healthy
cable reflectograms are simulated for four different bandwidths. Each bandwidth ranges from
DC to a maximal frequency fmax. The cable is excited using a Gaussian pulse with different
maximal frequencies (1GHz, 2GHz, 3GHz and 4GHz).
For our proposed methodology, we first consider the reference, healthy performance, represen-
tation of the data given by (3.3). X∗ is formed up of four variables (step 1). Each variable Rf
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is a column vector of the matrix and corresponds to the cable healthy TDR response at the
frequency f = 1GHz, 2GHz, 3GHz and 4GHz respectively.

X∗ = [R1GHz R2GHz R3GHz R4GHz] (3.3)

The obtained data matrix X∗ is then used for the construction of the PCA model according to
(2.8), (2.9) and (2.10) (step 2).

Table 3.6 indicates that the cumulative variance of the first two scores is 98.64% that is
greater than the lower limit (i.e. 90%). This implies that the observed variables are highly
correlated. Using (2.11), the data are well described with the first two principal components.
Thus, the number of the retained components, k, is equal to two. For step 3, the 95%

Table 3.6 – PCA model variances
PC number Variance percentage (%) Cumulated percentage (%)

1 95.37 95.37
2 3.27 98.64
3 1.03 99.68
4 0.31 100.00

confidence limits of those tests are calculated according to ((2.16)-(2.19)). Thus, Qα = 22.25

and T 2
α = 26.92.

3.4.1.2 Monitoring phase

Second, the soft fault model in section 3.2.1 is used, where the angular cutaways (fault width)
parameter θf is set to one of the three values: 45°, 90° or 180°. We consider the case where
only the sheath of the cable is degraded with different widths, and the length of the fault
remains constant (5mm). Figure 3.18 (a), (b) and (c) shows the signature of the shielding
damage with angular cutaways θf = 45°, θf = 90° and θf = 180° respectively, for the different
maximal frequencies.
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(a) θf = 45° (b) θf = 90°

(c) θf = 180°
Figure 3.18 – Soft fault signatures at four different excitation frequen-cies

We observe the impact of varying the width of the fault on the signal reflection. The
figure illustrates that as the fault’s width increases, the incident wave will be more affected
by the fault. Since velocity changes with frequency as described in (2.3), a shift between the
signatures of the same fault at different frequencies is observed on the reflectograms. As shown
in Figure 3.19, both the fault severity and the excitation frequency lead to higher peak values.

Step 4 corresponds to the acquisition of a new measurement data setX in faulty case. It has
four vectors such that X = [x1 x2 x3 x4]. Each of the four variables is a concatenated
vector of the fault signature data in the three considered cases (θf = 45°, θf = 90° and
θf = 180°), and for the same operating frequency. The new data matrix is defined as:

X =

R45°1GHz
R45°2GHz

R45°3GHz
R45°4GHz

R90°1GHz
R90°2GHz

R90°3GHz
R90°4GHz

R180°1GHz
R180°2GHz

R180°3GHz
R180°4GHz

 (3.4)

where Rθ°f describes the fault signature data vector with angular cutaway θf and frequency f .

The PCA reference model obtained in section 3.4.1.1 is used to project the new measurement
data. The differences between the projection X̂ and X are evaluated through the Q and
Hoteling’s T 2 statistical tests. New measurements X will be projected into the framework
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Figure 3.19 – The different fault signature positive peaks (maximumvalue)

Figure 3.20 – Scores plot: Q values of new measurement samples

spanned with the loading matrix Pk. The new scores Tnew and the residual T̂new are calculated
according to (2.12) and (2.13). According to ((2.12)-(2.15)), the Q and the T 2 values for each
new measurement sample are calculated (step 5). Figure 3.20 and Figure 3.21 present the Q
and the T 2 control charts respectively, with the dashed red line representing the 95% confidence
limit. It is observed that Qα is crossed by several samples (6508, 6630, 10620 and 10730) and
T 2
α by the samples (10620 and 10730). This indicates that faults have occurred (step 6).

3.4.1.3 Best Frequency Selection phase

The contributions to the Q statistics are plotted in Figure 3.22. It can observed that the variable
x4 has the highest contribution to the unusually large Q statistic. Thereby, the selection of the
relevant frequency is performed by Q and Hotelling T 2 control tests (step 7).
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Figure 3.21 – Scores plot: T 2 values of new measurement samples

(a) (b)
Figure 3.22 – Contribution plot of the samples: (a) 6508 and (b) 10620

The first occurrence of the fault has the highest impedance variation in the reflectogram,
and for each round-trip of this fault, its peak amplitude on the reflectogram decreases. Due to
the presence of several round-trip peaks for the same fault, several abnormal samples will be
produced in the Q and T 2 chart. Therefore, we consider the samples with the highest Q and T 2

values as the abnormal ones corresponding to the fault. Hence, according to Figure 3.20 and
Figure 3.21, samples 6508 and 10620 are investigated. The contribution of the first variable
x1 is almost neglected with respect to the other variables; hence, it does not appear in the
plots. Sample 6508 in Figure 3.22 (a) is detected only by the Q test whereas sample 10620 in
Figure 3.22 (b) is detected by the two tests.

If we look at Figure 3.20 (Q chart) and Figure 3.22, we can draw the following concluding
remarks:

• for θf = 45°, the fault cannot be detected whatever the frequency.
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• for θf = 90° and θf = 180° the faults are detectable and f = 4GHz is the best selected
frequency to monitor this fault.

However, Figure 3.21 (T 2 chart) and Figure 3.22 show that the fault is only detectable for
θf = 180° and the best frequency is 4GHz. Thanks to the simulation results of a 1m length
RG316 coaxial cable with a shielding damage with 3 severity levels (45°, 90° and 180°), the
combination of reflectometry and PCA coupled to Q and T 2 statistics shows that:

• the highest frequency (4GHz) leads to the best fault detection capability for the two
largest severities if Q test is used and the largest severity detection if T 2 test is used.

• for the lowest fault severity, the Q and T 2 in the PCA framework fail to detect the fault.

• Q test is more suitable than T 2 to be used in our study since it can detect more faults.
Thus, in the following sections, only Q test will be used.

The simulation results are in coherence with the well known rule that for short cables, the
higher the frequency is, the better it is for the fault detection. This approach will be applied
to another set of cables with different operating conditions and fault types in the following
sections.

3.4.2 . Long Cable Analysis

3.4.2.1 Data-base Building

The process of data collection simulation is divided into two parts where CST model is used
for short cable and RLCG model will be used for longer cables:

(1) CST simulations: for the cable defined in 3.2.1 of length l = 1m (the same cable used in
section 3.4.1.1, we simulate fault cases characterized by three parameters at four different
frequencies f = [1GHz, 2GHz, 3GHz, and 4GHz]. We have in total nine total cases
for each frequency:

(a) Position xf = 0.5m

(b) Length Lf = [5mm,10mm,20mm]

(c) Width θf = [45°, 90°, 180°]
(2) Usually, the location of the fault is unknown; the fault length is also unknown. It is

necessary to analyze the sensitivity of the proposed method for different values of fault
length to evaluate its robustness. For that, the fault parameters are extracted using
the characterization method described in section 3.2.3 and are implemented to simulate
different fault cases for which the cable length l and the fault position xf are changed:

• Extract the R, L, C, G parameters from the healthy cable data

• Derive ∆Zd for the nine fault cases defined in (1)
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• Insert the signatures in the simulation Matlab code

• Choose a cable of length l = 10m

• Simulate fault cases characterized by three parameters (36 total cases):

(a) Position xf = [20%, 50%, 70%, 90%] (vary the fault position along the cable
length in %)

(b) Length Lf = [5mm, 10mm, 20mm]

(c) Width θf = [45°, 90°, 180°]

A significant source of problems in reflectometry analysis is the so-called “blind zone.” This
is particularly problematic for wires or cables that are very short or when the fault is near the
front of the cable. This is caused by the reflected signal overlapping the incident signal because
the time delay is small. This makes it challenging to identify the reflected signal. Several
methods can be used to mitigate this effect. For example, using a longer test lead to connect
the reflectometer to the wire under test. This would effectively delay enough the reflected
signal reducing or eliminating the overlap. This may be practical for handheld applications,
but not for industrial applications, where the reflectometer is actually embedded in the system.
Another method is to use baselining to identify the overlapping signals and extract the reflected
response [134]. The blind zone at the start and the end of the cable in our study is 5%. The
baselining approach is used to deal with this problem.

Now, the reference TDR response for the 10m cable at the different frequencies (1GHz,
2GHz, 3GHz,4GHz) is simulated. In addition, for the 36 faulty cases, the corresponding
TDR response at the same frequencies is also obtained.

3.4.2.2 Training phase

For our proposed methodology, we first consider the reference, healthy data given by (3.5). X∗

is formed up of four variables. Each variable x∗
j corresponds to the 10m cable healthy TDR

response at the frequency f = 1GHz, 2GHz, 3GHz and 4GHz respectively.

X∗ = [x∗
1 x∗

2 x∗
3 x∗

4] (3.5)
The obtained data matrix X∗ is then used for the construction of the PCA model according to
(2.8), (2.9) and (2.10).

Table 3.7 indicates that the cumulative variance of the first score is 99.9412% that is greater
than the lower limit. This implies that the observed variables are highly correlated. Using (2.11),
the data is well described by one principal component. Thus, k is equal to one.

3.4.2.3 Monitoring phase

Our methodology’s second step leads to considering a new measurement data set X corre-
sponding to the faulty cases. It has four vectors such that X = [x1 x2 x3 x4]. Each
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Table 3.7 – PCA model variances
PC number Variance percentage (%) Cumulated percentage (%)

1 99.941 99.941
2 0.0575 99.9985
3 0.0014 99.999
4 3.5377e-05 100.000

variable is a concatenated vector of the fault signature data for the 36 use cases and the same
operating frequency. The new data matrix is defined as:

X = [x1 x2 x3 x4] (3.6)
where the variable xj = [F1 F2 ... F36] describes the fault signature data vector at
frequency j such that F1 corresponds to the fault case 1.

The constructed PCA reference model in section 3.4.2.2 is then used to check the new
measurement data. To do so, the differences between the new measurement data and their
projections into the constructed model are then subjected to the Q test. The 95% confidence
limit of this test is calculated according to (2.16). Thus, Qα = 0.0118.

According to ((2.12)-(2.14)), the Q value for each new measurement sample is calculated.
Figure 3.23 presents the Q control chart, with the dashed red line representing the 95% confi-
dence limit. The Q value for each detected fault case is given in the Appendix A. It is observed
that several samples have crossed Qα. This indicates that faults have occurred. 28 fault cases
out of the 36 are detected. Table 3.8 shows the fault cases with the varying position along the
cable, their severities, and if they are detected or not.

3.4.2.4 Best Frequency Selection phase

According to Figure 3.23, 28 samples are detected. We use the contribution plot of the abnormal
sample related to each case of the detected cases to select the best frequency. For example, for
the abnormal sample 34280 corresponding to the fault case F9 (Lf = 20mm,θf = 180°), the
contributions to the Q statistics is plotted in Figure 3.24: x4 had the highest contribution, so
the highest frequency (4GHz) leads to the best fault detection capability in this case. Table 3.8
shows the selected frequency for the detected fault cases.

For the fault cases at xf = 90%, the selected frequency is 3GHz for the two severities
F30 and F33 and 2GHz for F35 and F36. Figure 3.25 shows the contribution plots of the
abnormal sample corresponding to each one of these four fault cases. In order to explain the
obtained results, the energy of the faulty part at each frequency for each of the indicated fault
case is presented in Table 3.9. Ef corresponds to the fault energy at f . It is noticed that the
method chooses the frequency with the highest energy.

The combination of reflectometry and PCA coupled to Q statistic shows that:

• For xf = 20%, all the faults are detected whatever their severity level, and the selected
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Table 3.8 – Fault detection by PCA for different fault scenarios for a
10m cable

Fault cases Parameters(xf ,Lf ,θf ) Detected/Not detected If detected, selected f

F1
Lf = 5mm
θf = 45°

F2
Lf = 5mm
θf = 90°

F3
Lf = 5mm
θf = 180°

F4
Lf = 10mm
θf = 45°

F5
Lf = 10mm
θf = 90°

F6
Lf = 10mm
θf = 180°

F7
Lf = 20mm
θf = 45°

F8
Lf = 20mm
θf = 90°

F9

xf = 20%

Lf = 20mm
θf = 180°

Yes 4GHz

F10
Lf = 5mm
θf = 45° No

F11
Lf = 5mm
θf = 90°

F12
Lf = 5mm
θf = 180°

F13
Lf = 10mm
θf = 45°

F14
Lf = 10mm
θf = 90°

F15
Lf = 10mm
θf = 180°

F16
Lf = 20mm
θf = 45°

F17
Lf = 20mm
θf = 90°

F18

xf = 50%

Lf = 20mm
θf = 180°

Yes 4GHz

F19
Lf = 5mm
θf = 45° No

F20
Lf = 5mm
θf = 90°

F21
Lf = 5mm
θf = 180° Yes 4GHz

F22
Lf = 10mm
θf = 45° No

F23
Lf = 10mm
θf = 90°

F24
Lf = 10mm
θf = 180°

F25
Lf = 20mm
θf = 45°

F26
Lf = 20mm
θf = 90°

F27

xf = 70%

Lf = 20mm
θf = 180°

Yes 4GHz

F28
Lf = 5mm
θf = 45°

F29
Lf = 5mm
θf = 90° No

F30
Lf = 5mm
θf = 180° Yes 3GHz

F31
Lf = 10mm
θf = 45°

F32
Lf = 10mm
θf = 90° No

F33
Lf = 10mm
θf = 180° Yes 3GHz

F34
Lf = 20mm
θf = 45° No

F35
Lf = 20mm
θf = 90°

F36

xf = 90%

Lf = 20mm
θf = 180° Yes 2GHz
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Figure 3.23 – Scores plot: Q values of new measurement samples

Figure 3.24 – Contribution plot of the fault F9

frequency is 4GHz. These simulation results are in coherence with the rule that as the
fault is close to the beginning of the cable, the higher the excitation frequency is, the
better is the fault detection.

• For xf = 50%, the fault with the smallest severity (θf = 45°, Lf = 5mm) cannot be
detected whatever the excitation frequency. All other severities are detected with 4GHz

as the best frequency.

• For xf = 70%, the faults of width θf = 45° and with 5 and 10mm long cannot
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(a) F30 (b) F33

(c) F35 (d) F36

Figure 3.25 – Contribution plot of the fault cases at xf = 90%

be detected whatever the frequency. The selected frequency for the detected cases is
4GHz.

• For xf = 90%, the faults with θf = 180° are all detected. For the cases where the
lengths are 5mm and 10mm, the selected frequency equals 3GHz, and for the 20mm

case, it is 2GHz. Only one case with θf = 90° and 20mm long is detected and the best
frequency is 2GHz.

To show the effect of the fault position on the retained frequency for longer cables, the
simulations for a 100m cable of the fault case F3 (Lf = 5mm, θf = 180°) are done. The
position of the fault varies with a step of 2m. In Figure 3.26 the selected frequency decreases
as the fault position approaches the end of the cable.

3.5 . Experimental Validation
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Table 3.9 – Energy calculation for the fault cases at xf = 90%

Fault cases E1[J/Hz] E2[J/Hz] E3[J/Hz] E4[J/Hz]
F30 0.011 0.013 0.073 0.063
F33 0.028 0.035 0.081 0.076
F35 0.003 0.024 0.0107 0.0097
F36 0.0423 0.1406 0.1248 0.113

Figure 3.26 – Variation of the selected frequency with the fault posi-tion for a 100m cable for the fault case (Lf = 5mm, θf = 180°)
The methodology for fault detection using PCA, and frequency selection is now evaluated

on real cables using the setup in Figure 3.14. The reflectometry responses of the healthy cable
and the shield damage located at 0.5m on a 1m cable are measured, and are the ones displayed
in Figure 3.15 and Figure 3.16.

We first consider the reference representation of the data given by X∗ as in section 3.4.1.1.
Table 3.10 indicates that the cumulative variance of the first two scores is 99.99% that is greater
than the lower limit. Using (2.11), k is equal to two. The value of the limit is Qα = 0.628.
The new measurement data set is defined as X in section 3.4.1.2. Each vector xj contains the

Table 3.10 – PCA model variances
PC number Variance percentage (%) Cumulated percentage (%)

1 79.09 79.0959
2 20.904 99.994
3 3.0823e-31 99.994
4 7.1047e-63 100.00

faulty signature of the shielding fault defined above at frequency j.

Figure 3.27 shows the Q test results of this experiment where the fault has been detected.
The contribution plot of the abnormal sample is represented in Figure 3.28. The variable
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Figure 3.27 – Q values of experimental measurement samples

corresponding to frequency 4GHz contributes the most to this sample. Hence, f = 4GHz is
the selected maximal frequency. The experimental and the simulation results are coherent in
terms of fault detection and frequency choice.

In the following, the performance of this approach will be evaluated for a set of cables with
different operating conditions. Two questions will be tackled:

(1) What is the performance of the Q test for different SNRs?

(2) What is the performance of the frequency selection for different SNRs in the fault case
detection?

3.6 . Performance Analysis in the Presence of Noise

The performance of the Q test in the presence of noise is studied in this section. Figure 3.29
reveals the flowchart of the used methodology. This study is divided into three parts; First,
the soft fault detection, where fault detection using PCA is applied and Pd is calculated in
the presence of noise. Second, the false alarm evaluation, where the PFA for each SNR is
calculated. Finally, the best frequency selection where the frequency selection in the noisy
environment is performed.

3.6.1 . Soft Fault Detection
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Figure 3.28 – Contribution plot of the abnormal sample in the exper-imental data corresponding to a 5mm long, 180° wide shielding fault

Figure 3.29 – Flowchart of the Q test performance analysis

3.6.1.1 Training Data Generation

For the training data X∗, the star mark (∗) refers to the fault-free and noise-free environment.
This data matrix is the one used in section 3.4.2.2 where a 10m cable is used and simulated
at four different excitation frequencies.
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3.6.1.2 Testing Data Generation: Noise introduction

The testing data used here is X in 3.4.2.3 where the different fault scenarios (36 cases by
varying the fault position along a 10m cable while changing its severity (Lf and θf )) at
different frequencies are used for the performance analysis of the proposed method.

Now, noise (V ) is added to the testing data X, resulting in Xν where the used Signal to
Noise Ratio (SNR) levels are −5dB, 0dB, 5dB, 10dB and 15dB. The variable xj is a column
vector of X taken for the jth variable. The noise is assumed to be Additive White Gaussian
Noise (AWGN). The noise vector added to the variable xj is νj ∼ N(0, pν) (xνj = xj + νj).
Its power pν is related to the signal’s power ps by 3.7. Then, 500 realizations are performed at
each SNR level.

SNR = 10 log

(
ps
pν

)
(3.7)

Figure 3.30 shows the TDR responses when the noise in the presence of the fault (Lf =

5mm, θf = 180° at xf = 70%) at SNR= −5dB and SNR= 10dB is added, respectively. It is
noticed that the noise can mask the soft fault at SNR=−5dB, thus it is impossible to find the
fault peak just by looking at the TDR response.

(a) SNR= −5dB (b) SNR= 10dB

Figure 3.30 – TDR response in the presence of F at xf = 70% with theeffect of the added noise

3.6.1.3 Fault Detection

For each realization, we apply the Q test to find if the fault case is detected or not. Then, the
fault detection probability, Pd, is calculated for each fault case at each SNR, and if Pd > εd,
the fault is considered detected at this SNR. εd is a domain-specific threshold. Its value is
determined by the application domain in which the faults need to be detected. For example
in the military, medical and health domains, anomaly detection is a very critical problem and
requires a high degree of accuracy [135]. The same 8 non-detected fault cases without noise
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(in section 3.4.2.3 where 36 fault cases are studied in noise-free environment, 8 cases are not
detected) are not detected here. The 28 detected faults without noise, are also detected in the
presence of noise.

For case study, let fault F corresponds to the fault case with the following parameters
Lf = 5mm and θf = 180°. Consider a 10m cable, and vary the fault position, from 20%,
50%, 70% to 90% with respect to the cable length.

Pd at a specific SNR is calculated as follows: the Q test is applied for each realization. If
an anomaly is detected, Pd of this realization equals one else zero. For the total number of
realizations, Pd is the summation of the individual Pd divided by 500:

Pd =
1

500

500∑
i=1

Pdi (3.8)
Table 3.11 gives the Pd of the fault case F for the different SNRs. It is shown that the fault
F, in the presence of noise, is detected with a Pd > 0.85. Here, εd is not considered as it
depends on the application domain. As an hypothesis, we assume that the obtained detection
probabilities are sufficient for the next steps to analyze the performance.

Table 3.11 – Pd for different noise levels
SNR [dB] xf = 20% xf = 50% xf = 70% xf = 90%

-5 1 1 0.853 0.859
0 1 1 1 0.862
5 1 1 1 0.896
10 1 1 1 0.983
15 1 1 1 1

3.6.2 . False Alarm Analysis

The false alarm probability, PFA, at a specific SNR is calculated as follows: first, the TDR
signal is divided into healthy and faulty intervals. Then, for each realization, the Q test is
applied. If an anomaly is detected in the healthy interval, then PFA of this realization will be
equal to one else zero. By averaging the 500 realizations, PFA is calculated. Now, PFA value
for the different SNR is shown in Table 3.12. It is 0.034 for an SNR of −5dB and 0.018 at

Table 3.12 – PFA for different noise levels
SNR [dB] PFA

-5 0.034
0 0.018
5 0
10 0
15 0

0dB and 0 for the other SNR values. The value of the false alarm threshold ε depends on the
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application domain. Hence, if PFA > ε, the data Xν needs to undergo a pre-processing step;
else, we proceed to the best frequency selection part. Here, ε is not considered as it depends on
the application domain. As a hypothesis, we assume that the obtained false alarm probabilities
are sufficient for the next steps to analyze the performance.

3.6.3 . Best Frequency Selection

3.6.3.1 Robustness to Noise Evaluation

For each detected fault case, at a given SNR and for a specific realization, the best frequency
selection is attained using the contribution plot of the detected abnormal sample related to the
fault case. Taking into account the 500 realizations, the selected frequency fn is the frequency
with the highest occurrence rate among the four used frequencies.

For the case study above, Figure 3.31 represents the variation of the selected frequency
with the SNR for different fault positions. It is noted that the selected frequency to monitor F
depends on its position and the current SNR. The two fault positions, xf = 20% and xf = 50%

have exactly the same variation. As the fault reaches the cable end, the selected frequency
decreases. This change is predicted due to the attenuation throughout the cable and agrees
with the rule for long cables: the lower the frequency is, better is the fault detection.

Figure 3.31 – Frequency variation with the SNR for a 10m cable of a
5mm and 180° fault

Now, for another case study, by considering a 100m cable, fault F position varies along the
cable length such that, xf = 10%, 20%, 30% and 40%. We take only half of the cable length
(50m); for the other half, the measurements could be done from the other extremity of the
cable, making the proposed method more efficient. Figure 3.32 monitors the variation of the
selected frequency with the SNR for different fault positions.



Chapter 3 - Best Frequency Selection for Reflectometry-based Soft Fault Diagnosis usingPCA 94

Figure 3.32 – Frequency variation with the SNR for a 100m cable of a
5mm and 180° fault

3.6.3.2 Frequency Occurrence

For all the detected 28 fault cases in section 3.6.1.3, whenever the selected frequency in the
noisy environment is different from that in the noise-free environment (i.e. fn 6= f), the
occurrence percentage for each frequency will be studied. These fault cases are:

• F25 at SNR= 0dB

• F30 at SNR= 0dB, 5dB and 10dB

• F35 at SNR= 0dB

Those are the critical cases at the positions 70% and 90%:

• F25, it is the only detected case at 70% where θf = 45°
• F30, it is the only detected case at 90% where Lf = 5mm

• F35, it is the only detected case at 90% where θf = 90°

3.6.3.2.1 Fault case F25 (xf = 70%, lf = 20mm, θf = 45° at SNR= 0dB), The
selected frequency is fn = 3GHz, where as the selected frequency in the noise-free case
is f = 4GHz. So, in the presence of noise, what is the occurrence percentage for each
frequency? Do 3GHz and 4GHz have close percentages? Table 3.13 presents the different
frequency occurrence percentages for 500 realizations. To help understand the overall behavior,
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2000 realizations are made. For 500 realizations, it is shown that the 3GHz percentage (the
highest - the selected frequency fn) is the closest to the 4GHz percentage, which is originally
selected in the noise-free condition. For 2000 realizations, no major changes in the results are
noticed.

Table 3.13 – Frequency occurrence percentages for the fault caseF25

SNR [dB] f [GHz] Occurrence percentage
1 3.3%
2 21.5%
3 39.2%0

4 36%

3.6.3.2.2 Fault case F30 (xf = 90%, lf = 5mm, θf = 180° at SNR= 0dB, 5dB and
10dB), the selected frequency is fn = 2GHz, where the selected frequency in the noise-free
case is f = 3GHz. Table 3.14 represents the different frequency occurrence percentages for
500 realizations. It is noted that the difference between the 2GHz and 3GHz percentages
decreases as SNR increases. For 2000 realizations, no major changes in the results are noticed.

Table 3.14 – Frequency occurrence percentages for the fault caseF30

SNR [dB] f [GHz] Occurrence percentage
1 17.8%
2 35.2%
3 31.4%0

4 15.6%
1 2.7%
2 43.5%
3 41.3%5

4 12.5%
1 0.6%
2 45.3%
3 43.4%10

4 10.7%

3.6.3.2.3 Fault case F35 (xf = 90%, lf = 20mm, θf = 90° at SNR= 0dB), the se-
lected frequency is fn = 1GHz, where as the selected frequency in the noise-free case is
f = 2GHz. Table 3.15 represents the different frequency occurrence percentages for 500

realizations. For 500 realizations, it is shown that 1GHz percentage (the highest - the se-
lected frequency fn) is the closest to the 2GHz percentage, which is originally selected in the
noise-free condition. For 2000 realizations, no major changes in the results are noticed.
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Table 3.15 – Frequency occurrence percentages for the fault caseF35

SNR [dB] f [GHz] Occurrence percentage
1 45.6%
2 33.2%
3 12.8%0

4 8.4%
3.6.3.3 ROC Curves Investigation

At each SNR level, for each realization, the Q value data is divided into two classes: Healthy
and Faulty. Then for the 500 realizations, the data is concatenated in the Healthy and the
faulty classes and the ROC curves are calculated.

The comparative study is first done by setting the SNR to 15dB and varying the position
of the fault F (5mm,180°) in a 10m cable case. The detection performance results using the
Q test for different SNR levels are displayed in Figure 3.33, for xf = 20%, xf = 70% and
xf = 90%, respectively.

Thanks to the simulation results of a 10m length RG316 coaxial cable with a shielding
damage, studied at four different positions xf =[20%, 50%, 70%, 90%]. It is noted that:

• The Q test has excellent efficiency with 100% detection capability for the noise levels
(SNR ≥ 0dB) with a low false alarm probability for xf = 20% and xf = 70%.

• For the lower noise levels (SNR < 0dB), the detection performance of Q test are affected
by the noise for xf = 70% and it remains 100% for xf = 20%.

• The Q test has high efficiency with 85% detection capability with a low false alarm
probability for xf = 90%. The fault detection performance decreases along with the
increasing noise level from 100% at 15dB to 85.9% at −5dB.

Q test is then efficient for detecting faults, but its performance is affected by the SNR when
the fault position is close to the cable end.

As the performance analysis of this method is investigated, it reveals excellent performance
for soft faults detection. The detection capability is equal to 89.6% even when SNR= 5dB. As
the fault position approaches the end of the cable, the performance is still good and is equal
to 85.9% at SNR= −5dB.

3.7 . Performance of the Selected Frequency f in the Presence of Noise

The performance of the selected frequency f in the presence of noise in the fault case
detection is now studied. Figure 3.34 represents the flowchart of the proposed methodology. It
consists of the following steps:
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(a)

(b)

(c)
Figure 3.33 – ROC curves for a 10m cable of a 5mm and 180° fault for(a) xf = 20%, (b) xf = 70% and (c) xf = 90%



Chapter 3 - Best Frequency Selection for Reflectometry-based Soft Fault Diagnosis usingPCA 98

Figure 3.34 – Flowchart of the performance of the selected frequency
f in the presence of noise

• From the PCA results is section 3.4.2, 28 fault cases are detected and the selected
frequency f for each fault case is indicated in Table 3.8. Noise is added to the signal at
frequency f and 500 realizations are performed.

• A fusion algorithm [13] introduced in chapter 2 section 2.3.1 of several post processing
methods (Signature Magnification by Selective Windowing (SMSW) [29], subtractive
correlation method [97], and the method based on the integral of a reflectogram [136])
is applied to each realization. Pd is calculated for each fault case, at a specific SNR. The
results of this method are represented by the performance analysis curves.

• For the cases in section 3.6.3.2, where fn 6= f , noise is added to the signal at frequency
fn. Then the fusion algorithm is used to obtain Pnd, the probability of detection calcu-
lated at the frequency fn. Here, the goal is to compare Pd and Pnd, and to evaluate the
performance of the Q test in section 3.6 using the Fusion algorithm. The results of this
study are presented in the Appendix A.

Now, to obtain the performance analysis curves, each detected fault case in Table 3.8, at
frequency f , for each SNR, Pd is calculated using (3.9) by averaging the probability of detection
of all the realizations r = {1, 2, . . . , 500}:

Pd =

∑500
r=1 pr
500

(3.9)
where pr is the probability of detection for each realization, at a specific SNR, calculated using
the fusion algorithm.

For the case study, the fault case where Lf = 20mm with three different severities (θf =

45°, θf = 90° and θf = 180°) is studied. For each severity, the fault position varies along the
cable:
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Figure 3.35 – Performance analysis curve in the case of a 20mm and
45° fault

(1) The performance analysis curve for the first severity (Lf = 20mm, θf = 45°) is repre-
sented in Figure 3.35. Pd is calculated for different fault positions and for each SNR. It
is shown that, for each SNR, the detection capability decreases from Pd = 0.8 to 0, as
this low severity fault reaches the cable end (xf = 90%).

(2) Figure 3.36 represents the performance analysis curve for the second severity (Lf =

20mm,θf = 90°). Pd is calculated for different fault positions and for each SNR. It
is shown that the detection capability for this severity is better than that for the first
severity. It decreases to Pd = 0.0306 at −5dB for 90% position. However, it is greater
than 0.8005 when fault position is less than 90%, even at a very high noise level.

(3) Figure 3.37 represents the performance analysis curve for the third severity (Lf =

20mm,θf = 180°). Pd is calculated for different fault positions and for each SNR.
It is shown that the detection capability for this severity is better than that for the sec-
ond severity. It decreases to Pd = 0.0438 at −5dB for 90% position. However, it is
greater than 0.916 when the fault position is less than 90%, even at a very high noise
level.

For this analysis, it is shown that the probability of detection increases as the fault position
approaches the beginning of the cable and as the SNR increases for the same fault severity.
Thus, the selected frequency f shows improved detection capability as the fault approaches the
cables’ beginning with a smaller noise level. Moreover, for lower fault severities, the probability
of detection Pd increases.

3.8 . Conclusion
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Figure 3.36 – Performance analysis curve in the case of a 20mm and
90° fault

Figure 3.37 – Performance analysis curve in the case of a 20mm and
180° fault
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This chapter has presented an efficient approach to select the best frequency bandwidth
for soft fault detection in wired networks based on a judicious combination of reflectometry
and Principal Component Analysis. In practice, the expert configures and calibrates the VNA
at a given frequency and records the healthy cable measurement. Measurements at the same
frequency are then done on a faulty cable. Analysis of the measurements is established at
this frequency on the computer. If the fault is not detected, this operation must be repeated.
Therefore, there is a loss of information and time in addition to the subjectivity of the decision-
making.

The proposed method allows to configure the VNA at different frequencies. It performs
measurements at different frequencies for the healthy (reference) case. After which, the PCA
model is established. It performs the new measurements at different frequencies. If a difference
is detected between the reference and the measurement data, the contribution for each variable
(i.e. frequencies) to this difference is calculated. The algorithm then chooses the most relevant
frequency to monitor the soft fault. The advantages are thus time saving and objectivity of the
decision-making.

First, the three-dimensional modeling of a soft fault and its influence on the propagation in
a cable has been studied with CST. The simulation results made it possible to determine the
disturbance generated by the soft fault with different levels of degradations. These disturbances
have been represented in terms of the reflection coefficient to determine the fault characteristics.
To overcome the increase in the computational burden and the simulation time caused by
the CST in the case of longer cables, the fault parameters are extracted using an RLCG

characterization method, and are implemented in a Mathwork’s Matlab©language code to
simulate different scenarios where the cable length l and the fault position xf are changed.
The simulation results of this method are compared to the output of the CST simulator with
a high degree of success, and the Matlab code was tested for its ability to retrieve (estimate)
the TDR response. Experimental measurements had been carried out to validate the numerical
model in the case of shielding damage.

This method is then investigated for a set of cable lengths with different operating conditions
and different fault types. The simulation results are in coherence with the known rule that for
short cables, the higher the excitation frequency is, the better it is for fault detection. In
addition, as the fault reaches the cable end for longer cables, the selected frequency decreases.
This change is predicted due to the attenuation throughout the cable and agrees with the
common rule for long cables.

Experimental validation was carried out. The experimental and the simulation results are
coherent in terms of fault detection and frequency choice.

The performance analysis of this method has also been investigated. It has revealed good
performance for soft faults detection. The probability of detection equals to one even when
SNR= 0dB. As the fault position approaches the end of the cable, the performance is still
good, but for lower fault severities, the detection is more tedious. In this study, it is noted that
the selected frequency to monitor a fault case depends on several parameters: the cable type
and characteristics, the fault severity and position, and the current noise level.
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Regarding the statistical tests, the Q criteria is more relevant for evaluating the faults.
Thus it will be considered in the following chapter for sensor selection.
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4.1 . Introduction

Although reflectometry offers promising results in point-to-point topology networks, it intro-
duces ambiguity related to fault location in more complex wired networks due to the presence of
multiple branches and junctions. Moreover, the complexity of the wired networks comes with the
increase of the signal attenuation. As a solution, distributed reflectometry method is used [33].
It consists of taking measurements at several points of the Network Under Test (NUT) by
implementing several sensors at different extremities to maximize the diagnosis coverage. How-
ever, the injection of multiple signals down to the NUT leads to computational complexities
and sensor fusion problems. Additionally, energy consumption is a significant drawback of this
method concerning environmental constraints.

This chapter introduces an approach for the most relevant sensors selection to monitor and
diagnose soft faults in multi-branched wired networks.

In this context, the proposed method combines TDR with PCA. The simulation results
are provided for a Y-shaped network and a CAN bus connected in a network structure in
which sensors perform reflectometry measurements consecutively. The TDR responses are
then arranged into a database. With this latter, a PCA model is developed and used to
detect the soft faults. Coupled with statistical analysis based on the Q test (also known as
SPE), the most relevant sensors for monitoring and diagnosing soft faults in the network
are identified with high accuracy. Indeed, the proposed method enables monitoring without
interfering with other existing signals (of the monitored network) and without interference
between different reflectometers (sensors) signals. Based on these results, the sensor’s number
could be reduced, and the non-selected ones could be inactivated, reducing energy consumption,
computing complexities, and sensor fusion problems.

Experimental validation is performed next to show the method’s advantages. Finally, per-
formance analysis is developed to study the efficiency of the proposed method in the presence
of noise.

4.2 . Sensor Selection Algorithm for Soft Fault Diagnosis

In this section, we propose a methodology to automate the detection of a fault in a multi-
branched wired network and select the most relevant sensors to monitor the detected soft fault
and inactivate temporarily the non-selected sensors.

Figure 4.1 describes the principle of the new approach combining TDR distributed reflec-
tometry measurements with PCA. It is composed of three main phases: training, monitoring
and sensor selection.

4.2.1 . Training Phase

First, data are collected when the network is considered fault-free (step 1). In that case,
each sensor in the distributed network collects its TDR measurements which are used to create
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Figure 4.1 – Methodology of the TDR distributed reflectometry PCA-based approach

the database (step 2). Then, a matrix X∗ is constructed such that each of its column variables
corresponds to a sensor TDR response (step 3). A PCA model is developed based on this
database as described in chapter 2, section 2.6.1 (step 4). This model is used in the second
step to evaluate new measured data to detects abnormality [121,122].

4.2.2 . Monitoring Phase

Second, for the NUT, X, the new measured data matrix is built the same way as the
reference data matrix X∗ was constructed. It is then projected in the PCA reference frame
obtained during the training phase. The new scores Tnew and the residual ˜Tnew are then
calculated. The detailed analytic calculations are similar to those provided in chapter 2, section
2.6.2 (steps 5, 6 and 7).

Monitoring statistics are used next for fault detection, i.e., to find whether a fault has
occurred or not. For this purpose, the Q statistical test is used [121]. This test is used for
evaluating the fault presence (step 8). The confidence limit Qα for this test is calculated using
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the reference data X∗ which is used for constructing the PCA model in the training step. If
the Q value falls outside the confidence limit for a specific sample, then a fault exists (steps 9
and 10).

4.2.3 . Sensor Selection Phase

Finally, whenever a fault is detected, we proceed to the sensor selection analysis step. For
each detected faulty sample, the analysis starts by plotting the contribution of the variables
constituting the new measured data matrix X (i.e., sensors TDR responses) (step 11). Then,
we can inspect the variables that highly influence this sample statistics value. Therefore, we can
choose the most relevant sensor to monitor the evolution of this fault and inactivate temporarily
all other sensors (steps 12 and 13).

4.3 . Simulation Results

To validate the proposed methodology, we consider soft faults diagnosis in a point-to-point
network, Y-shaped network, and a Controller Area Network (CAN) Bus. These configurations
present topologies with increasing complexity in terms of branches, junctions, echoes, signal
attenuation, etc.

4.3.1 . Obtained Results in Case of Point-to-Point Network

The cable model introduced in chapter 3, section 3.2.1 is used where two sensors S1 and S2
were implemented at each extremity of the cable (Figure 4.2) and the TDR measurements were

Figure 4.2 – Point-to-Point topology
performed. The length of the cable is 10m. The reference fault-free data matrix is created:

X∗ = [x∗
1 x∗

2] (4.1)
X∗ is formed up of two variables. Each variable x∗

j corresponds to the TDR response of the
reference healthy cable for the sensor Sj (j ∈ {1, 2}).

Shielding damage is introduced on the cable under test as in section 3.2.3. In this case, the
length of the fault lf = 5mm and its width is θf = 180°. The fault position xf is set to one
of five values: 2m, 4m, 5m, 7m and 9m. The TDR response for each sensor is then obtained
for each fault position. Using these faulty model reflectometry data, the new measured data
matrix X is defined as:

X = [x1 x2] (4.2)
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where xj describes the concatenated fault signature data vector for the sensor Sj (j ∈ {1, 2})
at each fault position. E.g, for j = 1:

x1 = [RS1@2m RS1@4m RS1@5m RS1@7m RS1@9m]T (4.3)
where RS1@xf

describes the fault signature data vector measured by sensor S1 at fault position
xf .

Now, the Q value of each new measured sample is calculated. Figure 4.3 represents the Q

Figure 4.3 – Q chart of the new measured samples of the Point-to-Point topology

control chart, with the dashed red line representing the 95% confidence limit (Qα = 1.32). It
is observed that several samples have crossed Qα. This means that faults have occurred. Due
to the presence of five different fault position cases, the method should allow to choose the
most relevant sensor(s) to monitor the fault for each case. Plotting the contribution charts of
the indicated faulty samples permits us to know the sensor that highly influences its Q value.
Hence, the selection of the relevant sensor is performed by the Q control test. Sensor S1 is
selected for the positions 2m and 4m and sensor S2 is selected for the positions 7m and 9m.
In the case where xf = 5m (fault at equal distance for the two sensors), the method propose
to choose the two sensors.

4.3.2 . Obtained Results in Case of Y-Shaped Network

We consider the Y topology in Figure 4.4 with three branches B1, B2 and B3. Two different
cases were studied where we change the branches lengths. Three sensors were placed at the
extremities of this topology. X∗ = [x∗

1 x∗
2 x∗

3] is the reference fault-free (healthy) data
matrix. It is formed up of three variables. Each variable x∗

j corresponds to the TDR response
of the Y network for the sensor Sj.
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Figure 4.4 – Y network topology

4.3.2.1 First Case: Equal Distance Branches

Figure 4.5 shows the first case topology and the different studied fault positions. In that case,
B1 = B2 = B3 = 5m. The fault positions are studied one fault at a time. X = [x1 x2 x3]

is the new measured data matrix.

Figure 4.5 – Y network topology: First case

4.3.2.1.1 Fault in Position P1 The first simulated fault is located at 3m from sensor
S1 in B1. The TDR responses of the three sensors are shown in Figure 4.6. After calculating
the Q values of these measurements (Figure 4.7), the contribution plot of the highest peak is
represented in Figure 4.8.
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Figure 4.6 – TDR responses of the Y topology, first case, position P1

Figure 4.7 –Q chart of the newmeasured samples of the Y topology,first case, position P1
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Figure 4.8 – Contribution plot of the sample 2504

Each abnormal sample in the Q plot corresponds either to the fault peak with respect to
one sensor or the fault’s round trips. Hence, the contribution plot of this abnormal sample
corresponds to the sensor S1. So, it is incorrect to see the contribution plot for this sample as
all the fault peaks are coincidental at the same sample. Therefore, we should retain from the
contribution plot just the highest contributions (in this case, S1) and not the other contributions
since they are unrelatable. For our application example, the contributions of the second and
third variable corresponding to S2 and S3, respectively, are almost neglected with respect to
the first variable (0.96% for each compared to 98.07%). Hence, it does not appear in the
contribution plot.

4.3.2.1.2 Fault in Position P2 The second simulated fault is located at 2.5m from
sensor S2 in B2. The TDR responses of the three sensors are shown in Figure 4.9. After
calculating the Q value of these measurements (Figure 4.10), the contribution plot of the
highest peak is represented in Figure 4.11. It is shown that sensor S2 is selected.
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Figure 4.9 – TDR responses of the Y topology, first case, position P2

Figure 4.10 –Q chart of the newmeasured samples of the Y topology,first case, position P2
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Figure 4.11 – Contribution plot of the sample 2499

4.3.2.2 Second Case: Not Equal Branch’s length

For this second case, the branches length are different: B1 = 2m,B2 = 1m, andB3 = 2.3m.
Figure 4.12 shows the second topology and the different studied fault positions. Here, three
fault positions are studied, by addressing one fault at a time. X = [x1 x2 x3] is the new
measured data matrix where xj describes the concatenated fault signature data vector for the
sensor Sj at each fault position. E.g, for j = 1, x1 = [RS1@P1 RS1@P2 RS1@P3]T where
RS1@P1 describes the fault signature data vector measured by sensor S1 at fault position P1.

Figure 4.12 – Y topology: Second case

The first simulated fault is located at 1.5m from sensor S1 in B1. The second simulated
fault is located at 0.5m from sensor S2 in B2. The last simulated fault is located at 0.5m

from the junction in B3. After calculating the Q values of these measurements (Figure 4.13),
the contribution plots (Figure 4.14) of the highest peaks allow to select S1, S2 or S3 as the
most relevant sensors for the fault at positions P1, P2 and P3, respectively. Hence, other
sensors could be temporarily disabled. Any retained sensor could then be used to monitor the
fault evolution for prognosis purposes based on its reflectometry measurements.
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Figure 4.13 –Q chart of the newmeasured samples of the Y topology:Second case

(a) 497 (b) 20501 (c) 40497

Figure 4.14 – Contribution plot of the samples of the Y topology: Sec-ond case

4.3.3 . Obtained Results in the Case of CAN Bus Topology

The CAN bus is a common digital data network used in automotive, industrial, medical and
scientific systems. The CAN bus is used for routing sensor data between pieces of equipment.
The main advantages are high resilience to noise, reliability, low cost, simple wiring and ease
of use. It is considered to be a complex wiring topology. Figure 4.15 represents the considered
CAN bus topology. This network is composed of several sections, namely, B1 to B7. Their
lengths are B1 = B2 = B5 = 2.5m, B3 = B6 = 5m, and B4 = B7 = 10m. Six 1.5m cables,
denoted by B’

1 to B’
6, are used to connect the Electronic Control Units (ECU) to the bus

for accessing the network. The network consists of six sensors Sj, j ∈ {1, 2, . . . , 6} with the
same characteristics (homogeneous network). These sensors are considered matched with the
network cables where Zc = 100Ω.

First, in healthy fault-free operating conditions, each of the six sensors injects the test signal
consecutively. TDR responses are then obtained and used to create the reference data matrix
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Figure 4.15 – CAN bus topology

X∗ composed of six variables:

X∗ = [x∗
1 x∗

2 x∗
3 x∗

4 x∗
5 x∗

6] (4.4)

Each variable x∗
j corresponds to the CAN bus reference TDR response for the corresponding

sensor Sj with j = {1, 2, . . . , 6}.

The data matrix X∗ is then used to obtain the PCA model; Table 4.1 indicates that the
cumulative variance of two principal components. It is 92.28% for the first two ones, that is
greater than 90%, which is the usual limit to be considered (see chapter 2 and [127]). This
implies that the variables in X∗ are highly correlated and that the data is supposed to be well
described with the first two principal components.

Table 4.1 – PCA model variances
PC Number Variance ratio % Cumulated variance rate %

1 86.67 86.67
2 5.61 92.28
3 4.9 97.28
4 2.06 99.24
5 0.72 99.96
6 0.04 100

A 20% local variation of the characteristic impedance on the branch B3 of the network
is introduced to simulate a soft fault, i.e., ∆Zc = 20%. TDR responses for each sensor are
collected and are shown in Figure 4.16.
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Figure 4.16 – TDR responses of the CAN bus topology

Considering the six sensors TDR responses, we can notice that the soft fault is located,
respectively, at 6.5m, 4m, 4m, 14m, 16.5m and 21.5m from the corresponding sensors S1 to
S6. This soft fault with length Lf = 0.05m is represented by a weak peak at those mentioned
distances. Some peaks represent the ramifications on the network, the others represents the
multiple echos on the network. As an example, for S3, the first peak obtained at 1.5m

corresponds to the direct path to the junction (length of B’
3, lB’

3
= 1.5m). Using all these
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faulty reflectometry data, the new measured data matrix X is created and defined as:

X = [x1 x2 x3 x4 x5 x6] (4.5)
where xj = RSj and RSj describes the faulty TDR response corresponding the sensor Sj with
j = {1, 2, . . . , 6}.

Now, the Q-statistic value for each new measured sample is calculated. Figure 4.17 repre-
sents the Q control chart, with the dashed red line representing the 95% confidence limit (Qα).
One can observe that some samples are above the threshold Qα. Thus a fault occurrence
has been detected. The first occurrence of the fault has the highest impedance variation in
the reflectogram, and for each round-trip of this fault, its peak amplitude on the reflectogram
decreases. Due to the presence of several round-trip peaks for the same fault, several abnormal
samples are produced in the Q chart. On the other hand, the amplitude of the fault changes
according to the sensor that we have used to do the measurements (due to the traveled distance
between the sensor and the fault, and the existing junctions in between). Thus, each sensor will
detect the fault peak, but its corresponding Q value will be different. Therefore, we consider
the sample with the highest Q value as the abnormal one corresponding to the fault. Hence,
in our example, sample number 3283 corresponds to the fault occurrence.

Figure 4.17 – Q chart of the new measured samples of the CAN bustopology

Plotting the contribution chart in Figure 4.18 of the indicated faulty sample permits to
identify the variable RSj and the faulty sensor Sj that most influences this Q value. Thereby,
the selection of the relevant sensor is performed by the Q control test. Each abnormal sample
in the Q plot corresponds either to the fault peak with respect to one sensor or the fault’s
round trips. Hence, the contribution plot of this abnormal sample corresponds to the sensors
S2 and S3 as they are equidistant from the fault (the peaks of the fault will coincide in the
corresponding sample). So, it is incorrect to see the contribution plot for this sample as all
the fault peaks are coincidental at the same sample. Therefore, we should retain from the
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Figure 4.18 – Contribution plot for sample 3283

contribution plot just the highest contributions (in this case, S2 and S3) and not the other
contributions since they are unrelatable. For our application example, the contribution of the
fourth variable corresponding to S4 is almost neglected for the other variables (< 1%). Hence,
it does not appear in the contribution plot. Sensors S2 and S3 are then selected as the most
relevant sensors, and other sensors could be temporarily disabled. Any retained sensor could
then be used to monitor the fault evolution for prognosis purposes based on its reflectometry
measurements.

4.4 . Experimental Validation

We propose to validate this methodology based on PCA for a fault detection and sensor
selection on real cables using the experimental setup depicted in Figure 4.19.

4.4.1 . Test Bench Description

Figure 4.19 shows the considered system layout. It consists in multiple RG316 cables
(modeled in chapter 3 section 3.2.1) with characteristic impedance 50Ω. In this study, B1 to
B7 length’s are 0.5m, 0.5m, 1m, 1m, 1m, 0.5m, and 0.5m, respectively. The RG316 cables
that ensure access to the network are denoted, respectively, B’

1 to B’
6 with lengths 1m, 0.6m,

2m, 1.5m, 1m, and 1m. The ends of lines B1 and B7 are matched using 50Ω resistors, where
as the branches B’

1 to B’
6 are left open ended. Two soft faults with lengths 5mm and 10mm

and shield cutaway sections θf = 180° are created in the middle of B3. The reflected signals
and the corresponding reflectograms are obtained using a VNA Agilent E5071C as shown in
the setup above. The cable input terminal was attached with a 50Ω series RF coaxial cable
connector for each measurement. The reflectometry responses were measured by the network
analyzer separately at each end of the cable for the 30kHz to 4GHz band.
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Figure 4.19 – Experimental Setup

4.4.2 . TDR-based Measurements

4.4.2.1 10mm Fault Case

Figure 4.20 shows the reflectogram obtained by S1 in both, healthy and faulty networks. The
peak at the input is due to a 50Ω N series RF coaxial cable connector attached to the cable’s
input terminal, it is called the mismatched impedance. The negative peaks correspond to the
junctions located at 1m and 1.5m from the injection point, respectively. The soft fault is
detected at 2m from sensor S1. Since the end of B’

2 is left open-ended, a positive peak
appears at 2.1m.
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Figure 4.20 – Reflectogram of S1

Figure 4.21 shows the reflectogram obtained by S2. The negative peaks correspond to the
junctions located at 0.6m, 1.1m, and 1.6m from the injection point. The soft fault is detected
at 1.1m from S2, and it is masked by the junction at the same position.

Figure 4.21 – Reflectogram of S2
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Figure 4.22 shows the reflectogram obtained by S3. The second peak corresponds to the
connector used to connect two 1m cables to form the 2m B’

3. The negative peaks correspond
to the junctions located at 2m and 3m from the injection point. The soft fault is detected at
2.5m from sensor S3.

Figure 4.22 – Reflectogram of S3

Figure 4.23 shows the reflectogram obtained by S4. The second peak corresponds to the
connector at B’

4. The negative peaks correspond to the junctions at 1.5 and 2.5m from the
injection point. The soft fault is detected at 3m from sensor S4 and it is masked with the
connector at the same position.

Figure 4.24 shows the reflectogram obtained by S5. The negative peaks correspond to
the junctions at 1m, 1.5m, 2m, and 3m from the injection point. The positive peak at 2.5m

corresponds to an open circuit at the end of B’
6. The soft fault is detected at 3.5m from S5

and it is masked with the open circuit at the end of B’
4.
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Figure 4.23 – Reflectogram of S4

Figure 4.24 – Reflectogram of S5

Figure 4.25 shows the reflectogram obtained by S6. The negative peaks correspond to the
junctions located at 1m, 1.5m, and 3.5m from the injection point. At 2m and 3m, there are
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multiple echoes from the junction. The peak at 2.5m corresponds to a junction and the open
circuit at the end of B’

6. The soft fault is detected at 4m from S6 and it is masked with the
open circuit at the end of B’

5.

Figure 4.25 – Reflectogram of S6

For the above figures, it is obvious that the difficulty of analyzing the reflectometry response
increases with the network’s complexity involving the presence of one or several junctions, dis-
continuities, mismatched loads, etc. This leads to the degradation of the localization precision
and consequently the quality of the diagnosis. In the case of soft faults, this problem will be
more serious, and the fault may be hidden in various echoes of the signal as we will see also in
the next section, for a smaller soft fault.

4.4.2.2 5mm Fault Case

Figure 4.26, Figure 4.27 and Figure 4.28 show the reflectogram obtained by S1, S2 and S3
respectively. It can be shown that the soft fault signature amplitude decreases significantly
in comparison with the fault defined in case 1 (4.4.2.1). Thus, it is trickier to deal with as
its signature could be more easily masked in various echoes of the signal as in Figure 4.27.
This leads to the degradation of the localization precision and consequently the quality of the
diagnosis.
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Figure 4.26 – Reflectogram of S1

Figure 4.27 – Reflectogram of S2

Figure 4.28 – Reflectogram of S3

The analysis of the reflectogram gets more and more complicated with the increasing num-
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ber of branches in the presence of junctions, connectors and faults. Thus, the traditional way of
analysis where the expert could detect the fault from analysing the reflectogram is not feasible.
Hence, in the next section, PCA will be used first for fault detection then for the best sensor
selection as explained in section 4.2.

4.4.3 . Sensor Selection based on Measurements

For this study, the data matrices are constructed as in section 4.3.3 where reflectometry
measurements are done for both the reference and the faulty network for each of the 6 sensors.

The data matrix X∗ is then used to build the PCA model. Table 4.2 displays that the
cumulative variance of the principal components. The first component by itself explains less
than 40% of the variance, so more components might be needed. It can be seen that the first
five principal components explain more than 90% of the total variability in the standardized
X∗, so that might be a reasonable way to reduce the dimensions. Thus, the number of the
retained components, k, is equal to five.

Table 4.2 – PCA model variances
PC Number% Variance ratio % Cumulated variance rate

1 32.87 32.87
2 21.53 54.41
3 16.21 70.62
4 15.43 86.05
5 10.21 96.27
6 3.72 100

4.4.3.1 10mm Fault Case

Figure 4.29 represents the Q control chart, with the dashed red line representing the 95%

confidence limit (Qα = 4.39). We can observe that some samples are above the threshold.
Thus fault occurrence has been detected. We consider the sample with the highest Q value
as the abnormal one. Therefore, in our example, the sample number 2806 corresponds to the
fault occurrence.

Plotting the contribution chart (Figure 4.30) of the selected faulty sample permit to identify
the variable RSj and the sensor Sj that most influences this Q value. Thereby, the selection of
the relevant sensor is performed by the Q control test.



Chapter 4 - Sensors Selection for Distributed Reflectometry-based Soft Fault Diagnosisusing PCA 126

Figure 4.29 – Q chart of the new measured samples of the experi-mental measurements for the 10mm fault case

Figure 4.30 – Contribution plot for sample 2806

For our application example, sensor S3 is selected as the most relevant one by the Q
test. It is used to monitor the fault evolution for prognosis purpose based on its reflectometry
measurements. As the signature of the soft fault in Figure 4.22 has the most significant
amplitude, the choice of sensor S3 is logical if we compare the traveled distance (2.5m) and
the number of the existing junctions (one junction) between this sensor and the fault. For S2,
although it represents the lowest traveled distance from the fault (1.1m), the fault is masked
by the junction existing at the same position.
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4.4.3.2 5mm Fault Case

Figure 4.31 represents the Q control chart, with the dashed red line representing the confidence
limit. We can observe that for some samples the Q value is above the threshold. Thus fault
occurrence has been detected. Sample number 2805 corresponds to the fault occurrence. The
contribution chart of the indicated faulty sample is presented in Figure 4.32. For our application
example, sensors S3 is selected by the Q test, as the most relevant sensors and other sensors
could be disabled.

Figure 4.31 – Q chart of the new measured samples of the experi-mental measurements for the 5mm fault case

Figure 4.32 – Contribution plot for sample 2805
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Based on these results, the sensor’s number could be reduced, and the non-selected ones
could be inactivated, reducing energy consumption, computing complexities, and sensor fusion
problems and we can choose the most relevant sensor to monitor the evolution of this fault
based on its reflectometry measurements. In what follows, the performance of this approach
will be studied where it will be applied to a set of cables with different operating conditions.

4.5 . Performance Analysis in the presence of noise

The performance analysis flow chart of the sensor selection in the presence of noise that was
represented in section 3.6 is used in this study. However, in this case, the selected parameter
is the best sensor for monitoring and diagnosing the soft faults detected in the network in a
noisy environment. This study is divided into three parts; first, the soft fault detection, where
fault detection using PCA is applied and the probability of detection (Pd) is calculated in the
presence of noise. Second, the false alarm evaluation, where the false alarm probability (PFA)
for each noise level is calculated. Finally, the best sensor selection where the sensor selection
in the noisy environment is performed.

4.5.1 . Soft Fault Detection

4.5.1.1 Training Data Generation

The training data X∗ is the data matrix that was defined in section 4.3.3 where the healthy
fault-free CAN bus topology in Figure 4.15 is used.

4.5.1.2 Testing Data Generation: Noise introduction

To simulate different scenarios, two soft faults are studied. The first soft fault, F1, is the one
introduced in 4.3.3 where a 20% local variation of the characteristic impedance on B3 of the
network is introduced, i.e., ∆Zc = 20%. The position of this fault will be defined as xf1 at the
middle of B3 (at 2.5m). The second soft fault, F2, has the same severity as the first fault but
at a different position. The position of this fault will be defined as xf2, located, respectively,
at 21m, 18.5m, 13.5m, 3.5m, 2m and 7m from the corresponding sensors S1 to S6.

For F2, TDR responses for each sensor are collected and are shown in Figure 4.33. This
soft fault with length Lf = 0.05m is represented by a weak peak. Some peaks represent the
ramifications on the network, the others represent the multiple echos on the network.

The testing data X is the one defined in 4.3.3, however, RSj describes the concatenation
of both faults TDR responses corresponding to the sensor Sj with j = {1, 2, . . . , 6}. Now, the
Q-statistic value of each new measured sample is calculated. The 95% confidence limit in this
case is Qα = 3.47.

For this application example, S2 is selected as the most relevant one for fault F1 and S5 is



129 Chapter 4 - Sensors Selection for Distributed Reflectometry-based Soft Fault Diagnosisusing PCA

Figure 4.33 – TDR responses of the CAN bus topology in the presenceof F2

selected as the most relevant one for fault F2; other sensors could be temporarily disabled.

Now, noises are added to the test data X, resulting in Xν where the used SNR levels are
−5dB, 0dB, 5dB, 10dB and 15dB. xj is a column vector of X taken for the jth variable.
The noise is assumed to be Additive White Gaussian. The noise vector added to the variable
xj is νj ∼ N(0, pν) (xνj = xj + νj). Its power pν is related to the signal’s power ps by (4.6).
500 realizations are performed at each SNR level.

SNR = 10 log

(
ps
pν

)
(4.6)

Figure 4.34 shows S2 and S5 TDR responses for F1 and F2, respectively, with an additional
noise at SNR= −5dB.
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(a) (b)
Figure 4.34 – TDR responses at SNR= −5dB with (a) case F1, S2 and(b) case F2, S5

4.5.1.3 Fault Detection

Sensor S2 is studied for fault F1 and sensor S5 is studied for fault F2. For each realization,
we apply the Q test to find if the fault case is detected or not. Then, Pd is calculated for each
fault case at each SNR, and if Pd > εd, the fault is considered detected at this noise level. The
two detected fault cases without noise, in the presence of noise, are evaluated with our method
with a probability of detection equals to one. Here, εd is not considered as it depends on the
application domain. As a hypothesis, we assume that the obtained detection probabilities are
sufficient for the next steps in the performance analysis study.

Table 4.3 presents Pd of the fault cases F1 (middle of B3) and F2 (at 2m on B5) defined
above for the different noise levels. It is shown that the same fault at different positions, in the
presence of noise, is detected with a probability of detection equals to one. Hence, the Q test
has excellent efficiency with 100% detection capability for the noise levels (SNR ≥ −5dB), and
its performances are not affected by the noise level for the two studied fault cases.

SNR [dB] xf1 xf2
-5 1 1
0 1 1
5 1 1
10 1 1
15 1 1

Table 4.3 – Pd for different noise levels

4.5.2 . False Alarm Analysis

The probability of the false alarm PFA value for the different noise levels is shown in
Table 4.4. It is 0.012 for a noise level of −5dB and 0.0014 for a noise level of 0dB and reduces
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to 0 for the other SNR values.

SNR [dB] PFA
-5 0.012
0 0.0014
5 0
10 0
15 0

Table 4.4 – PFA for different noise levels

The value of the false alarm threshold ε depends on the application domain. Hence, if
PFA > ε, data Xν needs to undergo a pre-possessing step; else, we proceed to the best
sensor selection part. Here, ε is not considered as it depends on the application domain. As
a hypothesis, we assume that the obtained false alarm probabilities are sufficient for the next
steps in the performance analysis study.

4.5.3 . Sensor Selection

4.5.3.1 Robustness to Noise Evaluation

For each detected fault case, at a given SNR and for a specific realization, selecting the best
sensor is attained using the contribution plot of the detected abnormal sample related to the
fault case. Taking into account the 500 realizations, the selected sensor Sjn is the sensor with
the highest occurrence rate among the six used sensors.

For the case study above, Figure 4.35 represents the variation of the selected sensor with
the noise level for different fault positions. It is noted that the chosen sensor to monitor the
fault defined by the parameters (∆Zc = 20%, Lf = 0.05m) depends on its position and the
current noise level.

Figure 4.35 – Variation of the selected sensor with the noise level fortwo fault positions



Chapter 4 - Sensors Selection for Distributed Reflectometry-based Soft Fault Diagnosisusing PCA 132

4.5.3.2 ROC Curves Investigation

We consider the BUS network above for the fault case (∆Zc = 20%, Lf = 0.05m), at the two
positions xf1 and xf2. The sensor S2 is investigated for the position xf1, and the sensor S5 is
investigated for the position xf2. The ROC curves for the different noise levels are represented
in Figure 4.36 for the fault positions xf1 and xf2, respectively.

(a) xf1 (b) xf2
Figure 4.36 – ROC curves for CAN Bus with a ∆Zc = 20% and Lf =
0.05m fault

It is noted that the Q test has excellent efficiency with 100% detection capability for
the noise levels (SNR ≥ −5dB) with a low false alarm probabilities for both faults’ position.
Moreover, the detection performances of Q test are not affected by the noise level. As the
performance analysis of this method is investigated, it reveals excellent performances for soft
faults detection. The probability of detection is equal to one for the used noise levels.

4.6 . Conclusion

The proposed method combines distributed Time Domain Reflectometry technique with
Principal Component Analysis (PCA). For a given CAN bus topology, a distributed reflectometry
approach is considered where sensors perform their reflectometry measurements consecutively.
The TDR responses are the data that are collected and arranged into a database. With this
database, a PCA model is developed and used to detect the existing soft faults. Coupled with
statistical analysis based on squared prediction error Q, the most relevant sensors for monitoring
and diagnosing the soft faults in the network are identified.

The efficiency of this approach was validated with several networks of different complexities,
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starting with a simple topology, then Y topology, ending with the CAN bus topology in the
presence of different fault scenarios.

Next, experimental validation was carried out. The experimental and the simulation results
are coherent in terms of fault detection and sensor choice.

Finally, the performance analysis of this method is investigated. It reveals excellent perfor-
mances for soft faults detection. The probability of detection is equal to one with a low false
alarm probability for the different noise levels. It is noted that the chosen sensor to monitor a
fault case depends on the fault parameters and the current noise level.

With this study, the sensor selection is obtained, whatever the fault location in the NUT.
Therefore, the number of the sensors could be reduced, and the non-selected ones could be
disabled (inactivated), reducing energy consumption, computing complexities, and mitigation
of sensor fusion issues. It leads to saving time and objectivity in the decision-making. The
selected sensors could be used to monitor the fault evolution for prognosis perspectives based
on its reflectometry measurements.



General Conclusion and Perspectives

The research conducted in this thesis aims to propose new diagnosis techniques for multi-
branched wired networks to detect and locate faults that manufacturers and users face today
in electrical systems. The critical importance of soft faults has been emphasized and explained
while showing the shortcomings of existing methods.

In the first chapter, we presented the context as well as the issues raised in this study. Indeed,
the increased complexity of wired networks and the exposure of cables to various aggressive
conditions favor the appearance of faults. Some faults can have serious consequences when
cables are part of critical systems for which safety is an issue. Therefore, as an early-warning
approach to ensure critical infrastructures’ safe operation, it is essential to develop robust
methods for identifying and locating faults. Within this context, two main groups for fault
diagnosis have been highlighted: non-reflectometry methods and reflectometry-based ones.
It has been observed that reflectometry-based methods are the most suitable. Ultimately,
reflectometry-based-methods’ performance evaluation has been elaborated. Although these
methods exhibit good performance, they have several limitations. They shared an inability to
provide efficient results with the network complexity increases. In the case of soft faults, the
latter problem is even more worse; the fault may be easily hidden in various echoes of the
testing signal. As a matter of fact, soft faults are often the premises of more severe faults
which will eventually appear, and will be a potential source of incidents or accidents. Based on
this, we have underlined our main focusing issues demonstrated by soft fault diagnosis using
time-domain reflectometry.

For that, chapter two presents soft fault detection and localization problems in multi-
branched networks using reflectometry methods, such as ambient noise, inhomogeneity of
propagation, blind zones, and localization ambiguity. Several post-processing methods have
been proposed in the literature. However, they remain prone to attenuation and dispersion
inherent to wave propagation in transmission lines. Indeed, we have shown in this chapter that
these phenomena significantly reduce the location accuracy when the propagation distance is
long. Hence, the choice of the test signal bandwidth is critical and affects the diagnosis per-
formance.
In the case of a multi-branched network, it is shown that distributed reflectometry solves the
problem of localization ambiguities to the detriment of energy consumption, computing com-
plexities, and sensor fusion problems. Thus, reducing the number of active sensors in the
network is of great importance.
Finally, a throughout study about the existing enhanced methods in the literature for soft fault
detection, localization, and characterization as well as their limitations is presented. This state
of the art has made it possible to identify the main weaknesses of these methods, linked in
particular to complex topologies and the detection of soft faults. Thus new tools used for fault
detection and diagnosis are needed; for that, Principal Component Analysis (PCA) principle is
presented.

The third chapter presents an efficient approach to select the best frequency bandwidth for
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soft fault detection in wired networks based on a judicious combination of reflectometry and
PCA. The proposed method allows configuring the VNA at different frequencies. It performs
measurements at different frequencies for the reference case. After which, the PCA model
is established. It performs the new measurements at different frequencies. If a difference is
detected between the reference and the measured data, the contribution for each variable (i.e.
frequencies) to this difference is calculated. The algorithm then chooses the most relevant
frequency to monitor the soft fault. The advantages are thus time-saving and enable automatic
computerized decision-making.
The three-dimensional modeling of a soft fault and its influence on the propagation in a cable
has been studied with CST. The simulation results made it possible to determine the distur-
bance generated by the soft fault with different levels of degradation. These disturbances have
been represented in terms of the reflection coefficient to determine the fault characteristics.
To overcome the increase in the computational burden and the simulation time caused by the
CST in the case of longer cables, the fault parameters are extracted using an RLCG char-
acterization method and are implemented in a Mathworks Matlab code to simulate different
scenarios where the cable length l and the fault position xf are changed. The simulation re-
sults of this method are compared to the output of the CST simulator with a high degree of
success, and the Matlab code was tested for its ability to retrieve (estimate) the TDR response.
Experimental measurements had been carried out to validate the numerical model in the case
of shielding damage. Once validated, the developed model can be, hence, used later to validate
the proposed methodology.
This method is then investigated for a set of cable lengths with different operating conditions
and different fault types. The simulation results are in coherence with the rule of thumb inher-
ent to short cables, where the higher the excitation frequency, the better is the fault detection
resolution. In addition, as the fault reaches the cable end for longer cables, the selected fre-
quency decreases due to higher attenuation and dispersion.
Experimental validations in the presence of soft faults were carried out. The experimental and
simulation results are coherent in terms of fault detection and frequency choice. The perfor-
mance analysis of this method has also been investigated. It has revealed good performance for
soft fault detection. When the soft fault is near the injection point, the detection probability
equals one even when as SNR values as low as 0 dB. As the fault position approaches the end
of the cable, the performance is still good, but for lower fault severities, the detection is more
tedious. In this study, it is noted that the selected frequency to monitor a fault case depends on
several parameters: the cable type and characteristics, the fault severity and position, and the
current noise level. Regarding the statistical tests, the Q criteria is more relevant for evaluating
the faults.

In the fourth chapter, we proposed an efficient approach to select the best sensor for soft
fault detection in multi-branched wired networks by combining distributed TDR technique with
PCA. With this study, the sensor selection is obtained, whatever the fault location in the
NUT. Therefore, the number of sensors could be reduced, and the non-selected ones could be
temporarily disabled (inactivated), reducing energy consumption, computing complexities, and
mitigation of sensor fusion issues. It leads to saving time and objectivity in the decision-making.
The efficiency of this approach was validated with several networks of different complexities,
starting with a simple topology, then Y-topology, ending with the CAN bus configuration in the
presence of different fault scenarios.
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For a given CAN bus configuration, a distributed reflectometry approach is considered where
sensors perform their reflectometry measurements consecutively. The TDR responses are col-
lected and arranged into a database. With this database, a PCA model is developed and used
to detect soft faults. Coupled with statistical analysis based on squared prediction error, the
most relevant sensors for monitoring and diagnosing the soft faults in the network are identified.
This has been followed by a campaign of experimental validations. The experimental and the
simulation results are coherent in terms of fault detection and sensor choice.
Finally, the performance analysis of this method is investigated. It reveals excellent performance
for soft fault detection. The probability of detection is equal to unity with a low false alarm
probability for the different noise levels. It is noted that the selected sensor to monitor a fault
depends on the fault parameters and the current noise level.

Perspectives: We opted to work in this thesis with TDR and PCA to address the problems
of frequency and sensor selection for soft fault diagnosis in multi-branched wired networks. As
a matter of fact, efficient and significant results have been obtained with different soft fault
severities and characteristics in different network structures and in the presence of noise. With
this in mind, an extended study could be conducted to continue or handle other features that
weren’t addressed in this work and increase the sensitivity to other faults. Some of these
perspectives are listed in the following:

For this study, we have considered an additive white Gaussian noise when calculating the
SNR; however, depending on the system and its environment, several other types of noise
more relevant in industrial applications can be considered, such as impulsive noise in vehicular
networks, mechanical noise as in airplanes, etc. These require the establishment of models that
shall be integrated with the analytical models of the fault detection so that to evaluate their
effect. Post-processing approaches are then needed to mitigate their effect and enable a precise
localization of the fault. The impact of different types of noise on performance needs to be
studied.

The study carried out in this thesis resulted in a methodology for diagnosing soft faults
representative of coaxial lines. The cable shielding was analyzed. Subsequently, it shall be
interesting to address other types of state-of-art cables used in different applications. It is also
necessary to extend the studies to other faults depending on their importance. For example,
there exist wiring faults that occur commonly in aircraft and are referred to as intermittent
arc faults (about 37%). These are the most frustrating, mysterious, and extremely difficult
faults to detect and locate because they can appear in a few milliseconds due to vibrations, for
example, and then disappear. In avionics, intermittent faults are very short-lived faults (around
1 microsecond) that can appear during flight, for example, but which are not easy to reproduce
during aircraft maintenance. As an example, we can cite the partial discharge which is an
intermittent phenomenon and in most cases invisible. This type of faults is no longer taken
lightly by manufacturers, given the colossal damage they can cause in the long term. Thus,
it will be interesting to see how we can apply the proposed approaches for these faults and
improve the proposed detection methods.
On the other hand, some faults with smaller severities were not detected by PCA in chapter 3.
Thus, further studies should be made to see how the reflectometry data could be pre-processed
before applying the PCA method. In addition, the non-linearity character of soft faults in their
earlier stages (incipient faults) could be the cause of the problem in this case, because their
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variation is so small, so other techniques rather than the PCA could be considered.

The main line of research is the prognosis. Indeed, reflectometry methods generally make
it possible to detect the presence of the fault after its occurrence. However, it would be more
interesting to predict the appearance of the fault. Another line of research would be to use the
selected sensors in chapter 4 to monitor the fault evolution for prognosis perspectives based on
its reflectometry measurements.

It would be desirable to carry out a thorough study on the different fault types’ characteri-
zation and identify their nature (mechanical, thermal, electrical). In the literature, the authors
in [137] uses ANN to characterize the fault (faults’ resistance). However, it is applicable only
for hard faults. Authors in [113] characterize the fault (faults’ impedance). However, it requires
increasing the number of examples in the database and optimizing the number of neurons in the
hidden layer. Authors in [138] use Random Forest to characterize the hard faults. Thus further
studies should be made on the soft faults. Furthermore, traditional machine learning theories
do not apply to the increasingly grown data because of the low generalization performance,
reducing diagnosis accuracy. Therefore, it is necessary to investigate diagnosis models that can
simultaneously extract features from raw collected data and automatically recognize the health
states of cables, which would make it possible to reduce the calculation times and the resources
required in the context of on-board electronics.

The feasibility of the frequency and sensor selection methods was verified by simulation
results and validated by experimental results. The different functions of the method are not
yet integrated into an electronic card to implement an autonomous diagnostic system. The
integration of all the algorithms developed during our study is now based on engineering work
to implement a reliable and optimized system capable of adapting to the constraints of on-board
systems.
Integrating the diagnosis system enables diagnosis of the wired network while it is in use by one
or more systems simultaneously. This diagnosis, known as “online diagnosis”, allows continuous
network monitoring. It is especially useful in the detection and localization of intermittent
faults [9]. Online diagnosis provides the ability to perform diagnosis alongside native network
operation. Thus, it makes it possible to be in the real conditions of the system to establish a
more in-depth diagnosis, such as the characterization of intermittent faults.
It is thus interesting to study how the proposed approaches can fit into a system where other
protocols or signals share the same environment. It is, therefore, necessary to implement an
improvement on the method to take into account the constraints that come with the “online”
mode, such as the robustness to noise since the diagnosis system can be subjected to all kinds of
disturbances coming either from the useful signals of the system itself or from adjacent sources
and it should not be intrusive in the native functioning of the system. Indeed, reflectometry
signals must not interfere with useful signals present on the network. This interference can
distort the response of the system. Therefore, it is necessary to implement an improvement in
the proposed methods in this work to operate in “online” mode.

Another line of research would be the application of the proposed approaches to the diagno-
sis of faults in power grids. Faults like short circuit conditions in the power system network result
in severe economic losses and reduce the electrical system’s reliability. Thus, it is interesting to
see the results of the proposed approaches for such networks.
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A - Appendix Chapter 3

A.1 . Long Cable Analysis

Table A.1 represents the Q value for each detected fault case in section 3.4.2.3.

Table A.1 – Q values of new measurement samples
Fault label Sample number Q value
F1 723 0.014
F2 4965 0.265
F3 9110 0.346
F4 13306 0.053
F5 17551 0.978
F6 21694 1.291
F7 25894 0.163
F8 30139 2.894
F9 34282 3.861
F11 44213 0.088
F12 48283 0.117
F13 56798 0.331
F14 60863 0.44
F15 65066 0.057
F16 69387 1.021
F17 72037 1.181
F18 73451 0.698
F20 82963 0.044
F21 86984 0.058
F23 95548 0.165
F24 99561 0.22
F25 103765 0.029
F26 108137 0.52
F27 112148 0.694
F30 125684 0.032
F33 138259 0.114
F35 142480 0.019
F36 150862 0.38
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A.2 . Performance of the selected frequency f in the presence of noise

Comparison and Analysis For the cases in section 3.6.3.2 where the selected frequency in
the noisy environment is different from that in the noise-free environment fn 6= f , the data at
frequency fn is considered. First, the noise will be added like before, where 500 realizations
are obtained. Then, using the fusion algorithm above, the probability of detection Pnd for
each fault case is calculated. Table A.2, Table A.3 and Table A.4 compare the probabilities of
detection, Pd calculated at the frequency f , and Pnd calculated at fn for the three fault cases
F25, F30 and F35, respectively. It is shown that the probability of detection calculated at f
is better than that calculated at fn, as the fault severity become very low, the corresponding
fault peak will be of very low amplitude and this increase as the fault position is at the cable
end, the noise can mask the fault leading to a low probability of detections.

Table A.2 – Probability of detection comparison for fault case F25

F25
SNR [dB] Pnd Pd

0 0.356 0.4977

Table A.3 – Probability of detection comparison for fault case F30

F30
SNR [dB] Pnd Pd

0 0.248 0.2719
5 0.261 0.2856
10 0.339 0.4781

Table A.4 – Probability of detection comparison for fault case F35

F35
SNR [dB] Pnd Pd

0 0.0301 0.0306

150



B - Résumé en Français

B.1 . Contexte et Motivations

Les câbles électriques sont utilisés dans tous les secteurs industriels pour transférer de
l’énergie ou de l’information. Au cours des dernières décennies, il y a eu une électrifica-
tion croissante de plusieurs fonctions dans les systèmes industriels. Cette augmentation de
l’utilisation de composants électriques s’est accompagnée d’une augmentation de la demande
de câbles électriques, par exemple dans l’industrie du transport, et les systèmes industriels.
Ainsi, la longueur et la complexité des réseaux filaires ont également augmenté. Par exemple,
la longueur cumulée des câbles électriques dans une voiture moderne, est de plus de 4 km
comparée à quelques centaines de mètres il y a 30 ans. Elle est supérieure à 40 km dans les
avions de combat modernes, est près de 200 km dans les trains à grande vitesse, et 400 km
dans les avions civils récents. Dans un pays avec plus de 40000 km de voies ferrées, près de
1 million km de câbles électriques sont utilisés pour les infrastructures. Par conséquent, les
câbles électriques jouent un rôle essentiel dans les réseaux qui deviennent des sous-systèmes
fondamentaux dont le fonctionnement est crucial.

Au cours de sa vie, un câble peut montrer à un moment donné des signes de faiblesse dus
soit à des causes externes, telles qu’une contamination chimique, des vibrations mécaniques,
une pénétration d’humidité, etc., soit à des causes internes telles qu’une fabrication défectueuse
ou un échauffement local. Ainsi, des défauts plus ou moins sévères peuvent apparaître, allant
d’une simple fissure dans la gaine à une rupture totale du câble. Parmi les défauts les plus
fréquents figurent les courts-circuits et les circuits ouverts, généralement appelés défauts francs,
caractérisés par la perte de la fonctionnalité du câble. En revanche, toute altération mineure
affectant un câble est classée en défaut non-franc, à savoir des défauts d’isolement, des fissures,
etc. Ces derniers peuvent être de natures très différente et sont plus difficiles à détecter.
À première vue, ils peuvent ne pas engendrer de conséquences importantes pour le système.
Cependant, le vieillissement des câbles, les contraintes mécaniques et les environnements hostiles
peuvent faire évoluer ces défauts non-francs en défauts francs.

Dans le cas des câbles électriques dédiés aux opérations de sécurité et de contrôle, toute
baisse de leurs performances due à un défaut peut être extrêmement tragique d’un point su vue
humain, écologique, financier, etc. L’enquête du National Transportation Safety Board (NTSB)
a révélé que la catastrophe du Boeing 747 TWA Flight 800 en 1996 et la catastrophe du vol
Swissair MD-11 en 1998 qui ont fait des centaines de morts ont été, toutes deux, causées par
des défauts de câblage électrique. De nombreux autres incidents ont été constatés, qui n’ont
pas entraîné d’accidents tragiques, mais ont été attribués à des défaillances de câble comme
dans le cas du Boeing 757 de AA (2008) et celui de l’Airbus340 de VA (2009) [16]. D’après
les données recueillies par l’AFSA [17], 29% des accidents d’avion sont dus à des défauts de
câbles.

Ainsi, pour garantir une utilisation fiable des câbles, il est nécessaire de détecter les défauts
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qui pourraient mettre en péril l’ensemble du système. Différentes méthodes ont été développées
pour améliorer la fiabilité des réseaux filaires afin de détecter et localiser certains types de
défauts dans les câbles. Parmi ces méthodes, on peut distinguer les techniques classiques
d’inspection visuelle d’utilisation, de rayons X, de mesures capacitives et inductives [18, 19],
et de réflectométrie qui sont largement utilisées et facilement embarquées. Même si plusieurs
méthodes de diagnostic des câbles électriques et non électriques ont été étudiées et développées
au cours des dernières décennies [20,21], les techniques basées sur la réflectométrie sont toujours
au centre de la recherche et des applications industrielles. Leur concept général repose sur la
propagation d’une onde électromagnétique dans le réseau filaire à tester, suivie de l’analyse
des signaux réfléchis pour détecter la présence, la position et la nature d’une discontinuité
d’impédance éventuellement causée par un défaut [21].

Selon le domaine d’analyse de l’onde réfléchie, les méthodes de réflectométrie peuvent être
classées en deux grandes familles : la réflectométrie dans le domaine temporel (TDR) [22] et
la réflectométrie dans le domaine fréquentiel (FDR) [23]. Certes les méthodes basées sur la
réflectométrie ont montré leurs efficacité dans le diagnostic des défauts francs en raison de leurs
coefficients de réflexion élevés, mais elles ont montré de moins bonnes performances chaque
fois que des défauts non-francs sont traités [24, 25]. En effet, les défauts non-francs qui sont
généralement caractérisés par de faibles coefficients de réflexion, produisent des échos faibles par
rapport à ceux provoqués par exemple par des jonctions au sein d’un réseau. De plus, l’énergie
du signal de test peut être considérablement atténuée en raison de la présence d’inhomogénéité
du câble, de jonctions, de couplage, d’épissures, etc., ce qui rend plus complexe la détection
de défauts non-francs (c’est-à-dire frottement, rayon de courbure, pincement, etc.). De plus,
la détection des défauts non-francs est perturbée par des conditions environnementales telles
que les vibrations, les températures élevées, la diaphonie, etc. Dans le cas d’un réseau multi-
branche, la détection des défauts non-francs devient plus difficile à cause de la présence de
jonctions, etc., qui se traduit par plusieurs échos sur le réflectogramme.

Des développements supplémentaires sont donc nécessaires pour rendre la méthode de
réflectométrie suffisamment sensible afin de détecter et localiser efficacement les défauts non-
francs. Dans ce contexte, plusieurs méthodes de post-traitement ont été proposées telles
que [26–29]. Cependant, ces méthodes sont sensibles aux phénomènes d’atténuation et de
dispersion du signal [30]. En effet, les phénomènes d’atténuation et de dispersion réduisent
considérablement la précision de la localisation lorsque la distance de propagation est importante
[9]. Par conséquent, le choix de la bande passante du signal de test est critique et affecte les
performances de diagnostic. De plus, la fréquence maximale du signal de réflectométrie est un
paramètre critique pour détecter et localiser un défaut dans un câble efficacement. En effet,
plus cette fréquence est élevée, meilleure est la résolution du réflectogramme et la précision
de localisation des petits défauts. Cependant, en cas de détection de défaut sur de longs
câbles, l’augmentation de la fréquence du signal n’est pas recommandée car elle introduit une
dispersion et augmente l’atténuation du signal [31, 32]. En pratique, l’expert configure et
calibre l’analyseur du réseau (VNA) à une fréquence donnée et enregistre la mesure dans le cas
d’un câble sain. Des mesures à la même fréquence sont alors effectuées sur un câble supposé
défectueux. L’analyse des mesures est faite à cette fréquence. Si le défaut n’est pas détecté,
cette opération doit être répétée avec une nouvelle fréquence. Par conséquent, il y a une perte
d’information et de temps en plus de la subjectivité dans la prise de décision. Par conséquent,
une technique plus précise et automatisée doit être proposée.
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Les problèmes liés au diagnostic, décrits précédemment, sont aggravés dans le cas d’un
réseau multi-branche [33]. Dans de tels réseaux, l’utilisation d’un seul capteur peut ne plus
être suffisante pour surveiller l’ensemble du réseau en raison de l’atténuation du signal et de la
complexité de la connectique. Pour y remédier, la réflectométrie distribuée est proposée dans
la littérature pour lever les ambiguïtés liées à la position du défaut et maximiser la couverture
du réseau. Cette méthode consiste à effectuer des mesures de réflectométrie à différentes ex-
trémités du réseau sous test (NUT). Cependant, l’injection de signaux multiples est confrontée
à une plus grande complexités de calcul et à des problèmes de fusion de capteurs [11]. De
plus, la consommation d’énergie est un inconvénient majeur au regard des contraintes environ-
nementales. L’étude relative à la réduction du nombre de capteurs dans les réseaux complexes
et son impact sur la qualité du diagnostic est présentée dans [34]. Cependant, cette étude a
révélé d’autres défis liés à l’allocation de la bande passante, au protocole de communication et
à l’atténuation des interférences entre les capteurs. Ainsi, dans [35], le profil de durée de vie du
câble est inclus (comme les contraintes environnementales (température, vibration, humidité,
etc.), le type de câble, l’âge du câble, le bruit du canal et la méthode de diagnostic. Elle per-
met de réduire le coût du diagnostic en évitant l’utilisation d’un trop grand nombre de capteurs
dans le réseau. Avec cette solution, la fiabilité des capteurs en émission et en réception est
prise en compte dans les statistiques obtenues. Cette fiabilité diffère d’un capteur à l’autre et
impacte la localisation du défaut [34]. En effet, la fiabilité du réflectomètre en injection ou
en réception impacte la caractérisation du défaut. Par exemple, dans le cas d’un réflectomètre
peu fiable, un signal de test erroné peut être injecté. Ensuite, une mauvaise interprétation
du réflectogramme est faite pouvant conduire à une intervention inutile. Par conséquent, les
solutions pour résoudre ces problèmes sont des sujets d’actualité dans le domaine du diagnostic
filaire.

Cette thèse se propose d’aborder ces deux problèmes principaux dans le diagnostic filaire
des défauts non-francs par réflectométrie. L’approche proposée s’appuie sur la combinaison
de la réflectométrie avec l’analyse statistique, notamment l’analyse en composantes principales
(PCA) pour améliorer la détection des défauts non-francs.
La PCA est une technique de modélisation statistique multivariée basée sur les données [36].
Elle utilise la redondance des informations dans un espace d’entrée corrélé de haute dimension
pour projeter l’ensemble des données d’origine dans un sous-espace de dimension inférieure
défini par les composantes principales (PC).
Bien que la combinaison de la réflectométrie et de la PCA dans la littérature ait été proposée
pour une réduction efficace de l’espace de données de réflectométrie [37], l’application de la
PCA sur les données basées sur la réflectométrie n’a pas été utilisée, jusqu’à présent, pour le
diagnostic des défauts dans les réseaux filaires. Pour la détection des défauts, le modèle PCA
du système est développé dans notre étude à partir des données d’un câble sain, puis utilisé
pour tester de nouvelles données obtenues dans le cas d’un défaut.

Ce travail vise à améliorer le diagnostic des défauts non-francs dans les réseaux multi-
branches en utilisant cette méthode de réflectométrie basée sur la PCA. Deux problématiques
de recherche principales sont abordées. La première est liée à la sélection de la fréquence
la plus adaptée à utiliser, et la seconde est liée à la sélection des capteurs dans les réseaux
de câbles complexes en utilisant la réflectométrie distribuée. Pour les deux problématiques,
les performances et les limites des solutions proposées sont étudiées. L’influence du bruit
perturbateur est également analysée. L’approche est évaluée sur des données de simulation
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puis validée sur un banc expérimental de laboratoire.

B.2 . Détermination de la Meilleure Fréquence par la PCA pour le Diag-
nostic des Défauts Non-Francs basé avec la Réflectométrie

Notre objectif est de proposer une méthode de sélection de la meilleure fréquence de signal
de test pour la détection des défauts non-francs. Le modèle PCA est établi à partir des réflec-
togrammes mesurés pour le câble sain à plusieurs fréquences considérées comme les variables.
De nouvelles mesures réalisées sur le câble testé aux mêmes fréquences, sont alors projetées
dans l’espace défini par le modèle de la PCA. Si une dissemblance est détectée entre les don-
nées originales et les nouvelles données, la contribution de chaque variable (c’est-à-dire les
fréquences) à cette variation est calculée. L’algorithme permet alors de choisir la fréquence la
plus pertinente pour détecter le défaut non-franc. Les avantages de la proposition sont ainsi
un gain de temps et une prise de décision automatisée.

Deux méthodes statistiques sont utilisées ici ; les statistiques Q (ou SPE) et le test de
Hotelling (T 2) [121]. Si un défaut est détecté, la meilleure fréquence correspondant à celles
ayant la plus forte contribution à la détection est alors sélectionnée. La Figure B.1 montre
l’organigramme de la méthode proposée. Cette méthode comprend trois phases:

Figure B.1 – Organigramme de l’approche proposée

(1) Phase d’apprentissage, où les données X∗ sont collectées pendant un fonctionnement
sans défaut, et le modèle de la PCA est développé. Après avoir développé un modèle à
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l’aide de données saines (d’entraînement), le modèle à dimension réduite peut être utilisé
pour détecter et diagnostiquer des anomalies.

(2) La phase de surveillance, c’est-à-dire la détection du défaut, est gérée à l’aide des statis-
tiques de surveillance T 2 et Q. Pour la détection des défauts, le modèle de la PCA
développé basé sur les données du système sain est utilisé pour projeter les nouvelles
données de mesure X et comparer la projection obtenue avec celle des données sains.
Si la valeur des indicateurs Q ou T 2 est au dessus du seuil de confiance, alors il y a une
anomalie.

(3) La phase de sélection de la meilleure fréquence, où le diagnostic des défauts sera géré à
travers des tracés de contribution. À partir de la matrice de référence, X∗ est construit
pour que chaque variable corresponde à une fréquence spécifique ; alors on peut évaluer
les variables (les fréquences dans ce cas) qui influencent le plus la détection de la valeur
anormale de l’échantillon Q ou T 2 en observant la contribution de chaque variable. Celle
ayant la valeur la plus élevée sera retenue comme la fréquence la plus pertinente pour
détecter le défaut.

Le processus de simulation des données est divisé en deux parties où le modèle CST est
utilisé pour les câbles courts et le modèle RLCG sera utilisé pour les câbles plus longs. Nous
simulons des cas de défaut caractérisés par trois paramètres à quatre fréquences différentes f =

[1GHz, 2GHz, 3GHz et 4GHz] : la position xf , la longueur Lf = [5mm,10mm,20mm]
et la largeur θf = [45°,90°,180°]. Habituellement, l’emplacement du défaut est inconnu ; la
longueur du défaut est également inconnue. Il est nécessaire d’analyser la sensibilité de la
méthode proposée pour différentes valeurs de longueur de défaut pour évaluer sa robustesse.

Pour montrer l’effet de la position du défaut sur la fréquence retenue pour les câbles plus
longs, les simulations pour un câble de 100m du cas du défaut (Lf = 5mm,θf = 180°) sont
effectuées. La position du défaut varie avec un pas de 2m. Sur la Figure B.2, on remarque que
la fréquence sélectionnée diminue lorsque la position du défaut se rapproche de l’extrémité du
câble.

La méthodologie de détection des défauts à l’aide de la PCA et la sélection de la fréquence
sont maintenant évaluées sur des câbles réels à l’aide de la configuration représentée sur la Fig-
ure B.3. La borne d’entrée du câble est reliée à un connecteur de câble coaxial RF série N 50Ω.
L’autre extrémité est laissée libre. Les signaux réfléchis et les réflectogrammes correspondants
sont obtenus à l’aide d’un VNA Agilent E5071C, avec calibration pour acquérir des mesures très
précises. Un signal TDR est considéré sur une bande passante totale définie du continu à une
fréquence maximale fmax (1GHz, 2GHz, 3GHz et 4GHz). Les réflectogrammes du câble
sain et du câble avec le défaut de blindage situé à 0.5m sur un câble à 1m sont mesurés. La
nouvelle mesure est définie par la matrice X, telle que, chaque vecteur xj contient la signature
défectueuse du défaut de blindage défini ci-dessus à la fréquence j. La Figure B.4 montre les
résultats du test Q de cette expérience où le défaut a été détecté. Le tracé de la contribution de
l’échantillon anormal est représenté sur la Figure B.5: on note que la variable correspondant à
la fréquence 4GHz est celle qui contribue le plus à cet échantillon. Par conséquent, f = 4GHz

est la fréquence sélectionnée. Les résultats expérimentaux et de simulation sont cohérents en
termes de détection de défaut et de choix de fréquence.
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FigureB.2 – Variation de la fréquence sélectionnée avec la position dudéfaut pour un câble de 100m pour le cas de défaut (Lf = 5mm, θf =
180°)

Figure B.3 – Montage expérimental
Les performances du test Q en présence de bruit sont étudiées. La Figure B.6 représente

l’organigramme de la méthodologie utilisée. Cette étude est divisée en trois parties; Tout
d’abord, la détection des défauts non-francs, où la détection des défauts utilisant la PCA est
appliquée et la probabilité de détection du défaut Pd est calculée en présence de bruit. Si Pd >
εd, le défaut est considéré comme détecté à ce niveau de bruit spécifié avec la valeur du SNR.
εd est un seuil spécifique au domaine. Sa valeur est déterminée par le domaine d’application.
Ensuite, la probabilité des fausses alarmes, PFA pour chaque SNR est calculée. La valeur du
seuil de fausse alarme ε dépend du domaine d’application (idéalement, on souhaiterais avoir
ε = 0 et εd = 0). Par conséquent, si PFA > ε, les données Xν doivent subir une étape de pré-
traitement; sinon, nous procédons à la sélection de la meilleure fréquence dans l’environnement
bruité.
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Figure B.4 – Valeurs Q des échantillons expérimentaux

Figure B.5 – Contribution des variables à l’échantillon anormal dansles données expérimentales correspondant à un défaut de blindagede 5 mm de long, 180° de large

Figure B.6 – Organigramme de l’analyse des performances du testQ
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Comme cas d’étude, soit le défaut F correspondant au cas de défaut avec les paramètres
suivants Lf = 5mm et θf = 180°. On considère un câble de 10m pour lequel la position
du défaut varie on considère les cas ou elle est à 20%, 50%, 70% ou à 90% par rapport à la
longueur du câble.

Le tableau B.1 indique la probabilité de détection Pd pour les différents SNR. On montre
que le défaut F, en présence de bruit, est détecté avec une Pd > 0.85. Ici, εd n’est pas pris
en compte car il dépend du domaine d’application. Par hypothèse, nous supposons que les
probabilités de détection obtenues sont suffisantes pour les prochaines étapes d’analyse des
performances.

Table B.1 – Pd pour différents niveaux de bruit
SNR [dB] xf = 20% xf = 50% xf = 70% xf = 90%

-5 1 1 0.853 0.859
0 1 1 1 0.862
5 1 1 1 0.896
10 1 1 1 0.983
15 1 1 1 1

Maintenant, la valeur de PFA pour les différents SNR est indiquée dans le tableau B.2.
Elle est de 0.034 pour un SNR de −5dB et de 0.018 à 0dB et 0 pour les autres valeurs de

Table B.2 – PFA pour différents niveaux de bruit
SNR [dB] PFA

-5 0.034
0 0.018
5 0
10 0
15 0

SNR. Ici, le seuil ε n’est pas pris en compte car il dépend du domaine d’application. Comme
hypothèse, nous supposons que les probabilités de fausse alarme obtenues sont suffisantes pour
les prochaines étapes d’analyse des performances.

Pour l’étude de cas ci-dessus, la Figure B.7 représente la variation de la fréquence sélec-
tionnée avec le SNR pour différentes positions du défaut. Il est à noter que la fréquence choisie
pour surveiller F dépend de sa position et du SNR. Les deux positions du défaut, xf = 20% et
xf = 50% ont exactement la même variation. Lorsque le défaut atteint l’extrémité du câble, la
fréquence sélectionnée diminue. Ce changement est prévisible en raison de l’atténuation tout
au long du câble et est conforme à la règle sur des câbles longs: plus la fréquence est basse,
meilleure est la détection de défaut. Maintenant, pour un autre étude de cas, en considérant
un câble de 100m, la position du défaut F varie le long de la longueur du câble de telle sorte
que, xf = 10%, 20%, 30% et 40%. Nous ne prenons que la moitié de la longueur du câble
(50m); pour l’autre moitié, les mesures pourraient être faites à partir de l’autre extrémité du
câble à partir d’un autre capteur, rendant la méthode proposée plus efficace. La Figure B.8
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Figure B.7 – Variation de fréquence avec le SNR pour un câble de 10md’un défaut de 5mm et 180°
représente la variation de la fréquence sélectionnée avec le SNR pour différentes positions de
défaut. A chaque SNR, pour chaque réalisation, les valeurs Q sont divisées en deux classes :

Figure B.8 – Variation de fréquence avec le SNR pour un câble de
100m d’un défaut de 5mm et 180°

Saine et Défectueuse. Ensuite pour les 500 réalisations, les données sont concaténées dans les
classes Saine et Défectueuse et les courbes ROC sont calculées. L’étude comparative se fait
d’abord en réglant le SNR à 15dB et en faisant varier la position du défaut F (5mm,180°)
pour un câble de 10m. Les résultats des performances de détection utilisant le test Q pour
différents niveaux de SNR sont représentés sur la Figure B.9, pour xf = 20%, xf = 70% et
xf = 90%, respectivement.

Grâce aux résultats de simulation d’un câble coaxial RG316 de 10m de long avec un blindage
endommagé, étudié à quatre positions différentes xf =[20%, 50%, 70%, 90%]. Il est noté que
:

• Le test Q a une excellente efficacité avec une capacité de détection de 100% pour
les niveaux de bruit (SNR ≥ 0dB) avec une faible probabilité de fausse alarme pour
xf = 20%.
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(a) (b)

(c)
Figure B.9 – Courbes ROC pour un câble de 10m d’un défaut de 5mmet 180° pour (a) xf = 20%, (b) xf = 70% et (c) xf = 90%
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• Pour les niveaux de bruit inférieurs (SNR < 0dB), les performances de détection du test
Q sont affectées par le bruit pour xf = 70% et ce résultat est de 100% pour xf = 20%.

• Le test Q a une efficacité élevée avec une capacité de détection de 85% avec une faible
probabilité de fausse alarme pour xf = 90%. Les performances de détection des défauts
diminuent avec l’augmentation du niveau de bruit passant de 100% à 15dB à 85.9% à
−5dB.

Le test Q est alors efficace pour détecter les défauts, mais ses performances sont affectées par
le SNR lorsque la position du défaut est proche de l’extrémité du câble. Au fur et à mesure que
l’analyse des performances de cette méthode est étudiée, elle révèle d’excellentes performances
pour la détection des défauts non-francs. La capacité de détection est égale à 89.6% même
lorsque SNR= 5dB. À mesure que la position du défaut approche de l’extrémité du câble, les
performances restent toujours bonnes et sont égales à 85.9% à SNR= −5dB.

B.3 . Sélection de Capteurs pour le Diagnostic des Défauts Non-Francs
basé sur la Réflectométrie Distribuée à l’aide de la PCA

Cette section présente la nouvelle approche de sélection des capteurs pertinents pour
surveiller et diagnostiquer les défauts non-francs dans les réseaux câblés complexes. Cette ap-
proche combine la réflectométrie distribuée TDR avec la PCA. En effet, pour un NUT donné,
une approche de réflectométrie distribuée est envisagée où les capteurs effectuent leurs mesures
de réflectogramme. Ces données collectées sont utilisées pour établir un modèle PCA couplé
à des tests statistiques pour évaluer l’état des nouvelles mesures. Chaque fois qu’un défaut
est détecté, les capteurs pertinents pour la surveillance et le diagnostic sont identifiés avec une
grande précision. Sur la base de ces résultats, le nombre de capteurs pourrait être réduit et ceux
non sélectionnés pourraient être désactivés temporairement, réduisant ainsi la consommation
d’énergie, la charge de calcul et les problèmes de fusion des capteurs. Les performances et les
limites de la technique proposée sont étudiées en environnement bruité et validées expérimen-
talement.

La Figure B.10 décrit le principe de la nouvelle approche combinant les mesures de réflec-
tométrie distribuée TDR avec la PCA. Elle est composée de trois phases principales: l’apprentissage,
la surveillance et la sélection des capteurs. Premièrement, les données sont collectées lorsque
le réseau est considéré comme sans défaut (étape 1). Dans ce cas, chaque capteur du réseau
distribué collecte ses mesures TDR qui sont utilisées pour créer la base de données (étape 2).
Ensuite, une matrice X∗ est construite de telle sorte que chacune de ses colonnes (représen-
tant les variables) correspond à une réponse TDR du capteur (étape 3). Un modèle PCA est
développé sur la base de cette base de données (étape 4). Ce modèle est utilisé dans la deuxième
étape pour évaluer de nouvelles données mesurées afin de détecter une anomalie [121,122].
Deuxièmement, pour le NUT, X, la nouvelle matrice de données mesurées est construite de
la même manière que la matrice de données de référence X∗. Elle est ensuite projetée dans
le référentiel PCA obtenu lors de la phase d’apprentissage. Les données projetées (appelées
scores) Tnew et le ˜Tnew résiduel sont alors calculées (étapes 5, 6 et 7).
Les statistiques de surveillance sont ensuite utilisées pour la détection des défauts, c’est-à-dire
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Figure B.10 – Méthodologie de l’approche par réflectométrie dis-tribuée TDR basée sur la PCA

pour déterminer si un défaut s’est produit ou non. Pour cela, le test statistique Q est util-
isé [121]. Ce test permet d’évaluer la présence du défaut (étape 8). Le seuil de confiance
Qα pour ce test est calculé en utilisant les données de référence X∗ qui sont utilisées pour
construire le modèle PCA dans l’étape d’apprentissage. Si la valeur de Q est en dehors de le
seuil de confiance pour un échantillon spécifique, alors un défaut est détecté (étapes 9 et 10).
Enfin, chaque fois qu’un défaut est détecté, on passe à l’étape d’analyse de sélection des
capteurs. Pour chaque échantillon défectueux détecté, l’analyse commence par tracer la con-
tribution des variables constituant la nouvelle matrice de données mesurées X (c’est-à-dire les
réponses TDR des capteurs) (étape 11). Ensuite, nous pouvons inspecter les variables qui in-
fluencent fortement cette valeur statistique de l’échantillon. On peut donc choisir le capteur le
plus pertinent pour suivre l’évolution de ce défaut et désactiver temporairement tous les autres
capteurs (étapes 12 et 13).

Pour valider la méthodologie proposée, nous considérons le diagnostic des défauts non-francs
dans un réseau point à point, un réseau en forme de Y et un bus CAN (Controller Area Network).
Ces configurations présentent des topologies de complexité croissante en termes de branches,
jonctions, échos, atténuation du signal, etc. La Figure B.11 représente la configuration de bus
CAN considérée. Ce réseau est composé de plusieurs sections, soit B1 à B7. Leurs longueurs
sont B1 = B2 = B5 = 2.5m, B3 = B6 = 5m et B4 = B7 = 10m. Six câbles de 1.5m,
notés B’

1 à B’
6, sont utilisés pour connecter les unités de contrôle électronique (ECU) au bus
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pour accéder au réseau. Le réseau est constitué de six capteurs Sj, j ∈ {1, 2, . . . , 6} avec les
mêmes caractéristiques (réseau homogène). Ces capteurs sont considérés comme adaptés avec
les câbles réseau où Zc = 100Ω.

Figure B.11 – Topologie de bus CAN

Tout d’abord, dans des conditions de fonctionnement sans défaut, chacun des six capteurs
injecte le signal de test consécutivement. Les réponses TDR sont ensuite obtenues et utilisées
pour créer la matrice de données de référence X∗ composée de six variables. Chaque variable
x∗
j correspond à la réponse TDR de référence du bus CAN pour le capteur correspondant Sj

avec j = {1, 2, . . . , 6}.
La matrice de données X∗ est ensuite utilisée pour obtenir le modèle de la PCA. Une variation
locale de 20% de l’impédance caractéristique sur la branche B3 du réseau est introduite pour
simuler un défaut non-franc, soit ∆Zc = 20%. Les réponses TDR pour chaque capteur sont
collectées. En utilisant toutes ces nouvelles données de réflectométrie, la nouvelle matrice de
données mesurées X est créée, où chaque variable xj = RSj et RSj décrit la réponse TDR
correspondant au capteur Sj avec j = {1, 2, . . . , 6}.

Maintenant, la valeur statistique Q pour chaque nouvel échantillon mesuré est calculée. La
Figure B.12 représente la carte de contrôle Q, avec la ligne en pointillé rouge représentant le
seuil de confiance de 95% (Qα). On peut observer que certains échantillons sont au-dessus du
seuil Qα indiquant l’occurrence d’un défaut. Le graphique de la Figure B.13 représentant la
contribution de l’échantillon défectueux indiqué permet d’identifier le capteur Sj qui influence le
plus cette valeur Q. Ainsi, la sélection du capteur concerné est effectuée par le test de contrôle
Q. Aussi, le tracé de contribution de cet échantillon anormal correspond aux capteurs S2 et
S3 car ils sont équidistants du défaut.

Nous proposons de valider cette méthodologie sur des câbles réels en utilisant le montage
expérimental représenté sur la Figure B.14. Il se compose de plusieurs câbles RG316 avec une
impédance caractéristique de 50Ω. Dans cette étude, les longueurs de B1 à B7 sont de 0.5m,
0.5m, 1m, 1m, 1m, 0.5m et 0.5m, respectivement. Les câbles RG316 qui assurent l’accès au
réseau sont notés respectivement B’

1 à B’
6 avec des longueurs 1m, 0.6m, 2m, 1.5m , 1m,

et 1m. Les extrémités des lignes B1 et B7 sont appariées à l’aide de résistances 50Ω, tandis
que les branches B’

1 à B’
6 sont laissées ouvertes. Deux défauts non-francs avec des longueurs
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Figure B.12 – Graphique Q des nouveaux échantillons mesurés de latopologie du bus CAN

Figure B.13 – Diagramme de contribution pour l’échantillon 3283

Figure B.14 – Montage Expérimental
de 5mm et 10mm et de larguer θf = 180° sont créées au milieu de B3. Les signaux réfléchis
et les réflectogrammes correspondants sont obtenus à l’aide d’un VNA Agilent E5071C comme
indiqué dans la configuration ci-dessus. La borne d’entrée du câble est reliée à un connecteur
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de câble coaxial RF série 50Ω pour chaque mesure. Les réponses de réflectométrie ont été
mesurées par l’analyseur de réseau séparément à chaque extrémité du câble pour la bande de
30kHz à 4GHz.

La Figure B.15 représente la valeur du test Q en fonction des échantillons. La ligne en
pointillé rouge représentant le seuil de confiance 95% (Qα = 4.39). Nous pouvons observer
que certains échantillons sont au-dessus du seuil. Ainsi, l’occurrence d’un défaut a été détectée.
Nous considérons l’échantillon avec la valeur Q la plus élevée comme anormal. Par conséquent,
dans notre exemple, le numéro d’échantillon 2806 correspond à l’occurrence du défaut. Le

Figure B.15 – Graphique Q des nouveaux échantillons mesurés pourle cas de défaut de 10mm

tracé du graphique de contribution (la Figure B.16) pour l’échantillon défectueux sélectionné
permet d’identifier la variable RSj et le capteur Sj qui influence le plus cette valeur Q. Ainsi,
la sélection du capteur concerné est effectuée par le test Q.

Figure B.16 – Diagramme de contribution pour l’échantillon 2806

Pour notre exemple d’application, le capteur S3 est sélectionné comme le plus pertinent par
le test Q. Il permet de suivre l’évolution des défauts à des fins de pronostic sur la base de ses
mesures de réflectométrie. Comme la signature du défaut non-franc dans le réflectogramme S3
a l’amplitude la plus importante, le choix du capteur S3 est logique si l’on compare la distance
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parcourue (2.5m) et le nombre de jonctions existantes (une jonction) entre ce capteur et le
défaut. Pour S2, bien qu’il représente la plus faible distance parcourue depuis le défaut (1.1m),
le défaut est masqué par la jonction existant à la même position.

L’organigramme de l’analyse des performances de la sélection du capteur en présence de
bruit a été présenté dans la section B.2. Cependant, dans ce cas, le paramètre sélectionné est le
meilleur capteur pour surveiller et diagnostiquer les défauts non-francs détectés dans le réseau
en environnement bruité.

Pour simuler différents scénarios, deux défauts non-francs sont étudiés. Le premier, F1, est
celui introduit ci-dessus, où une variation locale 20% de l’impédance caractéristique sur B3 du
réseau est introduite, c’est-à-dire ∆Zc = 20%. La position de ce défaut sera définie comme
xf1 au milieu de B3 (à 2.5m). Le second F2, a la même sévérité que le premier défaut mais à
une position différente xf2, située respectivement à 21m, 18.5m, 13.5m, 3.5m, 2m et 7m des
capteurs correspondants S1 à S6.

Maintenant, les bruits sont ajoutés aux données de test X, résultant en Xν où les SNR
utilisés sont −5dB, 0dB, 5dB, 10dB et 15dB. xj est un vecteur colonne de X pris pour la
jième variable. Le bruit est supposé être Additif blanc et Gaussien.

Le capteur S2 est étudié pour le défaut F1 et le capteur S5 est étudié pour le défaut F2.
Pour chaque réalisation, nous appliquons le test Q pour trouver si le cas en défaut est détecté
ou non. Ensuite, la probabilité de détection Pd est calculée pour chaque cas en défaut à chaque
SNR, et si Pd > εd, le défaut est considéré comme détecté à ce niveau de bruit. Les deux
défauts qui ont été détectés sans bruit, sont évalués en présence de bruit avec notre méthode
avec une probabilité de détection égale à un.

Le tableau B.3 présente Pd des cas de défaut F1 (milieu de B3) et F2 (à 2m sur B5) définis
ci-dessus pour les différents niveaux de bruit. On montre qu’un même défaut à différentes
positions, en présence de bruit, est détecté avec une probabilité de détection égale à un. Par
conséquent, le test Q a une excellente efficacité avec une capacité de détection de 100% pour
les niveaux de bruit (SNR ≥ −5dB), et ses performances ne sont pas affectées par le niveau
de bruit pour les deux cas de défaut étudiés.

Table B.3 – Pd pour différents niveaux de bruit
SNR [dB] xf1 xf2

-5 1 1
0 1 1
5 1 1
10 1 1
15 1 1

La probabilité de fausse alarme PFA pour les différents niveaux de bruit est indiquée dans le
tableau B.4. Elle est de 0.012 pour un niveau de bruit de -5dB et de 0.0014 pour un niveau de
bruit de 0dB. Elle se réduit à 0 pour les autres valeurs de SNR (5dB, 10dB et 15dB). Comme
hypothèse, nous supposons que les probabilités de fausse alarme obtenues sont suffisantes pour
les prochaines étapes de l’étude d’analyse de performance.
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Table B.4 – PFA pour différents niveaux de bruit
SNR [dB] PFA

-5 0.012
0 0.0014
5 0
10 0
15 0

La Figure B.17 représente la variation du capteur sélectionné avec le niveau de bruit pour
différentes positions de défaut. On note que le capteur choisi pour surveiller le défaut défini par
les paramètres (∆Zc = 20%, Lf = 0.05m) dépend de sa position et du niveau de bruit actuel.

Figure B.17 – Variation du capteur sélectionné avec le niveau de bruitpour deux positions de défaut

On considère le réseau BUS ci-dessus pour le cas de défaut (∆Zc = 20%, Lf = 0.05m),
aux deux positions xf1 et xf2. Le capteur S2 est étudié pour la position xf1, et le capteur
S5 est étudié pour la position xf2. Les courbes ROC pour les différents niveaux de bruit sont
représentées dans la Figure B.18 pour les positions de défaut xf1 et xf2, respectivement. Il
est à noter que le test Q a une excellente efficacité avec une capacité de détection de 100%

pour les niveaux de bruit (SNR ≥ −5dB) avec de faibles probabilités de fausses alarmes pour
les deux positions des défauts. De plus, les performances de détection du test Q ne sont pas
affectées par le niveau de bruit. Alors que nous étudions l’analyse des performances de cette
méthode, elle révèle d’excellentes performances pour la détection des défauts non-francs. La
probabilité de détection est égale à un pour les niveaux de bruit utilisés.

B.4 . Conclusion et Perspectives

Les recherches menées dans cette thèse visent à proposer de nouvelles techniques de diag-
nostic des réseaux filaires complexes pour détecter et localiser les défauts auxquels les fabricants
et les utilisateurs sont aujourd’hui confrontés dans les systèmes électriques. L’importance cri-
tique des défauts non-francs a été soulignée et expliquée tout en montrant les limitations des
méthodes existantes. Ainsi, de nouveaux outils utilisés pour le diagnostic des défauts sont
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(a) xf1 (b) xf2
Figure B.18 – Courbes ROC pour un Bus CAN avec un défaut ∆Zc =
20% et Lf = 0.05m

nécessaires ; pour cela, le principe de l’Analyse en Composantes Principales (PCA) est présenté
grâce à son utilisation harmonieuse avec la réflectométrie, plusieurs obstacles scientifiques son
levés, permettant ainsi la détection et caractérisation efficace de défauts non-francs.

La deuxième section présente une approche permettant de sélectionner la meilleure bande
passante pour la détection de défauts non-francs dans les réseaux filaires basée sur une com-
binaison judicieuse de la réflectométrie et de la PCA. La méthode proposée permet de con-
figurer le VNA à différentes fréquences. Des mesures à différentes fréquences pour le cas de
référence sont faites pour mettre en place le modèle de la PCA. Ensuite, de nouvelles mesures
à différentes fréquences sont réalisées. Si une différence est détectée entre la référence et les
données mesurées, la contribution de chaque variable (c’est-à-dire les fréquences) à cette dif-
férence est calculée. L’algorithme choisit alors la fréquence la plus pertinente pour surveiller
le défaut non-franc. Les avantages sont ainsi un gain de temps et permettent une prise de
décision automatisée.
La modélisation tridimensionnelle d’un défaut non-franc et son influence sur la propagation
dans un câble a été étudiée avec CST. Les résultats de la simulation ont permis de déterminer
la perturbation générée par le défaut non-franc avec différents niveaux de dégradation. Ces
perturbations ont été représentées en termes de coefficient de réflexion pour déterminer les
caractéristiques du défaut. Pour pallier à l’augmentation de la charge de calcul et du temps de
simulation causés par le CST dans le cas de câbles plus longs, les paramètres de défaut sont
extraits à l’aide d’une méthode de caractérisation RLCG et sont implémentés dans un code
Matlab pour simuler différents scénarios où la longueur l et la position du défaut xf sont modi-
fiées. Les résultats de simulation de cette méthode sont comparés à la sortie du simulateur CST
avec un degré élevé de succès, et le code Matlab a été testé pour sa capacité à récupérer (es-
timer) la réponse TDR. Des mesures expérimentales ont permis de valider le modèle numérique
pour un cas d’endommagement du blindage. Une fois validé, le modèle développé peut donc
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être utilisé ultérieurement pour évaluer la méthodologie de diagnostic proposée.
Cette méthode est ensuite étudiée pour un ensemble de longueurs de câble avec différentes
conditions de fonctionnement et différents sévérité de défauts. Les résultats de la simulation
sont en cohérence avec la règle empirique inhérente aux câbles courts, où plus la fréquence
d’excitation est élevée, meilleure est la résolution de détection du défaut. De plus, lorsque le
défaut atteint l’extrémité du câble, pour les câbles plus longs, la fréquence sélectionnée diminue
en raison d’une atténuation et d’une dispersion plus élevées.
Des validations expérimentales en présence de défauts non-francs ont été réalisées. Les résultats
expérimentaux et de simulation sont cohérents en termes de détection de défaut et de choix de
fréquence. L’analyse des performances de cette méthode a également été étudiée. Elle a révélé
de bonnes performances pour la détection des défauts non-francs. Lorsque le défaut non-franc
est proche du point d’injection, la probabilité de détection est égale à 1 même lorsque les valeurs
de SNR sont aussi faibles que 0 dB. Lorsque la position du défaut approche de l’extrémité du
câble, les performances sont toujours bonnes, mais pour des sévérités de défaut plus faibles, la
détection est plus délicate. Dans cette étude, il est noté que la fréquence choisie pour surveiller
un cas de défaut dépend de plusieurs paramètres : le type et les caractéristiques du câble, la
sévérité et la position du défaut, et le niveau de bruit actuel. Concernant les tests statistiques,
le critère Q est plus pertinent pour évaluer les défauts.

Dans la troisième section, nous avons proposé une approche efficace pour sélectionner le
meilleur capteur pour la détection des défauts non-francs dans les réseaux filaires complexes en
combinant la technique TDR distribuée avec la PCA. Avec cette étude, la sélection du capteur
est obtenue, quelle que soit la localisation du défaut dans le NUT. Par conséquent, le nombre
de capteurs pourrait être réduit et ceux non sélectionnés pourraient être temporairement désac-
tivés, réduisant ainsi la consommation d’énergie, la charge de communication sur le réseaux et
les problèmes de fusion de capteurs. Elle conduit également à un gain de temps et d’objectivité
dans la prise de décision.
L’efficacité de cette approche a été validée avec plusieurs réseaux de complexités différentes, en
commençant par une topologie simple, puis en Y, pour finir par la configuration du bus CAN
en présence de différents scénarios de défaut.
Pour une configuration de bus CAN donnée, une approche de réflectométrie distribuée est en-
visagée dans laquelle les capteurs effectuent leurs mesures de réflectométrie consécutivement.
Les réponses TDR sont collectées et organisées dans une base de données. Avec cette base de
données, un modèle de la PCA est développé et utilisé pour détecter les défauts non-francs.
Couplé à une analyse statistique basée sur l’erreur de prédiction au carré, les capteurs les plus
pertinents pour surveiller et diagnostiquer les défauts non-francs dans le réseau sont identifiés.
L’approche proposée a été testée lors d’une campagne de validations expérimentales. Les ré-
sultats expérimentaux et de simulation sont cohérents en termes de détection de défaut et de
choix des capteurs.
Enfin, l’analyse des performances de cette méthode est étudiée. Il révèle d’excellentes perfor-
mances pour la détection des défauts non-francs malgré la présence de bruit. La probabilité
de détection est égale à l’unité avec une faible probabilité de fausse alarme pour les différents
niveaux de bruit considérés. Il est à noter que le capteur sélectionné pour surveiller un défaut
dépend des paramètres du défaut et du niveau de bruit actuel.

Perspectives: Nous avons choisi de travailler dans cette thèse avec TDR et la PCA pour
aborder les problèmes de choix de fréquence et de sélection de capteurs pour le diagnostic des
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défauts non-francs dans les réseaux filaires complexes basé sur la réflectométrie. Des résultats
significatifs ont été obtenus avec différentes sévérités et caractéristiques de défauts non-francs
pour différentes structures de réseau et en présence de bruit. Dans cette optique, une étude
approfondie pourrait être menée pour poursuivre ou gérer d’autres fonctionnalités qui n’ont pas
été abordées dans ce travail et augmenter la sensibilité à d’autres défauts. Certaines de ces
perspectives sont énumérées dans ce qui suit :

Pour cette étude, nous avons considéré un bruit additif blanc et Gaussien; cependant, selon
le système et son environnement, plusieurs autres types de bruits plus pertinents dans les appli-
cations industrielles peuvent être envisagés, comme les bruits impulsifs dans les réseaux véhicu-
laires, les bruits mécaniques comme dans les avions, etc. Ceux-ci nécessitent l’établissement de
modèles qui doivent être intégrés avec les modèles analytiques de la détection des défauts afin
d’évaluer leur effet. Des approches de post-traitement sont alors nécessaires pour atténuer leur
effets et permettre une localisation précise du défaut. L’impact des différents types de bruit sur
les performances doit être étudié.

L’étude menée dans cette thèse a abouti à une méthodologie de diagnostic des défauts
non-francs représentatifs des lignes coaxiales. Le blindage du câble a été analysé. Par la suite,
il sera intéressant d’aborder d’autres types de câbles de l’état de l’art utilisés dans différentes
applications. Il est également nécessaire d’étendre les études à d’autres défauts en fonction de
leur importance. Par exemple, il existe des défauts de câblage qui se produisent couramment
dans les aéronefs et sont appelés défauts intermittents tels que les arcs électriques (environ
37%). Ce sont les défauts les plus frustrants, mystérieux et extrêmement difficiles à détecter
et à localiser car ils peuvent apparaître en quelques millisecondes à cause des vibrations par
exemple, puis disparaître. En avionique, les défauts intermittents sont des défauts de très courte
durée (environ 1 microsecondes) qui peuvent apparaître en vol par exemple, mais qui ne sont
pas faciles à reproduire lors de la maintenance de l’avion. A titre d’exemple, on peut citer
la décharge partielle qui est un phénomène intermittent et dans la plupart des cas invisible.
Ce type de défaut n’est plus pris à la légère par les constructeurs, compte tenu des dégâts
colossaux qu’ils peuvent occasionner à long terme. Ainsi, il sera intéressant de voir comment
nous pouvons appliquer les approches proposées pour ces défauts et améliorer les méthodes de
détection proposées.
En revanche, certains défauts de moindre sévérité n’ont pas été détectés par la PCA au chapitre
3. Ainsi, des études complémentaires devraient être menées pour voir comment les données de
réflectométrie pourraient être pré-traitées avant d’appliquer la méthode PCA. De plus, le carac-
tère non-linéaire des défauts non-francs à leurs stades antérieurs (défauts naissantes) pourrait
être la cause du problème. Dans ce cas, on pourrait enviager d’appliquer d’autres méthodes
que la PCA.

L’axe de recherche principal suivant serait le pronostic. En effet, les méthodes de réflec-
tométrie permettent généralement de détecter la présence du défaut après son apparition.
Cependant, il serait plus intéressant de prédire l’apparition du défaut. Un autre axe de recherche
serait d’utiliser les capteurs sélectionnés dans la section 3 pour suivre l’évolution du défaut et
faire un pronostic.

La faisabilité des méthodes de sélection de fréquence et de capteur a été vérifiée par des
résultats de simulation et validée par des résultats expérimentaux. Les différentes fonctions de
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la méthode ne sont pas encore intégrées dans une carte électronique pour mettre en œuvre un
système de diagnostic autonome. L’intégration de tous les algorithmes développés au cours de
notre étude repose désormais sur un travail d’ingénierie pour mettre en œuvre un système fiable
et optimisé capable de s’adapter aux contraintes des systèmes embarqués.
L’intégration du système de diagnostic permet de d’évaluer le réseau filaire pendant son utilisa-
tion par un ou plusieurs systèmes simultanément. Ce diagnostic, appelé “diagnostic en ligne”,
permet une surveillance continue du réseau. Il est particulièrement utile dans la détection et la
localisation de défauts intermittents [9]. Le diagnostic en ligne offre la possibilité d’effectuer
un diagnostic parallèlement au fonctionnement du réseau natif. Ainsi, il permet d’être dans les
conditions réelles du système pour établir un diagnostic plus approfondi, comme la caractérisa-
tion des défauts intermittents.
Il est donc intéressant d’étudier comment les approches proposées peuvent s’intégrer dans un
système où d’autres protocoles voire signaux, partagent le même environnement. Il est donc
nécessaire de mettre en œuvre une amélioration de la méthode pour prendre en compte les
contraintes liées au mode “en ligne”, telles que la robustesse au bruit puisque le système de
diagnostic peut être soumis à toutes sortes de perturbations provenant soit des signaux utiles
du système lui-même ou de sources adjacentes. De plus, il ne doit pas être intrusif dans le
fonctionnement natif du système. En effet, les signaux de réflectométrie ne doivent pas inter-
férer avec les signaux utiles présents sur le réseau. Cette interférence peut fausser la réponse du
système. Par conséquent, il est nécessaire de mettre en œuvre une amélioration des méthodes
proposées dans ce travail pour fonctionner en mode “en ligne”.

Un autre axe de recherche serait l’application des approches proposées au diagnostic des
défauts dans les réseaux d’énergie. Dans ce cas, les défauts peuvent entraîner de graves pertes
économiques et réduisent la fiabilité du système électrique. Ainsi, il est intéressant de voir les
résultats des approches proposées pour de tels réseaux.
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