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Résumé :
Les approches standard de vérification de mo-

dèle se limitent à des spécifications concrètes, par
exemple “est-il possible d’atteindre une configu-
ration après que plus de 10 unités de temps se
soient écoulées ?”. Néanmoins, pour certains types
de programmes informatiques, comme les techno-
logies embarquées, les contraintes dépendent de
l’environnement. De là émerge la nécessité de spéci-
fications paramétriques, par exemple “est-il possible
d’atteindre une configuration après que plus de p
unités de temps se soient écoulées ?” où p désigne
un paramètre dont la valeur reste à spécifier.

Dans cette thèse nous étudions des variantes
paramétriques de trois modèles classiques, les au-
tomates à pile, à compteur, et temporisés. En plus
d’exprimer des contraintes concrètes (sur la pile, le
compteur ou les horloges), ces modèles peuvent ex-
primer des contraintes paramétriques via des com-
paraisons avec des paramètres. Le problème de
l’accessibilité consiste à demander s’il existe une
assignation des paramètres telle que il existe une
exécution acceptante dans l’automate concret en
résultant. Nous étudions également des jeux de
parité paramétriques, où deux joueurs choisissent
une évaluation pour chaque paramètre chacun leur
tour, puis déplacent un jeton dans le graphe de l’au-
tomate concret résultant. Nous nous intéressons
au problème de décider quel joueur dispose d’une
stratégie gagnante.

Les automates temporisés paramétriques ont
été introduit dans les années 90 par Alur, Henzin-
ger et Vardi, qui ont démontré que le problème de
l’accessibilité était indécidable, même avec seule-
ment trois horloges pouvant être comparées à des
paramètres, ou horloges paramétriques — mais déci-
dable dans le cas d’une seule horloge paramétrique.
Des résultats récents de Bundala et Ouaknine dé-
montrent que dans le cas de deux horloges paramé-
triques et un paramètre, le problème est décidable

ainsi que PSPACENEXP-dur. Un des principaux ré-
sultats de cette thèse consiste à démontrer le carac-
tère EXPSPACE-complet du problème. La borne
inférieure EXPSPACE repose sur des résultats ré-
cents de complexité avancée. Inspirés par Göller,
Haase, Ouaknine, et Worrell, nous visualisons la
classe EXPSPACE comme un langage de feuille
(vision qui repose sur le théorème de Barrington).
Nous introduisons un langage de programmation
qui peut reconnaître ce genre de langage de feuille.
Nous utilisons ensuite une représentation des en-
tiers sous forme de restes chinois dont Chiu, Davida
et Litow ont montré qu’elle permettait de calculer
en LOGSPACE la représentation binaire, et démon-
trons grâce à elle que les automates temporisés
paramétriques à deux horloges paramétriques et un
paramètre peuvent simuler notre langage de pro-
grammation. Pour la borne supérieure, à la façon de
Bundala et Ouaknine, nous réduisons le problème
au problème de l’accessibilité dans un type particu-
lier d’automates à compteur paramétrique. Nous
démontrons que ce problème est dans PSPACE.
Étant donné que notre réduction se fait en temps
exponentiel, cela conduit à une borne supérieure
EXPSPACE pour le problème de l’accessibilité dans
les automates temporisés paramétriques à deux hor-
loges et un paramètre.

En ce qui concerne les jeux de parités paramé-
triques pour les automates à piles paramétriques,
nous démontrons que le problème de déterminer
quel joueur a une stratégie gagnante est dans(n + 1)-EXP si le nombre de paramètres est fixé à
n, mais nonélémentaire sinon. Le caractère nonélé-
mentaire du problème est démontré par réduction
du problème de la satisfaisabilité des formules de la
logique du premier ordre. La borne supérieure est
obtenue via une réduction aux automates à pile de
piles, pour lesquels le problème des jeux de parités
est n-EXP-complet dans le cas de n niveaux de
piles.
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Abstract :
The most standard model checking approaches

are limited to verifying concrete specifications, such
as “can we reach a configuration with more than
10 time units elapsing ?”. Nevertheless, for certain
computer programs, like embedded systems, the
constraints depend on the environment. Thus arises
the need for parametric specifications, such as “can
we reach a configuration with more than p time
units elapsing ?” where p is a parameter which takes
values in the non-negative integers.

In this thesis, we study parametric pushdown,
counter and timed automata and extensions the-
reof. In addition to expressing concrete constraints
(on the stack, on the counter or on clocks), these
can employ parametric constraints. The reachability
problem for a parametric automaton asks for the
existence of an assignment of the parameters such
that there exists an accepting run in the underlying
concrete automaton. In addition to the reachabi-
lity problem, we consider parametric parity games,
two player games where players alternate choosing
assignments for each parameters, then alternate
moving a token along the configurations of the
concrete automaton resulting from their choice of
parameter assignment. We consider the problem of
deciding which player has a winning strategy.

Parametric timed automata (PTA for short)
were introduced in the 90s by Alur, Henzinger and
Vardi, who showed that the reachability problem
for PTA was undecidable, already when only three
clocks can be compared against parameters, and
decidable in the case only one clock can. We call
such clocks that can be compared to parameters
parametric clocks. A few years ago, Bundala and
Ouaknine proved that, for parametric timed auto-
mata with two parametric clocks and one parame-
ter ((2, 1)-PTA for short), the reachability problem
is decidable and also provided a PSPACENEXP lo-
wer bound. One of the main results of this thesis
states that reachability for (2,1)-PTA is in fact

EXPSPACE-complete. For the EXPSPACE lower
bound, inspired by previous work by Göller, Haase,
Ouaknine, and Worrell, we rely on a serializability
characterization of EXPSPACE (in turn originally
based on Barrington’s Theorem). We provide a pro-
gramming language and we show it can simulate
serializability computations. Relying on a logspace
translation of numbers in Chinese Remainder Re-
presentation to binary representation due to Chiu,
Davida, and Litow, we then show that small (2, 1)-
PTA can simulate our programming language. For
the EXPSPACE upper bound on (2,1)-PTA, we
first give a careful exponential time reduction to-
wards a variant of parametric one-counter automata
over one parameter based on a minor adjustment of
a construction due to Bundala and Ouaknine. We
solve the reachability problem for this parametric
one-counter automata with one parameter variant,
by providing a series of techniques to partition a
fictitious run into several carefully chosen subruns.
This allows us to prove that it is sufficient to consi-
der a parameter value of exponential magnitude
only, which in turn leads to a doubly-exponential
upper bound on the value of the only parameter
of the (2, 1)-PTA. We hope that extensions of our
techniques lead to finally establishing decidability
of the long-standing open problem of reachability
in PTA with two parametric clocks and arbitrarily
many parameters.

Concerning parametric pushdown automata,
our main result states that deciding the winner of
a parametric parity game is in (n + 1)-EXP in the
case the number of parameters n is fixed, but none-
lementary otherwise. We provide the nonelementary
lower bound via a reduction of the FO satisfiability
problem on words. For the upper bound, we reduce
parametric pushdown parity games to higher-order
pushdown automata parity games, which are known
to be n-EXP complete in the case of stacks of level
n.
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Résumé en Français

Les approches standard de vérification de modèle se limitent à des spécifications concrètes,
par exemple “est-il possible d’atteindre une configuration après que plus de 10 unités de temps
se soient écoulées?”. Néanmoins, pour certains types de programmes informatiques, comme les
technologies embarquées, les contraintes dépendent de l’environnement. De là émerge la nécessité
de spécifications paramétriques, par exemple “est-il possible d’atteindre une configuration après
que plus de p unités de temps se soient écoulées?” où p désigne un paramètre dont la valeur reste à
spécifier.

Dans cette thèse nous étudions des variantes paramétriques de trois modèles classiques, les
automates à pile, à compteur, et temporisés. En plus d’exprimer des contraintes concrètes (sur la
pile, le compteur ou les horloges), ces modèles peuvent exprimer des contraintes paramétriques
via des comparaisons avec des paramètres. Le problème de l’accessibilité consiste à demander s’il
existe une assignation des paramètres telle que il existe une exécution acceptante dans l’automate
concret en résultant. Le problème de l’accessibilité n’est pas le seul qui nous intéresse et nous
étudions également des jeux de parité paramétriques, où deux joueurs choisissent une évaluation
pour chaque paramètre chacun leur tour, puis déplacent un jeton dans le graphe de l’automate
concret résultant. Dans ce cas de figure, nous nous intéressons au problème de décider quel joueur
dispose d’une stratégie gagnante.

Les automates temporisés paramétriques ont été introduit dans les années 90 par Alur, Henzinger
et Vardi [5], qui ont démontré que le problème de l’accessibilité était indécidable, même avec
seulement trois horloges pouvant être comparées à des paramètres, mais décidable dans le cas où
une seule horloge peut l’être. Nous appelons les horloges pouvant être comparées à des paramètres
horloges paramétriques. Des résultats récents de Bundala et Ouaknine [17] démontrent que
dans le cas de deux horloges paramétriques et un paramètre, le problème est décidable ainsi que
PSPACENEXP-dur. Un des principaux résultats de cette thèse consiste à démontrer le caractère
EXPSPACE-complet du problème. La borne inférieure EXPSPACE repose sur des résultats récents
de complexité avancée. Inspirés par Göller, Haase, Ouaknine, et Worrell [47, 49], nous visualisons la
classe EXPSPACE comme un langage de feuille (vision qui repose sur le théorème de Barrington [9]).
Nous introduisons un langage de programmation qui peut reconnâıtre ce genre de langage de
feuille. Nous utilisons ensuite une représentation des entiers sous forme de restes chinois dont Chiu,
Davida et Litow [24] ont montré qu’elle permettait de calculer en LOGSPACE la représentation
binaire, et démontrons grâce à elle que les automates temporisés paramétriques à deux horloges
paramétriques et un paramètre peuvent simuler notre langage de programmation. Pour la borne
supérieure, à la façon de Bundala et Ouaknine [17], nous réduisons le problème au problème de
l’accessibilité dans un type particulier d’automates à compteur paramétrique. Nous démontrons
que ce problème est dans PSPACE à l’aide d’une série de techniques pour partitionner une exécution
éventuelle en différentes sous-parties que nous modifions ensuite bout à bout. Ces techniques
nous permettent de prouver qu’il est suffisant de considérer un paramètre dont la magnitude est
exponentiellement bornée. Étant donné que notre réduction se fait en temps exponentiel, cela
conduit à une borne supérieure EXPSPACE pour le problème de l’accessibilité dans les automates
temporisés paramétriques à deux horloges et un paramètre.

En ce qui concerne les jeux de parités paramétriques pour les automates à piles paramétriques,
nous démontrons que le problème de déterminer quel joueur a une stratégie gagnante est dans(n + 1)-EXP si le nombre de paramètres est fixé à n, mais nonélémentaire sinon. Le caractère
nonélémentaire du problème est démontré par réduction du problème de la satisfaisabilité des
formules de la logique du premier ordre. La borne supérieure est obtenue via une réduction aux
automates à pile de piles, pour lesquels le problème des jeux de parités est n-EXP-complet dans le
cas de n niveaux de piles [19].
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Introduction

Background

The goal of specification and verification is to study mathematical models that allow us to analyse
the behaviors of programs. Indeed, in order to make sure that a program functions as intended,
even for something as straightforward as a sorting algorithm, there can only be two approaches.
The first approach consists in making sure that the program functions as intended for every possible
input by executing the program for each of them. This is not in general possible since programs
often have an unbounded number of potential input, and, even when they do have a bounded
number of potential entries, this approach remains extremely time-consuming. The other approach
is to build a mathematical framework representing the program, translate the properties one wants
the program to meet into logical formulas, and verify that the mathematical structures statisfy the
formulas. This approach is known as model checking, and was initially proposed by Clarke and
Emerson [35, 26] and independently by Quielle and Sifakis [86, 87]. The model checking problem
asks, given a requirement expressed as a logical formula φ, and a program represented as an abstract
structure A, whether the program meets the requirement i.e. whether the structure satisfies the
formula. The requirements considered are often safety properties, stating that a “bad” state never
occurs, or liveness properties, stating that a “good” state will happen eventually [2]. In particular,
the requirements considered can usually be expressed using temporal logics such as linear temporal
logic (LTL) [85, 103] or computational tree logic (CTL) [26, 27], which can express safety and
liveness properties [96, 70, 61, 82]. Another branching time logic is the modal µ-calculus [92, 69],
which provides a unifying framework subsuming many other logics of interest including both LTL,
CTL and their superset CTL∗ [37, 34]. With this approach, making sure a program meets critical
design requirements becomes a mathematical question. Since our dependence on programs is only
ever increasing, it is crucial to be able to provide guarantees that programs function as intended.

There are two competing goals for mathematical models for specification and verification. The
first is expressivity: one wants models to represent a large body of possible programs, otherwise
they lack applications. For instance, the model of Turing machines is capable of implementing
any computer algorithm. The other requirement for mathematical models is to have desirable
decidability properties. As mentioned, the goal of model checking is to verify that some mathematical
structure satisfy some logical formula. Thus, one wishes for model checking formula for common
logics (LTL, CTL, CTL∗ or the modal µ-calculus for instance) to be decidable for the mathematical
structures one uses to model programs. A simpler question than that of decidability of the µ-
calculus model checking over mathematical structures is that of the reachability problem, which
asks for the existence of an execution that ends in a state belonging to a set of final states. Perhaps
one of the most important problems of verification, the reachability problem can already be used to
express safety properties, that is, to rule out the existence of an execution to a “bad” state. Turing
machines, despite or rather because of their high expressivity, are known to have bad decidability
properties. For instance the halting problem, that is the problem of determining, given a Turing
machine and an input, whether the execution of the Turing machine on the given input will finish
running or continue to run forever, is already undecidable [101, 31]. Automata are another example
of a mathematical framework used to model programs. They have good decidability properties, but
lack expressivity and cannot be used to represent certain programs. For instance when real-time
systems are considered, it is desirable to prove quantitative properties of such systems, for example

5
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that a certain action is always performed within a certain amount of time. Other examples include
recursive programs, and programs with variables over integers or other infinite domains. To provide
formalisms for such systems, various extensions of automata have been developed and studied.
Although such extensions are in general infinite objects, we are interested in infinite-state systems
that can finitely be described.

Notice that the question mentioned above “is a certain action always perfomed within a certain
amount of time t ?” is a concrete question. Such concrete timing questions can be answered using
concrete automata extensions, for instance timed automata [3, 4], automata extended with a finite
set of clocks that progress at the same rate, can be reset to zero and compared against concrete
timing constraints. In real life, however, the requirements one wants to ensure often depend on the
environment. Programs in embedded systems are an example of such a situation. This leads to the
need to reframe verification problems in parametric terms, i.e. ask rather the question “is there a
threshold N ∈ N such that a certain action will always be performed within N units of time ?”. For
studying such problems, Alur, Henzinger and Vardi laid the foundations for parametric reasoning
about real time in their seminal paper [5]. They introduced parametric timed automata, which
extend timed automata with a set of parameters and the ability to employ parametric constraints.
This parametric extension can be generalized to other models, that is, we can incorporate a set
of parameters P to the finite presentation of, for example, a counter automaton. A parameter
valuation for the parametric automaton is then a function from P to some set M (in the example,
N), which leads to a concrete automaton. In the case of an automaton with parameters (e.g. a
parametric timed automaton), a finite presentation represents a family of infinite-state systems,
as there is one concrete infinite-state system for every possible parameter valuation. Verification
questions can then be asked in parametric terms. Parametric verification has applications for
instance for the study of embedded systems [25], where the constraints depend on the environment,
and to capture uncertainties in timing behaviors [45]. A parametric reachability problem, given
an automaton with parameters, asks whether there is some parameter valuation such that the
resulting system can reach a final state. We will generally omit “parametric” and write simply
“reachability problem” when it is clear from context that the input automaton has parameters.

We want to reframe other model checking problems in parametric terms as well. Several model
checking problems can be encoded in terms of infinite two-player games, hence we are interested
in solving two player parametric games. In general a game is composed of an arena — a graph
where configurations are assigned to one of the two players, player 0 and player 1 — and a winning
condition — a set of (possibly infinite) sequences of configurations. A play is a (possibly infinite)
sequence of configurations, and is winning for player 0 if it lies in the winning condition. In a
reachability game, the winning condition is the set of all plays containing a final configuration. In a
parity game, the winning condition is rather given by a priority function assigning a color to every
configuration of the graph. The winner of a finite play is the player whose opponent is unable to
move, and the winner of an infinite play is determined by the priorities appearing in the play, with
player 0 winning if the largest priority that occurs infinitely often in the play is even, and player 1
winning if the largest priority that occurs infinitely often in the play is odd. Two player parity
games have applications to model checking properties, since the modal µ-calculus model checking
is polynomially equivalent to the problem of solving parity games [16]. We reframe parity games
in parametric terms too. In the case of an automaton with parameters, the choice of parameter
valuation then becomes another component of the game. Players alternate choosing values for the
parameters, and then alternate choosing successor configurations in the induced concrete system.
Winning conditions are defined as in the concrete case.

Scope and Contributions

We are interested in analysing parametric pushdown, one-counter and timed automata, i.e. automata
extended with a stack, counter or clocks that can be compared with parameters. These parameters
can take unspecified values over infinite domains, which here consists in the set of words (for
parametric pushdown automata) or the non-negative integers (for parametric one-counter automata
and parametric timed automata). Our interests lies in the parametric variants of requirements
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such as safety or liveness properties, in the form of the parametric reachability problem and the
problem of solving two player parametric games.

Parametric pushdown automata

Pushdown automata are an extension of automata allowing access to an infinite memory in the
form of a stack that can be manipulated in a “first-in/last-out” fashion. Despite having access
to an infinite memory, they retain desirable algorithmic properties. The reachability problem for
pushdown automata indeed can be solved in polynomial time [14, 40], and the µ-calculus model
checking problem can be solved in exponential time [104]. Pushdown automata are however more
expressive than classical automata, with applications to modeling recursive programs or to reason
about quantitative properties of systems [29, 41].

We define parametric pushdown automata (PPDA for short) as pushdown automata extended
with a finite set of parameters, and such that the stack can be checked against the parameters, that
can take values over the set of words over stack symbols. The study of games over graphs generated
by pushdown automata have been essential, in particular, the proof that the µ-calculus model
checking problem for pushdown automata is EXP-complete makes use of a reduction to pushdown
parity games [104]. Since parity games played on graphs generated by pushdown automata have
been essential to the study of model checking pushdown automata, we will study games over graphs
generated by PPDA.

Our main result concerning parametric pushdown automata is that the problems of solving
parametric reachability games and parametric parity games are in (n+1)-NEXP in case the number
of parameters n is fixed, but are nonelementary in the case of arbitrarily many parameters. For
the nonelementary lower bound on parametric pushdown reachability games, we reduce the FO
satisfiability problem on words, known to be nonelementary from [99], to the problem of deciding
whether player 0 has a winning strategy for the parametric reachability game generated by a
parametric pushdown automaton. For the upper bound, we start by replacing parameters by
pebbles acting as registers, leading to a more general model. We then reduce our problem to
higher-order pushdown automata parity games, where every pebble is simulated by using an
additional stack level. Since solving parity games on higher-order pushdown automata with level n
stack is n-EXP-complete [19, 20], this provides an (n + 1)-EXP upper bound for solving parametric
parity games on parametric pushdown automata with n parameters.

Parametric one-counter automata

Counter automata are an extension of automata allowing access to an infinite memory, this time
in the form of counters that can store integers that can be incremented, decremented and tested
for being zero. Unfortunately, this extension quickly leads to undecidability. Indeed, for every
Turing machine, there is a two counter automaton that simulates it [79], thus the reachability
problem for two-counter automata is undecidable. On the positive side the reachability problem
for one-counter automata with unary updates can be solved in nondeterministic linear time [32],
and it can be solved in nondeterministic polynomial time in the case of one-counter automata
allowing updates by constants written in binary, also called succinct one-counter automata [52].
One-counter automata retain desirable algorithmic properties, even when they are extended to
allow new types of tests, such as testing that the value of the counter belongs to a specific interval.
Counter automata are a useful formalism to reason about programs with pointers and linked lists
[13, 97]. Of note is that one-counter automata can be seen as a special case of pushdown automata
with only one stack symbol plus a bottom-of-stack symbol.

Parametric one-counter automata (POCA for short) provide a formalism to reason about
programs with behaviors that make use of parametric constraints or updates. Here, the counter can
additionally be incremented or decremented by parameters that can take unspecified non-negative
integer values. POCA are used in various synthesis problems, to model resources like time or
memory being consumed by transitions [107] and to model open programs whose behavior is
parameterized by some input values. For instance it is useful to model procedures embedded in a
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larger program. The reachability problem for POCA asks for the existence of an assignment of
the parameters to the non-negative integers such that there exists an execution that ends in a
state belonging to a set of final states in the underlying one-counter automaton. The reachability
problem in POCA is NP-hard since POCA includes succinct one-counter automata. The problem
has also been shown to be reducible to satisfiability in quantifier-free Presburger arithmetic with
divisibility [52], providing a NEXP upper bound [75].

We consider an extension of POCA where we allow the counter to be compared against param-
eters or against constants, which we call parametric threshold one counter automata (PTOCA).
A recent construction by Bundala and Ouaknine [17] ensures that reachability in PTOCA is
decidable in the case of one parameter. We study PTOCA with one parameter and consider, for an
assignment of the parameter to the non-negative integers, a fictitious execution where the counter
values are bounded by the value assigned to the parameter multiplied by some constant h that
depend only on the PTOCA. By a careful analysis, we prove that the existence of such an execution
implies the existence of an execution for an assignment of the parameter of lesser magnitude. This
in turn allow us to prove a PSPACE upper bound for the reachability problem for a (slight subclass
of) PTOCA with one parameter. We hope that extensions of our techniques lead to establishing
decidability of reachability in PTOCA with arbitrarily many parameters, and, in case decidability
holds, determining its precise computational complexity.

Parametric timed automata

Timed automata [4] are an extension of automata allowing access to an infinite memory in the
form of clocks that all progress at the same rate, that can be compared against specific constants,
and that can be reset to zero. They too retain desirable decidability properties despite the addition
of an infinite memory. The reachability problem for timed automata is indeed decidable and can
be solved using only polynomial space [3]. Timed automata provide maybe the most popular
formalism to reason about the behavior of real-time systems [98, 18].

Parametric timed automata (PTA for short) are an extension of timed automata in which clocks
can additionally be compared against parameters that can take unspecified non-negative integer
values. A clock of a PTA that is being compared to at least one parameter is called parametric.
The reachability problem for parametric timed automata asks for the existence of an assignment
of the parameters to the non-negative integers such that there exists an execution that ends in a
state belonging to a set of final states in the underlying timed automaton. On the negative side, it
has been shown in [5] that already for PTA that contain three parametric clocks reachability is
undecidable — even in the presence of a single parameter [10]. For PTA over one parametric clock,
the problem is NEXP-complete [17, 10]. Decidability of reachability in PTA over two parametric
clocks (without parameter restrictions) is still considered to be a challenging open problem to the
best of our knowledge. For instance, as already remarked in [5], there is an easy reduction from
the existential fragment of Presburger Arithmetic with divisibility to reachability in PTA over two
parametric clocks. In the presence of one parameter the problem has been shown to be decidable
and PSPACENEXP-hard [17].

Our main result concerning parametric timed automata is the EXPSPACE-completeness of the
reachability problem for parametric timed automata with two parametric clocks and one parameter.

For the EXPSPACE lower bound, inspired by [47, 49], we rely on a serializability characterization
of EXPSPACE (in turn originally based on Barrington’s Theorem [9]). We provide a programming
language that we show can simulate serializability computations. Relying on a logspace translation
of numbers in Chinese Remainder Representation to binary representation due to Chiu, Davida,
and Litow [24], we then show that with small PTA over two parametric clocks and one parameter
one can simulate the programming language.

For the EXPSPACE upper bound, we first give a careful exponential time reduction from
PTA over two parametric clocks and one parameter to the (slight subclass of) PTOCA over one
parameter mentioned above. Our construction is based on a minor adjustment of a construction
due to Bundala and Ouaknine [17]. In solving the reachability problem for parametric one-counter
automata with one parameter, we refer to our results on PTOCA reachability, that allows us to
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prove that it is sufficient to consider a parameter value of exponential magnitude. This allows
us to show a doubly-exponential upper bound on the value of the only parameter of PTA with
two parametric clocks and one parameter. We hope that extensions of our techniques lead to
finally establishing decidability of the long-standing open problem of reachability in PTA with two
parametric clocks (and arbitrarily many parameters) and, if decidability holds, determining its
precise computational complexity.

Overview of the thesis

In Chapter 1, we provide general notations and preliminary definitions. Chapter 2 will deal
with the introduction and motivation of infinite-state systems. Chapter 3 will introduce the
notion of automata extended with parameters, and parametric variants of classic problems such as
reachability, reachability games and parity games. Chapter 4 will deal with the model of parametric
one-counter automata. Chapter 5 will deal with a closely related model, that of parametric timed
automata. More precisely, we will discuss the complexity of the parametric reachability problem,
which we show to be EXPSPACE-complete in the case of parametric timed automata with one
parameter and two parametric clocks. Chapter 6 will deal with the model of parametric pushdown
automata. We concern ourselves here with parametric reachability games and parametric parity
games. We determine that the problems are in (n + 1)-EXP in the case the number of parameters
n is fixed, and provide a nonelementary lower bound in the general case.

Publications

Some of the results presented in this thesis have already been published in the article [48] coauthored
with my supervisor Stefan Göller, namely the results from Chapter 4 and Chapter 5.
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Chapter 1

Definitions

In this chapter, we introduce general notations and preliminary definitions. First, we concern
ourselves with basic mathematical objects and notations: numbers, words, (partial) functions.
Secondly, we introduce the general definition of transition systems. Thirdly, we define parity
games. Fourth, we define the complexity classes that will be of interest to us. Lastly, we recall the
definition of automata.

1.1 Preliminaries

For any two sets X and S, let XS denote the set of all functions from S to X. For any set S let
P(S) = {X ∣X ⊆ S} denote the power set of S. If a set S is finite, we denote its size by ∣S∣.
1.1.1 Numbers

By Z we denote the integers and by N = {0,1, . . .} we denote the non-negative integers. For
every a, b ∈ Z with a ≤ b we define [a, b] = {k ∈ Z ∣ a ≤ k ≤ b}. For every n ≥ 1 we define
nZ = {n ⋅ z ∣ z ∈ Z}. For every number n ∈ N we define log(n) = min{i + 1 ∣ i ∈ N, n ≤ 2i}, which
is the number of bits necessary to write down n in binary. For every finite set M ⊂ N ∖ {0} let
LCM(M) = min{n ≥ 1 ∣ ∀m ∈M ∶ m∣n} denote the least common multiple of the elements in M .
For any j ∈ N let LCM(j) = LCM([1, j]) denote the least common multiple of the numbers {1, . . . , j}.
For a real r ∈ R, ⌊r⌋ is the greater integer z such that z ≤ r.
1.1.2 Alphabets and words

For every set A we denote by A∗ the set of finite sequences of elements of A, and we denote by Aω

the set of infinite sequences of elements of A. If the set A is finite, A will be called an alphabet,
and we call the elements of A∗ words over A, and the elements of Aω infinite words over A. We
denote the union of A∗ and Aω by A∞. We denote the empty word by ε. For all a ∈ A and all
w ∈ A∗ let ∣w∣a denote the number of occurrences of the letter a in w, while ∣w∣ denotes the length
of the word. We denote by An the set of words of length n ∈ N over A.

For two words u, v ∈ A∗, we denote by u ⋅ v (often abreviated uv) the concatenation of the two
sequences. We say u is a prefix (resp. a suffix) of v if there exists a word w ∈ A∗ such that v = u ⋅w
(resp. v = wu).

For a word w = a0a1a2 . . . an−1 where ai ∈ A for all i ∈ [0, n − 1], we denote ai by w[i] for
0 ≤ i ≤ n−1 and call it the letter at position i. For each language L ⊆ A∗ let χL ∶ A∗ → {0, 1} denote
its characteristic function defined as

χL(w) = ⎧⎪⎪⎨⎪⎪⎩
1 if w ∈ L,
0 otherwise.

11
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1.1.3 Partial functions

A partial function f from a set S to a set X that is defined on a subset C ⊆ S is denoted by
f ∶ S ⇀ X. We call C (resp. f(C)) the domain of f (resp. image) and write it Dom(f) (resp.
Im(f)). If C = S then f is called total.

For a partial function f ∶ S ⇀X, for notational purposes, we will consider some element �X /∈X
and f can alternatively be associated with the function returning the bottom element �X when it
is undefined. Thus we write (X ⊎{�X})S for the set of all partial functions from S to X, which
we sometimes abbreviate as (X ⊎{�})S .

For a partial function f ∶ S ⇀X, the inverse image of an element x ∈X, denoted by f−1(x), is
the set {s ∈ S ∣ f(s) = x}.

We say a function f ∶ N→ N is monotonic non-decreasing if f for all i, j ∈ N such that i ≤ j, one
also has f(i) ≤ f(j). Let f and g denote total functions from N to N. We say f is asymptotically
bounded by g and write f(n) ∈ O(g(n)) if there exists a constant M ∈ N and a natural number no
such that

f(n) ≤M ⋅ g(n)
holds for all n ≥ no. We extend the notation to composition of functions i.e. if f, g, h are all total
functions from N to N, h is monotonic non-decreasing and f(n) ∈ O(g(n)), then we sometimes
write h(f(n)) ∈ h(O(g(n))) for h(f(n)) ∈ O(h(g(n))).
1.2 Transition systems

A labeled transition system (LTS for short) is a tuple T = (S,Λ,→) where S is a set of configurations,
Λ is a set of labels, and → ⊆ S ×Λ × S is a ternary relation, denoted as the set of labeled transitions.

We prefer to use infix notation and (s, a, s′) ∈ → will be abbreviated as s
aÐ→ s′ to represent a

transition from configuration s to configuration s′ with label a.

Labels can be used to represent the reading of an input, but also to represent an action performed
during the transition or conditions that must hold in order to allow the use of the transition.

A path in a labeled transition system from a source configuration s0 to a target configuration

sn is a sequence π = s0
a0Ð→ s1

a1Ð→ ⋯ an−1ÐÐ→ sn. We define the concatenation π1π2 of two paths π1

and π2 when the source configuration of π2 is equal to the target configuration of π1 as expected.

The length of π = s0
a0Ð→ s1

a1Ð→ ⋯ an−1ÐÐ→ sn is defined as ∣π∣ = n. We say the path is labeled by

a0a1, . . . an−1. For all w ∈ Λ∗, all s, s′ ∈ S, we will write s
wÐ→ s′ if there exists a path from s to s′

labeled by w.

An infinite path is an infinite sequence π = s0
a0Ð→ s1

a1Ð→ ⋯. For each infinite (resp. finite) path

π = s0
a0Ð→ s1

a1Ð→ ⋯ (resp. π = s0
a0Ð→ s1

a1Ð→ ⋯ an−1ÐÐ→ sn) and i, j ∈ N (resp. i, j ∈ [0, n]) with i < j we

denote by π[i, j] the path si
aiÐ→ si+1

ai+1ÐÐ→ ⋯ aj−1ÐÐ→ sj and by π[i] the configuration si. As expected,
a prefix of a finite or infinite path π is a finite path of the form π[0, j], and a suffix of a finite path
π is a path of the form π[i, n].
Given an infinite path π = s0

a0Ð→ s1
a1Ð→ ⋯ let Inf (π) = {s ∈ S ∣ ∀i ∃j > i sj = s}.

The set of successors of a configuration s ∈ S is defined as {s′ ∈ S ∣ ∃a ∈ Λ s
aÐ→ s′}. A configuration

without successors is called a dead end.

A labeled transition system (S,Λ,→) is deterministic if for all configurations s1, s2, s3 ∈ S and

all a ∈ Λ, s1
aÐ→ s2 and s1

aÐ→ s3 implies s2 = s3.

An (unlabeled) transition system is a pair T = (S,→) where S is a set of configurations and→ ⊆ S × S is a binary relation on the set of configurations, denoted as the set of transitions. We
again prefer to use infix notation and write s→ s′ to denote a transition from configuration s to
configuration s′ (i.e., (s, s′) ∈→).
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Note that an unlabeled transition system can be seen as a labeled transition system where the set of
labels consists of only one element. Determinism, (infinite) paths, their length, and concatenation
in unlabeled transition systems are then defined as expected.

1.3 Games

A game is composed of an arena and a winning condition. We will first study arenas and then
introduce common winning conditions that will be of interest to us.

1.3.1 Arenas

An arena is a tuple A = (S0, S1,→) which is composed of

• two disjoint sets of configurations, S0 and S1, whose disjoint union S0 ∪ S1 we denote by S,
and

• a relation of transitions → ⊆ S × S.

Note that (S,→), where S = S0⊎S1, forms a transition system, and, in particular, given a transition
system, one needs only to provide a partition of the set of configurations S into two sets S0 and S1

to obtain an arena.

The games we are interested in are played by two players, called player 0 and player 1. We will
often write player i to denote a general player for i ∈ {0, 1}, and we will call player 1− i its opponent.

1.3.2 Plays

A play in an arena A = (S0, S1,→) is a path in (S,→) that is maximal in the following sense: it is
either infinite or finite and if it is finite, then the target configuration is a dead end. A partial play
in an arena A = (S0, S1,→) is a prefix of a play in A.

Essentially plays can be seen as this: the two players, player 0 and player 1, move along the labeled
transition system, taking turns either infinitely often or until a dead end is reached.

1.3.3 Strategies

A strategy for player i ∈ {0,1} is a function σi ∶ S∗Si → S such that σi(ws) is a successor of s. A
strategy is called memoryless if its output only depends on the final configuration of the sequence
s ∈ Si, i.e. if σi(ws) = σi(w′s) for all w,w′ ∈ S∗. Thus, a memoryless strategy for player i can be
written as a function σi ∶ Si → S.

A partial play π = s0 → s1 → . . . → sn is consistent with a strategy σi if sequences of configu-
rations that end in Si along this play have all successors according to the strategy, i.e. if for all
j ∈ [0, n − 1], for all element vj ∈ Vi in the sequence π, vj+1 = σi(vj). Given a configuration s, a
strategy σ0 for player 0 and a strategy σ1 for player 1, the play starting with s that is consistent
with both strategies is unique and is called the resulting play of σ0 and σ1 starting from s. It is
denoted by π(s, σ0, σ1).

1.3.4 Winning conditions

Once we have provided players with an arena, it remains to define properly what the winning
condition is in order to define a game. Given an arena A = (S0, S1,→), a winning condition Win is
a subset of the set of maximal plays for A. A game is a pair G = (A,Win) which is composed of



14 CHAPTER 1. DEFINITIONS

Figure 1.1: An example of an arena. Circles belong to player 0, whereas diamonds belong to player
1. Arrows represent transitions from a configuration to the next. The priority assigned by the
priority mapping to each configuration is a number in {0,1,2,3}, next to the configuration it is
assigned to. Note that we do not have a dead end in our example.

an arena A and a winning condition Win. Although a winning condition is in general an infinite
object we are interested in winning conditions that can finitely be described.

A strategy σ0 for player 0 from position s ∈ S is a winning strategy from s for player 0 if every
maximal play starting from s and consistent with σ0 is in Win. On the other hand, a strategy
σ1 for player 1 from position s ∈ S is a winning strategy from s for player 1 if every maximal play
starting from s and consistent with σ1 is not in Win.

Reachability Games We first consider reachability games: the winning condition WinF (S) is
given by a set of final configurations F ⊆ S, and WinF (S) is the set of maximal plays in S∗FS∞.
We simply write WinF in case the set S is obvious from context. To indicate that the winning
condition of a game is a reachability winning condition, we will speak of reachability games.

With regards to reachability games, we are going to concern ourselves with games over poten-
tially infinitely large arenas, and we are interested in the following decision problem.

Reachability game

INPUT: A reachability game G = ((S0, S1,→),WinF ), an initial configuration s ∈ S0 ∪ S1.
QUESTION: Does player 0 have a winning strategy from s in G?

Parity Games Secondly, we consider min-parity games: the winning condition WinΩ(S) is
given by a priority function Ω ∶ S → [0,m]. An infinite path π = s0s1s2 . . . is in WinΩ(S) if the
smallest priority appearing infinitely often in the sequence is even, i.e. if min({Ω(s)∣ s ∈ Inf (π)})
is even. A finite play is in WinΩ(S) if its target configuration is in S1. We simply write WinΩ in
case the set S = S0⊎S1 is obvious from context. To indicate that the winning condition of a game
is a parity winning condition, we will speak of parity games.

With regards to parity games, we are going to concern ourselves with games over potentially
infinitely large arenas, and we are interested in the following decision problem.

Parity game

INPUT: A parity game G = ((S0, S1,→),WinΩ), an initial configuration s ∈ S0 ∪ S1.
QUESTION: Does player 0 have a winning strategy from s in G?
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Example 1. Let us consider the arena presented in Figure 1.1. Configurations are partitioned
into two sets: the circles, belonging to player 0, and the diamonds, belonging to player 1. The
priorities are {0,1,2,3}. Consider the game on the arena, where the winning condition is a parity
condition. Plays π1 = q0q1q2(q4q7)ω and π2 = (q0q1q2q4)ω are both winning for player 0. Indeed, in
π1, the minimal priority encountered infinitely often is 2, whereas in π2, it is 0. In both cases, it is
an even number. On the other hand, the plays π3 = (q5q3q6)ω and π4 = (q5q6)ω are both winning
for player 1: the minimal priority encountered is odd, since it is 1 for both.

One can take matters further: on this arena, player 0 has a winning strategy for the parity
game from q0, q1, q2, q4 and q7, but not from q5, q3 nor q6, where player 1 has a winning strategy.

One important property of parity games is that of memoryless determinacy: for a parity gameG = ((S0, S1,→),WinΩ) and an initial configuration s ∈ S0∪S1, one of the players has a memoryless
winning strategy from s [108].

Of note is that several model checking problems can be expressed as decision problems for games:
the most famous example is that the modal µ-calculus model checking problem is polynomially
equivalent to solving the parity game problem.

1.4 Complexity

We assume the reader is familiar with Turing machines. A proper definition of space bounded
deterministic Turing machines is provided in Section 5.2.1, where a more thorough analysis of their
behavior is required.

We now provide an overview of time and space complexity classes. We say a Turing machine
is f(n)-time bounded if for any input word w of size n, the length of any computation on w is at
most f(n). We say a Turing machine is f(n)-space bounded if f(n) is the size of its working tape
for any computation of the Turing machine on an input of length n.

By P, and EXP we denote the classes of all problems that can be decided by a deterministic
Turing machine who is polynomially or exponentially time bounded, respectively and by NP, and
NEXP we denote the classes of all problems that can be decided by a non-deterministic Turing
machine that is polynomially or exponentially time bounded, respectively.

By L, PSPACE, and EXPSPACE we denote the classes of all problems that can be decided by a
deterministic Turing machine that is logarithmically, polynomially, exponentially space bounded,
respectively. We do not explicitly define NPSPACE and NEXPSPACE since by Savitch’s theorem [90]
they are equivalent to PSPACE and EXPSPACE respectively. We do however define NL as the class
of all problems that can be decided by a nondeterministic Turing machine that is logarithmically
space bounded.

We define the tower function T ∶ N × R → R by T (0, r) = r and T (h + 1, r) = 2T (h,r) for all
h ∈ N, r ∈ R. Thus T (h, r) is a tower of 2s of height h with an r sitting on top, i.e.

T (h, r) = 2222
⋅
⋅
⋅

2r ⎫⎪⎪⎪⎬⎪⎪⎪⎭height h

Observe that for all n,h ∈ N with n ≥ 1, we have T (h, log(h)(n)) = n. Here a problem is in
ELEMENTARY if there exists h ∈ N such that it can be solved in time O(T (h,0)). By h-EXP we
denote the class of all problems that can be decided by a deterministic Turing machine who is
T (h, f(n))-time bounded for some polynomial function f . The complexity class h-EXPSPACE is
defined analogously.

Finally, by PSPACENEXP we denote the class of all problems that can be decided by a determin-
istic Turing machine that is polynomially space bounded, and that has access to results from an
oracle in NEXP.

A true/false problem is decidable if there exists a time bounded Turing Machine that answers the
question asked by the problem. If there exists no such Turing Machine, the problem is undecidable.
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Figure 1.2: A finite automaton that accepts {a, b}∗ab{a, b}∗. The automaton consists of three
states, the input alphabet is {a, b}. The transitions are represented by arrows labeled with the
corresponding input symbol. The initial state is q0 and the set of final state is composed of the
singular state qf .

For a complexity class C ∈ {NP,PSPACE,NEXP,PSPACENEXP,EXPSPACE, h−EXP, h−EXPSPACE},
we say a problem P is C-hard when every problem in C can be reduced in polynomial time to P .
For a complexity class C ∈ {NL,P} we say a problem P is C-hard when every problem in C can be
reduced to P using logarithmic space only. When a problem P is both C-hard and in C, we call it
C-complete.

For more information on Turing machines in the broader definition, we refer the reader to
[84, 7], which provide further details on complexity theory as well.

1.5 Automata

A finite automaton is a tuple A = (Q,Σ,R, qinit, F ), where

• Q is a finite set of states,

• Σ is a finite input alphabet,

• R ⊆ Q ×Σ ×Q is a transition relation,

• qinit ∈ Q is the initial state, and

• F ⊆ Q is a set of final states.

A finite automaton A = (Q,Σ,R, qinit, F ) induces the finite labeled transition system (Q,Σ,R).
The size of A is defined as ∣A∣ = ∣Q∣ + ∣Σ∣ + ∣R∣.
A run from q0 to qn in A is a path in the labeled transition system (Q,Σ,R) induced by A,

and will be noted q0
a0Ð→ q1

a1Ð→ ⋯ an−1ÐÐ→ qn, for a0, . . . , an−1 ∈ Σ. We sometimes use the abbreviation
q →∗ q′ to denote a run of arbitrary length from q to q′. We say π is accepting if q0 = qinit and
qn ∈ F .

We say a word w ∈ Σ∗ is accepted by A if qinit
wÐ→ q in (Q,Σ,R) for some q ∈ F . The language

of A is L(A) the set of elements accepted by A. We say a language L is regular if there exists a
finite automaton A such that L = L(A).

Example 2. See Figure 1.2 for an example of an automaton that accepts the language {a, b}∗ab{a, b}∗.

We are interested in the following decision problem.

Automata reachability

INPUT: A finite automaton A.
QUESTION: Does there exists an accepting run in A?

We refer the reader to [57] for more details on finite automata and regular languages.



Chapter 2

Models of infinite-state systems

Automata, as defined above, are an example of finite-state machines. In general however transition
systems can have an infinite number of configurations. It is possible nonetheless for some transition
systems with an infinite number of configurations to have a finite presentation: this is the case
for instance for the transition systems induced by a Turing machines. However Rice [88] showed
that there is no general algorithm that, given a Turing machine, can determine whether the Turing
machine meets any nontrivial semantic specification, where a specification is called trivial if it is
either true for every Turing machine or false for every Turing machine.

Several other cases of transition systems with an infinite number of states but finite representation
exist, with less expressive power, but better decidability properties. In particular, stack-based
automata provide a mathematical framework for modeling the sequential behavior of computer
programs. They are essentially finite automata that have access to an infinite memory that can
be manipulated in a “first-in/last-out” fashion. Pushdown automata are a widely-used formalism
with applications in, e.g., inter-procedural control-flow analysis of recursive programs [29, 41] and
model checking [14].

A similar example is that of counter automata, that is, automata extended with a set of
counters with integer values. One of the earliest results about counter automata was obtained
by Minsky who showed that already reachability in counter automata is undecidable even when
restricted to two counters only [79]. For this reason, we restrict ourselves to the consideration of
one-counter automata. There are other restrictions that lead to decidability for instance flatness
(see [28, 76]) or the removal of zero tests, which corresponds to vector addition systems with states
(see [78, 68, 89]). Note that a one-counter automaton is essentially a pushdown automaton with
only two stack symbols one of which is used as a bottom-of-stack symbol only. In the case of
one-counter automata it is a classical result that the reachability problem is NL-complete [102, 71].
When one-counter automata are extended with counter updates encoded in binary the reachability
problem becomes NP-complete [53].

Another particular framework of infinite-state systems is that of timed automata. Introduced
by Alur and Dill [4] in the 1990’s, they too are essentially finite automata that have access to an
infinite memory, this time however in the form of clocks that all progress at the same rate, that
can be compared against constants and that can be individually reset to zero. While traces of
runs in the transition system generated by a finite-state machine only allow for reasoning about
the relative order of events, timed automata additionally incorporate timing information between
them. They provide a popular formalism to reason about the behavior of real-time systems with
desirable algorithmic properties; for instance the reachability problem is decidable and in fact
PSPACE-complete [3].

Since we do not concern ourselves with the study of the languages accepted by such systems,
but rather with the complexity of decision problems such as reachability games and parity games,
we omit the input alphabet both from our considerations and from the automata definitions. We
then discuss the introduction of a set of parameters to these three models, whose consequences on
the complexity results are going to be studied in more detail in corresponding sections.

17
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Figure 2.1: A pushdown automaton. The automaton consists of three states, the stack alphabet
is {$,A}. The rules are represented by arrows labeled with the corresponding pair of topmost
stack symbols ∣ stack operation. The initial state is q0 and the set of final state is composed of the
singular state qf . To reach qf , the automaton first adds to the stack a certain number of A’s in q0,
then removes from the stack the same number of A’s while in q.

2.1 Pushdown automata

A pushdown automaton is an automaton extended with a stack that can be manipulated by pushing
or popping stack symbols from some stack alphabet. Moreover, the automaton can use the top of
the stack to decide which transition to take next.

A stack over an alphabet Γ (or stack content) is simply a word in Γ∗. We denote the base set of
stack operations on a stack over Γ as Op(Γ) = {pushγ ∣ γ ∈ Γ} ∪ {pop, skip}.

Formally, a pushdown automaton (PDA for short) is a tuple Z = (Q,Γ,R, qinit, γinit, F ) where

• Q is a non-empty finite set of states,

• Γ is a non-empty finite stack alphabet,

• R ⊆ Q × Γ ×Q ×Op(Γ) is finite set of rules,

• qinit ∈ Q is the initial state,

• γinit ∈ Γ is the initial stack symbol and

• F ⊆ Q is a set of final states.

The size of Z is defined as ∣Z ∣ = ∣Q∣ + ∣Γ∣ + ∣R∣. Unlike standard notation we write the top of the
stack at the rightmost letter of the word. By Conf(Z) = Q × Γ∗ we denote the set of configurations
of Z. We rather write q(w) instead of (q,w) to denote elements of Conf(Z).
A PDA Z = (Q,Γ,R, qinit, γinit, F ) induces a transition system TZ = (Conf(Z),→Z) where for all
q, q′ ∈ Q, for all w,w′ ∈ Γ∗, for all a ∈ Γ, q(wa)→Z q′(w′) if there exists some rule (q, a, q′, op) ∈ R
such that either of the following holds

• op = pushγ and w′ = waγ,

• op = pop and w′ = w, or

• op = skip and w′ = wa.

A run π from q0(w0) to qn(wn) in Z is a path q0(w0)→Z q1(w1)→Z ⋯→Z qn(wn) in TZ . We
say π is accepting if q0(w0) = qinit(γinit) and qn ∈ F . We refer to Figure 2.1 for an instance of a
PDA for which there exists an accepting run.
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PDA reachability We are first concerned with the following problem.

PDA reachability

INPUT: A PDA Z.
QUESTION: Does an accepting run exist in Z?

It is known that the reachability problem for pushdown automata can be solved in polynomial
time, as shown by Bouajjani, Esparza, and Maler in [14]. See for instance [91] for more details.

Theorem 3. [14] PDA reachability is in P.

PDA games Pushdown automata have also been studied from the point of view of model
checking several logics, such as LTL or the modal µ-calculus. As mentioned, the µ-calculus model
checking problem is polynomially equivalent to solving the parity game problem, both for finite
arenas [36], and also in the case of infinite arena induced by pushdown automata [105]. Hence, we
are naturally interested in games on the transition systems generated by pushdown automata.

Given a transition system, one needs only to provide a partition of the set of configurations S
into two sets S0 and S1 to obtain an arena.

Given a pushdown automaton Z and a partition of Q into Q0 and Q1, we partition the
configurations of the transition system TZ into ConfZ,0 = Q0 × Γ∗ and ConfZ,1 = Q1 × Γ∗.

With these notations in mind one can define the arena

A(Z,Q0,Q1) = (ConfZ,0,ConfZ,1,→Z)
induced by a PDA Z and a partition of its set of states.

Similarly, given a priority function Ω ∶ Q→ [0,m], we naturally extend the function as follows,
by setting ΩΓ∗ ∶ Conf(Z)→ [0,m] and ΩΓ∗(q,w) = Ω(q) for all w ∈ Γ∗.

We recall results for games over pushdown automata’s transition systems, namely, reachability
and parity games.

Pushdown reachability game

INPUT: A pushdown automata Z = (Q,Γ,R, qinit, γinit, F ), where Q = Q0⊎Q1.
QUESTION: Does player 0 have a winning strategy from qinit(γinit) in the reachability gameG = (A(Z,Q0,Q1),WinF×Γ∗) ?

Pushdown parity game

INPUT: A pushdown automata Z = (Q,Γ,R, qinit, γinit, F ), where Q = Q0⊎Q1, and a
priority function Ω ∶ Q→ [0,m].

QUESTION: Does player 0 have a winning strategy from qinit(γinit) in the parity game G =(A(Z,Q0,Q1),WinΩΓ∗ ) ?

For parity games for pushdown automata, it is known from [105] that determining the winner
is an EXP-complete problem. An important corollary of this result is that the µ-calculus model
checking problem for pushdown automata is EXP-complete. Since the lower bound provided in
[105] makes use of a reachability winning condition, the following is known.

Theorem 4. [105] Pushdown parity game and Pushdown reachability game are both
EXP-complete.

2.2 One-counter automata

A one-counter automaton is an automaton extended with a counter that can be manipulated by
incrementing or decrementing the counter. Moreover, the automaton can compare the value of the
counter against zero to decide which transition to take next.
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We denote the base set of counter operations, as Op± ∪ Op0, where Op± = {−1,0,+1} and
Op0 = {= 0,> 0}.

A one-counter automaton (OCA for short) is a tuple C = (Q,R, qinit, F ), where

• Q is a non-empty finite set of states,

• R ⊆ Q × (Op± ∪Op0) ×Q is a finite set of rules,

• qinit is an initial state, and

• F ⊆ Q is a set of final states.

The size of C is defined as ∣C∣ = ∣Q∣ + ∣R∣. By Conf(C) = Q ×Z we denote the set of configurations
of C. We prefer however to abbreviate a configuration (q, z) by q(z).

Being slightly non-standard we define configurations to take counter values over Z rather than
over N for notational convenience. This does not cause any loss of generality as we allow guards
that enable us to test if the value of the counter is greater or equal to zero.

Previously, such as in [17] or [52], slightly different sets of operations have been used such
as operations to increment the counter by a constant represented in binary, i.e. with operations
in Op±N = {+c ∣ c ∈ Z}, where ∣+c∣ = log(∣c∣), or operations to compare the counter against some
natural number, i.e. with operations in Op& = {&c ∣ & ∈ {<,≤,=,≥,>}, c ∈ N}, where ∣&c∣ = log(∣c∣)
for & ∈ {<,≤,=,≥,>}. One-counter automata which allow binary updates in Op±N and tests in Op0

will be called Succinct one-counter automata (SOCA for short). The size of a SOCA C is defined
slightly differently as the size of an OCA as ∣C∣ = ∣Q∣ + ∣R∣ +∑(q,op,q′)∈R ∣op∣.

A one-counter automaton C = (Q,R, qinit, F ) induces the labeled transition system TC =(Conf(C),ΛC ,→C) where ΛC = Op and where →C is defined such that for all q, q′ ∈ Q, for all z, z′ ∈ Z,

for all op ∈ Op, q(z) opÐ→C q′(z′) if (q, op, q′) ∈ R and either of the following holds

• op = c ∈ Op± and z′ = z + c, or

• op = &0 ∈ Op0, z = z′ and z & 0.

A run in C from q0(z0) to qn(zn) is a path in TC , i.e. a sequence, possibly empty (i.e. n = 0),
of the form

π = q0(z0) π0Ð→C q1(z1) ⋯ πn−1ÐÐ→C qn(zn).
We say π is accepting if q0 = qinit, z0 = 0, and qn ∈ F .

Given a run π = q0(z0) op0ÐÐ→C q1(z1) ⋯ opn−1ÐÐÐ→C qn(zn), we define the counter effect of π as
∆(π) = zn − z0. We define Values(π) = {zi ∣ i ∈ [0, n]} to denote the set of counter values of the
configurations of π. We define a non-empty run π’s maximum as max(π) = max(Values(π)) and
the minimum as min(π) = min(Values(π)).

As mentioned, OCA can be seen as a particular case of PDA.

Remark 5. For every OCA C one can compute in polynomial time a PDA Z inducing an
isomorphic transition system.

Proof. In order to use its stack to model integers in Z, a pushdown automaton needs only
three stack symbols one of which serves as a bottom-of-stack symbol only: +1, −1 and $. The
symbol $ corresponds to 0, while $(+1)n and $(−1)n correspond to integers n and −n respectively.
The translation is straightforward: Z uses the same set of states, to any rule (q,+1, q′) of C
correspond rules (q,$, q′,push+1), (q,+1, q′,push+1), and (q,−1, q′,pop) in Z, to any rule (q,−1, q′)
of C correspond rules (q,$, q′,push−1), (q,−1, q′,push−1), and (q,+1, q′,pop) in Z, to any rule
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(q,+0, q′) of C correspond rules (q,$, q′, skip), (q,−1, q′, skip), and (q,+1, q′, skip) in Z, rules of the
form (q,= 0, q′) of C correspond to rule (q,$, q′, skip) in Z and finally rules of the form (q,> 0, q′)
of C correspond to rule (q,+1, q′, skip) in Z. Thus the construction has polynomial size.

OCA and SOCA reachability We consider the following decision problem.

OCA reachability

INPUT: An OCA C.
QUESTION: Does an accepting run exist in C?

We write SOCA reachability when the input is a succinct one-counter automaton rather
than a one-counter automaton.

As OCA can be seen as special cases of PDA, it follows that solving the reachability problem
can be done in polynomial time. The problem is actually in NL, see e.g. the works by Lafourcade
et al. [71]. NL-hardness then trivially follows from NL-hardness of reachability in directed graphs.

Theorem 6. [71, 102] OCA reachability is NL-complete.

Succinct one-counter automata, i.e. one-counter automata that allow counter increments and
decrements by constants written in binary, and zero tests, have however yielded very different
results for this problem.

Theorem 7. [53] SOCA reachability is NP-complete.

OCA and SOCA games As with pushdown automata, given an OCA C = (Q,R, qinit, F ), and
a partition of Q into Q0 and Q1, we partition the configurations of the transition system TC into
ConfC,0 = Q0 ×Z and ConfC,0 = Q0 ×Z.

With these notations in mind one can define the arena

A(C,Q0,Q1) = (ConfC,0,ConfC,1,EC)
induced by a OCA C and a partition of its set of states, where EC is the binary relation such that

for all q(z), q′(z′) ∈ Conf(C), (q(z), q′(z′)) ∈ EC iff q(z) opÐ→C q′(z′) for some op ∈ Op± ∪Op0. The
construction of an arena for a SOCA follows the same pattern.

Again, given a priority function Ω ∶ Q→ [0,m], we naturally extend the function as follows, by
setting ΩZ ∶ Conf(C)→ [0,m] and ΩZ(q, z) = Ω(q) for all z ∈ Z.

We recall results for games over OCA and SOCA transition systems, namely, reachability and
parity games.

OCA reachability game

INPUT: A OCA C = (Q,R, qinit, F ), where Q = Q0⊎Q1.
QUESTION: Does player 0 have a winning strategy from qinit(0) in the reachability gameG = (A(C,Q0,Q1),WinF×Z) ?

OCA parity game

INPUT: A OCA C = (Q,R, qinit, F ), where Q = Q0⊎Q1, and a priority function Ω ∶ Q →[0,m].
QUESTION: Does player 0 have a winning strategy from qinit(0) in the parity game G =(A(C,Q0,Q1),WinΩZ) ?

As before we write SOCA reachability game and SOCA parity game when the input is
a SOCA rather than a OCA.

PSPACE-hardness of the OCA reachability game problem was proved in 1995 by Holzer [60].
A more self-contained proof was later provided by Jančar and Sawa in [65]. As OCA can be seen as
special cases of PDA, it follows that deciding the winner in a parity game played on the transition
graph of an OCA can be achieved in EXP. This upper bound has been improved by Serre [95],
who provided a matching PSPACE upper bound.
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Theorem 8. [95, 65] OCA reachability game and OCA parity game are both PSPACE-
complete.

This problem is again more difficult to solve in the case of SOCA.

Theorem 9. [63] SOCA reachability game and SOCA parity game are both EXPSPACE-
complete.

2.2.1 Bounded one-counter automata

Note that even without syntactic Op& test, one can still perform “> c” tests by using a gadget
consisting of a −c, followed by a > 0 test, followed by a +c and, similarly, one can still perform
“= c” tests by using a gadget consisting of a −c, followed by a = 0 test, followed by a +c. However
note that “< c” tests cannot be performed in a similar way. In order to enforce upper bounds
on the counter values, bounded counter automata have been introduced. A bounded one-counter
automaton has a single counter that can store values between 0 and some bound b > 0. The
automaton may increase or decrease the counter by constants written in binary as long as this
doesn’t make the counter strictly larger than b or strictly smaller than 0. It may also compare the
counter against constants written in binary.

A bounded one-counter automaton (BOCA for short) is a tuple C = (Q,R, b, qinit, F ), where

• Q is a non-empty finite set of states,

• R ⊆ Q × (Op±N ∪Op&) ×Q is a finite set of rules,

• b ∈ N ∖ {0} is a bound,

• qinit is an initial state, and

• F ⊆ Q is a set of final states.

The size of C is defined as ∣C∣ = ∣Q∣ + ∣R∣ + log(b) +∑(q,op,q′)∈R ∣op∣. Configurations of a bounded
counter automata belong to Q × [0, b]. Let Consts(C) denote the constants that appear in the
operations op ∈ Op& for some rule (q, op, q′) in R. Accepting runs are defined analogously as for
OCA.

BOCA reachability We consider the following problem.

BOCA reachability

INPUT: A BOCA C.
QUESTION: Does an accepting run exist in C?

It was shown in [42] that the reachability problem for bounded one-counter automata is
PSPACE-complete.

Theorem 10. [42] BOCA reachability is PSPACE-complete.

The presence of “< c” tests is of interest to us since they serve to provide polynomial inter-
reducibility between reachability in timed automata and BOCA as established in [54].

2.3 Timed automata

A guard over a finite set of clocks Ω is a comparison of the form ω & c, where ω ∈ Ω, c ∈ N, and& ∈ {<,≤,=,≥,>}. We denote by Guards(Ω) the set of guards over the set of clocks Ω. The size of
a guard g = ω & c is defined as ∣g∣ = log(c). A clock valuation is a function from Ω to N; we write 0⃗
to denote the clock valuation ω ↦ 0 whenever the set Ω is clear from the context. For each clock
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valuation v and each t ∈ N we denote by v + t the clock valuation ω ↦ v(ω) + t. For each guard
g = ω & c with c ∈ N, we write v ⊧ g if v(ω) & c.

A timed automaton is a finite automaton extended with a finite set of clocks Ω that all progress
at the same rate and that can individually be reset to zero. Moreover, every transition is labeled
by a guard over Ω and by a set of clocks to be reset.

Formally, a timed automaton (TA for short) is a tuple A = (Q,Ω,R, qinit, F ), where

• Q is a non-empty finite set of states,

• Ω is a non-empty finite set of clocks,

• R ⊆ Q × G(Ω) ×P(Ω) ×Q is a finite set of rules,

• qinit ∈ Q is an initial state, and

• F ⊆ Q is a set of final states.

We also refer to A as an n-TA if ∣Ω∣ = n. The size of A is defined as

∣A∣ = ∣Q∣ + ∣Ω∣ + ∣R∣ + ∑
(q,g,U,q′)∈R

∣g∣.
Let Consts(A) = {c ∈ N ∣ ∃(q, g,U, q′) ∈ R, ∃ω ∈ Ω,& ∈ {<,≤,=,≥,>} ∶ g = ω & c} denote the set of
constants that appear in the guards of the rules of A.

By Conf(A) = Q×NΩ we denote the set of configurations of A. We prefer however to abbreviate
a configuration (q, v) by q(v).

A TA A = (Q,Ω,R, qinit, F ) induces the labeled transition system TA = (Conf(A),ΛA,→A)
where ΛA = R ×N and where →A is defined such that, for all (δ, t) ∈ R ×N with δ = (q, g,U, q′) ∈ R,

for all q(v), q′(v′) ∈ Conf(A), q(v) δ,tÐ→A q′(v′) if v+t ⊧ g, v′(u) = 0 for all u ∈ U and v′(ω) = v(ω)+t
for all ω ∈ Ω ∖U .

A run from q0(v0) to qn(vn) in A is a path in the transition system TA, that is, a sequence

π = q0(v0) δ1,t1ÐÐ→A q1(v1)⋯ δn,tnÐÐÐ→A qn(vn); it is called reset-free if for all i ∈ {1, . . . , n}, δi = (gi,∅)
for some guard gi.

We say π is accepting if q0(v0) = qinit(0⃗) and qn ∈ F .
It is worth mentioning that there are further modes of time valuations and guards which exist

in the literature, we refer to [6] for a recent overview. Notably, we consider in this thesis only
the case of timed automata over discrete time. It is worth mentioning that in the case of timed
automata over continuous time (i.e. with clocks having values in R≥0), techniques [58, 83] exist
for reducing the reachability problem to discrete time in the case of closed (i.e. non-strict) clock
constraints ranging over integers.

TA reachability We consider the following problems.

n-TA reachability

INPUT: An n-TA A.
QUESTION: Does an accepting run exist in A?

TA reachability

INPUT: A TA A.
QUESTION: Does an accepting run exist in A?

Using a technique called region abstraction, Alur and Dill proved the following theorem.

Theorem 11. [4] TA reachability is PSPACE-complete.
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This result was later refined by Courcoubetis and Yannakakis who showed that PSPACE-hardness
already holds if A is a 3-TA.

Theorem 12. [30] 3-TA reachability is PSPACE-complete.

The cases with less than three clocks were left out in [30] and later discussed by Laroussinie,
Markey, and Schnoebelen, who showed that reachability in one-clock timed automata is NL-complete
and NP-hard for two clocks [72].

Theorem 13. [72] 1-TA reachability is NL-complete.

The gap in the case of two clocks was left open for some time before Fearnley and Jurdziński
showed that reachability in two-clock timed automata is PSPACE-complete [42].

Theorem 14. [42] 2-TA reachability is PSPACE-complete.

Timed automata have been tied to the study of automata extended with counters. For instance,
the undecidability proof of the universality problem for nondeterministic timed automata by Alur
and Dill [4] proceeds via a reduction from reachability in two-counter automata. On a different
note, it has been shown that BOCA reachability is polynomial time inter-reducible to reachability
in 2-TA automata [54].

Theorem 15. [54] 2-TA reachability is polynomial time inter-reducible with BOCA reacha-
bility.



Chapter 3

Parametric systems

The infinite-state systems defined in the precedent chapter are widely used to model the behavior
of computer programs. Essentially these approaches however address only concrete specifications.
For instance, one can ask, given a program, whether a certain set of states is reachable without
some counter exceeding a threshold value 2048, or one can ask whether a certain set of states is
reachable after having more than 10 time units elapse. For certain types of computer programs
however, such as embedded systems, the constraints depend on some environment, and concrete
constraints are useful only when restricting oneself to a given concrete environment. In real life, it
thus makes sense to rather ask, for instance, whether there exists a threshold value t such that
a certain set of states is reachable without some counter exceeding t, or to ask whether for all
threshold t a certain set of states is reachable after having more than t time units elapse. Hence
the need to study under-specified systems, and parametric constraints.

In order to understand the behavior of such under-specified systems, Alur, Henzinger and Vardi
have introduced parametric timed automata in their seminal paper [5]. In addition to expressing
concrete timing constraints, these can employ parametric constraints. Verification of the desired
behavior of the system is then performed without concrete values. Their model laid the foundations
for parametric reasoning about real time. With similar considerations, it has also been natural to
consider extensions of one-counter automata allowing updates that increase or decrease the counter
by integer parameters [64, 15].

In this thesis, we consider the problem of analysing parametric pushdown, one-counter and
timed automata, i.e. automata extended with a stack, counter or clocks that can be compared
with parameters. These parameters can take unspecified values over infinite domains, which here
consist in the set of words (for parametric pushdown automata) or the non-negative integers (for
parametric one-counter automata and parametric timed automata). An M-parameter valuation is
then a function µ from a set P of parameters to a given set M. We will omit the name of the set
M in case it is obvious from context. Our interests lies in the parametric variants of requirements
such as safety or liveness properties: for instance, finding constraints on the parameters defining
the set of all possible values for which the system satisfies a safety or liveness property, or verifying
that the model satisfies some safety or liveness property for all possible values of the parameters.

3.1 Parametric reachability

The parametric reachability problem for an automaton with parameters (e.g. for a PTA) asks
whether there exists a parameter valuation µ such that a final configuration of the resulting
concrete automaton becomes reachable. From here onwards, we omit “parametric” and write
simply “reachability problem” when it is clear from context that the input automaton has parameters.
Solving such a problem can be useful to verify safety properties of automaton with parameters, i.e.
to answer the question “is a bad state reachable for some valuation of the parameters”?

We are interested in how adding a set of parameters influences decidability and complexity
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properties. In particular, notice that the effects of adding a set of parameters depend on the model.
Indeed, the reachability problem for parametric timed automata is long known to be undecidable [5],
whereas the reachability problem for timed automata is PSPACE-complete [4]. On the other hand,
reachability for succinct one-counter automata is NP-complete [53] and reachability for parametric
one-counter automata is both NP-hard and in NEXP [52].

3.2 Parametric games

As noted precedently, several model checking problems can be expressed as decision problems for
games. For instance as mentioned in the case of pushdown automata, the modal µ-calculus model
checking problem is polynomially equivalent to solving the parity game problem. Since we are
interested in parametric model checking and specification, we are naturally interested in parametric
variants of reachability games and parity games.

One goal may be to characterize the set of all possible parameter valuations for which a player
has a winning strategy in a reachability game or a parity game played on the arena induced by the
resulting concrete automaton and some partition of its set of states. For determining such a set of
parameter valuations, we incorporate the choice of the parameter valuation to the game. Each
player then wants the parameter valuation to lead to an arena where it has a winning strategy.

In keeping with the spirit of alternation between players choosing successors in the arena, we
consider here games where players alternate choosing values for the parameters before alternating
choosing successor configurations in the game on the induced arena. For simplicity’s sake, the
values are assigned to the parameters one by one, alternating between values assigned by player 0
and by player 1.

A winning strategy for player 0 allows to synthesize a controller that restricts the environment
and ensures that the property expressed by the winning condition always holds.

Parameter valuation arenas We introduce here arenas over the set of partial M-parameter
valuations for a set of parameters P = P0⊎P1. The values are assigned to the parameters one
by one, alternating between values assigned by player 0 (corresponding to parameters in P0) and
by player 1 (corresponding to parameters in P1). Other options could have been considered: for
instance, we could consider a fully existential approach (i.e. all parameters have their values
assigned by player 0), or a fully universal approach (i.e. all parameters have their values assigned
by player 1). Note however that the approach considered here encompasses both of the latter
approaches: the fully existential approach consists in the case where P1 = ∅ and the fully universal
one, the case P0 = ∅.

Assume an ordering of the parameters P0⊎P1 = {p0, p1, . . . , pk} for some k ∈ N. Then given a
set M, a parameter valuation arena is a tuple AP0,P1,M = (S0, S1,→P ) where

• S0 is the set of all partial M-parameter valuations with domain {p0, p1, . . . , pj} ∖ {pj} where
pj ∈ P0,

• S1 is the set of all partial M-parameter valuations with domain {p0, p1, . . . , pj} ∖ {pj} where
pj ∈ P1,

• µ→P µ′, if µ′ ∈ (M){p0,...,pj} for some j ∈ [0, k], Dom(µ) = Dom(µ′) ∖ {pj} and µ′(p) = µ(p)
for p ∈ Dom(µ).

Note that the arena has dead ends, and that these are the configurations that correspond to
parameter valuations. Given a strategy σ0 for player 0 and a strategy σ1 for player 1, the last
configuration of the resulting play π(µ�, σ0, σ1) is called the resulting parameter valuation and is
denoted by µσ0,σ1 , where µ� is the partial parameter valuation with domain ∅.

Parametric valuation arenas are used as prefixes in parametric games. Once the resulting
parameter valuation is produced by the two players, it serves to instantiate the transition system for
continuing the game. Indeed, where a concrete automaton induces a transition system, a parametric
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Figure 3.1: An illustration of the arena for a parametric automaton A with P0 = {p0}, P1 = {p1}
and M = [0,N] for some N ∈ N. Here µ� is the totally undefined function and can be viewed rather
as the function that assigns � to both parameters. For i, j ∈ [0,N], µi is the partial parameter
assignment with domain {p0} that maps p0 to i and µi,j is the parameter assignment that maps
p0 to i and p1 to j. As before, the circles belong to player 0 and the diamonds to player 1.

automaton induces one transition system for every possible parameter valuation. We use Tµ
A

to
denote the transition system induced by the concrete automaton corresponding to a parametric
automaton A with parameters P taking values in M and a parameter valuation µ ∶ P →M.

Given a parametric automaton A with a set of parameters P = P0⊎P1 that can take values
in the set M, a parametric game for A is a game played on the arena AA that include both the
parameter valuation arena AP0,P1,M and, for all parameter valuations µ ∶ P → M, the transition
system Tµ

A
— albeit with configurations additionally indexed by µ to avoid confusion. Moreover,

for every dead end µ in AP0,P1,M, we add a transition from the configuration µ ∈MP to Tµ
A

. See
Figure 3.1 for an illustration of such an arena. Solving parametric games on an automaton with
parameters (e.g. a POCA) then consists in answering whether there exists a winning strategy
for player 0 from the initial configuration of the parametric game. Remark that the parametric
reachability problem for an automaton with parameters can be seen as solving the parametric
reachability game where P1 = ∅, and Q1 = ∅.
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Chapter 4

Parametric one-counter automata

This chapter studies the computational complexity of reachability in classes of parametric one-
counter automata. Parametric one-counter automata (POCA for short) provide a formalism to
reason about programs with behaviors that make use of parametric constraints or updates. They
extend one-counter automata with the ability to increment or decrement the counter by parameters
that can take unspecified non-negative integer values. POCA are used in various synthesis problems,
and to model open programs, whose behavior depends on values input from the environment [5],
or to model resources like memory or time being consumed by transitions [107]. The reachability
problem for POCA in turn asks for the existence of an assignment of the parameters to the
non-negative integers such that an accepting run exists in the resulting one-counter automaton.

The reachability problem for POCA is known to be NP-hard and in NEXP [52]. More recently
however, new extensions of one-counter automata by parameters have arisen, motivated notably by
the study of parametric timed automata and by the relationship between bounded one-counter
automata and timed automata. Bundala and Ouaknine [17] introduced a new model which extends
bounded one-counter automata by relaxing the assumption that the counter values remain in a
bounded interval, by allowing updates and comparisons to be parametric as well, and by allowing
modulo tests. Since the counter values in this new model can be unbounded, but can be tested
against certain thresholds, we will call this variant parametric threshold one-counter automata
(PTOCA for short).

We provide formal definitions of parametric threshold one-counter automata in Section 4.1.
We give an overview of our contribution in Section 4.1.1. The contribution consists in a series of
techniques to partition a fictitious run into several carefully chosen subruns and manipulate them
to obtain a new run with parameter value of lesser magnitude. We provide the proof of our result,
which stretches along Section 4.4, Section 4.5, Section 4.6, and Section 21. In Section 4.8 we close
the chapter with a discussion about the methods used, with some directions for future work.

4.1 Definitions

Given a set of parameters P we denote by Op(P ) the set of operations over the set of parameters
P , being of the form Op(P ) = Op± ∪Op±P ∪Opmod ∪Op& ∪Op&P , where

• Op± = {−1,0,+1},

• Op±P = {+p,−p ∣ p ∈ P},

• Opmod = {mod c ∣ c ∈ N},

• Op& = {&c ∣ & ∈ {<,≤,=,≥,>}, c ∈ N}, and

• Op&P = {&p ∣ & ∈ {<,≤,=,≥,>}, p ∈ P}.
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Figure 4.1: An example of a PTOCA. The automaton consists of five states and the set of
parameters is {p}. The rules are represented by arrows labeled with the corresponding operations.
A parameter valuation µ ∶ {p}→ N witnesses that an accepting µ-run exists in the above PTOCA
if, and only, if µ(p) ≡ 1 mod 6.

The size ∣op∣ of an operation op is defined as

∣op∣ = ⎧⎪⎪⎨⎪⎪⎩
log(c) if op = mod c or op = &c with c ∈ N,
1 otherwise.

We denote by updates those operations that lie in Op± ∪Op±P and by tests those operations that
lie in Opmod ∪Op& ∪Op&P .

A parametric threshold one-counter automaton (PTOCA for short) is a tuple

C = (Q,P,R, qinit, F ),
where

• Q is a non-empty finite set of states,

• P is a non-empty finite set of parameters that can take non-negative integer values,

• R ⊆ Q ×Op(P ) ×Q is a finite set of rules,

• qinit is an initial state, and

• F ⊆ Q is a set of final states.

We refer to C as an n-PTOCA if n = ∣P ∣ is the number of parameters of C. The size of C is defined
as

∣C∣ = ∣Q∣ + ∣P ∣ + ∣R∣ + ∑
(q,op,q′)∈R

∣op∣.
Again let Consts(C) denote the constants that appear in the operations op ∈ Opmod ∪Op& for some
rule (q, op, q′) in R. As usual, by Conf(C) = Q × Z we denote the set of configurations of C, and
prefer to abbreviate a configuration (q, z) by q(z).

Being slightly non-standard we define configurations to take counter values over Z rather than
over N for notational convenience. This does not cause any loss of generality as we allow guards
that enable us to test if the value of the counter is greater or equal to zero.
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Previously, such as in [17] or [52], slightly different sets of operations have been used, such as
operations to increment the counter by a constant represented in binary, and tests of the form{= 0,> 0}, but not tests in Opmod or Op&. We rather refer to the models using these, i.e. with

Op′(P ) = Op±N ∪Op±P ∪Op0,

as Parametric one-counter automata (POCA for short). Moreover, Bundala and Ouaknine [17]
extend PTOCA with some operations of the form +[0, p] that allow to nondeterministically add to
the counter a value that lies in [0, µ(p)], where µ(p) is the parameter valuation of some parameter
p. They do so in order to provide an exponential time reduction from the reachability problem of
parametric timed automata with two parametric clocks to the reachability problem of parametric
one counter automata. We shall later show in Section 5.3 that, when reducing the reachability
problem for parametric timed automata with two parametric clocks and only one parameter, one
does not require these +[0, p]-transitions nor binary increments.

A parametric threshold one-counter automaton C = (Q,P,R, qinit, F ), and a parameter valuation
µ ∶ P → N induces the labeled transition system Tµ

C
= (Conf(C), λC ,→C,µ), where λC = Op(P ) and

where →C,µ is defined such that for all q(z), q′(z′) ∈ Conf(C), for all op ∈ Op(P ), q(z) opÐ→C,µ q′(z′)
if there exists some (q, op, q′) ∈ R such that either of the following holds

(1) op = c ∈ Op± and z′ = z + c,
(2) op ∈ Op±P , and either

• op = +p and z′ = z + µ(p), or

• op = −p and z′ = z − µ(p),
(3) op = mod c ∈ Opmod, z = z′ and z′ ≡ 0 mod c,

(4) op = &c ∈ Op&, z = z′ and z′ & c, and

(5) op = &p ∈ Op&P , z = z′ and z′ & µ(p).
Let µ ∶ P → N be a parameter valuation. A µ-run in C (from q0(z0) to qn(zn)) is a path in Tµ

C
,

that is, a sequence, possibly empty (i.e. n = 0), of the form

π = q0(z0) π0Ð→C,µ q1(z1) ⋯ πn−1ÐÐ→C,µ qn(zn).
As with OCA, we say π is accepting if q0 = qinit, z0 = 0, and qn ∈ F . We refer to Figure 4.1 and
Figure 4.2 for instances of PTOCA for which there exists an accepting µ-run for some µ ∈ NP . For
any two i, j ∈ [0, n] we naturally define the subrun π[i, j] from qi(zi) to qj(zj) as the µ-run

qi(zi) πiÐ→C,µ qi+1(zi+1) ⋯ πj−1ÐÐ→C,µ qj(zj).
As expected, a prefix (resp. suffix) of π is a µ-run of the form π[0, j] (resp. π[i, n]).

We define ∆(π) = zn − z0 as the counter effect of the run π and for each i ∈ [0, n − 1] let
∆(π, i) = ∆(π[i, i + 1]) denote the counter effect of the i-th transition of π.

In the particular case where P = {p} is a singleton for some parameter p and µ(p) = N , we prefer

to write q(z) opÐ→C,N q′(z′) to denote q(z) opÐ→C,µ q′(z′) and prefer to call a µ-run an N-run. In
case the automaton C is obvious from context, we write→µ (resp. →N ) instead of→C,µ (resp. →C,N ).

Given a µ-run π = q0(z0) π0Ð→C,µ q1(z1) ⋯ πn−1ÐÐ→C,µ qn(zn), we define Values(π) = {zi ∣ i ∈[0, n]} to denote the set of counter values of the configurations of π. We define a run π’s maximum
as max(π) = max(Values(π)) and the minimum as min(π) = min(Values(π)).
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Figure 4.2: Another example of a PTOCA. Remark that for any instantiation of the parameter p
with a natural number N , an accepting N -run has length N + 2 and is thus not of size bounded by
the size of the automaton.

We are interested in the following decision problem.

n-PTOCA reachability

INPUT: An n-PTOCA C.
QUESTION: Does an accepting µ-run for some µ ∈ NP exist in C?

We just write PTOCA reachability when n = ∣P ∣ is a priori not fixed. Similarly, we write
POCA reachability when the input is a parametric one-counter automaton rather than a
parametric threshold one-counter automaton.

Most results have been concerned with parametric one-counter automata. In [52], Haase
provides a polynomial time reduction from POCA reachability to satisfiability in quantifier-free
Presburger arithmetic with divisibility, while believing the latter to be in NP. To the author’s
knowledge, the best upper bound currently known for satisfiability in quantifier-free Presburger
arithmetic with divisibility is NEXP [75]. For a more detailed discussion on the misplaced folklore
belief that existential Presburger arithmetic with divisibility is NP-complete, we refer to [73].

Theorem 16. [52, 75] POCA reachability is NP-hard and in NEXP.

Note that even without syntactic parametric test, one can still perform > p tests by using a
gadget consisting of a −p, followed by a > 0 test, and, similarly, one can still perform = p tests
by using a gadget consisting of a −p, followed by a = 0 test. However note that < p tests cannot
be performed in this manner. It was shown in [42] that allowing ≤ c tests in SOCA makes the
reachability problem PSPACE-complete.

A natural question, since the complexity for POCA reachability is so close to that of SOCA
reachability, would be to ask whether or not reachability in POCA allowing ≤ c and ≤ p tests is
PSPACE-complete as well.

Note that our PTOCA model englobes POCA allowing ≤ c and ≤ p tests, since parametric
updates can be used to simulate updates by constants written in binary: one simply needs to have
as many additional parameters as there are constants one wishes to use in binary updates. Then
it’s possible to check that these parameters’ valuations are equal to corresponding constants (since
we allow = c tests) and these parametric updates then correspond to updates by constants written
in binary. This in particular means that PSPACE-hardness follows from the result from [42].

Theorem 17. PTOCA reachability is PSPACE-hard.

On the positive side, Bundala and Ouaknine showed decidability in the case of 1 parameter
via a reduction to existential Presburger arithmetic with divisibility (∃PAD for short). Since our
PTOCA model is a subset of the one introduced in [17] the following upper bound follows from
theirs.

Theorem 18 (Theorem 10.18 in [17]). 1-PTOCA reachability is decidable.

Bundala and Ouaknine first prove decidability for reachability in 1-PTOCA with Values(π) ⊆[0, 2⋅N] for all accepting N -runs for all N ∈ N, then relax the restriction. Similarly, we are interested
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in 1-PTOCA that adhere to a generalization of this restriction. For all h ∈ N, an h-bounded 1-
PTOCA is a 1-PTOCA C such that for all N ∈ N, all N -runs π in C satisfy Values(π) ⊆ [0, h ⋅N].
We define the reachability problem for this subset as the following problem.

h-bounded 1-PTOCA reachability

INPUT: An h-bounded 1-PTOCA C.
QUESTION: Does an accepting N -run for some N ∈ N exist in C?
4.1.1 Contribution

This chapter’s main contribution is the Small Parameter Theorem (Theorem 21), which tells us
that for every PTOCA over one parameter, for every constant h ∈ N and every sufficiently large
parameter value N , accepting N -runs with counter values all in [0, h ⋅ N] can be turned into
accepting N ′-runs for some smaller N ′. The theorem relies on a series of techniques in order to
partition a fictitious N -run with counter values at most h ⋅N into several carefully chosen subruns
and in turn allow us to prove that it is sufficient to consider a parameter value of lesser magnitude.
In the case of h-bounded 1-PTOCA, a repeated application of the Small Parameter Theorem
(Theorem 21) allows us to conclude that an accepting N -run all of whose counter values lie in[0, h ⋅N] exists for some N ∈ N if, and only if, there exists an accepting N ′-run for some N ′ that
is at most exponential in h and the size of the PTOCA. This exponential upper bound on the
parameter value leads to a PSPACE upper bound for h-bounded 1-PTOCA reachability.

Theorem 19. h-bounded 1-PTOCA reachability is in PSPACE.

We hope that our techniques can be extended to work on 1-PTOCA and, furthermore, on
PTOCA with more than one parameter.

4.1.2 Overview

In order to prove the Small Parameter Theorem, we first introduce the notion of semiruns and give
several techniques for manipulating them in Section 4.4. We then introduce several lemmas and
prove the Small Parameter Theorem (Theorem 21) by carefully factorizing a potential N -run into
subsemiruns that can be treated by the lemmas. We refer the reader to Section 4.3 for a thorough
overview of the proof of the Small Parameter Theorem.

4.2 The Small Parameter Theorem

In this section we state the Small Parameter Theorem (Theorem 21) which tells us that for every
PTOCA over one parameter and every sufficiently large parameter value N , accepting N -runs with
counter values all in [0, h ⋅N] can be turned into accepting N ′-runs for some smaller N ′.

We provide an overview of the proof of the Small Parameter Theorem in Section 4.3, whose
actual proof will stretch over Sections 4.4, 4.5, 4.6, and 4.7.

For each PTOCA C = (Q,P,R, qinit, F ) and every h ∈ N we define the following constants.

ZC = LCM(Consts(C))
ΓC,h = LCM((4h + 1) ⋅ ∣Q∣) ⋅ZC
ΥC,h = (4h + 1) ⋅ ∣Q∣ ⋅ LCM(4h + 1 ⋅ ∣Q∣) ⋅ ((4h + 1) ⋅ ∣Q∣ ⋅ZC + 2)
MC,h = 30 ⋅ (h + 1) ⋅ (ΥC,h + ΓC,h + 1)

Since for every non-empty finite set U ⊆ N ∖ {0} we have LCM(U) ≤ max(U)∣U ∣, the following
lemma is straightforward.

Lemma 20. The above constants are asymptotically bounded by 2poly(∣C∣+h), where poly(x) = xO(1).
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The main result of this section is the following theorem.

Theorem 21 (Small Parameter Theorem). Let C = (Q,{p},R, qinit, F ) be a PTOCA with one
parameter p. If there exists an accepting N -run in C with values all in [0, h ⋅N] for some N >MC,h,
then there exists an accepting (N − ΓC,h)-run in C.

Let us first establish that this theorem is enough to prove the desired PSPACE upper bound.

Corollary 22. h-bounded 1-PTOCA reachability is in PSPACE.

Proof. Let us fix a PTOCA C = (Q,P,R, q0, F ) with P = {p}, such that for all N ∈ N, if there is an
accepting N -runs in C, there exists one satisfying Values(π) ⊆ [0, h ⋅N].

We first claim that if there exists an accepting N -run π in C, then there exists one satisfying
N ∈ [0,MC,h] and Values(π) ⊆ [0, h ⋅MC,h]. All accepting N -runs π of C satisfy Values(π) ⊆[0, h ⋅N], so if N >MC,h, then there exists some accepting (N − ΓC,h)-run in C by Theorem 21.
Remarking that in case N >MC,h we have N − ΓC,h >MC,h − ΓC,h > 0, one can repeat the above
argument for N − ΓC,h and possibly for N − 2ΓC,h and so on, thus implying the desired existence.

Thus it suffices to check in polynomial space in ∣C∣ + h whether there exists some accepting
N -run π in C satisfying Values(π) ⊆ [0, h ⋅N] for some N ∈ [0,MC,h]. Since MC,h ∈ 2poly(∣C∣+h), the
latter is simply a reachability question in an exponentially large finite graph all of whose vertices
and edges can be represented using polynomially many bits, and thus decidable in polynomial
space.

4.3 Overview of the proof of the Small Parameter Theorem

For the proof of the Small Parameter Theorem (Theorem 21) we proceed as follows.

• In Section 4.4 we introduce the notion of N -semiruns. These generalize N -runs in that only
modulo tests need to hold, not however comparison tests. We define some natural operations
on them, like shifting them by some value or cutting out certain infixes. In Subsection 4.4.2
we prove two important lemmas on semiruns that will serve as base tools for subsequent
steps in the proof:

– The Depumping Lemma (Lemma 24) will be our main tool to depump certains semiruns,
in the following sense: in case the difference between the number of +p-transitions
and −p-transitions is bounded for all infixes and equal to 0 for the whole semirun and
furthermore the absolute counter effect of the semirun is sufficiently large, then one can
build — by applying the above-mentioned operations — a new semirun whose absolute
counter effect is slightly smaller.

– The Bracket Lemma (Lemma 25) states that in case the counter effect is sufficiently large
and the counter values are all in [0, h ⋅N], then one can find an infix where the counter
effect is also large and moreover the difference between the number of +p-transitions
and −p-transitions is bounded for all infixes and equal to 0 for the whole semirun.

• In Section 4.5 we introduce the notion of hills and valleys. Hills are N -semiruns that start
and end in configurations with low counter values but where all intermediate configurations
have counter values above the source and target configuration. We introduce the dual notion
of valleys. The main contribution of the section is the following.

– The Hill and Valley Lemma (Lemma 30) allows to transform N -semiruns that are hills
(resp. valleys) into (N − ΓC,h)-semiruns with the same source and target configuration.

• Making use of all of the above lemmas, we introduce in Section 4.6 the following lemma,
which is a main technical ingredient in the proof of Theorem 21.

– The 5/6-Lemma (Lemma 41) states that N -semiruns with counter effect smaller than
5/6 ⋅N can be turned in into (N − ΓC,h)-semiruns.
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Figure 4.3: Illustration of the dependencies between the lemmas. The presence of an arrow going
from a lemma to another means that the lemma in question is used inside the proof of the lemma
the arrow points to.

• Finally, in Section 4.7 we prove the Small Parameter Theorem (Theorem 21) by carefully
factorizing a potential N -run into subsemiruns that can be treated by the above lemmas.

In Figure 4.3 we give an overview of the dependencies of the above-mentioned lemmas.

4.4 Semiruns, their bracket projection, and embeddings

In this Section we motivate and introduce the notion of semiruns by loosening the conditions on
runs, and define basic operations on them. These basic operations possibly change their counter
values, length, or counter effect.

The formalism of an N -run is a little bit too restrictive to define operations on them. For
instance, subtracting ZC from all counter values of a µ-run produces an object, where conditions
(1),(2), and (3) of the definition of TµC (page 31) indeed hold — as ZC = LCM(Consts(C)) — but
where conditions (4) and (5) might not hold anymore, as comparison guards may be violated.
Rather than certifying each time that the application of an operation preserves the property of
being an N -run we prefer to loosen the definition in order to avoid tedious case distinctions. This
motivates the notion of semitransitions (resp. semiruns), which are a generalization of transitions
(resp. runs), in which the comparison tests need not hold.

We introduce semiruns and operations on them in Section 4.4.1. Section 4.4.2 introduces the
bracket projection of semiruns, the Depumping Lemma (Lemma 24) and the Bracket Lemma
(Lemma 25). Section 4.4.3 introduces the notion of embeddings, which provide a formal means to
express when a semirun can structurally be found as a subsequence of another.
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4.4.1 Semiruns and operations on them

A parametric one-counter automaton C = (Q,P,R, qinit, F ), and a parameter valuation µ ∶ P → N
induces a second labeled transition system T µ

C
= (Conf(C), λC ,99K C,µ) where λC = Op(P ) and

where
C,µ
999K is defined such that for all q(z), q′(z′) ∈ Conf(C), for all op ∈ Op(P ), q(z) op

99K µ q′(z′)
if there exists some (q, op, q′) ∈ R such that conditions (1),(2), and (3) of Tµ

C
hold but where

conditions (4) and (5) are loosened by the following conditions (4’) and (5’) respectively

(1) op = c ∈ Op±, and z′ = z + c,
(2) op ∈ Op±P and either

• op = +p and z′ = z + µ(p), or

• op = −p and z′ = z − µ(p).
(3) op = mod c ∈ Opmod, z = z′ and z′ ≡ 0 mod c,

(4’) op = &c ∈ Op& and z = z′, and

(5’) op = &p ∈ Op&P , and z = z′.
Thus, in a nutshell, when writing q(z) op

99K µ q′(z′) we do not require that the comparison tests
against parameters or against constants hold; however the updates and the modulo tests against

constants must be respected. To differentiate q(z) op
99K µ q′(z′) from q(z) opÐ→µ q′(z′), we will call

the former a semitransition. This naturally gives rise to the definition of µ-semiruns as expected.

Note that in particular every µ-run is a µ-semirun. The abbreviation N -semirun, q(z) op
99K N q′(z′),

the counter effect ∆, Values, min, max, subsemirun, prefix, suffix are defined as for runs.
Note that in particular every N -run is an N -semirun. Importantly, note also that semitransitions

involving comparison tests are still syntactically present in semiruns. By a careful analysis, one can
therefore possibly perform operations on N -semiruns in order to show that they are in fact N -runs.

Example 23. The 2-semirun

π = q0(0) +1
99K 2 q1(1) +1

99K 2 q1(2) +1
99K 2 q1(3) ≤p

99K 2 q2(3) mod 3
99999K 2 q3(3)

is not a 2-run, as, in q1(3) ≤p
99K 2 q2(3), condition (4) of Definition 4.1 does not hold, however

condition (4’) of T µ
C

’s definition on page 36 does.

Shifting and gluing of semiruns

Let us fix a PTOCA C and some N -semirun

π = q0(z0) π0
99K N q1(z1) ⋯ πn−2

9999K N qn−1(zn−1) πn−1
9999K N qn(zn).

We define the following operations, where we recall that ZC = LCM(Consts(C)).
• For D ∈ ZCZ, we define the shifting of π by D as

π +D = q0(z0 +D) π0
99K N q1(z1 +D) ⋯ πn−1

9999K N qn(zn +D).
Since there are no effective comparison tests and D is an integer that is divisible by all
constants appearing in modulo tests in C, it is clear that π +D is again an N -semirun.

• For two configurations qi(zi) and qj(zj) with 0 ≤ i < j ≤ n and where D = zj − zi ∈ ZCZ is a
multiple of ZC and qi = qj , we define the gluing of the configurations as

π − [i, j] = q0(z0) ⋯ πi−1
9999K N qi(zi) πj

99K N qj+1(zj+1 −D) ⋯ πn−1
9999K N qn(zn −D).



4.4. SEMIRUNS, THEIR BRACKET PROJECTION, AND EMBEDDINGS 37

When gluing the leftmost and rightmost configurations of pairwise non-intersecting intervals
I1 = [a1, b1], . . . , Ik = [ak, bk] ⊆ [0, n], assuming bi < ai+1 for all 1 ≤ i < k, and qai = qbi and
zbi − zai ∈ ZCZ for all 1 ≤ i ≤ k, we will use π − I1 − I2⋯− Ik to denote the result corresponding to
gluing each interval successively while shifting the others accordingly, instead of writing the more
tedious π(k), where

π(1) = π − [a1, b1],
π(2) = π(1) − [a2 − (∣I1∣ − 1), b2 − (∣I1∣ − 1)],⋯
π(k) = π(k−1) − [ak − ∑

1≤j<k

(∣Ij ∣ − 1), bk − ∑
1≤j<k

(∣Ij ∣ − 1)].
4.4.2 The bracket projection of semiruns

In this section we define a projection φ of semitransitions τ = q(z) op
99K N q′(z′) to a word over the

binary alphabet {[, ]}, where transitions with op = +p are mapped to [, transitions with op = −p
are mapped to ], and all other transitions are mapped to the empty word ε. The projection φ
is naturally extended to a morphism from semiruns to {[, ]}∗. In this section we will show the
following lemmas.

• The Depumping Lemma (Lemma 24) states that for each N -semirun whose φ-projection
has bounded bracketing properties and that has a counter effect whose absolute value is
sufficiently large there exists another N -semirun with a counter effect whose absolute value
is slightly smaller. This latter resulting N -semirun has a particular form in that it can be
obtained from the original N -semirun by applying the above-mentioned operations of shifting
and gluing: notably, the subsemiruns that are being glued themselves have a φ-projection
that has bounded bracketing properties.

• The Bracket Lemma (Lemma 25) states that if an N -semirun has all its counter values in[0, h ⋅N], has an absolute counter effect that is sufficiently large and has a φ-projection that
satisfies a suitable threshold condition on the number of occurrences of [ and ], that there
is a subsemirun where the absolute counter effect is also large and whose φ-projection has
bounded bracketing properties.

Formally, we define a mapping φ such that for every semitransition τ = q(z) op
99K N q′(z′),

φ(τ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[ if op = +p,
] if op = −p,
ε otherwise.

Note that an N -semirun π can contain several +p-transitions and −p transitions. We introduce
the notation φ(π, i) = φ(π[i, i + 1]) to denote the φ-projection of the i-th transition of π for all
i ∈ [0, ∣π∣ − 1]. The mapping φ is naturally extended to a morphism on semiruns to words over the
binary alphabet {[, ]} as expected φ(π) = φ(π,0)φ(π,1) ⋯ φ(π, ∣π∣ − 1).

We are particularly interested in N -semiruns whose projection by φ contains as many opening
as closing brackets and only a few pending ones (when read from left to right). To make this
formal, for all k ∈ N we define the regular language

Λk = {w ∈ {[, ]}∗ ∶ ∣w∣[ = ∣w∣],∀u, v ∈ {[, ]}∗. uv = w Ô⇒ ∣u∣[ − ∣u∣] ∈ [−k, k]} .
We are interested in analysing N -semiruns with counter values in [0, h ⋅N]. Bounding the counter
values like this limits the number of +p (resp. −p) that can appear in a row. This will be the basis
in the Bracket Lemma which amounts to showing the existence of subsemiruns whose φ-projection
is in Λ2h.
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The now following Depumping Lemma will enable us to reduce the counter effect of N -semiruns
whose φ-projection is in Λ2h. It is worth remarking that ΓC,h ≪ ΥC,h, recalling the definition of
our constants on page 33.

Lemma 24 (Depumping Lemma). For all N -semiruns π satisfying φ(π) ∈ Λ2h and ∣∆(π)∣ > ΥC,h
there exists an N -semirun π′ such that either

• ∆(π) > ΥC,h and ∆(π′) = ∆(π) − ΓC,h, or

• ∆(π) < −ΥC,h and ∆(π′) = ∆(π) + ΓC,h.

Moreover, π′ = π − I1 − I2 ⋯ − Ik for pairwise disjoint intervals I1, . . . , Ik ⊆ [0, ∣π∣] such that we
have φ(π[Ii]) ∈ Λ4h for all i ∈ [1, k], and either ∆(π[Ii]) > 0 for all i ∈ [1, k] or ∆(π[Ii]) < 0 for
all i ∈ [1, k].
Proof. Let π = q0(z0) π0

99K N q1(z1) π1
99K N ⋯ πn−1

9999K N qn(zn) be an N -semirun such that
φ(π) ∈ Λ2h. We will assume without loss of generality that ∆(π) > ΥC,h. The dual case when
∆(π) < −ΥC,h can be proven analogously.

For every position i ∈ [0, n] let us define

λ(i) = ∣φ(π[0, i])∣[ − ∣φ(π[0, i])∣] and pot(i) = zi − z0 − λ(i) ⋅N.
Note that since φ(π) ∈ Λ2h we have for all i ∈ [0, n],

λ(i) ∈ [−2h,2h], (4.1)

and moreover

φ(π[0, i]) ∈ Λ2h ⇐⇒ λ(i) = 0. (4.2)

We note the following important properties of pot,

1. ∣pot(i − 1) − pot(i)∣ ≤ 1 for all i ∈ [1, n],
2. pot(0) = 0,

3. for all 0 ≤ i < j ≤ n, if λ(i) = λ(j), then pot(j) − pot(i) = zj − zi, and

4. pot(n) = zn − z0 = ∆(π) since λ(0) = λ(n) = 0.

The following claim states that if in a subsemirun the pot increment is sufficiently large, then one
can find a subsemirun therein that can potentially be glued.

Claim 1. For each subsemirun π[a, b] that satisfies pot(b) − pot(a) > (4h + 1) ⋅ ∣Q∣ ⋅ZC there exist
positions a ≤ s < t ≤ b, such that

• qs = qt,
• λ(s) = λ(t), and

• zt − zs = dZC for some d ∈ [1, (4h + 1) ⋅ ∣Q∣].
Proof of the Claim. Since by assumption pot(b) − pot(a) > (4h + 1) ⋅ ∣Q∣ ⋅ ZC, by the pigeonhole
principle and Point 1 above, there exist two indices a ≤ s < t ≤ b such that qs = qt, λ(s) ∈ [−2h,2h]
and λ(t) ∈ [−2h, 2h] are equal, and pot(t) − pot(s) = dZC for some d ∈ [1, (4h + 1) ⋅ ∣Q∣]. By Point 3
above, from λ(t) = λ(s), it follows zt − zs = pot(t) − pot(s) = dZC .
(End of the proof of the Claim)
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Since pot(i) − pot(i − 1) ≤ 1 for all i ∈ [1, n] by Point 1 above and

pot(n) − pot(0) = zn − z0= ∆(π)> ΥC,h
page 33= (4h + 1) ⋅ ∣Q∣ ⋅ LCM((4h + 1) ⋅ ∣Q∣) ⋅ ((4h + 1) ⋅ ∣Q∣ ⋅ZC + 2) ,

by the pigeonhole principle, there exist at least

(4h + 1) ⋅ ∣Q∣ ⋅ LCM((4h + 1) ⋅ ∣Q∣)
pairwise disjoint subsemiruns π[a, b] satisfying pot(b) − pot(a) > (4h + 1) ⋅ ∣Q∣ ⋅ZC . Let

L = LCM((4h + 1) ⋅ ∣Q∣),
and let π[a1, b1], . . . , π[a(4h+1)⋅∣Q∣⋅L, b(4h+1)⋅∣Q∣⋅L] be an enumeration of these latter subsemiruns. We
apply the above Claim to all of these π[ai, bi]: there exist positions ai ≤ si ≤ ti ≤ bi such that
λ(si) = λ(ti), qsi = qti , and zti = zsi + diZC for some di ∈ [1, (4h + 1) ⋅ ∣Q∣]. From λ(si) = λ(ti) and
(4.1) it follows φ(π[si, ti]) ∈ Λ4h. Recall that ΓC,h = LCM((4h + 1) ⋅ ∣Q∣) ⋅ ZC = L ⋅ ZC, cf. page 33.
By the pigeonhole principle, among these (4h + 1) ⋅ ∣Q∣ ⋅L pairwise disjoint subsemiruns π[ai, bi],
there exists some d ∈ [1, (4h + 1) ⋅ ∣Q∣] such that there are L/d many different π[ai, bi] all satisfying
di = d. Let π[ai1 , bi1], . . . , π[aiL/d , biL/d] be an enumeration of these latter π[ai, bi]. Note that for
all of these π[ai, bi] we have ∆(π[sij , tij ]) = d ⋅ZC . Since moreover qsij = qtij we know that, for all

j ∈ [1, L/d], the gluing π − [sij , tij ] is an N -semirun with ∆(π − [sij , tij ]) = ∆(π) − dZC . Thus,

π′ = π − [si1 , ti1] − . . . − [siL/d , tiL/d]
is an N -semirun satisfying ∆(π′) = ∆(π) − d ⋅ (L/d) ⋅ZC = ∆(π) − ΓC,h as required.

Let us now introduce the Bracket Lemma, which states that in case the absolute value of the
counter effect of an N -semirun is sufficiently large, the counter values are all in [0, h ⋅N] and a
majority condition holds on the number of occurrences of [ and ] in its φ-projection, that there is a
subsemirun where the counter effect is also large and that moreover has good bracketing properties
(in the sense of the Depumping Lemma). Roughly speaking, it is based on the idea that if the
values of a semirun are all in [0, h ⋅N], there cannot be h + 1 +p-transitions in a row. Technically
speaking, the Bracket Lemma can be applied to (N − ΓC,h)-semiruns, where N is sufficiently large:
the reason is that the Bracket Lemma will later be applied to N -semiruns in which some of the+p/−p-transitions have already been modified (“by hand”) to have an effect (N −ΓC,h)/−(N −ΓC,h)
instead of N/ −N .

Lemma 25 (Bracket Lemma). For all N >MC,h, all (N−ΓC,h)-semiruns π satisfying Values(π) ⊆[0, h ⋅N], ∆(π) < −ΥC,h (resp. ∆(π) > ΥC,h) and where φ(π) contains at least as many occurrences
of [ as occurrences of ] (resp. at least as many occurrences of ] as occurrences of [) there exists a
subsemirun π[c, d] satisfying φ(π[c, d]) ∈ Λ2h and ∆(π[c, d]) < −ΥC,h (resp. ∆(π[c, d]) > ΥC,h).

Proof. We only prove the case where ∆(π) < −ΥC,h and φ(π) contains at least as many occurrences
of [ as of ]. The dual case when ∆(π) > ΥC,h and φ(π) contains at least as many ] as of [ can be
proven analogously.

As in the proof of Lemma 24, for any word u ∈ {[, ]}∗ let λ(u) = ∣u∣[ − ∣u∣]. For the rest of the
proof assume by contradiction that there is no such subsemirun π[c, d] satisfying ∆(π[c, d]) < −ΥC,h
and φ(π[c, d]) ∈ Λ2h, or, equivalently, that every subsemirun π[c, d] with φ(π[c, d]) ∈ Λ2h satisfies
∆(π[c, d]) ≥ −ΥC,h.
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For all k ≥ 0 let
Ψk = {w ∈ {[, ]}∗ ∣ ∀uv = w ∶ λ(u) ∈ [−k, k]}

denote the set of all words over the alphabet {[, ]}, where for each prefix the absolute difference
between the number of occurrences of [ and of ] is at most k. Note that

Λk = Ψk ∩ λ−1(0). (4.3)

Under the above assumptions on π, for the sake of contradiction, we have three claims on properties
on the image of φ applied to π and subsemiruns thereof.

Claim 1. φ(π) ∈ Ψh.

Proof of Claim 1. Let us write π = π[0, n]. Assume by contradiction that φ(π) /∈ Ψh. Let u be a
shortest prefix of φ(π) such that λ(u) /∈ [−h,h]. Let us first consider the case when λ(u) > h.

By definition of u we have λ(u) = h + 1 and there are indices 0 ≤ t1 < ⋯ < th+1 < n such that

• φ(π, t1) = . . . = φ(π, th+1) = [, and

• φ(π[ti + 1, ti+1]) ∈ Λh for all i ∈ [1, h].
Recall that by our assumption every subsemirun π[c, d] of π with φ(π[c, d]) ∈ Λ2h satisfies
∆(π[c, d]) ≥ −ΥC,h. Since ⋃i∈[1,2h] Λi = Λ2h it follows ∆(π[ti + 1, ti+1]) ≥ −ΥC,h for all i ∈ [1, h].
Moreover, bearing in mind that π is an (N−ΓC,h)-semirun, we obtain ∆(π, ti) = N−ΓC,h. Altogether,
as N >MC,h by assumption, we obtain

∆(π[t1, th+1 + 1]) ≥ −h ⋅ΥC,h + (h + 1) ⋅ (N − ΓC,h)> h ⋅N +N − (h + 1) ⋅ (ΥC,h + ΓC,h)> h ⋅N +MC,h − (h + 1) ⋅ (ΥC,h + ΓC,h)> h ⋅N,
where the last inequality follows from MC,h’s definition on page 33, hence contradicting Values(π) ⊆[0, h ⋅N].

Let us now consider the case when λ(u) < −h. Again, by definition of u, we have λ(u) = −h − 1.
There are hence indices 0 ≤ t1 < . . . < th+1 < n such that

φ(π, t1) = . . . = φ(π, th+1) = ],
and moreover φ(π[0, t1]) ∈ Λh and φ(π[ti + 1, ti+1]) ∈ Λh for all i ∈ [1, h]. By assumption φ(π)
contains at least as many [ as ]. Therefore there must exist h + 1 further positions t′1, . . . , t

′
h+1 in π

satisfying 0 ≤ t1 < . . . < th+1 < t′1 < t′2 < . . . < t′h+1 < n such that

φ(π, t′1) = . . . = φ(π, t′h+1) = [
and φ(π[t′i + 1, t′i+1]) ∈ Λh for all i ∈ [1, h]. Again taking into account our assumption that
∆(π[c, d]) ≥ −ΥC,h for all subsemiruns π[c, d] with φ(π[c, d]) ∈ Λ2h, it follows as above, that
∆(π[t′1, t′h+1 + 1]) > h ⋅N , contradicting Values(π) ⊆ [0, h ⋅N].
Claim 2. φ(π[a, b]) ∈ Ψ2h for all subsemiruns π[a, b] of π.

Proof of Claim 2. This is an immediate consequence of Claim 1. Indeed, any subsemirun π[a, b]
of π satisfying φ(π[a, b]) /∈ Ψ2h gives rise to a prefix u of φ(π) such that u /∈ Ψh and hence
φ(π) /∈ Ψh.

Claim 3. For all subsemiruns π[a, b] of π, if λ(φ(π[a, b])) > 0, then ∆(π[a, b]) > ΥC .

Proof of Claim 3. We prove the statement by induction on λ(φ(π[a, b])).
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For the induction base, assume λ(φ([a, b])) = 1. Thus, there exists a position t ∈ [a, b]
such that φ(π, t) = [ and λ(π[a, t]) = λ(φ(π[t + 1, b])) = 0. By Claim 2 and (4.3) we have
φ(π[a, t]), φ(π[t + 1, b]) ∈ Λ2h. Thus, ∆(π[a, t]),∆(π[t + 1, b]) > −ΥC,h by our assumption. Hence,
we obtain

∆(π[a, b]) = ∆(π[a, t]) +∆(π, t) +∆(π[t + 1, b])≥ −ΥC,h + (N − ΓC,h) −ΥC,h> MC,h − 2ΥC,h − ΓC,h> ΥC,h,

where the last strict inequality follows from definition of MC,h on page 33.
Assume λ(φ(π[a, b])) > 1. Consider the smallest position t ∈ [a, b] such that λ(φ(π[a, t])) = 0

and φ(π, t) = [. By Claim 2 and (4.3) it follows that φ(π[a, t]) ∈ Λ2h and hence ∆(π[a, t]) ≥ −ΥC,h
by our assumption. Moreover, λ(φ(π[t + 1, b])) = λ(φ(π[a, b])) − 1. We can thus apply induction
hypothesis to π[t + 1, b] and obtain

∆(π[a, b]) = ∆(π[a, t]) +∆(π, t) +∆(π[t + 1, b])> ∆(π[a, t]) +∆(π, t) +ΥC,h≥ −ΥC,h + (N − ΓC,h) +ΥC,h> MC,h − ΓC,h,> ΥC,h,

where the first strict inequality follows from induction hypothesis on π[t + 1, b] and the last strict
inequality follows from definition of MC,h on page 33.

We will now contradict our initial assumption that there is no subsemirun π[c, d] satisfying
φ(π[c, d]) ∈ Λ2h and ∆(π[c, d]) < −ΥC,h by making use of the above claims.

Since π itself satisfies ∆(π) < −ΥC,h, it follows φ(π) /∈ Λ2h = Ψ2h ∩ λ−1(0) by our assumption
and (4.3). But since φ(π) ∈ Ψ2h by Claim 2, it follows λ(φ(π)) ≠ 0 .

As φ(π) contains at least as many occurrences of [ as occurrences of ] by assumption, φ(π)
must contain strictly more occurrences of [ than of ], i.e. λ(φ(π)) > 0. By Claim 3 it follows
∆(π) > ΥC,h, contradicting our assumption that ∆(π) < −ΥC,h.

4.4.3 Embeddings of semiruns

The Small Parameter Theorem (Theorem 21) turns N -runs with values in [0, h ⋅N] into (N −ΓC,h)-
runs. In proving this, we prefer to view N -runs as N -semiruns. Indeed, we first view any N -run as
an N -semirun and then apply certain of the above-mentioned operations on them to obtain some(N −ΓC,h)-semirun. However, we would then like to claim that the resulting (N −ΓC,h)-semirun is
in fact an (N − ΓC,h)-run as desired, in particular the comparison tests need to hold. To do so, we
introduce a notion when an N -semirun can be embedded into an M -semirun (possibly N /=M) in
the sense that operations are being preserved, source and target states are being preserved, and
that with respect to some line ` ∈ Z the counter value of each configuration of the embedding has
the same orientation with respect to ` as the counter value of the configuration it corresponds to.

Definition 26 (`-embedding). Let ` ∈ Z. An N -semirun

σ = s0(y0) σ0
99K N s1(y1) ⋯ σn−1

9999K N sn(yn)
is an `-embedding of an M -semirun

π = q0(z0) π0
99K M q1(z1) ⋯ πm−1

9999K M qm(zm)
if s0 = q0, sn = qm and there exists an order-preserving injective mapping ψ ∶ [0, n]→ [0,m] such
that
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Figure 4.4: Example of a semirun σ that could possibly be an embedding of the semirun π and a
semirun τ that cannot.

• σi = πψ(i) for all i ∈ [0, n − 1], and

• ` & yi if, and only if, ` & zψ(i) for all & ∈ {<,=,>} and all i ∈ [0, n].
Moreover we say σ is

• max-falling (w.r.t π) if max(σ) ≤ max(π), and

• min-rising (w.r.t. π) if min(σ) ≥ min(π).

Example 27. Consider the semiruns π,σ and τ in Figure 4.4, where neither concrete counter
values nor the states of σ and τ are mentioned. The semirun σ can possibly be a 7-embedding of π
(if its source is q0 and its target state is q6). However, τ cannot be a 7-embedding of π. Indeed,
for every possible ψ such that τ2 = +p = πψ(2), the counter value of τ at position 2 is strictly larger
than 7, whereas the counter value of π at position ψ(2) is strictly below 7.

The following remark is implictly being used in subsequent sections.

Remark 28. Embeddings possess some useful properties that all follow immediately from definition.

• Transitivity. Let π, ρ and σ be semiruns such that π is an `-embedding of ρ and ρ is an
`-embedding of σ. Then π is an `-embedding of σ. Moreover, if π was max-falling (resp.
min-rising) w.r.t. ρ and ρ was max-falling (resp. min-rising) w.r.t. σ, then π is max-falling
(resp. min-rising) w.r.t. σ.

• Closure under concatenation. Let π be an N-semirun from q(x) to r(y) and let ρ be
N -semirun from r(y) to s(z). Moreover, let π′ be an N ′-semirun from q(x′) to r(y′) that is
an `-embedding of π and let ρ′ be an N ′-semirun from r(y′) to s(z′) that is an `-embedding of
ρ. Then π′ρ′ is an `-embedding of πρ. If furthermore, π′ was max-falling (resp. min-rising)
w.r.t. π and ρ′ was max-falling (resp. min-rising) w.r.t. ρ, then π′ρ′ is max-falling (resp.
min-rising) w.r.t. πρ.

• Shifting distant embeddings. Let D ∈ ZCZ be a multiple of ZC, let π be a semirun and let ρ
be an `-embedding of π such that for all configurations q(z) in ρ we have ∣z − `∣ > ∣D∣. Then
both ρ +D and ρ −D are `-embeddings of π.
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Figure 4.5: Illustration of a B-hill.

4.5 On hills and valleys

In this section we introduce the notions of hills and valleys. Hills are semiruns that start and end
in configurations with low counter values but where all intermediate configurations have counter
values above these source and target configurations, and where moreover +p-transitions (resp.−p-transitions) are followed (resp. preceded) by semiruns with absolute counter effect larger than
ΥC,h (we refer to Figure 4.5 for an illustration of the concept). We also introduce the dual notion
of valleys. We then prove that an N -semirun that is either a hill or a valley can be turned into
an (N − ΓC,h)-semirun with the same source and target configuration that is an embedding. This
lowering process serves as a building block in the proof of the 5/6-Lemma (Lemma 41).

Definition 29 (Hills and Valleys). An N -semirun

q0(z0) π0
99K N q1(z1) π1

99K N q2(z2) ⋯ πn−1
9999K N qn(zn)

is a

• B-hill if

– z0, zn < B,

– zi ≥ B for all i ∈ [1, n − 1],
– πi = −p implies zi > z0 +ΥC,h for all i ∈ [0, n − 1], and

– πi = +p implies zi+1 > zn +ΥC,h for all i ∈ [0, n − 1].
• B-valley if

– z0, zn > B,

– zi ≤ B for all i ∈ [1, n − 1],
– πi = −p implies zi+1 < zn −ΥC,h for all i ∈ [0, n − 1], and

– πi = +p implies zi < z0 −ΥC,h for all i ∈ [0, n − 1].

The Hill and Valley Lemma states that an N -semirun π that is either a B-hill or a B-valley can be
turned into an (N − ΓC,h)-semirun with the same source and target configuration that is moreover
both a min-rising and max-falling B′-embedding of π, where B′ is close to B.

Lemma 30 (Hill and Valley Lemma). For all N,B ∈ N, all N -semiruns π from q0(z0) to qn(zn)
with N >MC,h and Values(π) ⊆ [0, h ⋅N] such that moreover π is either a B-hill or a B-valley,
there exists an (N − ΓC,h)-semirun from q0(z0) to qn(zn) that is both a min-rising and max-falling(B −ΥC,h − ΓC,h − 1)-embedding of π (in case π is a B-hill), or both a min-rising and max-falling(B +ΥC,h + ΓC,h + 1)-embedding of π (in case π is a B-valley).
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We remark that the resulting (N − ΓC,h)-semirun satisfies further properties — these are being
discussed in Section 4.5.

Before proving the Hill and Valley Lemma let us explain why the finding of the resulting
embedding is delicate. Let us fix any N -semirun

π = q0(z0) π0
99K N q1(z1) π1

99K N ⋯ πn−1
9999K N qn(zn)

from q0(z0) to qn(zn) with Values(π) ⊆ [0, h ⋅N] and N >MC,h. Let us moreover assume that π
is a B-hill for some B ∈ N. We need to show the existence of some (N − ΓC,h)-semirun from q0(z0)
to qn(zn) that is moreover both a min-rising and max-falling (B −ΥC,h −ΓC,h − 1)-embedding of π.

We are particularly interested in those transitions τ with absolute counter effect ∣∆(τ)∣ = N ,
i.e. transitions with operation +p or −p that we will denote as unlowered +p-transitions and−p-transitions respectively. Note that if there is no such transition in π, then π is already an(N − ΓC,h)-semirun. Let us therefore assume there is at least one transition with absolute counter
effect N in π. For obtaining only an (N −ΓC,h)-semirun it would simply suffice to lower the absolute

counter effect of these transitions by ΓC,h. Indeed, if the transition τ = q(z) +p
99K N q′(z′) is an

N -semirun, then the lowered transition τ̂ = q(z) +p
99K N−ΓC,h q

′(z′ − ΓC,h) is an (N − ΓC,h)-semirun.

Dually, if τ = q(z) −p
99K N q′(z′) is an N -semirun, then τ̂ = q(z) −p

99K N−ΓC,h q′(z′ + ΓC,h) is an(N − ΓC,h)-semirun.

Thus, applying such a lowering to all transitions of π whose absolute counter effect is N yields
an (N − ΓC,h)-semirun with target configuration shifted by a multiple of ΓC,h, according to the
operations seen in Subsection 4.4. However, the Hill and Valley Lemma not only requires the
resulting semirun to be an (N−ΓC,h)-semirun but also to have same source and target configurations
as the original semirun (and to be a min-rising and max-falling (B −ΥC,h − ΓC,h − 1)-embedding).
Hence, simply lowering all transitions with a large counter effect as described above is not enough
to prove the result as the following example illustrates. Let us assume an N -semirun π containing
precisely one transition τ whose absolute counter effect is N , say πj = +p for some position j. That
is,

π = q0(z0) π0
99K N ⋯ qj(zj) +p

99K N qj+1(zj+1) ⋯ πn−1
9999K N qn(zn).

If we replace directly this j-th transition by a transition with ∆(τ ′) = N − ΓC,h, and, starting
with the (j + 1)-th configuration, shift all following counter values by −ΓC,h, we indeed obtain an(N − ΓC,h)-semirun

q0(z0) π0
99K N−ΓC,h ⋯ qj(zj) +p

99K N−ΓC,h qj+1(zj+1 − ΓC,h) ⋯ πn−1
9999K N−ΓC,h qn(zn − ΓC,h).

However, this (N − ΓC,h)-semirun does not have the same source and target configuration as the
original semirun, as the target configuration’s counter value has been shifted by −ΓC,h. Worse yet, if
our initial N -semirun π were to possess several +p-transitions, then the accumuluated counter value
shifts could potentially yield that the resulting (N − ΓC,h)-semirun is not a (B −ΥC,h − ΓC,h − 1)-
embedding of π: indeed, such a shifted semirun could contain intermediate configurations with
counter values less than B −ΥC,h − ΓC,h − 1.

In order to account for those transitions whose absolute counter effect is N that have already
been lowered or not we will introduce the notion of hybrid semiruns, which can be seen as
sequences of N -semiruns and (N − ΓC,h)-semiruns whose source and target configurations are
suitably connected.
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Definition 31. A hybrid semirun is a sequence η = α(0)β(1)α(1)⋯β(k)α(k), where

• each α(i) is an (N − ΓC,h)-semirun (possibly empty) of the form

α(i) = p0(y0) α
(i)
0

9999K N−ΓC,h p1(y1) ⋯ α(i)mi
9999K N−ΓC,h pmi(ymi),

• each β(i) is a single transition with ∣∆(β(i))∣ = N ,

• the target configuration of α(i−1) is the source configuration of β(i) for all i ∈ [1, k], and

• the source configuration of α(i) is the target configuration of β(i) for all i ∈ [1, k].
We call k the breadth of η.

Remark 32. In case our initial N -semirun π contains k transitions of absolute counter effect N ,
we observe that π can naturally be viewed as an initial hybrid semirun of breadth k.

Several of the notions (such as counter effect, length and maximum) that we have defined for
runs and semiruns can naturally be extended to hybrid semiruns. As expected, the projection φ(η)
is defined as φ(η) = φ(α(0))φ(β(1))φ(α(1))⋯φ(β(k))φ(α(k)). We moreover introduce the particular
projection φ↾ of φ restricted to the α(i), i.e. φ↾(η) = φ(α(0))φ(α(1))⋯φ(α(k)).

Moreover, we view the α(i) themselves as sequences (not as atomic objects) of length mi and the
β(i) as sequences of length one. Using this convention, the notions of prefixes, infixes and suffixes
are as expected. More importantly, we extend naturally the notion of (max-falling and min-rising)
`-embedding to hybrid semiruns as in Definition 26 when treating them as such sequences.

We prove the Hill and Valley Lemma (Lemma 30) in Section 4.5.1. We summarize important
further consequences of the proof in Section 4.5.

4.5.1 Proof of the Hill and Valley Lemma

Let us fix any N -semirun

π = q0(z0) π0
99K N q1(z1) π1

99K N ⋯ πn−1
9999K N qn(zn)

from q0(z0) to qn(zn) with Values(π) ⊆ [0, h ⋅N] and N >MC,h. Let us moreover assume that π
is a B-hill for some B ∈ N. The case when π is a B-valley can be proven analogously.

For reasons of simplicity we separate the proof into two cases, namely if there is a +p-transition
or −p-transition whose source and target configurations have counter values that are both at most
B +ΥC,h + ΓC,h or not. Section 4.5.1 deals with the latter case, Section 4.5 with the former. It is
worth mentioning that Section 4.5 depends on Section 4.5.1.

π does not contain any ±p-transition whose source and target configuration both have
counter value at most B +ΥC,h + ΓC,h

In the following let us denote by L the critical level, i.e. the constant

L = B + ΓC,h.

Moreover, for a hybrid semirun η = α(0)β(1)α(1)⋯β(k)α(k), for every β(j) that is an unlowered+p-transition, we define the critical descending infix with respect to β(j) as the shortest prefix
(when viewed as a sequence, as mentioned above) of α(j)β(j+1)α(j+1)⋯β(k)α(k) that ends in a
configuration with counter value at most L. In particular, this critical descending infix could
possibly end in a configuration inside some (strict prefix of) α(i), where i ∈ [j, k]. Dually, for every
β(j) that is an unlowered −p-transition, we define the critical ascending infix with respect to β(j)

as the shortest suffix of α(0)β(1)⋯α(j−1) that starts in a configuration with counter value at mostL. The following remark is central.
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Remark 33. For a hybrid semirun η = α(0)β(1)α(1)⋯β(k)α(k), if some unlowered −p-transition
(resp. +p-transition) β(j) appears in the critical descending infix (resp. critical ascending infix) of
some unlowered +p-transition (resp. −p-transition) β(i), then so does β(i) appear in the critical
ascending infix (resp. critical descending infix) of β(j).

Viewing our initial semirun π as a hybrid semirun, we will now introduce two phases that
successively lower unlowered +p-transitions and unlowered −p-transitions yielding hybrid semiruns
that retain an approximation invariant (Definition 34).

In phase one, we are interested in unlowered +p-transitions. We want to progressively lower
these, going from right to left. Moreover, we want to inspect the critical descending infix in
order to obtain successive min-rising and max-falling embeddings with the same source and target
configuration. In case the rightmost unlowered +p-transition has the property that its critical
descending infix contains some unlowered −p-transition we lower the leftmost such directly, together
with the +p-transition. Otherwise, we want to make use of the Bracket Lemma (Lemma 25) and
the Depumping Lemma (Lemma 24) in order to retain some nice bracketing properties.

Having successively lowered all unlowered +p-transitions in phase one, we finally lower the
remaining unlowered −p-transitions in phase two. For these we take their critical ascending infix
and their ϕ↾-projection into account, again yielding some carefully chosen bracketing property.

The following definition formalizes the above-mentioned bracketing property.

Definition 34. A hybrid semirun η approximates π with respect to level ` ∈ Z if

1. η = α(0)β(1)α(1)⋯β(k)α(k) is a hybrid semirun of some breadth k,

2. π can be factorized as π = χ(0)ζ(1)χ(1)⋯ζ(k)χ(k), where the ζ(i) are transitions with operation
either +p or −p,

3. η is a min-rising and max-falling `-embedding of π,

4. α(i) is a max-falling `-embedding of χ(i) for all i ∈ [0, k] with the same source and target
configuration as χ(i),

5. every prefix of φ↾(γ(i)) contains at least as many occurrences of [ as of ], where γ(i) is the
critical descending infix of β(i) for all i ∈ [1, k] for which β(i) has operation +p, and

6. every suffix of φ↾(γ(i)) contains at least as many occurrences of ] as of [, where γ(i) is the
critical ascending infix of β(i) for all i ∈ [1, k] for which β(i) has operation −p.

By completing phase one and then phase two we will show the existence of a hybrid semirun
that approximates π with respect to level B and does not contain any unlowered +p-transition nor
any unlowered −p-transition (and is hence an (N − ΓC,h)-semirun). Observe first that by Point 4
any such hybrid semirun η has the same source and target configuration as π. Secondly, any such
η is in particular a min-rising and max-falling (B −ΥC,h − ΓC,h − 1)-embedding of π since π is
assumed to be a B-hill. Thus, the lemma follows. We will obtain the desired (N − ΓC,h)-semirun
and variants thereof by first systematically lowering +p-transitions from the rightmost to the
leftmost in phase one and secondly systematically lowering the possibly remaining −p-transitions
from the leftmost to the rightmost in phase two. We denote such a process — whose details are
given below — by the so-called (+p,−p)-lowering process. As mentioned in Remark 37 we will
also define a dual variant, namely the (−p,+p)-lowering process: here phase one will consist of
systematically lowering the −p-transitions from the leftmost to the rightmost, whereas phase two
will systematically lower the possibly remaining +p-transitions from the rightmost to the leftmost.

Remark 37 finally discusses a variant of a (+p,−p)-lowering process (resp. (−p,+p)-process)
which ends in a hybrid semirun that contains precisely one unlowered transition.

Let us discuss the (+p,−p)-lowering process in detail.

Phase one of the (+p,−p)-lowering process: Lowering +p-transitions
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Figure 4.6: Illustration of phase one case 1, i.e. the unlowered +p-transition β(i−1,j) can be
lowered by lowering it with the leftmost unlowered −p-transition on its critical descending infix, i.e.
β(i−1,j+1).

We can view our initial N -semirun π as a hybrid semirun η(0) of breadth k0, i.e.

η(0) = α(0,0)β(0,1)α(0,1)⋯β(0,k0)α(0,k0).

In phase one we will inductively show the existence of a sequence of hybrid semiruns η(0), η(1), . . . , η(r),
where each η(i) has breadth ki and approximates π with respect to level B, η(r) does not contain
any unlowered +p-transition, and ki−1 > ki for all i ∈ [1, r]. Let us assume that we have inductively
already defined the sequence η(0), . . . , η(i−1) of hybrid semiruns for some i ≥ 1 and where η(i−1) has
breadth ki−1 > 0 and approximates π with respect to level B and contains at least one unlowered+p-transition. Towards extending the sequence we need to show the existence of some hybrid
semirun η(i) of breadth ki < ki−1 that approximates π with respect to level B.

Let η(i−1) = α(i−1,0)β(i−1,1)α(i−1,1)⋯β(i−1,ki−1)α(i−1,ki−1). Let j ∈ [1, ki−1] be maximal such that
β(i−1,j) is an unlowered +p-transition. For defining η(i) we make the following case distinction.

1. The critical descending infix with respect to the +p-transition β(i−1,j) contains at least one
unlowered −p-transition. That is, the critical descending infix is of the form

α(i−1,j)β(i−1,j+1)α(i−1,j+1)⋯β(i−1,κ)ξ,

where ξ is a prefix (possibly empty) of α(i−1,κ), β(i−1,j+1) is an unlowered −p-transition and
where κ ≥ j + 1. We refer to Figure 4.6 for an illustration. Our desired hybrid semirun η(i) is
obtained from η(i−1) by simply lowering both β(i−1,j) and β(i−1,j+1), i.e. replacing β(i−1,j)

by β̂(i−1,j) satisfying ∆(β̂(i−1,j)) = N − ΓC,h and replacing β(i−1,j+1) by a suitable ̂β(i−1,j+1)

satisfying ∆( ̂β(i−1,j+1)) = −N +ΓC,h and moreover suitably shifting the part after β̂(i−1,j) and

until (including) ̂β(i−1,j+1) by −ΓC,h. More precisely, the part α(i,j−1) in η(i) is chosen to be
of the form

α(i,j−1) = α(i−1,j−1)β̂(i−1,j) (α(i−1,j) − ΓC,h) ( ̂β(i−1,j+1) − ΓC)α(i−1,j+1).

Moreover, observe that α(i,j−1) and the infix α(i−1,j−1)β(i−1,j)α(i−1,j)β(i−1,j+1)α(i−1,j+1) of
η(i−1) connect the same source and target configurations. Thus, it easily follows that η(i)

also approximates π with respect to level B. Finally, observe that the breadth of η(i) equals
ki−1 − 2.

2. The critical descending infix with respect to the +p-transition β(i−1,j) does not contain any
unlowered −p-transition. It follows that the critical descending infix with respect to β(i−1,j) is
a non-empty prefix ξ of α(i−1,j). We refer to Figure 4.7 for an illustration. Recall that η(i−1)
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Figure 4.7: Illustration of phase one case 2, i.e. the suffix of the to be lowered +p transition
β(i−1,j) does not contain any unlowered −p-transition, i.e. any transition with counter effect −N ,
inside its critical descending infix.

approximates π with respect to level B. Firstly, since by assumption Values(π) ⊆ [0, h ⋅N],
it follows from Point 3 of Definition 34 that Values(ξ) ⊆ [0, h ⋅N]. Secondly, from Point 5
of Definition 34 every prefix of φ(α(i−1,j)) contains at least as many occurrences of [ as of ].
Hence, the latter must also hold for every prefix of φ(ξ). Thirdly, since by the case of this
subsection the target configuration of every transition with operation +p in π has counter
value strictly larger than B + ΥC,h + ΓC,h, it follows from Points 2 and 4 of Definition 34
that the target configuration of β(i−1,j) ends in a configuration with counter value strictly
larger than B +ΥC,h + ΓC,h. Since ξ is the critical descending infix with respect to β(i−1,j)

(in particular ending in a configuration with counter value at most B + ΓC,h), it follows
∆(ξ) < −ΥC,h. Hence one can apply Lemma 25 to the (N − ΓC,h)-semirun ξ yielding an
infix ξ[c, d] satisfying φ(ξ[c, d]) ∈ Λ2h and ∆(ξ[c, d]) < −ΥC,h. Applying Lemma 24 to
ξ[c, d] implies the existence of an (N − ΓC,h)-semirun ξ′ = ξ[c, d] − I1 − I2⋯ − Is satisfying
∆(ξ′) = ∆(ξ[c, d]) + ΓC,h and where I1, . . . , Is are pairwise disjoint intervals of positions in
ξ[c, d] such that moreover φ(ξ[c, d][It]) ∈ Λ4h and ∆(ξ[c, d][It]) < 0 for all t ∈ [1, s]. Assume
that ξ = ξ[0,m] consisted of m transitions; thus in particular c, d ∈ [0,m]. By combining the
above properties it immediately follows that

ξ′′ = ξ[0, c]ξ′ (ξ[d,m] + ΓC,h)
is an (N − ΓC,h)-semirun with ∆(ξ′′) = ∆(ξ) + ΓC,h and that ξ′′ − ΓC,h is a max-falling
B-embedding of ξ. We define the desired η(i) to be obtained from η(i−1) by lowering β(i−1,j)

to β̂(i−1,j) satisfying ∆(β̂(i−1,j)) = ∆(β(i−1,j)) − ΓC,h and moreover replacing ξ by ξ′′ − ΓC,h.
Observe that η(i) and η(i−1) only differ in the infix α(i,j−1) of η(i). The latter is hence of the
form

α(i,j−1) = α(i−1,j−1)β̂(i−1,j) (ξ′′ − ΓC,h)α(i−1,j)[m, ∣α(i−1,j)∣].
By construction η(i−1)’s infix

α(i−1,j−1)β(i−1,j)α(i−1,j)

has the same source and target configuration as the part α(i,j−1) of η(i). Since moreover

• φ(ξ[c, d][It]) ∈ Λ4h contains precisely as many occurrences of [ as of ] and ∆(ξ[c, d][It]) <
0 for each t ∈ [1, s] and

• ∆(ξ′′) = ∆(ξ) + ΓC

it follows that indeed η(i) approximates π with respect to level B. Finally, observe that the
breadth of η(i) is ki−1 − 1.
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Recall that in phase one we have repeatedly lowered unlowered +p-transitions from right to
left. In doing so we have hereby possibly lowered certain −p-transitions. The final hybrid semirun
η(r) of phase one notably does not contain any unlowered +p-transition. However, η(r) may still
contain unlowered −p-transitions. Lowering these will be subject of phase two. Yet, these unlowered−p-transitions will be lowered rather from leftmost to rightmost (instead of from rightmost to
leftmost as in phase one).

Phase two of the (+p,−p)-lowering process: Lowering −p-transitions that remain after
phase one

Recall that L = B + ΓC,h denotes our critical level. Also recall that η(r) is the final hybrid
semirun in the sequence η(0), . . . , η(r) of phase one and approximates π with respect to level
B. Note that by construction η(r) does not contain any unlowered +p-transition. That is, all
unlowered transitions of η(r) have operation −p and there are as many of them as the breadth
of η(r). Setting η(0)

′ = η(r), phase two consists in showing the existence of a sequence of hybrid
semiruns η(1)

′
, . . . , η(t)

′
all of which do not contain any unlowered +p-transition and in which each

η(i)
′

has breadth k′i satisfying k′i < k′i−1, where each η(i)
′

approximates π with respect to level B,

and finally η(t)
′

is of breadth 0 (and is therefore already an (N − ΓC,h)-semirun).

Let us inductively assume that we have already defined the sequence η(0)
′
, . . . , η(i−1)′ for some

i ≥ 1 and that the breadth k′i−1 of η(i−1)′ satisfies k′i−1 > 0.

Let η(i−1)′ = α(i−1,0)′β(i−1,1)′α(i−1,1)′⋯β(i−1,ki−1)
′
α(i−1,ki−1)

′
. There is only one possible case for

this phase since the critical ascending infix with respect to the leftmost unlowered −p-transition
β(i−1,1)′ does not contain any unlowered +p-transition since η(i−1)′ does not. The construction of
η(i)

′
, as well as the proof that η(i)

′
approximates π with respect to level B, is completely dual to

the proof of the second case of phase one and therefore omitted.

Example 35. Figure 4.8 illustrates an example of an application of the (+p,−p)-lowering process.
The topmost figure on the left is the starting hybrid semirun π. We begin the process by lowering
the two unlowered +p-transitions each by compensating them with a −p-transition, then we enter
phase two with one unlowered −p-transition remaining, which we lower and compensate by shifting
and cutting out portions inside the critical ascending infix by applying the Depumping Lemma.

Remark 36. In case π is a B-valley instead of a B-hill there is a dual variant of the (+p,−p)-
lowering process. The critical level would be adjusted to L = B − ΓC,h, for unlowered +p-transitions
one would define the critical descending infix to be the shortest suffix of α(0)β(1)⋯α(j−1) that starts
in a configuration with counter value at least L, whereas for unlowered −p-transitions one would
define the critical ascending infix to be the shortest prefix of α(j)β(j+1)α(j+1)⋯β(k)α(k) that ends in
a configuration with counter value at least L. The definition when a hybrid semirun approximates
π with respect to level B would be defined analogously as in Definition 34, but where in Point 4
α(i) is rather required to be a min-rising B-embedding of χ(i) with the same source and target
configuration as χ(i), Point 5 (resp. Point 6) of Definition 34 would rather require that every suffix
(resp. every prefix) of φ↾(γ(i)) contains at least as many occurrences of [ (resp. ]) as of ] (resp. [).

Remark 37. Consider the following variants of the (+p,−p)-lowering process for our B-hill π
(dual variants can be formulated in the case when π is B-valley):

1. Consider the dual (−p,+p)-lowering process: In phase one we lower the −p-transitions from
the leftmost to the rightmost and in phase two lower the +p-transitions from the rightmost to
the leftmost. That is, such a (−p,+p)-lowering process produces a sequence of hybrid semiruns

η(0), η(1), . . . , η(s), η(0)
′
, η(1)

′
, . . . , η(t)

′
,

that all approximate π with respect to level B where η(0) = π, η(i) is obtained from η(i−1) by
lowering the leftmost unlowered −p-transition of η(i), η(0)

′ = η(s), η(i+1)′ is obtained from
η(i)

′
by lowering the rightmost unlowered +p-transition, and finally η(t)

′
has breadth 0.
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Figure 4.8: Illustration of the (+p,−p)-lowering process from Example 35 to be read from upper
left to lower right.
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2. Consider again the sequence of hybrid semiruns

η(0), η(1), . . . , η(s), η(0)
′
, η(1)

′
, . . . , η(t)

′
,

of the (+p,−p)-process (dually (−p,+p)-process):

(a) If t > 0, then observe that η(t−1)′ has breadth 1 and contains precisely one unlowered
transition, namely an unlowered −p-transition (dually +p-transition).

(b) If however t = 0, then we claim that every prefix (dually suffix) of φ(η(0)′) = φ(η(s))
contains at least as many occurrences of [ (dually occurrences of ]) as occurrences of
] (dually occurrences of [). Indeed, it follows immediately from the fact that each η(i)

is obtained from η(i−1) by lowering a +p-transition (dually a −p-transition) either by
shifting infixes and cutting out certain infixes ζ ′ for which φ(ζ ′) contains as many
occurrences of [ as of ], or by lowering a +p-transition (dually −p-transition) together
with an unlowered −p-transition (dually +p-transition) to the right (dually to the left).

(c) If φ(π) a priori contains strictly more occurrences of ] than of [ one can — by applying
the (+p,−p)-lowering process — obtain a sequence of hybrid semiruns

η(0), η(1), . . . , η(s), η(0)
′
, η(1)

′
, . . . , η(t)

′
,

where t > 0, all η(i) and η(j)
′

approximate π with respect to level B (and are therefore,
as remarked above by bearing in mind that π is B-hill, in particular both min-rising
and max-falling (B −ΥC,h − ΓC,h − 1)-embeddings of π with the same source and target

configuration as π) and where the breadth of η(t−1)′ is 1. Dually, if φ(π) contains strictly
more occurrences of [ than of ] one can — by applying the (−p,+p)-lowering process —
obtain a sequence of hybrid semiruns

η(0), η(1), . . . , η(s), η(0)
′
, η(1)

′
, . . . , η(t)

′
,

where t > 0, all η(i) and η(j)
′

approximate π with respect to level B (and are therefore
both min-rising and max-falling (B −ΥC,h − ΓC,h − 1)-embeddings of π with the same

source and target configuration as π) and where the breadth of η(t−1)′ is 1.

π contains a ±p-transition whose source and target configuration both have counter
value at most B +ΥC,h + ΓC,h

The presence of a +p-transition (resp. −p-transition) qi(zi) πi
99K N qi+1(zi+1) for which we have

max{zi, zi+1} ≤ B +ΥC,h + ΓC,h implies zi+1 − (B + ΓC,h) ≤ ΥC,h (resp. zi − (B + ΓC,h) ≤ ΥC,h), so
the core problem is that in both cases it is not possible to apply the Bracket Lemma (Lemma 25)
in the critical descending (resp. ascending) infix of such an unlowered transition. We thus have to
find another way to compensate for lowering such transitions.

We next claim that firstly, any +p-transition whose configurations both have a counter value at
most B +ΥC,h + ΓC,h must be the first transition of π and secondly, any −p-transition with the

same property must be the last transition of π. Indeed, every +p-transition qi(zi) πi
99K N qi+1(zi+1)

that is not the first transition (i.e. i > 0) satisfies zi ≥ B as π is a B-hill. As a consequence, we have
zi+1 ≥ B +N > B +MC,h > B + ΓC,h +ΥC,h, where the last inequality follows from MC,h’s definition

on page 33. Dually, if there exists a −p-transition qi(zi) πi
99K N qi+1(zi+1) with zi ≤ B +ΥC,h + ΓC,h

it must be the last transition qn−1(zn−1) πn−1
9999K N qn(zn) of π.

To finalize the proof it thus suffices to distinguish whether both the first transition of π is
a +p-transition with counter values at most (B + ΥC,h + ΓC,h) and the last transition of π is a−p-transition with counter values at most (B +ΥC,h +ΓC,h), or this holds for precisely one of them.
We thus distinguish these two cases, however in opposite order.
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Case 1. The first transition q0(z0) π0
99K N q1(z1) is a +p-transition with counter values at most(B +ΥC,h +ΓC,h) and the last transition qn−1(zn−1) πn−1

9999K N qn−1(zn−1) is not a −p-transition with

counter values at most (B +ΥC,h + ΓC,h), or the first transition q0(z0) π0
99K N q1(z1) is not a +p-

transition with counter values at most (B +ΥC,h +ΓC,h) and the last transition qn−1(zn−1) πn−1
9999K N

qn−1(zn−1) is a −p-transition with counter values at most (B +ΥC,h + ΓC,h).

We only treat the case when the first transition q0(z0) π0
99K N q1(z1) is a +p-transition with

counter values at most (B +ΥC,h + ΓC,h) and the last transition qn−1(zn−1) πn−1
9999K N qn−1(zn−1) is

not a −p-transition with counter values at most (B +ΥC,h + ΓC,h), since the opposite case can be
proven analogously.

Starting with η(0) = π we apply phase one of the (+p,−p)-lowering process to π yielding a
sequence of hybrid semiruns that all approximate π with respect to level B (and thus in particular

— bearing in mind that π is B-hill — approximates π with respect to level B − ΓC,h − 1)

η(0), η(1), . . . , η(s−1)

in which (as above) η(i) is obtained from η(i−1) by lowering the rightmost unlowered +p of η(i−1)

however only until reaching the hybrid semirun η(s−1) that contains precisely one unlowered +p-
transition, namely the first transition q0(z0) π0

99K N q1(z1) of π, which has counter values at most(B +ΥC,h + ΓC,h) by assumption. It is important but straightforward to verify that despite the
case we are in, it holds that η(i) approximates π with respect to level B (and also — bearing in
mind that π is a B-hill — with respect to level B − ΓC,h − 1) for all i ∈ [1, s − 1].

Next, we will define a sequence of hybrid semiruns η(s) = η(0)′ , η(1)′ , . . . , η(t)′ in which η(t)
′

will
be the desired (N −ΓC,h)-semirun as required by the lemma. For first defining η(s) = η(0)′ we make

a case distinction for lowering the only +p-transition q0(z0) π0
99K N q1(z1) of η(s−1), which happens

to have counter values at most (B +ΥC,h + ΓC,h) by assumption. For this assume η(s−1) has the
following form

η(s−1) = α(s−1,0)β(s−1,1)α(s−1,1)⋯β(s−1,ks−1)α(s−1,ks−1),

where we recall that β(s−1,1) equals q0(z0) π0
99K N q1(z1). Observe that the critical descending infix

of β(s−1,1) could possibly be empty, for instance if z1 ≤ B + ΓC,h. We now make the following case
distinction.

• In case the critical descending infix of β(s−1,1) contains an unlowered −p-transition we define
η(s) to be obtained from η(s−1) by lowering β(s−1,1) with the leftmost unlowered −p-transition
inside the critical descending infix as above. Thus, η(s) no longer contains any unlowered+p-transition. It is again straightforward to verify that η(s) approximates π with respect
to level B. Setting η(0)

′ = η(s) we then construct the sequence η(s) = η(0)′ , η(1)′ , . . . , η(t)′ as
usual, i.e. each η(i)

′
approximates π with respect to level B and is obtained from η(i−1)′ by

lowering the leftmost unlowered −p-transition and where eventually the breadth of η(t)
′

is 0.
Thus, as desired, the final η(t)

′
is an (N − ΓC,h)-semirun that is a min-rising and max-falling

B-embedding of π that has the same source and target configuration as π. Since η(t)
′

has
the same source and target configuration as π it follows that η(t)

′
is also a min-rising and

max-falling (B −ΥC,h − ΓC,h − 1)-embedding of π as required by the lemma.

• In case the critical descending infix of β(s−1,1) does not contain any unlowered −p-transition,
we consider the shortest prefix ζ of the remaining suffix

α(s−1,1)⋯β(s−1,ks−1)α(s−1,ks−1)

that ends in a configuration with counter value at most

L′ = z1 −ΥC,h − 1

(where we recall that as above each α(i,j) is viewed as a sequence of transitions). Indeed,
we claim that ζ exists and moreover satisfies ∆(ζ) < −ΥC,h. Firstly, as π is a B-hill by
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assumption, we have that z1 − zn > ΥC,h. Secondly, since η(s−1) approximates π with
respect to level B we have that η(s−1) ends in a configuration with counter value zn. Thus,
∆(α(s−1,1)⋯β(s−1,ks−1)α(s−1,ks−1)) = zn − z1 < −ΥC,h which implies that the prefix ζ exists and
satisfies ∆(ζ) < −ΥC,h. We make the following final case distinction.

– In case ζ contains an unlowered −p-transition, it must contain the leftmost unlowered−p-transition, namely β(s−1,2). Similar as for the critical descending infix, we define
η(s) to be obtained from η(s−1) by lowering β(s−1,1) together with β(s−1,2). Here it is
important to note that η(s) is not necessarily a (B − ΓC,h)-embedding of π since we
cannot rule out the existence of configurations appearing in α(s−1,1) that have counter
value B. Since η(s−1) was a B-embedding of the B-hill π with the same source and target
configuration it follows however that η(s) is a (B − ΓC,h − 1)-embedding of π. Hence,
η(s) approximates π with respect to level B −ΓC,h − 1. Thus, η(s) no longer contains any
unlowered +p-transitions, however, possibly contains unlowered −p-transitions. Recalling
that η(0)

′ = η(s) we define each of the remaining η(i)
′

to be obtained from η(i−1)′ as usual
but by retaining that each η(i)

′
approximates π with respect to level B−ΓC,h−1 (instead

of level B). By construction, η(0)
′

has breadth 0 and thus is an (N−ΓC,h)-semirun that is
a min-rising and max-falling (B−ΓC,h−1)-embedding and hence — bearing in mind that
π is a B-hill — in particular a min-rising and max-falling (B−ΥC,h−ΓC,h−1)-embedding
of π with the same source and target configuration as π.

– In case ζ does not contain any unlowered −p-transition it follows that ζ is a prefix of
α(s−1,1), thus contains neither unlowered +p-transitions nor unlowered −p-transitions
but possibly lowered ones. By an analogous reasoning as Point 2 of Remark 37 every
occurrence of a lowered −p-transition in α(s−1,1) is preceded by a unique corresponding
lowered +p-transition again in α(s−1,1). Thus, every prefix of φ(ζ) contains at least as
many occurrences of [ as of ]. Recalling that ∆(ζ) < −ΥC,h we can hence apply the
Bracket Lemma (Lemma 25) and the Depumping Lemma (Lemma 24) to ζ as in phase
one. The final η(s) is obtained from η(s−1) by suitably shifting subsemiruns and cutting
out certain subsemiruns whose φ-projection contains the same number of occurrences of
[ as of ]. Similar as argued in the previous point it follows that η(s) approximates π with

respect to level B − ΓC,h − 1. Setting again η(0)
′ = η(s) we define the sequence of hybrid

semiruns η(0)
′
, η(1)

′
, . . . , η(t)

′
that all approximate π with respect to level B − ΓC,h − 1

analogously as done in the previous point. Again η(t)
′

is an (N −ΓC,h)-semirun that is a
min-rising and max-falling (B−ΓC,h−1)-embedding and hence in particular a min-rising
and max-falling (B −ΥC,h − ΓC,h − 1)-embedding of π with the same source and target
configuration as π.

Remark 38. Our case (where the first transition of our B-hill is a +p-transition with counter
values at most B +ΥC,h + ΓC,h and the last transition is not a −p-transition with counter values at
most (B +ΥC,h + ΓC,h)) allows the following “penultimate” process variants for our B-hill π (dual
variants can be formulated in the case when π is B-valley):

1. The adjusted process here in Case 1 bears similar properties to those of the (+p,−p)-lowering
process seen in Remark 37. Specifically, if φ(π) contains strictly more occurrences of ] than
of [ one can obtain a sequence of hybrid semiruns

η(0), η(1), . . . , η(s), η(0)
′
, η(1)

′
, . . . , η(t−1)′ ,

where all η(i) and η(j)
′

approximate π with respect to level B − ΓC,h − 1 (and are therefore —
bearing in mind that π is a B-hill — in particular min-rising and max-falling (B −ΥC,h −
ΓC,h − 1)-embeddings of π with the same source and target configuration as π) and where

η(t−1)′ has breadth 1 and contains precisely one unlowered −p-transition.

2. Dually, the (−p,+p)-lowering process mentioned in Remark 37, when applied to Case 1, is
such that if φ(π) contains strictly more occurrences of [ than of ] one can obtain a sequence
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of hybrid semiruns

η(0), η(1), . . . , η(s), η(0)
′
, η(1)

′
, . . . , η(t−1)′ ,

where all η(i) and η(j)
′

approximate π with respect to level B − ΓC,h − 1 (and are therefore —
bearing in mind that π is a B-hill — in particular min-rising and max-falling (B −ΥC,h −
ΓC,h − 1)-embeddings of π with the same source and target configuration as π) and where

η(t−1)′ has breadth 1 and contains precisely one unlowered +p-transition.

Case 2. The first transition q0(z0) π0
99K N q1(z1) is a +p-transition with counter values at most(B + ΥC,h + ΓC,h) and the last transition qn−1(zn−1) πn−1

9999K N qn−1(zn−1) is a −p-transition with
counter values at most (B +ΥC,h + ΓC,h).

By our case we have that z0, zn ≤ B+ΥC,h+ΓC,h−N ≤ B+ΥC,h+ΓC,h−MC,h < B−ΥC,h−ΓC,h−1,
where the last inequality follows the definition of our constants on page 33.

Since π is a B-hill π is also a (B − ΥC,h − ΓC,h − 1)-hill. Moreover, obviously there are no+p-transitions nor −p-transitions in π whose source and target configuration both have counter
value at most B − 1. Phrased differently, setting B′ = B −ΥC,h − ΓC,h − 1, we view π as a B′-hill
that does not contain any +p-transitions nor −p-transitions whose source and target configuration
have a counter value at most (B′ +ΥC,h +ΓC,h). We can hence apply the (+p,−p)-lowering process
to π as described in the case of in Section 4.5.1 for B′ instead of B, thus yielding the sequence
η(0), η(1), . . . , η(s) and η(0)

′
, η(1)

′
, . . . η(t)

′
of hybrid semiruns that approximate π with respect to

level B′ and are therefore min-rising and max-falling B′-embeddings of π: note that we use the
fact that they are are indeed B′-embeddings as the construction in Section 4.5.1 guarantees rather
than that they are (B′ −ΥC,h −ΓC,h − 1)-embeddings. The final η(t)

′
is of breadth 0 and is hence a

min-rising and max-falling (N − ΓC,h)-semirun that is a (B −ΥC,h − ΓC,h − 1)-embedding of π with
the same source and target configuration as π, as required by the lemma.

The Hill and Valley Lemma, dependent on the number of occurrences +p-transitions
as of −p-transitions

A closer look at the proof of Lemma 30 reveals that majority of occurrences of +p-transitions (resp.−p-transitions) implies the respective majority is preserved in the resulting (N − ΓC,h)-semirun.

Remark 39. The resulting η(t)
′

obtained from the B-hill (resp. B-valley) π satisfies the following.

• If φ(π) contains at least as many occurrences of [ as of ], then so does the resulting (N−ΓC,h)-

semirun φ(η(t)′) satisfying Lemma 30.

• If φ(π) contains at least as many occurrences of ] as of [, then so does the resulting (N−ΓC,h)-

semirun φ(η(t)′) satisfying Lemma 30.

The following final remark stresses the fact that when our B-hill (resp. B-valley) π contains a
number of occurrences of +p-transitions different from the number of −p-transitions, the lowering
processes described in the previous section yield a penultimate hybrid semirun where all but one of
whose +p-transitions and −p-transitions are lowered. It is an immediate consequence of Point 2.c
in Remark 37 and Remark 38.

Remark 40. Let π be an N -semirun that is a B-hill (dually a B-valley).

1. If φ(π) contains strictly more occurrences of ] than of [ one can obtain a sequence of hybrid
semiruns

η(0), η(1), . . . , η(s), η(0)
′
, η(1)

′
, . . . , η(t−1)′ ,

in which η(t−1)′ is a min-rising and max-falling (B − ΥC,h − ΓC,h − 1)-embedding (dually(B +ΥC,h +ΓC,h + 1)-embedding) of π with the same source and target configuration as π and

where η(t−1)′ has breadth 1 and contains precisely one unlowered −p-transition.
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2. Analogously, if φ(π) contains strictly more occurrences of [ than of ] one can obtain a
sequence of hybrid semiruns

η(0), η(1), . . . , η(s), η(0
′
), η(1)

′
, . . . , η(t−1)′ ,

in which η(t−1)′ is a min-rising and max-falling (B − ΥC,h − ΓC,h − 1)-embedding (dually(B +ΥC,h +ΓC,h + 1)-embedding) of π with the same source and target configuration as π and

where η(t−1)′ has breadth 1 and contains precisely one unlowered +p-transition.

4.6 The 5/6-Lemma

In this Section, we introduce the 5/6-Lemma (Lemma 41), stating that any N -semirun with
counter effect smaller than 5/6 ⋅N can be turned into an (N − ΓC,h)-semirun that is moreover an
`-embedding for all ` that are in distance at most 5/6 ⋅N from the counter values of the source and
target configuration. It will be the main technical ingredient in the proof of the Small Parameter
Theorem (Theorem 21). This section is devoted to proving the lemma, hereby making extensive
use of the Hill and Valley Lemma (Lemma 30), the Depumping Lemma (Lemma 24), and the
Bracket Lemma (Lemma 25) introduced in previous sections.

Recall that we have fixed a PTOCA C = (Q,P,R, qinit, F ) with P = {p}, h > 0, along with the
constants ZC ,ΓC,h,ΥC,h,MC,h on page 33.

Let us first introduce the 5/6-Lemma.

Lemma 41 (5/6-Lemma). For all N > MC,h and all ` ∈ Z and all N-semiruns π from q0(z0)
to qn(zn) with Values(π) ⊆ [0, h ⋅ N] satisfying max(z0, zn, `) − min(z0, zn, `) ≤ 5/6 ⋅ N there
exists an (N − ΓC,h)-semirun π′ from q0(z0) to qn(zn) that is an `-embedding of π such that
Values(π′) ⊆ [min(π) − ΓC,h,max(π) + ΓC,h].
Towards proving Lemma 41 let us fix

• some N >MC,h,

• some ` ∈ Z,

• some N -semirun π = q0(z0) π0
99K N q1(z1) ⋯ πn−1

9999K N qn(zn) from q0(z0) to qn(zn) satisfying
Values(π) ⊆ [0, h ⋅N] and max(z0, zn, `) −min(z0, zn, `) ≤ 5/6 ⋅N .

In order to prove the 5/6-Lemma we need to show the existence of some (N − ΓC,h)-semirun π′

from q0(z0) to qn(zn) that is both an `-embedding of π with Values(π′) ⊆ [min(π)−ΓC,h,max(π)+
ΓC,h].

For this, let us define following two constants

Bmin = min(z0, zn, `) −ΥC,h − 2ΓC,h − 1 and Bmax = max(z0, zn, `) +ΥC,h + 2ΓC,h + 1

and observe that

Bmax −Bmin = max(z0, zn, `) −min(z0, zn, `) + 2ΥC,h + 4ΓC,h + 2≤ 5/6 ⋅N + 2ΥC,h + 4ΓC,h + 2≤ 5/6 ⋅N +MC,h/6 (4.4)< N, (4.5)

where the penultimate inequality follows from the definitions of our constants on page 33.

We are particularly interested in subsemiruns of π that start and end in configurations with counter
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Figure 4.9: On the left, an example of a Type II subsemirun. On the right, an example of a
Type III subsemirun. Bold transitions are crossing, and the first two bold transitions of the figure
on the right are moreover doubly crossing.

values in [Bmin + 1,Bmax − 1]. To categorize such subsemiruns into different types, we introduce
the notion of crossing and doubly-crossing transitions.

Definition 42. A transition qi(zi) πi
99K qi+1(zi+1) is called crossing if either

• πi = +p and we have zi < Bmax ≤ zi+1 or zi ≤ Bmin < zi+1, or

• πi = −p and we have zi > Bmin ≥ zi+1 or zi ≥ Bmax > zi+1.

If even moreover zi ≤ Bmin ≤ Bmax ≤ zi+1 or zi ≥ Bmax ≥ Bmin ≥ zi+1 we call πi doubly-crossing.

We already refer to Figure 4.9, where subsemiruns of a certain type (to be defined below) are
depicted, some of whose transitions crossing transitions, some of whose are even doubly-crossing
transitions.

Next, we introduce three particular types of subsemiruns of π starting and ending in configura-
tions with counter values in [Bmin + 1,Bmax − 1].
Definition 43 (Type I, II and III subsemiruns of π). A subsemirun π[a, b] of π with source and
target configuration in Q × [Bmin + 1,Bmax − 1] is

• of Type I if Values(π[a, b]) ⊆ [Bmin + 1,Bmax − 1],
• of Type II if

– Values(π[a + 1, b − 1]) ∩ [Bmin + 1,Bmax − 1] = ∅, and

– π[a, b] does not contain any doubly-crossing transitions,

• of Type III if

– Values(π[a + 1, b − 1]) ∩ [Bmin + 1,Bmax − 1] = ∅, and

– π[a, b] contains at least one doubly-crossing transition.

Remark 44. All crossing transitions in a Type III semirun, except possibly the first or the last
transition, are doubly-crossing.

Figure 4.9 shows an example of a Type II and of a Type III subsemirun.
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Figure 4.10: In this figure, we provide an example factorization of a semirun π. A semirun π is
divided into five subsemiruns, separated by vertical lines. The third and fifth subsemiruns are of
Type I, the first and fourth subsemiruns are of Type II, and the second one is of Type III.

The following lemma factorizes π into Type I, Type II and Type III subsemiruns, bearing in
mind that both the source and target configuration of π have a counter value in [Bmin+1,Bmax−1].
Lemma 45. The N -semirun π can be factorized into Type I, Type II, and Type III subsemiruns.

Proof. Let us first factorize π as

π = π[c1, d1]π[d1, c2]π[c2, d2]π[d2, c3] ⋯ π[ct, dt], (4.6)

where

• π[ci, di] are Type I and maximal (possibly empty), i.e. π[ci, di] is of Type I but neither
π[ci − 1, di] nor π[ci, di + 1] is of Type I for all i ∈ [1, t], and

• Values(π[di + 1, ci+1 − 1]) ∩ [Bmin + 1,Bmax − 1] = ∅ for all i ∈ [1, t − 1].
Now it suffices to show that each subsemirun π[di, ci+1] is either of Type II or of Type III. For this,
let us make a case distincton on whether π[di, ci+1] contains a doubly-crossing transition or not.

For the first case, namely that π[di, ci+1] does contain a doubly-crossing transition, since
Values(π[di + 1, ci+1 − 1]) ∩ [Bmin + 1,Bmax − 1] = ∅, we have that π[di, ci+1] is of Type III by
definition.

For the second case, namely that π[di, ci+1] does not contain any doubly-crossing transition,
since Values(π[di + 1, ci+1 − 1])∩ [Bmin + 1,Bmax − 1] = ∅ we have that π[di, ci+1] is of Type II by
definition.

By Remark 28 in order to prove the existence of the desired (N − ΓC,h)-semirun it suffices to
show it for Type I, Type II and Type III subsemiruns of π.

Since Type I subsemiruns neither contain any +p-transition nor any −p-transition by (4.5), they
are already (N − ΓC,h)-semiruns.

Let us now discuss the situation for Type II subsemiruns of π. If a Type II subsemirun is
already an (N − ΓC,h)-subsemirun we are done as above. In case a Type II subsemirun ρ is not of
Type I we first claim that ρ is either a Bmin-valley or a Bmax-hill. Indeed, if ρ is of Type II but
not of Type I one can factorize ρ as

ρ = p0(x0) ρ0
99K N p1(x1) ⋯ ρm−1

9999K N pm(xm),
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where

1. m ≥ 2,

2. x0, xm ∈ [Bmin + 1,Bmax − 1], and

3. either xi ∈ [0,Bmin] for all i ∈ [1,m − 1] or xi ∈ [Bmax, h ⋅N] for all i ∈ [1,m − 1],
where Point 3 follows from the absence of doubly-crossing transitions.

First assume that xi ∈ [Bmax, h ⋅N] for all i ∈ [1,m − 1]. In this case any +p-transition (resp.−p-transition) ends (resp. starts) in a configuration with counter value strictly larger than Bmin+N .
Due to the definition of our constants on page 33 we have

x0 +ΥC,h, xn +ΥC,h < Bmax +ΥC,h= Bmin + (Bmax −Bmin) +ΥC,h≤ Bmin + 5/6 ⋅N + 3ΥC,h + 4ΓC,h + 2< Bmin + 5/6 ⋅N +MC,h/6< Bmin +N,
hence ρ is a Bmax-hill.

Secondly, in case xi ∈ [0,Bmin] for all i ∈ [1,m − 1] it can analogously be shown that ρ is
Bmin-valley.

The existence of the desired (N −ΓC,h)-semirun ρ′ that is an `-embedding of the Type II semirun
ρ with the same source and target configuration as ρ follows immediately from the following claim,
which itself (with a short justificaton below) is a consequence of the Hill and Valley Lemma
(Lemma 30); thanks to the fact that the Hill and Valley Lemma guarantees the resulting (N −ΓC,h)-
semiruns to be min-rising and max-falling, we can even guarantee Values(ρ′) ⊆ [min(ρ),max(ρ)].
Claim 2. For every N -semirun ρ that is either a B-hill with B ≥ ` +ΥC,h + ΓC,h + 1 or a B-valley
with B ≤ ` − ΥC,h − ΓC,h − 1, there exists an (N − ΓC,h)-semirun that is both a min-rising and
max-falling `-embedding of ρ with same source and target configuration as ρ.

That the Hill and Valley Lemma produces an `-embedding that has the same source and
target configuration is important here. Indeed, generally speaking if ρ is any B-hill and ρ′ is any
k-embedding of ρ with the same source and target configuration as ρ and where k < B, then ρ′

is also a k′-embedding of ρ for all k′ < k. Dually, if ρ is any B-valley and ρ′ is a k-embedding of
ρ with with the same source and target configuration as ρ and where k > B, then ρ′ is also an
k′-embedding of ρ for all k′ > k.

For the rest of this section it now suffices to prove that for every Type III subsemirun ρ of π
there exists an (N − ΓC,h)-semirun ρ′ that is an `-embedding of ρ with the same source and target
configuration as ρ and that moreover satisfies Values(ρ′) ⊆ [min(ρ) − ΓC,h,max(ρ) + ΓC,h].
4.6.1 Lowering Type III subsemiruns

For the rest of the Section let us fix a Type III subsemirun ρ of π. Let us factorize ρ by its crossing
semitransitions, i.e. as

ρ = α(0)β(1)α(1) ⋯ β(n)α(n),

where β(1), . . . , β(n) is an enumeration of the crossing semitransitions of ρ and each α(i) is a
(possibly empty) N -subsemirun of ρ. It is worth mentioning that, indeed abusing notation, for the
rest of this section we refer to n as the number of crossing semitransitions of ρ, rather than the
number of transitions of our original N -run π.
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An example factorization is shown in Figure 4.9, where the crossing transitions are depicted in
bold. We remark that the only crossing transitions of ρ that are not doubly-crossing can possibly
only be the first or the last one (or both).

We intend to now factorize ρ, if possible, into hills and valleys. In order to do this let us first
introduce the notions of B-hill candidate and B-valley candidate.

Definition 46. Let

χ = p0(x0) χ0
999K N p1(x1) ⋯ χm−1

9999K N pm(xm)
be an N-semirun. We say χ is a B-hill candidate if x0, xm < B and xi ≥ B for all i ∈ [1,m − 1],
respectively a B-valley candidate if x0, xm > B and xi ≤ B for all i ∈ [1,m − 1].

Note that every B-hill is a B-hill candidate but not vice versa, since being a B-hill moreover
requires +p-transitions to end at a configuration with counter value strictly larger than xn +ΥC,h
and −p-transitions to start at a configuration with counter value strictly larger than x0 +ΥC,h. A
similar remark applies to B-valleys and B-valley candidates.

For the rest of this section we assume without loss of generality that the crossing transition β1

is a +p-transition. The case when β1 is −p-transition can be proven analogously.
It follows that if the number n of crossing transitions is even, then there is a unique factorization

ρ = α(0)σ(1)α(2)σ(2)α(4)σ(3)α(6) ⋯ σ(n/2)α(n), (4.7)

where σ(i) = β(2i−1)α(2i−1)β(2i) is a Bmax-hill candidate, β(2i−1) is a +p-transition and β(2i) is a−p-transition for all i ∈ [1, n/2]. Indeed, this immediately follows from the definition of crossing
transitions and the fact that α(2i−1) does not contain any configuration with counter value strictly
less than Bmax.

Therefore our proof makes first a case distinction on the parity of the number n of crossing
transitions.

Case A: The number of crossing transitions n is even.
Our proof next makes a case distinction on the number of Bmax-hill candidates σ(i) in the

factorization (4.7) that are in fact Bmax-hills.

Case A.1: All of the Bmax-hill candidates σ(i) in (4.7) are in fact Bmax-hills.

Since each σ(i) = β(2i−1)α(2i−1)β(2i) from (4.7) is a Bmax-hill, to each σ(i) we can apply Claim 2

and obtain an (N − ΓC,h)-semirun σ̂(i) that is both a min-rising and max-falling `-embedding of
σ(i) with the same source and target configuration as σ(i). Thus, it remains to show the same for
α(2i) for each i ∈ [0, n/2]. We do this separately for α(0), α(n) and finally for those α(2i), where
i ∈ [1, n/2 − 1].

Let us first show it for α(0). The proof for α(n) is completely analogous. If α(0) is empty
(which would imply that β(1) is crossing but not doubly-crossing), there is nothing to show. Let us
therefore assume that α(0) is not empty. It follows that β(1) must be a doubly-crossing +p-transition
by Remark 44. Since β(1) is the first crossing transition (even doubly-crossing) and a +p-transition
and moreover ρ is of Type III one can factorize α(0) as

α(0) = α(0,0)σ(0,1)α(0,1) ⋯ σ(0,k),

where α(0,j) satisfies Values(α(0,j)) ⊆ [Bmax − N,Bmin + 1] for all j ∈ [0, k] and σ(0,j) is a(Bmax −N − 1)-valley candidate for all j ∈ [1, k]. It immediately follows that each α(0,j) does not
contain any +p-transition nor any −p-transition, and is hence already an (N−ΓC,h)-semirun. Finally
we claim that each σ(0,j) is in fact a (Bmax−N −1)-valley. Indeed, firstly the target configuration of
each +p-transition in σ(0,j) has a counter value at most Bmin and hence a source configuration with
counter value at most Bmin −N < Bmax −N − 1 −ΥC,h, where the inequality follows from definition
of Bmin and Bmax from page 55. Secondly and analogously, the source configuration of each−p-transition in σ(0,j) has a counter value of at most Bmin and hence a target configuration with
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counter value at most Bmin −N < Bmax −N − 1 −ΥC,h. Thus, to each σ(0,j) we can apply Claim 2

to obtain an (N − ΓC,h)-semirun σ̂(0,j) that is a min-rising and max-falling `-embedding of σ(0,j)

with the same source and target configuration as σ(0,j). Hence, by appropriately concatenationg

the α(0,j) with the σ̂(0,j) we obtain the desired (N − ΓC,h)-semirun that is an `-embedding of α(0).
It now only remains and suffices to show that for each α(2i) with i ∈ [1, n/2 − 1], that there

exists an (N − ΓC,h)-semirun that is a min-rising and max-falling `-embedding of α(2i) with
same source and target configuration as α(2i). Again by Remark 44 any such α(2i) succeeds
σ(i) = β(2i−1)α(2i−1)β(2i) and thus succeeds the doubly-crossing transition β(2i) and analogously
preceeds σ(i+1) = β(2i+1)α(2i+1)β(2i+2) and thus precedes the doubly-crossing β(2i+1). Therefore,
analogously as done for α(0), one can factorize α(2i) as

α(2i) = α(2i,0)σ(2i,1)α(2i,1) ⋯ σ(2i,k)α(2i,k)

for some k ≥ 0, where α(2i,j) satisfies Values(α(2i,j)) ⊆ [Bmax −N,Bmin] (and is thus already an(N − ΓC,h)-semirun) for all j ∈ [0, k] and σ(2i,j) is a (Bmax −N − 1)-valley candidate that is in fact
a (Bmax −N − 1)-valley for all j ∈ [1, k].
Case A.2: All but one of the Bmax-hill candidates σ(i) in (4.7) are in fact Bmax-hills.

Recall the factorization

ρ = α(0)σ(1)α(2)σ(2)α(4)σ(3)α(6) ⋯ σ(n/2)α(n)

from (4.7) where each σ(i) = β(2i−1)α(2i−1)β(2i) is a Bmax-hill candidate for all i ∈ [1, n/2].
First let us show that, in case one such Bmax-hill candidate is not a Bmax-hill, then it must be ei-

ther σ(1) or σ(n/2). For every of the remaining j ∈ [2, n/2−1] we have that σ(j) = β(2j−1)α(2j−1)β(2j)

is such that β(2j−1) and β(2j) are both doubly-crossing, implying that σ(j) is a Bmax-hill: indeed,
both the source and target configuration of σ(j) have a counter value at most Bmin < Bmax −ΥC,h,
which is sufficient since every +p-transition (resp. −p-transition) of σ(j) ends (resp. starts) in a
configuration with counter value at least Bmax.

Let us assume without loss of generality that σ(1) = β(1)α(1)β(2) is the only Bmax-hill candidate
that is not a Bmax-hill, the case when σ(n/2) is not a Bmax-hill can be treated analogously.

Clearly, by the above reasoning, either β(1) or β(2) must not be doubly-crossing. Without
loss of generality let us assume that the first crossing transition β(1) is not doubly-crossing (for
β(2) not doubly-crossing implies n = 2 by definition of Type III and Remark 44; this case is thus
included in the dual case when σ(n/2) is not a Bmax-hill and the last crossing transition β(n) is not
doubly-crossing).

Remarking that α(0) must be empty by our case, one can now factorize our N -semirun ρ as

ρ = (β(1)α(1))β(2) (α(2)σ(2)α(4) ⋯ σ(n/2)α(n)) ,
where β(2) is a −p-transition. For finishing this case we will proceed as follows.

1. Firstly we show the existence of an (N−ΓC,h)-semirun that is both a min-rising and max-falling
`-embedding of β(1)α(1) with the same source and target configuration as β(1)α(1).

2. Secondly, let us assume that β(2) is an N -semirun from q(x) to q′(y), say, and moreover
that α(2)σ(2)α(4)⋯ σ(n/2)α(n) is an N -semirun from q′(y) to q′′(z), say. Noting that β(2) =
q(x) −p

99K N q′(y), we explicitly lower β(2) into the (N − ΓC,h)-semirun q(x) −p
99K N−ΓC,h

q′(y + ΓC,h), which is — since β(2) is doubly-crossing — obviously both a min-rising and
max-falling `-embedding of β(2) from q(x) to q′(y + ΓC,h). Finally, we show the existence of
an (N − ΓC,h)-semirun that is an `-embedding of α(2)σ(2)α(4)⋯ σ(n/2)α(n) from q′(y + ΓC,h)
to q′′(z) all of whose counter values lie in [min(ρ) − ΓC,h,max(ρ) + ΓC,h].

Let us first show Point 1. Since β(1) is not doubly-crossing and σ(1) = β(1)α(1)β(2) is a Bmax-hill
candidate that is not a Bmax-hill, the only reason for the latter is the existence of a −p-transition τ
such that the counter values of the source configuration of τ and σ(1) have an absolute difference at
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most ΥC,h. Such a transition τ must have a source configuration with counter value in the interval[Bmax,Bmax +ΥC,h − 1] and σ(1) must then necessarily have a source configuration with a counter
value in the interval [Bmax −ΥC,h,Bmax − 1]. Such a violation can only happen for τ = β(2). As a
consequence, the target configuration q(x) of α(1) has a counter value inside [Bmax,Bmax+ΥC,h−1].
Recalling that β(1) is not doubly-crossing one can (analogously as has been done in Case A.1)
factorize β(1)α(1) as

β(1)α(1) = χ(1)ξ(1)⋯χ(k)ξ(k),

for some k ≥ 0, where each χ(i) is a (Bmin + N + 1)-hill and each ξ(i) satisfies Values(ξ(i)) ⊆[Bmax,Bmin +N]. Again, analogously as has been done in Case A.1, to each of the χ(i) we can
apply Claim 2 to turn them into a suitable min-rising and max-falling (N −ΓC,h)-semirun that is an
`-embedding of χ(i) with the same source and target configuration as χ(i), whereas each of the ξ(i)

are already (N − ΓC,h)-semiruns since they do not contain any +p-transitions nor −p-transitions.

Let us finally show Point 2. Consider the remaining factorization

γ = α(2)σ(2)α(4) ⋯ σ(n/2)α(n) (4.8)

from q′(y) to q′′(z). We need prove the existence of an (N − ΓC,h)-semirun from q′(y + ΓC,h) to
q′′(z) that is an `-embedding of γ and whose counter values lie in [min(γ) − ΓC,h,max(γ) + ΓC,h].

We first claim that ∆(γ) > ΥC,h. Since x ∈ [Bmax,Bmax +ΥC,h − 1] it follows that the counter
value y of γ’s source configuration q′(y) satisfies y ∈ [Bmax −N,Bmax +ΥC,h − 1 −N]. Moreover,
the target configuration q′′(z) of γ is the target configuration of our Type III N -semirun ρ, thus
z ∈ [Bmin + 1,Bmax − 1]. Hence by the definition of our constants on page 33 we have

∆(γ) ≥ Bmin + 1 − (Bmax +ΥC,h − 1 −N)> N − (Bmax −Bmin) −ΥC,h
(4.4)≥ N − (5/6 ⋅N + 2ΥC,h + 4ΓC,h + 2) −ΥC,h= N/6 − 2ΥC,h − 4ΓC,h − 2 −ΥC,h> MC,h/6 − 2ΥC,h − 4ΓC,h − 2 −ΥC,h= MC,h/6 − 4ΥC,h − 4ΓC,h − 2 +ΥC,h> (MC,h/6 − 4(ΥC,h + ΓC,h + 1)) +ΥC,h> ΥC,h.

Recall that each σ(i) is a Bmax-hill for all i ∈ [2, n/2] by our case. Analogously, as has been done
in Case A.1, for each i ∈ [1, n/2] one can factorize α(2i) as

α(2i) = α(2i,0)σ(2i,1) ⋯ σ(2i,ki)α(2i,ki),

where α(2i,j) satisfies Values(α(2i,j)) ⊆ [Bmax −N,Bmin + 1] for each j ∈ [0, ki] and σ(2i,j) is a(Bmax −N − 1)-valley for each j ∈ [1, ki]: more precisely for the final α(n) we have Values(α(n)) ⊆[Bmax −N,Bmin + 1], however for all i ∈ [1, n/2 − 1] we have α(2i) ⊆ [Bmax −N,Bmin].
It is important to remark that each α(2i,j) is already an (N − ΓC,h)-semirun since it does not

contain any +p-transition nor any −p-transition. The following remark summarizes the factorization
of γ.

Remark 47. Our N -semirun γ from q′(y) to q′′(z) can be written as

γ = α(2)σ(2)α(4) ⋯ σ(n/2)α(n) = α(2) ⎛⎝
n/2∏
i=2

σ(i) α(2i,0) ⎛⎝
ki∏
j=1

σ(2i,j)α(2i,j)⎞⎠⎞⎠ , (4.9)

where

1. each σ(i) is a Bmax-hill,
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2. each σ(2i,j) is a (Bmax −N − 1)-valley,

3. each α(2i,j) is already an (N − ΓC,h)-semirun,

4. ∆(γ) > ΥC,h, and

5. every configuration in γ (except for possibly the target configuration q′′(z)) has a counter
value in [0,Bmin] ∪ [Bmax, h ⋅N] whose absolute difference with ` is thus strictly larger than
ΓC,h (recall the definition of Bmin and Bmax of page 55).

We can now obtain suitable (N −ΓC,h)-semiruns with the same source and target configuration
for any of the above hills and valleys by applying the Hill and Valley Lemma.

Remark 48. By applying the Hill and Valley Lemma (Lemma 30) we obtain the following.

1. For each of the Bmax-hills σ(i) there exists an (N−ΓC,h)-semirun σ̂(i) that is both a min-rising
and max-falling (Bmax −ΥC,h − ΓC,h − 1)-embedding of σ(i) from the same source and target
configuration as σ(i). In particular, since σ(i) is a Bmax-hill and Bmax−ΥC−ΓC,h−1 > `+ΓC,h

it follows that σ̂(i) is in fact an `-embedding of σ(i) all of whose configurations have a counter
value whose absolute difference with ` is strictly larger than ΓC,h (except for the exotic case
when i = n/2 and γ in fact ends with σ(i), and hence the last configuration of σ(i) happens to
be the last configuration q′′(z) of γ; recalling that z ∈ [Bmin + 1,Bmax − 1]).

2. For each of the (Bmax −N − 1)-valleys σ(2i,j) there exists an (N − ΓC,h)-semirun σ̂(2i,j) that
is both a min-rising and max-falling (Bmax −N − 1 + ΥC,h + ΓC,h + 1)-embedding of σ(2i,j)

with the same source and target configuration as σ(2i,j). In particular, since σ(2i,j) is a(Bmax −N − 1)-valley and

Bmax −N +ΥC + ΓC,h
(4.5)< Bmin +ΥC + ΓC,h ≤ ` − ΓC,h,

where the last inequality follows from the definition of Bmin on page 55), it follows that σ̂(2i,j)

is in fact an `-embedding of σ(2i,j) all of whose configurations have a counter value whose
absolute difference with ` is is strictly larger than ΓC,h (except, similar as above, for the exotic
case when i = n/2, j = ki and γ in fact ends with σ(2i,j), and hence the last configuration
σ(2i,j) happens to be the last configuration q′′(z) of γ.

It is worth pointing out that applying the remark immediately would only yield the existence
of an (N − ΓC,h)-semirun γ′ that is both a min-rising and max-falling `-embedding of γ with
the same source configuration q′(y) and the same target configuration q′′(z) as γ such that
Values(γ′) ⊆ [min(γ) − ΓC,h,max(γ) + ΓC,h]. However we need to show the existence of such an
`-embedding rather from q′(y +ΥC) to q′′(z). For this, we make a final case distinction on whether
among the Bmax-hills σ(i) and the (Bmax−N −1)-valleys σ(2i,j) there exists one whose φ-projection
contains strictly more occurrences of [ as occurrences of ].

• Case A.2.i: Among the Bmax-hills σ(i) and the (Bmax −N − 1)-valleys σ(2i,j) there exists one
whose φ-projection contains strictly more occurrences of [ as occurrences of ].
Without loss of generality let us assume that there exists some s ∈ [2, n/2] such that
σ(s) = β(2s−1)α(2s−1)β(2s) is a Bmax-hill for which φ(σ(s)) contains strictly more occurrences
of [ as occurrences of ] — the case when there is a (Bmax −N − 1)-valley σ(2s,j) for which
φ(σ(2s,j)) has the above property can be proven analogously.

Assume σ(s) = β(2s−1)α(2s−1)β(2s) has source configuration r1(x1) and target configuration
r2(x2), say. Since β(2s−1) was surely neither the first nor the last crossing transition of ρ
(recall that s ≥ 2), it follows that β(2s−1) is doubly-crossing by Remark 44, and therefore
x1 ≤ Bmin. Recalling the notion of hybrid semirun (Definition 31) we now apply Point 2 of
Remark 40 to our Bmax-hill σ(s) and obtain a hybrid semirun η
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– whose source configuration is r1(x1) and whose target configuration is r2(x2),
– that is both a min-rising and max-falling (Bmax −ΥC,h − ΓC,h − 1)-embedding of σ(s),

and

– that has breadth 1 and contains precisely one unlowered +p-transition.

From the above and the fact that σ(s) is a Bmax-hill the following remark follows.

Remark 49. All configurations of η (except possibly the target configuration r2(x2) in the
exotic case when γ ends with σ(s)) have a counter value whose absolute difference with ` is
strictly larger than ΓC,h. Moreover on can write η as η = αβα′, where for some intermediate
configurations r′1(x′1) and r′2(x′2) we have that

– α is an (N − ΓC,h)-semirun from r1(x1) to r′1(x′1),

– β is an N -semirun r′1(x′1) +p
99K N r′2(x′2) that is a +p-transition, i.e. x′2 = x′1 +N , and

– α′ is an (N − ΓC,h)-semirun from r′2(x′2) to r2(x2).

Let β̂ denote the lowering of β, i.e. β̂ is the (N−ΓC,h)-semirun r′1(x′1) +p
99K N−ΓC,h r

′
2(x′2−ΓC,h).

By Remark 49 it follows that the (N − ΓC,h)-semirun

θ = ((αβ̂) + ΓC,h)α′
from r′1(x1 + ΓC,h) to r2(x2) is an `-embedding of η. Bearing in mind our factorization of γ
from Remark 4.9 and taking into account Remark 48 we obtain that

γ̃(1) = ⎛⎝⎛⎝α̂(2)
⎛⎝
s−1∏
i=2

σ̂(i) α(2i,0) ⎛⎝
ki∏
j=1

σ̂(2i,j) α(2i,j)⎞⎠⎞⎠⎞⎠ + ΓC,h
⎞⎠ θ

is an (N − ΓC,h)-semirun from q′(y + ΓC,h) to r′2(x′2) that is an `-embedding of γ’s prefix
N -semirun

γ(1) = α(2) ⎛⎝
s−1∏
i=2

σ(i) α(2i,0) ⎛⎝
ki∏
j=1

σ(2i,j) α(2i,j)⎞⎠⎞⎠σ(s)

from q′(y) to r′2(x′2) satisfying Values(γ̃(1)) ⊆ [min(γ(1)),max(γ(1)) + ΓC,h]. Moreover we
have by Remark 48 that

γ̂(2) = α(2s,0) ⎛⎝
ks∏
j=1

σ̂(2i,j)α(2i,j)⎞⎠⎛⎝
n/2∏
i=s+1

σ̂(i) α(2i,0) ⎛⎝
ki∏
j=1

σ̂(2i,j) α(2i,j)⎞⎠⎞⎠
is an (N − ΓC,h)-semirun from r′2(x′2) to q′′(z) that is both a min-rising and max-falling
`-embedding of γ’s remaining suffix N -semirun

γ(2) = α(2s,0) ⎛⎝
ks∏
j=1

σ(2i,j)α(2i,j)⎞⎠⎛⎝
n/2∏
i=s+1

σ(i) α(2i,0) ⎛⎝
ki∏
j=1

σ(2i,j) α(2i,j)⎞⎠⎞⎠
from r′2(x′2) to q′′(z). Altogether γ′ = γ̃(1)γ̂(2) is the desired (N − ΓC,h)-semirun from
q′(y + ΓC,h) to q′′(z) that is an `-embedding of γ = γ(1)γ(2) with Values(γ′) ⊆ [min(γ) −
ΓC,h,max(γ) + ΓC,h].

• Case A.2.ii: Among the Bmax-hills σ(i) and the (Bmax −N − 1)-valleys σ(2i,j) all have a
φ-projection that contains at least as many occurrences of ] as occurrences of [.
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Observe that by Remark 48 the (N − ΓC,h)-semirun

γ̂ = α(2) ⎛⎝
n/2∏
i=2

σ̂(i) α(2i,0) ⎛⎝
ki∏
j=1

σ̂(2i,j) α(2i,j)⎞⎠⎞⎠
from q′(y) to q′′(z) is both a min-rising and max-falling `-embedding of γ all of whose
configurations (except for possibly the target configuration q′′(z)) have a counter value whose
absolute difference with ` is strictly larger than ΓC,h. Yet we need to show the existence
of some (N − ΓC,h)-semirun γ′ that is an `-embedding of γ from q′(y + ΓC,h) to q′′(z) that
satisfies Values(γ′) ⊆ [min(γ) − ΓC,h,max(γ) + ΓC,h].
By Remark 39 all of the lowered (N −ΓC,h)-semiruns σ̂(i) and σ̂(2i,j) mentioned in Remark 48
contain at least as many occurrences of [ as of ] or, vice versa, at least as many occurrences
of ] as of [, if σ(i) does, respectively if σ(2i,j) does.

Thus, by our case we obtain that every φ(σ̂(i)) and φ(σ̂(2i,j)) contains at least as many
occurrences of ] as occurrences of [.
Recalling that neither α(2) nor any of the α(2i,j) contain any +p-transitions nor −p-transitions
(and thus have all a φ-projection ε) it follows that φ(γ̂) contains at least as many occurrences
of ] as occurrences of [.
Since ∆(γ) > ΥC,h by Point 4 of Remark 4.9, and thus ∆(γ̂) > ΥC,h, there exists a subsemirun
γ̂[c, d] satisfying ∆(γ̂[c, d]) > ΥC,h and φ(γ̂[c, d]) ∈ Λ2h by Lemma 25. By now applying
Lemma 24 there exists an (N − ΓC,h)-semirun χ satisfying

– ∆(χ) = ∆(γ̂[c, d]) − ΓC,h and

– χ = γ̂[c, d] − I1 − I2⋯ − Ih for pairwise disjoint intervals I1, . . . , Ih ⊆ [c, d] such that
φ(γ̂[Ii]) ∈ Λ4h and ∆(γ̂[Ii]) > 0 for all i ∈ [1, h].

Note that from the definition of χ and the fact that all intermediate configurations of γ̂ have
counter values whose absolute difference with ` is strictly larger than ΓC,h it follows that
χ + ΓC,h is an `-embedding of γ̂[c, d] that has the same target configuration as γ̂[c, d] and
that satisfies Values(χ + ΓC,h) ⊆ [min(γ̂[c, d]) − ΓC,h,max(γ̂[c, d]) + ΓC,h]. Analogously, it
follows that δ = (γ̂[0, c] + ΓC,h) (χ + ΓC,h) is an (N − ΓC,h)-semirun from q′(y + ΓC,h) to
the same target configuration as γ̂[0, d] that is an `-embedding of γ̂[0, d] and that satisfies
Values(δ) ⊆ [min(γ[0, d]) − ΓC,h,max(γ[0, d]) + ΓC,h].
Finally it follows that

γ′ = (γ̂[0, c] + ΓC,h) (χ + ΓC,h) γ̂[d, ∣γ̂∣]
is the desired (N − ΓC,h)-semirun from q′(y + ΓC,h) to q′′(z) that is an `-embedding of γ̂ and
hence of γ that satisfies Values(γ′) ⊆ [min(γ) − ΓC,h,max(γ) + ΓC,h].

Case A.3: All but at least two of the Bmax-hill candidates σ(i) in (4.7) are in fact Bmax-hills.
Recall the factorization

ρ = α(0)σ(1)α(2)σ(2)α(4)σ(3)α(6) ⋯ σ(n/2)α(n)

from (4.7) where each σ(i) = β(2i−1)α(2i−1)β(2i) is a Bmax-hill candidate for all i ∈ [1, n/2]. By our
case we must have n ≥ 4.

By a similar reasoning as in Case A.2 one can show that the Bmax-hill candidate that are not
Bmax-hills must be precisely the two subsemiruns σ(1) and σ(n/2). In particular there cannot be
strictly more than two Bmax-hill candidates in (4.7) that are not in fact Bmax-hills. Moreover, as
already reasoned in Case A.2, neither β(1) nor β(n) is doubly-crossing. Thus α(0) and α(n) are
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empty. Hence, one can now factorize our N -semirun ρ as

ρ = (β(1)α(1))β(2)α(2)β(3)α(3) ⋯ β(n−1) (α(n−1)β(n)) .
For finishing this case we will show the existence

1. of an (N −ΓC,h)-semirun that is both a min-rising and max-falling `-embedding of the semirun
β(1)α(1) with the same source and target configuration as β(1)α(1),

2. of an (N −ΓC,h)-semirun that is both a min-rising and max-falling `-embedding of the semirun
α(n−1)β(n) with the same source and target configuration as α(n−1)β(n), and

3. of an (N −ΓC,h)-semirun that is both a min-rising and max-falling `-embedding of the semirun
β(2)α(2)β(3)α(3)⋯β(n−1) with same source and target configuration.

Points 1 and 2 are proven analogously as Point 1 from Case A.2. For proving Point 3, we
consider a different factorization

β(2)α(2)β(3)α(3) ⋯ β(n−1) = τ (1)α(3)τ (2) α(5) ⋯ τ ((n−2)/2),

where τ (i) = β(2i)α(2i)β(2i+1) is a Bmin-valley candidate for all i ∈ [1, (n − 2)/2]. Since β(2i) and
β(2i+1) have to be doubly crossing for all i ∈ [1, (n − 2)/2], τ (i) is in fact a Bmin-valley for all
i ∈ [1, (n − 2)/2] by a similar reasoning as used in Case A.2 to show that the Bmax-hill candidate
that is not a Bmax-hill must be σ(1) or σ(n/2).

We can apply Claim 2 to each τ (i) and obtain an (N − ΓC,h)-semirun τ̂ (i) that is both a min-
rising and max-falling `-embedding of τ (i) with the same source and target configuration. Thus, it
only remains to show the same for α(2i+1) for each i ∈ [1, (n − 2)/2]. This is done analogously as in
Case A.1 when proving the same for each α(2i) for each i ∈ [0, n/2].
Case B: The number of crossing transitions n is odd.

Recall that we had assumed without loss of generality that β(1) is a +p-transition. Since n is
odd one can consider the following first factorization

ρ = α(0)σ(1)α(2)σ(2)α(4)σ(3)α(6) ⋯ σ(⌊n/2⌋)α(n−1)β(n)α(n), (4.10)

where σ(i) = β(2i−1)α(2i−1)β(2i) is a Bmax-hill candidate, β(2i−1) is a +p-transition, β(2i) is a−p-transition for all i ∈ [1, ⌊n/2⌋] , and β(n) is a +p-transition; as well as the following second
factorization

ρ = α(0)β(1)α(1)τ (1)α(3)τ (2)α(5)τ (3) ⋯ τ (⌊n/2⌋)α(n), (4.11)

where β1 is a +p-transition, τ (i) = β(2i)α(2i)β(2i+1) is a Bmin-valley candidate, β(2i) is a −p-transition
and β(2i+1) is a +p-transition for all i ∈ [1, ⌊n/2⌋]. Indeed, this— as for the Case A factorization
(4.7)— immediately follows from the definition of crossing transitions and the fact that neither
α(2i−1) (resp. α(2i)) contains any configuration with counter value strictly less than Bmax (resp.
strictly larger than Bmin) for all i ∈ [1, ⌊n/2⌋].

Our proof next will make a case distinction on the number of Bmax-hill candidates σ(i) in the
factorization (4.10) that are in fact Bmax-hills and on the number of Bmin-valley candidates τ (i) in
the factorization (4.11) that are in fact Bmin-valleys.

Case B.1: All of the Bmax-hill candidates σ(i) in (4.10) are in fact Bmax-hills or all of the
Bmin-valley candidates τ (i) in (4.11) are in fact Bmin-valleys.

Let us assume without loss of generality that all of the Bmax-hill candidates in (4.10) are in
fact Bmax-hills. The case when all Bmin-valley candidates in (4.11) are in fact Bmin-valleys can be

proven analogously. Each N -semirun σ(i) can hence be turned into an (N −ΓC,h)-semirun σ̂(i) that
is both a min-rising and max-falling `-embedding of σ(i) with same source and target configuration
as σ(i) according to Claim 2. Moreover, the same holds for α(2i) for all i ∈ [0, ⌊n/2⌋ − 1], as seen in
Case A.1. Thus it remains to deal with the subsemiruns α(n−1), β(n) and α(n).

We make a final case distinction on the target configuration of the dangling +p-transition β(n).
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• Case B.1.i: β(n) has a target configuration with a counter value strictly larger than Bmax+ΥC,h.

Then clearly β(n)α(n) is a Bmax-hill as well since α(n) contains no configurations with counter
value strictly less than Bmax besides its last one. The N -semirun β(n)α(n) can hence be
turned into an (N −ΓC,h)-semirun that is both a min-rising and max-falling `-embedding with
the same source and target configuration according to Claim 2. Moreover, the same holds for
α(n−1), as analogously proven for α(2i) for all i ∈ [0, ⌊n/2⌋] in Case A.1. The concatenation
of these two `-embeddings yields an (N − ΓC,h)-semirun that is a min-rising and max-falling
`-embedding of α(n−1)β(n)α(n) with the same source and target configuration.

• Case B.1.ii: β(n) has a target configuration with a counter value strictly less than Bmax.

It immediately follows that β(n) is crossing but not doubly-crossing, thus α(n) is empty. The
remaining α(n−1)β(n) can thus be factorized as

α(n−1)β(n) = ξ(1)χ(1)⋯ξ(k)χ(k),

where each χ(i) is a (Bmax −N − 1)-valley and each ξ(i) satisfies Values(ξ(i)) ⊆ [Bmax −
N,Bmin + 1], using a similar factorization as for proving Point 1 in Case A.2. The N -semirun
α(n−1)β(n) can hence be turned into an (N − ΓC,h)-semirun that is both a min-rising and
max-falling `-embedding with same source and target configuration. Recalling that α(n)

is empty, the above embedding is an (N − ΓC,h)-semirun that is both a min-rising and
max-falling `-embedding of α(n−1)β(n)α(n) with same source and target configuration.

• Case B.1.iii: β(n) has a target configuration with counter value in [Bmax,Bmax +ΥC,h].
Thus, the source configuration of β(n) has a counter value in [Bmax −N,Bmax +ΥC,h −N].
One finishes this case analogously as Points 1 and 2 in Case A.2:

1. Firstly, one shows the existence of an (N − ΓC,h)-semirun that is both a min-rising and
max-falling `-embedding of α(n) with the same source and target configuration as α(n)

as follows: one factorizes α(n) into (N − ΓC,h)-semiruns that have all counter values in[Bmax − 1,Bmin +N] and into (Bmin +N + 1)-hills.

2. Secondly, let us assume that β(n) is an N -semirun from q′(y) to q′′(z) and that
moreover α(0)σ(1)α(2)⋯σ(⌊n/2⌋)α(n−1) is an N -semirun from q(x) to q′(y). Stipulating

that β(n) = q′(y) +p
99K N q′′(z), we explicitly lower β(n) into the (N −ΓC,h)-semirun q′(y+

ΓC,h) +p
99K N−ΓC,h q

′′(z), which is — since β(n) is doubly-crossing — obviously both a min-

rising and max-falling `-embedding of β(n) from q′(y+ΓC,h) to q′′(z). Then one shows the
existence of an (N − ΓC,h)-semirun that is an `-embedding of α(0)σ(1)α(2)⋯σ(⌊n/2⌋)α(n)

from q(x) to q′(y + ΓC,h) with configurations all of whose counter values lie in the
interval [min(ρ) − ΓC,h,max(ρ) + ΓC,h] as follows: one subfactorizes each of the α(2i)

into (N − ΓC,h)-semiruns that have a counter values in [Bmax − N,Bmin] and into(Bmax −N − 1)-valleys and by recalling that σ(i) is a Bmax-hill for all i ∈ [1, ⌊n/2⌋].
Case B.2: Not all of the Bmax-hill candidates σ(i) in (4.10) are in fact Bmax-hills and not all of
the Bmin-valley candidates τ (i) in (4.11) are in fact Bmin-valleys.

Since they all start and end with a doubly-crossing transition we remark that σ(i) is in fact a
Bmax-hill for all i ∈ [2, ⌊n/2⌋] and τ (i) is in fact a Bmin-valley for all i ∈ [1, ⌊n/2⌋ − 1]. Hence our
case implies that σ(1) is in fact not a Bmax-hill and that τ (⌊n/2⌋) is in fact not a Bmin-valley. As in
Case A.2, β(1) and β(n) are hence not doubly-crossing, and hence α(0) and α(n) are empty.

By definition of a Type III semirun, ρ contains at least one doubly-crossing transition and thus
n ≥ 3. Since the +p-transition β(1) is not doubly-crossing (and therefore ends at a counter value
strictly larger than Bmin +N) but β(2) is, it follows that the only reason for σ(1) = β(1)α(1)β(2) not
to be a Bmax-hill is that the −p-transition β(2) has a source configuration with a counter value in[Bmax,Bmax+ΥC,h] and hence a target configuration with counter value in [Bmax−N,Bmax+ΥC,h−
N], similarly as seen in Case A.2. Analogously, the only reason for τ (⌊n/2⌋) = β(n−1)α(n−1)β(n) not
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to be a Bmin-valley is that the doubly-crossing −p-transition β(n−1) has a target configuration with
counter value in [Bmin −ΥC,h,Bmin].

Recalling that σ(⌊n/2⌋) = β(n−2)α(n−2)β(n−1), for finishing this case we will apply an analogous
reasoning as in Case A.2:

1. Firstly, one shows the existence of an (N − ΓC,h)-semirun that is both a min-rising and max-
falling `-embedding of β(1)α(1) with the same source and target configuration as β(1)α(1).

2. Secondly, let us assume that β(2) is an N -semirun from q(x) to q′(y) and that moreover
α(2)σ(2)α(4)⋯σ(⌊n/2⌋) is an N -semirun from q′(y) to q′′(z), with y ∈ [Bmax−N,Bmax+ΥC,h−
N] and z ∈ [Bmin − ΥC,h,Bmin]. Noting that β(2) = q(x) −p

99K N q′(y), we explicitly lower

β(2) into the (N − ΓC,h)-semirun q(x) −p
99K N−ΓC,h q′(y + ΓC,h), which is — since β(2) is

doubly-crossing — obviously both a min-rising and max-falling `-embedding of β(2) from
q(x) to q′(y + ΓC,h). Then one shows, as done in Case 2.A, the existence of an (N − ΓC,h)-
semirun that is an `-embedding of α(2)σ(2)α(4)⋯σ(⌊n/2⌋) all of whose counter values lie in[min(ρ) − ΓC,h,max(ρ) + ΓC,h] from q′(y + ΓC,h) to q′′(z) by subfactorizing each of the α(2i)

into (N −ΓC,h)-semiruns that have counter values in [Bmax−N,Bmin] and into (Bmax−N −1)-
valleys, by recalling that σ(i) is a Bmax-hill for all i ∈ [2, ⌊n/2⌋], and that

z − y ≥ N − (Bmax −Bmin) − 2ΥC,h
(4.4)> N − (5/6 ⋅N + 2ΥC + 4ΓC + 2) − 2ΥC,h= N/6 − (5ΥC,h − 4ΓC,h − 2) +ΥC,h> MC,h/6 − (5ΥC,h − 4ΓC,h − 2) +ΥC,h> ΥC,h.

3. Finally (analogously as Point 1) one shows the existence of an (N − ΓC,h)-semirun that is
both a min-rising and max-falling `-embedding of α(n−1)β(n) with the same source and target
configuration as α(n−1)β(n).

4.7 Proof of the Small Parameter Theorem

This section is devoted to proving the Small Parameter Theorem (Theorem 21).

For proving this let us fix some N >MC and some accepting N -run π in C with Values(π) ⊆ [0, h⋅N]
of the form

π = r0(x0) π0Ð→N r1(x1) ⋯ πn−1ÐÐ→N rn(xn)
with rn ∈ F . We will assume that accepting runs in C end with counter value 0 and hence, that
xn = x0 = 0. We do not lose generality by making this assumption. Indeed, from every PTOCA C,
one can build a PTOCA C′ with all its accepting runs ending in configuration with counter value 0
such that, for all N ∈ N, there exists an accepting N -run in C with values in [0, h ⋅N] if, and only
if, there exists an accepting N -run in C′ with values in [0, h ⋅N]. This is clear when one considers
the construction C′ obtained from C by adding two states r− and rf such that every final state of C
has a ≥ 0 rule leading to r−, r− has a −1 rule that is a loop, and finally a = 0 rule to rf , the only
final state of C′.
Starting from the accepting N -run π, we need to prove the existence of an accepting (N −ΓC,h)-run
in C. For every a, b ∈ Q with a < b we define [a, b[= {c ∈ Q ∣ a ≤ c < b} and ]a, b] = {c ∈ Q ∣ a < c ≤ b}.

Since N
3
< N − ΓC,h, as ΓC,h < 2MC,h

3
< 2N

3
by definition of the constants on page 33, the following

claim is clear.

Claim 3. Every subrun ρ of π with Values(ρ) ⊆ [0, N
3
[ is already an (N − ΓC,h)-run.
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Figure 4.11: Illustration of the factorization (4.13).

We can therefore uniquely factorize π as

π = ρ(0)σ(1)ρ(1) ⋯ σ(m)ρ(m), (4.12)

where each ρ(j) satisfies Values(ρ(j)) ⊆ [0, N
3
[ and each σ(j) is some subrun π[c, d] with xc < N

3
,

xd < N
3

and xk ≥ N
3

for all k ∈ [c + 1, d − 1], where [c + 1, d − 1] /= ∅.

To finish the proof of the Small Parameter Theorem (Theorem 21), by Claim 3 it thus suffices to
prove the following statement for the rest of this section.

For every N >MC,h and every N -run

σ = q0(z0) σ0Ð→N q1(z1) ⋯ σm−1ÐÐÐ→N qm(zm)
satisfying Values(σ) ⊆ [0, h ⋅N], z0, zm < N

3
and zi ≥ N

3
for all i ∈ [1,m − 1], there

exists an (N − ΓC,h)-run from q0(z0) to qm(zm).

Let σ be such an N -run. Let us first assume that zi ≥ N for some i ∈ [1,m − 1] ; the case zi < N
for all i ∈ [1,m − 1] will be treated later. By this asumption, one can uniquely factorize σ — as
seen in Figure 4.11 — as

σ = α σ[a, a + 1] β σ[b, b + 1] γ, (4.13)

where, for some a, b ∈ [0,m − 1],
• α = σ[0, a] is the maximal prefix of σ satisfying Values(α) ⊆ [0,N[, in particular the

transition qa(za) σaÐ→N qa+1(za+1) satisfies za ∈ [0,N[ and za+1 ∈ [N,h ⋅N],
• γ = σ[b + 1,m] is the maximal suffix of σ satisfying Values(γ) ⊆ [0,N[, i.e. the transition

qb(zb) σbÐ→N qb+1(zb+1) satisfies zb ∈ [N,h ⋅N] and zb+1 ∈ [0,N[, and

• β = σ[a + 1, b] is the remaining infix of σ (note that a + 1 = b is possible).

We will apply the 5/6-Lemma (Lemma 41) to one of the subruns

β, σ[a, a + 1] β, β σ[b, b + 1], or σ[a, a + 1] β σ[b, b + 1],
hereby showing the existence of a suitable (N − ΓC,h)-semirun with same source and target
configuration, respectively. We then shift this (N − ΓC,h)-semirun by −ΓC,h to obtain a suitable(N − ΓC,h)-run. To which of the subruns we will choose to apply the 5/6-Lemma will depend on
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Figure 4.12: Illustration of Case 1, i.e. za+1, zb ∈ [N, 5N
3

[, on the left, and Case 2, i.e. za+1, zb ∈[ 5N
3
,2N[, on the right.

the counter values za, za+1, zb and zb+1. For deciding this, we make a case distinction on which of

the five intervals {[ iN
3
, (i+1)N

3
[ ∶ i ∈ [1,5]} they lie in, respectively.

Before the above-mentioned distinction on za, za+1, zb and zb+1 we first claim that one can
turn the possible resulting prefixes α and ασ[a, a + 1] and possible suffixes σ[b, b + 1]γ and γ into(N − ΓC,h)-runs separately. The following claim tells us when these latter prefixes (resp. suffixes)
can be turned into (N −ΓC,h)-runs whose target (resp. source) configuration has been shifted down
by ΓC,h.

Claim 4 (Possible lowering of the prefixes and suffixes).

1. If za+1 ∈ [N, 5N
3

[, then there exists an (N − ΓC,h)-run from q0(z0) to qa+1(za+1 − ΓC,h).

2. If za ∈ [N
3
+ΥC,h,N[, then there exists an (N − ΓC,h)-run from q0(z0) to qa(za − ΓC,h).

3. If zb ∈ [N, 5N
3

[, then there exists an (N − ΓC,h)-run from qb(zb − ΓC,h) to qm(zm).

4. If zb+1 ∈ [N
3
+ΥC,h,N[, then there exists an (N −ΓC,h)-run from qb+1(zb+1 −ΓC,h) to qm(zm).

We postpone the proof of Claim 4 to the end of this section but refer to Figure 4.15 for an
illustration of Points 1 and 2.

We can use Point (1) or Point (2) of the claim to turn the possible resulting prefixes ασ[a, a+1]
or α respectively into (N−ΓC,h)-runs with target configuration shifted down by ΓC,h. Symmetrically,
we can use Point (3) or Point (4) of the claim to turn the possible resulting suffixes σ[b, b + 1]γ or
γ respectively into (N − ΓC,h)-runs with source configuration shifted down by ΓC,h. The claim will
rely on the Depumping Lemma (Lemma 24) and on the fact that a transition with operation +p or−p has an absolute counter effect of N in an N -run but N − ΓC,h in an (N − ΓC,h)-run.

Let us for the moment assume zi ≥ N for some i ∈ [1,m − 1] along with the factorization (4.13)
of σ and Claim 4.

Assuming Claim 4 we conclude the proof by treating the following exhaustive cases on the
positions of za+1 and zb separately.

Case 1. za+1, zb ∈ [N, 5N
3

[, cf. Figure 4.12.

Recall that β = σ[a + 1, b] as defined in (4.13) is an N -run from qa+1(za+1) to qb(zb) satisfying
Values(β) ⊆ [N

3
, h ⋅N]. We view β as an N -semirun. We consider ` = N and observe that

max(za+1, zb, `) −min(za+1, zb, `) < 5N

3
−N = 2N

3
≤ 5N

6
.
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Figure 4.13: Illustration of Case 3, i.e. za+1 ∈ [N, 4N
3

[ and zb ∈ [ 5N
3
,2N[, on the left, and Case 4,

i.e. za+1 ∈ [ 5N
3
,2N[ and zb ∈ [N, 4N

3
[, on the right.

Hence we can apply the 5/6-Lemma (Lemma 41) to β: there exists an (N − ΓC,h)-semirun β̂ from

qa+1(za+1) to qb(zb) that is an N -embedding of β with Values(β̂) ⊆ [min(β)−ΓC,h,max(β)+ΓC,h].
Since moreover N

3
− 2ΓC,h > max(Consts(C)), from MC,h’s definition on page 33, and because

min(β) ≥ N/3, it follows that β̂ − ΓC,h, the shifting of β̂ by −ΓC,h, is in fact an (N − ΓC,h)-run
from p(za+1 − ΓC,h) to qb(zb − ΓC,h). It thus remains to show the existence of an (N − ΓC,h)-run
from q0(z0) to qa+1(za+1 − ΓC,h) and one from qb(zb − ΓC,h) to qm(zm): the former follows from
Point (1) of Claim 4, and the latter follows from Point (3) of Claim 4.

Case 2. za+1, zb ∈ [ 5N
3
,2N[, cf. Figure 4.12.

It follows that za, zb+1 ∈ [ 2N
3
,N[, and that σa and σb must be a +p and −p respectively. We

apply the 5/6-Lemma (Lemma 41) to

σ[a, a + 1] β σ[b, b + 1]
with ` = N , then shift the output by −ΓC,h. Then we apply Point (2) of Claim 4 and Point (4) of
Claim 4.

Case 3. za+1 ∈ [N, 4N
3

[ and zb ∈ [ 5N
3
,2N[, cf. Figure 4.13.

It follows that zb+1 ∈ [ 2N
3
,N[. We apply the 5/6-Lemma (Lemma 41) to

β σ[b, b + 1]
with ` = N , then shift the output by −ΓC,h. Then we apply Point (1) of Claim 4 and Point (4) of
Claim 4.

Case 4. za+1 ∈ [ 5N
3
,2N[ and zb ∈ [N, 4N

3
[, cf. Figure 4.13.

It follows that za ∈ [ 2N
3
,N[. We apply the 5/6-Lemma (Lemma 41) to

σ[a, a + 1] β
with ` = N , then shift the output by −ΓC,h. Then we apply Point (2) of Claim 4 and Point (3) of
Claim 4.
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Figure 4.14: Illustration of Case 5, i.e. za+1 ∈ [ 4N
3
, 5N

3
[ and zb ∈ [ 5N

3
,2N[, on the left (with

moreover za ∉ [N
3
, N

2
[), and Case 6, i.e. za+1 ∈ [ 5N

3
,2N[ and zb ∈ [ 4N

3
, 5N

3
[, on the right (with

moreover zb+1 ∈ [N
3
, N

2
[ ).

Case 5. za+1 ∈ [ 4N
3
, 5N

3
[ and zb ∈ [ 5N

3
,2N[, cf. Figure 4.14.

It follows zb+1 ∈ [ 2N
3
,N[, and that σa and σb must be a +p and −p respectively. We distinguish

whether za ∈ [N
3
, N

2
[ or not.

Case 5.A. za /∈ [N
3
, N

2
[.

It follows za ∈ [N
2
,N[. We apply the 5/6-Lemma (Lemma 41) to

σ[a, a + 1] β σ[b, b + 1]
with ` = N , then shift the output by −ΓC,h. Then we apply Point (2) of Claim 4 and Point (4) of
Claim 4.

Case 5.B. za ∈ [N
3
, N

2
[.

It follows za+1 ∈ [ 4N
3
, 3N

2
[. We apply the 5/6-Lemma (Lemma 41) to

β σ[b, b + 1]
with ` = N , then shift the output by −ΓC,h. Then we apply Point (1) of Claim 4 and Point (4) of
Claim 4.

Case 6. za+1 ∈ [ 5N
3
,2N[ and zb ∈ [ 4N

3
, 5N

3
[, cf. Figure 4.14.

It follows za ∈ [ 2N
3
,N[, and that σa and σb must be a +p and −p respectively. We distinguish

whether zb+1 ∈ [N
3
, N

2
[ or not.

Case 6.A. zb+1 /∈ [N
3
, N

2
[.

It follows zb+1 ∈ [N
2
, 2N

3
[. We apply the 5/6-Lemma (Lemma 41) to

σ[a, a + 1] β σ[b, b + 1]
with ` = N , then shift the output by −ΓC,h. Then we apply Point (2) of Claim 4 and Point (4) of
Claim 4.
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Figure 4.15: Claim 4: Examples for Point 1 (left) and Point 2 (right).

Case 6.B. zb+1 ∈ [N
3
, N

2
[.

It follows zb ∈ [ 4N
3
, 3N

2
[. We apply the 5/6-Lemma (Lemma 41) to

σ[a, a + 1] β
with ` = N , then shift the output by −ΓC,h. Then we apply Point (2) of Claim 4 and Point (3) of
Claim 4.

It remains to provide the proof of the Claim 4 before discussing the remaining case when zi < N
for all i ∈ [1,m − 1]

Proof of Claim 4. Let us only prove Points (1) and (2). Points (3) and (4) can be proven in a
symmetrical manner as Points (1) and (2). Let us first prove Point (1), so let us assume that
za+1 ∈ [N, 5N

3
[. We refer to Figure 4.15 for an example of such a situation. Recall that α = σ[0, a],

z0 < N
3

and zi ∈ [N
3
,N[ for all i ∈ [1, a].

We first factorize α, as seen in Figure 4.16, as

α = ( t∏
i=1

χi) ζ,
where

• each χi is a subrun of α that either

a) starts in a configuration with counter value strictly less than N − ΓC,h −ΥC,h and ends
in the first next configuration with counter value at least N − ΓC,h, or conversely

b) starts in a configuration with counter value at least N − ΓC,h and ends in the first next
configuration with counter value strictly less than N − ΓC,h −ΥC,h, and

• the (possibly empty) suffix ζ’s prefixes are neither of form a) nor b), i.e. Values(ζ) ⊆[0,N − ΓC,h[ or Values(ζ) ⊆ [N − ΓC,h −ΥC,h,N[.

First observe that α and hence in particular χ1, . . . , χt, ζ all do not contain any +p-transition nor
any −p-transition, and that ∣∆(χi)∣ > Υh for all i ∈ [1, t] by definition.

Next observe that t = 0 is possible; in this case we have α = ζ and Values(α) ⊆ [0,N − ΓC,h[.
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Figure 4.16: Illustration of the factors χ1, χ2, χ3, χ4 and ζ of α.

We will however first treat the case t > 0, the case t = 0 will be treated later. It follows from
z0 < N

3
that χ1 must be of type a); more generally, χi is of type a) for all odd i ∈ [1, t] and of

type b) for all even i ∈ [1, t]. Since z0 < N
3

, observe that if for α’s last counter value za we have
za ∈ [N − ΓC,h,N[, then t must be odd, and, similarly (but not entirely dually), if for α’s last
counter value za we have za ∈ [N

3
,N − ΓC,h −ΥC,h[, then t must be even.

In the following we prefer to write α as α = α[0, a] rather than σ[0, a]. It is important to recall
that z0 < N

3
and zs ∈ [N

3
,N[ for all s ∈ [1, a].

Let

q0(z0) = qj1(zj1) χ1Ð→ qj2(zj2) χ2Ð→ qj3(zj3) ⋯ χt−1ÐÐ→ qjt(zjt) χtÐ→ qjt+1(zjt+1) ζÐ→ qjt+2(zjt+2).
Note that jt+1 = jt+2 is possible if ζ is empty. In the following, we will first show how to turn any
χi of type a) (resp. b)) into an (N − ΓC,h)-run with target (resp. source) configuration shifted
down by ΓC,h, and then we make a case distinction on how to end the proof based on the parity of
t.

Subclaim 1. Let i ∈ [1, t] be odd. Then there exists an (N − ΓC,h)-run χ̂i from qji(zji) to
qji+1(zji+1 − ΓC,h).

Proof of Subclaim 1. Indeed, φ(χi) = ε ∈ Λ2h, as α contains neither +p-transitions nor −p-transitions.
Since moreover ∆(χi) > ΥC,h we can now apply Lemma 24 to χi (viewed as an N -semirun) and
obtain an N -semirun χ̂i with ∆(χ̂i) = ∆(χi) − ΓC,h that is such that χ̂i = α[ji, ji+1] − I1 − I2⋯− Ik
for pairwise disjoint intervals I1, . . . , Ik ⊆ [ji, ji+1] such that

• φ(α[Ih]) ∈ Λ4h,

• ∆(α[Ih]) ∈ ZCZ and ∆(α[Ih]) > 0 for all h ∈ [1, k].
Recall Values(α[1, a]) ⊆ [N

3
,N[ and N

3
− ΓC,h > MC,h

3
− ΓC,h > ΓC,h > max(Consts(C)), where the

inequalities follows from MC,h’s and ΓC,h’s definition on page 33. It follows that χ̂i has all its
counter values (except for the first one) in [N

3
− ΓC,h,N − ΓC,h[. Moreover, the first transition’s

operation must be a +1 update and therefore cannot be a test, and hence χ̂i is an (N − ΓC,h)-run
from qji(zji) to qji+1(zji+1 − ΓC,h).
Subclaim 2. Let i ∈ [1, t] be even. Then there exists an (N − ΓC,h)-run χ̂i from qji(zji − ΓC,h) to
qji+1(zji+1).

Proof of Subclaim 2. Analogously, by use of Lemma 24, for i ∈ [1, t] even, there exists an (N −ΓC,h)-
semirun χ′ from qji(zji) to qji+1(zji+1 + ΓC,h), from which we obtain an (N − ΓC,h)-semirun χ̂i =
χ′−ΓC,h from qji(zji −ΓC,h) to qji+1(zji+1) by shifting χ′ by −ΓC,h. Moreover, as Values(α[1, a]) ⊆[N

3
,N[ and N

3
−ΓC,h > ΓC,h > max(Consts(C)) as seen in the proof of Subclaim 1, χ̂i is an (N−ΓC,h)-

run as required.
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To finish the proof of the existence of an (N − ΓC,h)-run from q0(z0) to qa+1(za+1 − ΓC,h) we
make a case distinction on the parity of t.

Assume first that the parity of t is odd. By applying Subclaims 1 and 2 to the runs χ1, . . . , χt
appropriately we obtain the (N − ΓC,h)-run

χ̂1⋯χ̂t
from qj1(zj1) to qjt+1(zjt+1 −ΓC,h). Since t is odd we have that χt is of type a), zjt+1 ∈ [N −ΓC,h,N[
and Values(ζ) ⊆ [N −ΓC,h −ΥC,h,N[. As (N −ΓC,h −ΥC,h)−ΓC,h > (MC,h −ΓC,h −ΥC,h)−ΓC,h >
max(Consts(C)), following from MC,h’s, ΓC,h’s and ΥC,h’s definition on page 33, and φ(α) = ε, it
follows that

χ̂1⋯χ̂t (ζ − ΓC,h)
is an (N−ΓC,h)-run from qj1(zj1) to qjt+2(zjt+2−ΓC,h). Recall that za+1 < 5N

3
by case assumption and

also recall that N >MC,h. Since Values(ζ) ⊆ [N−ΓC,h−ΥC,h,N[ we have za = zjt+2 ≥ N−ΓC,h−ΥC,h
and hence 0 < ∆(σ, a) < 5N

3
− (N − ΓC,h − ΥC,h) ≤ 2N

3
+ ΓC,h + ΥC,h < 2N

3
+ MC,h

3
< N , where the

penultimate inequality follows from the definition of MC,h on page 33. Hence, as σa is not a test
nor a +p-transition we have that

χ̂1⋯χ̂t (ζ − ΓC,h) (σ[a, a + 1] − ΓC,h)
is an (N − ΓC,h)-run from qj1(zj1) = q0(z0) to qjt+2(zjt+2 − ΓC,h) = qa+1(za+1 − ΓC,h) as required.

Let us now treat the case when t is even. It follows Values(ζ) ⊆ [0,N − ΓC,h[, in particular
za ∈ [0,N − ΓC,h[. Again,

χ̂1⋯χ̂t
is an (N − ΓC,h)-run from qj1(zj1) = q0(z0) to qjt+1(zjt+1). Since za+1 ≥ N and za < N − ΓC,h it
follows that σa is a +p-transition, in particular ∆(σ, a) > ΓC,h. Thus,

χ̂1⋯χ̂tζτ,
where τ = qa(za) σaÐ→N−ΓC,h qa+1(za+1−ΓC,h) with ∆(τ) = ∆(σ, a)−ΓC,h = N −ΓC,h, is an (N −ΓC,h)-
run from qj1(zj1) = q0(z0) to qjt+2(zjt+2 − ΓC,h) = qa+1(za+1 − ΓC,h), as required.

It remains to discuss the case when t = 0. This case can be proven analogously. Indeed, from
t = 0 it follows immediately that α = ζ and Values(ζ) ⊆ [0,N − ΓC,h[ and the proof is analogous
as the case when t > 0 and when t is even.

Let us now sketch the proof of Point (2) of Claim 4. Let us assume za ∈ [N
3
+ΥC,h,N[. Similarly

as in Point (1) we can factorize α as α = (∏t
i=1 χi) ζ and Subclaims 1 and 2 hold again.

If t is odd, then by Subclaims 1 and 2 we have that the run (∏t
i=1 χ̂i) (ζ − ΓC,h), stipulating

that χ̂i is the of Subclaims 1 and 2 respectively (depending on the parity of i), is the desired(N − ΓC,h)-run from q0(z0) to qa(za − ΓC,h).
If t is even, then again by Subclaims 1 and 2 we have that ξ = (∏t

i=1 χ̂i) ζ is an (N − ΓC,h)-run
from q0(z0) to qa(za), where again χ̂i is defined as above. By definition the run ξ does not
contain any +p-transitions nor −p-transitions, thus φ(ξ) = ε ∈ Λ2h. By construction also the run
ξ has all counter values, besides the first, above N

3
− ΓC,h > ΓC,h +max(Consts(C)). Moreover, as

za ≥ N
3
+ΥC,h and z0 < N

3
, we have ∆(ξ) > ΥC,h. We can thus apply Lemma 24 to ξ, obtaining an(N − ΓC,h)-run ξ′ from q0(z0) to qa(za − ΓC,h), as required.

We now conclude the proof of our statement by treating the only remaining case, the case when
σ is such that zi < N for all i ∈ [1,m − 1]. In this case we can factorize σ as σ =∏t

i=1 χiζ similarly
as done in the proof of Point (1) of Claim 4, where t is even, and analogously prove that ∏t

i=1 χ̂iζ is
an (N − ΓC,h)-run from q0(z0) to qm(zm), where χ̂i is the output of Subclaim 1 and 2 respectively
(depending on the parity of i).
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4.8 Discussion and open problems

In this section we have shown that the reachability problem for a subset of PTOCA lie in PSPACE.
We considered h-bounded 1-PTOCA, that is, 1-PTOCA such that for all N ∈ N, all accepting
N -runs π satisfy Values(π) ⊆ [0, h ⋅N]. For any such PTOCA, a repeated application of our
Small Parameter Theorem (Theorem 21) allows to conclude that the PTOCA has an accepting
N -run if, and only if, there exists an accepting N ′-run for some N ′ that is at most exponential in
the sum of h and the size of the PTOCA. This exponential upper bound on the parameter value
led to a PSPACE upper bound for h-bounded 1-PTOCA reachability.

For proving the Small Parameter Theorem, we introduced the notion of semiruns and gave
several techniques for manipulating them. The Depumping Lemma (Lemma 24) allowed us to
construct from semiruns with large absolute counter effect new semiruns with a smaller absolute
counter effect. The Bracket Lemma (Lemma 25) allowed us to find in semiruns having a sufficiently
large absolute counter effect and satisfying some majority condition on the number of occurrences
of +p-transitions and −p-transitions some subsemirun that has again a large absolute counter effect
and moreover some bracketing properties. Our Hill and Valley Lemma (Lemma 30) allowed to
turn, for sufficiently large N , any N -semirun that is either a hill or a valley into an N ′-semirun for
some N ′ < N . Our 5/6-Lemma (Lemma 41) allowed to turn for sufficiently large N any N -semirun
with an absolute counter effect of at most 5/6 ⋅N into an N ′-semirun for some N ′ < N .

We hope that our techniques can be extended for analysing 1-PTOCA reachability. Of note is
that the decidablity proof from [17] starts with only consideringN -runs π with Values(π) ⊆ [0, 2⋅N]
before relaxing the restriction. Bundala and Ouaknine proved by a careful factorization (Theorem
10.13 in [17]) that for a PTOCA C without modulo test, there exists bounds L and h depending
only on C such that for N sufficiently large there exists an accepting N -run only if there exists one
which have all counter values bellow h ⋅N exept for at most L maximal subruns — all of which
can be expressed as N -runs in a particular POCA. Since their reduction is towards existential
Presburger arithmetic with divisibility, Bundala and Ouaknine then proceed with proving that there
exists ∃PAD formula for defining these finitely many “out of bounds” subruns, then extend the
techniques to support having operations of the form “= 0 mod c”. How to deal more efficiently with
such subruns remains an open problem, but we are convinced that the machinery and techniques
developed therein will prove useful for exploring the complexity of the problem.

We also hope that extensions of our techniques provide a line of attack for analysing PTOCA
reachability in general. When analysing runs in PTOCA that involves an arbitrary number
of parameters, it will become necessary to “de-scale” semiruns in the following sense. Already in
the presence of two parameters one can see that it becomes necessary to decrease the value of
both parameters simultaneously proportionally: for instance one can build a 2-PTOCA for which
there exists an accepting µ-run only if the first parameter is assigned by µ a multiple of the value
assigned to the second parameter. How our techniques can be extended to handle such obstacles
remains yet to be explored.

It is worth noting that reachability is not the only problem one can consider with regards to
PTOCA, as one can also explore the complexity of PTOCA reachability games. As OCA can be
seen as special cases of PDA, upper bounds generally follow from known results for PDA. This
however is not the case in the parametric extension considered in this thesis, as parametric updates
in PTOCA are not trivially handled by our PPDA model.

Perhaps closer to the study of the problem of solving parity games for PTOCA, [47] studies the
computational complexity of model checking CTL and LTL on SOCA and POCA with respect to
data and combined complexity. As mentioned in Section 2 and Section 6, model checking logics is
tied to the study of games, for instance the µ-calculus model checking problem is polynomially
equivalent to the solution of a parity game in the case of PDA. Since the data and combined
complexity of the µ-calculus on POCA is Π0

1-complete, where Π0
1 denotes the class of all languages

whose complements are recursively enumerable, it is conceivable that the Π0
1-completeness result

could be extended to PTOCA parity games.
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Chapter 5

Parametric timed automata

This chapter studies the computational complexity of reachability in classes of parametric timed
automata. Parametric timed automata (PTA) have been introduced by Alur, Henzinger, and Vardi
as an extension of timed automata in which clocks can be compared against parameters. They
serve as a more general means to specify the behavior of under-specified systems, compared to
timed automata, by allowing clocks to be compared against parameters that can take unspecified
non-negative integer values. The reachability problem for PTA in turn asks for the existence of an
assignment of the parameters to the non-negative integers such that there exists an execution that
ends in a state belonging to a set of final states in the resulting timed automaton.

We call a clock of a PTA parametric when there is at least one rule of the automaton where it
is compared against a parameter. It has been shown in [5] that already for PTA that contain three
parametric clocks reachability is undecidable — even in the presence of a single parameter [10]. To
the contrary, Alur, Henzinger and Vardi have shown in [5] that reachability is decidable for PTA
that contain only one parametric clock, yet by an algorithm whose running time is nonelementary.

Recently, there has been some advances in the study of the decidability and complexity status
of the reachability problem for PTA with one or two parametric clocks only. In the case of one
parametric clock, Bundala and Ouaknine have shown a first elementary complexity upper bound
for the reachability problem, providing a NEXP lower bound and a 2NEXP upper bound [17]. The
gap was closed by Beneš et al. in [10] who have shown a matching NEXP upper bound. (also in the
continuous time setting), we refer to [12] for an alternative proof by Bollig, Quaas and Sangnier
using alternating two-way automata.

In the case of two parametric clocks, Bundala and Ouaknine [17] have shown that in the
presence of one parameter the reachability problem is decidable and hard for the complexity class
PSPACENEXP. For showing the above-mentioned decidability result [17] provides a reduction from
PTA over two parametric clocks to a suitable formalism of parametric one-counter automata. Such
an approach via parametric one-counter automata has already successfully been applied to model
checking freeze-LTL as shown by Demri and Sangnier [33] and Lechner et al. [74], yet notably over
a weaker model of parametric one-counter automata than the one introduced in [17].

After providing more formal definitions of parametric timed automata and the reachability
problem, we give an overview of the existing literature and of our contribution. We prove our result,
namely that reachability for parametric timed automata with one parameter and two parametric
clocks is EXPSPACE-complete, and then close the section with a discussion about the methods
used along with some directions for future work.

5.1 Definitions

A parametric guard over a finite set of clocks Ω and a finite set of parameters P is a comparison
of the form g = ω & p, where ω ∈ Ω, p ∈ P , and & ∈ {<,≤,=,≥,>}. We will now call elements g inG(Ω) non-parametric guards. We denote by G(Ω, P ) the set of parametric and non-parametric

77
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Figure 5.1: An example of a PTA. The automaton consists of three states, the set of clocks is {x, y},
the set of parameters is {p}. The edges are represented by arrows labeled with the corresponding
guard and the set of clocks U to be reset. A parameter valuation µ witnesses that there exists an
accepting µ-run for this PTA if, and only if, µ(p) ∈ 3Z.

guards over the set of clocks Ω and the set of parameters P .
The size ∣g∣ of a guard g = ω & e is defined as

∣g∣ = ⎧⎪⎪⎨⎪⎪⎩
log(e) if e ∈ N,
1 otherwise.

A clock valuation is a function from Ω to N; we write 0⃗ to denote the clock valuation ω ↦ 0. For
each clock valuation v and each t ∈ N we denote by v + t the clock valuation ω ↦ v(ω)+ t. For every
guard g = ω&p with p ∈ P (resp. g = ω&k with k ∈ N) we write v ⊧µ g if v(ω)&µ(p) (resp. v(ω)&k;
in this case we may also simply write v ⊧ g). We define an empty guard gε over a non-empty
finite set of clocks Ω and a finite set of parameters P to be of the form ω ≥ 0 for some ω ∈ Ω. In
particular, we define gε such that for all v ∈ NΩ and all µ ∈ NP we have v ⊧µ gε, hence gε can be
used as a guard that is always true.

A parametric timed automaton as introduced in [5] is a finite automaton extended with a finite set
of parameters P and a finite set of clocks Ω that all progress at the same rate and that can be
individually reset to zero. Moreover, every transition is labeled by a guard over Ω and P and by a
set of clocks to be reset.

Formally, a parametric timed automaton (PTA for short) is a tuple A = (Q,Ω, P,R, qinit, F ), where

• Q is a non-empty finite set of states,

• Ω is a non-empty finite set of clocks,

• P is a finite set of parameters,

• R ⊆ Q × G(Ω, P ) ×P(Ω) ×Q is a finite set of rules,

• qinit ∈ Q is an initial state, and

• F ⊆ Q is a set of final states.

A clock ω ∈ Ω is called parametric if there exists some (q, g,U, q′) ∈ R such that the guard g
is of the form ω & p, with & ∈ {<,≤,=,≥,>} and p ∈ P . We also refer to A as an (m,n)-PTA if
m = ∣{ω ∈ Ω ∣ ω is parametric}∣ is the number of parametric clocks and n = ∣P ∣ is the number of
parameters of A — sometimes we also just write (m,∗)-PTA (resp. (∗, n)-PTA) when n (resp. m)
is a priori not fixed.

The size of A is defined as

∣A∣ = ∣Q∣ + ∣Ω∣ + ∣P ∣ + ∣R∣ + ∑
(q,g,U,q′)∈R

∣g∣.
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Let Consts(A) = {c ∈ N ∣ ∃(q, g,U, q′) ∈ R, ∃ω ∈ Ω ∶ g = ω & k} denote the set of constants that
appear in the guards of the rules of A.

By Conf(A) = Q ×NΩ we denote the set of configurations of A. We prefer however to denote a
configuration by q(v) instead of (q, v).

A parametric timed automaton A = (Q,Ω, P,R, qinit, F ) and a parameter valuation µ ∶ P → N
induce the labeled transition system Tµ

A
= (Conf(A), λA,→A,µ) where λA = R ×N and where →A,µ

is defined such that, for all q(z), q′(z′) ∈ Conf(A), for all (δ, t) ∈ R × N with δ = (q, g,U, q′) ∈ R,

q(v) δ,tÐ→A,µ q′(v′) if v + t ⊧µ g, v′(u) = 0 for all u ∈ U and v′(ω) = v(ω) + t for all ω ∈ Ω ∖U .
Let µ ∶ P → N be a parameter valuation. A µ-run from q0(v0) to qn(vn) in A is a path in Tµ

A
,

that is, a sequence

q0(v0) δ1,t1ÐÐ→A,µ q1(v1) ⋯ δn,tnÐÐÐ→A,µ qn(vn).
It is called reset-free if the set appearing in the third component is empty for all δi. We say π is
accepting if q0(v0) = qinit(0⃗) and qn ∈ F . We refer to Figure 5.1 for an instance of a PTA for which
there exists an accepting µ-run for some µ ∈ NP .

As before, in the particular case where P = {p} is a singleton for some parameter p and µ(p) = N
we prefer to write q(v)→A,N q′(v′) to denote q(v)→A,µ q′(v′) and will call the µ-run an N-run.
We also prefer to write ⊧N to denote ⊧µ. In case the automaton A is obvious from context, we
write →µ (resp. →N ) instead of →A,µ (resp. →A,N ).

We are interested in the following decision problem.

(m,n)-PTA reachability

INPUT: An (m,n)-PTA A.
QUESTION: Does there exists µ ∈ NP such that there exists an accepting µ-run in A?

We just write PTA reachability when neither m = ∣{ω ∈ Ω ∣ ω is parametric}∣ nor n = ∣P ∣ is a
priori fixed for all input PTA. Alur et al. have already shown in their seminal paper that PTA
reachability is in general undecidable, already in the presence of only three parametric clocks [5].
Beneš et al. strengthened this when only one parameter is present [10].

Theorem 50. [10] (3,1)-PTA reachability is undecidable.

On the positive side, (1,∗)-PTA reachability has recently been shown to be complete for
NEXP, where a nonelementary upper bound was initially given by Alur et al. [5].

Theorem 51. [17, 10, 12] (1,∗)-PTA reachability is NEXP-complete.

On the other end, decidability of (2,∗)-PTA reachability is still considered to be a challenging
open problem to the best of our knowledge. In the presence of one parameter the following has
recently been proven.

Theorem 52. [17] (2,1)-PTA reachability is decidable and PSPACENEXP-hard.

5.1.1 Contribution

The following theorem states our main result concerning PTA reachability.

Theorem 53. (2,1)-PTA reachability is EXPSPACE-complete.

Our contribution is two-fold.
Inspired by [47, 49], for the EXPSPACE lower bound we make use of deep results from complexity

theory, namely a serializability characterization of EXPSPACE (in turn originally based on Barring-
ton’s Theorem [9]) and a logspace translation of numbers in Chinese Remainder Representation to
binary representation due to Chiu, Davida, and Litow [24]. We provide a programming language
that we show can simulate serializability computations. It is then shown that with small PTA over
two parametric clocks and one parameter one can simulate the programming language.
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For the EXPSPACE upper bound, we first give a careful exponential time reduction from PTA
over two parametric clocks and one parameter to a (slight subclass of) parametric one-counter
automata over one parameter based on a minor adjustment of a construction due to Bundala and
Ouaknine [17]. In solving the reachability problem for parametric one-counter automata with one
parameter, we refer to the results from Chapter 4, that allows us to prove that it is sufficient to
consider a parameter value of exponential magnitude. This allows us to show a doubly-exponential
upper bound on the value of the only parameter of PTA with two parametric clocks and one
parameter.

Like the results in [5], our results hold for PTA over discrete time, where it is worth mentioning
that in [5] parameters can both be integer-valued and rational-valued. For PTA with closed (i.e.,
non-strict) clock constraints and parameters ranging over integers, techniques [58, 83] exist that
allow to reduce the reachability problem over continuous time to discrete time. There is a plethora
of variants of PTA that have recently been studied, we refer to [6] for an extensive overview by
André.

5.1.2 Overview

In Section 5.2 we introduce some programming language that can perform serializability computa-
tions. We then introduce some auxiliary gadgets that we build upon to show that small PTA over
two parametric clocks and one parameter can simulate the computations from the programming
language. Section 5.3 is devoted to the proof of the reduction from PTA over two parametric clocks
and one parameter to parametric one-counter automata over one parameter, and how this reduction,
combined with Theorem 21, leads to an EXPSPACE upper bound for (2,1)-PTA reachability.

5.2 An EXPSPACE lower bound via serializability

In this section, we show an EXPSPACE lower bound for (2,1)-PTA reachability using a
serializability characterization of EXPSPACE. The proof first appeared in the paper [48], taking
inspiration from [47, 49]. We remark here that the technique used is slightly more powerful than
required. Indeed it was shown that with small PTA over two parametric clocks and one parameter
one can simulate several types of computations and combinations thereof, essentially forming a
programming language. Then, the serializability characterization of EXPSPACE was rephrased
in terms of an execution of a program. Finally this program has been shown to belong to the
programming language.

In the following section, after some necessary precision on the definition of space bounded
Turing machines, we are thus going to introduce our programming language whose interface was
essentially introduced “by hand” in [48]. We show that it can serve as an interface for proving
EXPSPACE lower bounds via serializability. Finally we show how, from a program and an input
word for the program, one can build a (2,1)-PTA that simulates the behavior of the program on
the input word.

5.2.1 Space bounded deterministic Turing machines

In the following, we introduce f(n) space-bounded deterministic Turing machines. We consider a
model of Turing machines that contains precisely one input tape and one working tape. In our
setting, the working alphabet is {0,1,⊳,⊲} where ⊳ is the left marker and ⊲ is the right marker.

For an input alphabet Σ, the working tape of the initial configuration of such a deterministic
Turing Machine on an input w ∈ Σ of size n is assumed to be ⊳ 0f(n) ⊲ whereas its input tape is⊳ w ⊲.

Formally, an f(n)-space bounded deterministic Turing Machine (DTM for short) is a tuple
M = (Q,Σ, q0, F,R) where

• Q is a finite set of states,
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• Σ is a finite input alphabet with ⊳,⊲ /∈ Σ,

• R ∶ Q × (Σ ∪ {⊳,⊲}) × {0,1,⊳,⊲}→ Q × {−1,0,+1}2 × {0,1,⊳,⊲} is a set of rules,

• q0 ∈ Q is an initial state, and

• F ⊆ Q is the set of final states.

A configuration of a DTM M is a tuple consisting of a state q, a word u0= ⊳ w0 ⊲ for some
w0 ∈ Σn, a word u= ⊳w ⊲ for some w ∈ {0,1}f(n), a reading position i ∈ {0,1, . . . , n + 1} and a
writing position j ∈ {0, 1, . . . , f(n)+1}. Let Conf(M) denote the set of configurations of the DTM M.

The DTM M induces a transition system where there is a transition from a configuration(q, u0, u, i, j) to a configuration (q′, u0, u
′, i′, j′) iff R(q, u0[i], u[j]) = (q′, i′ − i, j′ − j, u′[j]) and

u′[k] = u[k] for k ≠ j.
We say a function g ∶ Σ∗ → {0,1}∗ can be computed by an f(n)-space bounded DTM M if

for all words w ∈ Σ∗, of size n, there exists a run in the transition system induced by M from(q,⊳w⊲,⊳0f(n)⊲,0,0) to (q′,⊳w⊲,⊳g(w)⊲, i, j) for some q ∈ Q, q′ ∈ F , and some i, j ∈ N.

Recall that L, PSPACE, and EXPSPACE are used to denote the class of all problems that can be
decided by a DTM that is logarithmically, polynomially, exponentially space bounded, respectively.
We abuse notations and say a language L is in L, PSPACE, or EXPSPACE if the problem of whether
or not a word w belongs to L is in the class LOGSPACE, PSPACE, or EXPSPACE respectively.

5.2.2 The programming language

In this Section, we introduce a programming language tailored towards a possible reduction to
obtain an EXPSPACE lower bound using the complexity class’ serializability characterization.

Serializability is used to show EXPSPACE-hardness in [47] and [48] for the data complexity of
CTL on SOCA and the reachability problem for PTA respectively, each time building essentially
“by hand” a programming langage to simulate serializability computations. The goal here is to make
explicit the programming language used in both articles in order to serve as unifying framework
for proving EXPSPACE lower bounds. The main requirement for the programming language is to
be able to simulate serializability computations. We adopt the leaf language view of EXPSPACE
from [47] which relies on the ability to simulate both operations of a deterministic automaton and
L computations on a series of exponentially large bit strings.

The manipulation of an exponentially large bit string is the more complex element of the
programming language. Programs will manipulate a number of bit strings of specified size —
and whose size counts in the size of a program in which they appear — and a specific variable
of unspecified size representing an arbitrarily large bit string. The programming language will
essentially allow for resetting the specific variable to 0, incrementing it, performing L computations
using it as an input, and checking its residual modulo some other variable. It will also allow PSPACE
computations on the other variables. The semantic of a program will then be parameterized by a
the size to be assigned to the special variable.

We now introduce the syntax and semantic of our programming language.

Syntax We assume a countably infinite set of variables X each of which has a specific associated
size. Variables will be typically denoted by x, y, z, . . . , with subscripts and superscripts. The size of
a variable x will be denoted by ∣x∣. Additionally we assume a special variable B without stipulated
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size. We inductively define programs of our programming langage as follows:

• “B ∶= 0” is a basic program,

• “B ∶= B + 1” is a basic program,

• if x, y are variables of size n and m respectively, g ∶ {0, 1}n → {0, 1}m is a PSPACE computable
function, then “y ∶= g(x)” is a basic program,

• if x, y are variables then “y ∶= B mod x” is a basic program,

• if x, y are variables with ∣y∣ = 1 and U is a language in L, then “y ∶= χU(x ⋅B)” is a basic
program, where ‘⋅’ stands for the concatenation of bit strings,

• if $ is a program and x is a variable with ∣x∣ = 1 then “while x do $” is a program,

• if $, $′ are programs and x is a variable with ∣x∣ = 1 then “if x do $ else do $′” is a program,
and

• if $, $′ are programs then “$; $′” is a program.

The size of a program is defined inductively as

• ∣B ∶= 0∣ = 1

• ∣B ∶= B + 1∣ = 1

• ∣y ∶= g(x)∣ = ∣x∣ + ∣y∣ + ∣g∣
• ∣y ∶= B mod x∣ = ∣y∣ + ∣x∣
• ∣y ∶= χU(x ⋅B)∣ = ∣y∣ + ∣x∣ + ∣U ∣
• ∣while x do $∣ = ∣x∣ + ∣$∣
• ∣if x do $ else do $′∣ = ∣x∣ + ∣$∣ + ∣$′∣
• ∣$; $′∣ = ∣$∣ + ∣$′∣

where the size of some PSPACE computable function g ∶ {0, 1}n → {0, 1}m is the size of a PSPACE-
bounded Turing Machine computing g, and the size ∣U ∣ of a language U in L is the size of a
L-bounded Turing Machine deciding whether or not an input word belongs to U .

The sets of variables of a program is defined as follows:

• the set of variables of “B ∶= 0” is {B},

• the set of variables of “B ∶= B + 1” is {B},

• the set of variables of “y ∶= g(x)” is {y, x},

• the set of variables of “y ∶= B mod x” is {y, x,B},

• the set of variables of “y ∶= χU(x ⋅B)” is {y, x,B},

• the set of variables of “while x do $” is the union of {x} with the set of variables of $,

• the set of variables of “if x do $ else do $′” is the union of {x} with the sets of variables of
$ and $′, and

• the set of variables of “$; $′” is the union of the sets of variables of $ and $′.
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Semantic For each i, n ∈ N let Biti(n) denote the i-th least significant bit of the binary
presentation of n, where the least significant bit is on the left, i.e. n = ∑i∈N 2i ⋅Biti(n). For each
m ≥ 1, by Binm(n) = Bit0(n)⋯Bitm−1(n) we denote the sequence of the first m least significant
bits of the binary representation of n. Conversely, given a binary string w = w0⋯wm−1 ∈ {0,1}m
of length m we denote by Val(w) = ∑m−1

i=0 2i ⋅ wi ∈ [0,2m − 1] the value of w interpreted as a
non-negative integer. By ⪯n we denote the lexicographic order on n-bit strings, thus w ⪯n v if
Val(w) ≤ Val(v), e.g. 0101 ⪯4 0011.

For a finite set of variables V ⊆ X and a size specifier n, we define a (V, n)-variable assignment η
as a function from the set V ∪ {B} to {0, 1}∗ such that for every variable x ∈ V , η(x) ∈ {0, 1}∣x∣ and
η(B) ∈ {0,1}2n

. For a variable x ∈ X , an element w ∈ {0,1}∣x∣, and a (V, n) variable assignment η
where x ∈ V, η[x↦ w] denotes the (V, n) variable assignment η′ that maps x to w and, otherwise,
coincides with η. For w ∈ {0,1}∗, η[B ↦ w] is defined similarly.

The semantic of a program $ is a partial function from any set of (V, n)-assignments towards
the same set of (V, n)-assignments, denoted J$Kn, where V contains the set of variables of $.

• JB ∶= 0Kn(η) = η[B ↦ 02n]
• JB ∶= B + 1Kn(η) = η[B ↦ Bin2n(Val(η(B)) + 1)]
• Jy ∶= g(x)Kn(η) = η[y ↦ g(η(x))]
• Jy ∶= B mod xKn(η) = η[y ↦ Bin∣y∣(Val(η(B)) mod Val(η(x)))]
• Jy ∶= χU(x ⋅B)Kn(η) = η[y ↦ χU(η(x) ⋅ η(B))], where ⋅ represents string concatenation,

• Jwhile y do $Kn(η) = ρ iff there exists a sequence of assignments λ1, λ2, ... λt such that
η = λ1, λt = ρ, with ρ(y) = 0 (i.e. False) and for every 0 < j < t, λj(y) = 1 (i.e. True) and
J$Kn(λj) = λj+1,

• Jif y then $1 else $2Kn(η) = ⎧⎪⎪⎨⎪⎪⎩
J$1Kn(η) if η(y) = 1,

J$2Kn(η) otherwise,

• J$1 ; $2Kn(η) = J$2Kn(J$1Kn(η)),
for all variables x, y and all PSPACE computable functions g ∶ {0,1}∣x∣ → {0,1}∣y∣ and languages U
in L. We say a program $ returns k for size specifier n and input η if Val(J$Kn(η)(B)) = k.

For a program $ with variables V and a size specifier n ∈ N, η$,n is the (V, n)-assignment such
that η$,n(x) = 0∣x∣ for all x ∈ V and η$,n(B) = 02n

.

5.2.3 Serializability

Our EXPSPACE lower bound proof makes use of the following leaf language view of EXPSPACE
from [47], which is a padded adjustment of the leaf-language characterization of PSPACE from [59],
which in turn has its roots in Barrington’s Theorem [9].

Theorem 54 (Theorem 9 in [47]). For every language L ⊆ {0,1}∗ in EXPSPACE there exists a
polynomial s ∶ N → N, a regular language R ⊆ {0,1}∗, and a language U ∈ L such that for all
w ∈ {0,1}n we have

w ∈ L ⇐⇒ 22s(n)−1∏
m=0

χU(w ⋅Bin2s(n)(m)) ∈ R, (5.1)

where ⋅ and ∏ denote string concatenation.

Let us fix any language L in EXPSPACE and assume L ⊆ {0,1}∗ without loss of generality.
Applying Theorem 54, let us fix the regular language R ⊆ {0, 1}∗ along with some fixed deterministic



84 CHAPTER 5. PARAMETRIC TIMED AUTOMATA

(1) var q ∈ QD, x ∈ {0,1}∣w∣

(2) var b ∈ {0,1}, y ∈ {0,1}
(3) var B ∈ N
(4) q ∶= q0;
(5) x ∶= w;
(6) y ∶= 1;
(7) B ∶= 0;
(8) while y loop
(9) b ∶= χU(x ⋅Bin2s(n)(B));
(10) q ∶= RD(q, b);
(11) B ∶= B + 1;
(12) y ∶= B < 22n

;
(13) end loop
(14) return q ∈ FD
Figure 5.2: A program returning 1 if, and only if, w ∈ L (using the characterization in Theorem 54),
where D = (QD,{0,1}, q0,RD, FD) is some deterministic finite automaton such that L(D) = R.

finite automaton D = (QD,{0, 1}, q0,RD, FD) with L(D) = R, the fixed polynomial s and the fixed
language U ∈ L. Let us moreover fix an input w ∈ {0,1}n of length n for L. Figure 5.2 rephrases
characterization (5.1) in Theorem 54 in terms of an execution of a program that returns 1 if, and
only if, w ∈ L.

This program can be realised by a program in the introduced programming language. Line
(5), (6),(7), (9) and (11) are directly basic programs. Lines (4), (10) and (14) can be done by
representing the states of the automaton D with variables. Line (14) especially can be done by
differentiating whether q ∈ FD evaluates to 1 or 0 and setting B to the corresponding value. Line
(8) follows the structure of the while loop from the programming language. Finally, line (12) will be

done by checking that the binary representation of B is not 02s(n)
which can be done analogously

as line (9).

Hence the following result:

Theorem 55. Given a language L in EXPSPACE, a natural n ∈ N, the following is computable in
polynomial time in n:
Input: a word w ∈ {0,1}n
Output: a program $ of size polynomial in n such that $ returns 1 for size specifier s(n) and
input η$,s(n) if, and only if, w ∈ L.

5.2.4 Simulation of the programming language

Let A be a parametric timed automaton over a set of clocks Ω with two parametric clocks x and y.
We say a valuation v ∶ Ω→ N is bit-compatible if v(ζ) ∈ {0, 1} for all non-parametric clocks ζ ∈ Ω ofA. Assume moreover that Ω contains non-parametric clocks Θ+ ∪Θ−, where Θ is some set and
Θ+ = {ϑ+ ∣ ϑ ∈ Θ} and Θ− = {ϑ− ∣ ϑ ∈ Θ} are two disjoint corresponding copies of Θ; in this case, for
any valuation v ∶ Ω→ N we define the mapping v̂ ∶ Θ→ {0,1} as

v̂(ϑ) = ⎧⎪⎪⎨⎪⎪⎩
0 if v(ϑ+) = v(ϑ−),
1 otherwise.

In the following we call such non-parametric clocks {ϑ+, ϑ− ∣ ϑ ∈ Θ}, appearing as implicit pairs,
bit clocks since they can be used to encode bits. The following definition expresses when a
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parametric timed automaton over two parametric clocks and one parameter computes a function
from N × {0,1}n to N × {0,1}m. Notably, both before execution it assumes, and after execution it
guarantees, a bit-compatible valuation that assigns its two parametric clocks values in the interval[0,N − 1], where N denotes the assigned value of its only parameter. In the following definition,
it is important to note that the involved clocks are not (and in fact must not be) assumed to be
initially set to zero.

Definition 56. A (2, 1)-PTA A = (Q,Ω,{p},R, qinit,{qfin}) whose parametric clocks are x and y
and whose one parameter is p computes a function f ∶ N × {0,1}n → N × {0,1}m if its set of clocks
Ω contains two disjoint sets of

• non-parametric “input” bit clocks {in0
+, in0

−, . . . , in+n−1, in
−
n−1},

• non-parametric “output” bit clocks {out0+, out0−, . . . , outm−1
+, outm−1

−},

such that there exists N0 ∈ N such that for all N > N0 and all bit-compatible v0 ∶ Ω→ [0,N − 1] we
have

1. qinit(v0)Ð→∗
N qfin(v′) for some bit-compatible v′ ∶ Ω→ [0,N − 1] and

2. for all v′ ∶ Ω→ N for which qinit(v0)Ð→∗
N qfin(v′) we have

• v′ ∈ [0,N − 1]Ω is bit-compatible,

• v̂′(ini) = v̂0(ini) for all i ∈ [0, n − 1],
• (v′(x)−v′(y) mod N,∏m−1

j=0 v̂′(outj)) = f(v0(x)−v0(y) mod N,∏n−1
i=0 v̂0(ini)), where ∏

denotes concatenation,

and for all N ≤ N0 and all bit-compatible v0, v
′ ∈ [0,N − 1]Ω there is no N -run from qinit(v0)

to qfin(v′).

Importantly, the execution of any N -run qinit(v0)Ð→∗
N qfin(v′) does not have any side effect on

the binary interpretation of the “input” bit clocks, i.e. the string ∏n−1
i=0 v̂0(ini) equals ∏n−1

i=0 v̂
′(ini).

For a given size specifier n ∈ N, the semantic J$Kn of a program $ with a set of variables V of
size ∣V ∣ = Σx∈V ∣x∣ can be seen as a partial function from N×{0, 1 }∣V ∣ to N×{0, 1 }∣V ∣. More formally,
the semantic J$Kn of a program $ can be seen as the function f$,n ∶ N × {0,1}∣V ∣ → N × {0,1}∣V ∣
with

f$,n(k,w) = (Val(J$Kn(ηk,w)(B)),∏
x∈V

J$Kn(ηk,w)(x))
where ηk,w is the (V, n) assignment such that Val(ηk,w(B)) = k and ∏x∈V ηk,w(x) = w. The goal
of this section then is to show that, given a program $ and a size specifier n ∈ N, one can compute
in polynomial time in n + ∣$∣ a (2,1)-PTA computing f$,n.

The following lemma essentially has its roots in the PSPACE-hardness proof for the reachability
problem for timed automata (without parameters) introduced by Alur and Dill [4], however
constructed to satisfy the carefully chosen interface given by Definition 56.

Lemma 57. For every PSPACE-computable function g ∶ {0,1}n → {0,1}m one can compute in
polynomial time in n +m a (2, 1)-PTA computing the function f ∶ N × {0, 1}n → N × {0, 1}m, where
f(k,w) = (kmodN0, g(w)) for all (k,w) ∈ N × {0,1}n.

Proof. Let us fix some PSPACE-computable function g ∶ {0,1}n → {0,1}m. Let us moreover
fix some t(n)-space bounded deterministic Turing machine M computing g, where t is some
fixed polynomial.

We explicitly store the value of our input by making use of our non-parametric “input” bit
clocks {in0

+, in0
−, . . . , in+n−1, in

−
n−1}. Similarly, we explicitly store the value of our output with the

non-parametric “output” bit clocks {out0+, out0−, . . . , outm−1
+, outm−1

−}. Since f(k,w) = (k, g(w))
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we need to provide a computation that presents g(w) ∈ {0,1}m using the “output” bit clocks. Let
Ω denote the set of clocks of the (2,1)-PTA A whose construction we discuss next.

For every non-parametric clock in A we reset it once it has value 2; this is achieved by suitable
self-loops in every state of the construction except for the final state qfin. Similarly, we establish
that both of the parametric clocks x and y are being reset once they have reached value N , where
N is the valuation of the only parameter p. This way the difference between the values of x and
y will stay unchanged modulo N . Importantly, other than that neither x nor y will be modified
during the following construction.

We will enforce that finally the values of all non-parametric clocks remain in {0,1} and that
the two parametric clocks have a value in [0,N − 1] as follows. A final state qfin is preceded
by a final gadget in which no time elapses that verifies via a sequence of suitable guards that
the parametric and non-parametric clocks are as required. Hence for any starting bit-compatible
valuation v0 ∶ Ω→ N, we ensure v′(x)− v′(y) ≡ v0(x)− v0(y) mod N for all clock valuations v′ such
that q0(v0)→∗

N qfin(v′).
Let us consider now any pair of bit clocks ϑ+ and ϑ− and any current bit-compatible valuation

v ∶ Ω→ N. We have v̂(ϑ) = 1 if, and only if, either v(ϑ+) = 0 and v(ϑ−) = 1 or conversely v(ϑ+) = 1
and v(ϑ−) = 0. Similarly, when we want to set the value v̂(ϑ) to 0, we reset both clocks ϑ+ and
ϑ− at the same time, and when we want to set the value v̂(ϑ) to 1, we reset ϑ− when v(ϑ+) = 1
without resetting ϑ+.

For simulating M our (2, 1)-PTA A will also use suitable O(t(n)) bit clocks, to store in binary
the working tape of M.

Given the current bit-compatible valuation v ∶ Ω→ N, it is thus possible to inspect the input
bit string ∏n−1

i=0 v̂(ini), read and write on the polynomially sized working tape, and to write the
output ∏m−1

j=0 v̂(outj). Let us discuss this in more detail.
For simulating M, we choose the states of our (2,1)-PTA A as

S × {0, . . . , n − 1} × {0, . . . ,m − 1} × {0, . . . , t(n) − 1} × {0,1} × {0,1},
where S is the set of states ofM. We then simulate any step ofM from a state q, current position
i on the input tape, current position j on the output tape, current position h on the working tape,
reading letter a on the input tape, reading letter b on the working tape, changing to a new state q′,
new input head position i′, new output head position j′, and new working head position h′. To do
that, we add to A sequences of suitable rules from state (q, i, j, h, a, b) to state (q′, i′, j′, h′, a′, b′)
for all a′, b′ ∈ {0,1}, by using suitable guards and reset operations that serve two purposes: first,
checking whether a′ and b′ are indeed the values of the i′-th (resp. h′-th) cell of the input (resp.
working) tape and second, writing on the j-th (resp. h-th) cell of the output (resp. working) tape.

Letting qinit denote some suitable initial state one can thus achieve that for all bit-compatible
v0 ∶ Ω → [0,N − 1] and all v′ ∶ Ω → N, if q0(v0) Ð→∗

N qfin(v′) then v′ is again a bit-compatible
valuation from Ω to [0,N − 1] .

Remark 58. The proof of Lemma 57 shows that if g ∶ N× {0, 1}n → N× {0, 1}m is computable by a(2,1)-PTA, then so is the function f ∶ N × {0,1}n+` → N × {0,1}m, where f(k,w) = g(k,w1 . . .wn)
for all k ∈ N and all w = w1 . . .wn+` ∈ {0, 1}n+`: indeed, one can manipulate the 2` additional input
bit clocks by repeatedly resetting them once they have value 2, enforcing that the associated v̂-values
stay throughout unchanged and that their value is finally strictly smaller than 2.

Remark 59. Of note is that Lemma 57 shows that (2,1)-PTA can compute the semantic of a
basic program of the form “y ∶= g(x)” where g ∶ {0,1}∣x∣ → {0,1}∣y∣ is in PSPACE.

The following lemma shows that (2,1)-PTA can compute modulo dynamically given numbers
in binary.

Lemma 60. One can compute in polynomial time in n+m a (2, 1)-PTA that computes the function
f ∶ N × {0,1}n → N × {0,1}m, where f(k,w) = (k,Binm(k mod Val(w))).

Proof. We need to show that in time polynomial in n+m one can construct a (2, 1)-PTA A whose
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set of clocks Ω contains the “input” bit clocks {in0
+, in0

−, . . . , in+n−1, in
−
n−1} and “output” bit clocks{out0+, out0−, . . . , outm−1

+, outm−1
−} that computes f . Let us assume some parameter value N ∈ N

and some bit-compatible valuation v0 ∶ Ω→ [0,N − 1] satisfying w =∏n−1
i=0 v̂0(ini).

Again, we establish here also that the parametric clocks x and y are being reset once they have
reached value N — however we sometimes explicitly disallow x to reach value N in certain gadgets
mentioned below. This will be the only modification of x and y. In the following, reading and
writing the v̂(ϑ)-value for every pair of bit clocks ϑ+, ϑ−, guaranteeing that v(ϑ+), v(ϑ−) ∈ {0,1},
and guaranteeing that the parametric clocks finally have values in [0,N − 1] can be done as in the
proof of Lemma 57.

We need the eventual output bit string ∏m−1
j=0 v̂′(outj) to be equal to

Binm((v0(x) − v0(y) mod N) mod Val(w)).
Our automaton starts in some initial state qinit. From qinit we introduce a gadget that nondeter-
ministically writes some value u ∈ {0, 1}m in our “output” bit clocks that satisfies Val(u) < Val(w).
From the end of the latter gadget we have a rule that checks if our parametric clock x has value 0
(just after being reset with value N), leading to a state qwait. Assume our current valuation then
is v ∶ Ω→ N. From qwait we have a rule to a state qsub letting no time elapse from which we claim
there is a gadget that allows us to loop in qsub for precisely Val(w) = Val(∏n−1

i=0 v̂(ini))) time
units. One constructs the latter gadget as follows. Subsequently for every i ∈ [0, n − 1] one reads
v̂(ini) and in case v̂(ini) = 1 lets precisely 2i time units elapse via a suitable auxiliary clock and in
case v̂(ini) = 0 lets 0 time units elapse. The gadget ends with a sequence of rules leading back
to qsub by letting 0 time units elapse that verify that the parametric clock x has a value strictly
smaller than N . Importantly, the parametric clock x is exceptionally not reset inside this gadget.

Finally, we add a rule from qsub to a suitable gadget that lets precisely Val(∏m−1
j=0 v̂(outj))

time units elapse (analogously as done above), followed by a test that verifies that the value of y
equals 0 (after just being reset at value N). In addition, we append this latter gadget with a final
sequence of rules (again letting no time elapse) to our final state qfin that test if both x and y have
a value strictly smaller than N and test if all non-parametric clocks have a value strictly smaller
than 2. Thus, every valuation v′ ∶ Ω→ N for which qinit(v0)Ð→∗

N qfin(v′) holds is a bit-compatible
valuation from Ω to [0,N − 1].

It is worth noting that by construction precisely v0(x) − v0(y) mod N time units have passed
in any computation qwait to qfin. Since we have repeatedly waited Val(w) time units and finally
verified that the remaining time is the guessed value initially nondeterministically written to our
“output” bit clocks, we have

m−1∏
j=0

v̂′(outj) = Binm((v0(x) − v0(y) mod N) mod
n−1∏
i=0

v̂0(ini)))
(v′(x) − v′(y) mod N,

m−1∏
j=0

v̂′(outj)) = f(v0(x) − v0(y) mod N,
n−1∏
i=0

v̂0(ini))
for any valuation v′ ∶ Ω→ N with qinit(v0)Ð→∗

N qfin(v′), as required.

Remark 61. Of note is that Lemma 60 shows that (2,1)-PTA can compute the semantic of a
basic program of the form “y ∶= B mod x”.

We have just seen in Lemma 57 and Lemma 60 how variables with specified size can be stored
using bit clocks. As seen in Lemma 60, we can use v(x) − v(y) mod N to store some value in[0,N − 1]. Since the values the difference v(x) − v(y) mod N can take depends on the value N
of the parameter, and since for a size specifier n we want to store values up to 22n

, we introduce
now for any n ∈ N a gadget (2,1)-PTA that allows us to enforce that the parameter p can only be
evaluated to numbers that are larger than 22n

.
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Lemma 62. One can compute in polynomial time in n some parametric timed automaton Abig =(Qbig,Ωbig,{p},Rbig, qbig,init,{qbig,fin}) with two parametric clocks x, y ∈ Ωbig and one parameter
p such that

1. qbig,init(0⃗) NÐ→∗

qbig,fin(v′) for some v′ ∶ Ωbig → N for some N ∈ N, and

2. for all N ∈ N and all v′ ∶ Ωbig → N we have qbig,init(0⃗) NÐ→∗

qbig,fin(v′) implies N > 22n

.

Proof. Without loss of generality we may assume 2n+1 ≥ 10. Letting N denote the parameter value
of its only parameter p, our (2,1)-PTA Abig will test whether N − 1 is divisible by all numbers in
the interval [1,2n+1 − 1]. This will be sufficient since LCM([1, k]) ≥ 2k for all k ≥ 9 by [81], thus

implying N > N − 1 ≥ LCM([1,2n+1 − 1]) ≥ 22n+1
−1 > 22n

. Consider the following program which
returns 1 if, and only if, all numbers in [1,2n+1 − 1] divide N − 1.

(1) var I ∈ {0,1}n+1

(2) var J ∈ {0,1}n+1

(3) I ∶= 0n+1

(4) while I /= 1n+1 loop
(5) I ∶= Binn+1(Val(I) + 1)
(6) J ∶= Binn+1(N − 1 mod Val(I))
(7) if J /= 0n+1 then return 0
(8) end loop
(9) return 1

It remains to show that the program can be implemented by a (2, 1)-PTA Abig with a suitable
final state qbig,fin.

It is straightforward to initialize our two parametric clocks x and y in such a way that one can
enforce valuations v that satisfy v(x) − v(y) = N − 1 mod N : indeed, starting from the valuation 0⃗,
we can wait one unit of time after which we reset x but not y.

We will use O(n) suitable bit clocks for storing the variables I and J respectively.
Lines (3), (4) and (7) can easily directly be achieved by reading and writing the O(n) many

bits clocks reserved for storing I and J . Line (5) boils down to incrementing I when viewed as
n + 1 bit integer and is thus obviously a polynomial space computable function from {0,1}n+1 to{0,1}n+1 and hence computable using a suitable PTA based on Lemma 57. Line (6) is a function
from N× {0, 1}n+1 to {0, 1}n+1 that can be implemented using a suitable PTA based on Lemma 60.

As in the proofs of Lemma 57 and Lemma 60 we reset the two parametric clocks x and y once
they have reached value N but only in case we are outside any of the gadget PTA corresponding
to line (5) and line (6), respectively. Similarly we realize the implementation of the bit clocks for I
and J by resetting them once they have reached value 2.

The following lemma shows that (2, 1)-PTA can carry out L computations on an exponentially
long string w ⋅Bin2n(k).
Lemma 63. For every language U ∈ L and fixed n ∈ N, one can compute in polynomial time in n a(2, 1)-PTA computing the function f ∶ N×{0, 1}n → N×{0, 1}, where f(k,w) = (k,χU(w⋅Bin2n(k))).

Proof. Our PTA cannot easily “explicitly” store the value Bin2n(k) in binary as in the proof
of Lemma 57 via polynomially many (in n) bit clocks in such a way that, given the current
valuation v ∶ Ω → N, it suffices to simply inspect their v̂-value: indeed, there are only singly-
exponentially many different combinations of such v̂-values, yet Bin2n(k) represents a number in[0, 22n − 1] of doubly-exponential magnitude. We will rather store this number using the difference
v(x) − v(y) mod N between our only two parametric clocks x and y: since we can enforce that
N > 22n

by our gadget PTA Abig, we can use the difference v(x) − v(y) mod N to store k mod N .
However, for computing χU(w ⋅Bin2n(k)), we need to access certain bits of the exponentially long
bit string w ⋅ Bin2n(k). For this, we access k in a different representation, namely in Chinese
Remainder Representation that we introduce next.
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Definition 64 (Chinese Remainder Representation). Let pi denote the i-th prime number and
assume ∏m

i=1 pi > k for some m ∈ N. Then CRRm(k) denotes the bit tuple (bi,r)i∈[1,m],r∈[0,pi−1],
where bi,r = 1 if k mod pi = r and bi,r = 0 otherwise.

Since k will need to take values in [0,22n − 1] and for every j ∈ N we have ∏j
i=1 pi > 2j there

exists some m ∈ O(log(22n)) = 2poly(n) such that ∏m
i=1 pi > k. In other words, one can present k as

CRRm(k) = (bi,r)i∈[1,m],r∈[0,pi−1] for some m ∈ 2poly(n) . (5.2)

Since by the Prime Number Theorem the i-th prime pi is bounded by O(i log i) there exists some
` ∈ O(log(m logm)) = O(log(2poly(n))) = poly(n) such that ` bits are sufficient to store in binary
precisely one of the primes pi. Thus, similarly O(`) = poly(n) bits are sufficient to store in binary
precisely one of the pairs of the form (i, r), where i ∈ [1,m] and r ∈ [0, pi − 1]. Moreover we have∣CRR(k)∣ ∈ O(m2 logm) = 2poly(n) = 2poly(n).

Observe that we need to carry out L computations on our exponentially long string w ⋅Bin2n(k).
We only have an on-the-fly mechanism for accessing the Chinese Remainder Representation of k,
notably still of exponential size in n. To have a chance to access concrete bits of k, we apply the
following theorem that states that, given a number in Chinese Remainder Representation, one can
compute in L its binary representation.

Theorem 65 (Theorem 3.3. in [24]). The following problem is computable in DLOGTIME-uniform
NC1 (and thus in L):

INPUT: CRRm(k) and j ∈ [1,m]
OUTPUT: Bitj(k mod 2m)
Let us assume that we have k < 22n

and recall that we have stored k as the difference
v(x) − v(y) mod N of our two parametric clocks x and y, assuming v to be our current clock
valuation. Let us show how to compute χU(w ⋅Bin2n(k)), where we recall that U is a language in
L. Let us fix some logarithmically space bounded deterministic Turing machine M for U .

For simulating M our PTA A will use O(log(n + 2n)) = poly(n) auxiliary bit clocks J to store
in binary the position of the input head of M and further O(log(n + 2n)) = poly(n) auxiliary bit
clocks W in order to store the working tape of M. Reading and writing on the working tape as
well as updating the position of the input head can done analogously as in the proof of Lemma 57.
It only remains to show how to access the cell content Bitj(w ⋅Bin2n(k)) of the input head of M,
where we recall that j itself is stored inside the above-mentioned bit clocks J .

To compute Bitj(w ⋅Bin2n(k)) we apply Theorem 65 and simulate in turn a L machine M′

whose input is assumed to be

CRR(k) = (bi,r)i∈[1,m],r∈[0,pi−1] and j ∈ [1,m],
where we already have direct access to j via the bit clocks J but need a special treatment in order
to access the bit bi,r of CRR(k). Importantly, during the to-be discussed simulation ofM′ we never
modify the v̂-values associated with the bit clocks in J andW that are being used in the (outermost)
simulation ofM. Before discussing the access to bi,r let us first discuss the simulation of the working
tape ofM′: this can be achieved by using O(log(∣CRR(k)∣+n)) = O(log(m2 ⋅ logm+n)) = poly(n)
many auxiliary bit clocks W ′, say, where reading and writing the working tape is done again as
in Lemma 57. It remains to discuss how to implement the input head in the simulation of M′.
As mentioned repeatedly above, input j can directly be accessed by the bit clocks J . However,
accessing CRR(k) = (bi,r)i∈[1,m],r∈[0,pi−1] cannot be done explicitly but on-the-fly: for this we
reserve O(`) = O(n) = poly(n) additional auxiliary bit clocks J ′, say, to store in binary a pair of
indices (i, r), where i ∈ [1,m] and r ∈ [0, pi − 1]. Given the binary access to (i, r) via the bit clocksJ ′, one can compute via further suitable poly(`) = O(n) = poly(n) bit clocks H, say, the binary
representation of the i-th prime number pi in space polynomial in ` (and thus in n) by Lemma 57:
indeed, given i ∈ [1,m] in binary, i.e. using ` = poly(n) bits, it is straightforward to compute the
i-th prime in space polynomial in `. Having a binary resentation of pi via the bit clocks H one can
finally compute (v(x) − v(y) mod N) mod pi via a gadget by Lemma 60. Our (2,1)-PTA A can
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thus indeed compute k mod pi and thus decide if r equals the latter, which in turn is nothing but
computing the to-be-computed input bit bi,r of CRR(k) for the simulation of M′.

Concerning the implementation details of the simulation of M′ it is important to remark
(recalling Remark 58) that both during the sub-computation computing the i-th prime pi (using
Lemma 57) as well as during the sub-computation computing k mod pi (using Lemma 60) one can
guarantee that the v̂-values associated with the bit clocks in J ,W,J ′ and W ′ are never being
modified.

Remark 66. Of note is that Lemma 63 shows that (2,1)-PTA can simulate the semantics of the
basic programs of the form “y ∶= χU(x ⋅B)” where U is in L.

It is straightforward that one can compute in polynomial time in n +m a (2,1)-PTA that
computes the function f ∶ N × {0,1}n → N × {0,1}m, where f(k,w) = (0,w) or f(k,w) = (k + 1,w).
The first boils down to resetting both parametric clocks x and y simultaneously, the second is
realised by letting time elapse until the parametric clock y has value 1 (i.e. one time unit after it
had value N and was reset), and then resetting it.

Thus for any basic program $ and size specifier n, one can compute in polynomial time
in n + ∣$∣ a (2,1)-PTA that computes the semantic J$Kn seen as a function f$,n. It remains
to discuss combinations of programs. Given two functions f ∶ N × {0,1}n → N × {0,1}m and
g ∶ N × {0,1}m → N × {0,1}` computable by (2,1)-PTA, it is straightforward to build (2,1)-PTA
that computes the composition of f and g. Hence, recalling remark 58, given two programs $, $′

and size specifier n one can compute in polynomial time in n + ∣$;$′∣ a (2, 1)-PTA that computes
f$;$′,n. It is also straightorward to show that given two programs $, $′, a variable x and size
specifier n, one can compute in polynomial time in n + ∣x∣ + ∣$∣ + ∣$′∣ a (2,1)-PTA that computes
fwhile x do $,n or fif x do $ else $′,n.

By induction, given a program $ and a natural n, one can build in polynomial time in n + ∣$∣
a (2,1)-PTA A$,n that simulate the semantic of $.

Lemma 67. For every program $ with variables V, for every size specifier n ∈ N, one can compute
in polynomial time in n + ∣$∣ a (2,1)-PTA A$,n computing the function f$,n ∶ N × {0,1}∣V ∣ →
N×{0, 1}∣V ∣ with f$,n(k,w) = (Val(J$Kn(ηk,w)(B)),∏x∈VJ$Kn(ηk,w)(x)) where ηk,w is the (V, n)
assignment such that Val(ηk,w(B)) = k and ∏x∈V ηk,w(x) = w.

We now reduce the problem of deciding whether a program $ returns 1 for a size specifier n
and input η$,n to (2,1)-PTA reachability. Given a program $ and size specifier n ∈ N, we
compute in polynomial time in n + ∣$∣ the automaton A$,n. Note that since A$,n computes the
function f$,n ∶ N× {0, 1}∣V ∣ → N× {0, 1}∣V ∣, A$,n has parametric clocks x and y, and a set of clocks
containing 2 ⋅ ∣V ∣ “input” bit clocks, and 2 ⋅ ∣V ∣ “output” bit clocks. The initial clock valuation 0⃗ has
all clocks mapped to 0 and thus all “input” bit evaluated to 0, much like η$,n maps every variable x
to 0∣x∣. Since A$,n computes the function f$,n, there exists N0 ∈ N such that for all N > N0, there
exists some qfin, and some bit-compatible v′ ∶ Ω→ {0,N − 1} such that qinit(0⃗)→∗

N qfin(v′) and
moreover v′(x) − v′(y) mod N = Val(J$Kn(η$,n)(B)). Since we say $ returns k for size specifier
n and input η if Val(J$Kn(η)(B)) = k, then $ returns 1 if and only if v′(x) − v′(y) mod N = 1.
It is straightorward from qfin to check that v′(x)− v′(y) mod N = 1 and to move to a final state if
and only if that is the case. Hence the following result.

Theorem 68. The following is computable in polynomial time:
Input: a program $, n ∈ poly(∣$∣)
Output: a (2,1)-PTA A such that there exists some µ ∈ NP and an accepting µ-run in A if,

and only if, $ returns 1 for size specifier n and input η$,n.

Combined with Theorem 55, this provides the following reduction.

Theorem 69. Given a language L in EXPSPACE, a natural n ∈ N, the following is computable in
polynomial time in n:

Input: a word w ∈ {0,1}n
Output: a (2,1)-PTA A such that there exists some µ ∈ NP and an accepting µ-run in A if,

and only if, w ∈ L.
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From this, we deduce the following lower bound.

Theorem 70. (2,1)-PTA reachability is EXPSPACE-hard.

5.3 An EXPSPACE upper bound via reduction to PTOCA-
reachability

We recall that parametric one-counter automata are automata that can manipulate a counter
that can be incremented or decremented, parametrically or not, compared against constants or
parameters, and with divisibility tests modulo constants. We state in this Section a theorem
(Theorem 71), proven essentially already in [17] — however, for a slightly more expressive model of
parametric one-counter automata — that states that (2,1)-PTA reachability can be reduced
in exponential time to the reachability problem of parametric one-counter automata over one
parameter. We recall the Small Parameter Theorem (Theorem 21) which tells us that for every
PTOCA over one parameter and every sufficiently large parameter value N , accepting N -runs
with counter values all in [0, h ⋅N] can be turned into accepting N ′ runs forr some smaller N ′.
We will show that the two theorem together implies an EXPSPACE upper bound for (2,1)-PTA
reachability. We then provide a thorough proof of the reduction.

Bundala and Ouaknine [17] include for the purpose of their construction some operations of
the form +[0, p] that allow to nondeterministically add to the counter a value that lies in [0, µ(p)],
where µ(p) is the parameter valuation of parameter p. As we shall show in this Section, when
reducing the reachability problem for parametric timed automata with two parametric clocks and
one parameter to parametric one-counter automata one does not require these +[0, p]-transitions
nor binary increments.

The following theorem states an exponential time reduction from (2, 1)-PTA reachability to
the reachability problem of particular parametric one-counter automata over one parameter.

Theorem 71. The following is computable in exponential time:
INPUT: A (2,1)-PTA A.
OUTPUT: A PTOCA C over one parameter

such that

1. for all N ∈ N all accepting N -runs π in C satisfy Values(π) ⊆ [0,4 ⋅max(N, ∣C∣)], and

2. there exists some µ ∈ NP and an accepting µ-run in A if, and only if, there exists some
µ′ ∈ NP and an accepting µ′-run in C.

We will show that even though the output of Theorem 71 is not exactly a 4-bounded PTOCA,
we can still use the results from Chapter 4. Recall now the Small Parameter Theorem from
Section 4.2.

Theorem (Small Parameter Theorem). Let C = (Q,{p},R, qinit, F ) be a PTOCA with one param-
eter p. If there exists an accepting N -run in C with values all in [0, h ⋅N] for some N >MC,h, then
there exists an accepting (N − ΓC,h)-run in C.

Where MC,h and ΓC,h are both constants asymptotically bounded by 2poly(h,∣C∣) with more
precise definitions on page 33.

Let us first establish that this theorem is enough to prove the desired EXPSPACE upper bound.
The proof is nearly the same as that of the PSPACE upper bound on h-bounded 1-PTOCA
reachability seen on page 34.

Corollary 72. (2,1)-PTA reachability is in EXPSPACE.

Proof. Given a (2,1)-PTA A, we apply Theorem 71 and translate A in exponential time into a
PTOCA C = (Q,P,R, q0, F ) with P = {p}, such that
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1. for all N ∈ N all accepting N -runs π in C satisfy Values(π) ⊆ [0,4 ⋅max(N, ∣C∣)], and

2. there exists some µ ∈ NP and an accepting µ-run in A if, and only if, there exists some
µ′ ∈ NP and an accepting µ′-run in C.

We first claim that if there exists an accepting N -run π in C, then there exists one satisfying
N ∈ [0,max{MC,4, ∣C∣}] and Values(π) ⊆ [0, 4 ⋅max{MC,4, ∣C∣}]. All accepting N -runs π of C satisfy
Values(π) ⊆ [0,4 ⋅max{N, ∣C∣}] by Point 1, so if N > max{MC,4, ∣C∣}, then 4 ⋅N = 4 ⋅max{N, ∣C∣}
and hence there exists some accepting (N − ΓC,4)-run in C by the Small Parameter Theorem
(Theorem 21). Remarking that in case N > max{MC,4, ∣C∣} we have N − ΓC,4 >MC,4 − ΓC,4 > 0, one
can repeat the above argument for N − ΓC,4 and possibly for N − 2ΓC,4 and so on, thus implying
the desired existence.

Thus by Point 2 it suffices to check in exponential space in ∣A∣ whether there exists some accepting
N -run π in C satisfying Values(π) ⊆ [0,4 ⋅max{N, ∣C∣}] for some N ∈ [0,max{MC,4, ∣C∣}]. Since

MC,4 ∈ 2poly(∣C∣) = 22poly(∣A∣)
, the latter is simply a reachability question in a doubly-exponentially

large finite graph all of whose vertices and edges can be represented using exponentially many bits,
and thus decidable in exponential space.

The proof of the Small Parameter Theorem (Theorem 21) can be found in Section 4.2. The
proof of Theorem 71 follows.

5.3.1 Overview of the proof of the reduction

In this section provide a proof overview for Theorem 71.

A more general (but strictly speaking incomparable) result involving two parametric clocks but
an arbitrary number of parameters instead of only one has already been proven in [17], however
with a different PTOCA formalism: Bundala and Ouaknine’s model for PTOCA differs in that it
contains operations that allow to nondeterministically add to the counter a value that lies in [0, p].
By restricting ourselves to the case of only one parameter p, we will prove in a thorough analysis
that we no longer need such operations in the construction.

As in [17] we follow the following proof strategy:

• In Subsection 5.3.2, we reduce the reachability problem of a parametric timed automaton A =(QA,ΩA, P,RA, qA, FA) — in our setting later with two parametric clocks — to the reachabil-
ity problem of a so-called parametric 0/1 timed automaton B = (QB,ΩB, P,RB,0,RB,1, qB, FB),
where ΩB ⊆ ΩA contains only the non-parametric clocks of ΩA, and Consts(B) = {0}.

• In Subsection 5.3.3 we present the region abstraction technique introduced by Alur and Dill
in [4] to mimic region-restricted runs (runs inside a region) of parametric 0/1 timed automata
with one parameter by arithmetic progressions.

• Finally, we present the final step of the reduction in Subsection 5.3.4, where it is shown
how to use the above-mentioned technique to mimic reset-free region-restricted runs in B,
and furthermore how to provide a construction in order to mimic resets in B. The precise
construction itself mainly deviates from [17] in the gadget construction for resets.

5.3.2 Removing non-parametric clocks and non-parametric guards

In this subsection we show how non-parametric guards and non-parametric clocks can be eliminated
from parametric timed automata. Initially introduced in [5] we define the notion of parametric
0/1 timed automata: these are essentially parametric timed automata in which each rule dictates
whether a unit of time passes or not. Alur, Henzinger and Vardi have already shown in [5] how the
reachability problem for parametric timed automata can be reduced to the reachability problem for
parametric 0/1 timed automata that do not contain any non-parametric clocks. We will provide in
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Lemma 73 below an analogous reduction by not only eliminating all non-parametric clocks, but
also all non-parametric guards (except for empty guards).

A parametric 0/1 timed automaton (0/1-PTA for short) is a tuple

B = (Q,Ω, P,R0,R1, qinit, F ),
where Bi = (Q,Ω, P,Ri, qinit, F ) is a PTA for all i ∈ {0,1}. For simplicity we define its size as∣B∣ = ∣B0∣ + ∣B1∣. Analogously, a clock ω ∈ Ω is parametric if it is parametric in B0 or in B1. We
analogously denote the constants of B by Consts(B) and its configurations by Conf(B).

A parametric 0/1 timed automaton B = (Q,Ω, P,R0,R1, qinit, F ) and a parameter valuation
µ ∶ P → N induce the labeled transition system Tµ

B
= (Conf(B), λB,→B,µ) where λB = (R0 ∪R1) ×{0,1} and where →B,µ is defined such that for all q(z), q′(z′) ∈ Conf(B), for all (δ, i) ∈ λB with

δ = (q, g,U, q′) ∈ Ri q(v) δ,iÐ→B,µ q′(v′) if v + i ⊧µ g, v′(u) = 0 for all u ∈ U and v′(ω) = v(ω) + i for
all ω ∈ Ω ∖U .

As expected, we write q(v) δ,iÐ→B,µ q′(v′) if q(v) δ,iÐ→B,µ q′(v′) for some i ∈ {0,1}, and some
δ ∈ Ri. The notions of a (reset-free, accepting) µ-run (resp. N -run) for B are also defined as
expected.

The convention used in this and the following subsections is that parametric 0/1 timed automata
are denoted by B. The main result of this subsection is the following lemma, stated slightly less
general in [5] in that there is no requirement that Consts(B) = {0}.

Lemma 73 ([5]). The following is computable in exponential time:

INPUT: A PTA A = (QA,ΩA, P,RA, qA, FA).
OUTPUT: A 0/1-PTA B = (QB,ΩB, P,RB,0,RB,1, qB, FB), where ΩB ⊆ ΩA contains precisely

the parametric clocks of ΩA, Consts(B) = {0}, and such that there exists some µ ∈ NP and an
accepting µ-run in A, if, and only if, there exists some µ′ ∈ NP and an accepting µ′-run in B.

We adjust the proof from [5]. While the idea of the construction remains the same, ours slightly
deviates in that we explicitly have Consts(B) = {0}, i.e. we remove all non-parametric guards of
the form ω & c with c ≠ 0 as well as all non-parametric clocks.

Proof. Let us assume without loss of generality that A contains at least one parametric clock and
let us fix one such clock x. We define the empty guard gε as gε = x ≥ 0 and observe that this guard
is always satisfied. Let cmax = max(Consts(A)) denote the largest constant appearing in A. Note
that once the value assigned to a clock ω by a valuation v is strictly above cmax, the precise value
v(ω) is no longer of importance, merely the fact that v(ω) exceeds cmax is relevant. Since we work
with discrete time configurations, the value assigned to ω is always a non-negative integer. We
will eliminate all non-parametric clocks of ΩA by storing in the states of B the values of clocks up
to cmax + 1, where cmax + 1 will stand for any value greater than cmax. Moreover we eliminate all
non-empty non-parametric guards by also storing in the states of B the values of parametric clocks
in the same fashion. Formally, we define ΩB = {ω ∈ ΩA ∣ ω is parametric}, QB = QA×[0, cmax+1]ΩA ,
P is the same in both automata, FB = FA × [0, cmax + 1]ΩA , and qB = (qA, v0), where v0(ω) = 0 for
all ω ∈ ΩA.

We ensure that the stored clocks progress simultaneously with the remaining parametric clocks
by exploiting the fact that the rules dictate whether or not time elapses, and build the rules of B
such that the +1 rules correspond to the progress of time in A whereas the +0 rules correspond to
using a rule in A. Formally,

• for every q ∈ QA, v ∈ [0, cmax + 1]ΩA , we introduce a rule of the form ((q, v), gε,∅, (q, v′)) in
RB,1, where v′(ω) = min{v(ω) + 1, cmax + 1} for all ω ∈ ΩA,

• for every (q, g,U, q′) ∈ RA with g ∈ G(ΩB, P ) a parametric guard, every v ∈ [0, cmax + 1]ΩA
we introduce a rule ((q, v),+0, g,U ′, (q′, v′)) ∈ RB,0, where v′ is obtained from v except for
assigning 0 to every clock in U and U ′ = U ∩ΩB is the subset of parametric clocks of U , and
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• for every (q, g,U, q′) ∈ RA with g ∈ G(ΩA, P ) a non-parametric guard, every v ∈ [0, cmax+1]ΩA
such that v ⊧ g, we introduce a rule ((q, v),+0, gε, U

′, (q′, v′)) ∈ RB,0, where v′ is obtained
from v except for assigning 0 to every clock in U and U ′ = U ∩ΩB is the subset of parametric
clocks of U .

For the remaining subsections, let us fix a PTA A = (QA,ΩA, P,RA, qA, FA) with two parametric
clocks x and y, and with P = {p}. Let us also fix the 0/1-PTA B = (QB,ΩB, P,RB,0,RB,1, qB, FB)
produced by Theorem 73 applied to PTA A, and recall that B satisfies

• P = {p},

• ΩB = {x, y}, where x and y are parametric,

• Consts(B) = {0}, and

• there exists some µ ∈ NP and an accepting µ-run in A if, and only if, there exists some
µ′ ∈ NP and an accepting µ′-run in B.

5.3.3 Capturing reset-free runs via the region abstraction technique

In this section we perform another preliminary construction before providing the proof of Theorem 71.
We build parametric one-counter automata without tests and with updates only in {+0,+1} that
can mimic the behavior of parametric 0/1 timed automata with two parametric clocks and one
parameter inside a reset-free run having only clocks valuations in a certain set. We first simply
remove rules resetting at least one clock. We then show how to remove non-empty guards from
parametric 0/1 timed automata taking inspiration from the region abstraction technique for timed
automata first introduced in [4]. The technique appears already in the proofs of reduction from
parametric timed automata with two clocks to parametric one-counter automata given in [52, 55]
(for empty sets of parameters) and in [17]. We refer to [8] for further discussions on the region
abstraction technique.

Recall that our fixed 0/1-PTA B satisfies P = {p}, ΩB = {x, y}, where x and y are parametric,
and Consts(B) = {0}.

Let us now explain the set of regions. For any valuation µ that assigns to our only parameter p
the value N we prefer to write ⊧N instead of ⊧µ. Moreover, we prefer to view clock valuations
v ∶ {x, y} → N as pairs (v(x), v(y)). Sets of clock valuations will correspondingly be denoted as
subsets of N ×N. The regions are essentially, when assigning N to the one parameter p, maximal
subsets of N×N equivalent with regards to the sets of guards of B their valuations satisfy. In other
words, the regions we define are equivalence classes for the relation ∼N , where v ∼N v′ if for all
possible guards g of B we have v ⊧N g if, and only if, v′ ⊧N g. Since the latter guards can only
compare (using comparisons <,≤,=,≥,>) the clock valuations against values from the set {0,N}, it
follows that ∼N has at most the following 16 equivalence classes, each of which we call region in
the following.
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Figure 5.3: An illustration of the different regions.

(0,0), (0,N), (N,0), (N,N)
to respectively denote the singleton sets {(0,0)},{(0,N)},{(N,0)},{(N,N)},

(0,0)↔ (0,N), (N,0)↔ (N,N), (0,N)↔ (0,+∞), (N,N)↔ (N,+∞),
to respectively denote the sets{(0, i) ∣ 0 < i < N},{(N, i) ∣ 0 < i < N},{(0, i) ∣ i > N},{(N, i) ∣ i > N},

(0,0)↔ (N,0), (0,N)↔ (N,N), (N,0)↔ (+∞,0), (N,N)↔ (+∞,N),
to respectively denote the sets{(i,0) ∣ 0 < i < N},{(i,N) ∣ 0 < i < N},{(i,0) ∣ i > N},{(i,N) ∣ i > N},

Lower-Left,Upper-Left,Lower-Right,Upper-Right

to respectively denote the sets{(i, j) ∣ 0 < i, j < N},{(i, j) ∣ 0 < i < N, j > N},{(i, j) ∣ i > N,0 < j < N},{(i, j) ∣ i, j > N}.
We refer to Figure 5.3 for an illustration of the different regions.

As expected, for every guard g of B and every region R we write R ⊧N g if v ⊧N g for all v ∈ R.

For each region R we say a run q0(v0) δ1,i1ÐÐ→B,µ q1(v1)⋯ δn,inÐÐÐ→B,µ qn(vn) of B is R-restricted if
vj ∈R for all j ∈ [0, n].

We remark that, in any R-restricted run in B, the set of guards being satisfied or not are the
same for all configurations appearing in it. Thus, the set of guards that are satisfied only depend
on the region and not the particular configurations of the R-restricted run. We simply write R ⊧ g
when a region R satisfies guard g.

We use this property to remove guards from the parametric 0/1 timed automaton B while still
mimicking reset-free R-restricted runs.
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For each region R we introduce the region automaton BR obtained from B instantiating all
comparisons appropriately and by removing all rules that reset some clock. We fix gε to be the
empty guard x ≥ 0. Formally, the automaton BR is the 0/1-PTA obtained from B by

• removing all rules (q, g,U, q′) with U ≠ ∅,

• removing all rules (q, g,∅, q′) for which R ⊭ g, and

• replacing all rules (q, g,∅, q′) for which R ⊧ g by (q, gε,∅, q′).
The following lemma is immediate.

Lemma 74. From the 0/1-PTA B = (QB,{x, y},{p},RB,0,RB,1, qB, FB) with Consts(B) = {0} one
can compute in polynomial time (in ∣B∣) the sixteen 0/1-PTA {BR∣ R is a region} such that for all
N ∈ N, all regions R, and all configurations q(v) and q′(v′) for which v, v′ ∈R the following are
equivalent:

• There exists an R-restricted reset-free N -run from q(v) to q′(v′) in B.

• There exists an N -run from q(v) to q′(v′) in BR.

5.3.4 Capturing reset-free runs via arithmetic progressions

Given a one-counter automaton C and two of its states q and q′ we define the set Π(C, q, q′) of
counter values that configurations in state q′ can have from runs starting in q(0):

Π(C, q, q′) = {v ∈ N ∣ q(0)→∗ q′(v)}.
For all a ≥ 0 and b ≥ 1 we define the arithmetic progression a + bN as a + bN = {a + b ⋅ n ∣ n ∈ N}.

The following theorem is an immediate consequence of a result by To analysing the succinctness
between unary finite automata and arithmetic progressions [100].

Theorem 75 (Theorem 2 in [100]). Let C = (Q,∅,R, qinit, F ) be a simple one-counter automaton
with +0,+1 updates only. Then for every two states q, q′ ∈ Q one can compute in polynomial time
a set {(aj , bj) ∈ N2 ∣ j ∈ [1, r]} such that Π(C, q, q′) = ⋃1≤j≤r aj + bjN, where moreover r ∈ O(∣Q∣2),
aj ∈ O(∣Q∣2), and bj ∈ O(∣Q∣) for all j ∈ [1, r].

We remark that Theorem 75 also holds in the presence of transitions that decrement the counter,
cf. Lemma 6 in [50].

Remark 76. Let R be a region and let BR = (QBR ,{x, y},{p},RBR,0,RBR,1, qBR,init, FBR) be
the 0/1-PTA for R. Then all rules in RBR,0 ∪ RBR,1 have as guard the empty guard gε. LetB̂R = (QBR ,∅,R, qBR,init, FBR) be the one-counter automaton, where

R = {(q,+i, q′) ∣ (q, gε,∅, q′) ∈ RBR,i, i ∈ {0,1}}
only contains +0 and +1 updates and does not contain any = 0-tests, Then for all (k, `) ∈ N ×N, all
q, q′ ∈ Q, and all n ∈ N the following are equivalent:

• There is a run from q(k, `) to q′(k + n, ` + n) in BR.

• There is a run from q(0) to q′(n) in B̂R.

Notably, every run from q(k, `) to q′(k′, `′) in BR satisfies k′ = k + n and `′ = ` + n for some n ∈ N.

We apply Theorem 75 to all one-counter automata B̂R from Remark 76. This yields the
following characterization.

Lemma 77. From the 0/1-PTA B = (QB,{x, y},{p},RB,0,RB,1, qB, FB) for every two states q, q′ ∈
QB, for all regions R one can compute in polynomial time (in ∣B∣) a set {(aj , bj) ∈ N2∣ j ∈ [1, r]}
such that for all N, t ∈ N and all v, v + t ∈R the following are equivalent:

• There exists a reset-free R-restricted N -run from q(v) to q′(v + t) in B.

• t ∈ ⋃1≤j≤r aj + bjN.

Moreover, r ∈ O(∣QB ∣2), aj ∈ O(∣QB ∣2), and bj ∈ O(∣QB ∣) for all j ∈ [1, r].
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Proof of Theorem 71: Construction of C
Let us recall the fixed 0/1-PTA B = (QB,ΩB,{p},RB, qB, FB) the 0/1-PTA obtained from A by
Theorem 73, and recall that B satisfies

• P = {p},

• ΩB = {x, y} and x and y are parametric, and

• Consts(B) = {0}.

Recall also the set of regions of B defined in Section 5.3.3. We want to construct some PTOCAC = (QC ,{p},RC , qc, FC) such that there exists some µ ∈ NP and an accepting µ-run in B if, and
only if, there exists some µ′ ∈ NP and an accepting µ′-run in C and moreover for all N ∈ N, every
accepting N -run π in C satisfies Values(π) ⊆ [0,4 ⋅max(N, ∣C∣)].
The to-be-constructed PTOCA C (again over one parameter that will be evaluated to the same
value as the only parameter of B) will test whether an accepting N -run exists in B by using the
definitions of regions and Lemma 77 from the last subsection, but also using additional gadgets to
mimic the reset of a clock inside a particular region.

In what follows we denote the current value of the counter of C by z. For the time being in our
construction z can be negative: we will later show how to obtain non-negativity and the required
restriction that all N -runs π of C satisfy Values(π) ⊆ [0,4 ⋅max{N, ∣C∣}].
The idea of the reduction is to factorize any possible accepting N -run into maximal reset-free
subruns. We will use the current counter value z of C to store the clock valuation difference
v(x) − v(y), thus initially 0. We remark that between two consecutive resets, the difference
v(x) − v(y) stays the same throughout, but after some clock of ΩB (either x or y) is reset, this
particular reset clock will be equal to zero but not necessarily the other one. The counter of C
therefore needs to be modified accordingly. As expected, we construct C in such a way that after a
reset of y, the counter value z equals v(x), and after a reset of x the counter value z equals −v(y).
See Figure 5.4 for an idea of the relationship between v(x), v(y) and z along the curve of the clock
values.

Notice that once the value of a clock becomes strictly larger than N , its exact value is irrelevant
to any future parametric comparison in B, hence one only needs to remember that its value is
strictly larger than N . Thus, our counter z will only track the values v(x) and v(y) up to N and
possibly remember which of the two clock values exceeds N . Therefore, when a reset occurs and we
store the value of the other clock in the counter, if it exceeds this N we can and will replace it by
N + 1, and if it is strictly below −N , we can and will replace it by −N − 1. Let us therefore assume
for now that the value of the counter z following the last reset is in this interval [−N − 1,N + 1].
Initially this is surely true as initially the value of the counter is 0. We will show how to provide
this invariant on the next reset assuming it holds on the last reset.

Recall the definition of regions from Subsection 5.3.3. Let us assume a subrun q(v) Ð→N
q′(v′) Ð→∗

N q′′(v′′) Ð→N q′′′(v′′′) starting and ending by a reset of at least one of the two clocks{x, y} and where q′(v′) Ð→∗
N q′′(v′′) is reset-free. We want C to be able to check whether such a

run can exist.

For the rest of the proof let us assume without loss of generality that y is reset along q(v)Ð→N
q′(v′), where the latter configuration can hence be written as q′(z, 0), as we want the counter z
to store the value of x.
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Figure 5.4: Curve of the clock values after a reset of clock y. Initially the difference z between the
values of x and y is equal to the value of x.

The PTOCA C guesses

• the regions R0, R1, . . ., Rl visited and the order in which they are visited, where here by
convention Rk denotes the region assumed to be the k-th visited region,

• the states s0, . . ., sl when each region is visited for the first time,

• the states q0, . . ., ql when each region is visited for the last time,

• the state q′′ in which the next reset of B occurs, and

• which clock is going to be reset next (either x or y).

Note that there are only a finite number of regions. Our PTOCA C then checks that the sequenceR0, R1, . . . Rl is valid, retaining the counter value z.
First C checks that (z, 0) lies in R0 i.e. that z is equal to 0 if R0 = (0, 0), strictly between 0 and

N if R0 = (0, 0)↔ (N, 0), equal to N if R0 = (N, 0) and strictly above N if R0 = (N, 0)↔ (+∞, 0).
and moreover checks that the guessed regions are adjacent, and that the regions can be visited in
the guessed order.

Then C checks reachability within each individual region using Lemma 77 as follows. To each
region Rk one can associate a set {(ak,j , bk,j) ∈ N2 ∣ j ∈ [1, rk]} obtained by Lemma 77. This allowsC to check, for every k < l, for every v ∈Rk, v + t ∈Rk, reachability of qk(v + t) from sk(v) in the
region Rk by checking whether or not t ∈ ⋃1≤j≤r aj + bjN. In order to check reachability inside a
region Rk of the form (α,β) or (α,β)↔ (γ, η) for α,β ∈ {0,N}, and γ, η ∈ {0,N,+∞}, it suffices
to check that ⋃1≤j≤r ak,j + bk,jN contains 0, as the clock values cannot both increment and remain
inside these regions, i.e. for any such Rk, for all v ∈Rk, v + t ∈Rk implies that t = 0. Indeed, one
can check easily check whether 0 ∈ ⋃1≤j≤r ak,j + bk,jN by computing {(ak,j , bk,j) ∈ N2 ∣ j ∈ [1, rk]},
which can be done in polynomial time in ∣B∣.

Now, to check that an N -run exists in B in a given region Rk of the form Lower-Left,
Lower-Right, Upper-Left or Upper-Right, the automaton C furthermore distinguishes
whether the computation in the region Rk starts on the left side or on the bottom side, and
whether the computation in the region Rk ends on the right side or on the top side, and uses the
semilinearity property to check that the value added to the clocks is indeed in ⋃1≤j≤r ak,j + bk,jN.
Note that the first configuration of Lower-Left is necessarily of the form sk(z + 1,1) as y has
been assumed to be the last clock to be reset, the first configuration of Lower-Right is of the
form sk(z+1, 1) or sk(N +1,N +1−z), depending on whether it has been reached from the bottom



5.3. AN EXPSPACE UPPER BOUND VIA REDUCTION TO PTOCA-REACHABILITY 99

Figure 5.5: Gadget testing reachability for Case 1.

Figure 5.6: Gadget testing reachability for Case 2.

or from the left corner (or possibly both), and finally note that Upper-Left cannot be reached if
y was the last clock to be reset.

Thus, to check reachability inside Rk, our PTOCA C guesses an offset a = ak,j and a period
b = bk,j among the generators of {(ak,j , bk,j) ∈ N2 ∣ j ∈ [1, rk]} that it will use to reach qk. Sec-
ondly we define three gadgets in order to handle the three regions possibly traversed, namely
Lower-Left,Lower-Right, and Upper-Right.

Case 1. Checking reachability in the Lower-Left region.

Here the region is necessarily reached from bottom side as y was the last clock to be reset.
Moreover, as clocks progress at the same rate, the region is necessarily exited in the right corner
(or both in the right and upper corner). Here C checks that qk(N − 1,N − 1 − z) is reachable from
sk(z + 1,1), i.e. C checks that (N − 1) − (z + 1) ∈ a + bN which in turn is equivalent to checking if
z + 2 −N + a = −n ⋅ b for some n ∈ N. See Figure 5.4 for an illustration of the trajectories of the
counter values. In order to restore the value z the PTOCA C does this by a carefully chosen gadget
shown in Figure 5.5. Since (z + 1, 1) ∈ Lower-Left it follows z ∈ [0,N − 2], thus the counter value
along the gadget stays inside the interval [−(N − 2),max(N,a)].
Case 2. Checking reachability in the Lower-Right region when reached from the bottom side.

Here the region is necessarily exited in the top side, and we will show how C can check that
qk(N + z − 1,N − 1) is reachable from sk(z + 1,1) and then restore z. Indeed, since y was the last
clock that was reset, due to our convention that z ∈ [−(N + 1),N + 1] and by our case we must
have z + 1 ∈ {N + 1,N + 2}, and therefore z ∈ {N,N + 1}. Our PTOCA distinguishes the two cases
z = N and z = N + 1 explicitly as follows. To check that that qk(N + z − 1,N − 1) is reachable from
sk(z+1, 1) we need to test if N−2 ∈ a+bN. Our PTOCA C first tests if z equals N or if z equals N+1,
then does the test by a carefully chosen sequence of operations that allow to restore the counter
value z ∈ {N,N + 1} as can be seen in the gadget in Figure 5.6. Since (z + 1,1) ∈ Lower-Right
the counter value along the gadget stays inside the interval [−(a + 2),N + 1].
Case 3. Checking reachability in the Lower-Right region when reached from the left side.

Here the region is necessarily exited in the top side, and C checks that qk(N + z − 1,N − 1) is
reachable from sk(N + 1,N + 1− z) , i.e. C checks that (z +N − 1)− (N + 1) ∈ a+ bN or equivalently
if z − 2 ∈ a+ bN. Since (N + 1,N + 1− z) ∈ Lower-Right it follows z ∈ [0,N]. Again by a carefully
chosen sequence of operations that allow to restore the counter value z ∈ [0,N] we can realize this
test as seen in the gadget in Figure 5.7. Since (N + 1,N + 1− z) ∈ Lower-Right the counter value
along the gadget stays inside the interval [−(a + 2),N].
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Figure 5.7: Gadget testing reachability for Case 3.

No other region is reachable from Upper-Right. Moreover, if y was among the last clocks to
be reset, as the clocks valuations increment at the same rate, region Upper-Left is not reachable.
Thus the three treated above cases conclude the question of reachability inside a region. Next, in
order to test whether or not it is possible to reach Rk+1 in state sk+1 from Rk and state qk, we
check whether or not in B there exists some +1 rule of the form (qk, g,∅, sk+1) such that Rk ⊧ g
(and there is hence a corresponding rule in BRk

).

To finish the construction our PTOCA C needs to be able to simulate clock resets in an N -run
in B. The process will depend on the guessed region Rl in which the reset is assumed to occur. ForRl of the form (α,β) with α,β ∈ {0,N}, the precise value of each clock is known: if x is the next
clock to be reset, then the new counter value should be −v(y), i.e. −β, and if y is the next clock to
be reset, then the new counter value should be v(x), i.e. α. For Rl of the form (α,β)↔ (γ, β),
with α,β ∈ {0,N}, and with γ ∈ {0,N,+∞}, the precise value of each clock again is known: if x is
the next clock to be reset, then the new counter value should be −v(y), i.e. −β. If y is the next
clock to be reset, then the new counter value should be v(x), which, when z is the value of x when
y was last reset, is equal to z plus the value of y, i.e. z + β. If z has has absolute value at most N ,
then z +N has absolute value at most 2 ⋅N . We thus test whether or not the absolute value of
z + β’s exceeds N + 1 or not, and, if it is the case, we set it to N + 1 before performing any other
operation.

The case when Rl is of the form (α,β)↔ (α, δ) with α,β ∈ {0,N}, and with δ ∈ {0,N,+∞} is
only possible if α = δ = N (we refer to Figure 5.4 for an illustration of why the three other regions
of the form (α,β)↔ (α, δ) are not reachable) and is done as follows. The case when y is the next
clock to be reset is again easy, we set the new counter value to N . If x is the next clock to be reset,
then the new counter value should be −v(y). To do so, observe that v(y), when z was the value of
x when y was last reset, is equal to N − z, thus the new counter value should be −(N − z) = z −N .
Since z ∈ [0,N + 1] by our case the new counter value has absolute value at most N .

Observe that since we have assumed without loss of generality that y was the last clock to be
reset, we cannot have a reset inside the region Upper-Left. Thus, it remains to simulate resets in
the regions Lower-Left, Lower-Right, and Upper-Right. For this observe that the precise
value of each clock is not known, however it is feasible to nondeterministically guess the value of
the clocks when the reset occurs, based on the region and whether it was reached from the bottom
side or the left side. This case distinction allows us to know the exact starting clock valuation vl of
the Rl-restricted run preceding the reset. From this, we guess an element t of ⋃1≤j≤rl al,j + bl,jN to
increment the clock valuation by t in such a way that vl + t ∈Rl. We will distinguish which of the
two clocks x and y will be reset next.

Case 1. Simulating resets in the Lower-Left region.

Let us first discuss the case when y (and only y) is the next clock to be reset. In this case C
nondeterministically guesses a configuration q(z + 1 + δ, 1 + δ) with z + 1 + δ ≤ N − 1 reachable from
sl(z + 1, 1), i.e. δ ∈ ⋃1≤j≤rl al,j + bl,jN. To do that C adds a number of the form 1+ a+ b ⋅n for some
n ∈ N to the counter and checks that it is at most N − 1, as seen in Figure 5.8. We remark that
counter values along this gadget stay inside [0,N − 1].

Let us now discuss the case when x (and only x) is the next clock to be reset. In this case C
nondeterministically establishes a counter value of the form −δ − 1 such that −(δ + 1) ≥ z −N + 1,
where δ = a + b ⋅ n for some n ∈ N, as seen in Figure 5.9 We remark that the counter values along
this gadget stay inside [−(N − 1),N − 1].
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Figure 5.8: A gadget implementing a reset of clock y in the Case 1.

Figure 5.9: A gadget implementing a reset of clock x in the Case 1.

The case when x and y are next to be reset simultaneously can be done analogously by setting
the new counter to 0 and is not discussed in detail here.

Case 2. Simulating resets in the Lower-Right region when reached from the left side.

Let us first discuss the case when y (and only y) is the next clock to be reset. In this case our
PTOCA C nondeterministically guesses a configuration q(N+1+δ,N+1+δ−z) with N+1+δ−z ≤ N−1
reachable from sl(N + 1,N + 1 − z), i.e. where δ ∈ ⋃1≤j≤rl al,j + bl,jN is of the form a + b ⋅ n with
a, b, n ∈ N. Then C will have counter value N + 1 + δ > N , and thus C sets the counter value to
N + 1. To do that, C works as seen in Figure 5.10. We remark that the counter values along this
gadget stay inside [−1,2N].

Let us now discuss the case when x (and only x) is the next clock to be reset. In this case our
PTOCA C establishes the new counter value z−δ−N −1, realized by the gadget seen in Figure 5.11.
We remark that the counter values along this gadget stay inside [−(N − 1),N + 1].

The case when x and y are next to be reset simultaneously can be done analogously by setting
the new counter to 0 and is not discussed in detail here.

Case 3. Simulating resets in the Lower-Right region when reached from the bottom side.

Let us first discuss the case when y (and only y) is the next clock to be reset. In this case our
PTOCA C nondeterministically guesses a configuration sl(z+1+δ, 1+δ) with 1+δ ≤ N −1 reachable
from sl(z + 1, 1). We need to check that there exists δ ∈ ⋃1≤j≤rl al,j + bl,jN which moreover satisfies
the inequality 1 + δ ≤ N − 1, or equivalently z + 1 + δ ≤ N − 1 + z . Moreover, as by assumption
z ≤ N + 1, and moreover (z + 1,1) ∈ Lower-Right, we must have z ∈ {N,N + 1}. Our PTOCA
distinguishes the two cases z = N and z = N + 1 explicitly similarly as checking reachability in the
Lower-Right region when reached from the bottom side. The gadget can be found in Figure 5.12.
We remark that the counter values along this gadget stay inside [1,2N].

Figure 5.10: A gadget implementing a reset of clock y in the Case 2.
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Figure 5.11: A gadget implementing a reset of clock x in the Case 2.

Figure 5.12: A gadget implementing a reset of clock y in the Case 3 with details for the case z = N .
The ⋯ corresponds to the case z = N + 1 and works the same way.

Let us now discuss the case when x (and only x) is the next clock to be reset. The gadget
can be found in Figure 5.13. We remark that the counter values along this gadget stay inside[−(N − 1),N + 1].

The case when x and y are next to be reset simultaneously can be done analogously by setting
the new counter to 0 and is not discussed in detail here.

Case 4. Simulating resets in the Upper-Right region.

Here by definition of the region the values of the clocks are above N + 1 and hence again their
precise value is not relevant, only the existence of a way to reach the configuration when the reset
occurs. Here we precompute in our reduction whether ⋃1≤j≤rl al,j + bl,jN is not empty, and then
set the counter to N + 1 (if y is to next to be reset) and to −(N + 1) (if x is next to be reset) and
to 0 if both are to be reset.

We notice that for each gadget implementation for testing reachability inside a region and for
implementing the resets of clock x, clock y or both simultaneously, the value of the counter stays
inside the interval [−2 ⋅max(a + 2,N),2 ⋅max(a + 2,N)], where a is the value of the offset used in
the gadget.

Checking reachability and simulating resets when x was the last clock to be reset, instead of
y, works again in a symmetrical way and can be dually shown to be such that the value of the
counter stays inside the same interval. Testing reachability of a guessed final state inside a region
works the same way as the implementation of a reset in the region, with C guessing a final state in
which the computation ends instead of a state in which the next reset occurs.

Figure 5.13: A gadget implementing a reset of clock x in the Case 3.
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Figure 5.14: A gadget for adjusting a ≤ p-test when initially offsetting the counter by 2 ⋅ u.

Finally we show how to achieve non-negativity. First, our final automaton checks whether or not
the value N is greater than (2+ cmax), where cmax is the maximal of all offsets ak,j and all periods
bk,j used in any gadget. Then, fixing u = max(cmax + 2,N), we transition into a new PTOCA
obtained from the PTOCA described above (the construction where we allowed the counter to
take negative values) by first adding two +u gadgets before entering the initial state, as seen in
Figure 5.14. Furthermore, any comparison operation ≤ p (resp. ≤ c) is replaced by a gadget as seen
in Figure 5.14, using an appropriate adjusted gadget for ≤ (2 ⋅ u) comparison. Comparisons of the
form > p, = p, < p, and ≤ p (resp. > c, = c, < c, and ≤ c) are performed in an analogous manner.

Finally, for any modulo test, to simulate a mod b rule, we have two parallel branches,

• firstly a ≥ (2 ⋅ u) comparison followed by determining the residual modulo b of the current
counter value, say r1, using the states (by repeatedly subtracting at most b from the counter,
performing mod b, then adding the same amount as subtracted), then subtracting u, then
determining the new residual modulo b, say r2, keeping track of it using the states too (by
repeatedly subtracting at most b to the counter, then performing mod b, and then adding
the same amount as subtracted),

• secondly a ≤ (2 ⋅ u) comparison, followed by a similar gadget but where instead of using a −u
operation, we use a +u operation and instead of subtracting at most b, adding at most b.

We then compare the two residual r1 and r2 stored in the states, and check whether or not
r1 − 2 ⋅ (r1 − r2), the residual the counter value would have had without the 2 ⋅u offset, is equal to 0
(in the states), before restoring the counter value to the value it had before entering the gadget.
Notice that this enforces that the value of the counters stays between 0 and 4 ⋅ (max(N, (2+ cmax)),
and by observing that ∣C∣ ≥ 2 + cmax, this enforces that the counter value stays between 0 and
4 ⋅ (max(N, ∣C∣)).
5.4 Discussion and open problems

In this section we have shown that the reachability problem for parametric timed automata with
two parametric clocks and one parameter is complete for exponential space.

For the lower bound proof, inspired by [47, 49], we have built a programming language which
can be simulated by (2,1)-PTA and which can compute EXPSPACE functions, making use of
two results from complexity theory. First, we made use of a serializability characterization of
EXPSPACE from [47] which is a padded version of the serializability characterization of PSPACE
from [59], which in turn has its roots in Barrington’s Theorem [9]. Second, we made use of a result
of Chiu, Davida, Litow that states that numbers in Chinese Remainder Representation can be
translated into binary representation in NC1 (and thus in logarithmic space). We are convinced
that our programming language can serve as a unifying framework in that it provides an interface
for proving lower bounds for various problems involving automata.

For the EXPSPACE upper bound we first followed the approach of Bundala and Ouaknine [17]
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by providing an exponential time translation from reachability in parametric timed automata with
two parametric clocks and one parameter (i.e. (2,1)-PTA) to reachability in parametric threshold
one-counter automata (PTOCA) over one parameter, yet on a slightly less expressive PTOCA
model than the one introduced in [17]. We then studied the reachability in PTOCA with one
parameter p. A repeated application of our Small Parameter Theorem (Theorem 21) allows to
conclude that such a 1-PTOCA has an accepting N -run all of whose counter values lie in [0, 4 ⋅N] if,
and only if, there exists such an accepting N -run for some N that is at most exponential in the size
of the 1-PTOCA. Since the translation from (2, 1)-PTA to 1-PTOCA is computable in exponential
time, this gives a doubly exponential upper bound on the parameter value of the original (2, 1)-PTA
and hence an EXPSPACE upper bound for (2,1)-PTA reachability (Corollary 72).

We hope that extensions of our techniques provide a line of attack for finally showing decidability
(and the precise complexity) of (2,∗)-PTA reachability. For reducing (2, n)-PTA reachability
to n-PTOCA reachability however it seems that the PTOCA model indeed requires the presence
of so-called +[0, p]-transitions. How our techniques can be extended to handle +[0, p]-transitions
and an arbitrary number of parameters remains yet to be explored.



Chapter 6

Parametric pushdown automata

This chapter studies the computational complexity of reachability games and parity games in
parametric pushdown automata. Parametric pushdown automata provide a formalism to reason
about recursive programs making use of parametric constraints. Recently, different variants of
parametric pushdown automata have been introduced in the literature [56, 39, 44] however as
parameterized asynchronous shared-memory systems. These systems consist of a leader pushdown
automaton and arbitrarily many identical contributor pushdown automata, communicating via a
shared memory in the form of a register which can take finitely many values. This variant have
been shown to have applications to the dataflow analysis of concurrent programs [66].

We consider here a different approach to extending pushdown automata with parameters, by
allowing them to test equality of the stack content against parameters. Perhaps a similar model
consists in Pushdown automata with transitions that are conditioned by regular conditions on
their stack content, which can in particular test the stack content against specific words. They
can be used to ensure that some word over the stack alphabet appears in the configurations of a
run, but only for a specific value (or, rather, specific regular languages), and have been used to
establish that CTL∗ model checking remains decidable when the formulas are allowed to include
regular predicates on the stack content, and to obtain model checking algorithms for LTL and
CTL∗ model checking for pushdown automata [43]. Pushdown automata with transitions that
are conditioned by regular conditions on their stack content can be viewed as a special case of
stack automata as seen in [62]. Instead of checking the stack content against regular conditions, or,
in a more limited manner, against specified word values, we consider checks against unspecified
word values that can be instantiated using parameters. This allows for instance to ensure equality
between two stack contents appearing in two distincts configurations in a run.

Extensions of pushdown automata with storage for later comparisons have been introduced
for instance as register pushdown automata. Such automata possess registers in addition to their
stack, and can keep data values in both. Register pushdown automata have been shown to have
applications for malware detection and XML schema checking [93, 94]. In theory, since registers
can be unfilled and later be filled again an unbounded number of times, the number of different
data values a pushdown register automata can store in its registers in a run is unbounded. In [80]
it was shown however that a register pushdown automaton can only really “remember” at most 3r
data values, where r is the number of registers, i.e. for any run of a register pushdown automaton
with r registers there exists an equivalent run with the same initial and final configurations, but in
which every configuration contains register assignments drawn from only 3r elements. This leads
to the question of how useful the ability to unfill and later refill registers really is compared to a
model that would only specify valuations once.

We provide formal definitions of parametric pushdown automata, parametric pushdown reach-
ability games and parametric pushdown parity games in Section 6.1. We give an overview of
our contribution in Section 6.1.1. The contribution consists in proving parametric pushdown
reachability games and parametric pushdown parity games belong to (n + 1)-EXP in case the
number of parameters n is fixed, and providing a nonelementary lower bound for parametric
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pushdown reachability games in general. We provide the proof of our result, which stretches along
Section 6.3, Section 6.4, Section 6.5. In Section 6.6 we close the chapter with a discussion about
the methods used, with some directions for future work.

6.1 Definitions

Parametric pushdown automata extend pushdown automata by allowing the stack to be compared
against parameters that can be assigned values which are words over the stack alphabet. A
parametric pushdown automaton is then a finite automaton extended with a finite set of parameters
P and with a stack that can be manipulated by pushing or popping stack symbols and such that,
moreover, the automaton can use the top of the stack, or check that the stack content corresponds
to a parameter, to decide which transition to take next.

Formally, a parametric pushdown automaton (PPDA for short) is a tuple Z = (Q,Γ, P,R, qinit, γinit, F ),
where

• Q is a non-empty finite set of states,

• Γ is a non-empty finite stack alphabet,

• P is a finite set of parameters, with Γ ∩ P = ∅,

• R ⊆ Q × (Γ⊎P ) ×Q ×Op(Γ) is finite set of rules,

• qinit ∈ Q is an initial state,

• γinit ∈ Γ is an initial stack symbol, and

• F ⊆ Q is a set of final states.

The size of Z is defined as ∣Z ∣ = ∣Q∣+ ∣Γ∣+ ∣P ∣+ ∣R∣. We also refer to Z as an n-parametric pushdown
automaton if ∣P ∣ = n. A stack content is a word from Γ∗. As before we write the top of the stack at
the right of the word. By Conf(Z) = Q × Γ∗ we denote the set of configurations of Z. As usual we
rather write q(w) instead of (q,w). A parameter valuation is a function µ from P to Γ∗.

A parametric pushdown automaton Z = (Q,Γ, P, uR, qinit, γinit, F ) and a parameter valuation
µ ∶ P → Γ∗ induce the transition system Tµ

Z
= (Conf(Z),→Z,µ) where for all q, q′ ∈ Q, for all

w,w′ ∈ Γ∗, and for all a ∈ Γ, q(wa)Ð→Z,µ q′(w′) if there exists a rule in R of the form (q, a, q′, op)
or (q, p, q′, op) with µ(p) = wa, such that either of the following holds

• op = pushγ and w′ = waγ,

• op = pop and w′ = w, or

• op = skip and w′ = wa.

A µ-run from q0(a0) to qn(an) in Z is a corresponding path in the transition system Tµ
Z

induced
by Z and µ. As with PDA, we say π is accepting if q0 = qinit, a0 = γinit, and qn ∈ F .

In the particular case where P = {p} is a singleton for some parameter p and µ(p) = u ∈ Γ∗, we
prefer to write q(w)Ð→Z,u q′(w′) to denote q(w)Ð→Z,µ q′(w′) and will call the µ-run an u-run. In
case the automaton Z is obvious from context, we write Ð→µ (resp. Ð→u) instead of Ð→Z,µ (resp.Ð→Z,u).

PPDA reachability Note that the reachability problem for parametric pushdown automata
consists in the following decision problem.

n-PPDA reachability

INPUT: An n-PPDA Z.
QUESTION: Does an accepting µ-run for some µ ∈ (Γ∗)P exist in Z?
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PPDA games We are moreover interested in games played on parametric pushdown automata’s
transition systems. Recall that given a transition system, one needs only to provide a partition of
the set of configuration S into two sets S0 and S1 to obtain an arena.

Thus, for an n-parametric pushdown automaton Z = (Q,Γ, P,R, qinit, γinit, F ), given a partition
of Q into Q0 and Q1, we naturally partition the configurations of Z into ConfZ,0 = Q0 × Γ∗ and
ConfZ,1 = Q1 × Γ∗.

With these notations in mind one can define the arena

A(Z,Q0,Q1,µ) = (ConfZ,0,ConfZ,1,→Z,µ)
induced by a PPDA Z, a partition of its set of states, and a parameter valuation µ ∶ P → Γ∗.

Given additionally a partition of P into P0 and P1, we define A(Z,P0,P1,Q0,Q1) as the arena that
contains both the configurations and transitions of the parameter valuation arena AP0,P1,Γ∗ , as see
on page 26, and that moreover contains the configurations and transitions of A(Z,P0,P1,Q0,Q1,µ)

— albeit with configurations additionally including µ in the tuple to avoid confusion — for all
parameter valuations µ ∶ P → Γ∗. Moreover, for every configuration µ in AP0,P1,Γ∗ , we add a
transition from µ towards qinit(γinit, µ) in A(Z,P0,P1,Q0,Q1,µ).

Given a priority function Ω ∶ Q→ [0,m], we consider the function Ω̂ ∶ Conf(Z)∪ (Γ∗ ∪ �)[0,n] →[0,m] where we set Ω̂(q,w,µ) = Ω(q) for all w ∈ Γ∗ and for all µ ∈ (Γ∗)P , and Ω̂(µ) = 0 for all
µ ∈ (Γ∗ ∪ �)P .

We are interested in the following games and problems.

Parametric pushdown reachability game

INPUT: A parametric pushdown automaton Z = (Q,Γ,{p0, p1, . . . , pk},R, qinit, γinit, F ),
where Q = Q0⊎Q1, and P = P0⊎P1.

QUESTION: Does player 0 have a winning strategy from µ� in the reachability gameG = (A(Z,P0,P1,Q0,Q1),WinF×Γ∗×(Γ∗)P ) ?

Parametric pushdown parity game

INPUT: A parametric pushdown automaton Z = (Q,Γ,{p0, p1, . . . , pk},R, qinit, γinit, F ),
where Q = Q0⊎Q1, and P = P0⊎P1, and a priority function Ω ∶ Q→ [0,m].

QUESTION: Does player 0 have a winning strategy from µ� in the parity gameG = (A(Z,P0,P1,Q0,Q1),WinΩ̂) ?

We write n-parametric reachability parity game and n-parametric pushdown parity
game if the number of parameters n = ∣P ∣ of Z is fixed by the problem.

6.1.1 Contribution

The following theorems state our main results concerning Parametric pushdown parity game
and Parametric pushdown reachability game. The contribution is two-fold.

Theorem 78. n-parametric pushdown parity game and n-parametric pushdown reach-
ability game are in (n + 1)-EXP.

Theorem 79. Parametric pushdown parity game and Parametric pushdown reacha-
bility game are not in ELEMENTARY.

For the nonelementary lower bound, we reduce the FO satisfiability problem on words, known
to be nonelementary from [99], to the problem of deciding whether a player has a winning strategy
for parametric pushdown reachability games.

For the upper bound, we start by replacing parameters by pebbles acting as registers, leading
to a more general model, pebble pushdown automata. We then show that higher-order pushdown
automata parity games can be used to solve parity games on the transition systems of pebble
pushdown automata, using one additional stack level for each pebble. Since solving parity games
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on higher-order pushdown automata with level n stack is n-EXP-complete [19, 20], this provides an(n + 1)-EXP upper bound for solving parametric parity games on parametric pushdown automata
with n parameters.

6.1.2 Overview

In Section 6.2, we provide preliminary definitions. Section 6.3 shows a nonelementary lower bound
for the problem. Section 6.4 will deal with the introduction of pebble pushdown games. Section 6.5
is finally devoted to using higher-order pushdown automata parity games to solve pebble pushdown
automata parity games.

6.2 Logics

We now briefly review some standard definitions from mathematical logic.

Definition 80. A vocabulary τ is a set of relational symbols (denoted E1, . . . ,En, . . .), each of
which has a specified arity in N. A symbol E ∈ τ is called monadic if its arity is one, i.e., if it is
used to denote sets. A τ -structure (also called a model)

A = (A, (EA)E∈τ)
consists of a set A together with an interpretation of each k-ary relation symbol E from τ as a
k-ary relation on A; that is, a set EA ⊆ Ak. A structure A is called finite if A and τ are finite sets.
The universe of a structure is typically denoted by a Roman letter corresponding to the name of the
structure; that is, the universe of A is the set A, the universe of B is B, and so on. We shall also
occasionally write a ∈ A instead of a ∈ A.

For example, if τ consists of a single relational symbol → of arity 2, then possible structures for
τ consist of transition systems.

Next, we define first-order formulae over a vocabulary τ , or FO[τ] for short (or simply FO when
the vocabulary is obvious from context). We define free variables, and the semantics of FO[τ]
formulae.

Definition 81. We assume a countably infinite set of first-order variables Var. First-order
variables will be typically denoted by x, y, z, . . . , with subscripts and superscripts. We inductively
define formulae of the first-order logic over vocabulary τ as follows:

• If x1, x2 are first-order variables, then x1 = x2 is an (atomic) formula.

• If x1, . . . , xk are first-order variables and E ∈ τ is a k-ary relation symbol, then E(x1, . . . , xk)
is an (atomic) formula.

• If φ1, φ2 are formulae, then φ1 ∧ φ2 , φ1 ∨ φ2, and ¬φ1 are formulae.

• If φ is a formula, and x a first-order variable, then ∃x φ and ∀x φ are formulae.

A formula that does not use existential (∃) and universal (∀) quantifiers is called quantifier-free.
Given a set of formulae S, formulae constructed from formulae in S using only the Boolean
connectives ∨, ∧, and ¬ are called Boolean combinations of formulae in S. We shall use the standard
shorthand φ→ ψ for ¬φ ∨ ψ and φ↔ ψ for (φ→ ψ) ∧ (ψ → φ).
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The sets of free variables of a formula are defined as follows:

• free(x1 = x2) = {x1, x2},

• free(E(x1, . . . , xk)) = {x1, . . . , xk},

• free(¬φ) = free(φ),
• free(φ ∨ ψ) = free(φ) ∪ free(ψ),
• free(φ ∧ ψ) = free(φ) ∪ free(ψ),
• free(∃x φ) = free(φ) ∖ {x},

• free(∀x φ) = free(φ) ∖ {x}.

If Ð→x is the tuple of all the free first-order variables of φ, we write φ(Ð→x ). A sentence is a formula
without free variables. For a finite set V ⊆ Var, and a structure A, we define a (V,A) variable
assignment µ as a partial function from Var to A whose domain is V. For a first-order variable
x ∈ Var, an element a ∈ A, and a (V,A) variable assignment µ where x ∉ V, µ[x↦ a] denotes the((V ∪ {x}),A) variable assignment µ′ that maps x to a and, otherwise, coincides with µ.

Given a τ -structure A, we define inductively, for each formula φ with Ð→x as free variables, the
notion that A satisfies φ for the (V,A) variable assignment µ, where Ð→x ⊆ V, which we denote by
A ⊧µ φ. If φ is a sentence, we just write A ⊧ φ.

1. A ⊧µ (x = y) if µ(x) = µ(y).
2. A ⊧µ E(x1, . . . , xk) if (µ(x1), . . . , µ(ak)) ∈ EA.

3. A ⊧µ ¬φ if A ⊧µ φ does not hold.

4. A ⊧µ φ1 ∧ φ2 if A ⊧µ φ1 and A ⊧µ φ2.

5. A ⊧µ φ1 ∨ φ2 if A ⊧µ φ1 or A ⊧µ φ2.

6. A ⊧µ ∃y φ(y,Ð→x ) iff there exists a ∈ A such that A ⊧µ[y↦a] φ.

7. A ⊧µ ∀y φ(y,Ð→x ) iff for all a ∈ A, A ⊧µ[y↦a] φ.

Concerning the logic FO, we are interested in the following decision problem.

FO[τ] model checking

INPUT: A τ -structure A and a FO[τ]-sentence φ.
QUESTION: Does A ⊧ φ ?

6.3 A nonelementary lower bound

The aim of this section is to show a nonelementary lower bound for the problem of solving parametric
pushdown reachability games. It is trivial to show that the problem of solving parametric pushdown
reachability game reduces itself to the problem of solving parametric pushdown parity game.

We reduce the satisfiability problem for first-order logic on words to solving Parametric
pushdown reachability game. We know from [99] that satisfiability is nonelementary.

First we introduce in more detail what we call the satisfiability problem for first-order logic on
the class of words. Then we provide the reduction.
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6.3.1 FO satisfiability on words

In order to define FO satisfiability on words, we need to define precisely τ -structures that correspond
to words.

For a finite alphabet Σ, let τ(Σ) be the vocabulary consisting of a binary relation symbol ≤,
and a unary relation symbol Ea for every a ∈ Σ. A word structure over Σ is a τ(Σ)-structure W
with the following properties:

• W is a finite interval [0,N] for some N ∈ N,

• <W is the natural order of N,

• For every i ∈W there exists precisely one a ∈ Σ such that i ∈ EW
a .

We refer to elements i ∈ W as the positions in the word (structure) and, for every position
i ∈W , to the unique a such that i ∈ EW

a as the letter at i.
There is an obvious one to one correspondance between any word w from the set Σ∗ of all

words over Σ and any word structure over Σ. We identify words with the corresponding word
structures and write w ∈ Σ∗ to refer both to the word and the structure.

It is well-known that if we are interested in the complexity of first-order or monadic second-order
model checking or satisfiability on words, the alphabet can be assumed to be {0, 1} without loss of
generality. Thus when considering the satisfiability problem for first-order logic on the class of
words, we can restrict ourselves to the alphabet {0,1}∗, and only consider the following problem.

FO satisfiability on words

INPUT: A FO[τ({0,1})]-sentence φ.
QUESTION: Does there exist a word w ∈ {0,1}∗, such that w ⊧ φ ?

The result that is previously known and motivates the upcoming reduction consists in the
following.

Theorem 82. [99]
The FO satisfiability on words problem is not in ELEMENTARY.

6.3.2 Reduction from FO SAT on words

We consider reduction towards the problem of Parametric pushdown reachability game.
The following theorem states a polynomial time reduction from FO satisfiability on words to
Parametric pushdown reachability game.

Theorem 83. FO satisfiability on words is polynomial time reducible to Parametric
pushdown reachability game.

Proof. We start with a FO[τ({0, 1})]-formula φ. We construct a parametric pushdown automatonZ, disjoint unions Q = Q0⊎Q1 and P = P0⊎P1, and a priority mapping Ω. We do so such that
player 0 has a winning strategy from µ� in the parity game G = (A(Z,P0,P1,Q0,Q1),WinΩ̂) if and

only if there exists a word w ∈ {0,1}∗ such that w ⊧ φ, where A(Z,P0,P1,Q0,Q1) and Ω̂ correspond
to the definitions on page 107.

We assume without loss of generality that φ = ∀x1∃x2∀x3 . . .∃xk ψ is written in the prenex normal
form, where an even number k of quantifiers alternate between existential and universal ones, and
that ψ is quantifier-free and in disjunctive normal form, i.e.

φ = ∀x1∃x2∀x3 . . .∃xk l⋁
i=1

( hi⋀
j=1

ψi,j(x1, . . . , xk)).
Our construction will include the following states and gadgets.
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Figure 6.1: The begining of the automaton, and thus, of the game, essentially corresponds to a
preprocessing steps dealing with the quantifiers. Players take turns proving the parameters chosen
correspond to prefixes of w. Once every variable has been checked, players enters the second part
of the game.

qinit the initial state∀i ∀i ∈ {1,3, . . . , k − 1}∃i ∀i ∈ {2,4 . . . , k}C∀xi , a gadget ∀i ∈ {1,3, . . . , k − 1}C∃xi , a gadget ∀i ∈ {2,4 . . . , k}∨∧i ∀i ∈ {1, . . . , l}Cψi,j , a gadget ∀i ∈ {1, . . . , l}∀j ∈ {1, . . . , hi}
Player 0 starts by chosing a valuation w for the first parameter (parameter p0). The goal of this

first parameter is to remember the word w, which corresponds to the word “guessed” by player 0.
This parameter is meant in part to enforce that the stack remains a prefix of w, with each stack
content of the play corresponding to a position in the word. To enforce this, we allow in Z, after
any decision, for a player to challenge the assumption that the last movement of the other player
led to a position in the word. A player thus challenged only has the ability to add things onto the
stack, and win if and only if able to find a way back to the value of parameter p0. The gadgets
for these intermediary potential challenges will be excluded from the illustrations to preserve
clarity of representation. The other parameters are meant to correspond to the variables, with
player 1 parameters corresponding to universal variables and player 0 parameters corresponding to
existential variables.

Once players have chosen values for their respective variables, the parameter assignment µ
is fixed. It is then time for player 0 to ensure that w satisfies ψ if the variables x1, . . . , xk are
interpreted by ∣µ(p1)∣ − 1, . . . , ∣µ(pk)∣ − 1 respectively. This is the goal of the reachability game.

The first step of the game is to check that the values assigned to the parameters correspond
indeed to possible variables, that is, that the values of the parameters are prefixes of w. See
Figure 6.1 for an illustration of what is happening.

Recall ψ is quantifier-free and in disjunctive normal form, i.e.

φ = ∀x1∃x2∀x3 . . .∃xk l⋁
i=1

( hi⋀
j=1

ψi,j(x1, . . . , xk)).
Player 0, being the existential player, chooses one of the conjunctive clauses in ψ, essentially

claiming to be able to prove it. Then player 1, the universal player, chooses one of the atomic
formulas in the clause to test. The process can be seen in Figure 6.2. Testing the atomic formula is
the purpose of a gadget Cψi,j built such that player 0 has a winning strategy in Cψi,j if and only if
w satisfies ψi,j if the variables x1, . . . , xk are interpreted by ∣µ(p1)∣ − 1, . . . , ∣µ(pk)∣ − 1 respectively.
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Figure 6.2: Player 0 chooses which conjunctive clause to test and player 1 chooses which of the
atomic formula in the clause to test. State ∨ belongs to player 0. For i ∈ {1, . . . , l}, state ∧i belongs
to player 1.

Now we need only to describe the gadgets Cψi,j
. The gadget depends on the type of the atomic

formula. For a formula checking the letter at the position of a variable x, player 0 goes to the
position corresponding to x, then checks that the top of the stack x is the right letter. For one
checking that x = x′ where x and x′ are both variables, player 0 goes to the position corresponding
to x and checks against the parameter corresponding to x′ as well. If the formula is a negation,
players exchange their roles.

Thus we can in polynomial time in ∣φ∣ build a parametric pushdown automaton Z with k + 1
parameters, disjoint unions Q = Q0⊎Q1 and P = P0⊎P1, and a priority mapping Ω such that
player 0 has a winning strategy from µ� in the parity game G = (A(Z,P0,P1,Q0,Q1),WinΩ̂) if and
only if there exists a word w ∈ {0,1}∗ such that w ⊧ φ.

Then, the nonelementary lower bound follows from Theorem 82.

Theorem 84. Parametric pushdown reachability game is not in ELEMENTARY.

As a consequence, solving parametric pushdown parity games is nonelementary too.

Corollary 85. Parametric pushdown parity game is not in ELEMENTARY.

6.4 Reduction to pebble pushdown automata parity games

A pebble automaton is a two-way finite state automaton that uses a fixed, finite number of pebbles
that it can drop on, and lift from words, using them as markers. Pebble automata recognize regular
languages only, provided the life times of the pebbles, i.e. the times between dropping a pebble and
lifting it again, are properly nested [46, 38]. Automata with nested pebbles were also introduced
for tree-walking automata. It is known that tree-walking automata do not recognize all regular tree
languages [11]. Using pebbles is a remedy against getting lost along a tree, but the unrestricted
use of pebbles leads to a class of tree languages much larger than the regular tree languages, in
fact to all tree languages in NSPACE(log n). Thus, in both pebble word automata and pebble
tree-walking automata, the placement of the pebble follows a strict stack discipline. It is traditional
hence to represent syntactically the dropping and lifting of pebbles by operations lift and drop; a
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drop simply records the current position with a fresh pebble (such a pebble should be available)
and a lift pops the last dropped pebble if the current position corresponds to the one recorded by
it.

In this section, we extend these ideas to pushdown automata. Instead of using pebbles as
markings on their input, pebble pushdown automata have the ability to lift or drop pebbles on
their universe of stack contents; a drop simply records the current stack content with a fresh pebble
(such a pebble should be available) and a lift pops the last dropped pebble while requiring that it
was placed on the current node. One can think of a pebble as a register that can store a stack
content for later comparisons.

We first define more formally our pebble pushdown automaton framework, and then provide a
reduction from the problem of solving parametric pushdown parity games to the problem of solving
pebble pushdown parity games.

6.4.1 Pebble pushdown automata

An n-pebble pushdown automaton is a tuple I = (Q,Γ,R, qinit, γinit, F ) where

• Q is a finite set of states,

• Γ is a finite stack alphabet,

• R ⊆ Q × Γ × {0,1, . . . n} × P({1, . . . , n}) × Q × (Op(Γ) ∪ {drop, lift}) is a finite set of rules,
where the fourth element S of a rule r is a subset of P({1, . . . , i}) where i is the third element
of r, and if the last element is lift then we additionally require i ∈ S,

• qinit ∈ Q is an initial state,

• γinit ∈ Γ is an initial stack symbol, and

• F ⊆ Q is a set of final states.

Recall that for a partial function f ∶ S ⇀ X (see page 12), for notational purposes, we consider
some element �X /∈X and associate f with the function returning the bottom element �X when f
is undefined. Thus we write (X ⊎{�X})S for the set of all partial functions from S to X, which
we here abbreviate as (X ⊎{�})S .

By Conf(I) = Q×Γ∗×(Γ∗⊎{�}){1,...,n} we denote the set of configurations of I. As expected, we
rather write q(w,µ) instead of (q,w,µ). An i-configuration for i > 0 of I is a configuration q(z, µ)
where Dom(µ) = {1, . . . , i}, while a 0-configuration is a configuration q(z, µ) where Dom(µ) = ∅.

The idea of a transition (q, a, i, S, q′,m) ∈ R is that, if the automaton I is in state q with
pebbles 1, . . . , i dropped — or without pebble dropped if i = 0 — with top stack symbol a, and
stack content which corresponds to the stack contents of the pebbles from S and only these pebbles,
then I goes to state q′ and makes modifications to the stack or the pebbles according to m. Note
a pebble can be lifted only if the stack content which corresponds to the pebble is the same as the
current stack content. This is enforced by syntactically requiring the last pebble dropped i is in
the set S used for testing the presence of certain pebbles.

A pebble set of I is a set U ⊆ {1, . . . , n}. For a stack alphabet Γ, a U-pebble assignment is
a function which maps each j ∈ U to a word in Γ∗. The ∅-pebble assignment is denoted by
µinit ∶ {1, . . . , n}⇀ Γ∗ and is the totally undefined function.
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An n-pebble pushdown automaton I = (Q,Γ,R, qinit, γinit, F ) induces a transition system
TI = (Conf(I),→I) such that for all (q, a, i, S, q′,m) ∈ R, with a ∈ Γ, for all words w ∈ Γ∗, and
for all {1, . . . , i}-pebble assignments µ such that µ(j) = wa for each j ∈ S and µ(j) ≠ wa for each
j ∈ {1, . . . , i} ∖ S, the following holds

• if m ∈ Op(Γ), either

– m = pushγ and (q,wa,µ)→I (q′,waγ,µ),
– m = pop and (q,wa,µ)→I (q′,w,µ), or

– m = skip and (q,wa,µ)→I (q′,wa,µ),
• if m = drop, (q,wa,µ)→I (q′,wa,µ′), where µ′ is the {1, . . . , i, i + 1}-pebble assignment such

that µ′(j) = µ(j), for each j ≤ i, and µ′(i + 1) = wa, and

• if m = lift , and i ∈ S, i.e. the last pebble dropped belong of the set of pebble we test the
presence of, (q,wa,µ)→I (q′,wa,µ′), where µ′ is the {1, . . . , i − 1}-pebble assignment such
that µ′(j) = µ(j), for each j < i.

We are interested in games over pebble pushdown automata, mainly, parity games.
Again, given a transition system, one needs only to provide a partition of the set of configurations

to obtain an arena. Given a partition of Q into Q0 and Q1, we partition the configurations of TI
into ConfI,0 = Q0 × Γ∗ × (Γ∗⊎{�}){1,...n} and ConfI,1 = Q1 × Γ∗ × (Γ∗⊎{�}){1,...n}.

With these notations in mind one can define the arena

A(I,Q0,Q1) = (ConfI,0,ConfI,1,→I).
As expected, given a priority function Ω ∶ Q→ {0, . . .m}, one naturally set the extension of Ω

as Ω ∶ Conf(I)→ {0, . . .m} and Ω(q,w,µ) = Ω(q) for all w ∈ Γ∗ and µ ∈ (Γ∗⊎{�}){1,...,n}.

Concerning pebble pushdown automata, we are interested in the following decision problem.

n-pebble pushdown parity game

INPUT: An n-pebble pushdown automaton I = (Q,Γ,R, qinit, γinit, F ), where Q = Q0⊎Q1,
and a priority mapping Ω ∶ Q→ {0, . . .m}.

QUESTION: Does player 0 have a winning strategy from qinit(γinit, µinit) for the parity gameG = (A(I,Q0,Q1),WinΩ) ?

6.4.2 From parametric pushdown automata to pebble pushdown au-
tomata

We now provide a reduction from the problem of solving parametric pushdown parity games to the
problem of solving pebble pushdown parity games.

Theorem 86. n-parametric pushdown parity game is polynomial time reducible to n-pebble
pushdown parity game.

Sketch. Let us fix some n-parametric pushdown automaton Z = (Q,Γ, P, qinit, γinit, F ), disjoint
union Q = Q0⊎Q1 and P = P0⊎P1, and some priority function Ω ∶ Q × Γ∗ × (Γ∗⊎{�})R → [0,m].

We construct an n-pebble pushdown automaton I = (Q′,Γ,R′, q′init, γinit, F
′), a disjoint union

Q′ = Q′
0⊎Q′

1 and a mapping Ω′ ∶ Q × Γ′∗ × (Γ′∗⊎{�}){1,...,n} → {1, . . . ,m}, such that player 0 has
a winning strategy from (q′init, γinit, µinit) in the parity game G′ = (A(I,Q′

0,Q
′
1)
,WinΩ′) if and only

if player 0 has a winning strategy from µ� in the parity game G = (A(Z,P0,P1,Q0,Q1),WinΩ̂), where

A(Z,P0,P1,Q0,Q1) and Ω̂ correspond to the definitions on page 107.
The transition graph of the n-pebble pushdown automaton I will simulate the possible transitions

graphs (one for every parameter assignment) of the pushdown automaton with n parameters by
using pebbles to represent the parameters. The n-pebble pushdown automaton will first simulate
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the parameter valuation arena. Players take turns chosing particular stack contents on which to
place pebbles, using a gadget similar as the one from Figure 6.1. Once every parameter has been
assigned with the dropping of a corresponding pebble, the pebble assignment µ is fixed.

Further configurations in the n-pebble pushdown automaton then consist of a word representing
the status of the stack, a state, and a fixed pebble assignment. For a fixed pebble assignment there is
then a one for one correspondance between configurations of the n-parametric pushdown automaton
and these of the n-pebble pushdown automaton. The set of states of the n-pebble pushdown
automaton apart from the initial gadget is the same as the set of states of the n-parametric
pushdown automaton, and so are player 0 states, player 1 states and the priority mapping.

6.5 Reduction to higher-order pushdown automata

Higher-order pushdown automata (HPDA for short) were introduced as a generalization of pushdown
automata [1, 51, 77]. A stack of a pushdown automaton is seen as a level 1 stack. A pushdown
automaton of level 2 (or 2-HPDA) then works with a stack of level 1 stacks. In addition to the
ability to push and to pop a symbol on the top-most level 1 stack, an 2-HPDA can copy or remove
the entire topmost level 1 stack. The definition generalizes to any n ≥ 2, and n-HPDA are similarly
defined for all level n as automata working with a stack of level (n − 1) stacks.

We recall the definition from [20] which itself is taken from [67]. We then provide a reduction
from the problem of solving pebble pushdown parity games to the problem of solving higher-order
pushdown parity games.

6.5.1 Higher-order pushdown automata

A level 1 stack (or 1-stack) over an alphabet Γ is simply a stack over Γ, i.e. a word in Γ∗. A level
n stack (or n-stack) over an alphabet Γ, for n ≥ 2, is a non-empty sequence ⟨s0⟩⟨s1⟩ . . . ⟨sm⟩ of(n−1)-stacks over Γ, for some m ∈ N. The set of n-stacks over Γ is denoted by Sn(Γ), or simply Sn

in case the set Γ is obvious from context. The set of all stacks over Γ is written S (Γ) = ⋃n∈N Sn(Γ).
We define ε1 as ε ∈ Γ∗ and we inductively define εn = ⟨εn−1⟩ in Sn for all n > 1.

A higher-order stack operation is a partial function from S (Γ) to S (Γ) which preserves the
level of the input (i.e. the image of an n-stack is an n-stack for all n ∈ N). The level of an operation
op is the smallest n ∈ N such that Dom(op) ∩Sn ≠ ∅. The operations additionally respect the
hierarchicality of higher-order stacks, i.e. in a level n + 1 stack only the topmost level n stack can
be accessed. An operation op of level n, applied to a level n + 1 stack ⟨s0⟩⟨s1⟩ . . . ⟨sm⟩ of length
m ∈ N, thus returns the output ⟨s0⟩⟨s1⟩ . . . ⟨op(sm)⟩ if applicable. The definition for all levels of
stacks greater than n follows the same pattern.

The following operations can be performed on a 1-stacks of length m ∈ N.

pushγ1(w0w1 . . .wm) = w0w1 . . .wmγ for all γ ∈ Γ,

pop1(w0w1 . . .wm−1wm) = w0w1 . . .wm−1, if m ≥ 1

top(w0w1 . . .wm) = wm.

The operations added at level n + 1 are the copy of the topmost n-stack and the removal of the
topmost n-stack. More formally, if ⟨s0⟩⟨s1⟩ . . . ⟨sm⟩ is a stack of level n > 1, the following operations
are possible.

pushn(⟨s0⟩⟨s1⟩ . . . ⟨sm⟩) = ⟨s0⟩⟨s1⟩ . . . ⟨sm⟩⟨sm⟩,
pushj(⟨s0⟩⟨s1⟩ . . . ⟨sm⟩) = ⟨s0⟩, ⟨s1⟩ . . . ⟨pushj(sm)⟩, if 2 ≤ j < n
pushγ1(⟨s0⟩⟨s1⟩ . . . ⟨sm⟩) = ⟨s0⟩⟨s1⟩ . . . ⟨pushγ1(sm)⟩, for all γ ∈ Γ,

popn(⟨s0⟩⟨s1⟩ . . . ⟨sm−1⟩⟨sm⟩) = ⟨s0⟩⟨s1⟩ . . . ⟨sm−1⟩,
popj(⟨s0⟩⟨s1⟩ . . . ⟨sm−1⟩⟨sm⟩) = ⟨s0⟩⟨s1⟩ . . . ⟨sm−1⟩⟨popj(sm)⟩, if 1 ≤ j < n

top(⟨s0⟩⟨s1⟩ . . . ⟨sm⟩) = top(sm).
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The operations pop1 and top are undefined on a stack whose top 1-stack is empty.

Given a stack alphabet Γ and n ∈ N, we denote by Opn(Γ) the base set of n-stack operations as

• pushj for all 2 ≤ j ≤ n,

• pushγ1 for all γ ∈ Γ,

• popj for all 1 ≤ j ≤ n,

• skip, corresponding to the identity function of S (Γ).
A higher-order pushdown automata of level n (or n-HPDA for short) is a tupleH = (Q,Γ,R, qinit, γinit, F ),
where

• Q is a non-empty finite set of states,

• Γ is a non-empty finite stack alphabet,

• R ⊆ Q × Γ ×Q ×Opn(Γ) is a finite set of rules,

• qinit is the initial state,

• γinit ∈ Γ is the initial stack symbol, and

• F ⊆ Q is a set of final states.

By Conf(H) = Q × Sn(Γ) we denote the set of configurations of an n-HPDA H. As usual we
abbreviate (q, s) ∈ Conf(H) as q(s).

An n-HPDA H = (Q,Γ,R, qinit, F ) induces the transition system TH = (Conf(H),→H) where
for all q, q′ in Q, for all s, s′ in Sn(Γ), q(s) →H q′(s′) if there exists some rule (q, γ, q′, op) ∈ R
such that top(s) = γ and s′ = op(s).

Again we are interested in parity games. As expected, given an n-HPDA H and a partition
of Q into Q0 and Q1, we partition the configurations of TH into ConfH,0 = Q0 × Sn(Γ) and
ConfH,1 = Q1 ×Sn(Γ). With these notations in mind one can define the arena

A(H,Q0,Q1) = (ConfH,0,ConfH,1,→H)
induced by an n-HPDA H and a partition of its set of states.

As expected, given a priority function Ω ∶ Q → [0,m], we naturally extend the function as
follows, by setting ΩSn(Γ) ∶ Conf(H)→ [0,m] and ΩSn(Γ)(q, s) = Ω(q) for all s ∈ Sn(Γ).

Concerning higher-order pushdown automata, we are interested in the following decision
problem.

n-HPDA parity game

INPUT: An n-HPDA H = (Q,Γ,R, qinit, γinit, F ), where Q = Q0⊎Q1, and a priority map-
ping Ω ∶ Q→ {0, . . .m}.

QUESTION: Does player 0 have a winning strategy from qinit(pushγinit

1 (εn)) for the parity gameG = (A(H,Q0,Q1),WinΩSn(Γ)
) ?

It was shown in [19] that n-HPDA parity game can be solved in n-EXP. This also gives an
n-EXP algorithm for the µ-calculus model checking over transitions systems induced by n-HPDA.
In [20] the matching lower bound was showed, even in the case of reachability games, hence showing
n-EXP-completeness of n-HPDA parity game.

Theorem 87. [19, 20] n-HPDA parity game is n-EXP-complete.

In a 2-HPDA, the operation push2 allows to “copy” the top level 1 stack. The current word is
hereby stored away and left untouched until the next operation pop2, while push1 and pop1 can be
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performed on the additional “copy” in the meantime. This behavior is similar to that of dropping
and lifting a pebble. The main difference is that there is no operation to test that the “copy”, after
many updates, is again equal to the “original”, i.e. there is no operation to syntactically test that
the two topmost level 1 stacks are identical.

In [22, 106, 21] however Carayol and Wöhrle introduced a variant of n-HPDA by extending the
popj operations for 2 ≤ j ≤ n with a built-in equality test. For 2 ≤ j ≤ n the new operation pop=j has
the same effect as popj , but can only be applied if the two top level j stacks coincide. In [21] it is
seen as a symmetrical operation in comparison to pushj .

A higher-order pushdown automaton with equality pop of level n (n-HPDA= for short) is a
higher-order pushdown automaton of level n where in Opn(Γ) the operation popj is replaced by
push=j for 2 ≤ j ≤ n. We denote this new set of operations by Op=n(Γ). More formally the new
operations push=j are defined as

pop=k(⟨s0⟩⟨s1⟩ . . . ⟨sm⟩⟨sm⟩) = ⟨s0⟩⟨s1⟩ . . . ⟨sm⟩, and

pop=j (⟨s0⟩⟨s1⟩ . . . ⟨sm⟩) = ⟨s0⟩⟨s1⟩ . . . ⟨pop=j (sm)⟩, if 2 ≤ j < k.
Transition systems induced by higher-order pushdown automata with equality pop of level n are
then defined as expected. Carayol and Wöhrle proved [106, 21] that the two models, namely
higher-order pushdown automata with equality pop of level n and higher-order pushdown automata
of level n, generate the same classes of transition systems.

Theorem 88. [106, 21] If H is an n-HPDA (resp. n-HPDA=) then there exists an n-HPDA=

(resp. n-HPDA) H′ such that H and H′ induce isomorphic transition systems.

From n-HPDA to n-HPDA= (Proposition 3.12 in [106]) the proof relies on recreating a correct
stack content to simulate higher-order pop operations by pop=, essentially “guessing” the correct
stack content to be able to apply pop=. In the other direction (Proposition 3.18 in [106]), the
author enrich the stack alphabet with new symbols stating which instructions have to be exe-
cuted to recreate a previous stack content. It is proven that such en encoding is possible since
there is for every stack s of level n a unique shortest sequence of instructions which creates s from εn.

Defined like n-HPDA parity game, we write n-HPDA= parity game in case the input is
an n-HPDA= rather than an n-HPDA.

The algorithm from [19] actually provides an algorithmic solution to parity games on the
graphs of the Caucal hierarchy. We skip a formal definition of a graph of level n in the Caucal
hierarchy, and refer the reader to [23] for more details. The n-EXP upper bound on n-HPDA parity
games follows from the fact that every transition system induced by an n-HPDA H is a graph of
the Caucal hierarchy [19, 106], whose vertices are almost in one-to-one correspondence with the
configurations of H. In [106] the converse direction is proven, i.e. that every graph of level n of the
Caucal hierarchy is generated by an n-HPDA. In [21] it is similarly shown that every transition
system induced by an n-HPDA= H is a graph of the Caucal hierarchy. The algorithm from [19]
hence lead to a solution for n-HPDA= parity games as well.

Theorem 89. n-HPDA= parity game is in n-EXP.

6.5.2 From pebble pushdown automata to higher-order pushdown au-
tomata

We use HPDA= parity games to simulate pebble pushdown automata parity games. A similar
approach was used in [21] to show that (n + 2)-level stack automata could be used to simulate
n-pebble alternating two-way word automata.

Let us start by discussing the simulation of the dropping and lifting of a pebble in the case of a
pebble pushdown automaton I with only one pebble. As long as no pebble is dropped, a 2-HPDA=

H can simulate the behavior of a pebble pushdown automaton I with a 2-stack containing a single
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1-stack on which it performs the same operations I performs on its stack. When the automaton I
is in configuration q(w) and drops a pebble, instead of making a pop or a push, we need to store
the information that the pebble has been dropped on w. To simulate the next configuration in
such a case, we use push2 to store the information that the pebble has been dropped on the word
w, leading to the new 2-stack ⟨w⟩⟨w⟩. Configurations afterwards have 2-stacks of length two where
the first component remains w until the pebble is lifted. Lifting the pebble can be done only at
the position the pebble was dropped, by using pop=2. Checking that the node corresponds to the
one where the pebble has been dropped simply makes use of the composition of pop=2 and push2.
Checking the absence of the pebble can be done by challenging the opponent to prove the presence
of the pebble.

Now, let us detail the case when there is a second pebble, the construction for each additional
pebble being highly similar, where every additional pebble after the first one would require the
addition of another stack level. Similarly as before, as long as no pebble is dropped, the stack of H
is a 3-stack containing a single 2-stack that contains a single 1-stack. To simulate configurations in
the case one pebble have been dropped, the stack contains a single 2-stack of the form ⟨w1⟩⟨w⟩. In
the case the two pebbles have been dropped, the stack is of the form ⟨⟨w1⟩⟨w2⟩⟩⟨⟨w1⟩⟨w⟩⟩.

Intuitively speaking, w1 is, as before, the position where the first pebble is placed, and w2 is
where the second pebble is placed. Dropping pebbles like this again involves the cloning operation,
only, each pebble operates at a different stack level: thus, dropping the first pebble will use push2

and dropping the second pebble will use push3. Knowing the number of pebbles dropped can be
done by keeping track using the states of H. Lifting or checking for the presence (or absence) of
the pebbles functions on a similar basis as before. Checking the presence of the first pebble uses
operation pop=2 followed by push2, while checking the presence of the second pebble uses operation
pop=3 followed by push3. Lifting the first pebble uses pop=2, but check first that the second pebble
has already been lifted. Lifting the second pebble simply uses pop=3.

By expanding this reasoning inductively, we conclude that given n ∈ N , and given an n-
pebble pushdown automaton I = (Q,Γ,R, qinit, γinit, F ), where Q = Q0⊎Q1, one can compute an(n + 1)-HPDA H = (Q′,Γ,R′, q′init, γ

′
init, F

′) where Q′ = Q′
0⊎Q′

1, such that player 0 has a winning

strategy from q′init(push
γ′init

1 (εn)) in A(H,Q′
0,Q

′
1)

if and only if player 0 has a winning strategy from
q(γinit, µinit) in A(I,Q0,Q1). Hence the following reduction.

Theorem 90. n-pebble pushdown parity game is polynomial time reducible to (n+1)-HPDA=

parity game.

The reduction implies decidability of pebble pushdown automata parity game. Furthermore, by
Theorem 89, it implies the following complexity result.

Theorem 91. n-pebble pushdown automata parity game is in (n + 1)-EXP.

Finally, the following complexity result is due the above and Theorem 86.

Corollary 92. n-parametric pushdown automata parity game is in (n + 1)-EXP.

6.6 Discussion and open problems

In this section we have shown that deciding the winner of a parametric pushdown parity game
or reachability game is nonelementary in general, but decidable and in (n + 1)-NEXP when the
number n of parameters is fixed.

For the lower bound we reduced the FO satisfiability problem on words — known to be
nonelementary from [99] — to the problem of deciding whether player 0 has a winning strategy for
a parametric pushdown reachability game.

For the decidability upper bound, we used pebble pushdown parity games to solve parametric
pushdown parity games, and higher-order pushdown parity games to solve pebble pushdown parity
games. Since solving parity games on higher-order pushdown automata with level n stack is
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n-EXP-complete [19, 20], this provides an (n + 1)-EXP upper bound for solving parametric parity
games on parametric pushdown automata with n parameters.

Since a particular case of pushdown automata consists in one-counter automata, extensions
of automata with a counter generally inherit known upper bounds on pushdown automata. This
however is not the case in the parametric extensions considered in this thesis, as parametric
updates are not trivially handled by our PPDA model, i.e. a PPDA over a unary alphabet plus a
bottom-of-stack symbol is not trivially a PTOCA nor a POCA. For solving parametric pushdown
parity games, on the other hand, we introduced the notion of pebble pushdown parity games,
and pebble pushdown automata over unary alphabet plus a bottom-of-stack symbol can be seen
as a form of one-counter automata extended with pebbles. A pebble one-counter automata is
then a one-counter automata that can use a set of pebbles as markings on the set of non-negative
integers, with a drop recording the current counter value, and a lift poping the last dropped
pebble while requiring that the current counter value corresponds to the one from the last dropped
pebble. Unlike for parametric extensions, decidability of what should be called pebble one-counter
parity games follows from decidability of pebble pushdown parity games. We believe it natural to
study such a pebble one-counter automata model on its own. In particular we believe that the
question of whether or not solving pebble one-counter reachability games is nonelementary is worth
investigating.

Of note is that reachability games and parity games are not the only problems one can consider,
as one can also explore the complexity of reachability itself. In particular one can study the
precise complexity of the n-PPDA reachability problem. Since reachability can be viewed as a
reachability game, we know that n-PPDA reachability is decidable in (n + 1)-EXP, but the
precise complexity of the problem remains unknown. We are furthermore convinced that it is
worthwhile to investigate further comparisons between parametric pushdown automata, pebble
pushdown automata, and register pushdown automata, especially since the latter have been shown
to only really “remember” at most 3r data values, where r is the number of registers.
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Conclusion and perspectives

In this thesis we have studied the impact of adding a set of parameters to the complexity of
different verification problems. Most notably, we have studied the reachability problem for PTA
and PTOCA. We have filled some gaps in past knowledge, but there remains a lot of open problems
to tackle.

The main open problem that remain to be solved is that of reachability in parametric time
automata with two parametric clocks and an arbitrary number of parameters.

Open problem 93. Is (2,∗)-PTA reachability decidable ?

The question is highly nontrivial even for the subclass of parametric time automata with two
parametric clocks and two parameters. Of note is that it has been shown that there is an easy
reduction from the existential fragment of Presburger Arithmetic with divisibility to reachability in
PTA over two parametric clocks [5]. For proving an upper bound for (2,∗)-PTA reachability,
Bundala and Ouaknine [17] have provided a reduction from (2, n)-PTA to n-PTOCA, albeit ones
with so called +[0, p]-transitions that allow to nondeterministically add to the counter a value that
lies in [0, µ(p)], where µ(p) is the parameter valuation of some parameter p. For the case of one
parameter, we proved it was possible to perform the reduction in exponential time without these
transitions nor binary updates, but for more than one parameter it might not be possible. Following
in the footsteps of Bundala and Ouaknine, it seem to us that the question of (2,∗)-PTA reachability
is better asked in terms of PTOCA reachability, since not only has it been crucial for determining
the precise complexity of (2,1)-PTA reachability, but also since in the nonparametric model
a similar reduction [54] was essential for determining the precise complexity of reachability in
two-clock timed automata [42].

This lead to the open problem of wether reachability for n-PTOCA allowing +[0, p]-transitions is
decidable. A subset of this model, and one which seem essential to study, in particular envisionning
the possiblity of finding a better reduction from PTA to PTOCA without +[0, p]-transitions, is
that of PTOCA.

Open problem 94. Is PTOCA reachability decidable ?

In [17], the proof that 1-PTOCA reachability is decidable uses a reduction to existential
Presburger arithmetic with divisibility. It is unclear how to generalise this technique to the case of
more than one parameter. We hope the generalization of the technique presented in this thesis
proves more fruitful, even though it presents several complex obstacles to face. For instance, in
the presence of two parameters, one can build a 2-PTOCA for which reachability holds only if the
first parameter is a multiple of the second parameter. This means that the parameter values can
depend on one another, and then, “de-scaling” the value of a single parameter in a semirun can
lead to an inadequation since the two values don’t have the same relationship anymore. In this
situation, we need to decrease the value of both parameters simultaneously proportionally.

A third open problem is that of reachability in PPDA. Since reachability games are decidable,
it follows that reachability in PPDA is decidable. However, the question of the precise complexity
of the problem remains to be explored.

Open problem 95. What is the complexity of PPDA reachability ?
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For solving parametric pushdown parity games, we introduced the notion of pebble pushdown
parity games. Similarily as for PPDA, the question of the precise complexity of the reachability
problem stands out, not only as a way to provide an upper bound for PPDA reachability, but
also by itself.

Open problem 96. What is the complexity of Pebble pushdown automata reachability ?

Additionally, as mentioned in Section 6.6, pebble pushdown automata over unary alphabet
plus a bottom-of-stack symbol can be seen as pebble one-counter automata. This contrasts with
PPDA which are a priori incomparable to PTOCA. While the complexity upper bounds from
pebble pushdown parity games apply to pebble one-counter parity games, it is conceivably possible
that better complexity bounds exist. In particular, the technique used to prove the nonelementary
lower bound do not carry over to the case of an unary alphabet, and it is not clear whether or not
pebble one-counter reachability games are nonelementary.

Open problem 97. Are Pebble one-counter parity game and Pebble one-counter
reachability game in ELEMENTARY ?
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