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Cancer is a leading cause of death worldwide making it a major public health concern. Despite its growing incidence, this pathology still has many unknowns subject to an active research. Different biomedical imaging techniques accompany both research (cell biology) and clinical (screening, diagnosis, treatment) efforts towards improving patient outcome.

In this work we explore the use of a new family of imaging techniques, static (FFOCT) and dynamic (DCI) full field optical coherence tomography. Based on the principle of light coherence, they provide an image of the micro-architecture and cellular activity of the tissue in depth without any preparation. Therefore, they allow for a much faster analysis of the tissue compared to the gold standard histopathology. However, their novel and unique contrast -different from common techniques, makes them difficult to adopt in clinical settings.

In order to facilitate the interpretation of FFOCT and DCI images, we develop several aid-to-diagnosis algorithms by exploiting the data collected from clinical studies. We employ suitable data curation techniques to build training sets fitted for data-driven methods. We propose an analytical method for a better characterization and part-based separation of the raw dynamic interferometric signal, as well as multiple diagnostic support methods for FFOCT / DCI images based on deep learning. Accordingly, convolutional neural networks were designed and trained under various paradigms: (i) fully supervised learning, whose prediction capability surpasses the pathologist performance; (ii) multiple instance learning, which accommodates the lack of expert annotations; (iii) contrastive learning, which exploits the multi-modality of the data. Moreover, we highly focus on method validation and we decode the trained "black box" models to obtain an interpretation of the reasoning behind the predicted diagnostic. This ensures the good generalization of the models and ultimately leads to finding specific biomarkers in our images. This thesis presents an ensemble of original methods with significant results dedicated to FFOCT / DCI data representation, a pioneering endeavor which sets the grounds for further research directions.

This manuscript opens with a quote from the modernist sculptor Constantin Brâncus , i (1876, Hobiţa, Romania -1957, Paris, France) saying "What is real is not the appearance, but the idea, the essence of things". The choice is not inadvertent, aside from the author's fondness towards the artist, it is mainly due to the symbolism conjured up in his works which is beautifully summed up in this quote and serves as inspiration for the present study.

As opposed to the realist current in art which aimed to accurately capture what the naked eye could see, modern art movements (e.g. symbolism, expressionism, etc.) capture concepts, thoughts, ideas by resourcing more intricate creative processes. Instead of snapshots of the surface, they offer unique depictions of the core, filtered by the artist's 1 creative "lens". To exemplify, Brâncus , i's work Bird in Space (see image), through its lean minimalist lines, communicates the notion of flight itself rather than describing the appearance of a particular bird. We find that this duality of appearance vs. essence can be analogous to imaging modalities by comparison to standard visible light photography.

Imaging techniques do not share the intricacies of an artist's spirit, as they are the result of entrenched laws of physics, rather than metaphysics of the creative process. However, what they share is that they all provide different renderings of reality. In medical imaging, the same organ could be perceived via different modalities and different aspects would be revealed, be they anatomical or molecular.

In this work we are handling a novel family of imaging techniques destined for fast tissue analysis, Full-Field Optical Coherence Tomography (FFOCT) and Dynamic Cell Imaging (DCI), which even if they have a well-established mathematical formulation, the underlying revealed phenomena from biological tissue are still partly a mystery. We shall step in the shoes of an "art critic", given that is a person who is charged with analyzing, interpreting, and evaluating art, and we shall try to decode the FFOCT / DCI portrayals of cancerous tissue. In this regard, we shall be guided not only by mindful intuition but we are also turning to data driven approaches from the field of Deep Learning (DL) which aim to encode the essence of the data and deliver a generalized characterization of it.

The main motivation of this study is increasing the adoptability of this disruptive imaging technique which together with automated diagnosis and interpretation tools has vocation to improve patients outcome.

I.2 Context I.2.1 Bio-Medical Imaging for Cancer Diagnosis

Medical Imaging History The term "exploratory surgery" might raise a few eyebrows now in modern times, however, it used to be a reality [1] as it was the only way to look inside the human body until near the end of the 19 th century, when medical imaging techniques emerged. Historically, there has been an everlasting race of going beyond what the naked eye can see, ever since antiquity there is evidence on the use of lenses [2], the magnifying glass is firstly documented in 1100 and the microscope in 1751. However, the major breakthrough that actually gave birth to the field of medical imaging happened in 1895 when Wilhelm Conrad Röntgen discovered radiography, which allowed to look inside the human body non-invasively for the first time. Technological advances in the field of computers and mathematical theory (i.e. Radeon transform) pushed the field of radiography further with the invention of the computed tomography (CT scan) in the 1970's. CT scanners use a rotating X-ray generator and a row of detectors placed all around the gantry to measure X-ray attenuations by different tissues inside the body, these measurements taken from different angles are then processed using reconstruction algorithms to produce tomographic (cross-sectional) images of the body.

There is now a plethora of well-established medical imaging techniques, whose field of application is determined by the trade-off between spatial resolution and penetration depth: going from magnetic resonance imaging (MRI), computed tomography (CT) or ultrasound used in studying organ anatomy (big penetration depth, low resolution of the order of millimeters), passing by optical coherence tomography (OCT) and confocal microscopy (1 µm-10 µm resolution and 100 µm-1 mm penetration), classical optical microscope (surface imaging down to diffraction limited resolution of 0.2 µm), super-resolution microscopy [3] (which overcomes the diffraction limit but comes with photo-toxicity, photo-bleaching sample degradation disadvantages due to high excitation intensity or extended exposure times) to electron microscopy (EM) that can capture details of 0.1 nm at great inconveniences of high cost and sensitivity to vibration and external magnetic fields, which are used for single-molecule or organelle level analysis.

Cancer History Medical imaging is especially of service in the treatment of cancer [4], which is a silent killer especially in the early stages, when it is also most effective to detect it in order to improve the chances of survival. The world's oldest suggestion of cancer was found on Egyptian papyrus dating from 1500 BC that was documenting a breast tumor treated by destroying the tissue with a hot instrument, what is now known as cauterization. However, the origin of the term "cancer" is attributed to the father of medicine, the Greek physician Hippocrates (460-360 BC). Later, Bernard Peyrilhe (1735-1804), a French surgeon, set the foundations of experimental cancer research and tried to explain the, still not fully understood to this day, causing factors of the malady [5]. In modern times, cancer knew an important surge, leading to the U.S. declaring a "War on Cancer" by increasing the funding and support for cancer research, in the 1970s. Since then, cancer research and ultimately cancer therapy are also profiting from the scientific advances in the domains of imaging [4,[START_REF] García-Figueiras | How clinical imaging can assess cancer biology[END_REF], genomics [START_REF] Berger | The emerging clinical relevance of genomics in cancer medicine[END_REF], mathematics [START_REF] Kuang | Introduction to mathematical oncology[END_REF][START_REF] Rockne | The 2019 mathematical oncology roadmap[END_REF] and more recently, artificial intelligence [START_REF] Luchini | Artificial intelligence in oncology: current applications and future perspectives[END_REF]. Focusing on current practices in cancer therapy, there are multiple levels of clinical examination adjacent to treatment (which is mostly surgery): screening, diagnosis and interventional methods; they are not limited to, but primarily represented by, imaging related procedures.

Cancer Screening Beforehand, there are the screening examinations, which are either mass screenings meant to detect very early conditions that are highly prevalent in a population or selective screening, dedicated to certain patients with a higher risk towards some pathologies (based on family history, for example). As they are routine, preventive procedures they should be minimally invasive and cost-effective.

They can be as harmless as a naked eye visual examination by a dermatologist to look for skin cancer.

In the field of women's health, screening can start from palpating the breast to check for lumps. Xray imaging, i.e. mammograms, are the gold standard of breast cancer screening, ultrasound can also be used for detecting dense breast masses, but also ovarian cancer or other more common conditions (ovarian cyst, endometriosis).

Another type of minimally invasive screening exams are cytopathology exams which consist in the analysis of cell types often found in fluid specimens (e.g. urine) or tissue smears (e.g. cervix). A routine such test is the Papanicolaou test that can find abnormal cells in the cervix which may turn into cancer.

Pap smears were associated with a reduction of hundreds of thousands of cases of cervical cancer over the past three decades in the U.S. [START_REF] Yang | Impact of Widespread Cervical Cancer Screening[END_REF]. It is usually concomitantly done with a test for HPV (Human Papilloma Virus), which is a virus that can cause the cell changes leading to cervical cancer. The HPV test is a molecular biology test (e.g. PCR 1 ) that looks for a known DNA sequence of the virus.

There are even genetic tests to screen for breast cancer, but they are selective tests meant for patients with a close family history of this malignancy. BRCA1 and BRCA2 are two different genes that have been found to impact a person's chances of developing breast cancer. The domain of cancer screening is under continuous development [START_REF] Fitzgerald | The future of early cancer detection[END_REF] and the most promising new method is conducted via a mere blood test to look for cell-free tumor DNA [START_REF] Barbany | Cell-free tumour DNA testing for early detection of cancer -a potential future tool[END_REF].

Cancer Diagnosis In the unfortunate event of a suspicious screening result, the only method for accurate diagnosis is biopsy2 which implies sampling the abnormal mass localized through screening, this is usually done by a surgeon or an interventional radiologist. Biopsies can differ both in composition: liquid or tissue, extraction procedure: by needle, incision, forceps snap, etc. and adjacent navigation technique: X-ray, ultrasound, endoscopy (e.g. bronchoscopy), choice dependent on the organ sampled.

Regardless of the biopsying method, all samples undergo the same procedure for analysis, covered by the field of histopathology 3 . It involves the microscopic analysis by a specialized doctor -the pathologist, of a so-called histology slide obtained through heavy processing of the biopsied tissue.

Histolopathology Immediately after excision, the biopsy is usually placed and stored in a formalin solution meant to keep intact the tissue architecture by stopping the degrading biological processes -i.e.

fixation. Then, at the histopathology lab, the sample is dehydrated with alcohol and then embedded in a wax block which is then cut into very thin slices with a microtome. One or more sections are selected and placed on glass slides, stained to enhance contrast, covered with another protective glass slide and only then studied under a microscope. The most widely used stain and gold standard is Hematoxylin & Eosin (H&E), a combination of two biochemical dyes: the hematoxylin, which stains cell nuclei purple by binding to nucleic acids, and eosin, which stains the extracellular matrix and cytoplasm pink, by binding to proteins, other structures taking on different shades as a combinations of these colors.

With this staining, there can be examined cell appearance criteria like their number, size, nucleus to cytoplasm ratio, cell organization, etc., based on which malignancy can be determined, together with the origin of the cancer, its subtype and grade. The grade is sometimes expressed as a number on a scale of 1 to 4 and is determined by how cancer cells look under the microscope, according to well established "scoring systems" (e.g. the Elston-Ellis system for breast cancer grading, the Gleason system for prostate cancer grading). Low-grade (grade 1) cancers are generally the least aggressive and high-grade (grade 4) cancers are generally the most aggressive, information which may help guide treatment options.

Other special tests on the cancer cells can also help to guide treatment choices, like immunohistochemistry (IHC) based staining, which uses antibodies, accompanied by a dye, to check for certain antigens (markers) in the tissue. Therefore, if the antigen-antibody binding takes place in the cells, the dye shall also "stick" to the sample and the colored binding site will signal the presence of the researched biomarker. IHC is routinely used, along with H&E, for breast cancer in order to reveal the tumor's responsiveness to certain targeted therapies. IHC stains are used to look for cancer biomarkers like estrogen receptors (ER), progesterone receptors (PR) and human epidermal growth factor 2 receptors (HER2), the worst prognostic being for the tumors non responsive to any of these (i.e. triple negative cancer). The analysis protocol, all the observations and final diagnosis are recorded by the pathologist via a written pathology report.

Extemporaneous Analysis

The entire histology process is lengthy taking 2-3 days before a microscopic slide is ready for diagnosis. However, in some situations, the sample (either biopsy or surgical resection) may require immediate examination. Such scenarios might include verifying a biopsy's adequacy for diagnosis by ensuring the appropriate tissue was sampled sufficiently [START_REF] Pritzker | Needle biopsy adequacy in the era of precision medicine and valuebased health care[END_REF], tumor margin analysis to ensure complete removal of malignancy [START_REF] Cabioglu | Role for intraoperative margin assessment in patients undergoing breast-conserving surgery[END_REF] or intra-operative assessment of sentinel lymph nodes to check for metastasis [START_REF] Poling | Frozen section evaluation of breast carcinoma sentinel lymph nodes: a retrospective review of 1,940 cases[END_REF]. Extemporaneous analysis is normally done by imprint cytology or frozen section histology. The latter implies replacing the fixation, dehydration and embedding steps by freezing the tissue. Both techniques are part of the standard practice with a sensitivity of 83% and a specificity of 95% for frozen section histology and a sensitivity of 72% and a specificity of 97% for imprint cytology, figures quite low due to the important imaging artifacts. Moreover, both techniques are labor-intensive and still require specialized personnel and equipment, plus a waiting time of at least half an hour. Other well-established (although in other fields) imaging techniques include X-ray or ultrasound to examine the specimen, but the insufficient resolution does not ensure a sensitive diagnosis, i.e. for radiography a sensitivity of 41% and a specificity 78%, while for ultrasound a sensitivity of 44% and a specificity of 94%. 4 Novel Prototypes for Extemporaneous Analysis Since the extemporaneous tissue analysis is a field of major impact and the existing techniques are either too laborious or offer only a coarse resolution, novel unconventional techniques exploring this application are rapidly emerging. In [START_REF] Heidkamp | Novel imaging techniques for intraoperative margin assessment in surgical oncology: A systematic review[END_REF] they review 16 groups of techniques for intraoperative margin assessment under a common framework: fluorescence, advanced microscopy, ultrasound, specimen radiography, optical coherence tomography, magnetic resonance imaging, elastic scattering spectroscopy, bio-impedance, X-ray computed tomography, mass spectrometry, Raman spectroscopy, nuclear medicine imaging, terahertz imaging, photoacoustic imaging, hyperspectral imaging and pH measurement. The majority of the 134 studies were in early developmental stages and none of the techniques distinguished itself from the others by demonstrating both high feasibility and high diagnostic accuracy.

Some are just sensing devices founded on the difference in some physical properties of the tissue (e.g. rigidity) that could discriminate between normal and cancerous areas but with little to no interpretable feedback to the clinician [START_REF] Maloney | Review of methods for intraoperative margin detection for breast conserving surgery[END_REF]. For example, MarginProbe [START_REF] Thill | MarginProbe®: Intraoperative margin assessment during breast conserving surgery by using radiofrequency spectroscopy[END_REF], a handheld probe based on radiofrequency spectroscopy, senses the reflection of radio waves, detecting subtle electromagnetic differences between cells by comparing the returned signal with known tissue signatures. In spite of its 70% sensitivity and specificity, it is the only margin assessment device approved by the FDA. However, even if easy to use, the little feedback they give to the surgeon makes sensing devices difficult to adopt.

OCT vs. Confocal Microscopy If we were to compare with the specifications of gold-standard histology, where the slide thickness is 5 µm and resolution up to 250 nm, we can narrow down the imaging techniques suitable for rapid diagnosis to non-destructive optical slicing 5 techniques that offer the highest resolution: confocal microscopy [START_REF] Ragazzi | Fluorescence confocal microscopy for pathologists[END_REF] and OCT [START_REF] Jung | Optical coherence tomography for rapid tissue screening and directed histological sectioning[END_REF][START_REF] Fujii | Histopathological validation of optical coherence tomography findings of the coronary arteries[END_REF]. Confocal provides a similar spatial resolution while allowing for optical slicing, however, the contrast needs to be enhanced with fluorescence dyes, while OCT allows for further in-depth focus completely free of preparation at the expense of losing a few hundreds nanometers in spatial resolution. The penetration depth of 1-2 mm and lateral resolution of about 10 µm makes OCT well suited for in-vivo study: it is routinely used in the clinical setting for imaging the layers composing the back of the eye to diagnose a wide range of pathologies (e.g. macular degeneration, glaucoma, retinal detachment and diabetic retinal disease), or endoscopic 4 All reported metrics in this paragraph are based on the review [START_REF] Maloney | Review of methods for intraoperative margin detection for breast conserving surgery[END_REF] which cites various studies on intraoperative breast cancer assessment; thus, the numbers should be taken as indicative (rather than absolute) values, given the samples size discrepancy and different protocols between studies. 5 In a widefield microscope, the entire focal volume is illuminated, but that creates blur from areas out of focus above and below the image plane, that is the reason why histology samples are a few microns thin; on the other hand, optical slicing can be achieved by suitably designed microscopes that can produce clear images of focal planes deep within a thick sample.

imaging [3] of arteries, esophagus, etc. On the other hand, confocal microscopy offers a slightly better lateral resolution (sub-micron), but an insufficient axial resolution which does not give enough penetration (less than 100 µm) for executing a complete optical slicing of a biopsied specimen 6 that can be comparable to the mechanical slicing in histology.

Full-Field Optical Coherence Tomography (FFOCT) [START_REF] Dubois | High-resolution full-field optical coherence tomography with a Linnik microscope[END_REF] comes to fill this gap by balancing frontal imaging with sufficient penetration depth and an improved lateral resolution with one order of magnitude higher than for standard commercially available OCT systems. In a recent clinical study [START_REF] Yang | Use of high-resolution full-field optical coherence tomography and dynamic cell imaging for rapid intraoperative diagnosis during breast cancer surgery[END_REF] two surgeons obtain an average sensitivity and specificity of 87% in diagnosing breast malignancy in FFOCT images. Moreover, Dynamic Full-Field Optical Coherence Tomography (DFFOCT) [START_REF] Apelian | Imagerie Optique Multimodale des tissus par Tomographie Optique Cohérente Plein Champ[END_REF] also known as Dynamic Cell Imaging (DCI) takes the technique one step further by revealing complementary information related to live cellular structures thanks to endogenous contrast derived from cellular activity, allowing for an improved sensitivity of 90% and specificity of 96%, according to the same study [START_REF] Yang | Use of high-resolution full-field optical coherence tomography and dynamic cell imaging for rapid intraoperative diagnosis during breast cancer surgery[END_REF]. It is on these two techniques, detailed in Chapter II, that we shall focus in this work.

Digital Pathology Going back to the universally accepted and applied paradigms in pathology, there is currently an ongoing effort to shift towards digitizing the field of pathology [START_REF] Pantanowitz | Twenty years of digital pathology: An overview of the road travelled, what is on the horizon, and the emergence of vendor-neutral archives[END_REF]. The prepared glass slides can be digitized either simply with a camera mounted on a manual microscope or with high throughput slide scanners which are essentially robotized microscopes able to image hundreds of slides at a time. This approach is covered under the name of digital pathology and a virtual slide goes by the name of Whole Slide Image (WSI). It has been found that there is no loss in diagnostic accuracy when analyzing a digital slide as compared to a physical one [START_REF] Kent | Diagnostic accuracy of virtual pathology vs traditional microscopy in a large dermatopathology study[END_REF], not to mention the added advantages of easier visualization (virtual microscopy), sharing (telepathology) and storage 7 -reasons why WSIs are being used for diagnostic, educational, and research purposes. Still, there is one bottleneck represented by the numerous vendor-specific formats for storing the WSIs and patient metadata. However, there is an effort towards adopting the universal DICOM standard at a larger scale [START_REF] Herrmann | Implementing the DICOM standard for digital pathology[END_REF]. DICOM stands for "Digital imaging and communications in medicine" and was created from the need to remove vendor embargo in the field of radiology -the pioneer of digitized medical imaging, in an effort to have a unified format readable across multiple PACS 8 of different hospitals, and has extended to multiple disciplines since.

Regardless of its format, a WSI consists of large multi-resolution multi-planar images, stored in a pyramidal fashion from the highest magnification at the base to the thumbnail at the apex. This is necessary for the ease of access and seamless visualization, given the important image size, the limited rapid access memory (RAM) of common computers and it is also dictated by the navigation pattern of pathologists (i.e. repeated panning and zooming, frequent switching between multiple magnifications). WSIs are gigapixel images, a typical glass slide may be 20 mm × 15 mm in size and may be digitized with a resolution of 0.25 µm per pixel (corresponding to a 40X magnification), resulting in a 4.8 gigapixel image, taking up to 15GB of storage (when captured with 24-bit color). Therefore, the pyramidal data-structure allows for accessing sub-region of the image without loading large amounts of data, leading to faster viewing of the image.

In the same effort of democratizing digital pathology, the research community has brought open-source platforms dedicated to WSIs for quantitative analysis -QuPath [START_REF] Bankhead | QuPath: Open source software for digital pathology image analysis[END_REF], or collaborative annotation -Cytomine [START_REF] Marée | Collaborative analysis of multi-gigapixel imaging data using Cytomine[END_REF], but also a lower level library -OpenSlide [START_REF] Goode | OpenSlide: A vendor-neutral software foundation for digital pathology[END_REF], dedicated to programmers, allowing to read WSIs in C, Python or Java code.

Computational Pathology A natural development, derived from the spread of slide digitization concomitantly with the rise of big-data approaches, is the conjunction of WSI and mathematics, informatics and statistics materialized in the field of computational pathology [START_REF] Abels | Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association[END_REF]. It covers a plethora of methods: from the classic image analysis approaches to advanced deep learning models, and applications: from cell counting, nuclei detection to more complex diagnosis, even predicting disease progression and treatment outcome.

The models can either mimic pathologist analysis or even discover new criteria. Histology images can also be combined with supplementary information extracted from pathology reports, clinical data (i.e. demography, patient history etc.) or even genomics data in order to build comprehensive methods. The leading applications are based on artificial intelligence / machine learning [START_REF] Niazi | Digital pathology and artificial intelligence[END_REF] algorithms.

I.2.2 Computer Aided Diagnosis

A Brief History of Computation, Machine Intelligence and Automated Diagnosis

Artificial intelligence (AI) is defined as the theory and development of computer systems able to perform tasks normally requiring human intelligence, such as visual perception, speech recognition, decision-making and translation between languages. The idea of a programmable computer dates back from the 19 th century, when Ada Lovelace theorized a set of instructions (i.e. algorithm) to be followed by "The Analytical Engine" -the first computer -designed by Charles Babbage in order to execute complex calculations. The groundwork for AI was urged when diplomatic history met history of science with Alan Turing's automaton 9 ("The Turing Machine") cracking the Enigma, a machine used by the German armed forces to send encrypted messages securely in World War II. In spite of the major evolution since then, Turing's question "Can machines think?" [START_REF] Turing | Computing machinery and intelligence[END_REF] still guides research in machine intelligence.

Another pioneer in the field of computer science, whose work influenced nearly every major branch of mathematics, was John von Neumann who came up with the design paradigm of storing both the program and the data in a shared memory, which allowed for faster more complex computations; von Neumann architecture is still used in modern computers. He also touched to artificial intelligence ideas, namely on the relations between the human brain and computers [START_REF] Neumann | The Computer and the Brain[END_REF]. Von Neumann defined life as an organism which can reproduce itself and simulate a Turing machine, idea which inspired John Conway's Game of Life [START_REF] Gardner | Mathematical Games -The fantastic combinations of John Conway's new solitaire game "life[END_REF] in 1970, a simulation mathematical model describing a two-dimensional cellular automaton that evolves under a simple set of rules, the only variable being the initial state. Regardless of the complexity of the grid, one can predict the state of each cell in the next timestamp based on the rules, still, modern neural networks are found to not straightforwardly converge to learn these hidden rules [START_REF] Springer | It's Hard for Neural Networks to Learn the Game of Life[END_REF].

In the 1960's dedicated programming languages started to emerge, John McCarthy, scientist who also coined the term "artificial intelligence" 10 , created LISP (list processing) one year after the appearance of FORTRAN -the oldest high-level programming language. PROLOG (programmation en logique), a language based on formal logic, was developed in 1973 at the University of Marseille. Both programming languages belong to the declarative programming paradigm, meaning they expresses the logic of a computation without describing its control flow, as opposed to the imperative paradigm (e.g. FOR-TRAN, C/C++, etc.). Even if these two legacy programming languages are still used nowadays, the current preferred choice for developing AI algorithms is Python. LISP, PROLOG or similar derivatives were used to power the first AI applications which were mainly focusing on textual data. In 1966 MIT's AI Laboratory developed ELIZA, an early natural language processing (NLP) chat-bot simulating a human therapist. The predecessors of automated medical diagnosis systems were implemented via expert systems. An expert system can be used to solve problems within a specialized domain that usually requires human expertise. It relies on two components: a knowledge base and an inference engine. A knowledge base is an organized collection of facts about the system's domain gathered from the human experts. An inference engine interprets and evaluates the facts in the knowledge base in order to provide an answer through if-else clauses, known as production rules.

Typical tasks for expert systems involve classification, diagnosis, monitoring, design, scheduling, and planning for specialized endeavors. In 1972 work began on MYCIN at Stanford University for treating blood infections based on reported symptoms and medical test results. The program could request further information concerning the patient, as well as suggest additional laboratory tests, to arrive at a probable diagnosis, after which it would recommend a course of treatment. MYCIN could also explain the reasoning behind its response. Using about 500 production rules, MYCIN operated at roughly the same level of competence as human specialists in blood infections and better than general practitioners.

In the 1980's the ONCOCIN [START_REF] Shortliffe | Oncocin: an Expert System for Oncology Protocol Management[END_REF] expert system was used by Stanford's Oncology Clinic to help choose the chemotherapy plan with the best chance of cure and the least chance of side effects, based on an extensive history of cancer cases.

The most popular early breakthrough of AI happened in 1997, when DeepBlue, developed by IBM, beat at chess the world champion, by testing the outcome of all possible moves, therefore leveraging more brute force than "intelligence", marking a revival of the field powered by hardware advances.

Another paradigm in AI, which touches more closely to the idea of "intelligence" by introducing the concept of learning, is machine learning (ML). Unlike classical algorithms that explicitly describe a solution to a well-defined problem that can be translated in computer language under the form of specific instructions, ML is destined for tasks that are ambiguous to define in such a way; ironically enough, those tasks are the ones that "come naturally" to humans, like visual or speech related tasks. ML algorithms are based on statistics, probabilities and optimization and can solve problems by experience, studying an extensive set of examples and finding patterns in them, then use that prior training on new data to make predictions. Tom Mitchell sums it up as "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T , as measured by P , improves with experience E." [START_REF] Mitchell | Machine Learning textbook[END_REF].

There are two families of ML methods: supervised and unsupervised. In a supervised problem, the input data is accompanied by the desired results and the algorithm has to learn a generalized rule that maps inputs to outputs; if the outputs are categories then it is a classification problem, and if the outputs are continuous then we call it a regression problem. In unsupervised learning, patterns in the data are found with no guidance (no given outputs), the main problem being clustering -splitting data into groups. Some popular ML methods are: random forests [START_REF] Kotsiantis | Decision trees: A recent overview[END_REF][START_REF] Breiman | Bagging predictors[END_REF], support vector machines [START_REF] Cortes | Support-Vector Networks Editor[END_REF] (SVM) (supervised), K-means [START_REF] Lloyd | Least Squares Quantization in PCM[END_REF] (unsupervised).

Concomitantly with ML, the computer vision field arose, based on an important discovery in neuropsychology on the hierarchical nature of mammalian vision. In the 1960s Hubel and Wiesel [START_REF] Hubel | Brain and Visual Perception: The Story of a 25-year Collaboration[END_REF] observed that the neurons of the visual cortex each respond to a small region in the visual field i.e. receptive field, moreover, the neurons are linked in a cascading way, they detect basic features like edges then feed into more features like shapes to ultimately create more complex visual representations. Inspired by this concept, computer scientists developed pattern recognition and connectionism embodied by artificial neural networks.

Deep learning has its roots in 1957 with the invention of the perceptron [START_REF] Rosenblatt | The perceptron: A probabilistic model for information storage and organization in the brain[END_REF], which served as a linear classifier, but it is basically the prototype of the modern artificial neuron. However, back then neural networks did not manage to perform better than existing machine learning algorithms, so research in the domain almost stagnated. In 1986 a major discovery was made, the backpropagation [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF] algorithm which was used for adjusting the weights proportionally with their influence in the error. Thanks to it, in 1997, LeCun [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] managed to develop the first large-scale practical application with convolutional neural networks LeNet: handwritten digits recognition on the MNIST database.

The field of deep learning developed slowly (and networks got deeper) together with the improvement of GPUs and the creation of big annotated datasets, like ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF], a set of 1.3 million high-resolution natural images belonging to 1000 classes, curated in 2009 by Fei-Fei Li's team. Until it led to the major "boom" of 2011 when Cires , an and colleagues [START_REF] Cireşan | Multi-column deep neural network for traffic sign classification[END_REF] achieved superhuman performance in several image recognition challenges with deep neural networks, AlexNet [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF] surpassed classical machine learning approaches by a significant percentile, winning the ImageNet competition. Furthermore, in the medical domain Cires , an's neural networks [START_REF] Cireşan | Mitosis detection in breast cancer histology images with deep neural networks[END_REF] also outperformed other approaches, in the ICPR'12 and MICCAI'13 challenges for breast cancer (mitosis) detection in large histology images.

The bet was always integrating research prototypes into clinical practice, which required outstanding robustness. Unfortunately, examples are scarce. Historically, the first computational prototype approved by the FDA dates back from 1995, AutoPap QC was destined for assisting the reading of Pap smear cytological samples. In 1998 FDA approved the first commercial CAD system for mammography screening ImageChecker. The latest news in the field, and a true milestone in computational pathology, is the FDA clearance in September 2021 of an aid to diagnosis for prostate cancer developed by Paige [START_REF] Perincheri | An independent assessment of an artificial intelligence system for prostate cancer detection shows strong diagnostic accuracy[END_REF], it assists the pathologist by highlighting suspicious areas in a WSI, making it the first AI-based pathology product.

I.3 Outline

The present manuscript is structured as follows:

• Chapter I is the introductory chapter where we set the context of the work, namely by reviewing the evolution of imaging techniques involved in cancer therapy, from the invention of the optical microscope to the development of the computational pathology field, we also take a brief snapshot of the evolution of informatics and artificial intelligence leading towards aid-to-diagnosis methods.

• Chapter II dives deeper into the imaging techniques studied, Full-Field Optical Coherence Tomography (FFOCT) and Dynamic Cell Imaging (DCI). Here we present the theoretical implications involved in understanding the mechanisms behind them, from a brief introduction to optics and how light interacts with biological matter to explaining the technical specifications of the techniques, like the components of the setup or the image formation.

• Chapter III focuses on the data. Here we describe the curation steps of the 3 datasets built and exploited in the present work. We introduce an original contribution of a generic texture-aware image sampling method, applicable on a wide set of image modalities and problems. We also enumerate the challenges of the present work related to the imaging and datasets which drive the methodological choices from the following chapters.

• Chapter IV introduces some indispensable notions of Deep Learning, with a special focus on Convolutional Neural Networks design, training and validation.

• Chapter V is a rich exploratory chapter covering multiple aspects of the FFOCT / DCI imaging, governed by the common objective of Fully Supervised Classification of cancerous vs. healthy samples. We employ multiple feature extraction techniques on FFOCT images, DCI raw signal and DCI processed images, together with a variety of classification strategies like: handcrafting a CNN architecture, training tree-based classifiers on source-separation features, fine-tuning a state-of-the-art architecture and decoding its learned feature etc.

• Chapter VI touches to a real-world problem, namely learning from data acquired in the clinical setting without special curation and lack of expert annotations, the ground truth being extracted from the readily available pathology reports. In this regard, we develop a training pipeline for Multiple Instance Learning classification of malignant vs benign biopsies; the model benefits of a transparent definition allowing to access the predicted diagnosis of image sub-parts.

• Chapter VII exploits the duality of FFOCT / DCI imaging, here we apply a Contrastive Learning approach to overcome the artifacts in DCI with the robustness of FFOCT. We develop a method for robust characterization of fibers from DCI imaging by using corresponding FFOCT images as a guide i.e. minimizing the cosine distance between matching image pairs in a common latent space learned via a Siamese Neural Network. Moreover, we also give special attention on validation, by defining the identity and symmetry error metrics.

• Chapter VIII is the concluding chapter where we summarize the contributions of the present work and propose some ideas for future developments.

Chapter II

Static & Dynamic Full-Field Optical

Coherence Tomography

The gold standard tissue assessment technique i.e. histology suffers from multiple difficulties caused by the complex sample preparation, associated with sample deformation and degradation and a long processing time between sample excision and diagnosis delivery. This delay hinders fast clinical decision making -necessary at the time of surgery, for example. Optical imaging techniques have been investigated as a more efficient alternative. These techniques are based on the properties of light which have been studied extensively for centuries and they are supported by a strong theoretical background on newly emerging light-based techniques.

In this chapter we will first compile some basic notions about optics, notably the interaction between light and biological matter, but we will mainly focus on static and dynamic full-field optical coherence tomography (FFOCT and DFFOCT / DCI) by also introducing the technique they are based on, i.e. classical OCT. Theory of light has evolved greatly from the ancient times when it was believed that our eyes were producing light that allowed us to see, to theories enabled by the scientific revolution and superior mathematics (by Huygens, Young, Fresnel, to name a few) which were later unified by Maxwell in 1865 by defining light as an electromagnetic wave, it was experimentally confirmed by Hertz later in 1888. In the 20 th century, quantum mechanics and the theory of relativity were major deviations from the classical theory of Newtonian physics which led to dramatically revising our understanding of the nature of light. Einstein in 1905 proved the speed of light in vacuum to be a constant c = 3 × 10 8 m/s and he also contributed together with Plank to formalize the dual nature of light as both wave and particle (i.e. photon). [START_REF] Zubairy | A very brief history of light[END_REF] Some phenomena are explainable by the particle nature of light, like the photoelectric effect, while others by the wave behavior which explains how light bends (or diffracts) around an object, a relevant example is light interferometry principle.
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Electromagnetic waves are created as a result of vibrations between an electric field and a magnetic field, i.e they are composed of oscillating magnetic and electric fields, and they can have natural (e.g. the sun)

or artificial (e.g. the light bulb) origin. Electromagnetic waves can be described by their most basic properties: amplitude A, wavelength λ and frequency f . Amplitude is the height of a wave as measured from the highest point on the wave (peak) to the rest point and can be interpreted as the intensity of oscillation. Wavelength refers to the length of a wave from one peak to the next and is inversely proportional with frequency c = λ × f where c is the speed of light constant, f is the frequency in Hz or s -1 and λ is the wavelength measured in m. Frequency corresponds to cycles per second and can be interpreted as the rate of oscillation. Longer wavelengths will have lower frequencies, and shorter wavelengths will have higher frequencies. The electromagnetic spectrum encompasses all of the electromagnetic radiation that occurs in our environment and includes (from high to low frequencies) gamma rays, x-rays, ultraviolet light, visible light, infrared light, microwaves, and radio waves. The visible spectrum in humans is associated with wavelengths that range from 380 nm -blue light to 740 nm 

-

II.1.2 Light -Matter Interactions

Light is indispensable to life on earth, the primordial light source -the sun -produces energy sustaining both animal and plant life, directly or indirectly. It directly sustains plant life by a series of biochemical reactions in photosynthesis that converts light energy captured by light-absorbing pigments (e.g. chlorophyll) into chemical energy in the form of ATP1 .

Interactions between light and matter determine the appearance of everything we see through four basic phenomena -emission, absorption, transmission and reflection (or scattering) -usually taking place concomitantly at different extents.

Emission

Light can be produced by matter which is in an excited state and excitation can come from a variety of sources, ranging from electric current (e.g. incandescent light bulb, LEDs etc.), chemical reactions or even biological sources, etc. Some of those phenomena are leveraged for marking molecules of interest in biological imaging.

Bioluminescence is light resulting from biochemical reaction by a living organism: luciferin is a substrate that reacts with oxygen in the presence of a luciferase (an enzyme) to release energy in the form of light (e.g. fireflies). Transferring luciferase-expressing genes into animal models (e.g. mice) allows their in-vivo study through bioluminescence imaging.

Fluorescence is the emission of light by a substance that has first absorbed light or other electromagnetic radiation. Fluorophores are fluorescent chemical compounds that can re-emit light upon light excitation, they are notably used to stain tissues, cells, or materials in fluorescent imaging (e.g. DAPI, diamidinophenylindole, stain binds to DNA so it is used in fluorescent microscopy to reveal cell nuclei, when DAPI absorbs UV light (350 nm), it emits blue (460 nm)).

Absorption, Transmission, Scattering

All living or inorganic things have a color, which means that they selectively reflect, absorb and/or transmit light. Pigments are selective color absorption substances that absorb certain wavelengths while reflecting others, therefore the reflected wavelengths will be perceived by the observer as the object's

color. An example of such substance is chlorophyll, which absorbs the blue and red colors of the spectrum and reflects green therefore leaves appear green. In particular, white and black colors reflect and,

respectively, absorb all wavelengths.

The quality of transmission of light of a material -transmittance -is simply translated by its transparency and it is usually quantified as the percentage of the incident light that can move all the way though the material.

Particles scatter light, this is a fundamental fact and something we all encounter on a daily basis, the sky is blue. This is caused by stronger light scattering of blue light by atmospheric particles than red light. The angle, wavelength(s) and intensity of the scattered light depend upon the particle size. We note two main theories: Rayleigh scattering for particles smaller than a tenth of the wavelength (here r ≤ λ 0 10 ≈ 50 nm) which is distinguished by a stronger backscatteringthan Mie scattering (for larger particles λ 0 10 ≤ r ≤ λ 0 ) in which case most of the light is transmitted forward, in the direction of the incident light (see Figure II.2). For even larger particles, the forward scattering is even more focused and amplified. 

II.1.3 Optical Properties of Biological Tissue

Some important chromophores2 responsible for visible light absorption in animal tissue are: hemoglobin (blood), melanin (skin, hair, iris of the eye), nucleic acids (cell nuclei), water, etc.

As back-scattering depends upon smaller than wavelength particles, it is attributed to the ultrastructure of tissue (see Figure II.2), e.g. the density of lipid membranes in the cells, the size of nuclei, the presence of collagen fibers, the level of hydration in the tissue, etc. Some notable biological scatterers are: collagen fibers, lysosomes, mitochondria.

Collagen Fibers

Collagen fibers are the main component of connective tissue in the body, acting as a glue 3 to hold tissues together, they provide structure and support throughout the body, being present in different proportions depending on the organ.

Collagen fibers (about 2-3 µm in diameter) are composed of bundles of smaller collagen fibrils about 0.3 µm in diameter. Mie scattering from collagen fibers dominates scattering in the infrared wavelength range. On the ultrastructural level, fibrils are composed of entwined tropocollagen molecules. The fibrils present a banded pattern of striations with 70 nm periodicity due to the staggered alignment of those tropocollagen molecules. The periodic fluctuations in refractive index on this ultrastructural level appear to contribute a Rayleigh scattering component that dominates the visible and ultraviolet wavelength ranges [START_REF] Jacques | Lecture notes in introduction to biomedical optics[END_REF].

Mitochondria

Mitochondria4 are intracellular organelles about 1-10 µm in length, that make up to 25% of the cell volume, counting 1000-2500 mitochondria per cell.

Their function is crucial for cell homeostasis as they generate most of the cell's energy i.e. ATP, which gave its nickname "powerhouse of the cell". Even though their textbook depiction is of as bean-like structures, they form a highly dynamic network in the majority of cells where they constantly undergo fission and fusion.

Mitochondria are composed of many folded internal lipid membranes. The basic lipid bilayer membrane is about 9 nm in width. The refractive index mismatch between lipid and the surrounding aqueous medium causes strong scattering of light. Folding of lipid membranes presents larger size lipid structures which affect longer wavelengths of light. The density of lipid/water interfaces within the mitochondria make them especially strong scatterers of light.

Measurements of isolated organelles indicate that mitochondria and other similarly sized organelles are responsible for scattering at large angles, whereas nuclei are responsible for small-angle scattering [START_REF] Hielscher | Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics[END_REF].

In a later study [START_REF] Mourant | Light scattering from cells: the contribution of the nucleus and the effects of proliferative status[END_REF], the same team states that the nucleus is responsible for less than half the scattered light in the cell, and scattering intensity is increased in cells with a higher number of mitochondria.

In [START_REF] Wilson | Measurements and Interpretations of Light Scattering From Intact Biological Cells[END_REF], it has been shown experimentally that mitochondria are responsible for 80% of the Mie scattering in cell suspensions.

II.1.4 Light Coherence Principle

Coherent light is a focused beam of light which consists of only one single frequency (or very few frequencies i.e. monochromatic) that are also in-phase, it is produced by lasers. On the other hand, incoherent light contains multiple wavelengths that are also out of phase.

Spatial coherence describes the correlation between waves at different points in space and it is illustrated in Young's double slit experiment. While temporal coherence describes the correlation between waves observed at different moments in time, it is demonstrated by the Michelson interferometer.

The presence of coherent light in an optical system enables the generation of interference fringes. Interference is an optical phenomenon that appears when two waves superpose in a coherent fashion, creating a wave with a different pattern, which contains periodical regions of greater amplitude (constructive interference) and regions of low amplitude (destructive interference).

The property of wave interference involves the phenomenon of self-interference (a wave interferes with itself) due to multiple forward and backward scattering of light, conducting to the degradation of the signal, leading to a specific type of noise, known as speckle.

We can understand wave interference in the simplest case, by considering the superposition of two sine waves which have the same wavelength, same amplitude, but with a a phase difference of φ:

W 1 (x, t) = Acos(kx -ωt) and W 2 (x, t) = A cos(kx -ωt + φ). Their resulting wave is reduced to W 1 + W 2 = 2A cos( φ 2 ) cos(kx -ωt + φ 2 )
. For φ = 0 (and multiples of 2π): W 1 + W 2 = 2A (constructive interference) while for φ = π (and multiples of π): W 1 + W 2 = 0 (destructive interference).

Note that low coherence sources are desired in exploiting interferometry, this quality of a wave is quantified by the coherence length. Several microscopy techniques use the information contained in the interference pattern, among which is optical coherence tomography (OCT).

II.2 Optical Coherence Tomography

Proposed in 1991 by Huang et al [START_REF] Huang | Optical coherence tomography[END_REF], optical coherence tomography (OCT) is, as the name suggests, an imaging (-graphy) technique which uses visible light (optical) and exploits its coherence quality in order to perform virtual sectioning (tomo-).

The idea behind its functioning principle can be compared to ultrasound, which uses sound waves to image inside the body by capturing the time it takes for the sound wave to return (echo) to the sensor, revealing the internal anatomy. However the speed of light is "infinitely" higher than the speed of sound by an order of one million and no sensor can capture the respective arrival time of photons.

Therefore, low-coherence interferometry measures the echo time delay and intensity of backscattered light by comparing it to light that has traveled a known reference pathlength and time delay.

OCT is a non-invasive, non-toxic, in-vivo imaging technique that allows the observation of precise structure and tissue information at the micrometer scale on biological samples that are a few millimeters deep. In practice, OCT lays at the frontier between medical in-vivo and ex-vivo imaging. To date, OCT has had the largest clinical impact in ophthalmology, being used routinely in clinical exams, for studying the integrity of the layers forming the retina.

For 30 years, this technique has been studied, developed, extended [START_REF] Fujimoto | Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy[END_REF], to become one of today's most promising alternative to surgery-based histology. Modern OCT images, with higher resolution, give access to more details on the morphological and tissue information, broadening the image analysis What is more, the classical scanning approach that produced cross-sectional images is now extended to en face imaging, more suitable for histology-like assessment.

II.3 Full Field Optical Coherence Tomography

Full Field Optical Coherence Tomography (FFOCT), developed [1] and perfected [START_REF] Dubois | High-resolution full-field optical coherence tomography with a Linnik microscope[END_REF] by the ESPCI team of Pr. Claude Boccara and made commercially available by LLTech in 2011, comes to fill a gap between classical OCT and confocal microscopy. It is used for medical and research purposes in analyzing biological tissue morphology and function, without any preparation (e.g. dying), offering a resolution of ≈1 µm in all 3 dimensions. To give an intuition on the order of resolution, organelles (e.g. mitochondria) vary in size from 1 -10µm, animal cells measure on the order of tens of microns up to 100µm.

To perform optical sectioning, i.e. the selection of a signal coming from a confined area in the Z plane, FFOCT relies on the same principle as OCT, low coherence light interferometry.

As opposed to classical OCT, which performs a single-point raster scan producing a cross-section XZ image, FFOCT produces "en face" XY images thanks to 2D illumination and array detector i.e. megapixel camera (CCD or CMOS). This justifies the name "full field", because it captures the entire frontal plane at once, instead of point by point.

The commercial FFOCT / DCI system, developed by LLTech offers a resolution of 1 micron in 3D with a supported sample size of maximum 2.7cm in diameter and 5 mm in height. An individual field of view measures 1.3mm × 1.3mm and its acquisition takes 67ms, its processing 30ms which ensures a speed of scanning of 1 minute per cm 2 . The penetration depths it can reach depends on the type of tissue examined, it can vary between 100 µm and even 500 µm for more transparent tissues. It has a simple setup, the scanner has the size of a regular microscope and is connected to a computer with its dedicated control and acquisition software installed on it.

II.3.1 Interferometer Configuration

The LightCT ™ system, which is the LLTech FFOCT system, is based on a Linnik interferometer (a The main components of the setup are:
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• illumination arm: low-coherence broadband light source with the central wavelength λ 0 = 565 nm and the bandwidth ∆λ = 104 nm, ensuring a sectioning ability of 1 µm;

• beam splitter: ensures both the splitting of the two sister beams and then their regrouping into the detector;

• reference arm with a reference mirror attached to a piezoelectric translation (PZT) in order to apply phase-shifts (i.e. fine displacements on the order of nanometers) to demodulate the interference signals;

• sample arm: equipped with the sample holder;

• water-immersion microscope objectives with a numerical aperture of N A ≈ 0.3 and magnification M = 10× are present in both reference and sample arms;

• x, y, z translation stages: both reference and sample arms are mounted on mechanical translation stages for optical path length matching and scanning the sample in 3D, which are piloted by high precision motors;

• detector: CMOS camera with a 2MP resolution corresponding to 1440 × 1440 pixels of size 12 µm with high full well capacity (FWC) 5 , and up to 700 Hz framerate.

II.3.2 Image Formation

The image captured by the camera is the sum of: continuous background composed by the continuous contributions of the light reflected on the mirror and on the sample and the incoherent light coming from the sample's multiple scattering and out of focus planes, and the weaker modulated interference signal:

I = I 0 + A cos Φ.
In order to extract the relevant interference signal i.e. the second term of the equation, another acquisition with a phase modulation of π is introduced through a Piezo inducing the mirror to displace with λ/2 where λ is the coherence length. This method called 2 phase-shift method is detailed in equation (II.1). In order to extract both the amplitude A and the phase Φ terms separately 4 acquisitions are needed i.e. 4 phase shifts of π/2 steps corresponding to displacements of λ/4), the method is detailed in eq. (II.2).

       I 1 (x, y) = I 0 (x, y) + A(x, y) cos[Φ(x, y)] I 2 (x, y) = I 0 (x, y) + A(x, y) cos[Φ(x, y) + π] ⇒ A cos Φ = I 1 -I 2 2 (II.1)                      I 1 (x, y) = I 0 (x, y) + A(x, y)cos[Φ(x, y)] I 2 (x, y) = I 0 (x, y) + A(x, y)cos[Φ(x, y) + π 2 ] I 3 (x, y) = I 0 (x, y) + A(x, y)cos[Φ(x, y) + π] I 4 (x, y) = I 0 (x, y) + A(x, y)cos[Φ(x, y) + 3π 2 ] ⇒ A = 1 2 (I 1 -I 3 ) 2 -(I 4 -I 2 ) 2 Φ = arctan (I 4 -I 2 ) (I 1 -I 3 ) (II.2)
The obtained FFOCT image represent the amplitude A of the interference, and it captures the optical path difference which is a result of the optical properties of the tissue under investigation, such as differences in refractive indexes, scattering variations or differences in absorption. See Figure II.4a) for reference.

The result is a gray scale image where highly backscattering elements, mostly fibrous structures (e.g. collagen), appear white while weakly backscattering content like cells appears dark gray or black.

II.3.3 Technical Specifications

We define resolution as the minimum physical distance between two points at which these points appear to be separated in an image. Now we define the axial (cross-sectional or Z-axis) and lateral (spatial or XY-axes) resolution of the FFOCT system.

Axial resolution

Axial resolution is given by the temporal coherence length L c , which is inversely proportional with the source spectral width. Therefore, it is the low coherence light coming from broadband source that ensures fine optical slicing. The light source used has a central wavelength of λ 0 = 565 nm and a bandwidth of ∆λ = 104 nm.

∆L c = 2 ln 2 π × λ 2 0 ∆λ ≈ 2.7 µm (II.3)
The imaging medium is defined by n coverslip ≈ n oil ≈ 1.4. Assuming the source has a Gaussian broadband spectrum, the axial resolution is:

∆z = L c 2n ≈ 0.96 µm (II.4)

Transverse resolution

One of the main limitations of optical microscopy is the diffraction limit. Due to the wave-like nature of light, the objects present on the light-path of the microscope induce a modification of the waveform of the incident beam, due to self-interference of the wave. As a consequence, when looking through a microscope, a spot is seen rather as a small disc pattern, known as the Airy disc. Hence, if two spots are too close to each other, the microscope will not be able to determine from where exactly is coming the light, and these two spots will be seen as a single Airy disc.

The transverse (spatial) resolution is given by the limit distance at which two Airy discs can be resolved as two separate spots and it is defined as the Rayleigh limit. It is dependent upon the properties of the light source (i.e. wavelength λ but also the properties of the objective lens that is characterized by its numerical aperture N A = n sin α which is a measurement of the refractive index of the medium between the specimen and the coverslip n and angle α of the light cone. In this case the immersion medium is oil (whose refractive index is n oil ≈ 1.4) and it is uses a water-immersion objective with NA = 0.3 in water and NA ≈ 0.32 in oil that allows for a 10× magnification, therefore:

∆x = ∆y = 1.22λ 0 2NA ≈ 1.08 µm (II.5)

Sensitivity

Sensitivity is defined as the minimum reflectivity R min measurable by the system. This can be translated into the limit where the signal is at noise level, i.e. SNR = 1. It is dependent upon the reflectivity of the mirror in the reference arm R ref and the saturation level of the camera i.e. the full well capacity, FWC = 2•10 6 electrons. R ref is measured as the percentage of reflected light per the total of the incident light and for our setup including a silicone coverslip and silicone oil coating (to reproduce the imaging conditions of the sample arm) the reflectivity is 23%.

R min = R ref 16 • FWC ≈ 7 • 10 -9 (II.6)

Penetration depth

The penetration depth is strongly dependent on the sensibility of the system and the type of tissue, as light is gradually attenuated due to absorption and multiple scatterings. Generally, we can image at a maximal depth of 200 µm down to 500 µm in more transparent media.

Acquisition speed

The imaging speed of one FOV is dependent upon camera framerate, the phase shift algorithm (here 4-phase Eq. II.2), processing time, image accumulation rate for increased sensitivity or signal to noise ratio. For large-field acquisition, when scanning is required, it is also added the time necessary for the mechanical stage displacement and a short pause for setup stabilization in order to image the next FOV.

In the case of our systems, the acquisition speed is around 1 cm 2 /min with a FOV overlap of 10% on each axis, a waiting time of 50 ms between each acquisition, 5 accumulations of images and at a frequency of acquisition of 300 Hz. for imaging fresh tissue, before cells would experience apoptosis. It brings information on the metabolic activity at an intra-cellular scale that is complementary to the static information given by FFOCT.

II.4 Dynamic Full Field Optical Coherence Tomography

II.4.1 Technical Specifications

By analyzing both contributions to the dynamic signal we can show that axial (z) sensitivity to displacement is larger than the transverse (x, y) sensitivity. Indeed, the minimal z motion corresponding to a change from the minimum to the maximum of the cos(φ) is:

∆z dynamic = λ 8n = 50 nm (II.7)
In the x and y directions however, a scatterer has to move from one voxel to its neighbor to affect the signal, typically corresponding to half the point spread function (PSF) width:

∆xy dynamic = ∆x 2 = 575 nm (II.8)
No phase-modulation is needed because the motion information is extracted from time series analysis.

The meaningful information is extracted from the raw signal either by calculating the standard deviation of the signal in time or by Fourier analysis. At 1000 frames acquired and a camera framerate of 300Hz, we can observe oscillations of down to 3 ms and up to a few seconds, meaning that no long displacements (e.g. migration) or very fast displacements (e.g. Brownian motion), are observed.

The major drawback of this method is its high sensitivity to vibrations, either exterior noise or the implicit vibrations induced by the motors that drives the translations in x, y or z axes, for exploring the entire sample. When an undesired movement happens it induces a displacement that acts as a phase modulation which artificially increases the dynamic signal. This creates signal artifacts that are more visible on the fiber which normally gives poor dynamic signal. In order to attenuate the influence of vibrations, a pause time of 5 s is introduced between acquisitions to help the setup stabilize.

II.4.2 Image Formation

The data cube resulting from a DCI acquisition of 1000 frames acquired with a 300Hz frame-rate in a 1.3 mm 2 field of view (FOV) is quite significant: 1440 × 1440 × 1000 pixels (∼4 GB). For visualization purpose the 3D data is transformed to an RGB image according to the image formation algorithm [START_REF] Apelian | Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis[END_REF],

which consists in performing a Fast Fourier Transform (FFT) and averaging the amplitudes over 3 sets of frequency bands, resulting in 3 channels coded in RGB colors:

In DCI images both spatial and temporal information are superimposed in one image, in color this time, each color channel (RGB) depicting a range of oscillation speeds of the scatterers. Starting with the steps of image formation are:

1) normalize frames to constant mean value, close to captor saturation, to remove frame-to-frame inconsistencies;

2) average the frames by group of 4 obtaining 250 frames pseudo-acquired at 75Hz;

3) pass in frequency domain with Fast Fourier Transform (FFT) obtaining 125 variation maps with a step of 0.3Hz; 4) normalize FFT by its norm l 0 ; 5) define color channels: blue is the 0.3Hz frequency map, green is the average of the maps from 0.6Hz to 5.1Hz, red is the average of the maps from 5.4Hz to 24Hz; 6) apply fixed multiplication gains to each channel to balance their contributions; 7) contrast stretching with fixed thresholds for each color channel.

This processing method, illustrated in Figure II.4b), allows a contrasted visualization which is consistent 6 between fields of view. However, it illustrates only vaguely the physical properties of the tissue, the intuition being that highly saturated pixels reveal oscillations of high amplitudes, while the colors suggest the frequency of oscillation (from lower in blue to faster in red). Accordingly, fibers usually appear in blue as they are static, while live cells in yellow as they have highly active sub-components confined in their volume.

Chapter III

From Clinical Data to Computational

Input

Having presented the FFOCT / DCI imaging modalities lying at the core of this work, we shall now plunge deeper into the collected datasets. In this chapter, we first set the grounds for data curation, by introducing the steps needed to accommodate the data "from patient to processor". Then, we present our working datasets by showing the particularities of the studied organs and their adjacent pathologies, as well as the strategies for preparing the data, annotations, etc. An important contribution of the present chapter involves building the datasets by appropriately mining images and annotations, for example, by developing the texture-aware sampling method Sample Optimally with SLIC (SoSleek). 
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III.1 Data Curation

Data is the world's most valuable resource today; "Data is the new oil", as the mathematician Clive Humby said in 2006. In 2020 tech giants like GAFAM1 are capitalizing on data-driven services worth 4.5 trillion dollars. Since Google and Facebook offer completely free services and their only revenues come from advertisements, their worth comes from the detail profiling of their users to whom they feed personally targeted ads. Similarly, 35% of Amazon's revenue is generated by informed marketing through its recommendation engine and likewise 80% of the content streamed on Netflix is thanks to their recommendations, which brings them over $1 billion a year in value from customer retention.

Data Centralization

It is indisputable that big data analytics are already well-established in our daily life consumption, but for the sector of healthcare it is still in the developing process due to the higher risks and matters at stake, like privacy, but also due to the lack of data digitization and centralization. However, the COVID-19 pandemic proved that rapid advances can be achieved in the medical field (and not only) with sufficient deployment of human and material resources and inter-nations collaboration. This was not only demonstrated by the fast development of vaccines, but also for creating a common gateway (in the form of the 

Data Digitization

In order to create databases, more important than centralization is data digitization, but the good news is that the global acceleration of digitization adoption driven also by the COVID-19 pandemic can be quantified as a fast-forward of 7+ years in the growth of the share of online products and services according to a McKinsey Survey. The people's growing need of a continuous information stream and the health-oriented trends are pushing the "smart" health trackers forward like fitness watches or even FDA or CE approved medical devices as connected blood glucose monitor sensors, not to mention the ambitious Neuralink project developing implantable brain-machine interfaces. Nonetheless, in the lab of the histopathologist, the shift from glass slides to WSI is slow.

Regardless, some important digitization and centralization efforts were deployed to create medical databases primarily focusing on genomics, but containing also the WSIs of the specimens: The Human Protein Atlas [START_REF] Thul | The human protein atlas: A spatial map of the human proteome[END_REF], The Cancer Genome Atlas (TCGA) [START_REF] Mclendon | Comprehensive genomic characterization defines human glioblastoma genes and core pathways[END_REF], some smaller more standardized databases released through multiple inscription-based automatic diagnosis grand challenges: breast cancer metastasis in lymph nodes from histology -CAMELYON [START_REF] Litjens | 1399 HE-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset[END_REF] and BCNB [START_REF] Xu | Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides[END_REF], breast cancer from histology -TUPAC [START_REF] Veta | Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge[END_REF] and BACH [START_REF] Aresta | BACH: Grand Challenge on Breast Cancer Histology Images[END_REF], glioblastoma from MRI -BRATS [START_REF] Menze | The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)[END_REF], colon cancer from histology -GLAS [START_REF] Sirinukunwattana | Gland segmentation in colon histology images: The GLAS challenge contest[END_REF], to name a few.

Data Storage

The volume of data multiplied exponentially over the last years reaching 64.2 zettabytes (zetta-= 10 21 ) in 2020. By the year 2025 global data creation is projected to grow to more than 180 zettabytes. However, when it comes to data storage, just 2% of the data produced and consumed in 2020 was saved and retained into 2021, as the storage capacity reached 6.7 zettabytes, according to a Statista Survey. This tells us that besides data acquisition, there must be carefully crafted methods to help bypass the storage bottleneck by compressing unstructured data into relevant, comprehensive information that can be then re-used to answer new questions. Timeliness is an important quality of data. Taking the example of longitudinal analysis which is threatened by recency bias manifested by giving more importance to most recent patterns just because there is more data available for recent times. In order to accomplish a successful data curation campaign and prioritize quality over quantity one needs to: conceptualize, acquire, select and clean. In this section we will discuss the steps data goes through to become a suitable input for data analysis methods.

III.1.1 Data Acquisition

As our imaging does not belong to routine clinical practices, the image acquisition campaigns are conducted through clinical studies. Clinical studies are organized under strict conditions as an agreement between the sponsor and hospital ethics committee, they must approve the clinical procedures implied by the study (which are bound to alter the standard procedures), the research hypothesis as well as the cohort size and quality required to get statistically significant results. Then, with each procedure eligible for the study, the patient is informed about the aim of the study and use of their data and they need to

give their consent of participation in order to be included in the study.

For the clinical studies conducted by LLTech to test the feasibility of the LighCT ™ scanner, the direct risk to the patients is non-existent, as the device does not come into contact with the patient, but with an excised piece of tissue. Moreover, most of the time, there is no need for a supplementary tissue sampling especially destined for the LighCT ™ scanner, as the FFOCT / DCI imaging procedure does not alter the sample in any way so it can be then analyzed following the standard protocol by the histopathologist, without a risk of having an impact on the diagnosis.

The scanner has to be located in the proximity of the place of excision, e.g. operating room (for surgical excisions) or imaging room (for biopsies), firstly because that is its intended use in clinical practice i.e.

at point-of-care analysis, but also because the nature of DCI imaging itself, as it captures phenomena occurring in living cells only, the image acquisition has to be done shortly after tissue excision to ensure sample integrity and excellent image contrast. Fortunately, anyone with a minimum prior training can perform the image acquisition protocol, be it non-medical personnel, nurses or even the clinician performing the excision act, as it requires less than 5 minutes to image a biopsy, for examples.

An important step that differs from the standard protocol is the storing medium of the sample, in the routine procedure, the sample is placed directly into a formalin solution to stop the biological processes leading to the degradation of the tissue, but that would also stop the processes that allow for DCI imaging.

Therefore, the sample needs to be placed in a saline solution instead, to prevent tissue dehydration without killing the cells. If the sample will undergo histopathology analysis then it needs to be moved to a formalin solution after being imaged with DCI. The medical staff involved in the study needs to be aware of this extra step as to not jeopardize the usability of a specimen.

III.1.2 Data Annotation

Regardless of its abundance, unlabeled data is most often useless. State-of-the-art diagnosis algorithms are supervised, meaning they learn from labeled data and even for the case of unsupervised methods there needs to be a ground truth for validation. However for natural images, finding the category it belongs to or performing object selection can be accurately done by any non-expert human agent or even by web crawling. To give an example, the ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF] database was created starting from a hierarchical words database, then ∼ 1000 images per concept were gathered by querying search engines, followed by a crowdsourced manual validation phase on the automatically collected images, resulting in 14 million annotated images. On the other hand, medical data is not only expensive to collect, but also to annotate, as only domain experts can perform this time-consuming cumbersome task. To assist the annotation process there are dedicated software tools for labeling with bounding boxes, polygons or pixel annotations, like ilastik [START_REF] Berg | ilastik: Interactive Machine Learning for (Bio)Image Analysis[END_REF] or Cytomine [START_REF] Marée | Collaborative analysis of multi-gigapixel imaging data using Cytomine[END_REF] and Icy [START_REF] De Chaumont | Icy: An open bioimage informatics platform for extended reproducible research[END_REF] tailored for bio-medical imaging.

In our case, annotation is ever more challenging as there is no expert in both the FFOCT / DCI techniques and all the pathologies it is applied on. Still, annotation is usually done by histopathologists as they have the most knowledge domain in tissue micro-architecture, but insights can be collected from the main intended users of the technique, i.e. surgeons or radiologists. Anyhow, every medical expert annotator undergoes a prior training in FFOCT / DCI supported by an appropriate image atlas for the tissue type.

Nonetheless, the annotator turns to the corresponding H&E slide for reference, but image correlation is not straightforward. Even when the same specimen is being imaged with FFOCT or DCI and then processed with H&E, image registration presents itself with other challenges induced by morphology variations due to: differences in the optical and physical slicing plane and orientation; deformations caused by the particular states of the tissue once fresh and compressed inside the sample holder box, respectively fixed, dyed and cut (moreover, even different fixation methods can induce a distinct intercellular space [START_REF] Matsuda | Comparison of fixation methods for preservation of morphology, RNAs, and proteins from paraffin-embedded human cancer cell-implanted mouse models[END_REF]). Another aspect is the difference in the amount of information present, as a histology slice has a thickness of around 5 µm while a FFOCT / DCI slice has a "thickness" of 1 µm, therefore, we would probably see less cells, especially for the cell types with a small diameter, e.g. immune cells. For a manual approximate matching, the natural approach is to start from a low resolution and find correlations by progressively zooming. Since the overall shape of the sample varies a lot from one modality to another, it makes it difficult to even find the correct rotation transformation; matching the structures is far more viable but quite an exhaustive work due to the highly resolved images.

Given the cumbersome annotation process, not all instances get annotated due to insufficient confidence caused most often by a failed correlation with histology. That is why data post-processing is usually necessary to harmonize the dataset.

III.1.3 Data Sampling

Given the important resolution of medical imaging in general and DCI and FFOCT images in particular and the limited computational resources available for performing image analysis, image subsampling is a crucial step. This is particularly true in the case of deep learning and convolutional neural network architectures since the input size influences exponentially the dimensions of the computed tensors.

III.1.3.1 Regular Grid Sampling

The naive approach for patch sampling, which is also the most used, is using a regular grid with or without overlap. The undebatable advantages of this method are the implementation simplicity, lack of parameters and fast runtime (order of micro seconds) make it sufficient for dense splitting into small patches of convex shapes. However, as regular grid sampling is agnostic to the image content, in the case of more delicate datasets where instance-level annotations are not available and multiple structures are present in the original image, the regular grid sampling would inevitably partition object instances which could further impact the analysis. In the case of small datasets data quality is of uttermost importance to reduce the problem complexity. In this respect, it is possible to opt for texture-aware sampling to ensure the presence of similar structures in a patch, at the expense of computational complexity.

III.1.3.2 Texture Aware Sampling with SoSleek Method

In the field of image analysis we often draw inspiration from the human visual system, now we turn to the incremental grouping theory for answers, it states that the visual cortex tends to group similar entities and perceives them as a whole object [START_REF] Roelfsema | Incremental grouping of image elements in vision[END_REF], this assumption naturally extends to the way a pathologist analyses the tissue so we try to mimic this texture-aware part-based decomposition in our sampling strategy.

Early image segmentation methods introduced the notion of superpixels which are groups (or clusters) of pixels that share some common features like intensity and proximity. One simple -as the name suggest -method Simple Linear Iterative Clustering (SLIC) introduced in [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF] gathered more than 7 thousands paper citations and was used in at least 90 patents from different imaging fields and application types.

Its state of the art quality is proved not only by its user base, but also by comparison [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF] with similar methods [START_REF] Boykov | Interactive graph cuts for optimal boundary region segmentation of objects in N-D images[END_REF][START_REF] Comaniciu | Mean shift: A robust approach toward feature space analysis[END_REF][START_REF] Shi | Normalized cuts and image segmentation[END_REF][START_REF] Felzenszwalb | Efficient Graph-Based Image Segmentation[END_REF].

SLIC is based on the K-means [START_REF] Hartigan | Algorithm AS 136: A K-Means Clustering Algorithm[END_REF] algorithm to cluster the image pixels which are each described by a feature vector consisting of its intensity value(s) and its spatial coordinates. At initialization, the K cluster centroids are set on a regular grid, therefore the parameter K is necessary for this method and it represents the approximate number expected clusters i.e. superpixels. Pixels are assigned to a cluster based on a similarity measure which weights both the distance in the color and spatial domain.

Furthermore, the method allow finer parametrization for controlling the size, and shape and connectivity of the superpixels.

In computer aided tissue assessment, superpixels are used as a preliminary step for ROIs detection [START_REF] V. Anklin | Learning Whole-Slide Segmentation from Inexact and Incomplete Labels Using Tissue Graphs[END_REF][START_REF] Huang | Fast Regions-of-Interest Detection in Whole Slide Histopathology Images[END_REF][START_REF] Fouad | Unsupervised Superpixel-Based Segmentation of Histopathological Images with Consensus Clustering[END_REF][START_REF] Bejnordi | A multi-scale superpixel classification approach to the detection of regions of interest in whole slide histopathology images[END_REF] or specific structures (i.e. cell nuclei [START_REF] Sornapudi | Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels[END_REF]) from which features are extracted for further analysis, mostly classification. However, our analysis becomes agnostic to the properties of the generated superpixels, like shape or connectivity, instead we use the approach to ensure elegant tissue sampling, in order to employ classic patch-based algorithms.

An updated SLIC variant [START_REF] Irving | maskSLIC: Regional Superpixel Generation with Application to Local Pathology Characterisation in Medical Images[END_REF] restricts the segmentation to a previously given region (i.e. mask) and is advertised as having medical imaging as its main application field.

In order to adapt SLIC segmentation for the task at hand i.e. optimally sample big images into textureaware patches, the parameters have to be set accordingly. For SLIC, the main parameter is the (approximate) number of superpixels to generate, corresponding to the number of clusters from the Kmeans algorithm; on the other hand, for patchification, the main parameters are the patch size and patch overlap. However, the path overlap is an approximate measure of sampling density given in pixels, it only controls the initial grid spacing. The stride of the regular grid used to initialize will therefore be S = patch sizepatch overlap, and given the total number of pixels in the image N , for classical SLIC: K = N/S 2 and for maskSLIC: K = α × N mask /S 2 , considering N mask to be the number of pixels in the mask and α ≥ 1 an allowance compensating for shape irregularities. Given the big dimensionality of the images, it is desirable to run the algorithm on the downscaled image without any quality loss of the expected output, also the image can be converted to grayscale, or other colorspace, e.g. CIELAB used in the original paper. In order to ensure an adapted superpixel segmentation for our patchification task we tune the SLIC parameters, the ones bearing most influence on the outcome are:

• min / max factor size: control superpixel size; parameters given as proportions of the size of the square superpixel initialization;

• compactness: balances color proximity and space proximity in the distance metric, higher values give more weight to space proximity, making superpixel shapes more square, which is desirable for our patchification task.

When a foreground mask is not available, the developed method allows removing the background superpixels by performing a threshold on the average intensity of the superpixels, the choice of the thresholding method is dependent on the data distribution and desired results, so more methods are available, like Otsu [START_REF] Otsu | Threshold Selection Method From Gray-Level Histograms[END_REF], Isodata [START_REF] Ridler | Picture Thresholding Using an Iterative Slection Method[END_REF], Triangle [START_REF] Zack | Automatic measurement of sister chromatid exchange frequency[END_REF], Li [START_REF] Li | An iterative algorithm for minimum cross entropy thresholding[END_REF], Quantile, etc. The resulted sampling is obtained by extracting the patches centered at the center of mass of each foreground superpixel. 

III.1.4 Data Balancing

Real world data is highly imbalanced. In perspective, the worldwide healthy human population is far bigger than the one suffering from the most prevalent form of cancer, i.e. breast cancer, which is of 0.21% [START_REF] Roser | Cancer[END_REF]. However, the ratio changes dramatically in a different population slice -for example in the case of people undergoing breast biopsy (so already having a suspicious mammography) the chance of finding cancer sufferers increases dramatically as 10% of neoplasms are malignant.

However, in mathematical modeling and especially in AI, all such bias is undesirable as it introduces a favoritism for predicting the majority class and thus the accurate discrimination between classes becomes difficult. This problem is highly studied as it touches all domains related to big data [START_REF] Johnson | Survey on deep learning with class imbalance[END_REF] and it is either handled at the data level or at the algorithm level. In this section, we will briefly introduce some of the most used data-level approaches like: random resampling, informed oversampling or data augmentation with transformations. As for the methods playing upon algorithmic particularities, they rely mostly on sample weighting. However, for huge data discrepancies weighting accordingly could introduce numerical instability so a joint approach with resampling is advised. Another aspect of predictive algorithms that is impacted by class imbalance is the evaluation of performance, in this regard the choice of suitable metrics is discussed in Section IV.3.

Random resampling [START_REF] He | Imbalanced learning: Foundations, algorithms, and applications[END_REF] provides a naive yet effective [START_REF] Branco | A survey of predictive modeling on imbalanced domains[END_REF] A more data-driven approach is Synthetic Minority Oversampling Technique [START_REF] Chawla | SMOTE: Synthetic minority oversampling technique[END_REF] (SMOTE) which can be seen as an informed oversampling or data augmentation for the minority class. The process consists in creating a new sample by interpolating two samples from the minority class; more specifically, a random example from the minority class is chosen together with one randomly selected neighbor (from its k nearest neighbors [START_REF] Fix | Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties[END_REF][START_REF] Altman | An introduction to kernel and nearest-neighbor nonparametric regression[END_REF]) and a synthetic example is created at a randomly selected point between the two examples in feature space. Although the authors suggest SMOTE is suitable for low dimensional data, in [START_REF] Liu | Synthetic minority image over-sampling technique: How to improve AUC for glioblastoma patient survival prediction[END_REF] is proposed a so called ImageSMOTE algorithm which does nothing else but add Gaussian noise to the randomly oversampled images, nevertheless the method improves performance by more than 30% in detecting glioblastoma from MRI scans. Regardless, there is little evidence in favor of successfully using SMOTE for images, however, in the next section we will talk about more suitable methods to enrich an imaging training set via data augmentation. The imblearn Python package provides functionalities for the aforementioned approaches.

To conclude this section, class imbalance is a crucial yet inevitable problem in ML applications and it needs to be addressed at all stages of a method development: data pre-processing, algorithm design and performance evaluation, therefore we will return upon this problem along the present manuscript.

III.1.5 Data Augmentation

In stricto sensu data is abundant and omnipresent, however, as we have already mentioned in the previous sections, structured data suitable for training ML algorithms is utterly scarce due to the laborious and expensive process of collecting and annotating it. In other words, data is cheap, but information is expensive. These aspects are ever more severe in the clinical setting where many ethical questions need to be addressed and also the highest expertise is needed for annotation. Data augmentation [START_REF] Shorten | A survey on Image Data Augmentation for Deep Learning[END_REF] is a way of maximally capitalizing on already available data and is now an indispensable practice in data driven applications. It consists of artificially enriching training sets by reproducing relevant and naturally occurring transforms on the given data, thus trying to capture the true data variation.

The image processing field offers a plethora of techniques for data augmentation, from simple to more complex, through various transformations:

• rigid transforms: flipping, rotation, translation, scaling, cropping, etc.;

• elastic transforms: warping etc.;

• color altering: changing brightness, contrast levels, etc.

• adding noise or blur.

Apart from these classical approaches, the more recent DL advances can be exploited to create new synthetic data, like variational autoencoders (VAE) or generative adversarial networks (GANs). The choice of the adapted strategies has to be made with respect to the properties of the original images and applications at hand. For example, CNNs are translation invariant by definition thanks to the convolution operation and they can become rotation invariant thanks to the input they were trained on (in the case rotations were used as an augmentation transformation). However, the choice of data augmentation strategies needs to be consciously made; taking the example of rotation, natural images are normally upright, while biological images are inherently unoriented.

III.2 Working Datasets

Data lies at the center of the new ML paradigm applications including the present work. In this section there will be presented all three datasets built for the present work together with their particularities that drove the choice of pre-processing methods introduced in the previous section.

The two organs studied are skin and breast, they present different grades of pathological complexity and histological appearance diversity. What is worth mentioning here is that one of the main histological features for diagnosis skin cancer is the organization of collagen fibers in the tumor adjacent stroma, which is best captured by FFOCT. On the other hand, breast cancer exhibits a wider scope of morphological features which revolve mainly around cell shape, size and organization, making DCI a more suitable imaging modality for diagnosing it.

The following sections will detail the context of the imaging data obtained including: the original aim of the cross-sectional clinical study it originates from, the figures of the cohorts included, annotation types and the strategies for building the corresponding training sets. with experience with this modality and who could access the gold standard H&E frozen sections of the specimen for validation. The data was gathered and annotated using the Cytomine [START_REF] Marée | Collaborative analysis of multi-gigapixel imaging data using Cytomine[END_REF] platform.

III.2.1 Skin

26% of the total imaged area was segmented, the rest (unlabeled areas) being background or abnormal tissue that sometimes surrounds the tumors but its appearance is not relevant for either class, it should be treated separately. The images are preponderantly annotated with the normal label and only 10 images present some cancerous areas, annotated as BCC, more precisely, only 9.5% of the annotated data is pathological. Therefore, as it is the case of most of the medical applications, we face with the class imbalance problem, which we try to solve by oversampling the minority class. 

Sampling

The scanner produces 16-bit DICOM images, but only 10 to 12 bits are actually used; they were converted to 8-bit JPEG for convenience, so they can be tested with out of the box pre-trained architectures that only accept this depth.

Speckle noise is strongly present in FFOCT images, but proper denoising algorithms are too computationally costly (of the order of hours) therefore, since one of the requirements of our application is speed, we applied a 3 × 3 Gaussian filter to provide some smoothing while preserving the structures (e.g. cancerous cell nuclei appear as dark blobs with 10 pixels in diameter).

A constraint imposed by the computational power needed to train artificial neural networks is its number of parameters. This is a function of the depth (number of filters, layers) and width (input size of the layers) of the network. To satisfy this constraint while capturing enough context to discern normal skin structures from the cancerous cell organization, we split the images in patches of 256 × 256 pixels. With the aim of augmenting and also balancing the data set, we oversampled the patches with different step values for the two classes: 170px for the normal class, while BCC patches overlap more, with a stride of only 40px. This produces 108 082 patches: 59 112 normal and 48 970 BCC; 80% of which serve as a training set and the rest is used for measuring the performance.

Among the popular practices in deep learning is data standardization (zero centering + normalization) which translates into imposing the data to follow a normal distribution. This influences the robustness of the algorithm to variations in the images caused by the acquisition conditions, for example, and it also ensures a better convergence of the learning process. Data standardization is done by subtracting the mean intensity value over the training set and dividing by their standard deviation. Note that the same preprocessing has to be applied on the test data for consistency, but with the statistics of the trainset.

Furthermore, some basic data augmentation was performed, which led to doubling the training set, by adding synthetically generated images obtained through horizontal and vertical flipping, slight rotations and shifts.

III.2.2 Breast Cancer

Breast cancer is the most frequent cancer in women worldwide, representing almost 25% of all cancers in women, it is also the second most deadly (15.4% of deaths) after lung cancer. Standard treatment involves the surgical removal of the tumor, with partial or total breast ablation. Even after heavy surgery, the risk of recurrence after 5 years is above 10%, suggesting that an imperfect removal of the tumor was performed during surgery. Hence, there is a crucial need to improve real-time intraoperative characterization of the tumor margins, in order to reduce the ablation of healthy tissue, the surgery time, and the risk of additional surgery and cancer resurgence.

Standard diagnosis procedure consists in mammography screening, where tissue of abnormal density can be suspected through X-rays and is then biopsied and analyzed at microscopic scale to be actually diagnosed. Localizing and reaching the lesion is not a trivial task. The common protocol implies multiple samplings (minimum 5 [START_REF] Sauer | Ultrasound-guided large-core needle biopsies of breast lesions: Analysis of 962 cases to determine the number of samples for reliable tumour classification[END_REF]) of the suspicious mass to ensure correct probing for reliable diagnosis.

Nevertheless, the false negative rate caused by poor sampling is still currently up to 2% [START_REF] Ji | Missed breast cancers at us-guided core needle biopsy: How to reduce them[END_REF].

The breast anatomy consists of adipose and fibrous tissue together with its specific structures: lobules and ducts which play the role in lactation, namely to produce and transport the milk, respectively. The lobules have a "grape-like" appearance and the ducts are tubes of different sizes that link the lobules to the nipple. The size and number of lobules greatly differs from one individual to another and they also change with time, notably with menarche, pregnancy and menopause. The appearance of ducts depends on the slicing orientation, therefore for transverse cuts they would appear rounded and can be easily confounded with a lobule.

This branching ductal network is composed of two epithelial cell types: an inner layer of polarized luminal epithelial cells (where cancer arises most often) and an outer layer of myoepithelial cells, separated from the collagenous stroma by a basement membrane. Other cell types that help sustain the function of the mammary glands are adipose, fibroblasts, immune, lymphatic and vascular cells.

The most frequent histological type of breast cancer is invasive ductal carcinoma (IDC). IDC accounts for 80% of all invasive breast cancers in women which is also reflected in our datasets. IDC evolves from ductal carcinoma in-situ (DCIS), their correspondents are invasive lobular carcinoma (ILC) and lobular carcinoma in-situ (LCIS). It is worth mentioning that in-situ appearance can also be localized in the samples diagnosed as invasive or infiltrating. Apart from this 4 main categories, there are more sub-classifications, in total there are 21 histological types of cancer and 5 main molecular types [START_REF] Malhotra | Histological, molecular and functional subtypes of breast cancers[END_REF].

Figure III.3 illustrates the complexity of breast cancer morphology.

The gold standard diagnosis method is the ultrasound guided core needle biopsy procedure followed by histological analysis of the samples. In the eventuality of a positive diagnosis, the standard treatment involves the surgical removal of the tumor, with partial or total breast ablation. Even after heavy surgery, the risk of recurrence after 5 years is above 10%, suggesting that an imperfect removal of the tumor was performed during surgery. Hence, there is a crucial need to encourage real-time intraoperative assessment of the tumor margins, in order to reduce the ablation of healthy tissue, the surgery time, and the risk of resurgence.

Both clinical acts that could benefit from rapid at point-of-care diagnosis, biopsy and surgery, are tackled in this work. 

III.2.2.1 Surgical Excisions Pilot Study Cohort

An early pilot study was conducted by LLTech together with Gustave Roussy Institute in order to test the feasibility of using FFOCT and DCI in discriminating breast tumors from healthy breast structures. The tissue imaged comes from surgical waste resulted from mastectomy surgeries. The dataset contains a total of 47 samples coming from 33 patients, 11 of these samples are normal and 36 cancerous, according to the diagnosis set by a pathologist based on the corresponding H&E stained histology slides. For each sample there are available three image modalities:

• gold-standard histology slide digitized with Hamamatsu scanner with a 20X objective, pixel resolution 0.452µm, taking up around 5GB of space, in .ndpi format;

• large-field FFOCT acquisition on the whole sample extent, average size roughly 20k × 18k px dependant on sample size, with a pixel resolution of 0.9µm, occupying a few hundreds of MB, in .dicom format;

• multiple randomly distributed unit DCI fields of view, chosen by the LLTech engineer who performed the acquisitions, with a resolution of 1440×1440 px corresponding to an area of 1.3mm× 1.3mm; ranging from 3 to 16 fields of view (FOV) per sample, with a median of 10 FOVs/sample;

the processed DCI images use less than 10 MB of storage space and are in .tiff format;

the raw interferometric stack (1000 images at 300 Hz) is also saved in case post-processing is required, they take 4.15 GB and are in .hdr / .img format. 

Annotation

The ground truth diagnosis per FOV was set by a pathologist using the correlation with the corresponding area on the H&E slide. Despite the fact that the same structures are visible in both DCI and histology, finding the corresponding areas in both imaging modalities is a challenging task. One of the main difficulties is the fact that only a limited number of DCI FOVs are available. This difficulty is specific to the presented dataset. At the time of the study, the DCI acquisition was not fully integrated in the LightCT ™ scanner and was too slow to comply with the time constraints of the clinical process. Consequently, the choice was made of limiting the areas of acquisition and keeping the raw files (which is also time-consuming).

Given these challenges, the labels of each FOV are set by the pathologist according to the spatial correlation with histology and confirmed by the expected FFOCT / DCI appearance, some uncorrelated FOVs have a low confidence diagnosis based on either modality, while some are left un-annotated. The per-FOV diagnosis is given in unstructured text form and contains information about the structures present:

tumor, stroma, inflammation, fibrosis, normal lobules or ducts. In some cases there is extra information about the type of cancer (invasive or in-situ) and the presence of isolated cancer cells or lymphocytes.

However, we have decided to analyze only the presence or absence of tumor in a binary fashion, since the imaging technique is meant for fast intraoperative detection of cancer cells, not a detailed diagnosis and also given the limited dataset compared with the high complexity of the pathology.

Sampling

Considering the already fragmented quality of the data, the entire FOVs are considered for analysis.

III.2.2.2 Mammary Biopsies Clinical Study

Cohort

In the light of the findings of the aforementioned pilot study where it has been confirmed that DCI imaging is suitable for revealing the cell organization and tissue micro-architecture that help in differentiating healthy from tumoral breast tissue in the operating room, another clinical study was conducted to check the feasibility of using DCI in the radiologist's office at the time of the biopsy. On these grounds LLTech teamed up with the Pitié Salpêtrière Hospital and designed a cross-sectional clinical study with the aim to image biopsies coming from 204 specimens of either breast nodules or sentinel lymph nodes.

One gets to have a biopsy after a suspicious dense mass is discovered through a breast radiography (i.e. mammography) which becomes a standard screening procedure after a certain age. The standard procedure consists of minimally invasive imaging-guided core needle biopsy, i.e. punctuation of the breast tissue with a hollow needle that will extract a small tissue cylinder with a diameter of around Taking the example of the U.S., roughly 37 million mammograms are done every year and more than 1 million women have breast biopsies every year. In France there are performed 400 thousand biopsies per year due to systematic screening; at the Pitié Salpêtrière Hospital there are carried out around 500 biopsies annually. We can safely say that breast biopsies are a common procedure in the hospital setting.

However, in France less than 50% of the targeted women respond the screening calls despite it being free of charge for the patient, one possible explanation for this is the stress and anxiety induced by the waiting time, as quantified in a study [START_REF] Lang | Large-core breast biopsy: Abnormal salivary cortisol profiles associated with uncertainty of diagnosis[END_REF] measuring increasing cortisol (i.e. the stress hormone) levels along the waiting period. Hence, an immediate diagnosis could ease the patient's psychological strain and lead to an improved medical care overall.

All things considered, the aim of the study to verify if a non-pathologist, particularly a radiologist can diagnose the biopsies based on DCI imaging and secondly, to prove the feasibility of using automated aid-to-diagnosis algorithms to help with the task; with the end result that the patient would be spared the stress caused by waiting for the -more often negative -diagnosis.

A major advantage of the DCI technique is that it can be seamlessly integrated in the existing protocol because the sample is not altered in any way and can then undergo normal histological preparation and analysis. What is more, the radiologists can easily manipulate the scanner without the need of technical assistance on the long run and he or she would only need to spare at most 5 minutes per sample.

At the moment the work presented in this manuscript was done, the study had not yet been concluded, hence roughly 120 (of the 204 goal) biopsied nodules are considered here, 86 coming from breast tissue and 33 from sentinel lymph nodes.

For the sake of clarity in the follow-up we need to define the following terms:

• inclusion = a breast nodule or lymph node; note that there could be multiple nodules per breast or per patient, but there is no patient information included, so each nodule is treated independently here;

• sample = a location of the biopsying gesture (1 to 4 imaged samples per inclusion); as mentioned before, multiple biopsies are acquired of the same nodule;

• fragment = a tissue entity imaged at once, however, there are rarely multiple tissue fragments from the same biopsied location.

Consequently, each image would be uniquely defined by the sum of these three identifications: inclusion, sample and fragment. The resulting collection of data will finally be comprised of:

• per fragment: • per inclusion:

a gold-standard H&E stained histopathology slide; note that all fragments from an inclusion are prepared on the same slide so an exact correlation might be burdened;

a pathology report containing the diagnosis.

Annotation

For this study annotations are directly extracted from the pathology reports issued by a qualified medical professional after analyzing the histology slides, so totally agnostic to the DCI acquisitions. In this scope, a laborious effort was dedicated to interpret the pathology reports and translated them from unstructured text of specialized lexicon into machine interpretable structured information through pertinent knowledge representation.

From correlating literature review on breast pathology [START_REF] Malhotra | Histological, molecular and functional subtypes of breast cancers[END_REF][START_REF] Krishnamurthy | Breast pathology[END_REF][START_REF] Weigelt | Histological types of breast cancer: How special are they?[END_REF][START_REF] Makki | Diversity of breast carcinoma: Histological subtypes and clinical relevance[END_REF][START_REF] Bateman | Pathology of benign breast disease[END_REF] with the terms in the 98 reports processed up to this point, we have extracted the following main attributes (number of cases between brackets):

-location: breast (86) or sentinel lymph node (33);

-malignancy: malignant (33), benign [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF] and normal [START_REF] Rockne | The 2019 mathematical oncology roadmap[END_REF], note that due to the nature of the medical act only lymph nodes were normal;

* for malignant tumors:

-proliferation grade: low (6), intermediate [START_REF] Cabioglu | Role for intraoperative margin assessment in patients undergoing breast-conserving surgery[END_REF], high [START_REF] Luchini | Artificial intelligence in oncology: current applications and future perspectives[END_REF], using the Elston-Ellis grading system [START_REF] Elston | Method for grading breast cancer[END_REF] that sums up gradings on three criteria for architectural disorganization:

low (3), intermediate (4) 
, high [START_REF] Yang | Use of high-resolution full-field optical coherence tomography and dynamic cell imaging for rapid intraoperative diagnosis during breast cancer surgery[END_REF], nuclear pleomorphism: low (0), intermediate [START_REF] Poling | Frozen section evaluation of breast carcinoma sentinel lymph nodes: a retrospective review of 1,940 cases[END_REF], high ( 14) and mitotic count: low ( 18), intermediate [START_REF] García-Figueiras | How clinical imaging can assess cancer biology[END_REF], high (5);

-origin: ductal [START_REF] Apelian | Imagerie Optique Multimodale des tissus par Tomographie Optique Cohérente Plein Champ[END_REF] or lobular (4);

-proliferation extent: in-situ (1), invasive [START_REF] Goode | OpenSlide: A vendor-neutral software foundation for digital pathology[END_REF], both (9);

-external invasion: vascular (1) or lymphatic (5).

* for benign tumors or lesions:

-type: fibroadenoma (17), adenosis (9) and papilloma (5) which are usually in conjunction with ductal hyperplasia, mastosis (6), hamartoma (2), inflammation (2) for breast and histiocytosis (5) for lymph nodes, characterized by an abnormal increase of immune cells;

-risk of progression: in an attempt to group the multiple types of lesions found under a more compact categorization we defined the risk of disease progression, from low to high as follows: inflammation (7), non-proliferating [START_REF] Apelian | Imagerie Optique Multimodale des tissus par Tomographie Optique Cohérente Plein Champ[END_REF], proliferating without atypia [START_REF] Fitzgerald | The future of early cancer detection[END_REF], proliferating with atypia (1).

It is important to observe that there is missing information in the reports, for example not all carcinomas are graded, or that some specific pathologies are not well represented to consider them for analysis separately, like the sub-types of benign tumors. Another obstacle in the annotation process is the fact that there is one diagnostic given per inclusion and the totality of specimens (i.e. fragments) from one inclusion were grouped together on the glass slide for the analysis, so there is no diagnosis per fragment.

Given the current state of the study with the incomplete cohort, the noisy annotations coming from the lack of correlation between the histology slides and DCI images and relying on our interpretation of the pathologist reports, we decide to further exploit this dataset for automated diagnosis in a straightforward manner. First, we separate the data coming from breast tissue and lymph nodes, as they are associated with two very different problems. We shall focus on the breast biopsies first as both the radiologist and pathologist who did a precursory assessment of the images deem metastasis detection from lymph node biopsies very challenging. Therefore, in the preliminary automated diagnosis application we shall consider breast samples in a binary fashion as malignant vs benign. Lastly, we could treat benign and malignant in a regressive fashion by ranking their severity: from the benign tumors with the lowest progression risk up to malignant tumors of high proliferation grade (this way we could smartly train for high risk benign tumors which is sometimes advised to resect). With more data collection, the complexity of the automated tasks could increase, like cell counting, cell type detection, segmentation etc.

Sampling

As in the majority of successful aid-to-diagnosis applications on WSI, there is a need of breaking down the image into smaller entities i.e. patches, mostly due to the constraints that come with the leading methods in the field based on Deep Learning [START_REF] Dimitriou | Deep Learning for Whole Slide Image Analysis: An Overview[END_REF]. They are usually small in size 256 to 512 px 2 , but this choice is strongly dependent on the problem formulation and nature of the data and annotation. For example, on our skin cancer dataset (Section III.2.1) we opted for small and densely sampled patches due to the important perk of having pixel-level annotation, meaning we could then label each patch with maximum confidence. On the other hand, for the other study on breast (Section III.2.2.1) the imaged patches (i.e. FOVs) were carefully selected to ensure they are informative for the diagnosis and then individually interpreted by a pathologist, so individually annotated.

For the task at hand, there is no special image curation, moreover, there is a global diagnosis for groups of images which does not mean it can be always extended to each image, therefore we try to keep to a minimum the further fragmentation of the images. In this regard, we choose the patch size in concordance with the width of the biopsying needle i.e. 1024 × 1024 px and we try to capture the entire surface of the imaged tissue with minimally overlapping patches. What is more, we opted for texture-aware patchification so we don't split up coherent morphological features, for that we used the SoSleek method described in Section III.1.3, there is also a running example extracted from this dataset in Figure III.1. As a result we obtained a total of 2 542 patches from the breast biopsies.

In addition, we went a step further in trying to compensate for the lack of dense labels and did a manual assessment of the extracted patches as to indicate if they contain cells or not. This can be done by a nonmedical expert who is familiar with the DCI modality, not to mention that cell presence is also a very important information for the diagnosis. Out of the 2 542 patches, in 842 or 33% cells were highly visible, in 1 185 or 47% there were mostly fibers, fat cells and sometimes few isolated and/or low-contrast cells, while 516 or 20% patches contained imaging artifact and were discarded. There is a median of 6 patches containing cells and 7 patches containing other tissue structures in each sample, while the maximal numbers of patches per sample with and without cells are 25 and 32, respectively. In hindsight, only 66.67% of the samples contain highly visible cells, at the global inclusion-level the statistics are more promising with 84.72%. Not distinguishing cells in an image is particularly problematic when it comes to detecting malignancy as the cell morphology and organization are the key bio-markers, 81.03% malignant samples coming from 92.86% inclusions contain cells.

Moreover, in order to define finer ranking between patches we turn to information theory and compute Shannon's entropy [START_REF] Shannon | A Mathematical Theory of Communication[END_REF] for each patch. This is a measure which quantifies the amount of information in a sequence, it can also be interpreted as the number of bits needed to encode a piece of information.

For an an 8-bit grayscale image x, Shannon's entropy is formulated as:

H(x) = - 255 k=0 p k log 2 (p k ) (III.1)
where p k is the frequency (or probability) of pixels having intensity k from the patch x (converted from RGB to grayscale). Looking at Figure III.7 we notice that indeed the higher the patch entropy the more information they bear towards a successful diagnosis, as they have a higher number of cells and a better contrast.

To sum up, the current figures of the breast biopsies dataset (with images and annotations extracted from the correlated pathologist reports) are 150 samples (60 or 40% malignant) coming from 72 inclusions (28 or 39% malignant). From those samples there were extracted 2 027 minimally overlapping patches of size 1024 × 1024 px using texture aware sampling and annotated for the presence or absence of cells.

The overall malignant to benign ratio is just slightly unbalanced and evaluates to 2:3.

III.3 Challenges

To sum up, in this chapter we gave the keys to building insightful and structured datasets from raw clinical information which led to building three datasets.

It is worth noting that the order of presentation of the datasets corresponds to the chronological order of acquisition, which also gives a snapshot on the evolution of the imaging technique: from the more "historic" FFOCT, to the pass to DCI when it was possible to image only some FOVs in the beginning, then to finally acquiring entire biopsies in DCI. Moreover, the granularity of labels associated with each datasets, from pixel level annotations, to patient level, is pointing to a tendency of diminution in supervision level as we increase in complexity and scale up the datasets.

These datasets, summarized in the following Table III.1, shall serve to build data analysis pipelines in the purpose of gaining precious insights about this revolutionary imaging technique that could change clinical practice for the better. Even if we are still in the context of big data, we are facing with the challenge of limited data, ubiquitous in the medical field due to patient data privacy regulations and expensive expert annotations; in addition, there are multiple unknowns related to the novelty aspect of the technique and the imaging nature itself:

• single-center data: as data is collected through targeted clinical studies as opposed to routine practice, for each application data comes from a single center and consequently, compared to the medical dataset that power state-of-the-art methods, we face all the more data scarcity;

• label noise: as of now there is no medical expert who can diagnose confidently based only on FFOCT / DCI images; image annotation resulted either from the collaboration between an imaging expert and a medical expert (i.e. pathologist) or directly extracted from the pathology report based on classical H&E histology preparation of the same sample. Therefore, the annotation procedure risks to introduce some noise in the labels due to the possible difference in tissue composition visible in the mechanically cut histology slide as opposed to the preparation-free FFOCT / DCI optical slicing;

• imaging artifacts: the dynamic nature of DCI gives rise to image aberrations related to physical instabilities (external vibrations like air conditioning or a tap on the scanner's table) which can hamper the correct interpretation of the images, moreover, this noise is stochastic by nature and it

is not known at this point how to model and by consequence filter it out;

• undefined captured biological pathways: the source of the DCI signal is not yet fully characterized, which implies that the criteria of cell appearance are not biologically validated; for example, it is still unclear if what we perceive as "cell" corresponds to the nucleus or the entire cell i.e.

the cytoplasm, or how the intensity measured inside the cell perimeter which is believed to be representative for the "cell activity" could be correlated to biological processes.

In order to tackle these unavoidable challenges, and delve into the data in the most meaningful way, we took care of some aspects at the dataset curation step, especially via the adapted data sampling methods. Moreover, the methods to be developed -be they exploratory analysis or aid-to-diagnosis prototyping -need to follow some consequent requirements: firstly, the methods need to remain in the scope of interpretability in order to counter the unknowns about the data itself or even try to answer to some of these fundamental questions and secondly, methods need to be versatile and extendable to new applications and problematics as the technique evolves and its adoptability increases, a concrete example is the capacity to seamlessly scale up in model complexity with more data collection.

Given the enumerated points, it is clear that data driven (rather than model driven) approaches are suitable to accommodate all the underlying unknowns, therefore we should look at the powerful machine learning algorithms family dedicated to computer vision in order to explore the dynamic signal, the processed FFOCT / DCI images, their multimodal aspect and ultimately build effective aid-to-diagnosis solutions.

Chapter IV

Fundamentals of Convolutional Neural Networks

In the previous chapters we exposed the real-world conditions of data curation together with the particularities of the data which exposed multiple challenges. With the aim to surpass the difficulties and achieve adapted automated aid-to-diagnosis methods we will exploit various approaches from the field of deep learning which is considered the silver bullet for hard-to-define problems, by modeling the relationships between input and output of a system without much information about that system itself.

In this chapter we give some theoretical foundations on artificial neural network design and training dedicated to computer vision. There are brilliant reviews [START_REF] Lecun | Deep learning[END_REF] and books [START_REF] Goodfellow | Deep Learning[END_REF] on deep learning theory, but we shall still introduce some elementary methodological aspects that concern our methods presented in the later chapters. Accordingly, in this chapter we introduce some basics of DL theory in the context of supervised image classification, with a deeper focus on Convolutional Neural Network (CNN) based architectures, as they represent one of the main pillars of the computer vision field. Moreover, as this work regards medical application, we bear special attention to model validation. Hereof, we present some model acceptability strategies meant to both safeguard the model performance and also bring interpretability -in an effort to overcome the black-box nature of neural networks. 

Contents

IV.1 Computer Vision

A computer only "understands" numbers, therefore, images need a numerical representation. A grayscale image can be stored as a matrix, where each cell represents one pixel of the image and the cell value represents the gray level i.e. intensity of the pixel. In computer vision, it is not very effective to consider the attributes of the data to be the raw pixels, but to define some features which encode the data; this can also be seen as a dimensionality reduction problem or representation learning and stands at the core of all computer vision applications.

The classic approach for image classification is bag-of-features [START_REF] Fei-Fei | A Short Course Matlab Code: Recognizing and Learning Object Categories[END_REF]:

1) extract salient keypoints (SIFT [START_REF] Lowe | Object recognition from local scale-invariant features[END_REF], SURF [START_REF] Bay | Speeded-Up Robust Features (SURF)[END_REF], HOG [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]) from a set of images;

2) split those keypoints in k groups by K-means clustering;

3) each cluster is defined by its center, all the cluster centers (which are nothing else but patches of the images: can be textures, small object parts etc) form a vocabulary; 4) encode each image in the dataset using the vocabulary; 5) train a classifier (e.g. SVM) in the space of the vocabulary.

Another approach is to have pre-defined so-called filter banks [START_REF] Austvoll | Filter banks, wavelets, and frames with applications in computer vision and image processing (a review) invited[END_REF], independent from the dataset (e.g.

Gabor filters, Wavelets basis, etc.). A filter convolved with an image gives a feature map which brings lower level information like the presence of edges with a certain orientation. Here learning consists in discriminating the data according to their responses to the filters.

Those paradigms are not scalable, so they have mostly been dropped in favor of artificial neural network based approaches which are able to encode more complexity, namely convolutional neural networks (CNN) which are dominating the computer vision field. 

IV.2 Model Implementation

Deep learning is synonym with deep neural networks, which represent a biologically inspired computational model that consists of interconnected layers of artificial neurons. The output of one neuron represents the input of one or more neuron from the next layer and there are no connections between neurons of the same layer, so a neural network is an acyclic graph. A neuron can serve as a stand alone weak classifier, so a network can be seen as a combination of weak classifiers that form a strong one. The intelligence of a network resides in the weights of its neurons, which also represent its adjustable parameters. To get to correctly solve a task, the network adjusts its parameters through a learning mechanism that is based on the trial and error principle.

IV.2.1 The Artificial Neuron

The single layer perceptron [START_REF] Rosenblatt | The perceptron: A probabilistic model for information storage and organization in the brain[END_REF] is an algorithm based on an artificial neuron, i.e. the building block of any neural network architecture regardless of its complexity. An artificial neuron by itself works as a linear binary classifier. Consider a feature vector x ∈ R n that is used to predict the probability y of occurrence of a certain event. Each input value x i is scaled up or down according to its corresponding weight w i and then the sum of the products is fed to an activation function φ which mimics the biological excitation of a neuron, to finally produce the output y (see Figure IV.1). In practice a bias b is added to the weighted sum to better fit the data.

y = φ n i=1 w i x i + b (IV.1)
The role of the activation function is to work as an on-off switch (i.e. the term "activation") which is best modeled by the Heaviside a.k.a step function which is 1 if its input value is positive and 0 if else, however, in nature, the change of state does not happen instantly so the Sigmoid a.k.a soft step function was introduced φ(z) = 1 1+e -z to mimic natural synapses. In modern architectures, rectified linear logic unit (ReLU) is generally used because it accelerates the convergence of the learning mechanism to a factor of 6 [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF] and because of its simpler definition φ(z) = max(0, z), so it acts as a threshold that removes weak signals. Another very popular activation function used in multiple output networks is the Softmax function which outputs the probability of the result belonging to a certain set of classes, defined as: φ(z i ) = e z i m j e z j for i = 1, ..., m and z ∈ R m . In mathematics, the Softmax or normalized exponential function is a generalization of the logistic function that squashes a m-dimensional vector of arbitrary real values to a m-dimensional vector of real values in the range [0, 1] that add up to 1.

In probability theory, the output of the Softmax function represents a probability distribution over m different outcomes.

Initially, the weights and bias are randomly initialized and the prediction is calculated given the input values, if the predicted output is the same as the desired output, then the performance is considered satisfactory and no changes to the weights are made. However, if the output does not match the desired output, then the weights need to be changed to reduce the error ε, defined as their difference, for example. This is done using repeated updates (bounded by a fixed number of iterations or a convergence criterion on the maximal accepted error for example. Updates are done w ← w + η • ε • x in steps of magnitude η, representing the learning rate, which is set prior to training. A learning rate that is too small leads to extremely slow convergence, while a learning rate that is too large can hinder convergence and cause the loss function to fluctuate around the minimum or even to diverge.

Single layer perceptrons are only capable of learning linearly separable patterns, therefore, even functions as simple as the logical XOR cannot be represented by one neuron only [START_REF] Russell | Artificial Intelligence A Modern Approach (4th Edition)[END_REF].

IV.2.2 Training Artificial Neural Networks

By stacking multiple perceptrons on top of one another i.e. multilayer perceptron (MLP), more complex functions could be encoded, moreover, according to Cybenko's theorem [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF] MLPs are universal function approximators.

Neurons are interconnected forming neural networks, the output of one transfers to the input of another through forward propagation. This configuration (see Figure IV.2) would not be effective without the mechanism of propagating the error from the output through all the neurons in the hierarchy, i.e. backpropagation [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF], a generalization of the least mean squares algorithm in the single layer perceptron.

Backpropagation distributes the prediction error to all interconnected neurons in a path, proportionally to their contribution to the error.

As opposed to the perceptron, as we are dealing with more complex and diverse problem formulations, the error between the true expected output y and the predicted output ŷ can be computed using a variety of functions i.e. loss functions. The choice strongly depends on the problem objective, for regression mean square error or absolute error are used, while for classification cross entropy loss a.k.a. log loss is the most used. Cross-entropy loss measures the performance of a classification model whose output is a probability value between 0 and 1, the loss increases as the predicted probability ŷ diverges from the actual label y, penalizing especially those predictions that are confident and wrong.

L(y, ŷ) = -(y log(ŷ) + (1 -y) log(1 -ŷ)) (IV.2)
A perfect model would have a null loss, in order to minimize the loss L, backpropagation is used to adjust the weights accordingly. Mathematically, it implies computing the gradient (or derivative) of the loss function with respect to the weights of a multilayer stack of neurons ∇ W L(W ) by applying the chain rule for derivatives: for y = f (h(x)), ∂f ∂x = ∂f ∂h ∂h ∂x . Then, with the derivative of the loss computed with respect to each weight in the network, the weights are adjusted in the negative direction of the gradient (or derivative) with a scaled step modulated by the learning rate:

w i ← w i -η ∂L ∂w i , i.e. gradient descent.
There are several optimization algorithms [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF] used for implementing different gradient descent strategies. First of all, the standard strategy by computing the loss on the entirety of the dataset is almost impossible in the big data context. At the other end lays the stochastic gradient descent (SGD) which implies computing the loss and adjusting the weights for one example at a time, however, this leads to noisy training and potentially converging to a suboptimal local minimum or not at all. A compromise between computing the true gradient and the gradient at a single sample is to compute the gradient against a subgroup of training samples (called a "mini-batch") at each step. Because it is so widely used, the naming convention accepts the term stochastic gradient descent as actually describing the mini-batch gradient descent. A variant of SGD implies adding momentum [START_REF] Qian | On the momentum term in gradient descent learning algorithms[END_REF] to accelerate training. The weights are modified through a momentum term, which is calculated as the exponentially decaying moving average of past gradients, making it conceptually equal to adding velocity. The momentum term β can be seen as air resistance or friction which decays the momentum proportionally. β can take values between 0 and 1, in practice higher values are preferred β ≥ 0.8, while for β = 0 the formulation is identical to classical SGD.

∆w i := β∆w i-1 + η ∂L ∂w i , where β ∈ [0, 1]
w i+1 := w i -∆w i (IV.3)
Adaptive Moment Estimation (Adam) [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] is based on the idea of tailoring the learning rate for each parameter during training, i.e. increase η if the descent has constant direction and decrease it when descent direction is changed. Adam keeps an exponentially decaying average of past gradients similar to momentum m i and an exponentially decaying average of past squared gradients v i . m i and v i are estimates of the first moment (the mean) and the second moment (the uncentered variance) of the gradients respectively. Adam takes two parameters, the exponential decay rates for the two moments, β 1 and β 2 which have the textbook values: β 1 = 0.9 and β 2 = 0.999. There is also a numerical stability term ϵ = 10 -8 .

m i := β 1 m i-1 + (1 -β 1 ) ∂L ∂w i v i := β 2 v i-1 + (1 -β 2 ) ∂L ∂w i 2 w i+1 := w i -η m i √ v i + ϵ (IV.4)
Interestingly, multiple works [START_REF] Wilson | The marginal value of adaptive gradient methods in machine learning[END_REF][START_REF] Hardt | Train faster, generalize better: Stability of stochastic gradient descent[END_REF] argue that although Adam converges faster, SGD generalizes better and thus results in improved final performance. In practice, Adam is the first-hand choice when determining the training strategy. Then, if Adam fails, SGD and variants are explored, together with other optimization "tricks" like learning rate decay and schedulers.

Thus, the components of a neural network model i.e the activation function, loss function and optimization algorithm play a very important role in efficiently and effectively training a model and produce accurate results. Different tasks require a different set of such functions along with a suitable network architecture that controls the information flow to give the most optimum results.

IV.2.3 Convolutional Neural Networks

MLPs are so-called fully connected networks, meaning that all input values are connected to each neuron in the hidden layer and all neurons in consecutive layers are interconnected, respectively. However, for the case of images, which are most often high dimensional, this implementation is hard to grasp.

Moreover, this approach would be suboptimal for image inputs as MLP incorporates the pixel position in its logic, but for image recognition what is important is the presence of a feature, rather than its exact position. Convolutional Neural Networks (CNNs) are a class of network architectures designed for matrix inputs, especially images, as they are shift invariant by definition and require less parameters than an MLP would. Their connectivity pattern of neurons is inspired by the organization of the visual cortex, every neuron responding to a small area of the field of view called receptive field. In the scope of neural networks, this is implemented via sparse connections, meaning each neuron is connected to a small number o neurons (for example a 3 × 3 squared region) from the previous layer. In addition, the weights and biases are shared between adjacent nodes, property which makes CNN invariant to translation. CNNs are a successful example of incorporating domain-specific information (in this case, for vision tasks) into the architecture design of a neural network.

CNNs get their name from the main operation in the network, the convolution. In image processing, a kernel, convolution matrix, or filter is a small matrix used for blurring, sharpening, edge detection, etc. This is accomplished by doing a convolution between the specialized kernel and an image which results in another image which is called the feature map. Convolution is performed by adding each element of the image to its local neighbors, weighted by the kernel. This is related to a form of mathematical convolution similar to cross-correlation. The result of an input image I convolved with a kernel K is computed as:

O = I * K with I ∈ R w×h , K ∈ R k×k s.t. O ∈ R (w-k+1)×(h-k+1) O (i,j) = k-1 a=0 k-1 b=0 K (a,b) • I (i+a,j+b) (IV.5)
A convolutional layer is composed of more such kernels i.e. filters, so more features are learned simultaneously (in the literature the number of filters per layer can vary between 32 up to 512). If at the first layer the filters are applied directly on the image (which can have one or more channels, e.g. 3 channels for RGB images), for deeper convolutional layers, the input being represented by the previously obtained feature maps (which therefore have much more channels, equal to the number of filters in the previous layer), their filters will have multiple dimensions. Feature maps represent the response of the input after being convolved with a filter, a filter defines a feature and the map signals its presence in the input image.

After a convolutional layer, there is usually a pooling layer, which does not do any learning per se but downsamples the feature maps by either taking the maximum value (max pooling) or taking the mean value (average pooling) in an area. Therefore, a pooling has as hyperparameters the function and size of the area to apply it. The motivation behind downsampling is to reduce the number of parameters of the network and reduce the representation size of data which makes the network less sensitive to noise and helps generalization.

After several convolutions and downsamples which serve as feature extractors, one ore more fully connected layers are added. As the name suggests, their neurons are connected to every neuron from the previous layer and to the next layer. They can learn non-linear combinations of the features discovered before and they are charged with the high-level reasoning in the neural network.

CNNs exploit the property that images are compositional hierarchies, hence lower layers learn basic features (e.g. edges, blobs) and higher layers learn a combination of the features from previous layers (i.e. textures, object parts).

IV.2.4 Design Principles for CNN Architectures

IV.2.4.1 The Convolutional Kernel Hyperparameters

When designing CNN architectures, special attention needs to be paid when defining the properties of the convolutional layers. The choice of the number of layers and the number of filters per layer is intuitively governed by the complexity needed for mapping the data to the problem objective. However, the properties of the kernels, often overlooked in the literature, are in line with the important structures found in the input data. The kernel is defined by its size k, stride s, padding p which together with the properties of the previous neurons in the hierarchy define the receptive field size in the input r. It is by controlling the size of the receptive field that we could indirectly inject information about the size of the objects present in the input that would influence towards the final prediction.

Every kernel "looks" at a certain area of the input image, performs multiplications, then moves a set number of pixels (stride) and repeats. While its default is usually 1, a stride of 2 can be used to simultaneously downsample an image, similar to pooling. Padding is used to capture the patterns at the edges of the input, a padded convolution will also keep the spatial output dimensions equal to the input. In the above equation there were used the default values s = 1 and p = 0. This area in the input space that a particular CNN's kernel is looking at is called receptive field. Since CNNs are deep, meaning they stack multiple convolutional layers, the receptive field for each layer is different. If the layer is deeper in the architecture then its receptive field will be larger because its input space is represented by feature maps from previous layers, i.e. already downsampled input image.

Intuitively, for the first convolutional layer l = 1 the size of the receptive field r 1 is equal to the size of the kernel k 1 , but for each i-th convolutional layer corresponding to a kernel with size k i , stride s i and padding p i , the receptive field size r i is computed iteratively with respect to the previous layer, as follows: r i = r i-1 + (k i -1)j i-1 , with the cumulated stride (or jump) j i = j i-1 • s i . By merging those two expressions, the size of the receptive field of the i-th layer can also be written as:

r i = r i-1 + (k i -1) i-1 l=1 s l (IV.6)
Moreover, the size n of the output feature map for each i-th layer is obtained with the formula:

n i = n i-1 + 2p i -k i s i + 1 (IV.7)
For computing the receptive fields of a neural network, there is an open-source library developed by Google Labs, with its mathematical foundations explained in [START_REF] Araujo | Computing Receptive Fields of Convolutional Neural Networks[END_REF].

A trick for increasing the receptive field size while keeping the same number of parameters is the dilated or atrous convolutional kernel [START_REF] Chen | Rethinking Atrous Convolution for Semantic Image Segmentation[END_REF]. Dilated convolutions introduce another parameter to convolutional layers called the dilation rate. This defines a spacing between the values in a kernel. A 3 × 3 kernel with a dilation rate of 2 will have the same field of view as a 5 × 5 kernel, while only using 9 parameters.

IV.2.4.2 Controlling Information Flow

Another key aspect in designing CNNs is setting up the actual connections between layers which define the information flow in the network. Legacy single-path feed-forward networks share the same design principles, i.e. alternating convolutional with pooling layers and tailed with fully connected layers, but newer models increase in complexity to accommodate richer datasets, from MNIST -numeric digits, to

ImageNet -thousands of natural images of various scenes. In 1998 what is considered to be the first CNN -LeNet [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF], with its two convolutional layers, was introduced for handwritten digit recognition.

In 2012 appears AlexNet [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF] which is considered to be the first deep CNN with its 5 convolutional and 3 pooling layers. In 2014 VGG [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] introduces the idea of smaller consecutive kernels rather, favoring 3 stacked convolutional layers with 3 × 3 kernels each, which manage to capture an area of 7 × 7 in the input, as opposed to a single neuron with a 11 × 11 kernel like AlexNet. The VGG approach allegedly adds more reasoning capacity due to the adjacent activation functions of the neurons. VGG consists of 5 blocks of pairs or triplets of convolutional layers and one pooling layer summing up to 13 convolutional layers and 5 pooling layers.

It seems like going deeper solves the need for accommodating more complexity, however, there are mathematical limitations to this, as the deeper the network, the more difficult becomes the training, because the problems of vanishing or exploding gradients could arise. In this regard, networks tend to get "wider" instead of deeper, Inception [START_REF] Szegedy | Rethinking the Inception Architecture for Computer Vision[END_REF] architectures introduce the concept of parallelism and sub-blocks acting as a "network in network". The inception block consists of multiple kernels (usually of different sizes) applied to the input, then, the resulting outputs are concatenated and sent to the next layer. Another type of sub-block, implemented in ResNet [START_REF] He | Deep residual learning for image recognition[END_REF], is the residual block which introduces skip connections, i.e. the activation of a layer is fast-forwarded to a deeper layer in the neural network.

Another family of CNN blocks are Squeeze and Excitation blocks, introduced by SE-Net [START_REF] Hu | Squeeze-and-Excitation Networks[END_REF], they enable the network to perform dynamic channel-wise feature recalibration by reweighting the channels of each layer with respect to their average activation to achieve a lightweight attention model.

Other approaches to control the information flow in CNNs are embodied by weight sharing, multi-stream architectures taking multiple inputs (e.g. siamese networks [START_REF] Chicco | Siamese Neural Networks: An Overview[END_REF]), encoder / decoder architectures for image segmentation (e.g. Unet [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF], MaskRCNN [START_REF] Chen | Rethinking Atrous Convolution for Semantic Image Segmentation[END_REF]), or generator / discriminator generative adversarial networks (GAN) [137] for image synthesizing, etc.

In this section we have merely scratched the surface of neural networks design and training, however, we presented the main theoretical building blocks and design principles which guide the development of the applications making the subject of this manuscript. true positives (TP): correctly diagnosed pathological cases;

IV.3 Model Validation

true negatives (TN): correctly diagnosed healthy cases;

false positives (FP) -type I error: healthy cases predicted as pathological;

false negatives (FN) -type II error: missed pathological cases.

For diagnostic tests in the medical field type II errors are more problematic than type I error, in other words, the cost of FN is higher than the cost of FP. Taking the example of cancer screenings, a false positive would surely lead to further tests (e.g. biopsy) that would eventually infirm the pathology, but a false negative case would be dismissed with a strong chance the pathology silently progresses until a belated examination, greatly jeopardizing patient's outcome.

Accuracy is the most common evaluation metric in classification problems, that is the total number of correct predictions divided by the total number of predictions made for a dataset.

Accuracy = T P + T N P + N = T P + T N T P + T N + F P + F N (IV.8)
However, accuracy is only useful when the target class is well balanced but is not a good choice with unbalanced classes. Say we had 99 images of a healthy tissue and only 1 image of a pathological case in our training data, our model would most likely always predict healthy, and therefore we would get Precision and recall are not useful when used individually. For instance, it is possible to have perfect recall by simply retrieving every single item. Likewise, it is possible to have near-perfect precision by selecting only a very small number of extremely likely items. One metric that combines the two together, capturing the global performance better than accuracy -as it is less sensitive to class imbalance, is F1 score.

F 1 score = 2 1 Recall + 1 Precision = 2T P 2T P + F P + F N (IV.11)
Nevertheless, in the medical literature we always find another pair of metrics, namely sensitivity and specificity. Sensitivity is reflecting a test's ability to correctly identify all people who have a condition and it is equivalent with recall or true positive rate (TPR); while specificity or true negative rate (TNR) is reflecting a test's ability to correctly identify all people who do not have a condition. For a diagnosis test to be useful in the clinical scope then sensitivity + specificity should be at least 1.5 [START_REF] Power | Principles for high-quality, high-value testing[END_REF], i.e. halfway between 1 -which is considered useless, and 2 -which is perfect.

Sensitivity = Recall = T P T P + F N (IV.12) Specificity = T N T N + F P (IV.13)
Other such pair of metrics consists in positive predictive value (PPV) and negative predictive value (NPV). PPV is the probability that people with a positive screening test result indeed do have the condition of interest and is also equivalent with precision. In turn, NPV is the probability that people with a negative screening test result indeed do not have the condition of interest.

PPV = Precision = T P T P + F P (IV.14) NPV = T N T N + F N (IV.15)
Applying a classification model results is a mapping of instances to certain classes or categories. For most algorithms, the output of the classifier is an arbitrary real value (continuous output), its output is most often a probability value. Therefore, the said continuous output needs be translated into a categorical output. The predilection is towards thresholding at 50% to define the appurtenance to a certain class or not. However, the model can be tuned by choosing to interpret the probabilities using different thresholds that allow the operator of the model to trade-off concerns in the errors made by the model, such as the number of false positives compared to the number of false negatives. This is required when using models where the cost of one error outweighs the cost of other types of errors, i.e. type I error vs. type II error. Naturally, the best cut-off has the highest true positive rate together with the lowest false positive rate, but ultimately the choice depends on the clinical stakes.

A receiver operating characteristic curve, or ROC curve, is a graphical plot (see Figure IV.4) that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied. The method was originally developed for operators of military radar receivers during World War II (which led to its name) and was soon introduced to psychology to account for perceptual detection of stimuli.

ROC analysis since then has been used in medicine, radiology, biometrics, model performance assessment and other areas for many decades and is increasingly used in machine learning and data mining research. The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings. The true-positive rate is also known as sensitivity, recall or probability of detection, while the false-positive rate is also known as probability of false alarm and can be calculated as FPR = 1 -TNR. Therefore a perfect classifier would have TPR = 1 and FPR = 0 at all threshold values, while a random classifier would have its ROC curve plotted as the second diagonal, therefore what lies below that line is considered a poorly performing model and what lies above is an acceptable model.

However, comparing plots is not a straightforward way to measure and confront the performance of multiple classifiers, therefore a scalar measure acting as a summary of the ROC plot is welcome. Computing the area under the curve (AUC) as the integral of the ROC curve is a robust metric widely used in machine learning applications. An AUC of 1 corresponds to the perfect classifier, 0.5 to a random one, and in practice 0.8 to 0.9 is considered excellent, and more than 0.9 is considered outstanding [START_REF] Power | Principles for high-quality, high-value testing[END_REF]. To ensure that every observation from the original dataset has the chance of appearing in training and test set, multiple models are trained on various data splits, i.e. cross-validation (CV) [START_REF] Kohavi | A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection[END_REF]. Depending on the size n of the datasets, there can be adopted either leave-one-out or K-fold split strategy. Leaveone out implies training n models on n -1 samples and testing on the remaining sample, however, this introduces a lot of computational overhead and the n models risk to be redundant and similar to a single model trained on the entire dataset. K-fold CV divides all the samples n in groups of k samples, called folds (if n = k, this is equivalent to the leave-one-out strategy), of equal sizes (if possible). The prediction function is learned using k -1 folds, and the fold left out is used for testing. The overall performance of a method is illustrated by the aggregated performance of the k models through the average and variation of the desired evaluation metrics. As a rule of thumb, k = 5 is often employed in practice which keeps consistent with the usual 80 / 20 train / test split.

IV.

IV.3.2 Qualitative

As opposed to classical step-based algorithms, where obtaining the expected output without any running errors is a sufficient indicator of a good execution, in the case of neural networks, they are failing silently.

Given their black-box nature, it is difficult to understand the "steps" taken by the model to obtain a certain result, therefore, the only way to gain some intuition about the reasoning behind an obtained results is to employ some qualitative validation methods that "look under the hood", like visualizing and assessing the learned filters or feature maps.

IV.3.2.1 Learned Filters

Visualizing what the convolutional filters learned can be done by simply visualizing the weights, but this is only usually feasible for the first CONV layer, where the filters are applied directly on the raw pixel data, therefore, those filters belong to the input space and share its dimensionality. The shallow filters often take the shape of edge detectors (i.e. Gabor filters) when trained on natural images [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF]. It is worth noting that those first filters were particularly informative in the case of big kernel sizes used historically, like 11 × 11 in AlexNet, but all current state-of-the-art CNN architectures have 3 × 3 kernels. Moreover, the filters coming from deeper CONV layers in the hierarchy, have multiple channels -on the order of tens or hundreds, making them impossible to interpret as is. Regardless, it is possible to also show a similar representation in the input space for the filters belonging to layers deeper in the network. One option is to iteratively test out which images in the dataset produce the highest activation of a certain filter and deduce the common triggering pattern by empirical observations and correlations on the retrieved images. In [START_REF] Zeiler | Visualizing and understanding convolutional networks[END_REF] they visualize the internal representations for an image via deconvolution, the input representation of each layer is projected back to the pixel space for understanding what information is kept.

Erhan et al. [START_REF] Erhan | Visualizing higher-layer features of a deep network[END_REF] proposes a filter activation maximization method that is completely agnostic to any input data. It produces synthetic images that would maximize the filters, making it a very powerful and straightforward qualitative interpretation method. Let Φ denote the neural network model and let f ul (Φ, x)) be the activation of a given unit u from a given layer l in the network; therefore, f ul is a function of both Φ and the input sample x. Φ is fixed as it represents the trained network, the problem can be formulated as an optimization problem, we are looking for the (synthetic) input x * that maximizes the activation.

x * = arg max

x f ul (Φ, x) with ||x|| = 1 (IV.16)
The procedure implies that for a given filter u from a given layer l, we first randomly initialize x to an image of size (w, h), then at every iteration, we compute the gradient of the activation of the unit with respect to x and make a step η in the gradient direction:

x ← x + η ∂f ul (Φ,x)

∂x

. The gradient updates are continued until convergence, i.e. until the activation function does not increase by much anymore. Note that after each gradient update, the current estimate is re-normalized to avoid very small and very large gradients and ensures a smooth gradient ascent process x ← x ||x|| . The process is then repeated for all the filters of all layers in the network, to obtain a complete picture of the trained network.

Learned filters are useful to visualize because well-trained networks usually display nice and smooth filters without any noisy patterns. Noisy patterns can be an indicator of a network that has not been trained for long enough, or possibly a very low regularization strength that may have led to overfitting.

Various visual examples of the learned filters obtained via this activation maximization method will be seen across this manuscript as we have used this framework systematically for model validation and disambiguisation.

IV.3.2.2 Attention Maps

Feature maps, or activation maps, are resulting from applying a certain convolutional filter on an input image. While they indeed reveal the localized abundance of the features encoded by the filter, they do not tell us anything about the importance of that feature in the final prediction. In order to make this connection, the relation between the filter and the output needs to be established; this is done by combining the activation map with the gradient flowing into it from the class output, implemented via the method Gradient Weighted Class Attention Map [START_REF] Selvaraju | Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization[END_REF] (Grad-CAM). It produces a heatmap corresponding to the aggregated filters in a convolutional layer highlighting the areas contributing the most to a certain output. In the classification context, those areas should correspond to class-discriminative features for a well-trained model.

The method implies first obtaining the activation map cube A of a convolutional layer with n filters via the forward pass on a chosen input image through the network. Then, the gradients flowing back from the prediction of the output class y are computed with respect to each feature map activation A n in the given layer ∂y ∂A n . These gradients are global average pooled over the spatial dimensions (indexed by i and j) to obtain the filter importance weight w n . Finally, the class activation map is obtained from the weighted combination of the forward activation maps A n and their importance w n .

w n = ij ∂y ∂A n ij (IV.17) M + = max 0, n w n A n (IV.18) M -= | min 0, n w n A n | (IV.19)
In standard practice, a ReLU function, i.e. max(0, •), is applied to the linear combination of maps to consider only the features which have a positive influence on the class of interest, i.e. pixels whose intensity should be increased in order to increase y. However, by performing the inverse operation we could obtain the strongest evidence against the target class y. See Figure IV.5 for a depiction of the method.

The result in a coarse heatmap of the same size as the convolutional feature maps, therefore a much reduced resolution as compared with the one of the original image, e.g. by a factor of 16 for the last layer of a VGG-16 architecture.

In the present work, we shall use attention maps computed via the Grad-CAM method to apprehend both positive evidence M + and negative evidence M -to gain intuition about the trained models and ensure they are unbiased by localizing the structures of interest.

Chapter V Healthy vs. Malignant Classification with

Dense Label Supervision

After having presented the working datasets and briefly introducing the theoretical aspects of DL methods, together with the challenges and requirements imposed by both the imaging and the methodology, we shall dive into their application.

In this chapter we are touching to multiple aspects of the FFOCT and DCI imaging -both the processed images and the raw dynamic signal in the common purpose of cancer detection, formulated as binary classification between healthy and malignant instances. Being in the well-posed setting of dense annotations, we can leverage various fully supervised learning approaches. Correlated with the chronology of the technological developments of the imaging technique, we present a pioneering application which acts as a proof of concept on the feasibility of using automated aidto-diagnosis for our unique imaging. It corresponds to the detection of basal cell carcinoma (BCC), a sub-type of non-melanoma skin cancer, which is homogeneous and easy to discriminate from normal tissue, especially in FFOCT. In Section III.2.1 we have expanded on pathology and the motivation of using rapid FFOCT imaging during the clinical act of removing skin tumors (i.e. Mohs surgery), as well as details about the collected dataset itself and the processing steps. In this section we discuss the details about the method chosen to detect BCC from normal skin in FFOCT images as well as the results obtained.

Contents

In the field of dermatology, most automated diagnosis applications are on macroscopic mole-like lesions, however, unique imagining techniques are used more and more.

In the last decade, neural networks conquered this field, with [START_REF] Esteva | Dermatologist-level classification of skin cancer with deep neural networks[END_REF], which classifies cancerous lesions from macro images of the skin surface with an above-human performance. Still, to our knowledge, at the point of our published work [Mandache2018] detailed in this section, there was almost no research in automatic diagnosing for the FFOCT modality, let alone using deep learning methods.

V.1.1 Architecture

We started by experimenting with some popular architectures like VGG-16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] or InceptionV3 [START_REF] Szegedy | Rethinking the Inception Architecture for Computer Vision[END_REF] which already power many imaging applications in various fields. What is more, we use the models which have been pre-trained on the huge ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF] database, as it is supposed to help improve the results due to the amount of information already encoded in the weights, offering a more stable starting point for learning, as opposed to random initialization. By fine-tuning these state-of-the-art architectures we obtained an accuracy of 89.30% and 90.79%, respectively, which we deem to be unsatisfying results

given the reductive problem formulation (very dense and high confidence annotations, small size input i.e. 256 × 256 patches) and given the early overfitting phenomenon. Overfitting (i.e. "memorizing" training data, rather than learning to generalize) was quite important and was fast to appear, therefore, we inferred that those architectures were too deep and complex for our data distribution and that data over-specification caused overfitting. We thus decided to build a custom architecture, shallower (i.e.

having less layers and therefore weights to train) and with adapted receptive fields (and kernel sizes in consequence) which we shall train from scratch, resulting in a model that is able to learn a generalized distribution of our data, with respect to our two classes, normal and BCC.

The 

V.1.2 Training

The network has in total 8 654 369 parameters to train, more than 97.3% of the total parameters belong to the classifier part (i.e. fully connected layers), while only 2.7% represent the filters encoding the features, this corresponds to 232 417 meaning 60× less than VGG-16. The weights are initialized using the Glorot method [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF] which is based on the idea that the gradients of each layer should follow more or less the same distribution at the beginning of training and it is proven to converge faster and towards a "better" minimum. The training process consists in minimizing a weighted variant of the Binary Cross Entropy (BCE) [START_REF] Mannor | The cross entropy method for classification[END_REF] loss. When computing it, class weighting applies a higher penalization for misclassifying cancerous class with respect to the under representation of the minority class:

1 ÷ 1.2
(there is 1 normal sample for 1.2 cancerous samples).

L(y, ŷ) = -w p • y • log(ŷ) -w n • (1 -y) • log(1 -ŷ) (V.1)
Learning is possible using a gradient decent optimization algorithm, for our application Adaptive Moment Estimation (Adam) [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] worked best. Adam is one of the adaptive methods of gradient descent whose particularity is that they adapt the learning rate (i.e. step of the descent) to the parameters, performing larger updates for infrequent parameters (i.e. the ones which were rarely updated) and smaller updates for frequent ones. Adam also multiplies the learning rate by the momentum (i.e. average of the previous gradients) providing accelerated optimization. The mini-batch gradient descent approach is a trade-off between computational accuracy and convergence time, so between batch (entire dataset) and stochastic (one example at a time) gradient descent. We chose a mini-batch of 40 samples as it was the biggest size that respected the memory constraints.

Training time was about a day (25 hours and 17 minutes) on an Nvidia Tesla P100 GPU for 2000 epochs (45 seconds per epoch).

V.1.3 Results

We obtained a classification accuracy of 95.93%, corresponding to a sensitivity of 95.2% and 96.54%

in specificity at patch level. Figure V.2 shows a comparison between the ground truth labeling and the patches classified with our method. We notice that the cancerous regions are coarsely detected and, interestingly, the abnormal tissue that was unlabeled (so unknown to the network during training) is classified as BCC. Note that background removal was not performed when testing, however, the method doesn't detect any abnormality outside the sample.

However, caution should be taken with the statistical results which can be misleading in interpreting the overall efficiency of the method and its behavior with different data. Since artificial neural networks are black-box models, gaining an intuition about the reasoning performed by the network is not straightforward. To do that we visualize what the network is learning. This is possible by viewing the weights of the neurons which correspond to the convolutional filters, but since they are very small, the textures encoded are not easily deductible. Still, to get the texture that a filter is responsive to, we can visualize the simulated input that would maximize the activation of its corresponding neurons. This is achieved by performing gradient ascent in the input space with respect to the filter activation loss (see Section IV.3.2

for more details on the method's formalism). In 

V.1.4 Discussion

In this work we trained a CNN in the purpose of discriminating basal cell carcinoma from normal skin. We show preliminary results that open a promising research direction, which is analyzing FFOCT images with the powerful methods of deep learning. Developing computer-aided diagnosis tools could ease the integration of this novel "optical biopsy" in the clinical environment by assisting pathologists in their familiarization with the new modality and, ultimately, it could reduce the costs and duration of certain medical procedures, like Mohs surgery.

To improve our results we will firstly need a more consistent data set and also a better understanding of the decision flow of the pathologists in diagnosing the samples. This would allow us to translate the knowledge of an expert to artificial neural networks design, still, in the present work we gave some hints on how to include a priori knowledge about the data and problem into the design of a CNN architecture.

Another introduced idea is that, in order to accurately assess the efficiency of such a model, we need to understand the reasoning learned by the machine. Therefore, we are ambitiously aiming towards demystifying artificial neural networks in the hope of also gaining knowledge about the data sets.

V.2 Normal vs. Breast Tumor from DCI Signal

Our analysis evolves together with the technique and, as DCI emerged as the counterpart of FFOCT, we are focusing on decrypting the DCI raw dynamic signal. In the scope of this work, we employ a source separation method in order to decouple the spatial and temporal information from the interferoemtric signal. However, since there is no ground truth at this level, we try to validate the decomposition by correlating with the known diagnostics on one of the datasets (Section III.2.2.1). In order to probe the importance of the metabolic signal revealed by DCI imaging, we will only take into account the dynamical profiles found in each FOV, and use them as a features towards classifying cancerous and normal tissue by exploring multiple tree-based models.

V.2.1 Feature Extraction

The motivation towards isolating different structures in the dynamic stack came from the prior intuition that there were multiple behaviors present: combined signals from the sample and perturbations (e.g.

vibrations of the setup), multiple types of scatterers in the tissue (e.g. mitochondria and collagen), multiple sources of signal in one pixel (e.g. superposition of fiber and cell) or even at a lower scale, given the resolution of 1 µm, different biological phenomena firing inside the cells at organelle level.

Therefore, a blind source separation approach is appropriate for tackling this problem. Suitably, we employed the Non-Negative Matrix Factorization (NMF) method for its highly interpretable results by virtue of its positivity constraint leading to part-based decomposition.

V.2.1.1 Dynamic Signal Representation

In order to extract the pertinent metabolic information and remove the incoherent part of the signal the raw interferometric (time) domain is transformed to the frequency domain. Starting with 1000 frames acquired at 150 Hz the next steps are performed per FOV: 1) normalize frame to constant energy to remove frame-to-frame inconsistencies introduced by the acquisition;

2) average the frames by groups of 2 to attenuate noise, obtaining 500 frames pseudo-acquired at 75 Hz;

3) pass to frequency domain with pixel-wise FFT obtaining 250 frequency maps with a step of 0.15 Hz (with respect to the Nyquist limit); 4) normalize FFT by its norm L 1 ;

5) pass to logarithmic scale to compensate the skewness of the amplitude towards low frequencies.

This results in a 1440 × 1440 × 250 frequency stack holding both spatial and dynamical information which we will further decouple via source separation.

V.2.1.2 Non-negative Matrix Factorization

Introduced by Paatero et al. [START_REF] Paatero | Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[END_REF], and popularized by Lee et al. [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF], NMF is successfully used in many domains [START_REF] Cichocki | Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation[END_REF]: hyperspectral imaging, audio source separation, topic modeling, face recognition, furthermore, biomedical domain where it gives excellent results in stain separation [START_REF] Vahadane | Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images[END_REF] and is used to segment cells in calcium imaging [START_REF] Maruyama | Detecting cells using non-negative matrix factorization on calcium imaging data[END_REF]. NMF formulates a feasible model for learning object parts, relevant to perception mechanism [START_REF] Ullman | High-level vision: object recognition and visual cognition[END_REF].

The purpose of NMF is factorizing a data matrix X ∈ R n×d into two low-rank positive matrices H ∈ R k×d and W ∈ R n×k representing the extracted feature basis and its corresponding activation, respectively: X ≈ W • H, where n is the number of data points, d the dimension of each data point and k the number of chosen components to split into. Finding the two composing matrices is achieved by minimizing the error (e.g. squared Frobenius norm -sum of squares) between the original data matrix and the result of the factorization: min W ≥0,H≥0 ∥X -W • H∥ 2 F . Regularization can also be enforced on both matrices to introduce some prior knowledge into the model, like sparsity assumption e.g. 1) assuming there is a small number of components contributing to a data point through L 1 penalty on W or 2) piece-wise smoothness through L 2 regularization that would imply that neighboring data points (pixels) are more likely to be characterized by the same components (if L 2 is applied to W ). To solve this optimization problem the algorithm of multiplicative update [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF] is used; it updates alternatively and iteratively for W and H in the direction of the gradient until convergence.

The NMF algorithm was applied individually on the flattened frequency cube of each DCI FOV, passing from 1440 × 1440 × 250 to 2 073 600 × 250, so the spectrum of each pixel in the cube is treated as an individual data point, disregarding the spatial configuration. One drawback of NMF is the empirical choice of the rank of factorization k; it can be set using some prior knowledge about the data together with trial and error experiments. Given the lack of a validation metric, the optimal heuristic choice of rank k = 5 was based on qualitative assessment of activation maps and energy of frequency components. Accordingly, there were obtained frequency signatures H ∈ R 5×250 and their corresponding spatial activations W ∈ R 1440×1440×5 (see Figure V.4 for the feature extraction pipeline). The revealed components correspond to:

• baseline signal: noise level of the signal, almost flat spectrum suggesting the FT of white Gaussian noise;

• fibers: high magnitude spectral components with its corresponding fiber-like structures in the spatial component;

• sampling induced error: the peak apparent in the last f bin corresponds to the energy at the Nyquist frequency which seems to not be useful in practice;

• cells: cell shapes revealed in the spatial localization;

• motion artifacts: noisy frequency component with peaks in the higher part of the spectrum and spatial activation in the highly reflective fibers are clear indicators of a phase modulation of the DCI signal induced by external motion.

While they seem to offer proper signal separation further validation through biological experimentation needs to be conducted. 

V.2.2 Training

Training a single decision tree can be limiting in the sense that simple trees will have a large bias (oversimplification of the model -underfitting) while complex trees will display a large variance (lack of generalization -overfitting). The bias-variance trade-off is improved by ensemble methods, so combining multiple decision trees (weak classifier) towards building a stronger classifies. There are two main approaches: bagging [START_REF] Breiman | Bagging predictors[END_REF], which consists in independently training multiple trees on random subsamples of data points and/or features and then aggregating their predictions by a voting mechanism and boosting [START_REF] Freund | A Short Introduction to Boosting[END_REF] which incrementally trains trees on samples previously misclassified. In the proposed work, multiple tree-based classifiers were tested, from the simplest (single Decision Tree) to the more complex ensemble methods i.e. bagged trees (Random Forest, Extra Trees) or boosted (Adaptive Boosting, Gradient Boosting).

The splitting of the dataset into trainset and testset was done in a stratified manner, meaning that the class proportionality of the whole dataset was kept. Also, to tackle the class imbalance (thus, avoiding learning a biased model and also having clear interpretable performance metrics) an oversampling of the minority class (i.e. the normal class) was performed: for the train set we applied the SMOTE [START_REF] Chawla | SMOTE: Synthetic minority oversampling technique[END_REF] algorithm which generates synthetic samples from interpolation and for the validation set we only applied random oversampling to avoid introducing any ambiguity in the performance metrics. 

V.2.3 Results

We trained multiple tree-based models using 4-fold cross validation: 75% of the samples for training (286 samples: 174 cancerous, 112 normal) and 25% for validation (96 samples: 58 cancerous, 38 normal). Only the lower half of spectrum (up to f bin = 120) was considered since there was observed that the higher part of the spectrum has low SNR, hence overfitting on noise is avoided. Take note of some of the most important hyperparameters chosen: maximum tree depth = 10 (for bagging ensembles and simple decision tree) or 1 (for boosting models), number of trees in ensembles = 100. Table V.1 presents the classification metrics obtained. The model with the best generalization power proves to be AdaBoost, this can be deduced by the fact that it obtains the best accuracy, while also keeping consistency between train and test metrics. We also notice a lower specificity compared to the sensitivity which is due to the under-representation of the normal class in our dataset. The results are promising, being comparable with the other sensing-based non-invasive margin assessment techniques [START_REF] Maloney | Review of methods for intraoperative margin detection for breast conserving surgery[END_REF].

V.2.4 Feature Importance

As one of the main motivations for choosing this type of models was their semantic interpetability, we are looking at the most discriminating features as established by the best-performing algorithm (AdaBoost).

They are highlighted in Figure V.7, plotted over the average components of the whole dataset. Feature importance is calculated for each attribute in a decision tree as the amount by which the split points over the considered attribute improve the performance measure. Then, for each feature, its importance is averaged over all the trees of the ensemble. In other words, for the given situation, feature importance is the ability and contritbution of an attribute (here frequency bin in a NMF component) to discriminate towards normal or cancerous class.

We observe the following frequencies appearing: the peak at frequency f=2.1 Hz corresponding to an oscillation time T=0.5 s for to the cell component, as well as the lower part of the spectrum corresponding to the more static fiber components f=0.15-0.6 Hz, T=2-6 s. However, for the peaks in the vicinity of f=4.2 Hz and 9 Hz we intend to further investigate their corresponding spatial maps to characterize their nature, but based on our preliminary observations we believe they correspond to vibration artifacts due to external nuisance.

V.2.5 Discussion

In this section, we test the feasibility of employing a blind source separation technique, namely NMF, to better extract the signal coming from different types of moving scatters in breast tissue imaged with the DCI technique in an interpretable and quantifiable way that can overcome the noise and motion artifacts. Here we used NMF decomposition to classify between cancerous and normal FOVs with 70.91% accuracy and we revealed some salient frequencies, but based on these results we conclude that the dynamic signal alone (therefore treating the scanner more like a sensing device than an imaging device) is not enough for diagnosis.

We believe NMF is a promising direction worth exploring for future research as it could help in better characterizing and understanding the dynamic signal. For example, applying a scaled-up NMF algorithm on more FOVs at a time could achieve separation between cell types by revealing some more meaningful frequency signatures, as well as better defining the noise producing image artifacts in order to design useful filtering methods. This approach could also lead to an improved image formation algorithm.

Another more ambitious application could be detecting the captured biological processes, however this would require a joint effort of data analysis and biological experimentation and hypothesis testing.

However, these directions are out of the scope of this thesis, not to mention that the raw signal is not stored in routine practice as it burdens the other processes which are already carefully optimized for leveraging efficiently the computation resources needed for fast acquisition. We will further focus on diagnosis based on the processed DCI images as they are currently used and collected during the clinical studies.

V.3 Normal vs. Breast Tumor from DCI Images

We are looking at the same problematic of breast cancer vs. normal tissue characterization as in the previous section, but this time based on the processed DCI images. In this purpose we explore, as in the earlier application on skin cancer detection from FFOCT images in Section V.1, a purely data-driven approach facilitated by the Deep Learning paradigm. However, for this application we are facing with a more complex problem due to the increased difficulty of the pathology itself (multiple breast cancer subtypes as opposed to one sub-type of skin cancer, i.e. BCC), but also of the imaging (DCI vs. FFOCT)

and the dataset at hand, namely the annotation level (FOV or millimeter vs. pixel or micrometer).

To overcome these drawbacks we notice through multiple unsuccessful experiments that training from scratch is not possible in this case, therefore we shall leverage a pre-trained model. In [START_REF] Chahal | Small Data's Big AI Potential[END_REF] they have found through extensive literature review that transfer learning knew a surge in usage showing its efficiency on small datasets. Therefore, we decide to use ImageNet as pre-training database as it is uncomparably richer than any medical dataset. Moreover, initialization with ImageNet was proven to be about 15% more efficient compared to other specific datasets in the case of breast cancer H&E histology [START_REF] Kohl | Assessment of Breast Cancer Histology Using Densely Connected Convolutional Networks[END_REF]. Thereupon we tested several state-of-the-art architectures (previously trained on ImageNet) as backbones like VGG16, InceptionV3, ResNet50, but also more complex information flow networks like SENet [START_REF] Hu | Squeeze-and-Excitation Networks[END_REF]. We prefer fine-tuning as opposed to just transfer learning in order to stay consistent with our secondary objective which is, besides diagnosis, trying to decode the imaging and consequently learning adapted features. Once again simplicity takes the stage with VGG16 performing best among the named architectures; in the next section we describe all the network design details and the reasoning behind.

V.3.1 Architecture

The CNN architecture is similar to the VGG16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] architecture with weights pre-trained on the Im-ageNet dataset [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF], but with small modifications. We removed the classifier part and added a Global Average Pooling (GAP) layer followed by a fully-connected layer of 1024 neurons and an output neuron with sigmoid activation. The GAP layer allows network inputs of different sizes since it reduces each activation map of the last layer to a single value representing the mean excitation of the corresponding neural kernel over the entire input image, losing the spatial dimension. It results in a 512-dimensional (as the last convolutional layer has 512 filters) vector bottleneck between the feature extracting convolutional layers and the dense classifier layers. Using GAP in CNNs can be seen as the deep learning flavor of dictionary learning, where each learned filter encodes a concept (or visual word in the dictionary) and the GAP encodes the input representation in the dictionary space as the coefficients associated with each word i.e. marking the presence, absence or abundance. Another advantage of GAP is the reduction of network parameters, acting as a structural regularizer [START_REF] Richter | Should You Go Deeper? Optimizing Convolutional Neural Network Architectures without Training[END_REF], which improves generalization and is particularly useful in the case of small scale data sets. Following the same reasoning we chose only one fully-connected layer. In terms of the receptive field size, the embedding layer covers features of 212 × 212 which is enough to enclose an entire lobule in cross-section [START_REF] Apou | Detection of lobular structures in normal breast tissue[END_REF].

With the presented configuration we obtain a network with approximately 15M parameters of which only 500K correspond to the classifier and the rest to the pre-trained weights, meaning that less than 4% parameters are trained from scratch, which could help convergence on the limited dataset.

V.3.2 Training

The network was trained on full resolution 1440 × 1440 × 3 RGB fields of view with binary labels indicating the presence or absence of tumorous tissue, obtained from the pathologist's refined annotation per ROI. An important detail is that in tumorous ROIs, there might be portions of the image resembling healthy tissue.

The network was fine-tuned by minimizing the binary cross-entropy loss using the stochastic gradient descent (SGD) optimizer with a learning rate of 1e-4 and momentum of 0.8 on mini-batches of size 3

(due to memory constraints).

In order to validate the method and ensure model correctness, we ran negative). To compensate for the class imbalance, an importance penalization of the loss function was applied for each ROI, which is also known in the literature as class weight. In our case the healthy ROIs are less numerous so they will have a higher weight (i.e. 1.5 for healthy ROIs and 0.75 for cancerous ROIs).

In terms of data augmentation i.e. artificially increasing the number of data points by applying relevant transformations to the existing data, for this application we applied contrast stretching, with 3 look up tables per image, together with vertical and horizontal flips, which expanded the training set by up to 6 times.

Since we opted for fine-tuning, training time is significantly reduced compared to a training from scratch approach: consequently the phenomenon of overfitting occurs much faster. To avoid training beyond the optimal model, we have set two stopping conditions: (i) validation loss has not improved in the last 100 epochs or (ii) training accuracy has already reached 100%. With this, training lasts around 200 epochs and the optimal model is found somewhere between epoch 80 and 150 (depending on the fold i.e. the data split). Training time is around 6.5 minutes per epoch, and 20 hours per experiment. Thus conducting a 5-fold cross-validation experiment took around two and a half days (64 hours); note that in these delays we also included the lag introduced by logging performance metrics, as well as the overhead introduced by reading the image batches from the disk, and not only training (i.e. forward and backward propagation). Experiment tracking was made possible with the software Neptune (Neptune.ai), which helped organize and compare the performance of over 200 experiments conducted for this project, therefore allowing us to choose the optimal hyperparameters in an exploratory fashion.

V.3.3 Quantitative Results

ROI-level CV metrics

With a probability cutoff set to the standard threshold of 50% for ROI diagnosis, we obtained a per-ROI accuracy of 89 ± 4% which corresponds to 88 ± 4% sensitivity and 86 ± 6% specificity. Another metric that is worth mentioning, due to its lack of dependence on the probability threshold, is the area under the ROC curve (AUC), which is equal to 0.92 ± 0.02 (See Figure V.3.3).

Sample-level aggregation strategy

To aggregate the per-ROI predictions to a global per-sample diagnosis, assigning the maximum tumor probability prediction to the sample would be the most straightforward approach. This would translate to "if a sample contains at least one ROI with a tumor, then the sample is cancerous". This approach is however overly sensitive to outliers. On the other hand, the average or median are not suitable either because a bimodal distribution is expected (i.e. a sample most likely contains both healthy and tumorous FOVs), in other words small tumorous areas would be missed, or cancel out good prediction. Therefore, we turn to a statistical strategy and chose the 90 th percentile as a good trade-off between the mean and the maximum aggregations. This would translate into the predicted probability value that 90% of the 

Sample-level CV metrics

Accordingly, we compute the average and standard deviation over the 5 folds at sample level obtaining accuracy of 94 ± 5%, sensitivity 95 ± 10%, specificity 80 ± 24% and ROC AUC 0.96 ± 0.05. We notice a increase in accuracy and sensitivity and a slight decrease in specificity due to the strategy itself.

The high variation of specificity over folds is due to the under representation of the negative class in the dataset which becomes more dramatic for each fold i.e. there are only a couple of negative samples per fold, i.e. one false positive would result in 50% sensitivity.

Comparison with pathologist performance

In order to remove the ambiguity related to data splits and have a clearer snapshot of the performance on the entire dataset, we compute per sample performance on the collated test sets predictions and obtain 94% accuracy, 97% sensitivity, 85% specificity and a ROC AUC of 0.96, which are actually caused by only 1 false positive and 2 false negatives. By virtue of this computation we can now directly compare with the pathologist performance during the blind review. In Table V.3.3 we can observe that the algorithm performs better than the average of the pathologists with an increase of 2 to 4 percentage points. Moreover, in terms of accuracy and sensitivity the CNN performs much better than the respective best performance of the pathologists. For specificity, the pathologist P1 -who correctly diagnosed the most normal samples -manages to surpass the automated diagnosis, however it is worth considering that there is already an important disagreement between the two pathologists, with a performance gap of 17 points. Nonetheless, when we look at the sample count the differences seem less significant, as P1 misses 1, while P2 misses 3 and algorithm misses 2 out of the 13 negative samples.

Discussion

The detailed results containing the predictions for all ROIs in all samples (including the ones not included in the metrics due to their absent or uncertain ground truth) as well as the global predicted probability per sample are plotted in Figure V.9. There are highlighted with a square frame the 6 samples which were misclassified by (at least one of) the pathologists; 3 of those were actually correctly predicted by our models, while the other 3 are the only samples missed by the algorithm. This aspect can suggest that our trained neural network manages to encode expert level knowledge that mimics clinical reasoning. Another interesting aspect that could be noticed in the Figure V.9 is that the predictions on the ROIs having absent or uncertain labels do not change the outcome of the diagnosis, showing model robustness to difficult or ambiguous aspect of tissue under DCI imaging.

V.3.4 Qualitative Validation

Due to the black-box nature of deep neural networks and the sensitive application in medical diagnosis, we wish to establish confidence in the prediction based on visual feedback rather than just performance metrics, and to verify that the model's decision is not biased.

V.3.4.1 Class-wise Filter Bases with Linear Classifier

We recall that one of our main objectives was learning an adapted feature base, proper to tissue appearance under DCI imaging. In order fulfill this requirement, an end-to-end training was employed; however, to validate the extent of the features fidelity both to the data and the task, we need to adopt some strategies for demystifying the trained model. While the feature extracting convolutional layers are more straightforward to interpret (See Section IV.3.2), the classifiers on the other hand are much more opaque. Classifiers are most frequently (this application included) coded with fully connected layers which implies that all the inputs from one layer are connected to every activation unit of the next layer.

Given the high dimensionality (e.g. 1024) of such layers and the dense information recombination, the showing that we trained a model that generalizes well.

Domain-specific vs. task-specific layers

Secondly, we reproduce this experiment for each convolutional layer in VGG16, aiming to find the diagnosis capacity of both the shallower and deeper layers. In this scope, we shall extract the data embedding from each convolutional layer by applying a GAP operation and then train a LogReg model on those features. Similarly, we compare the performance with the results obtained with the corresponding layer trained on a generic dataset. We can see in Figure V.10 the evolution of the ROC AUC metric as we go deeper in the network, as expected, the deeper the layers the most classification power they have, however the ImageNet-based features share a performance plateau between mid-level and high-level features, while for the adapted high-level features, the evolution of performance is conspicuous. Based on this experiment, we can infer that in our learned CNN model, the last 3 CONV layers encode taskspecific features, while the other layers encode more generic domain-specific layers. This information could be used in the future in the case of extending this model to new tasks, as it would help to know which layers to continue training to adapt for the new task. 

Class-wise filter bases

Given the good performance of logistic regression, we can say that the data is linearly separable in the learned feature space, therefore we can deduce that there are two quasi distinct feature bases describing cancerous and normal tissue. For the last application in this experiment, we look at the coefficients of the features in the learned decision function, or, in other words, the feature importance. In 

V.3.4.2 Enlarged Nucleoli as Cancer Biomarker in DCI Imaging

The previous experiment where we discover class-specific textures belongs to our quest of finding cancer biomarkers proper to DCI images. They seem to be generic texture on cell organization, they do not bring any new insights but come to confirm our understanding of the appearance of breast tissue in DCI. However, during our multiple experiments in search for the suitable hyperparameters and training strategies, we have noticed an interesting phenomenon, namely that a trained model with suboptimal diagnosis performance had learned some smooth information-bearing filters, which is not what is expected from an overfitted model, but rather noisy filters. This occurred when using the Adam optimizer, which is an adaptive gradient decent with momentum estimation. In other words, compared to the SGD optimizer that was finally used in the present work, Adam adapts the learning rate iteratively to the parameters performing small updates for frequently occurring features and large updates for the rarest ones. Adam is used successfully in many application from the literature and it is seen as a "silver bullet" in the DL community since it does not require as much fine-tuning on the hyperparameters as fixed rate gradient descent methods, like SGD; there are however works showing adaptive optimization methods should be taken with a grain of salt [START_REF] Wilson | The marginal value of adaptive gradient methods in machine learning[END_REF] as they might converge to a suboptimal local minimum.

The interesting finding observed with this Adam-trained model was first observed in in the appearance of the learned filters (see Figure V.12 c) and confirmed by the input images (example in Figure V.12 b1) as driven by the attention maps (see Figure V.12 b2). We notice round cell-like structures encompassing one or more dark dots and due to the apparent size (few microns) of those black dots, we have strong reason to conclude that they correspond in fact to nucleoli.

The nucleolus, first documented in the 1830s, a composing organelle of the nucleus, it is a dense structure, packed with DNA (see Figure V.12 c). We know DNA absorbs light, i.e. appearing dark, property that comes to enforce out hypothesis that those dots are indeed nucleoli. The typical nucleolus boasts 2 to 5 nucleoli, ranging in size from 0.5 to 5 µm in diameter.

However, tumor cells have larger and more numerous nucleoli, which indicates intense protein synthesis by the cell. Moreover, high nucleolar frequency and multiple nucleoli correlate with high mitotic rate in breast cancer [START_REF] Helpap | Nucleolar grading of breast cancer -Comparative studies on frequency and localization of nucleoli and histology, stage, hormonal receptor status and lectin histochemistry[END_REF], and mitotic rate is one of the main markers for grading the severity of multiple types of cancers. As a matter of fact, a strong correlation between nucleolar morphology and cancer was recognized by pathologists over 100 years ago, when it was first observed that large and abnormal nucleoli were common in cancer cells [START_REF] Quin | Targeting the nucleolus for cancer intervention[END_REF][START_REF] Yan | The nucleolar aspect of breast cancer[END_REF] and allegedly, the most well documented cytological changes in cancers occur in the nucleolus [START_REF] Derenzini | What the nucleolus says to a tumour pathologist[END_REF]. Therefore, prominent nucleoli are now a widely used diagnostic marker of human cancers [START_REF] Pezo | Nuclear microenvironments in cancer diagnosis and treatment[END_REF] and there are even arising automatic methods for the detection of prominent nucleoli [162].

Based on these experimental findings and literature research, we are strongly advocating for the importance of further biological investigation on the appearance of nucleoli in DCI imaging, as they bear important therapeutic potential. An interesting aspect is the differences of nucleoli analysis in classical H&E vs. DCI imaging; in H&E they would need to be counted and measured to be deemed as abnormal -which is tedious task but, on the other hand, in DCI only their proliferating quality is apparent, as normal nuclei seem to fall below the diffraction limit (at least for the give breast dataset). Consequently, we suggest considering hyper-proliferating nucleoli as a viable cancer biomarker in DCI imaging.

V.3.4.3 Localizing Tumors and Normal Structures with Attention Maps

In the previous experiments we primarily looked at the learned patterns that the CONV layers respond to, but as it was presented in Section IV.3.2, this is not the only tool to look under the hood of CNNs.

Another powerful method is visualizing the so called attention maps, which are heatmaps highlighting the areas in a specific input image by their levels of contribution to an output (i.e. class).

In practice, we used an extended variant of the Gradient-weighted Class Activation Mapping (Grad-CAM) [START_REF] Selvaraju | Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization[END_REF] method. Originally this method displays the activation maps of all the filters from a given convolutional layer -usually the last one, as it holds the most task-specific information -modulated by the back-propagated positive gradient flowing from a certain output node (i.e class) to that layer.

However, as we are dealing with a binary case and only one output neuron, we are looking at the This results in a coarse localization of the evidence of the class presence and absence, respectively, in a given input ROI image. without the need for annotation at smaller scale. We say the attention map is only a coarse localization due to the fact that the corresponding layer activation maps based on which it is calculated, have a highly reduced spatial resolution as compared to the input resolution; here the image resolution is 1440 × 1440 px while the activation maps of the last CONV block undergoes a 16-fold downsampling, measuring 90 × 90 px.

Therefore, we compute tumor class positive and negative attention maps and analyse them observing that they predominantly show either cancerous cells invading the stroma, or healthy lobules and ducts, as confirmed by the pathologist's assessment (see Figure V.13). Visualizing these attention maps can serve multiple purposes, including verifying that the model is not biased or drawing attention to specific parts of the image that can assist the surgeon in rapid analysis of the sample, this is particularly useful for larger wide-field images of entire biopsies. 

V.3.5 Streamlined Localization Architecture for Easy Deployment

In this section we shall leverage the attention maps to generate annotation masks for tumor and normal class, respectively, then train an image segmentation architecture on this auto-generated ground truth.

The obtained attention maps were confronted against and the prior interpretation of the pathologist on several interesting FOVS, especially those that contained both normal and cancerous structures. As the attention maps showed strong agreement with the pathologist's reading, we have thus decided that it is pertinent to leverage this coarse localization to guide a segmentation model. To pursue this we transformed the attention maps into segmentation mask which would serve as ground truth for training a U-Net [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF] built by merging the network already trained on the classification task and adding a decoder branch. See Figure V.14 for more details on the architecture. The pre-trained branch is "frozen" meaning that we are building upon the classification features and there are only the parameters of the decoder left to train (∼ 9M parameters).

Noting that there is no high-confidence ground truth available for segmentation, the processing steps of converting the attention maps into segmentation mask, as well as the choice of the loss to optimize were guided by two aspects: (i) the substantially lower resolution of the heatmaps as opposed to image resolution and (ii) GradCAM's documented weak point that it usually captures only the most discriminating part of the classified object or only one instance of the object.

The attention maps were upscaled to the input size using bilinear interpolation, followed by Otsu thresholding, morphological dilation with a circular structuring element of radius r = 15, and Gaussian filtering with σ = 15 to account for the uncertainty on the boundaries. We also zeroed out the tumor-positive attention maps for normal samples, knowing there are no tumor cells present in normal FOVs, but there could be several healthy structures present in cancerous FOVs. Accordingly, for each input image two segmentation masks were generated, allegedly corresponding to normal breast tissue structures and tumoral cell clusters, respectively.

We train the decoder by minimizing Tversky loss [START_REF] Salehi | Tversky loss function for image segmentation using 3D fully convolutional deep networks[END_REF] using Adam optimizer with a rate of lr = 1e-4.

The Tversky loss is defined as:

L Tversky = 1 - T P T P + αF N + βF P (V.2)
The loss, which is a generalization of the more popular Dice loss that introduces unbalanced penalization of classes vs background. The penalization parameter α = 0.6 (chosen from literature), meaning that false positives (FP) are penalized higher than false negatives (FN) i.e. modeling the fact that we have high confidence in the "pre-segmentation" already obtained through GradCAM, but we encourage an extended segmentation of the entire areas of interest; by extension β = 1 -α = 0.4 relaxes the penalization on adding "new" pixels to the segmentation. Less parameters to train allow for a sightly bigger batch size of 5. Knowing that U-Net is generally fast to converge and our generated ground truth is not of 100% confidence, we stop training when the loss is stabilized, after 15 epochs.

Visually, the segmentation obtained is slightly finer and indeed including more cells, but we can not give a quantitative result at this point as the ground truth is not yet validated by a clinician. However, the main advantage of this approach resides in the quality of the model to combine the classification and segmentation tasks and to provide both diagnosis and localization. This end-to-end architecture benefits from an easy deployment capacity and it could ultimately serve for online training on the device side in the sense that clinicians could help improve the model with their immediate feedback i.e. producing annotations by correcting the model predictions.

V.4 Conclusion

To sum up, in this chapter we presented different applications based on data from different modalities -FFOCT, DCI signal and DCI processed images -and tissue types -skin and breast -but sharing the quality of being densely annotated -at pixel level or millimeter level. Therefore, we leveraged various supervised learning methodologies, all having as common denominator the same end goal: cancer detection, together with a strong focus on interpretability and validation strategies.

We have shown that building a custom CNN architecture can be beneficial in the case of well posed problems (in the sense of having a representative and adequately large training set to represent the problem) as adapting the filter kernel size (and receptive fields, respectively) or model depth and complexity can lead to increased performance. While, on the other hand, when dealing with smaller and more complex datasets using a pre-trained model is crucial.

In our exploratory work we did not take into account solely the performance metrics, but aimed to also gain insights from qualitative strategies to either validate the results or acquire new information. In this regard, we called to (i) feature importance derived from random forest based classifiers to highlight some salient oscillatory frequencies from the dynamic signal; (ii) simulated textures representing the learned features of CNN models to build class-specific feature bases and find cancer bio-markers for DCI modality; (iii) Grad-CAM algorithm to build class-specific attention maps and localize tissue structures in the input images.

To conclude, this section is a anthology of exploratory methods that can be employed to analyze FFOCT / DCI imaging under its different aspects. The insights gained from these applications will be further extended in the next section, where we tackle a scenario far more challenging, but which illustrates a real-world situation in terms of data complexity and availability.

Chapter VI Benign vs. Malignant Classification from

Global Diagnosis

In the previous chapter we presented a set of exploratory approaches for distinguishing tumor from normal tissue, in this regard we applied supervised learning with dense labels, i.e. all data points had an associated ground truth, however, this is an ideal setting that is difficult to reproduce in all real-world problems. As we have succinctly presented in Section III.1.2, specific medical annotation are expensive and labor intensive to obtain, nonetheless, in the case of clinical tissue assessment a histological report is always produced; it contains an overall description of the tissue architecture and cell aspect contributing to the diagnosis, hence training models directly on the information extracted from these reports would require no extra intervention from a medical expert to annotate the images.

Nonetheless, in addition to getting the global ground truth per subject, one has to remember the necessity of subsampling the images (see Section III.1.3), therefore the question that arises is how to extend the global label to the sampled image components (usually patches or ROIs). One way to tackle the problem is to assign the global label to all its sub parts and train using classical fully supervised algorithms, however the probability for the model to converge is inversely proportional with the amount of noise in the labels [START_REF] Natarajan | Cost-sensitive learning with noisy labels[END_REF]. We know that the label is not omnipresent, but on the contrary, it can be limited to a few cancer cells (on the order of hundreds of pixels) in a whole core-needle biopsy (on the order of a billion pixels). Therefore, a more adapted solution is using the multiple instance learning (MIL) framework, detailed in the next section, which integrates the assumption that the global label might not be apparent in all sub parts of the entity.

In this chapter, it is described how we adapt the MIL framework for our dataset of breast biopsies from Section III. The concept behind multiple instance learning (MIL) is not new, it was explored [START_REF] Keeler | Integrated Segmentation and Recognition of Hand-Printed Numerals[END_REF] in the 90's and the exact nomenclature was first used in 1997 by [START_REF] Dietterich | Solving the multiple instance problem with axisparallel rectangles[END_REF] to try and solve the problem of the chemists who could only determine if a molecule is qualified to make some drug or not, but they couldn't say exactly which of its states are responsible for that stability. Therefore, the paradigm came as a response to the need of formalizing incomplete knowledge or classifying heterogeneous groups. These mixed groups are generally defined in a binary manner under the assumption that negative groups only contain negative instances while positive groups can also contain negative instances and they should contain at least one positive instance, but the nature of the instances is unknown (see Figure VI.1).

This situation occurs often in the case of image classification, as there are few datasets with only one object type per image and they are carefully curated academic datasets, like MNIST [START_REF] Lecun | MNIST handwritten digit database[END_REF], CIFAR-100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] or Caltech-256 [START_REF] Griffin | Caltech-256 object category dataset[END_REF]. However, in real world settings this case seldom arises, for natural scenes but even less so for medical imaging [START_REF] Quellec | Multiple-Instance Learning for Medical Image and Video Analysis[END_REF] where the pathological zone represents just a fraction of the (healthy) anatomical context. Taking the case of histology, the tumor to tissue proportion is heavily skewed, for example in the CAMELYON [START_REF] Litjens | 1399 HE-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset[END_REF] dataset there is a median of 2% tumoral patches per slide (ranging from 70% down to even 0.01%) [START_REF] Liu | Detecting Cancer Metastases on Gigapixel Pathology Images[END_REF]. Therefore, the MIL paradigm fits the problem of gigapixel histopathology images, where the instances are represented by multiple sub-images (i.e.

patches) sampled from a bigger image like a WSI which would represent a bag.

VI.1.2 Method

There are two major flavors of algorithms for MIL [START_REF] Carbonneau | Multiple instance learning: A survey of problem characteristics and applications[END_REF]: instance-based and embedding-based algorithms. The term instance-based denotes that the algorithm attempts to find a set of representative instances based on an MIL assumption and classify future bags from these representatives. By contrast, embedding-based algorithms make no assumptions about the relationship between instance labels and bag labels, and instead try to extract instance-independent information about the bags in order to learn the concept, in other words, each bag is defined with a single relevant embedding and thus generic single instance classification algorithms can be used.

The purpose of any MIL application is to predict the label probability Ŷ ∈ P (for the binary case 

P = [0, 1]) for a bag of instances X = {x i |x i ∈ I, i = 1, N },

VI.1.3 Related Work

While there exist applications where a single input image is considered the bag and the pixels are considered to be the instances [START_REF] Durand | WELDON: Weakly supervised learning of deep convolutional neural networks[END_REF][START_REF] Sun | Multiple Instance Learning Convolutional Neural Networks for object recognition[END_REF] they are used for small-scale natural images. We are interested in the case where the instances are represented by multiple images sampled from a bigger image which would represent a bag. Even though these two perspectives revolve around the same key concept, they differ in implementation. In CHOWDER [START_REF] Courtiol | Classification and Disease Localization in Histopathology Using Only Global Labels: A Weakly-Supervised Approach[END_REF] they adapted the WELDON [START_REF] Durand | WELDON: Weakly supervised learning of deep convolutional neural networks[END_REF] method, consisting of a min-max aggregator, for WSI classification from image tiles. Since they use a non-specialized feature representation they obtain high variance of the model performance which is overcome with ensemble learning. This is only disclosed in a later work [START_REF] Dehaene | Self-Supervision Closes the Gap Between Weak and Strong Supervision in Histology[END_REF] where they employ a self supervised contrastive learning pre-training method based on [START_REF] He | Momentum Contrast for Unsupervised Visual Representation Learning[END_REF] in order to learn data specific features, instead of using the features extracted from ImageNet. In [START_REF] Li | Dual-stream Multiple Instance Learning Network for Whole Slide Image Classification with Self-supervised Contrastive Learning[END_REF] they also use contrastive learning as a helper task for pre-training the MIL feature extractor. Nonetheless, to our knowledge, there are no works that include the feature learning step in the MIL framework and thus learning a task specific embedding. In [START_REF] Sudharshan | Multiple instance learning for histopathological breast cancer image classification[END_REF],

while obtaining a good accuracy in breast cancer detection, they state the importance of also learning adapted features.

Attention based MIL framework using only slide labels -CLAM [START_REF] Lu | Data-efficient and weakly supervised computational pathology on whole-slide images[END_REF] and variant introducing a percentage of the instance labels [START_REF] Tourniaire | Attention-based Multiple Instance Learning with Mixed Supervision on the Camelyon16 Dataset[END_REF], while reaching high bag-level classification performance, they also provide instance-level attention scores. However, this notion of importance or attention is quite fuzzy and should be taken with a grain of salt as it is far from being equivalent to the actual patch prediction.

VI.1.4 Objectives

On our side, we are interested in the highest level of transparency since we are looking to build a tool that brings interpretability of DCI images and builds confidence in the imaging technique for the surgeons, radiologists or any clinical personnel potentially involved with rapid extemporaneous tissue analysis. As in all previous applications presented, we are still concerned about learning adapted features. With this in mind, we define the following requirements for our MIL approach for classifying malignant from benign breast biopsies in DCI images:

1. obtain adequate biopsy-level predictions;

2. infer adequate tile-level predictions;

3. learn an adapted feature base;

4. build a mutable model that can be easily extended.

Henceforth, to respect the requirements, in our application we are using the instance-based flavor of the MIL framework under a set of assumptions:

Assumption 1 All biopsies (i.e. samples) coming from the same nodule (i.e. inclusion) share the same diagnostic.

This assumption is needed at this incipient phase of the study in order to maximize the number of labeled data entities (bags). Despite being a weak assumption, its effects could be minimized by a richer dataset which would make up for the slightly noisy labels or, on the other hand, we could expect a sample-level annotation on DCI images, hence removing the ambiguity altogether.

The standard presence-based assumption [START_REF] Foulds | A Review of Multi-Instance Learning Assumptions[END_REF] on which MIL stands on is translated to our nomenclature as follows:

Assumption 2 There is at least one malignant patch (i.e. positive instance) in each malignant sample (i.e. positive bag).

Assumption 3 There are no malignant patches (i.e. positive instances) in the benign samples (i.e.

negative bags).

In the next sections we will show how to put these definitions into practice, namely how is the network architecture designed and then trained on the breast biopsies dataset (see Section III.2.2.2 for details on the dataset).

VI.2 Model

VI.2.1 Multi-branch Architecture

As we have seen, the majority of MIL methods applied to WSIs are embedding-based algorithms that focus on implementing different strategies for instance interaction and training a suitable classifier, with little to no focus on incorporating the actual feature extraction in the MIL training; this is mainly due to an unavailability of the computational resources demanded by such a framework. The feature extraction part of the model is either transferred from a state-of-the-art architecture trained on another dataset (e.g.

ResNet trained on ImageNet [START_REF] Courtiol | Deep learning-based classification of mesothelioma improves prediction of patient outcome[END_REF]) or trained on the dataset at hand on different helper tasks [START_REF] Pathak | Context Encoders: Feature Learning by Inpainting[END_REF].

However, to our knowledge, there are no applications that incorporate task-level feature learning in training under the MIL assumption.

Nonetheless, we can take advantage of the slightly reduced resolution of DCI imaging (compared to WSIs) and some pre-selection of pertinent information in them, as well as a previous model V. 3 

VI.2.2 Information Fusion with Global MIL Pooling

To come back to the two previously mentioned forms of MIL: the instance-based and embedding-based approaches, they translate into the multi-branch network architecture by the level at which the fusion takes place, in this regard, for the first case the bag output is obtained by aggregating the instancelevel outputs and for the latter the fusion happens at the instance feature vectors (See Figure VI.2). In other words, the same feature extraction network is applied on all instances in a bag, then the instance information could be somehow fusioned to a have a unified vector to represent a bag on top of which the bag-level classifier is added. However, by virtue of the usual black-box nature of the relationship between the intermediate fusion mechanism and the classifier, this method would not reveal interpretable insights about the instances themselves. Conversely, the whole network (feature extractor + classifier) could be applied on all instances, then a specific MIL pooling on the instance-level outputs is defined as to obtain the bag-level output; with this approach the predictions at instance-level can be directly inferred. As one of our top concerns when building the models is interpretability, we opt for the latter approach.

As for the MIL pooling, there are multiple strategies that could be adopted, as long as they follow two important requirements dictated by set theory (as each bag X respects the set properties). Firstly, the model output needs to be permutation-invariant meaning that its output needs to be independent from the ordering of the instances in a bag. Secondly, the model needs to accept any input size (as bags X could be of variable size, with a different number of instances) and be independent from the set abundance (in the sense that the number of instances should not affect the result either). Therefore

Φ aggregation needs to be permutation-invariant and independent from input size itself. The possible function to employ are maximum, average, distribution-based (i.e. quantile [START_REF] Couture | Multiple instance learning for heterogeneous images: Training a CNN for histopathology[END_REF]) or attention-based.

From a computational point of view, they can be equally applied under the two MIL paradigms, but conceptually, it would make less sense averaging the instance scores as compared to averaging the instance features, for example. Therefore, in our case, for aggregating over the instance scores in order to obtain the bag score Ŷ = Φ aggregation ( ŷi ), we turn to the maximum function, as it also respects perfectly the fundamental Assumptions 2 & 3.

We build a multi-branch architecture (Fig. 

VI.2.3 Weight Transfer, Sharing & Freezing

In our case, we can take advantage of the already trained model on a very similar dataset (see Section III.2.2.1) of the same modality, same organ and same pathology, but a different clinical setting, i.e.

surgery vs biopsy, which also leads to a difference in the negative class, i.e. healthy vs benign, while the positive class has the same definition, i.e. malignant. For simplicity, we shall refer to the pre-training dataset in Section III.2.2.1 as D1 and the fine-tuning dataset in Section III.2.2.2 as D2.

The initial state Φ 0 of the main branch model Φ is based on a VGG-16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] backbone which takes inputs of any size by virtue of its global average pooling (GAP) bottleneck between CONV and FC.

This model was trained in a FS manner on D1 by minimizing the weighted binary cross entropy loss with stochastic gradient descent (SGD) optimizer and a learning rate lr = 10 -4 (See Section V.3).

Since Φ 0 was trained on the same modality and tissue type we shall leverage the low-level features and fine-tune the last layers, which intuitively learn more specialized features. However, to confirm this hypothesis and find the exact layers to train, we compare the logistic regression classification results of VGG-16 trained on ImageNet and D1. In this regard, we extract the features (with GAP) from each layer of the network and compare their performance evolution between the two models, until we find a dramatic performance improvement of the D1-trained model at the first layer of the last convolutional block (refer to previous experiment in Section V. we deduced that those are highly specialized feature extractors for the final task, while the others encode generic textures proper to the modality and organ.

VI.3 Training

When training neural networks, the limiting bottleneck is the available memory of the GPU, which is in continuous expansion thanks to the technical advancements, for our available setup, the VRAM can go up to 48 GB). Accordingly, when designing the network architecture and choosing the training hyperparameters (e.g. the batch size), one has to take into consideration the available memory at hand.

For example, with the presented VGG-16 architecture and input size, while its 15M weights take up only 60 MB of space, the activations occupy around 1.2 GB of memory for one branch only. Intuitively, this quantity becomes directly proportional with the number of network branches i.e. instances in a bag or patches in an image and with the batch size. For example, with a bag size of 5 and a minibatch of 2, the necessary memory increases 10X totaling to 12 GB of VRAM; not to mention that this quantity corresponds to the forward pass alone, which according to [START_REF] Li | PyTorch Distributed: Experiences on Accelerating Data Parallel Training[END_REF] takes less than a quarter of the memory necessary for the whole training process, as computing the corresponding gradient maps for the backward loss propagation are more resource consuming. Reducing the memory required for storing the gradient maps at back-propagation is the main reason why MIL approaches use pre-trained feature extraction networks; since end-to-end training is indeed unrealistic for this paradigm, we opt for a feature 

VI.3.1 Tackling Computational Constraints with Content-aware Bag Generation

Just as in the case of gigapixel histopathology images, end-to-end training is hindered by the computational resources, since the entire image together with the computational graph cannot fit in the GPU RAM. Therefore, further partitioning and filtering of the image is needed; the primary goal is to remove the pixels bearing no information, but encumbering the resources nonetheless, like the background pixels, secondly, image artifacts could be removed as they introduce noise that would burden model convergence.

Even if at training time the maximum bag size is limited by the memory of the GPUs at hand which is already generous in this particular case it is not a blocking constraint since we have a way to select the most representative patches for each sample, and therefore minimize the computational burden without losing useful information. Therefore, when choosing the maximum allowed bag size one needs to consider some relevant a priori data statistics, which in this case is is the median number of patches per sample containing cells (i.e. 6). Therefore, the constraints on the value for k train max are lower bounded by the average number of patches containing cells in a sample and upper bounded by the memory resources (depending also on mini-batch size): 6 ≤ k train max ≤ 8, we choose k train max = 8. For training, for each sample X j , for its corresponding bag X b j the bag size is k train j = minimum(k train max , N j ), and the batches are constructed taking into account equally populated bags. However, for testing, there is no limit on the bag size k test max = ∞, thus all patches of a sample are considered in the diagnosis, therefore k test j = N j .

When sampling the images we tried to keep to a minimum their fragmentation, to respect the constraint imposed by the maximum bag size parameter. In this regard, we choose the patch size in concordance with the width of the biopsying needle i.e. 1024 × 1024 px and we try to capture the entire surface of the imaged tissue with minimally overlapping patches. What is more, we opted for texture-aware patchification to avoid slicing homogeneous morphological features, for that we used a method based on the SLIC superpixel algorithm SoSLeek, detailed in Section III.1.3, in this manner we obtain ≃ 2000 tiles.

VI.3.2 Tackling Difficult Samples with Focal Loss

For dealing with the imbalanced data, we propose to utilize the focal loss (FL) [START_REF] Lin | Focal Loss for Dense Object Detection[END_REF] instead of the common used binary cross-entropy (BCE). Focal loss is proposed in the object detection community to solve the problem of extreme foreground-background class imbalance, however it performs very well on other problems like semantic segmentation or image classification, to the point where it has been shown that it also helps train more reliable and confident models [START_REF] Mukhoti | Calibrating deep neural networks using focal loss[END_REF]. After multiple experiments of hyper-parameter tuning, BCE was proven to not generalize well, even in the weighted case. The focal loss brought a 8% gain in test accuracy as compared to the common cross-entropy loss, this is due to its quality of "hard mining". Therefore, to quantify the error between the predicted sample diagnosis Ŷ and the true bag label Y , we use the class-weighted focal loss:

L(Y, Ŷ ) =        -w p α 1 -Ŷ γ log( Ŷ ) if Y = 1 -w n (1 -α) Ŷ γ log(1 -Ŷ ) if Y = 0 (VI.1)
where γ controls the influence of higher-confidence correct predictions (or "easy" examples), α weights errors for the positive class (therefore if α < 0.5 false positives are penalized more than false negatives and vice-versa, while for α = 0.5 the misclassified samples are considered regardless of their true class).

We also add fixed weights (w n , w p ) computed according to the nodule diagnosis ratio, i.e. w p = 1.29, 

w n = 0.

VI.4 Results

When defining the clinical study, the main criteria of the clinicians in favor of adopting the LightCT ™ Scanner in the current practice for rapid diagnosis was reaching a Positive Predictive Value (PPV) > 70%, below this performance it was deemed useless to inform the patient about their diagnosis minutes after the biopsy procedure. Other expected metrics are Sensitivity > 80%, Specificity > 90% and Negative

Predictive Value (NPV) > 80%.

In this section we present and analyze the results obtained with the proposed approach for automatic diagnosis of breast cancer in DCI images.

VI.4.1 Training Strategies Comparison

These results are strongly supported by the previous work detailed in the previous chapter in Section V. First of all, we test the malignancy detection capacity of the model trained on surgical excisions on the biopsy dataset (Scenario #2) and we unsurprisingly observe high sensitivity and low specificity, or a redundant detection with a high number of false positives; this is due to the nature of the datasets themselves, the model trained on malignant vs normal tissue has no power of discrimination between malignant and benign appearance i.e. the model having normal as negative class finds benign samples as pathological. One might think of training on D2 in a similar fully supervised manner (Scenario #3), but this can only be possible if one assumes that all instances (i.e. tiles) of a bag (i.e. image) share the global bag label, albeit it being feasible in some applications, this extension would introduce a substantial level of noise in the labels and it would impede convergence.

On these grounds, we turn to Multiple Instance Learning (MIL), but based on the aspects mentioned at the beginning of this chapter, we cannot train end-to-end on D2 alone (Scenario #4) due to memory limitations. Fine-tuning a network pre-trained on ImageNet (Scenario #5) still gives unsatisfactory results with a sensitivity little above 50% which is most certainly caused by the low-level feature extractor blocks which are not adapted as we can train only the last convolutional block of VGG-16 and the fully-connected classifier layer. When applying the same strategy, but this time the transferred weights are adapted to our modality and tissue type (Scenario #6) we achieve a dramatic increase of 32 points in sensitivity (89%) and manage to match the specificity achieved in the fully supervised application (84%). Finally, one might ask what happens if we go back (Scenario #7) and test this mode on D1 (by unplugging the main branch). While all normal cases are correctly ruled out of malignancy (so actually improving the specificity of the initial model), the sensitivity is low.

All in all, we observe that intra-domain pre-training improves performance. Most importantly, we deduce that, as malignancy is defined in relation with the negative class (normal or benign), having the same model perform well on the two tasks would need explicit simultaneous training, which would probably also improve the performance on the individual tasks.

VI.4.2 Cross-Validation Results

Given the reduced dataset, it is in our interest to leverage it in its entirety, therefore having a separate holdout dataset on which to test the performance of the model is not feasible. Accordingly, we opt for analyzing the cross-validated results in order to have a clear picture about the method efficiency. For accurate test results we decide on 3-fold cross-validation which leads to a broader test set hopefully reflecting better the data distribution. The split is done with respect to the instances i.e. samples from the same nodule will be present together in either the train or test sets. Moreover, please note that for the test split we consider all the patches coming from those samples, while for the train set we comply with the method constraint imposed by the maximum bag size parameter, therefore we obtain for each fold:

• a train-set comprising: 100 samples coming from 48 inclusions, having ∼800 patches (given the maximal bag size of 8);

• a test-set comprising: 50 samples coming from 24 inclusions, having ∼700 patches (given all image patches are used for computing the metrics).

In Table VI.2 you can inspect the test binary metrics (accuracy, sensitivity, specificity, positive predictive vale, negative predictive value) obtained for a fixed probability threshold T = 50% as well as the area under the ROC curve, computed both at biopsy and nodule level, for each fold, with their average and standard deviation over fold, along with the results aggregated on the 3 test sets. For the aggregated results we also show the confusion matrices both at sample and nodule level in Looking at the CV results, we notice high variance between folds, which is a mere reflection of the high variance of the data between folds and is a clear indicator for the need of incorporating more data.

Nonetheless, in the next section we seek to understand what is the nature of the relationship between the data and its prediction. As we obtain actual instance predictions but have no instance-level ground truth, we shall look at different aspects of the available data as to infer their correctness. Only a quarter (24.4%) of the total patches (205 / 839) coming from malignant samples were predicted as malignant, with an average of 23.53% ± 27.36% malignant patches predicted per malignant sample. While we have no way of assessing the correctness of the patch-level prediction with the current information available, we relate to a study [START_REF] Focke | The reliability of histological grade in breast cancer core needle biopsies depends on biopsy size: a comparative study with subsequent surgical excisions[END_REF] conducted on 300 breast cancers which revealed that the average tumor to tissue ratio in core-needle biopsies (under the standard histology protocol) is 42% ± 16.16%. Therefore, we can deduce that there might be an under-detection, either caused by the detection algorithm or the imaging itself because not all cells might be apparent in DCI as opposed to standard histology, moreover, the physical slice thickness is bigger than that of the optical slice, ∼5 µm as opposed to 1 µm. On the other hand, looking at the false detection, only 2.9% (33 / 1151) of the patches coming from benign samples were predicted as cancerous, with an average of 4% ± 12.52% malignant patches predicted per benign sample. Still, these 33 misclassified instances, which we can be sure they correspond to false positives, gave rise to 9 misclassified samples coming from 7 biopsied nodules (see Figure VI.8).

VI.4.3.2 Degree of Cellularity

We remind the reader that for each patch has been visually inspected and labeled for presence or absence of cells. We extend this insight at the sample-level by defining the degree of cellularity of a sample as the percentage of patches containing cells from the total number of patches containing tissue (as opposed to background or imaging artifacts). Having this information, we will investigate if cell presence actually has an overall influence on the malignancy prediction.

Looking at the ground truth sample diagnosis we note that the malignant samples have a median cellularity of 53% ± 29%, while in the benign samples there are 31% ± 31% patches containing cells per sample (See Figure VI.11). Also, according to Spearman's rank correlation the two variables, malignancy vs.

degree of cellularity, are significantly correlated with a p-value ≪ 10 -6 and r = 0.4.

Now when it comes to the malignancy prediction, cell absence and malignancy prediction are dependent in the sense that only a negligible number (15 / 1148 or 1.3%) of patches without cells were predicted as cancerous. This was expected and enforces our belief that stromal disorganization is not a diagnosis factor for breast cancer in DCI and that cell morphology and organization are the discriminating aspects.

In Figure VI.9 it can be observed the distribution of predicted probabilities as per patches with or without cells coming from benign samples or malignant samples. We note that cell absence is correlated with malignancy absence, while for patches containing cells the prediction distribution is bi-modal in the malignant case (there are both tumor positive and negative cell-containing patches) and uni-modal in the benign case. Although we expect to have both normal and malignant cellular groups in a malignant sample, there is no way at this point of assessing their correctness.

However, at sample level, the correct prediction is overall independent from cellularity level, as the two variables are not statistically correlated with p-value = 0.14 and r = -0.12. Nevertheless, when we look at the different prediction outcomes (See Figure VI.12) we notice that the average cellularity of the falsely classified samples is closer to that of the predicted class than its true class. More specifically, false positives (FP) and true positives (TP) have higher degrees of cellularity (71%, 73%) than true negatives (TN) and false negatives (FN) (23%, 45%). For the case of FN, they could actually correspond to TN and could possibly reflect the noisy labels introduced by Assumption 1. While for the FPs, they could reveal a bias of the model to associate malignancy with hyperplasia. However, this bias was also concurred by the radiologist who themselves misclassified highly cellular benign samples as malignant, still, we had no feedback from the pathologist at that point in the study.

A possible fix to reduce false positives is by employing hard negative mining strategies, one such approach could be prioritizing high scoring but negative patches at bag creation. On the other hand, to reduce false negatives, we should refine Assumption 1 by introducing some kind of uncertainty related to the shared diagnostic among same-nodule biopsies. Intuitively, this uncertainty should be correlated with the size of the biopsied nodule, as smaller nodules are more difficult to accurately sample. Luckily the information on the nodule size is available, thus extractable from the pathology reports and injectable into the model.

VI.4.3.3 Carcinoma Grade

Seeing the previous analysis results and knowing that one main characteristic of high grade cancers is extreme cell proliferation, we expect that more advanced cancers (with a higher carcinoma grade) are easier to detect. Their high tissue heterogeneity, cell abundance and deviation from the normal appearance, would potentially minimize all diagnosis ambiguity. In this regard, we analyze the statistics of the malignancy predicted probability per sample with respect to the ground truth carcinoma grade (1 to 3 on the Elston-Ellis grading system), where available. In Figure VI.10 we can see the corresponding box plots for each grade (1, 2, 3) and for the non-malignant samples (indicated as grade = 0) for completion,

showing that the malignancy grade is directly proportional to the predicted malignancy probability.

Hence, the average prediction probability for grade 1 is 65%, while for grade 2 raises to 94%, as for grade 3 it reaches 99%. Therefore, we can firmly state that high grade cancers have a lower chance to be missed. More precisely, by fixing the classification threshold T = 50% probability, for grade 1 the true positive rate is 70%, for grade 2 it increases slightly to 76%, while for grade 3, the most advanced cancers, the true detection reaches 87%. By comparison, for all cancer grades as a whole the true predictive rate is 75%, while for the benign class the true prediction reaches 90%. The result of this analysis could influence a shift of strategy in the use of the DCI technique towards the field of emergency intervention.

VI.5 Validation on Benchmark Dataset CAMELYON16

In our approach we focused on one directing axis -build a highly fluid MIL architecture which could be assembled from other model which benefited from fully-supervised training and then it could also be deconstructed in order to provide instance-level predictions. Therefore, we want to study the importance of intra-domain pre-training by applying the method introduced in this chapter also on a benchmark dataset. What is more, given that we do not dispose of dense annotations in our working dataset, we want to to validate the veracity of the instance-level predictions by taking advantage of the finer annotated CAMELYON16 data.

VI.5.1 Data

The 2016 ISBI Camelyon Challenge [START_REF] Bejnordi | Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer[END_REF] was the first ever data challenge using histopathology images, namely 400 WSI provided by 2 centers in the Netherlands. The objective of the challenge was to asses the performance of deep learning algorithms for automated detection of metastases in hematoxylin and eosin (H&E) stained whole-slide images of lymph node sections adjacent to the breast. The dataset is split into 2 parts: one for training containing 270 WSIs (110 with metastasis and 170 without), together

with their pixel-level ground truth as segmented metastatic zone and the held-out test set of 129 WSI on which the AUC would be computed in order to rank the different proposed submissions. The ground truth was verified by immunohistochemical staining and the pathologist performance was also reported.

The best-performing pathologist did not have any time constraints when analyzing the images, while the others, i.e. a panel of 11 pathologists, had a 2h limit in order to simulate standard clinical circumstances.

The challenge implied solving 2 distinct problems: identification of individual metastases in WSI (i.e binary classification task at zone-level) and classification of every WSI as either containing or lacking metastases (i.e. binary classification task at image-level).

For the lesion-level detection task, 27.6% of individual metastases were not identified by the pathologist, corresponding to a lesion level sensitivity of 72.4%. For the slide-level classification task, the best pathologist achieved a sensitivity of 93.8%, a specificity of 98.7%, and an AUC of 0.966, While the panel of 11 pathologists achieved a mean sensitivity of 62.8% with a mean specificity of 98.5%, and the mean AUC of 0.810.

We are going to take a closer look at the WSI classification task, here the best algorithm [START_REF] Wang | Deep Learning for Identifying Metastatic Breast Cancer[END_REF] achieved an AUC of 0.994 by training an ensemble of 2 networks based on the InceptionV3 architecture and laborious data handling with stain standardization, extensive data augmentation and hard negative mining.

This model was trained in a fully-supervised manner by taking advantage of the pixel-level annotation, however, we are interested in the MIL approach using only global labels.

In this regard, we turn to another data challenge aimed at learning from global labels which also provides the pre-sampled CAMELYON16 slides together with the tile features extracted with ResNet50 architecture (trained on ImageNet), therefore we bypass the strenuous data management task. In the provided dataset there are 279 slides in the train-set (112 with metastasis and 167 without) and 120 slides in the test-set (chose ground truth is unknown); from each slide there are sampled a maximum of 1000 tiles/slide of size 224 × 224 at 10× mgnification, together with their 2048-dimensional ResNet50 features per tile. What is more, 11 slides (or approx 4%) are fully annotated, summing to 10K annotated tiles (out of which only ∼700 pathological).

VI.5.2 Method

The inspiration for this approach came from the need of rather having a specialized feature extractor instead of using transfer learning, however, for this proof-of-concept we only train an MLP on top of the ImageNet features for each tile by leveraging the dense labels. After training the MLP in a fully supervised fashion on the 10K tiles, we use it in a MIL context as the building block of a siamese multibranch network, where each branch takes a image tile as input and the per-tile predictions are aggregated by MaxPooling to give the image-wise prediction. Compared to the previous approach, here the features of each instance are pre-computed, therefore having as input directly a vector with 2048 values instead of an RGB image (which would sum up to 150K values for a tile of size 224 × 224) and also having a considerable part of the network removed, allowing to create a network with more branches, namely a maximum of 1000 branches given that in the dataset this is the maximum number of instances per sample.

The MLP has two fully connected layers of 100 and 10 neurons with sigmoid activations. Since its input is a 2048-dimensional vector corresponding to the tile descriptor extracted from ResNet50, the MLP has ∼205K parameters to train which is disproportionate with regard to the number of data points i.e. 10K, therefore heavy dropout of 50% is applied. It was trained using the Adam optimizer with learning rate lr = 0.001 to minimize the binary cross entropy (BCE) loss weighted according to the class proportions (which are even more skewed than the image-level ones, unsurprisingly) with w 0 = 0.53 and w 1 = 7.15

for 30 epochs on batches of 100. The MIL training is performed using similar parameters i.e. optimizing weighted BCE (w 0 = 0.84 and w 1 = 1.25) for 30 epochs using the Adam optimizer with 0.001 learning rate and a batch size of 10. The 50% dropout is kept at this stage too. 

VI.5.3 Results & Discussion

With this experiment we tested two hypotheses:

1. the improvement of a MIL approach brought on by an intra-domain pre-trained backbone (See For the first question, we trained a 2 layer perceptron on top of the ResNet50 extracted features in a multi-branch MIL model first randomly initialized via the Glorot [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF] uniform method, then pre-trained on the tiles of 4% of the WSIs if a fully-supervised manner. The metrics in Table VI.3a represent the average ± standard deviation AUC obtained by 5-fold cross validation training on the challenge trainset, together with the competition AUC on the held-out test-set (model trained on the entire train-set).

We observe an average improvement of 0.109 points on the train-set and 0.025 on the final set.

However, for this data sampling with small patches, the classic MIL assumption of the highest scoring instance should be less efficient than in the case of our context-aware sampling at millimeter-scale as an instance does not contain enough information to indicate the subtype, not to mention that a WSI is comprised of 100 times more tiles. Nonetheless, it seems like intra-domain pre-training compensates for this weak assumption, as the proposed method obtains the same performance on the test set (AUC 0.858) as CHOWDER which represents an image by 2 × R tiles i.e. 10.

For the second question, we trained a MIL model on all non-densely annotated slides i.e. 268 slides (containing ∼ 250K patches), then extracted its constituting branch and used it to predict the labels of the ∼ 10K tiles coming from the 11 fully-annotated slides. Note that all 11 slides were correctly classified by the MIL model as containing metastases. In Table VI.3(b) we present the tile-level metrics and compare the fully-supervised test metrics aggregated over the 5 folds with the test metrics of the MIL model. Unsurprisingly, the fully supervised approach has superior prediction capabilities, the most stringent improvement being the 19 points gain in sensitivity compared to the MIL approach which still reaches a respectable 62%. On the other hand, correctly classifying non-malignant areas seems a less challenging task as both approaches reach very high specificity (97-99%), which together with the class imbalance causes very high accuracy (96-97%) too.

In [START_REF] Wang | Deep Learning for Identifying Metastatic Breast Cancer[END_REF] patch-level accuracy is 98% on the whole fully-annotated dataset, but it should be taken with a grain of salt since the class specific metrics are not disclosed. Unfortunately, if we were to compare with other MIL approaches, to our knowledge, there are no methods trained on the slide-level labels of the CAMELYON16 dataset that also allow computing reliable patch-level prediction. In [START_REF] Pirovano | Improving Interpretability for Computer-Aided Diagnosis Tools on Whole Slide Imaging with Multiple Instance Learning and Gradient-Based Explanations[END_REF] they infer a patch-level AUC of 0.64 obtained based on CHOWDER [START_REF] Courtiol | Classification and Disease Localization in Histopathology Using Only Global Labels: A Weakly-Supervised Approach[END_REF] by analyzing the scores and inferring some thresholds related to the class prediction, however, the authors of CLAM [START_REF] Tourniaire | Attention-based Multiple Instance Learning with Mixed Supervision on the Camelyon16 Dataset[END_REF] warn about the direct inference of the class from the patch attention scores. From another perspective, it might be a stretch to compare with the pathologist performance on the lesion detection task where they achieved 72% sensitivity [START_REF] Bejnordi | Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer[END_REF].

VI.6 Conclusion

To conclude, the study in this chapter is showcasing the challenges of a real-world CAD problem: limited data and annotations, unconventional contrast and constant evolution of its applications.

We are advocating for plug-and-play model design that can be extended under different circumstances.

More specifically, we present how a model trained in a fully supervised manner on a similar domain is adapted for the MIL framework and how it improves the results compared to an extra-domain pretraining. We also take full advantage of the limited dataset by smart sampling, adding pertinent complementary information etc.

We manage to achieve 89% sensitivity and 84% specificity by training on a breast core-needle biopsies dataset having only the global histopathology diagnosis as ground truth. We believe that the convergence of the method despite our small dataset is greatly due to the pre-trained architecture on similar data.

Given the transparent formulation of the problem, the method can be easily extended to include instancelevel ground truth in the learning process. Nonetheless, minimizing the auxiliary effort of expert annotators greatly reduces the bottleneck of training DL models on DCI images. This is an important step towards building safe and robust tools that would support the clinical adoption of DCI. Upon gathering more data, we would obtain improved prediction results, in [START_REF] Campanella | Terabyte-scale Deep Multiple Instance Learning for Classification and Localization in Pathology[END_REF] they demonstrate that the MIL performance is significantly increased (in terms of reducing both the variance and the average validation error)

and their order of grandeur was of thousands of WSIs. This method powered by a continuous cycle of data collection and algorithm improvement has potential to ultimately reform the extemporaneous diagnosis field, improving patient outcome. 

VII.1 Motivation

Our main motivation is to exploit the multimodal nature of our setup, in a quest to "overcome ones weaknesses with the other ones strengths". To be more clear, we are expecting to surmount the high inter-acquisition variations of DCI with the long-established robustness of FFOCT. In this regard we shall explicitly train on registered image pairs of both modalities which would lead to defining a common inter-modal embedding, endeavor which falls under the umbrella or representation learning. It would allow extracting mutual information from DCI and FFOCT that would most likely encode fiber characteristics. This is particularly of interest as fibers in FFOCT have a robust and reproducible rendering, to the point that their biological properties could be inferred from the FFOCT image. On the other hand, in DCI imaging fibrous tissue suffers great fluctuations in appearance, therefore it is not reproducible between acquisitions while also being the main source of imagining artifacts.

According to the theoretical formulation of DCI imaging, fibers should not be apparent at all in the image, as they do not contain actively moving scatterers like cells do. However, in the real world setting, where we face with both external (environmental) and internal (setup related) movements, the perfect theoretical conditions do not apply. These nuisances induce some random oscillations at fiber level, making them apparent mostly in the color channels corresponding to low and mid-range oscillatory frequencies (i.e. blue and green). In practice, we observed that there can be variations in fibers intensity both intra-and inter-acquisitions. The source of these permanent perturbations are unknown and not quantified yet. On top of that, there are also more severe imaging artifacts induced by singular events, like a door being slammed in the imaging room or liquid flowing inside the tissular creases present amid fibrous material. These phenomena cause saturated pixels in the affected zones hindering the image interpretation because the highly contrasted areas attract viewer's attention unnecessarily.

All these insights were gathered after experimenting with DCI longtime, important intuition about this behavior of DCI was also gained by comparing the images with their FFOCT counterparts of the same tissue sample, getting a sort of "ground truth" for the tissue architecture. However, these observations are purely subjective and not formally defined yet. Therefore, by the present work, we are aiming to build a model able to "see" beyond these imaging inconsistencies of DCI and we are planning to implement it by having FFOCT as a training guide, akin to the human agent.

The work in this chapter is conducted on the breast excision dataset (in Section III.2.2.1) as it is the best curated one available to date. However, once the method is validated, it has broad potential to be expanded to multiple tissue types in order to incorporate general knowledge on fiber characteristics in DCI. This is namely the main reason in favor of this approach -generalization. It could play a powerful role in better understanding and future iterations of DCI technique. Another aspect in support of this statement, which actually also influences its general quality, is the "infinite" dataset generation:

already registered FFOCT / DCI image pairs are seamless to acquire and there is no need of extra human intervention, like annotation or validation. Therefore, the proposed method directly exploits the intrinsic nature of data in an "unsupervised" fashion.

Even if we noticed in the qualitative results on the classification task on the same dataset (Section V.3) little importance attributed to fibrous structures in DCI, extra-cellular matrix remains an important marker in cancer diagnosis and overall tissue characterization. Normal stroma is significantly different from tumor associated stroma. In breast cancer, tumor-associated stroma contains an increased number of fibroblasts and immune cell infiltrates, enhanced capillary density, increased collagen and fibrin deposition, all which alter the structure and stiffness of the extra-cellular matrix [START_REF] Bissell | Putting tumours in context[END_REF]. Therefore, we expect this approach could also serve in other downstream tasks, like diagnosis or biomarker discovery.

VII.2 Context

VII.2.1 Unsupervised Feature Learning

Unsupervised learning is a type of machine learning where the observation itself is prioritized over the labels. Unsupervised learning is not used for classification or regression; instead, it is used to uncover underlying patterns, cluster, denoise, decompose data or detect outliers, to name a few. When the data quality does not correspond entirely with the prediction task to solve, one can opt for using networks pre-trained on huge datasets like ImageNet as a starting point. However, the knowledge encoded there, even if powerful, might not be sufficient for the task at hand as the two domains might be too divergent.

In that case, pre-training directly on the target problem domain, but on an auxiliary task, might be the way to go. This is where self-supervised pre-training [START_REF] Erhan | Why does Unsupervised Pre-training Help Deep Learning?[END_REF][START_REF] Cheplygina | Not-so-supervised: A survey of semi-supervised, multiinstance, and transfer learning in medical image analysis[END_REF] comes into play. The idea has been put into practice in various manners, but their common denominator is training a network on a pretext task that is more accessible, without needing manual label annotation. These methods are supposed to produce good features for other downstream tasks that learn with supervised learning objectives, e.g., classification. As the labels of these pretext tasks are generated automatically, they have the advantage of "infinite" training set generation (depending on the task). Usually the performance on the pretext task is ignored as long as the thereby learned feature encoders perform well on the downstream target task.

Historically, encoder-decoder networks were proposed for projecting the input into a lower dimension and then reconstruct it; then the encoder would be reused for downstream tasks like classification. This type of networks that map the input to itself are called auto-encoders (AE) [START_REF] Kingma | An introduction to variational autoencoders[END_REF], there are variants learning a slightly modified input, like denoising AE [START_REF] Vincent | Extracting and composing robust features with denoising autoencoders[END_REF] or masked AE [START_REF] Germain | MADE: Masked autoencoder for distribution estimation[END_REF]. Auto-encoders were indeed used for unsupervised feature learning [START_REF] Chandra | Exploring autoencoders for unsupervised feature selection[END_REF], but they were short-lived as they have been proven

not to be able to capture fundamental concepts about the data; in [START_REF] Alberti | A Pitfall of Unsupervised Pre-Training[END_REF] they experimentally dismiss this statement "Features good for reconstruction are inherently good for classification tasks". Nonetheless, in 2022, pre-training with auto-encoders is showing signs of revival [START_REF] Zhou | Self Pre-training with Masked Autoencoders for Medical Image Analysis[END_REF][START_REF] Asiedu | Decoder Denoising Pretraining for Semantic Segmentation[END_REF][START_REF] He | Masked Autoencoders Are Scalable Vision Learners[END_REF] as they seem to perform better when coupled with transformers [START_REF] Vaswani | Attention is all you need[END_REF] -the newest type of neural network architecture that promises to disrupt the classic AI paradigm.

If learning the input itself was controversial, the community has come up with more complex toy tasks to train their AI "babies", passing from a "learn by seeing" to a "learn by doing" philosophy. Some methods rely on linear transforms, in [START_REF] Gidaris | Unsupervised representation learning by predicting image rotations[END_REF] they predict rotation angle, which stands on the hypothesis that only if a model has the visual commonsense of what the object should look like in its natural state could it recognize the correct rotation of an object, therefore this is not suitable for orientation invariant problems like tissue analysis. Other approaches are based on patch shuffling, like predicting relative patch locations [START_REF] Doersch | Unsupervised visual representation learning by context prediction[END_REF] or learning patch permutations by solving jigsaw puzzles [START_REF] Noroozi | Unsupervised learning of visual representations by solving jigsaw puzzles[END_REF], this was also successfully applied to medical imaging [START_REF] Taleb | Self-supervised Learning for Medical Images by Solving Multimodal Jigsaw Puzzles[END_REF]. There is also a generative family of proxy tasks like predicting missing pixels, a.k.a. inpainting [START_REF] Pathak | Context Encoders: Feature Learning by Inpainting[END_REF] or coloring images, trained by decoupling grayscale and color channels in Lab colorspace, inspired by the visual cortex, thus called split-brain autoencoder [START_REF] Zhang | Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction[END_REF]. What all these methods have in common is how seamlessly they could be applied on a variety of datasets, as they address elemental properties of images in they generality, however, this comes with the drawback of not injecting specific knowledge into the model. After all, the choice of the method resides in the capacity to encode useful information for the downstream task from the dataset at hand, whose success is not guaranteed.

VII.2.2 Contrastive Learning

A "richer" problem formulation for tackling self-supervised pre-training is arbitrated by contrastive learning (CL). As compared to the previous examples which deal with one data sample at a time, contrastive learning considers groups of samples, thus learning through input relationships. This paradigm exploits the idea of comparing data points against each other so there can be identified characteristics that are shared by different data classes and characteristics that distinguish one class from another. In this context we define the concepts of positive and negative samples, where positive samples are pairs of data points belonging to the same class, while negative samples are "contrasting". Please note that in this context the term "class" has a broader meaning than in the classification framework.

Given the level of a priori knowledge available on the dataset, we can distinguish two families of CL methods:

1. self-supervised contrastive learning (SSCL) [START_REF] Jaiswal | A Survey on Contrastive Self-Supervised Learning[END_REF][START_REF] Liu | Self-supervised Learning: Generative or Contrastive[END_REF], where there is no class information available, so as in the case of auto-encoders, the original sample and a transformed version of it are used to form the positive pairs, while any two different samples shall construct the negative ones;

2. supervised contrastive learning (SCL) [START_REF] Zheng | Weakly Supervised Contrastive Learning[END_REF][START_REF] Khosla | Supervised contrastive learning[END_REF], provided that some additional information is available to distinguish between samples, positive pairs are built from different samples sharing a known characteristic i.e. class, while negative pairs are constructed from samples of different classes, with the result that samples from the same class are brought together in the learned latent space, while samples from different classes are distanced in that same latent space; which makes this concept interpretable as a metric learning [START_REF] Kulis | Metric learning: A survey[END_REF] problem.

Moreover, a CL solution can be implemented under two similar settings: either pairs are considered independently and iteratively or they are considered in groups of three, where one sample is the anchor and the others are their positive and negative counterparts, respectively; therefore, in this latter case, both relationships are evaluated concomitantly. These formulations are translated in the model architecture and loss function, respectively.

The leading methods in self-supervised contrastive learning, SimCLR [START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF] and MoCo [START_REF] He | Momentum Contrast for Unsupervised Visual Representation Learning[END_REF], are closely competing against each other in a race against time, suggesting the high stakes at play in finding a generalized task-agnostic pre-training framework. MoCov2 [START_REF] Chen | Improved Baselines with Momentum Contrastive Learning[END_REF] combines the key concepts from both methods: momentum contrast for effective batch generation and training from MoCo with more extensive data augmentation and adding an MLP projection head as in SimCLR. While these methods use multiple negative pairs for each positive pair, BYOL [START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised Learning[END_REF], on the other hand, uses only positive pairs; idea which incited some controversies further analyzed in [START_REF] Tian | Understanding self-supervised Learning Dynamics without Contrastive Pairs[END_REF] to confirm on why it manages to generalize well regardless. In NNCLR [START_REF] Dwibedi | With a Little Help from My Friends: Nearest-Neighbor Contrastive Learning of Visual Representations[END_REF] they use the nearest neighbor in the latent space in order to construct positive pairs. In [START_REF] Khosla | Supervised contrastive learning[END_REF] class labels are leveraged for generating positive pairs and SimCLRv2 [START_REF] Chen | Big self-supervised models are strong semi-supervised learners[END_REF] uses self-supervised contrastive learning with supervised fine-tuning and knowledge distillation to improve classification accuracy with as little as 1% of the class labels.

We have overviewed the leading methodological works, however, the strength of contrastive learning lies in the myriad of diverse applications it can power. In [START_REF] Lu | SMILE : Sparse-Attention based Multiple Instance Contrastive Learning for Glioma Sub-Type Classification Using Pathological Images[END_REF] CL pre-training is used for histopathology images, however the main improvement from baseline is given by a transformer network based on multi-head self attention [START_REF] Vaswani | Attention is all you need[END_REF][START_REF] Dosovitskiy | An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[END_REF] rather than CL, while in [START_REF] Chaitanya | Contrastive learning of global and local features for medical image segmentation with limited annotations[END_REF] CL pre-training is used to improve segmentation on medical images with limited annotations and in [START_REF] Dehaene | Self-Supervision Closes the Gap Between Weak and Strong Supervision in Histology[END_REF] MoCo pre-training on the target domain is used to improve the performance and robustness a previous MIL approach [START_REF] Courtiol | Classification and Disease Localization in Histopathology Using Only Global Labels: A Weakly-Supervised Approach[END_REF] on histology image classification. One recent breakthrough in computer vision is DALL•E [START_REF] Ramesh | Hierarchical Text-Conditional Image Generation with CLIP Latents[END_REF], an OpenAI model that creates hyper-realistic images from text captions for a wide range of concepts expressible in natural language. And this is not the only application where the fields of computer visions and natural language processing (NLP) come together under a multimodal [START_REF] Baltrusaitis | Multimodal Machine Learning: A Survey and Taxonomy[END_REF] contrastive learning framework.

Other examples include mainly cross-modal image and sentence retrieval [START_REF] Ma | Multimodal convolutional neural networks for matching image and sentence[END_REF][START_REF] Gomez | Self-supervised learning from web data for multimodal retrieval[END_REF][START_REF] Udandarao | COBRA: Contrastive Bi-Modal Representation Algorithm[END_REF] which can be seen under a representation learning lens as they implicitly learn the individual concepts present. As for the medical field, in [START_REF] Zhang | Contrastive Learning of Medical Visual Representations from Paired Images and Text[END_REF] they make use of the textual interpretation of x-ray images, while in [START_REF] Zong | conST: an interpretable multi-modal contrastive learning framework for spatial transcriptomics[END_REF] they combine histology images with genomics data. However, we are most interested in the case were multimodality is understood as a combination of different imaging techniques, which are plentiful in the case of medical imaging modalities, some examples include: multimodal medical image fusion [START_REF] Kaur | Multimodal medical image fusion using deep learning[END_REF], registration of multi-stain histopathology / immunohistochemistry images in the common latent space [START_REF] Pielawski | CoMIR: Contrastive multimodal image representation for registration[END_REF],

co-training on separate stain channels [START_REF] Zhang | Stain based contrastive co-training for histopathological image analysis[END_REF] from H&E. CL can be also used in longitudinal studies to encode time invariant properties, in [START_REF] Khokhlova | Cross-Year Multi-Modal Image Retrieval Using Siamese Networks[END_REF] there is an example of training on the same modality (aerial photos) at different time steps.

VII.3 Method

For our objective, we shall train a model in contrastive fashion in order to learn a common latent space for FFOCT and DCI imaged samples. The said model is embodied by a siamese network which has the quality of being applicable on multiple inputs from which it extracts corresponding feature vectors, based on which a metric is learned, for the present case, the cosine distance is used. All the implementation details are presented in this section, from the architecture design to its training process which focuses on fully exploiting the data via online batch generation.

VII.3.1 Architecture

VII.3.1.1 Siamese Network

Due to their multiple inputs, all the applications enunciated in the previous section are possible thanks to multi-stream network architectures. The composing individual sub-networks can differ greatly among them or not at all, depending on the nature of the relationships between the inputs themselves and the input-output relation. For example, in the case of an image + text contrastive learning model, the individual streams are often constructed via CNN and LSTM architectures (which represent the stateof-the-art in CV and NLP, respectively). To generalize, regardless of the input type, if the information to extract from the individual inputs is different, then the networks would be disjoint too, with a late information fusion of the obtained features vectors. On the other hand, when dealing with similar modalities (e.g. images only) and looking to extract similar information from all inputs, like in our case, the intuition is to use similar encoders for the inputs. The concept of an identical multi-stream network is represented by Siamese Neural Networks [START_REF] Chicco | Siamese Neural Networks: An Overview[END_REF], also called twin networks, which have been around for as much time as the author of this manuscript . The idea was introduced in 1993 by Baldi & Chauvin for fingerprint recognition [START_REF] Baldi | Neural Networks for Fingerprint Recognition[END_REF] and shortly after it was "baptized" by LeCun and used to solve signature forgery verification [START_REF] Bromley | Signature Verification Using a "Siamese" Time Delay Neural Network[END_REF] as an image matching problem. As the name suggests, a siamese network is most often constructed by a pair of identical sub-networks which work in tandem to extract common features from the inputs and are joined by an energy function at the top.

The goal of a siamese network is to learn a common encoding function Φ that maps two different representations x a i ∈ I a and x b i ∈ I b of the same instance s i ∈ S, but with We have adopted VGG16 as the backbone architecture to keep consistency with prior work (c.f. Chapters V and VI). However, we find through experiments that, unlike the previous problems solved, the present problem is less sensitive to the network architecture chosen, other SOTA networks (i.e.

x a i ̸ = x b i onto a common domain F such that f a i = Φ(x a i ), f a i ∈ F and f b i = Φ(x b i ), f b i ∈ F
ResNet50, InceptionV3) performing comparably (at least judging by the train / test losses obtained, without the thorough analysis of Section VII.4). Given the nature of the problem, the two feature extraction sub-networks can be completely disjoint (i.e. learning independent features from each input) or completely coupled (i.e. learn common features between the inputs) or somewhere in between, with early or late weight sharing or fusion. The most used approach that also fits out problem is the case of identical networks that share their weights and fusion at the very end. Therefore, the function Φ would be encoded by a VGG16 model applied unequivocally on both inputs x a , x b . Due to this design the model is symmetrical, meaning that the inputs could be inversed without a change in the output. Please note that as DCI images are 3-channel RGB images and FFOCT images grayscale, we shall clone the FFOCT channel to match the dimensionality of its counterpart.

Each of the two fully convolutional branches are followed by an operation meant to construct the feature vectors f a and f b , operation computed through a flattening layer which collapses the spatial dimensions of the activations of last convolutional layer into a 1D vector. To make a comparison with the previous classification approaches, there we used a GAP pooling method, which gatherers the spatial dimensions and reduces the feature vector to the average activation of each kernel in the respective layer. This approach is useful for detecting patterns in data, agnostic to their coordinates, however, in the present case, localization is of uttermost importance as we are looking to match corresponding features from the two images, hence the choice of the flattening layer.

We can take advantage of the fact that no class information is needed to split the The Euclidean distance is the classical example of the distance in a metric space. It is calculated as the square root of the sum of the squared differences between the two vectors, however, in computation intensive settings like machine learning it is common to remove the square root operation in an effort to speed up the calculation. Given its formulation f a -f b we can see that if the vectors are not normalized, the metric is unbounded and vectors with large values will dominate the distance measure.

However, for our problem, we are looking not at the amount of activation response, but rather at the fact that the same corresponding pixel region is activated in both images. Moreover, we intuitively expect Cosine distance is a measure 1 based on the cosine of the angle θ between two vectors, which at its turn is a dimension of similarity i.e. the cosine similarity. The cosine of two vectors is computed as their inner product divided by the product of their lengths:

Cosine Similarity: cos(θ(f a , f b )) = f a • f b ∥f a ∥ • ∥f b ∥ = n k=1 f a k f b k n k=1 f a k 2 n k=1 f b k 2 (VII.1) Cosine Distance: ∆(f a , f b ) = 1 -cos(θ(f a , f b )) (VII.2)
For two proportional vectors f a = c • f b i.e. their angle null θ(f a , f b ) = 0 have a cosine similarity of 1, while two orthogonal vectors (θ = π 2 = 90 • ) have a similarity of 0. Cosine similarity and, by extension, cosine distance are criteria of orientation agnostic to the magnitude of vectors. Another major perk of using this metric in the present scope is the fact it is neatly bounded by [0, 1] in the positive domain.

In the feature embedding space we are comparing two very sparse vectors in very high dimensions and cosine similarity is affected only by the terms the two vectors have in common, whereas Euclidean has a term for every dimension which is non-zero in either vector. In relation with our problem, the fibrous 1 N.B. Cosine distance is not technically a metric as it does not satisfy the triangle inequality.

structures we are aiming to match in the two image modalities are always present in the FFOCT image and by extension in the embedding vector, while in DCI imaging not all fibers are always detectable, moreover, they might appear with highly unstable intensities independent of biological factors. This motivates the choice of cosine similarity as a metric, accordingly, we shall add a neuron computing the normalized dot product of the feature vectors f a and f b at the output of the network. Expected output for positive input pairs (x a i , x b i ) will be closer to 1 and for negative pairs (x a i , x b j ) nearing to 0.

VII.3.2 Training

In this section we detail the training of the network described above and depicted in 

VII.3.2.1 Online Batch Generation

As we have mentioned in the introduction, one motivation towards this contrastive representation learning approach is leveraging the already registered images, which serve as an inexhaustible training set. For positive pairs of images we randomly choose a position and extract corresponding patches from the image pairs DCI and FFOCT (x a i , x b i ), while for negative pairs of patches (x a i , x b j ) we randomly choose two non-matching images and select a random positions from each. To respect the class balance principle we create symmetrical batches with the same number of negative and positive pairs. Again, the strategy for choosing the batch size is in accordance with the biggest size that fits into the available memory. Accordingly, the batch size equals to 12 with 6 positive pairs of patches and 6 negative pairs of patches. Note that at the point of this experiment the GPU used in the memory-hungry MIL approach was not available, so batch size can be potentially increased in future experiments, given the rapid evolution of GPU technology. Also, regarding hardware aspects, given the online batch generation that requires multiple I/O calls3 , it is introduced a high computational overhead, but this approach ensures convergence due to the diversity injected into the network, especially the high variation of negative samples seen.

VII.3.2.2 Loss Function

In the scope of deep metric learning two families of loss functions are generally used to train for the positive and negative evidence: pairwise losses, which encode the negative evidence implicitly, and triplet losses for explicit negative association. Regardless, both categories compare distances between representations of data samples.

One could possibly apprehend training directly on the distance of the positive samples only, by directly minimizing the distance as a loss function i.e. forcing the distance towards zero. However, by simply doing so would lead to a collapsed solution, since both the distance and the loss could be made zero by setting the feature vectors to a constant [START_REF] Hadsell | Dimensionality reduction by learning an invariant mapping[END_REF]. Therefore, negative samples indeed add fundamental value.

Triplet loss is a loss function where a reference input (called anchor) is compared to a matching input (positive) and a non-matching input (negative). The distance from the anchor to the positive ∆(f, f + ) is minimized, and the distance from the anchor to the negative input ∆(f, f -) is maximized such as their difference is greater than a margin m.

L triplet (f, f + , f -, m) = max(0, ∆(f, f + ) -∆(f, f -) + m) (VII.3)
However, one important drawback is the need for a three-branch architecture as opposed to classic siamese networks which requires more computational power, inevitably sacrificing the batch size. Moreover, in Google's paper for face recognition using triplet loss [START_REF] Schroff | FaceNet: A unified embedding for face recognition and clustering[END_REF] it is mentioned the difficulty to train this kind of networks as well as the necessity of hard triplet mining for convergence (i.e., searching for negatives similar to the anchor and positives more dissimilar) which introduces more overhead and increases the development burden.

A common pairwise ranking loss that comes under many names is the contrastive loss a.k.a margin or hinge loss, which, much as the earlier example, ensures that the distance between positive pairs is small while the distance between negative pairs is at least m. However, as opposed to the triplet loss these relationships are established independently and sequentially.

L margin (f i , f j , m) =        ∆(f i , f j ) 2 if i = j max(0, m -∆(f i , f j )) 2 if i ̸ = j (VII.4)
With its two distinct case, contrastive loss bears a resemblance to the traditional cross entropy loss. As a matter of fact, an insightful work [START_REF] Boudiaf | A Unifying Mutual Information View of Metric Learning: Cross-Entropy vs. Pairwise Losses[END_REF] proves theoretically and experimentally that classificationbased losses are analogous in performance and even definition with ranking losses especially designed for metric learning. By the same token, more works [START_REF] Liu | SphereFace: Deep hypersphere embedding for face recognition[END_REF][START_REF] Wang | Additive Margin Softmax for Face Verification[END_REF][START_REF] Wang | CosFace: Large Margin Cosine Loss for Deep Face Recognition[END_REF][START_REF] Zhai | Classification is a strong baseline for deep metric learning[END_REF][START_REF] Kim | Mumford-shah loss functional for image segmentation with deep learning[END_REF][247][START_REF] Kim | Proxy anchor loss for deep metric learning[END_REF][START_REF] Qian | Softtriple loss: Deep metric learning without triplet sampling[END_REF] find classification-based losses to work better in their applications.

Based on these finding and given that our distance function ∆ is defined on [0, 1], we found pertinent to start by testing a binary cross-entropy loss first and, in light of the obtained results (see Section VII.4), we finally deem it extremely effective. As opposed to the previous loss definitions given in a general form in relation to any distance function ∆, we formulate the loss function used in relation with the cosine distance and the predicted angle θ between the cross-modal feature vectors. Given we cannot actually estimate the exact true value of θ, we apply a hard margin constraint on the distance definition, so we can express the true relation between feature vectors, as: 

∆(f a i , f b i ) → 0 =⇒ f a i ≃ f b i and ∆(f a i , f b j ) ≫ 0 =⇒ f a i ̸ =
L(θ, θ) =        -log(cos( θ)) if θ = 0 -log(1 -cos( θ)) if θ > 0 (VII.5)
From the conducted experiments, we observe that the present approach is not sensitive to training hyperparameters either, therefore suggesting that the problem is sufficiently well-posed. The results reported 

VII.4 Results

In the contrastive learning literature, the performance on the pretext tasks is usually deemed not important as the focus is on the main task. Nevertheless, in our case, the objective is learning an accurate and reproducible representation of DCI images in analogy with the FFOCT modality which we shall verify through both quantitative and qualitative methods. It is worth mentioning that in our criteria of choosing the best performing model, qualitative results outweighed quantitative results, as we had obtained similar performance metrics (i.e. low validation losses) across multiple experiments, regardless, some models produced noisy filters or uninterpretable attention maps.

For the sake of completeness, we have tested the classification power of the features extracted with this approach from DCI images and we obtained an accuracy identical to when training directly on FFOCT images, i.e. 75% binary classification accuracy baseline. This result can actually be seen as a successful sanity check; it represents a good indication that the learned latent space offers a complete picture of tissue architecture in DCI images.

In the following sections we report the obtained cosine distance between all combinations of cross-modal image pairs coming from the training data set and testing set, respectively, both positive and negative pairs. We also define two measures meant to asses for the robustness of the method, the identity error and the symmetry error, inspired by the metric learning flavor of this contrastive learning method. Finally, we shall look at the learned filters and obtained attention maps through some examples.

VII.4.1 Quantitative Results

VII.4.1.1 Learned Distance

We show the metrics obtained with the presented approach in Table VII.1 by reporting the statistics of the cosine distance obtained on the positive data pairs (N + train = 403, N + test = 124), as well as on all the possible combinations of negative pairs (N - train > 80K, N - test > 7.5K). Please note that while training was conducted on multiple 480 × 480 px extracted tiles, the metrics are computed based on the features extracted on the entire 1 440 × 1 440 px FOVs, therefore the feature vectors f are 9 times bigger compared to those of the tiles used for training. This proves that the method is scalable and effective.

Another argument in favor of this statement is the closeness of the train and test metrics: the 5 th to 95 th quantile interval is identical to up to 3 decimal places for positive samples, while for negative samples the distances spread out more toward lower values for the test set (see Figure VII.3 for the distribution of the pair distances on the test images). What is more, we have a well-delimited margin between the maximum distance of positive pairs (max i (∆(f a i , f b i )) = 0.283) and the minimum distance of the negative ones (min i̸ =j (∆(f a i , f b j )) = 0.526) -a minmax hard margin of 0.24 and an interquartile soft margin of 0.58. By making a parallel with the other losses explicitly integrating a margin m in the training process (i.e. L triplet and L margin ), we notice that a margin is nonetheless implicitly learned in the case of our cross-entropy loss, in accordance with the findings in [START_REF] Boudiaf | A Unifying Mutual Information View of Metric Learning: Cross-Entropy vs. Pairwise Losses[END_REF]. Consequently, there are no confusions between positive and negative pairs on the test data, however, interestingly, this is not the case for the train test, where we notice some false "pairings". Namely, five positive pairs have an abnormally high distance ∆(f a i , f b i ) > 0.5 in the embedding space, but upon further analysis we observe that the majority were due to data curation errors (three mismatched and one flipped) and one difficult example due to architectural homogeneity and lack of salient fibers to correlate on. There are also two non-matching pairs with ∆(f a i , f b j ) < 0.5 which upon visual inspection seem to be indeed quite similar. If anything this is an indication of a good generalization and lack of overfitting on training data.

Regardless, looking at the inter-quantile distance of the training set it also presents a wide soft margin of ∼ 0.6.

VII.4.1.2 Identity Error

If we are viewing this problem from the metric learning optic, then we shall look at the identity property, which is one of the key properties that define a function as a metric. It states that if the distance between two entities is zero then the entities are identical. In order to test this hypothesis for our case, we shall We extract all the corresponding feature vectors f a i ′ and we are looking to define the identity error ε ii ′ quantifying the deviation among all the computed distances ∆(f a i ′ , f b i ) between the transformed DCI images and the FFOCT image as follows:

ε ii ′ = 1 card(T ) i ′ ∆(f a i ′ , f b i ) -∆(f a i ′ , f b i ) where x a i ′ = T ′ (x a i ) and T ′ ∈ T (VII.6)
We compute the statistics of ε ii ′ for all positive pairs, the mean identity error εii ′ could be interpreted as a percentage given it is bounded by 0 and 1; therefore, the mean identity error for the train set is εii ′ = 0.4% ± 0.8%, while for the train set is εii ′ = 0.4% ± 1.1%.

VII.4.1.3 Symmetry Error

We shall also look at the symmetry property, which is another key property of a metric function. It states that the distances between two entities be equal regardless of the direction. In our case, if we consider the entity as being the real-life tissue sample, then the distance between two tissue samples s i and s j should be equal in the cross-modal space, regardless of the imaging modality chosen for either. By computing the (cosine) distance matrix between the feature vectors of all FFOCT and DCI images we observe that it is asymmetric, therefore the distance between the DCI rendering of one sample and the FFOCT of another is not equal to the distance between the DCI image of the former and FFOCT of the latter, i.e.

∆(f a i , f b j ) ̸ = ∆(f a j , f b i ) when i ̸ = j. However, this is not surprising, given the little robustness of DCI imaging. In order to put a number on this discrepancy, we define the pairwise symmetry error:

ε ij = ∆(f a i , f b j ) -∆(f a j , f b i ) where i ̸ = j (VII.7)
We compute the statistics for all negative pairs, the mean symmetry error εij could be interpreted as a percentage given it is bounded by 0 and 1; therefore, the mean symmetry error for the test set is εij = 0.9% ± 1.2% and for the train set, respectively, εij = 0.8% ± 1.5%.

Based on these metrics detailed in Table VII.1 we can conclude that the proposed method is a robust solution for characterizing DCI images in relation with the more reproducible FFOCT and the learned representation could serve for future developments.

VII.4.2 Qualitative Results

Since this is a representation learning method employed in an effort to obtain a robust extraction of fiber characteristics from DCI imaging, we also apply qualitative analysis methods in order to get a grasp of the nature of the features learned. As in previous experiments, we are visualizing attention maps via Grad-CAM and learned patterns via maximization of filter activation with gradient ascent.

From visualizing the activation maps we observe two validating phenomena:

• Low contrast fibers are captured by the network, so what is otherwise inconspicuous to the naked eye can be revealed using the present method. See example 1 of Figure VII.4 where the fibers in the lower half of the DCI image (a1) are less contrasted than those in the upper half, to such extent that their orientation can not be estimated; regardless, the activation map trained (d1) on the modality matching task captures the correct orientation, which can be verified by looking at the corresponding FFOCT image (b1). Note that the obtained map is agnostic to the FFOCT image, as it was computed on the DCI image, moreover, the sample belongs to the test set.

• Imaging artifacts are understood by the network, not confused with fibers and discounted, which is usually not the case for a human user. See the second example from 

VII.5 Conclusion

To sum up, we presented a method of representation learning that leverages the intrinsic duality quality of the imaging setup producing registered DCI and FFOCT images of the same tissue. In an effort to overcome the high undesired variability of DCI with the robustness of FFOCT, we designed a siamese network and trained it in a contrastive fashion to allow for reproducible fiber representation in DCI images. We confirm the strength of the approach with multiple experiments both qualitative and quantitative and, together with previous work (e.g. Section V.3), we can firmly state that we managed to develop two complementary models that offer a complete characterization of DCI images of breast tissue.

Moreover, this cross-modal matching approach has the advantage of being easily applied to any similar dataset, and an unstructured combination of different datasets thereof, ultimately leading to an exhaustive definition of fiber appearance in DCI which could answer some theoretical questions via a data-driven approach. This effort could lead to finally finding a fiber signature in DCI which could potentially be achieved jointly with the source separation approach in Section V. Another great extension potential lies in the area of improving classification tasks. The features obtained from cross-modal matching are not enough to be used for diagnosis on their own, since we obtained similar performance as when training directly on FFOCT images. We have also experimented with the same architecture prototype but trained with a multitask loss, with the idea to leverage the multimodal pairing as a regularizer, a helper intermediate task along with the main classification task. However, this multitask setting did not surpass the classical supervised task alone (presented in Chapter V) but we believe this could be improved by a different information fusion strategy. In the same philosophy, we get inspiration from [START_REF] Chikontwe | Dual attention multiple instance learning with unsupervised complementary loss for COVID-19 screening[END_REF] where they use a complementary contrastive loss in a MIL setting.

Ultimately, a similar approach of contrastive learning could be used for DCI and classical histology mutual information mining. We remind the reader about the similarities between DCI and standard 

VIII.1 Summary of Contributions

In the present work we laid the groundwork for FFOCT / DCI image analysis towards cancer diagnosis with focus on a better understanding of the signal. This manuscripts gives a variety of methodological "keys" towards unlocking this objective. We gave a snapshot of all aspects involved in the problematic:

from the medical concerns, to the challenges related to the optics and particularities of the data, together with the strengths and limitations of the technical tools available, the modeling choices being driven by the intersection of those aspects. In this regard, we have employed adapted data mining strategies and built 3 datasets, based on which we developed multiple algorithms by leveraging domain knowledge and machine learning methods:

• a proof-of-concept for testing the feasibility of using DL methods on our imaging applied on a skin cancer dataset, a collection of widefield FFOCT images coming from 40 skin samples, with pixel-level annotations; for this well posed problem, we design a custom CNN architecture with improved performance from SOTA architectures with 95% sensitivity and 97% specificity in classifying normal dermis vs. basal cell carcinoma.

• multiple exploratory methods based on the dully curated breast surgical margins dataset, com- compelling evidence towards considering enlarged nucleoli as a (breast) cancer biomarker in DCI imaging, achieved by "looking under the hood" of trained CNNs;

robust fiber characterization in DCI images achieved via a multi-modal contrastive learning method by minimizing the cosine distance between corresponding DCI and FFOCT images in the joint latent space learned, which bypasses an important drawback of DCI -the low repeatability, by relying on the robustness of FFOCT.

• a diagnosis method suitable for real-world data acquisition scenarios based on a breast biopsies dataset acquired by a radiologist in the clinical setting, without any tailored expert annotations; the dataset is comprised of widefield DCI images of 150 biopsies coming from 72 breast nodules and weak annotations at nodule-level are extracted directly from the pathology reports; the trainset is built via an extensive data engineering pipeline: texture-aware sampling with the SoSleek method (which has wide applicability and therefore we made available the open-source code), followed by non-expert agent labeling and ranking based on information content (i.e. entropy) of image patches; we trained a versatile instance-level multiple instance learning model obtaining 89% sensitivity and 84% specificity, followed by thorough post-hoc analysis revealing interesting insights; the framework is easily adoptable at large scale as it minimizes the need of a human annotator, moreover, its design allows obtaining instance-level predictions and, by extension, incorporating dense labels in the training.

To sum up, we propose solutions to accommodate multiple training settings of increased difficulty, from well cured data aiming to answer a precise question to more unstructured data issued from real-world use of the LightCT ™ scanner. There is not a one size fits all solution, but we show how we can, and should, transfer knowledge between tasks. Moreover, given the unknowns regarding both the imaging and the DL framework, we confer special attention to method validation and results analysis in order to deliver explainable models that can be trusted by the clinical users, but also reveal new insights like finding specific biomarkers.

VIII.2 Discussion & Perspectives

Tuning the Model Performance

In the present work we did not focus on improving model performance at the decimal point precision, as a high metric, e.g. accuracy, does not guarantee generalization, instead, we focused more on building unbiased models by learning appropriate features. However, once the training data is sufficiently representative for a final application, which in turn is well-defined in terms of use cases, and the respective model is ready to be moved to production, then the focus can be shifted toward tuning the performance.

For classification objectives, the standard strategy (which was also employed here) is thresholding the output probabilities at 50% to determine the final class, however, the decision threshold can be moved to tune the balance between sensitivity and specificity to better fit the problem. In relation with the cost of errors, a higher specificity might be prioritized for screening purposes, while a high sensitivity is crucial for diagnosis. Following the same philosophy, different aggregation strategies can be adopted, to pass from patch-level to sample-level diagnosis.

Another way for improving model performance, at the cost of losing interpretability, used especially in industrial applications and data competitions is ensemble learning. It consists of training multiple models on the same task and obtain the final prediction as a combinations of each their predictions, i.e.

voting. As guidance, in [START_REF] Courtiol | Classification and Disease Localization in Histopathology Using Only Global Labels: A Weakly-Supervised Approach[END_REF] they use a set of 50 similarly trained models, with the only difference being the initialization of the weights.

Anyhow, we believe that the aspect of tuning the performance should be dictated by the business plan and is out of the scope of this work.

Deployment

Another obstacle caused by the lack of clearly defined use cases is model deployment. There are two main questions regarding deployment, what and how. In term of whats, the main challenge of datadriven approaches is that there is rarely a "one size fits all" solution. In our case, integrating a universal diagnosis model into the scanner that could cater to all possible use cases is far fetched, as the scanner can be used with various organs, pathologies and biopsying procedures which differ greatly among themselves to be treated collectively. On the other hand, such embedded solutions may be integrated for answering more general questions, like assessing image quality, detecting cell presence, etc.

In term of hows, the most elegant solution and ultimate objective is embedding the model into the system, most probable at the level of the associated image viewer. The prediction of the model could be presented in textual form as a report and/or as a layer superposed on the acquired image for localization, e.g. class attention heatmaps. Another ambitious option is decoupling the data and algorithms from the actual physical system via a dedicated cloud storage and computing platform.

Nevertheless, we believe that in order to deploy robust trustworthy clinical-grade models, they should be first trained of more data, ideally multi-centric. In order to cater to this need of data collection as well as make the algorithms available to the clinicians, a viable solution is using already existing tools, like Cytomine [START_REF] Marée | Collaborative analysis of multi-gigapixel imaging data using Cytomine[END_REF], a collaborative platform destined for storage, annotation and, more recently, algorithm deployment. It enables communication between the clinician -the one who performs the acquisition, the pathologist -the one who establishes the final diagnostic and the developer / data scientist -the one who builds the image analysis pipelines. This way, medical experts can annotate the images they acquire, but also interact with the algorithm's predictions in order to correct or refine them, information which would help improve the aid-to-diagnosis model, either offline or even online.

Here we skimmed some ideas, but a thorough analysis of MLops solutions should be conducted to make deployment decisions.

Ethics and Regulations

When releasing a product to the end user it comes up against regulations enforced by dedicated organism, even more for medical related products. For the European Union, in April 2021, the European Commission publishes the first-ever legal framework on AI and a new Coordinated Plan with Member

States. For the USA, in September 2021, FDA issued the "Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan". Both policymakers express their concerns on the opacity of AI algorithms in general and advocate for the promotion of the transparency of these devices. Moreover, human-in-the-loop strategies are encouraged, in the sense that no AI device should make decisions, but rather guide the human agent through predictions accompanied by a confidence grade.

It is well known that AI models will encode the biases present in their training data, in the medical cohorts those biases are most often related to ethnicity and gender [START_REF] Zou | AI can be sexist and racist -it's time to make it fair[END_REF][START_REF] Larrazabal | Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis[END_REF] under-representation. To take a practical example, ethnic groups can be differentiated by the melanin content which is a light absorbing compound. Intuitively, the quantity of melanin might influence OCT imaging as it captures the optical properties of the samples. Indeed, in [START_REF] Ekelem | The effect of melanin on in vivo optical coherence tomography of the skin in a multiethnic cohort[END_REF] they find significant difference in quantitative OCT image quality between light and dark skin types at both epidermal and dermal levels, while in [START_REF] Wilk | The Effect of Retinal Melanin on Optical Coherence Tomography Images[END_REF] they find differences in OCT retinal images in patients with albinism.

The clear trend towards passing to Web3.0 and Blockchain technologies need not be ignored, as it shall impact data ownership status in clinical trials. Medical data, especially images, could be coined as NFTs to be tracked, owned and even monetized. It would be possible to see exactly where the data is used and the patient could consent on the use of their data. This would also ensure greater clinical trial transparency and also ease the enforcement of regulations.

Therefore, data collection should include a diverse cohort and model design should handle known biases as much as possible. When it comes to the methods in this work, we have forestalled the ethical concerns of AI by going the extra mile to design interpretable models.

Multimodality

Moving away from pragmatic aspects towards new methodological directions to extend the present work, we first propose the development of an NLP method to automatically extract clinical information from the pathology reports [START_REF] Kim | Validation of deep learning natural language processing algorithm for keyword extraction from pathology reports in electronic health records[END_REF]. To recall the work in Chapter VI, extensive effort has been employed to extract the ground truth from textual data and it shall be repeated on new data, so an automated text parser would reduce the workload on the human agent but also reduce the error, making the extraction reproducible. Ideally, this NLP model should be developed with an expert supervision. We believe that the multiple instance learning approach developed in Chapter VI has already potential to make automated diagnosis in FFOCT / DCI imaging a reality and this moment will only be expedited by an automated ground truth extractor.

In the same endeavor, we think it might be pertinent to achieve an automated correlation with gold standard histology, in order to transfer knowledge from this extensively studied technique and leverage existing multi-centric annotated histology datasets. We have already presented a method to define a common latent space from different imaging techniques in Chapter VII. There we were dealing with already registered DCI and FFOCT images, but in the case of histology and DCI correlation, the main difficulty is obtaining an (even partially) matching dataset. However, we believe that as long as the same structures are visible is both modalities, a similar approach can be applied to learn a common DCI / H&E image representation, therefore it might be worthwhile obtaining an appropriate dataset.

Metabolic Analysis

There are still a lot of questions about the underlying biological mechanism producing the DCI signal, the first step towards uncovering this was reported in [START_REF] Apelian | Imagerie Optique Multimodale des tissus par Tomographie Optique Cohérente Plein Champ[END_REF] where they observed that blocking the aerobic respiration made no change in the acquired signal, however, blocking glycolysis (i.e. the anaerobic respiration) caused the DCI signal to drop to the level of dead-tissue, therefore, they conclude that glycolysis related micro-movements must be at the source of the DCI signal.

Cellular respiration is a metabolic pathway that breaks down glucose (sugar) in order to produce energy in the form of adenosine triphosphate (ATP). The steps of cellular respiration are: first 1) glycolysis:

breaking down 1 mole of glucose into pyruvate and 2 ATP; followed by 2a) oxidative phosphorylation (OXPHOS): in the presence of oxygen, pyruvate is oxidized inducing an electro-chemical potential at the membrane of mitochondria that produces 34 ATP, this is the aerobic respiration; or 2b) in the absence of oxygen the pyruvate is fermented into lactate which can be transformed by the liver back into glucose to fuel glycolysis. However, in our case, i.e. ex-vivo, there is no way to continuously synthesize glucose, therefore, the signal is diminishing with the consumption of the glucose storage, which finally leads to apoptosis, i.e. cell death.

Normal cells utilize glucose to derive 70% of their required ATP through OXPHOS. However, despite the fact that the aerobic metabolic pathway is up to 15 times more efficient than anaerobic metabolism (34 ATP vs 2 ATP), it has been found that cancer cells prefer glycolysis even in the presence of sufficient oxygen supply. This phenomenon, discovered more than 50 years ago, is known as the Warburg effect

or aerobic glycolysis and it is commonly recognized as a hallmark of cancer. What is more, since cancer cells are significantly energy-consuming in order to fuel their malignant properties, like excessive proliferation they perform glycolysis at a 10-fold rate as compared to the norm. Cancer metabolism is being extensively studied for potential anti-cancer therapeutics development [START_REF] De Berardinis | Fundamentals of cancer metabolism," may 2016. I.1 Bird in Space[END_REF].

In the light of these literature findings and motivated by the framework presented in Section V.2 meant for fine signal characterization by means of isolating salient oscillatory frequencies proper to cells only, we believe that further experimentation in the cancer cell biology and metabolomics field could shine a light on the quantification of the metabolic activity from DCI signal it presumably captures and, ultimately, it could represent a new quantifiable cancer biomarker.

To conclude, the present work is pioneering for FFOCT / DCI image analysis by offering educated and thoroughly validated solutions, but also by opening up some research directions in the field. We are looking forward to the adoption of FFOCT / DCI imaging as a standard of care for fast tissue assessment and we believe this work significantly contributes to this endeavor. 

Résumé francophone détaillé

Défis liés aux données

Même si nous sommes toujours dans le contexte du big data, nous sommes confrontés au défi des données limitées, omniprésentes dans le domaine médical, en outre, il existe de multiples inconnues liées à l'aspect novateur de la technique et à la nature même de l'imagerie:

• Un modèle parfait aurait une perte nulle L = 0, en conséquence la rétropropagation est utilisée pour ajuster les poids afin de minimiser la perte. Mathématiquement, cela implique de calculer le gradient (ou la dérivée) de la fonction de perte par rapport aux poids d'une multicouche de neurones ∇ W L(W ) en appliquant la loi de la dérivation en chaîne: pour y = f (h(x)), ∂f ∂x = ∂f ∂h ∂h ∂x . Ensuite, avec la dérivée de la perte calculée par rapport à chaque poids du réseau, les poids sont ajustés dans la direction négative du gradient modulé par η la taille du pas: w i ← w i -η ∂L ∂w i , soit descente de gradient. Il existe plusieurs algorithmes d'optimisation [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF] utilisés pour mettre en oeuvre différentes stratégies de descente de gradient. Dans le cas de la descente de gradient stochastique (SGD de Stochastic Gradient Descent) nous remplaçons le vecteur de gradient réel par une estimation stochastique du vecteur de gradient.

Pour un réseau de neurones, l'estimation stochastique signifie le gradient de la perte pour une seule instance ou, plus souvent, pour un sous-ensemble. La SGD momentum [START_REF] Qian | On the momentum term in gradient descent learning algorithms[END_REF], similaire au principe d'inertie en physique, permet d'amortir les oscillations causées par les solutions partielles calculées avec SGD. La SGD avec momentum est actuellement la méthode d'optimisation de pointe pour de nombreux problèmes d'apprentissage profond. Il existe egalement d'autres méthodes, généralement appelées méthodes adaptatives qui sont particulièrement utiles pour les problèmes mal conditionnés. L'estimation adaptative du moment (Adam) [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] repose sur l'idée d'adapter η pour chaque paramètre pendant l'apprentissage, c'est-à-dire l'augmenter si la descente a une direction constante et le diminuer lorsque la direction change. Adam conserve une moyenne mobile exponentielle du gradient passés similaire au momentum et une moyenne mobile exponentielle du gradient au carré.

Les réseaux de neurones convolutifs (CNN de Convolutional Neural Networks) sont une classe d'architectures conçues pour les entrées matricielles, notamment les images. Leur configuration de neurones s'inspire de l'organisation du cortex visuel, chaque neurone répondant à une petite zone du champ de vision appelée champ récepteur. Dans le contexte des réseaux neuronaux, cette organisation est mise en oeuvre par le biais de connexions parcimonieuses, ce qui signifie que chaque neurone est connecté à un petit nombre de neurones (par exemple une région carrée de 3 × 3) de la couche précédente. En outre, les poids sont partagés entre les noeuds adjacents, une propriété qui rend le CNN invariant à la translation.

Les CNN sont un exemple réussi d'intégration d'informations spécifiques à un domaine (dans ce cas, pour des tâches de vision) dans la conception de l'architecture d'un réseau neuronal.

Un aspect essentiel de la conception des CNN consiste à établir les connexions entre les couches qui définissent le flux d'informations dans le réseau. Les anciens réseaux feed-forward à chemin unique partagent les mêmes principes de conception, c'est-à-dire qu'ils alternent les couches convolutionnelles avec les couches de regroupements, suivi des couches entièrement connectées, mais les nouveaux modèles gagnent en complexité pour s'adapter aux ensembles de données plus riches, comme ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF] -un ensemble de 1,3 million d'images naturelles haute résolution appartenant à 1000 classes. Pour énumérer quelques architectures importantes: LeNet [47] -la première, AlexNet [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF] et VGG [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] les pionniers des problèmes complexes, Inception [START_REF] Szegedy | Rethinking the Inception Architecture for Computer Vision[END_REF] introduit la croissance en largeur, plutôt qu'en profondeur, ResNet [START_REF] He | Deep residual learning for image recognition[END_REF] introduit des connexions de saut, etc. D'autres approches sont: les architectures multi-flux prenant plusieurs entrées (par exemple, les réseaux siamois [START_REF] Chicco | Siamese Neural Networks: An Overview[END_REF]), les architectures codeur/décodeur pour la segmentation d'images (par exemple, Unet [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF], MaskRCNN [START_REF] Chen | Rethinking Atrous Convolution for Semantic Image Segmentation[END_REF]), ou les réseaux adversatifs génératifs (GAN) [137] pour la synthèse d'images, etc. Étant donné leur nature de boîte noire, il est difficile de comprendre les décisions qu'une CNN prend pour obtenir un certain résultat. Par conséquent, la seule façon d'avoir une idée du raisonnement est d'employer des méthodes de validation qualitative, comme la visualisation et l'évaluation des filtres appris ou des cartes d'attention. Erhan et al. [START_REF] Erhan | Visualizing higher-layer features of a deep network[END_REF] propose une méthode qui permet de visualiser les motifs appris qui sont encodés par les noyaux convolutifs, en effectuant une ascension de gradient dans l'espace d'entrée en maximisant l'activation du filtre examiné. Grad-CAM [START_REF] Selvaraju | Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization[END_REF] est une méthode qui avons utilisé une approche de séparation des sources à l'aveugle, la méthode de factorisation par matrices non négatives (NMF de Non-negative Matrix Factorization) [START_REF] Paatero | Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[END_REF][START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF] pour ses résultats hautement interprétables en vertu de sa contrainte de positivité conduisant à une décomposition par parties.

Le but de la NMF est de factoriser une matrice de données X ∈ R n×d en deux matrices positives de • signal de ligne de base: niveau de bruit du signal;

• fibres: composantes spectrales de haute magnitude avec des structures fibreuses dans la composante spatiale correspondante;

• erreur d'échantillonnage: un pic au dernier bin de fréquence correspond à l'énergie à la fréquence de Nyquist;

• cellules: formes de cellules révélées dans la localisation spatiale;

• artefacts de mouvement: la composante de fréquence bruyante avec des pics dans la partie supérieure du spectre et l'activation spatiale correspond aux fibres hautement réfléchissantes sont des indicateurs d'une modulation de phase du signal DCI induite par un mouvement externe.

Nous avons utilisé la décomposition NMF, plus précisément les composantes dynamiques, comme moyen d'extraction de caractéristiques pour classifier les FOVs cancéreux et normaux avec une précision de 71% et nous avons révélé certaines fréquences plus importantes. Pourtant, sur la base de ces résultats, nous concluons que le signal dynamique seul (traitant donc le scanner plus comme une sonde que comme un dispositif d'imagerie) ne suffit pas pour le diagnostic. Néanmoins, cette méthode pourrait être utilisée pour améliorer le contraste de l'image ou analyser le signal de manière plus quantitative.

V.3 Classification à partir des images DCI

Sur la base des idées précédentes, on se tourne vers une solution DL pour classer les images DCI traitées provenant du tissu mammaire. Mais cette fois-ci, par rapport à l'application de la peau, nous sommes confrontés à un organe, une pathologie et une modalité d'imagerie plus difficiles, ainsi qu'à des annotations à plus petite échelle.

Pour surmonter ces inconvénients, nous nous appuyons sur un modèle pré-entraîné. En [START_REF] Chahal | Small Data's Big AI Potential[END_REF] ils ont révélé que l'apprentissage par transfert a connu une montée en force, montrant son efficacité sur de petits ensembles de données. Par conséquent, nous avons décidé d'utiliser ImageNet comme base de données de pré-entraînement car elle s'est avérée plus efficace à environ 15% par rapport à d'autres jeux de données spécifiques dans le cas des images histologique du cancer du sein [START_REF] Kohl | Assessment of Breast Cancer Histology Using Densely Connected Convolutional Networks[END_REF]. En ce qui concerne l'architecture, c'est une fois de plus la simplicité qui gagne puisque la VGG16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] En ce qui concerne les résultats quantitatifs, on obtient une précision par FOV de 89 ± 4%, ce qui correspond à une sensibilité de 88 ± 4% et une spécificité de 86 ± 6% pour une validation croisée à 5 plis. De plus, au niveau de l'échantillon, l'algorithme surpasse la performance moyenne de deux pathologistes lors d'un diagnostic en aveugle.

VI Classification bénin vs. malin par apprentissage faiblement supervisé

Les données médicales sont chères à obtenir, les annotations encore plus, c'est pourquoi nous avons développé une méthode qui apprend à partir des rapports de pathologie déjà disponibles. Dans le présent travail, nous construisons un outil de diagnostic en utilisant uniquement les étiquettes globales grâce au paradigme d'apprentissage par instances multiples (MIL de Multiple Instance Learning).

Dans le contexte du MIL, les instances sont représentées par plusieurs sous-images (patchs) échantillonnées à partir d'une image plus grande qui représenterait un groupe d'instances. Le concept a été introduit par [START_REF] Dietterich | Solving the multiple instance problem with axisparallel rectangles[END_REF] en réponse au besoin de formaliser des connaissances incomplètes ou de classifier des groupes hétérogènes. Ces groupes mixtes (ou sacs) sont généralement définis de manière binaire en partant du principe que les sacs négatifs ne contiennent que des instances négatives tandis que les sacs positifs peuvent également contenir des instances négatives et qu'ils doivent contenir au moins une instance positive, mais que la nature des instances est inconnue.

Étant donné notre objectif de rendre les images DCI interprétables par les utilisateurs cliniques, nous choisissons une variante de MIL qui permet d'obtenir également des prédictions locales. De plus, nous sommes préoccupés par l'apprentissage de caractéristiques adaptées à l'imagerie dans la perspective de découvrir des biomarqueurs propres à notre contraste unique, raison pour laquelle nous choisissons d'entraîner l'extracteur de caractéristiques à cette tâche également.

Ces aspects se distinguent des méthodes existantes, car la majorité des méthodes MIL appliquées aux images de pathologie [START_REF] Courtiol | Classification and Disease Localization in Histopathology Using Only Global Labels: A Weakly-Supervised Approach[END_REF][START_REF] Dehaene | Self-Supervision Closes the Gap Between Weak and Strong Supervision in Histology[END_REF][START_REF] Sudharshan | Multiple instance learning for histopathological breast cancer image classification[END_REF][START_REF] Lu | Data-efficient and weakly supervised computational pathology on whole-slide images[END_REF] contenant N tuiles x i , i = 1, N dont la vérité terrain globale y est connue, nous construisons le sac correspondant en sélectionnant un sous-ensemble X b ⊆ X. La branche principale encode une fonction ϕ : X → [0, 1] faisant correspondre chaque tuile x i à sa probabilité prédite ŷi = ϕ(x i ), qui sont ensuite agrégées par la couche de regroupement MIL pour obtenir la prédiction de l'échantillon ŷ = max i∈{1,k} ( ŷi ). Nous insistons sur le fait que les étiquettes de tuiles y i sont inconnues, mais que nous pouvons tout de même obtenir des prédictions de tuiles ŷi .

Pour traiter les données déséquilibrées, nous utilisons la fonction de perte focale [START_REF] Lin | Focal Loss for Dense Object Detection[END_REF] lors de l'apprentissage.

Une considération importante est de définir une capacité maximale des sacs k max , ce qui nous amène à créer une hiérarchie de patchs et à choisir en priorité les patchs contenant des cellules et ayant un contenu d'information plus élevé. Nous choisissons k max = 8 en fonction du nombre moyen de patchs contenant des cellules par échantillon (soit 6) et des ressources hardware disponibles. Cependant, au moment de l'inférence et lors du calcul des métriques, nous prenons en compte tous les patchs.

Nous obtenons une augmentation remarquable de 32 points en sensibilité (89%) par rapport au modèle utilisant la branche principale pré-entraînée sur ImageNet et nous arrivons à égaler la spécificité obtenue dans l'application entièrement supervisée (84%). Sur ces bases, nous énonçons les contributions suivantes de notre approche MIL pour la classification des biopsies mammaires malignes vs bénignes dans DCI:

1. on obtient des prédictions adéquates au niveau de la biopsie; 2. on déduit des prédictions adéquates au niveau des patchs; 3. on apprend une base de caractéristiques adaptée à la tâche; Cette approche a l'avantage de se prêter à l'application à tout ensemble de données similaires, ainsi qu'à une combinaison de différents ensembles de données, pour arriver finalement à une définition exhaustive de l'apparence des fibres en DCI.

VIII Conclusions

Synthèse des contributions

Dans ce travail, nous avons posé les bases de l'analyse des images FFOCT / DCI vers le diagnostic du cancer en nous concentrant sur une meilleure compréhension du signal. À cet égard, nous avons employé des stratégies de préparation de données adaptées et nous avons construit 3 ensembles de données, grâce auxquels nous avons développé de multiples algorithmes par apprentissage automatique:

• une preuve de concept pour tester la faisabilité du DL sur notre imagerie appliquée sur un ensemble de données du cancer de la peau -une collection d'images FFOCT à large champ provenant de 40 échantillons, avec des annotations au niveau du pixel. Pour ce problème bien défini, nous avons conçu une architecture CNN sur mesure avec des performances améliorées par rapport aux architectures SOTA avec 95% de sensibilité et 97% de spécificité pour la classification du derme normal vs. carcinome basocellulaire.

• plusieurs approches exploratoires basées sur un ensemble de données des marges chirurgicales 
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  red light (See Figure II.1).

Figure II. 1 :

 1 Figure II.1: The electromagnetic spectrum.

Figure II. 2 :

 2 Figure II.2:Relationship between scattering pattern (Mie or Rayleigh) and particle size as a hierarchy of biological ultrastuctures found in animal tissue (scale adapted from[START_REF] Jacques | Fractal nature of light scattering in tissues[END_REF]).

  Figure II.3: Optical Setup for FFOCT / DCI Imaging

  of the more common Michelson interferometer, with the only distinction of having objectives in both arms) whose optical setup is presented in Figure II.3. The light from a low coherent broadband source is divided by a beam splitter into two arms: (i) a sample arm pointing to the examined sample and (ii) a reference arm containing a reference mirror.After the two beams are reflected respectively by the sample and reference mirror, their recombination (i.e. interference) is acquired by the camera. The final image is obtained by subtracting multiple images acquired with a phase shift so as to remove the incoherent part of the signal and reveal the backscattered light in the focus plane. By moving the optical block towards the sample holder and matching the same displacement in the reference arm, one can move the focus plane to image the sample at different depths, this explains the z-sectioning ability of the system, with z resolution increasing as coherence length decreases.

( a )

 a Simplified FFOCT image formation using the 2 phase-shift method, obtained as the difference of two interferometric frames acquired with a λ/2 phase difference, which results in conserving the interference signal only.(b) DCI image formation from the acquisition of a stack of interferometric frames to processing of the signal in frequency domain and composing the RGB image.

Figure II. 4 :

 4 Figure II.4: Image formation schematic illustrations.

  digital vaccine passport) as a universal way of monitoring immunizations while ensuring data protection. Another advance driven by the pandemic is the creation of one of the largest (in terms of number of patients) unified database: The National COVID Cohort Collaborative (N3C) comprising clinical data from 8 million persons out of which almost 3 million are pathological cases gathered from 65 sites across the U.S.

Figure III. 1 :

 1 Figure III.1: Sampling example of a breast core needle biopsy (top to bottom): regular grid, SoSleek using classical SLIC, SoSleek using maskSLIC (mask was obtained with bi-modal thresholding followed by morphological operations); image size is 19 920 × 6 805, patch size is 1024 × 1024 with zero overlap.

Cohort

  Our data set consists of 40 FFOCT images (out of which 10 were cancerous) of tissue excisions obtained from Mohs surgery, biopsies and conventional excisions, which were then imaged using the LightCT TM scanner. Each image is a 2D transverse slice of a unique tissue sample imaged at 20 µm below the surface. Samples measure between 2-2.5cm 2 which gives high-resolution images of around 200 Megapixels. Annotation As shown in Figure III.2 the images were manually segmented and diagnosed by a dermatopathologist

a)Figure III. 2 :

 2 Figure III.2: An example of skin sample imaged with FFOCT (11 808 × 8 352) annotated in Cytomine and some patches (256 × 256) extracted from its annotated areas.

Figure III. 3 :

 3 Figure III.3: Breast cancer morphological variation in H&E staining adapted from [106]).

Figure III. 4 :

 4 Figure III.4: Breast tissue FOVs acquired in (from left to right) FFOCT, DCI and corresponding area on H&E stained slide: normal lobule (top), ductal carcinoma in-situ (bottom)

1. 5

 5 millimeters (14-gauge needle) and up to a couple of centimeters long, resulting in 17 to 20 mg of sampled tissue. To ensure a good localization of the targeted mass there are 2 approaches: stereotactic or X-ray (see Figure III.5a) and ultrasound (see Figure III.5b) guidance. Furthermore, to ensure correct sampling, an extra step might be taken in the act of radiographying the excised specimens, to look for microcalcifications, a sign of suspicious tissue. Nonetheless, multiple (usually 5) biopsying gestures are conducted to ensure the success of the of the act, then the specimens would be transferred to an anatomical pathologist who will perform a labor intensive and time consuming histopathology protocol and finally microscopic analysis (see Figure III.5e). By this means the patient will receive the diagnosis in 2 to 5 days.

Figure III. 5 :

 5 Figure III.5: Breast core-needle biopsy protocols and analysis: a1) stereotactic guided biopsy protocol a2) mammogram showing abnormal dense mass b1) ultrasound guided biopsy protocol b2) ultrasound image of breast with cyst penetrated by biopsy needle c) radiographs of core-needle biopsy specimens showing microcalcifications d) macro image of specimen acquired with the LightCT ™ scanner e) analysis of prepared sample on glass slide under optical microscope f) analysis of fresh unprepared sample with LightCT ™ scanner.
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  a macro image (Figure III.5 d) of the specimen used at the image acquisition stage for an aware tissue exploration; a large-field processed DCI and its corresponding large-field FFOCT image for each fragment (see Figure III.6 for an example); there is a total of 276 fragments imaged and for the majority of cases (i.e. per inclusion) there are between 2 and 4 fragments imaged; images are ranging from 6 MP up to 200 MP with a median of 40 MP resolution, with the same pixel resolution of 0.9 µm.

Figure III. 6 :

 6 Figure III.6: Breast biopsy example in FFOCT (top) and DCI (bottom). Malignant, invasive ductal carcinoma of high grade.

Figure III. 7 :

 7 Figure III.7: Examples of extracted 1024 × 1024 px patches which all contain cells but have different entropy levels.

Figure IV. 1 :

 1 Figure IV.1: The perceptron a.k.a. the artificial neuron (source: Creative Commons).

Figure IV. 2 :

 2 Figure IV.2: A multi-layer perceptron (MLP) with one hidden layer (adapted from Creative Commons).

IV. 3 . 1

 31 Quantitative IV.3.1.1 Classification Metrics Evaluation of the performance of a classification model is based on the counts of test records correctly and incorrectly predicted by the model. The confusion matrix provides a more insightful picture which is not only the performance of a predictive model, but also which classes are being predicted correctly and incorrectly, and what type of errors are being made. To illustrate, we can see how the 4 classification metrics are calculated (TP, FP, FN, TN) based on the predicted value compared to the actual value in a confusion matrix is clearly presented in the confusion matrix (see Figure IV.3).

Figure IV. 3 :

 3 Figure IV.3: Confusion matrix definition.Figure IV.4: ROC curve definition.

Figure IV. 5 :

 5 Figure IV.5: Grad-CAM algorithm (adapted from [142] by adding the negative branch and showing a binary classification case, rather than multi-class).

  Figure V.1 for the illustration of the chosen architecture.

Figure V. 1 :

 1 Figure V.1: Custom architecture for classifying skin cancer FFOCT patches.

Figure V. 3

 3 are plotted the patterns learned by the 3 rd convolutional filter. The patterns seem to represent different distributions of cells and orientation of collagen fibers. They could be reading criteria to make a diagnosis out of the images but this requires clinical confirmation from a pathologist.

Figure V. 2 :

 2 Figure V.2: Ground truth annotation vs. predictions obtained with proposed architecture, InceptionV3 and VGG16 (from left to right) on a skin sample imaged with FFOCT.

Figure V. 3 :

 3 Figure V.3: Learned filters example.

Figure V. 4 :

 4 Figure V.4: Overview of pre-processing and decomposition algorithm.

  Figure V.6 shows a representative example of the factorization with the obtained frequency components and their corresponding spatial activations. To construct a unified feature vector for each FOV, the H components are ordered by their energy (area under curve) and the ones with the minimum and maximum energy are removed, since they correspond to the sampling induced error (H 2 in Figure V.6) and baseline component (H 0 in Figure V.6),respectively. Then the 3 remaining components are concatenated to form a single feature vector that will characterize each FOV. Note that ordering the components by their energy also ensures some consistency of the feature vector between FOVs.

Figure V. 5 :

 5 Figure V.5: DCI crop processed in RGB and the individual channels, showing poor signal separation.

Figure V. 6 :

 6 Figure V.6: NMF factorization results for k = 5: activations W (left) and signatures H (right) showing signal baseline, fibers, noise, cells, motion artifact (top to bottom).

Figure V. 7 :

 7 Figure V.7: Average and standard deviation of the features (3 NMF components) over the training set (orange)and the important f bins selected by AdaBoost (blue).
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 5 fold cross-validation training with the same hyper-parameters and trained 5 models on partitions of 4/5 of the samples and tested their performance on 1/5 of the samples, respectively, hence keeping the same 80/20 train/test ratio at each run. The dataset partitioning into training and test sets was performed in a stratified manner with respect to the global per-sample diagnosis i.e. ensuring the same distribution of classes in both sets ; in terms of size, 80% of the samples (N train = 37, N train tumor = 27, N train normal = 10) used for training and the remaining 20% (N test = 10, N test tumor = 7, N test normal = 3) for evaluating the performance. However, this stratification strategy does not ensure the exact same distribution of classes at ROI level, as each sample has a different number of acquired ROIs; nonetheless, taking the first fold as example, there are 286 fields of view for training (185 positive and 101 negative) and 87 for testing (60 positive and 27

Figure V. 8 :

 8 Figure V.8: ROC curves corresponding to all the 5 folds at ROI level.

Figure V. 9 :

 9 Figure V.9: Detailed sample-wise cross-validated test results for the whole dataset: every subplot corresponds to an unique tissue sample; each point represents a FOV; on the X axis there is the FOV ID and on the Y axis there is the predicted tumor probability; the white horizontal line corresponds to the per sample aggregated prediction as the 90 th quantile of the FOV probabilities; colors represent the ground truth or the lack thereof: red for malignant, blue for normal, while the pale colors correspond to labels with uncertainty and white for lack of ground truth; the enclosing rectangles highlight the 6 samples missed by the pathologist(s) during the blind review, out of which 3 were correctly classified by our model and the other 3 represent the only misclassified cases.

Figure V. 10 :

 10 Figure V.10: Logistic regression performance metrics (AUC) on the test set data with feature vectors extracted from the convolutional layers along the VGG-16 architecture: trained on ImageNet data or finetuned on our data, showing an increase of 0.10 points in ROC AUC (from 0.86 on ImageNet to 0.96 on ours) and additionally deducing that we have a highly specialized last convolutional block.

  Figure V.11 a can be seen the distribution of said coefficients, it stands out that many of them evaluate around zero. This non-explicitly trained sparse model could suggest that the feature vector is too big for the given problem, but it does not represents a problem as it still generalizes well, on the contrary, it is an indication that the feature extraction model can accommodate more complexity i.e. could be extended with more data in the future. Now considering the non-zero coefficients, by taking the patterns corresponding to the coefficients with the largest absolute values we can find the most discriminating features and create two class-wise "filter bases": negative coefficient correspond to negative evidence of the cancerous diagnosis (i.e. normal class), while positive coefficients represent positive evidence (i.e. tumor). See Figure V.11 b for a visual representation of 50 of the most discriminatory visual patterns towards diagnosis: on one hand, showing small cells organized in grape-like structures resembling the main mammary tissue structures -the breast lobules -and some regular fiber patterns, typical for normal tissue; on the other hand, for the tumor class, there are depicted much bigger cells, not organized in any particular formation, together with big solitary cells intertwined between the fiber system. We remind the reader that the patterns in Figure V.11 b are computed by sequentially maximizing via brute-force the activation of each filter in a convolutional layer and simulating the input image that would generate this maximization. The complexity and resolution of the textures are therefore dependent on the receptive field of the filter. The receptive field represents the zone of the input image that is "visible" for a) Histogram of magnitude of logistic regression coefficients. b1) Negative evidence filter bank showing lobule-like structures and fibers. b2) Positive evidence filter bank showing big densely packed cells and big isolated invasive cells amid fibers.

Figure V. 11 :

 11 Figure V.11: Looking under the hood of the logistic regression model and decoding the learned filterbanks: a) histogram of the coefficients of the logistic regression model, i.e. the distribution of weights of the data features, where each feature is the activation i.e. presence of a corresponding filter in the input image; b) showing the filters corresponding to the coefficient with the highest magnitudes: the top 25 negative and positive, respectively, from the total of 512 filters.

Figure V. 12

 12 Figure V.12: a) example of cell appearance in H&E showing the cell body with cytoplasm and the nucleus containing nucleoli; b1) example of cells with visible nucleoli in DCI imaging and b1) the corresponding tumor-positive attention map highlighting the visible nucleoli; c) example of learned filters clearly showing cells with visible nucleoli; 10 µm scalebars.

Figure V. 13 :

 13 Figure V.13: Visual examples of attention maps corresponding to the last CONV layer block5_conv3 on image crops: input image crop (left), corresponding tumor-positive attention map (middle) and tumornegative attention map (right); top example shows a normal lobule surrounded by infiltrating cancer cells (tumor sample with 79% tumor predicted probability); bottom example shows a normal lobule coming from a normal sample with 24% tumor predicted probability); 100 µm scalebar.

Figure V. 14 :

 14 Figure V.14: Streamlined plug & play architecture containing the 3-step workflow: (i) feature extraction and classification with VGG-16, (ii) Attention Map computation (offline) with GradCAM, (iii) Segmentation by building a U-Net architecture having the pre-trained VGG-16 as backbone.

  where I is the instance space and N is the number of instances inside the bag, and the ground truth bag label Y is known, but not the instance labels y i ∈ L, i = 1, N (for the binary case L = {0, 1}). Regardless of the MIL strategy or the paradigm used to enable it (either traditional rule-based or deep learning based), implementation

Figure VI. 1 :Figure VI. 2 :

 12 Figure VI.1: Fully Supervised Learning vs Multiple Instance Learning concepts illustrated for the binary classification problem.(adapted from[START_REF] Maron | A Framework for Multiple-Instance Learning[END_REF])

Figure VI. 3 :

 3 Figure VI.3: Block diagrams of embedding-level (top) vs instance-level (bottom) MIL frameworks with feature extractor module Φ f eature , aggregation (or pooling) module Φ aggregation and classifier Φ classif ier , mapping input bag X to bag prediction Ŷ , passing by features f i of instances x i and either bag feature vector f X (for embedding-level MIL) or instance predictions ŷi (for instance-level MIL).
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 4 whose constituting branch is transferred entirely: convolutional layers (CONV) + fully-connected classifier (FC), from the CNN model trained with full supervision on breast excision dataset (see III.2.2.1) and duplicated k times, where k is the number of instances per bag. All the weights are shared across branches (this is also known in the literature as siamese network[START_REF] Chicco | Siamese Neural Networks: An Overview[END_REF]), on top of that it is added a Max pooling layer which aggregates the instancelevel predictions under the standard MIL assumption to give the bag-level prediction. For each sample X = {x i |i = 1, N } containing N tiles x i , i = 1, N whose global ground truth Y is known (and

Figure VI. 4 :

 4 Figure VI.4: Architecture for MIL

  3.4.1 and Figure V.10 for more details). Consequently, the first 4 convolutional blocks are frozen during training and only the 3 convolutional layers comprising the last convolutional block are further trained on the current task (see Fig. VI.4), as

Figure VI. 5 :

 5 Figure VI.5: Workflow for MIL training on breast biopsies: from image acquisition to inference.

  Focal loss is based on a simple yet powerful idea, during model training, it reduces the contribution of the already well-classified candidates but to focus on the hard, misclassified ones. It differs from the classic binary cross-entropy by virtue of the modulating factor γ called "focusing" parameter, which helps scale the loss for misclassified or "hard" training examples. However, given the general definition of FL, with γ = 0 FL is equivalent with BCE. See Figure VI.6 for an example of the influence of different values of the γ parameter.

82 .

 82 We used the suggested values for the focal loss parameters, namely γ = 2 and α = 0.25 (or α p = 0.25 and α n = 0.75). Therefore we choose to penalize more the false positives than the false negatives, this is due to the slight uncertainty of the positive diagnosis (recall Assumption 1), however, in defiance of this, in medical applications it is desirable to minimize the presence of type II errors (i.e. false negatives) or errors of omissions, as they are more dangerous than type I error since they imply dismissing a sick patient, instead of performing more tests which could eventually lead to the true diagnosis. The loss is minimized via SGD with momentum and lr = 10 -4 , on a mini-batch size of 3 bags, thanks to an Nvidia A40 GPU with 48 GB VRAM.

Figure VI. 6 :

 6 Figure VI.6: Focal Loss vs. Cross Entropy (γ = 0) and influence of parameter γ for y = 1 (Figure from [189]).

Figure VI. 7 :

 7 Figure VI.7: Binary Focal Loss for α = 0.25 and γ = 2 when y = 1 or y = 0.

Figure VI. 8 .

 8 Note that the aggregated results were used to compare the different training strategies (previous section) in order to have a global picture for the entire dataset.

  Figure VI.8: Confusion matrices for aggregated 3-fold prediction results.

Figure VI. 9 :

 9 Figure VI.9: Patch malignancy prediction according to patch cellularity and sample ground truth.

Figure VI. 10 :

 10 Figure VI.10: Sample malignancy predicted probability according to malignancy grade (NB: grade = 0 concerns benign samples).

Figure VI. 11 :

 11 Figure VI.11: Sample cellularity according to malignancy ground truth.

Figure VI. 12 :

 12 Figure VI.12: Sample cellularity according to prediction outcome.

  and their distance ∆ in this domain is near-zero, i.e. ∆(f a i , f b i ) → 0. By extension, for two different samples s i and s j the distance should be greater ∆(f a i , f b j ) ≫ 0 .In most of the applications present in the literature and recalled above,x b is a transformed version of x a s.t. x b = T (x a )where T is a linear operator from the data augmentation family, which implies that the input domains are quasi-equivalent I a ∼ I b . However, in our case, on each tissue sample s i there are applied two very different imaging projections, one corresponding to FFOCT modality: Ω a : S → I a and one to DCI: Ω b : S → I b , making the two input domains I a , I b more challenging to bring closer into the common embedding domain F. Intuitively, this discrepancy between the two domains, pushes the network to learn and encode finer, more meaningful and elemental qualities of the two domains, in case of convergence.

  1 440 × 1 440 registered DCI and FFOCT images further into tiles to produce a richer training set. The choice of the patch size, and consequently the size of the inputs, is made mostly empirically as the minimum size needed to contain sufficient fibers to make a decision. The chosen size for the inputs x a , x b is 480 × 480, which given the architecture (see Figure VII.1) leads to a size for the resulting feature vectors f a , f b of 15 × 15 × 512 = 115 200 each. But most importantly, the presented architecture can handle any input size, as there are no fully connected layers succeeding the feature embedding, with the only condition that the two inputs have the same size. VII.3.1.2 Cosine Similarity Computing Embedded Node Having defined the independent vectors f a = Φ(x a ) obtained on inputs x a ∈ I a from one domain and the feature vector f b = Φ(x b ) resulting from the input in the second domain x b ∈ I b , we now have to define the distance function ∆.

Figure VII. 1 :

 1 Figure VII.1: Siamese network architecture with VGG-16 convolutional block and integrated node computing cosine similarity serving as extractor of common features shared between DCI and FFOCT images

Figure VII. 1

 1 via online batch generation and using a classification inspired loss. Present experiment has been conducted on the 47 breast excision dataset (detailed in Section III.2.2.1) containing carefully curated ROIs imaged with both FFOCT and DCI. The train / test split follows the same 80 / 20 rule resulting in 37 samples for training and 10 for testing. When it comes to ROIs, we are training on 403 image pairs and testing on 124 pairs, all sharing the same size i.e. 1 440 × 1 440 pixels.

Firstly, there 2 > 2 = 9 .

 229 are N + = 403 unique positive image pairs and N -= C N + 2 -N + > 80K possible negative pairs. To this we add the image augmentations which consist in 3 levels of image contrast, for DCI images only, and flips (vertical and/or horizontal), synchronized for DCI and FFOCT positive pairs. Furthermore, we use extracted sub-regions of 480×480 that artificially grows the dataset. During each training epoch we are extracting k patches from each image, and since it is online generation 2 , the patches are slightly different between each epoch, acting like data augmentation, helping convergence and generalization. In theory, from each 1 440 × 1 440 image we could extract k = C 960 450K distinct patches of size 480 × 480, however, the insignificant variation introduced by displacements of only one pixel would not justify the great training overhead, therefore, we choose k = image width×image height patch size We can estimate that the number of positive input pairs seen by the network during training time is equal to N × k × card(T ) × n epochs ≈ 10 800 × n epochs , where N is the number of positive image pairs, k the number of patches randomly extracted from each image at each training step, T is the set of image transformations applied for augmentation and n epochs is the total number of training epochs. For validation generators we always sample the central patch of the images to ensure reproducibility among epochs in order to monitor the test metrics confidently.

  f b j which formulates the problem as a binary classification problem. Accordingly, the loss function is defined as follows and plotted in Figure VII.2, given the angle between vectors θ and the angle predicted by the siamese network θ:

Figure VII. 2 :

 2 Figure VII.2: Training loss for matching image pairs (x a i , x b i ) having colinear feature vectors therefore θ(f a i , f b i ) = 0 and for the case of non-matching image pairs θ(f a i , f b j ) > 0.

Figure VII. 3 :

 3 Figure VII.3: Distribution of the cosine distance of all possible combinations of image pairs over the test set, both positive and negative pairs.

  Figure VII.4 where the DCI image (a2) displays artifact as highly saturated green-yellow traces, which are present both at the fiber level (top left corner) and caused by the liquid medium flowing in the interstitial space (bottom half and top right). We deduce this by comparing with the FFOCT acquisition (b2) and observe that in the attention map (d2) this difference was also captured.In both attention maps (Figure VII.4 d1 & d2) we also notice a natural side-effect of the training objective; namely, besides the fiber features, the holes in the tissue serve as matching features for associating the two modalities. While this seems to not overshadow the fiber detection, it might be undesirable in other downstream tasks and should be acknowledged.Another aspect worth highlighting is the feature complementarity among the features learned via the tumor classification task (detailed in Section V.3) and the modality matching task. With these two methods combined we achieve a complete representation of DCI images, learning features related to cell appearance as well as fiber structures, respectively. This can be best noticed by looking at the two examples of pairs of activation maps in Figure VII.4 (c1 & d1, c2 d2) which offer a "reading" of the corresponding DCI image, acting as an aids to interpretation. This complementarity of image characteristics is also nicely illustrated in Figure VII.5 showing some examples of learned patterns encoded by the deeper layers of the two networks.

Figure VII. 4 :

 4 Figure VII.4: Two comparing examples of activation maps of the VGG-16 model trained on the tumor classification task (c1, c2) and the modality matching task (d1, d2); note that the activation maps are based only on the DCI images (a1, a2), while the corresponding FFOCT images (b1, b2) are showed for a better apprehension of the fiber architecture of the respective FOV.

Figure VII. 5 :

 5 Figure VII.5: Comparison of learned filters from the last convolutional layers of VGG-16 model trained on the tumor classification task (left) and the modality matching task (right) showing cell (left) and fiber (right) characteristics.

  prised of ∼ 400 individually annotated ROIs imaged with both DCI and FFOCT, coming from 47 surgical excisions: 137 a signal decomposition method based on source separation with non-negative matrix factorization revealing oscillatory signatures and their spatial localization; a fully supervised cancer classification model trained on DCI processed images by finetuning a narrow bottleneck adaptation of VGG16 architecture offering 97% sensitivity and 85% specificity at the sample level, surpassing the pathologist performance; instance localization of tumors and healthy structures via positive and negative attention maps supported by the straightforward design of the previous model; based on the obtained localization maps we extend the classification model to also accommodate segmentation, this streamlined architecture should serve for easy deployment onto the product side; class-wise filter bases that encode salient textures for healthy lobules and proliferating tumor cells, by replacing the MLP classifier with a linear classifier, which confirms the strong discriminative power of the learned feature extractor alone;

  données provenant d'un seul centre: pour chaque application les données sont collectées dans le cadre d'études cliniques ciblées; les données proviennent d'un seul centre et par conséquent, par rapport à l'ensemble des données médicales qui alimentent les méthodes de pointe, nous sommes d'autant plus confrontés à la rareté des données; • bruit d'étiquetage: à l'heure actuelle, aucun expert médical n'est en mesure de poser un diagnostic fiable sur la seule base des images FFOCT / DCI; l'annotation des images résulte soit de la collaboration entre un expert en imagerie et un expert médical (un pathologiste) par une mise en correspondance entre nos images et la lame d'histologie, soit d'une extraction directe du rapport de pathologie basé sur le même échantillon. Par conséquent, la procédure d'annotation risque d'introduire un certain bruit dans les étiquettes en raison de l'éventuelle différence de composition des tissus visible sur la lame d'histologie découpée mécaniquement, par opposition au découpage optique FFOCT / DCI sans préparation; • artéfacts d'image: la nature dynamique de la DCI donne lieu à des aberrations d'image liées à des instabilités physiques (vibrations externes) qui peuvent entraver l'interprétation correcte des images, de plus, ce bruit est stochastique par nature et on ne sait pas à ce stade comment le modéliser et par conséquent le filtrer; • phénomènes biologiques captés non définies: la source du signal DCI n'est pas encore totalement caractérisée, ce qui implique que les critères d'apparence des cellules ne sont pas validés biologiquement; par exemple, on ne sait toujours pas si ce que nous percevons comme "cellule" correspond au noyau ou à la cellule entière, c'est-à-dire le cytoplasme, ou comment l'intensité mesurée à l'intérieur du volume cellulaire, censée être représentative de l'activité cellulaire, pourrait être corrélée aux processus biologiques. Compte tenu des points énumérés, il est clair que les approches axées sur les données (plutôt que sur les modèles) sont adaptées à toutes les inconnues sous-jacentes. Nous allons donc nous tourner vers la puissante famille d'algorithmes d'apprentissage automatique dédiée à la vision par ordinateur pour construire des solutions efficaces d'aide au diagnostic.IV Principes théoriques sur les réseaux neuronaux convolutifsL'apprentissage profond (DL de Deep Learning)[START_REF] Lecun | Deep learning[END_REF][START_REF] Goodfellow | Deep Learning[END_REF], qui est considéré comme la solution idéale pour les problèmes difficiles à définir, modélise les relations entre les entrées et les sorties d'un système sans beaucoup d'informations sur ce système lui-même. L'apprentissage profond trouve ses racines en 1957 avec l'invention du perceptron[START_REF] Rosenblatt | The perceptron: A probabilistic model for information storage and organization in the brain[END_REF], qui servait de classifieur linéaire, mais qui est en fait le prototype du neurone artificiel moderne. L'apprentissage profond est synonyme de réseaux neuronaux profonds, qui représentent un modèle de calcul d'inspiration biologique constitué de couches interconnectées de neurones artificiels. La sortie d'un neurone représente l'entrée d'un ou plusieurs neurones de la couche suivante sans connexion entre les neurones d'une même couche, un réseau neuronal est donc un graphe acyclique. Un neurone peut servir de classifieur faible en soi, et un réseau peut donc être considéré comme une combinaison de classifieurs faibles qui forment un classifieur plus fort. L'intelligence d'un réseau réside dans les pondérations de ses neurones, qui représentent également ses paramètres de réglage. Pour parvenir à résoudre correctement une tâche, le réseau ajuste ses paramètres par le mécanisme d'apprentissage basé sur le principe du essai et erreur. Cet algorithme puissant est la rétropropagation [46], elle consiste à répartir l'erreur de prédiction entre tous les neurones interconnectés d'un circuit, proportionnellement à leur contribution à l'erreur. L'erreur entre la vraie solution attendue y et la solution prédite ŷ peut être calculée à l'aide d'une variété de fonctions, appelées fonctions de perte. Le choix dépend fortement de l'objectif du problème. Pour la classification, la fonction d'entropie croisée, aussi appelée perte logarithmique, est la plus utilisée. Elle mesure la différence entre la distribution de probabilité prédite par un modèle de classification par apprentissage automatique et la vraie distribution: L(y, ŷ) = -(y log(ŷ) + (1 -y) log(1 -ŷ)).

  rang bas H ∈ R k×d et W ∈ R n×k représentant la base de caractéristiques extraites et son activation correspondante: X ≈ W • H, où n est le nombre de points de données, d la dimension de chaque point de données et k le nombre de composantes choisies dans lesquelles diviser. La recherche des deux matrices de composition est réalisée en minimisant l'erreur entre la matrice de données originale et le résultat de la factorisation: min W ≥0,H≥0 ∥X -W • H∥ 2 F . Un des inconvénients de la NMF est le choix empirique du du rang k, sur la base d'expériences nous avons choisi k = 5 et les composantes révélées semble correspondre à:

  obtient les meilleures performances parmi les plusieurs architectures testées. Notre CNN adopte les couches convolutionnelles du VGG16 mais emploie une stratégie différente de regroupement des informations pour la construction du vecteur de caractéristiques, le pooling à moyenne globale (GAP de Global Average Pooling). Le GAP permet au réseau d'agir comme un modèle d'apprentissage par dictionnaire, d'accepter n'importe quelle taille d'entrée d'image et de réduire le nombre de paramètres du classifieur à seulement 4% du nombre total. Cette approche encourage l'apprentissage d'une base de caractéristiques fortement discriminantes. Cela, associée à des méthodes de validation quantitative et de désambiguïsation de CNNs, conduit à la construction d'un dictionnaire linéairement séparable de textures spécifiques à l'organisation des cellules normales ou malignes, et aussi à découvrir les nucléoles hypertrophiés comme biomarqueurs du cancer dans le DCI.

  se concentrent sur différentes stratégies de mises en relation entre les instances dans l'espace latent, puis sur l'entraînement d'un classifieur. L'intégration de l'extraction de caractéristiques dans le formalisme du MIL est rarement prise en compte. Ceci est principalement dû à la limitation des ressources computationnelles demandées par de telles architectures multi-branches. Cependant, nous contournons ce problème en effectuant une présélection des instances en définissant une certaine hiérarchie et aussi en transférant les poids du modèle entraînés sur un domaine similaire et en affinant uniquement les couches spécifiques à la tâche. En outre, on intègre le classifieur au niveau de l'instance afin d'obtenir également une prédiction pertinente de la malignité au niveau local. Nous construisons une architecture multi-branches dont la branche constitutive est entièrement transférée (couches convolutionnelles et classifieur entièrement connecté) du modèle CNN précédemment entraîné avec supervision complète sur le jeu de données d'excision du sein et dupliqué k fois, où k est le nombre d'instances par sac. Tous les poids sont partagés entre les branches, en plus de cela on ajoute une couche de regroupement Max qui agrège les prédictions au niveau de l'instance sous l'hypothèse standard MIL pour donner la prédiction au niveau du sac. Pour chaque échantillon X = {x i |i = 1, N }

4 .

 4 on construit un modèle mutable qui peut facilement être étendu à d'autres problèmes.VII Apprentissage de la représentation intermodale FFOCT vs. DCI Dans ce chapitre, notre principale motivation est d'exploiter la nature multimodale du système optique.À cet égard, nous entraînons explicitement un réseau siamois sur des paires d'images recalées des deux modalités, ce qui conduit à définir un encodage inter-modal commun, effort qui entre dans le cadre de la représentation des connaissances. Cela permettrait d'extraire des informations mutuelles de la DCI et de la FFOCT qui encoderaient très probablement les caractéristiques des fibres. Ceci est particulièrement intéressant car les fibres en FFOCT ont un rendu reproductible entre les acquisitions, alors qu'en DCI le tissu fibreux souffre de grandes fluctuations au niveau de son apparence, tout en étant la principale source d'artefacts d'imagerie. Nous prévoyons de surmonter les inconvénients de la DCI avec la robustesse de la FFOCT.Le but d'un réseau siamois est d'apprendre une fonction d'encodage commune Φ qui met en correspondance deux représentations différentes x a i ∈ I a et x b i ∈ I b de la même instance s i ∈ S, mais avecx a i ̸ = x b i sur un domaine commun F tel que f a i = Φ(x a i ), f a i ∈ F et f b i = Φ(x b i ), f b i ∈ F et leur distance ∆ dans ce domaine est proche de zéro, ∆(f a i , f b i ) → 0. Par extension, pour deux échantillons différents s i et s j , la distance devrait être supérieure ∆(f a i , f b j ) ≫ 0.Dans la plupart des applications présentes dans la littérature, x b est une version transformée de x a tel que x b = T (x a ) où T est un opérateur linéaire de la famille de l'augmentation des données, ce qui implique que les domaines d'entrée sont très similaire I a ∼ I b . Cependant, dans notre cas, sur chaque échantillon de tissu s i sont appliquées deux projections d'imagerie très différentes, l'une correspondant à la modalité FFOCT Ω a : S → I a et l'autre à la DCI Ω b : S → I b , ce qui rend les deux domaines d'entrée I a , I b plus difficiles à rapprocher dans le domaine d'intégration commun F. Intuitivement, cette divergence entre les deux domaines pousse le réseau à apprendre et à encoder des caractéristiques plus significatives des deux domaines, en cas de convergence.La fonction Φ est codée par un modèle VGG16 appliqué sur les deux entrées x a , x b . L'architecture est choisie pour garder une cohérence avec les travaux antérieurs, mais nous trouvons que, contrairement aux problèmes résolus précédemment, le présent problème est moins sensible à l'architecture de réseau choisie, des autres modèles (ResNet50 et InceptionV3) ayant des performances comparables.La distance ∆ est définie comme la distance cosinus, une mesure 2 basée sur le cosinus de l'angle θ entre deux vecteurs, qui est à son tour une dimension de la similarité:∆(f a , f b ) = 1 -cos(θ(f a , f b ) = 1 -f a •f b ∥f a ∥•∥f b ∥ Le processus d'apprentissage est facilité par la génération en ligne de batchs. Pour les paires d'images positives, on choisit au hasard une position et on extrait les patchs correspondants de taille 480 × 480 des images DCI et FFOCT (x a i , x b i ), tandis que pour les paires de patchs négatifs (x a i , x b j ), on choisit au hasard deux images non correspondantes et on sélectionne une position aléatoire dans chacune. Pour respecter le principe d'équilibre des classes, nous formons des batchs symétriques avec le même nombre de paires négatives et positives. Les résultats montrent qu'il n'y a pas de confusion entre les paires d'images positives et négatives sur les données de test, de plus, nous obtenons une marge dure entre la distance maximale des paires positives max i (∆(f a i , f b i )) et la distance minimale des paires négatives min i̸ =j (∆(f a i , f b j )). Étant donné que nous considérons ce problème sous l'angle de l'apprentissage d'une métrique, nous étudions les propriétés d'identité et de symétrie en définissant des fonctions d'erreur adaptées. Grâce à la validation qualitative, nous en déduisons que même les fibres à faible contraste sont capturées par le réseau et que les artefacts d'imagerie sont bien compris par le réseau (et non pas confondus avec les fibres) et ignorés, deux épreuves habituellement difficiles pour un agent humain non formé.

  du sein, composé de 400 champs imagés à la fois par DCI et FFOCT et annotés individuellement, provenant de 47 excisions chirurgicales: une méthode de décomposition du signal basée sur la séparation des sources -factorisation en matrices non négatives -révélant les signatures oscillatoires et leur localisation spatiale; un modèle de classification du cancer entraîné sur des images DCI par l'apprentissage fin d'une adaptation de l'architecture VGG16 avec un goulot d'étranglement (bottleneck) réduit, offrant une sensibilité de 97% et une spécificité de 85% au niveau de l'échantillon, surpassant les performances des pathologistes; la localisation des tumeurs et des structures saines via des cartes d'attention positive et négative, sur lesquelles nous étendons le modèle précèdent pour qu'il prenne également en compte la segmentation, cette architecture intégrée devrait permettre un déploiement facile du côté du produit; l'extraction des bases de filtre par catégorie qui codent les textures saillantes des lobules sains et des cellules tumorales en prolifération, en remplaçant le classifieur MLP par un simple classifieur linéaire, ce qui confirme le fort pouvoir discriminant de l'extracteur de caractéristiques à lui seul; des preuves convaincantes en faveur de la prise en compte de l'hypertrophie des nucléoles comme biomarqueur du cancer (du sein) dans l'imagerie DCI, obtenues par des techniques de désambiguïsation appliquées aux réseaux neuronaux entraînés; une caractérisation fiable des fibres dans les images DCI, obtenue par une méthode d'apprentissage contrastive multimodale qui minimise la distance cosinus dans l'espace latent conjoint entre les images DCI et FFOCT correspondantes, ce qui permet de contourner un inconvénient important de la DCI -la faible répétabilité -en s'appuyant sur la robustesse de la FFOCT. • une méthode de diagnostic adaptée aux scénarios d'acquisition de données du milieu clinique basée sur un jeu de données de biopsies mammaires composé d'images DCI grand champ de 150 biopsies provenant de 72 nodules mammaires, les diagnostics à l'échelle du nodule sont extraits directement des rapports de pathologie. Le jeu d'entraînement est construit via un pipeline adapté comprenant une nouvelle approche d'échantillonnage tenant compte de la texture -SoSleek, suivie d'un étiquetage par un agent non expert et d'un classement des patchs basé sur le contenu en information. Nous avons développé un modèle d'apprentissage à instances multiples ayant une sensibilité de 89% et une spécificité de 84%, puis nous avons effectué une analyse post-hoc des résultats révélant des informations intéressantes. Ce cadre est facilement adoptable à grande échelle car il minimise le besoin d'un annotateur humain. De plus, sa conception permet d'obtenir des prédictions au niveau localisé et, par extension, d'incorporer des étiquettes denses lors de l'apprentissage.PerspectivesDans ce travail, nous nous sommes davantage concentrés sur la construction de modèles fiables et non biaisés en apprenant des caractéristiques appropriées plutôt que d'améliorer les performances à la virgule près. Cependant, une fois que le modèle est prêt à être mis en production, l'accent pourrait se mettre sur le réglage des performances: en ajustant le seuil de décision afin de trouver l'équilibre entre sensibilité et spécificité pour mieux s'adapter au coût des erreurs. L'apprentissage ensembliste, consistant à faire voter plusieurs modèles pour les prédictions finales, est un autre moyen d'améliorer les métriques au prix d'une perte d'interprétabilité, utilisé notamment dans les applications industrielles et les compétitions de données. Un autre aspect à prendre en compte pour les prochaines étapes est la solution de déploiement qui doit respecter les directives éthiques et réglementaires imposées par les organismes de régulation.Pour les recherches futures, nous pensons qu'il est utile de collecter des données adaptées pour effectuer la correspondance modale avec l'histologie classique afin de transférer les connaissances de cette technique largement étudiée et de tirer parti des ensembles de données histologiques annotées multicentriques existants. De plus, nous pensons que des expériences plus poussées dans le domaine de la biologie cellulaire et de la métabolomique du cancer pourraient mettre en lumière la quantification de l'activité métabolique à partir du signal DCI, ce qui permettrait de proposer un nouveau biomarqueur quantifiable du cancer.En conclusion, le présent travail est pionnier pour l'analyse d'images FFOCT / DCI en offrant des solutions adaptées et soigneusement validées, mais aussi en ouvrant certaines directions de recherche dans le domaine.
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  Cancer: Basal Cell Carcinoma Clinical Study

	Skin cancer is the most common human malignancy, predominantly represented by non-melanoma types
	with 5.4 million cases per year, 80% of which are Basal Cell Carcinomas (BCC) with the majority the
	remaining being Squamous Cell Carcinomas (SCC) [101]. The gold standard procedure for treating non-
	melanoma skin cancer in high risk areas is Mohs Surgery [102]. The technique involves the consecutive
	removal of thin layers of skin, followed by histological preparation and microscopical examination for
	tumor clearance. This process can take up to an hour and guides further tissue extraction. For this
	clinical study conducted in partnership with Drexel Medicine it was investigated the feasibility of using
	FFOCT imaging, together with an automated diagnosis of the cancerous areas, which would lead to
	speeding up the procedure, consequently, improving patient comfort and physician throughput.

Table III

 III 

	Clinical Study	Modality	Image scale	Annotation level	Patch size	# patches	# annota-tions
	Skin Cancer	FFOCT	whole-slide	pixel	256	100K	100K
	Breast Cancer Surgical Margins	FFOCT DCI	patch	patch	1440	400	400
	Breast Cancer Biopsies	FFOCT DCI	whole-slide	image group	1024	2K	150

.1: Working datasets overview.
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  3.1.2 Cross-ValidationIt goes without saying that in order to have a clear picture of the actual performance of a trained model, the aforementioned metrics should be computed on a different data set than the one used for training the model. Based on the models performance on unseen data it can be verified that the model is underfitting, over-fitting or well generalized. In standard practice, a minority proportion (e.g. 20%) of the data set is held-out for testing, while the rest (e.g. 80%) is used for training. The split can be done in a complete random or a stratified fashion, meaning that the same class distribution is enforced on the two sets, this is useful with unbalanced data. However, if the entire data set is not big enough to ensure that all cases are well represented, this split might not be sufficient.
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Table V . 1 :

 V1 Normal vs Breast Cancer classification performance on NMF dynamic components: accuracy. sensitivity, specificity (mean percentage ± standard deviation).

	Classifier	Train Accuracy Test Accuracy Test Sensitivity Test Specificity
	AdaBoost	90.95 ±1.39	70.91 ±6.38	77.59 ±7.21	64.22 ±10.37
	XGBoost	91.38 ±5.66	70.69 ±5.21	82.33 ±5.5	59.05 ±8.48
	Random Forest	98.13 ±0.32	65.73 ±7.93	83.62 ±4.95	47.84 ±15.73
	Extra Trees	96.77 ±1.81	65.52 ±4.00	78.45 ±5.52	52.59 ±10.73
	Gradient Boosting	98.42 ±0.72	65.09 ±4.66	76.72 ±4.64	53.45 ±10.20
	Decision Tree	99.93 ±0.12	57.54 ±3.41	64.66 ±3.11	50.43 ±4.46

Table V . 3 :

 V3 Compared metrics for MLP (i.e. proposed) vs. linear classifier (i.e. experiment) on features extracted from embedding GAP layer of VGG16 trained on proposed dataset vs. on initialization dataset Ima-geNet (i.e. benchmark); per ROI metrics corresponding to the test set of the first CV data split.

		Features	Classifier Accuracy Sensitivity Specificity ROC AUC
	proposed	Breast DCI	MLP	96 %	91 %	100 %	0.99
	experiment Breast DCI LogReg	95 %	97 %	92 %	0.95
	benchmark ImageNet	LogReg	91 %	80 %	88 %	0.84
	logic of fully connected layers is fairly untraceable and non interpretable. Therefore, we experiment
	with a weaker classifier, namely the "transparent" linear model of logistic regression (LogReg).

"Weak" classifier proves "strong" feature base Methodology-wise, we use the train/test data from the first CV split and its corresponding CNN previously trained as detailed in the previous sections. Firstly, we train a LogReg classifier on top of the existing GAP feature embedding layer, both of the trained model and the ImageNet trained VGG16 for comparison. We observe just a slight performance decrease (-1% in accuracy and -0.04 points in ROC AUC) as compared to the more complex MLP classifier, but a much bigger increase (+4% in accuracy and +0.11 points in ROC AUC) as compared to the benchmark features extracted from the ImageNettrained CNN (See Table

V

.3). Based on these results, we can infer that the feature base learned is indeed representative for the diagnostic task and it holds most of the knowledge necessary for diagnosis, also

  3, namely the CNN model (referred to as Φ 0 in this chapter) trained in a fully-supervised manner on ROIs coming from the breast excisions dataset presented in section III.2.2.1 (referred to as D1 in Table VI.1) which achieved a cross-validated sample-level accuracy of 94% (Scenario #1 in Table VI.1). Hereinafter, we shall go over the logical course of action in training strategies leading to the presented method allowing to train a malignancy classifier on the dataset with global labels presented in Section III.2.2.2 (referred to as D2 in Table VI.1).

Table VI . 1 :

 VI1 Per nodule classification results on different training scenarios, paradigms and datasets. D1 dataset: surgical excision breast samples healthy vs. tumoral with dense local labels annotations. D2 dataset: breast biopsy samples benign vs. malignant with weak global labels annotations. Note that test metrics are computed per sample by aggregating the scores of their constituting instances (ROIs/FOVs for D1 and patches for D2). In bold best performance obtained on D1 and D2, respectively, as test sets

	Training	Scenario	Dataset		Test Metrics	
	Paradigm		Train	Test	ACC SNS SPE AUC
		#1	D1	D1 ROI	88	89	87	0.93
	Fully			D1 Sample	94	97	84	1
	Supervised	#2	D1	D2 Biopsy	57	88	37	0.78
	Learning			D2 Nodule	50	100	18	0.82
		#3	D2	D2		N.A. (label noise)	
		#4	D2	D2	N.A. (memory constraints)
		#5	ImageNet	D2 Biopsy	74	53	87	0.77
	Multiple		D2	D2 Nodule	72	57	82	0.75
	Instance	#6	D1	D2 Biopsy	85	75	90	0.85
	Learning		D2	D2 Nodule	86	89	84	0.86
		#7	D1	D1 ROI	57	34	100 0.93
			D2	D1 Sample	72	63	100	1

Table VI . 2 :

 VI2 Breast biopsies dataset MIL 3-fold cross-validated test metrics computed per biopsy and per nodule as per the maximum prediction obtained on the constituting tiles: accuracy(ACC), sensitivity (SNS), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV) all computed via a 50% thresholding value on the predicted probabilities, expressed in percentage and the area under the ROC curve (AUC); reported test metrics per fold with their average and standard deviation (STD) over fold and the aggregated metrics over all folds i.e. on the whole dataset.

		Metric Fold 1 Fold 2 Fold 3 Mean ± STD Aggregated
		ACC	87.23	84	83.33	84.85 ± 1.7	84.83
		SNS	93.33	71.43	64.71 76.49 ± 12.22	75.47
	Biopsy	SPE	84.38	93.10	93.55	90.34 ± 4.22	90.22
		PPV	73.68	88.24	84.62	82.18 ± 6.19	81.63
		NPV	96.43	81.82	82.86	87.04 ± 6.66	86.46
		AUC	0.92	0.90	0.83	0.88 ± 0.04	0.85
		ACC	83.33	91.67	82.61	85.87 ± 4.11	85.92
		SNS	88.89	100	77.78	88.89 ± 9.07	88.89
	Nodule	SPE	80	86.67	85.71	84.13 ± 2.94	84.09
		PPV	72.73	81.82	77.78	77.44 ± 3.72	77.42
		NPV	92.31	100	85.71	92.67 ± 5.84	92.50
		AUC	0.86	0.96	0.87	0.9 ± 0.04	0.86
	VI.4.3 Prediction Analysis					
	VI.4.3.1 Patch-Level Predictions				

Table VI . 3 :

 VI3 Metrics computed on the CAMELYON16 dataset at the sample-level: comparison between the proposed MIL method (and influence of pre-training the classifier); at tile-level: comparison between supervised training with tile labels (metrics aggregated over the 5 folds) and MIL training with sample annotations.

	(a) Sample-level metrics			(b) Tile-level metrics	
	Training	Train	Test	Training	AUC ACC SNS SPE
	Paradigm	CV AUC	AUC	Paradigm			
	MIL	0.853 ± 0.099 0.833	FS	0.956	96	81	97
	Pretrained MIL +4% labels 0.962 ± 0.011 0.858	MIL	0.913	97	62	99
	CHOWDER R=5 [177]	0.903	0.858				
	CLAM [193]	-	0.895				
	CLAM +10% labels [183]	-	0.924				

Table VI

 VI 

	.3a);
	2. the veracity of the patch-level predictions of a MIL model trained only on slide-level labels (See
	Table VI.3b).
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Table VII . 1 :

 VII1 Metrics obtained on the cross-modal pairs on the train and test sets: cosine distance on positive pairs ∆(f a i , f b i ), cosine distance on negative pairs ∆(f a i , f b j ), as well as the identity error of transformed positive pairs ε ii ′ , as well as the symmetry error between negative pairs ε ij .

			mean ± std	min -max	Q5 -Q95
		∆(f a i , f b i ) 0.071 ± 0.059 0.007 -0.283 0.012 -0.202
	Test	ε ii ′ ∆(f a i , f b j ) 0.939 ± 0.073 0.004 ± 0.008 1e-5 -0.048 0.526 -1	1e-4 -0.019 0.784 -0.998
		ε ij	0.009 ± 0.012 1e-6 -0.145	1e-4 -0.03
		∆(f a i , f b i ) 0.078 ± 0.121 0.006 -0.986 0.013 -0.207
	Train	ε ii ′ ∆(f a i , f b j ) 0.966 ± 0.044 0.004 ± 0.011 1e-5 -0.147 0.173 -1	1e-4 -0.011 0.873 -0.998
		ε ij	0.008 ± 0.015 1e-7 -0.810	1e-4 -0.03

  2. One possible application of having a fiber signature would allow DCI raw signal filtering and therefore better image contrast. Or, a simpler, more brute-force method for improving image readability could be image multiplexing by combining relevant structures from each imaging (cells from DCI and fibers from FFOCT) guided by the localization maps illustrated in Figure VII.4, for example.

  histology depicted in Figure III.4, however, this development is currently hindered by the lack of an an appropriate dataset i.e. adequately registered intra-modality images. As H&E is the current state-of-theart in tissue diagnosis, transferable knowledge between FFOCT / DCI and classic H&E histology could greatly speed up the disambiguation and adoption of our imaging modalities. Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 VIII.2 Discussion & Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
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  Dans le Chapitre VII nous exploitons désormais la dualité de l'imagerie FFOCT / DCI, ici nous adoptons une approche d'apprentissage contrastif pour maîtriser les artefacts de la DCI avec la robustesse de la FFOCT. Nous développons une méthode fiable de caractérisation des fibres à partir de l'imagerie DCI en utilisant les images FFOCT correspondantes comme point de repère, en minimisant la distance cosinus entre les paires d'images correspondantes dans un espace latent commun appris via un réseau de neurones siamois. De plus, nous accordons une attention particulière à la validation, en définissant deux métriques, les erreurs d'identité et de symétrie. au début, puis finalement à l'acquisition de biopsies entières en DCI. De plus, la granularité des labels associés à chaque ensemble de données, depuis les annotations au niveau du pixel jusqu'au niveau du patient, indique une tendance vers la diminution du niveau de supervision lorsque la complexité et l'ampleur des ensembles de données augmentent:• cancer de la peau -excisions de la chirurgie de Mohs: 40 images FFOCT haute résolution (10 contenant du carcinome basocellulaire), annotées au niveau des pixels, sous-échantillonnées en utilisant le suréchantillonnage de la classe minoritaire pour garantir un équilibre entre les classes, ce qui donne environ 50 000 patchs pour chaque catégorie.• cancer du sein -excisions des mastectomies: 400 FOVs unitaires DCI distribués aléatoirement dans 47 échantillons (11 normaux et 36 cancéreux) provenant de 33 patientes ayant subi des mastectomies, annotés individuellement.• cancer du sein -biopsies: un ensemble de biopsies imagées en DCI par le radiologue qui les a aussi réalisées, parmi lesquelles ont été conservées pour l'entraînement 150 biopsies provenant de 72 nodules mammaires, ne comportant pas d'annotations mais avec une vérité terrain extraite des rapports de pathologie (issus des lames H&E), sous-échantillonnées en tuiles respectant la texture à l'aide de la méthode SoSleek (github.com/dmandache/sleek-patch).Ces ensembles de données, résumés dans le tableau suivant, serviront à construire des pipelines d'analyse de données dans le but d'extraire des informations précieuses sur cette technique d'imagerie révolutionnaire en vue d'améliorer la pratique clinique. Aperçu des jeux de données.

	Dans le dernier chapitre, nous résumons les contributions du présent travail et proposons quelques idées
	pour les développements futurs.					
	vant les cellules saines). Reposant sur le principe de cohérence lumineuse, ils ont l'avantage d'obtenir
	un bon contraste sans aucun préparation du tissu ainsi que la possibilité d'imager l'échantillon du tissu III Des données cliniques aux données computationnelles
	en profondeur. Cependant, leur nouveauté et leur contraste différent des autres techniques les rendent difficiles à adopter en milieu clinique. Les jeux de données étude clinique modalité d'imagerie échelle des images niveau d'annotation taille no. no. annota-du patch patchs tions
	Dans le présent travail, nous traitons trois ensembles de données différents. Il est intéressant de noter
	cancer de la peau	FFOCT	gigapixel	pixel	256	100K	100K
	que l'ordre de présentation des jeux de données correspond à l'ordre chronologique d'acquisition, ce qui Afin de faciliter l'interprétation par les médecins des images FFOCT et DCI obtenues, on emploie des approches exploratoires sur plusieurs fronts: essayer d'abord de caractériser le signal interférométrique donne également un aperçu de l'évolution de la technique d'imagerie: de la FFOCT plus "historique", cancer du sein marges chirurgicales FFOCT DCI megapixel (patch) patch 1440 400 400
	cancer du sein biopsies	FFOCT DCI	gigapixel	groupe d'images	1024	2K	150

I Introduction Motivation

Le cancer est un tueur silencieux, qu'il est crucial de détecter de façon précoce pour augmenter les chances de guérison et de survie. L'imagerie bio-médicale est particulièrement utile dans la prise en charge du cancer, pour le dépistage, le diagnostic et le traitement. Malgré les progrès apportés en imagerie, la recherche reste très active afin d'aider à améliorer le suivi, la qualité de vie et la survie du patient.

On propose l'utilisation d'une nouvelle famille de techniques d'imagerie, la tomographie par cohérence optique plein champ statique (FFOCT) et dynamique (DCI), qui permettent une analyse nettement plus rapide du tissu par rapport à l'étalon-or qui est l'histopathologie. De cette manière, elles peuvent améliorer la prise en charge du patient à la fois pour la biopsie (en réduisant le temps d'attente d'un résultat négatif et ainsi l'angoisse du patient) aussi bien que pour la chirurgie (en optimisant la quantité du tissu excisé car pour réduire la récidive il faut enlever toutes les cellules cancéreuses, tout en préserdynamique brut, fournir des méthodes d'aide au diagnostic basées sur l'apprentissage profond sur plusieurs jeux de données et essayer finalement de décoder ces modèles de boîte noire pour obtenir une interprétation du diagnostic, et finalement trouver des biomarqueurs spécifiques dans nos images.
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II Tomographie par cohérence optique plein champ statique et dynamique

La tomographie par cohérence optique plein champ

[START_REF] Dubois | High-resolution full-field optical coherence tomography with a Linnik microscope[END_REF] 

(FFOCT de Full-Field Optical Coherence Tomogrphy), développée

[1] 

et perfectionnée

[START_REF] Dubois | High-resolution full-field optical coherence tomography with a Linnik microscope[END_REF] 

par l'équipe du Pr. Claude Boccara de l'ESPCI et commercialisée par LLTech depuis 2011, est utilisée dans le domaine médical et de la recherche pour analyser la morphologie et la fonction des tissus biologiques. Elle est particulièrement utile car elle ne nécessite aucune préparation du tissu (par exemple, une coloration) et offre une résolution 1 de ≈1 µm dans les 3 dimensions. Dans une étude clinique récente

[START_REF] Yang | Use of high-resolution full-field optical coherence tomography and dynamic cell imaging for rapid intraoperative diagnosis during breast cancer surgery[END_REF]

, deux chirurgiens ont obtenu une sensibilité et une spécificité moyennes de 87% pour le diagnostic de la malignité du sein sur des images FFOCT.

De plus, la tomographie par cohérence optique plein champ dynamique

[START_REF] Apelian | Imagerie Optique Multimodale des tissus par Tomographie Optique Cohérente Plein Champ[END_REF] 

également connue sous le nom de imagerie cellulaire dynamique (DCI de Dynamic Cell Imaging) fait progresser la technique en révélant des informations complémentaires liées aux structures cellulaires vivantes grâce au contraste endogène dérivé de l'activité cellulaire, ce qui permet d'améliorer la sensibilité de 90% et la spécificité de 96%, selon la même étude

[START_REF] Yang | Use of high-resolution full-field optical coherence tomography and dynamic cell imaging for rapid intraoperative diagnosis during breast cancer surgery[END_REF]

. au passage à la DCI quand il n'était pas possible d'imager que certains champs de vue (FOV de Field of View)

Tableau:

Polymerase Chain Reaction (PCR) is a technique in molecular biology for creating multiple copies of DNA from a sample to be able to study it in detail.

The term "biopsy" comes from the Greek bios, "life," and opsis, "a sight".

The term "histopathology" means "study of diseases of organic tissues" from the Greek words histós "web, tissue" + pathos "experience, suffering" + logia "sutdy of".

Core needle biopsies are generally performed with a larger-gauge needle, ranging from 14-gauge to 20-gauge corresponding to an outer diameter of 2.1-0.91 mm.

[START_REF] Berger | The emerging clinical relevance of genomics in cancer medicine[END_REF] The directives in most countries impose the storage of physical histology slides for a period of at least 10

years.[START_REF] Kuang | Introduction to mathematical oncology[END_REF] PACS (picture archiving and communication system) is a medical imaging technology used primarily in healthcare organizations to securely store and digitally transmit electronic images and clinically-relevant reports.

An automaton (plural: automata) is a relatively self-operating machine, or control mechanism designed to automatically follow a sequence of operations, or respond to predetermined instructions.

John McCarthy coined the term "artificial intelligence" at a conference held on the campus of Dartmouth College in 1956 which is considered the birthplace of AI as those who participated became leaders in the field.

Adenosine triphosphate (ATP) is an energy-carrying organic compound that drives many processes in living cells.

Chromophores are molecules in a given material that absorb particular wavelengths of light, and in doing so confer color on the material.

The name "collagen" comes from the Greek kólla meaning "glue" and suffix -gen, denoting "producing".

The name "mitochondrion" (plural mitochondria) comes from Greek mitos "thread" and khondrion (diminutive of khondros "granule").

Larger pixels collect more light and are crucial for the FFOCT technique where, by its nature, the camera works at a near saturation regime.

A better contrast might be obtained by employing adaptive processing methods, at the expense of losing tractability and reproducibility between acquisitions.

Google, Apple, Facebook, Amazon, Microsoft

In this context, the term generation is employed in relation with data generators used in programming, which are functions that can be called multiple times and yield an iterator at each call, hence, they are used to encode the logic for feeding batches to the training loop.

Input/output communication. Here, repeated transfers of data from storage (hard drive) to memory (RAM, VRAM).

Pour donner une idée de l'ordre de résolution, la taille des organites (par exemple les mitochondries) varie de 1 à 10 µm, alors que les noyaux mesurent environ 10 µm, les cellules animales mesurent de l'ordre de dizaines de microns jusqu'à 100 µm.

N.B. La distance cosinus n'est pas vraiment une métrique car elle ne satisfait pas l'inégalité triangulaire.

Chapter VII FFOCT vs. DCI Cross-Modal

Representation Learning

In the previous chapters we have approached the two imaging modalities proper to the LightCT ™ scanner separately. The choice of imaging was done according to the particularities of the pathologies studied, with a deeper focus on DCI as it bears paramount cellular information and it raises more questions by its nature and novelty, calling for more research. However, with the continuous technological improvements of the setup, acquiring both modalities concurrently in one sitting is perfectly feasible, therefore we are considering merging the information extracted from the two modalities in order to take advantage of their complementarity. Therefore, in this chapter, we introduce a proof of concept for learning a common latent space for DCI and FFOCT images via siamese convolutional neural networks and contrastive learning. 

Contents