Natural Language Processing (NLP) technologies have become ubiquitous in our daily lives. They impact what content we see online through search engines, what information we learn about events with recommender systems, and how we communicate with our friends with messaging applications. It is now possible to interact with computers in an even more natural way through voice. In short, for an increasing number of people worldwide, NLP technologies are now taking a signi cant role in shaping their worldviews and daily experiences.

Although the mass adoption of NLP technologies has happened in recent years, the design and development of NLP systems are about three-quarters of a century old. As early as , Warren Weaver, a former student of the Information Theory pioneer Claude Shannon, described his idea of using computers to build automatic translation systems. In his Memorandum on Translation (Weaver,), Weaver detailed his idea. He proposed to use co-occurrence statistics, which he referred to as "statistical semantic" and the typological rules that govern languages to build an automatic translation system. In the aftermath of World War II, Weaver notably saw the design of machine translation systems as a force for peace. By helping people from a wide diversity of nations speaking di erent languages understand each other, Weaver saw NLP as a way to help "the constructive and peaceful future of the planet".

A M V S NLP

This vision was followed by numerous attempts in machine translation and other NLP tasks such as question answering, named entity recognition, syntactic parsing, etc. Al-

We use the FLOPs as a metric of reference to report the performance of computers. A FLOPs is a standard metric to measure the performance of a computer. It corresponds to the number of oating-point operations per second. Regarding price, we report the USD/GFLOPs corresponding to the GFLOPs available per USD. Unless explicitly stated, the reported number only accounts for the price of the machine and not the operational cost (electricity, maintenance, etc.) GFLOPs refers to GigaFLOPs which amounts to 10 9 FLOPs. We account for in ation in all the number reported, and all prices are listed in USD.

https:

I sincerely thank Benoît Sagot and Djamé Seddah, my Ph.D. supervisors. I want to thank them for their guidance, care, and the expertise and knowledge they have shared with me for the past four years. I want to thank them for the freedom they have given me and the opportunities and impactful research projects I was able to work on under their guidance.

I am also incredibly grateful for the passionate and talented collaborators and mentors I was lucky to work with during these four years. Speci cally, Ganesh Jawahar, Pedro Ortiz Suarez, Louis Martin, Yanai Elazar, Antonis Anastasopoulos, Rob Van Der Goot, Hila Gonen, and Omer Goldman. I have learned a lot from them and with them, and I want to thank them all warmly for it.

I want to thank the entire ALMAnaCH team from INRIA Paris. I was one of the rst member student in the team, and I am pleased I was able to witness and help ALMAnaCH grow.

I want to thank ENSAE Paris for hiring me as a lecturer to teach NLP. I want to give a shout out to Gaël Guibon, Ghazi Felhi, Roman Castagné, Matthieu Futeral-Peter, Karim Lasri, and Salomé Do for helping me improve this course.

I was also lucky to intern at several companies these past four years. I want to thank Sid, Deepanshu, and Jean-Philippe from Apple, Luca from AI , Rik, Eric, and Alessandro from Amazon, and John, Sebastian, Jon, Tom, Livio, and Roee from Google. I wish to thank them all deeply for the opportunities they have given me and for their support and care that helped me grow and learn.

Je remercie in niment mes amis et ma famille pour leur soutient ces quatres dernières années.

Un remerciement particulier à mes amis d'enfance Maxime, Thomas et Cyril; à mes anciens colocataires de la rue de Belleville Yannis et David. Merci à mes parents, Joël et Pascale, pour leur amour et soutient sans faille où que je sois. Une pensée en n à ma grand-mère bientôt centenaire qui aurait aimée assister à ma soutenance.

I want to nally thank my partner, Padmini, for being here these past three years. I want to thank her for her care, love, and emotional support during countless key moments in Singapore, London, Paris, and the US.

iii A Deep Learning techniques applied to Natural Language Processing (NLP) have led to impressive empirical progress in recent years. In essence, this progress is due to the development of better-contextualized representations of textual data that can be easily used -or transferred -for a wide variety of NLP tasks. In their most recent and popular forms, these models consist of large-scale deep-learning language models, rst pretrained on a large quantity of raw data and then adapted to speci c tasks. These language models are now essential for search engines, question-answering pipelines, machine translation systems, etc.

However, these models usually require substantial computing power and large amounts of raw textual data. This makes natural language's inherent diversity and variability a vivid challenge in NLP. Indeed, collecting large datasets for low-resource languages is challenging and costly, and training models from scratch for every domain and language is unreasonable in practice.

Additionally, understanding the behavior of deep learning-based models is intrinsically tricky, making the development of more cost-e ective techniques even more challenging.

For these reasons, we focus on the following question: "How can we make language models better at handling the variability and diversity of natural languages?".

As a starting step, we explore the generalizability of language models by building one of the rst large-scale replication of a BERT model for a non-English language. We analyze the critical training ingredients and show that it can achieve state-of-the-art performance with only a few gigabytes of diverse data.

Our results raise the question of using these language models on highly-variable domains such as these found in user-generated content. Focusing on domain-gap reduction via lexical normalization, we show that this task can be addressed accurately with BERT-like models. However, we

show that it only partially helps downstream performance. In consequence, we focus on direct adaptation techniques using what we refer to as representation transfer and explore challenging settings such as the zero-shot setting, low-resource language varieties like Bambara or Uyghur, and highly variable and non-standardized code-mixed dialects such as a North-African Arabic dialect written in the Latin script. We show that multilingual language models can be adapted

and used e ciently with low-resource languages, even with the ones unseen during pretraining, and that the script is a critical component in this adaptation.

NLP technologies are becoming increasingly critical to accessing knowledge, connecting with our friends, and extracting meaningful information from large quantities of text. In this thesis, we present concrete and usable solutions to ensure that we can build accurate NLP systems for the most signi cant number of domains and languages at a reasonable cost. Using this raw signal, the rst step is always to de ne a set of modeling units or features, a process that we refer to as featurization. This step can be as trivial as considering that any character in the text is a modeling unit. Sometimes, it can require more carefully-de ned rules to segment this text and possibly associate each segmented sequence to categories.

These categories may be linguistically motivated (e.g., part-of-speech tags, named entities)

or statistically motivated (e.g., considering that San Francisco is a single entity based on the number of occurrences in a dataset).

This rst step is typically followed by a second step which consists in feeding these

features to what we commonly refer to as a model. This model is designed to take the sequence of features as input and make a prediction (e.g., translating into another language, predicting a category, identifying the grammatical relations, etc.). The models we will describe in this thesis are "trainable", i.e., their behavior is de ned by a training algorithm that uses data to estimate the best prediction given an input sequence. How these models are de ned -a process referred to as the parametrization -and how we train them have varied very importantly in the past decades. Among many modeling paradigm, we can deep learning-based language models (Peters et al., a; Devlin et al., a) can be used to build state-of-the-art NLP systems for nearly any task.

S H T T ' M NLP

Historically, this success relies on the convergence of six chronological trends that we summarize here: M First, the performance of computers (hardware) has increased exponentially since the rst computers in the s. For instance, the ENIAC (Burks,) could deliver . GFLOPs and had a cost of about , , USD which amounts to . quadrillion USD / GFLOPs. Nowadays, a standard computer built with an th Generation Intel Core i can deliver approximately up to GFLOPs which amounts to . USD/GFLOPs. In recent years, specialized hardware such as Graphical Processing Units (GPUs) (Nickolls and Dally,) and Tensor Processing Units (TPUs) (Jouppi et al.,), have led to signi cant progress (in the face of the diminishing Moore's law (Hennessy and Patterson,)) and delivered increasingly powerful hardware for deep learning models.

B S

Along with this progress in hardware, programming languages (software) also made tremendous progress in e ciently using the computing power available and creating programs that are easier to write, test, maintain and share. Progress in software provided essential building blocks to build better NLP systems. One of the rst programming languages used for large-scale scienti c projects is Fortran developed in the s by IBM. In the s, C (Ritchie et al., ; Kernighan and Ritchie,

) and C++ (Stroustrup,) programming languages became popular among developers. In the past years, the Python programming language has become very popular for machine learning projects. With the advance of Graphics Processing Units (GPUs) computing, CUDA was released by NVIDIA in as a C-style programming language for GPUs. Based on CUDA, C++ and python, multiple coding frameworks were developed supporting automatic di erentiation such as TensorFlow (Abadi et al.,

), PyTorch (Paszke et al.,) and JAX (Frostig et al.,). Finally, sharing model parameters has become increasingly valuable for researchers and engineers in recent years.

This led to the success of the transformers library (Wolf et al.,))) pretrained on large datasets with language modeling objectives and a lot of computing power improved the state-of-the-art performance signi cantly for nearly all NLP tasks (Devlin et al., b). We present the critical related work that contributed to the progress made in task-speci c modeling in section . .

M R Q

Based on these six historical trends, scaling up deep learning-based language modelsmainly in model size, training dataset size, and training computing power-has become one of the main driving forces of empirical progress in NLP. As illustrated in (Peters et al., b; Devlin et al., a; Brown et al., ; Zhang et al., ; Chowdhery et al.,), it entailed better downstream performance and better zero-shot and few-shot abilities across a great variety of NLP tasks.

This observation supports the three core motivations of the work done for this thesis: tCO e, which amounts roughly to three trips from New York and San Francisco for a passenger jet. When it got published, the cost of pretraining the GPT-model was estimated to be . million USD. Additionally, collecting and annotating data is very BERT-base model of M parameters. tCO e stands for tonnes of carbon dioxide equivalent or CO equivalent. It is a measure "used to compare the emissions from various greenhouse gases based on their global-warming potential, by converting amounts of other gases to the equivalent amount of carbon dioxide with the same global warming potential" (cf. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Thematic_ systems biased toward speci c languages may favor some linguistic communities against others in accessing knowledge and communicating online.

As supported by the UNESCO in its

Recommendation concerning the Promotion and Use of Multilingualism and Universal Access to Cyberspace building multilingual systems is of rst importance to support linguistic diversity and its underlying communities. In this thesis, we will present training and adaptation techniques that provide usable models for languages that only have small amount of data available and that are left-out by most of the research done in NLP.

For these three reasons, in this thesis, we focus on the following research question: How can we make language models better at handling the diversity and variability of natural languages? . To answer it, we explore three main directions.

. Domain Gap Reduction Approach (Part III),

. Behavioral and Structural analysis of language models (Part IV),

. Cross-Lingual Adaptation techniques (Part IV).

First, we focused on a domain gap reduction approach. This approach aims to make the out-of-domain highly variable data more similar to the training data. To achieve this, we designed a lexical normalization model and reached competitive performance on standard benchmarks. However, the data scarcity of this task and domain led us to design more direct adaptation techniques. Second, Transformer-based language models are complex objects. One of the rst steps taken for this thesis has been to understand the behavior of these models in various training and evaluation scenarios. That is what we refer to as behavioral analysis. This step also led us to create new evaluation datasets.

Finally, we present adaptation techniques that directly model the target out-of-domain data and possibly in a language di erent from the training data (cross-lingual).

cf. https://en.unesco.org/recommendation-mulilingualism and https://unesdoc.unesco.org/ark:

/ /pf C C ' S C B A L M F C
The cornerstone of our research is language modeling. In this thesis, we work with BERT-like models (Devlin et al., a). We present our contribution to developing a BERT model for French, CamemBERT, done in collaboration with other members of ALMAnaCH, in particular, Louis Martin and Pedro Ortiz. Before this work, only English and a few other languages bene ted from the release of a large-scale monolingual transformers-based language model. CamemBERT was one of the rst non-English monolingual transformers language models. With CamemBERT, we extended the stateof-the-art performance on four downstream tasks in French. We then analyzed the key pretraining elements. In contrast with what had been described before this work, we showed that more data is not always necessary and that pretraining on a diverse corpus of Web crawled data of only Gigabytes of text is enough to reach state-of-the-art performance.

E BERT L N C User Generated
Content (UGC) is very challenging for NLP systems. Indeed, it typically includes jargon, grammatical errors, spoken language, emojis, etc. Additionally, there are very few taskspeci c annotated datasets of UGC data. One approach to address this variability and this scarcity of data is to perform lexical normalization, i.e., to translate the non-standard words into standard ones.

For this purpose, we reframe lexical normalization to make it a token-level classi cation task. Based on this, we enhance BERT's architecture to ne-tune it on a lexical normalization dataset. Our model did not outperform the former state-of-the-art performance -

the MoNoise (van der Goot,) feature-based approach -but managed to compete with it without needing external lexicons and millions of raw tweets.

U BERT C

Crosslingual transfer consists of using a model trained on a source language for another target language. Pretrained multilingual language models (Devlin et al., a; Conneau et al., a; Xue et al.,) have been shown to reach non-trivial zero-shot cross-lingual transfer performance (Libovick ỳ et al., ; Pires et al., a). This transfer is remarkable as at no point of the training process (pretraining and ne-tuning) the model receives any training signal to learn shared representations across di erent languages.

Explaining the performance and behavior of large deep learning models is inherently challenging. Indeed, they are made of hundreds of millions of parameters trained end-toend on a vast quantity of data (Goodfellow et al.,).

To overcome this challenge, in collaboration with Yanai Elazar from Bar-Ilan University, we developed a structural and behavioral analysis of mBERT, a popular multilingual language model. We introduce R I that consists in selectively randomly initializing speci c layers to study their impact on downstream performance. Using R I , we show that mBERT is schematically made of two modules. The lower layers are critical for cross-lingual transfer and align representations across di erent languages. The upper layers are task-speci c and do not contribute to cross-lingual transfer.

A M L M U C

There are about , natural languages in the world. Most of the NLP community's focus is on English and a few high-resource languages (Joshi et al., b).

However, in the past ve years, a few large-scale language models trained in about languages have been released (Devlin et al., b; Conneau et al., a).

In this work, done in collaboration with Antonis Anastasopoulos from George Mason University, we aim to design techniques to build accurate models for the following languages. We speci cally study how to adapt mBERT to deliver good performance on these languages and compare it to language models trained from scratch and strong non-contextual baselines such as LSTM models.

For this purpose, we start with extensive experiments on North African Arabizi (Narabizi), a non-standard Arabic dialect written in the Latin script with no standard writing rules characterized by a rich morphology and a high degree of code-mixing with French.

We show that mBERT can reach non-trivial performance on this dialect despite being unseen by the model at all the steps of the pretraining. We show that the high degree of code-mixing with French explains this transfer and that performing masked-language modeling adaptation improves the performance of Narabizi.

We then extend this analysis to unseen languages. For most of these languages, performing task-speci c ne-tuning and Masked-Language Modeling ne-tuning enable the model to perform better and outperform other models. However, for a subset of these languages, this recipe does not work. We show it only works if the target language is related to a language included in the pretraining corpus with which they share the same script. However, for these languages, we show that solving this script discrepancy with transliteration solves this problem and leads to signi cant performance progress.

D C

During this thesis, we also contributed by building datasets. As part of (Seddah et al.,)'s work, we collected and annotated data for the Narabizi dialect. I took part in the design of the raw data collection protocol and the evaluation of the dataset. As part of an internship, I took part in the making of a multilingual generative Question Answering dataset for ve languages. Finally, for the multilingual clause-level shared task, we built the French section using a syntactic lexicon (Sagot,).

P R

We present the publications related to this thesis in Figure . , which aggregates in a diagram the research papers done for this thesis. Schematically, the research presented can be seen along two dimensions. The rst dimension (illustrated by the vertical axis in Fig. .) is about the evaluation setting. More speci cally, in some of our work, the training domain and language are the same as the evaluation domain and language. In some other contributions, we work in a setting in which the evaluation domain (e.g., referred to as D') is di erent from the training one (referred to as D). For instance, if

the training data is Wikipedia data in English while the test data is social media data in dialectal Arabic from Tunisia. Second, our experimental process is typically made of three steps: a pretraining step, a ne-tuning step, and an evaluation step. The second dimension (illustrated by the horizontal axis in Fig. .) corresponds to the stage of the training-evaluation process we focus on.

We further list the publications related to this thesis:

• Fifth Workshop on Universal Dependencies -ELMoLex: Connecting ELMo and Lexicon Features for Dependency Parsing -(Jawahar, Muller, Fethi, Martin, Villemonte de la Clergerie, Sagot, and Seddah,),

• Fifth Workshop on Noisy User-generated Text (W-NUT) -Enhancing BERT for Lexical Normalization (Muller, Sagot, and Seddah,),

• th Annual Meeting of the Association for Computational Linguistics -Camem-BERT: a Tasty French Language Model, (Martin*, Muller*, Ortiz Suárez*, Dupont, Romary, de la Clergerie, Seddah, and Sagot,),

• The first annual EurNLP Summit -Can multilingual language models transfer to an unseen dialect? A case study on north african arabizi (Muller, Sagot, and Seddah, b),

• th Annual Meeting of the Association for Computational Linguistics -Building a User-Generated Content North-African Arabizi Treebank: Tackling Hell (Seddah, Essaidi, Fethi, Futeral, Muller, Ortiz Suárez, Sagot, and Srivastava,),

• th Conference on Language Resources and Evaluation -Establishing a New Stateof-the-Art for French Named Entity Recognition (Suarez, Dupont, Muller, Romary, and Sagot,)

• Proceedings of the th Conference of the European Chapter of the Association for Computational Linguistics -First Align, then Predict: Understanding the Cross-Lingual Ability of Multilingual BERT (Muller, Elazar, Sagot, and Seddah, b),

• Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies -When Being Unseen from mBERT is just the Beginning: Handling New Languages With Multilingual Language Models (Muller, Anastasopoulos, Sagot, and Seddah, a)

• and aim at preventing the potential risks that NLP technologies pose to society. We list here three critical risks.

done on the NEF cluster and the Jean-Zay cluster. While having detailed statistics on the overall electricity consumption of NLP systems is tricky, we can provide upper bounds. The total global data center industry consumption was around -TWh in (IEA,) which amounts to about % of the World electricity consumption.

Furthermore, only a small portion of that is dedicated to training and deploying NLP models. For instance, Google, a major user of machine learning, reported that only % of its electricity consumption comes from Machine Learning models (Patterson et al.,).

The global electricity production produces about % of the global CO emissions.

However, these emissions vary a lot based on the power grid used. For instance, France derives about % of its electricity (which partly powered the clusters used for this thesis) from nuclear energy which has a low carbon footprint. In comparison, about % of electricity in the US comes from coal and natural gaz which have a very high carbon footprint.

CO is an important element of environmental cost but not the only one. Industrial processes involved in hardware production (such as wires, hard drives, RAM, CPUs, GPUs, and TPUs) signi cantly impact the environment. Hardware is made of silica and a large variety of rare earth elements (REE), like hafnium for CPUs and palladium and tantalum for GPUs. Mining these elements, as done today in the vast majority of mines, is the source of many negative externalities like water and soil pollution. Additionally, mine workers face dangerous working conditions that can potentially have a disastrous The research presented in this thesis contributes to mitigating some of the costs and risks listed above. More speci cally, Part IV details our contribution to adapting multilingual language models for low-resource languages. With these contributions, we provide actionable solutions that can help build models that are less costly to train and less centered on high-resource languages.

P

I B T V D N L
In language lie our abilities to express our feelings and thoughts, to develop complex reasoning, to signal our position in a social group, and to become a community. In short, language is quintessential to our human nature.

Aiming to develop techniques that can automatically process human language(s), we begin by describing human languages themselves to get a glimpse of the challenge we face.

Our rst challenge is conceptual. Indeed, building NLP systems requires de ning what target use case we focus on and, more speci cally, what languages and domains we are dealing with.

In this chapter, we de ne what we mean by the terms language, languages, dialects and domains. Even though most of these terms are used in our day-to-day life as if they were characterizing well-de ned objects, they are in fact, way more complex than they seem. In short, in this chapter we will see that:

• Language is an arbitrary system of symbols through which humans communicate, (partially) think, and build relationships. In consequence, there is no such thing as the concept of language independent of the human beings that use it (Sapir,),

• Language varieties are not well-de ned linguistic objects. There are conventionally de ned based on a historical, sociological, and political context. Language varieties are very diverse, speci cally their linguistic properties such as phonological, morphological, and syntactical properties (Dryer and Haspelmath,),

• Speaking and writing are social phenomena that can vary greatly depending on what group we are speaking/writing to and what means we are using to speak or write (Trudgill, ; Wardhaugh and Fuller, ; Heller et al.,),

• In this thesis, we study language(s) through a corpus of textual data that are de ned as collections of documents and tokens.

After de ning these concepts, we will illustrate the diversity and variability of human languages statistically.

W L

There is nothing more familiar to humans than language. We use language to communicate our emotions and ideas with our peers, grasp the world around us, and think about ourselves and others. Still, it is challenging to de ne formally what human language is.

We start by describing a few essential functions and characteristics intrinsic to human language.

T F H L L M C One of the rst things that come to mind when we de ne what is language is that it is a means of communication. In every human community, we are taught to speak in a certain way to communicate with our peers. By the age of three, most children are experts at using language (Mehler and Dupoux,). For a large proportion of humans, we are also taught to write and read. Using speech and writing, we can share information about the world with other people, and we can express ideas and emotions. This relatively intuitive statement echoes Leaving aside other modalities such as sign language.

L T We express ourselves using language. To a certain extent, we also "talk to ourselves" and think using language. However, the precise impact that human language and the language(s) we speak has on our thinking process is still an ongoing research topic (Gleitman and Papafragou,) that goes beyond this thesis's focus.

L P Beyond concrete communication, language plays a key role in our relationships with our peers. Indeed, language is often used without other purposes than creating or maintaining contact with someone else. This is what is referred to as the phatic function of language by (Jakobson and Halle, ; Yaguello, ; Jumanto,).

L

We covered two critical characteristics of human language. These two characteristics imply something fundamental about language: it is intrinsically related to the individual that uses it and the group of humans in which its use occurs. In consequence, not only are languages the primary means humans use to communicate and create social relationships with others, but they are also a way people identify each other as individuals and as groups (Bucholtz and Hall,).

Based on the language we speak and how we speak and write (e.g., our accents or the words we use), people can guess information about our identity (Giles and Coupland, ; Watt,), where we grew up, our social class, our ethnicity, etc. In short, language can be perceived as proxy for many socio-demographic variables. A proxy so precise that selecting proper socio-demographic subsegment of a given corpus can enhance NLP system performance (Hovy and Søgaard,). In addition, at a collective level, how we speak enables a group to bond and exist (Trudgill, ; Wardhaugh and Fuller, ; Heller et al.,).

L A S S

A key notion to grasp the nature of language is that it is made of symbols. By symbols, we mean an abstract representation of "something".

The Variability and Diversity of Natural Language(s)

Saussure (

), in his Cours de Linguistique Générale, gave to this notion a formal framework grounded in psychology. He uses the term of linguistic sign that he de nes as a two-sided psychological entity that unites a sound-image (or signifier) and a concept (or signified). He de nes the former as the sensory imprint that the sound or image of a linguistic sign has on someone. We note that sound-image not only refers to speech but also to the mental imprint that occurs when we write, read or simply talk to ourselves.

Based on this de nition, we can easily derive that signs are rooted in each individual experience. For instance, two people speaking di erent languages will use di erent soundimage for the same concept. For instance, a French-speaking person will refer to the concept of "tree" as arbre while an Italian speaker will refer to it as albero.

In other words, the relationship between concept and sound-image is arbitrary. Two distinct sound-images may refer to the same concept for two people (e.g. arbre vs. albero), while a single sound-image may characterize two distinct concepts for two people.

W A L

It is "common knowledge" to talk about languages as independent, well-de ned objects.

In the NLP research community, it has become common even to enumerate the number of languages that exist in the world. For instance, the Ethnologue publication of (Eberhard and Fennig,) set the number of languages in the world to , . Still, de ning what a language is conceptually challenging.

The notion of languages is based on the idea of mutual intelligibility. If person A can speak and be understood by person B and person B can speak and be understood by person A, this means that "they are speaking the same language". Intuitively, based on "mutual intelligibly," it seems almost trivial to de ne groups of speakers that speak "the same language". Based on this group, we could then easily derive the concept of languages and enumerate the di erent languages that exist in the world.).

Based on these well-established empirical observations, de ning objectively what a language is, grounded solely on mutual intelligibility is impossible. In this regard, the notion of languages as it is used in the day-to-day life is a conventional term that depends on the historical, sociological, and political context that de nes some speci c language varieties. In some other contexts, some language varieties may be referred to as dialects.

In the rest of this thesis, as we will detail in § . , we will take a strictly data-driven approach to the de nition of what constitutes a language and base our experiments on corpora that may be identi ed as originating from a speci c language. We will collect textual data from "a given language" (e.g., English, French or Maltese) and estimate statistics and models using this data.

L A

From a structural linguistic point of view, it is usual to categorize di erent levels of linguistic analysis of natural language. Each level focuses on a speci c aspect of natural language by rst de ning a speci c unit of interest.

The notions introduced here will be helpful to characterize more precisely the models we will develop in the following sections of this thesis.

L U

The notion of word is used very commonly. In this chapter, we use the term word following its "common usage". De ning rigorously what is a word and doing it in a way that is consistent across languages is challenging. A simplistic way to do it is to use some language-speci c typographic rules to de ne it. For instance, we can de ne words based

The Variability and Diversity of Natural Language(s) on blank spaces for most languages that use the Latin script or the Cyrillic script. For these languages, a word is any sequence of characters, excluded from special characters such as punctuation symbols, between two blank spaces. For languages that use logographic script, e.g. Mandarin, (§ . .), any Chinese character could be simplistically considered as words. In the rest of this thesis, we will favor the term of token, whose de nition and scope will vary according to the algorithm that produced them (cf. § . .).

P

Phonology describes how speech sounds encode meaning in a given language. The basic unit of phonology is the phoneme. A phoneme is the shortest speech sound that, if swapped for another phoneme, can modify the meaning of a word. We note that the concept of phonemes is, therefore, speci c to a given language. For instance, the word "cat" has three phonemes: /c/ /a/ and /t/. Indeed, if we swap /c/ for /h/ we easily observe that it changes the meaning of the word "cat" to "hat".

G

Graphemics is the study of the writing system. It describes how, for a given language and a given sociocultural context, phonemes are transposed into writing with a speci c writing system. The basic unit of study is the grapheme, also referred to as a character, de ned as the smallest functional unit of a given writing system. For instance, in the Latin script, the letter a is considered a grapheme.

M S

Morphology and Syntax study what is referred to as wordforms. Morphology studies how smaller basic units called morph are combined to form wordforms. Syntax studies how wordforms are combined to make larger units of interest, such as sentences. The conceptual challenge lies in the fact that there is no universal de nition of morphs, wordforms, and sentences. Indeed, any de nition suits or favors a speci c language or language family. For instance, a de nition of the wordform in Mandarin is likely to di er a lot from how we would de ne it for French. Still, nding a consistent de nition across languages is necessary to analyze the typological similarities and di erences across languages. In this thesis, we follow the Universal Dependency (UD) framework described by de Marne e et al. (

). UD is a cross-lingually consistent morphological and syntactic annotation framework that de nes wordforms. We present in chapter , two morpho-syntactic tasks that we will study in this thesis, namely POS tagging and dependency parsing, that consists in predicting the morpho-syntactic categories and relations between wordforms.

S

Broadly speaking, semantics is the study of the meaning of words and phrases (Cruse et al.,

). Linguists have considered many angles to de ne and approach the concept of meaning. For instance, generative semantics states that syntactic structures are computed based on meaning. In contrast, interpretive semantics claims that the meaning of words and phrases emerges from syntactic structures and linguistics context (Chierchia and Mcconnell-Ginet,). Beyond these theoretical concerns, semantics encompasses a Also commonly referred to as syntactic word or grammatical word In the sense, language-agnostic large number of elds, such as the study of semantic shift (Stern,) (which consists in studying the evolution of word meaning), and ontological semantics (Nirenburg and Raskin,) which consists in encoding semantic descriptions and relations between words in a structured way. This was famously implemented for English at scale with the Wordnet (Miller,).

P

Pragmatics is the study of how the non-linguistic context interacts with the meaning of words. For instance, it studies how social context, personal relationship, knowledge of the world, and common sense of the speakers, impact the emergence of meaning in language (Mey,). We illustrate the large diversity of languages across the world by observing several fundamental linguistic properties and their distribution across human languages. To

P D

We use the WALS to observe the distribution of consonants inventory and vowels inventory across languages. These statistics are collected on around languages. For vowels, the smallest vowel inventory recorded includes only two elements while the largest (the German language is the only recorded language that uses vowels). We illustrate in Figure . the geographical distribution of vowel inventories. For instance, we observe many large vowel inventories (between and vowels) in Africa in the Sub-Saharian region. This cluster includes languages that belong to the Niger-Congo, Nilo-Saharan, and Afro-Asiatic families. For consonants inventory, the number of consonants per language recorded varies from to . We observe a high concentration of small consonants inventory in New Guinea and the Amazonian basin. Not all language varieties have a writing form. According to Eberhard and Fennig (), about % of them are not frequently used to write. Within the set of language varieties typically written, we observe a large diversity of writing systems. In a nutshell, there are about a dozen writing systems in the world.

Having the same script does not imply the sharing of common linguistic properties.

For instance, Turkish and German uses the Latin script. Still, these two languages are very di erent syntactically and morphologically. On the other side of the spectrum, Serbian and Croatian are structurally similar and could even be considered the same language.

Still, Croatian is exclusively written in the Latin script, while Serbian is written in both the Latin script and the Cyrillic script.

Building a typology of writing systems is challenging. Indeed, writing systems are complex objects, and any typology will overvalue or under value one property compared to another. Simplistically, we can divide writing systems into ve categories: logographic, syllabic, alphabetic, consonnantal and alphasyllabic (Comrie,).

L

Logographic writing systems use logograms as their basic units. A logogram is a character that represents a word or a morph. The Chinese writing system is the most broadly used logographic writing system. It is based on Chinese Characters or Hanzi (汉字 in simpli ed Chinese). Chinese characters, originated in mainland China, have been partially integrated into many other writing systems, such as the Korean writing system (Hangul) and the modern Japanese writing system.

A An Alphabetic writing system uses unique symbols (a character) for vowels and consonants. The most prevalent Alphabetic scripts are the Latin and Cyrillic scripts. Depending on the language varieties used, the number of characters in the Latin script varies from around letters (excluding diacritics). In comparison, it is approximately letters in the Cyrillic script.

C

A consonantal writing system is a variant of the alphabetic writing system for which only consonants are represented. For example, the Hebrew or Arabic writing systems are consonantal. In many consonantal writing systems, such as Arabic, vowels can be represented with diacritics (i.e. a mark added above or underneath a character).

S

Syllabic scripts, also referred to as syllabaries, are scripts for which a grapheme encodes an entire syllable. The Japanese hiragana grapheme comes close to this de nition (Comrie,

).

A Finally, the Alphasyllabic scripts or alphasylabaries are very close to consonantal scripts -i.e., only consonants have graphemes, and diacritics are used for vowels -the only di erence being that diacritics must be written. Thai is, for instance, an Alphasyllabic script.

D

The direction used to write characters sequentially also varies across writing systems.

Right-to-left, top-to-bottom is the direction used for most Alphabetic writing systems such as Latin, Greek, and Cyrillic. This contrasts with Arabic and Hebrew, which are written left-to-write top-to-bottom. Many scripts, mostly in Asia, use a top-to-bottom right-to-left direction, such as Chinese, Japanese and Korean. Still, we note that they can also be used in the right-to-left top-to-bottom direction. Finally, a small minority of scripts use a bottom-to-top approach. The Hanunoo script is used to write the Hanunoo language, an indigenous language of the Philippine written from bottom-to-top and left-to-right (Daniels and Bright,).

M D

The way morphs are combined into wordforms varies greatly. For instance, the way wordforms are in ected or rein ected to encode di erent grammatical role (Lieber,) varies across languages. Vowel gradation (as observed in sing -→ sang) is used in multiple indo-european languages for verb in ection (Eska and Szemerenyi,). S D

Third, we take the {Subject (S),Object (O),Verb (V)} order to illustrate the large diversity in syntactic structures. As seen in Figure . , a majority of languages have a SVO word order (the Subject followed by the Verb followed by the Object). The structure SOV predominates in most parts of Asia (if we exclude the Middle East and South-East Asia).

Finally, we note that some languages, such as German, do not have a dominant {Subject (S), Object (O), Verb (V)} word order. Indeed, for German, this order is syntactically determined by the presence of an auxiliary verb.

In summary, human languages are very diverse at every level of analysis. As we will see now, language is highly variable even within a given dialect or language.

V N L

Even between speakers or writers of the same language or dialect, there is a high level of variability. At the speech level, this variability may come from how one pronounces certain words, how they stress certain syllables, and what intonation one uses. It may come from how one will pick speci c words, how one will build sentences, and with what level of formality one will express their thoughts (Trudgill,).

Additionally, even if we look at the language production of a single individual, speaking and writing also vary a lot. At work, someone speaking with their boss is likely to speak di erently than in a restaurant with friends. Through email, the formality someone uses with a colleague is likely higher than if one comes across them at the cafeteria. Moreover, the topic of the conversation or the writings also impacts how language is used. Having a scienti c conversation will be based on di erent words and sentence constructions than when talking about the weather. The impact of the non-linguistic socio-cultural context on language production has been described extensively by Trudgill ().

Schematically, language varies based on:

• Who is speaking/writing?

• To Whom ?

• About what? e.g. the weather, a scienti c paper, politics.

• In what context? Is this happening at work, in a bar, or a conference?

• With what medium? e.g., speaking, writing in an email, texting.

• In What Year? in , in , in the s.

Ideally, we would like to build NLP systems by integrating and modeling each of these factors. However, it is often not possible to do so. For this reason, we must de ne broader categories of language production along which language varies.

E D L V

We now de ne some broad determiners of language variability.

M

We produce language di erently, whether speaking or writing. As described extensively by Chafe and Tannen (), among other phenomenons, the Vocabulary used, sentence length, and sentence structure usually di er signi cantly between speaking and writing productions.

T

The technology medium used to produce written text also impacts how we write. The various digital mediums and platforms that now exist to communicate and produce language also highly impact how we write. We do not write in the same way on iMessage, WhatsApp and Messenger mainly because each application enables di erent ways of communicating (for instance, emojis will be recommended di erently, or autocomplete systems will suggest di erent words).

Technology's impact on how language is produced is, in some cases, even stronger than that. Digital technologies such as online chats, short message services (SMS), and mobile phones were all developed primarily for English speakers and writers. Consequently, speakers of non-Latin script languages had to nd ways to express themselves using Latinscript keyboards. This has been described by Henry and Pramoolsook () as one of the root causes of the widespread use of the Latin-script to write Arabic. This phenomenon is also prevalent for many other non-Latin scripts, such as South-Indian languages written in Devanagari, Bengali, or Tamil scripts (Roark et al.,). Technologies also impact the content of what people write. Pierozak () described how ergographic phenomena, such as the simpli cation of the text produced (e.g., character deletion, use of phonetics, etc.), emerged from SMS texting in French.

T

All languages evolve with time. They evolve by being in contact with other languages geographically close (e.g., selfie was initially introduced in English and has been adopted by many languages worldwide). They evolve by integrating new concepts and words (e.g., COVID was a hardly known term in December On a large scale, language production, such as discourse, conversation, and scienti c or encyclopedic articles, may include one or several topics.

G

While topic characterizes short language production such as sentences or paragraphs, the notions of genre and register, characterize larger collection of textual data.

These terms have been used in various ways in linguistics and literary studies to categorize language production. In corpus linguistics, pioneered by Kučera and Francis (),

genres are usually de ned to categorize a collection of text based on their situational characteristics. These characteristics can be the audience, the purpose of the language production, or the activity type in which it is being produced (e.g., the context a text is being delivered: a TV show, in a chapter of a novel...) (Biber et al., ; Lee,).

Consequently, genres are conventional and related to the cultural behaviors of a group of people. A well-known Genre and Sub-Genre Categorization can be found in the British National Corpus (BNC) which is a collection of million words of written and transcripted spoken text in British English of the late st century. It includes around genres such as Academic Writing, Newspaper, Fiction, Conversation... .

L C L V

To describe how these external determiners impact the language being produced, we characterize the di erent linguistic dimensions along which language varies.

V

The vocabulary (i.e. the set of words chosen by the writer or speaker) C S In some contexts, language production might be based on lexicon or morpho-syntactic rules originating from distinct languages (Woolford,). Switching between di erent languages may occur at any level of language production. Even a single phrase may include a lexicon originating from multiple languages. This phenomenon, called code-switching, usually emerges from multilingual speakers or writers.

(
It is a widespread and natural phenomenon that impacts nearly all languages worldwide.

For instance, Spanish and English exhibit a high degree of code-mixing in speci c Hispanic communities in the US (Lipski,). In Singapore, Chinese (mainly Mandarin)

and English code-mix in a dialect commonly referred to as Singlish (Lee,). As part of the research led during this thesis, we studied in § . speci cally code-mixing occurring in the Arabic Dialects spoken in Tunisia and Algeria that have a high degree of code-mixing with French (Sayahi,).

S

In linguistics, the way we speak or write is referred to as the style. Style encompasses a large number of phenomenons such as formality (Heylighen et al., ; Pavlick and Tetreault,), the complexity of the language one uses (Sweet, ; Yasseri et al.,), the type of literary expressions used (e.g. metaphorical), the sentiments and emotions (Troiano et al.,).

E F

We aim to build models that can accurately process several languages and are robust to the variability of a given language. We de ne our modeling framework as follows. In all our experiments, we assume we have a corpus. A corpus has the following structure:

• A corpus is de ned as a collection of documents {D 1 , .., D C }.

• A document is de ned as a sequence of tokens (t 1 , .., t D). A document can be made of a few tokens, a sentence, a paragraph, or a collection of paragraphs.

• A token is a basic unit of discrete data. A token can be de ned as a wordform (following a given morpho-syntax framework § .), a punctuation mark, a sequence of characters, or even a character itself. The set of all possible tokens constitutes the vocabulary {t 1 , ..., t V }. This means that each token can be de ned with a unique index in [|1, V |] We do not assume anything about the language or the script that each token originates from.

At this stage, we do not assume any ordering structure at the corpus level. The documents could be ordered sequentially (e.g., if we take each paragraph of a given book as a document) or not. Additionally, at this stage, we do not make any assumptions about the origin of the corpus. It could be as heterogeneous and diverse as the entire textual data found on the internet or much more constrained, such as the scienti c articles from Nature in .

E

Here are some corpora we will be using in the rest of this thesis.

• The Open Super-large Crawled Aggregated corpus (OSCAR) (Ortiz Suárez et al.,

) is a large multilingual corpus that comes from ltering the CommonCrawl snapshot. In OSCAR, each document is a paragraph found online.)). This corpus de nes our domain, and we will refer to this experimental setting as an in-domain setting.

In some cases (e.g., § .), we will evaluate our models on a corpus di erent from our training corpus and originating from a di erent source. Two domains are at play in such a case, and we will refer to this setting as an out-of-domain setting.

We note that our de nition of a domain may overlap in some cases with the notions introduced earlier. For instance, some domains may correspond to a speci c genre (e.g., News articles, Literature) or may be characteristic of a particular socio-demographic context that impact the lexicon, sentence types, and topics.

L Similarly, we will use the term language in a strict data-driven manner.

We will consider that we experiment in "a given language" based on the corpora we use, We analyze the lexical divergence between these datasets using two standard metrics.

which
Given two datasets D 1 and D 2 we de ne the Out-of-Vocabulary Rate of D 1 with regard to D 2 , noted OOV D2||D1 as the number of words in D 1 that are not observed in D 2 in proportion to the number of words in D 1 :

OOV D2||D1 = #{ w ∈ V 1 \ V 2 } #{ w ∈ V 1 }
We also compare the distribution of unigram and bi-gram at the word level. To do so we use the Jensen Shanon Divergence (JSD) . The JSD is a symmetric version of the Kullback-Leibler (KL) Divergence. We compute it between the unigram and bi-gram distributions of each pairs of datasets. We rst compute the shared set of words and the pair of words observed in each dataset. Then we compute the distribution:

P uni1 = (#w i N , w i ∈ V 1) P uni2 = (#w i N , w i ∈ V 2) OOV D2||D1 D2: W W B S D1 W x . . . W . x . . B . . x . S . . . x
Table . : OOV rates i.e. proportion of D 1 (row) that is not in D2 (column). We take W as our reference dataset, and we compare the other datasets using the JSD and the OOV rate. We observe a clear gap between how di erent W is to W and how it di ers from B and S . For instance, about % of words of W lexicon are not in W lexicon, while it jumps to % and % for subtitles and books, respectively. In terms of unigram frequencies, according to the JSD, W is almost three times more similar to W than to B and . times more similar to W compared for S .

JSD P1||P2 = 1 2 KL P1||P2 + 1 2 KL P2||P1 KL P1||P2 = w P 1 (w)log(P1(w) P2(w)) JSD D2||D1 D2: W W B S D1 W x . . . W x . . B x . S x
In conclusion, looking at two straightforward metrics of similarity between two datasets, the word-level Out-of-Vocabulary rate and the JSD of unigram distribution, we found that two English datasets originating from di erent sources di er very signi cantly at the lexical level.

In the following chapters, we will study how this shift impacts the performance of our

NLP T

These broad applications of NLP can be approached by building systems divided into distinct modules, each taking care of a speci c task. NLP tasks can usually be studied independently from one another by for instance building models to perform them. Using annotated evaluation dataset, we then evaluate the performance of a given model based on an evaluation metric. For all the NLP tasks we cover in this thesis, the NLP community uses standard metrics shown to capture the quality of a model at the given task. For most of these tasks, we will see that designing and training these models using data in a machine learning framework is usually the solution that leads to the best performance (§).

In this section, we list the main NLP tasks we study in this thesis along with the standard evaluation metrics associated with them.

P O S T

Part-Of-Speech (POS) tagging consists in identifying the grammatical categories of wordforms (§ . .) in a given sentence. Formally, POS tagging is de ned as follows. Given a sequence of wordforms (X 1 , .., X t) in a vocabulary V, the task consists in assigning tags (L 1 , ..., L t) in a prede ned tagset L, i.e.:

P OS : V T → L T (X 1 , .., X T) → (L 1 , .., L T). E M Given D sequences (x 1 , .., x T) d ∈ V T of N tokens in total (i.e.
T 1 + .. + T D = N) associated with ŷi predicted tags and y i gold tags. POS tagging is usually evaluated with the accuracy de ned as:

Accuracy = N i=1 1 {yi= ŷi} N (.)
POS tagging is a sequence labeling task because its goal is to assign a single label per input token. It can also be seen as a structured prediction task. Indeed, each predicted

. NLP Tasks label depends a priori on its neighboring labels. For this reason, the output sequence forms a "structured" sequence.

S P

Etymologically, the word syntax originates from syntaxis in Ancient Greek which means "setting out together or arrangement". Describing and analyzing the syntactic structure of languages has a very long history. In the th century B.C., Pānini -who is often considered to be "the father of descriptive linguistics" -described, in the Aādhyāyī, rules that govern the structure of the Sanskrit language (Kahrs,).

We have seen in section . . that POS tagging consists in assigning morpho-syntactic categories to wordforms. These categories inform us of the syntactic function that wordforms (§ . .) takes in a sentence. Syntactic parsing goes one step further. In a nutshell, syntactic parsing consists in extracting the grammatical structure of a sentence or a phrase. This syntactic structure is usually represented with a tree (Jurafsky and Martin,).

Traditionally, there are two complementary frameworks to extract the syntactic trees of sentences. On the one hand, constituency parsing de nes syntactic trees by forming groups of words de ning what is referred to as constituents. Each constituent may be made of one or several sub-constituents. Constituency trees de ne hierarchical structures from the entire sentence to every single wordform (i.e., the leaf nodes of the constituency tree). On the other hand, dependency parsing de nes a syntactic tree by explicitly de ning relations between wordforms. In this thesis, we will only build dependency parsing models. However, for the sake of completeness, we introduce constituency parsing brie y. .

NLP Tasks

We illustrate this with the parse tree of the sentence Maria has left a note (Jurafsky and Martin,) in Figure . derived from the toy grammar de ned in Table . : it is made of the noun phrase (NP) "Maria" and the verb phrase (VP) "has left a note" which can be split more granularly as illustrated in the table.

As we can see, building a constituency grammar requires enumerating all the grammatical associations of word grammatical categories and constituents. This includes listing all the possible allowed word orders for languages that have relatively free word order (e.g. Russian, Czech, Hungarian, Latin). Of course, syntactic sugar additions to a chosen formalism can alleviate tedious enumerations.

Given a constituency grammar, for a given sentence, constituency parsing consists in predicting its associated constituency tree.

D P

In contrast to constituency parsing, dependency parsing captures the syntactic structure of a sentence using dependencies relations between wordforms. This means that the dependency formalism does not explicitly de ne groups of words. It only characterizes relation between a head and a dependent.

Using NLP Technologies

Formally, dependency parsing consists of the following task:

DEP : V T → (V, A, L) (X 1 , .., X T) → T = (V, A, L)
In plain words, given a sequence of wordforms, dependency parsing associates a dependency tree T . T is de ned as a triplet (V, A, L). V is simply the sequence of wordforms that, in this context, can be referred to as vertices or nodes. A is the set of directed relations between vertices referred to as arcs or vertex. L is the sequence of labels, one per relation.

In dependency parsing, T must have a single node that does not have any incoming relations -the root. Additionally, T must be acyclic -i.e. no loop can be formed with a sequence of arcs. Finally, there must be a unique path from the root to every node.

We illustrate this in Figure . with the dependency tree of the sentence "Maria has left a note" from de Marne e et al. (). De ning a dependency tree depends on the dependency grammar. Similar to constituency grammar, there are many ways to de ne it. In short, for a given language, de ning a dependency grammar consists in de ning the arcs and the type of arcs (the labels) between each pair of (head, dependent).

.

NLP Tasks

Arcs Based on the notion of constituent de ned in the previous section, heads can be de ned as the most important wordform in a given constituent. More speci cally, to de ne head-dependent arcs, we start by identifying the heads of each constituent. The head of a constituent is the most important word. For a Noun-Phrase, it is the main noun. For a verb-phrase, it is the main verb. All the other wordforms in a constituent will depend directly or indirectly on the constituent head.

We illustrate in Figure . the dependency tree of the sentence Maria has left a note for which we already introduced the constituents in the previous section (cf. Table .).

The root node is the main verb of the sentence (here left). Based on it, we can build the arcs within the verb-phrase (VP) "has left a note". "note" is the most direct dependent of "left" followed by "a" which depends on "note". Then we can look at the Noun-Phrase "Maria". There is no other word in this NP, so Maria is a leaf node (a node without dependence). Finally, we attach the auxiliary "has" to the verb "left".

Labels Each arc is labeled to characterize the type of grammatical relation between the head and the dependent. These relations are usually based on standard linguistic notions such as verb-subject relations, verb-object relations, and determiner-noun relations.

Linguists have extended these basic notions to cover all types of grammatical relations and languages. How these relations are de ned typically depends on the linguistic school of thought and the language.

Aiming at building multilingually consistent annotated datasets suitable for dependency parsing (treebank), Nivre et al. () initiated the Universal Dependency Project (UD). The UD project consistently built a framework to annotate the largest number of natural languages with dependency trees, along with wordform segmentation, morphological analysis, and lemmatization. The UD project is a great success, with more than language varieties currently having a UD treebank for + treebanks. UD de nes types of head-dependent relations. We will use UD treebanks for a large variety of languages in the following chapters.

We introduced conceptually dependency relations using the notion of constituent. However, when building a dependency parser, we usually do not rely on constituents explicitly.

E M

The most standard metrics for dependency parsing are the Unlabeled Attachment Score (UAS) and Labeled Attachment Score (LAS). Given a gold tree G gold = (V, A gold , L gold) and a predicted tree G pred = (V, A pred , L pred).

U AS = #{a, a ∈ A pred ∩ A gold } #{V } (.) LAS = #{l a pred = l a gold , a ∈ A pred ∩ A gold with l a label of arc a} #{V } (.)
UAS is the ratio of the number of correct arcs (i.e., head word and dependent word should agree with the gold tree) over the total number of arcs (which equals the total number of wordforms Formally, given a sequence (X 1 , .., X t) in a vocabulary V, NER consists in assigning tags (L 1 , ..., L t):

N ER : V T → L T (X 1 , .., X T) → (L 1 , .., L T).
In this thesis, we mainly use the large-scale multilingual dataset collected by Rahimi

E M

The standard metric to evaluate NER is the F -score (micro-F) (Tjong Kim Sang and Meulder,) which is de ned as the harmonic mean of the precision and recall de ned as:

precision = #{Correct Predicted Named-Entities} {#Predicted Named-Entities} (.) recall = #{Correct Predicted Named-Entities} {#Observed Named-Entities} (.)
Intuitively, F is an adequate metric to account for how imbalanced a dataset may be toward a given class or how imbalanced some predictions may be toward a given type (in this case, non-entities (tagged as O) vs. named-entities). Indeed, let us assume that a model would over predict named-entities. This leads to increasing the recall, as more named-entities are likely to be predicted by the model. However, the precision would fall as it would probably also decrease how good these predictions are.

L N

Lexical normalization is the task of translating non-canonical words into canonical ones.

We illustrate it with the following example (Table .). In this thesis, we focus mainly on non-canonical data originating from User-Generated Content. Given a source sentence, our goal is to predict a canonical target sentence.

Non-Canonical yea... @beautifulloser im abt to type it uuup !! Canonical yeah... @beautifulloser i'm about to type it up ! Formally, lexical normalization can be framed as a sequence labeling task from a source vocabulary of non-canonical words V non-canonical , to a target vocabulary of canonical ones

V canonical . N ORM : V T non-canonical → V T canonical (X 1 , .., X T) → (Y 1 , .., Y T).

E M

We de ne the three evaluation metrics on which we make our analysis. We distinguish between need_norm words, words that require to be normalized, and need_no_norm words that do not require normalization. The words normalized by our model (i.e., our model gave a prediction di erent from the source word) are noted pred_need_norm. We denote the words that require a normalization as need_norm words.

We note that the micro-F metric does not distinguish between di erent named-entities classes (e.g., between LOC and ORG). For datasets with imbalanced types of entities, one may favor the macro-F score, which is de ned as the arithmetic mean of the per-class F score.

Finally, the words that the model correctly normalizes are denoted TP. We then de ne recall and precision as:

recall = T P #need_norm (.) precision = T P #pred_need_norm (.)
F is simply the harmonic mean of the recall and precision (similarly to F de ned in § . .).

T

Transliteration consists of converting sequences of text written in one script (e.g., the Latin script) to another (e.g., the Cyrillic script). For some pairs of scripts, there is a to character level mapping between the source and the target script. Some other scripts require handling more complex and sometimes non-deterministic cases (e.g., Arabic script to Arabizi described in § . .).

N LI : V T → L (p 1 , ..., p T , h 1 , .., h T) → L
In XNLI, there are three possible labels: (neutral, contradiction, entailment). NLI models are usually evaluated using a standard accuracy metric (Dagan et al., a;

MacCartney and Manning,)

.

Q A

There are many ways to frame question answering (QA). We present here a currently popular framing of QA referred to as extractive question answering or reading comprehension introduced in (Hirschman et al.,

) and (Voorhees and Tice,). Given a question and a passage of text referred to as the context, Reading-Comprehension QA consists in extracting a span of text in the passage that answers the question.

E M

Reading-Comprehension QA is usually evaluated by comparing the predicted span of text with the references with exact-match or F score (Rajpurkar et al., ; Clark et al., a). In the case of the F -score, for a given prediction, we rst compute the recall and precision between the prediction and each reference -i.e.

counting the number of tokens in the prediction that appear in the reference regardless of word order. Formally, given a prediction made of D 0 tokens (x1 , .., x D0) and K references

{(x 1 1 , .., x 1 D 1) 1 , .., (x K 1 , .., x K D K)}: recall = #{{ x1 , .., x D0 } ∩ {x k 1 , .., x k D k }} D k , precision = #{{ x1 , .., x D0 } ∩ {x k 1 , .., x k D k }} D 0 (.)
The next step is to compute the F score, the harmonic mean between the recall and the precision, and pick the maximum F score over all the K references. Finally, we aggregate the F score over all the (question, prediction) samples by simply computing the arithmetic mean. For instance, given the prediction San Francisco and the two references ["San Francisco, CA", "San Francisco, California"], the exact match would be 0 because the prediction matches exactly with no reference. The F score would be The predictions are lower-cased, and articles (e.g. "the", 'a") and punctuation marks are usually removed before evaluating.

. NLP Tasks hmean(2/2, 2/3) = 0.8 because San Francisco (2 tokens) appear in the reference San Francisco CA (tokens).

The result is the same if we pick the other reference San Francisco California) so taking the maximum does not impact the result for this speci c sample.

M T D P F

We recall the modeling framework introduced in chapter .

In all our experiments, we assume we have a corpus. A corpus has the following structure:

• A corpus is de ned as a collection of documents {D 1 , .., D C }.

• A document is de ned as a sequence of tokens (t 1 , .., t D). A document could be made of a few tokens, a sentence, a paragraph, or a collection of paragraphs.

• A token is a basic unit of discrete data. A token can be de ned as a wordform (following a morpho-syntax framework § .), a punctuation mark, a sequence of characters, or even a character itself. We refer to the set of all possible tokens as the vocabulary {t 1 , ..., t V }. Each token can be de ned with a unique index in

[|1, V |].
We do not assume anything about the language or the script from which each token originates.

We note that the choice of the corpus and how we de ne documents and tokens are use-case and task-speci c. For some tasks and models, we may want to de ne tokens as characters and documents as entire web pages. In some other cases, tokens may be de ned as wordforms, and documents may be de ned as sentences.

The most basic model that we can de ne is referred to as a language model (Jelinek,

). Let X be the random variable that characterizes sequence of tokens (i.e. docu-

ments) X = (t 1 , ..., t D)
Broadly, speaking, language modeling consists in estimating the probability distribu-

tion of X. p(X) = p(t 1 , .., t D) (.)
This means that p(t 1 , .., t D) gives us the probability of observing the sequence (t 1 , .., t D).

Given tokens and documents, we may want to do more concrete and useful tasks, such as classifying a document or a token or even predicting another sequence to translate

a sentence or answer a question. Let (X, Y) be a pair of random variables. X may characterize tokens or documents. Modeling an NLP task consists of estimating the

conditional probability Y |X to predict Y with X. p(Y |X) (.)
Here, X may characterize tokens or documents. Y might be a label i.e. Y ∈ {0, .., L}, or a sequence of labels.

S L

For instance, let C be a corpus of sentences. Each sentence is a sequence of words X 1 , .., X D . Let Y = (L 1 , .., L D) be the associated sequences of labels.

Sequence Labeling consists in estimating:

p(Y |X) = p(L 1 , .., L D |X 1 , .., X D) (.)
After estimating p(Y |X), and given a sentence X, we can predict the sequences of labels Y . For instance, we may get the probability of having the sequence of POS (§ .) tags (PRON, VERB, NOUN) given the sequence of words (I, like, co ee).

S C

Similarly, Let Y be the associated labels that characterize which topic a document X 1 , .., X D is about. Then, P (Y |X) may give us the probability of having the label cooking to the document Heat a few tablespoons of oil in a skillet over medium-high heat. Add tofu to the pan in a single layer. Do not overcrowd the pan.

p(Y |X) = p(Y |X 1 , .., X D) (.) S G
In the same framework, we can model tasks that output a

sequence of tokens Y = (Y 1 , .., Y D) given a sequence of input tokens X = (X 1 , .., X D)
such as Machine Translation or Question Answering.

. Probabilistic Framework

p(Y |X) = p(Y 1 , .., Y D |X 1 , .., X D) (.)
For instance, for machine translation given an input sentence (X 1 , .., X D) in English and an output sentence

(Y 1 , .., Y D) in French: p(Y 1 , .., Y D |X 1 , .
., X D) provides the probability of having, for instance (Mangeons, du, tofu, !) to the input (Let, 's, eat, tofu, !).

G P Given a sequence of tokens (X 1 , .., X D), graph prediction consists in predicting the directed relations A i,j ∈ {0, 1} between each token X i and X j for all i, j. These relations are typically directed (i.e. A i,j usually di ers from A j,i). For some tasks (e.g. syntactic parsing), each relation is also labeled. This means that each A i,j is associated with a label L i,j in a prede ned set of label L.

Graph prediction consists of modeling the following joint distribution:

p(A, L|X) = p({(A i,j , L i,j), ∀(i, j) ∈ [|1, D|] 2 }|X 1 , .., X D) (.)
In this thesis, we will perform graph prediction for dependency parsing (§ . .). Dependency parsing consists in predicting labeled trees. In dependency parsing (in the UD formalism (Nivre et al.,)), dependency trees are single-root (i.e., a single node has no incoming arcs), connected (i.e., there is a direct path from the root), acyclic (i.e., there is a unique path from one node to another) directed graph.

Based on the probability distribution of a graph, we can extract the most-likely tree using a maximum spanning tree like the Chu-Liu-Edmond algorithm from (Chu and Liu, ; Edmonds et al.,

). In a nutshell, Chu-Liu-Edmond is a recursive algorithm that selects the arcs with maximum probability and removes recursively speci c arcs to break the cycles in the graph to extract a tree.

All the NLP tasks we work with in this thesis will be based on this modeling framework.

Based on it, two modeling design questions must be answered for all NLP experiments.

. How do we represent raw textual data? cf. § . -. .

. Given a representation of our textual data, how do we parametrize and estimate our model to do prediction? cf. § . -. .

Time complexity of the Chu

-Liu-Edmond algorithm is O(D 2).
T C E Any NLP experiment starts with raw text. This text is usually stored in the memory of a computer. A critical question is how text stored in a computer is represented in the computer's memory.

Computers only work with bits. A bit corresponds to an electric impulse inside a computer. For this reason, a bit has only two possible values: 0 or 1. Hence, any data points in a computer must be stored as a sequence of bits. In computer science, it is usual to group bits together in groups of bits that we refer to as bytes.

The way we represent written text in a computer's memory is referred to as encoding.

In a few words, encoding is based on rules that we follow to "translate" a sequence of bits into readable symbols.

Since the invention of computers, many encoding standards have been proposed and used. Historically, the ASCII encoding developed in the US in the s was very popular in the early ages of computers. ASCII only supports characters, including the English alphabet (upper case and lower case), punctuation marks used in English, and special characters such as white spaces. Since the s, many other encoding standards were developed to support other languages, non-Latin scripts, and newly introduced symbols such as emojis.

However, managing many di erent encoding standards is challenging and complex.

To overcome these challenges, the Unicode Standard was created in . Unicode is not an encoding standard per se. The Unicode standard is essentially a database which associates codepoints to characters. For instance, the character Z:

Z → U A
The Unicode standard includes, as of version . , , characters. Each character is associated with a unique codepoint.

As de ned by the Unicode Consortium which supports, maintains, and expands the Unicode standard, the Unicode standard is meant to be:

• Universal: i.e., represents all the characters of all human written language varieties,

• Stable,

• Uni ed across languages and scripts,

• Compositional: i.e., allow for composition with diacritics and accents.

C are de ned in Unicode as "the abstract representations of the smallest components of written language that have semantic value". They represent letters, punctuation marks, logograms such as, for instance, Hanzi characters in Mandarin, emojis, and math symbols. . They are associated with properties that provide information about the "semantics" of the characters such as the direction in which the character is meant to be displayed (e.g. right to left for an Arabic character).

C are hexadecimal numbers pre xed with U . They are related to Unicode characters with a bijections, i.e. a codepoint refers to a single character in the Unicode character set and each character is associated with a single codepoint. For instance, Z is the character represented by A (i.e. the th character in the Unicode symbol).

E C

Based on Unicode representations, there are -again-many ways to encode Unicode into bytes. The most popular one is UTF-(Unicode Transformation Format -). UTF-encodes code-points using variable length encodings. For small codepoints, it will only use a singe byte, for larger it will use up to bytes. As an example, the letter Z is encoded in UTF-as a single byte: .

The Unicode Standard combined with the UTF-encoding have become a global success with more than % of website using it today.

https://home.unicode.org/

The complete list can be found at https://www.unicode.org/charts/#symbols.

Hexadecimal refers to the base : from -we use -symbols, from to we use A, B, C, D, E, F https://w techs.com/technologies/cross/character_encoding/ranking T The rst modeling decision that needs to be taken when we approach any NLP task is to choose what unit we will build our model on. Indeed, when we do NLP we are given textual data formatted as strings, i.e., raw sequences of characters.

We assume that we work with Unicode so each character is de ned by Unicode. The rst step is, therefore, to de ne groups of characters or tokens that we will model. The process of segmenting a raw sequence of characters into tokens is called tokenization.

At a high-level, tokenization can be done in two ways. On the one hand, we can use linguistic rules (e.g., special typographic characters, a word, a named entity) and segment sequences of characters based on these rules. On the other hand, we can perform tokenization by computing the frequency of sequences of characters based on a large corpus before tokenizing an input sentence by picking the most frequent sequences of characters.

T T

The most straightforward segmentation method uses speci c typographic characters.

For instance, in many writing systems, white-spaces divide typographic units. White spaces are used in most alphabetic scripts (e.g., with the Latin script, the Cyrillic script), consonantal scripts (e.g., the Arabic script) or alphasylabic scripts (e.g., the Devanagari script). However, for several writing systems, white spaces are not used (e.g. Mandarin, Thai). We note that most of these writing systems are logographic scripts. For these scripts, simple tokenization usually relies on segmenting each character as a token.

W T

For some tasks, it might be necessary to do tokenization at the wordform level. In the UD framework, wordform segmentation can be approached in two steps. The rst step is to segment a raw sequence of characters into tokens. Second, when necessary, tokens are expanded into their multi-token wordforms.

As an example, the sentence "I haven't!" may be segmented in the following way (we use a CoNLL-like format (Hajic et al.,)) :

text= I haven't! I -haven't have not !

Table . : Wordform segmentation of "Ì haven't" in a CoNLL-like format (Hajic et al.,).

As we can see in table . , "I haven't!" is segmented into wordforms "I", "have",

"not", "!" with the contraction "haven't" is expanded into two wordforms "have" and "not".

This wordform expansion process may be applied to diverse linguistic phenomenons.

In English, as illustrated, it may be used for contractions. In French, it might be used to expand "du" and "au" into "de" "le" and "à" "le" respectively. For morphologically-rich languages such as Arabic, wordform tokenization is highly contextual and is, therefore, much more complex and ambiguous (Habash and Rambow,). Finally, for languages without typographic separators, such as Chinese, wordform tokenization is also challenging (Han et al.,).

Doing wordform tokenization accurately in these cases is usually approached with In the UD framework, for morphological tasks or syntactic tasks such as POS tagging or dependency parsing, it is required to tokenize sequences of characters into wordforms.

C n F T

Carefully segmenting wordforms may be necessary for syntactic-oriented tasks. However, modeling the segmentation speci cities of each language is challenging and requires lots of linguistic knowledge. Additionally, due to the intrinsic Zip an nature of language (Powers,), it is simply impossible to encounter all the wordforms that will possibly be seen during inference in a given training corpus. From a modeling standpoint, this is a great challenge. Indeed, how can we expect a model to be "accurate" if it encounters multiple unseen wordforms? In NLP, we commonly refer to this challenge as the Outof-Vocabulary problem (OOV). For these reasons, data-driven subword tokenization techniques were designed. We note that character n-gram tokenization is also helpful for languages with rich-morphology (Bojanowski et al.,). It is a data-driven tokenization technique. In practice, it is recommended to train the tokenizer using the same training data as the model it is supposed to be used for. It starts with a pre-tokenization step based on typographic segmentation described in section . . . For instance, in English, we pretokenize raw sequences of characters using white spaces.

BPE

BPE-tokenization is a bottom-up algorithm: it starts with characters and builds up BPE based on the frequency of sequences of characters.

We initialize a vocabulary V with all the unique characters in the training data. We refer to elements of the vocabulary as BPEs. For a prede ned number of operations:

. We compute the frequency of each pair of BPEs observed in the training data, . We add the most frequent BPE pair to the vocabulary V (i.e., merge the new BPE to the vocabulary).) is a data-driven subword segmentation algorithm. Unigram tokenization described by Kudo () also starts with a pre-tokenization step that de nes sequences of tokens

(x 1 , .., x T).
For simplicity, we refer to tokens as words. We assume that we have a corpus of text C.

We assume that after training our tokenizer, we want to have a vocabulary (i.e., the set of unique tokens that can occur after tokenization of any data) of size M .

The unigram tokenization algorithm aims to nd the subword tokenization that maximizes the likelihood over our corpus. There are two unknowns: First, the set of subwords tokens that we are allowed to use (subwords could be any sequence of characters observed in the corpus). Second, the segmentation of each word given possible subwords is also unkwnon. Kudo () proposed to estimate these two unknwons within a probabilistic framework.

The algorithm starts with initializing a seed vocabulary V by taking the most frequent sequences of characters observed in the corpus after pre-tokenization. The idea of the algorithm is to iteratively remove tokens from this vocabulary until we reach the expected vocabulary size (i.e., when |V |=M).

To do so, we model sequences of subword tokens with a unigram language model. We assume that for a given word x and a subword tokenization of x, S(x) = (x 1 , .., x L) with

x i ∈ V , we have:

p(x) = L i=1 p(x i) (.)
M is a hyperparameter of the unigram tokenization algorithm xed manually.

In practice, we can de ne it simply by taking all the characters observed in the corpus as well as the top × M most frequent sequences of characters after pre-tokenization.

The underlying assumption is that the subwords occurrences are independent from each other. In practice, p(x i) are estimated by counting the occurrences of x i in the corpus C over the total number of subwords in the corpus.

We then model the log-likelihood L over the entire corpus of text with:

L = x∈C log(p(x)) (.)
Based on this, the unigram tokenization algorithm iterates through the two following steps:

. Estimation Step: we compute the log-likelihood L over the entire corpus. To do so, for each word x, we nd the subword tokenization x 1 , .., x L that maximizes the unigram probability. , . Maximization Step: we remove the η% of subwords in V , such that when removed, it maximizes the log-likelihood L.

We stop the algorithm when the subword vocabulary V reaches the desired size. We Similarly, BPE-tokenization was further extended with BPE-dropout (Provilkov et al.,

). By dropping with non-zero probability the merge operations between two tokens,

In practice, this step is done e ciently with the Viterbi algorithm (Viterbi,). η% is a hyperparameter typically set to %. In practice η is set to %. Given the subword tokenization of x s 1 , .., s L Kudo () de ned the distribution over possible subword tokenization with p(si) α l i p(si) α . l controls the number of subword tokenization allowed, and α controls how "diverse" the sampling is.

it provides several possible tokenizations for each word. Provilkov et al. (

) showed

that BPE-dropout is on par with unigram tokenization for Machine Translation.

S P

The main drawback of each of these techniques is that they require a pre-tokenization step. When we work with data speci cally in scripts that do not rely on trivial typographic tokenization (Mandarin, Japanese), this pre-tokenization might be complex and language speci c. To overcome this challenge, SentencePiece then this character will be unknown to the tokenizer and the model. This is a challenging limit when we work with real-world data and a large diversity of scripts. For instance, with character-rich languages such as Chinese, it is very likely to encounter an unknown character when we work with real-world data.

R T V

Performing any NLP task requires representing textual data into a data structure. This data structure can be as simple and unstructured as a string. However, modeling sequences of tokens typically requires representing text into vectors.

Embedding representation of text or simply embedding refers to any vector-based representation of text.

As extensively described in the previous chapter, natural languages are very diverse.

For this reason, there is no unique and universal way of embedding textual data. Any embedding should be chosen on a case-by-case basis. Still, we will see that some approaches are more valuable than others. . Capture linguistic information about each word. This information could be morphological, syntactical, or semantic information that characterizes each word we embed (Mikolov et al., b; Pennington et al., ; Bojanowski et al.,),

. Be useful for speci c downstream NLP tasks. This means we expect the task-speci c NLP models that use given embedding vectors to generalize better compared to if they were not using it (cf. (Dozat and Manning,) for dependency parsing and

(Lample et al.,) for NER as examples).

In consequence of our rst point, we expect two words that are morphologically, syntactically, or semantically similar to have embedding vectors close to each other according to a similarity metric. In NLP, one popular metric used to measure the similarity between word embedding vectors is the cosine similarity, de ned as:

cos(x, y) = x • y ||x|| 2 ||y|| 2 (.)
To illustrate this, we take the words cat, dog and computer. We note

-→ cat, -→ dog and ------→
computer the embedding vectors of cat, dog, and computer respectively. Let us assume that we would like to build an NLP model that uses word embeddings to classify if a word is an animal or not. Intuitively, we expect from a "good" word embedding technique to provide word vectors for We now describe several standard word embedding techniques. We start with presenting -hot encoding (§ . .), the most basic word embedding technique. Second, we describe brie y hand-crafted feature representations (§ . .). Finally, we present data-driven word embedding models (§ . .) such as count-based methods and prediction-based methods.

H E

The rst and most straightforward way to represent tokens into vectors is what is referred to as -hot encoding. Let t i be a token in a given vocabulary indexed by i and x ti its embedding vector.

x ti = (0, 0, ..., 0, 1 index i , 0, .., 0)

(.)

We will detail this point in section . .

We derive straightforward properties of these representations:

x ti ⊥ x tj i = j (.) cos(x ti , x tj) = cos(x ti , x t k) = 0 ∀i, j, k s.t. i = j, j = k, k = i (.)
Each token embedding is independent and equidistant from any other token embedding. Intuitively, this means that no linguistic information is integrated into -hot vectors.

-hot encoding can be seen as the rst approach to representing tokens into vectors. In addition, we can also use -hot encoding to represent linguistic information (Denis and Sagot, ; Sagot and Martínez Alonso,). We now describe linguistic information that can be useful in practice.

H C F R

A more re ned approach to representing tokens into vectors is to collect linguistic information about each token and encode this information into vectors. We refer to such linguistic information as feature. The choice of these features is highly related to what task we want to use these features for. They range from low-level lexical or morphological information to high-level semantic or pragmatic information.

L M S F
We list several features of interest at the lexical and morphological levels. For a given token t:

• f 1 ∈ {0, 1}: Does the token start with a capital letter? [Capitalization]

• f 2 ∈ {0, 1}: Is the token mixed case (e.g. eBay) [Capitalization]

• f 3 ∈ {0, 1}: Is the token all capital letters? [Capitalization]

• f 4 ∈ {0, 1}: Does the token includes numbers? [Digits]

• f 5 ∈ {0, 1}: Does the token end with "ish"? [Common Ending]

• f 6 ∈ {0, 1}: Does the token end with "ist"? [Common Ending]

It can represent any information that can be encoded with a xed number of labels.

• f 7 ∈ {0, 1}: Does the token end with "an"? [Common Ending]

• f 8 ∈ {0, 1}: Does the token ends with ing [Common Ending]

• f 9 ∈ {0, 1}: Does the token ends with ed [Common Ending]

• f 10 : Length of the token [Length]

The features f 1 , .., f 10 can be computed from the string directly. They can be complemented by more complex linguistic features such as morphological or syntactic features.

These features can be collected using external linguistic knowledge found in lexicon and grammars (Sagot and Martínez Alonso,), or they can be computed using other machine learning models upstream.

•

D D W E M T D H

The limiting factor of most hand-crafted feature representations of words is that they are costly to collect, they usually require linguistic expertise, and they are hard to maintain and scale to new words, domains, concepts, and new languages. Additionally, speci cally for complex semantic tasks, hand-crafted features do not always include all the information needed for the downstream task of interest. For this reason, computing these representations automatically in a data-driven way using a large corpus of text was shown to be a better solution for nearly all NLP tasks.

The foundation of nearly all embedding methods is the distributional hypothesis. Famously described by Firth (Firth, ,) and Harris (Harris,), the distributional hypothesis can be stated as:

You shall know a word by the company it keeps. (Firth,) In simple words, the distributional hypothesis means that based on the context of a word (e.g., its surrounding words), we can infer its meaning.

M F

In the most general manner, we can therefore de ne a word embedding model that makes use of the distributional hypothesis as a function E such that:

E : V → R D w → E(w, context(w))
A data-driven approach de nes E using data. Di erent data-driven embedding models will de ne the context and the training procedure di erently.

We cover traditional count-based methods and more recent prediction-based systems such as the Word vec model (Mikolov et al., b).

C B W E

Count-based approach computes word vector representation with co-occurrence statistics. Co-occurrence statistics are simply count-statistics of the occurrence of a pair of words. A word vector can be computed based on the co-occurrence statistics over an entire corpus.

For instance, let us assume a hypothetical corpus with the vocabulary: V = {leash, walk, run, owner, pet, barked, the, lion}.

To infer the embedding vector x lion we simply count the (hypothetical) co-occurrence statistics of # lion, leash = 0, # lion, walk = 15, # lion, run = 7, # lion, pet = 2, # lion, barked = 2, # lion, the = 25. Based on them, we get x lion = (0, 15, 7, 1, 2, 25).

The problem with straightforward co-occurrence-based word embedding vectors is that frequent words impact a lot the similarity between word vectors while these words -usually determiners e.g., the, a -are the least informative.

P M I(w 1 , w 2) = log P (w 1 , w 2) P (w 1)P (w 2) = log 1 npairs #{(w 1 , w 2)} 1 n word #{w 1 } 1 n word #{w 2 } (.)
To re ne this, the point-wise Mutual Information (PMI) was introduced in Church and Hanks () to smooth and normalize co-occurrence-based statistics (cf. equation .). To avoid relying on low frequency pairs it was further re ned with the Positive-PMI (PPMI) which is equal to P P M I(., .) = max(0, P M I(., .)) (Dagan et al.,

).

As we will see in the following section, Levy and Goldberg () showed that P P M I is implicitly learned by prediction-based methods such as with the skip-gram negative sampling model (Mikolov et al., b).

The limit of such models is the memory footprint. Indeed, the dimension of the embedding vectors is the size of the vocabulary V , possibly very large.

for c in [|w i-R ,w i+R |]\{w} do # Negative samples Sample N K = {v 1 , .., v K } ⊂ V represented by {v 1 , .., v K } in C # Compute loss l(W, C) = -σ(w, c) -1 K v∈ NK log σ(-w, v) # Parameter update with SGD W t = W t-1 -α t .∇ l(W t-1 , C t-1) C t = C t-1 -α t .∇ l(W t-1 , C t-1) end end P B W E
Instead of doing co-occurrence estimation (on a matrix of size V 2) before reducing it to a dense matrix of smaller dimensions, learning a continuous matrix representation in one step is possible.

These techniques are usually based on training a model that predicts a word given its context (or the other way around). Implicitly, the parameter of such a model captures linguistic information about words. These techniques are commonly called predictionbased techniques (Baroni et al.,).

The most notable and successful prediction-based (static) word embedding technique is the word vec model (Mikolov et al., b). The Skip-Gram Word vec (detailed in the Algorithm) implements four key ideas. First, each context word and focus word in a vocabulary V is parametrized with a dense vector (of dimension d). These vectors are randomly initialized. Second, the word vector parameters are trained on the classi cation task of predicting whether or not words are in the surrounding context of the focus word.

F

In this section, we assume we have a sequence of vectors (X 1 , .., X T) in R d,T . Our goal is to nd a function noted dnn parametrized by θ such that dnn θ gives good predictions

The time complexity of the skip-gram negative sampling is O(E * T * (K + 1) * d) with E the number of epochs, T the number of words in the corpus, K the number of negative samples, and d the word vector dimension (assuming constant time operation for multiplication, addition, sigmoid and random sampling of the negative samples). Its memory complexity is O(V * d).

compared to the observed sample Y ∈ Ω. Ω is usually a multi-dimensional Euclidean space. We will specify it below depending on the task we are considering.

Formally, given a loss function l, we would like to nd θ such that E (l(Ŷ , Y)) is minimal with f θ (X 1 , .., X T) = Ŷ and dnn θ :

dnn θ : R d.T → Ω (X 1 , .., X T) → Ŷ
We de ned our loss function as any di erentiable function:

l : Ω 2 → R (y, y) → l(y, y)
For regression tasks, l is usually the Euclidean distance. For classi cation tasks, which are the type of tasks we study in this thesis, the cross-entropy (CE) is the most standard loss used in practice.

All the deep learning models we study in this thesis are parametric i.e., θ ∈ R D with D ∈ N xed. In deep learning, the parametrization of the model -i.e., the space in which the function dnn θ is being learned -is called the architecture.

D D L M

Before any training takes place, building a deep learning model for a given task requires answering the following design questions:

. How to represent the input sequence into vectors?

. What architecture do we want to use?

. What output activation function and what loss function should we use?

Given a label vector y ∈ {0, 1} V and an estimated probability vector ŷ ∈

[0, 1] V , l(y, ŷ) = CE(y, ŷ) = i y i log(ŷi) E I L
Deep learning models take as inputs real-number vectors or sequences of real-number vectors. When we work with discrete symbols like in NLP, we need to represent our discrete symbols in vectors. Therefore, it is possible, in theory, to use all the token-level representation techniques described above in section . . -. . . In practice, deep learning models were shown to work much better with continuous and trainable embedding layers (Bengio et al.,).

We de ne a continuous embedding layer as Emb ∈ R δe×|V | . This means that for each token t ∈ V indexed by j in the vocabulary We start with a -layer MLP. MLP takes as input uni-dimensional variable. In NLP, we usually work with sequences of input tokens. To fall back to a uni-dimensional input sequence, we can concatenate all the input vectors. In consequence, we assume that we want to model an input variable X ∈ R δi . Additionally, we assume that we want to predict a variable Y ∈ R δo A -layer MLP can be seen as a function dnn θ such that:

dnn θ : R δi → R δo X → W 2 ϕ 1 (W 1 X + b 1) + b 2 ϕ 1 is a xed (i.e. non-trainable) non-linear function (ϕ 1 : R d - → R δ). The model is parametrized by W 1 , b 1 , W 2 and b 2 (trainable parameters) with W 1 ∈ R δ×δi , b 1 ∈ R δ , W 2 ∈ R δo×δ and b 2 ∈ R δo
δ is the dimension of the hidden layer of the model. It is a hyper-parameter xed prior to training the model. It can be selected in practice with hyper-parameter search (Hastie et al.,) or by following the best practices for a given task (Chollet,).

From a -layer MLP (also called a -hidden-layer MLP), deriving a L-layer MLP is straightforward: To do so, we need to compose L times the transformation following:

dnn (Wi bi,i∈[|1,L|]) (X) = W L ϕ L-1 (...ϕ 2 • W 2 ϕ 1 (W 1 X + b 1) + b 2)...) + b L (.)
In a more readable way, we can introduce the variable h i and describe the L-layer MLP as:

h i+1 = ϕ i (W i h i + b i), ∀ i ∈ [|1, L -1|]
with h 1 = X and Ŷ = dnn(X) = h L (.) We start by presenting a L-layer vanilla-RNN. Given a sequence of tokens (X 1 , .., X T) ∈ V T , the vanilla-RNN can be seen as the function rnn θ such that:

h i are called hidden states of the model (h i ∈ R δi). ϕ l are xed non-linear functions, ϕ l : R δ l-1 - → R δ l , ∀ l ∈ [|1, L -1|]. W l and b l are trainable parameters. W l ∈ R δ l-1 ×δ l , b l ∈ R δ l , with δ l ∈ N * , ∀ l ∈ [|1, L|].
rnn θ : [|0, 1|] V × T → Ω (X 1 , .., X T) → (Ŷ1 , .., ŶT)
Such that:

h i+1,t+1 = ϕ i (W i h i,t + U i h i+1,t + b i), ∀ i ∈ [|1, L|] ∀ t ∈ [|0, T |] with h 1,t = Emb(X t) and pt+1 = h L+1,t+1
with ϕ L = sof tmax (.)

W l , U l and b l are trainable parameters. W l are the weights of the feed-forward component of the layer l. U l are the weights of the recurrent component of the layer l.

W l ∈ R δ l-1 ×δ l , b l ∈ R δ l , with δ l ∈ N * , ∀ l ∈ [|1, L|].
In a more synthetic way, we can de ne the vanilla RNN cell of layer i, given the

activation function ϕ i , with RN N i = ϕ i (W i h i,t + U i h i+1,t + b i). We get: h i+1,t+1 = RN N i (h i,t , h i+1,t), ∀ i ∈ [|1, L|] ∀ t ∈ [|0, T |] with h 1,t = Emb(x t) and pt+1 = h L+1,t+1 with ϕ L = sof tmax (.)
We describe the RNN with a continuous embedding input layer.

A

The limit of recurrent neural networks for sequence modeling is that they build a xed vector representation of the input sequence. To overcome this limit, the attention mechanism was introduced by Bahdanau et al. (

). The attention mechanism was initially introduced for machine translation to combine the hidden vectors of recurrent neural networks to build a prediction-speci c representation of an input sequence. It was then adapted to sequence labeling and sequence classi cation (Yang et al.,).

This approach was shown to deliver better performance in practice for sequence classi cation (Yang et al.,) and machine translation (Bahdanau et al.,). The attention mechanism also enables a convenient way to interpret a model's prediction, as seen in (Bahdanau et al., ; Yang et al.,).

For LSTM, this approach would be referred to as a Bidirectional LSTM (or Bi-LSTM))

In order to improve even further the modeling and computational abilities of neural • For a given vector h t and its query vector q t we want to build the new representation vector ht ,

• This is done using a ponderation of the information encoded in the intermediate

representation (v 1 , .., v T) (the value vectors),
• This ponderation is computed by computing the similarity between the intermediate representations q t (the query) and the keys (k 1 , .., k T).

We now detail this intuitive explanation of the mechanism of a self-attention layer.

Given a sequence of input vectors

X = (x 1 , .., x T) ∈ V T (noted H = (h 0,1 , .., h 0,T)),
a L-layer Transformer Architecture can be described as:

H i+1 = F eedF orward(A i+1) and A i+1 = Self Attention(H i) ∀ i ∈ [|1, L|] with Self-Attention(H i) = sof tmax(Q K T √ δ K)V H 0 = (Emb(x 1), ...Emb(x T)) (.)
For each layer i, given the input sequence H = (h 1 , .., h T) i -which is the output of the layer The key, query, and value representation vectors are computed based on the parameters W Q , W K , and W V as follows:

q t = W Q h t , ∀ t ∈ [|1, T |] with W Q ∈ R δq×δ (.) k t = W K h t , ∀ t ∈ [|1, T |] with W K ∈ R δ k ×δ (.) v t = W V h t , ∀ t ∈ [|1, T |] with W V ∈ R δv×δ (.)
From these intermediate representations of H, the self-attention layer builds A with:

A = sof tmax Q K T √ δ k V (.) i.e. ∀ t, a t = sof tmax q t K T √ δ k V = T t =1 s t √ δ k v t with s t = e qtk T t T i=1 e qtk T i (.)
In an even more compact way, given input vectors H = (h 1 , .., h T) ∈ R δ× T , and self-attention parameters For a sequence of input tokens (X 1 , ..., X T), the positional embedding of token X pos is a vector in R δ de ned it as:

W Q ∈ R δq×δ , W K ∈ R δ k ×δ , W V ∈ R δv×δ , we have: A = sof tmax (H T W Q) (H T W K) T √ δ k (H T W V) (
P osEmb(X pos)(k) =    sin pos 10000 k δ ∀ k ∈ [|0, δ -1|], if k is even cos pos 10000 k-1 δ ∀ k ∈ [|0, δ -1|], if k is odd (.)
We illustrate it in Figure . with the positional embedding vectors of dimension δ = 768 and a sequence length of . We note that X pos ∈ [-1, 1] δ . Additionally, we note that for all pos, and all o set K ∈ N * , X pos+K can be inferred by a linear

RNNs models do so based on the recurrence relationship described in equation . . The gure was generated using this notebook from Jay Alamar. We can cut the sequence for very long sequences and ignore the tokens beyond the maximum-length positions. Still, for some tasks, it is required to have the full context. In these cases, a simple trick is to use a sliding window of size S (that can be as long as the maximum-sequence length) and process the sequences by blocks of length S.

In practice, we append the sequence with a special padding token for sequences shorter than the maximum-sequence length. In the case of the transformer, we make the model ignore these tokens by setting the self-attention weights to 0.

This scalar is shared across layers. To tackle these challenges, many architectural improvements were introduced, such as layer normalization (Ba et (.)

Estimating the probability distribution of arbitrarily long text sequences is intractable.

For this reason, we can decompose P (X) using the Bayes' Rule of conditional probability (Bayes,). Following what we described in the introduction (cf. gure .), NLP models can be split schematically into two parts:

P
First is a representation module, which takes raw signal sequences of bytes and encodes it into xed feature vectors. These vectors can be as simple as -hot encoding vectors (cf. § . .), more complex hand-crafted morphological features (cf. § . .) or predictionbased continuous word embeddings (cf. § . .).

Second, a trainable model that takes the vectorized representation to perform prediction for a speci c task (e.g., POS tagging, Machine Translation, etc.).

Historically, models were based on probabilistic estimation combining complex handcrafted features (cf. § . .). In the past ten years, deep learning models outperformed P For syntactic parsing, given a constituency grammar described in § . . , and POS tags, a wide range of algorithms have been developed in order to parse sentences.

For instance, the Cocke-Kasami-Younger (CKY) approach (Kasami, ; Aho et al.,

) is a dynamic-programming algorithm that recursively predicts a parse tree given a constituency context-free grammar. The challenge in grammar-based parsing is that several parse Trees may be generated. To disambiguate between the predicted trees, the rst approaches were based on rules using morphological and contextual features to choose the most likely tree.

QA We nish our literature review of rule-based systems for NLP by taking Question-Answering (QA). Early QA systems were based on pipelines composed of several modules. Based on this, the model is parametrized with a simple exponential multinomial model.

Following the maximum entropy principle (Jaynes,), the model is then estimated by nding the parameters that maximize the entropy of the model. In such a model, the challenges are the sparsity of the features. Indeed, at test time, if the words are not in the training data, the model only relies on hand-crafted features. These features are usually language-speci c, not robust to non-standard wordforms (e.g., spelling errors), and sparse. Bender et al. () successfully used the same approach for NER. We also note that maximum entropy-based models were widely used for the CoNLL-shared task for NER (Daelemans and Osborne,), and were a key module of the winning system (Florian et al.,).

For syntactic parsing, methods were developed to estimate the probability of a given parse tree provided by a grammar-based algorithm. By factorizing the probability of a tree by using the head-dependent structure, and estimating the probability of head-dependent patterns using treebanks, (Charniak, ; Collins,) were able to reach very good performance. These approaches were then re ned and extended using better-suited handcrafted features and better probabilistic models (Johnson, ; Petrov and Klein, ;

Finkel et al.,
).

The intuition is that given a parametrization and some observation, the best parameters are the ones that distribute the most evenly the probability mass between the di erent labels, i.e., the parameters that lead to the maximum entropy.

In the s, Hidden Markov Models (HMM) (Baum and Petrie,

) brought significant performance improvement to NLP and sequence labeling. In a nutshell, HMM aims at estimating transition probabilities of a hidden (i.e., unobserved) random process y -for POS tagging or NER, a sequence of tags y 1 , .., y L -given an observed sequence x 1 , .., x L . A transition probability is simply the probability of getting y t given previous states y 1:t-1 and the observed variable Finally, following the same feature-based approach, early works on deep learning models reached non-trivial performance on POS tagging (Benello et al., ; Nakamura and Shikano,). In these studies, the deep learning models are usually simple feedforward neural networks (§ .) modeling -hot encoded features of each word as inputs.

They are Directed Acyclic Probabilistic Graphical Model that characterizes the dependencies between two random processes with two simplifying assumptions: p(x t |y 1:t , x 1:t-1) = p(x t |y 1:t) and p(y t |y 1:t-1) = p(y t |y t-1).

Above % on the Brown corpus (Francis and Kucera,). For sequence labeling, the Markov assumption can be framed as p(y t |y 1:t-1) = p(y t |y t-1).

QA Based on the progress of search engines and the beginning of the mainstream internet at the end of the s, the Question Answering task became a critical piece for search engines to provide speci c sentences, spans, and entities to the end-user. The task was formalized with the TREC Question Answering track and benchmark (

L M T C R S T p θ0 (X) pretraining → p θ1 (Y |X, θ 0) f ine-tuning → Ŷ ∼ p θ1 (Y |X) prediction (.)
There are many ways to transfer a pretrained deep learning-based language model for downstream tasks. One of the rst attempts is Collobert and Weston (), which trained a single MLP architecture simultaneously with a denoising language model objective (§ . .) along with downstream tasks such as Semantic Role Labeling, POS tagging, and NER. However, language modeling did not improve the performance of the model. Finally, a wide number of models were released for non-English languages. In chapter , we present our contribution with the CamemBERT model. We list -non-exhaustively -multilingual mask language models such as mBERT, XLM (Conneau and Lample, Average human performance re ects the score of non-experts human in performing a given task averaged across all generated answers. https://github.com/google/BIG-bench

The generalization abilities of language models with prompting emerged from models trained with billion or hundred of billion of parameters. However, these large-scale language models are inherently costly to use and train, posing many ethical and environmental challenges that should be addressed as discussed in (Bender et al., ; Weidinger et al., b).

M O D O L T

So far, following a standard Machine Learning framework, we assumed that the evaluation data originates from the same domain and language as the data the model is trained on.

However, as described in chapter , languages are very diverse and highly vary across speakers, writers, genres, topics, mediums, essentially across domains (§). Additionally, collecting annotated data for all tasks of interest across all languages and domains is costly and challenging. For these reasons, it is often necessary for NLP to use a model trained on a dataset that originates from a given language or domain referred to as the source, on another language or domain referred to as the target. In the case of domains, we refer to this process as cross-domain transfer. In the case of languages, we refer to it as cross-lingual transfer (§ . .).

This section covers techniques used to achieve cross-domain and cross-lingual transfer.

D L G R X → X (.)
To make cross-lingual or cross-domain transfer easier, it can be useful to make the target domain or language, noted X, more similar to the source language or domain X (illustrated in gure .). There are many ways to achieve this depending on the experimental framework and the linguistic properties we would like to make "more similar". For non-standard text such as User Generated Content, lexical normalization can be used to make the spelling errors and jargon speci c to this data type more similar to standard edited text such as Wikipedia. To build models in the multilingual setting, translation and transliteration can be used to get training data in the target language and script or to use models trained in another language and script for the target language.

L N

As described in section . . , lexical normalization consists in transforming a nonstandard word into its standard form. In this thesis, we will focus mainly on User-Generated-Content (UGC), i.e., data found on social media data like Twitter. As described in (Foster, b; Seddah et Overall, these feature-rich techniques are very promising but are challenging to scale to more languages than end-to-end models. In the chapter , we will cover our contribution to this task and also discuss the most recent state-of-the-art in multilingual lexical normalization. Transliteration has traditionally been approached using rule-based systems that rely on phonology. In a few words, the transliteration system uses how a sequence of characters They use aspell http://aspell.net/.

T

The features are similar to the candidate generation step, to the exception of an n-gram language model trained on both standard and non-standard text.

is pronounced to convert it into the target script by ensuring that the transliteration preserves the pronunciation.

Grapheme-to-phoneme (G P) is a speci c type of transliteration for which the output sequence encodes directly the phonology of the input text (. .). The IPA (Jespersen,) is commonly used for this purpose. G P has been approached by collecting heuristics that associate characters of the source scripts (e.g., Latin, Cyrillic, Arabic, Japanese) T Finally, a straightforward way to do cross-lingual transfer is to use machine translation.

Indeed, assuming we want to perform a sequence classi cation task (e.g., NLI) in a target language X (e.g., English), and we have annotated data in a language X (e.g., French),

we can train a model in English, translate the data from French to English and perform the prediction in English itself -known as the T T setting (Conneau et al., b; Hu et al.,). We can also translate the source language to the target to train a model directly in the target language (we refer to it as T T). We note that this cannot be used for sequence labeling tasks (as it would require token-level alignment between source and target).

Translation can also be used for data augmentation techniques for word-level tasks such as POS tagging and dependency parsing. Cross-lingual transfer is a general term that refers to the process of using a model trained on a language or a set of languages for another language possibly unseen during training. Zero-shot Cross-Lingual Transfer, illustrated in gure . , refers to the process of training a model (parametrized by θ) in one source language noted X (e.g. English) to use it for another target language noted X (e.g. French).

The basic idea of performing cross-lingual transfer is to build a multilingual representation of data shared between the source and target languages. They are many ways to build shared multilingual representations. We list three approaches, from the least to the most successful empirically.

F B M R
Historically, cross-lingual transfer modeling has been approached with lexical features (§ . .). The idea is to represent words with morphological, syntactic, or semantic features shared across languages. Then, we can train them using only the lexical features instead of training task-speci c models on the words. This method is referred to as the delexicalized approach and has been studied, among others, by (Petrov and Klein, ; Based on these shared word-embedding spaces, similarly to the delexicalized approach, the idea is to train a model using input word embedding from the shared multilingual space in the source language and, at test time to feed the model with input tokens in the target language represented with word embedding from the same multilingual embedding) Masked Language Models trained on large raw text corpora extended impressively the performance of NLP models on most tasks.

However, for almost a year and a half after the rst release of the BERT model, largescale mask monolingual language models were only available for English.

This chapter is an adaptation of the publications (Martin et . Modeling language-speci c tokenisers. We point the reader to § . . for a detailed introduction and discussion on subword-level tokenization technique. We set the vocabulary size to k subword tokens. These subwords are learned on 10 7 sentences sampled randomly from the pretraining dataset. We do not use subword regularisation (i.e. sampling from multiple possible segmentations) for the sake of simplicity.

P O

We train our model on the Masked Language Modeling (MLM) task. Given an input text sequence composed of N tokens (x 1 , ..., x N), we select % of tokens for possible replacement. Among those selected tokens, % are replaced with the special <MASK> token, % are left unchanged and % are replaced by a random token. The model is then trained to predict the initial masked tokens using cross-entropy loss. We point the reader to § . . for a more detailed de nition of MLM.

Following the RoBERTa approach, we dynamically mask tokens instead of xing them statically for the whole dataset during preprocessing. This improves variability and makes the model more robust when training for multiple epochs. di cult because the model has to predict a whole word -possibly made of a several tokens -rather than predicting only part of the word given the rest. We train our models using WWM by using whitespaces in the initial untokenized text as word delimiters.

WWM is implemented by rst randomly sampling % of the words in the sequence and then considering all subword tokens in each of this % for candidate replacement.

This amounts to a proportion of selected tokens that is close to the original %. These tokens are then either replaced by <MASK> tokens (%), left unchanged (%) or replaced by a random token.

O

Following (Liu et al.,), we optimize the model using Adam (Kingma and Ba,)

(β 1 = 0.9, β 2 = 0.98) for k steps with large batch sizes of sequences, each sequence containing at most tokens. We enforce each sequence to only contain complete paragraphs (which correspond to lines in the our pretraining dataset).

P

We use the RoBERTa implementation in the fairseq library (Ott et al.,). Our learning rate is warmed up for k steps up to a peak value of 0.0007 instead of the original 0.0001 given our large batch size, and then fades to zero with polynomial decay.

Unless otherwise speci ed, our models use the BASE architecture, and are pretrained for k backpropagation steps on Nvidia V GPUs (GB each) for a day. We did not train our models for longer due to practical considerations, even though the performance was still increasing (cf. Figure .).

U C BERT

We use the pretrained CamemBERT in two ways. In the rst one, which we refer to as fine-tuning, we ne-tune the model on a speci c task in an end-to-end manner. In the second one, referred to as feature-based embeddings or simply embeddings, we extract frozen contextual embedding vectors from CamemBERT. These two complementary approaches shed light on the quality of the pretrained hidden representations captured by CamemBERT.

F

For each task, we append the relevant predictive layer on top of CamemBERT's architecture. Following the work done on BERT (Devlin et al., a), for sequence tagging and sequence labeling we append a linear layer that respectively takes as input the last hidden representation of the <s> special token and the last hidden representation of the rst subword token of each word. For dependency parsing, we plug a bi-a ne graph predictor head as introduced by Dozat and Manning (). We refer the reader to this article for more details on this module. We ne-tune on XNLI by adding a classi cation head composed of one hidden layer with a non-linearity and one linear projection layer, with input dropout for both.

We ne-tune CamemBERT independently for each task and each dataset. We optimize the model using the Adam optimiser (Kingma and Ba,) with a xed learning rate.

We run a grid search on a combination of learning rates and batch sizes. We select the best model on the validation set out of the rst epochs. For NLI we use the default

E C BERT

In this section, we measure the performance of our models by evaluating them on the four aforementioned tasks: POS tagging, dependency parsing, NER and NLI. For POS tagging and dependency parsing, we compare CamemBERT with other models in the two settings: fine-tuning and as feature-based embeddings. We report the results in Table . .

•• CamemBERT (ne-
CamemBERT reaches state-of-the-art scores on all treebanks and metrics in both scenarios. The two approaches achieve similar scores, with a slight advantage for the UDPipe Future is available at https://github.com/CoNLL-UD-/UDPipe-Future, and the code for nested NER is available at https://github.com/ufal/acl _nested_ner.

. Evaluation of CamemBERT ne-tuned version of CamemBERT, thus questioning the need for complex task-speci c architectures such as UDPipe Future.) . mBERT (ne-tuned) .

•••
CamemBERT (ne-tuned) . LSTM+CRF+CamemBERT (embeddings) .

Table . : NER scores on the FTB (best model selected on validation out of). Best scores in bold, second best underlined.

For NER, we similarly evaluate CamemBERT in the ne-tuning setting and as input embeddings to the task speci c architecture LSTM+CRF. We report these scores in Table . .

In both scenarios, CamemBERT achieves higher F scores than the traditional CRFbased architectures, both non-neural and neural, and than ne-tuned multilingual BERT models.

Using CamemBERT as embeddings to the traditional LSTM+CRF architecture gives slightly higher scores than by ne-tuning the model (. vs. .). This demonstrates that although CamemBERT can be used successfully without any task-speci c architecture, it can still produce high quality contextualized embeddings that might be useful in scenarios where powerful downstream architectures exist.

N L I

Model Acc. #Params mBERT (Devlin et al., a) . M XLM MLM-TLM (Lample and Conneau,) . M XLM-R BASE (Conneau et al., a) . M

•••
CamemBERT (ne-tuned) . M Supplement: LARGE models XLM-R LARGE (Conneau et al., a) . M

••• CamemBERT LARGE (ne-tuned) . M
Table . : NLI accuracy on the French XNLI test set (best model selected on validation out of). Best scores in bold, second best underlined.

On the XNLI benchmark, we compare CamemBERT to previous state-of-the-art multilingual models in the ne-tuning setting. In addition to the standard model with a BASE architecture, we train another model with the LARGE architecture, referred to as

CamemBERT LARGE , for a fair comparison with XLM-R LARGE . This model is trained XLM MLM-TLM is a lower-case model. Case is crucial for NER, therefore we do not report its low performance (. %) with the CCNet corpus, described in Sec. . , for k steps. We expect that training the model for longer would yield even better performance.

Our model reaches higher accuracy than its BASE counterparts reaching + . % over mBERT, + . over XLM MLM-TLM , and + . over XLM-R BASE . CamemBERT also uses as few as half as many parameters (M vs. M for XLM-R BASE).

CamemBERT LARGE achieves a state-of-the-art accuracy of . % on the XNLI benchmark, as opposed to . , for the recent XLM-R LARGE .

Our model uses fewer parameters than multilingual models, mostly because of its smaller vocabulary size (e.g. k vs. k for XLM-R). Two elements might explain the better performance of CamemBERT over XLM-R. Even though XLM-R was trained on an impressive amount of data (. TB), only GB of this data is in French, whereas we used GB of French data. Additionally XLM-R also handles languages, and the authors show that when reducing the number of languages to , they can reach . % accuracy for French XNLI with their BASE architecture.

S C '

CamemBERT improves the state of the art for the downstream tasks considered, thereby con rming on French the usefulness of Transformer-based models. We obtain these results when using our model as a ne-tuned model and when we use it as as contextual embeddings with task-speci c architectures. This questions the need for more complex downstream architectures, similar to what was shown for English (Devlin et al., a). Additionally, this suggests that CamemBERT is also able to produce high-quality representations out-of-the-box without further tuning.

I

In this section we investigate the in uence of the homogeneity and size of the pretraining corpus on downstream task performance. With this aim, we train alternative version of CamemBERT by varying the pretraining datasets. For this experiment, we x the

We train our LARGE model with the CCNet corpus for practical reasons. Given that BASE models reach similar performance when using OSCAR or CCNet as pretraining corpus (Appendix Table .), we expect an OSCAR LARGE model to reach comparable scores.

P NER NLI D S POS LAS F A Fine-tuning Wiki GB CCNet GB OSCAR GB ••• OSCAR GB Embeddings Wiki GB . . . - CCNet GB . . . - OSCAR GB . . . - ••• OSCAR GB . . . -
Table . : Results on the four tasks using language models pre-trained on data sets of varying homogeneity and size, reported on validation sets (average of runs for POS tagging, parsing and NER, average of runs for NLI). P results are the macroaveraged score across four treebanks, namely the GSD, Sequoia, French Spoken, and Partut treebanks (cf. Table . in the Appendix for full results.). Embeddings is done using CamemBERT embeddings plugged to UDPipe Future for tagging and parsing; and an LSTM+CRF model for NER)

. number of pretraining steps to k, and allow the number of epochs to vary accordingly (more epochs for smaller dataset sizes). All models use the BASE architecture.

In order to investigate the need for homogeneous clean data versus more diverse and possibly noisier data, we use alternative sources of pretraining data in addition to OSCAR:

• Wikipedia, which is homogeneous in terms of genre and style. We use the o cial French Wikipedia dumps . We remove HTML tags and tables using Giuseppe Attardi's WikiExtractor.

• CCNet (Wenzek et al.,), a dataset extracted from Common Crawl with a di erent ltering process than for OSCAR. It was built using a language model trained on Wikipedia, in order to lter out bad quality texts such as code or tables.

As this ltering step biases the noisy data from Common Crawl to more Wikipedialike text, we expect CCNet to act as a middle ground between the un ltered "noisy" https://dumps.wikimedia.org/backup-index.html.

https://github.com/attardi/wikiextractor.

We use the split, which corresponds to the top % of documents in terms of ltering perplexity.

OSCAR dataset, and the "clean" Wikipedia dataset. As a result of the di erent ltering processes, CCNet contains longer documents on average compared to OSCAR with smaller-and often noisier-documents weeded out. In order to make the comparison between these three sources of pretraining data, we randomly sample GB of text (at the document level) from OSCAR and CCNet, thereby creating samples of both Common-Crawl-based corpora of the same size as the French Wikipedia. These smaller GB samples also provides us a way to investigate the impact of pretraining data size. Downstream task performance for our alternative versions of CamemBERT are provided in Table . . The upper section reports scores in the ne-tuning setting while the lower section reports scores for the embeddings.

C C W

Table . clearly shows that models trained on the GB versions of OSCAR and CCNet (Common Crawl) perform consistently better than the the one trained on the French Wikipedia. This is true both in the ne-tuning and embeddings setting. Unsurprisingly, the gap is larger on tasks involving texts whose genre and style are more divergent from those of Wikipedia, such as tagging and parsing on the Spoken treebank. The performance gap is also very large on the XNLI task, probably as a consequence of the larger diversity of Common-Crawl-based corpora in terms of genres and topics. XNLI is indeed based on multiNLI which covers a range of genres of spoken and written text.

Language Modeling For French: More Data Is Not Always Needed

The downstream task performances of the models trained on the GB version of CCNet and OSCAR are much more similar.

H

An unexpected outcome of our experiments is that the model trained "only" on the GB sample of OSCAR performs similarly to the standard CamemBERT trained on the whole GB OSCAR. The only task with a large performance gap is NER, where " GB" models are better by . F points. This could be due to the higher number of named entities present in the larger corpora, which is bene cial for this task. On the contrary, other tasks don't seem to gain from the additional data.

In other words, when trained on corpora such as OSCAR and CCNet, which are heterogeneous in terms of genre and style, GB of uncompressed text is large enough as pretraining corpus to reach state-of-the-art results with the BASE architecure, better than those obtained with mBERT (pretrained on GB of text). This calls into question the need to use a very large corpus such as OSCAR or CCNet when training a monolingual

Transformer-based language model such as BERT or RoBERTa. Not only does this mean that the computational (and therefore environmental) cost of training a state-of-the-art language model can be reduced, but it also means that CamemBERT-like models can be trained for all languages for which a Common-Crawl-based corpus of GB or more can be created. OSCAR is available in languages, and provides such a corpus for languages. Moreover, it is possible that slightly smaller corpora (e.g. down to GB) could also prove su cient to train high-performing language models. In addition, further research is needed to con rm the validity of our ndings on larger architectures and other more complex natural language understanding tasks. However, even with a BASE architecture and GB of training data, the validation loss is still decreasing beyond k steps (and epochs). This suggests that we are still under-tting the GB pretraining dataset, training longer might increase downstream performance.

We provide the results of a model trained on the whole CCNet corpus in the Appendix. The conclusions are similar when comparing models trained on the full corpora: downstream results are similar when using OSCAR or CCNet.

The OSCAR-GB model gets slightly better XNLI accuracy than the full OSCAR-GB model (. vs. .). This might be due to the random seed used for pretraining, as each model is pretrained only once. We evaluate our model at every epoch (epoch equals steps). We report the masked language modelling perplexity along with downstream performances. Figure . , suggests that the more complex the task the more impactful the number of steps is. We observe an early plateau for dependency parsing and NER at around k steps, while for NLI, even if the marginal improvement with regard to pretraining steps becomes smaller, the performance is still slowly increasing at k steps.

In Table . , we compare two models trained on CCNet, one for k steps and the other for k steps to evaluate the in uence of the total number of steps. The model trained for k steps does not increase the scores much from just training for k steps in POS tagging and parsing. The increase is slightly higher for XNLI (+ .).

Those results suggest that low-level syntactic representations are captured early in the language model training process while it needs more steps to extract complex semantic information as needed for NLI. In consequence of our ndings, listing the languages with at least GB of data in the OSCAR corpus (Ortiz Suárez et al.,), our results show that about languages could potentially get an accurate large-scale monolingual language model. This includes a large number of languages that are considered low-resource, such as Punjabi (. GB available in OSCAR), Mongolian (. GB available), and Georgian (. GB available).

For languages that do not have that much data, such as Yoruba or Maltese, we will see in part IV how cross-lingual transfer techniques based on large-scale multilingual language models can enable us to build accurate language models.

P III A V N L L N U G C M
In the last chapter, we assumed that the evaluation text originates from the same language and same set of domains as the training data. In practice in NLP, for most of the cases this hypothesis does not hold. Indeed, as discussed in chapter language varies across domains, communities and time, speci cally online (Jurafsky,). This chapter focuses on non-canonical data originating from User Generated Content (UGC). UGC exhibits many linguistic phenomenons that make it di erent from domains for which we have large quantity of training data -mainly edited text such as Wikipedia data and News data -and on which we usually train our NLP systems (Foster, b; Seddah et al., ; Eisenstein, b; Baldwin et al., ; Plank,).

Indeed, in NLP, most available training data originates from a limited set of domains.

These domains are typically news and encyclopedic data (Plank,) and referred to as canonical. By contrast, UGC includes linguistic phenomena usually not observed in canonical domains and are therefore referred to as non-canonical. As described by (Foster, b; Seddah et al., ; Eisenstein, b; Baldwin et al.,), these phenomena can be frequent spelling errors, simpli cation, speci c jargons and use of phonetics.

To build systems that are more robust, there are two approaches one may take:

. Collect UGC training data, annotate it for the task of interest and train or adapt a model directly on this data. We will study this in the chapter in the multilingual setting,

. Reduce the domain gap (cf. section . .) between the source training data (in our case edited standard text) and the target data (in our case non-standard UGC data).

In this chapter, we focus on the second approach. For UGC, one way to do this is to perform lexical normalization (introduced formally in § . . and discussed in § . .).

Our goal is to build a model to do lexical normalization of UGC data in English. As de ned in section . .), lexical normalization is the task of translating non canonical words into canonical ones.

The type of linguistic phenomena that lexical normalization of UGC need to handle can be:

• spelling errors : makeing in making

• internet Slang : lmfao in laughing my f.cking ass o

• contraction : lil for little

• abbreviation : nite for tonight

• phonetics : dat for that It also involves detecting that the following forms should be untouched: ':)', @Khalil-

Brown, #Beyonce

This chapter is an adapted version of (Muller et al.,

). In summary, we present an enhancement of BERT's tokenization and architecture to ne-tune it e ciently for lexical normalization.

D

We focus on lexical normalization in English. We base all our experiments on the WNUT data released by Baldwin et As highlighted before, our framework is more challenging than the standard approach to normalization, illustrated by the shared task, that usually authorizes external UGC Normalization found in the lexnorm dataset.

resources. As our goal is to test the ability of BERT, a model trained on canonical data only, we restrain ourselves to only using the training data as examples of normalization and nothing more.

Our work is therefore to build a domain transfer model in a low-resource setting.

N BERT

Until this work, lexical normalization was mainly approached with feature-rich modular systems. As discussed in . . , the best approach (van der Goot and van Noord,

; van der Goot,) relied on a candidate generator module combined with a feature-based random-forest (Breiman,) that ranks the candidates to nd the best normalization form. In this chapter, we present an adaptation of the BERT model to perform lexical normalization end-to-end. If a word is considered to be canonical, the model will simply predict the same word. If it is considered to be non-canonical, the model predicts its normalized form.

BERT

We start by presenting the components of BERT that are relevant for our normalization model. All our work is done on the released base version.

W P T

BERT takes as input sub-word units in the form of WordPiece tokens introduced in § . . . We recall that the WordPiece vocabulary is computed based on the observed frequency of each sequence of characters of the corpus BERT is pre-trained on: Wikipedia and the BookCorpus. It results in a thousand tokens vocabulary.

Reusing BERT, in any way, requires to use its original WordPiece vocabulary. In the context of handling non-canonical data, this is of primary importance. Indeed, frequent tokens in our non-canonical data set might not appear in the vocabulary of BERT and therefore will have to be split. For example, the word lol is a non-canonical word (it appears more than times in the original lexnorm dataset). Still, it is not in BERT-base WordPiece vocabulary and will have to be split in two tokens. For tokenization of WofrdPieces, we follow the implementation found in the huggingface pytorch-pretrained-BERT project. It is implemented as a greedy matching algorithm. We write it in pseudo-code in Algorithm .) at the character level. Still, this framework requires a large amount of parallel data. Our preliminary experiments showed that this was unusable for UGC normalization. Even the use a powerful pre-trained model such as BERT for initializing an encoder-decoder requires the decoder to learn an implicit mapping between noisy words and canonical ones. This is not reachable with only three thousand sentences. We therefore adapted BERT in a direct way for normalization. As described in section . , BERT Masked Language Model ability allows token prediction. Simply feeding the model with noisy tokens on the input and ne-tuning on canonical token labels transforms BERT into a normalization model. There are two critical points in doing so successfully. The rst is that it requires WordPiece alignment (cf. section . .). The second is that it requires careful ne-tuning (cf. section . .).

Algorithm Greedy WordPiece tokenization

W A

We have in a majority of cases, as described in section . , word-level alignment between non-canonical and canonical text. Still, the dataset also includes words that are not aligned. For -to-N cases, we simply remove the spaces. As we work at the WordPiece level this does not bring any issue. For N-to-cases (only observations), by considering the special token "|" of the lexnorm dataset as any other token, we simply handle source multi-words as a single one, and let the wordpiece tokenization splitting them.

We frame normalization as a -to-WordPiece token mapping. Based on the word level alignment, we present two methods to get WordPiece alignment: an Independent Alignment approach and a Parallel Alignment one.

Independent Alignment

We tokenize noisy words and non-noisy ones independently (cf. algorithm). By doing so, for each word, we get non-aligned WordPiece tokens. We handle it in three ways : • If we get as many noisy tokens as standard tokens, we keep the alignment as such,

• If there are more tokens on the target side, we append the special token [MASK] on the source side. This means that we force the model to predict a token at training time.

• If there are more tokens on the source side, we introduce a new special token

[SPACE].

An alignment example extracted from lexnorm can be found in table . . As we can see, this simple token alignment algorithm leads to introducing multiple [MASK] and

[SPACE] tokens that will have to be handled by the model.

Parallel Alignment

We enhance this rst approach with a parallel alignment method, described in Algorithm .

Our goal is to minimize the number of [MASK] and [SPACE] appended into the source and gold sequences. Therefore, for each word, we start by tokenizing into Word-Pieces the noisy source word. For each WordPiece, we start the tokenization on the gold side, starting and ending from the same character positions. As soon as we tokenized the entire gold sub-string, we switch to the next noisy sub-string and so on. By doing so, we ensure a closer alignment at the WordPiece level. We illustrate on the same example this enhanced parallel alignment in Table . .

We highlight two aspects of our alignment techniques. First, introducing the special token [SPACE] induces an architecture change in the MLM head. We detail this in A E

(A) Enhancing BERT MLM with [SPACE]

In order to formalize lexical normalization as a token prediction we introduced in section . . the need for a new special token [SPACE]. We want our normalization model to predict it. We therefore introduce a new label in our output WordPiece vocabulary as well as a new vector in the last softmax layer. We do so in a straightforward way by appending to the output matrix a vector sampled from a normal distribution .

(B) #Next [MASK] predictor

As we have described, alignment requires in some cases the introduction of [MASK] tokens within the source sequence based on the gold sequence. We handle the discrepancy introduced between training and testing in the following way. We add an extra token classi cation module to BERT architecture. At test time, we rst predict the number of next masks to introduce in the noisy sequence. We then predict normalized tokens using the full sequence.

This #next mask prediction module exceeds the context of normalization. Indeed, it provides a straightforward way of performing data augmentation on any Masked Language Model architecture. We leave to future work the investigation of its impact beyond lexical normalization.

F T

We describe here how we ne-tune our architecture for normalization. Our goal is to learn lexical normalization in a general manner. To do so, intuitively, our model needs to: on the one hand, preserve its language model ability that will allow generalization. On the other hand, the MLM needs to adjust itself to learn alignment between noisy tokens and canonical tokens.

Each dimension v d ∼ N (mean i (x d), σ 2 i (x d)) (i
Based on those intuitions, we performe ne-tuning in the following way:

(i) Our rst approach is to back-propagate on all tokens at each iteration. We also dropout % of input tokens by replacing them with the [MASK] as done during BERT pre-training. In this setting, all tokens are considered indi erently whether they require normalization or not .

(ii) The second approach that happens to perform the best is our Noise-focus netuning. The intuition is that it should be much easier for the model to learn to predict already normalized tokens than the ones that require normalization. For this reason, we design the following strategy: For a speci c portion of batches noted p noise we only back-propagate through noisy tokens. We found that having an increasing number of noise-speci c batch while training provides the best results.

Formally we describe our strategy as follows. For each mini-batch, we sample b following the distribution b ∼ Bernoulli(p noise), with p noise = min epoch n_epoch , 0.5 , epoch being the current number of epoch and n_epoch the total number of epochs.

If b equals 1 we back-propagate through noisy tokens, otherwise we back-propagate in the standard way on all the tokens. In other words, while training, for an increasing portion of batches, we train on tokens that require normalization. We found that this dynamic strategy was much more e cient than applying a static p noise . Moreover, we highlight that the portion of noise speci c update is capped at % (. in the equation).

Above this value, we observed that the performances degraded in predicting non-noisy tokens.

O D

Note that, excluding the ne-tuning strategy and the alignment algorithm, the optimization hyper-parameters are shared to all the experiments we present next. Generally speaking, we found that optimizing BERT for lexical normalization with WordPiece alignment is extremely sensitive to hyper-parameters. We managed to reach values that work in all our following experiments. For the optimization, we use the Adam algorithm (Kingma and Ba,). We found that e-provides the most stable and consistent convergence across all experiments as evaluated on validation set. We found that a mini-batch of dimension brings the best performance also across all experiments. Finally, we kept a dropout value of . within the entire BERT model. We train the model for up to epochs and used performance as measured with the F -score (detailed in the next section) on the validation set as our early-stopping metric.

E

All our experiments are run on the lexnorm dataset. We do not use any other resources making our problem falling under a low-resource domain transfer framework. As only pre-processing, we lower-case all tokens whether they are on the noisy source side or on the canonical side.

We rst present our analysis on the validation set that corresponds to the last sentences of the original training set of lexnorm .

The evaluation metrics on which we make our analysis are de ned in § . . . Following previous works, we focus on the F score as our main evaluation metric. F is simply the harmonic mean of the recall and precision. For more ne grained analysis we also report the recall on sub-sample of the evaluated dataset. Particularly, we distinguish between Out-of-Vocabulary (OOV) and In-Vocabulary words (InV) and report the recall on those subsets. We de ne it formally as: As we compare in gure . , our parallel alignment method provides a + . F improvement (. vs . F). We also compare the performance of our two models on OOV and InV words. Indeed, normalising a seen word is much easier than a word unseen during training. As we observe, the gain coming from our our alignment technique come from a better generalization. We gain + . in recall on OOV thanks to this parallel alignment.

F T S

As observed in table . , our ne-tuning strategy focused on noisy tokens improves with a large margin the performance of our system. We interpret it in the following way: lexical normalization is imbalanced. As seen in . there are around times more need_no_norm than need_norm tokens. By speci cally training on noisy tokens we successfully manage to alleviate this aspect of the data. In conclusion, our best model is BERT trained on parallel tokenized data with the noise-focus ne-tuning strategy. We reach . in F score. The following table illustrates how our model performs normalization on a typical example:

Noisy @aijaee i hear you u knw betta to cross mine tho Norm @aijaee i hear you you know better to cross mine though

D

We now compare our system to previous works. As we see in Table . , our non-UGC system is far from the State-of-the-Art model MoNoise (van der Goot and van Noord,

) in terms of F score. In order to take into account detection in our metric, we also report the overall accuracy of the system in table . . We are therefore . points below in terms of F score and . point below in terms of overall accuracy on lexnorm dataset.

However, we note that MoNoise is a feature-based Random Forest based on external modules. Among others, it makes use of a skip-gram model trained on millions tweets, the Aspell tool and a n-gram model trained on more than millions tweets.

In order to have a more balanced comparison, we compare our system to the MoNoise model after removing the feature that has the most impact, according to the original paper:

the n-gram module (referred as MoNoise no n-gram). In this setting, we signi cantly outperform the MoNoise model (+ . improvement) (Table .). Moreover, we based all our work on the lexnorm dataset released for the W-NUT shared task (Baldwin et al.,). We compare our model to the competing systems (cf. table .). Brie y, the second best model (Berend and Tasnádi,) use a n-gram model trained on a English tweet corpus. The best competing system (Supranovich and Patsepnia,) is based on a lexicon extracted from tweets. Still, we see that our model is able to outperform models ranked , and that are all built using UGC resources.

Finally, the state-of-the-art models we presented are modular. They require features from external modules. This makes them extremely slow at test time. We compare it in Table . , demonstrating another practical interest for our approach. Our model is times faster than MoNoise at prediction time.

Following those observations, we claim that BERT, enhanced to handle token introduction and token removal, ne-tuned in a precise way toward noisy words, is a competitive lexical normalization model.

This result exceeds the context of lexical normalization of noisy User Generated Content. Indeed, the success of BERT in improving NLP models on a diversity of tasks was, until now, restricted to canonical edited texts. In our work, we showed that it was possible to adapt such a general model to the extreme case of normalizing non-canonical UGC in a low-resource setting. We let for future work the adaptation of BERT to other tasks in a non-canonical context. outperformed the former state-of-the-art (van der Goot and van Noord,) by about points in average across the languages. This showed that pretrained sequence to sequence models like T is inherently better at performing lexical normalization than masked language models.

However, the downstream impact of better normalization did not lead to important performance progress. Indeed, van der Goot et al. () showed that performing dependency parsing on predicted normalized forms led to only . improvements in LAS score in average.

Overall, these results suggest that even if done accurately, lexical normalization has only a limited impact on downstream performance. Indeed, language variability and domain gap is only partially related to lexical di erences. Stylistic, syntactic, type of sentences, and sentence length are also at play when we model UGC data. Reducing those di erences in practice is impossible due to the lack of parallel data between noncanonical and canonical domains. Additionally, subword-level (§ . .) language models like BERT are surprisingly robust to lexical variability (that lexical normalization aims at reducing). As shown by Itzhak and Levy (), the subword-token of those models encodes rich character-level information. This could explain their robustness to lexical variability and the fact that they are not outperformed by character-level models (Riabi et al.,).

As described extensively in chapter , with the emergence of the pretraining-netuning approach (§ . .), it became possible to use a large quantity of data to train NLP systems. In many cases, though, due to the cost of training and the lack of large quantity of data, it is not possible to pretrain from scratch a model on a speci c language and domain (cf. § . .). The following chapters will study how we can overcome this limit.

We will see how we can use pretrained models and adapt them to speci c domains and languages.

P

IV A D N L U Z S C L T M
Before moving to adapting large-scale language models to low-resource languages, we rst look at how we could use them directly on data di erent from our training data. We focus on the zero-shot cross-lingual transfer setting (introduced in § . .). In this setting, we assume that we ne-tune a model on a given language -referred to as the source language.

We then evaluate it on another language referred to as the target language.

This chapter is an adapted version of (Muller et al., b) done in collaboration with Yanai Elazar. Based on many fruitful meetings and discussions with Yanai over several months, I was mainly responsible for designing and running the behavioral and structural analysis.

Remarkably, as illustrated in table . for dependency parsing, large-scale multilingual language models such as mBERT reach non-trivial performance on nearly all language pairs studied. In some cases, the performance are quite high compared to non-deep learning based baselines (e.g. when we transfer from English to French for instance).

The source of such a successful transfer is still largely unexplained. By combining behavioral and structural analyses (Belinkov et al.,), we show that mBERT operates as the stacking of two modules: () A multilingual encoder, located in the lower part of the model, critical for cross-lingual transfer, is in charge of aligning multilingual representations; and () a task-speci c, language-agnostic predictor which has little importance for cross-lingual transfer and is dedicated to performing the downstream task. This mechanism that emerges out-of-the-box, without any explicit supervision, suggests that mBERT behaves like the standard cross-lingual pipeline.

A T

We study mBERT with a novel behavioral test that disentangles the task ne-tuning in uence from the pretraining step (§ . .), and a structural analysis on the intermediate . Analysis Techniques representations (§ . .). Combining the results from these analyses allows us to locate the cross-lingual transfer and gain insights into the mechanisms that enable it.

L T R

In order to disentangle the impact of the pretraining step from the ne-tuning, we

propose a new behavioral technique: R . First, we randomly initialize a set of parameters (e.g. all the parameters of a given layer) instead of using the parameters learned during the pretraining step. Then, we ne-tune the modi ed pretrained model and measure the downstream performance.

By replacing a given set of pretrained parameters and ne-tuning the model, all other factors being equal, R enables us to quantify the contribution of a given set of pretrained parameters on downstream performance and therefore to locate which pretrained parameters contribute to the cross-lingual transfer.

If the cross-lingual performance is signi cantly lower than same-language performance, we conclude that these layers are more important to cross-lingual performance than they are for same-language performance. If the cross-lingual score does not change, it indicates that cross-lingual transfer does not rely on these layers.

This technique is reminiscent of the recent Amnesic Probing method (Elazar et al.,), that removes from the representation a speci c feature, e.g. Part-of-Speech, and then measures the outcome on the downstream task. In contrast, R allows to study a speci c architecture component, instead of speci c features.

H S S L

To strengthen the behavioral evidence brought by R , and provide ner analyses that focus on individual layers, we study how the textual representations differ between parallel sentences in di erent languages. We hypothesize that an e cient ne-tuned model should be able to represent similar sentences in the source and target languages similarly, even-though it was ne-tuned only on the source language.

Note that we perform the same optimization procedure for the model with and w/o R (optimal learning rate and batch size are chosen with grid-search).

To measure the similarities of the representation across languages, we use the Central Kernel Alignment metric (CKA), introduced by Kornblith et al. (

). The CKA is invariant to isotropic scaling and invariant to orthonormal transformation (i.e. rotations), two properties that are needed to preserve the structure of deep-learning models. We follow Conneau et al. (c) who use the CKA as a similarity metric to compare the representations of monolingual and bilingual pretrained models across languages.

For a given source language l and a target language l , we collect a pairs of aligned sentences from the UD-PUD treebanks (Zeman et al.,). For a given model and for each layer, we get a single sentence embedding by averaging token-level embeddings (after excluding special tokens). We then concatenate the sentence embedding vectors and get the matrices X l and X l . Based on these two matrices, the CKA between the language l and the language l is de ned as:

CKA(X l , X l) = ||X T l X l || 2 F ||X T l X l || F ||X T l X l || F (.)
with ||.|| F de ning the Frobenius norm.

We use the CKA to study the representation di erence between source and target languages in pretrained and ne-tuned multilingual models. For every layer, we average all contextualized tokens in a sentence to get a single vector. Then we compute the similarity between target and source representations and compare it across layers in the pretrained and ne-tuned models. We call this metric the cross-lingual similarity.

E S D S

We base our experiments on data originated from three sources: the Universal Dependency L For all our experiments, we use English, Russian and Arabic as source languages in addition to Chinese, Czech, Finish, French, Indonesian, Italian, Japanese, German, Hindi, Polish, Portuguese, Slovenian, Spanish, and Turkish as target languages.

F D

For all the cross-lingual experiments, we use English, Russian and Arabic as source languages on which we ne-tune mBERT. For English, we take the English-EWT treebank (Silveira et al.,) for ne-tuning, for Russian the Russian-GSD treebank and for Arabic the Arabic-PADT treebank (Hajič et al.,).

E D C L T E

For all our experiments, we perform the evaluation on all the languages. For Parsing and POS tagging we use the test set from the Parallel UD (PUD) treebanks released for the CoNLL Shared Task (Zeman et al.,). For NER, we use the corresponding annotated datasets in the wikiner dataset.

D A D

We list here the datasets for completing our domain analysis experiment in Section .

reported in Table . . To have a full control on the source domains, we use for netuning the English Partut treebank for POS tagging and parsing (Svizzera,). It is a mix of legal, news and wikipedia text. For NER, we keep the WikiANN dataset (Pan et al.,). For the same-language and out-of-domain experiments, we use the treebanks for Web Media data, Literature and Noisy tweets respectively. For the cross-lingual French evaluation, we use the translation of the English test set, as well as the French-GSD treebank. For NER, we take the CoNLL-shared task English data as our out-of-domain evaluation extracted from the News domain. We note that the absolute performance on this dataset is not directly comparable to the one on the source wikiner. Indeed, the CoNLL-dataset uses an extra MISC class. In our work, we only interpret the relative performance of di erent models on this test set.

D P E

For each experiment, we measure the impact of randomly-initializing speci c layers as the di erence between the model performance without any random-initialization (R)

and with random-initialization (R). Results for two consecutive layers are shown in table . . The rest of the results, which exhibit similar trends, can be found in the Appendix (table .).

For all tasks, we observe sharp drops in the cross-lingual performance at the lower layers of the model but only moderate drops in the same-language performance. For instance, the parsing experiment with English as the source language, results in a performance drop on English of only . points (E E), when randomly-initializing layers and . However, it leads to an average drop of . points on other languages (E X).

Furthermore, we show that applying R to the upper layers does not harm same-language and cross-lingual performances (e.g. when training on parsing for English, the performance slightly decreases by . points in the same-language while it increases by . in the cross-lingual case). This suggests that the upper layers are task-specific and language-agnostic, since re-initializing them have minimal change on performance. We conclude that mBERT's upper layers do not contribute to cross-lingual transfer.

We do so by taking the French-ParTUT test set that overlaps with the English-ParTUT, which is made of sentences. The detailed results for POS tagging, parsing and NER can be found in the Appendix in tables . , . and . .

D T D M

In order to whether this behavior is speci c to the cross-lingual setting and is not general to any out-of-distribution transfer, we repeat the same R experiment by evaluating on same-language setting while varying the evaluated domain. If the drop is similar to cross-lingual performance, it means that lower layers are important for outof-distribution transfer in general. Otherwise, it would con rm that these layers play a speci c role for cross-lingual transfer.

We report the results in table . . For all the analyzed domains (Web, News, Literature, etc.) applying R to the two rst layers of the models leads to very moderate drops (e.g. -. when the target domain is English Literature for parsing), while it leads to large drops when the evaluation is done on a distinct language (e.g. -. when evaluated on French). The trends are similar for all the domains and tasks we tested on. We conclude that the pretrained parameters at the lower layers are consistently more critical for cross-lingual transfer than for same-language transfer, and cannot be explained by the possibly di erent domain of the evaluated datasets.

C L S BERT

The results from the previous sections suggest that the lower layers of the model are responsible for the cross lingual transfer, whereas the upper layers are language-agnostic.

In this section, we assess the transfer by directly analyzing the intermediate representations and measuring the similarities of the hidden state representations between source and target languages. We compute the CKA metric (cf. equation . in § . .) between the source and the target representations for pretrained and ne-tuned models using parallel sentences from the PUD dataset (Zeman et al.,). In Figure . , we present the similarities between Russian and English with mBERT pretrained and ne-tuned on the three tasks.

Although other factors might play a part in out-of-distribution, we suspect that domains plays a crucial part in transfer. Moreover, it was shown that BERT encodes out-of-the-box domain information (Aharoni and Goldberg,) We report the comparisons for other languages in Figure . in the Appendix.

R of layers

S T R ∆ ∆ ∆ ∆ ∆ Parsing E E .
-.

-.

-.

-. .

-. R R .

-.

-.

-.

-.

-. . A A .

-.

-.

-.

-.

-. . E X .

-.

-.

-.

-. . . R X .

-.

-.

-.

-. . . A X .

-.

-.

-.

-.

-.

-.

POS E E

.

-.

-.

-.

-. . . R R .

-.

-.

-.

-. . -. A A .

-.

-.

-.

-.

-.

-. E X .

-.

-.

-.

-. .

-. R X .

-.

-.

-.

-. .

-. A X .

-.

-.

-.

-.

-.

-.

NER E E

.

-.

-.

-.

-.

-.

-. R R .

-.

-.

-.

-.

-.

-. A A .

-.

-.

-.

-.

-. . E X .

-.

-.

-.

-.

-.

-. R X .

-.

-.

-.

-.

-.

-. A X .

-.

-.

-.

-.

-. .

Table . : Relative Zero shot Cross-Lingual performance of mBERT with R (§ . .) on pairs of consecutive layers compared to mBERT without any randominitialization (R). In S T , S indicates the source language on which we ne-tune mBERT, and T the target language on which we evaluate it. S X is the average across all target language with X = S . Detailed results per target language are reported in tables . , . and . in the Appendix. Coloring is computed based on how mBERT with R performs compared to the R model.

≥ R < R ≤ -points ≤ -points
The cross-lingual similarity between the representations constantly increases up to layer for all the three tasks (reaching . %, . % and . % for parsing, POS tagging and NER respectively). From these layers forward, the similarity decreases. We observe the same trends across all languages as reported in the Appendix in gure . . This demonstrates that the ne-tuned model creates similar representations regardless of the language and task, and hints on an alignment that occurs in the lower part of the model.

Interestingly, the same trend is also observed in the pretrained model, suggesting that the ne-tuning step preserves the multilingual alignment.

R of layers

S T R ∆ ∆ ∆ ∆ ∆ ∆ Domain Analyses Parsing E E .
-.

-.

-.

-.

-.

-. E E L .

-.

-.

-.

-.

-.

-. E E W .

-.

-.

-.

-.

-.

-. E E UGC .

-.

-.

-.

-.

-.

-.

Cross-Language E F .

-.

-.

-.

-.

. . E F W .

-.

-.

-.

-.

-. .

Domain

Analyses POS E E .

-.

-.

-.

-.

-.

-. E E L .

-.

-.

-.

-.

-.

. E E W .

-.

-.

-.

-.

. . E E UGC .

-.

-.

-. . -. .

Cross-Language

E F T .
-.

-.

-.

-.

. . E F .

-.

-.

-.

-. .

-.

Domain

Analyses NER E E .

-.

-.

-.

-.

-.

-. E N .

-.

-.

-.

-.

-.

-.

Cross-Language E F .

-.

-.

-.

-. . . In the previous section we showed that ne-tuned models align the representations between parallel sentences, across languages. Moreover, we demonstrated that the lower part of the model is critical for cross-lingual transfer but hardly impacts the same-language

. Better Alignment Leads to Better Cross-Lingual Transfer performance. In this section, we show that the alignment measured plays a critical role in cross-lingual transfer.

As seen in Figure . in the case of English to Russian (and in Figures . -. in the Appendix for other languages), when we randomly-initialize the lower part of the model, there is no alignment: the similarity between the source and target languages decreases.

We observe the same trend for all other languages and tasks and report it in the Appendix in gures . -. . This result matches the drop in cross-lingual performance that occurs when we apply R to the lower part of the model while impacting moderately same-language performance.

For a more systematic view of the link between the cross-lingual similarities and the cross-lingual transfer, we measure the Spearman correlation between the cross-lang gap (i.e the di erence between the same-language perfromance and the cross-lingual performance)

(Hu et al.,) and the cross-lingual similarity averaged over all the layers.

We report in table . the correlation between the hidden representation of each layer and the cross-lang gap between the source and the target averaged across all target languages and all layers. The correlation is strong and signi cant for all the tasks and for both the ne-tuned and the pretrained models. This shows that multilingual alignment that occurs within the models, learnt during pretraining is strongly related with crosslingual transfer.

The values of this correlation per layer is reported in Figure . . For the pretrained model, we observe the same distribution for each task with layer being the most correlated to cross-lingual transfer. We observe large variations in the ne-tuned cases, the most notable being NER. This illustrates the task-speci c aspect of the relation between cross-lingual similarity and cross-lingual transfer. More precisely, in the case of NER, the sharp increase and decrease in the upper part of the model provide new evidence that for this task, ne-tuning highly impacts the cross-lingual similarity in the upper part of the model which correlates with the cross-lingual transfer.

The cross-lingual similarity is computed on the pretrained and ne-tuned models (without random-initialization) on all the languages. We nd that the cross-lingual similarity correlates signi cantly with the cross-lang gap for all three tasks, both on the 0 2 4 6 8 10

Hidden Layer Index Table . : Spearman-Rank Correlation between the cross-lingual gap and the cross-lingual similarity between the source and the target languages of the ne-tuned models and the pretrained model averaged over all the hidden layers and all the target languages (sample size per task:). For NER, the cross-lingual gap is measured on wikiner data and not on the parrallel data itself in contrast with Parsing and POS tagging.

ne-tuned and pretrained models. The spearman correlation for the ne-tuned models are . , . and . for parsing, POS and NER, respectively.

D

Understanding the behavior of pretrained language models is currently a fundamental challenge in NLP (Rogers et al.,). A popular approach consists of probing the intermediate representations with external classi ers (Alain and Bengio, ; Adi et al., Correlations for both the pretrained and the ne-tuned models are reported in the Appendix Table . .

; Conneau et al., a) to measure if a speci c layer captures a given property. Using this technique, Tenney et al. () showed that BERT encodes linguistic properties in the same order as the "classical NLP pipeline". However, probing techniques only indirectly explain the behavior of a model and do not explain the relationship between the information captured in the representations and its e ect on the task (Elazar et al.,). Moreover, recent works have questioned the usage of probing as an interpretation tool (Hewitt and Liang, ; Ravichander et al.,). This motivates our approach to combine a structural analysis based on representation similarity with behavioral analysis.

In this regard, our ndings extend recent work from Merchant et al. () in the multilingual setting, who show that ne-tuning impacts mainly the upper layers of the model and preserves the linguistic features learned during pretraining. In our case, we

show that the lower layers are in charge of aligning representations across languages and that this cross-lingual alignment learned during pretraining is preserved after ne-tuning.

In summary, we combined a structural analysis of the similarities between hidden representation across languages with a novel behavioral analysis that randomly-initialize the models' parameters to understand it. By combining those experiments on languages and tasks, we showed that mBERT is constructed from: () a multilingual encoder in the lower layers, which aligns hidden representations across languages and is critical for crosslingual transfer, and () a task-speci c, language-agnostic predictor that has little e ect to cross-lingual transfer, in the upper layers. Additionally, we demonstrated that hidden cross-lingual similarity strongly correlates with downstream cross-lingual performance suggesting that this alignment is at the root of these cross-lingual transfer abilities. This

shows that mBERT reproduces the standard cross-lingual pipeline described by Ruder The development of such models is a matter of high importance for the inclusion of communities, the preservation of endangered languages and more generally to support the rise of tailored NLP ecosystems for such languages (Schmidt and Wiegand, ; Stecklow, ; Seddah et al.,). In that regard, the advent of the Universal Dependencies project (Nivre et al.,) and the WikiAnn dataset (Pan et al.,

) have greatly increased the number of covered languages by providing annotated datasets for more than languages for dependency parsing and languages for NER.

Regarding modeling approaches, the emergence of multilingual representation models, rst with static word embeddings (discussed in § . .) and then with language modelbased contextual representations (Devlin et al., a; Conneau et al., a) enabled transfer from high to low-resource languages, leading to signi cant improvements in downstream task performance (Rahimi et al., ; Kondratyuk and Straka,). Furthermore, in their most recent forms, these multilingual models process tokens at the sub-word level (Kudo and Richardson, b). As such, they work in an open vocabulary setting, only constrained by the pretraining character set. This exibility enables such models to process any language, even those that are not part of their pretraining data.

However, before this work along with concurrent related papers (Muller et al., c;

Pfei er et al.,), it was not clear how to use e ciently large-scale multilingual language models such as mBERT on languages that are not seen during the pretraining -referred to as unseen languages.

In this chapter, we analyze task and language adaptation experiments to get usable language model-based representations for unseen languages. We run experiments on typologically diverse languages on three NLP tasks: part-of-speech (POS) tagging, dependency parsing (DEP) and named-entity recognition (NER).

Our results bring forth a diverse set of behaviors that we classify in three categories re ecting the abilities of pretrained multilingual language models to be used for lowresource languages. We dub those categories Easy, Intermediate and Hard.

Hard languages include both stable and endangered languages, but they predominantly are languages of communities that are mainly under-served by modern NLP. Hence, we direct our attention to these Hard languages.

For those languages, we show that the script they are written in can be a critical element in the transfer abilities of pretrained multilingual language models. Transliterating them leads to large gains in performance outperforming non-contextual strong baselines. In summary:

As long as the script and characters of the target language (e.g. Hindi written in Devanagari characters) is part of the training data.

• We propose a new categorization of the low-resource languages that are unseen by available language models: the Hard, the Intermediate and the Easy languages.

• We show that Hard languages can be better addressed by transliterating them into a better-handled script (typically Latin), providing a promising direction towards making multilingual language models useful for a new set of unseen languages.

W

Unseen languages strongly vary in the amount of available data, in their script (many languages use non-Latin scripts such as Sorani Kurdish and Mingrelian), and in their morphological or syntactical properties (most largely di er from high-resource Indo-European languages). This makes the design of a single approach to build contextualized models for those languages challenging at best. In this work, by experimenting with typologically diverse unseen languages, (i) we show that there is a diversity of behavior depending on the script, the amount of available data, and the relation to the pretraining languages; (ii) Focusing on the unseen languages that lag in performance compared to their easier-to-handle counterparts, we show that the script plays a critical role in the transfer abilities of multilingual language models. Transliterating such languages to a script which is used by a related language seen during pretraining.

E S

We select a small portion of those languages within a large scope of language families and scripts. Our selection is constrained to typologically diverse languages for which we have evaluation data for at least one of our three downstream tasks. Our selection includes low-resource Indo-European and Uralic languages, as well as members of the Bantu, Semitic, and Turkic families. None of these languages are included in the pretraining corpora of mBERT. Information about their scripts, language families, and amount of available raw data can be found in Table . . ing mBERT to the unseen language using MLM before ne-tuning it in a supervised way on the target language. We then compare all these experiments to our non-contextual strong baselines. By doing so, we can assess if language models are a practical solution to handle each of these unseen languages.

Interestingly, we nd a large diversity of behaviors across languages regarding those language model training techniques. We observe three clear clusters of languages.

The rst cluster, which we dub "Easy", corresponds to the languages that do not require extra MLM for mBERT to achieve good performance. mBERT has the modeling abilities to process such languages without relying on raw data and can outperform strong non-contextual baselines as such. In the second cluster, the "Intermediate"

. The Three Categories of Unseen Languages languages require MLM . mBERT is not able to beat strong non-contextual baselines using only T , but MLM enables it to do so. Finally, Hard languages are those on which mBERT fails to deliver any decent performance even after MLM-and T -ne-tuning. mBERT simply does not have the capacity to learn and process such languages.

We emphasize that our categorization of unseen languages is only based on the relative performance of mBERT after ne-tuning compared to strong non-contextual baseline models. We leave for future work the analysis of the absolute performance of the model on such languages (e.g. analysing the impact of the ne-tuning data set size on mBERT's downstream performance).

In this section, we present our results in detail in each of these language clusters and provide insights into their linguistic properties. Easy languages are the ones on which mBERT delivers high performance out-ofthe-box, compared to strong baselines. We classify Faroese, Swiss German, Naija and Mingrelian as easy languages and report performance in Table . . We nd that those languages match two conditions:

• They are closely related to languages used during MLM pretraining • These languages use the same script as their closely related languages.

Such languages bene t from multilingual models, as cross-lingual transfer is easy to achieve and hence quite e ective. The second type of languages (which we dub "Intermediate") are generally harder to process for pretrained MLMs out-of-the-box. In particular, pretrained multilingual language models are typically outperformed by a non-contextual strong baselines. Still, MLM has an important impact and leads to usable state-of-the-art models.

A good example of such an intermediate language is Maltese, a member of the Semitic language but using the Latin script. Maltese has not been seen by mBERT during pretraining. Other Semitic languages though, namely Arabic and Hebrew, have been included in the pretraining languages. As seen in who also showed that MLM leads to signi cant improvements. They also additionally showed that a small vocabulary transformation allowed ne-tuning to be even more e ective and gain . LAS points more.

We also categorize Bambara, a Niger-Congo Bantu language spoken in Mali and surrounding countries, as Intermediate, relying mostly on the POS tagging results which follow similar patterns as Maltese and Narabizi. We note that the BambaraBERT that we trained achieves notably poor performance compared to the non-contextual baseline, a fact we attribute to the extremely low amount of available data (sentences only). We also note that the non-contextual baseline is the best performing model for dependency parsing, which could also potentially classify Bambara as a "Hard" language instead.

Our results in Wolof follow the same pattern. The non-contextual baseline achieves a . in LAS outperforming mBERT. However, MLM achieves the highest score of . .

H

The last category of the hard unseen language is perhaps the most interesting one, as these languages are very hard to process. mBERT is outperformed by non-contextual baselines as well as by monolingual language models trained from scratch on the available raw data.

At the same time, MLM on the available raw data has a minimal impact on performance.

Uyghur, a Turkic language with about -million speakers in central Asia, is a prime example of a hard language for current models. In our experiments, outlined in Table . , the non-contextual baseline outperforms all contextual variants, both monolingual and multilingual, in all the tasks with up to points di erence compared to mBERT for parsing. Additionally, the monolingual UyghurBERT trained on only K sentences outperforms mBERT even after MLM .

We attribute this discrepancy to script di erences: Uyghur uses the Perso-Arabic script, when the other Turkic languages that were part of mBERT pretraining use either the Latin (e.g. Turkish) or the Cyrillic script (e.g. Kazakh).

Sorani Kurdish (also known as Central Kurdish) is a similarly hard language, mainly spoken in Iraqi Kurdistan by around million speakers, which uses the Sorani alphabet, a variant of the Arabic script. We can solely evaluate on the NER task, where the noncontextual baseline and the monolingual SoraniBERT perform similarly around .

Z N

To analyse in a more re ned way how mBERT performs well after adaptation on Narabizi, we experiment with Narabizi in the zero-shot cross-lingual transfer. In this setting, mBERT and mBERT+MLM are ne-tuned in a task-speci c way on a source language before being evaluated on Narabizi data.

We study this cross-lingual transfer along three independent directions: how related is the source language to Narabizi, whether it uses the same script, and whether it is present in mBERT's training corpus. We expect transfer to perform better when the source language is closely related to the target language, when it uses the same script, and when it is known to mBERT. In decreasing order of relatedness, we use Modern Standard Arabic (closely related), Maltese (distantly related, see Habash, and Čéplö et al.,), French (used for code-switching), English and Vietnamese. Among those source languages, Modern Standard Arabic is written in a di erent script (the Arabic script), whereas Maltese is the only language unknown to mBERT.

I

Our hypothesis is that the high level of transfer when the source is French is due to the frequency of code-mixing with French in Narabizi. To validate this hypothesis, we compute the performance of the model with respect to the code-mixing ratio (see Figure .). We split the dataset into four buckets of around % of the full dataset, according to the ratio of native Narabizi vs. French tokens in each sentence, and compare

French and Maltese as source languages. On sentences that have % Narabizi tokens, mBERT trained on French performs poorly (in Figure . , cf. mark (E) for POS and (L) for parsing). On sentences that include at least % of French tokens, scores reach % for POS tagging (cf. (A)) and % for parsing (cf. (I)). Moreover, for French, mBERT+MLM leads to an impressive . % error reduction compared to mBERT for POS tagging (. vs. .) and an . % error reduction for parsing (cf. Focusing our analysis on French and Maltese, we observe (cf. .) that mBERT is the model that leads to the most successful transfer in both cases and for both tasks, by a very : An illustration of the pretraining distributions and an unseen language distribution in the case of the Turkic Language Family. Uyghur is unseen but related to Turkish which mBERT has been pretrained on. Uyghur is written in the Arabic script while Turkish is written in the Latin Script making it a tough challenge for mBERT large margin in the case of Maltese. This shows that pretraining on such a diversity of languages is at the core of the transfer to Narabizi.

T H L M L M

Our intermediate Uralic language results provide initial supporting evidence for our argument on the importance of having pretrained LMs on languages with similar scripts, even for generally high-resource language families. Our hypothesis is that the script is a key element for language models to correctly process unseen languages.

To test this hypothesis, we assess the ability of mBERT to process an unseen language after transliterating it to another script present in the pretraining data. We experiment on six languages belonging to four language families: Erzya, Bruyat and Meadow Mari (Uralic), Sorani Kurdish (Iranian, Indo-European), Uyghur (Turkic) and Mingrelian (Kartvelian). We apply the following transliterations:

• Erzya/Buryat/Mari: Cyrillic -→ Latin Script • Mingrelian: Georgian Script -→ Latin Script

L

The strategy we used to transliterate the above-listed language is speci c to the purpose of our experiments. Indeed, our goal is for the model to take advantage of the information it has learned during training on a related language written in the Latin script. The goal of our transliteration is therefore to transcribe each character in the source script, which we assume corresponds to a phoneme, into the most frequent (sometimes only) way this phoneme is rendered in the closest related language written in the Latin script, hereafter the target language. This process is not a transliteration strictly speaking, and it needs not be reversible. It is not a phonetization either, but rather a way to render the source language in a way that maximizes the similarity between the transliterated source language and the target language.

We have manually developed transliteration scripts for Uyghur and Sorani Kurdish , using respectively Turkish and Kurmanji Kurdish as target languages, only Turkish being one of the languages used to train mBERT. Note however that Turkish and Kurmanji

Transliterations script are available at https://github.com/benjamin-mlr/mbert-unseen-languages Kurdish share a number of conventions for rendering phonemes in the Latin script (for instance, /S/, rendered in English by "sh", is rendered in both languages by "ş"; as a result, the Arabic letter " ", used in both languages, is rendered as "ş" by both our transliteration scripts). As for Erzya, Buryat and Mari, we used the readily available transliteration package transliterate, which performs a standard transliteration. We used the Russian transliteration module, as it covers the Cyrillic script. Finally, for our control experiments on Mingrelian, we used the Georgian transliteration module from the same package.

T T

We train mBERT with MLM and T as well as monolingual BERT model trained from scratch on the transliterated data. We also run controlled experiments on high-resource languages written in the Latin script on which mBERT was pretrained on, namely Arabic, Japanese and Russian (reported in Table .).

Our results with and without transliteration are listed in Table . . Transliteration for Sorani and Uyghur has a noticeable positive impact. For instance, transliterating Uyghur to Latin leads to an improvement of points in parsing and points in NER.

For one of the low-resource Uralic languages, Meadow Mari, we observe an F -score points improvement on NER, while for other Uralic languages like Erzya the e ect of transliteration is very minor. The only case where transliteration to the Latin script leads to a drop in performance for mBERT and mBERT+MLM is Mingrelian.

We interpret our results as follows. When running MLM and T , mBERT associates the target unseen language to a set of similar languages seen during pretraining based on the script. In consequence, mBERT is not able to associate a language to its related language if they are not written in the same script. For instance, transliterating Uyghur enables mBERT to match it to Turkish, a language which accounts for a sizable portion of mBERT pretraining. In the case of Mingrelian, transliteration has the opposite e ect: transliterating Mingrelian in the Latin script is harming the performance https://pypi.org/project/transliterate/

In future work, we intend to develop dedicated transliteration scripts using the strategy described above, and to compare the results obtained with it with those described here. Table . : mBERT T T on high resource languages for POS tagging, parsing and NER. We compare ne-tuning done on data written the original language script with ne-tuning done on Latin transliteration. In all cases, transliteration degrades downstream performance.

as mBERT is not able to associate it to Georgian which is seen during pretraining and uses the Georgian script. This is further supported by our experiments on high resource languages (cf. table .).

When transliterating pretrained languages such as Arabic, Russian or Japanese, mBERT is not able to compete with the performance reached when using the script seen during pretraining. Transliterating the Arabic script and the Cyrillic script to Latin does not automatically improve mBERT performance as it does for Sorani, Uyghur and Meadow Mari. For instance, transliterating Arabic to the Latin script leads to a drop in performance of . , . and . points for POS tagging, parsing and NER respectively.).

The transliteration approach provides a viable path for rendering large pretrained models like mBERT useful for all languages of the world. Indeed, as reported in parameter-e cient multilingual language models for unseen languages. However, this solution brings no signi cant improvement in the supervised setting, compared to a more simple Masked-Language Model netuning. Furthermore, developing a language agnostic adaptation method is an unreasonable wish with regard to the large typological diversity of human languages.

On the other hand, the promising vocabulary adaptation technique of Chau et al.

(

) which leads to good dependency parsing results on unseen languages when combined with task-tuning has so far been tested only on Latin script languages (Singlish and Maltese). We expect that it will be orthogonal to our transliteration approach. Pfei er et al. () was able to extend e ciently multilingual language models to scripts that are not supported during the pretraining.

In this context, we bring empirical evidence to assess the e ciency of language models pretraining and adaptation methods on low-resource and typologically diverse unseen languages. Our results show that the "Hard" languages are currently out-of-the-scope

Even though we explore a di erent research direction, recent advances in small scale and domain speci c language models suggest such models could also have an important impact for those languages (Micheli et al.,). That states that scaling the number of languages require to scale the number of parameters to keep the same level of performance.

of any currently available language models and are therefore left outside of the current NLP progress. By focusing on those, we nd that this challenge is mostly due to the script. Transliterating them to a script that is used by a related higher resource language on which the language model has been pretrained on leads to large improvements in downstream performance. Our results shed some new light on the importance of the script in multilingual pretrained models. While previous work suggests that multilingual language models could transfer e ciently across scripts in zero-shot settings (Pires et al with models trained on an even smaller corpora (Micheli et al.,). Additionally, we found that the number of pretraining steps required to reach optimal performance varies across tasks. Less complex tasks such as NER and dependency parsing need much fewer pretraining steps than natural language inference. Finally, based on our model, we improved the state-of-the-art performance on four downstream tasks in French.

D G R L N S M D

We then addressed lexical normalization for User Generated Content (UGC) in English.

UGC is inherently di erent from edited text on which most NLP models are usually trained (e.g., Wikipedia text, News text, etc.). In Chapter , we enhanced BERT's architecture to perform lexical normalization. For this purpose, we reframed word-level lexical normalization as a subword classi cation task. Given word-level normalization data (Baldwin et al.,), and despite the small amount of data available (only about two thousand sentences), we enhanced BERT's architecture and ne-tuned it to perform subword-level normalization after aligning the non-standard tokens and the standard ones. We showed that our system was competitive with state-of-the-art feature-rich systems like MoNoise (van der Goot,). However, based on recent results described in (van der Goot et al.,), it is established that accurate lexical normalization leads to only moderate improvement in downstream dependency parsing on noisy social media data.

On the one hand, this suggests that language models based on subword level tokenization are robust to lexical variability (Riabi et al., ; Itzhak and Levy,). On the other hand, this shows the limit of lexical normalization to cope with the variability of UGC data and the need for direct adaptation techniques.

E Z C L T A BERT

Without any adaptation, large-scale multilingual language models can transfer across languages in the zero-shot setting -i.e., without using any supervised signal for the target language for the task of interest. To explain this behavior, we combined a behavioral analysis of mBERT with a structural analysis. This work was done in collaboration with Yanai Elazar. We introduced an analysis technique called R , which consists of selectively randomly-initializing speci c layers of mBERT before ne-tuning it. This technique allowed us to disentangle what is learned during pretraining from what is learned during ne-tuning. Based on R , we showed that the lower layers of mBERT are critical for zero-shot cross-lingual transfer while there are not for same-language generalization. Looking at the hidden states, we showed that the model aligns representations across di erent languages in those speci c lower layers. Overall, we showed that mBERT is schematically composed of two parts: the lower part is critical for zero-shot cross-lingual transfer and aligns representations across di erent languages, while the upper part is language-agnostic and task-speci c and can be randomly initialized before ne-tuning.

We note that R is not limited to understanding the cross-lingual transfer

H U L BERT

Finally, to achieve the practical goal of building the best models we could for low-resource languages, we studied how to make the best language models for languages that are not seen during the pretraining of available large-scale models (monolingual and multilingual).

We refer to those languages as unseen. We showed that for most unseen languages, even a small amount of raw and annotated data is enough to ne-tune mBERT and outperforms strong non-contextual baselines. However, for a small number of languages like Uyghur or Sorani Kurdish, we nd that this simple approach does not work. In those cases, we nd that the script is usually the reason for this failure and that doing linguistically-motivated transliteration boosts the performance very signi cantly.

F D

We will start with general observations about important research directions for the future given the current state of NLP (. . to . .). I will then describe research directions that have emerged from the work done during this thesis and that I aspire to work on in the future.

S T

As discussed in the introduction, one of the leading driving forces of empirical progress in NLP has been scaling the size of the models, pretraining data, and computing power (Kaplan et al.,). Very recently, the centi-billion parameters models like GPT-). In the recent literature, this has been addressed by modeling prior information into the model (Martin et al., ; Dathathri et al.,) or by integrating humans in the learning process (referred to as the human-in-the-loop approach) (Ouyang et al.,

). In the future, controlling the generated sequence will become more critical.

We, again, note that most of the research done on controllability has been done in English.

Generalizing those ndings to other languages will also be an important endeavor.

E G M

Large-scale generative pretrained models (Brown et al We note that this statement contrasts with our ndings on building the CamemBERT model (chapter). Indeed, we showed that pretraining a model on as little as GB of

Conclusion

Web Crawled data (from the OSCAR corpus (Ortiz Suárez et al.,

)) was competitive with a model trained on GB of data. In that work, we were experimenting with xed model sizes so our ndings are consistent with the scaling laws.

Scaling pretraining datasets has been done successfully for English (Brown et al., ; Chowdhery et al.,) and several other languages thanks to the release of large-scale corpora in multiple languages such as the OSCAR corpus (Ortiz Suárez et al.,) and the mC corpus (Xue et al.,). However, replicating it for many other languages is much more tricky. Indeed, rst, % of languages have no online presence (Kornai,

) making the collection of large corpora of raw text much more costly. Second, many of these languages have very little open-source textual data online. Third, language identi cation is still a challenging problem for many languages (Siddhant et al.,).

Finally, only about % of languages are used in a written form (according to Eberhard and Fennig ()). For this reason, the only way to collect data for such languages would be to work on speech utterances. In our work (Seddah et al.,), we experienced these challenges in collecting data based on Common Crawl for a North-African Arabic dialect.

Indeed, based on a language identi er for this dialect, we could only extract k sentences from the entire Common Crawl dump. Another approach to collecting raw data for lowresource languages is to generate synthetic data. Given the increasing quality of generated data, large-scale multilingual generative language models, if prompted accordingly, could be used for this purpose. On the one hand, an intra-language cultural homogeneity hypothesis is made. On the other hand, (ii) we assume inter-language cultural compatibility. In more detail:

Many languages are used online on social media, which is not accessible by open-source API (e.g., Facebook).

(i) Intra-language cultural homogeneity: When we experiment with cross-lingual transfer, we usually disregard language variations inside a given language, speci cally from a cultural standpoint. This is particularly important for models that may directly impact what content users see online, like Hate-speech detection models or Question Answering models. For instance, models built for English are usually created using data collected with a US or UK-centric approach (Faisal et al.,). It is likely that those systems used in Nigeria or India in the English language would not generalize well or potentially carry cultural biases (Laaksonen et al., ; Hovy and Yang,).

(ii) Inter-language cultural compatibility: Cross-lingual transfer usually assumes cultural compatibility across languages. Again, this is particularly critical for user-facing tasks like hate-speech detection or QA. For instance, when we train a system on hate-speech detection in English and use it for a target language like Bangla, we implicitly assume that what is considered hate speech in English would also be considered hate speech in Bangla.

This is a very strong assumption that is often incorrect (Massey, ; Davidson et al.,) and if such an approach is used in practice, it could have harmful consequences.

Similarly, some multilingual open-domain QA systems can now answer a question using evidence in multiple languages (Asai et al., ; Muller et al., c). Again, this poses very concretely the question of cultural di erences between the language of the question and the language from which the answer is extracted. For instance, many historical facts are perceived very di erently whether you are in one country or another. By nding an answer in a language di erent from the user language, a multilingual QA system could therefore deliver an answer that is distant from the user's cultural context and potentially not be acceptable for the user.

T M M

Finally, large-scale multilingual language models have reached remarkable cross-lingual transfer abilities. Those models rely on a pretraining algorithm that only requires raw textual data in multiple languages segmented at the sub-word-level (cf. § . .). However, zero-shot cross-lingual transfer is still far from delivering usable models in practice (cf.

chapter), speci cally for distant languages (e.g. English to Arabic). To do better, one attempted research direction was to use parallel data to force the model's internal representations to be aligned across languages (Hu et al.,). However, this requires a lot of parallel data, which is not available for many language pairs. A second direction would be to use other modalities and let the pretraining process learn an internal mapping between distant languages. These modalities could be used as a grounding to align distant languages together. This grounding could be phonetic, speech (Bapna et al.,),

images (Ramesh et al.,), video (Zellers et al.,), reward (Chaabouni et al.,).

Given the modeling power of large-scale transformer models and the emerging crosslingual abilities of those models when pretrained on large amounts of data, it is clear that feeding them richer signals could potentially lead to better multilingual models.

. In this thesis, we made several contributions to answering: How can we make language models better at handling the diversity and variability of natural languages? . To answer it, we analyzed the behavior of transformers-based language models in a large variety of training and evaluation settings. We found concrete solutions based on cross-domain and cross-lingual transfer to build use-able models for low-resource environments. We hope our work will pave the way for further progress in building NLP systems for the most signi cant number of linguistic communities.

A C BERT

We report detailed performance of the CamemBERT model (§).

••
•• OSCAR GB -
Table . : Results on the four tasks using language models pre-trained on data sets of varying homogeneity and size, reported on validation sets (average of runs for POS tagging, parsing and NER, average of runs for NLI). Table . : Zero-shot cross-lingual performance when applying R to speci c set of consecutive layers compared to the R model. Source language is English. Baseline model ALL (for all layers randomly initialized) corresponds to a model trained from scratch on the task. For reproducibility purposes, we report performance on the Validation set E D . For all target languages, we report the scores on the test split of each dataset. Each score is the average of runs with di erent random seeds. For more insights into the variability of our results, we report the min., median and max. value of the standard deviations (std) across runs with di erent random seeds for each task: Parsing: . / . / . , POS: . / . / . , NER: . / . / . (std min/median/max).

R of layers

≥ R < R ≤ points ≤ points R of layers S T R ∆ ∆ ∆ ∆ ∆ POS E E .
-.

-.

-.

-.

. . E A .

-.

-.

-.

-.

-.

-. E F .

-.

-.

-.

-.

. . E G .

-.

-.

-.

-.

-.

-. E T .

-.

-.

-.

-. .

-. E I .

-.

-.

-.

-.

-.

-. E R .

-.

-.

-. . . . E P .

-.

-.

-.

-.

-.

-. E S .

-.

-.

-.

-.

. . E F .

-.

-.

-.

-.

-.

-. E I .

-.

-.

-.

-.

-. . E S .

-.

-.

-.

-.

. . E C .

-.

-.

-.

-.

. . E P .

-.

-.

-.

-.

-.

-. E H .

-.

-.

-.

-.

. . E C .

-.

-.

-.

-.

. . E J .

-. .

-.

-.

. . E X M .

-.

-.

-.

-. .

-.

R R .

-.

-.

-.

-. .

-. R E .

-.

-.

-.

-. . -. R A .

-.

-.

-. . . . R F .

-.

-.

-.

-.

-.

-. R G .

-.

-.

-.

-. .

-. R T .

-.

-.

-.

-.

-. . R I .

-.

-.

-.

-.

-. . R P .

-.

-.

-.

-.

-.

-. R SP .

-.

-.

-.

-.

-.

-. R F .

-.

-.

-.

-.

-. . R I .

-.

-.

-.

-.

-.

-. R S .

-.

-.

-.

-.

-.

-. R C .

-.

-.

-.

-.

-.

-. R P .

-.

-.

-.

-.

-. . R H .

-. .

-.

-. . . R C .

-.

-.

-.

-.

-.

-. R J .

-. . . -. . . R X M .

-.

-.

-.

-. . -.

A A .

-.

-.

-.

-.

-.

-. A E .

-.

-.

-.

-.

-.

-. A F .

-.

-.

-.

-.

-.

-. A G .

-.

-.

-.

-.

-.

-. A T .

-.

-.

-.

-.

-.

-. A I .

-.

-.

-.

-.

-.

-. A R .

-.

-.

-.

-.

-.

-. A P .

-.

-.

-.

-. . -. A SP .

-.

-.

-.

-. . -. A F .

-.

-.

-.

-.

-.

-. A I .

-.

-.

-.

-. . -. A S .

-.

-.

-.

-. . -. A C .

-.

-.

-.

-.

-.

-. A P .

-.

-.

-.

-.

-.

-. A H .

-.

-.

-.

-. . -. A C .

-.

-.

-.

-.

-.

-. A J .

-.

-.

-.

-.

-.

-. A X M .

-.

-.

-.

-.

-.

-1.29

Table . : POS tagging Relative Zero shot Cross-Lingual performance of mBERT with R (section . .) on pairs of consecutive layers compared to mBERT without any random-initialization (R). In S T , S indicates the source language on which we ne-tune mBERT, and T the target language on which we evaluate it. S X is the average across all target language with X = S . ≥ R < R ≤ -points ≤ -points

R of layers S T R ∆ ∆ ∆ ∆ ∆ ∆ Parsing EN E .
-.

-.

-.

-. . -. EN A .

-.

-.

-.

-. . . EN F .

-.

-.

-.

-. . . EN G .

-.

-.

-.

-.

-. . EN T .

-.

-.

-.

-. . . EN I .

-.

-.

-.

-.

-. . EN R .

-.

-.

-.

-. . . EN P .

-.

-.

-.

-. . . EN SP .

-.

-.

-.

-. . . EN F .

-.

-.

-.

-.

-. . EN I .

-.

-.

-.

-.

-. . EN S .

-.

-.

-.

-.

-. . EN C .

-.

-.

-.

-. . . EN P .

-.

-.

-.

-. . . EN H .

-.

-.

-.

-. . . EN C .

-.

-.

-.

-. . . EN J .

-.

-.

-.

-. . . EN X .

-.

-.

-.

-.

. . R R .

-.

-.

-.

-.

-.

. R E .

-.

-.

-.

-. . . R A .

-.

-.

-.

-. . . R F .

-.

-.

-.

-. . . R G .

-.

-.

-.

-. . . R T .

-.

-.

-.

-.

-. . R I .

-.

-.

-.

-. . . R P .

-.

-.

-.

-. . . R SP .

-.

-.

-.

-. . . R F .

-.

-.

-.

-. . . R I .

-.

-.

-.

-. . . R S .

-.

-.

-.

-. . . R C .

-.

-.

-.

-.

-. . R P .

-.

-.

-.

-.

-. . R H .

-.

-.

-.

-.

-. . R C .

-.

-.

-.

-. . . R J .

-.

-.

-.

-. . . R X M .

-.

-.

-.

-. . .

A A .

-.

-.

-.

-.

-.

. A E .

-.

-.

-.

-.

-.

-. A F .

-.

-.

-.

-.

-.

-. A G .

-.

-.

-.

-. . . A T .

-.

-.

-.

-. . . A I .

-.

-.

-.

-.

-. . A R .

-.

-.

-.

-.

-.

-. A P .

-.

-. . -.

-.

-. A SP .

-.

-.

-.

-.

-. . A F .

-.

-.

-.

-.

-.

-. A I .

-. . .

-.

-.

-. A S .

-.

-.

-.

-.

-.

-. A C .

-.

-.

-.

-.

-.

-. A P .

-.

-.

-.

-.

-.

-. A H .

-.

-.

-.

-. . . A C .

-.

-.

-.

-. . -. A J .

-.

-.

-.

-. . . A X M .

-.

-.

-.

-.

-.

-.

Table . : Parsing (LAS score) Relative Zero shot Cross-Lingual performance of mBERT with R (section . .) on pairs of consecutive layers compared to mBERT without any random-initialization (R). In S T , S indicates the source language on which we ne-tune mBERT, and T the target language on which we evaluate it. S X is the average across all target language with X = S ≥ R < R ≤ -points ≤ -points

R of layers Source -Target R ∆ ∆ ∆ ∆ ∆ ∆ NER EN E .
-.

-.

-.

-.

-.

-. EN F .

-.

-.

- -.

-.

-.

-.

-.

-. EN S .

-.

-.

-.

-. .

-. EN C .

-.

-.

-. . . . EN R .

-.

-.

-.

-.

-.

-. EN A .

-.

-.

-. . .

-. EN P .

-.

-.

-.

-. . . EN H .

-.

-.

-.

-.

-. . EN C .

-.

-.

-.

-.

-.

-. EN J .

-.

-.

-.

-.

-.

-. EN X .

-.

-.

-.

-.

-.

-.

R R .

-.

-.

-.

-.

-.

-. R E .

-.

-.

-.

-.

-. . R F .

-.

-.

-.

-.

-. . R G .

-.

-.

-.

-.

-. . R T .

-.

-.

-.

-.

-.

-. R I .

-.

-.

-.

-.

-. . R P .

-.

-.

-.

-.

-. . R SP .

-.

-.

-.

-.

-. . R F .

-.

-.

-.

-. . . R I .

-.

-.

-.

-. . . R S .

-.

-.

-.

-. . . R C .

-.

-.

-.

-. . -. R A .

-.

-.

-.

-.

-.

-. R P .

-.

-.

-.

-.

-. . R H .

-.

-.

-. . -. . R C .

-.

-.

-.

-.

-.

-. R J .

-.

-.

-.

-.

-.

-. R X M .

-.

-.

-.

-.

-.

-.

A A .

-.

-.

-.

-.

-. . A F .

-.

-.

-.

-. . . A G .

-.

-.

-.

-.

-. . A T .

-.

-.

-.

-. . . A I .

-.

-.

-.

-.

-. . A P .

-.

-.

-.

-. . . A SP .

-.

-.

-.

-. . . A F .

-.

-.

-.

-.

-. . A I .

-.

-.

-.

-.

-. . A S .

-.

-. A C .

-.

-.

-.

-.

-. . A R .

-.

-.

-. . -.

. A E .

-.

-.

-.

-. . . A P .

-.

-.

-.

-.

-.

-. A H .

-.

-.

-.

-. . . A C .

-.

-.

-.

-.

-. . A J .

-.

-.

-.

-.

-.

. A X M .

-.

-.

-.

-.

-. .

Table . : NER (F score) Relative Zero shot Cross-Lingual performance of mBERT with R (section . .) on pairs of consecutive layers compared to mBERT without any random-initialization (R). In S T , S indicates the source language on which we ne-tune mBERT, and T the target language on which we evaluate it. S X is the average across all target language with X = S ≥ R < R ≤ -points ≤ -points) of hidden representations of a source language (English) sentences with a target language sentences on ne-tuned and pretrained mBERT. The higher the CKA value the greater the similarity. Benjamin Muller, Benoit Sagot, and Djamé Seddah. b. Can multilingual language models transfer to an unseen dialect? a case study on north african arabizi. arXiv preprint arXiv:

. .

Benjamin Muller, Benoît Sagot, and Djamé Seddah. c. Can multilingual language models transfer to an unseen dialect? A case study on north african arabizi. CoRR, abs/ . . Benjamin Muller, Luca Soldaini, Rik Koncel-Kedziorski, Eric Lind, and Alessandro Moschitti. c. Cross-lingual genqa: A language-agnostic generative question answering approach for open-domain question answering. arXiv preprint arXiv:

. . Nikitha Murikinati, Antonios Anastasopoulos, and Graham Neubig.

. Transliteration for cross-lingual morphological in ection. In Proceedings of the th SIGMOR-PHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages -, Online. Association for Computational Linguistics.

Masami Nakamura and Kiyohiro Shikano.

. A study of english word category prediction based on neural networks. Journal of the Acoustical Society of America, .

Preslav Nakov and Jörg Tiedemann.

. Combining word-level and character-level models for machine translation between closely-related languages. In Proceedings of the th Annual Meeting of the Association for Computational Linguistics (Volume : Short Papers), pages -, Jeju Island, Korea. Association for Computational Linguistics.

Ani Nenkova, Sameer Maskey, and Yang Liu.

. Automatic summarization. In Proceedings of the th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts, page , Portland, Oregon. Association for Computational Linguistics.

Hwee Tou Ng, Leong Hwee Teo, and Jennifer Lai Pheng Kwan.

. A machine learning approach to answering questions for reading comprehension tests. In Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, pages -, Hong Kong, China. Association for Computational Linguistics.

John Nickolls and William J. Dally.

. The gpu computing era. IEEE Micro, (): -.

Sergei Nirenburg and Victor Raskin.

. Ontological semantics. In AMTA.

Joakim Nivre, Mitchell Abrams, Željko Agić, Lars Ahrenberg, Lene Antonsen, Maria Jesus Aranzabe, Gashaw Arutie, Masayuki Asahara, Luma Ateyah, Mohammed Attia,

 . Analysis Techniques . though these attempts di er in the linguistic resources they require and the probabilistic methods they rely on, as di erent as they may seem, they can all be illustrated in a minimalist manner with the diagram in Figure . . Indeed, any NLP technique starts with a raw signal, i.e., textual data (reading the chart from bottom to top).

Figure . :

 . Figure . : Minimalist representation of "any" data-driven NLP pipeline

 empirically) successful framework of the recent years for NLP. We note that each modeling approach has usually re-de ned the limit between what is a feature and what is part of the trainable model. In the early days of statistical NLP, a lot of work was dedicated to engineering the right features for the task of interest. In the last ten years, deep learning brought impressive empirical progress across nearly all NLP tasks. Notably, the recent and most accurate deep-learning models use elementary featurization techniques (the text is split into sequences of characters based on their frequency, § . .) while a lot of attention is put on the type of deep learning architecture, the training objective, and the optimization of the model (§ .). Additionally, deep learning is a powerful framework to do what is referred to as transfer learning. In short, transfer learning consists in using a model trained on a given task and dataset for another task and dataset. As illustrated with the success of the BERT model (Devlin et al., a) (§ . .),

 requires linguistic resources. These resources are necessary to train and, even more importantly, to evaluate NLP systems. In a nutshell, before the s, most works in NLP was focused on building rule-based systems. Trainable NLP systems started receiving a lot of attention in the s with the release of large datasets and lexical resources such as the Penn Treebank (Marcus et al.,), the WordNet (Miller,). In the s and s, the scale, diversity, and number of linguistic resources and datasets increased probabilistic frameworks such as Maximum Entropy or Graphical Models. In the last ten years, Deep Learning architectures such as Recurrent Neural Network (rstly introduced by (Rumelhart et al., ; Hochreiter and Schmidhuber,)) and Transformers (introduced by Vaswani et al. (

 to build. They need a lot of computing power to be trained, which is nancially and environmentally costly. As reported by Strubell et al. (), training a BERT model in the US amounts to approximately . tCO e, which corresponds to about one passenger trip from Paris to Miami on average. The more recent billion parameters PaLM language model (Chowdhery et al.,) led to the emission of .

Figure

 Figure . : A visual summary of my work: D corresponds to one set of domains or languages (e.g., Web Data in French) and D' to another set of domains.

 Proceedings of the rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics -Cross-Lingual Open-Domain Question Answering with Answer Sentence Generation (Muller, Soldaini, Koncel-Kedziorski, Lind, and Moschitti, c) • Seventh Workshop on Noisy User-generated Text (W-NUT) -MultiLexNorm: A Shared Task on Multilingual Lexical Normalization (van der Goot, Ramponi, Zubiaga, Plank, Muller, San Vicente Roncal, Ljubešić, Çetinoğlu, Mahendra, , and deployment of NLP systems are currently receiving a lot of interest and are used intensively on a global scale. It is therefore highly needed to think

 Figure . : Geographical distribution of Vowels and Consonants Inventory Sizes (Maddieson,)

 Figure . : Geographical distribution of Writing systems

Figure

 Figure . : (Dryer, b) Tense-Aspect A xation of the world languages (on a sample of languages).

Figure . :

 . Figure . : Geographical distribution of {Subject (S), Object (O), Verb (V)} word order (Dryer, a)

Figure . :

 . Figure . : Constituency tree of the sentence "Maria has left a note" (Jurafsky and Martin,).

Figure . :

 . Figure . : Dependency tree of the sentence "Maria has left a note" from de Marne e et al. ().

 usually evaluated with the worderror rate (WER) as seen in (Ashby et al.,). WER measures the ratio of correctly transliterated words compared to a reference. N L I Natural Language Inference (NLI) introduced by (Dagan et al., a; MacCartney and Manning,) aims at predicting if a sentence (a hypothesis) can be inferred by another sentence (a premise). It can be framed as a sequence classi cation task. In this thesis, we use the XNLI dataset (Conneau et al., b), a multilingual NLI dataset derived from the SNLI dataset (Bowman et al., a). Formally, given a premise (p 1 , ..., p T) and a hypothesis (h 1 , .., h T):

 A wordform can be de ned as a syntactic atomic unit (de Marne e et al.,). It is, therefore, dependent on a theory of syntax. There are many ways to de ne what a wordform is in a given language based on the syntax framework we work in, the language. We present what wordform segmentation looks like in the Universal Dependency (UD) framework (McDonald et al., a).

 trainable models. It requires a lot of annotated data, for instance, from the Universal Dependency treebanks (McDonald et al., a). To develop accurate tokenizers, it is usual to frame tokenization as a character-level classi cation task as done in (de La Clergerie et al., ; Qi et al., a).

 T Sennrich et al. (a) introduced the Byte-Pair-Encoding tokenization algorithm (inspired by a compression algorithm introduced in (Gage,)).

 Implemented naively, BPE-tokenization has a time complexity of O(N 2) with N the length of the dataset in the number of pre-tokenized tokens. With BPE-tokenization the size of the nal vocabulary is equal to the number of unique characters (i.e. the initial size of the vocabulary) added with the number of merge operations. A close variant of BPE-tokenization is the WordPiece tokenization algorithm introduced by Schuster and Nakajima () and used in the original BERT model (Devlin et al., a). Instead of selecting the most frequent BPE pair to compute the merge operations, it selects the BPE pairs that, once merged, maximize the log-likelihood over the entire training data. U T Similarly to BPE-tokenization, unigram tokenization (Kudo,

 can then use the unigram tokenizer for each word by taking the most likely subword tokenization according to the unigram language model. The key advantage of the unigram tokenization over BPE-tokenization is that it associates a probability p(x) to a given segmentation (based on equation .). This allowed Kudo () to introduce subword regularization. During the training stage of a model (in their case, a Machine Translation sequence to sequence model), instead of using deterministic subword tokenization, we can sample over all the possible segmentation provided by the unigram tokenizer. For machine translation, Kudo () showed that subword regularization signi cantly impacts the translation accuracy (in terms of BLEU).

(

 Kudo and Richardson, a) removed this requirement. It does so by simply applying unigram-tokenization or BPE-tokenization at the sentence-level. For languages with white-spaces, it replaces them with the special character "_". Additionally, Kudo and Richardson (a) integrated the NFKC character-level normalization process that removes unicode ambiguities between characters that have the same glyphs (i.e. that look the same) in di erent languages but that are associated with di erent unicode points. C L T However, subword tokenization techniques inherently bias the model it is used for. Indeed, in some cases, subword tokenization may work very well for Latin-script written languages but much less for Chinese characters. For this reason, many approaches have segmented text at the character level. This alleviates the OOV problem as long as every character encountered at test time is seen during training. This was studied in neural language models in (Mikolov et al., b; Kim et al.,), for machine translation in (Lee et al.,) and in document classi cation by (Conneau et al.,). Recently, in the context of multilingual modeling, Clark et al. () showed that character-level segmentation leads to signi cant empirical progress. , Sentencepiece, and even character-level tokenization assume a xed set of characters. If we encounter a new character or symbol not in the training data at test time,

 speci c embedding techniques, let us dene what properties we look for in these embedding techniques. We want the embedding vectors to:

 .) In practice, it was shown by Vaswani et al. () that projecting input hidden states multiple times and running multiple self-attention -multi-head self-attention -entails better empirical performance. A notable re nement of the transformer self-attention architecture was introduced with the DeBERTa model (He et al.,) that disentangles the relative position of tokens and the token embedding itself, leading to signi cant performance progress. P E In contrast with recurrent models, the Transformer does not implicitly model the input tokens' position. A solution is to inject the position signal into the model as an embedding vector. Many approaches have been proposed for this. In the original Transformer, Vaswani et al. () proposed to use a xed (i.e., non-trainable) positional embedding vector with the same dimension as the token embedding vectors (in order to allow summation between the two types of embedding).

Figure . :

 . Figure . : Absolute Positional Encoding proposed by (Vaswani et al.,). Each position in [|1, 512|] is encoded in a vector of size de ned with equation . .

 are based on predicting a sequence of variable length (the output sequence) given another sequence of variable length (the input sequence). A notable and very studied sequence-to-sequence task is probably Machine Translation. To approach this type of task the encoder-decoder framework was introduced. The encoder-decoder is not an architecture per se but a family of architecture based on combining two modulesan encoder and a decoder -together. It was introduced in (Cho et al.,) for machine translation. Schematically, two deep learning architectures are de ned: On the one hand, the encoder takes as input the input sequence. On the other hand, the decoder takes as input both the output of the encoder -that encodes the input sequence -and the output sequence. Encoder-Decoder can be based on Recurrent Neural Network (Cho et al., ; Bahdanau et al.,) and on the Transformer architecture (Vaswani et al.,). The transformer architecture was introduced for machine translation using an encoderdeep learning models are trained with the Stochastic Gradient Descent (SGD) algorithm (Robbins and Monro,) or a variant of it. In short, SGD is based on the gradient descent algorithm (Cauchy et al.,), which uses the gradient direction to minimize a given function. The SGD uses an estimation of the gradient on a few samples to optimize the objective function (i.e., in practice, to minimize a loss function § . .). An e cient way to implement SGD with deep learning models is to use the chain rule. This implementation is known as the backpropagation algorithm, and it was rst described by Rumelhart et al. (). We describe the backpropagation algorithm schematically in Figure .In practice, the Adam optimizer (Kingma and Ba, ; Loshchilov and Hutter,)is one of the most popular optimizers. It is a more re ned version of the SGD that integrates rst and second-order momentum estimation making convergence faster and more stable. Algorithm Backpropagation with SGD Given observations ((x i), (y i)) of two variables (X, Y) Given a loss function l. An architecture dnn θ The goal is to nd the best θ s.t. E(l(Y, dnn θ (X)) is small. Given a learning rate α for step < max do Sample (x, y) # Forward pass: ŷ = dnn θ (x) and l(y, ŷ) # Backward pass: ∇ θ l(y, ŷ) # compute gradients θ := θ -α∇ θ l(y, ŷ) # parameter update end deep learning models are tricky to train with backpropagation. They su er from vanishing gradients (Hochreiter,), exploding gradients (Pascanu et al.,), they can easily be stuck in saddle points (Dauphin et al.,).

 n-gram count-based language models, Kuhn et al. () applied hidden Markov models (HMMs) to language modeling and Lau et al. () used entropy-based models for it. These more complex models also allowed for the integration of linguistic features to help language modeling(Berger et al.became a powerful solution to overcome n-gram-based systems' limits in language modeling. Early work from Schmidhuber and Heil () showed that character-level deep learning-based language modeling was promising for data compression. Bengio et al. () showed that a -hidden layer MLP combined with a dense representation of words outperforms a state-of-the-art n-gram language model. This work showed for the rst time that if trained on enough data with long enough context, even simple deep learning architecture could outperform statistical ones. learning-based causal language models have been extended to model longer context sizes, larger vocabulary. These approaches led to scaling the number of parameters in the architecture and training these models with more data. Additionally, intense experiments on the type of architecture led to the success of recurrent neural networks for language modeling, introducing the so-called RNNLM. For instance, Mikolov et al. (a) showed that recurrent neural networks outperform standard MLP models and are competitive with n-gram state-of-the-art models trained on much more data. Sutskever et al. () integrated gated connections in the RNNLM, speeding up training and reaching state-of-the-art performance for character-level training. With the advance of more powerful hardware and the adaptation of Graphic-Processing Units (GPU) to train deep learning models, it became possible to train more complex architectures such as LSTM models (Hochreiter and Schmidhuber,). The main challenge when training large architecture is over tting (Sundermeyer et al.,). Indeed, large-scale deep-learning models are over-parametrized and are keen to memorize their data which can hurt generalization. By applying carefully regularization techniques such as drop-out (Srivastava,) speci cally to the non-recurrent connections, Zaremba et al. () managed to train e ciently large LSTM models leading state-of-the-art performance in causal language modeling. Several modeling re nements were then introduced to improve the performance and make training and inference cheaper and faster (Grave et al., a; Gal and Ghahramani,) as well as to scale the number of parameters to reach better performance (Merity et al.in the success of deep learning models in language modeling is the number of parameters they can eciently be trained with and the amount of data they can be trained on. In the case of LSTM models, Gal and Ghahramani () were able to train a M parameters model. However, as described in § . . , recurrent neural network are based on sequential op-erations. This inherently makes the training process slower compared to feed-forward neural networks. This gave an intrinsic advantage to the Transformer architecture. As we described in § . . , it was introduced by Vaswani et al. () who showed, with an encoder-decoder framework, that it is a powerful architecture for Machine Translation. Radford and Narasimhan () adapted the Transformer to a decoder-only model and trained it with a causal language model objective. Al-Rfou et al. () ran a detailed comparison with LSTM-based language models showing that transformers models are easier to scale and better causal language models compared to LSTM trained with the same amount of parameters and the same training data. This approach was then further extended and scaled with the Transformer-XL model (Dai et al.,), GPT-(Radford et al.,) and GPT-(Brown et al.,). Similarly, the exibility of the transformer architecture and its computational e ciency allowed Devlin et al. (a) to train a large-scale mask language model with great task-speci c success after ne-tuning (cf. § . .).

For

 Woods and WA () designed a QA system designed for lunar geologists. It was based on several modules. In the rst step, a parser takes the user query and translates it into a database readable query. This step usually involves a lexicon to identify the keywords and a grammar to extract their semantic relationship. Based on it, a formal representation of the user query is generated. Finally, this formal representation is used to query a database.Similarly, Green et al. () built a QA system for baseball. Notably, Lehnert () conceptualized Question Answering, starting from the human thought process. This led to the making of the QUALM rule-based QA system.Based on the progress in Information-Retrieval (IR) (Kupiec,) and low-level tasks such as NER, coreference resolution, and stemming, Question Answering systems became more and more complex. For instance, (Hirschman et al.,) is one of the pioneering works building a QA system that can predict short-answer spans. It did so by combining re ned preprocessing approaches such as rule-based stemming (Abney,) to reduce the sparsity on the query side and document side, as well as named entity recognition and coreference resolution on the answer side to enrich the query early rule-based systems, the empirical progress and modeling novelties came from accessing larger annotated datasets, computing more informative features, and more accurate statistical estimation techniques. a feature-based model for POS tagging. In short, words are characterized by a list of linguistic features based on their morphology (pre x, su x, etc.), POS tags of words seen in the training data, and contextual features (i.e., linguistic features and POS tags of surrounding words).

 x t . We note that HMM are a speci c case of Graphical Generative Probabilistic Models.Charniak et al. () showed that HMM could reach very competitive performance on POS tagging. Based on standard Markov assumptions, Merialdo () reached similar conclusions. On this line of research, Toutanova et al. () reached state-of-the-art performance (above % on the Penn Tree Bank (Marcus et al.,)) using dependency networks (Heckerman et al.,) -a generalization of HMM to a cyclic graphical probabilistic model -based on rich morphological and contextual hand-crafted features. HMMs have also been extensively studied for NER. Zhou and Su () reached state-of-the-art performance with a feature-based HMM model. HMMs were also widely used for the ConLLshared task for NER (Daelemans and Osborne,). For NER, we note that the feature selection usually di ers from POS tagging. To identify Named Entities, the morphological features used are usually based on the type of entities we are aiming to extract. For instance, to identify dates, Zhou and Su () relies on date template matching features based on the list of days of the week and month. Identifying location and person relies on knowledge features (referred to as Gazetteer features) such as the list of locations and well-known people (e.g. "Bill Gates").

 More recently, Howard and Ruder () improved the state-of-the-art performance on multiple text classi cation tasks by pretraining an LSTM-based language model and ne-tuning the entire architecture -after appending a task-speci c feed-forward module -on the classi cation task. Similarly, Peters et al. (b) released the ELMo model, which provides contextual word embedding as the output of a Bidirectional-LSTM pretrained language model. The di erence is that at ne-tuning time, only weights over the LSTM language model layer are learned -as opposed to ne-tuning the entire architecture. Finally, Devlin et al. (b) introduced the revolutionary BERT model. By framing the language model task as Masked Language Modeling (MLM § . .), by using large pretraining a transformer encoder with it on a large quantity of data (about . Billion words), and by ne-tuning the entire architecture on downstream sequence labeling tasks, Devlin et al. (b) improved from a substantial margin the state-of-the-art performance on a wide variety of tasks. By sharing it through the popular transformers library (Wolf et al.,), BERT impacted the entire eld of Natural Language processing by providing an easy-to-use framework for nearly any NLP task, extending the state-of-the-art performance in most of them. It was rst released as pytorch-pretrained-bert https://github.com/huggingface/transformers/ releases/tag/v . . . Following the success of BERT, many variants were released, changing one or several of its core design parameters, and improving the downstream performance of BERT. Liu et al. () showed with the RoBERTa model that the next-sentence prediction of BERT is not useful for downstream performance and removed it from the training objective. They also implemented dynamic masking, re ned the optimization process by training on larger batch sizes (, sequences of length tokens) and for a much larger number of steps (M steps), and trained on more data (GB). Joshi et al. (a) used whole-word masking and mask spans of several words instead of single bpe tokens and trained for long sequences in place of pairs of sentences. Zhang et al. () integrated an entity masking and prediction of related entities' objectives. Lan et al. () introduced shared layers. Yang et al. () replaced the mask language model objective with an autoregressive objective with permutation to keep bidirectional context. Finally, One of the most notable contributions compared to BERT is the ELECTRA model (Clark et al., b) which introduces a more sample-e cient method by replacing the mask language modeling task with a discrimination task (between gold tokens and plausible tokens generated by another MLM Transformer based model). All these approaches reduced the cost of pretraining (data, parameter, or sample e ciency) or downstream task performance. By adapting the mask-language denoising objective to encoder-decoder architectures (§ . .), (Ra el et al., ; Lewis et al.,) showed that pretraining large transformer could also lead to impressive improvement for sequence generation tasks.

 As described in section . . , transliteration consists of converting data written in one script to another. For many NLP tasks such as machine translation, transliteration can be used as an intermediary step to reduce the gap between the source data and the target data(Nakov and Tiedemann, ; Birch et al., ; Durrani et al., a).

 For instance, Agic et al. () developed an annotation projection technique using parallel biblical text (Christodoulopoulos and Steedman,) and word aligners to build dependency parsers for low-

 success of prediction-based word embedding techniques like the word vec model (cf. § . .), many studies designed alignment techniques to build multilingual word embedding shared between several languages. These techniques are based on learning a projection function that maps one embedding space onto another. This projection is usually trained using a word-level translation dictionary (Mikolov et al., a). Smith et al. () showed that for related languages like English, German and French, it was possible to learn accurate rotations between languages by relying on anchor words onlyi.e., words that both exist in the source language and the target language. Artetxe et al. () re ned this approach by adding normalization and a re-weighting step into the projection process leading to state-of-the-art performance in zero-shot bilingual lexicon extraction (Ruder et al.,).

 success of the pretraining-ne-tuning (§ . .) paradigm based on large scale language models, and on the release of large scale multilingual language models (the rst work to analyze the performance of the multilingual version of BERT in the zero-shot cross-lingual transfer setting. They showed that mBERT could perform well in languages mBERT was trained on, even between languages written in di erent scripts. The more typologically similar, the better the zero-shot cross-lingual transfer is. Multilingual language model-based zero-shot cross-lingual transfer was shown to work across a wide variety of languages and for a wide variety of tasks (Conneau and Lample, ; Conneau et al., a; Xue et al., ; Liu et al., ; Clark et al., a). Even though these approaches exhibit interesting cross-lingual transfer abilities, the reasons of this transfer is largely unexplained. In chapter , we present structural and behavioral analyses of mBERT to help understand how multilingual language models perform cross-lingual transfer. in the previous chapters, language modeling has become a fundamental component in the making of state-of-the-art task-speci c models in NLP (Peters et al., b; Devlin et al., b) . More speci cally, large-scale transformer (Vaswani et al.,

 Since we use SentencePiece to tokenize our corpus, the input tokens to the model are a mix of whole words and subwords. An upgraded version of BERT and Joshi et al. () have shown that masking whole words instead of individual subwords leads to improved performance. Whole-word Masking (WWM) makes the training task more

 hyper-parameters provided by the authors of RoBERTa on the MNLI task. Although this might have pushed the performances even further, we do not apply any regularisation techniques such as weight decay, learning rate warm-up or discriminative ne-tuning, except for NLI. We show that ne-tuning CamemBERT in a straightforward manner leads to state-of-the-art results on all tasks and outperforms the existing BERT-based models in all cases. The POS tagging, dependency parsing, and NER experiments are run using Hugging Face's Transformer library extended to support CamemBERT and dependency parsing (Wolf et al.,). The NLI experiments use the fairseq library following the RoBERTa implementation. E Following Straková et al. () and Straka et al. () for mBERT and the English BERT, we use CamemBERT in a feature-based embeddings setting. In order to obtain a representation for a given token, we rst compute the average of each sub-word's More details at https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.glue. md.representations in the last four layers of the Transformer, and then average the resulting sub-word vectors.We evaluate CamemBERT in the embeddings setting for POS tagging, dependency parsing and NER; using the open-source implementations of Straka et al.

Future+mBERT

 Despite a much simpler optimisation process and no task speci c architecture, netuning CamemBERT outperforms UDify on all treebanks and sometimes by a large margin (e.g. + . % LAS on Sequoia and + . LAS on ParTUT). CamemBERT also reaches better performance than other multilingual pretrained models such as mBERT and XLM MLM-TLM on all treebanks.CamemBERT achieves overall slightly better results than the previous state-of-the-art and task-speci c architecture UDPipe Future+mBERT +Flair, except for POS tagging on Sequoia and POS tagging on Spoken, where CamemBERT lags by . % and . % UPOS respectively. UDPipe Future+mBERT +Flair uses the contextualized string embeddings Flair (Akbik et al.,), which are in fact pretrained contextualized character-level word embeddings speci cally designed to handle misspelled words as well as subword structures such as pre xes and su xes. This design choice might explain the di erence in score for POS tagging with CamemBERT, especially for the Spoken treebank where words are not capitalized, a factor that might pose a problem for CamemBERT which was trained on capitalized data, but that might be properly handle by Flair and the UDPipe

 Figure . : Impact of number of pretraining steps on downstream performance for CamemBERT..

D

 Pretrained Masked Language Models have led to signi cant empirical progress in NLP for various tasks. After the rst release of the BERT model(Devlin et al., b),(Liu et al.,) supported the hypothesis that using hundreds of Gigabytes of data was required to reach state-of-the-art downstream performance. Indeed, they claimed that training their model on up to GB of data improves the performance even with a xed computing budget (i.e., for the same number of training steps with the same batch size and number of parameters). With CamemBERT, we were the rst to challenge this claim.We show that if the pretraining data originates in various sources (such as with OSCAR and CCNet), pretraining on as little as GB of data matches the performance of a model trained on up to GB of data. Our nding was concurrently supported by Ra el et al. () who showed that an encoder-decoder transformer, pretrained on about . B tokens was competitive with a model pretrained on about B tokens for a large variety of tasks such as Machine Translation and the GLUE benchmark's tasks (Wang et al.,). It was further extended by Micheli et al. () who showed that pretraining a model on about M of data leads to competitive downstream performance.

 Vocabulary = Bert WordPiece Vocabulary; init start= , string=word, wordPieceList = list() while string not empty do substring:=string[start:] while substring not empty do if substring in Vocabulary then wordPieceList := wordPieceList U [substring] break loop else substring := substring[:-] end end start := start + length(substring) end Result: wordPieceList Note : Tokenizing words into wordpiece tokens, by matching in an iterative way from left to right, the longest sub-string belonging to the wordpiece vocabulary F T BERT We now present the core of our contribution. How to make BERT a competitive normalization model? In a nutshell, there are many ways to do lexical normalization. Neural models have established the state-of-the-art in the related Grammatical Error Correction task using the sequence to sequence paradigm (Sutskever et al.,

F1

 Figure . : Impact of noisy/canonical alignment method with a focus on generalization by comparing Out-of-Vocabulary (OOV) and In-Vocabulary (InV) performance (development set)

C

 Two years after this work, van der Goot et al. () organized the MultiLexNorm shared task. I contributed to the organization of the shared task by participating in the discussions and setting up the evaluation platform that can be found at https: //competitions.codalab.org/competitions/ . It o ered participants the opportunity to compete in the lexical normalization task across language varieties. Based on the ByT model (Xue et al.,) -a byte-level (cf. § . .) multilingual pretrained T model, ne-tuned on word-level lexical normalization, Samuel and Straka ()

 leads mBERT to perform zero-shot cross-lingual transfer. More speci cally, we ask what parts of the model and what mechanisms support cross-lingual transfer?

Figure . :

 . Figure . : Cross-Lingual similarity (CKA) of the representations of a ne-tuned model on NER with and w/o R between English (source) and Russian (target). The higher the score the greater the similarity.

 Figure . : Spearman Correlation between Cross-Lingual Similarity (CKA between English and the target representations) and cross-lang gap averaged over all target languages for each layer

 et al. () without any explicit supervision signal for it. Practically speaking, our ndings provide a concrete tool to measure cross-lingual representation similarity that could be used to design better multilingual pretraining processes. -based Zero-Shot Cross-lingual transfer setting analyzed in the chapter is a challenging and important study case to push the multilingual modeling abilities of NLP systems. However, whenever we can evaluate a system on a test set (as we do in the zero-shot setting), it is usually possible to sample even a small amount of this test set for training purposes. For this reason, in practice, it is better to use as much training data in the language of interest (raw or annotated data) to train the best-performing system. This is the framework we work with in this chapter. This chapter is an adaptation of (Muller et al., c,a, a) papers. (Muller et al., a) was done in collaboration with Antonis Anastasopoulos from George Mason University. As Joshi et al. (b) vividly illustrate, there is a large divergence in the coverage of languages by NLP technologies. The majority of the + of the world's languages (cf. § . .) are not studied by the NLP community, since most have few or no annotated datasets, making systems' development challenging.

 language and each task, we experiment with our three modeling approaches: (a) Training a language model from scratch on the available raw data and then ne-tuning it on any available annotated data in the target language. (b) Finetuning mBERT with T directly on the target language. (c) Finally, adapt-

Figure . :

 . Figure . : Performance as a function of the code-mixing rate, reported on train set to have enough data (seeds, no annotated training data seen during ne-tuning). (X) markers commented in sec. . . .

Figure .

 Figure . : An illustration of the pretraining distributions and an unseen language distributionin the case of the Turkic Language Family. Uyghur is unseen but related to Turkish which mBERT has been pretrained on. Uyghur is written in the Arabic script while Turkish is written in the Latin Script making it a tough challenge for mBERT

 Our ndings are generally in line with previous work. Transliteration to English speci cally (Lin et al., ; Durrani et al., b) and named entity transliteration (Kundu et al., ; Grundkiewicz and Hea eld,) has been proven useful for crosslingual transfer in tasks like NER, entity linking (Rijhwani et al.,), morphological in ection (Murikinati et al.,), and Machine Translation (Amrhein and Sennrich,

 to evaluate NLP systems is to have annotated data. While there are a plethora of benchmarks in English, most languages are still left-out (Joshi et al., b). As shown with our work on Narabizi (Seddah et al.,), annotating data for low-resource languages is costly and challenging. Indeed, crowd-sourcing platforms only have limited number of workers speaking those languages. Consequently, designing more e cient data annotation and curation techniques for low-resource languages is of rst importance. R D Another essential piece for scaling the size of language models is how large the pretraining dataset needs to be (Ho mann et al.,), as predicted by the scaling laws of neural language models (Kaplan et al.,).

 this thesis, large-scale multilingual language models exhibit surprising and e cient zero-shot cross-lingual transfer abilities. This behavior emerges from pretraining on a large quantity of raw data in multiple languages without explicit alignment across languages. However, cross-lingual transfer usually implicitly makes two hypotheses: (i)

 Overall, with the emergence of accurate cross-lingual transfer techniques based on large-scale multilingual language models, we advocate for a move from cross-lingual transfer to cross-cultural transfer by integrating cultural dimensions into cross-lingual transfer. The rst challenge for it is to de ne in an actionable way what we mean by culture. Hershcovich et al. () recently provided a simple framework to think about culture in NLP by seeing culture along four main dimensions, namely linguistic style, aboutness, common ground, and values. Based on the di erent dimensions of cultural transfer, the second step would be to model cultural signals in NLP systems.

 Figure . : Cross-Lingual similarity (CKA) similarity (§ .) of hidden representations of a source language (English) sentences with a target language sentences on ne-tuned and pretrained mBERT. The higher the CKA value the greater the similarity.

 Figure . : Cross-Lingual similarity (CKA) (§ .) of hidden of a source language(English) sentences with target languages sentences on ne-tuned Parsing models with and without R . The higher the CKA value the greater the similarity.

How Can We Make Language Models Better at Handling the Diversity and Variability of Natural Languages ?

 thank Benjamin Piwowarski, Natalie Schulter, Lilja Øvrelid, and Yoav Goldberg for generously accepting to review this manuscript and participating in my Ph.D. committee.

			A		
	I wish to			
			S	U
	E	D	I	T		E
				ED	
		I	P	É	P	ALMA CH
			T		
			Discipline : Informatique
				x Présentée par
			Benjamin M
			Pour obtenir le grade universitaire de
		D	de S	U
	Présentée et soutenue publiquement le novembre	devant le jury composé de :
	Lilja Ø	University of Oslo	Rapportrice & Examinatrice
	Yoav G	Bar Ilan University	Rapporteur & Examinateur
	Natalie S	IT University of Copenhagen	Examinatrice
	Benjamin P	Sorbonne Université	Examinateur
	Benoît S	Inria -ALMAnaCH	Directeur
	Djamé S	Inria -ALMAnaCH	Co-Encadrant

 These biases concern all the dimensions of the identity of an individual. For instance, it can involve gender, sexual orientation, ethnicity, race, or culture. These biases may impact how speci c individuals are represented regarding other individuals or communities (called representational biases). It can also a ect what resources or opportunities NLP systems recommend to a

	(Crawford,). speci c individual or community (called allocation bias) (Savoldi et al., ; Suresh and Guttag, ; Blodgett et al.,).
	H	C	G	Finally, with the emergence of powerful gener-
	ative NLP systems (Radford et al.,	; Brown et al.,	; Chowdhery et al.,),
	the generation of harmful content has become a very substantial risk (Bender et al.,
). These models can generate toxic, o ensive, adult, racist, and homophobic content
	(Gehman et al.,). Using such models and deploying them in a safe environment is
	therefore critical.				
	e ect on their health.			
	C	G	D	B	NLP		NLP
	technologies are inherently biased due to how they are designed, trained, and evaluated

 Still, this trivial reasoning is challenged by the fact that mutual intelligibility is not a transitive property. In a nutshell, this means that if person A can speak and be understood by person B and person B can speak and be understood by person C, person A may not necessarily be able to speak and be understood by person C. This lack of transitivity is observed in practice in many parts of the world. For instance, in Europe, across Switzerland, Germany, and the Netherlands, people are likely to understand each other if they meet someone living not too far from their home, regardless of regional or national borders. Still, a Swiss may not be able to speak to a person several hundred kilometers from their home in the Netherlands. Such a phenomenon is called a Dialect Continuum. It is observed in Europe with German

	Varieties (Gooskens et al.,), in China with Mandarin varieties (Norman et al.,),
	or with Arabic in the Arabic peninsula and north Africa (Versteegh,	; Čéplö et al.,

 By contrast, many languages from the Bantu language family, like Swahili or Zulu, use pre xes to mark verb tenses.

Reduplication which consists in duplicating a morph (Rubino et al.,) is observed in languages such as Thai (Iwasaki and Ingkaphirom,) or Yoruba (e.g. gbó . mo . gbó . mo . gbó . mo . (carry child carry child carry child) -→ gbó . mo . gbó . m (kidnapper) (Arokoyo,). One in ection process used across a large number of languages is affixation. A xation occurs when a morph is attached as a pre x (i.e., at the beginning) or as a su x (i.e. at the end) of a word to derive another word. A xation is used for many functions. For some languages, it is used as a plural mark (e.g., a dog, two dogs), a possessive mark, or even an interrogative mark. In Figure . , we show Tense-aspect a xations and the distributions across the world languages. Some languages like Romance languages use su xes to mark tenses (e.g. https://bolanlearokoyo.com/ / / /reduplication/ (io) prendo (I take) -→ (tu) prende (you take) in Italian).

Table . :

 . JSD divergence between unigram distribution of D 1 (row) vs. D2 (column)

Table . :

 . Illustrating Constituency Rules for English on the sentence "Maria has left a note".

	C	P	
	Constituency Parsing is based on the notion of constituency grammar. Constituency
	grammars are essentially systems of rules that govern how contiguous words in sentences
	are grouped to form sequences of words referred to as constituents. Those systems also
	govern how groups of constituents form larger constituents. The most well-known,
	and probably most widespread formalism used to model fragments of a given language,
	notably English, is that of Context-Free Grammars. They comprise a set of rules (or
	productions) that de ne what group of words are allowed and a set of symbols (words
	in a prede ned vocabulary and non-terminal symbols) that represent the constituents.
	The derivation of those rules when applied to a sentence produces a parse tree. Within
	that framework, a constituent is simply a sequence of words/tokens dominated by a
	non-terminal node in a given parse tree.
		Constituent Grammar Rules Examples
		S	→ NP VP	Maria has left a note
		NP	→ NNP	Maria
		VP	→ VBN VP	has left a note
		VP	→ VBN NP	left a note
		NP	→ DT NN	a note

Table . :

 . Non-canonical UGC example and its canonical form

 It is possible to work at the byte level to overcome this challenge. This was studied for Question Answering by Kenter et al. (), and for sequence labeling by Gillick et al. (). However, working at the byte level leads to extending the sequence length. For instance, in UTF-, each Unicode character requires to bytes. BBPE applies the BPE algorithm at the level of UTF-bytes (cf. section . .).This means that based on their frequencies, it learns merge operations (cf. section . .)between bytes to form characters and sequences of characters. By design, every character de ned in the Unicode database is "known" by the tokenizer.

	To alleviate this, Wang et al. () introduced Byte-level BPE-tokenization (BBPE)
	that extends BPE-tokenization with byte-level tokenization. BBPE does so by consider-
	ing the raw text as sequences of bytes. More speci cally, given a sequence of Unicode
	characters, We point to Mielke et al. () for further discussions of linguistically-driven and
	data-driven tokenization algorithms.

http://unicode.org/reports/tr /

 Algorithm Skip-Gram Word vec Training Given a corpus C, made of a set of unique tokens V . Hyperparameters: number of negative samples K, a window size l, dimension of word vectors d, learning rate (α t) Initialize Randomly: W∈ R (V,d) and C∈ R (V,d) # Training loop for a single epoch for w in C (indexed by i) do # sample window size R Sample R ∈ [|1, l|]

		They can be combined
	with dimension reduction matrix methods such as Singular Value Decomposition (SVD)
	(Stewart,) to get dense embedding vectors of smaller dimensions.

 Third, the objective function is de ned with Negative Sampling (NS), a computationally e cient simpli cation of the softmax-cross-entropy loss. Fourth, the parameters are trained by minimizing the NS loss with Stochastic Gradient Descent. Consequently, the word vec model scales to corpora of billions of tokens without any memory bottleneck.

	The Skip-Gram Word vec model was shown to capture very rich syntactic and seman-
	tic representations (Mikolov et al.,	b). In addition, from a theoretical perspective,
	Levy and Goldberg () demonstrated the link between the Skip-Gram model trained
	with Negative Sampling (SGNS) and the Point-wise mutual information (presented in
	§ . .). They showed that the SGNS model implicitly learns a shifted Positive Point-wise
	Mutual Information matrix.	
	D	L	M		NLP
					; Chauvin and
	Rumelhart,	; Collobert et al.,	; Radford et al.,)

A large number of variants of the Word vec model were introduced. For instance, the polyglot embeddings are word vec embeddings trained for a large number of languages

(Al-Rfou' et al.,)

, the fasttext embeddings integrated sub-words embedding to alleviate the Out-of-Vocabulary drawback and integrate morphological information

(Bojanowski et al.,).

Finally, prediction-based word embedding vectors were shown to work very well with task-speci c deep learning architectures. We present how in the following sections.

Deep learning is nowadays the most popular modeling framework for NLP. We introduce the di erent modeling approaches of deep learning that we will use in the rest of this thesis. This section is mainly based mainly on (Rumelhart et al.,

 V = {t 1 , .., t |V | } we have t j embedded by the vector Emb .j (i.e. column of the matrix Emb indexed by j) of dimension δ e (the dimension of the embedding vectors). In the following sections, given a token t, we will note Emb(t) the embedding representation of the token t in the embedding matrix Emb.

		We now present the main deep learning architectures for NLP.
	M	L	P	MLP
	Deep learning models are made of the composition of simple transformations. We start
	by presenting in detail a Multi-Layer-Perceptron (MLP) (Rumelhart et al.,). MLP
	is, conceptually, the most simple deep learning architecture.

This technique was introduced in early deep learning research on discrete data. For instance, Riis and Krogh () used an embedding technique to encode amino acids to predict the structure of proteins with a deep learning model. Jensen and Riis () used an embedding layer to perform text-to-phoneme transliteration. A few years later, Bengio et al. () showed that a simple -hidden layer deep learning model using a continuous and trainable embedding representation layer of words outperforms state-of-the-art n-gram models for language modeling. The term embedding was rst introduced by Collobert and Weston (), who successfully trained a deep learning model on multiple NLP tasks using a word-level embedding layer. Nowadays, embedding layers are used for nearly all deep learning models that handle symbolic input data.

 And δ l is the dimension of the hidden layer l of the model. L) and the output activation function (ϕ L) have a critical role in the model. Indeed, it de nes what output space the output variable will be living in. For this reason, they must be chosen carefully.In practice, for a regression task (i.e. Y ∈ R δo), we simply use the identity function and we set δ L to be equal to δ o .For a classi cation task, the output variable is a label (e.g., in [|1, L|]). To model such an output variable, we predict the probability distribution over the labels. More precisely, we want to predict a vector p ∈ [0, 1] L such that p i ∈ [0, 1] and i p i = 1 ∀ i. To do so, we set the output dimension δ o equal to L. For the activation function, we usually de ne ϕ L with the softmax function, given s ∈ R L , de ned as:

	O	D For many NLP tasks, this approach is not ideal. Indeed, some tasks require long-term O A F We note that the out-
	e si L k=1 e s k dependencies -e.g., Language Modeling (Le et al., i∈[|1,L|] architecture to solve this: the Recurrent Neural Network (RNN) Minsky and Seymour). Deep learning provides an (); Rumelhart et al. (). We present here RNNs for sequence classi cation or put dimension (δ sof tmax(s) = sequence labeling.
	Minsky and Seymour () showed that the perceptron could only solve discriminative
	tasks that are linearly separable.
		About years later, by introducing the backpropagation algorithm and using di er-
	entiable activation functions, Rumelhart et al. () showed how to use and train the
	multi-layer perceptron.	
	R	N	N
	A critical limit of MLP is that they only can take xed vectors as input. For NLP, this
	means that we can only model as a xed context, i.e., a prede ned number of tokens.
		De ned with 1 w.x+b ≥ 0

(.) Multi-Layer Perceptrons are also called Feed-Forward neural networks (FNN) (as opposed to Recurrent Neural Networks that we will describe next). They inherit from the early work of McCulloch and Pitts on arti cial neurons. McCulloch and Pitts () describes a simpli cation of biological neurons that could compute, in theory, logical operations. Several years later, Rosenblatt () introduced the P erceptron -the equivalent of a single layer neural network with an "all-or-none" activation function -

with a useable algorithm to train it. However, the perceptron was highly limited. Indeed,

 The idea of the vanilla-RNN was discussed in (Minsky and Seymour,). It was then described in detail by Rumelhart et al. (), who noted that a vanilla-RNN could be seen as an MLP for which the recurrent matrix weights are shared across each step of

	the forward pass.
	LSTM	GRU Vanilla RNNs are limited by the vanishing gradient phenomenon
	described by Hochreiter (). Indeed, long-term dependencies in a sequence can only
	be learned by the model's parameters after going through multiple gradient computation
	steps -possibly vanishing. To address this problem, more complex architectures were
	introduced. The Long-Short-Term model (LSTM) (Hochreiter and Schmidhuber,)
	de es explicitly a

memory vector that is supposed to store long-term information. The Gated Recurrent Unit (GRU) (Cho et al.,

) was introduced as a more parameterintensive version of the LSTM (and, therefore, less costly to train). LSTM and recurrent neural networks, in general, are designed to model a sequence in a unidirectional way (e.g., from left to right). To tackle tasks that need to access both the left and right context, it is possible to combine two Recurrent Modules each in one direction (Graves and

Schmidhuber,

).

 networks, Vaswani et al. () showed that the recurrent layers were not necessary to build accurate sequence models. They designed the transformer architecture as a feedforward neural network based on attention mechanisms. We now present in detail this

	architecture.		
	S	A	T T	A
	Until recently, recurrent neural networks combined with attention mechanisms deliv-
	ered the best empirical performance for many NLP tasks. However, these models are
	computationally slower than feed-forward neural networks. Indeed, by de nition, they

require sequential operations (as described in equation .). In practice, this means that recurrent neural networks cannot be fully parallelized: any implementation requires waiting for the computation of step t-1 to be completed before starting the computation of step t. This inherent limit was overcome with a new kind of architecture introduced by

Vaswani et al. (

): the Transformer. The Transformer is a feed-forward neural network that combines simple Feed-Forward transformation (or layers) described in section . . and Self-Attention layers.

Intuitively, self-attention layers build a new contextual representation of each input vectors. By contextual, we mean a representation aggregating information from the entire input sequence. This new contextual representation consists of:

 i -1 -each self-attention transforms H into a new matrix A. For this purpose, the self-attention builds three intermediate vectorial representations of the sequence H:

	the query Q =	q1 . . qT	, the key K =	k1 . . kT	and the value V =	v1 . . vT	vectors.

 (t 1 , .., t D) = P (t D |t 1 , .., t D-1)P (t 1 , .., t D-1) P (t 1 , .., t D) = P (t D |t 1 , .., t D-1)P (t D-1 |t 1 , .., t D-2)P (t 1 , .., t D-2) outputs a noise sequence of tokens by possibly integrating special tokens {ς 1 , .., ς s }. Recently, the most widely used noise function has been the masking procedure introduced with the BERT model(Devlin et al., a). More speci cally, % of tokens are sampled for each sequence of tokens. Within these %, % are replaced by the special As a notation convention, we assumed P (t 1 |t 0) = P (t 1) (t 0 empty token).MASK token, % are replaced by a random token in the vocabulary V , and % are unchanged. Many variant models have been introduced. Some models mask multiple tokens, such as the T model(Ra el et al.,) or SpanBERT (Joshi et al.,The most straightforward approach to estimating causal language models is to compute the frequency of n-grams (Jelinek,). The challenge is that count-based statistics of very long sequences are very poor estimators, even with large datasets. For this reason, the solution is to use a xed window of a few n-gram (or words, for instance) as the left context. After integrating smoothing techniques (Chen and Goodman,), the

). With
	similar results, the BART language model (Lewis et al.,) was trained by integrating
	a noise function that randomly shu es tokens.
		E	L	M
	N	L	M	
	order.			
	D	L	M	Causal Language Models can be seen as part
	of a more general family of language modeling approaches called Denoising Language
	Modeling (Hill et al.,	; Devlin et al.,	a; Lewis et al.,).

P (t 1 , .., t D) = D k=1 P (t k |t 1:k-1) (.)

In consequence, estimating the probability distribution of sequences of tokens in a corpus is equivalent to estimating the transition probability P (t k |t 1:k-1). A model that estimates the transition probability of sequences of tokens is usually called causal language model in the sense that they model the language using its natural sequence Given a sequence of tokens (t 1 , ..t D) ∈ V D , a noise function φ : V D → (V ∪ {ς 1 , .., ς s }) D , a denoising language model aims at estimating:

p((t 1 , .., t D)|φ(t 1 , .., t D)) (.)

φ n-gram causal language model can reach good empirical performance when estimated on a very large corpus. They also have the advantage of being very fast at test times. Indeed, predicting with a n-gram language model consists of a look-up in a large table of n-grams to compute the distribution over the vocabulary.

 Given sequences of tokens (t 1 , .., t L) ∈ V L and sequences of labels (y 1 , .., y L) ∈ L L , the goal is to estimate p(y|t 1 , .., t L) to perform prediction. If we do sequence classi cation, we can simply consider y L as the only label of interest in the sequences of labels. We focus our review on the di erent POS tagging and NER modeling approaches.

	et al.,	; Yang et al.,	; Dozat and Manning,	; Peters et al.,	c; Devlin et al.,
	b) showing that very little features engineering were needed for most NLP tasks.
	H	C	F		B	M
						; Hopcroft
	et al.,).			
	S	L	For POS tagging, Klein and Simmons () were able to reach
	more than % accuracy using a computational grammar coder (CGC). Stolz et al. ()
	extended this approach by adding a probability-based disambiguation step. For ambigu-
	ous cases, their approach uses observed probability to disambiguate between plausible
	POS tags, de ned using lexicons and extracted morphological features. For NER, Appelt
	et al. () developed a non-deterministic Finite State Machine (FSM) to extract
	named entities and verb groups. In the same spirit, the transformation-based approach
	(Brill,) starts with rules computed on the (word, tag) observations and morphologi-
	cal lexicon. These rules are then re ned iteratively based on the error made by the tagger
	on some held-out data (Brill,	,). Vilain and Day () adapted this approach
	to NER.				
	these approaches (cf. § . . and § . .) (Cho et al., Originally introduced in (McCulloch and Pitts,).	; Sutskever et al.,	; Lample

R B S

Early approaches were based on rules. The predictions relied on a combination of handcrafted features with hand-crafted rules to disambiguate the labels of tokens or sequences of tokens. These rules were de ned by hand or learned using computational models on Finite State Machine or Context-Free Grammars (McCulloch and Pitts,

Table .

 . summarizes statistics of these di erent corpora.

	Corpus	Size	#tokens #docs	Tokens/doc
					Percentiles:
				%	%	%
	Wikipedia	GB	M	. M
	CCNet	GB	. B	. M
	OSCAR	GB	. B	. M

Table . :

 . Statistics on the pretraining datasets used.

Table . :

 . Comparing scores on the Validation sets of di erent design choices. POS tagging and parsing datasets are averaged. (average over multiple ne-tuning seeds).

				. Impact of Whole-Word Masking
	POS tagging and dependency parsing probably do not bene t from adding more layers
	as the lower layers of the BASE architecture already capture what is necessary to complete
	these tasks.							
	I	W	W	M				
	In Table . , we compare models trained using the traditional subword masking with
	D whole-word masking. Whole-Word Masking positively impacts downstream perfor-M A #P #S UPOS LAS NER XNLI
	Masking Strategy OSCAR Subword mances for NLI (although only by . points of accuracy). To our surprise, this Whole-B M k
	OSCAR Whole-word B Word Masking scheme does not bene t much lower level task such as Name Entity M k
	Model Size CCNet Whole-word B Recognition, POS tagging and Dependency Parsing. M	k
	CCNet	Whole-word L	M		k
	Dataset						
	CCNet	Whole-word B	M		k
	OSCAR Whole-word B	M		k
	Number of Steps						
	CCNet	Whole-word B	M		k
	CCNet	Whole-word B	M		k
	I	M	S					
	Table . compares models trained with the BASE and LARGE architectures. These
	models were trained with the CCNet corpus (GB) for practical reasons. We con rm
	the positive in uence of larger models on the NLI and NER tasks. The LARGE archi-
	tecture leads to respectively . % error reduction and . %. To our surprise, on POS
	tagging and dependency parsing, having three time more parameters doesn't lead to a
	signi cant di erence compared to the BASE model. Tenney et al. () and Jawahar
	et al. () have shown that low-level syntactic capabilities are learnt in lower layers of
	BERT while higher level semantic representations are found in upper layers of BERT.

Table . :

 . Parallel Alignment of yea im already knowing wat u sayin normalized as yeah i'm already knowing what you saying with gold number of next masks for each source token

	Noisy	Gold	#next mask
	ye	ye	
	##a	##ah	
	im	i	
	MASK '	-
	MASK m	-
	already	already	
	knowing knowing	
	wa	wh	
	##t	##at	
	https://github.com/huggingface/pytorch-pretrained-BERT

Table . :

 . Independent Alignment of yea im already knowing wat u sayin normalized as yeah i'm already knowing what you saying

	noisy	canonical
	ye	yeah
	##a	[SPACE]
	im	i
	MASK '
	MASK m
	already	already
	knowing knowing
	wa	what
	##t	[SPACE]

 This module takes as input BERT last hidden state of each WordPiece tokens and predict the number of [MASK] to append next In table . , we illustrate the training signal of the overall architecture. It takes noisy WordPiece tokens as input. As gold labels, it takes on the one side the gold WordPiece tokens and on the other side the number of [MASK] to append next to each source

	WordPiece tokens.

Table . :

 . indexing the WordPiece vocabulary and d the dense dimension of BERT output layer), mean i (resp. σ 2 i) means mean (resp. variance) along the i dimension Parallel Alignment of yea im already knowing wat u sayin normalized as yeah i'm already knowing what you saying

	Noisy	Canonical
	ye	ye
	##a	##ah
	im	i
	MASK '
	MASK m
	already	already
	knowing knowing
	wa	wh
	##t	##at

Table . :

 . Impact of our noise-speci c strategy on the F score (development set) reported with best alignment setting

	Standard Noise-focused Gain
	.	.	+ .
	Model		Accuracy
	BERT noise-focused	.
	MoNoise		.

Table . :

 . Comparing our systems to the State-of-the-art system MoNoise (we report on same development dataset reported in MoNoise original paper (last sentences))

Table . :

 . Comparing our systems to the State-of-the-art system MoNoise on lexnorm test. Speed is reported as time to predict tokens (includes model loading). MoNoise No-Ngrams or MoNoise NNG is the score reported in the original paper without the use of UGC-n-grams but with a UGC word vec

			Model	F
	Supranovich and Patsepnia,	.
	Berend and Tasnádi,	.
		our best model	.
		Beckley,	.
			GIGO	.
		Ruiz et al.,	.
	Table . : Comparing our systems to WNUT	shared task that allowed UGC resources
	Model	F	UGC resources	speed
	MoNoise	.	lex + Mtweets	s
	our best model	.	lexnorm		. s
	MoNoise NNG	.	lex + Mtweets	-

Table . :

 . Dependency Parsing Zero-Shot Cross-lingual transfer performance (measured with the LAS score) of mBERT ne-tuned on a S language and evaluated on a T language.

		T	S	E	A	R
		E		.	.	.
		A		.	.	.
		R		.	.	.
		C		.	.	.
		C		.	.	.
		F		.	.	.
		F		.	.	.
		G		.	.	.
		H		.	.	.
		I		.	.	.
		I		.	.	.
		J		.	.	.
		P		.	.	.
		P		.	.	.
		S		.	.	.
		S		.	.	.
		T		.	.	.
		M		.	.	.
						Pires et al. (a)
	hypothesize that these models learn shared multilingual representations during pretrain-
	ing. Focusing on syntax, Chi et al. () recently showed that mBERT (Devlin et al.,
		b), encodes linguistic properties in shared multilingual sub-spaces. Gonen et al.
	() suggest that mBERT learns a language encoding component and an abstract cross-
	lingual component. In this work, we are interested in understanding the mechanism that
		The code to run the analysis is available at https://github.com/benjamin-mlr/
	first-align-then-predict-w-RANDOM-INIT		

Table . :

 . Relative Zero shot Cross-Lingual performance of mBERT with R (§ . .) on pairs of consecutive layers compared to mBERT without any randominitialization (R). We present experiments with English as the source language and evaluate across various target domains in English in comparison with the cross-lingual setting when we evaluate on French.

		4 Hidden Layer Index 6 8 Pretrain/Tuned mBERT Language Similarity 10 12 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Cross-Lingual Similarity En vs. Ru Pretrained NER POS Parser
	Figure . : Cross-Lingual similarity (CKA) between representations of pretrained and ne-
	tuned models on POS, NER and Parsing between English and Russian.
		0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Cross-Lingual Similarity En vs. Ru	2 NER Fine-Tuned mBERT Lang. Similarity 4 6 8 10 Hidden Layer Index *59.12 12 *58.28 *52.03 *34.66 *F1 score Standard Random-Init 4-7 Random-Init 8-11 Random-Init 0-3
	EN L	refers to the Literature Domain. UGC refers to User-Generated Content.
	FR T	refers to sentences translated from the English In-Domain test set, hence
	reducing the domain-gap to its minimum.
	≥ R	< R	≤ -points ≤ -points
	These results do not match the ndings of Singh et al. (), who found no language
	alignment across layers, although they inspected Natural Language Inference, a more
	"high-level task" (Dagan et al.,	a; Bowman et al.,	a). This di erence could be
	due to the di erent choice of similarity metric. Indeed, in contrast with the Canonical
	Correlation Analysis (Hotelling,) used by Singh et al. (), the linear CKA used
	here, was shown to be robust to noise in the training procedure of deep-learning models

Table . :

 . Unseen Languages used for our experiments. #sents indicates the number of sentences used for training from scratch Monolingual Language Models as well as for MLM mBERT *code-mixed with French

	Language (iso)	Script	Family #sents	source	Category
	Faroese (fao)	Latin North Germanic	K (Biemann et al.,)	Easy
	Mingrelian (xmf)	Georg.	Kartvelian	K	Wikipedia	Easy
	Naija (pcm)	Latin	English Pidgin	K	(Caron et al.,)	Easy
	Swiss German (gsw)	Latin	West Germanic	K	OSCAR	Easy
	Bambara (bm)	Latin	Niger-Congo	K	OSCAR Intermediate
	Wolof (wo)	Latin	Niger-Congo	K	OSCAR Intermediate
	Narabizi (nrz)	Latin	Semitic*	K	(Seddah et al.,) Intermediate
	Maltese (mlt)	Latin	Semitic	K	OSCAR Intermediate
	Buryat (bxu)	Cyrillic	Mongolic	K	Wikipedia Intermediate
	Mari (mhr)	Cyrillic	Uralic	K	Wikipedia Intermediate
	Erzya (myv)	Cyrillic	Uralic	K	Wikipedia Intermediate
	Livvi (olo)	Latin	Uralic	. K	Wikipedia Intermediate
	Uyghur (ug)	Arabic	Turkic	K	OSCAR	Hard
	Sindhi (sd)	Arabic	Indo-Aryan	K	OSCAR	Hard
	Sorani (ckb)	Arabic	Indo-Iranian	K	OSCAR	Hard

 Table . , the non-contextual baseline outperforms mBERT. Additionally, a monolingual MLM trained on only K sentences matches mBERT performance for both NER and POS tagging. However, the best results are reached with MLM : the proper use of monolingual data and the advantage of similarity to other pretraining languages render Maltese a tackle-able language as shown by the performance gain over our strong non-contextual baselines. Our Maltese dependency parsing results are in line with those of Chau et al. (),

Table . :

 . Hard Languages POS, Parsing and NER scores comparing mBERT, mBERT+MLM and monolingual MLM to strong non-contextual baselines when trained and evaluated on unseen languages. Hard Languages are the ones for which mBERT fails to reach decent performance even after MLM .

		BERT	BERT MLM MLM Baseline
	Language				
			UPOS		
	Uyghur
			LAS		
	Uyghur
			NER		
	Uyghur
	Sindhi
	Sorani Kurdish

Table . :

 . Example of a Narabizi sentence code-mixed with French (French words have been written in bold)

		Rabi m akom et bon courage wled bledi mBERT	Narabizi mBERT+MLM
		God bless you and good luck children of my country Source Language POS UAS	Translation POS UAS
			Maltese	
			French	
			English	
			Arabic (MSA)
			Vietnamese
	margin our language models (a monolingual SindhiBERT achieves an F -score of . ,
	and mBERT is worse at .).	Stanza		Baselines
			Narabizi		.	.
			French		.	.
	C	S	Baseline	N	Rule-Based . .	U
	C	M					D
	We focus here on North-African dialectal Arabic in its Algerian form, understood and
	spoken by over million people in the Maghreb (Sayahi,). In its written form,
	Narabizi is non-standard so the spelling of words varies a lot based on who is writing
	as well as on socio-geographical context. As illustrated in table . (from (Seddah et al.,
)), a single word in French may corresponds to multiple spellings. As reported
	in Table . , for both POS tagging and parsing, the multilingual models outperform
	the monolingual BERT. In addition, MLM		leads to signi cant improvements
	over the non-language-tuned mBERT baseline, also outperforming the non-contextual
	dependency parsing baseline. For this reason, Narabizi is classi ed as a Intermediate
	language for mBERT.			
			G	O			L
	F -score outperforming signi cantly mBERT which only reaches . in F -score. MLM why wa lach w alh alach lache Narabizi
	on score, but it is still lagging behind the baseline. Our results in Sindhi follow the same all ekl kal kolach koulli kol Narabizi K sentences of Sorani texts improves mBERT performance to . F -many beaucoup boucoup bcp French
	pattern. The non-contextual baseline achieves a . F -score outperforming with a large Table . : Examples of lexical variation in Narabizi (Seddah et al.,)

it is mostly found online and in Latin script, with a high degree of variability across writers and a high degree of code-switching with French. We refer to this North-African Arabic dialect, which does not belong to mBERT's pre-training corpus, as North-African Arabizi or Narabizi following

(Seddah et al.,

).

Table . :

 . Cross-lingual performance on the test set (seeds). The baselines is a majority class prediction for POS tagging and the left-tokens head prediction for parsing.

Table .

 .

		(B)-(E) vs. + . : (B)-(C) for tagging, + . : (K)-(L) vs. + . : (J)-(K) for parsing). This
		shows that unsupervised ne-tuning can overcome the lexical divergence between distant
		languages such as native Narabizi and French.				
		T								
		Surprisingly, mBERT tuned on Maltese performs well, with the best performance among
		mBERT models for both POS tagging and parsing. It outperforms in the zero-shot
		scenario by points in tagging and points in parsing. As seen in Figure . (C) and (J),
		it performs the best on native Narabizi sentences (with no code-mixing). This result is
		surprising as Maltese is absent from the pre-training corpora. It shows that mBERT is
		able to capture structural properties shared by related languages even if they are absent
		from the pre-training corpora, which extends observations made by Wang et al. (b).
		I						BERT		
		Finally, we want to show that the ability of mBERT to achieve cross-lingual transfer
		is related to the	languages it is pre-trained on, rather than because a pre-trained
		Transformer is an inherently good POS tagger or parser. To do so, we compare mBERT
		with three other models: Roberta, the optimized English version of BERT (Liu et al.,
), CamemBERT (introduced in chapter), and a randomly initialized mBERT-like
		Transformer as a baseline (noted R).				
				mBERT	RoBERTA	CamemBERT	R	
			POS UAS	POS UAS	POS UAS	POS UAS
		French
		Maltese). We
	observe in Fig. . (cf. (B) and (K)) that this improvement mostly comes from a better
	accuracy on Narabizi tokens. Interestingly, unsupervised ne-tuning leads to closing
	the gap on native Narabizi tokens between models tuned on French and Maltese (+ :
		We sample the training datasets to have ,		sentences for each source language. We pick the rst
	,	training sentences. More information on the datasets used is given in Appendix . . .

Table . :

 . Zero-shot transfer from French and Maltese to Narabizi. averaged seeds.

Table . :

 . Transliterating low-resource languages into the Latin script leads to signi cant improvements in languages like Uyghur, Sorani, and Meadow Mari. For languages like Erzya and Buryat transliteration, does not signi cantly in uence results, while it does not help for Mingrelian. In all cases, mBERT+MLM is the best approach.

Table .

 .

	D			
	Pretraining ever larger language models is a research direction that has been receiving a
	lot of attention and resources from the NLP research community in the past three years
	(Devlin et al.,	a; Ra el et al.,	; Brown et al.,). Still, a large majority of
	human languages are under-resourced making the development of monolingual language
	models very challenging in those settings. Another path is to build large scale multilingual
	language models.			
	However, such an approach faces the inherent zip an structure of human languages
	and "curse of multilinguality" making the training of single model to cover all
	languages an unfeasible solution (Conneau et al.,	b). Reusing large scale pretrained
	language models for new unseen languages seems to be a more promising and reasonable
	solution from a cost-e ciency and environmental perspective (Strubell et al.,).
	Pfei er et al. () proposed to use adapter layers (Houlsby et al.,) to build
					,
	transliterating both Uyghur and Sorani leads to matching or outperforming the perfor-
	mance of non-contextual strong baselines and deliver usable models (e.g. + . POS
	accuracy in Uyghur).		

 of BERT-like models. It can be used to disentangle pretraining from ne-tuning and

	locate what layers contribute to downstream performance for any deep-learning models
	such that BERT-like models (Devlin et al.,	a), ne-tuned sequence to sequence
	models (Lewis et al.,	; Ra el et al.,), and in-context instruction training (Sanh
	et al.,	a; Wang et al.,).

 those models are also very costly and slow at inference time. As of today, this is an essential limiting factor in their practical use. Therefore, one crucial research direction is to make them faster at inference time. Beyond progress in hardware(Jouppi et al.,), knowledge distillation (Buciluunde ned et al., ; Hinton et al., ; Sanh et al.,) and pruning techniques, which aim at making models smaller (LeCun et al., ; Lagunas et al.,), are two promising paths that can make those models smaller and faster without harming too much their performance.

	(Brown et al.,), OPT (Zhang et al.,), Megatron-LM (Smith et al.,), PaLM
	(Chowdhery et al.,) and BLOOM have shown increasingly good performance in
	the zero-shot and few-shot setting for a vast number of tasks (Srivastava et al.,	; Wei
	et al.,). Without a doubt, this scaling trend will keep delivering empirical progress
	on most benchmarks. It will also drive performance improvement in the cross-lingual
	setting, speci cally for low-resource languages.
	M	L			Beyond their substantial pretraining cost,
		C		
	Large-scale generative pretrained models (Brown et al.,	; Zhang et al.,	; Chowd-
	hery et al.,) can potentially generate any textual data regardless of how harmful,
	factually incorrect, or degenerated the predicted sequence may be (Weidinger et al.,	a;
	Bender et al.,		

 ://huggingface.co/blog/bloom-megatron-deepspeed "text-to-text" manner (Ra el et al.,). However, evaluating generative systems is inherently more challenging than classi cation or structured prediction systems (the output space being in nite). In work done during an internship, we experimented with generative Question Answering in a multilingual setting. We showed that BLEU or ROUGE scores were not correlated with human judgment (Muller et al., c) in open domain question answering. Evaluating these powerful generative models in a more re ned way has been recently addressed with very large benchmarks such as the BIG-Bench benchmark (Srivastava et al.,), Cross-FIT (Ye et al.,) and FLEX (Bragg et al.,). Those benchmarks are designed to probe various natural language abilities and cross-task transfer. Even when tackling model classi cation tasks, de ning the output space in a way compatible with the model is not trivial. This step is referred to as verbalization (Tam et al.,). In summary, evaluating all the dimensions of the prediction of a generative model is an important research direction. Again, designing a multilingual evaluation benchmark will also be important to ensure that the largest number of languages is supported.

		.,	; Zhang et al.,	; Chowd-
	hery et al.,) can potentially be used for any NLP task that can be framed in a

https

https://www.mordorintelligence.com/industry-reports/machine-translation-market https://ai.facebook.com/research/no-language-left-behind/ https://ai.googleblog.com/ / / -new-languages-google-translate.html http://raysolomonoff.com/dartmouth/boxa/dart props.pdf

https://www.clips.uantwerpen.be/conll / https://github.com/UniversalDependencies/UD_Russian-GSD

Aitziber Atutxa, Liesbeth Augustinus, Elena Badmaeva, Miguel Ballesteros, Esha Banerjee, Sebastian Bank, Verginica Barbu Mititelu, John Bauer, Sandra Bellato, Kepa Bengoetxea, Riyaz Ahmad Bhat, Erica Biagetti, Eckhard Bick, Rogier Blokland, Victoria Bobicev, Carl Börstell, Cristina Bosco, Gosse Bouma, Sam Bowman, Adriane Boyd, Aljoscha Burchardt, Marie Candito, Bernard Caron, Gauthier Caron, Gülşen Cebiroğlu Eryiğit, Giuseppe G. A. Celano, Savas Cetin, Fabricio Chalub, Jinho Choi, Yongseok Cho, Jayeol Chun, Silvie Cinková, Aurélie Collomb, Çağrı Çöltekin, Miriam Connor, Marine Courtin, Elizabeth Davidson, Marie-Catherine de Marne e, Valeria de Paiva, Arantza Diaz de Ilarraza, Carly Dickerson, Peter Dirix, Kaja Dobrovoljc, Timothy Dozat, Kira Droganova, Puneet Dwivedi, Marhaba Eli, Ali Elkahky, Binyam Ephrem, Tomaž Erjavec, Aline Etienne, Richárd Farkas, Hector Fernandez Alcalde, Jennifer Foster, Cláudia Freitas, Katarína Gajdošová, Daniel Galbraith, Marcos Garcia, Moa Gärdenfors, Kim Gerdes, Filip Ginter, Iakes Goenaga, Koldo Gojenola, Memduh Gökırmak, Yoav Goldberg, Xavier Gómez Guinovart, Berta Gonzáles Saavedra, Matias Grioni, Normunds Gr ūzītis, Bruno Guillaume, Céline Guillot-Barbance, Nizar Habash, Jan Hajič, Jan Hajič jr., Linh Hà Mỹ, Na-Rae Han, Kim Harris, Dag Haug, Barbora Hladká, Jaroslava Hlaváčová, Florinel Hociung, Petter Hohle, Jena Hwang, Radu Ion, Elena Irimia, Tomáš Jelínek, Anders Johannsen, Fredrik Jørgensen, Hüner Kaşıkara, Sylvain Kahane, Hiroshi Kanayama, Jenna Kanerva, Tolga Kayadelen, Václava Kettnerová, Jesse Kirchner, Natalia Kotsyba, Simon Krek, Sookyoung Kwak, Veronika Laippala, Lorenzo Lambertino, Tatiana Lando, Septina Dian Larasati, Alexei Lavrentiev, John Lee, Phng Lê H ồng, Alessandro Lenci, Saran Lertpradit, Herman Leung, Cheuk Ying Li, Josie Li, Keying Li, KyungTae Lim, Nikola Ljubešić, Olga Loginova, Olga Lyashevskaya, Teresa Lynn, Vivien Macketanz, Aibek Makazhanov, Michael Mandl, Christopher Manning, Ruli Manurung, Cătălina Mărănduc, David Mareček, Katrin Marheinecke, Héctor Martínez Alonso, André Martins, Jan Mašek, Yuji Matsumoto, Ryan McDonald, Gustavo Mendonça, Niko Miekka, Anna Missilä, Cătălin Mititelu, Yusuke Miyao, Simonetta Montemagni, Amir More, Laura Moreno Romero, Shinsuke Mori, Bjartur Mortensen, Bohdan Moskalevskyi, Kadri Muischnek, Yugo Murawaki, Kaili Müürisep, Pinkey Nainwani, Juan Ignacio Navarro Horñiacek, Anna Nedoluzhko, Gunta Nešpore-Bērzkalne, Lng Nguy ễn Thi . , Huy `ên Nguy ễn Thi . Minh, Vitaly Nikolaev, Rattima Nitisaroj, Hanna Nurmi, Stina Ojala, Adédayò . Olúòkun, Mai Omura, Petya Osenova, Robert Östling, Lilja Øvrelid, Niko Partanen, Elena Pascual, Marco Passarotti, Agnieszka Patejuk, Siyao Peng, Cenel-Augusto Perez, Guy Perrier, Slav Petrov, Jussi Piitulainen, Emily Pitler, Barbara Plank, Thierry Poibeau, Martin Popel, Lauma Pretkalnin , a, Sophie Prévost, Prokopis Prokopidis, Adam Przepiórkowski, Tiina Puolakainen, Sampo Pyysalo, Andriela Rääbis, Alexandre Rademaker, Loganathan Ramasamy, Taraka Rama, Carlos Ramisch, Vinit Ravishankar, Livy Real, Siva Reddy, Georg Rehm, Michael Rießler, Larissa Rinaldi, Laura Rituma, Luisa Rocha, Mykhailo Romanenko, Rudolf Rosa, Davide Rovati, Valentin Ros , ca, Olga Rudina, Shoval Sadde, Shadi Saleh, Tanja Samardžić, Stephanie

//www.hp.com/us-en/shop/pdp/omen

We report here detailed results illustrating trends discussed in the chapter .

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je rey Dean, Matthieu Devin, Sanjay Ghemawat, Geo rey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

. Tensor ow: A system for large-scale machine learning. In Proceedings of the th USENIX Conference on Operating Systems Design and Implementation, OSDI' , page -, USA. USENIX Association.

A. Abeillé, Lionel Clément, and Alexandra Kinyon.

. Building a treebank for french. In LREC.

Steven Abney.

. The scol manual, version . b.

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg.

. Finegrained analysis of sentence embeddings using auxiliary prediction tasks. In th International Conference on Learning Representations, ICLR , Toulon, France, April -, , Conference Track Proceedings. OpenReview.net.

Zeljko Agic, Anders Johannsen, Barbara Plank, Héctor Martínez Alonso, Natalie Schluter, and Anders Søgaard.

. Multilingual projection for parsing truly lowresource languages. Transactions of the Association for Computational Linguistics, : -.

Roee Aharoni and Yoav Goldberg.

. Unsupervised domain clusters in pretrained language models. In Proceedings of the th Annual Meeting of the Association for Computational Linguistics, pages -, Online. Association for Computational Linguistics. Alfred V. Aho, Ravi Sethi, and Je rey D. Ullman.

. Compilers: Principles, Techniques, and Tools. Addison-Wesley series in computer science / World student series edition. Addison-Wesley.

Alan Akbik, Duncan Blythe, and Roland Vollgraf.

. Contextual string embeddings for sequence labeling. In Proceedings of the th International Conference on Computational Linguistics, COLING , Santa Fe, New Mexico, USA, August -, , pages -. Association for Computational Linguistics.

Douglas Biber, Susan Conrad, and Randi Reppen.

. Corpus Linguistics: Investigating Language Structure and Use. Cambridge Approaches to Linguistics. Cambridge University Press.

Chris Biemann, Gerhard Heyer, Uwe Quastho , and Matthias Richter.

. The Leipzig Corpora collection-monolingual corpora of standard size. Proceedings of Corpus Linguistic, .

Alexandra Birch, Nadir Durrani, and Philipp Koehn.

. English SLT and MT system description for the IWSLT evaluation. In Proceedings of the th International Workshop on Spoken Language Translation: Evaluation Campaign, Heidelberg, Germany.

Alan W. Black, Kevin A. Lenzo, and Vincent . Issues in building general letter to sound rules. In SSW.

Damian Blasi, Antonios Anastasopoulos, and Graham Neubig.

. Systematic inequalities in language technology performance across the world's languages. In Proceedings of the th Annual Meeting of the Association for Computational Linguistics (Volume : Long Papers), pages -, Dublin, Ireland. Association for Computational Linguistics.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach.

. Language (technology) is power: A critical survey of "bias" in NLP. In Proceedings of the th Annual Meeting of the Association for Computational Linguistics, pages -, Online. Association for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. . Enriching word vectors with subword information. TACL, : -. Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik.

. A training algorithm for optimal margin classi ers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT ' , page -, New York, NY, USA. Association for Computing Machinery.

Alexandre Bouchard, Percy Liang, Thomas Gri ths, and Dan Klein.

. A probabilistic approach to diachronic phonology. . Ethnologue: Languages of the World, th edition. SIL International, Dallas, TX, USA.

Abdessamad Echihabi and Daniel Marcu.

. A noisy-channel approach to question answering. In Proceedings of the st Annual Meeting of the Association for Computational Linguistics, pages -, Sapporo, Japan. Association for Computational Linguistics.

Penelope Eckert.

. Age as a sociolinguistic variable. . Music transformer: Generating music with long-term structure. In ICLR.

Matthew Hutson.

. Robo-writers: the rise and risks of language-generating AI. Nature, (): -.

IEA.

. Global Energy Review: CO Emissions in .

Itay Itzhak and Omer Levy.

. Models in a spelling bee: Language models implicitly learn the character composition of tokens. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages -, Seattle, United States. Association for Computational Linguistics.

Shoichi Iwasaki and Preeya Ingkaphirom.

. A reference grammar of thai.

Román Jakobson and Morris Halle.

. Fundamentals of language.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.

. Tree-Based Methods, pages -.

Ganesh Jawahar, Benjamin Muller, Amal Fethi, Louis Martin, Éric Villemonte de la Clergerie, Benoît Sagot, and Djamé Seddah.

. ELMoLex: Connecting ELMo and lexicon features for dependency parsing. In Proceedings of the CoNLL Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages -, Brussels, Belgium. Association for Computational Linguistics.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.

. What does BERT learn about the structure of language? In (Korhonen et al.,

), pages -.

Edwin T. Jaynes.

. Information theory and statistical mechanics. Physical Review, : -. Frederick Jelinek.

. Continuous speech recognition by statistical methods. Proceedings of the IEEE, : -. Frederick Jelinek.

. Interpolated estimation of markov source parameters from sparse data.

Kåre Jean Jensen and Søren Kamaric Riis.

. Self-organizing letter code-book for text-to-phoneme neural network model. In INTERSPEECH.

Jespersen.

. The Articulations of Speech Sounds Represented by Means of Analphabetic Symbols.

Zhengbao Jiang, Frank F. Xu, J. Araki, and Graham Neubig.

. How can we know what language models know? Transactions of the Association for Computational Linguistics, : -.

Mark Johnson.

. Joint and conditional estimation of tagging and parsing models. In ACL. . An e cient recognition and syntax-analysis algorithm for contextfree languages. Coordinated Science Laboratory Report no. R-.

Mandar Joshi, Danqi

Tom Kenter, Llion Jones, and Daniel Hewlett, editors.

. Byte-level Machine Reading across Morphologically Varied Languages.

Brian W Kernighan and Dennis M Ritchie.

. The C programming language. Pearson Educación.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush.

. Character-aware neural language models. In Thirtieth AAAI conference on artificial intelligence.

Diederik P. Kingma and Jimmy Ba.

. Adam: A method for stochastic optimization. CoRR, abs/ . . E. Kiperwasser and Yoav Goldberg.

. Simple and accurate dependency parsing using bidirectional lstm feature representations. Transactions of the Association for Computational Linguistics, : -. Sheldon Klein and Robert F. Simmons.

. A computational approach to grammatical coding of english words. J. ACM, (): -.

A. Klementiev, Ivan Titov, and Binod Bhattarai.

. Inducing crosslingual distributed representations of words. In COLING.

Philipp Koehn.

. Europarl: A parallel corpus for statistical machine translation. In Proceedings of Machine Translation Summit X: Papers, pages -, Phuket, Thailand.

Daphne Koller and Nir Friedman.

. . Adaptive language modeling using the maximum entropy principle. In Proceedings of the Workshop on Human Language Technology, HLT ' , page -, USA. Association for Computational Linguistics.

Hai Son Le, Alexandre Allauzen, and François Yvon.

. Measuring the in uence of long range dependencies with neural network language models. In Proceedings of the NAACL-HLT Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Language Modeling for HLT, pages -, Montréal, Canada. Association for Computational Linguistics.

Yann LeCun, John Denker, and Sara Solla.

. Optimal brain damage. In Advances in Neural Information Processing Systems, volume . Morgan-Kaufmann.

Yann LeCun, Ido Kanter, and Sara Solla.

. Second order properties of error surfaces: Learning time and generalization. In Advances in Neural Information Processing Systems, volume . Morgan-Kaufmann. CL Lee.

. Motivations of code-switching in multi-lingual singapore. Journal of Chinese Linguistics, : -. David Yong Wey Lee.

. Genres, registers, text types, domains and styles: Clarifying the concepts and navigating a path through the bnc jungle. Language Learning & Technology, : -. Jason Lee, Kyunghyun Cho, and Thomas Hofmann.

. Fully character-level neural machine translation without explicit segmentation. Transactions of the Association for Computational Linguistics, : -. . How language-neutral is multilingual bert? arXiv preprint arXiv:

. . Rochelle Lieber.

. Inflection, Cambridge Introductions to Language and Linguistics, page -. Cambridge University Press.

Ying Lin, Xiaoman Pan, Aliya Deri, Heng Ji, and Kevin Knight.

. Leveraging entity linking and related language projection to improve name transliteration. In Proceedings of the Sixth Named Entity Workshop, pages -, Berlin, Germany. Association for Computational Linguistics. John M Lipski.

. Spanish-english code-switching among low-uency bilinguals: Towards an expanded typology. Sociolinguistic Studies, (): . Pierre Lison and Jörg Tiedemann.

. OpenSubtitles : Extracting large parallel corpora from movie and TV subtitles. In Proceedings of the . Foundations of statistical natural language processing. In SGMD.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz.

. Building a large annotated corpus of English: The Penn Treebank. Computational Linguistics, (): -.

Louis Martin.

. Automatic sentence simplification using controllable and unsupervised methods. Ph.D. thesis, Sorbonne Université. Louis Martin, Éric de la Clergerie, Benoît Sagot, and Antoine Bordes.

. a. When being unseen from mBERT is just the beginning: Handling new languages with multilingual language models. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages -, Online. Association for Computational Linguistics.

Benjamin Muller, Antonis Anastasopoulos, Benoît Sagot, and Djamé Seddah.

a. When being unseen from mbert is just the beginning: Handling new languages with multilingual language models. CoRR, abs/ . . Benjamin Muller, Yanai Elazar, Benoît Sagot, and Djamé Seddah. b. First align, then predict: Understanding the cross-lingual ability of multilingual BERT. In Proceedings of the th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages -, Online. Association for Computational Linguistics.

Benjamin Muller, Benoit Sagot, and Djamé Seddah.

. Enhancing BERT for lexical normalization. In Proceedings of the th Workshop on Noisy User-generated Text (W-NUT), pages -, Hong Kong, China. Association for Computational Linguistics.

J. Norman, S.R. Anderson, J. Bresnan, B. Comrie, W. Dressler, C. Ewen, and R. Lass.

. Chinese. ACLS Humanities E-Book. Cambridge University Press.

Pedro Ortiz Suarez.

. A Data-driven Approach to Natural Language Processing for Contemporary and Historical French. Theses, Sorbone Université.

Pedro Javier Ortiz Suárez, Benoît Sagot, and Laurent Romary.

. Asynchronous pipeline for processing huge corpora on medium to low resource infrastructures.

Challenges in the Management of Large Corpora (CMLC-)

, page .

Pedro Javier Ortiz Suárez, Benoît Sagot, and Laurent Romary.

. Asynchronous pipelines for processing huge corpora on medium to low resource infrastructures. . Lstm neural networks for language modeling. In INTERSPEECH.

Dmitry Supranovich and Viachaslau Patsepnia.

. Ihs_rd: Lexical normalization for english tweets. In Proceedings of the Workshop on Noisy User-generated Text, pages -.

Harini Suresh and John V. Guttag.

. A framework for understanding unintended consequences of machine learning. ArXiv, abs/ . . Ilya Sutskever, James Martens, and Geo rey Hinton.

. Generating text with recurrent neural networks. pages -.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le.

. Sequence to sequence learning with neural networks. In Advances in neural information processing systems, pages -.

Corso Svizzera.

. Converting the parallel treebank partut in universal stanford dependencies.

H. Sweet.

. The Practical Study of Languages: A Guide for Teachers and Learners. Creative Media Partners, LLC.

Derek Tam, Rakesh R. Menon, Mohit Bansal, Shashank Srivastava, and Colin Ra el.

. Improving and simplifying pattern exploiting training. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages -, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick.

. BERT rediscovers the classical NLP pipeline. In Proceedings of the th Annual Meeting of the Association for Computational Linguistics, pages -, Florence, Italy. Association for Computational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.

. Introduction to the CoNLLshared task: Language-independent named entity recognition. In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL , pages -.

Erik F. Tjong Kim Sang and Fien De Meulder.

. Introduction to the CoNLLshared task: Language-independent named entity recognition. In (Daelemans and Osborne,

), pages -.

Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. . Feature-rich part-of-speech tagging with a cyclic dependency network. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology -Volume , NAACL ' , page -, USA. Association for Computational Linguistics.

Kristina Toutanova and Robert Moore.

. Pronunciation modeling for improved spelling correction. In Proceedings of the th Annual Meeting of the Association for Computational Linguistics, pages -, Philadelphia, Pennsylvania, USA. Association for Computational Linguistics.

Enrica Troiano, Aswathy Velutharambath, and Roman Klinger.

. From theories on styles to their transfer in text: Bridging the gap with a hierarchical survey. CoRR, abs/ . . Peter Trudgill.

. Sociolinguistics: An introduction to language and society. Penguin UK.

Huihsin Tseng, Daniel Jurafsky, and Christopher Manning.

. Morphological features help POS tagging of unknown words across language varieties. In Proceedings of the Fourth SIGHAN Workshop on Chinese Language Processing.

Rob van der Goot.

. MoNoise: A multi-lingual and easy-to-use lexical normalization tool. In Proceedings of the th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages -, Florence, Italy. Association for Computational Linguistics.

Rob van der Goot, Alan Ramponi, Arkaitz Zubiaga, Barbara Plank, Benjamin Muller, Iñaki San Vicente Roncal, Nikola Ljubešić, Özlem Çetinoğlu, Rahmad Mahendra, Talha Çolakoğlu, Timothy Baldwin, Tommaso Caselli, and Wladimir Sidorenko. . MultiLexNorm: A shared task on multilingual lexical normalization. In Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT), pages -, Online. Association for Computational Linguistics.

Rob van der Goot and Gertjan van Noord.

. Monoise: modeling noise using a modular normalization system. arXiv preprint arXiv:

. . . Mutual intelligibility of spoken maltese, libyan arabic, and tunisian arabic functionally tested: A pilot study. Folia Linguistica, .

Rob van der