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Résumé

Dans cette thèse, nous introduisons et mettons en relation des modèles sur réseaux bidimensionnels géométriques, certains d'entre eux étant nouveaux, avec les amas de spins, ou leurs interfaces, des modèles de spin à symétrie Z n . Les propriétés critiques (fractales) de ces amas de spins et de leurs interfaces sont bien établies numériquement mais mal comprises analytiquement, en dehors du cas n = 2 correspondant au modèle d' Ising. Le modèle d'Ising peut se reformuler en termes d'un modèle de boucles décrivant les interfaces entre les amas de spin blancs et noirs. Ce modèle de boucles est un cas particulier du modèle non local de boucles O(N ). Ce dernier est relativement bien compris analytiquement même si d'importants programmes de recherche sont toujours en cours. Ceci s'explique par son intégrabilité ainsi que la possibilité de décrire ses fluctuations au point critique par un Gaz de Coulomb. L'approche amenant au Gaz de Coulomb comporte deux étapes essentielles, la première d'entre elles étant de reformuler le modèle de façon locale, faisant apparaitre une symmétrie par le groupe quantique U q (sl 2 ). La seconde consiste à reformuler ce modèle local en termes d'une variable de hauteur. Ce sont précisément les fluctuations de cette variable de hauteur qui, renormalisée en un champs bosonique, seront décrites par la théorie conforme définie par l'action du Gaz de Coulomb. L'essence de cette formulation en termes d'une variable de hauteur repose sur l'invariance des poids de Boltzmann locaux par U q (sl 2 ).

Dans un premier temps, nous introduisons des généralisations des modèles de boucles à symétries U q (sl 2 ). Ces modèles sont définies d'une manière analogue grâce à des diagrammes, appelées toiles d'araignées, qui représentent des opérateurs d'entrelacement entre représentations de groupes quantiques de rang supérieur. Il est important de noter que ces diagrammes possèdent, en général des branchements. Nous montrons que pour certains choix de leurs paramètres, ces modèles décrivent les interfaces des amas de spins dans les modèles à symétrie Z n avec n > 2. Plus précisément, nous mettons en relations les interfaces des modèles Z 3 avec les toiles d'araignées A 2 , B 2 et G 2 , les interfaces des modèles Z 4 avec les toiles d'araignées A 3 et B 2 , les interfaces des modèles Z n avec les toiles d'araignées A n-1 . Tout comme le modèle de boucles, il est possible de localiser les poids de Boltzmann de ces modèles. Nous étudions en détails le cas U q (sl 3 ) décrivant les interfaces du modèle de Potts à trois états. Nous donnons des diagrammes des phases obtenus numériquement. La symétrie des interactions locales de ce modèle permet de le reformuler en termes d'une variable de hauteur à deux composantes. Nous parvenons ensuite à formuler les théories conformes décrivant les fluctuations de cette hauteur aux points critiques par une action de type Gaz de Coulomb.

Dans un second temps, nous montrons que les amas de spins dans les modèles de Potts peuvent se reformuler en termes de modèles de boucles à deux couleurs basés sur les algèbres de Fuss-Catalan. Nous montrons que, sur le réseau, les fonctions à deux points d'opérateurs de connectivité d'amas de spin peuvent se reformuler en termes d'opérateurs de ligne de couture (semi-)locaux.

Summary

This thesis introduces and relates geometric lattice models, some of which are new, to spin clusters or their interfaces in Z n models. The critical (fractal) properties of these spin clusters and their interfaces are well established numerically but badly understood analytically, except for the n = 2 case corresponding to the Ising model.

The Ising model can be formulated in terms of a loop model describing the interfaces between its black and white clusters. This loop model is a particular case of the non-local O(N ) loop model. The latter is relatively well understood even though it is still the subject of active research. This fact can be explained by its integrability properties as well as the description of its critical fluctuations by a Coulomb Gas. The path leading to the Coulomb Gas formulation contains two essential steps. The first one consists in reformulating the model in purely local terms making explicit a U q (sl 2 ) symmetry. The second one maps the local configurations to height variable. The fluctuations of this height variable, renormalised into a bosonic field, are precisely the ones described by the conformal field theory defined by the Coulomb Gas action. The essence of this height variable mapping resides in the U q (sl 2 ) symmetry of the local Boltzmann weights.

Firstly, we introduce new models generalizing U q (sl 2 ) symmetric loop models. These models are defined in an analogous manner in terms of diagrams, called webs, that are representing intertwiners of representations of higher rank quantum groups. It is important to remark that these diagrams, in general, possess branchings. We show that, for certain choices of their parameters, these models describe interface in Z n spin models with n > 2. More precisely, we relate Z 3 interfaces to A 2 , B 2 and G 2 webs, Z 4 interfaces to A 3 and B 2 webs, Z n interfaces with n > 4 to A n-1 webs. Just like the loop models, it is possible to localize the Boltzmann weights of these models. We study in detail the U q (sl 3 ) case describing the interfaces of the 3 states Potts model. We give numerically obtained phase diagrams. The symmetry of local Boltzmann weights makes it possible to reformulate the model in terms of a height variable with two components. We are then able to formulate the conformal field theories describing the fluctuations of this height at critical points in terms of a Coulomb Gas action.

Finally, we show that the spin clusters in the Potts models can be reformulated in terms of a two color loop model based on Fuss-Catalan algebras. We show that, on the lattice, the two point connectivities of spin clusters can be expressed in terms of seam line operators that are (semi-)local.

Chapter 1

Critical properties of spin clusters

The work presented in this thesis has been motivated by the will to understand critical properties of geometrical objects appearing in two-dimensional lattice models whose degrees of freedom, called spins, are assumed to take a finite number of values. More precisely, consider a two-dimensional lattice L, and for each node i ∈ L, assign a "spin" value σ i ∈ {e 2iπk n , k ∈ 0, n -1 }. A map σ : L → {e 2iπk n , k ∈ 0, n -1 } is called a configuration. The set of all configurations is denoted by C. The paradigmatic models we consider are the so called Z n spin models with nearest neighbour interactions. They are defined by the partition functions

Z n = C e -<ij> E(σi,σj ) (1.1) 
where < ij > denote pairs of nearest-neighbour nodes. The energy density is assumed to take the form E(σ i , σ j ) = k∈ 0,n-1

x k σ k i σ -k j with x 0 = 0 and x k = x n-k .

As their name suggests, the Z n models possess a global Z n ∼ = {e 2iπk n , k ∈ 0, n -1 } symmetry given by the action

Z n × C → C (x, σ) → xσ
In fact, the models are also invariant under the inversion σ → σ extending the symmetry group to the dihedral group D n . The Z n models have been received important attention for around a century beginning with the work of Ising [START_REF] Ising | Beitrag zur Theorie des Ferromagnetismus[END_REF] of the n = 2 case. They contain the well-known Potts models when the symmetry group is extended to the permutation group S n . An important property of these models is that they possess integrable points where many quantities can be computed exactly. This is the case of the Ising model [START_REF] Onsager | Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition[END_REF], the Potts models at their self-dual points [START_REF] Baxter | Exactly Solved Models in Statistical Mechanics[END_REF] and the so-called Fateev-Zamolodchikov points of the Z n models [START_REF] Fateev | Self-dual solutions of the star-triangle relations in ZN-models[END_REF]. These exact solutions have been crucial in the understanding of the critical properties of the models. Indeed, the Z n models possess rich phase diagrams [START_REF] Cardy | General discrete planar models in two dimensions: Duality properties and phase diagrams[END_REF] and for a subset of their parameter space, they are critical [START_REF] Fateev | Parafermionic Currents in the Two-Dimensional Conformal Quantum Field Theory and Selfdual Critical Points in Z(n) Invariant Statistical Systems[END_REF]. This can be seen, for instance from the long distance behaviour of local operators. One observes that, at the critical points, the spin-spin correlators decay algebraically with distance

< σ k i σ -k j >= C σ k i σ -k j e -<lm> E(σ l ,σm) Z n ∼ A |i -j| ∆ k
where A is a constant and |i -j| denotes the distance between two nodes i and j. ∆ k is called a critical exponent.

A fundamental question in critical phenomena is the computation of critical exponents. At their critical points, the long-distance behaviour of local correlation functions in Z n models are described by local conformal field theories (CFT). They are typically unitary and rational. The latter means that there exist a finite number of fields, called primary, from which all local correlation functions can be written. The powerful technology of two-dimensional conformal field theory then allows one to compute critical exponents exactly. This can also be achieved through lattice exact solutions from integrability.

So far, we have only discussed local correlators, i.e. correlation functions involving spin fields σ i only in finite neighbourhoods of a given number of nodes of the lattice. Yet, Z n spin models naturally exhibit non-local, geometrical features. For instance, one would like to understand the critical behaviour of spin clusters, i.e. connected subgraphs of L where the spin takes the same value in some given configuration. As the model is self-similar, we could expect a non-trivial fractal dimension for a spin cluster. This quantity is related to the long distance behaviour of the following two point functions < 1 i and j in the same spin cluster > (1.2) where 1 (.) denotes the indicator function. This correlator is non local in the spins σ i , so we cannot use the CFT description mentioned above. A way to overcome this problem is to find another lattice model, equivalent to the Z n spin model at the level of partition function, such that its degrees of freedom permit to express (1.2) as a two point function of local operators < 1 i and j in the same spin cluster >=< φ(i)φ(j) > (1.3) Then, one can look for a local CFT description of this equivalent lattice model and deduce the related critical exponent exactly. This CFT will be in general, non-unitary and non-rational.

Another natural geometrical object to consider is an interface separating different spin clusters. There is a fundamental difference between the n = 2 and n > 2 cases as in the latter, interfaces between spin clusters possess, in general, branchings. Apart for these possible branchings, the interface is random curve and we would like to understand its critical behaviour. For instance, we would like to be able to compute the fractal dimension for a given subset of an interface.

The n = 2 case, the Ising model

The strategy mentioned above has been successful in the case of the Ising model. It is possible to compute exactly the fractal dimensions of spin clusters and their interfaces. Choose the lattice L on which Ising spins live to be triangular. By universality, we expect the choice of the lattice not to matter. The first step is to consider a model of non intersecting loops on the dual hexagonal lattice L * Z loop = c∈L e 2x1 (c) where L is the set of loop configurations and (c) denotes the total length of a configuration, that is, the number of links covered by loops. It is then apparent that, one can view the loops as interfaces between spin clusters. Indeed the Boltzmann weight of a configuration in the Ising model can be seen to be concentrated on spin cluster interfaces and is determined by the interface energy density -2x 1 . One has the following equivalence of partition functions

Z 2 ∝ Z loop
The loop model can then be formulated in terms of local degrees of freedom. The continuum limit of such loop models can then be described by a so-called Coulomb Gas and the geometrical critical exponents can be determined. This will recalled in Chapter 2. It is to be noted that the loop models have an intrinsic interest and have been the starting point of the development of rigorous results [START_REF] Schramm | Scaling limits of loop-erased random walks and uniform spanning trees[END_REF][START_REF] Smirnov | Conformal invariance in random cluster models. i. holmorphic fermions in the ising model[END_REF].

The n > 2 case

A mapping to the loop models used for the Ising case does not exist for spin cluster interfaces when n > 2. Yet, remark that such a mapping exists for the so-called Fortuin-Kasteleyn (FK) clusters in the Potts models, see Chapter 2. Yet, there is good evidence that geometrical objects possess well-defined fractal dimensions. In this context, the most studied models are the Potts models and we will focus on them.

Let us first discuss spin clusters. Monte-Carlo numerical experiments have indicated that spin clusters possess non trivial fractal dimensions [START_REF] Vanderzande | Fractal dimensions of potts clusters[END_REF]. There has also been proposed an identification of Potts spin clusters and tricritical Potts FK clusters at the same central charge [START_REF] Janke | Geometrical vs. Fortuin-Kasteleyn clusters in the two-dimensional q-state Potts model[END_REF][START_REF] Stella | Scaling and fractal dimension of ising clusters at the d=2 critical point[END_REF]. But this correspondence breaks at the level of three point functions indicating that this does not lead to the correct CFT description of Potts spin clusters [START_REF] Delfino | Spin clusters and conformal field theory[END_REF][START_REF] Picco | On the CFT describing the spin clusters in 2d Potts model[END_REF]. The existence of such a local CFT has been debated. In Chapter 6, we define a local lattice model possessing local operators for spin cluster connectivities giving strong evidence that such a CFT exists.

Let us turn to interfaces between spin clusters. Consider the subset of an interface given by the loop surrounding a spin cluster. Monte-Carlo experiments and the conjectured correspondence with tricritical FK clusters have been used to determine the exact value of the fractal dimension of such an object, see [START_REF] Janke | Geometrical vs. Fortuin-Kasteleyn clusters in the two-dimensional q-state Potts model[END_REF]. Moreover in [START_REF] Gamsa | Schramm-Loewner evolution in the three-state Potts model-a numerical study[END_REF], the authors have found a scaling behaviour for the following object in the n = 3 Potts model. Consider a simply-connected domain and divide its boundary in two connected components. The two components meet at two marked points. Then color the two components with different spin values. This creates an interface connecting the two marked boundary points. One can consider the two spin clusters adjacent to the two boundary components. Then, the subset of the interface consisting of links adjacent to any of the two clusters seems to possess a non-trivial fractal dimension [START_REF] Fukusumi | Spin interfaces and crossing probabilities of spin clusters in parafermionic models[END_REF][START_REF] Gamsa | Schramm-Loewner evolution in the three-state Potts model-a numerical study[END_REF].

Another piece of evidence comes from a transfer matrix numerical study. In [START_REF] Dubail | Bulk and boundary critical behaviour of thin and thick domain walls in the two-dimensional potts model[END_REF][START_REF] Dubail | Critical exponents of domain walls in the two-dimensional potts model[END_REF], the authors define a transfer matrix that permit to follow the evolution of a number of interfaces along the strip or the cylinder. For instance, they can define a sector in the spectrum of the transfer matrix where an interface separating two given clusters must be present. They find different behaviours whether the interface is separating spin clusters having either different or the same spin value (see Figure 1.1). In the former case, they dub the domain wall (or interface), thin as the two clusters can in general, be adjacent. In the latter, the domain walls are dubbed thick as the two clusters have the same spin value and thus must be separated by at least one lattice site. They numerically explore the associated critical exponents and find that they agree with the previously studied values of fractal dimensions. The only drawback of this transfer matrix is that it is non-local and thus do not give direct information of what could be, if any, the local CFT describing its spectrum in the continuum. In Chapters 4 and 5, we define local lattice models describing interfaces in spin models. The associated transfer matrices have the nice property of being local.

Outline of the thesis

In Chapter 2, we recall the definition of loop models, in their completely-packed and diluted versions. We remind some algebraic aspects regarding their U q (sl 2 ) symmetry, the (dilute) Temperley-Lieb algebras generated by their local transfer matrices. We show how many local lattice models, such as the Potts, RSOS, six-vertex or O(N ) models are equivalent to the loop models, in the sense that their local transfer matrices are just different representations of the same elements. We discuss their critical behaviour and give some connections to knot theory, integrability and conformal field theory. We finally derive the Coulomb Gas description of their critical phases and obtained exact results for random geometry quantities such as the fractal dimension of Ising spin clusters.

In Chapter 3, we present the algebraic framework at the heart of our generalizations of the loop models, the spiders. Spiders provide diagrammatic presentation of categories of representations of quantum groups. Intertwiners between different representations can be seen as planar diagrams drawn in a rectangle, their composition being obtain by concatenating diagrams. Thanks to these objects, we can represent quantum group invariant transfer matrices as diagrams giving rise to geometrical models.

The fact that one can make computations in a given tensor category with diagrams is actually familiar to physicists. Indeed, Feynman diagrams are nothing but a diagrammatic way to compute with invariants of the symmetry group of a given theory [START_REF] Baez | A prehistory of n-categorical physics[END_REF]. Note that, in general Feynman diagrams are drawn in momentum space. This means that the diagrams are related to the symmetry group given by the product of the Poincaré group of space-time symmetries and the internal symmetry group. In our models of interest, only the internal symmetry group appears as we work on the lattice.

The A 1 spider, better-known as the Temperley-Lieb (TL) category supports the algebraic formulation of loop models. The U q (A 1 ) intertwiners can be seen as link patterns joining pairwise and in a non-crossing manner, a given number of points on the boundary of a simply-connected domain. The next step, spiders for rank 2 quantum groups, has been given by Kuperberg [START_REF] Kuperberg | Spiders for rank 2 lie algebras[END_REF]. The diagrams then involve, in general, bifurcations. A simple example of such a generalization is illustrated as On the left, we have an aforementioned link pattern in the TL category whereas on the right, we have a Kuperberg diagram, also called web. When the diagrams are read from bottom to top, the first one corresponds to the projection onto the trivial representation in a tensor product of two spin 1 2 representations of U q (A 1 ). The second corresponds to the projection onto the second fundamental representation (dual to the first one) in a tensor product of two first fundamental representations of U q (A 2 ). Indeed, an upward (respectively downward) oriented arrow corresponds to states propagating in the first (respectively second) fundamental representation.

We also recall the definition of spiders U q (A n ) obtained by Cautis, Kamnitzer and Morrison [START_REF] Cautis | Webs and quantum skew howe duality[END_REF]. We give explicit expressions for generating webs of these spiders. The only original work in this chapter is Section 3.3.1 where we define an equivalent diagrammatic category to the U q (A n ) spider, as tensor categories. We call it the polarized spider and it appears better suited for our work on geometric lattice models.

All the material presented in Chapter 4 is new. We define geometrical A 2 web models whose configurations are given by A 2 webs. We then show that, for some tuning of their parameters, they are equivalent to Z 3 spin models. Under this equivalence, the webs are mapped to spin cluster interfaces. We then give a local formulation of the models and construct explicitly the quantum group invariant transfer matrices that allow to study the phase diagrams numerically. We study in detail partition functions on the cylinder. This permits us to define critical exponents associated to geometrical constraints. We then give a Coulomb Gas description of the critical phases of the models, obtaining exact results for central charges and aforementioned critical exponents.

All the material presented in Chapter 5 is new. We define U q (B 2 ) web models and show how they describe Z 3 and Z 4 spin cluster interfaces. We define U q (G 2 ) web models and show how they describe Z 3 spin cluster interfaces. We define U q (A n-1 ) web models and show how they describe Z n spin cluster interfaces. In all cases, we give explicit local transfer matrices.

All the material presented in Chapter 6 is new. We show how the Potts models on a square lattice are equivalent to a two colours loop model based on Fuss-Catalan (FC) algebras. In this model, summing over the loops of one colour make the loops of the other colour surround either FK or spin clusters. We show how to formulate the FC loop model in a completely local way such that it contains spin cluster connectivities in its spectrum. We present numerical confirmation by computing the two point connectivity critical exponent. It is the first time that a local transfer matrix is shown to contain this exponent in its spectrum.

Original publications related to the work of this thesis

We list here the articles, either published or in preparation, containing the results of this thesis.

• U q (sl n ) web models and Z n spin interfaces arxiv:2101.00282/J. Stat. Mech. (2021) 053104

• U q (sl 3 ) web models: Locality, phase diagram and geometrical defects arXiv:2107.10106/Nucl.Phys.B 979 (2022)

• Coulomb Gas description of critical A 3 webs In preparation Geometrical models in two-dimensional statistical mechanics: the paradigm of loop models

•
Consider some lattice L, for instance the square lattice, embedded in a two-dimensional surface. To fix vocabulary, we will say that it is made of nodes and links. In this chapter, we are interested in subgraphs of L whose connected components form closed loops that do not cross themselves or each other, but they can possibly osculate at nodes. The set of such subgraphs will be called the configuration space and denoted L. In a given configuration, a link L covered by a loop will be called a bond. Non-crossing loop gases are statistical mechanics models defined by their Boltzmann weight

w : L ∪ {x i } → C (2.1)
where {x i } is a set of external parameters. The partition function then reads1 Z(x 1 , x 2 , . . . ) = c∈L w(c, x 1 , x 2 , . . . ) (2.2)

Like many other models of statistical mechanics, the behaviour of such a model can be radically different when varying the external parameters {x i }. It may be characterized by different phases and phase transitions in between. In this thesis, we are particularly in second order phase transitions where renormalized correlation functions are covariant under conformal maps. The loop models considered here are of the form

w(c) = w loc (x 1 , x 2 , . . . ) N m Ñ m (2.3)
where c is a configuration and m (respectively m) is the number of contractible loops (respectively non contractible loops, in a non trivial topology). w loc is local, in the sense that it is a product of local Boltzmann weights that depend of c only on a bounded domain. In contrast N (respectively Ñ ) is a fugacity for contractible loops (respectively non contractible loops) and depend on the configuration c as a whole. The latter is non local because loops are not restricted in their size which can be of the order of the lattice dimensions. Despite their simple form, these models exhibit a rich critical behaviour. In order to compute at least part of the spectrum of the model thanks to exact techniques such as conformal field theory (CFT) or integrability, one must find a way to recast the problem in local terms. At the level of partition functions, exact mappings to local models do exist. In fact, as we will now see, many of the most studied models of two dimensional statistical mechanics such as the Potts models, the six-vertex models or the percolation problem can be seen as particular incarnations of loop models. Moreover, the universality classes of loop models also contain descriptions of polymers constrained on a thin film or the self-avoiding walk. Let us finally mention that in order to answer questions regarding non local observables such as, for instance, the probability that two points sit on the same loop, one has to consider descriptions in terms of non-unitary CFTs and in many instance, logarithmic ones.

Completely packed loop models, the Potts, RSOS and sixvertex models

Consider a square lattice L, titled by 45°, of even length L and width M (see figure 2.2 for our conventions) embedded in a vertical cylinder, i.e. periodic boundary conditions in the horizontal direction and open boundary conditions in the vertical one. Configurations of the model are given by covering each node of L by the two possible osculating link patterns displayed in figure 2.1 with their corresponding local weights a and b. The link patterns join to form loops. We can distinguish two types of loops, those which do not wrap around the cylinder and those which do. A fugacity N is given to the former while a fugacity Ñ is given to the latter. Every link of the lattice is covered by a loop and this model is called the completely packed loop (CPL) model. An example of configurations is given in figure 2.2. The Partition function thus reads

Z CPL = c∈L a n1 b n2 N m Ñ m (2.4)
where n 1 (respectively n 2 ) is the number of nodes with weight a (respectively b), m (respectively m) is the number of contractible loops (respectively non-contractible loops). Note that the partition function only depends on the ratio b a , up to an unimportant overall factor. The CPL is known to be critical for values of N ∈ [-2 , 2].

It is possible to write more general partition function with different boundary conditions. A prime example is to give to loops touching the bottom boundary a different weight than the others, still differentiating between contractible and non-contractible loops [START_REF] Jacobsen | Conformal boundary loop models[END_REF]. One can generalize further and give to loops touching the top boundary another different weight [START_REF] Dubail | Conformal two-boundary loop model on the annulus[END_REF].

Transfer matrices and Temperley-Lieb algebras

We can write transfer matrices for the CPL in both the horizontal and vertical direction. In the former case, we can formulate transfer matrices in terms of diagrammatic algebras called the Temperley-Lieb algebras [START_REF] Temperley | Relations between the 'percolation' and 'colouring' problem and other graph-theoretical problems associated with regular planar lattices: Some exact results for the 'percolation' problem[END_REF], denoted TL n (β), n ∈ N. Set TL 0 (β) = C. Elements of the algebra are given by linear combinations of perfect non crossing matchings of 2n points. If we consider these diagrams as connecting n boundary points to n others living on two opposite sides of a rectangle, we can concatenate them by gluing along a common boundary of n points. Removing loops gives a factor β. This defines a product on the algebra. We emphasize that the diagrams are considered up to isotopy. As an example, given two elements of TL 4 (β)

A = B = (2.5)
We can then make their product

BA = = β (2.6) 
We follow here the convention that diagrams are concatenated from bottom to top. The identity is clearly given by a set of n vertical strands connecting bottom points to top ones. A special set of elements are given by

E i = (2.7)
where the arches connect the ith and i + 1th points.

It can be shown that the algebra TL n (β) can be defined by the following presentation. It is generated by the identity and the E i , i ∈ 1, n -1 and the relations

E 2 i =βE i (2.8a) [E i , E j ] =0 if |i -j| > 1 (2.8b) E i E i±1 E i =E i (2.8c)
We can now express the horizontal transfer matrix adding two columns to the right as an element of TL M +1 (N )

T CPL = M 2 i=1 (bI + aE 2i ) M +1 2 i=1 (bI + aE 2i-1 ) (2.9)
In order to get the partition function, we need a notion of trace that will account for non contractible loops. We can define such a linear form on all diagrams by joining the first point at the bottom boundary to the first one at the top one, the second at the bottom to the second at the top etc, as in We call a loop non-contractible or contractible whether it circles or not the puncture indicated by a cross in the diagram. Non contractible loops are then given the weight β. We then extend by linearity to the whole algebras. We will call this trace the Markov trace and denote it Mtr(.). For instance, in TL 4 (β)

Mtr(I) = β4 , Mtr(A) = β, Mtr(B) = β 2 (2.10)
Observe that there is a natural inclusion of i : TL n (β) → TL n+1 (β) given by adding a vertical strand to the right. When non contractible and contractible loops are given the same weight, i.e. β = β, the Markov trace obeys on ∞ n=0 TL n (β) the following:

Mtr(ab) = Mtr(ba) (2.11a) Mtr(1) = 1 (2.11b) Mtr(i(x)) = βMtr(x) for all x ∈ TL n (β) (2.11c) Mtr(i(x)E n ) = Mtr(x) for all x ∈ TL n (β) (2.11d) 
Moreover this uniquely defines Mtr(.). To see this, one needs to use the Jones normal form for TL n (β) [START_REF] Jones | Index for subfactors[END_REF].

It states that a basis of TL n (β) is given by reduced words of the form

(E j1 E j1-1 • • • E k1 )(E j2 E j2-1 • • • E k2 ) • • • (E jr E jr-1 • • • E kr ) (2.12) where 0 < j 1 < j 2 < • • • < j r < n and 0 < k 1 < k 2 < • • • < k r < n.
In this normal form, E n appears at most once in the basis elements of TL n+1 (β), hence we can use (2.11) to define Mtr(.) recursively.

In general, when β = β, the Markov trace obeys the relations :

Mtr(ab) = Mtr(ba) (2.13a) Mtr(1) = 1 (2.13b) Mtr(I) = β for the identity I ∈ TL 1 (β) (2.13c) Mtr(i(x)) = βMtr(x) for all x ∈ TL n (β) (2.13d) Mtr(i • i(x)E n ) = βMtr(x) for all x ∈ TL n-1 (β) (2.13e) Mtr(i • i(x)E n E n-1 ) = Mtr(x) for all x ∈ TL n-1 (β) (2.13f)
Again, this set of relations uniquely defines Mtr(.) by induction. Indeed, from the Jones normal form, we see that any element of TL n+1 (β) can be written as

E n E n-1 a + E n b + c (2.14)
with a,b in TL n-1 (β) and c in TL n (β). To the best of our knowledge, this last result did not appear in the litterature.

We can now express the partition function for even L as

Z CPL = Mtr (T CPL ) L/2 (2.15)
where β = N , β = Ñ . It is also possible to formulate a transfer matrix in the vertical direction. It can be defined thanks to a diagrammatic algebra as in the open boundary case. The algebras of interest here are periodic Temperley-Lieb algebras pTL n (β) [START_REF] Graham | The representation theory of affine temperley-lieb algebras[END_REF][START_REF] Martin | The blob algebra and the periodic Temperley-Lieb algebra[END_REF]. They can be defined as diagrammatic algebras similar to the original Temperleylieb algebras. This time, the perfect matchings are taken between n boundary points sitting at the bottom boundary of a cylinder and n other at the top boundary. Contractible loops are set to β like in TL n (β) but non contractible ones are not reduced. There is now an additional element E n because of the periodic boundary conditions. The transfer matrices, adding one row on top of the others, can then be written as

T V 1 CPL = L 2 i=1 (aI + bE 2i ) (2.16a) T V 2 CPL = L 2 -1 i=0 (aI + bE 2i+1 ) (2.16b)
We can define a representation of pTL n (β), spanned by perfect non crossing matchings on a cylinder with n boundary points at the top boundary only and such that, non contractible loops are given the appropriate weight Ñ . This is an example of standard module, the vacuum standard module. Consider the state given by | = |∪ ∪ • • • ∪ which is given by L/2 adjacent arches. Setting β = N , the partition function can then be expressed as, for odd M

Z CPL = | T V 1 CPL T V 2 CPL T V 1 CPL • • • T V 1 CPL | (2.17)
where there is an alternating product of M transfer matrices. The scalar product a|b is defined on diagrams as taking the mirror image of a and gluing the result on top of b.

At criticality, the equality between partition function on an annulus, seen as a trace over evolution operators in the horizontal direction and a matrix element in vertical one, translates in the continuum setting to the idea of modular invariance of the CFT partition function. The boundary conditions then play an important role and modular invariance imposes strong constraints between the spectrum and the conformally invariant boundary conditions [START_REF] Cardy | Boundary conditions, fusion rules and the Verlinde formula[END_REF][START_REF] Di Francesco | Conformal Field theory[END_REF].

An aside on knot invariants

Let us point out some connections between Temperley-Lieb algebras and knot theory and motivate some terminology. We remind here some notions of knot theory [START_REF] Lickorish | An introduction to knot theory[END_REF]. Mathematically, a knot is the embedding of a circle S 1 into the 3-dimensional space R 3 . More generally, a link is the embedding of a disjoint union of circles into R 3 . Two links, L 1 and L 2 , are considered equivalent if there is an orientation preserving homeomorphism

h = R 3 → R 3 such that h(L 1 ) = L 2 (2.18)
A link invariant is a mathematical object that is the same for any two equivalent links. Here we will mainly be interested in link polynomials which are link invariants given by some Laurent polynomials in one or more variables.

Consider a projection of a link onto a plane embedded in R 3 which is one-to-one except at crossings where two points are projected on the same point. With the additional data stating which strand is going over the other at crossings, such a projection is called a link diagram. Here is an example A link diagram is sufficient to recover the original link, up to equivalence. In general, there are different link diagrams one can associate to a given link. Moreover, there can be different link diagrams associated to different but equivalent links. Whether two link diagrams represent equivalent links is answered by the following. If there is an orientation-preserving homeomorphism of R 2 onto itself, which maps a link diagram to another and preserve the data associated to crossings, we say that they are the same up to isotopy. One can convince oneself that isotopy is not sufficient to identify knot diagrams. In addition one needs to consider the three Reidemester moves

↔ ↔ Type I ↔ Type II ↔ Type III
Two link diagrams are considered equivalent if they are mapped to each other by a sequence of isotopy transformations and Reidemester moves. Diagrams related by istopoy and Reidemester moves of type II and III only are said to be regularly isotopic. It can then be shown that equivalent links are associated to equivalent link diagrams and vice versa. From now on, when speaking about a link, or a link diagram, we mean a link, or a link diagram, up to equivalence.

The Kauffman bracket and the Jones Polynomial

We will now define the Jones Polynomial [START_REF] Jones | A polynomial invariant for knots via von Neumann algebras[END_REF], an invariant of oriented links. We will do so by introducing the Kauffman bracket [START_REF] Kauffman | State models and the jones polynomial[END_REF]. Consider a link diagram D, we define the Kauffman bracket D , a Laurent polynomial in q 1 2 by the following set of rules = 1

(2.19a)

D ∪ = -(q + q -1 ) D (2.19b) = q 1 2 + q -1 2 (2.19c)
The last rule means that any crossing in the link diagram can be resolved to obtain a linear combination of link diagrams with no crossings. It is called a skein relation. By applying the second rule to the collections of loops then obtained, one can reduce the result to the empty diagram and then use the first rule. One can show that the Kauffman bracket is an invariant of regular isotopy, that is, invariant under isotopy of the diagram and the use of Reidemester moves of type II and III. Yet, it is not invariant under Reidemester moves of type I :

= -q -3 2 = -q 3 2
To get an invariant of oriented links, we need to consider the writhe, wr(D) of an oriented link diagram. The writhe is the algebraic sum of crossings counted as

→ +1 → -1
It is clear that the writhe is an invariant of regular isotopy. Moreover, for an oriented link diagram D, the combination

V (D) = (-q -3 2 ) wr(D) D (2.20)
is invariant under type I Reidemester moves as well and is thus an invariant of oriented link diagrams. Here D is the Kauffman bracket of the link diagram obtained after forgetting its orientation. Consequently, given an oriented link L, consider a link diagram D(L) associated to L, the polynomial V (D(L)) is an oriented link invariant, called the Jones polynomial. Note that for a knot, one can give two orientations. The writhe of a knot diagram associated to the given knot will be the same whatever the choice of orientation. Hence, the polynomial V also defines an invariant of unoriented knots.

Braid groups, Hecke and Temperley-Lieb algebras

A nice way to consider oriented links is through the braid groups B n . Consider a rectangular box with n points on the bottom boundary and n points on the top. A braid diagram is given by a set of n oriented strands going from bottom to top, such that the projection of each oriented strand onto the vertical axis is always positive. Strands are possibly braiding in the middle, and diagrams are considered up to regular isotopy. Multiplication is then given by concatenation. It is easy to see that braid diagrams are generated by the following ones

σ i = σ -1 i =
where the braids are oriented from top to bottom. One can show that the braid groups have the following presentation. They are generated by the {σ i , i ∈ 1, n -1 } and their inverses and obey the relations • change an element of B n to a conjugate in that group

σ i σ j =σ j σ i if |i -j| > 1 (2.21a) σ i σ i+1 σ i =σ i+1 σ i σ i+1 ( 
• change x ∈ B n to i(x)σ ±1
n where i denotes the inclusion B n → B n+1 adding a strand to the right. Consider the Weyl group W associated to a simple Lie algebra. It is a Coxeter group generated by a set of reflections S = {s 1 , s 2 , • • • , s n-1 } of order 2 having the following presentation

W = S | (s i s j ) mij = 1 (2.22)
with m ij ≥ 2 for i = j. For instance, the Weyl group of the A n Lie algebra is the symmetric group given by m i,i±1 = 3 and m ij = 2 for |i -j| > 1.

In the group algebra C[W ], we have

(s i -1)(s i + 1) = 0
The Hecke algebra H[W ] is then defined as a deformation of C[W ]. It is the algebra generated by the elements T s , s ∈ S satisfying the relations (T si -q)(T si + q -1 ) =0 (2.23a)

T si T sj T si • • • =T sj T si T sj • • • (2.23b)
where there are m ij letters on both sides of the second equation. In the case of the Hecke algebra of type A that we will simply denote H n (q), we get

(T si -q)(T si + q -1 ) =0 (2.24a) [T si , T sj ] =0 if |i -j| > 1 (2.24b) T si T si+1 T si =T si+1 T si T si+1 (2.24c)
and we see that we obtain a quotient of the (group algebra of the) braid groups, π : B n → H n (q) given by σ i → q -1 2 T si . This normalization will prove to be convenient later. It can be shown [START_REF] Freyd | A new polynomial invariant of knots and links[END_REF][START_REF] Jones | Hecke Algebra Representations of Braid Groups and Link Polynomials[END_REF] that for every z ∈ C, there exists a unique Markov trace, Mtr z (.) on

∞ n=0 H n (q) satisfying Mtr z (I) =1 for the identity I ∈ H n (q) (2.25a) Mtr z (ab) =Mtr z (ba) (2.25b) Mtr z (i(x)T sn ) =zMtr(x) for all x ∈ H n (q) (2.25c) Mtr z (i(x)) =Mtr(x) for all x ∈ H n (q) (2.25d)
where i(.) denotes the inclusion of H n (q) into H n+1 (q) given by considering elements generated by

{T si , i ∈ 1, n -1 } in H n+1 (q).
This Markov trace is useful in defining link invariants. Indeed, it is clear that Mtr(π(.)) is invariant under the first type of Markov moves and almost invariant under the second type. To achieve full invariance, one must first look for a rescaling factor λ of the braid generators such that

Mtr(π(λσ i )) = Mtr(π((λσ i ) -1 )) (2.26)
so that it has the same effect on a braiding generator and its inverse. This is achieved by solving

λ 2 = 1 -q 2 + qz z (2.27)
and we have

z = - 1 -q 2 q -λ 2 (2.28)
Then we define, for a braid b ∈ B n ,

X(q, λ) = - q 1 2 (q -λ 2 ) λ(1 -q 2 ) n (λ) e Mtr z (π(b)) (2.29)
where e is the exponent sum of b as a word on the σ i . As an example, for b = σ 1 σ -1 3 σ 2 σ 3 , e = 2. X(q, λ) is invariant under all Markov moves and is thus an oriented link invariant known as the HOMFLYPT polynomial [START_REF] Freyd | A new polynomial invariant of knots and links[END_REF].

We know turn to a quotient of H n (q). Redefine generators in terms of E i = T si -q. The relations of the H n (q) become

E 2 i = -(q + q -1 )E i (2.30a) [E i , E j ] =0 if |i -j| > 1 (2.30b) E i E i+1 E i -E i =E i+1 E i E i+1 -E i+1 (2.30c)
We see that if we add the relation

E i E i+1 E i -E i = E i+1 E i E i+1 -E i+1 = 0 (2.31)
we obtain the Temperley-Lieb algebra with loop weight -(q + q -1 ).

For the Markov trace Mtr z (.) to descend to the quotient, we must have

z = q or z = q 3 1 + q 2
Let us pick the second solution. In this case X(q, λ(q)) gives back the Jones polynomial as

V (q) = (-q -q -1 ) n (-q -3 2 ) e Mtr z (π(b)) (2.32)
where, abusing notation, π denotes the projection from B n to TL n (-q -q -1 ) through H n (q). This is not surprising as the projections of the braid generators are given by π(σ i ) = q

1 2 I + q -1 2 E i (2.33)
and we recognize the skein relation (2.19c). Moreover the factors (-q -3 2 ) e is simply equal to (-q -3 2 ) wr( b) . It is possible to show that the trace over the Temperley-Lieb algebras given by (-q -q -1 ) n Mtr z (.) on TL n (-q -q -1 )

(2.34)

with z = q 3 1+q 2 is in fact the same as the trace satisfying (2.11) introduced in the CPL model. That is why we called it Markov trace in this context. It was first introduced by Jones [START_REF] Jones | Index for subfactors[END_REF][START_REF] Jones | A polynomial invariant for knots via von Neumann algebras[END_REF] in his original formulation of the polynomial bearing his name. Let us point out that the more general trace satisfying (2.13) can also be regarded from a knot theory point of view. This time, one needs to consider links embedded in the solid torus. One can then define framed link invariants named skein modules [START_REF] Przytycki | Skein modules of 3-manifolds[END_REF][START_REF] Turaev | Conway and kauffman modules of a solid torus[END_REF], and our trace is nothing but a linear form on the Kauffman bracket skein modules.

Let us comment that it is possible to define Temperley-Lieb algebras from quotients of Hecke algebras for other Weyl groups W . The main example being the blob algebra [START_REF] Doikou | Hecke algebraic approach to the reflection equation for spin chains[END_REF][START_REF] Martin | The blob algebra and the periodic Temperley-Lieb algebra[END_REF] also known as the one-boundary Temperley-Lieb algebra, or the Temperley-Lieb algebra of type B, obtained as a quotient of the Hecke algebra of type B. Similarly, one can define Hecke algebras for affine Weyl groups, and then define the affine Temperley-Lieb algebras from its quotients [START_REF] Graham | Cellular and diagram algebras in representation theory[END_REF][START_REF] Graham | The representation theory of affine temperley-lieb algebras[END_REF].

The projection of the braid groups onto Temperley-Lieb algebras have proven very useful in understanding the physics of loop models, see for instance [START_REF] Belletête | Topological defects in lattice models and affine temperley-lieb algebra[END_REF][START_REF] Belletête | Topological defects in periodic RSOS models and anyonic chains[END_REF][START_REF] Belletête | On the correspondence between boundary and bulk lattice models and (logarithmic) conformal field theories[END_REF][START_REF] Belletête | On the computation of fusion over the affine Temperley-Lieb algebra[END_REF][START_REF] Gainutdinov | A fusion for the periodic Temperley-Lieb algebra and its continuum limit[END_REF].

The Potts models

The Potts models are generalizations of the Ising model, paradigmatic for the study of magnetism, where the spin can take more than 2 values (see [START_REF] Wu | The potts model[END_REF] and references therein). The Boltzmann weights are required to be symmetric under any global permutation of the spin values. In our context, let us define it on a square lattice L , not tilted this time, built from our original lattice L that we choose to have a width of odd length. Then L is defined such that each of its link crosses a node of L (see figure 2.3). For each node i of L , there is a spin variable σ i taking Q ∈ N * values. The partition function of the Potts models is

Z Potts = σ <ij> e Jδij (2.35)
where the sum is over all spin configurations and < ij > denotes nearest neighbour nodes of L . Using the identity

e Jδij = vδ ij + 1, (2.36a) v = e J -1 (2.36b)
we can rewrite the partition function as where the sum is over all subgraphs G of L , E(G) is the number of links of G and c(G) is the number of its connected components. The last equality can be seen as follows. We develop the product <ij> (vδ ij + 1).

Z Potts = σ <ij> (vδ ij + 1) (2.37a) = G⊆L v E(G) Q c(G) (2.37b)
In the resulting sum, each term is corresponding to a subgraph G where, for each link < ij >, vδ ij is part of the given term if and only if < ij >∈ G. This produces the factor v E(G) . Then, summing over spin configurations, we obtain the factor Q c(G) . This is the Fortuin-Kasteleyn cluster representation of the Potts models [START_REF] Kasteleyn | Phase Transitions in Lattice Systems with Random Local Properties[END_REF]. Note that, in this formulation, Q can be continued to arbitrary complex values. In this general case, the models are called random cluster models. In a given configuration whenever a link of L is covered by the subgraph G, we say that it is activated. Note that for Q = 1, one obtains the partition function of the bond percolation problem on the square lattice with a bond activation probability p = v/(1 + v).

We will generalize further and give a different weight Q for clusters wrapping around the cylinder.

Z RC = G⊆L v E(G) Q c(G) Qc(G) (2.38)
where c(G) (respectively c(G)) denotes the number of contractible (respectively non-contractible) clusters.

The random cluster models are known to be critical for values of Q in the interval [0,[START_REF] Babichenko | Multicolored Temperley-Lieb lattice models. The Ground state[END_REF]. Thanks to a duality relation, one can infer some of the critical points of the Potts and random cluster models to sit on the line

v = Q (2.39)
and we will set the parameter v to this value in the following.

Let us now detail the mapping from critical random cluster models to loop models [START_REF] Baxter | Exactly Solved Models in Statistical Mechanics[END_REF]. Consider the medial lattice of L whose nodes are given by middle points of links of L . These latter are connected whenever the links of L on which they sit are adjacent to a common node of L . This is, in fact, exactly our original tilted square lattice L. Given a subgraph G of L , one can draw a CPL configuration on L, such that it avoids activated links and crosses non activated ones (see figure 2.3). This gives a bijection to CPL configurations on L.

Given a subgraph G, the number of contractible loops m(G) and the number of non-contractible loops m(G) in the associated CPL configuration satisfy

m(G) = 2c(G) + E(G) -V (G) (2.40a) m(G) = 2c(G) (2.40b)
where V (G) = L(M + 1)/4 is the number of nodes of G, hence of L.

The random cluster partition function at criticality is thus given by

Z RC = G⊆L v E(G) Q c(G) Qc(G) (2.41a) = Q L(M +1)/4 G⊆L v √ Q E(G) Q m(G) Q m(G) (2.41b) = Q L(M +1)/4 c∈L Q m Q m (2.41c)
and we see that it is, up to an irrelevant prefactor, equal to the CPL partition function with loop weights

N = √ Q, Ñ = Q.
Transfer matrices An alternative way to understand the relation between the Potts and CPL models is to look at local transfer matrices for the former. To each node i of L , associate a vector space V generated by the possible states of a Potts spin 1, Q . We will look at operators transferring from left to right and thus acting on the space of states of a given row

H = V ⊗ M +1 2 .
There are two types of local transfer matrices, one containing the interaction of a horizontal link, the other being associated to a vertical link. The first one, t h , is thus an endomorphism of V while the second, t v , is an endomorphism of V ⊗V . From the form of the interaction (2.36), we can write their matrix elements

(t h ) k i = vδ ik + 1 (2.42a) (t v ) kl ij = vδ ijkl + δ ik δ kl (2.42b)
where δ ijkl is 1 if and only if all indices are equal. The row to row transfer matrix then reads

T Potts = M -1 2 i=1 t 2i M +1 2 i=1 t 2i-1 (2.43)
where the subscript of t 2i-1 means that it acts non trivially only on the ith tensorand of H as t h while the subscript of t 2i means that it acts non trivially only on the ith and i + 1th tensorand of H as t v . The partition function is then expressed as

Z Potts = tr T L/2 Potts (2.44)
Set v to its critical value. From (2.42), we can rewrite

t 2i-1 = Q(I + e 2i-1 )
(2.45)

t 2i = I + e 2i (2.46)
where the matrices e i can be seen to satisfy the relations of the 

T Potts = Q (M +1)/2 ρ Potts (T CPL (a = 1, b = 1)) (2.47)
Observe that there is a natural inclusion of i : TL n (β) → TL n+2 (β) given by adding two vertical strands to the right. The linear form over ∞ k=0 TL 2k (β) given by Mtr (.) = tr(ρ Potts (.)) can be seen to satisfy the 2 We stress that these representations only exist for Temperley-Lieb algebras of even length (2.48a)

Mtr (1) = 1 (2.48b) Mtr (i(x)) = β 2 Mtr (x) for all x ∈ TL 2k (β) (2.48c) Mtr (E 2k i(x)) = βMtr (x) for all x ∈ TL 2k (β) (2.48d) Mtr (E 2k+1 i(x)) = βMtr (x) for all x ∈ TL 2k (β) (2.48e) Mtr (E 2k+1 E 2k i(x)) = Mtr (x) for all x ∈ TL 2k (β) (2.48f)
Moreover, these relations characterize Mtr (.) completely. Indeed, it can be seen, using the Jones normal form, that any element of TL 2k+2 (β) can be written as a linear combinations of words of the form aE 2k+1 E 2k b,E 2k+1 b,E 2k b and b where a and b are words in TL 2k (β). Using (2.11), it follows that the Markov trace satisfy the properties (2.48), hence Mtr (.) = Mtr(.). We thus retrieve the result

Z Potts = Q L(M +1)/4 Z CPL (a = 1, b = 1, N = Ñ = Q) (2.49)

RSOS models

Consider yet another square lattice L whose nodes are inside faces of L and such that its links cross nodes of L. Note that, when M is even, L L . Let G = (V, E) be a simple connected graph. This means that G does not contain any loop joining a vertex to itself and the number of edges joining two vertices is either 0 or 1. Let A ij , i, j ∈ V denote its adjacency matrix, that is A ij = 1 if i and j are adjacent, A ij = 0 otherwise. Remark that it is symmetric. By the Perron-Frobenius theorem, A has a striclty positive eigenvalue β which is greater or equal to all other eigenvalues, in absolute value. Moreover it is possible to choose an eigenvector of eigenvalue β such that all its entries S i are strictly positive.

The configurations of the RSOS3 models [START_REF] Andrews | Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities[END_REF][START_REF] Pasquier | Two-dimensional critical systems labelled by Dynkin diagrams[END_REF] are given by graph homomorphisms h : L → G. In other words, To each node i of L , we associate a "height" h i , such that if i and j are adjacent in L , then h i and h j are adjacent in G. To each face p (or plaquette) of L (see figure 2.4), we associate a local Boltzmann weight

W p (a, b, c, d) = δ ac + x √ S a S c S b δ bd (2.50)
We also associate Boltzmann weights to triangular plaquettes situated on the boundaries

W p (a, b, c) = δ ac (2.51)
Note that, in any configuration, the top most heights on the annulus are equal, and similarly for the bottom most. We will denote them h 0 and h M +1 as they appear in this order when we look at a column from top to bottom. Denote by h a,b : L → G the height mapping having h 0 = a as height value for the top most heights and h M +1 = b for the bottom most. The partition function is then defined as

Z RSOS (k) = l∈V S l S k h k,l p W p (2.52)
It is a weighted sum over partition function conditioned on the values of h 0 and h M +1 . We can graphically represent each term of (2.50) and (2.51) as

W p (a, b, c, d) = + x √ S a S c S b (2.53a) W p (a, b, c) = at the top boundary (2.53b) W p (a, b, c) = at the bottom boundary (2.53c)
We thus get a configuration of the CPL model. The loops determine boundaries of clusters of heights taking the same value. Disregarding the factors of x for the moment, we see from (2.53), that each cluster of height a gets a weight

S b + -b - a (2.54)
where b + (respectively b -) denotes the number of loops surrounding (respectively surrounded by) the cluster. The definition of surrounding/surrounded by follows by saying that the cluster at the top most boundary is not surrounded by any loop. Consider a loop bounding two clusters c a and c b of height a and b respectively. Say that c a is surrounded by the loop and c b surrounds the loop. There are two possibilities. Either, the loop is contractible and we see from (2.53a) that, only the following four types of arches contribute non trivially

= S a S b (2.55a) = S a S b (2.55b) = S b S a (2.55c) = S b S a (2.55d)
Let us call them arches of type 1 to 4. The number of arches of type 1 and 2 is equal to 2 plus the number of arches of type 3 and 4. This means that the loop contribute to a weight Sa S b , that is, a weight S a to the cluster c a it surrounds and a weight S -1 b to the cluster it is surrounded by. The second possibility is given by non contractible loops. In this case, arches of type 1 and 2 are in same number as the arches of type 3 and 4 and their weights cancel. The only factors remaining are the one given by the topmost and bottom-most clusters denoted S l S k in (2.52). But those are correctly accounted by stating that each non contractible loop also contribute to a weight Sa S b , that is, a weight S a to the cluster c a it surrounds and a weight S -1 b to the cluster it is surrounded by. One can then show by induction on the number of clusters and using the relation A ij S j = βS i that the weight (2.54) is equivalent to giving a weight β to each loop [START_REF] Pasquier | Two-dimensional critical systems labelled by Dynkin diagrams[END_REF]. We thus conclude that

Z RSOS (k) = Z CPL (a = x, b = 1, N = Ñ = β) (2.56)
This implies that the RSOS models are critical whenever their loop weight satisfy β ≤ 2. All graphs G satisfying this constraint have been classified. When β < 2, G must be one of the Dynkin diagram of type RSOS models respectively. This can be seen by realizing that such RSOS models will have their heights frozen to the central node n of their associated Dynkin diagram, on a square sublattice S of L . L is bipartite and can be divided in two proper square lattices S and L . Then, on L , the values of the heights are not constrained by their neighbours. Thus we have that, at criticality

Z Potts = Z RSOS (n) (2.58)
under proper identification of parameters. Note that if we would have taken more general plaquette weight (2.50) staggered with respect to L = S ∪ L , we could have recovered the Potts models with arbitrary coupling.

Let us generalize slightly. First, one can use, in the definition of bulk weights (2.50)-(2.51), an eigenvector S i of the adjacency matrix other than the Perron-Frobenius one S 1 as long as all its components S i a are non-zero. Note that it may not be possible to scale the vector so that all of its components are positive. This leads to complex Boltzmann weights and the model will most likely be non-unitary. One can generalize further and use a different eigenvector S j , for the prefactors appearing in the definition of the partition function :

Z RSOS (k) = l∈V S j l S j k h k,l p W p (S i ) (2.59)
Denote the eigenvalue of the eigenvector S i by β i . One can repeat the arguments above to map the model to a CPL model. This time, contractible loops will be weighted by β i and non-contractible loops will be weighted by β j . Hence we have

Z RSOS (k) = Z CPL (a = x, b = 1, N = β i , Ñ = β j ) (2.60)
In order to have a contractible loop weight |β i | ≤ 2 and criticality, one must consider again a (affine) Dynkin diagram of A, D or E type. For non affine Dynkin diagrams, the RSOS models are lattice regularizations of the corresponding minimal models, possibly non-unitary [START_REF] Nakanishi | Non-unitary minimal models and RSOS models[END_REF][START_REF] Riggs | Solvable lattice models with minimal and nonunitary critical behaviour in two dimensions[END_REF].

As an example, the eigenvectors and eigenvalues of the A n Dynkin diagram with adjacency matrix A ij = δ i j+1 + δ i+1 j can be written as

S j a = sin ja n + 1
(2.61a)

β j = 2 cos jπ n + 1 (2.61b)

Transfer matrices

Let us write column-to-column transfer matrices for the RSOS models with contractible loop weight β m and non contractible loop weight β n . The Hilbert space of states, H is given by the paths |h 0 h 1 

E i |• • • h i-1 h i h i+1 • • • = h i S m hi S m h i S m hi-1 δ(h i-1 , h i+1 ) |• • • h i-1 h i h i+1 • • • (2.62)
satisfy the relations of the Temperley-Lieb algebra. They thus form a representation ρ RSOS . The columnto-column transfer matrix reads

T RSOS = ρ RSOS (T CPL (a = x, b = 1)) (2.63)
Note that the Temperley-Lieb action preserves the last height h M +1 of a state. The space of states can be written as a direct sum

H = l∈V H l (2.64)
where H l denotes the subspace of paths with the value of their last height constrained to h M +1 = l. Each of these subspace carries a subrepresentation ρ l of ρ RSOS . Consider the linear form over the Temperley-Lieb algebra given by l∈V

S n l S n k tr(ρ l (.)) (2.65)
It satisfies all the properties (2.13) with β = β m , β = β n and is thus equal to the Markov trace. We then recover (2.56).

The six-vertex models

The six-vertex models are one of the simplest integrable models with quantum group symmetry. This symmetry will become apparent in the next chapter. They were originally motivated by two dimensional models of ice as a square lattice, here L, whose nodes represent oxygen atoms, with exactly one hydrogen atom on each link [START_REF] Lieb | Residual entropy of square ice[END_REF][START_REF] Pauling | The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement[END_REF]. The hydrogen atoms can be in two states which correspond to being close to one of the two oxygens atom it is adjacent to. There is a constraint on configuration which states that exactly two hydrogen atoms are close to the same oxygen atom. We thus see that, around each node, there are 4 2 = 6 possible states, hence the name six-vertex models. If we draw an arrow on each link that is pointing to the atom it is close to, we obtain the states of figure 2.6 with their corresponding local Boltzmann weights. We will also add local Boltzmann weights associated to the boundaries as in 2.7 and to a vertical "seam line" running along the cylinder crossing links of the last column but avoiding nodes. In a given configuration, when an oriented link crosses the seam line from left to right (respectively from right to left), a local Boltzmann weight e iψ (respectively e -iψ ) is given. This introduces twisted periodic boundary conditions.

ω 1 ω 2 ω 3 ω 4 ω 5 ω 6
Let us now detail the mapping from the CPL models to the six-vertex models [START_REF] Baxter | Equivalence of the Potts model or Whitney polynomial with an ice-type model[END_REF][START_REF] Jacobsen | Conformal Field Theory Applied to Loop Models[END_REF]. Given a CPL configuration, one can orient each loop in two different ways. Around each node, the orientations of loops form a six-vertex configuration. The non local weight of the loop can be recast as a product of local weights. We associate a local weight e -iγ θ 2π for an arrow bending of angle θ as

The angle θ of an oriented edge bending will always be counted positive in the anti-clockwise direction. We then see that we obtain a contractible loop weight given, after summing over the two orientations, by

N = e iγ + e -iγ = 2 cos(γ) (2.66)
This leads to a correspondence with six-vertex local weights as

ω 1 = b (2.67a) ω 2 = b (2.67b
)

ω 3 = a (2.67c
)

ω 4 = a (2.67d
)

ω 5 = ae -iγ/2 + be iγ/2
(2.67e)

ω 6 = ae iγ/2 + be -iγ/2
(2.67f)

α 1 = e -iγ/4
(2.67g)

α 2 = e iγ/4
(2.67h)

α 3 = e iγ/4
(2.67i)

α 4 = e -iγ/4 (2.67j)
There is a slight subtlety concerning non contractible loops. With the weights (2.67), non contractible loops will get a weight 2 as they bend an overall angle 0 when wrapping around the cylinder. We can remedy this by introducing twisted boundary conditions as discussed before. With the addition of the local weights given by the seam line, we obtain a non contractible loop weight equal to Ñ = 2 cos(ψ)

(2.68)

We have thus shown that under the identification (2.66)-(2.68), the partition functions of the CPL and the six-vertex models agree

Z 6V = Z CPL (2.69)

Transfer matrices

Let us construct the column-to-column transfer matrices. On each link, lives a two-dimensional Hilbert space V = span(|↑ , |↓ ) where |↑ (respectively, |↓ ) denotes the state where the link is oriented to right (respectively, to the left). The full Hilbert space is then given by H = V ⊗L . The local transfer matrices associated to each node Ř({ω i }) act non trivially on two consecutive factors V ⊗ V of H and, in matrix form read, in the basis of arrows :

Ř({ω i }) =     ω 1 0 0 0 0 ω 6 ω 4 0 0 ω 3 ω 5 0 0 0 0 ω 2     (2.70)
The local transfer matrices K + ({α i }) and K -({α i }) associated to bottom and top boundaries respectively act non trivially only on one tensorand V of H and reads in the arrows basis :

K + ({α i }) = α 1 0 0 α 2 K -({α i }) = α 3 0 0 α 4 (2.71)
The operator associated to the seam line factorized as S ⊗(M +1) with S reading in the arrow basis

S = e iψ 0 0 e -iψ
(2.72)

We will now tune the parameters to (2.67). Further, we will use a similarity transformation T : V → V by inserting T T -1 on links of shape and T -1 T on links of shape . This has the net effect of transforming local transfer matrices as

Ř → (T -1 ⊗ T ) Ř(T ⊗ T -1 )
(2.73a)

K + → T -1 K + T -1 (2.73b) K -→ T K -T (2.73c) 
S → T ST -1 on links of shape (2.73d)

S → T -1 ST on links of shape (2.73e) (2.73f)
Then choosing

T = e -iγ/8 0 0 e iγ/8
(2.74)

we obtain K + = K -= Id, S unchanged and

Ř =     b 0 0 0 0 b + e iγ a a 0 0 a b + e -iγ a 0 0 0 0 b     (2.75)
We can rewrite

Ř = bId + aE (2.76)
where

E =     0 0 0 0 0 e iγ 1 0 0 1 e i-γ 0 0 0 0 0     (2.77)
Adding a subscript i to this operator meaning that it acts nontrivially only on the ith and i + 1th tensorands of H, we can check that the matrices E i satisfy the relations of the Temperley-Lieb algebra (2.8) with β = e iγ + e -iγ = N . Thus, they define a representation ρ 6V (.) of the latter. We can write the column-tocolumn transfer matrix as

T 6V = ρ 6V (T CPL (a, b)) (2.78)
The partition function reads

Z 6V = tr S ⊗M +1 T L/2 6V
(2.79)

Furthermore, one can show that the trace tr S ⊗M +1 ρ 6V (.) satisfy the properties of the Markov trace (2.13) with loop weights β = N and β = 2 cos(ψ) = Ñ . We then recover the equality of partition functions (2.69).

Some algebraic aspects

In this section, we discuss some algebraic aspects of the models that we have introduced, through the prism of the Temperley-Lieb algebras TL n (β). In the following, we parameterize β = -q -q -1 . As we have seen, in all of the previously introduced models, the algebra generated by local transfer matrices is a quotient of the Temperley-Lieb algebra. Because of our choice of boundary conditions in the periodic direction, we can always rewrite the partition functions in terms of the Markov trace of the same element of the Temperley-Lieb algebra. The models are thus equivalent at the level of partition functions. Yet, the representations that we have introduced are not isomorphic and thus, the spectra of the models may differ. For instance, this can be seen in the Ising model (Q = 2 Potts model) where the representations of the TL generators obey the additional relation [START_REF] Martin | Potts Models and Related Problems in Statistical Mechanics[END_REF] 1

- √ 2(E i + E i+1 ) + E i E i+1 + E i+1 E i = 0 (2.80)
On the other hand, the 6-vertex representation is known to be faithful, i.e. injective [START_REF] Martin | On schur-weyl duality, a n hecke algebras and quantum sl n on ⊗ n+1 C n[END_REF].

It is not hard to show that the RSOS representations ρ l introduced in 2.1.4 are irreducible. This implies that the spectrum of RSOS models is contained, up to multiplicities, in the spectrum of the 6-vertex models. But it is not the other way around, that is, there are excitations of the 6-vertex models that are not inside the RSOS spectra. We will say more about this in the remainder of this section.

Integrability

Consider an algebra with generators Ři (u), i ∈ 1, n -1 . We say that they form a Yang-Baxter algebra (YBA) [START_REF] De | Yang-baxter algebras, integrable theories and quantum groups[END_REF] if they satisfy

Ři (v) Ři+1 (u + v) Ři (u) = Ři+1 (u) Ři (u + v) Ři+1 (v) (2.81a) [ Ři (u), Řj (v)] = 0 if |i -j| > 1 (2.81b)
The first of these equations is called the spectral parameter dependent Yang-Baxter equation [START_REF] Baxter | Exactly Solved Models in Statistical Mechanics[END_REF]. A model is said to be integrable if its local transfer matrices form a representation of the Yang-Baxter algebra. Note that the above relations look very similar to the braid group relations, the only difference being the dependance on so called spectral parameters. In an appropriate limit, for instance sending these parameters to infinity, we recover the braid group relations. This motivates the search for non trivial representations of the YBA from non trivial representations of the braid groups. We have seen that we can define such representations from representations of quotients of the braid group algebras, like the Hecke or TL algebras. Thus, if we can find a morphism from the YBA to these algebras, we can expect to obtain non trivial representations of the YBA. This is called Baxterisation [START_REF] Jones | Baxterization[END_REF]. The Hecke and TL algebras can be Baxterised. As the TL algebra is a quotient of the Hecke algebra, let us focus on the latter. Given the presentation (2.30) with -q = e iγ , the operators

Ři (u) ∝ sin(γ -u)Id + sin(u)E i (2.82)
satisfy the relations of the YBA. This shows that all the models we introduced are integrable for the right identification of parameters. For instance, the six-vertex model is integrable for a = sin(u) and b = sin(γ -u).

On a geometry with periodic boundary conditions, this leads to an infinite family of commuting transfer matrices given by

T (u) = tr S Řn-1 (u) • • • Ř2 (u) Ř1 (u) (2.83)
The trace in the last expression has to be understood as the contraction over the two spaces of states denoted by blue links in the following where crosses denote Ř operators and the twist S is denoted by a red dot. For a good choice of twist, it is then possible to consider a limit where one obtain the XXZ spin chain Hamiltonian as

H XXZ = d du u=0 T (u) = - n-1 i=1 d du u=0 Ři (u) ∝ - n-1 i=1 E i (2.84)
where the E i are now elements of the affine TL algebra as we have contracted two links. Other algebras have been Baxterised. The main examples being the Birman-Wenzl-Murakami algebras and their dilute counterparts [START_REF] Grimm | Dilute Birman-Wenzl-Murakami algebra and D (2) n+1 models[END_REF][START_REF] Isaev | Quantum groups and Yang-Baxter equations[END_REF].

When the geometry considered has open boundary conditions, e.g., a strip, in order to obtain an infinite family of conserved transfer matrices, one must add to the YBA a reflection operators K ± (u) and the following relations

Ř1 (u -v)K -(u) Ř1 (u + v)K -(v) = K -(v) Ř1 (u + v)K -(u) Ř1 (u -v) (2.85a) Řn-1 (u -v)K + (u) Řn-1 (u + v)K + (v) = K + (v) Řn-1 (u + v)K + (u) Řn-1 (u -v) (2.85b) [ Ři (u), K ± (v)] = 0 for i ∈ 2, n -2 (2.85c)
The first two equations are called the reflection equations [START_REF] Sklyanin | Boundary conditions for integrable quantum systems[END_REF]. In this case, Baxterisation is also possible [START_REF] Doikou | Hecke algebraic approach to the reflection equation for spin chains[END_REF][START_REF] Kulish | Baxterization of Solutions to Reflection Equation with Hecke R-matrix[END_REF][START_REF] Levy | Hecke algebra solutions to the reflection equation[END_REF].

In the 6-vertex representation, one can find solutions to reflection equations and construct a family of commuting transfer matrices and obtain from them integrable Hamiltonians [START_REF] Yung | Integrable vertex and loop models on the square lattice with open boundaries via reflection matrices[END_REF]. Some notions of the representation theory of TL n (-q -q -1 ) We have stated that the spectrum of RSOS models is contained in the 6-vertex model one but not vice versa. Let us be more precise about this fact. The behaviour of the TL algebras differ radically when q ∈ C * is a root of unity and q = ±1, where for n sufficiently large, the algebras are not semisimple. On the other hand, for q not a root of unity or q = ±1, we say for generic q, the TL algebras are semisimple [START_REF] Martin | Potts Models and Related Problems in Statistical Mechanics[END_REF][START_REF] Ridout | Standard modules, induction and the structure of the Temperley-Lieb algebra[END_REF].

An important class of modules of the TL algebras are given by the so called standard modules [START_REF] Martin | Potts Models and Related Problems in Statistical Mechanics[END_REF][START_REF] Ridout | Standard modules, induction and the structure of the Temperley-Lieb algebra[END_REF]. They can be defined as spanned link patterns connecting pairwise n points on a line except a subset of k. Those k points are connected to a through line that goes to infinity. The action of the TL algebra is by concatenation of diagrams and, if any pair of through lines are connected in the process, the result is set to zero. Here is an example of such diagram in S 2

For generic q, the standard modules constitute a complete set of irreducible representations. For non generic q, some of them will become reducible yet indecomposable. Any irreducible representation is then a quotient of a standard module [START_REF] Martin | Potts Models and Related Problems in Statistical Mechanics[END_REF][START_REF] Ridout | Standard modules, induction and the structure of the Temperley-Lieb algebra[END_REF].

The TL algebras have nice connections with quantum groups. For generic q, let us define the quantum group [START_REF] Chari | A guide to quantum groups[END_REF] U q (sl 2 ) as a Hopf algebra generated by, E, F and q ±H satisfying the relations q H Eq -H = q 2 E , (2.86a)

q H F q -H = q -2 F , (2.86b) [E, F ] = q H -q -H q -q -1 , (2.86c) 
(2.86d)

It is a Hopf algebra with the coproduct

∆(E) = E ⊗ q H + 1 ⊗ E , ∆(F ) = F ⊗ 1 + q -H ⊗ F , ∆(q H ) = q H ⊗ q H , (2.87) 
the antipode

S(E) = -Eq -H , S(F ) = -q H F , S(q H ) = q -H , (2.88) 
and the counit

(E) = 0 , (F ) = 0 , (q H ) = 1 . (2.89)
As an algebra morphism from U q (sl 2 ) to U q (sl 2 )⊗U q (sl 2 ), the coproduct permits to define the tensor product representation π ρ of two representations π λ and π µ as

π ρ (.) = π λ ⊗ π µ (∆(.))
The antipode permits to define duals of representations and the counit defines a trivial representation. Let V denote the fundamental representation of U q (sl 2 ). The coproduct permits to define a U q (sl 2 ) representation on V ⊗n . One can then show that the actions of U q (sl 2 ) and ρ 6V (TL n (-q -q -1 )) on V ⊗n centralize each other [START_REF] Jimbo | A q-analogue of U(g[(N+1)), Hecke algebra, and the Yang-Baxter equation[END_REF][START_REF] Martin | On schur-weyl duality, a n hecke algebras and quantum sl n on ⊗ n+1 C n[END_REF]. This is known as quantum Schur-Weyl duality. Then, as a bimodule over U q (sl 2 ) ⊗ TL n (-q -q -1 ), V ⊗n decomposes as

V ⊗n = n/2 k=0 V k ⊗ S 2k (2.90)
where n is even and V k denotes the irreducible representation of U q (sl 2 ) of dimension 2k + 1. Remark that this decomposition makes possible to write the partition Z 6V in a nice form. Indeed, the operator S ⊗n imposing twisted boundary conditions can be seen to be a representation of the following element of U q (sl 2 ) t H

(2.91) with t = e iψ . Then (2.79) gives

Z 6V = n/2 k=0 [2k + 1] t K 1,1+2k (2.92) 
K 1,1+2k = tr S 2k (T L/2 CPL )
where n = M + 1 even and have introduced t-deformed numbers [k] t = t k -t -k t-t -1 . For non generic q, a bimodule decomposition also exist [START_REF] Gainutdinov | Lattice fusion rules and logarithmic operator product expansions[END_REF]. This time one must introduce some specialization of the quantum group at a root of unity [START_REF] Chari | A guide to quantum groups[END_REF]Chapter 9]. Because the representation theories become more involved, we will not give more details on this decomposition. Let us just mention that, as K 1,1+k are Laurent polynomials in q, they still make sense for roots of unity and the expression(2.92) is still valid at roots of unity.

On the other hand, we can compare with RSOS partition functions. For simplicity, consider the A p partition function Z RSOS (1) (2.59). Denote by X l-1 , the vector space attached to the irreducible representation ρ l . We have

Z RSOS (1) = p l=1 mod 2 [l] t χ 1,l
(2.93)

χ 1,1+l = tr X l (T L/2 CPL )
where t = e i jπ p+1 . Let us compare with (2.92) with t = e i jπ p+1 and q = -e i π p+1 . We first realize that

[2m(p + 1) + 2k + 1] t = [2k + 1] t (2.94a) [2m(p + 1) -(2k + 1)] t = -[2k + 1] t (2.94b)
We can then reorganize the terms of the sum in (2.92) and obtain

Z 6V = p-1 2 k=0 [2k + 1] t m≥0 K 1,2m(p+1)+1+2k -K 1,2m(p+1)-(1+2k) (2.95)
Of course the sum terminates as S k = 0 for k > n. We thus obtain, from the equalities of partition functions of RSOS and 6-vertex models, that

χ 1,1+2k = m≥0 K 1,2m(p+1)+1+2k -K 1,2m(p+1)-(1+2k) (2.96) 
A similar reasoning for odd sizes of the lattice would lead to the same formula with k ∈ 1 2 + N * . From this formula, it is tempting to conclude that some of the excitations of the 6-vertex models are removed in the RSOS models. This is in fact the case. The following sequence is exact [START_REF] Ridout | Standard modules, induction and the structure of the Temperley-Lieb algebra[END_REF] 0

←-S k ←-S 2(p+1)-2-k ←-S 2(p+1)+k ←-S 4(p+1)-2-k ←-S 4(p+1)+k ←-• • • (2.97)
and the irreducible representation is obtained from this sequence as It possess a null vector v at level rs, i.e. L 0 v = (rs)v, that is a highest weight for a submodule isomorphic to the Verma module V r,-s . One can then define the so called Kac modules K r,s [START_REF] Di Francesco | Conformal Field theory[END_REF] as

X k = S k /Im(S 2(p+1)-2-k ) (2.
K r,s = V r,s /V r,-s (2.102)
When p is a positive integer, the Kac modules can be reducible. In particular, one has the following exact sequence

0 ←-K 1,1+k ←-K 1,1+2(p+1)-2-k ←-K 1,1+2(p+1)+k ←-K 1,1+4(p+1)-2-k ←-K 1,1+4(p+1)+k ←-• • • (2.103)
One obtains an irreducible representation from this sequence as

Γ 1,1+k = K 1,1+k /Im(K 1,1+2(p+1)-2-k ) (2.104)
As our models are critical, this strongly suggests that the TL representations we have defined correspond in some sort of limit to the Virasoro modules above. This, indeed, has been shown at the levels of characters [START_REF] Gainutdinov | The periodic s (2|1) alternating spin chain and its continuum limit as a bulk logarithmic conformal field theory at c = 0[END_REF][START_REF] Gainutdinov | Lattice fusion rules and logarithmic operator product expansions[END_REF][START_REF] Pasquier | Common structures between finite systems and conformal field theories through quantum groups[END_REF][START_REF] Saleur | On some relations between local height probabilities and conformal invariance[END_REF]. The upper half plane can be conformally mapped to a horizontal strip of width M + 1. Then the operator realizing, on the space of states, the infinitesimal translations along the strip is given by

e -π M +1 (L0-c 24 
)
(2.105)

Its spectrum is related to the spectrum of the transfer matrix so that, under the identification γ = π p+1

K 1,1+k ∼ M →∞ tr K 1,1+k (q L0-c 24 ) = q -c/24 P (q) q h 1,1+k -q h 1,-1-k (2.106)
where q = e -π L 2(M +1) 4 and P (q) = k≥1 (1 -q k ). When p ∈ N, one also has that

X 1,1+k ∼ M →∞ tr Γ 1,1+k (q L0-c 24 ) (2.107) 
One can then deduce from (2.92) and (2.106) the exact partition function of the loop model in the continuum limit, where we add the even and odd size sectors,

Z cont = q -c/24 P (q) k∈N [1 + k] t q h 1,1+k -q h 1,-1-k = q -c/24 P (q) k∈Z [k] t q h 1,k (2.108) 
This result also has been found using Coulomb Gas methods [START_REF] Cardy | The o(n) model on the annulus[END_REF].

Let us also remark that a correspondence between the TL algebra and Virasoro generators has been formulated in physical models resulting in the so-called Koo-Saleur formulas [START_REF] Gainutdinov | Continuum limit and symmetries of the periodic gl(1|1) spin chain[END_REF][START_REF] Grans-Samuelsson | The action of the Virasoro algebra in quantum spin chains. Part I. The non-rational case[END_REF][START_REF] Koo | Representations of the virasoro algebra from lattice models[END_REF].

From the above discussion, we can infer that the continuum limit of the 6-vertex models at roots of unity contains reducible yet indecomposable representations. These representations contain the irreducible representations of RSOS models as their quotients. But they also contain additional degrees of freedom propagating information that is out of reach in the RSOS models. A particularly speaking example is the percolation model, or A 2 RSOS model. Its Hilbert space is trivially one dimensional. No non trivial correlations are accessible in this formulation. Yet, the 6-vertex model at the corresponding point has a non trivial spectrum. One can then answer geometrical questions related to the percolation clusters. In general, the 6 vertex representations of the CPL models allow one to compute geometric correlations, such as the probability that two given points sit on the same loop. We will see how to compute them in the close context of O(N ) loop models, see section 2.2.

That the spectrum contains reducible yet indecomposable representations implies that the theory is not unitary and is a characteristic of logarithmic CFT (see for instance [START_REF] Cardy | Logarithmic conformal field theories as limits of ordinary CFTs and some physical applications[END_REF]). In fact, that the algebraic structure mimics the continuum one has been a fruitful point of view to explore question such as fusion in this context [START_REF] Gainutdinov | Associative algebraic approach to logarithmic CFT in the bulk: The continuum limit of the gl(1|1) periodic spin chain, howe duality and the interchiral algebra[END_REF][START_REF] Gainutdinov | Lattice fusion rules and logarithmic operator product expansions[END_REF][START_REF] Read | Associative-algebraic approach to logarithmic conformal field theories[END_REF]. 

The O(N ) loop models

The O(N ) loop models are slightly more general than the CPL models introduced above. They allow for dilution, i.e links not covered by any loop. Links that are covered by loops will be called bonds. The model is defined on an hexagonal lattice H made of 2M rows and 2L columns embedded in a vertical strip or a vertical cylinder. More precisely, a row here denotes a row of vertical edges, while a column is a column of tilted edges. It can be read from the example in Figure 2.8. To fix vocabulary, H is comprised of nodes and links.

It is oriented such that one third of its links are parallel to the vertical axis of the strip, or cylinder. The configurations of the O(N ) loop model are collections of self-avoiding and mutually avoiding loops embedded in H. We denote the configuration space by L. The weight of a configuration is the product of local fugacity x assigned to each bond (i.e., a link covered by a loop) and a non-local factor N (respectively, Ñ ) for each contractible loop (respectively, non contractible loop).

The partition function of the model then reads

Z loop = c∈L x # of bonds N m Ñ m (2.109)
Remark that, as any loop contains an even number of bonds, the partition function in fact depends only on x 2 and we will set x > 0. It can be shown that the O(N ) loop models possess critical points for N ∈ [-2, 2] [START_REF] Blöte | The phase diagram of the o(n) model[END_REF]. The phase diagram is given in figure 2.9. There is a critical line at [START_REF] Nienhuis | Exact critical point and critical exponents of O(n) models in two dimensions[END_REF] 

x c = (2 + √ 2 -N ) -1 2 (2.110)
called the dilute critical phase. For x c < x < +∞, the model is critical and in the so called dense phase. In the limit x → +∞, two thirds of the links are covered and, up to rescaling, the partition function (2.109) describe the critical fully-packed phase [START_REF] Blöte | Fully packed loop model on the honeycomb lattice[END_REF]. The dense phase is in the same universality class as the CPL models of Section 2.1.

The dilute and fully-packed critical lines are repulsive in the x direction. The dense phase region between them is attractive. The other attractive region for x < x c is trivial.

The universality classes of O(N ) loop models are rich. They contain the descriptions of polymers constrained to sit on a thin film at N = 0. In the dilute phase, it is also called the self-avoiding walk. At N = -2, they are in the same universality class as loop erased random walks. Finally at N = 1, they describe the interfaces between Ising spin or critical percolation clusters.

Let us detail this latter mapping. Consider an Ising model on the triangular lattice T dual to H. We ask that when H is embedded in the cylinder, T contains one node at the top of the cylinder and one at the bottom, whereas in the strip case, there is simply one point outside of H. The configurations are maps σ : T → {±1} . The partition function reads

Z Ising =
{σ} <ij> e J(δσ i σ j -1)

(2.111)

where < ij > denotes unordered nearest neighbour pairs of sites of T. Set x = e -J . Now, the low temperature expansion consists in drawing bonds on links of H whenever they separate different neighbouring spins in a given configuration σ. As the set of such bonds must form loops, this gives a map from the spin configurations to L. This map is two-to-one and two spin configurations related by a global Z 2 inversion σ → -σ give the same loop configuration. But two such configurations have exactly the same Boltzmann weights. We thus have the following equality of partition function, up to a constant,

Z Ising = 2Z loop (N = Ñ = 1) (2.112) 
where the loops are identified to spin cluster interfaces. At infinite temperature, i.e. J → 0 and x = 1, the Ising model corresponds to a site percolation model at activation probability p = 1/2. N = 1, x = 1 is a situated in the dense phase. We thus conclude that the site percolation model on the triangular lattice is critical at p = 1/2. The interfaces between percolation clusters are then described by O(1) dense loops.

From O(N ) spins to loops

The O(N ) loop models are defined for any complex N for which there is in general no meaning to the group O(N ). In fact, they originally get their name as they contain the universality classes of O(N ), N integer, symmetric local spin models in two dimensions. There are two critical points, one being the Ising universality class at N = 1 as we have seen above. The other is the Berezinsky-Kosterlitz-Thouless transition at N = 2.

For each node i ∈ H, consider an N -dimensional spins S α i in the sphere S N -1 of radius √ N , i.e. S i • S i = N . Let µ denote the uniform measure on S N -1 such that its volume is normalized to 1. Define the partition function by

Z = i dµ <ij> (1 + x S i • S j ) (2.113)
The Boltzmann weight <ij> (1 + x S i • S j ) is clearly invariant under a global O(N ) rotation. It is not the most general O(N ) invariant weight but, in two spacial dimensions, it is believed to be in the most generic universality class for the dilute phase which is the relevant one for phase transitions of spin systems 5 . By the fundamental theorem of invariant theory [START_REF] Springer | Invariant Theory[END_REF], we have that dµ1 = 1

dµS α i = dµS α i S β i S γ i = 0 dµS α i S β i = δ αβ (2.114)
Then let us do the high temperature expansion of the model. Given a configuration, we develop the product in the Boltzmann weight. For each term in the resulting sum, we draw a bond on a link < ij > if the term contains x S i • S j = x α,β δ αβ S α i S β j and let the link empty if it does not. Because of (2.114), we see that if the collection of bonds does not form a loop configuration, then the related term in the expansion will give 0 after integration. A term corresponding to a loop configuration will give, after integration

x # of bonds N # of loops (2.115)
and we have recovered the Boltzmann weight of the O(N ) loop model (2.109) with N = Ñ . Remark that, in the high temperature expansion, the Ising spins live on the lattice H whereas on the low temperature expansion presented in the last section, they live on the dual lattice T. This is an instance of duality.

We can repeat the above construction to give a graphical formulation of correlations. In particular, consider the 2-points function S α i S β j , i = j. By the fundamental theorem of invariant theory we have that

dµS α i S β i S γ i S i = N N + 2 (δ αβ δ γ + δ αγ δ β + δ α δ βγ ) (2.116) 
In the high temperature expansion, the two spin insertions will lead to loop configurations with either 1 or 3 self-avoiding strands connecting i and j. As we will see later, at criticality, the partition function is dominated by configurations with only 1 strand connecting i and j. Remark that, at N = 0, this is exactly the case as the right hand side of (2.116) vanishes. Moreover, as all loops in the background are disallowed, we are left with a self-avoiding walk connecting i and j. This is a particular instance of the general relation between polymers and O(N ) models at N → 0 [START_REF] De Gennes | Scaling Concepts in Polymer Physics[END_REF].

Transfer matrices and dilute Temperley-Lieb algebras

One can define transfer matrices for the O(N ) loop models in an way analogous to the CPL models exposed in section 2.1.1. Because of the fact that links can be empty, one needs to introduce diagrammatic algebras accounting for this fact. These are called the dilute TL (dTL) algebras in the strip geometry or their affine versions in the cylinder geometry. Their elements are given by linear combinations of diagrams matching pairwise, in a non crossing way, a subset of the n points on the bottom boundary and the n points on the top one of a rectangle or a cylinder. The only difference with TL algebras is thus that some of the boundary points may be not connected to others, they are called vacancies. The multiplication is again given by concatenation and the result is set to zero if a link meets a vacancy. If any contractible loop is created in the process, it is removed and gives a factor N . One can then introduce traces to account for non contractible loops but we will not discuss boundary effects in this context. Let us simply write the bulk local transfer matrices in terms of diagrams of the dilute TL algebras

t loop =x 2 + x 2 + x 2 + x 2 + x 2 + x + x + (2.117)
where the dashed lines represent links of the lattice that are empty. The top and bottom links are in fact considered as half links which account for the right powers of x in front of them.

The dTL algebras can be Baxterised. Consider the elements

Ři (u) = sin(2ψ -u) sin(3ψ -u) -sin(u) sin(ψ -u) + sin(2ψ) sin(3ψ -u)    +    + sin(u) sin(3ψ -u)    +    (2.118) 
+ sin(u) sin(2ψ)

   +    + (sin(2ψ) sin(3ψ) + sin(u) sin(3ψ -u))
where the dots represent identity lines, i.e. the sum of a vertical line connecting the jth point, j = i, i + 1, at the bottom to the jth point at the top, and the diagram where these two points are vacancies. It can be shown [START_REF] Nienhuis | Critical spin-1 vertex models and o(n) models[END_REF] that the Ři (u) satisfy the Yang-Baxter equations when N = -2 cos(4ψ). Setting u = 2ψ, we have that, up to renormalization, the Ři (u) are equal to the local transfer matrices (2.117) with x = sin(2ψ) sin(3ψ)+sin(ψ) = 1 2 cos(ψ) . The O(N ) loop models are thus integrable on the line

x = (2 ± √ 2 -N ) -1 2 (2.119)
And we see that one of the branches coincide with the critical dilute line whereas the other sits inside the critical dense plateau. The fully-packed phase is also integrable [118]6 .

Local Vertex model formulations

We shall now describe a combinatorial vertex-model formulation of the O(N ) loop models. It is similar in spirit to the localisation of the loop weight in the CPL loop models in terms of a corresponding oriented loop model [START_REF] Baxter | Equivalence of the Potts model or Whitney polynomial with an ice-type model[END_REF][START_REF] Jacobsen | Conformal Field Theory Applied to Loop Models[END_REF].

The trick is again to first assign orientations to each loop. One then gives a weight q (respectively q -1 ) to a loop oriented clockwise7 (respectively anticlockwise) such that, with N = q + q -1 = [2] q , the original loop weight is retrieved. Next, one can localise the weight of an oriented loop by requiring that a piece of it carry a weight q -θ 2π when it bends an angle θ.

On the hexagonal lattice H embedded in the strip, the weight of an oriented loop can be accounted for by the followings local weights (where the bond fugacity is taken care of as well):

= xq -1 6 , = xq 1 6 , = 1 , (2.120) 
where the dashed line represent a link unoccupied by a loop. Here we only drew some of the possible node configurations, omitting those related to the above ones by a rotation. All node configurations related by a rotation are given the same weight. Hence the model possess the discrete rotation symmetry of H.

When H is embedded in the cylinder, the above vertex weights give an uncorrect weight 2 to noncontractible loops. This situation can be remedied by introducing an oriented seam line running along the cylinder and avoiding nodes, such that additional weights are given to links crossing the seam line as follows:

= t , = t -1 , = 1 . (2.121)
where Ñ = t + t -1 . Indeed, these weights just compensate the lack of bending for configurations that wrap around the periodic direction.

Transfer matrices and quantum group symmetry Our next goal is to define the transfer matrix corresponding to the vertex models introduced above. To this end, we associate to each link of H a local space of states whose basis is given by the link degrees of freedom. In the loop model case, this leads to a three-dimensional local states space

H loop = span(|↑ , |↓ , | ).
The vertex weights are then understood as matrix elements between states, but to define them we need tensor products of several local state spaces. The operators built this way are the local transfer matrices. The weights associated to the seam line are interpreted as matrix elements of twist operators, as they introduce twisted boundary conditions.

We shall call node of type 1 (respectively type 2) a node situated at the bottom (respectively top) of a vertical link. For example, (2.120) show nodes of type 1.

We first recall how to build the full transfer matrix from the local transfer matrices and the twist operators. Denote by t loop (k) the local transfer matrices propagating through a node of type k ∈ {1, 2}. They are linear maps:

t loop (1) : H loop ⊗ H loop → H loop , (2.122a) t loop (2) 
: and we use their pictorial notation and , respectively, in Figure 2.10. Their matrix elements are given by (2.120) in the case k = 1 plus rotations, and similarly for k = 2. Hence their composition

H loop → H loop ⊗ H loop , (2.122b) 
t loop = t loop (2) t loop (1)
is a linear map from H loop ⊗ H loop to itself (i.e., an endomorphism of H loop ⊗ H loop ). 8 We index the copies t loop i of these operators by their position i in a row as in Figure 2.10. Denote by S loop the twist operator associated with crossing the seam line running from right to left, and its inverse S -1 loop associated with the seam line running from left to right. Then the row-to-row9 transfer matrix T loop in the cylinder geometry reads

T loop = L-1 k=0 t loop 2k+1 L-1 k=1 t loop 2k S loop t loop 2L S -1 loop , (2.123) 
where S loop acts non-trivially on site 1 only. In case of open boundary conditions we have instead10 

T loop = L-1 k=0 t loop 2k+1 L-1 k=1 t loop 2k . (2.124) 
It is an endomorphism of H ⊗2L loop . The partition function is then recovered as the vacuum expectation value of powers of the row-to-row transfer matrix:

Z loop = T M loop .
(2.125)

By the vacuum expectation value, we mean the matrix element from | ⊗2L to itself. To be precise, the right-hand-side of (2.125) expresses the partition function Z loop on a hexagonal lattice with 2M -2 rows, because while T M loop builds loop configurations on a lattice with 2M rows, the degrees of freedom on the first and last row are constrained to be empty due to our choice of vacuum state.

Next we discuss the symmetries of the local transfer matrices. Let V be the fundamental representation of U -q (sl 2 ).11 Let (v 1 , v 2 ) be the basis of V such that the generators of U -q (sl 2 ) are represented by the matrices

(-q) H = -q 0 0 -q -1 , E = 0 1 0 0 , F = 0 0 1 0 . (2.126)
Each local state space H loop carries an action of U -q (sl 2 ), as H loop ∼ = V ⊕ C, where C denote the trivial representation (corresponding to the empty state). We define the action on H loop by relating the basis {|↑ , |↓ , | } with the basis {v 1 , v 2 , 1} on each link. We shall here need to distinguish between the three possible spatial orientations of links, that we call inclinations for convenience. On links of inclination we have

(|↑ , |↓ , | ) = diag(q 1 6 , q -1 6 , 1)(v 1 , v 2 , 1) , (2.127a) 
whereas on links of inclination

(|↑ , |↓ , | ) = diag(q -1 6 , q 1 6 , 1)(v 1 , v 2 , 1) , (2.127b) 
and finally on vertical links we have

(|↑ , |↓ , | ) = (v 1 , v 2 , 1) . (2.127c)
It can be showed that the local transfer matrices t loop (1) and t loop (2) are intertwiners with respect to the above action of U -q (sl 2 ). Remark also that the seam line operators (also called twist operators) are given by the action of an element belonging to the Cartan subalgebra

S loop = t H , (2.128) 
As local transfer matrices are intertwiners, this means that the seam line can be deformed passing through nodes of H.

There is a convenient way to write the local transfer matrices in terms of diagrams where each diagram represents a particular intertwiner. This comes from the fact that these diagrams are morphisms in the Temperley-Lieb category whose definition and relation to U -q (sl 2 ) will be discussed in Section 3.1

t loop (1) = x + x + x + (2.129a) t loop (2) = x + x + x + (2.129b)
Here, full lines represent the propagation of states living in V whereas dashed lines represent the vacuum state living in C. Diagrams are to be read from bottom to top. For instance, the first diagram in (2.129a) represent the isomorphism V ⊗ C ∼ = V as U -q (sl 2 ) representations. The non-zero matrix elements of this isomorphism in the basis {v 1 , v 2 , 1} are

v 1 ⊗ 1 → v 1 , v 2 ⊗ 1 → v 2 , (2.130) 
which in the basis {|↑ , |↓ , | } give

|↑ ⊗ | → q -1 6 |↑ , |↓ ⊗ | → q 1 6 |↓ . (2.131)
As another example, the third diagram in (2.129a) represents the projection onto the trivial representation appearing in the decomposition of the tensor product V ⊗ V , whose non zero matrix elements in the basis {v 1 , v 2 , 1} are

v 1 ⊗ v 2 → q 1 2 , v 2 ⊗ v 1 → q -1 2 .
(2.132)

In the basis {|↑ , |↓ , | } we thus have

|↑ ⊗ |↓ → q 1 6 | , |↓ ⊗ |↑ → q -1 6 | . (2.133)
We see from (2.131) and (2.133) that we indeed recover the corresponding matrix elements of t loop (1) in the basis {|↑ , |↓ , | } given by the vertex weights (2.120).

The diagrams appearing in (2.129) can be concatenated when their boundary edges agree. Such a concatenation represents a composition of the operators associated to the diagrams. For example, in the diagrammatic language, t loop = t loop (2) t loop (1) reads

t loop =x 2 + x 2 + x 2 + x 2 + x 2 + x + x + (2.134)
We recognise here (2.117) and our local transfer matrices t loop in the vertex model thus form a representation of the dilute Temperley-Lieb algebra. Note that, in the case of the strip geometry, the row-to-row transfer matrix is an intertwiner, whereas in the cylinder case this is generally not the case. However in this latter situation the row-to-row transfer matrix is still symmetric with respect to the action of the Cartan subalgebra.

Electromagnetic operators

In this section we define modified partition functions of the O(N ) loop models. We denote them by Z e,m loop in the cylinder geometry and Z m loop in the strip geometry. From now on, we will set the value of Ñ = N in Z loop .

At the critical points of the O(N ) loop model, these objects are well known. In the cylinder geometry, when M L becomes large, one has the asymptotic equivalent [START_REF] Cardy | Conformal invariance and universality in finite-size scaling[END_REF] Z e,m loop

Z loop ∼ e - √ 3πM 4L (he,m+ he,m) , (2.135) 
where (h e,m , he,m ) are the conformal weights of the so-called electromagnetic operators of electric and magnetic charges, e and m [START_REF] Jacobsen | Conformal Field Theory Applied to Loop Models[END_REF]. In the usual field-theory normalisation the prefactor in the exponential would be 2πM L , but the aspect ratio must here be modified in order to account for the specific choice of lattice H. Recall that Figure 2.10 depicts two rows and 2L columns. Hence, in the presence of 2M rows, the aspect ratio is given by

√ 3M
4L because the height of an equilateral triangle of side 1 is

√ 3
2 . The electromagnetic operators are described in the Coulomb Gas (CG) formulation of the continuum limit of the loop model to be defined in the next section. In this picture, Z e,m loop is the lattice version of the CG partition function with a pair of electromagnetic operators inserted at the bottom and top ends of the cylinder.

In the strip geometry, one has instead

Z m loop Z loop ∼ e - √ 3πM 8L hm , (2.136) 
where h m is the conformal weight of the boundary magnetic operator of charge m. One can again look at Z m loop as the lattice version of a partition function modified by the insertion of magnetic operators at both ends of the strip. Thus, we will borrow the vocabulary of electromagnetic operators when discussing these lattice modified partition functions.

The aim of this section is to elaborate on the definition of such electromagnetic partition functions and to provide their geometrical interpretation. For this reason, we shall sometimes refer to the modifications of the partition functions as the insertions of geometrical defects.

The strip geometry As we have seen in Section 2.2.3, the row-to-row transfer matrix of the O(N ) loop model in the strip geometry possesses a symmetry under U -q (sl 2 ). The Hilbert space therefore decomposes in weight subspaces, i.e., eigenspaces of the Cartan element H. Let R * 2 be the weight lattice of sl 2 , dual to the root lattice R 2 = Zα 1 which is generated by α 1 . The weight lattice is also generated by one vector, w 1 satisfying (w 1 , α 1 ) = 1,12 called the fundamental weight, that is, R * 2 = Zw 1 . A weight vector of weight m = nw 1 , with n integer, is an eigenstate of H 1 with eigenvalue (m, α 1 ) = n. In the SU (2) spin projection notations it corresponds to the spin n/2.

The eigenspace of H 1 comprised of weight vectors of weight m will be called a sector. It is stable under the action of the transfer matrix and contains excitations that are lattice precursors of the ones created by magnetic operators in the Coulomb Gas formalism. We call a magnetic defect state |m (or simply magnetic defect) of magnetic charge m, a pure tensor state in the sector of weight m, such that any two sites labelled by 2i and 2i + 1 cannot be occupied (i.e., non-empty) simultaneously and there are exactly |n| occupied sites.

Here are some examples with m = nw 1 :

|m = (|↑ ⊗ | ) ⊗n ⊗ | ⊗2L-2n , if n ≥ 0 , (2.137a) |m = (|↓ ⊗ | ) ⊗|n| ⊗ | ⊗2L-2|n| , if n ≤ 0 . (2.137b)
The dilution of the insertion sites is required in order to avoid a trivial propagation. For instance, the state

|↑ ⊗3 ⊗ | ⊗2L-3
is not a magnetic defect, as it is mapped to 0 by the transfer matrix. The partition function modified by the insertion of the magnetic defect is then

Z m loop = m| T M loop |m , (2.138) 
with T loop being defined in (2.124). Because any magnetic defect of charge m becomes a magnetic defect of charge -m under the action of raising and lowering operators, E 1 and F 1 , the sectors of opposite magnetic charges contain the same excitations. It is thus possible to focus only on positive magnetic charges. The different choices for |m are physically equivalent. Every magnetic defect state having a non-zero overlap with the dominant eigenvector (that eigenvector of the transfer matrix whose eigenvalue is the largest in norm) will lead to the same scaling behaviour (2.135)-(2.136). We believe that, in the loop models, every magnetic defect state has a non-zero overlap with the dominant eigenvector.

One can write (2.138) as a sum over trajectories of transition amplitudes. An oriented subgraph of H will be said to be coloured. Denote by L m col the set of coloured subgraphs of H whose connected components are either coloured loops or coloured lines, such that loops cannot touch the bottom and top boundaries, and lines touch the bottom and top boundaries only at their end points corresponding to the occupied sites in |m and with the inherited orientations; see Figure 2

.11 for an example with |m

= | ⊗3 ⊗ |↑ ⊗ | ⊗ |↑ ⊗ | ⊗6 .
We call these configurations coloured. We have then

Z m loop = c∈L m col w m col (c) , (2.139) 
where the weight w m col (c) is given by the local rules (2.120). In any given row, the number of arrows pointing upward minus the number of arrows pointing downward is conserved, manifesting the magnetic charge conservation. Remark that, as in the case without defects (2.125), the modified partition function can be interpreted as one for a loop model on a lattice with two rows less. This is because the degrees of freedom are completely constrained on the first and last rows, due to our choice of magnetic defect state. Yet, it appears more convenient to keep working with the model defined by (2.138) on a lattice with two more rows. We will do the same in the other setting of cylinder geometry.

We now give a geometrical interpretation of the magnetic partition functions. More precisely, we show how to define and evaluate a non-coloured open loop configuration such that we recover Z m loop . We also describe how such configurations are geometrically constrained.

The idea is to group coloured configurations in L m col that differ only by the colours (also called 'orientations' of loops. This is exactly what we did when going from the local vertex model to the non-local geometrical 

Z m loop = c∈L m w m (c) , (2.140) 
where the weight w m (c) is the product of a non-local weight q + q -1 for each loop and a fugacity x for each monomer. Indeed, as we shall see, the open lines contribute to the weight only by the fugacities of the bonds they cover. An example of configuration in L m is given in Figure 2.11.

In Section 2.2.3 we have seen that graphs in the O(n) loop model can be understood as intertwiners of U -q (sl 2 ) representations. In this picture, we can think of a bond as the propagation of states inside the fundamental representation. It is then apparent that the insertion of a non-trivial magnetic defect will constrain the geometry of the configurations due to the condition of keeping unchanged the Cartan weight of a propagated state.

More precisely, define a cut as a smooth curve crossing the strip from left to right such that it avoids nodes and its projection onto the horizontal axis is injective (no overhangs). Some examples of cuts are depicted in Figure 2.11. A cut defines a Hilbert space that is the tensor product of the local Hilbert spaces of the links it crosses. The evolution operator between two disjoint cuts is a product of local transfer matrices. The row-torow transfer matrix is a special case of such an evolution operator. A cut on a colored configuration defines a pure tensor state in the basis of up/down arrows. This pure tensor state is an eigenvector of the Cartan subalgebra, i.e. a weight vector. Moreover it has nonzero overlap with the evolution (by transfer matrices) of the magnetic defect state, which is of Cartan weight m by symmetry of the local transfer matrices. As two weight vectors of different Cartan weights must have zero overlap we conclude that the Cartan weight of the pure tensor state on any cut is equally m. The presence of p bonds on a given cut indicates that the pure tensor state is a vector of the representation V ⊗p . Hence, on any given cut, the magnetic charge m = nw 1 should satisfy

m pw 1 , (2.141) 
where denotes the partial ordering on weights. Equivalently n ≤ p , with n ≡ p mod 2 .

(2.142)

We note that it is insufficient to apply the constraint (2.142) on cuts intersecting only vertical links (i.e., on completed rows). This can be seen from the example where (2.142) is satisfied (with n = 2) on each completed row, but not on the cut depicted. This is why we impose (2.142) on any cut. This stronger constraint imposes that each line connected to the bottom boundary is also connected to the top boundary; we call such lines through-lines. Since the through-lines enter and leave the strip with the same inclination (due to our choice of using the same magnetic defect |m as initial and final state), they do not pick up any powers of q from bending. Hence the through-lines contribute to the weight of a configuration in (2.140) only by the fugacities of the bonds that they cover.

The cylinder geometry The discussion on magnetic defects in the strip geometry mostly applies to the cylinder case as well. The main difference is that it is not sufficient anymore to consider only dominant weights as magnetic charges. Indeed the evolution operators, such as the row-to-row transfer matrix, are no longer symmetric under the full quantum group. Yet, the symmetry with respect to the Cartan subalgebra still holds. This means that we can again define sectors for a given magnetic charge but it can be any weight of R * 2 . We define a magnetic defect state in the loop model the same way as in the strip geometry, see (2.137).

We then define electric charges as elements of Cw 1 . The seam line operators in (2.128) can be written as

S e loop = e -2iπ(e-e0,w1)H , (2.143) 
where e 0 = γ π w 1 , q = e iγ . Then S 0 loop gives the twist operator related to a non contractible loop weight equal to the contractible one.

If we define the row-to-row transfer matrix with (2.143) instead of (2.128), we obtain

T e loop = L-1 k=0 t loop 2k+1 L-1 k=1 t loop 2k S e loop t loop 2L (S e loop ) -1 .
(2.144)

The modified partition function then reads

Z e,m loop = m| (T e loop ) M |m . (2.145)
It is standard usage in the Coulomb Gas context to refer to this modified partition function by saying that in addition to magnetic charges, a pair of opposite electric charges ee 0 and -e + e 0 have been inserted, one at the top of the cylinder, the other at the bottom. When e = 0, we say that we are in presence of background (electric) charges e 0 and -e 0 .

As in the strip geometry, we can rewrite these partition functions in terms of a sum over trajectories of transition amplitudes. For the loop case, denote again by L m col the set of oriented subgraphs of H whose connected components are either coloured loops or coloured lines, such that loops cannot touch the bottom and top boundaries, whereas lines touch the bottom and top boundaries only at their end points corresponding to the occupied sites in |m . We stress that, although we have used the same notation as for the strip geometry, the elements of L m col are now embedded in the cylinder. We then have

Z e,m loop = c∈L m col w e,m col (c) . (2.146)
The weight w e,m col (c) is given by the local weights (2.120) as well as modified weights for crossing the seam line:

= e -2iπ(e-e0,w1) , = e 2iπ(e-e0,w1) , = 1 .

(2.147)

We now give a geometrical interpretation of electromagnetic partition functions. We begin with the known results for the O(N ) loop model. Recall the expression (2.146) for Z e,m loop , obtained by summing the weight w e,m col over the configurations L m col . When no magnetic defect is present, L 0 col is the set of all possible unoriented loop configurations in H. The weight of a configuration is given by the product of bond fugacities and loop weights. The weight of a contractible loop is clearly q + q -1 . On the other hand, the insertion of a pair of opposite electric charges ±(e -e 0 ) assigns a different weight e 2iπ(e0-e,w1) + e -2iπ(e0-e,w1) = [2] t

(2.148) to non-contractible loops. We have here parameterised e 0 -e = µ π w 1 and t = e iµ . Consider now the insertion of a magnetic defect of charge m = nw 1 , with n = 0. In the cylinder geometry, define a cut to be a circle embedded in the cylinder and avoiding nodes of H such that its projection onto the horizontal circle generating the cylinder is bijective (no overhangs). As in the strip geometry, the insertion of magnetic defects implies a constraint on the number p of bonds present on any given cut. Any representation containing a weight m contains the unique dominant weight in the Weyl orbit of the latter, |n|w 1 . Hence we must have that |n|w 1 is lower than pw 1 . In other words,

|n| ≤ p , with n ≡ p mod 2 . (2.149) 
It follows that a line connected to the cylinder boundaries must connect the bottom and top boundaries.

We can then say that |n| through-lines propagate along the cylinder.

When n = 0, the presence of through-lines forbid non-contractible loops. Contractible loops are still weighted by q + q -1 . Moreover, each through-line acquires an additional weight e 2iπ(e0-e,w1)

(2.150a) when it winds around the periodic boundary condition from left to right (respectively right to left) if n > 0 (respectively n < 0); and a weight e -2iπ(e0-e,w1) (2.150b) when it winds from right to left (respectively left to right) if n > 0 (respectively n < 0). A special class of operators, known as watermelon operators, see e.g. [START_REF] Jacobsen | Conformal Field Theory Applied to Loop Models[END_REF], are obtained if one suppresses the background charge by the additional electric charge, i.e., setting e = e 0 . We then get a geometrical defect where through-lines do not get any additional weight when they wind around the cylinder.

Coulomb gas

The Coulomb Gas (CG) formalism is a heuristic approach to obtain a bosonic CFT description of the critical phases of many statistical mechanics models in two dimensions [START_REF] Kadanoff | Lattice coulomb gas representations of two-dimensional problems[END_REF][START_REF] Nienhuis | Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas[END_REF]. One of the main advantages of this technique is that the dictionary between lattice and continuum observables is clear. In the end, one must validate the approach by some tests, either exact through integrability, or approximate through numerics.

We will now describe the CG description of the dense and dilute phases of the O(N ) loop models. We first map the models to a height model. Given a coloured loop configuration, we define a height variable h : T → Cw 1 with T the dual triangular lattice. Fix the value of the height on some node i of T, h(i) = 0 . Then h is defined the following way. Height differences between two neighbouring sites are set equal to 2πw 1 (respectively -2πw 1 ) when crossing a bond that is oriented from left to right (respectively from right to left) and equal to 0 when crossing an empty link (see Figure 2.12). As the bonds form oriented loops, the mapping is well defined. The CG describes the fluctuations of a coarse grained height field φ(x). We argue now that this field takes values in a cycle. To do this, we introduce ideal states. These are defined to be configurations that lead to the flattest height possible. Because we are looking for a description of dilute and dense loops, we must look for ideal states in the most relevant phase, i.e. the dense phase. On the lattice, the configuration that is the flattest is the one having no loop at all and a constant height. But we expect that this configuration will be suppressed in the thermodynamic limit. More generally, we will look for states having the flattest height while maximizing the number of loops. There are six ideal states which look locally like in Figure 2.12, disregarding boundary effects.

Consider local moves that can either change the orientation of a small loop, or merge loops that are close to each other, or disconnect a loop into two. The following sequence of local moves takes an ideal state to itself :

→ → → → (2.151)
We see that in the process, the height has changed as h → h + 2πα 1 . One can find analogous sequences of local moves taking any ideal state to itself such that the height is changed as

h → h + 2kπα 1 , k ∈ Z.
As local fluctuations can produce such a change in the height field whereas the physical configuration of coloured loops is unchanged, we ask the coarse grained field φ to be compactified on the circle

φ ≡ φ + 2πR 2 (2.152)
We will now argue that the action describing the fluctuations of φ is

S = 1 8π d 2 x |η| [g∂ µ φ • ∂ µ φ + 2iR(x)e 0 • φ(x) + V (φ)] (2.153)
where η µν denotes the metric of the genus zero Riemann surface considered, R(x) is the scalar curvature and V (φ + 2πR 2 ) = V (φ). g is the coupling constant and characterizes the roughness of the height field, hence it must be related to the loop fugacity N . The scalar product • is inherited from ( , ). Without the potential, the action (2.153) is invariant under conformal transformations and gives a theory with central charge

c = 1 - 12 g e 0 • e 0 (2.154)
The so called vertex operators V α =: e iα•φ :13 have conformal dimensions :

h α = hα = 1 2g [(α -e 0 ) 2 -e 2 0 ] (2.155)
where the electric charge α is restricted to be in the weight lattice R * 2 . Now if we consider the geometry of the cylinder, the curvature is concentrated at infinities and because d 2 x |η|R(x) = 8π, the action becomes :

S = 1 8π d 2 x g∂ µ φ • ∂ µ φ + V (φ) + ie 0 • (φ(+∞) + φ(-∞)) (2.156)
To write the partition function, charge neutrality requires the introduction of a neutralizing charge 2e 0 at some reference point taken to be +∞ :

Z = [Dφ] e -1 8π ( d 2 x g∂µφ•∂ µ φ+V (φ))+ie0•(φ(+∞)-φ(-∞)) (2.157)
The term e ie0•(φ(+∞)-φ(-∞)) will give to a non contractible loop, a weight e 2iπ(e0,w1) + e -2iπ(e0,w1) (2.158)

Thus setting

e 0 = γ π w 1 (2.159)
recovers the right weight q + q -1 . Now reconsider the sequence of local moves on ideal states (2.151). Remark that up to a translation, the ideal state is mapped to itself after two such moves. In this case the height field gets shifted by h → h+2πw 1 . The potential V must reflects this invariance and we set

V (φ + 2πR * 2 ) = V (φ) (2.160)
Then we expand the potential as a sum of vertex operators

V (φ) = α∈R2 w α e iα•φ (2.161)
For the action to be invariant under conformal transformations we must have that the potential is marginal. If w α1 = 0, the most relevant term is V α1 . Asking for its marginality leads to

h α1 = hα1 = 2 -2γ π 2g = 1 ⇒ g = 1 - γ π ⇒ N = -2 cos(πg) (2.162)
The central charge is then given by

c = 1 - 6(1 -g) 2 g (2.163)
Having kept the most relevant term in the potential, we expect the theory to describe the dense phase. This is indeed the case. As a check, the central charge vanishes for γ π = 1 3 . This in accordance to the mapping to site percolation whose free energy does not depend on volume, hence gives a null central charge.

If w α1 = 0, the next most relevant operator in the expansion of the potential is V -α1 . Its marginality leads to

g = 1 + γ π N = -2 cos(πg) c = 1 - 6(g -1) 2 g (2.164)
This line describe the dilute phase. The point γ π = 1 3 has central charge c = 1 2 as we expect for a CFT description of the Ising model.

In addition to vertex operators, also called electric operators, we have magnetic operators describing dislocation in the height field. Because it takes values in a circle, the height field can wind around the cylinder cycle with a magnetic charge m ∈ R 2 :

φ = φ + 2πm L x (2.165)
where x is the coordinate of the compact direction of the cylinder, L its circumference and φ denote a configuration that has trivial winding. On a finite cylinder of height M , the winding part of this configuration would lead to an additional weight e -2πgM 4L m 2 from the kinetic term of (2.153). This leads to conformal dimensions h = h = g 8 m 2 . Combined with electric operators, we get electromagnetic operators O e,m of conformal dimensions :

h e,m = 1 2g (e -e 0 + g 2 m) 2 - 1 2g e 2 0 (2.166) he,m = 1 2g (e -e 0 - g 2 m) 2 - 1 2g e 2 0 (2.167)
We can relate these electromagnetic operators to the electromagnetic modified partitions functions described in Section 2.2.4. Indeed a magnetic defect clearly has the effect of creating a dislocation in the height field. Moreover, pairs of electric charges on the lattice have the expected behaviour of changing the non contractible loop weight similarly as a pair of electric operators inserted at both ends of the cylinder. Thus the conformal dimensions (2.166) describe the asymptotic behaviours (2.135).

The watermelon exponents h l are then given by

h l = h e0,lw1 = g 16 l 2 - (1 -g) 2 4g = h 0, l 2 
in the dense phase (2.168)

h l = h e0,lw1 = g 16 l 2 - (g -1) 2 4g = h l 2 ,0 in the dilute phase (2.169)
where we have used the Kac table notation

h r,s = ((p + 1)r -ps) 2 -1 4(p + 1)p (2.170)
with g = p p+1 in the dense phase and g = p+1 p in the dilute phase. It is also possible to formulate a Coulomb Gas description in the strip geometry [START_REF] Cardy | The o(n) model on the annulus[END_REF]. In this case, one can define boundary operators creating a discontinuity in the height field at a given point. These then have conformal weights describing the asymptotic behaviours (2.136).

Geometric applications

Let us give some applications to random geometry. Consider two points x and y in the Riemann sphere. In the O(N ) loop models, define the function O l (x, y) whose value is 1 if there are l mutually-avoiding strands (comprised of a connected set of bonds) connecting a neighbourhood of x to a neighbourhood of y. We are interested in the scaling behaviour of the expectation value O l (x, y) at criticality. In a CFT we have

O l (x, y) ∼ 1 (x -y) h (x -ȳ) h (2.171)
where h and h are the conformal weights. Suppose that this behaviour is given by a pair of primary fields inserted at x and y. As the strands do not pick any weight when we rotate them around x or y, the fields must be spinless, i.e., h = h.

If we map conformally the Riemann sphere with punctures at 0 and ∞ to the cylinder of length L by

w = f (z) = L 2iπ log(z) (2.172)
we obtain [START_REF] Di Francesco | Conformal Field theory[END_REF] O

l (v, w) cyl ∼ 1 L π sin π(v-w L 4h
(2.173)

In the limit T = Im(v -w) >> L where the insertion points v and w go to the top and bottom limits of the cylinder, the 2 point function behaves like

e 4πhT L
(2.174)

In this limit, we have restricted to configurations in the cylinder with l strands running along the cylinder. This is exactly what we defined as watermelon operators in Section 2.2.4. Hence h = h l . The correlation function O 2 (x, y) is the probability that 2 given points are on the same loop. It thus gives the fractal dimension of loops as

D F = 2 -2h 2 (2.175)
For instance, the fractal dimension of percolation hulls is given by [START_REF] Saleur | Exact determination of the percolation hull exponent in two dimensions[END_REF] 

D = 7 4 (2.176)
The fractal dimension of interfaces between Ising spins is

D = 11 8 (2.177)
Note that the above argument can be repeated in the case of operators with spins. We then obtain that the electromagnetic exponents defined in Section 2.2.4 characterize the scaling behaviour of the probability of having a certain number of mutually-avoiding strands connecting two points with an extra weight when strands wind around a given point.

Also, when there are no strands, the electric exponents h e,0 and he,0 are the conformal weights of operators changing the weight of loops separating two given points to e 2iπ(e0-e,w1) + e -2iπ(e0-e,w1)

(2.178)

If we set e 0 -e = w1 2 , this weight is 0 and we obtain the probability that two points are in the same connected component of the complement of the set of loops. This leads, for instance, to the fractal dimension of Ising spin clusters [START_REF] Duplantier | Exact fractal dimension of 2d ising clusters[END_REF] 

D = 187 96 (2.179) 50 
Let c n denote the number of self-avoiding walks comprised of n bonds, going from a node 0 to a node i. On any lattice, there is a non universal constant µ, called the connective constant, such that the number of walks of n steps satisfy

µ = lim n→+∞ c 1 n n (2.180)
Consider the following power series

Z SAW (x) = +∞ n=0 c n x n = i∈H O 1 (0, i) (2.181)
At high temperature, x < x c , we have that O 1 (0, i) → e -λ|i| for |i| >> 1 with λ, a constant. The series Z SAW then converges for large lattices. On the opposite, at low temperature, x > x c , we are in the dense phase and O l (0, i) ∼ 1 |i| 2h 1 for |i| >> 1, with h 1 < 0. Thus the series diverges. By the root test, we obtain that µ = x -1 c . We can then deduce that for the hexagonal lattice the connective constant is given, from (2.110), by

µ = 2 + √ 2 (2.182)
The O(N ) loop models lead to a physical argument to derive the connective constant on H. This result has later been rigorously proven [START_REF] Duminil-Copin | The connective constant of the honeycomb lattice equals (2 + √ 2)[END_REF].

Chapter 3

Spiders, webs and representations of quantum groups

In this chapter, we present some results that only hold when q is considered as an indeterminate and all algebras and vector spaces are to be thought as over the field of rational functions C(q). We will not enter subtleties related to root of unities but q can be specialized to a non-zero complex value other than root of unities at any stage of the discussion and we will always do so [START_REF] Chari | A guide to quantum groups[END_REF]Chapter 9]. This chapter is more mathematically detailed but is written with no emphasis on rigor, in a language more familiar to physicists. It is to be understood as a gentle introduction to the formal mathematical objects that appear in the context of geometrical lattice models.

We have seen in the previous chapter that the Temperley-Lieb algebras TL n (q +q -1 ) could be understood as the algebra of operators centralizing the action of the quantum group U -q (sl 2 ) on the nth tensor power V ⊗n , of the fundamental representation V 1 . In other words, diagrams in the TL algebras intertwine the same representation V ⊗n of U -q (sl 2 ). Now, consider the diagram According to our mapping to a local vertex model in 2.1.5, it can be seen as a linear map from C to C2 ⊗ C 2 given by 1 → q

1 2 |↑↓ + q -1 2 |↓↑ = q 1 2 |↑↓ + q -1 |↓↑
where {|↑ , |↓ } is a basis of C 2 . Up to a multiplicative constant, we recognize here the embedding of the U -q (sl 2 ) trivial representation (the singlet) into the product of two fundamental (i.e. spin 1 2 ) representations, V ⊗ V . This embedding generates the space of maps intertwining the U -q (sl 2 ) actions on C and V ⊗ V . This suggests that not only diagrams in the Temperley-Lieb algebras can be seen as U -q (sl 2 ) intertwiners. We can hypothesize that planar perfect pairings of n and m points at the bottom and top boundaries respectively of some rectangle generate the space of intertwiners from V ⊗n to V ⊗m . We still call these diagrams, Temperley-Lieb diagrams. This point of view is very useful to understand the symmetries of transfer operators that are not endomorphisms, i.e. whose source and target spaces are different, as in 2.2.4.

Our local vertex mapping suggests even more. The concatenation of Temperley-Lieb diagrams should be reduced by getting rid of any loop created in the process at the price of multiplying the result by q + q -1 per loop. Moreover, juxtaposing a diagram to the right of the other simply corresponds to taking the tensor product of the corresponding linear maps.

A useful language to pack all of this information is the one of tensor categories. All Temperley-Lieb diagrams can be seen as morphisms in the Temperley-Lieb category. This category can then be shown to be equivalent to the subcategory of the category of finite dimensional representations of U -q (sl 2 ) given by all finite tensor powers of the fundamental representation V .

The Temperley-Lieb category

A category is comprised of objects and morphisms between objects such that two morphisms can be composed if the target object of one of them is the source of the other. The set of morhpisms between two objects A and B will be denoted as Hom(A,B). Morphisms can be composed and the composition law is associative [START_REF] Chari | A guide to quantum groups[END_REF]Chapter 5]. The familiar example to have in mind here, is the category of finite dimensional vector spaces over C, Vec. Objects are then vector spaces and morphisms are linear maps. A tensor category has an additional linear structure, i.e. the spaces of morphisms are vector spaces. Moreover, there is a binary operation, the tensor product that is acting on objects and morphisms. It satisfies some axioms analogous to the properties of the tensor product in Vec. For instance, it is bilinear on Hom spaces and possesses a unit object. We will deal with two type of tensor categories, categories of representations of some quantum group and diagrammatic categories. The former are comprised of finite dimensional representations and intertwiners between them. The tensor structure is defined from the coproduct. The diagrammatic categories will be such that their morphisms are linear combinations of planar graphs embedded in a simply connected domain that we take to be a rectangle, considered up to isotopy.

We will now describe the Temperley-Lieb category in some detail, the other diagrammatic categories will have a similar structure. The objects in the Temperley-Lieb category T L are non-negative integers n ∈ Z ≥0 . Each integer is to be thought as the number of points on a horizontal line. The tensor product of two integers n and m is given by their sum n + m. We think of this as putting the m points to the right of the n ones. The object 0 is the unit for the tensor product.

The morphisms from n to m are given by linear combinations of TL diagrams from n points at the bottom boundary to m points at the top boundary. Their composition is given by concatenation of diagrams and replacing each loop by a factor q + q -1 , extended by linearity. Hence the morphism from n to n given by n vertical pairings is an identity for the composition. The tensor product of two diagrams is given by their horizontal juxtaposition and is extended by bilinearity to any two morphisms.

The Temperley-Lieb category is generated, as a tensor category, by the identities Id 0 , Id 1 on the objects 0, 1 and the following morphisms

cup = cap = (3.1)
This means that any morphism is a linear combination of compositions and tensor products of these. Actually, the category of diagrams generated by the above quotiented by the relation sending each closed loop to a scalar q +q -1 is the Temperley-Lieb category. We say that the generators and relations give a presentation of the category. It is useful to have a presentation to define a certain category and all the other diagrammatic categories we will encounter will be defined in such a way. Note that the Temperley-Lieb algebras TL n (q + q -1 ) are given by the algebra of endomorphisms of the object n, Hom(n, n). The whole Temperley-Lieb category can be seen as extending Temperley-Lieb algebra to account for the composition of diagrams that do not form an algebra. Indeed we can multiply, i.e. concatenate, diagrams in Hom(n 1 , n 2 ) and Hom(m 1 , m 2 ) whenever

n 2 = m 1 or n 1 = m 2 .
3.1.1 Relation to U -q (sl 2 ) representation theory

Let Rep(U -q (sl 2 )) denote the full subcategory of representations of U -q (sl 2 ) whose objects are tensor powers of the fundamental representation V . The Temperley-Lieb category is equivalent, as a tensor category, to Rep(U -q (sl 2 )). The equivalence F : T L → Rep(U -q (sl 2 )) is defined by sending the object n to V ⊗n and the generating morphisms

Id 0 → Id C Id 1 → Id V cup → 1 → q 1 2 x 1 ⊗ x 2 + q -1 2 x 2 ⊗ x 1 (3.2) cap → q 1 2 f 1 ⊗ f 2 + q -1 2 f 2 ⊗ f 1
where {f 1 , f 2 } is the basis dual to {x 1 , x 2 }, i.e, f i (x j ) = δ ij (see appendix A for our choice of bases).
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Note that F preserves the tensor product of objects

F (n ⊗ m) = F (n) ⊗ F (m)
We extend the definition of F to any morphism by requiring that it preserves compositions, tensor product and linearity of Hom spaces. That is, for any two morphisms g and h and scalar λ,

F (g • h) = F (g) • F (h) F (g ⊗ h) = F (g) ⊗ F (h) F (g + λh) = F (g) + λF (h)
This means that F is a (strict) tensor functor. To show that F is well defined, one must check that the loop relation holds in Rep(U -q (sl 2 )), which is clear from (3.2). That F is an equivalence of tensor categories basically means that we can replace any computation in Rep(U -q (sl 2 )) involving compositions and tensor products with one in T L. This result is thus practically useful. In fact, any computation in any tensor category can be represented diagrammatically by so called string diagrams [START_REF] Joyal | The geometry of tensor calculus, I[END_REF]. This diagrammatic point of view is very useful when one has to deal with involved computations2 . Yet, this is quite a formal result as each diagram representing a morphism f is given by a box labeled by f , for instance

(3.3)
where f is a morphism from V ⊗4 to V ⊗2 . Then, the diagrammatic category of string diagrams is generated by all these boxes and quotiented by all relations that the morphisms satisfy in Rep(U -q (sl 2 )). We thus get a diagrammatic category equivalent to Rep(U -q (sl 2 )).

The equivalence between T L and Rep(U -q (sl 2 )) is considerably more practical than the string diagrams. It gives a manageable presentation comprised of a low number of generators and relations. This is a desirable result for any tensor category.

The functor F can be used to translate in Rep(U -q (sl 2 )) the Markov trace on Temperley-Lieb algebras introduced in Section 2.1.1 in the case where contractible and non contractible loops get the same weight q + q -1 . Let A be a morphism in Hom(n, n) ∼ = TL n (q + q -1 ). The Markov trace Mtr(A) can be seen to be a composition of cups, A and caps as From the the images of cup and cap under F it is clear that we have

Mtr(A) = tr F (A)q H
where q H is a shorthand for the representative of q H in End(V ⊗n ). Note that the right hand side is slightly different from the well-known quantum trace of F (A) which is given by tr F (A)(-q) H . Technically, this is because the Temperley-Lieb category is not equivalent to the category of representations of U -q (sl 2 ) as pivotal categories when the latter is given its standard pivotal structure [START_REF] Snyder | The half-twist for Uq(g) representations[END_REF]. In order not to enter these details, we will not discuss pivotal structures in this thesis.

Sketch of the proof of equivalence

In order to show the equivalence of categories stated above, we must have the following:

• Any object in Rep(U -q (sl 2 )) is isomorphic to an object in the image of F . The first condition is clearly satisfied. Consider two integers n and m. Suppose that n + m is odd. In Rep(U -q (sl 2 )), we have that, by duality, Hom(V ⊗n , V ⊗m ) is isomorphic as a vector space to Hom(V ⊗(n+m) , C) = {0}. In the TL category, we have that, using caps and cups, Hom(n, m) is isomorphic to Hom(k, 0) = {0}. The two sets Hom(n, m) and Hom(F (n), F (m)) are thus in bijection. Suppose n + m is even. In Rep(U -q (sl 2 )), we have that, by duality, Hom(V ⊗n , V ⊗m ) is isomorphic as a vector space to Hom(V ⊗( n+m 2 ) , V ⊗( n+m 2 ) ). In the TL category, we have that, using caps and cups, Hom(n, m) is isomorphic to Hom( n+m 2 , n+m 2 ). The Schur-Weyl duality then implies that Hom(V ⊗( n+m 2 ) , V ⊗( n+m 2 ) ) and Hom( n+m 2 , n+m 2 ) are in bijection. Thus, Hom(n, m) and Hom(F (n), F (m)) are in bijection

The additive completion of T L and the dilute Temperley-Lieb algebras

We have seen how to obtain the Temperley-Lieb algebras as certain Hom spaces of the Temperley-Lieb category. What about the dilute Temperley-Lieb algebras? More generally how to understand the space of diagrams between two given cuts introduced in Section 2.2.4 in the strip geometry? The fact that two cuts do not necessarily contain the same number of physical sites hints that we are looking for a category instead of an algebra. In 2.2, a physical site is given by the sum of a bond and an empty link. Thus, our category must have a notion of direct sum and has to be different from the Temperley-Lieb category. For instance, the following diagrams of the dilute Temperley-Lieb algebras on two sites = are different projectors in the dTL algebra. On the representation theory side, we want these projectors to be identified with the two inequivalent projections onto the two copies of V in the tensor product decomposition

(C ⊕ V ) ⊗ (C ⊕ V ) = C ⊕ 2V ⊕ V ⊗ V
The direct sum operation is accounted for by considering the additive completions of T L and Rep(U -q (sl 2 )). They will be denoted by T L and Rep(U -q (sl 2 )) respectively. The latter is simply the additive tensor category containing all representations made from V by using the direct sum or tensor product. That is, it contains as objects all finite direct sums of tensor powers of V and the trivial representation C.

Roughly speaking, the additive completion adds to the set of objects all finite direct sums. In a tensor category, we extend the tensor product to sums of objects by distributivity. On the diagrammatic side, we thus have objects of the form

k i=1 n i
The set of morphisms between two objects in T L,

A = k i=1 n i and B = p i=1 m i is given by Hom(A, B) = i,j Hom(n i , m j )
that is, as a vector space, the direct sum of Hom spaces of T L with composition extended by bilinearity. The tensor product is then also extended by bilinearity. Consider the objects where q H is identified with its representative in End((C ⊕ V ) ⊗n )

Kuperberg spiders

In [START_REF] Kuperberg | Spiders for rank 2 lie algebras[END_REF], Kuperberg gave diagrammatic presentations of the tensor categories generated by fundamental representations of U q (g) 3 where g is a simple Lie algebra of rank 2, i.e. g = A 2 , B 2 , G 2 . He defines spiders that are diagrammatic categories analogous to the Temperley-Lieb category and proves that they are equivalent to the appropriate categories of representations of quantum groups. The diagrams are then called webs. In this section we will remind the definitions of the spiders and give explicit matrix element of intertwiners corresponding to generating webs (see Appendix A for the bases we consider).

As in the rank 1 case, the additive completions of spiders are useful in describing the properties the web models to be introduced in the next chapter (see in particular Chapter 4).

The A 2 spider

We will first define the free A 2 spider FSp(A 2 ) as a diagrammatic category with no relation for the reduction of diagrams. The A 2 spider Sp(A 2 ) will then be obtained as a quotient by some diagrammatic relations.

The objects of the free A 2 spider are given by strings of signs (a 1 , a 2 , • • • , a n ), a i ∈ {+, -}. As in the TL category, they have to be thought of chains of n points on a horizontal line, except that in this case, there are two type of points. Given two objects a = (a Hom(a,b) is generated, as a vector space by oriented, planar, cubic, bipartite graphs possibly with loops adjacent to no vertex, embedded inside a rectangle that are adjacent to the n signed points given by A on the bottom boundary and the m ones given by B on the top boundary. Moreover, they have to satisfy the following constraints, at a given vertex, the three adjacent edges must all be oriented either outward from the vertex or inward. Also, an edge adjacent to a + sign on the bottom (respectively top) boundary must be oriented outward from (respectively toward) the boundary and an edge adjacent to a -sign on the bottom (respectively top) boundary must be oriented toward (respectively outward from) the boundary. Here is an example of web in Hom((+, +, +, +), (+, -, -, -))

1 , a 2 , • • • , a n ) and b = (b 1 , b 2 , • • • , b n ),
Composition is given by concatenation of diagrams and is extended by bilinearity. Webs in Hom(∅, ∅) will be called closed. In other cases, we will call them open webs. We will not draw labels ± of objects in the following as they can always be recovered by inspection of edges orientations.

We then obtain the A 2 spider Sp(A 2 ) by quotienting by the following relations on Hom spaces

= [3] q (3.4a) = [2] q (3.4b) = + (3.4c)
Any of this relation must be understood in some Hom space. It turns out that it does not matter in which Hom space they are considered thanks to morphisms ev, coev, ev and coev introduced below in (3.7).

For instance, let A and B be the following webs in Sp(A 2 )

A = B = (3.5)
Then their composition is

BA = = [3] q [2] q (3.6)
Both FSp(A 2 ) and Sp(A 2 ) are tensor categories. The tensor product is given by concatenating strings at the level of objects and, at the level of morphisms, by horizontally juxtaposing webs and extending the operation by bilinearity. The empty string is then a unit for the tensor product and will be denoted 0. Let Id + (respectively Id -) be the web in Hom(+, +) (respectively Hom(-, -)) given by a vertical edge joining both boundaries of the rectangle. Consider the following webs

v = w = ev = coev = (3.7) ev = coev =
Then, any morphism in FSp(A 2 ) and Sp(A 2 ) can be obtained as the linear combination of tensor product and compositions of Id + , Id -and the above webs. Let Rep(U -q (sl 3 )) be the tensor category of representations of U -q (sl 3 ) generated by V and V * where V is the first fundamental representation. Then consider the tensor functor F :

FSp(A 2 ) → Rep(U -q (sl 3 )) given by F (0) = C, F (+) = V , F (-) = V * and F (v) = 1 → q 3 2 x 1 ⊗ x 2 ⊗ x 3 + q 1 2 x 2 ⊗ x 1 ⊗ x 3 + q 1 2 x 1 ⊗ x 3 ⊗ x 2 + q -1 2 x 2 ⊗ x 3 ⊗ x 1 + q -1 2 x 3 ⊗ x 1 ⊗ x 2 + q -3 2 x 3 ⊗ x 2 ⊗ x 1 , (3.8) 
F (w) = q 3 2 w 1 ⊗ w 2 ⊗ w 3 + q 1 2 w 2 ⊗ w 1 ⊗ w 3 + q 1 2 w 1 ⊗ w 3 ⊗ w 2 +q -1 2 w 2 ⊗ w 3 ⊗ w 1 + q -1 2 w 3 ⊗ w 1 ⊗ w 2 + q -3 2 w 3 ⊗ w 2 ⊗ w 1 , (3.9) 
F (coev) = 1 → x 1 ⊗ w 1 + x 2 ⊗ w 2 + x 3 ⊗ w 3 , (3.10) 
F ( coev) = 1 → q -2 w 1 ⊗ x 1 + w 2 ⊗ x 2 + q 2 w 3 ⊗ x 3 , (3.11) 
F (ev) = w i ⊗ x j → δ ij , (3.12 
)

F ( ev) = x i ⊗ w j → q 4-2i δ ij , (3.13) 
where {x 1 , x 2 , x 3 } is a basis of V (see appendix A) and {w 1 , w 2 , w 3 } is its dual basis. By checking that the images of the relations (3.4) by F are satisfied, one can see that F factors through the quotient to give a tensor functor F : Sp(A 2 ) → Rep(U -q (sl 3 )). One can finally show that this functor is an equivalence of tensor categories.

The additive completion of Sp(A 2 ) and its trace In the additive completion of the A 2 spider, consider the objects [n] given by

[n] = (0 ⊕ + ⊕ -) ⊗n
There is a natural trace on Hom([n], [n]). Consider the morphisms

cup = coev + coev + Id 0 ∈ Hom([0], [2]) cap = ev + ev + Id 0 ∈ Hom([2], [0])
where Id 0 is given by the identification of 0 in

(0 ⊕ + ⊕ -) ⊗ (0 ⊕ + ⊕ -) = 0 ⊕ 2 + ⊕2 -⊕(+ ⊗ -) ⊕ (-⊗ +) ⊕ (+ ⊗ +) ⊕ (-⊗ -) For A ∈ Hom([n], [n]), one has that Mtr(A) = tr F (A)q 2Hρ
where q 2Hρ is identified with its representative in End((C ⊕ V ⊕ V * ) ⊗n )

The B 2 spider

As in the A 2 case, the free B 2 spider FSp(B 2 ) is a tensor category generated by two objects. We will call them 1 and 2. Any object is then given by a string whose elements are either 1 or 2. Then, Hom spaces are generated by planar, trivalent graphs, with loops adjacent to no vertex. The edges of the webs are decorated in two possible ways, so that we draw them as either simple or double edges as Any trivalent vertex is required to be of the form Simple edges are required to be adjacent to objects 1 whereas double edges must be adjacent to objects 2. Composition is again given by concatenation of diagrams and extended bilinearly.

The B 2 spider, Sp(B 2 ) is then obtained by quotienting by the relations4 

= -(q 4 + q 2 + q -2 + q -4 ) (3.14a)

= q 6 + q 2 + 1 + q -2 + q -6 (3.14b) = 0 (3.14c) = (q 2 + 2 + q -2 ) (3.14d) = 0 (3.14e) - = - (3.14f)
It will be useful to augment FSp(B 2 ) by allowing 4-valent vertices whose adjacent edges are all simple. Let us denote the resulting category FSp (B 2 ). We then quotient this space by the original B 2 relations (3.14) as well as :

= + = + (3.15)
The resulting category will be denoted by Sp (B 2 ). Because any 4-valent vertex can be reduced to vertices of the original spider Sp(B 2 ), one can show that they are equivalent. All these categories are tensor categories. The tensor product is given by concatenating strings at the level of objects and, at the level of morphisms, by horizontally juxtaposing webs and extending the operation by bilinearity.

Let Id 1 (respectively Id 2 ) be the web in Hom(1, 1) (respectively Hom(2, 2)) given by a vertical simple (respectively double) edge joining both boundaries of the rectangle. Morphisms in FSp(B 2 ), Sp(B 2 ) are generated by Id 1 , Id 2 and the following

cup 1 = cap 1 = cup 2 = cap 2 = Y = Let Rep(U q (B 2
)) be the tensor category of representations of U q (B 2 ) generated by the fundamental representations V 1 and V 2 . Then consider the tensor functor F :

FSp(B 2 ) → Rep(U q (B 2 )) given by F (0) = C, F (1) = V 1 , F (2) = V 2 and F (cup 1 ) =C → V ⊗ V 1 → e 4 ⊗ e 1 -q 4 e 1 ⊗ e 4 -qe 3 ⊗ e 2 + q 3 e 2 ⊗ e 3 (3.16) 
F (cap 1 ) =f 1 ⊗ f 4 -q -4 f 4 ⊗ f 1 -q -1 f 2 ⊗ f 3 + q -3 f 3 ⊗ f 2 (3.17) F (cup 2 ) =C → V ⊗ V 1 → v 5 ⊗ v 1 + q 6 v 1 ⊗ v 5 -q 2 v 4 ⊗ v 2 -q 4 v 2 ⊗ v 4 + q 4 v 3 ⊗ v 3 (3.18) F (cap 2 ) =g 1 ⊗ g 5 + q -6 g 5 ⊗ g 1 -q -2 g 2 ⊗ g 4 -q -4 g 4 ⊗ g 2 + q -4 g 3 ⊗ g 3 (3.19) F (Y) =V 2 → V 1 ⊗ V 1 (3.20) v 1 → iqe 1 ⊗ e 2 -ie 2 ⊗ e 1 (3.21) v 2 → iqe 1 ⊗ e 3 -ie 3 ⊗ e 1 (3.22) v 3 → iqe 2 ⊗ e 3 -iq -1 e 3 ⊗ e 2 + ie 1 ⊗ e 4 -ie 4 ⊗ e 1 (3.23) v 4 → i[2] q qe 2 ⊗ e 4 -i[2] q e 4 ⊗ e 2 (3.24) v 5 → i[2] q qe 3 ⊗ e 4 -i[2] q e 4 ⊗ e 3 (3.25) The bases {e i , i ∈ 1, 4 } of V 1 and {v j , j ∈ 1, 5 } of V 2 are given in Appendix A.3.2.
By checking that the images of the relations (3.14) by F are satisfied, one can see that F factors through the quotient to give a tensor functor F : Sp(B 2 ) → Rep(U q (B 2 )). One can finally show that this functor is an equivalence of tensor categories.

The additive completion of Sp(B 2 ) and its trace In the additive completion of the B 2 spider, consider the objects [n] given by

[n] = (0 ⊕ 1 ⊕ 2) ⊗n
There is a natural trace on Hom([n], [n]). Consider the morphisms

cup = cup 1 + cup 2 + Id 0 ∈ Hom([0], [2]) cap = cap 1 + cap 2 + Id 0 ∈ Hom([2], [0])
where Id 0 is given by the identification of 0 in

(0 ⊕ 1 ⊕ 2) ⊗ (0 ⊕ 1 ⊕ 2) = 0 ⊕ 1 ⊕2 ⊕ 2 ⊕2 ⊕ (1 ⊗ 2) ⊕ (2 ⊗ 1) ⊕ (1 ⊗ 1) ⊕ (2 ⊗ 2)

With the morphisms cup and cap, one can define a Markov trace on Hom([n], [n]). Then, for A ∈ Hom([n], [n]), one has that

Mtr(A) = tr F (A)(-1) 2H ρ ∨ q 2Hρ
where (-1) 2H ρ ∨ q 2Hρ is identified with its representative in End((

C ⊕ V 1 ⊕ V 2 ) ⊗n )

The G 2 spider

The free G 2 spider FSp(G 2 ) is a tensor category generated by two objects. We again will call them 1 and 2. Any object is then given by a string whose elements are either 1 or 2. Then, Hom spaces are generated by planar, trivalent graphs, with loops adjacent to no vertex. The edges of the webs are, as in the B 2 spiders, either simple or double edges. There are two types of trivalent vertices : Simple edges are required to be adjacent to objects 1 whereas double edges must be adjacent to objects 2. Composition is given by concatenation of diagrams and extended bilinearly.

The G 2 spider, Sp(G 2 ) is then obtained by quotienting by the relations 5 = q 10 + q 8 + q 2 + 1 + q -2 + q -8 + q -10 (3.26a) = 0 (3.26b)

= -(q 6 + q 4 + q 2 + q -2 + q -4 + q -6 ) (3.26c)

= (q 4 + 1 + q -4 ) (3.26d) = -(q 2 + q -2 )   +   + (q 2 + 1 + q -2 )   +   (3.26e) = +       + + + +       -       + + + +       (3.26f) 
= q 18 + q 12 + q 10 + q 8 + q 6 + q 2 + 2 + q -2 + q -6 + q -8 + q -10 + q -12 + q -18 (3.26g)

= - - 1 q 4 -1 + q -4 + 1 q 2 + 1 + q -2 (3.26h)
For our purpose, it is sufficient to consider the full subcategory whose object contain 1 only and whose diagrams do not contain double edges. We call the corresponding free spider FSp (G 2 ). It is then clear that its quotient by the relations (3.26a)-(3.26f) is a full subcategory of Sp (G 2 ). All these categories are tensor categories. The tensor product is given by concatenating strings at the level of objects and, at the level of morphisms, by horizontally juxtaposing webs and extending the operation by bilinearity. Let Id 1 be the web in Hom(1, 1) given by a vertical simple edge joining both boundaries of the rectangle.

5 Note that our conventions differ from [START_REF] Kuperberg | Spiders for rank 2 lie algebras[END_REF] by q ↔ q Let Rep(U q (G 2 )) be the tensor category of representations of U q (G 2 ) generated by the first fundamental representation V . Then consider the tensor functor

F : FSp (G 2 ) → Rep(U q (G 2 )) given by F (0) = C, F (1) = V and F (cup) =C → V ⊗ V
1 → e 7 ⊗ e 1 + q 10 e 1 ⊗ e 7 -qe 6 ⊗ e 2 -q 9 e 2 ⊗ e 6 + q 4 e 5 ⊗ e 3 + q 6 e 3 ⊗ e 5 -q 6 e 4 ⊗ e 4

F (cap) =q -10 f 7 ⊗ f 1 + f 1 ⊗ f 7 -q -9 f 6 ⊗ f 2 -q -1 f 2 ⊗ f 6 + q -6 f 5 ⊗ f 3 + q -4 f 3 ⊗ f 5 -q -6 f 4 ⊗ f 4 F (Y) =V → V ⊗ V e 1 → q 6 e 1 ⊗ e 4 -e 4 ⊗ e 1 -[2] q q 4 e 2 ⊗ e 3 + [2] q qe 3 ⊗ e 2
e 2 → -q 4 e 2 ⊗ e 4 + q 2 e 4 ⊗ e 2 + q 5 e 1 ⊗ e 5 -e 5 ⊗ e 1 e 3 → -q 4 e 3 ⊗ e 4 + q 2 e 4 ⊗ e 3 + q 5 e 1 ⊗ e 6 -e 6 ⊗ e 1 e 4 → (q 2 -q 4 )e 4 ⊗ e 4 -q 2 e 3 ⊗ e 5 + q 2 e 5 ⊗ e 3 + q 5 e 2 ⊗ e 6 -q -1 e 6 ⊗ e 2 + q 4 e 1 ⊗ e 7 -e 7 ⊗ e 1 e 5 → q 2 e 5 ⊗ e 4 -q 4 e 4 ⊗ e 5 + [2] q q 5 e 2 ⊗ e 7 -[2] q e 7 ⊗ e 2 e 6 → q 2 e 6 ⊗ e 4 -q 4 e 4 ⊗ e 6 + [2] q q 5 e 3 ⊗ e 7 -[2] q e 7 ⊗ e 3 e 7 → -e 7 ⊗ e 4 + q 6 e 4 ⊗ e 7 + qe 6 ⊗ e 5 -q 4 e 5 ⊗ e 6

The basis {e i , i ∈ 1, 7 } of V is given in Appendix A.3.3. {f i , i ∈ 1, 7 } denotes the dual basis. By checking that the images by F of the reduction relations hold in Rep(U q (G 2 )), one can see that F factors through the quotient to give a tensor functor F : Sp (G 2 ) → Rep(U q (G 2 )). One can finally show that this functor is an equivalence of tensor categories.

The additive completion of Sp(G 2 ) and its trace In the additive completion of the G 2 spider Sp (G 2 ), consider the objects [n] given by

[n] = (0 ⊕ 1) ⊗n
There is a natural trace on Hom([n], [n]). Consider the morphisms

cup = cup + Id 0 ∈ Hom([0], [2]) cap = cap + Id 0 ∈ Hom([2], [0])
where Id 0 is given by the identification of 0 in

(0 ⊕ 1) ⊗ (0 ⊕ 1) = 0 ⊕ 1 ⊕2 ⊕ (1 ⊗ 1)
With the morphisms cup and cap, one can define the Markov trace on Hom([n], [n]). Then, for A ∈ Hom([n], [n]), one has that

Mtr(A) = tr F (A)(-1) 2H ρ ∨ q 2Hρ
where (-1) 2H ρ ∨ q 2Hρ is identified with its representative in End((C ⊕ V 1 ) ⊗n )

Cautis-Kamnitzer-Morrison spiders

We will now describe spiders for U q (sl n ) 6 found by Cautis et al in [START_REF] Cautis | Webs and quantum skew howe duality[END_REF]. In the next subsection, we will give equivalent categories that are more suited for describing the symmetries of the physical models that we will define in Section 5.3. The objects of the free A n-1 spider FSp(A n-1 ) are strings of elements in {1 ± , • • • , (n -1) ± }. Hom spaces are given by linear combinations of planar oriented graphs whose edges are labeled in {1, • • • , n -1}. The graphs are generated by the following trivalent and bivalent vertices (3.28) where the last two bivalent vertices will be called tags. Note that trivalent vertices conserve the flow label strictly, whereas tags conserve it only modulo n. At the bottom boundary, edges labeled by k are connected to points labeled by k + (respectively k -) if they are oriented outward from (respectively toward) the boundary. At the top boundary, edges labeled by k are connected to points labeled by k + (respectively k -) if they are oriented toward (respectively outward from) the boundary. Composition is given by concatenation of diagrams and extended bilinearly.

Recall the definition of the q-factorial and q-binomial coefficients:

[k] q ! = 1≤i≤k [i] q , n k q = [n] q ! [k] q ![n -k] q ! ,
with the convention [0] q ! = 1 and

n 0 q = 1.
The A n-1 spider Sp(A n-1 ) is then given by quotienting by the following relations

= n k q (3.29a) = k + l k q (3.29b) = n -k l q (3.29c)
including an associativity rule:

= (3.29d) a square rule: = + [k -l] q (3.29e)
and the tag rules:

= (3.29f) = (3.29g) = (3.29h) = (-1) k(n-k) (3.29i)
together with their mirrored and the arrow-reversed versions. By arrow reversal, we mean the simultaneous change of all arrow orientations as well as the interchange of the tag orientations (i.e., the tags are flipped).

All edge labels take values in 1, n -1 , except for (3.29e) where edges in the interior "square" are allowed to take values in 0, n . To recover the usual range, 1, n -1 , for all labels we delete any edge with label 0 from the web, whereas an edge with label n is replaced by a tag according to the rules

= (3.30a) = (3.30b)
FSp(A n-1 ) and Sp(A n-1 ) are tensor categories. The tensor product is given by concatenating strings at the level of objects and, at the level of morphisms, by horizontally juxtaposing webs and extending the operation by bilinearity.

Let Id k + (respectively Id k -) be the web in Hom((k + ), (k + )) (respectively in Hom((k -), (k -))) given by a vertical edge labeled by k oriented upward (respectively downward) joining both boundaries of the rectangle.

Morphisms in FSp(A n-1 ), Sp(A n-1 ) are generated by Id k ± and the following

Y k,l k+l = λ k+l k,l = ev k = coev k = ev k = coev k = tag k = tag k =
The A n-1 spider is equivalent, as a tensor category to Rep(U q (A n-1 )), the category of representations of U q (A n-1 ) generated by fundamental representations and their duals. Let V 1 be the first fundamental representation of U q (A n-1 ) (the standard representation). Let {x 1 , x 2 , • • • x n } be its natural basis. Beginning with V 1 , the fundamental representations can be built by successively q-antisymetrizing. Define the quantum exterior algebra as

q (V 1 ) = T V 1 /S 2 q (V 1 ) (3.31) 
where T V 1 is the tensor algebra and S 2 q (V 1 ) is the ideal spanned by

x i ⊗ x j + qx j ⊗ x i , for i < j and x i ⊗ x i , for all i Then q (V 1 ) is a graded representation and

q (V 1 ) = C ⊕ n-1 k=1 k q (V 1 )
where

V k = k q (V 1 )
is the kth fundamental representation with a basis given by the x S where

S = {i 1 , i 2 , • • • i k } ⊂ {1, • • • n}, i 1 > i 2 > • • • > i k and x S = x i1 ⊗ x i2 ⊗ • • • ⊗ x i k . Denote by x * S the dual basis of V * k , i.e. x * S (x T ) = δ S,T . Let us now give some morphisms in Rep(U q (A n-1 )). If S and T are two disjoint subsets of {1, • • • n}, define (S, T ) = |{(i, j) : i ∈ S, j ∈ T and i < j}| For k,l and k + l in {1, • • • n}, consider the following intertwiners M k,l :V k ⊗ V l → V k+l x S ⊗ x T → (-q) (S,T ) x S∪T if S ∩ T = ∅ 0 otherwise M k,l :V k+l → V k ⊗ V l x S → (-1) kl T ⊂S (-q) -(S\T,T ) x T ⊗ x S\T D k :V k → V * n-k x S → (-q) (S,S c ) x * S c D -1 k :V * n-k → V k x * S → (-q) -(S c ,S) x S c
Then, consider the tensor functor F :

FSp(A n-1 ) → Rep(U q (A n-1 )) given by F (k + ) = V k , F (k -) = V * k and F (Y k,l k+l ) =M k,l F (λ k+l k,l ) =M k,l F (ev k ) =V * k ⊗ V k → C x * S ⊗ x T → δ S,T F (coev k ) =C → V k ⊗ V * k 1 → |S|=k x S ⊗ x * S F ( ev k ) =V k ⊗ V * k → C x S ⊗ x * T → q -k(n-k)+2 (S,S c ) δ S,T F ( coev k ) =C → V * k ⊗ V k 1 → |S|=k q k(n-k)-2 (S,S c ) x * S ⊗ x S F (tag k ) =D k F ( tag k ) =D -1 k
Because the images by F of spider relations hold in Rep(U q (A n-1 )), F factors through the quotient and gives a tensor functor F :

Sp(A n-1 ) → Rep(U q (A n-1
)) that is in fact and equivalence [START_REF] Cautis | Webs and quantum skew howe duality[END_REF].

An equivalent presentation

In this section, we describe a new diagrammatic category equivalent to Sp(A n-1 ) that we will call the polarized spider PSp(A n-1 ). First, define the free polarized spider FPSp(A n-1 ) whose objects are strings of integers in 1, n -1 . Its morphisms are linear combinations of oriented planar graphs embedded in a rectangle, with edges labeled in 1, n -1 , generated by such that the projection of edge orientations onto the vertical axis is always positive. We have drawn circled vertices in order to differentiate with the graphs of the original A n-1 spiders. At the bottom and top boundaries of the rectangle, edges labeled by k are connected to points labeled by k. Composition of diagrams is given by concatenation and extended bilinearly.

The polarized spider PSp(A n-1 ) is then defined by quotienting by the following relations

= (-1) k(n-k) n k q (3.32a) = (-1) kl k + l k q (3.32b) = (-1) l(n-k-l) n -k l q (3.32c) = (3.32d) = (3.32e) (-1) k+l-1 = (-1) k+l-1 + [k -l] q (3.32f)
together with isotopy-like relations

= = (3.32g) = = (3.32h) = = (3.32i)
In the last two equations, the labels can satisfy m = k + l or m = k + l -n. Moreover, we allow edges to take value 0 or n in the relations, in which case, they are simply erased. If, when an edge is erased a vertex is adjacent to an inward oriented edge and an outward oriented edge, we can consider these two edges as one and erase the vertex. We call polarized isotopy, an isotopy that keeps a graph polarized, i.e. such that all its oriented edges are positively projected onto the vertical axis. Remark that polarized isotopies augmented by the set of isotopy-like relations permit us to perform any isotopy on a polarized web as long as it is accompanied by the addition or substraction of vertices ensuring that the web stays polarized.

FPSp(A n-1 ) and PSp(A n-1 ) are tensor categories. The tensor product is given by concatenating strings at the level of objects and, at the level of morphisms, by horizontally juxtaposing webs and extending the operation by bilinearity. PSp(A n-1 ) and Sp(A n-1 ) are equivalent as tensor categories. When n = 2, if one removes orientations and label, then PSp(A 1 ) is simply the Temperley-Lieb category. When n = 3, if one reverse the orientations of all edges labeled by 2 and remove the labels, one obtains the Kuperberg A 2 spider.

Let Id k be the web in Hom((k), (k)) given by a vertical edge labeled by k joining both boundaries of the rectangle. Morphisms in FPSp(A n-1 ), PSp(A n-1 ) are generated by Id k and the following

Y k,l k+l = Y k,l k+l-n = λ k+l k,l = λ k+l-n k,l = cup k = cap k = Actually, in PSp(A n-1 ), Y k,l k+l-n and λ k+l-n k,l
can be obtained from the other generators but we include them as they will appear explicitely in Chapter 5.

Proof of equivalence Consider the tensor functor E : FPSp(A n-1 ) → Sp(A n-1 ) given by E(k + ) = k on objects and, at the level of morphisms, E sends polarized webs to original webs by the following rules

→ (3.33a) → (-1) kl (3.33b) → (-1) (k+l-n)(n-l) = (-1) (k+l-n)(n-k) (3.33c) → = (3.33d) → (3.33e) → (3.33f)
The definition of E is then extended by linearity Hom spaces in their entirety. One can then check that such a mapping factors through the relations (3.32) giving a well defined functor E : PSp(A n-1 ) → Sp(A n-1 ). It is clear that, using tags, any object in Sp(A n-1 ) is isomorphic to a string with elements in {1 + , • • • , (n-1) + } only. Moreover, E maps Hom spaces bijectively. Indeed, one can construct an inverse by inserting pairs of tags on a given web so that it looks locally like the right hand side of (3.33). The relations (3.32) ensure that this mapping is well defined. Hence, the functor is an equivalence of tensor categories.

Explicit generators

We give here the explicit expression of images of the generators by the functor F • E.

It appears convenient to make the change q → -q as the relations (3.32) then become

= n k q (3.34a) = k + l k q (3.34b) = n -k l q (3.34c) = (3.34d) = (3.34e) = + [k -l] q (3.34f) = = (3.34g) = = (3.34h) = = (3.34i)
We have that

F • E(Y k,l k+l ) =V k+l → V k ⊗ V l x S → T ⊂S q -(S\T,T ) x T ⊗ x S\T F • E(Y k,l k+l-n ) =V k+l-n → V k ⊗ V l x S → S⊂T q -(T \S,T c ) x (T \S) c ⊗ x T F • E(λ k+l k,l ) =V k ⊗ V l → V k+l x S ⊗ x T → q (S,T ) x S∪T if S ∩ T = ∅ 0 otherwise F • E(λ k+l-n k,l ) =V k ⊗ V l → V k+l-n x S ⊗ x T → q (T c ,S c ) x S∩T if S ∪ T = {1, • • • , n} 0 otherwise F • E(cup k ) =C → V k ⊗ V n-k 1 → |S|=k q -(S c ,S) x S ⊗ x S c F • E(cap k ) =V k ⊗ V n-k → C x S ⊗ x T → q (S,S c ) δ S c ,T
where the right hand sides are U -q (A n-1 ) intertwiners.

The additive completion and its trace

In the additive completion of PSp(A n-1 ), consider the objects [l] given by

[l] = n-1 k=0 k ⊗l
There is a natural trace on Hom([l], [l]). Consider the morphisms cup = (

n-1 k=1 cup k ) + Id 0 ∈ Hom([0], [2]) cap = ( n-1 k=1 cap k ) + Id 0 ∈ Hom([2], [0])
where Id 0 is given by the identification of 0 in

(0 ⊕ n-1 k=1 k) ⊗ (0 ⊕ n-1 k=1 k) = 0 ⊕ • • •
With the morphisms cup and cap, one can define the Markov trace on Hom([l], [l]). Then, for A ∈ Hom([l], [l]), one has that

Mtr(A) = tr F • E(A)q 2Hρ
where q 2Hρ is identified with its representative in End (C

n-1 k=1 V k ) ⊗l .

Chapter 4

The A 2 web model

In this chapter, we define the A 2 web model, also called Kuperberg web model. The discussion is mainly based on [START_REF] Lafay | Uq(sln) web models and zn spin interfaces[END_REF] and [START_REF] Lafay | Uq(sl3) web models: Locality, phase diagram and geometrical defects[END_REF]. It is a geometric model whose configurations consist on embeddings of A 2 , or Kuperberg, webs on a lattice. The Boltzman weight is defined from the Kuperberg reduction relations. This permits us to reformulate the model in a local way, as a vertex model. At a specific point of the parameter space, the model can be mapped to a Z 3 spin model such that Kuperberg webs describe interfaces between spin clusters. We then use numerical techniques to diagonalize the transfer matrices and extract the phase diagram by finite-size scaling. We exhibit two critical phases that we call dilute and dense phase in analogy with the O(N ) loop models. We discuss a class of lattice electromagnetic operators. By giving numerical evidence, we show that the scaling behaviour of these operators is correctly reproduced by a Coulomb Gas with a two-component bosonic field. We then discuss some applications of these results to random geometry. The presentation closely follows the one of the O(N ) loop models in 2.2

Definition of the model

Our model is defined on an underlying finite hexagonal lattice H, with boundary conditions such that the lattice is planar (e.g., free or periodic in one direction). In order to follow the discussion in 2.2, the hexagonal lattice H is made of 2M rows and 2L columns embedded in a vertical strip or a vertical cylinder such that one third of its links are parallel to the axis of the cylinder or the strip (see Figure 4.1).

A configuration c of the Kuperberg web model is a certain subset of links in H-represented by drawing bonds on top of the links in the subset-subject to a number of constraints that we now describe. First, c must form a closed planar graph, meaning that a node can be adjacent to 0, 2 or 3 bonds, but never 1. A node adjacent to 3 bonds (a 3-valent node) is called a vertex of c. A path of consecutive bonds, going either from one vertex to a distinct vertex via a succession of 2-valent nodes, or forming a closed path of 2-valent nodes, is called an edge of c. An edge of the latter type (closed path) is also called a loop. Second, we give an orientation to each bond, and impose that all bonds along one edge be consistently oriented. Each edge has the orientation inherited from its constituent bonds. Third, we demand each vertex of c to be either a source (i.e., adjacent to 3 outgoing edges) or a sink (i.e., adjacent to 3 ingoing edges).

With these definitions, any configuration c can be drawn as a graph consisting of vertices and oriented edges. By construction, the graph c is closed and planar. It can be considered an abstract graph, in the sense that it can be drawn without reference to the underlying lattice H, but it is nevertheless still embedded in the plane. Moreover, c is trivalent and bipartite: each oriented edge (except for those edges that form loops) goes from a source to a sink, so the set of sources and the set of sinks provide a bipartition of c. Notice finally that c is not necessarily connected; indeed, it may have several connected components. We have that c is a Kuperberg web embedded in H.

We now describe how to weigh a given configuration c. Firstly, webs are given a non-local weight w K (c). This weight is computed according to the Kuperberg A 2 rules (3.4) :

= [3] q (4.1a) = [2] q (4.1b) = + (4.1c)
The first rule replaces a loop by the weight [START_REF] Andrews | Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities[END_REF] q . The second rule replaces every subgraph of the shape of a two-sided polygon (or digon) by an edge with the weight [START_REF] Alcaraz | Reaction-diffusion processes as physical realizations of hecke algebras[END_REF] q . Finally, the third rule replaces every subgraph of the shape of a four-sided polygon (or "square") by a formal sum of subgraphs given in the right-hand side of (4.1c). Note that the first rule gives the same weight [START_REF] Andrews | Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities[END_REF] q to any loop, regardless of its orientation (clockwise or anticlockwise), and likewise the following two rules also hold true with all the arrow directions reversed.

The fact that webs are bipartite implies of course that only even-sided polygons can occur. It is a non-trivial topological fact that any connected component of a web that is not a loop contains at least one two-sided or one four-sided polygon. To see this, suppose that it is not the case, i.e, consider a non-empty web that contains neither a loop, nor a two-sided or a four-sided polygon. Denote by V , E, and F , respectively, the number of vertices, edges and faces in the web. As the graph in trivalent, one has 2E = 3V by the handshake lemma, so from the Euler relation

F -E + V = F -1 2 V = 2
. Now, by assumption, each of the faces is bounded by at least 6 vertices, and since each vertex is surrounded by 3 faces, one has 3V ≥ 6F implying F -1 2 V = 2 ≤ 0, a contradiction. 1 Of course, a web can contain six-sided or more complicated polygons but from the above argument it necessarily contains a two-sided or a four-sided polygon attached to them, so that using the second and third rules in (3.4), the polygons reduce in size. Therefore, proceeding recursively, any web is reduced to a collection of loops, which will each be replaced by the weight [START_REF] Andrews | Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities[END_REF] q by (4.1a). In other words, the set of three rules will replace any web c by a corresponding non-local weight w K (c).

It was shown in [START_REF] Kuperberg | Spiders for rank 2 lie algebras[END_REF] that the set of three rules (3.4) is well defined, in the sense that applying them in any order to c will lead to the same weight w K (c). Therefore, w K (c) is the weight of the web c. These rules were in fact shown to be the only ones, up to a rescaling of vertices, to be well-defined for the class of graphs considered. We will use and precisely define the concept of vertex rescaling in the next subsection.

As an example of the application of the rules (3.4), it is easy to see that the non-local weight of the web c shown in Figure 4.

1 is w K (c) = [2] q [3] 2
q . Secondly, we multiply this non-local weight by local fugacities for vertices and bonds. Each upward (resp. downward) bond is given the fugacity x 1 (resp. x 2 ). A vertex is given the fugacity y (resp. z) if it is a sink (resp. source). Observe that, because the webs are closed, there are as many sinks as sources. Hence the partition function depends only on the product yz.

Summarising, the total weight of a configuration c is given by the product of local fugacities times the non-local weight w K (c) obtained by the reduction procedure. The partition function thus reads:

Z K = c∈K x N1 1 x N2 2 (yz) N V w K (c) , (4.2) 
where N 1 (resp. N 2 ) is the number of upward (resp. downward) bonds, N V is the number of sink/source pairs of vertices, and K denotes the set of Kuperberg webs on the finite hexagonal lattice H. The model is discretely rotationally invariant when x 1 = x 2 . Note that the partition function is invariant under the transformation yz → -yz , (4.3a) q → -q (4.3b)

and under the transformation

q → q -1 . (4.4) 
In the following, we will focus on the following subspace of the parameter space:

x 1 , x 2 , yz ≥ 0 , q = e iγ , with γ ∈ [0, π/3] . (4.5)

Relation with Z 3 spin models

We will now show that the Kuperberg web model is equivalent, at a special point, to a chiral Z 3 spin model in the most general case. More precisely, we give a map from spin configurations to web configurations such that webs correspond to interfaces between spin clusters. We will show that, under this map, the two partition functions agree up to an overall factor. We first formulate the spin model in terms of a low-temperature expansion. The spins σ i take three different values, σ i ∈ Z 3 := {0, 1, 2}, and are defined on the nodes i of a triangular lattice T. This triangular lattice is the dual of the hexagonal lattice H considered above, i.e., T = H *2 . A link (ij) of T is specified by the two nodes, i and j, on which it is incident. Viewing T along the oriented axis defined in Figure 4.1 determines uniquely whether j is to the right or left of i (since, by construction of the dual lattice, the segment [ij] cannot be parallel to the axis). The weight describing the (chiral) interaction along any link (ij) of T is then defined to be x σj -σi if j is to the right of i. We recall that all differences between spins are computed within Z 3 , i.e., modulo 3. This defines three interaction parameters, x 0 , x 1 and x 2 . Clearly the interactions are invariant by a global Z 3 action, that is, upon shifting all spins by the same amount.

If we normalise the interactions by setting x 0 = 1, this spin model associates a non-trivial weight, x 1 or x 2 , to each piece of domain wall between unequal spins. More precisely, a piece of domain wall is a link of H that is dual to a link (ij) of T satisfying σ i = σ j . We call such a piece of domain wall a bond on H. We can further orient the bonds by the following rule. When j is to the right of i, we give the bond the upward (resp. downward) orientation if σ j -σ i = 1 (resp. σ j -σ i = 2). With these rules, the vertices (i.e., nodes of the lattice adjacent to 3 bonds) appear at a junction of three spin clusters and we observe that they are either sources or sinks according to how the spins around them are arranged. Indeed, the three spin colours follow each other in cyclic order, 0 → 1 → 2 → 0, as one turns around a sink (resp. source) vertex in the anticlockwise (resp. clockwise) direction. It is thus clear that a configuration of the spin model produces a configuration of oriented bonds on H which is precisely a Kuperberg web. Notice however that, since the rules are defined in terms of spin differences, two spin configurations that are related by a global Z 3 action give rise to the same web (see Figure 4.2). Conversely, a web configuration specifies all spin differences in Z 3 and so gives rise to a spin configuration, provided that we fix the value of one reference spin. In other words, we have given a bijection between web configurations and spin configurations modulo the global Z 3 action.

As to the statistical weight of a given spin configuration, the local bond weights x 1 and x 2 can readily be seen to have the same meaning as in our previous definition of the Kuperberg web model. This implies that the partition function of the spin model can be written

Z spin = 3 c∈K x N1 1 x N2 2 , (4.6) 
where the sum is over the same set of Kuperberg webs c on the finite hexagonal lattice H, and the overall factor of 3 accounts for the global Z 3 invariance in the bijection. The quantities N 1 and N 2 have the same meaning as in (4.2). The difference between the web partition function Z K in (4.2) and the spin partition function Z spin in (4.6) is clearly that the latter assigns neither a local weight to the sink/source vertices, nor the non-local weight to each connected component of the web. In other words, the Kuperberg web model is equivalent to the spin model (i.e., Z spin = 3Z K ) provided that one can impose the following relation for all configurations:

w K (c) := (yz) N V w K (c) = 1 . (4.7)
The vertex fugacities y, z and the Kuperberg weight w K (c) do not depend on how a given web is embedded in H but only on the abstract graph. Thus, we dub the product of these two parts, w K (c), the topological weight of the configuration c. The equivalence is achieved at the special point q = e i π 4 , (4.8a)

yz = 2 -1 2 . (4.8b)
To see this, observe first that one can compute the topological weight w K (c) in the same way as w K (c) is computed, but using certain deformed rules. Indeed, one can rescale the vertices in Kuperberg rules in order to incorporate the y and z fugacities, by defining the following "dressed" vertices:

= y (4.9a) and = z (4.9b)

The computation of w K (c) is then made using the deformed relations

= [3] q (4.10a) = yz [2] q (4.10b) = (yz) 2 + (yz) 2 (4.10c)
We will then call dressed webs, the webs that are made of the rescaled vertices (4.9). To evaluate the weight for closed dressed webs we use the deformed relations (4.10). By the construction, these relations are well defined, i.e., the result does not depend on the way the dressed web is reduced, because the evaluation with the deformed rules is equivalent to the evaluation with the standard Kuperberg rules (4.1) provided that we initially accounted for the vertex fugacities. The dressed webs will turn out to provide a convenient notation in the following. At q = e i π 4 , one has [3] q = 1 and

[2] q = √ 2. Moreover, when yz = 2 -1 2 one obtains = 1 (4.11a) = (4.11b) = 1 2 + 1 2 (4.11c)
The important point in the relations (4.11) is that for any of the three rules, the sum of prefactors of the graphs on the left-hand side is equal to the sum of prefactors of the graphs on the right-hand side. As a consequence, the partial weight w K (c) of any configuration is 1, so that (4.7) is satisfied. It is not difficult to check this on an example:

= 1 2 + 1 2 = 1 . (4.12)
We have here used first the rule (4.11c) and then (4.11a). Alternatively, applying first (4.11b) and then (4.11a) results in the same weight, as it should.

To show that w K (c) = 1 for any c, consider the vector space generated by all dressed webs, including the empty one, that contribute during a reduction process of c. This is a finite-dimensional space because c is a finite graph. In the example above, the space is of dimension 4, with a basis given by the four dressed webs appearing successively in (4.12). Each stage appearing in the reduction process corresponds to a linear combination of dressed webs, that is, a vector in this space. The sum of prefactors is the same on both sides of any of the reduction rules (4.11), implying that the sum of the components in the basis of dressed webs remains constant upon applying any of these relations. As this sum is 1 when we begin the reduction of a given dressed web, it must also be 1 when we end with the empty web. This completes the proof.

We conclude this section with a few brief remarks on critical points of the Kuperberg web model. The 3state Potts model-equivalent to a Z 3 clock model without chirality (x 1 = x 2 )-exhibits a second-order phase transition for a critical value x c > 0 of its interaction parameter, x 1 = x 2 = x c . 3 Hence, at the corresponding point, the Kuperberg web model is critical as well. This is analogous to the situation encountered in the loop case with the Ising model. Thus we expect this critical point of the web model to be part of a whole critical submanifold of its parameter space, obtained by varying the deformation parameter q and presumably adjusting the vertex fugacities y, z accordingly. This submanifold cannot coincide with that of the critical Qstate Potts model (although they intersect at Q = 3, as we have seen), because the latter does not generically possess a U q (sl 3 ) symmetry. Moreover, observe that for x 1 = x 2 = 1, the Z 3 spin model describes (equally weighted) three-colourings of the triangular lattice. We can then ask whether the web model may lead to interesting critical observables for the latter. Recall that for n = 2 the Ising model in the corresponding equally-weighted limit is related to percolation hulls.

Locality

Combinatorial vertex-model formulation

We shall now describe a combinatorial vertex-model formulation of the above Kuperberg web model. It is similar in spirit to the localisation of the loop weight in the O(N ) loop model in terms of a corresponding oriented loop model recalled in 2.2.3.

We begin by decorating the webs, as a first step in making the weights local. We call a three-colouring of a Kuperberg web c, a map from the set of edges of c into the set {red, blue, green}, subject to the constraint that each vertex be incident on three edges with different colours. As usual, a bond inherits the colour of the edge it belongs to.

Each coloured web d is assigned a weight w col (d), to be defined shortly, such that the sum of these weights over all possible three-colourings d of a given Kuperberg web c will give back the non-local weight w K (c). Note that we use the same notation for the weight of coloured configurations in both the loop and Kuperberg case, since the model being considered should always be clear from the context. We will describe the weight given to a coloured web directly in terms of its local pieces.

Consider first the strip geometry. We now restrict to x 1 = x 2 = x and will come back to the general case later. The local weights of the model are given by factors when a node is incident on three bonds = zx

3 2 q -1 6 , = zx 3 2 q 1 6 , = yx 3 2 q 1 6 , = yx 3 2 q -1 6 , (4.13a) 
or on only two bonds (which are then parts of the same embedded edge, hence having consistent orientations and colourings)

= xq -1 3 , = x , = xq 1 3 , = xq 1 3 , = x , = xq -1 3 , (4.13b) 
or finally when the node is empty

= 1 . (4.13c)
In other words, in addition to the bond and vertex fugacities of the original Kuperberg web model, red edges get a weight q -θ π when they bend an angle θ, green edges get the weight q θ π when they bend an angle θ, whereas blue edges do not get any weight. There is also a special weight q ± 1 6 when three colours meet at a vertex. The sign in the exponent changes when the cyclic order of the colours meeting at a vertex is reversed or when the orientations of the three edges meeting at the vertex are flipped simultaneously. Again, we draw only a subset of the node configurations, omitting those related to the above by a rotation. All node configurations related by a rotation are weighted the same way. Observe that in (4.13), the three lines adjacent to a given node are understood as half-links of H, hence a half-bond is weighted by x 1 2 . It is not difficult to deduce from this the local weights in the general case where x 1 and x 2 are arbitrary. In this case, two node configurations related by a rotation are weighted differently, in general. We will not draw the complete set of node configurations but it should be clear from the following examples how any of them is weighted:

= zx 1 x 1 2 2 q -1 6 , = zx 1 2 1 x 2 q 1 6 , = x 1 q -1 3 , = x 1 2 1 x 1 2 2 q 1 3 . (4.14)
We now show that the above local weights recover the weight of a web configuration c. The local weights define the weight w col (c i ) for a given three-colouring c i of c. We want to show that the sum of these weights over all three-colourings recovers the Kuperberg web model weight,

i w col (c i ) = x N1 1 x N2 2 (yz) N V w K (c) , (4.15) 
where N 1 , N 2 and N V were defined after (4.2). The weight of a coloured web w col (c i ) is given by a product of bond and vertex fugacities as well as some power of q, conveniently denoted q n(ci) . It is clear that the product of bond and vertex fugacities is the same for any three-colouring of c and is equal to x N1 1 x N2 2 (yz) N V , the same factor appearing on the right-hand side of (4.15). Hence it remains to show that

i q n(ci) = w K (c) , (4.16) 
where the sum is over all three-colourings of c and q n(ci) is the product of local weights given by the local factors

= q -1 6 , = q 1 6 , = q 1 6 , = q -1 6 , (4.17a) 
together with

= q -1 3 , = 1 , = q 1 3 , = q 1 3 , = 1 , = q -1 3 , (4.17b) and = 1 , (4.17c) 
where again any local node configuration related by a rotation to one of the above is weighted accordingly. It will turn out convenient to generalise the reasoning by considering the coloured web as an abstract web, i.e., as a coloured web embedded in the plane. In other words, we forget about the underlying lattice H and allow edges to bend in any possible way, rather than through the discrete angles dictated by H. A coloured abstract web is given a weight which is again a product of powers of q. Red edges get a weight q -θ π when they bend an angle θ, green edges get a weight q θ π when they bend an angle θ, whereas blue edges do not get any weight. Moreover vertices account for a weight depending on the angle α between the red and green edges, measured from the red edge to the green one as shown here:

= q -α π + 1 2 , = q -α π -1 2 , = q α π -1 2 , = q α π + 1 2 . (4.18)
For a coloured web embedded in H, this agrees with (4.17). The total weight of a coloured web defined by the above local weights is invariant under isotopy. Indeed, straightening a coloured edge does not change the total weight of the coloured web. Moreover, bending an edge incident on a vertex, the local weight associated to the bending compensates the change in the local weight of the given vertex. We shall use this freedom in the following. In order to show (4.16), it is sufficient to show that the local relations (3.4) are satisfied by the local weights. That is, for any relation, if we fix the colours of the external edges and sum over the possible colourings of the internal ones, the two sides must be weighted the same. The loop rule (3.4a) is obviously satisfied as a clockwise (respectively anticlockwise) oriented red loop gives a factor q 2 (respectively q -2 ), a blue one gives a factor 1 regardless of its orientation, and a clockwise (respectively anticlockwise) oriented green loop gives a factor q -2 (respectively q 2 ). The sum over colours indeed produces the required loop weight, [START_REF] Andrews | Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities[END_REF] q = q 2 + 1 + q -2 , for any of the two possible orientations.

Regarding the second rule (3.4b), we have, for the case where the external edges are red (the other cases being similar):

+ = q 1 6 ×2+ 2 3 + q -1 6 ×2-2 3 = [2] q (4.19)
Regarding the last rule (4.1c), there are two cases for the colourings of the four external edges to be considered. In the first case, all external edges have the same colour, and we find (for the case of green external edges):

+ = + (4.20)
where indeed summing out the local weights over the possible colourings on the left-hand side gives q -1 6 ×4 + q

1 6 ×4+ 1 3 ×2 = q -2 3 + q 4 
3 , while summing out the local weights over the possible contractions on the right-hand side gives the same result. In the second case, the external edges have two different colours, one on each side of the square. In that case, the left-and right-hand sides of (4.1c) are again weighted the same:

= (4.21)
The computations for other colourings of external edges are similar. Thus we have shown (4.16).

When H is embedded in the cylinder, we must again introduce an oriented seam line with local weights given by the weight carried by oriented coloured curves when they do a full turn:

= q 2 , = 1 , = q -2 , = q -2 , = 1 , = q 2 , (4.22) 
= 1 .

It is obvious that these weights just compensate the lack of bending for configurations that wrap around the periodic direction, so the remainder of the proof of (4.15) can be taken over from the strip case discussed above.

Local weights for any trivalent lattice

As a side-effect of the above proof, we remark that the vertex weights (4.13) can be generalised to account for the local formulation of the Kuperberg web model defined on any trivalent lattice embedded in the plane. This is more easily seen when we restrict to only one bond fugacity x. When an edge undergoes bending (by passing through a node incident on two bonds), it is given the appropriate weight depending on the colour and the bending angle (as defined above (4.18)) times the bond fugacity x. When three colours meet at a vertex, the weight depends on the angle α between the red and green edges, measured from the red edge to the green one:

= zx 3 2 q -α π + 1 2 , = zx 3 2 q -α π -1 2 , = yx 3 2 q α π -1 2 , = yx 3 2 q α π + 1 2 .
That the Kuperberg web weight is retrieved follows from the fact, that, in the last subsection, we have in fact shown (4.16) for any coloured web embedded in the plane.

It is also possible to generalise further to account for two types of bond fugacities, x 1 and x 2 , once one chooses an appropriate time foliation of the plane.

The study of two-dimensional statistical models defined on arbitrary trivalent lattices-or by duality, on arbitary triangulations of the plane-is relevant for the discretisation of models of two-dimensional quantum gravity. In such models the partition function is a double sum over the triangulations, with a certain weighting (the so-called cosmological term) coupling to the area of the corresponding surface, and over the statistical model defined on a given triangulation. There are many interesting connections from this approach to random matrix integrals, combinatorics and graph theory. We refer the reader to the review [START_REF] Francesco | 2d quantum gravity, matrix models and graph combinatorics[END_REF] for further details. It should be noticed in particular that the O(N ) loop model has been solved in this context, using random matrix techniques [START_REF] Kostov | O(n) vector model on a planar random lattice : spectrum of anomalous dimenions[END_REF], and we leave for future research to determine whether the Kuperberg web model coupled to quantum gravity can be treated by similar means. 

Algebraic transfer matrix formulation

Our next goal is to define the transfer matrix corresponding to the vertex models of Section 4.3.1. To this end, we associate to each link of H a local space of states whose basis is given by the link degrees of freedom. In the loop model case, this leads to a three-dimensional local states space H loop = span(|↑ , |↓ , | ). In the Kuperberg web model, the local state space has dimension seven and is written in terms of colours and orientations:

H K = span(|↑ , |↑ , |↑ , |↓ , |↓ , |↓ , | ) . (4.23)
The vertex weights are then understood as matrix elements between states, but to define them we need tensor products of several local state spaces. The operators built this way are the local transfer matrices.

The weights associated to the seam line are interpreted as matrix elements of twist operators, as they introduce twisted boundary conditions. We shall call node of type 1 (respectively type 2) a node situated at the bottom (respectively top) of a vertical link. For example, (4.13) show nodes of type 1 for the Kuperberg web models.

The local transfer matrices are symmetric with respect to an action of U -q (sl 3 ). Let V 1 be the first fundamental representation of U -q (sl 3 ) and {v 1 , v 2 , v 3 } be its basis such that the action of the generators reads

(-q) H1 =   -q 0 0 0 -q -1 0 0 0 1   , E 1 =   0 1 0 0 0 0 0 0 0   , F 1 =   0 0 0 1 0 0 0 0 0   , (-q) H2 =   1 0 0 0 -q 0 0 0 -q -1   , E 2 =   0 0 0 0 0 1 0 0 0   , F 2 =   0 0 0 0 0 0 0 1 0   . (4.24)
Let {w 1 , w 2 , w 3 } be the basis of V * 1 dual to {v 1 , v 2 , v 3 }, i.e. w i (v j ) = δ ij . The action of the generators in this basis reads :

(-q) H1 =   -q -1 0 0 0 -q 0 0 0 1   , E 1 =   0 0 0 q 0 0 0 0 0   , F 1 =   0 q -1 0 0 0 0 0 0 0   , (-q) H2 =   1 0 0 0 -q -1 0 0 0 -q   , E 2 =   0 0 0 0 0 0 0 q 0   , F 2 =   0 0 0 0 0 q -1 0 0 0   . (4.25)
Each local space of states H K carries an action of U -q (sl 3 ) as

H K ∼ = V 1 ⊕ V * 1 ⊕ C
where C denotes the trivial representation of U -q (sl 3 ). We define this action by relating the basis {|↑ , |↑ , |↑ , |↓ , |↓ , |↓ , | } with the basis {v 1 , v 2 , v 3 , w 1 , w 2 , w 3 , 1} on each link. On links of inclination we have

(|↑ , |↑ , |↑ , |↓ , |↓ , |↓ , | ) = diag(q 1 3 , 1, q -1 3 , q -4 3 , 1, q 4 3 , 1)(v 1 , v 2 , v 3 , w 1 , w 2 , w 3 , 1) , (4.26) 
while on links of inclination

(|↑ , |↑ , |↑ , |↓ , |↓ , |↓ , | ) = diag(q -1 3 , 1, q 1 3 , q -2 3 , 1, q 2 3 , 1)(v 1 , v 2 , v 3 , w 1 , w 2 , w 3 , 1) , (4.27) 
and finally on vertical links we find

(|↑ , |↑ , |↑ , |↓ , |↓ , |↓ , | ) = diag(1, 1, 1, q -1 , 1, q, 1)(v 1 , v 2 , v 3 , w 1 , w 2 , w 3 , 1) . (4.28)
The local transfer matrices can then be expressed in terms of diagrams, where each diagram represent a particular intertwiner :

t K (1) =zx 1 x 1 2 2 + yx 1 2 1 x 2 + x 1 + x 1 + x 2 + x 2 + x 1 2 1 x 1 2 2 + x 1 2 1 x 1 2 2 + (4.29a) t K (2) =zx 1 2 1 x 2 + yx 1 x 1 2 2 + x 1 + x 1 + x 2 + x 2 + x 1 2 1 x 1 2 2 + x 1 2 1 x 1 2 2 + (4.29b)
An oriented full line represents the propagation of states inside V 1 (respectively V * 1 ) if the arrow is pointing up (respectively down) and a dashed line represents the vacuum.

The diagrams appearing in (4.29) are open Kuperberg A 2 webs. Using the equivalence of categories described in 3.2.1, we can understand which intertwiners are represented by the diagrams in (4.29). For instance, the first diagram in (4.29a) represents the projection from

V 1 ⊗ V 1 into the direct summand V * 1 .
It is graphically obtained by a composition of, for instance, coev and w as (4.30)

As a 3 × 9 matrix in the bases

{v 1 ⊗ v 1 , v 1 ⊗ v 2 , v 1 ⊗ v 3 , v 2 ⊗ v 1 , v 2 ⊗ v 2 , v 2 ⊗ v 3 , v 3 ⊗ v 1 , v 3 ⊗ v 2 , v 3 ⊗ v 3 } of V 1 ⊗ V 1 and {w 1 , w 2 , w 3 } of V * 1 , it reads   0 0 0 0 0 q -1 2 0 q -3 2 0 0 0 q 1 2 0 0 0 q -1 2 0 0 0 q 3 2 0 q 1 2 0 0 0 0 0   , (4.31) while in the bases {|↑ ↑ , |↑ ↑ , |↑ ↑ , |↑ ↑ , |↑ ↑ , |↑ ↑ , |↑ ↑ , |↑ ↑ , |↑ ↑ } of V 1 ⊗ V 1 and {|↓ , |↓ , |↓ } of V * 1 , it becomes   0 0 0 0 0 q 1 6 0 q -1 6 0 0 0 q 1 6 0 0 0 q 1 6 0 0 0 q 1 6 0 q -1 6 0 0 0 0 0   . (4.32)
From the latter expression we thus see that we recover the correct vertex weigths (4.17) for the corresponding states.

In the strip geometry, the row-to-row transfer matrix is defined in a similar way as in the loop case 2.2.3,

T K = L-1 k=0 t K 2k+1 L-1 k=1 t K 2k , (4.33) 
with

t K i = t K (2) t K (1)
and the subscript denotes the position of the local transfer matrix. It is thus a U -q (sl 3 ) intertwiner. Define the vacuum by | ⊗2L . We see from (4.33) that when we take the vacuum expectation value of a product of M row-to-row transfer matrices, the result can be understood as the unique matrix element of a sum of intertwiners from the trivial representation to itself. These intertwiners are the ones represented by all possible closed webs embedded in H with some prefactors accounting for bond and vertex fugacities. We thus recover the partition function (4.2) on a lattice with 2M -2 rows:4 

Z K = T M K .
(4.34)

In the cylinder geometry, the seam line operator is chosen in ordert to implement a Markov trace in the horizontal direction 3.2.1.

S K = q 2Hρ , (4.35) 
Since S K belongs to the Cartan subalgebra and local transfer matrices are intertwiners, the seam line can be deformed through nodes of H. The row-to-row transfer matrix is then defined as

T K = L-1 k=0 t K 2k+1 L-1 k=1 t K 2k S K t K 2L S -1 K . (4.36) 
However, in the cylinder geometry, the row-to-row transfer matrix will, in general, not posses the full quantum group symmetry of the local transfer matrices. Yet the invariance with respect to the action of the Cartan subalgebra remains.

Relation with the FPL on H

We now tune x 1 = x 2 = x, y = z = 1 in the Kuperberg web model and consider the x → +∞ limit. In this case, the configurations are webs that completely cover H. There are two such webs that are related by a reflection of all of their arrows: in the first, each type 1 node is a source and each type 2 node is a sink, while in the second it is the other way around. Both of those webs have the same weight, hence the partition function reads

lim x→+∞ 1 x N l Z K = 2w K (H) , (4.37) 
where N l is the total number of links of H. This limit is thus described by the whole lattice H acting as a unique web, so it is interesting to regard this web in the refined model of coloured webs. The configurations are then all three-colourings of the hexagonal lattice. Such a three-colouring model was first studied by Baxter, who found the exact asymptotic equivalent of the partition function, or equivalently the bulk free energy, in the special case where each three-colouring has the same statistical weight [START_REF] Baxter | Colorings of a Hexagonal Lattice[END_REF]. If one further considers blue links as empty, one gets a collection of cycles made of alternating red and green links that are jointly covering each node of H. We thus obtain the configuration space of the fully-packed loop (FPL) model on H. The equal-weighted case would correspond to giving a fugacity N = 2 to each of these loops (since each loop is invariant upon permuting red and green along the corresponding alternating cycle). We now investigate closer which weighting of the FPL model is really obtained in the limit (4.37). By reversing the orientation of red links, one gets oriented loops that cover every node of H. According to (4.17), these loops pick a factor q -1 6 when they turn left and a factor q 1 6 when they turn right. Hence, summing over both orientations, contractible unoriented loops are all weighted by [START_REF] Alcaraz | Reaction-diffusion processes as physical realizations of hecke algebras[END_REF] q . We thus recover in this limit the more general FPL model on the hexagonal lattice with an adjustable loop fugacity, N = [START_REF] Alcaraz | Reaction-diffusion processes as physical realizations of hecke algebras[END_REF] q :

Z FPL = lim x→+∞ 1 2x N l Z K . (4.38)
This mapping is originally due to Reshetikhin [START_REF] Reshetikhin | A new exactly solvable case of an o(n)-model on a hexagonal lattice[END_REF]. In our case, when H is embedded in the cylinder, non-contractible loops are given a different weight, N = q 2 + q -2 = [2] 2 q -2. The scaling limit of the FPL model has been studied by Coulomb Gas (CG) techniques in [START_REF] Kondev | Operator spectrum and exact exponents of the fully packed loop model[END_REF], and the particular choice of N was further shown in [START_REF] Dupic | The fully packed loop model as a non-rational w 3 conformal field theory[END_REF] to lead to a CFT with an extended W 3 symmetry.

The FPL model is in fact integrable. In order to make this apparent, consider the local transfer matrix t K = t K (2) t K (1) in our limit. As we have seen that we can regard H as a unique web, one can write t K as

t K = x 3 . (4.39)
Now consider the integrable trigonometric R-matrix, R 15 , of the fifteen-vertex model with U -q (sl 3 ) symmetry [START_REF] Jimbo | Quantum R matrix for the generalized Toda system[END_REF]. It intertwines between V 1 ⊗ V 1 and itself, seen as U -q (sl 3 ) representations. In terms of Kuperberg web it reads

R 15 (u) = sin(γ -u) + sin(u) , (4.40) 
where u denotes the additive spectral parameter and q is parameterised by q = e iγ . At u = γ, one recovers, up to a scalar, t K .

We may also ask what kind of loop model one would obtain by the above procedure, for a general choice of local web fugacities x, y and z. The loop configurations are given by sets L c of cycle coverings of webs c embedded in H, i.e. c ∈ K. Hence the partition function reads

Z = l∈Lc | c∈K x N (yz) N V w(l) , (4.41) 
where w(l) denotes the weight of a loop configuration. In this general case, all contractible loops do not get the same weight, and hence w(l) does not take a simple form. Indeed, a given oriented loop picks a factor q 1 3 when turning left at a node that is not a vertex of the underlying web c, but a factor q -1 6 when the node is a vertex of c.

Phase diagram of the Kuperberg web model

In this section, we give an exposition of the phase diagram of the web model. A fruitful comparison can be made with the phase diagram of the O(N ) loop model (see Figure 2.9, with loop weight N = [START_REF] Alcaraz | Reaction-diffusion processes as physical realizations of hecke algebras[END_REF] q and bond fugacity x ≥ 0 recalled in 2.2.

The phase diagrams of the web model presented below have been obtained thanks to the numerical diagonalisation of the row-to-row transfer matrix. To be precise, the transfer matrix we have used in our numerical work is slightly different from the one depicted in Figure 4.3. It is given by a product of local transfer matrices and the seam operator (4.35), as depicted below for size L = 5:

It is an endomorphism of H ⊗L K . All numerical results are given thanks to this transfer matrix, or a modification thereof where the seam operator is changed (see Section 4.5).

There are two differences between this transfer matrix and the one described in Section 4.3.3 and depicted in Figure 4.3. First, we are now transfering between two rows of L vertical edges, rather than between two rows of 2L edges with alternating inclinations and . From a numerical perspective this has the advantage of considerably diminishing the dimension of the matrix, thus enabling us to study larger L than would be possible otherwise. It is clear that the two conventions construct the same lattice and hence are physically equivalent. It can be seen from the picture above that this transfer matrix will have the labels of the spaces drift towards the left (by one half lattice spacing per row), so its square is related to the product of the former transfer matrix with a shift operator. This will however not entail any modification for eigenvalues corresponding to the vanishing lattice momentum sector, the only one to be studied in this section. In this sector, the spectrum of the squared transfer matrix is included within that of the former matrix, and moreover it is not hard to see that their dominant eigenvalue (the one of largest norm) coincide. So, summarising, the change of transfer matrix makes the numerical work much more efficient, without modifying the physical quantities to be studied. In contrast, the transfer matrix depicted in Figure 4.3 is more conventional. In this case, there is no horizontal shift between incoming and outgoing states.

The effective central charge c eff provides a convenient means of investigating properties of the phase diagram and the corresponding RG flows. We first describe how c eff can be approximated using finite-size scaling. The free energy density for the model defined on a cylinder with a circumference of L hexagons is given by

f L = - 2 √ 3L log(Λ max ) , (4.42)
where the numerical prefactor is related to the geometry of the hexagonal lattice 5 , and Λ max denotes the real part of the dominant eigenvalue of the transfer matrix in a subspace of the spectrum. Indeed, to gain in efficiency we have restricted the transfer matrix to a specific sector of vanishing magnetisation (see Section 4.5), or more precisely, to the subspace of states having weight 0 with respect to the Cartan subalgebra symmetry. The free energy density has the finite-size scaling [START_REF] Affleck | Universal term in the free energy at a critical point and the conformal anomaly[END_REF][START_REF] Blöte | Conformal invariance, the central charge, and universal finite-size amplitudes at criticality[END_REF] 

f L = f ∞ - πc eff 6L 2 + o 1 L 2 , (4.43)
with f ∞ being the free energy in the thermodynamical limit. Hence, by diagonalising the transfer matrices for two consecutive sizes, L = 5 and L = 6, we can extract the two constants, f ∞ and c eff . The sizes are chosen in a compromise between being sufficiently close to the thermodynamical limit for the scaling behaviour to be visible, and yet being able to perform the required number of diagonalisations in a reasonable time. The dimension of the vacuum sector (of vanishing magnetisation, see Section 4.5) used here is 5881 for L = 6, and each of the phase diagrams presented in the following figures is based on computing f L for 22500 different parameter values. For the diagonalisation itself we employ the Arnoldi method for non-symmetric complex matrices, in combination with standard sparse matrix and hashing techniques.

In the following we set x = x 1 = x 2 and y = z, so that the web model is isotropic and invariant under the global reversal of orientations. We moreover restrict to non-negative parameters (x, y ≥ 0). We shall depict the phase diagrams in the ( √ x, y) plane, with √

x ∈ [0, 3] shown on the horizontal axis and y ∈ [0, 3] on the vertical axis of the figures. To sample the critical region (4.5) we focus on three different values of q, 5 The area swept by the transfer matrix is L viz. q = e iπ/5 , q = e iπ/4 and q = e iπ/3 . The corresponding weights of an oriented loop, [START_REF] Andrews | Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities[END_REF] q from (3.4a), are (1 + √ 5)/2 1.618, 1 and 0. We remark that on the horizontal axis, y = 0, vertices are suppressed and the web model is equivalent, at the level of partition functions, to the O(N ) loop model with a loop weight given by N = 2 [START_REF] Andrews | Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities[END_REF] q , since loops come with two orientations in the web model. The three values of q hence correspond to cases N > 2, N = 2 and N < 2, respectively.

With these conventions, the phase diagram obtained for the first case, q = e iπ/5 , can be inferred from the corresponding values of the effective central charge, shown as a contour plot in 2. To the right of a curve that resembles a hyperbola and extends from (0.7, 3.0) to (3.0, 0.5) approximately, c eff takes large negative values (dark red region).

3. In between those, c eff takes predominantly values between 0 and 1.5 (region with shades of blue).

To interpret these regions, we refer to results and experience gathered in the study of vertex models [START_REF] Baxter | Exactly Solved Models in Statistical Mechanics[END_REF]. Vertex models generally possess two types of non-critical regions. In the former, there is a finite correlation length, and using nevertheless the finite-size scaling form (4.43) one sees that c eff → 0 exponentially fast in L. This agrees with the first region identified above. In the latter, the system is frozen into long-range ("ferroelectric", in the context of the six-vertex model) order, and the orientational degrees of freedom are correlated throughout the system. In this case, the hypotheses leading to (4.43) are inapplicable and one observes large (positive or negative) values of c eff . This behaviour agrees with the second region identified above. Finally, the third region is the most interesting one, inside which the system exhibits critical behaviour characterised by an infinite bulk correlation length. We therefore discard the non-critical regions and focus on the third, critical region. Consider first the part that is not too close to the horizontal axis. We observe an almost vertical curve around √ x ≈ 0.7 with a central charge c eff ≈ 1.2. This curves takes the form of a "mountain ridge" in the landscape of c eff . A close-up of the ridge region, shown in Figure 4.5, gives better evidence for our estimate for the value of c eff and the claim that it is almost constant along the ridge. We identify this ridge as the dilute critical phase. Notice that in the loop model it was situated at x = x c in (2.110), that is, attained by adjusting one parameter. The situation in the web model is similar, except that we now have two parameters, x and y, at our disposal. Hence adjusting one parameter will leave us with a critical curve, instead of just a critical point. Moving along this curve corresponds to perturbing the fixed point theory by an irrelevant operator.

To the right of the dilute critical phase, and below the non-critical region 2, we observe a plateau with c eff ≈ 0.8. We identify this as the dense critical phase. As in the loop model, it is obtained by adjusting no parameter (within a given range), and therefore it here takes the form of a two-parameter critical surface. Displacements along this surface correspond to the perturbation by irrelevant operators.

To conclude the discussion of Figure 4.4 we now focus on the horizontal axis, y = 0. As already mentioned, along this line the web model is equivalent to a loop model with monomer fugacity x and loop weight N = 1 + √ 5 3.236 > 2. Rather interestingly, the O(N ) model on H can exhibit critical behaviour even though N > 2 [START_REF] Guo | Phase transition in the n > 2 honeycomb o(n) model[END_REF]. This comes about because N can flow to infinity under the RG, from any starting value N > 2, and provided x is adjusted accordingly the model hits the phase transition in the hard hexagon (HH) model [START_REF] Baxter | Hard hexagons: Exact solution[END_REF], which is known to be in the universality class of the critical three-state Potts model with c = 4 5 . The table of [START_REF] Guo | Phase transition in the n > 2 honeycomb o(n) model[END_REF] contains numerical estimates of the corresponding critical value, x = x HH , for selected values N ≥ 4. For N = 4, finite-size effects are found to be severe, even using sizes as large as L = 15 (thus far larger than L = 6 attained in our study of the web model), and the situation would be worse for the value N 3.236 of interest here. Fitting the values for x HH (N ) given in the table to a polynomial in 1/N , we can expect x HH ∼ 550. Despite the obvious difficulties of making numerical observations in this case, the conclusion is nevertheless clear: there should be point on the horizontal axis which is in the universality class of the HH model.

In addition to the identification of critical points, the contour plot of c eff also contains information about the RG flows. According to Zamolodchikov's c-theorem [START_REF] Zamolodchikov | Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory[END_REF], the RG fixed points correspond to saddle points of c eff , and away from those-under the assumption of reflexion positivity, or unitarity-the RG flows will be in the direction of decreasing c eff . This result is applicable even though c eff is here a finite-size approximation to the true c-function.

We now turn to our second value of q, namely q = e iπ/4 , which corresponds to [START_REF] Andrews | Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities[END_REF] q = 1. The phase diagram is shown in Figure 4.6. The structure is very similar to the preceeding case, with the two noncritical regions having similar characteristics. We again observe the presence of a dilute critical phase, this time with c eff ≈ 0.8. The corresponding fixed point can in fact be identified, in this particular case, with the "special point" (4.8a). corresponds here to the horizontal line y = 2 -1/4 0.841. The position of the critical The other fixed point of interest along the three-state Potts line, y = 2 -1/4 is situated at infinite temperature, i.e., J = 0 and x = 1. At this fixed point all the lattice sites are coloured independently with uniform probability, using the three colours. Although this is a trivial fixed point from the point of view of the spin degrees of freedom, it may cause the corresponding geometrical description in terms of domain walls to exhibit critical fluctuations (the infinite-temperature Ising model and site percolation are similarly related). We can infer from this that the point ( √ x, y) = (1, 2 -1/4 ) has central charge c = 0, and it is conceivable that this may in fact be the attractive fixed point controlling the dense critical phase. Indeed, the latter phase is seen to have c eff ≈ 0 from Figure 4.6.

Finally, on the horizontal axis y = 0, we observe a set of critical points with c eff ≈ 1. This can be explained by the corresponding loop model having loop weight N = 2. Indeed, for this loop model the dense and dilute fixed points coincide and are situated at x c = 2 -1/2 according to (2.110), whence √ x c = 2 -1/4 0.841. The corresponding central charge is c = 1 indeed. For y = 0 and x > x c the loop model remains in the dense phase with c = 1, and critical exponents that are independent of x [START_REF] Blöte | The phase diagram of the o(n) model[END_REF]. This c = 1 line is visible in figure 4.6. However, the numerical data seem to indicate that the c = 1 line terminates at a finite value of √

x, but since this is inconsistent with the analytical argument, it must be a finite-size artifact. By the c-theorem, the RG flows are orthogonal to the contour lines of constant c eff . This appears to be consistent with an RG flow from the c = 1 point at ( √ x c , 0) (0.841, 0) towards the dilute critical phase with c = 4 5 . For the third and last value of q, namely q = e iπ/3 corresponding to [START_REF] Andrews | Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities[END_REF] q = 0, the phase diagram is similar to the previous ones, with the presence of a dilute phase at c eff ≈ 0 and a dense phase at c eff ≈ -2. These values of the effective central charges that we have read from our numerical investigation are in fact exact. This will be shown thanks to a Coulomb Gas description of these phases in Section 4.6.

Finally, we have added a plot of the phase diagram for varying values of q = e iγ , in the range γ ∈ [0, π/3]. This diagram agrees with the previous ones in figures 4.4 and 4.6 for fixed values of q and y = 1. For γ ∈ [0, π/3], we can see both the dense and dilute phase. For γ > π/3, we could only see the dense plateau, as the effective central charge of the would-be dilute phase becomes negative, and hence does not lead to a discernable peak on the background of the equally negative dense plateau.

Electromagnetic operators in the U -q (sl 3 ) vertex model

In this section we define modified partition functions of the Kuperberg web model paralleling the discussion in 2.2.4. We denote them by Z e,m K in the cylinder geometry and respectively Z m K in the strip geometry. As in the loop models we interpret them as lattice precursors of two point functions of electromagnetic operators, to be discussed in the Coulomb Gas setting in Section 4.6. The scaling formulae

Z e,m K Z K ∼ e - √ 3πM
4L (he,m+ he,m) , (4.44a)

Z m K Z K ∼ e - √ 3πM 8L hm , (4.44b) 
valid for the cylinder and strip geometries respectively, then define conformal weights of electromagnetic excitations at critical points of the web model. The aim of this section is to elaborate on the definition of such electromagnetic partition functions and to provide their geometrical interpretation. For this reason, we shall sometimes refer to the modifications of the partition functions as the insertions of geometrical defects.

The strip geometry

Magnetic defects In the strip geometry, the row-to-row transfer matrix of the local formulation of the web model is symmetric under U -q (sl 3 ). Hence we define magnetic charges belonging to the weight lattice R * 3 of sl 3 . It is generated by two fundamental weights, w 1 and w 2 . By using the action of raising and lowering operators, it is enough to focus on magnetic charges inside the fundamental Weyl chamber, i.e, dominant weights where n 1 and n 2 are non-negative integers. We call a magnetic defect state of charge m a pure tensor state of weight m, such that sites labelled by 2i and 2i + 1 are not both occupied simultaneously, and there are exactly n 1 + n 2 occupied sites. Here is an example:

m = n 1 w 1 + n 2 w 2 , (4.45) 
|m = (|↑ ⊗ | ) ⊗n1 ⊗ (|↓ ⊗ | ) ⊗n2 ⊗ | ⊗2L-2n1-2n2 . (4.46)
To understand the choice of colours, recall that whatever the inclination of the link ( , or |), by the relations (4.26)-(4.28), |↑ has weight w 1 and |↓ has weight w 2 . In fact, for any magnetic defect, there are necessarily n 1 sites occupied by upward oriented red arrows, n 2 sites occupied by downward oriented green arrows, and no blue arrows. As in the loop model case, the occupied sites have to respect some dilution in order to avoid being mapped to zero by the transfer matrix. Therefore a state such as |↑ ⊗3 ⊗ | ⊗2L-3 is not a magnetic defect, according to the above definition.

Different choices for |m having a non-zero overlap with the transfer matrix eigenvector whose eigenvalue is the largest in norm are physically equivalent. Based on experience with the loop models we expect such a non-zero overlap to hold for any magnetic defect state. The partition function modified by the presence of the magnetic defect is

Z m K = m| T M K |m , (4.47) 
with T K defined in (4.33).

As in the loop models case, the next step is to rewrite Z m K in terms of coloured open web configurations. Assume c is an open web with 2(n 1 + n 2 ) univalent vertices such that the following holds for both bottom and top boundaries: c has n 1 (respectively n 2 ) upward (respectively downward) oriented edges incident on the univalent vertices. A three-colouring of such an open web c is a map from the edges of c into the set {red, blue, green}, such that all three colours are present around any trivalent vertex, and such that at every boundary side the n 1 (respectively n 2 ) upward (respectively downward) oriented edges incident on the univalent vertices are red (respectively green). Now, we can rewrite the partition function (4.47) in terms of the coloured open webs (i.e., via amplitudes of trajectories):

Z m K = c∈K m col w m col (c) , (4.48) 
where K m col denotes the set of subgraphs of H whose connected components are either open or closed threecoloured webs, such that webs cannot touch the bottom and top boundaries, except for open webs that have their univalent vertices at the occupied sites in |m with the colours and orientations inherited from |m . The weight of a coloured configuration w m col (c) is given by the local weights (4.13), in the case x 1 = x 2 = x (or by (4.14) in the general case). A sample configuration is shown in Figure 4.8 for m = w 1 . We remark that the equality between (4.47) and (4.48) follows straightforwardly from the construction of the transfer matrix T K which matrix elements are given by the expressions from (4.13)- (4.14).

Geometrical interpretation

We now give a geometrical interpretation of the magnetic partition functions defined in the last subsection. More precisely, we show how to define and evaluate a non-coloured open Kuperberg configuration (similar to the closed case, but with modified rules) such that we recover Z m K . We also describe how such configurations are geometrically constrained.

As for the loop model, define a cut as a smooth curve crossing the strip from left to right such that it avoids nodes and its projection onto the horizontal axis is injective (no overhangs). Some examples of cuts are depicted in Figure 2.11. A cut defines a Hilbert space that is the tensor product of the local Hilbert spaces of the links it crosses. The evolution operator between two disjoint cuts is a product of local transfer matrices. The row-to-row transfer matrix is a special case of such an evolution operator.

Denote by K m the set of webs embedded in H that are obtained from elements of K m col by forgetting their colourings. See 

Z m K = c∈K m w m (c) , (4.49) 
with

w m (c) = i w m col (c i ) . (4.50)
where the sum is over all three-colourings of c. We now wish to understand (4.49)-(4.50) without making reference to colourings. To this end, we first describe more closely what is the set K m . By analogy with the loop model case, we examine what the insertion of a defect of charge |m implies for the geometry of open webs. The Cartan weight is conserved between two cuts as evolution operators commute with the U -q (sl 3 ) action. Indeed, any given cut of a colored configuration gives a pure tensor state whose overlap with the evolution of the magnetic state is nonzero. States with different Cartan weights have no overlaps, hence the pure tensor state has Cartan weight m. It therefore must belong to a direct summand (in the Hilbert space) whose highest weight is higher or equal to m. This means that, on a given cut, the numbers p 1 and p 2 of bonds pointing upward and downward, respectively, satisfy

m p 1 w 1 + p 2 w 2 (4.51)
with respect to the partial ordering on weights. Equivalently, this can be written

2n 1 + n 2 ≤ 2p 1 + p 2 , with 2n 1 + n 2 ≡ 2p 1 + p 2 mod 3 , (4.52a 
)

n 1 + 2n 2 ≤ p 1 + 2p 2 , with n 1 + 2n 2 ≡ p 1 + 2p 2 mod 3 . (4.52b)
We define a minimal cut to be a cut such that the above constraints are satisfied as equalities. Now, consider the vector space generated by open webs embedded in the rectangle, up to boundary preserving isotopy, such that there are n 1 upward oriented edges and n 2 downward oriented edges connected to the bottom (respectively top) boundary. The ordering of these oriented edges can be different on either boundary. We then quotient this space by the Kuperberg relations (3.4) and by the rule that a web not satisfying the constraints (4.52) on any cut crossing the rectangle from left to right is set to zero. We call the quotient a space of magnetised webs of (magnetic) charge m = n 1 w 1 + n 2 w 2 . 6 For instance, the following web is a magnetised web of charge w 1 + w 2 : (4. [START_REF] Freyd | A new polynomial invariant of knots and links[END_REF] We conclude that the graphs appearing in K m are non-zero elements in the space of magnetised webs of charge m with the property that their oriented edges are arranged in the same order at the top and bottom boundaries (since the same magnetic defect is used as initial and final state).

We next describe how to compute the weight w m (c) for a given element c ∈ K m , without making reference to colourings. The bond and vertex fugacity part is obvious, so we omit this part of the weight from the following argument. We can reduce a magnetised web to a linear combination of magnetised webs containing strictly less edges by applying the set of relations (3.4). Remark that the use of the square rule (4.1c) can result in a linear combination containing a web that is not magnetised, which is then set to zero. Hence, we can also think of this reduction as using an extension of the set of rules (3.4) by

= or = (4.54)
where the right-hand sides are assumed to form parts of magnetised webs. A web resulting from the application of these rules that has a minimal number of edges is called irreducible. By [89, Thm. 6.1], the space of magnetised webs of charge m for any choice of orderings of the bond orientations in the initial and final states has the same dimension as the space Inv(V m ⊗ V * m ) of U -q (sl 3 ) invariants, where V m denotes the irreducible representation of highest weight m. This latter space is onedimensional. 7 Therefore, there exists an irreducible magnetised web c 0 corresponding to a given pair of initial and final states of charge m generating the whole space of magnetised webs. In particular, in the case of K m , one can choose c 0 as the web without vertices, i.e., the one where a collection of n 1 + n 2 disjoint edges (through-lines) connect the bottom boundary to the top boundary.

As we have seen, the space of magnetised webs is one-dimensional, thus any magnetised web is proportional to the irreducible web c 0 with a given proportionality factor. We define the magnetised Kuperberg weight w m K (c) of a magnetised web c to be this proportionality factor. Or, equivalently, the irreducible web c 0 is weighted by 1, and this weighting extends linearly to any magnetised web.

We are now equipped to demonstrate that the product of w m K (c) and local fugacities for bonds and vertices is equal to w m (c) from (4.50). Consider a configuration c ∈ K m of charge m = n 1 w 1 + n 2 w 2 . As was shown in Section 4.3.1, if a loop, a digon or square is present, summing over the weights of the three-colourings is equivalent to applying the rules (3.4) as long as there is no constraint on the colouring. In fact, only the square rule is sensitive to the colouring constraint. Indeed, a loop is disconnected from the boundary and all its colourings are therefore admissible; moreover, in the case (4.19) of the digon, even if the colours of the external edges are constrained, the admissible colourings of its internal edges always recover the original digon rule. For the case (4.20) of a square with external edges of the same colour, both diagrams on the right-hand side have zero weight on any cut, so they do not break the constraint (4.52). On the contrary, for the case (4.21) of a square with external edges of two different colours, only one diagram of the right-hand side of (4.1c) contributes. This happens exactly when decomposing the square would produce a web that breaks the constraint (4.52). We have thus shown that summing over all possible three-colourings is equivalent to the use of the additional rule (4.54).

We conclude that by summing over three-colourings of an open web, the local weights (4.17)-(4.18) recover the magnetised Kuperberg weight.

Remark 1 The use of the additional rule (4.54) does not occur if (n 1 , n 2 ) = (1, 0) or (n 1 , n 2 ) = (0, 1) as in the former case (the latter being similar) we have

2 ≤ 2p 1 + p 2 , with 2 ≡ 2p 1 + p 2 mod 3 , 1 ≤ p 1 + 2p 2 , with 1 ≡ p 1 + 2p 2 mod 3 (4.55)
on any cut. The use of the square rule on a given cut crossing (p 1 , p 2 ) edges implies p 1 > 0 and p 2 > 0. This implies

5 ≤ 2p 1 + p 2 , with 2 ≡ 2p 1 + p 2 mod 3 , 4 ≤ p 1 + 2p 2 , with 1 ≡ p 1 + 2p 2 mod 3 . (4.56)
Hence, a web resulting from the use of the square rule having (p 1 -1, p 2 -1) edges crossing the cut still satisfies (4.55). Indeed, we have

2 ≤ 2(p 1 -1) + (p 2 -1) , with 2 ≡ 2(p 1 -1) + (p 2 -1) mod 3 . 1 ≤ (p 1 -1) + 2(p 2 -1) , with 1 ≡ (p 1 -1) + 2(p 2 -1) mod 3 . (4.57) 
In other cases, there are in general webs such that the rule (4.54) has to be used in order to weight them.

The cylinder geometry

Magnetic defects

The discussion on magnetic defects in the strip geometry mostly applies to the cylinder case as well. The main difference is that it is not sufficient anymore to consider only dominant weights as magnetic charges. Indeed the evolution operators, such as the row-to-row transfer matrix, are no longer symmetric under the full quantum group. Yet, the symmetry with respect to the Cartan subalgebra still holds. This means that we can again define sectors for a given magnetic charge but it can be any weight of R * 3 . In general, two charges present in the same representation will describe inequivalent sectors. This can be seen by looking at the weight which a magnetic defect |m picks up when winding around the cylinder:

q 2(ρ,m) . (4.58) 
Then consider, for example, the first fundamental representation V 1 of U -q (sl 3 ). It contains three weight vectors of weights

h 1 = w 1 , (4.59a) h 2 = w 2 -w 1 , (4.59b) h 3 = -w 2 .
(4.59c)

These weights do not lead to the same winding phases: we have (ρ, h 1 ) = 1, whilst (ρ, h 2 ) = 0 and (ρ, h 3 ) = -1.

Let m ∈ R * 3 and denote by d(m) = n 1 w 1 + n 2 w 2 the unique dominant weight in the Weyl orbit of m. As in the strip geometry, we define a magnetic defect state |m of charge m to be a pure tensor state of weight m, such that two sites labelled by 2i and 2i + 1 cannot be occupied simultaneously, and such that there are exactly n 1 + n 2 occupied sites. There are necessarily n 1 sites occupied by equally coloured upward arrows, and n 2 sites occupied by equally coloured downward arrows, with the two colours being different. In fact, the only difference with the strip geometry resides in the possible colours of the occupied sites in |m . For instance, the following is a magnetic defect:

|m = (|↑ ⊗ | ) ⊗n1 ⊗ (|↓ ⊗ | ) ⊗n2 ⊗ | ⊗2L-2n1-2n2 , (4.60) 
where arrows are coloured in some way that depends on the Weyl chamber to which m belongs. There are six different choices of pairs of colours corresponding to the six Weyl chambers of sl 3 . As the state |d(m) is highest-weight, using our standard convention we write

|d(m) = (|↑ ⊗ | ) ⊗n1 ⊗ (|↓ ⊗ | ) ⊗n2 ⊗ | ⊗2L-2n1-2n2 . (4.61) 
Denote by s 1 (respectively s 2 ) the Weyl reflection with respect to the hyperplane orthogonal to α 1 (respectively α 2 ). Let w be an element of the Weyl group mapping d(m) to m; it can be written as a product of the generators s 1 and s 2 . Applying s 1 corresponds to swapping red and blue, whereas applying s 2 corresponds to swapping blue and green. This procedure determines the choice of colours in (4.60). For instance, we have that d(h 2 ) = w 1 and h 2 = s 1 (w 1 ), so

|w 1 = (|↑ ⊗ | ) ⊗ | ⊗2L-2 (4.62) 
gives

|h 2 = (|↑ ⊗ | ) ⊗ | ⊗2L-2 . ( 4.63) 
The partition function modified by the insertion of the magnetic defect is then

Z 0,m K = m| T M K |m , (4.64) 
where T K is defined in (4.36).

Electric charges

We define electric charges as vectors in the space C 2 generated by the basis of fundamental weights. We then define a modified seam line operator

S e K = e -2iπ
[(e-e0,w1)H1+(e-e0,w2)H2] .

The transfer matrix is then given by

T e K = L-1 k=0 t K 2k+1 L-1 k=1 t K 2k S e K t K 2L (S e K ) -1 , (4.66) 
leading to the partition function

Z e,0 K = (T e K ) M . (4.67) 
Finally, one can combine magnetic defects and electric charges to define modified partition functions

Z e,m K = m| (T e K ) M |m . (4.68) 
Analogously to the strip geometry, define an open Kuperberg web on a cylinder to be a planar oriented bipartite graph with trivalent and univalent vertices such that the univalent vertices are only at the top and bottom boundaries of the cylinder. Assume c is an open web on a cylinder with 2(n 1 + n 2 ) univalent vertices such that the following holds for both bottom and top boundaries: c has n 1 (respectively n 2 ) upward (respectively downward) oriented edges incident on the univalent vertices. A three-colouring of such an open web c is a map from the edges of c into the set {red, blue, green}, such that all three colours are present around any trivalent vertex, and such that at every boundary side all the upward oriented edges are of a colour c 1 while the downward oriented ones are of a colour c 2 such that c 1 = c 2 .

Denote by K m col , the set of subgraphs of H whose connected components are either open or closed coloured webs on a cylinder, such that webs cannot touch the bottom and top boundaries, except for open webs that touch the bottom and top boundaries at their end points corresponding to the occupied sites in |m , and with the inherited colours8 . We use the same notation as in the strip geometry case, although it is clear that the two sets are different. We then have that An example of configuration is given in Figure 4.9. The weight of a coloured configuration w e,m col (c) is given by the local weights (4.13) and the modified weights for crossing the seam line = e -2iπ(e-e0,h1) , = e -2iπ(e-e0,h2) , = e -2iπ(e-e0,h3) , = e 2iπ(e-e0,h1) , = e 2iπ(e-e0,h2) , = e 2iπ(e-e0,h3) , (

= 1 , where we have used the weight vectors (4.59).

Geometrical interpretation

We now give a geometrical interpretation of electromagnetic partition functions. Denote by K m the set of webs embedded in H obtained from elements of K m col by forgetting their colours. See 

where we defined

w e,m (c) = i w e,m col (c i ) . (4.72) 
Remark that, as in the strip geometry, a magnetic defect of charge m implies a constraint on the geometry of webs. We write the corresponding dominant weight as d(m) = n 1 w 1 + n 2 w 2 . If we denote again by p 1 (respectively p 2 ), the number of bonds pointing upward (respectively downward) on a given cut, we must have the constraint (4.51) applied to the dominant weight:

d(m) p 1 w 1 + p 2 w 2 (4.73)
This is again due to the Cartan subalgebra symmetry which implies that m, hence d(m), must be among the weights of the tensor product representation with p 1 factors V 1 and p 2 factors V 2 that are present on the given cut. Any magnetic defect configuration c ∈ K m of charge m satisfies the above constraint on any cut.

The weight w e,m (c) is a product of local fugacities as well as a part given by (4.17)-(4.18) and (4.70). We now discuss this part of the weight that we name the electromagnetic Kuperberg weight (or Kuperberg weight for short) w e,m K (c) of a web c. Firstly, we can ask what is the Kuperberg weight of non-contractible webs when no magnetic defect is present. For simplicity, consider the case of a single non-contractible loop separating the pair of charges ee 0 and -e + e 0 . It will be weighted by e 2iπ(e0-e,h1) + e 2iπ(e0-e,h2) + e 2iπ(e0-e,h3) , (

as it gets a contribution from a red, a blue and a green edge, all oriented the same way crossing the seam line, corresponding to the three weights (4.59) of the fundamental representation. For a charge parallel to the Weyl vector, e 0 -e = µ π ρ, this gives [START_REF] Andrews | Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities[END_REF] t with the parametrisation t = e iµ . One can show [START_REF] Kuperberg | Spiders for rank 2 lie algebras[END_REF] that any connected component of a planar web that is not simply a loop contains a face that is either a digon or a square. In the absence of any electric charges, the strategy to obtain its weight is then to apply the second and third rules of (3.4) to reduce the connected component, until a loop is obtained, which can finally be replaced by its respective weight. But for the system modified by a pair of electric charges, we must be more careful. The cylinder geometry can be represented as an annulus, so the web is still a planar graph. However, we cannot immediately apply the reductions of the second and third rules of (3.4) in case the corresponding face is the internal or external face of the annulus, the ones where the electric charges are situated. Fortunately one can show that if a connected closed web is not a loop, it contains a face different from the internal or external ones that is either a digon or a square. 9 So the reduction to a loop is still possible. This loop is finally replaced by the weight [START_REF] Andrews | Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities[END_REF] q if it is contractible (i.e., homotopic to a point), or by the weight (4.74) if it is non-contractible (i.e., it wraps around the cylinder).

We next discuss the electromagnetic Kuperberg weight of open webs in the presence of a defect with charges e and m = 0. As in the strip geometry, we can obtain the Kuperberg weight of a given web by reducing it thanks to the rules (3.4) and (4.54). We then obtain a linear combination of webs that are irreducible, i.e., that do not contain loops, digons or squares. The Kuperberg weight of the original web is then obtained by weighting the irreducible webs. We will thus focus on such webs by characterising them in terms of elementary blocks and giving the Kuperberg weight of each block. Let d(m) = n 1 w 1 + n 2 w 2 , and consider an irreducible open web c. It is clear that c is connected and connects the bottom and top boundary. On the cylinder we can always decompose c into a number j of cylindrical blocks, shown here as grey ribbons 9 Proof: A connected web that is not a loop always contains at least 3 faces surrounded by 4 or less vertices. Indeed, suppose this is not the case for a given web c satisfying the precedent conditions. Denote by F , E and V , the number of faces, edges and vertices of c. By the hand-shake lemma, one has 2E = 3V . The graph being also planar, the Euler relation gives

F -E + V = F -1 2 V = 2.
Because at least F -2 faces are surrounded by 6 or more vertices, one has 3V ≥ 6(F -2) + R, where R is the number of vertices surrounding the two other faces. One has R ≥ 4 implying 3V ≥ 6(F -2) + 4 = 6F -8. This gives 8 ≥ 6(F -1 2 V ) = 12, a contradiction.
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for the case j = 3. Blocks are connected to each other and to the top and bottom boundary by n 1 upward oriented edges and n 2 downward oriented edges, ordered arbitrarily, except for the top-most and bottommost edges which must follow the order imposed by |m . Hence, each block is separated from the others by a minimal cut. Of course, such a block decomposition is not unique, however, the overall weight (as we describe below) does not depend on a choice of decomposition. We now define three classes of blocks and give their contribution to the Kuperberg weight of the whole web. Firstly, a block of type A is constituted by an edge winding once around the cylinder. This gives a weight that depends on the electric charge and the colour and orientation of the edge10 . This weight is e 2iπ(e0-e,w) (

for a coloured edge carrying a weight w winding from left to right (this weight is one of the weights from the fundamental or its dual representation of U -q (sl 3 ), depending on the orientation of the edge) and e -2iπ(e0-e,w) (

for an edge winding from right to left.

The second class of blocks, called type B, is constituted by webs that do not wrap or wind around the cylinder. That is, webs that can be bounded by a rectangle. In Section 4.5.1, we have seen that the space of such magnetised webs of charge m bounded by a rectangle is of dimension 1.11 . We will call H-web any web comprised of a number of vertical strands oriented in some way, to the left and to the right of the H-shaped web (4.53), or this H-shaped web with its arrows reversed. It is clear that an H-web is irreducible. In fact, it is shown in Appendix B.1 that for any choice of orientations of edges incident on univalent vertices of a magnetised web in a rectangle, there exists an irreducible one that is a concatenation of H-webs 12 . One can see that such a web admits a unique colouring (recall our definition of three-colourings). Indeed, the colours of the top-most and bottom-most edges of any H-shaped web are fixed by the Weyl chamber of the charge m. For instance, for a charge in the fundamental Weyl chamber, one obtains H-shaped webs coloured as or a vertical reflection thereof. By (4.18), the contributions of the two vertices of a given H-shaped web compensate to give a weight 1. Hence, the weight of a block of type B is 1.

The third class of blocks, of type C, is constituted by webs that wrap around the cylinder the following way. A block of type C is made of n 1 + n 2 edges connected to the bottom boundary of the block and n 1 + n 2 edges connected to the top boundary of the block such that all of these edges are connected to a wrapping cycle of edges that we denote by L. Here is an example with n 1 + n 2 = 2: (4.76)

In this example, the cycle L is made of 4 edges. We note that the situation here has no analogue in the loop models where the non-zero defect sectors have no wrapping structures.

In Appendix B.2, we show that given a colour for the upward oriented edges connected to the boundaries and a different one for the downward oriented ones, there are 2 possible colourings for the cycle L when n 1 = 0 or n 2 = 0, and only 1 possible colouring for L otherwise. The sum over the possible colourings of the weights of the coloured webs gives the contribution of the type C block to the Kuperberg weight of the whole open web.

In more details, consider the case when both n 1 and n 2 are non-zero and there is only one colouring. For instance: (4. [START_REF] Jones | Index for subfactors[END_REF] One can see that the set of vertices can be partitioned into pairs, such that the weights of the two vertices of a given pair compensate each other (using (4.18)). Thus, the weight of the web solely depends on the colour and orientation of the edge crossing the seam line. This weight is e 2iπ(e0-e,w) (

for a coloured edge carrying a weight w going from left to right and e -2iπ(e0-e,w) (

for an edge going from right to left. In our example, it is given by e 2iπ(e0-e,h2) . (

When n 2 = 0, the case of n 1 = 0 being similar, there are two possible colourings for the edges constituting L and the weight is the sum of these two contributions. For instance: + Figure 4.10: A height configuration defined with respect to a colored webs configuration.

Again, one can see that vertices come in pairs that compensate. Hence the weight is again given by the edge crossing the seam line. This edge crosses the seam line in the same direction in both cases and it is coloured with the two colours that are different from the unique colour of the top-most and bottom-most edges. When these are blue, as in our example, the non-contractible cycle of edges contributes to the Kuperberg weight by a factor e 2iπ(e0-e,h1) + e 2iπ(e0-e,h3) .

(4.80)

It is not hard to see what is the weight for other colours of bottom-most and top-most edges. In Appendix B.3, we show that any irreducible web is a concatenation of blocks of type A, B and C.

We now examine the set of open webs which do not get any non-trivial weight when one of the bottommost or top-most edges are winding around the cylinder. This constitutes the analogue of watermelon operators present in the loop model. There are two ways to get a trivial weight when an edge winds around the cylinder. Either, we tune the electric charge to get a vanishing total charge as in the loop model, i.e., we set e = e 0 . In this case, we see that wrapping webs get a weight 1 (respectively 2) for each type C block when both n 1 and n 2 are non-zero (respectively n 1 = 0 or n 2 = 0). Or we can consider defects coloured by a weight orthogonal to the electric charge. For instance, consider a total electric charge e 0 -e = µ 2π ρ parallel to the Weyl vector. Then, magnetic defects of charge nh 2 , with n = 0, suit the condition because (ρ, h 2 ) = 0. In this case, by (4.80) a type C block then has a weight n e = e 2iπ(e0-e,h1) + e 2iπ(e0-e,h3) = [2] t , (

where t = e iµ .

Coulomb Gas description of the critical phases

We will now describe a Coulomb Gas description of the dense and dilute critical phases of the Kuperberg web model. We first map the vertex model to a height model and then make an ansatz for the action describing the fluctuations of the height function.

Mapping to a height model

Consider a colored web configuration c ∈ K col . We now define a height function z from plaquettes of H, i.e. vertices of the dual lattice H * , into the weight lattice of sl 3 , R * 3 (the root lattice being denoted by R 3 ). R * 3 is generated by the two fundamental weights w 1 and w 2 . The weights of the fundamental representation of highest weight w 1 are denoted by The values of z are prescribed by c. Height differences between neighbouring plaquettes are equal to 2πh 1 (respectively -2πh 1 ) when crossing a red bond that is oriented from left to right (respectively from right to left), 2πh 2 (respectively -2πh 2 ) when crossing a blue bond that is oriented from left to right (respectively from right to left), 2πh 3 (respectively -2πh 3 ) when crossing a green bond that is oriented from left to right (respectively from right to left). Finally crossing an empty link does not change the value of the height (see Figure 4.10). This mapping is well defined as h 1 + h 2 + h 3 = 0. The mapping is one to one up to a choice of z at some fixed point.

h 1 = w 1 h 2 = w 2 -w 1 (4.82) h 3 = -w 2 → → → →

Continuum limit of critical phases

We will now give a heuristic argument to determine the action describing the fluctuations of a coarse grained height φ at criticality. The dense phase of the model is attractive whereas the dilute one is repulsive, it is thus sensible to look for a description of fluctuations around dense configurations. We will thus begin by considering the x → +∞ limit of the web model. This is the FPL limit described in Section 4.3.4. A Coulomb gas action is known for the FPL [START_REF] Dupic | The fully packed loop model as a non-rational w 3 conformal field theory[END_REF][START_REF] Kondev | Operator spectrum and exact exponents of the fully packed loop model[END_REF] and the arguments given here are inspired by the latter.

In the FPL limit, the configurations in K col are colored webs that completely cover the lattice H. Consider loops made of bonds coloured alternatively with two given colours, red and green for instance. The smallest change of the configuration involving these bonds is to exchange the two colours forming the loop (for instance, red-green-red-... to green-red-green-...). The configurations that maximize the number of such loops are called ideal states. They are characterized by the colours and orientations of bonds around a Y-shaped vertex, all of them being the same. There are 12 such states given the 6 permutations of the set of three colours and the two possible orientations. Fixing the orientations of the bonds, one can transform an ideal state to another by local lattice moves permuting two given colours on all loops formed by the bonds coloured by those. When composing such transformations it is possible to come back to the original ideal state. With respect to such a composition of transformations, a height configuration associated with an ideal state will be mapped to the same one modulo a global shift taking values in the rescaled root lattice 2πR 3 (see figure 4.11 for an example). Hence, we must identify coarse-grained field configurations as

φ ≡ φ + 2πR 3 (4.83)
Then we make the following ansatz for the action describing the fluctuations of φ is one of a two component boson

S = 1 8π d 2 x |η| [g∂ µ φ • ∂ µ φ + 2iR(x)e 0 • φ(x) + V (φ)] (4.84) 
where η µν denotes the metric of the genus zero Riemann surface considered, R(x) is the scalar curvature and V (φ + 2πR 3 ) = V (φ). The scalar product • is inheritated from ( , ). Now if we consider the geometry of the cylinder, the curvature is concentrated at infinities and because d 2 x |η|R(x) = 8π, the action becomes :

S = 1 8π d 2 x g∂ µ φ • ∂ µ φ + V (φ) + ie 0 • (φ(+∞) + φ(-∞)) (4.85) 
To write the partition function, charge neutrality requires the introduction of a neutralizing charge 2e 0 at some reference point taken to be +∞ :

Z = [Dφ] e -1 8π ( d 2 x g∂µφ•∂ µ φ+V (φ))+ie0•(φ(+∞)-φ(-∞)) (4.86) 
The value of e 0 is determined by (4.22). Indeed a difference ∆φ = φ(+∞) -φ(-∞) gives a weight

e 2iγρ• ∆φ 2π (4.87) 
where e iγ = q. Hence we can identify

e 0 = γ π ρ (4.88)
Consider the composition of tranformations between ideal states described in figure 4.11. One can see that one gets back the same state up to rotations and translations of the lattice after three transformations under which the height is shifted by 2πw 2 . In general, the height is shifted by 2π times a weight vector in R *

3 . Hence we have in fact a more constraining periodicity condition for V (φ), that is

V (φ + 2πR * 3 ) = V (φ) (4.89) 
We can thus expand V (φ) as

V (φ) = α3∈R w α e iα•φ (4.90) 
and by duality we have the constraint

w α = w ᾱ (4.91)
where ᾱ denotes the reflection of α with respect to the line generated by ρ. Now, we must only keep marginal terms in the expansion of V (φ). This will determine the coupling constant. The most relevant terms in the expansion are given by the simple roots, the next relevant terms are given by their opposites. We will see that these two cases correspond to the dense and dilute phases respectively.

The central charge is of the model is that of a free (two components) bosonic field coupled to curvature

c = 2 - 24 g γ π 2 (4.92) 
Vertex operators V α =: e iα•φ : have conformal dimensions :

h α = hα = 1 2g [(α -e 0 ) 2 -e 2 0 ] (4.93) 
In addition, the field can wind around the cylinder cycle with a magnetic charge m ∈ R :

φ = φ + 2πm L x (4.94)
where x is the coordinate of the compact direction and L is the circumference of the cylinder. On a finite cylinder of height T , this configuration would pick an additional factor e -2πT 4L m 2 corresponding to a magnetic operator conformal dimensions h = h = g 8 m 2 .

Combined together, electromagnetic operators O e,m have conformal dimensions :

h e,m = 1 2g (e -e 0 + g 2 m) 2 - 1 2g e 2 0 (4.95) he,m = 1 2g (e -e 0 - g 2 m) 2 - 1 2g e 2 0 (4.96) 
If w α1 = 0 in (4.90), then O α1,0 is the most relevant operator and asking for it to be marginal, we obtain

∆ α1,0 = 1 g α 1 • (α 1 -2e 0 ) (4.97) = 2 g (1 - γ π ) = 2 (4.98) implying g = 1 - γ π (4.99) c = 2 -24 (1 -g) 2 g (4.100)
This corresponds to the dense phase. As a check, the free coloring model is obtained in the web model at γ = π 4 giving c = 0 as expected. If w α1 = 0 in (4.90), then O -α1,0 is the most relevant operator and asking for it to be marginal, we obtain

∆ -α1,0 = 1 g α 1 • (α 1 + 2e 0 ) (4.101) = 2 g (1 + γ π ) = 2 (4.102) implying g = 1 + γ π (4.103) c = 2 -24 (g -1) 2 g (4.104)
This corresponds to the dilute phase. As a check, the 3 states Potts model is obtained in the web model at γ = π 4 giving c = 4 5 as expected. In general, the Coulomb Gas (4.86) reproduces well the numerically obtained phase diagram 4.7 and electromagnetic critical exponents for both the dense and dilute phases.

Geometrical applications

In this section we discuss the geometrical applications of the study of the Kuperberg models focusing on two values of q, q = e i π 4 corresponding to the 3 states Potts models and q = e i π 3 where the Kuperberg weight of any web vanishes. First, remark that the study of the phase diagram strongly indicates that the infinite temperature limit of the 3 states Potts models possess a non trivial critical behaviour. We now discuss the interesting geometrical exponents that we have been able to identify. Contrarily to the loop-model case, the insertion of a magnetic defect does not only constrain the geometry of configurations but also modifies the weight of the open web containing the defect, due to the rule (4.54) additional to the standard Kuperberg rules. This, in general, prevents us from relating electromagnetic partition function to indicator two-point functions of the web model in the plane (or half-plane). Thus, the electromagnetic operators do not reach most of the interesting indicator two-point functions in the context of interfaces of the three-states Potts model. The point q = e i π 3 is an exception where it is possible to compute the fractal dimension. 

q = e i π 4 , (4.105a) 
y = z = 2 -1 4 . (4.105b)
At this point, the topological weight of any configuration was shown to be 1 and the Kuperberg web model partition function is then simply

Z K = c∈K x N1 1 x N2 2 . (4.106)
This equals, up to an overall factor, the partition function of the Z 3 spin model written thanks to its low-temperature expansion.

We now exhibit another mapping between (4.106) and the partition function of a three-state Potts model, this time defined on H itself. This mapping results from a high-temperature expansion of the latter and is detailed in Section 4.7.1. The equality of two partition functions of the model defined on dual lattices constitutes an example of duality [START_REF] Mittag | Dual Transformations in Many-Component Ising Models[END_REF].

We will then consider the possible connections between geometrical defects of the web models and observables of the three-state Potts model in either its low-or high-temperature expansion.

Relation with a Z 3 spin model via high-temperature expansion We now formulate an equivalence with a Z 3 spin model on the same lattice H using a high temperature expansion. Consider spins in the set of third roots of unity {1, e 2πi/3 , e 4πi/3 }. The group Z 3 ∼ = {1, e 2πi/3 , e 4πi/3 } acts on a given spin by left multiplication. The global symmetry is given by acting the same way on every spin. Denote by ij a pair of adjacent nodes in H, such that j is situated higher than i. This is well defined given our convention on the orientation of H. The model is defined by its nearest-neighbour Boltzmann weights W (σ i , σ j ) associated to a pair of spins σ i and σ j linked by (ij) ∈ ij . The most general Z 3 -symmetric local Boltzmann weight can be written as (up to an overall scalar)

W (σ i , σ j ) = 1 + x 1 σ i σj + x 2 σi σ j , (4.107) 
where the bar denotes complex conjugation. The partition function of the spin model then reads

Z spin = σ∈S <ij> W (σ i , σ j ) = σ∈S <ij> (1 + x 1 σ i σj + x 2 σi σ j ) , (4.108) 
where S denotes the set of spin configurations. The high-temperature expansion consists in developing the product ij (1 + x 1 σ i σj + x 2 σi σ j ) and pictorially represent the term associated to a link (ij). The product of these terms will then be represented by a subgraph G of H. If the summand 1 is chosen, then the link (ij) is empty, i.e., it is not part of G. If the summand x 1 σ i σj is chosen, then (ij) is part of G and oriented upward. If the summand x 2 σi σ j is chosen, then (ij) is part of G and oriented downward.

When the sum over all spin configurations is done, some subgraphs G give no contribution. Indeed any term associated to a graph G that contains a factor σ i or σi for a given node i will give 0 when the the sum over σ i is applied. Hence, one can see that the only surviving graphs are closed Kuperberg webs. We can thus rewrite the partition function as

Z spin = G∈K x N1 1 x N2 2 , (4.109) 
which is exactly (4.106).

Consider now a general correlation functions in the spin model,

σ k1 i1 σ k2 i2 • • • σ kp ip = 1 Z spin σ∈S σ k1 i1 σ k2 i2 • • • σ kp ip <ij> W (σ i , σ j ) , (4.110) 
where k j ∈ {1, 2} and i j denotes a node of H. Denote the data of spin insertions by Γ = {(i j , k j ), j ∈ 1, p }. The global Z 3 symmetry ensures that non-zero correlators satisfy j k j ≡ 0 mod 3 . 

σ k1 i1 σ k2 i2 • • • σ kp ip = 1 Z K G∈KΓ x N1 1 x N2 2 . (4.112)
Consider in particular the spin two-point function σ i σj , with one operator inserted at a node i situated at the bottom boundary of the cylinder (or the strip), and the other one inserted at a node j situated at the top boundary of the cylinder (or the strip). In terms of webs, the correlation reads

σ i σj = 1 Z K G∈Kσ x N1 1 x N2 2 , (4.113) 
where K σ denotes the webs present in the high-temperature expansion. Here K σ can be partitioned into 2 sets,

K σ = K 1 ∪ K 2 , (4.114) 
where K 1 is the set of open webs with one edge incident on the node i and one edge incident on the node j. K 2 is the set of open webs with more edges incident on the nodes i or j. Nevertheless, remark that in all cases, on any cut, the edges satisfy the constraint (4.52) with n 1 = 1 and n 2 = 0. The correlation functions have the following scaling form σ i σj ∼ e Relations with geometrical defects of the Kuperberg web model It is apparent from the last subsection that spin-spin correlators in both the strip and cylinder geometry are related to geometrical defects in the vertex formulation. Indeed, the set K 1 denotes precisely the set of webs given by the insertion of a geometrical defect of charge m with d(m) = w 1 . The other set K 2 is not directly related to a geometrical defect. However since they all satisfy the same geometrical constraint, we expect that they contribute to the same sector in the continuum limit.

In order to relate the spin-spin correlation to a geometrical defect, we must ensure that all the open webs involved in the partition function have a topological weight 1. Recall that the topological weight is given by the product of the Kuperberg weight (4.18) and the vertices fugacities, y and z.

In the strip geometry, we have seen that when a geometrical defect of charge w 1 is present, one does not need the additional rule (4.54). Hence, the trick of Section 4.2 can be applied to see that all open webs have topological weight 1. Thus, in the strip geometry

h σ = h w1 . (4.116)
Remark also that, in the low-temperature expansion point of view, the same operator can be viewed as a boundary condition changing operator that takes a fixed boundary condition to another.

In the cylinder geometry, consider a geometrical defect of charge h 2 and an electric charge such that The values are obtained thanks to a numerical diagonalisation of the row-to-row transfer matrix for two consecutive sizes, L and L + 1. The extrapolation to the thermodynamical limit is obtained by fitting the finite-L values to a second-order polynomial in 1/L. It matches the exact value h σ + hσ = 2/15 0.13333 rather precisely.

n e = √ 2 . ( 4 
Remark finally that the presence of the modified rule (4.54) impedes the use of the argument of Section 4.2 to give a weight 1 to all open webs for a defect with (n 1 , n 2 ) / ∈ {(1, 0), (0, 1)}. Hence the insertion of such a defect will not only constrain the webs present in the configuration space of the modified partition function but also give them a weight that is different from the one they would get in the unconstrained partition function. This seems to prevent us from finding simple geometrical observables in the three-state Potts model related to some connected subsets of interfaces as was studied, for instance, in [START_REF] Gamsa | Schramm-Loewner evolution in the three-state Potts model-a numerical study[END_REF]. 4.7.2 Geometrical defect in the q = e i π 3 model

We now discuss another application of the web models, concerning the points of parameter space satisfying q = e i π 3 . (4.119)

These points are the higher-rank analogues of dense and dilute polymers in the O(N ) loop model case. In the case, we have [START_REF] Alcaraz | Reaction-diffusion processes as physical realizations of hecke algebras[END_REF] q = 1 and [3] q = 0. This implies that any non-empty web c gets a vanishing Kuperberg weight w K (c) = 0, since, at the very least, one of its components picks up one factor of [START_REF] Andrews | Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities[END_REF] q when it has been reduced to a loop by application of (3.4). The partition function is then equal to 1 as only the empty web configuration contributes. However, a non-trivial model can be obtained by defining the following renormalised partition function

Z = lim [3]q→0 1 [3] q (Z K -1) . (4.120) 
In this model, only connected webs get a non-trivial weight (we call a web connected when it consists of only one connected component). Indeed, the Kuperberg weight of a general web can be computed by using the rules

= (4.121a) = + (4.121b)
to reduce the web to a collection of loops, giving weight 1 if there is only one loop or 0 if there are more.

We can look at the weighting procedure differently. First, digons can be removed whenever they appear without introducing any weight. Secondly, when applying the square rule, if a resulting web has more than one connected component, set it to 0. In this case, we can rephrase it by invoking modified rules

= or = (4.122)
where the right-hand sides are assumed to form parts of a one-component web. Observe the similarity with (4.54), however, the difference here is that we consider only closed webs. From this procedure it is clear that the weight of a connected web is always a positive integer. For instance, the "cube" gets weight 2:

Moreover any positive integer k is the weight of some web. For instance, it can be showed by induction that the following web has weight k:

where the dots represent k -3 pairs of vertical edges with opposite orientation (in addition to the three pairs explicitly drawn). Consider now the insertion of a defect of magnetic charge ρ = w 1 + w 2 (i.e., n 1 = n 2 = 1) and a vanishing total electric charge, e 0 -e = 0. Here, we define the electromagnetic partition functions as before via (4.71). This means that if there is a web component disconnected from the defect, the weight of the configuration is 0. In addition, one can see from (4.52) with n 1 = n 2 = 1 that the modified square rules (4.54) are used exactly when two opposite sides of a square are cut by a minimal cut. This means that they are used whenever the original square rule would produce an open web having two connected components, one connected to the bottom boundary and one to the top boundary. Moreover, there are no non-trivial winding weights when the total electric charge vanishes, and the weight of a wrapping web (4.79) is 1 as well. Finally, wrapping webs as in (4.77) are weighted by 1.

Hence, we can summarise the procedure for computing the Kuperberg weight of an open web in our setting. One can remove any digon or wrapping web, and use the original square rule whenever the resulting webs are connected. Otherwise, one uses the modified square rules (4.54) and (4.122). When a web cannot be reduced further by these rules, its weight is 1. Since (4.54) and (4.122) apply in the same case, that is, when a web or a defect could produce two connected components by application of the original square rule, we expect the defect considered above to be related to a two-point function indicating whether two points are both on the single connected closed web of the configuration.

More precisely, consider the Kuperberg web model for q = e i π 3 in the plane geometry. Define the twopoint correlation function O(a, b), with respect to Z in (4.120), of the indicator function I(a, b) that takes the value 1 whenever the two points a and b are on the same connected web, and 0 otherwise. That is,

O(a, b) = lim [3]q→0 1 [3]q c∈K I(a, b) x N1 1 x N2 2 (yz) N V w K (c) Z , (4.123) 
where w K (c) is defined in Section 4.3. At criticality, denote by (h, h) the lowest conformal weights of the operators involved in the correlation function O(a, b). By analogy with the loop model case, we expect the transfer matrix (4.36) to contain information on the continuum limit of the model defined by (4.120) through the finite size scaling of its eigenvalues. Indeed, observe that the numerically estimated effective central charge in the dense phase is not 0 (see the dense phase discussion at q = e iπ/3 in Section 4.4) as would have been the case for the non-renormalised partition function (4.2) which is equal to 1.

In the continuum, by mapping conformally the plane to the cylinder, with a and b mapped to the bottom and top of the cylinder, we can look at configurations contributing to the numerator of (4.123) as connected open webs running along the cylinder. These are exactly the ones considered above and we can conjecture that the conformal weights (h, h) are determined by the asymptotic equivalent (in the limit when M/L 1) of Other web models

Z e,ρ
In this chapter, we give the definition of web models based on spiders other than A 1 and A 2 spiders. Their definitions are motivated by their relations to spin cluster interfaces. We also give their local transfer matrices.

5.1

The G 2 web models

Definition of the models

We define the G 2 web models on a hexagonal lattice H embedded in the strip or the cylinder. To fix vocabulary as in Section 4.1, we say that H is comprised of nodes and links. Configurations are given by closed simple G 2 webs embedded in H. We will denote the configuration space by K. We talk about bonds for links of H covered by an edge of a web and we call vertex, a node that is covered by a vertex of G. We assign fugacities x to bonds and fugacities y to vertices. To any closed simple web is assigned its Kuperberg weight given by the reduction rules (3.26). The product of the local fugacities and the non local weight given by the Kuperberg weight defines the Boltzmann weight of a configuration. The partition function then reads :

Z G2 = G∈K x N y M w K (G) (5.1)
where N is the number of bonds and M is the number of of vertices appearing in a given configuration.

Figure 5.1: Left panel: A configuration on H of weight -x 35 y 2 (q 6 + q 4 + q 2 + q -2 + q -4 + q -6 )(q 10 + q 8 + q 2 + 1 + q -2 + q -8 + q -10 ) 2 . Right panel: The same configuration drawn as a web. 

Relation with the Z 3 spin model

Consider the lattice dual to H embedded in the strip (respectively the cylinder), that is, a triangular lattice T with one (respectively two) point at infinity. We can formulate a Z 3 spin model defined on T in terms of its domain walls. Consider spins {σ i , i ∈ T} taking values in Z 3 ∼ = {1, 2, 3}. We define nearest neighbours interactions W (σ i , σ j ) = x |σi-σj | for two neighbouring sites i and j. |σ i -σ j | is to be understood modulo 3 and we normalize interactions such that x 0 = 1. Hence, the model contains one parameter x 1 that we rename x in the following. The partition function of the model reads

Z Z3 = {σi, i∈T} x N (5.2)
where N denotes the number of occurrences of neighbouring different spins.

We now reformulate the partition functions in terms of its domain walls. For two neighbouring spins σ i and σ j , if |σ i -σ j | = 1, we draw a simple bond on the link of H separating the two spins whereas if |σ i -σ j | = 0 we let the link empty. We obtain this way a closed simple G 2 web G embedded in H. The mapping is many to one and onto. The number of spin configurations having G as their domain wall is given by the number of proper 3-colorings of the dual graph Ĝ. Denoting the chromatic polynomial with Q colors of Ĝ by χ Ĝ(Q), we have that

Z Z3 = G∈K x N χ Ĝ(3) (5.3) 
We will now show that it is equal to the partition function of the G 2 web model, up to an overall multiplicative constant, when

q =e i π 6 (5.4a) y = 1 √ 2 (5.4b)
Remark that the product of the vertex fugacities and the Kuperberg weight do not depend on the embedding of the web into H. Given a closed simple web G, we call this product, the topological weight of the web, w top (G). Similarly as in Section 4.2, it can be computed thanks to modifications of the relations (3.26) in order to incorporate the vertex fugacity in the reduction process. This can be seen as a rescaling of the vertices of webs : 

+ + + +       -       + + + +       (5.6f) 
We will now show that, for any closed simple web G, χ Ĝ(3) = 3w top (G). In order to do so we will consider the chromatic algebras (or category) [START_REF] Fendley | Link invariants, the chromatic polynomial and the potts model[END_REF]. It will be sufficient to consider the chromatic algebra of degree 0, C 0 which is defined as follows. Consider the free vector space F 0 , spanned by planar graphs possibly containing closed loops, embedded in some simply connected domain. No edges are adjacent to the boundary of the domain, which is the meaning of "degree 0". C 0 is defined to be the quotient of F 0 by the following local relations :

(1) If e is an edge of a graph G which is not a loop, then G = G/e -G \ e, where G/e denotes the graph obtained from G by the contraction of e.

(2) If G contains an edge e which is a loop, then G = (Q -1)G \ e.

(3) If G contains a 1-valent vertex then G = 0.

In (2), a loop is understood in the graph-theoretical sense as an edge that connects a vertex to itself. Contrarily to webs, we do not consider graphs containing loops without vertices in C 0 but any such loop can be turned into a loop in C 0 by artificially adding a vertex to it. The chromatic algebra C 0 depends on a parameter Q which has to be thought as a number of colors. Indeed, it was shown in [START_REF] Fendley | Link invariants, the chromatic polynomial and the potts model[END_REF] ( Proposition 3.4 ) that a graph G in C 0 is proportional to the empty one as

G = Q -1 χ Ĝ(Q) (5.7)
For completeness, we recall here the elements of the proof of Proposition 3.4 of [START_REF] Fendley | Link invariants, the chromatic polynomial and the potts model[END_REF]. Let e be an edge of G. Consider ê the edge crossing e in the dual graph Ĝ. Then, one has G/e = Ĝ \ ê and G \ e = Ĝ/ê. Relation (1) is then translated to Ĝ = Ĝ \ ê -Ĝ/ê for the dual graph. This the deletion-contraction relation of the chromatic polynomial. Relation (3) follows as a 1-valent vertex in G corresponds to a loop in Ĝ and there are no proper Q-colorings of a graph containing loops. Finally, relation [START_REF] Alcaraz | Reaction-diffusion processes as physical realizations of hecke algebras[END_REF] follows because a loop whose interior trivially intersects G corresponds to a 1-valent vertex v in Ĝ and the number of Q-colorings of Ĝ is Q -1 times the number of Q-colorings of Ĝ \ {v}. For a loop that do not intersect G trivially, one can use relation ( 1) and (3) to reduce the interior of the loop to obtain a collection of nested loops. The most interior of these loops then intersect G trivially. The overall factor of Q -1 in (5.7) corresponds to the fact that the dual graph of a mere vertex, which has Q ways to be colored, is the empty graph.

In the rest of this section, we will set Q = 3.

Let us define a map g that sends a web in FSp (G 2 ) to the chromatic algebra of degree 0, C 0 . This map simply identifies any web to its graph in C 0 , possibly adding a vertex to a loop if it is one of the component of a web. It is then extended by linearity. We will now show that this map factors through the quotient defined by relations (5.6a)-(5.6f), i.e. all these relations are satisfied in C 0 . The first 3 relations follow straightforwardly from the relations of C 0 . The fourth one is satisfied as there is clearly no 3 coloring of the dual graph of a graph containing the subgraph of the left hand side. The fifth one follows from repeated application of the relations of C 0 . To show that the last one is satisfied, we first remark that the left hand side is zero in C 0 as there is no 3 coloring of the dual graph of a graph containing the left hand side as a subgraph. On the other hand, by repeated application of the relations of C 0 , one has that

= -2 +       + cylc. perm.       (5.8)
where by cycl. perm. we mean the 4 graphs obtain by discrete rotation as in (5.6f). This linear combination is thus zero in C 0 . Applying the relations to the right hand side of (5.6f), we obtain

10 -5       + cylc. perm.       (5.9) 
which is then vanishing as well in C 0 . Hence (5.6f) holds in C 0 .

We have thus shown that g defines a well defined linear map g from Sp (G 2 ) to C 0 . We have then

g(G) = w top (G) ∅ (5.10) = 3 -1 χ Ĝ(3) ∅ (5.11)
leading to χ Ĝ(3) = 3w top (G) as claimed. We thus conclude that :

Z Z3 = 3Z G2 (5.12)
where domain walls of spin configurations are mapped to webs.

5.2

The B 2 web models 5.2.1 Definition of the models on the hexagonal lattice H

The configuration space K is given by B 2 webs in Sp(B 2 ) embedded in H. To such a web G we give a Boltzmann weight that is the product of a local and a non local part. We denote again by bond, a link that is covered by and edge of G. We will refine the denomination by qualifying a bond as simple (respectively double) when it is covered by a simple edge (respectively double). To a configuration G, we give a weight (or fugacity) x 1 to any simple bond and a weight x 2 to any double bond. We also give a fugacity y to any vertex. This determines the local part of the weight of G. The non local part is given by the Kuperberg weight w K (G) defined by the relations (3.14).

Consider three webs G 1 , G 2 , G 3 that are the same except inside a disk where they look like :

G 1 = (5.19a) G 2 = (5.19b) G 3 = (5.19c)
where we have drawn in blue the parts of the dual graphs Ĝ1 , Ĝ2 and Ĝ3 that are totally contained inside the disk. It is understood that there could be blue edges connecting vertices inside the disk to vertices outside the disk. It is clear that the number of proper colorings of Ĝ3 is the sum of the number of proper colorings where the top and bottom vertices are the same and the number of proper colorings where the the vertices are different. Here, different implies differing by ±2, hence we have ψ Ĝ3 = ψ Ĝ1 + ψ Ĝ2 . This shows that (5.18) is inside the kernel of ψ.

Since ψ is a well defined linear form in Sp (B 2 ) and every closed web G is proportional to the empty web by a factor w K (G), we have that

ψ Ĝ = w K (G)ψ ∅ = 4w K (G) (5.20)
We thus have, setting y = 1 in (5.13), that

Z Z4 = 4Z B2 (5.21)
where domain walls and webs are identified in the mapping.

B 2 webs in S, a Z 3 and a Z 4 spin models Let us define a Z n spin model, n = 3 or 4, on the lattice S * dual to the square lattice S. S * is a square lattice containing in addition two points at infinities in the cylinder geometry, or one point at infinity in the strip geometry. There is a nearest neighbour interaction between spins that force their difference to be 0 or ±1 modulo n. There is also a 4 sites interaction around any square, such that, in any configuration, if nearest neighbour spins σ i and σ j are unequal, the two other spins σ k and σ l cannot satisfy simultaneously σ k = σ l , σ l = σ i and σ l = σ j . Similarly, in the case of a triangle, there is a 3 sites interaction around any triangle containing a point at infinity such that if two spins are unequal, the last spin cannot be different from the two others. These interactions force spin configurations not to possess trivalent vertices in their domain walls. If nearest neighbour spins are equal, we normalize the interaction to 1. If they are different, we denote it by x. There is also a weight z when 4 spins around a square are such 

Z Zn = {σi, i∈S * } x N z N V (5.22)
where N is the number of pairs of different nearest neighbour spins and N V is the number of squares that have pairs of different spins on each edge. The prime on the summation sign denotes a sum over spin configuration that respect the above constraints. We now rewrite the partition function in terms of its domain walls. If two neighbouring spins are different, we draw a simple bond on the link of S that separates them. If they are the same, we let the link empty. We thus get a B 2 web G made of simple edge only whose components are either closed loops or 4-valent graphs, i.e. G ∈ K as defined in 5.2.2. The mapping is onto and many to one.

When n = 4, the number of spin configurations that give a web G as their domain wall is given by ψ Ĝ. We thus have that

Z Z4 = G∈K x N z N V ψ Ĝ (5.23)
When q = e i π 4 , we have seen that ψ Ĝ = 4w K (G) hence

Z Z4 = 4Z B2 (5.24) 
When n = 3, the number of spin configurations having G as their domain wall is given by the number of 3-colorings of the dual graph Ĝ. We have that

Z Z3 = G∈K x N z N V χ Ĝ(3)
(5.25)

We will now show that χ Ĝ(3) = 3w K (G) when q = e i π 3 . We define a morphism from Sp (B 2 ) at q = e i π 3 to the chromatic algebra C 0 . Consider first the map f that sends a web G in FSp (B 2 ) to the graph in C 0 obtained by forgetting the information of edges being simple or double, possibly adding a vertex to a loop if present. Extend f by linearity to FSp (B 2 ). We want to show that f factors through the quotient of B 2 relations (3.14) and (3.15) to a map f from Sp (B 2 ) to 
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3.3). Webs without tags will be referred to as simple webs. An example of a simple web is shown in Figure 5.4; notice in particular that this graph is not bipartite.

Our statistical model will be defined in terms of closed simple webs. The tag rules will be needed only in order to show that the model is well defined. In contrast to the A 2 web model (defined in Section 4.1), the allowed configurations are the equivalence classes of embedded simple webs, under an equivalence relation that we now describe.

We define the CPT transformation of an edge as the simultaneous reversal of its orientation and the replacement k → n -k of its flow label. In general, applying a CPT transformation to a single edge of a simple web will wreck the flow conservation at its adjacent vertices, hence leading to a graph which is no longer a simple web. However, the simultaneous CPT transformations of two edges adjacent to a common vertex v, one entering the vertex and the other exiting from it, will maintain the flow conservation at v. Define a transition cycle of a simple web to be a closed path of consistently oriented edges (each edge entering a given vertex being followed by another edge exiting from it, or vice versa). It follows that the simultaneous CPT transformation of each edge in a transition cycle will transform the simple web into another simple web. We may now define the equivalence relation. Two simple webs, w 1 and w 2 , are equivalent (and we write w 1 ∼ w 2 ) if they are related by the CPT transformation of a finite sequence of transition cycles. Figure 5.5 provides an example of two equivalent simple webs.

The CPT transformation is motivated by representation theoretical considerations. Indeed, the fundamental representation labeled by k is isomorphic to the dual of the one labeled by n -k. The isomorphism and its inverse are unique up to a scalar factor and are given on the spider side by the tags, up to a scalar. In a particle physics analogy, this means that we do not distinguish between a particle flowing in some direction and its antiparticle flowing in the opposite direction. This analogy moreover justifies the name 'CPT transformation'.

Let The local part of the weight consists of fugacities for vertices and bonds. To a bond covered by an edge labeled by k flowing upward (resp. downward) we assign the fugacity x k (resp. x -k ). Due to the flow conservation, a vertex must be adjacent to either two incoming edges and one outgoing edge, or to two outgoing edges and one incoming edge. In the former case, for a vertex with edges labeled k and l flowing inward and an edge k + l flowing outward, and the three of them being arranged in this order anticlockwise around the vertex, we assign the fugacity y k,l;k+l . In the latter case, for a vertex with edges labeled k and l flowing outward and an edge k + l flowing inward, arranged in this order clockwise around the vertex, we assign the fugacity y k+l;k,l .1 Moreover, we demand that the vertex fugacities be rotationally invariant, which means that two vertices related to each other by a transformation under the full symmetry group of the lattice H get the same fugacity. In other words, the vertex fugacity is independent of the embedding of a given web into H. For the local part of the weight to be independent of the chosen representative c ∈ [c] of the equivalence class [c], we also impose the following constraints:

x -k = x n-k k ∈ 1, n -1 (5.31a) y k,l;m = y l,n-m;n-k = y n-m,k;n-l m = k + l and k, l, m ∈ 1, n -1 (5.31b) y m;k,l = y n-k;l,n-m = y n-l;n-m,k m = k + l and k, l, m ∈ 1, n -1 (5.31c)
Note that here the rotational invariance is used implicitly: after we make a CPT transformation the vertex will have new labels, but will also be rotated. 2The total weight given to a configuration

[c] ∈ C is then w([c]) =   k∈ -n+1,n-1 x N k k       k,l∈ 1,n-1 k+l∈ 1,n-1 y N k,l;k+l k,l;k+l         k,l∈ 1,n-1 k+l∈ 1,n-1 y N k+l;k,l k+l;k,l     w s ([c]) , (5.32) 
where as usual N ••• denotes the number of occurrences of the corresponding bond or vertex types. We use the convenient notation x 0 = 1, which can be understood as normalising the weight by fixing the fugacity of an empty link. We can finally write the partition functions defining the web models:

Z = [c]∈C w([c]) . (5.33) 
Remark that the discrete rotational invariance of the underlying lattice H is recovered if we choose x k = x n-k for any k ∈ 1, n -1 .

Relation with Z n spin interfaces

As we have seen in Section 4.2, Kuperberg webs describe, at a specific point in their parameter spaces, interfaces of Z 3 spin models. This generalises a well-known correspondence between the O(N ) loop model with N = 1 (i.e., N = [2] q with q = e i π 3 ) and Ising spin interfaces recalled in Section 2.2. In this section, we shall provide a further generalisation to all n ≥ 2. We show that, by an appropriate tuning of the vertices fugacities of the U q (sl n ) web models on H, at the special point q = e i π n+1 (5.34) the partition functions equal, up to an overall factor, those of some nearest-neighbour interaction Z nsymmetric spin models on the dual triangular lattice T. Those chiral clock models are very general and contain as special cases enhanced-symmetry spin models, such as the clock models with symmetry group D n , the chiral Potts models with symmetry group A n , and the usual Potts models with symmetry group S n .

Under the mappings that we shall exhibit, the equivalence classes of webs that define the configurations of the U q (sl n ) web models are identified with the interfaces of spin clusters.

Simplification at the special point In this subsection we show that, at the special point (5.34), there exists a particular choice of the vertex weights, y k,l;k+l and y k+l;k,l , which leads to a trivial value of the combination of the vertex and non-local weights: 

w ([c]) :=     k,l∈ 1,n-1 k+l∈ 1,n-1 y N k,l;k+l k,l;k+l         k,l∈ 1,n-1 k+l∈ 1,n-1 y N k+l;k,l k+l;k,l     w s (c) = 1 ,
([c]) = k∈ -n+1,n-1 x N k k , (5.36) 
where as before we have the normalisation constraint x 0 = 1.

To show (5.35), observe that one can compute w ([c]) in a similar way as w s ([c]), but with certain deformed relations, in the same spirit as for the other web models. Following (4.9), we first incorporate the vertex weights into the vertex diagrams, defining the "dressed" vertices = y k,l;k+l (5.37a) and = y k+l;k,l (5.37b)

It will turn out useful to allow the edges in (5.37) to carry the label 0 or n, even when the original web c does not. We then augment the range of indices for the y-coefficients, such that y k,l;k+l = y k+l;k,l = 1 whenever one of their arguments is 0 or n. Note that this modification changes nothing for closed simple webs.

We now introduce a technical tool that we use only for the purpose of showing (5.35). First, remark that in relations (3.29a)-(3.29e) we could have allowed any edge to take the label 0 or n, with the additional convention that webs having a label outside of the interval 0, n are zero. Notice that, in particular, with the prescription (3.30) we would then retrieve the tag relations (3.29f) and (3.29g) as special cases of (3.29c) and (3.29d) at l = n and m = n, respectively. However, if we do not use the prescription (3.30), i.e, if we keep edges labelled by n and only delete edges labelled by 0 then (3.29a)-(3.29e) give the relations of so-called MOY graphs [START_REF] Murakami | Homfly polynomial via an invariant of colored planar graphs[END_REF][START_REF] Wu | A colored sl(n)-homology for links in s 3[END_REF]. In this scheme, the graphs are still closed, trivalent and oriented, and their edges carry labels in 1, n such that the flow is conserved at vertices. From now on, we follow this convention about labels, and we stress that MOY graphs do not use tags. This feature will be important below for the calculation of statistical weights at the special point (5.34).

In the MOY graphs, some of the seemingly lost tag rules are taken care of by the use of edges labelled by n. In particular, the double tag rule (3.29f) is in fact the same as a label n edge attached to the label k edge in the digon shape; then the moving tag rule (3.29g) is the same as the associativity rule (3.29d) with a label n edge. Let us explain the difference between our set of relations for MOY graphs and the one exposed in [START_REF] Wu | A colored sl(n)-homology for links in s 3[END_REF]. The MOY graph relations (1)-( 4) in [START_REF] Wu | A colored sl(n)-homology for links in s 3[END_REF]Thm. 2.3] are exactly (3.29a)-(3.29d). Furthermore, there are several MOY graph rules from [START_REF] Wu | A colored sl(n)-homology for links in s 3[END_REF] that are not in the list (3.29a)-(3.29e), the equations ( 5)-( 7) from [134, Thm. 2.3], but it turns out that they are consequence of our relations (3.29a)-(3.29e). Indeed, the relation ( 5) from [134, Thm. 2.3] follows from [START_REF] Baxter | Colorings of a Hexagonal Lattice[END_REF]: we first use the digon rule (3.29c) with the left edge labelled n to replace the leftmost bottom leg in [START_REF] Baxter | Colorings of a Hexagonal Lattice[END_REF] by the digon, and then use the associativity rule (3.29d) several times to make the CPT transformation of the edges so the graph takes the form of (5). Moreover, it is clear that the relation ( 6) from [134, Thm. 2.3] follows directly from [START_REF] Baxter | Colorings of a Hexagonal Lattice[END_REF]. Finally, the relation [START_REF] Baxter | Colorings of a Hexagonal Lattice[END_REF] follows by a repeated application of (3.29b), (3.29d) and (3.29e) as described briefly below (3.30). We therefore see that all the MOY graph rules follow from (3.29a)-(3.29e) with the above convention on labels.

A closed simple web is a special case of a MOY graph in which no edge has label n. As stated above, the first five relations (3.29a)-(3.29e) suffice to compute the weight of MOY graphs [134, Thm. 2.4], i.e., to reduce the graph to the empty one multiplied by a number. The weight of a closed simple web is then the same as if it were regarded as a MOY graph. This means, in particular, that (3.29i) is not needed for evaluating the weight of a closed simple web-a fact that we shall use later.

As we have augmented the range of y-coefficients, (5.37) defines "dressed" MOY graphs. Assuming all the vertex weights y to be non-zero, this leads to the following modification of their relations (3.29a)-(3.29d) where all the labels are allowed to take the value n:

= n k q (5.38a) y -1 k+l;k,l y -1 k,l;k+l = k + l k q (5.38b) y -1 k+l;k,l y -1 k,l;k+l = n -k l q (5.38c) y -1 k,l;k+l y -1 k+l,m;k+l+m = y -1 l,m;l+m y -1 k,l+m;k+l+m (5.38d) y -1 k;k-1,1 y -1 k-1,1;k y -1 1,l;l+1 y -1 l+1;l,1 = y -1 k,1;k+1 y -1 k+1;k,1 y -1 l;l-1,1 y -1 1,l-1;l + [k -l] q (5.38e)
together with their mirrored and arrow-reversed versions, where the vertex weights y have to be changed accordingly with the change of flows.

Similarly to the case of the dressed webs in (4.10), these deformed relations are well defined: an evaluation with the rules (5.38) is equivalent to the two-step process: first count all the vertex weights, then remove the dressing on the vertices and evaluate with the standard MOY graph rules, or with the rules (3.29a)-(3.29e) using our convention on labels. This process does not obviously depend on the way of reduction of the webs. In particular these dressed rules allow one to evaluate any dressed simple web to a number.

We now take for the vertex weights the particular choice

y k+l;k,l = y k,l;k+l = k + l k -1 2 q .
(5.39) each link (ij), with i to the left of j when viewed along the chosen fixed direction, attach a local Boltzmann weight x σi-σj , subject to the normalisation x 0 = 1. In general x σi-σj = x σj -σi , so the model possesses a chirality. The corresponding partition function reads

Z spin = σi ij x σi-σj , (5.43) 
where ij denotes the set of links.

The weights define a mapping x : -n + 1, n -1 → C, but we now impose x -k = x n-k for any k ∈ 1, n -1 , so that we have effectively x : 0, n -1 → C with x 0 = 1. The group Z n acts by cyclically permuting the values 0, n -1 of all spins, and this action leaves (5.43) invariant as it only depends on the differences σ i -σ j .

Let T be the set of nodes of the triangular lattice T. Denote by S the space of equivalence classes of the mappings σ : T → 0, n -1 with respect to a global shift. We write [s] ∈ S for such a class; there are exactly n representatives for each class. The partition function is then rewritten

Z spin = n [s]∈S w spin (s) , (5.44) 
where the weights

w spin (s) = ij x si-sj = x N1 1 x N2 2 • • • x Nn n (5.45)
generalise those of (4.6).

Observe that the weight of a configuration [s] is concentrated on links of H separating pairs of nodes (ij) ∈ T such that σ i = σ j . Now, take a representative σ of [s] and build a graph on H in the following way. Give to each bond that separates different spins, σ i = σ j , the label |σ i -σ j | and an orientation upward (resp. downward) if σ i < σ j (resp. σ i > σ j ). Such a graph is closed and has flow conservation at vertices; it is thus a simple web. Moreover, different representatives of [s] give equivalent webs with respect to the equivalence relation of Section 5.3.

This construction thus provides a well-defined mapping f : S → C, where we recall that C denotes the set of configurations of the web model. It is illustrated in Figure 5.6. We can remark that whereas any class in S has always n representatives, the same is not true for classes in C. It is clear that w spin (s) = w(f ([s])) at the special point (5.34) introduced above.

Thus, to prove that the spin and web models are equivalent, one has to show that f is a bijection. To do so, we now construct its inverse. Consider a web c, a representative of [c], on H. Build a spin configuration on the dual lattice T in the following way. Colour one face of the web by 0, i.e., all nodes of T inside this face are taken to have spin σ i = 0. Then the colours of the other faces are fixed by using the prescription that when an edge labelled by k flowing to the left (resp. right) is crossed, we add k (resp. -k) to the preceding colour and take the result modulo n. The resulting colouring is independant of the chosen representative of [c]. Taking the class [s] of the spin configuration built this way, one finally obtains a map g : C → S. Clearly, f • g = Id and g • f = Id. We then have the desired result * Z spin = nZ , (5.46) where Z is the partition function (5.42) of the web model. The latter can therefore be identified as the low-temperature expansion of the spin model.

An equivalent definition

Denote by C the set of closed U -q (sl n ) polarized webs embedded in H. Given a polarized web c, the set of relations (3.34) defines a non-local weight w p (c). To a bond covered by an edge labelled by k, corresponds a fugacity x k . To a vertex with two incoming edges labelled by k and l and one outgoing edge labelled by m, corresponds a fugacity y k,l;m . To a vertex with one incoming edge labelled by k and two outgoing edges labelled by l m, corresponds a fugacity y k;l,m . We also impose these constraints on vertex fugacities y k,l;m = y l;n-k,m = y k;m,n-l (5.47a)

y m;k,l = y n-k,m;l = y m,n-l;k (5.47b)
This ensures that vertex fugacities are invariant under rotations, see (3.32h),(3.32i). Note that the set of vertex fugacities is completely determined by the subset of fugacities for vertices that conserve the flow exactly, i.e. m = k + l. The total weight given to a configuration c ∈ C is then (5.49)

w(c) =   k∈ 1,n-1 x N k k       k,l,m∈ 1,n-1 k+l=m mod n y N k,l;m k,l;m         k,l,m∈ 1,n-1 k+l=m mod n y N m;k,l m;k,l     w p (c) , (5.48 
It is clear that for n = 2, one recovers the O(N ) loop models with N = [START_REF] Alcaraz | Reaction-diffusion processes as physical realizations of hecke algebras[END_REF] q and x 1 = x. Moreover for n = 3, if one reverse the orientation of edges labeled by 2 and remove labels in configurations, one obtain Kuperberg A 2 webs. The weight of a configuration is then exactly the weight of the Kuperberg weight model, once we identify y 1,1;2 = y (5.50a)

y 2;2,1 = z (5.50b)
Equivalence with U q (sl n ) web models The model with partition function (5.49) is equivalent to the U q (sl n ) web model. We stress that the models (5.33) are defined in terms of U q (sl n ) CKM webs whereas the models (5.49) are defined in terms U -q (sl n ) polarized webs. They are thus build on different quantum groups, yet they are equivalent. There is a bijection g : C → C that takes a CKM web configuration [c] ∈ C and gives a polarized web configuration c ∈ C by reversing the downward oriented bonds and dualizing its label, i.e. k → n -k, on any representative of [c] (this clearly does not depend on the representative). An inverse can be seen to exist, for example using the mapping sending polarized webs to CKM webs defined in Section 3.3.1. Now, it is apparent that g factors through the relations (3.34) and w p (c) = w s (g(c)) This concludes that the models are equivalent.

Remark that given a polarized web configuration c ∈ C , one can consider all polarized web configurations that give the same subgraph G ⊂ H as c when the labelling is forgotten. The number of such polarized web configurations is what is called the flow polynomial of G, C G (n). This counts the number of nowhere zero flows. The latter are labelling of the edges in 1, n -1 such that the flow is conserved at vertices modulo n. When G is planar, there is a well-known relation between C G (n) and the chromatic polynomial of the dual graph Ĝ

χ Ĝ(n) = nC G (n) (5.51)
The proof is essentially the mapping defined in Section 5.3.2. From (5.51) and the equality of partition functions between the U q (sl n ) web models and the polarized web models, we recover (5.46) in the case of the Potts models where all x i are equal.

Transfer matrices

Let L denote one of our Hopf algebras of interest, U q (G 2 ), U q (B 2 ) or U -q (A n-1 ). As in Section 4.3.3, we define local transfer matrices thanks to the identification given by the spiders between diagrams and intertwiners of quantum group representations (see Chapter 3) . To each link of the lattice is associated a local space of states H L that carries a particular representation of the quantum group. This representation contains the trivial representation C as a subrepresentation, corresponding to the link not being covered by a web. We denote the vacuum vector 1 ∈ C by | . Let us build the row to row transfer matrices by composing smaller, local transfer matrices. We shall again call node of type 1 (respectively type 2) a node situated at the bottom (respectively top) of a vertical link. Denote by t L (k) the local transfer matrices propagating through a node of type k ∈ {1, 2}. They are linear maps:

t L (1) : H L ⊗ H L → H L , (5.52a) t L (2) 
:

H L → H L ⊗ H L , (5.52b) 
and we use their pictorial notation and , respectively, in Figure 5.7. We will show how to obtain these linear maps in the next sections. Their composition t L = t L

(2) t L (1) is a linear map from H L ⊗ H L to itself (i.e., an endomorphism of H L ⊗ H L ). As in the A 2 case, we index the copies t L i of these operators by their position i in a row as in Figure 5.7.

When the web model is embedded in the cylinder, the linear maps associated to diagrams by the spiders are not reproducing the correct weight when they wrap around the cylinder. The correct weight is the one obtained if we were to explode the cylinder into the plane. This can be accounted by a 2π bending of strands cutting a seam line running along the cylinder. This 2π corresponds to composing with a twist operator before taking the trace. This operator thus introduces twisted periodic boundary conditions. Denote by S L the twist operator associated with crossing the seam line running from right to left, and its inverse S -1 L associated with the seam line running from left to right. Then the row-to-row3 transfer matrix T L in the cylinder geometry reads

T L = L-1 k=0 t L 2k+1 L-1 k=1 t L 2k S L t L 2L S -1 L , (5.53) 
where S L acts non-trivially on site 1 only. In case of open boundary conditions we have instead

T L = L-1 k=0 t L 2k+1 L-1 k=1 t L 2k . (5.54)
It is an endomorphism of H ⊗2L L . The partition function is then recovered as the vacuum expectation value of powers of the row-to-row transfer matrix:

Z L = T M L .
(5.55)

By the vacuum expectation value, we mean the matrix element from | ⊗2L to itself. To be precise, the righthand-side of (5.55) expresses the partition function Z L on a hexagonal lattice with 2M -2 rows, because while T M L builds loop configurations on a lattice with 2M rows, the degrees of freedom on the first and last row are constrained to be empty due to our choice of vacuum state.

The G 2 case

Let V be the fundamental representation of U q (G 2 ) of highest weight w 1 . The local Hilbert space is given, as a representation, by

H G2 ∼ = C ⊕ V
The basis we use for this representation is given in Appendix A.3. The local transfer matrices of the G 2 web model are given by t G2

(1) = x 3/2 y + x

+ x + x + (5.56a) t G2 (2) = x 3/2 y + x + x + x + (5.56b)
The diagrams correspond to intertwiners whose matrix elements are given in Section 3.2.3. The twist operator is given by

S L = (-1) 2H ρ ∨ q 2Hρ
(5.57)

where ρ and ρ ∨ denote the Weyl vector and the dual Weyl vector respectively (see the appendix A).

The B 2 case

Let V 1 and V 2 be the fundamental representations of U q (B 2 ) of highest weights w 1 and w 2 respectively. The local Hilbert space is given, as a representation, by

H B2 ∼ = C ⊕ V 1 ⊕ V 2
with the conventions that x 0 = 1, y k,l;m = 1 and y m;k,l = 1 whenever one of their argument is 0. Morever edges labelled by 0 correspond to empty links. The diagrams correspond to intertwiners whose matrix elements are given in Section 3.3.1. The twist operator is given by

S L = q 2Hρ (5.61)
where ρ denotes the Weyl vector (see the appendix A).

On Coulomb Gases

We end this chapter by giving some remarks on the search for Coulomb Gas descriptions of the web models. The natural first step seems to be the mapping the web models in their local vertex-model formulations to some height model as in the A 1 and A 2 cases.

The height variable φ lives on the dual lattice and takes value in C r where r is the rank of the algebra considered. On the links adjacent to a node of H, there are three states |s 1 , |s 2 and |s 3 . Each of this state is labelled by the weight (with respect to corresponding root system) s i it carries. The height φ is then defined, up to a constant, by stating that the difference of its values on both side of a link is given by the state living on the link. For instance, as in Because, all interactions are intertwiners we must have s 3 = s 1 + s 2 and the mapping is well defined. Then, one can expect the height variable to renormalize to a r-component bosonic field in the continuum.

Contrarily to the A n-1 case, in the B 2 and G 2 cases there are states that are not the vaccuum state, yet carry a vanishing weight. This means that the height variable does not contain all the information on the local vertex configuration and we expect that another degree of freedom must be added. This is reminiscent of free-field representations of minimal models for W algebras related on non simply-laced Lie algebras [START_REF] Grisaru | Renormalization group flows in generalized Toda field theories: (II). nonsimply laced algebras[END_REF][START_REF] Lukyanov | Additional symmetries and exactly-soluble models in two-dimensional conformal field theory[END_REF].

Chapter 6

Fuss-Catalan loop models and Potts spin cluster connectivities

The Potts models

Consider a square lattice S, embedded in the plane. To each site i of the lattice we associate a spin variable σ i ∈ 1, Q . Recall that the Potts model partition function is defined as

Z Potts = σ e K <ij> δσ i σ j = σ <ij> e K δ σiσj + δ σi =σj (6.1) 
where < ij > denote an unordered pair {i, j} of nearest neighbours sites and δ σi =σj = 1 -δ σiσj . Let us look more closely at a configuration σ. A spin cluster is formed from links of S connecting spins having the same value. A link that is part of a spin cluster will be said to be occupied. To each occupied link is associated a local Boltzmann weight e K . The union of spin clusters form a subgraph of S. Remark that this cannot be any subgraph as, if three links around a plaquette are occupied, the fourth one must be as well. Moreover, there are additional restrictions depending of the value of Q. We denote by C, the set of subgraphs of S that are unions of spin clusters. We can then rewrite the partition function as

Z Potts = σ G⊂S <ij>∈G e K δ σiσj <ij> / ∈G δ σi =σj (6.2)
The spin degrees of freedom ensure that any subgraph G that is not in C will have a Boltzmann weight equal to zero. Now, let us give a bijection, familiar from the Fortuin-Kastelyn Temperley-Lieb representation, between subgraphs G and loop configurations on the medial lattice. The bijection is simply given by stating that loops must surround spin clusters (see Figure 6.1). Denote by L, the set of loop configurations. Given a loop configuration c, denote by A(c), the links of S that are not crossed by any loop and by Ā(c) the ones that are crossed by some loops. We again say that a link in A is activated as it matches the above definition under the subgraph/loops bijection. The partition function then reads

Z Potts = σ c∈L <ij>∈A(c) e K δ σiσj <ij>∈ Ā(c) δ σi =σj (6.3)
We thus obtain a model with coupled spin and loop degrees of freedom. Note that the loop do not have any non local weight. In other words, to each loop is given a fugacity 1. The loops surround the spin clusters and thus possess non local information on the latter such as spin connectivities.

It is possible to rewrite the partition function as a product of local Boltzmann weights only. To do this, one introduces the familiar trick of orienting the loops and giving local weight e iθ/6 whenever a loop bends an angle θ as in where we have slightly generalised introducing different Potts couplings for vertival and horizontal links.

We can generalise the model further to account for non integer values of Q. Consider a spin/loop configuration (σ, c) of (6.3). We add another loop degree of freedom. To differentiate from the first one, we color the first one in red as in Figure 6.1 whereas the new one will be colored in blue. For a link < ij >∈ A(c), we draw the blue loops as : e K1 δ σiσj : e K2 δ σiσj where we have indicated its corresponding local weight. Remark that two colors loop configurations are such that red and blue loops never cross. We will call these configuration Fuss-Catalan (FC) loop configurations. Moreover, from the point of view of the lattice S, red loops are always closer than blue loops (see Figure 6.2). Denote by L 2 , the set of FC loop configurations. We can now perform the sum over spins. Note that, given a configuration in L 2 , this will produce a weight Q for each connected subgraph of S surrounded by blue loops (although red loops might cross it). Then by the standard trick of the FK-loop mapping, this can be recast as giving a weight √ Q to each blue loop. This also leads to local weights of 6 types given by : w(1) = e K1 : w(2) = -1

: w(3) = Q (6.5)

:

w(4) = e K2 √ Q : w(5) = - 1 √ Q : w(6) = 1
We then obtain a Fuss-Catalan loop model with partition function

Z Potts = c∈L2 6 i=1 w(i) Ni Q N b (6.6)
where N b is the number of blue loops and N i is the number of local configurations of type i. The Fuss-Catalan loop models have been introduced in the context of integrability in [START_REF] Francesco | New integrable lattice models from Fuss-Catalan algebras[END_REF] and have been further studied in [START_REF] Babichenko | Multicolored Temperley-Lieb lattice models. The Ground state[END_REF][START_REF] Babichenko | On the algebraic approach to solvable lattice models[END_REF]. The value of Q can then be continued to any complex number. Given an arrangement of red loops on the medial lattice, the blue loop configurations that give a FC configuration will be said to be compatible with the former. And similarly we call compatible to a blue loop configuration, all red loop configurations that are, when taken with the blue loop configuration, configurations of the FC loop model.

Remark that, in a given configuration of the FC loop model, the red loops can be in any loop configuration on the medial lattice. But we have seen that red loops must be thought as bounding spin clusters which constrain the possible loop configurations. This apparent contradiction is lifted when we sum over blue loop configurations that are compatible with a red one. This exactly kills all red loop configurations that are not bounding spin clusters. For instance consider two configurations that differ only by the following patches, where we have indicated what would be a spin cluster :

The sum of the weights of the two configuration is proportional to

Q -Q = 0 as expected.
Next, if given a blue loop configuration, we sum over compatible red loop configurations, we see that we obtain a loop configuration bounding FK clusters. So we see that, in a given FC configuration, we cannot understand the loops as bounding FK or spin clusters. It is only after summing over the other colour that the loops can be interpreted in such a way. In this respect, the model differs from the one defined [START_REF] Vasseur | Critical properties of joint spin and fortuin-kasteleyn observables in the two-dimensional potts model[END_REF],

where FK or spin clusters are explicitly displayed in any configuration. The other main difference with the work of [START_REF] Vasseur | Critical properties of joint spin and fortuin-kasteleyn observables in the two-dimensional potts model[END_REF] which make our result promising is that our transfer matrices are local.

It is clear that one can again localize Boltzmann weights by using the same trick as above for both types of loops. These local Boltzmann weights will be given explicitly in the next section.

Transfer matrices and Fuss-Catalan algebras

In this section, we define local and row-to-row transfer matrices for the FC loop model on an annulus. To this end, we use a diagrammatic algebra known as the Fuss-Catalan algebra introduced in [START_REF] Bisch | Algebras associated to intermediate subfactors[END_REF]. Consider a rectangular box with 2n points on the bottom boundary and the same number on the top boundary. Color the bottom points in red or blue, from left to right, according the the pattern brrbbrrbbrrb• • • brrb (respectively brrbbrrbbrrb• • • rbbr) if n is even (respectively odd). Color the top points with the same pattern. Then the Fuss-Catalan algebra FC n (α, β) is spanned by non-crossing perfect matchings of the 4n boundary points such that matched points are of the same colour. We can colour the arc between the matched points by the colour the points carry. For instance

A = B =
The product of two diagrams is then given by concatenation of the diagrams on top of each other, removing any blue or red loop and multiplying the resulting diagram by α Nr β N b where N r (respectively N b ) is the number of red (respectively blue) loops removed. For instance

AB = = α 2 β
The product is extended to the whole algebra by linearity. Note that we obtain an algebra strictly included in a product of two Temperley-Lieb algebras TL n (α) ⊗ TL n (β). The latter contains diagrams where blue and red strands would cross each other.

It is possible to show that the algebra is generated by the following elements

U (1) i = for i odd, U (1) i 
= for i even for i odd βU (2) i for i even

U (2) i = for i odd, U (2) 
U (2) i U (2) i±1 U (2) i = U (2) i
From the expression of local Boltzmann weights (6.5), one sees that the Potts local transfer matrices can then be written as

t i = e K1 Id -U (1) i + QU
(2) i for i odd (6.7a)

t i = Id - 1 √ Q U (1) i + e K2 √ Q U (2) i 
for i even (6.7b)

where α = 1 and β = √ Q. t i creates a vertical (respectively horizontal) link for i odd (respectively i even). The different local models we have introduced in the first section (for instance the spin/vertex representation) are all just different representations of FC n (1, √ Q). Here we introduce the vertex/vertex representation which is nothing but the restriction (to FC n (α, β)) of the representation of TL n (α)⊗TL n (β) being a product of 6-vertex representations. Because this is faithful representation of TL n (α) ⊗ TL n (β), its restriction is a faithful representation of FC n (α, β). The Hilbert space is given by (C 2 ⊗C 2 ) ⊗L . We introduce representations of generators of TL n (α) ⊗ TL n (β) on this space, where the blue (respectively red) part act nontrivially only on the first (respectively second) tensorand of each site. The generators, E b i and E r i of TL n (α) ⊗ TL n (β) act non trivially only on the sites i and i+1 and the non trivial parts of their representations are endomorphisms of C 2 ⊗ C 2 given by

E r i =     0 0 0 0 0 t 1 0 0 1 t -1 0 0 0 0 0     E b i =     0 0 0 0 0 q 1 0 0 1 q -1 0 0 0 0 0     (6.8) 
with α = t + t -1 and β = q + q -1 . The representations of the generators of FC n (α, β) are then given by U

(1) i = E r i for i odd E b i for i even

U (2) i = E r i E b i (6.9)
We now introduce a linear form Mtr(.) on FC n (α, β), that we will call Markov trace. It is defined on any diagram by joining points on the bottom boundary to the points on the top one, respecting their orders. Then we obtain a collection of loops and we weight contractible red (respectively blue) loops by α (respectively β) and non-contractible red (respectively blue) loops by α (respectively β). We then extend by linearity.

In the vertex/vertex representation ρ(.), the Markov trace is obtained as Mtr(.) = tr S ⊗L ρ(.) (6.10) where S is a twist operator acting non trivially on each site as S =     tq 0 0 0 0 t-1 q 0 0 0 0 tq -1 0 0 0 0 t-1 q    (6.11) with α = t + t-1 and β = q + q-1 .

The partition function of the Potts models on an annulus of size N × M is then given by

Z Potts = Mtr   N -1 i=0 t 2i+1 N -1 i=0 t 2i
M   (6.12)

with α = α = 1 and β = β = √ Q. We can generalize and ask for either spin (respectively FK) clusters wrapping around the annulus to be weighted by α2 (respectively β2 ). These two cases correspond to respectively relaxing α = 1 and β = √ Q.

Spin cluster connectivities

In the Potts models, consider the two point function given by the expectation value of the indicator function stating whether two sites i and j sit inside the same spin cluster. In the FC loop model, this corresponds to giving a weight 0 to any blue loop separating the two points i and j.

In the vertex/vertex representation, this two point function can be obtained by introducing an oriented seam line from i to j. Each link crossed by the seam line is given an additional local Boltzmann weight. This local weight is best written in terms of a local transfer matrix given by     e i π 2 q 0 0 0 0 e -i π 2 q 0 0 0 0 e i π 2 q-1 0 0 0 0 e -i π 2 q    (6.13) when the transfer direction is taken such that the seam line is seen running from left to right. This has the desired effect of giving a weight 0 to blue loops separating the points i and j.

As usual in critical lattice models, it is useful to study finite size effects of cylinder partition functions. In our case the object of interest is given by The values of ∆ are obtained thanks to a numerical diagonalisation of the row-to-row transfer matrix for two consecutive corresponding Potts sizes, L and L + 1, up to L = 6. The corresponding spin chain has twice the size L and we have done computations up to a spin chain size of 12. The extrapolation to the thermodynamical limit is obtained by fitting the finite-L values to a second-order polynomial in 1/L. A natural way to obtain larger sizes would be to numerically diagonalize the transfer matrix in the basis of FC link patterns.

Nevertheless, even with small lattice sizes, we see that the numeric results are close to the conjectured values for both integer and non integer values of Q. It is the first time that a local model containing spin cluster connectivities in its spectrum is exhibited.

Generalization

A straightforward generalization consists in giving a non trivial non local weight α 2 to spin clusters.

This leads to a FC model with local transfer matrices:

t i = e K1 Id -αU (1) i 
+ α QU

(2) i for i odd

t i = Id - 1 √ Q U (1) i + e K2 α √ Q U (2) i
for i even Chapter 7

Conclusion and perspectives

In this thesis, we have introduced different geometric lattice models. On the one hand, we have defined new models in chapters 4 and 5 whose configurations are made of webs related to different quantum groups. They can be understood as higher rank generalizations of lattice O(N ) models that are known to be the A 1 web models. It appears, that for a certain tuning of their parameters, they are equivalent, at the level of partition functions, to Z n spin models for some n. An interesting fact is that, under this equivalence, the webs are identified with interfaces between spin clusters. Because, the webs can be understood as intertwiners of quantum group representations, one can formulate the models in a completely local manner. Focusing on the A 2 case, we unraveled interesting properties that, most likely, will be shared with other web models. The A 2 web models are seen to exhibit a rich critical behaviour with at least two phases dubbed dense and dilute in analogy with the loop models. One can continuously run through one of these two phases and the universal classes encountered seem to depend only on the quantum group deformation parameter q.

We have been able to formulate a Coulomb Gas action describing these two phases and we have identified the lattice precursors of electromagnetic operators at the level of two point functions. We have then interpreted geometrically these two point functions with the hope of finding interesting geometrically critical exponents. It appears that the numerically known critical exponents related to 3-Potts spin interfaces are not contained in this spectrum. Yet, the A 2 web model critical phases are interesting as a whole and we have been able to exactly determine the fractal dimensions of webs at a point analogous to the polymer point in O(N = 0) models.

On the other hand, in chapter 6, we have found that two colour loop models based on the Fuss-Catalan algebras contain the spin clusters connectivities of the Potts models. As for the web models, the weights of Fuss-Catalan loop models can be localised but their algebraic structures are very different. In particular, there is no known connection of the Fuss-Catalan category, made of all FC loop diagrams, akin to the one between spiders and quantum groups.

Based on the work presented in this thesis, there are several directions that we think are worth pursuing. Here are some examples.

• Geometric observables in spin models : We have been able to find Potts spin cluster connectivities in the FC loop models. On the contrary, the study of defects in the A 2 web models seem to show that they do not contain the geometric observables we were after as described in the introduction. It is not clear that this should extend to web models for other quantum groups. A complete study of their geometrical defects is thus an interesting direction.

• Other geometrical points : If the special points relating webs to spin interfaces were the original motivation for defining the web models, it is likely that they are interesting for other parameters. Natural candidates are points were the weight of webs are sent to zero. These points would describe the propagation of a single component web, analogous to polymers in the A 1 case. Other interesting points are the q = 1 ones. Indeed, a link between n + 1-fold dimer models and A n webs at q = 1 have been formulated in the mathematics literature [START_REF] Douglas | Dimers, webs, and local systems[END_REF][START_REF] Fraser | From dimers to webs[END_REF][START_REF] Lam | Dimers, webs, and positroids[END_REF]. This is the higher rank counterpart of loops and double dimer models (see [START_REF] Kenyon | Conformal Invariance of Loops in the Double-Dimer Model[END_REF] and references therein). It is then natural to expect that critical points of n + 1 fold dimer models are in the universality class of A n web models at q = 1.

• Continuum limits : The A 1 and A 2 web models have critical phases described by a Coulomb Gas. In this formalism, the fundamental degree of freedom is a multi component bosonic field taking values in the Cartan torus. We thus expect that some of the critical phases, most likely the most relevant ones, of A n web models will be described by an analogous CG. The A 3 case would be a very instructive example to work out. In the would-be dilute phase containing the Z 4 spin models, or Ashkin-Teller, critical points there must be a marginal deformation in order to sweep the whole critical line. Thus, we expect a kinetic term and a coupling to curvature (on the cylinder) of the form

g αβ ∂ µ φ α ∂ µ φ β i γ π ρ • (φ(+∞) + φ(-∞))
where the scalar product is the one coming from the Killing form. The second term is derived from the seam line operators. Contrary to the A 1 and A 2 case, the coupling constants g αβ will not be uniquely fixed in a given phase. It should be harder than in lower rank cases to understand the connection from lattice couplings to g αβ . Numerical work would be of great help here, but note that, the higher the rank, the harder it is to simulate the model numerically. In particular the A 3 web model local Hilbert space dimension is already 15.

For non simply-laced Lie algebras of rank r, the corresponding web models would, most likely, not be described solely by a r-component bosonic field. As explained in Section 5.5, the fact that there are local states of weight 0 but different from the vacuum hints that one should consider additional degrees of freedom. It is possible that the form of the action would be close to the one used in free-field representations of related W algebra minimal models [START_REF] Grisaru | Renormalization group flows in generalized Toda field theories: (II). nonsimply laced algebras[END_REF][START_REF] Lukyanov | Additional symmetries and exactly-soluble models in two-dimensional conformal field theory[END_REF]. This could constitute a nice platform to elaborate a first ansatz.

Regarding the continuum limit of FC loop models, very few results are available on the subjects. There are some works [START_REF] Babichenko | Multicolored Temperley-Lieb lattice models. The Ground state[END_REF][START_REF] Babichenko | On the algebraic approach to solvable lattice models[END_REF] on the integrable points found in [START_REF] Francesco | New integrable lattice models from Fuss-Catalan algebras[END_REF] but a description as complete as a CG is lacking. Moreover, the lattice algebraic structure is peculiar. From estimating the so-called Perron-Frobenius dimension of a simple object in the FC category, we concluded that they cannot be realized as the intertwiner algebras on a tensor product of representations of some Hopf Algebra. In addition, by studying numerically some critical exponents given by modifying the non-contractible loop weights, we found that they cannot be given by the electric sector of a two-component CG. As pointed out in [START_REF] Francesco | New integrable lattice models from Fuss-Catalan algebras[END_REF], the integrable points are new. Also, the structure constants obtained from numerical investigation of three point spin connectivities in the Potts models are not known solutions [START_REF] Picco | On the CFT describing the spin clusters in 2d Potts model[END_REF][START_REF] Stella | Scaling and fractal dimension of ising clusters at the d=2 critical point[END_REF]. We thus believe that the CFTs describing the critical points of the FC loop models are largely unknown and we hope that their use in describing Potts spin connectivities will spark some research in that direction.

• Integrability : The web models are quantum group invariant and possess critical points. It is thus tempting to conjecture that they are integrable. We have seen that the dense phase of the A 2 web model is in the same universality class as the FPL integrable model. This last model is simpler, in that it contains on each local Hilbert space, only one fundamental irreducible representation. It is known to be equivalent to the integrable 15-vertex model. So, just as for the A 1 loop model, the dense phase is equivalent to a simpler integrable model with no dilution and only one irreducible representation on each link. It is an interesting question to see if that extend to other web models. In the A 1 loop models, the dilute phase is also integrable, corresponding to an A

(2) 2 integrable vertex model. The connection between the A 1 quantum symmetry and U q (A (2)

2 ) is not easy to guess. It is because, with respect to U q (A 1 ), the local Hilbert spaces are not irreducible representations. It is only after taking an appropriate U q (A (2)

2 ) irreducible evaluation representation that the right direct sum of U q (A 1 ) irreps magically appears. It is possible that the same procedure applies to the dilute phase of A 2 webs. An interesting candidate would be a U q (G (1)

2 ) as one of the fundamental representations of U q (G 2 ) is 7 dimensional. Moreover, when q = 1, there is a A 2 Hopf subalgebra inside G 2 making this 7 dimensional representation decompose as the trivial plus the two fundamental representations of A 2 . This sounds like a promising direction although there are additional difficulties appearing when q = 1.

We also note that, as the categories involved in the definition of web models are braided, one can use the Baxterisation method described in [START_REF] Fendley | Integrability and braided tensor categories[END_REF]. The diagrammatic computations are involved and, so far, we have not been able to apply it successfully.

• Some algebraic aspects : Based on A 1 results, there are some interesting algebraic aspects that naturally come to mind. One is about the relation between spider relations and the higher rank RSOS models explored in [START_REF] Di Francesco | SU(N ) Lattice Integrable Models Associated With Graphs[END_REF]. Another is related to the limit of the lattice algebras defined by local transfer matrices. Possibly they could define lattice analog of the W algebras defined in [START_REF] Fateev | The Models of Two-Dimensional Conformal Quantum Field Theory with Z(n) Symmetry[END_REF]. A first step would be to identify the continuum limits of lattice characters in the strip geometry. This would lead to exact expressions for annulus partition functions in the continuum.

• Combinatorial points : An interesting feature of two dimensional (dense) loop models is the combinatoric nature of their ground states on the cylinder when q = -e iπ/3 . Then, in the geometrical basis of link patterns (connectivities made by segments of loops), the ground state coefficients are integers, up to some normalization. The sum of these integers is equal to the number of alternating sign matrices. The Razumov Stroganov conjecture (demonstrated by Cantini and Sportiello) states that these integers count the number of configurations of an apparently unrelated and different loop model (the fully packed loop model) on a square lattice [START_REF] Cantini | Proof of the Razumov-Stroganov conjecture[END_REF][START_REF] Razumov | Spin chains and combinatorics[END_REF][START_REF] Razumov | O(1) loop model with different boundary conditions and symmetry classes of alternating-sign matrices[END_REF].

The U q (sl n ) RSOS models possess a combinatoric point when q = -e iπ/(n+1) . The ground states of the models have been studied in [START_REF] Francesco | The quantum knizhnik-zamolodchikov equation, generalized razumov-stroganov sum rules and extended joseph polynomials[END_REF]. The difference with the rank 1 loop case, is that in the basis considered, the coefficients are no longer integers. The combinatoric trick that gives all closed A 2 webs a weight 1 when q = -e iπ/ (4) shows that the action of the Hamiltonian in the basis of webs is stochastic with rational coefficients. This implies that, in the web basis, the ground state components are integers. It would then be interesting to see if these integers are counting configurations of some geometric models on a finite lattice, i.e. if there would be a generalization of the Razumov-Stroganov-Cantini-Sportiello theorem.

• Stochastic description of webs : Another direction is to establish an SLE-like description of critical webs. The idea is that, when mapping conformally a branching interface to the real line, one obtains trajectories of 1D particles which can fuse and split. From the probability measure of the web model, one obtains a probability distribution for such trajectories. The mapping suggests a picture of several species of particles fusing and splitting according to definite rules combined with diffusive motion. This is reminiscent of diffusion-reaction processes, a class of models in physical chemistry, where many results are available which could be a crucial input [START_REF] Alcaraz | Reaction-diffusion processes as physical realizations of hecke algebras[END_REF]. A very concrete way to validate this concept would be to numerically study the statistics of these trajectories and compare with known processes.

We then have the following representations of generators of U q (B 2 ) in this basis: In V 2 , pick a highest weight vector, v 1 . Then we obtain a basis by applying lowering operators:

v 1 =v 1 (A.19a) v 2 =F 2 v 1 (A.19b) v 3 =F 1 F 2 v 1 (A.19c) v 4 =F 2 1 F 2 v 1 (A.19d) v 5 =F 2 F 2 1 F 2 v 1 (A.19e)
We then have the following representations of generators of U q (B 2 ) in this basis:

E 1 =      
0 0 0 0 0 0 0 [START_REF] Alcaraz | Reaction-diffusion processes as physical realizations of hecke algebras[END_REF] q 0 0 0 0 0 [START_REF] Alcaraz | Reaction-diffusion processes as physical realizations of hecke algebras[END_REF] q 0 0 0 0 0 0 0 0 0 0 0

      E 2 =      
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

      F 1 =      
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

      F 2 =      
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

      H 1 =      
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 -2 0 0 0 0 0 0

      H 2 =      
1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1

      A.3.3 G 2
Let V be the fundamental representation of U q (G 2 ) of highest weight w 1 . In V , pick a highest weight vector, e 1 . Then we obtain a basis by applying lowering operators: We then have the following representations of generators of U q (G 2 ) in this basis:

e
E 1 =          
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [START_REF] Alcaraz | Reaction-diffusion processes as physical realizations of hecke algebras[END_REF] q 0 0 0 0 0 0 0 [START_REF] Alcaraz | Reaction-diffusion processes as physical realizations of hecke algebras[END_REF] q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

          E 2 =          
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

          F 1 =          
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

          F 2 =          
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

          H 1 =          
1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1

          H 2 =          
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0

         
where n = n 1 + n 2 and we have labelled the bottom-most faces and top-most faces surrounded by the web. There are n 1 upward oriented edges and n 2 downward oriented edges connected to the bottom and to the top boundaries. Orientations are in any order. All the faces f +∞ i and f -∞ k are different. The cycle coloured in cyan at the bottom of the web must then be a union of edges. We call this cycle L 1 . The web then looks like where we have numbered the faces above L 1 connected to it. We have that m ≥ n because of the minimality of the cuts crossing the bottom-most and top-most edges. We claim that m = n. Indeed, suppose m > n. Denote by V top 1 = m (respectively V bot 1 = n) the number of edges connected to L 1 that are situated on top (respectively at the bottom) of L 1 but not in L 1 . We then have that V top 1 -V bot 1 > 0. There must be a face f k that is not in the set {f +∞ i , i ∈ 1, n }. This face must be closed, i.e., be surrounded by edges. Denote its surrounding edges present in L 1 by e i , i ∈ I, and those absent by e j , j ∈ J. Then consider the cycle L 2 = L 1 ∪ {e j , j ∈ J} \ {e i , i ∈ I}. Here is an example with k = 1:

where we depicted L 2 in cyan again.

Denote by E top the number of edges that are connected to f k at the top of L 2 but not in L 2 . Denote by E bot the number of edges that are connected to f k at the bottom of L 1 but not in L 1 . Because all digons and squares have been reduced, the face f k is surrounded by at least 6 vertices, so we must have E top + E bot ≥ 4. Denote by V top 2 (respectively V bot 2 ) the number of edges connected to L 2 that are situated on top (respectively at the bottom) of L 2 but not in L 2 . We have that 
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 11 Figure 1.1: Top : a thin domain wall separating spin clusters of different colours. Bottom : A thick domain wall separating spin clusters of the same colour. Images taken from ??
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 21 Figure 2.1: Possible configurations of the CPL models around a node, with their corresponding weights.

Figure 2 . 2 :

 22 Figure 2.2: A configuration of the CPL model on a tilted square lattice of length L = 8 and width M = 7.

  2.21b) Given a braid diagram b, one can consider its closure b which is given by connecting the first bottom point to the first top one, the second bottom point to the second top one, etc. The closure is then a oriented link diagram. It is possible to show that every oriented link diagram arises as a closure of a braid diagram. Whether two braid diagrams b and c give the same link as their closures is answered by a theorem from the work of Alexander and Markov. b and c must we related to each other by a sequence of the two following Markov moves and their inverses :

Figure 2 . 3 :

 23 Figure 2.3: A configuration of the Potts/random cluster model. Activated links are drawn in solid red lines on the underlying square lattice L drawn in dashed black lines.
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 24 Figure 2.4: A plaquette of the RSOS models in the bulk, top boundary and bottom boundary.
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 25 Figure 2.5: Dynkin diagrams for simply laced simple and affine Lie algebras.
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 26 Figure 2.6: Possible configurations around each node, with their corresponding weights.
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 427 Figure 2.7: Boundary weights.
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 28 Figure 2.8: Left panel: A configuration of the O(N ) loop models on H with 2M = 6 rows and 2L = 12 columns. The left and right sides of the drawing are identified by periodic boundary conditions.

Figure 2 . 9 :

 29 Figure 2.9: The phase diagram of the O(N ) loop model. N is shown on the horizontal axis and x is shown on the vertical axis. The black curve indicates the loci of dilute critical points. The grey area corresponds to the dense phase.
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 210 Figure 2.10: The row to row transfer matrix in the case of periodic boundary conditions with 2L = 10.

Figure 2 . 11 :

 211 Figure 2.11: Left panel: A configuration in L m col for m = 2w 1 in the strip geometry. Right panel: A configuration in L m obtained from the left one by forgetting orientations. We also show two examples of cuts.

Figure 2 . 12 :

 212 Figure 2.12: Local configurations of ideal states. An ideal state is given tiling H with one type of such configurations.

•

  F maps Hom spaces Hom(a, b) → Hom(F (a), F (b)) bijectively.

  [n] = (0 ⊕ 1) ⊗nThe Hom space Hom([n],[n]) is the dilute TL algebra on n sites. Moreover, the transfer operators in 2.2.4 are elements of Hom([n], [m]) for some n and m that correspond to the number of physical sites of their source and target spaces respectively.The equivalence of T L and Rep(U -q (sl 2 )) extends to the equivalence of T L and Rep(U -q (sl 2 )). Thus we can regard the diagrams in Hom([n], [m]) as intertwiners. The Markov trace extends naturally to Hom([n], [n]) by using the following morphisms cup = cup + Id 0 ∈ Hom([0], [2]) cap = cap + Id 0 ∈ Hom([2], [0]) where we use the same notation Id 0 to denote the projection onto 0 or the embedding of 0 in [2] = 0 ⊕ (1, 0) ⊕ (0, 1) ⊕ (1, 1). We can then close a diagram A ∈ Hom([n], [n]) as Mtr(A) = One has that Mtr(A) = tr F (A)q H

62 Morphisms

 62 in FSp (G 2 ), Sp (G 2 ) are generated by Id 1 and the following
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 41 Figure 4.1: Left panel: A configuration on H of weight x 22 1x 13 2 yz[2] q [3] 2 q .The arrow is parallel to the axis of the cylinder. The left and right sides of the drawing are identified by periodic boundary conditions. Right panel: The same configuration drawn as a web.
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 42 Figure 4.2: Two spin configurations, with the colours {red, blue, green} representing the spin values Z 3 := {0, 1, 2}. These configurations are related by a global Z 3 shift and hence produce the same Kuperberg web.

Figure 4 . 3 :

 43 Figure 4.3: The row to row transfer matrix in the case of periodic boundary conditions with 2L = 10.
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 3 is the height of an equilateral of height 1.
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 44 Figure 4.4: Phase diagram of the web model with q = e iπ/5 in the ( √ x, y) plane, as given by the contour plot of the effective central charge for sizes L = 5 and L = 6. The interpretation is given in the main text.

Figure 4 . 4 .

 44 At first sight, three different regions can be distinguished: 1. To the left of an almost vertical line, √ x 0.6, we have c eff ≈ 0 (sand coloured region).

Figure 4 . 5 :

 45 Figure 4.5: Close-up of the ridge region of the web model with q = e iπ/5 in the ( √ x, y) plane, as given by the contour plot of the effective central charge for sizes L = 5 and L = 6. The interpretation is given in the main text.
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 46 Figure 4.6: Phase diagram of the web model with q = e iπ/4 . Conventions are as in Figure 4.4.

Figure 4 . 7 :

 47 Figure 4.7: Phase diagram of the web model with fixed value of vertex fugacity y = 1 in the ( √ x, γ) plane with q = e iγ in the range γ ∈ [0, π/3].

Figure 4 . 8 :

 48 Figure 4.8: Left panel: A configuration of K m col for m = w 1 in the strip geometry. Right panel: A configuration of K m obtained from the left one by forgetting colours.

Figure 4 .

 4 8 for an example. Remark that the colours of the edges connected to the boundary are constrained by the choice of magnetic defect. Set m = n 1 w 1 + n 2 w 2 , with n 1 , n 2 ∈ Z ≥0 . This boundary condition imposes constraints on the possible three-colourings of c. Different configurations c i in K m col , that produce the open web c once one forgets their colourings, are exactly the three-colourings of c. By summing over their weight we obtain

Figure 4 . 9 :

 49 Figure 4.9: Left panel: A configuration of K m col for m = w 1 + w 2 in the cylinder geometry. Right panel: A configuration of K m obtained from the left one by forgetting colours.

Figure 4 .

 4 9 for an example. Let c be a configuration in K m . The different configurations c i in K m col that give the open web c, once one forgets their colourings, are exactly the three-colourings of c whose edges touching the boundary are coloured according to m. By summing their weight, we obtain Z e,m K = c∈K m w e,m (c) ,

Figure 4 .

 4 Figure 4.11: A sequence of ideal states related by transformations described in the main text.
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4. 7 . 1

 71 Geometrical defects in Z 3 spin modelsIn Section 4.2, we formulated an equivalence between a Z 3 symmetric spin model on the triangular lattice dual to H and the Kuperberg web model at the special point

(4. 111 )

 111 Doing again the high-temperature expansion, a graph G surviving is an open Kuperberg web embedded in H. Denote by K Γ the set of such open webs. The correlation function can then be written as

  h) = (h e0,ρ , he0,ρ ) . (4.125)We then obtain the fractal dimension D F of critical webs at the point (4.119) as the corresponding codimension,D F = 2 -(h e0,ρ + he0,ρ ) .

Figure 5 . 2 :

 52 Figure 5.2: A spin configuration, with the colours {red, blue, green} representing the spin values Z 3 := {0, 1, 2}.

→ y ( 5 . 5 )

 55 The relations to compute the topological weight of a simple weight at the point (5

Figure 5 . 3 :

 53 Figure 5.3: The possible spin configurations around a square of S * up to discrete rotations and their Boltzmann weights. |σ i -σ j | = 1 if i = j. The factors of x take care of the fact that a piece of domain wall is shared between two squares.

Figure 5 . 4 :

 54 Figure 5.4: A simple web that is not bipartite, for n ≥ 4.

Figure 5 . 5 :

 55 Figure 5.5: Two equivalent simple webs (for the case n = 3). Note that taking into account (5.31) they have equal weight x 11 1x 5 -1 x 8 2 x 11 -2 y 1,1;2 y 2;1,1 [2] q [3] 2 q = x 19 1 x 13 -1 x 3 -2 y 1,1;2 y 2;1,1 [2] q [3] 2 q .

  [c] denote the equivalence class of the simple web c: we have c 1 , c 2 ∈ [c] if and only if c 1 ∼ c 2 . Let C denote the set of all equivalence classes of simple webs on H. Our web model is defined over the configuration space C, by assigning a statistical weight w([c]) to each [c] ∈ C. The weight w([c]) is the product of two factors, a local weight and a non-local weight. Let w s (c) denote the non-local weight assigned to a simple web by the rules (3.29). In Appendix C, we invoke the tag rules and prove that c 1 ∼ c 2 ⇒ w s (c 1 ) = w s (c 2 ) . (5.30) We can therefore write w s ([c]) for the non-local part of the weight for the given class [c].

( 5 . 35 )

 535 for any configuration [c]. The total weight (5.32) of a configuration is then w

Figure 5 . 6 :

 56 Figure 5.6: Two spin configurations in the Z n model with n = 3, with the colours {red, blue, green} representing the spin values Z 3 := {0, 1, 2}. These configurations are related by a global Z 3 shift and hence correspond to equivalent webs.

  ) where as usual N ••• denotes the number of occurrences of the corresponding bond or vertex types. The partition function then reads Z = c∈C w(c) .
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 57 Figure 5.7: The row to row transfer matrix in the case of periodic boundary conditions with 2L = 10.

Figure 6 . 1 :

 61 Figure 6.1: Part of a loop configuration surrounding spin clusters. Activated links are drawn in bold.

Figure 6 . 2 : 1 :

 621 Figure 6.2: Part of a two colors loop configuration.

i = for i even 135 We

 135 then obtain a presentation of the Fuss-Catalan algebra by quotienting by the following relations U

  α = 1, α = 0 and β = β = √ Q. From the transfer matrix in the local vertex-vertex representation, we list here numerically estimated central charges and dilation weights ∆ = h + h for the spin cluster 2-point connectivity. We parametrize Q as √ Q = 2 cos π m+1 and we add, for comparison, the conjectured corresponding exponent (known exactly for the Ising model (2.179)) [40, 54, 74, 131]: 857089863606093 0,857142857142857 0.091668150667215 0,095238095238095 137

2 -V bot 2 = V top 1 -V bot 1 +

 2211 E top + E bot -4 > 0 . (B.4)

  • • • h M +1 taking value in G with the first height constrained, h 0 = k. It is possible to show that the operators E i acting non trivially on h i-1 , h i and h i+1 only, as

  .117) Again, one does not need the additional rule (4.54) in this case. Moreover, because on any non-contractible cycle, there are exactly two vertices with fugacities y and z, the weight of such a cycle is yzn e = 1. Then, again by a trick analogous to the one introduced in Section 4.2, one can see that all webs are given a topological weight 1. This means that

	(h σ , hσ ) = (h e,h2 , he,h2 ) = (	1 15	,	1 15	) .	(4.118)
	where the last equality follows from (4.95). The following table gives the numerical estimation of h e,h2 + he,h2
	:					
	Size L	h e,h2 + he,h2			
	5	0.134425217550764	
	6	0.134307263093286	
	7	0.134209499407688	
	∞	0.13338				

  K1 δ σiσj e -i π 6 + δ σi =σj e i π 6 e K1 δ σiσj e K1 δ σiσj e K1 δ σiσj e i π 6 + δ σi =σj e -i π 6 e K2 δ σiσj e K2 δ σiσj e K2 δ σiσj e i π 6 + δ σi =σj e -i π

	read		
	δ σi =σj	δ σi =σj	e
	This gives a total topological weight for each loop	
		e i π 3 + e -i π 3 = 1	(6.4)
	as it should. We thus obtain a Potts model coupled to a six-vertex model. The local Boltzmann weights

6

δ σi =σj δ σi =σj e K2 δ σiσj e -i π 6 + δ σi =σj e i π 6

We will not always display the dependency with respect to variables explicitly

RSOS stands for restricted solid-on-solid.

Note that we use the same symbol q for the deformation parameter of quantum groups and for the argument of the spectrum generating functions. Hopefully no confusion should arise.

This is not true for the dense phase, where crossings are relevant and drive the models to other fixed points[START_REF] Jacobsen | Dense loops, supersymmetry, and goldstone phases in two dimensions[END_REF].

This will be explained in more details in Section 4.3.4 

Our convention on loop orientations is opposite to what one may find in part of the literature. It follows from our convention for the coproduct of the quantum group (see Appendix A

Remark that t loop corresponds to summing over the state of a vertical link, so that a pair of vertices on H is effectively transformed into a single vertex on a (tilted) square lattice.

Note that with our definition, the row-to-row transfer matrix propagates states through two rows of the lattice.

Remark that no non-trivial boundary operator is used in this setup. Generalisations to non-trivial boundary interactions are however possible[START_REF] Dubail | Exact solution of the anisotropic special transition in the o(n) model in two dimensions[END_REF][START_REF] Dubail | Conformal boundary conditions in the critical o(n) model and dilute loop models[END_REF].

The "-q" in U -q (sl 2 ) may seam unusual but it is actually convenient in order not to introduce additional minus signs in expressions like (2.120).

We use the convention that short roots have square norm equal to 2, (α 1 , α 1 ) = 2.

The notation : : stands for normal ordering.

When q = -1 it is the spin[START_REF] Affleck | Universal term in the free energy at a critical point and the conformal anomaly[END_REF] 

representation in physics.

It was used by Penrose to represent tensor computations in[START_REF] Penrose | Applications of negative dimensional tensors[END_REF] 

As in the case of loop models, when g = sln, we will use the more convenient choice of deformation parameter q → -q.

Note that our conventions differ from[START_REF] Kuperberg | Spiders for rank 2 lie algebras[END_REF] by q ↔ q 1 2 and a rescaling of vertices by i.

For now, we work with Uq(sln), it will turn out to be convenient to make the change q → -q later in the discussion.

We note that the argument will not work in other geometries, like a torus, but we do not treat them here.

To be precise, T = H * is a triangular lattice with one additional node at infinity in the strip geometry and two additional nodes, one at the top infinity, the other at the bottom, in the cylinder geometry as explained in Section 2.2.

The model also has rich critical behaviour in the antiferromagnetic (-1 < x < 0) and unphysical (x < -1) parts of the parameter space. This behaviour is only partially understood, and moreover depends crucially on the representation chosen (spins, loops, heights, etc.)[START_REF] Jacobsen | Phase diagram of the triangular-lattice potts antiferromagnet[END_REF] 

As in the loop model case, the original partition function is recovered for 2M -2 rows instead of 2M rows because of our choice of vacuum.

In the terminology introduced by Kuperberg, this quotient is called a clasped web space[START_REF] Kuperberg | Spiders for rank 2 lie algebras[END_REF].

The argument uses duality and Schur's lemma: by definition we have Inv(Vm⊗ V * m ) = Hom U C, Vm ⊗ V * m, where U = U -q (sl 3 ), and the latter space is isomorphic to Hom U (Vm, Vm), by the duality ev/coev maps, and by Schur's lemma it is one-dimensional.

See the discussion below (4.60).

Note that, on any minimal cut, the colour of an edge is fixed by the choice of magnetic charge in the same way it is fixed for edges connected to the top and bottom boundaries, however the ordering of orientations might be different for the middle blocks.

In the cylindrical case the colours of arrows of the magnetic defect state might be different from those of the strip geometry case but only the orientations matter for the argument.

Or, of course, the trivial web consisting of only vertical edges if the two ordered sequences of orientations in the top and bottom boundaries are the same.

Note that in both cases, the labels of incoming (resp. outgoing) edges are written before (resp. after) the semicolon.

We note that we however do not require rotational invariance for the bond fugacities.

Note that with our definition, the row-to-row transfer matrix propagates states through two rows of the lattice.

Acknowledgments

The partition function then reads : (5.13) where N 1 (resp. N 2 ) is the number of simple (resp. double) bonds and N V is the number of of vertices.

Definition of the models on the square lattice S

Here we define some more constrained web models on the square lattice. Their definition is motivated by connections with spin models that will be exposed in section 5.2.3. Recall that we can extend the B 2 spider into Sp (B 2 ) in order to incorporate 4-valent vertices. Denote by S, the square lattice embedded in the strip or the cylinder. The configuration space, that we still denote by K, is given by B 2 webs in Sp (B 2 ), embedded in S made of simple edges only whose connected components are either closed loops or 4-valent graphs. The weight of a configuration G is again the product of a local and a non-local part. We give a bond fugacity x to any simple bond and a vertex fugacity z to any vertex. The non-local part is again the Kuperberg weight w K (G) given by the applications of the rules (3.14) and (3.15).

The partition function then reads :

where N is the number of simple bonds and N V is the number of of vertices.

Relation with Z 3 and Z 4 spin models

In this section, we show how the B 2 web models for some specific values of q are equivalent, at the level of partition functions, to Z 3 and Z 4 spin models, with webs and spin clusters interfaces identified.

B 2 webs in H and the Z 4 spin model Consider the lattice dual to H embedded in the strip (respectively the cylinder), that is, a triangular lattice T with one (respectively two) point at infinity. We begin by formulating the Z 4 spin model in terms of its domain walls. Consider spins {σ i , i ∈ T} taking values in Z 4 ∼ = {1, . . . , 4}. We define nearest neighbours interactions W (σ i , σ j ) = x |σi-σj | for two neighbouring sites i and j. |σ i -σ j | is to be understood modulo 4 and we normalize interactions such that x 0 = 1. Hence, the model contains two parameters x 1 and x 2 . The partition function of the model reads

where N 1 and N 2 denote the number of occurences of neighbouring spins differences. Now we will rewrite the partition function in terms of its domain walls. Consider a spin configuration {σ i , i ∈ T}. For two neighbouring spins σ i and σ j , if |σ i -σ j | = 1, we draw a simple bond on the link of H separating the two spins. If |σ i -σ j | = 2, we draw a double bond, whereas if |σ i -σ j | = 0 we let the link empty. We obtain this way a Kuperberg B 2 web G embedded in H, i.e. G ∈ K. Clearly, the mapping is onto and many to one. That is, any G ∈ K is reached as a domain wall but different spin configurations will have the same domain wall G. Note that G contains, not only the information about domain walls between different spins but also what type of difference there is between spins, i.e a difference of ±1 or ±2.

All configuration having the same domain wall G have the same weight. Hence, in order to write the partition function, it suffices to count how many spin configurations have the same domain walls. For later convenience we define this number in the following way. For a graph G whose connected components can be closed loops, such that all of its edges (or loops) are simple or double edges, consider the graph dual to G having its edges labelled by 1 (respectively 2) if they cross simple edges (respectively double edges). We say that its edges are of type 1 or type 2. We call such graphs decorated. Remark that G could be a B 2 web here, but it can be a more general graph. We will denote the dual graph of G by Ĝ and we stress that we consider Ĝ as a decorated graph. We call a proper coloring of a decorated graph H, a coloring of its vertices with colors in {1, . . . , 4} such that two colors connected by an edge of type 1 (respectively type 2) differ by ±1 modulo 4 (respectively ±2 modulo 4). We denote the number of proper colorings of H by ψ H .

It is clear that, given a domain wall configuration G ∈ K, the number of spin configurations that have G as its domain wall configuration is equal to ψ Ĝ. Hence the partition function of the spin model can be written as :

We will now show that ψ Ĝ = 4w K (G) when q = e i π 4 establishing the claimed equivalence. First, observe that we can extend by linearity the map ψ to FSp(B 2 ) obtaining a linear form. We now claim that this map factors through the relations (3.14) to a well defined map on Sp(B 2 ). For q = e i π 4 , the B 2 relations read :

-2 = 0 (5.17a)

We must verify that, for all relations, the left hand side is in the kernel of ψ. It is clear that this holds for the first 5 relations. To show that it holds for the last one, we can extend the definition of ψ to FSp (B 2 ) and show that it factors to a well defined map on Sp (B 2 ). We thus have to show that the linear combinations

are in the kernel of ψ. The proof being similar for the two expressions, let us detail it for the first one.

C 0 . We then need to show that the following linear combinations are in the kernel of f :

-2 (5.26a) -2 (5.26b)

(5.26c)

This follows from a straightforward application of the relations of C 0 . Hence, for a given web G we have that

Thus, we have

We now extend the definition of web models to the U q (sl n ) case. We will first define in the model based on the CKM spider as they originally appear in [START_REF] Lafay | Uq(sln) web models and zn spin interfaces[END_REF] and show their relation to spin cluster intefaces in Z n models. Then we will introduce another equivalent definition of the models in terms of polarized webs.

Definition of the models

The stage is the same as before. The models are defined by weighting subgraphs of an underlying hexagonal lattice H. This lattice is again embedded in a cylinder or a strip, such that one third of its links are parallel to the axis of the cylinder, which we orient as before. The subgraphs in question are CKM webs (see Section At the special point (5.34) we have the identities

(5.40b)

They imply that y k,l;k+l and y k+l;k,l indeed equal 1 when one of the labels is 0 or n, as desired. Moreover, the constraints (5.31) are satisfied. We finally notice that all the vertex weights in (5.39) are well defined at the special point (5.34), because the label k + l never equals n + 1 (otherwise [k + l] q = 0) and therefore the q-binomials never vanish. With (5.34) and (5.39) the relations with the dressed vertices become = 1 (5.41a)

As in the case of A 2 webs, for any of these relations, the sum of prefactors for the graphs on the left-hand side is equal to the sum of prefactors for the graphs on the right-hand side. Then, by the same argument as given below (4.12), the weight of any "dressed" MOY graph is 1 and in particular, the partial weight w ([c]) = 1 for any configuration [c]. This therefore shows (5.35).

Remark that we could have written the modified relations for webs instead of MOY graphs in a similar way (without rescaling tags, as those do not account for vertex fugacities). Then, the relation (3.29i) does not, in general, possess the crucial property that the sum of prefactors on the left-hand side equals the sum of prefactors on the right hand-side. Although when n is odd, it actually does, we needed to use the equivalence with MOY graphs to show (5.35) for any n. The point is that the identification with MOY graphs ensures the existence of a reduction process of a closed simple web that does not use (3.29i).

The partition function of the web model with (5.39), at the special point (5.34), thus reads simply

x N k k .

(5.42)

Low-temperature expansion Consider now a spin model on the triangular lattice T, dual to the hexagonal lattice H where the web model is defined. To each node i, attach a spin variable σ i ∈ 0, n -1 . To

The basis we use for this representation is given in Appendix A.3. The local transfer matrices of the B 2 web model are then given by

The diagrams correspond to intertwiners whose matrix elements are given in Section 3.2.2. The twist operator is given by

(5.59)

where ρ and ρ ∨ denote the Weyl vector and the dual Weyl vector respectively (see the appendix A). The transfer matrices for the square lattice case can be defined analogously.

The A n-1 case

Let V k be the kth fundamental representations of U -q (A n-1 ) of highest weights w k . The local Hilbert space is given, as a representation, by

The basis we use for this representation is given in Appendix A.3.

The local transfer matrices of the U -q (A n-1 ) web model are then given by t An-1

= k,l,m∈ 0,n-1 k+l=m mod n

= k,l,m∈ 0,n-1 k+l=m mod n

We normalize them such that (α i α i ) = 2. The root lattice will be denoted by

The Cartan matrix is given by :

The fundamental weights w i are given by

The weight lattice is dual to the root lattice and denoted by

The Weyl vector is given by

Let α 1 and α 2 be the two simple roots of B 2 with α 1 the smallest one. We normalize them such that (α 1 α 1 ) = 2. The Cartan matrix is given by :

The simple coroots are given by

The fundamental weights are given by

The Weyl vector and dual Weyl vector are

Let α 1 and α 2 be the two simple roots of G 2 with α 1 the smallest one. We normalize them such that (α 1 α 1 ) = 2. The Cartan matrix is given by :

The simple coroots are given by

The fundamental weights are given by

The Weyl vector and dual Weyl vector are

A.2 Quantum Groups

Let L be a complex finite dimensional Lie algebra of rank r. We recall here a definition of the Hopf algebra U q (L). Let d i , i ∈ 1, r be the relatively prime positive integers such that d i A ij is symmetric Then, the C(q)-algebra U q (L) is generated by E i , F i , q Hi for i ∈ 1, r satisfying the following relations:

q Hi q Hj = q Hj q Hi , (A.14a)

q Hi E j q -Hi = q Aij E j , q Hi F j q -Hi = q -Aij F j , (A.14b)

It is a Hopf algebra with the coproduct

and the counit

We use the notation H i cidiαi := i c i H i . For instance, for the Weyl vector ρ corresponds to H ρ .

A.3 Action of generators on fundamental representations

We give here bases for representations that are used in the vertex formulation of web models. We also give the action of generators of quantum groups in theses bases.

A.3.1 A n-1

For the given fundamental representation V k of highest weight w k , one has that

where V 1 is the standard representation of basis x i . Then V k has a basis given by the x S where

The action of the generators of U q (A n-1 ) in the basis x i of V 1 is given by

The action on other fundamental representations follows from the coproduct.

A.3.2 B 2

Let V 1 and V 2 be the fundamental representations of U q (B 2 ) of highest weights w 1 and w 2 respectively. In V 1 , pick a highest weight vector, e 1 . Then we obtain a basis by applying lowering operators:

Some results on irreducible magnetised webs

B.1 Irreducible magnetised webs in a rectangle

We show here that for any choice of orientations of edges incident on univalent vertices of a magnetised web in a rectangle, there exists an irreducible one that is a concatenation of H-webs. Consider finite sequences

orientations of the edges at the bottom and top boundary of a magnetised web. In this case, we say that the web connects s to s . For instance, the following web connects s = (↓, ↑) to s = (↑, ↓).

(B.1)

We will show by induction in n that there exists an irreducible magnetised web connecting s to s and that is a concatenation of H-webs. The statement is obvious for n = 1. Suppose that the result is true for n -1 and consider s and s of length n. If s 1 = s 1 , then we can draw a vertical edge that connects {s 1 } to {s 1 }. Then, by the induction hypothesis, there is an irreducible magnetised web connecting s \ {s 1 } to s \ {s 1 } that is a concatenation of H-webs. By juxtaposing this web to the right of the vertical edge considered above, we obtain an irreducible web connecting s to s that is a concatenation of H-webs.

If

, the permutation of the ith and (i + 1)th elements of the finite sequence x of length n. Clearly, there is an irreducible web connecting x to τ i (x). Either x i and x i+1 are the same, and the irreducible web is simply a bunch of vertical edges. Or x i and x i+1 are different, and we can use an H-shaped web as in (B.1), or with all arrows reversed depending on the initial orientations of edges, connecting the bottom ith and (i + 1)th edges to the top ones, the others being connected by vertical edges. Consider then

By the above discussion, there is a concatenation of H-webs that we call W 1 , connecting s to r, one for each transposition. Moreover, as s k = s i for i ∈ 1, k -1 , it is clear that each H-web corresponding to each of the transpositions is not merely a set of vertical edges. Here is an example

Because r 1 = s 1 , by the argument above, we know that there exists an irreducible web W 2 connecting r to s that is a concatenation of H-webs. Moreover, we know that it connects r 1 to s 1 by a vertical edge. Consider the concatenation of H-webs W 2 W 1 . It connects s to s and it is irreducible. Indeed, no digons or loops appear in a concatenation of H-webs. For a square to appear in the concatenation W 2 W 1 , it is clear, due to the orientation of the edges at the top boundary of W 1 (the one linked to W 2 ), that it can only be the square containing the two left-most edges at the top of W 1 . However, the left-most edge of W 2 is a through-line (by the induction assumption) and so the two left-most edges at the bottom of W 2 cannot be a part of an H-shaped web, and therefore cannot produce a square while concatenating with W 1 . If n 1 = 0 or n 2 = 0, then all bottom edges have the same orientations and there must be an odd number of top edges connected to a segment delimited by two consecutive bottom edges. Hence this number must be equal to 1. As all bottom edges and all top edges are coloured the same, it is clear that there are two possible colourings for edges in L. These edges are coloured in an alternate way, with the two colours that are different from the one of the bottom and top edges, and two such alternating colourings are possible.

B.2 Colourings of type C blocks

If n 1 = 0 and n 2 = 0, then there exist two consecutive bottom edges e and e such that the segment [e, e ] is not connected to any top edge. Indeed suppose the contrary. Denote by e i , i ∈ 1, n 1 + n 2 , the bottom edges such that e i and e i+1 are consecutive, where indices are taken modulo n 1 + n 2 . Then for all i ∈ 1, n 1 + n 2 , [e i , e i+1 ] is connected to a number m i ≥ 1 of top edges. Moreover, every pair of consecutive edges with different orientations has m ≥ 2, therefore we get after summing over all m's that the number of top edges is strictly larger than n 1 + n 2 , a contradiction.

We thus have a pair of consecutive bottom edges e and e such that the segment [e, e ] is not connected to any top edge. Necessarily e and e have opposite orientations and thus different colours. The segment [e, e ] is constituted of one edge whose colour is fixed to be different to those of e and e . It is not hard to see that this fixes the colours of all edges in the cycle L, hence there is a unique possible colouring.

B.3 Irreducible webs in the cylinder geometry

We show here that an irreducible web c with nontrivial magnetic charge embedded in the cylinder is a concatenation of blocks of types A, B and C.

If there exists a path avoiding all edges and vertices of c that goes from the bottom boundary to the top boundary of the cylinder, then, up to some winding, c is contained inside a full rectangle. Hence it is a concatenation of blocks of type A and B.

Otherwise, the web, up to some winding, looks like

We can repeat the process and define cycles of edges L i such that V top i -V bot i > 0. After i 0 iterations, the process terminates, and we have that V top i0 = n > V bot i0 . But this contradicts the minimal cut assumption. Hence m = n and thus the web necessarily contains a block of type C. The procedure of constructing the wrapping cycle can be repeated until we are able to draw a path (from the top of the constructed concatenation of C type blocks) avoiding all edges and vertices that goes from bottom to top, up to some winding: this means that the given web c is a concatenation of blocks of type A, B and C.

Appendix C

Proof of equation (5.30) Here we show that if two simple webs c and c are equivalent-that is, related to each other by CPT transformations-then w s (c) = w s (c ), or |c = |c in the open boundary case. In fact, we will show that one can go from the web c to c by using the rules (3.29). Hence, they get weighted the same way in the closed case, or represent the same vector in the open case. To prove this, we focus on one transition cycle of edges of c that are CPT transformed in c . When this cycle has only one edge, the proof is straightforward. Suppose it has more than one edge, as depicted in the following figure:

The orientation of the edges connected to the cycle is immaterial. In order to CPT transform the whole cycle, one can introduce pairs of opposite tags, by applying (3.29f) on each edge of the cycle, obtaining: Now thanks to (3.29g), (3.29h) and (3.29i), one can move each tag in front of the arrow of the transformed edges through the vertex in front of it, and contract it with the following tag, at the price of a possible sign. When n is odd, there is no sign. When n is even, the sign occurs for crossing edges connected to the interior, grey part of the diagram, and is equal to (-1) li whatever the orientation of the edge carrying the label l i . Doing this contraction for each edge of the cycle thus creates a total factor of (-1) i li . Now, due to the flow conservation in the gray part of the diagram, there exists a set of signs i = ±1, such that i i l i = 0. This implies that (-1) i li = 1, so finally no non-trivial factor appears when transforming the cycle. Repeating the procedure for each transition cycle then leads to the result.