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ABSTRACT

This thesis considers two main problems.

The first problem considers the minimization of the makespan and the maximum lateness for a set of dependent tasks with unit duration, unit communication delays release times and due dates.

Each task requires one processor for its execution and duplication is not allowed. Algorithms are given for scheduling on limited and unlimited number of processors. Time windows of tasks are built from upper bounds of the makespan and the minimum maximum lateness respectively. A fixed-parameter algorithm based on a dynamic programming approach is developed to solve this optimization problem. The parameter considered is the pathwidth of the associated interval graph.

They are, as far as we know, the first fixed-parameter algorithms for a scheduling problem with communication delays and a limited number of processors.

The second problem considers real-time systems. Automotive and avionics embedded systems are usually composed by several tasks submitted to complex timing constraints. In this context, LET paradigm was introduced to improve the determinism of a system of tasks that communicate data through shared variables. The age latency corresponds to the maximum time for the propagation of a data in these systems. Its precise evaluation is an important challenging question for the design of these systems. We considered a set of multi-periodic tasks that communicate data following the LET paradigm. Our main contribution is the development of mathematical and algorithm tools to model precisely the dependence between tasks executions. These tools will be considered to experiment an original methodology for computing the age latency of the system. They allow to handle the whole graph instead of particular chains and to extract automatically the critical parts of the graph. Experiments on random generated graphs proved that systems with up to 90 periodic tasks with an hyper-period bounded by 100 can be handled within a reasonable time.

Introduction

This thesis has two parts. The first part is to calculate the latency of real time systems; the second part is to give fixed-parameter tractable algorithms for fundamental scheduling optimization problems.

Fixed-parameter tractable algorithms for fundamental scheduling optimization problem

The concept of scheduling dates back to ancient times: Sun Tzu [START_REF] Tzu | The Art of War. 5th century BC[END_REF] mentioned about scheduling strategy for military management 2500 years ago. The development of scheduling tools on computers such as Critical Path Method (CPM) can be traced back to mid 1956 with 'UNIVAC1' computer, one of the first computers used by commercial business. After 1970s, the wave of convenient and cheap personal computers (PC) spawned dozens (if not hundreds) of PC based scheduling systems. The evolution of scheduling tools closely tracked the development of computers and it will continue to do so.

The obstacle of scheduling problem is to find the optimal solution in a reasonable time. Fixedparameter tractable algorithm is a tool to solve hard problems in polynomial time when some parameters in the problem are bounded.

In this thesis, we attempted to use fixed-parameter tractable algorithm and dynamic programming tools to find optimal solutions in polynomial time with a fixed parameter in fundamental scheduling problems.

The model we considered is unit execution time and unit communication time (UET-UCT) scheduling model, which is one of the most researched model in scheduling theory field. We considered this model with two different criteria, makespan and maximum lateness.

First of all, in chapter 2, we gave a mathematical definition of the model we considered, briefly introduced parameter complexity theory and the parameter we considered. Then in chapter 3, we introduced two kernelization of this model: modification of release dates and deadlines of tasks and active schedules. In chapter 4, we gave an executable algorithm for makespan optimization on UET-UCT model on unlimited number of machines, proved the correctness of this algorithm and calculated the complexity which shows that this is a fixed parameter tractable algorithm. After, we extended the algorithm to optimize maximum lateness on limited number of machines in chapter 5.

We proved in this thesis that the scheduling problem P |r i , prec, p i = 1, c ij = 1|L max and P |r i , prec, p i = 1, c ij = 1|C max are fixed-parameter tractable parameterized with pathwidth of the interval graph of time windows. We extended a previous approach [START_REF] Munier-Kordon | A fixed-parameter algorithm for scheduling unit dependent tasks on parallel machines with time windows[END_REF] to tackle problems with communications delay and a limited number of machine, also to optimize the maximum lateness. We limit our enumeration to active schedules, which decreases the worst-case complexity of the method. These are the first two fixed parameter tractable algorithm on scheduling with communication delay problems.

Calculation of age latency in real time systems

Automotive and avionics embedded systems are usually composed by several tasks submitted to complex timing constraints. In this context, safety is one of the most important features. In LET paradigm, real-time tasks communicate through shared buffers, the time of reading input and writing output are determined regardless of the execution time of tasks. LET is motivated by the observation that the relevant behavior of real-time systems is determined when input is read and output is written and not when programs execute. The age latency of real-time systems corresponds to the maximum time for the propagation of data. The precise evaluation of the upper and lower bounds of age latency is an important challenging question for the design of these systems.

We consider in this thesis a set of multi-periodic tasks that communicate data following the LET paradigm. In chapter 6, we formally defined the real-time model our characterisation of the dependence between tasks executions are presented in Section 6.2. Section 6.3 and 6.4 explain the construction of a partial expanded graph of a real-time system. Section 6.5 presents our algorithm on the partial expanded graph which leading to an optimum upper bound of the age latency. This algorithm is experimented in Section 6.6 on a the case study ROSACE [START_REF] Pagetti | The ROSACE case study: from simulink specification to multi/many-core execution[END_REF] and in Section 6.7 on randomly generated graphs.

Our main contribution is the development of mathematical and algorithm tools to model precisely the dependence between tasks executions. These tools will be considered to experiment an original methodology for computing the age latency of the system. They allow to handle the whole graph instead of particular chains and to extract automatically the critical parts of the graph.

Experiments on random generated graphs proved that systems with up to 90 periodic tasks with an hyper-period bounded by 100 can be handled within a reasonable time.

Preliminary notions and context

Scheduling theory is a theory about the allocation of resources to activities over time. Resources can be computation processors, manufacturing machines, workers, teachers, etc. Activities can be program tasks in computer operating systems, steps of a complex project, operations in a production process, lessons in schools, etc. Scheduling theory can be applied in various fields like theory of computer science, management science, etc. For machine scheduling problems, algorithms have been widely investigated since the introduction of operation systems (OS) in 1950s [START_REF] Chen | A review of machine scheduling: Complexity, algorithms and approximability[END_REF][START_REF] Drozdowski | Scheduling for Parallel Processing[END_REF][START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF][START_REF] Veltman | Multiprocessor scheduling with communication delays[END_REF]. In this thesis, we focused on machine (processor) scheduling problems with specific conditions and applications.

The aim of this chapter is to give a brief view of the concepts we applied for in optimizing schedules with communication delays respect to different criteria. First we will give an overview on the classic scheme of machine scheduling models, then we will focus on the models with communication delays, after we will discuss common criteria considered in scheduling optimization problems. At last, we will introduce mainly researched scheduling strategies and complexities, especially on active schedules and fixed parameter complexity.

Homogeneous scheduling models with communication delays

The study of scheduling problems with interprocessor communication delays are rapidly growing resulting from the development of parallel and distributed memory systems. This phenomenon occurred due to a large range of applications including data mining, multimedia and bio-computing.

Despite that machine scheduling theory has been intensively study since 1950's as we mentioned before, the study on theories concerning communication delays is much younger and still has a big room for expansions [START_REF] Chrétienne | Scheduling with communication delays: A survey[END_REF][START_REF] Drozdowski | Scheduling for Parallel Processing[END_REF][START_REF] Giroudeau | Scheduling with Communication Delay[END_REF][START_REF] Veltman | Multiprocessor scheduling with communication delays[END_REF].

In this thesis, we considered homogeneous scheduling models with communication delays, where we have parallel identical machines fully connected and the communication between ma-chines are not negligible. If two tasks are communicating and they are allocated on different machines, a communication delay has to be considered between them. This means the higher for the level of parallel, the higher for the time cost for communication. Therefore, we need to find a compromise between parallel executions and sequential executions, which is main challenging part of this problem.

In the main research field, we separate homogeneous scheduling delay models into three different categories according to the ratio between execution time and communication time as follows:

1. Small communication time (SCT) scheduling models have tasks with communication time smaller than execution time. SCT models have some important applications such as parallel matrix multiplication on metacomputing platforms [START_REF] Jeddi | A poly-algorithm for efficient parallel matrix multiplication on metacomputing platforms[END_REF].

2. Unit execution time and unit communication time (UET-UCT) scheduling models contains tasks with the same communication time and execution time. This model is the fundamentally considered in scheduling theory. 3. Large communication time (LCT) scheduling models considers tasks with larger communication time than execution time. As the parallel and distributed systems becomes larger and larger, this model get more and more attentions recently with application in cloud computing [START_REF] Kliazovich | CA-DAG: modeling communication-aware applications for scheduling in cloud computing[END_REF].

Problem definition and notation

An instance of a homogenerous scheduling problem with communication delays is specified by: a set T = {1, 2, . . . , n} of n tasks is to be executed on an unlimited number of machines (sometimes also called as processors). Each machine can process at most one task at a time.

Tasks have a execution processing time p i and are partially ordered by a directed acyclic graph G = (T , A), also called precedence graph. Let t i be the starting time of the task i. An arc (i, j) ∈ A is called a precedence relation between task i and task j. For any arc (i, j) ∈ A, task i must finish its execution before the task j starts executing, i.e. t i + p i ≤ t j . If tasks i and j are assigned to different processors, a communication delay with duration c ij must be added after the execution of task i, to send data to task j and thus t i + p i + c ij ≤ t j .

In scheduling theory, the objective functions for optimization problems are generally limited to regular criteria, which are defined as follows [START_REF] Kenneth | Introduction to sequencing and scheduling[END_REF][START_REF] Walter | Theory of scheduling[END_REF]. 

If C i (σ) ≤ C i (σ ′ ), ∀i ∈ {1, 2, . . . , n} implies G(σ) ≤ G(σ ′ )
for two schedules σ and σ ′ , the criterion G is said to be a regular criterion. Some common researched criteria are listed below:

1. Makespan C max (σ) = max i∈{1,2,...,n} C i (σ).

Total weighted completion time

C(σ) = n i=1 w i C i (σ).

Total weighted tardiness with due dates

n i=1 w i T i (σ) where T i (σ) = max{C i (σ) -d i , 0}.

Maximum lateness with deadlines

L max (σ) = max i∈{1,2,...,n} (C i (σ) -d i ).

Total number of tardy tasks with due dates

U (σ) = n i=1 U i (σ), where U i (σ) =          1 if C i (σ) > d i , 0 otherwise,
where w i is the weight of task i and d i is the due date of task i, for all i ∈ {1, 2, . . . , n}.

Among these, makespan is the most basic and fundamental criterion used in scheduling research. Makespan indicates the length of time that takes from the start of tasks to the end. One may consider other objective functions f (C 1 (σ), . . . , C n (σ)) depending on the completion time of tasks such as the total weighted completion time. In manufacturing environments with due dates constraints, criteria like maximum lateness and total weighted tardiness are more appropriate as objective functions. As you can see, all these objective functions are monotone non-decreasing functions in completion time C i (σ), so they are all regular criteria. Besides, many reductions exist Figure 2.1: Reductions for objective functions [START_REF] Vivien | Introduction to Scheduling[END_REF]. between scheduling problems with different objective functions, see in Figure 2.1. We have i T i and i U i reduce to i w i T i and i w i U i by setting w i = 1 for all i. Furthermore, we have C max , i C i and i w i C i reduce to L max , i L i and i w i L i by setting d i = 0 for all i.

Finally, for decision problems and any threshold value y, for all i ∈ {1, 2, . . . n}, we have

L max ≤ y ⇔ C i -d i ≤ y ⇔ C i -(d i + y) ≤ 0 ⇔ max{0, C i -(d i + y)} ≤ 0 ⇔ n i=0 T i = n i=0 max{0, C i -(d i + y)} ≤ 0 ⇔ n i=0 U i ≤ 0.
Among all these objective functions, C max and L max are the most basic ones in optimization scheduling problems. This thesis focus on optimization of makespan and maximum lateness.

To systematize scheduling models, a three field of classification α|β|γ was introduced by Graham et al. [START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF]. The first entry α specifies the processor environment, β indicates job characteristics, and γ denotes objective functions, also called optimization criteria. For the second field β donating a set of tasks characteristics, we have some popular definitions listed below:

1. pmtn: Preemption is allowed, if not specified, then preemption is not allowed.

2. prec, tree, . . . : A precedence relation between jobs is specified. An acyclic directed graph G is used to present the precedence relation, called precedence graph. One can specify the type of precedence graph such as tree and so on. If not mentioned, then no precedence relation is specified.

3. r i : Release dates may differ and are specified per job. If not mentioned, we assume that release dates are all equal to zero. For the third field γ, it refers to the optimization criteria.

For example, the problem to minimize the maximum lateness on a single machine subject to a general precedence constraints, it can be written as 1|prec|L max . UET-UCT scheduling problem on unlimited number of processors can be noted using three-field notation as P |prec,

p i = 1, c ij = 1|C max .
In a schedule, if duplication is allowed, tasks can be executed more than once. Duplication of tasks can yield a smaller duration of a schedule, see example in Figure 2.2. Besides, when duplication is allowed, the scheduling problems are easier. For example, when SCT assumptions are met, the P |prec, p i , c ij , dup|C max problem is proved by Colin and Chretienne [START_REF] Colin | scheduling with small communication delays and task duplication[END_REF] to be polynomial solvable. In this thesis, we only consider the problems without duplication.

When duplication is not allowed, each task must be processed only once. So a schedule can be entirely defined by the starting time of each task i and a assigned processor π i . Since processors are identical, a task can be randomly assigned to a processor if there are communication delays between this task and all its predecessors, otherwise, the task has to be assigned to the same processor as its predecessor between which there is no communication delay. Therefore, a schedule σ(G) can be sufficiently represented as a vector σ(G) = (t 1 , t 2 , . . . , t n ) where t i is the starting time of task i ∈ T .

For each task i ∈ T , let Γ + (i) (resp. Γ -(i)) be the set of successors (resp. predecessors) of i,

i.e. Γ + (i) = {j ∈ T , (i, j) ∈ A} and Γ -(i) = {j ∈ T , (j, i) ∈ A}. The problem P |prec, p i =
1, c ij = 1|C max can be modelled by an integer linear program (P ) defined below. For any arc e = (i, j) ∈ A, we note x ij as the signal of communication delay between the tasks i and j. We set x ij = 0 if the task j is executed just after the task i on the same processor; in this case, there is no communication delay between them. Otherwise, x ij = 1.

(P )

                                               Objective : min C ∀e = (i, j) ∈ A, t i + p i + x ij c ij ≤ t j (1) ∀i ∈ T , t i + p i ≤ C (2) ∀i ∈ T , j∈Γ + (i) x ij ≥ |Γ + (i)| -1 (3) ∀i ∈ T , j∈Γ -(i) x ji ≥ |Γ -(i)| -1 (4) ∀i ∈ T , t i ∈ N (5) ∀e = (i, j) ∈ A, x ij ∈ {0, 1} (6) 
Variables are the starting times t i , ∀i ∈ T of the tasks, the communication delays x ij , ∀(i, j) ∈ A and the makespan C. Inequalities (1) express precedence relations and communication delays between tasks executions. Inequalities (2) define the makespan. Inequalities (3) express that any task has at most one successor performed at its completion time on the same processor. Similarly, inequalities (4) express that any task has at most one predecessor performed just before its starting time on the same processor. Any feasible schedule σ(G) corresponds to a feasible solution of (P ). For the problem with limited number of processors m < n, P m |prec, one more condition is needed to be added in the program (P ):

Let us consider

p i = 1, c ij = 1|C max ,
∀α ∈ {0, 1, . . . , n -1}, |{i, t i = α, i ∈ T }| ≤ m
Therefore, the program (P ) is no longer a linear program.

Motivations for scheduling optimization on UET-UCT model

Large parallel and distributed systems (cluster, grid and global computing) are the main stream in the computational world and the new challenges for researchers and developers on a large range of domains including data mining, multimedia, bio-computing and so on. More and more communication time is required in parallel and distributed systems, sometimes the communication time between processors is even longer than the real processing time. However, it is still a very large unexploited field to provide adequate and efficient algorithms and software tools for managing parallel resources with non negligible communication delays. This section will give existing algorithms and complexity results on scheduling problems with unit communication delays.

Given a precedence graph G = (T , A) to be scheduled on a parallel system, a starting time t i is to be allotted to each task i ∈ T . In homogenerous scheduling model with communication delays, processors are identical and fully connected. Each arc (i, j) ∈ A represents a potential data transfer between task i and task j when i and j are processed on two different processors. So the difficulty, in this model, is to optimize the efficiency between sequential execution and parallel execution. Basic scheduling problems with communication delays were intensively studied since the 1990s due to the importance of applications, see. the surveys [START_REF] Chen | A review of machine scheduling: Complexity, algorithms and approximability[END_REF][START_REF] Chrétienne | Scheduling with communication delays: A survey[END_REF][START_REF] Drozdowski | Scheduling for Parallel Processing[END_REF][START_REF] Giroudeau | Scheduling with Communication Delay[END_REF][START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF][START_REF] Veltman | Multiprocessor scheduling with communication delays[END_REF].

With the limitation on the number of processors, the problem P |prec,

p i = 1, c ij = 1|C max
is first introduced by Rayward-Smith [START_REF] Rayward-Smith | Uet scheduling with unit interprocessor communication delays[END_REF], who has proved that the problem is N P -hard and showed that an active schedule is no longer than 3 -2/m times the optimum. A schedule is active if no task can start earlier without increasing the start time of another task. Hoogeveen et al. [START_REF] Hoogeveen | Three, four, five, six, or the complexity of scheduling with communication delays[END_REF] have studied the decision problem and shown that P |prec,

p i = 1, c ij = 1|C max ≤ 3
can be solved in polynomial time and P |prec,

p i = 1, c ij = 1|C max ≤ 4 is N P -complete.
Lenstra et al. [START_REF] Karel Lenstra | The complexity of scheduling trees with communication delays[END_REF] showed that even if the precedence relation consists of a collection of trees, the problem P |tree, Without the limitation on the number of processors, Picouleau [START_REF] Picouleau | New complexity results on scheduling with small communication delays[END_REF] has shown that the decision problem P |prec, p i = 1, c ij = 1|C max ≤ 8 is N P -complete. Hoogeveen et al. [START_REF] Hoogeveen | Three, four, five, six, or the complexity of scheduling with communication delays[END_REF] have improved the result and showed that a polynomial-time algorithm without duplication exists for solving the problem P |prec, p i = 1, c ij = 1|C max when the makespan is bounded by 5, but it is NP-complete when the makespan is bounded by 6. So unless P = N P , there is no approximation algorithm with a worst case ratio smaller than 7/6. Munier and König [START_REF] Munier | A heuristic for a scheduling problem with communication delays[END_REF] gave a dynamic list scheduling heuristic with a relative performance equal to 4/3 using integer linear programming.

p i = 1, c ij = 1|C

Parameterized complexity for scheduling problems

Parameterized complexity classifies computational problems according to their difficulty with respect to multiple parameters of the input or output. The complexity of a problem is then measured as a function of not only the number of bits in the input but also their parameters. It classifies N P -hard problems into finer sets than in the classical computational complexity theory. The first systematic work on parameterized complexity was done by Downey and Fellows [START_REF] Downey | Parameterized Complexity[END_REF].

Fixed-parameter tractability

Under the assumption that P ̸ = N P , many fundamental problems, such as k-vertex cover [START_REF] Chang | Fixed-parameter algorithms for vertex cover p3[END_REF], require exponential running time, but are polynomial in the input size and only exponential or worse in a parameter k. Formally, a vertex cover

V ′ of an undirected graph G = (V, E) is a subset of V such that uv ∈ E ⇒ u ∈ V ′ ∨ v ∈ V ′ . k-vertex cover problem is to decide if G has a
vertex cover of at most k vertices, given a graph G and a parameter k. Even though it is considered unlikely to find an exact polynomial algorithm for N P -hard or N P -complete problems, some problems can be solved by algorithms that are only exponential to a fixed parameter but polynomial to the input size. Such an algorithm is named a fixed-parameter tractable (FPT-) algorithm. In this case, the problem can be solved efficiently when the fixed parameter is bounded by a small number. Therefore, FPT can be considered as a two-dimension complexity theory, which is defined by Downey and Fellows [START_REF] Downey | Parameterized Complexity[END_REF] as follows:

Definition 2.2.1. A parameterized problem is a language L ⊆ Σ * ×N , where Σ is a finite alphabet.

The second component is called the parameter of the problem. A parameterized problem L is fixedparameter tractable if the question "(x, k) ∈ L?" can be decided in running time f (k) • |x| O (1) , where f is an computable function depending only on k. The corresponding complexity class is called FPT.

This definition is to exclude functions of the form f (n, k), such as n k . Instead, we have XP as the class of parameterized problems that can be solved in time n f (k) for some computable function f . Thus, F P T is a strict subset of XP . Furthermore, we have the class FPL (fixed parameter linear) as the class of parameterized problems solvable in time f (k) • |x| for some computable function f . FPL is thus a strict subset of FPT.

For instance, for the k-vertex cover problem, the input size is the number of the vertex and arcs, the parameter can be k: the number of vertices in the cover. In the contrary, graph coloring problem parameterized by the number of colors is known not to be in FPT. An FPT algorithm for k-coloring should have complexity in time f (k)n O (1) , for k = 3, it would run in polynomial time in size of the input, but 3-coloring problem is known as N P -hard. Thus, if graph coloring parameterized by the number of colors were in FPT, then P = N P .

The development of fixed-parameter algorithms for N P -complete problems is a way to get polynomial-time algorithms when some parameters are fixed [START_REF] Cygan | Parameterized Algorithms[END_REF][START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF]. In many applications, the parameter is considered to be "small" compared to the total input size. Then it is challenging question to choose a proper parameter k and to find an algorithm which is exponential only in k,

and not in the input size.

Fixed-parameter intractability

The way to show the fixed-parameter tractability of parameterized problems is to find fixedparameter tractable algorithms and it is also very important to know how to prove that for some problems, fixed-parameter tractable algorithms do not exist. This can save us from wasting time on attacking the same problem over and over again with little hope of success. Besides, it is very helpful to look into a problem in both algorithm and complexity points of view at the same time.

A failure on finding an algorithm can give a hint to the characteristics of the hard instances and the structure of hardness proofs. Conversely, if one can point out a flaw in a hardness proof, then it may suggest an algorithm idea of this problem. Hence a parameterized complexity theory helps not only in finding the lower bound of the complexity but also gives a direction to the algorithm of the questions.

Parameterized reductions

In N P -hardness proofs, polynomial-time reduction are used. A polynomial time reduction from decision problem A to decision problem B is a polynomial-time algorithm in which the input is any instance x of problem A and the output is a corresponding instance x ′ of problem B and the answer of problem x is "yes" if and only if the answer of problem x ′ is "yes". If there is a polynomial-time reduction from problem A to problem B and problem B is in P , then problem A is also in P .

For parameterized problem, there is a parameterized reduction to transfer fixed-parameter tractability which is defined by Downey and Fellow [START_REF] Downey | Fixed-parameter intractability[END_REF][START_REF] Downey | Fixed parameter tractability and completeness[END_REF][START_REF] Downey | Fixed-parameter tractability and completeness I: basic results[END_REF].

Definition 2.2.2 (Parameterized reduction). Let A, B ⊆ Σ * × N be two parameterized problems.

A parameterized reduction from A to B is an algorithm satisfies:

1. input is any instance (x, k) of A, output is an instance (x ′ , k ′ ) of B,
2. the answer of problem (x, k) is "yes" if and only if the answer of problem

(x ′ , k ′ ) is "yes", 3. k ′ ≤ g(k)
for some computable function g, 1) for some computable function f . Downey and Fellow [START_REF] Downey | Fixed-parameter intractability[END_REF][START_REF] Downey | Fixed parameter tractability and completeness[END_REF][START_REF] Downey | Fixed-parameter tractability and completeness I: basic results[END_REF]] also proved that if there is a parameterized reduction from A to B and B is F P T , then A is also F P T .

4. the running time is f (k) • |x| O(

The W-hierarchy

It is proven [START_REF] Downey | Parameterized Complexity[END_REF] that Independent set can be reduced to Dominating set, but it is unknown if there is a parameterized reduction in the other direction. Therefore, Downey and Fellow [START_REF] Downey | Fixed-parameter intractability[END_REF][START_REF] Downey | Fixed parameter tractability and completeness[END_REF][START_REF] Downey | Fixed-parameter tractability and completeness I: basic results[END_REF] have introduced the W -hierarchy to capture different complexity levels of hard parameterized problems.

In order to define W -hierarchy, we have to introduce the WEIGHTED CIRCUIT SATISFIA-BILITY (WCS) problem.

Definition 2.2.3 (Boolean circuit). A Boolean circuit is a directed acyclic graph where the nodes are labeled in the following way:

1. every node of indegree 0 is an input node, 2. every node of indegree 1 is a negation node, 3. every node of indegree ≥ 2 is either an and-node or an or-node. Additionally, exactly one of the nodes with outdegree 0 is labeled as the output node. The depth of a circuit is the maximum length of a path from an input node to the output node.

Assigning boolean values to the input nodes of a circuit will determine the value of the output node. If the output node has the value 1, then we say that the assignment of the input nodes satisfies the circuit. The weight of an assignment is the number of input nodes with value 1. G) .n 2w(G) ) was developed by Veltman [START_REF] Veltman | Multiprocessor scheduling with communication delays[END_REF] where w(G) is the width of the precedence graph G. We can observe that it is also in XP. 

Time windows and Pathwidth

E(I) = {{v i , v j }, (r i , d i ) ∩ (r j , d j ) ̸ = ∅}
It is the intersection graph of the intervals.

For example, we can associate time windows to the precedence graph of In this thesis, we consider the pathwidth of interval graph of time windows as the parameter for fixed parameter algorithm. To understand what is pathwidth, we introduce path decomposition as follows. Path decomposition of a graph G could be interpreted as a method to represent the graph G as a path, and the pathwidth of graph G is a measurement of the thickness of the path formed Robertson and Seymour [START_REF] Robertson | Graph minors. i. excluding a forest[END_REF] in their series of papers on graph minors.

Definition 2.3.2. A path decomposition of a graph G = (V, E) to be an ordered sequence P = (X 1 , X 2 , . . . , X n ) where X i ⊆ V, ∀i ∈ {1, 2 
, . . . , n}, which satisfies the following two properties:

1. n i=1 X i = V, meaning every vertex of G is in at least one subset X i .
2. For each edge of G, there exists a subset X i such that both endpoints of the edge are inside

X i .
3. For every three indices such that i ≤ j ≤ k, we have

X i ∩ X k ⊆ X j .
The width of a path-decomposition is defined as max i∈{1,2,...,n} The reason of the subtraction of one from the maximum size of X i is to have the pathwidth of a path graph equal to one. It is proven by Bodlaender [15] that pathwidth of graph G can be described in many equivalent ways such as interval thickness. Interval thickness is one less than the maximum clique size of an interval graph which contains graph G. In an interval graph, the interval thickness is equal to the maximum clique size minu.s one. For example, the interval graph in Figure 2.6 has a maximum clique with nodes {3, 4, 6, 7, 8} with size of 5, so the interval thickness as well as the pathwidth of this graph is 4.

|X i | -1,
Pathwidth, and graphs of bounded pathwidth, also have applications in VLSI (Very Large Scale Integration) design [START_REF] Afonso | Achieving optimality for gate matrix layout and pla folding: a graph theoretic approach[END_REF][START_REF] Lopez | A dense gate matrix layout method for mos vlsi[END_REF][START_REF] Ohtsuki | One-dimensional logic gate assignment and interval graphs[END_REF], graph drawing [START_REF] Hliněny | Crossing-number critical graphs have bounded path-width[END_REF][START_REF] Suderman | Pathwidth and layered drawings of trees[END_REF], and compiler design [START_REF] Bodlaender | Linear-time register allocation for a fixed number of registers[END_REF]. Many problems in graph algorithms may be solved efficiently on graphs of bounded pathwidth, by using dynamic programming on a path-decomposition of the graph, see survey [6].

In this thesis, we consider the pathwidth of the interval graph of time windows of tasks. This parameter measures the maximum number of tasks that can possibly be executed at the same time instance. With release time r i and deadline d i for all task in T , for all α ∈ {0, 1, 2, . . . , C -1}, we can define

X α = {i ∈ T , (α, α + 1) ∩ (r i , d i ) ̸ = ∅}.
The pathwidth we consider is equal to the maximum size of X α minus 1.

Since the deadlines of tasks are calculated with an upper bound of makespan C or an upper bound of maximum lateness L, we note pathwidth as pw(C) or pw(L) = max α∈{0,...,C-1}

(|X α | -1).

Treewidth and Courcelle's theory

Similarly to pathwidth, treewidth measures how far the structure of a graph is from a tree-like structure. The smaller treewidth is, the better the graph can form a tree decomposition. Formally, a tree decomposition of a graph

G = (V (G), E(G)) is a pair T = (T, {X t } t∈V (T ) ), where T = (V (T ), E(T )) is a tree whose every node t ∈ V (T ) is assigned a vertex subset X t ⊆ V (G), called
a bag, such that the following conditions are satisfied:

1. t∈V (T ) X t = V (G).
That is, each graph vertex is associated with at least one tree node.

2. For every edge (u, v) ∈ E(G), there exist a node t ∈ V (T ) such that X t contains both u and v.

For every node

u in V (G), the set T u = {t ∈ V (T ) : u ∈ X t } induces a connected subtree of T .
The width of a tree decomposition

T = {(T, {X t } t∈V (T ) )} equals max t∈V (T ) |X t |-1.
The treewidth of a graph G denoted by tw(G) is the minimum possible width of a tree decomposition of G. The treewidth of trees and forests is one. For interval graph, treewidth is equal to pathwidth, which is the maximum clique size minus one.

Many optimization problems can be solved by dynamic programming on a tree decomposition and are fixed-parameter tractable when parameterized by the treewidth such as Weighted independent set problem and dominating set problems. Courcelle's Theorem describes unified properties of problems which can be solved by dynamic programming over a tree decomposition and it is presented by a logical formalism called Monadic Second-order logic on graphs (M SO 2 ). Courcelle's Theorem indicates that problems expressible in this formalism are always fixed-parameter tractable when parameterized by treewidth. To formally state Courcelle's Theorem, we will introduce Monadic second-order logic on graphs first.

Monadic second-order logic for graphs

A graph can be described in a logical structure. For every graph

G = (V G , edge G ), let ⌊G⌋ =
⟨V G , edge G ⟩ be a relational structure, where V G is the domain, the set of vertex, and edge G ⊆

V G × V G such that (x, y) ∈ edge G if and only if there exist an edge from x to y if G is directed
graph and an edge between x and y if G is undirected.

An example of an undirected complete graph of n nodes K n can be represented as follows:

⌊K n ⌋ := ⟨[n], edge n ⟩, edge n (x, y) :⇔ x, y ∈ [n] and x ̸ = y.
Besides, properties of a graph G can be expressed by relational structures in ⌊G⌋ too. For example, if G is directed, then every vertex of G has at least one predecessor and at least one successor if and only if

⌊G⌋ |= ∀x∃y, z(edge(y, x) ∧ edge(x, z)).
The two examples above are first-order logic formulas because the variables are vertices.

Second-order logic allows quantification over arbitrary predicates, i.e. sets of logic sentences, as variables. Monadic second-order logic formulas only allows quantification over monadic pred-icates, i.e. sets of vertices, as variables. Uppercase variables note sets of vertices and lowercase variables note individual vertices. An example of monadic second-order logic formula are following:

⌊G⌋ |= ∃X(∃x, x ∈ X ∧ ∃y, y / ∈ X ∧ ∀x, y(edge(x, y) → (x ∈ X ⇔ y ∈ X)))
The formula above holds if and only if G is not connected.

Variables whose evaluations are given with graph G are called free variables. Such variables are also allowed in M SO 2 formulas and we assume that the evaluation of these free variables are provided with the graph for the evaluation of M SO 2 formulas. For example the formula follows:

partition(X, Y, Z) =∀x{(x ∈ X ∨ x ∈ Y ∨ x ∈ Z)∧ [¬(x ∈ X ∧ x ∈ Y ) ∧ ¬(x ∈ Y ∧ x ∈ Z) ∧ ¬(x ∈ X ∧ x ∈ Z)]}
The formula above has three free variables X, Y, Z and verifies that (X, Y, Z) is a partition of vertex set V G .

Monadic second-order logic has many properties and applications, we have introduced the basic definitions above. Courcelle's Theorem identifies fixed parameter tractable problems when parameterized by treewidth and it is presented by M SO 2 . For any M SO 2 formula ϕ, let ||ϕ|| be the length of encoding of ϕ as a string.

Theorem 2.4.1 (Courcelle's Theorem [START_REF] Courcelle | The monadic second-order logic of graphs. i. recognizable sets of finite graphs[END_REF]). Assume that ϕ is a formula of M SO 2 and G is an n-vertex graph equipped with evaluation of all the free variables of ϕ. Suppose, moreover, that a tree decomposition of G of width t is provided. Then there exists an algorithm that verifies whether

ϕ is satisfied in G in time f (||ϕ||, t) • n, for some computable function f .
Note that the theorem above states that a decision problem modeled with M SO 2 is a fixed parameter tractable when the parameter is treewidth. However, the scheduling problems discussed in this thesis are optimization problems, we would have the following optimization variant of the theorem.

Theorem 2.4.2 ([7]). let ϕ be an M SO 2 formula with p free monadic variables X 1 , . . . , X p , and let α(x 1 , . . . , x p ) be an affine function. Assume that we are given an n-vertex graph G together with its tree decomposition of width t, and suppose G is equipped with evaluation of all the free variables of ϕ apart from X 1 , X 2 , . . . , X p . Then there exists an algorithm that in f (||ϕ||, t)

• n finds the minimum or the maximum value of α(|X 1 |, . . . , |X p |) for sets X 1 , . . . , X p for which ϕ(X 1 , . . . , X p )
is true, where f is some computable function.

In the next subsection, we will introduce how we can apply it to our scheduling problems.

Courcelle's Theorem's applications to UET-UCT problem

To model UET-UCT problem on unlimited number of machines in M SO 2 formula, we have a precedence graph G = (T , A). The free variables are the subsets of tasks, X 1 , . . . , X C , where C is an upper bound of makespan. The formula σ(X 1 , . . . , X C ) is satisfied if and only if there exists a feasible schedule of G with tasks in X α executed at time α.

σ(X 1 , . . . , X C ) =partition(X 1 , . . . , X C ) ∧ ϕ 1 (X 1 , . . . , X C ) ∧ ϕ 2 (X 1 , . . . , X C ) ∧ ϕ 3 (X 1 , . . . , X C ) ϕ 1 (X 1 , . . . , X C ) =∀u, v ∈ T , (edge(u, v) ∧ u ∈ X α ∧ v ∈ X β → β -α ≤ 1) ϕ 2 (X 1 , . . . , X C ) =∀u ∈ T , (∃v, edge(v, u) ∧ u ∈ X α ∧ v ∈ X β ∧ α -β = 1 → ∀w ∈ T , w ̸ = v ∧ edge(w, u) ∧ w ∈ X θ ∧ α -θ > 1) ϕ 3 (X 1 , . . . , X C ) =∀u ∈ T , (∃v, edge(u, v) ∧ u ∈ X α ∧ v ∈ X β ∧ α -β = -1 → ∀w ∈ T , w ̸ = v ∧ edge(u, w) ∧ w ∈ X θ ∧ α -θ < -1)
partition(X 1 , . . . , X C ) makes sure that all the tasks in G are scheduled and only scheduled once. Let us define

ϕ 1 (X 1 , . . . , X C ), ϕ 2 (X 1 , . . . , X C ), ϕ 3 (X 1 , . . . ,
α(x 1 , . . . , x p ) = p 1 x 1 + p 2 x 2 + . . . p p x p ,
where

p 1 = 1, p i = n • (p 1 + • • • + p i-1 ) + 1, ∀i ∈ {2, . . . , p},
and n is the number of tasks.

Let's prove that for any two schedule

σ 1 = (X 1 1 , . . . , X 1 C ) and σ 2 = (X 2 1 , . . . , X 2 C ), if the makespan of σ 1 is C 1 , the makespan of σ 2 is C 2 and C 1 < C 2 , then α(|X 1 1 |, . . . , |X 1 C |) < α(|X 2 1 |, . . . , |X 2 C |). Indeed we have α(|X 1 1 |, . . . , |X 1 C |) -α(|X 2 1 |, . . . , |X 2 C |) = p 1 (|X 1 1 | -|X 2 1 |) + p 2 (|X 1 2 | -|X 2 2 |) . . . p C 1 (|X 1 C 1 | -|X 2 C 1 |) -(p C 1 +1 X 2 C 1 +1 + • • • + p C 2 X 2 C 2 ) ≤ n(p 1 + . . . p C 1 ) -(p C 1 +1 X 2 C 1 +1 + • • • + p C 2 X 2 C 2 ) ≤ n(p 1 + . . . p C 1 ) -p C 1 +1
≤ 0

Therefore, we have that the problem to optimize the makespan of UET-UCT schedule on unlimited number of machines is fixed-parameter tractable when parameterized by treewidth of precedence graph.

Kernelization of UET-UCT model

Introduction to kernelization

Kernelization is one of the basic techniques to form a fixed-parameter tractable algorithm.

Kernelization is often a set of actions which cut away parts of the input that are easy to handle, and the left part is called the kernel. There are two main notations to express the kernelization process, listed as follows.

Definition 3.1.1 (Downey-Fellows notation [START_REF] Downey | Parameterized Complexity[END_REF]). A kernelization for a parameterized problem L ⊆ Σ * × N is an algorithm that takes an instance (x, k) ∈ L and maps it in time polynomial in

|x| and k to an instance (x ′ , k ′ ) such that • (x, k) is in L if and only if (x ′ , k ′ ) is in L,
• the size of x ′ is bounded by a computable function f in k

• k ′ is bounded by a function in k.
The output (x ′ , k ′ ) of kernelization is called a kernel.

Definition 3.1.2 (Flum-Grohe notation [START_REF] Flum | Parameterized Complexity Theory[END_REF]). A kernelization for a parameterized problem L is an algorithm that takes an instance x with parameter k and maps it in polynomial time to an instance

y such that
x is in L if and only if y is in L and the size of y is bounded by a computable function f in k.

Note that in this notation, the bound on the size of y implies that the parameter of y is also bounded by a function in k.

The function f is often referred to as the size of the kernel. 1) , it is said that L admits a polynomial kernel. Similarly, for f = O(k), the problem admits linear kernel.

If f = k O(
It is proven that a problem is fixed-parameter tractable if and only if it is kernelizable and decidable [START_REF] Cygan | Parameterized Algorithms[END_REF]. An example of kernelization algorithm is the kernelization of k-vertex cover problem by Buss Jonathan F. and Goldsmith Judy [START_REF] Buss | Nondeterminism within p[END_REF]. Given a graph G = (V, E), k-vertex cover problem is to decide if there is a vertex cover of size at most k. The rules for kernelization are as follows:

1. If there are more than k vertices of degree more than k, then reject.

2. Let U be the set of vertices of degree more than k and G ′ be a subgraph of G induced by

V -U . If there are more than k(k -|U |) edges in G ′ , then reject.
In this chapter, we present the kernelizations for UET-UCT model. We have two main steps for kernelization. In Section 3.2, we will introduce algorithms to tighten time windows of tasks.

In Section 3.3, we will introduce active schedules and its necessary conditions. We will use these two step of kernelization to form our main FPT-algorithm in the following chapters.

Modification on release date and deadline

We consider pathwidth of the interval graph of time windows of tasks as the parameter of our FPT algorithm, so to get short time windows for every tasks is essential. We introduce in this section a method to improve the release dates and deadlines of tasks. Garey and Johnson [START_REF] Garey | Two-processor scheduling with start-times and deadlines[END_REF] gave a deadline modification algorithm (GJ algorithm in short) for problem P 2|prec,

p i = 1, r i | * in time complexity O(n 3
). This algorithm has been extended by Hanen and Zinder [START_REF] Hanen | The worst-case analysis of the garey-johnson algorithm[END_REF] to arbitrary number of processors problem P |prec, p i = 1, r i |L max and they also analysed that the worst case ratio tends to 2 when the number of processors goes to infinity. Leung, Palem and Pnueli (in short LPP) algorithms [START_REF] Leung | Scheduling time-constrained instructions on pipelined processors[END_REF] is also a deadline modification algorithm to give feasible schedules of problems in the presence of precedence constraints, unit execution tasks, release-times, deadlines, and fixed delays between tasks. Carlier, Hanen and Munier Kordon [START_REF] Carlier | The equivalence of two classical list scheduling algorithms for dependent typed tasks with release dates, due dates and precedence delays[END_REF] have proved that GJ algorithm and LPP algorithm reach the same fixed point of deadlines. Hanen, Munier Kordon and Pedersen [START_REF] Hanen | Two Deadline Reduction Algorithms for Scheduling Dependent Tasks on Parallel Processors (extended version)[END_REF] extend both GJ algorithm and LPP algorithm to problems with arbitrary execution duration tasks. Zinder et al. [START_REF] Zinder | Scheduling uet-uct tasks: Branch-andbound search in the priority space[END_REF] have proposed a release date modification algorithm as the base of their branch and bound algorithm on UET-UCT problems.

In this section, we will give release date and deadline modification algorithms on limited and unlimited number of identical parallel processors for UET-UCT models. For unlimited number of processors, we give recursive algorithms; for limited number of processors, we give an extension of the algorithm given by Zinder et al. [START_REF] Zinder | Scheduling uet-uct tasks: Branch-andbound search in the priority space[END_REF].

Modification algorithm on release dates

Let's recall the problem UET-UCT we considered. Let T = {1, 2, . . . , n} be a set of tasks, graph G = (T , A) be the precedence graph of T . There are m identical parallel machines to execute these tasks. If there is an arc (i, j) between task i and j and they are executed on executed on different machines, there will be a communication delay added between their executions. The execution time of each task is one unit, and the communication time between tasks is also one unit.

When there are unlimited number of processors, i.e. m ≥ n, the release dates can be calculated as follows:

First, for tasks that have no predecessors, i.e. Γ -(i) = ∅, we set r i = 0.

For tasks that have predecessors, let the set of predecessors of task i be Γ -(i) = {j i , . . . , j p }.

To calculate the release date of i, we number the predecessors j 1 , . . . , j p in decreasing order of the release dates, i.e. r j 1 ≥ r j 2 ≥ • • • ≥ r jp . Then, the release date r i can be calculated recursively as follows:

r i =          r j 1 + 1 if |Γ -(i)| = 1 or (|Γ -(i)| > 1 and r j 1 > r j 2 ) r j 1 + 2 if |Γ -(i)| > 1 and r j 1 = r j 2 . (3.2.1)
If the number of machine m < n, the recursive algorithm for release date can be improved by a algorithm proposed by Yakov Zinder et al. [START_REF] Zinder | Scheduling uet-uct tasks: Branch-andbound search in the priority space[END_REF].It is as follows:

For any task i ∈ T , if ∀j ∈ Γ -(i), then set r = max j∈Γ -(i)
r j ,

r i = max 0≤τ≤r τ + |{j ∈ Γ -(i) : r j ≥ τ}| -1 m + 1 (3.2.2)
The following lemma provides the feasibility of the equation 3.2.2.

Lemma 3.2.1. Any schedule σ(G) feasible for the precedence graph G is also feasible with the release dates r i provided by equation 3.2.2.

Proof. Let σ(G) be a feasible schedule of precedence graph G, the starting time of task i ∈ T is

t σ i .
We need to prove that t σ i ≥ r i provided by equation 3.2.2.

For i ∈ T without predecessors,

r i = 0. Thus t σ i ≥ r i . For i ∈ T with Γ -(i) ̸ = ∅, for all j ∈ Γ -(i)
, we assume that t σ j ≥ r j .

For any τ ∈ [0, r], there exist one and only one k ∈ {-1, 0, 1, . . . }, such that |{j ∈ Γ -(i) :

r j ≥ τ}| -1 ∈ (km, (k + 1)m],
then there is at least one predecessor of i who has to be scheduled after time τ + k + 1, since there are m machines available. Thus we have

t σ i ≥ τ + k + 2, which is equal to t σ i ≥ max 0≤τ≤r τ + |{j∈Γ -(i):r j ≥τ}|-1 m + 1 . Thus we have t σ i ≥ r i .

Modification algorithms on deadlines

For the problem to minimize the makespan C max , we also need to calculate the deadlines. We assume that the release dates are given.

When we have unlimited number of machines, i.e. m ≤ n, to calculate the deadline of task i, first, for tasks that have no predecessors, i.e. Γ -(i) = ∅, we set

d i = r i + 1.
Then, for the tasks that have predecessors, i.e. Γ -(i) ̸ = ∅, we set

d i = max{ max j∈Γ -(i) d j + 2, r i + 1}.
When we have limited number of machines, i.e. m < n, the algorithm above will not work.

An upper bound of makespan C is need to be able to calculate the deadlines. Thus we give the algorithm below:

First, for all tasks that have no successors, i.e. Γ + (i) = ∅, we set

d i = C.
Then the tasks with successors, i.e.

Γ + (i) ̸ = ∅, let d = min j∈Γ + (i)
d j , we can calculate the deadlines recursively as follows:

d i = min d≤τ ≤C τ - |{j : j ∈ Γ + (i), d j ≤ τ }| -1 m -1 (3.2.3)
The following lemma provides the feasibility of the equation 3. For i ∈ T without successors,

d i = C. Thus t σ i ≤ d i -1. For i ∈ T with Γ + (i) ̸ = ∅, for all j ∈ Γ + (i), we assume that t σ j ≤ d j .
For any τ ∈ [d, C], there exist one and only one k ∈ {-1, 0, 1, . . . }, such that |{j ∈ Γ + (i) :

d j ≤ τ}| -1 ∈ (km, (k + 1)m],
so there is at least one successor of i who has to be scheduled before time τ -k -1, when there are m machines available.

Thus we have t

σ i ≤ τ -k -3, which is equal to t σ i ≤ min d≤τ≤C τ -|{j∈Γ + (i):d j ≤τ}|-1 m -1 -1.

Thus we have t

σ i ≤ d i -1.

A necessary condition on feasible schedules

For any value α ∈ {0, . . . , C -1}, we recall that X α is the set of tasks that can be scheduled at time α following release times and deadlines,

X α = {i ∈ T , r i ≤ α, α + 1 ≤ d i }.
We also denote by Z α the set of tasks than must be completed at or before time α + 1, The following lemma will be considered further to reduce the size of the tasks sets built at each step of our algorithm.

Z α = {i ∈ T , d i ≤ α + 1}.
α X α Z α 0 {1, 2} ∅ 1 {1, 2, 3, 4} ∅ 2 {1, 2, 3, 4, 5} {1, 2} 3 
Lemma 3.2.3. Let σ(G) be a feasible schedule of G. For any α ∈ {0, . . . , C -1}, α β=0 T σ β -Z α ⊆ X α ∩ X α+1 . Proof. Since σ(G) is feasible, for any α ∈ {0, . . . , C -1}, T σ α ⊆ X α and thus, ∀i ∈ α β=0 T σ β , r i ≤ α. Moreover, each task i / ∈ Z α satisfies d i ≥ α + 2.
Thus, for any task i ∈

α β=0 T σ β -Z α , [α, α + 2] ⊆ [r i , d i ]. Therefore α β=0 T σ β -Z α ⊆ X α ∩ X α+1 ,
and the lemma is proved.

For our example presented by Figure 3.1 and α = 3, we have Z 3 = {1, 2, 5} and X 3 ∩ X 4 = {3, 4, 6, 7, 8}. For the schedule showed in Figure 2.3, we have

3 β=0 T σ β = {1, 2, 3, 4, 5, 6, 7}. We observe that 3 β=0 T σ β -Z 3 = {3, 4, 6, 7} ⊆ X 3 ∩ X 4 .

Active schedules

The definition of active schedule is proposed by Giffler, B. and Thompson, G.L. [START_REF] Giffler | Algorithms for solving production-scheduling problems[END_REF]. A feasible schedule is active if no task can start earlier without increasing the start time of other tasks. Rayward-Smith [START_REF] Rayward-Smith | Uet scheduling with unit interprocessor communication delays[END_REF] showed that an active schedule of UET-UCT problem is no longer than 3 -2/m times the optimum. Active schedules are always considered to reduce the size of the solution space [START_REF] Veltman | Multiprocessor scheduling with communication delays[END_REF][START_REF] Zinder | Scheduling uet-uct tasks: Branch-andbound search in the priority space[END_REF]. In this section, we listed two necessary conditions for active schedules which can be applied to the algorithms.

As shown in Figure 3.2a, task 6 can be scheduled in advance at time 3 instead of time 4 without increasing the starting time of other task, so it is not an active schedule. For schedule shown in Figure 3.2b, no task can start earlier without increasing the start time of other task and keep the schedule feasible, so it is an active schedule.

Preferred sons

For a task i ∈ T , there is at most one successor of i can be scheduled at time t i + 1, right after i, and on the same machine of i. There can be many candidates for this position, we call these candidates the preferred sons of task σ ′ (G) that satisfies the preferred sons property for m processors and such that for any task i ∈ T ,

(i) = {j ∈ Γ + (i), Γ -(j) ⊆ W α and Γ -(j) ∩ B α = {i}}.
t σ ′ i ≤ t σ i .
Proof 

(i ⋆ ), x σ i ⋆ j = 1.
We build another feasible schedule σ ′ (G) as follows:

1. Choose a task j ⋆ ∈ P S Wα,Bα (i ⋆ ). We then set t σ ′ j ⋆ = α + 1

2. Keep other tasks' execution time, i.e.

t σ ′ i = t σ i , ∀i ∈ T -{j ⋆ } For every task i ∈ T , t σ ′ i ≤ t σ i . Now, we get ℓ∈Γ + (i ⋆ ) x σ ′ i ⋆ ℓ = ℓ∈Γ + (i ⋆ )-{j ⋆ } x σ ′ iℓ + x σ ′ i ⋆ j ⋆ = |Γ + (i ⋆ )| -1.
Similarly, we get

ℓ∈Γ -(j ⋆ ) x σ ′ ℓj ⋆ = ℓ∈Γ -(j ⋆ )-{i ⋆ } x σ ′ ℓj ⋆ + x σ ′ i ⋆ j ⋆ = |Γ -(j ⋆ )| -1, Besides, |B α | ≤ m, ∀α ∈ {0, 1, 2, . . . , C -1}. Thus σ ′ (G) is feasible.
This transformation can be continued on the new schedule σ ′ until we obtain a schedule that satisfies the preferred sons' property. Each time instance can be is considered only once and thus this transformation is done at most C times. Thus the lemma holds.

Lemma 3.3.5. Let σ(G) be a feasible schedule. There exists a corresponding feasible schedule σ ′ (G) that satisfies the preferred sons property and such that for any task i ∈ T , t σ ′ i ≤ t σ i .

Proof. We can suppose without loss of generality that tasks are scheduled by σ(G) as soon as possible following communication delay vector x σ of σ(G), i.e. ∀i ∈ T and

Γ -(i) ̸ = ∅, t σ i = max j∈Γ -(i) (t σ j + 1 + x σ ji ).
Let us suppose that σ(G) does not verify the preferred sons property. Let then α ∈ {0, . . . , C -1} be the first instant for which the property is not fulfilled, and i ⋆ ∈ B α a corresponding task with P S Wα,Bα (i ⋆ ) ̸ = ∅. We show that, for every task j ∈ Γ + (i ⋆ ), x σ i ⋆ j = 1.

• Since i ⋆ is performed at time α, i ⋆ cannot have two successors scheduled at time α + 1. So, every task j ∈ P S Wα,Bα (i ⋆ ) satisfies t σ j ≥ t σ i ⋆ + 2 and by coherence of σ(G), x σ i ⋆ j = 1.

• Now, any task

j ∈ Γ + (i ⋆ ) -P S Wα,Bα (i ⋆ ) is not schedulable at time α + 1, thus t σ j ≥ t σ i ⋆ + 2
and by coherence of σ(G), x σ i ⋆ j = 1.

Now, any task j ∈ P S Wα,Bα (i ⋆ ) has all its predecessors in W α , thus ∀k ∈ Γ -(j),

t σ k + 2 ≤ t σ i ⋆ + 2 ≤ t σ j
, and by coherence of σ(G), x σ kj = 1. We build another coherent schedule σ ′ (G) as follows:

1. We first choose a task j ⋆ ∈ P S Wα,Bα (i ⋆ ). We then set x σ ′ i ⋆ j ⋆ = 0 and for each arc e = (k, ℓ)

∈ A -{(i ⋆ , j ⋆ )}, x σ ′ kℓ = x σ kℓ .
2. We set ∀i ∈ T ,

t σ ′ i = max(0, max j∈Γ -(i) (t σ ′ j + 1 + x σ ′ ji )).
For every task i ∈ T , t σ ′ i ≤ t σ i . Now, we get ℓ∈Γ

+ (i ⋆ ) x σ ′ i ⋆ ℓ = ℓ∈Γ + (i ⋆ )-{j ⋆ } x σ ′ iℓ + x σ ′ i ⋆ j ⋆ = |Γ + (i ⋆ )| -1. Similarly, we get ℓ∈Γ -(j ⋆ ) x σ ′ ℓj ⋆ = ℓ∈Γ -(j ⋆ )-{i ⋆ } x σ ′ ℓj ⋆ + x σ ′ i ⋆ j ⋆ = |Γ -(j ⋆ )| -1, and thus x σ ′ is feasible.
Each task i ⋆ is considered at most once and thus this transformation is done at most n times. So, it gives a feasible coherent schedule that satisfies the preferred sons property without increasing the makespan, thus the lemma holds.

A general dominance property

In this section, we propose an as-soon-as-possible dominance property to reduce the number of idle processors.

Property 3.3.6. If a schedule σ(G) satisfies the general dominance property, then we have for any task i ∈ T , if the direct predecessors of task i are all scheduled before time α -1 and there are unoccupied processors at time α, then we have task i is scheduled before time α + 1. Thus,

If Γ -(i) ⊆ α-2 β=0 T σ β and |T σ α | < m, then t i ≤ α.
The property above considers tasks i ∈ B α without any preferred son. When a task i does not have preferred sons and there are available processors, its successors are to be sure to executed before or at t i + 2 maintaining the feasibility of the schedule.

Lemma 3.3.7. Let σ(G) be a feasible schedule.Then there exists a feasible σ ′ (G) satisfying the general dominance property such that, for each task i ∈ T ,

t σ ′ i ≤ t σ i .
Proof. If σ(G) satisfies the general dominance property, then σ

′ (G) = σ(G),
Let us suppose that σ(G) does not verify the general dominance property. Let (t σ 1 , t σ 2 , . . . , t σ n )

be the time vector and (x σ 1 , x σ 2 , . . . , x σ n ) be the delay signal vector. Let α ∈ {0, . . . , C -1} be the first time instant at which the property is not fulfilled, and task i ⋆ is a corresponding task with

Γ -(i ⋆ ) ⊆ α-2 β=0 T σ β , t σ i ⋆ = α + 1 and |T σ α | < m. Therefore, we have all j ∈ Γ -(i ⋆ ) are scheduled before time α -1, i.e. t σ j ≤ α -2
According to the definition of the delay signals vector, for every task j ∈ Γ -(i ⋆ ), x σ ji ⋆ = 1.

We build another feasible schedule σ ′ (G) as follows:

1. We set

t σ ′ i ⋆ = α 2. Keep other tasks' execution time, i.e. t σ ′ i = t σ i , ∀i ∈ T -{i ⋆ } So we have for every task i ∈ T , t σ ′ i ≤ t σ i .
Now, we get

ℓ∈Γ + (i ⋆ ) x σ ′ i ⋆ ℓ ≥ ℓ∈Γ + (i ⋆ ) x σ i ⋆ ℓ ≥ |Γ + (i ⋆ )| -1. ℓ∈Γ -(i ⋆ ) x σ ′ ℓi ⋆ = ℓ∈Γ -(i ⋆ ) min{t i ⋆ -t ℓ -1, 1} ≥ |Γ -(i ⋆ )| -1, Besides, |B α | ≤ m, ∀α ∈ {0, 1, 2, . . . , C -1}. Thus σ ′ (G) is feasible.
This transformation can be continued on the new schedule σ ′ until we obtain a schedule that satisfies the preferred sons' property. Each time instance can be is considered only once and thus this transformation is done at most C times, where C is a upper bound of C. Thus the lemma holds.

Fixed-parameter complexity on optimization of makespan for UET-UCT model

In this chapter, we consider the optimization problem in the UET-UCT model on unlimited number of processors, i.e. P |prec, 

p i = 1, c i = 1, r i , d i |C max ,

Introduction

It is proven that problem P |prec,

p i = 1, c i = 1, r i , d i |C max is NP-hard [55]
, due to the importance of this problem, there are many researches on UET-UCT problems to provide exact and approximate algorithms on general and special precedence graphs.

Many authors considered scheduling problems with communication delays for a limited number of processors. An exact dynamic programming algorithm of time complexity O(2 w(G) .n 2w(G) )

was developed by Veltman [START_REF] Veltman | Multiprocessor scheduling with communication delays[END_REF] for P |prec, p i = 1, c ij = 1|C max . The parameter w(G) is the width of the precedence graph G defined as the size of its largest antichain. This algorithm can clearly be considered for solving the problem without limitation of the number of machines by setting the number of machines equal to the number of tasks. We can observe that it is a XP algorithm with parameter w(G). Zinder et al. [START_REF] Zinder | Scheduling uet-uct tasks: Branch-andbound search in the priority space[END_REF] have developed an exact branch-and-bound algorithm which converges to an optimal schedule for the problem P |prec,

p i = 1, c ij = 1|C max .
This problem was proved to be polynomial-time solvable for some special classes of graphs such as trees [START_REF] Chrétienne | A polynomial algorithm to optimally schedule tasks on a virtual distributed system under tree-like precedence constraints[END_REF], series-parallel graphs [START_REF] Möhring | Scheduling series-parallel orders subject to 0/1communication delays[END_REF] and generalized n-dimensional grid task graphs [5].

For the more general problem, P |prec, c ij |C max , Sinnen et al. in [START_REF] Sinnen | Reducing the solution space of optimal task scheduling[END_REF] have developed an enumerative A ⋆ algorithm coupled with pruning methods. Orr and Sinnen [START_REF] Orr | Optimal task scheduling benefits from a duplicate-free statespace[END_REF] Several authors also considered integer linear programming formulations (ILP in short) to solve exactly scheduling problems with communications delays and a limited number of processors.

Davidović et al. in [START_REF] Davidović | Towards the optimal solution of the multiprocessor scheduling problem with communication delays[END_REF] tackled the scheduling problems for a fixed network of processors; communications are proportional to both the amount of exchanged data between pairs of dependent tasks and the distance between processors in the multiprocessor architecture. They developed two formulations and they compared them experimentally. Later, Ait El Cadi et al. [3] improved this approach by reducing the size of the linear program (number of variables and constraints) and by adding cuts; they compared positively to the previous authors. Venugopalan and Sinnen in [START_REF] Venugopalan | Ilp formulations for optimal task scheduling with communication delays on parallel systems[END_REF] provided a new ILP formulation for the usual problem P |prec, c ij |C max and comparison with [START_REF] Davidović | Towards the optimal solution of the multiprocessor scheduling problem with communication delays[END_REF] for several classes of graphs and fixed number of processors.

Extensions of usual problems with communication delays were extensively studied. For example, the survey of Giroudeau and Koenig [START_REF] Giroudeau | Scheduling with communication delays[END_REF] considered a hierarchical communication model where processors are grouped into clusters. Shimada et al. [START_REF] Shimada | Communication-aware scheduling for malleable tasks[END_REF] developed two heuristic based methods to consider both malleable tasks and communications delays for executing a program on an homogeneous multi-core computing system. Ait-Aba et al. [2] provided complexity results for an extension of the basic communication model for scheduling problems on an heterogeneous computing systems with two different resources.

Researchers are gaining interests on fixed-parameter tractability of scheduling problems. Mnich and van Bevern [START_REF] Mnich | Parameterized complexity of machine scheduling: 15 open problems[END_REF] surveyed main results on parameterized complexity for scheduling problems and identified 15 open problems. Bodlaender et. al. [START_REF] Hans | Parameterized complexity of scheduling chains of jobs with delays[END_REF] considered scheduling problems with exact and minimum delay on chains of jobs. With exact delay and parameterized by the number of chains, it is W [1]-complete on a single or a constant number of machines, and W [2]-complete when the number of machines is a variable.

Our algorithm is parameterized by pathwidth of the interval graph of tasks' time windows. This parameter is first used in the work of Munier [START_REF] Munier-Kordon | A fixed-parameter algorithm for scheduling unit dependent tasks on parallel machines with time windows[END_REF] which developed a fixed-parameter algorithm for the problem P |prec, p i = 1|C max .

Dynamic programming approach and multistage graphs

This section presents our fixed-parameter algorithm. We start with the description of a multistage graph which presents the structure of the algorithm. After, we present the executable algorithm.

Description of the multistage graph

Let us consider a precedence graph G = (T , A) and an upper bound C of the makespan. We build an associated multistage graph S(G) = (N, A) with C stages in which paths from the first stage to last stage represent all the feasible active schedules.

Nodes of S(G)

For any value α ∈ {0, . . . , C -1}, N α is the set of nodes at stage α of graph S(G). Observe that, for any value α ∈ {0, . . . , C -1}, all tasks from Z α must be completed at time

α + 1, thus for any node p ∈ N α , Z α ⊆ W (p). Moreover, by Lemma 3.2.3, W (p) -Z α ⊆ X α ∩ X α+1 .

Arcs of S(G)

For any α ∈ {0, 1, . . . , C -2} and (p, q) ∈ N α × N α+1 , the arc (p, q) ∈ A exists if there exists a feasible schedule such that tasks from W (q) are all completed at time α + 2 with tasks from B(q) p 0 = ({1, 2}, {1, 2}) makespan. For any set of tasks X ⊆ T , let P(X) be the power set of X, i.e. the set of all subsets of X including the empty ones. This algorithm is composed by three main sections. Lines 1 -6 correspond to the initialization step. Lines 7 -9 build all the possible nodes. Lines 10 -17 build the arcs and delete all the non connected nodes.

p 1 1 = ({1, 2, 3}, {3}) p 0 1 = ({1,

Correctness of the algorithms

In this section, we prove that all feasible active schedules are presented by a path in graph S(G), and all paths from the first stage to a node p with W (p) = T are feasible schedules. we have that σ(G) satisfies the preferred sons property and σ(G) is an as-soon-as-possible schedule, i.e. for any task i ∈ T , t σ i = max(0, max i∈Γ -(j) (t σ j + 1 + x ji )).

For every integer α ∈ {0, . . . , C -1}, we set T σ α = {i ∈ T , t σ i = α}. Let us consider the sequence q α = (W (q α ), B(q α )) defined as W (q α ) = α β=0 T σ β and B(q α ) = T σ α for α ∈ Build the sets P(X α ∩ X α+1 ) and P(X α ) 

9 N α = {p = (W, B), W = Y ∪ Z α , Y ∈ P(X α ∩ X α+1 ), B ∈ P(X α ), B ⊆ W } 10 for α ∈ {0, 2, . . . , C -2} do 11 for (p, q) ∈ N α × N α+1 do 12 if conditions A.1, A.
For α = 0, W (q 0 ) = T σ 0 = {i ∈ T , t σ i = 0} = {i ∈ T , Γ -(i) = ∅} = W (p 0 )
, where p 0 is the only node in the first stage of graph S(G). Thus q 0 has the same structure as node p 0 .

Since σ(G) is feasible, for every value α ∈ {0, . . . , C -1}, T σ α ⊆ X α . According to Lemma

3.2.3, α β=0 T σ β -Z α ⊆ X α ∩ X α+1 .
So the node q α = (W (q α ), B(q α )) has been built at stage α.

We prove then that, for every value α ∈ {0, . . . , C -2}, (q α , q α+1 ) ∈ A.

• W (q α+1 ) = α+1 β=0 T σ β = α β=0 T σ β ∪ T σ α+1 = W (q α ) ∪ B(q α+1 ). Moreover, W (q α ) ∩ B(q α+1 ) = α β=0 T σ β ∩ T σ α+1 = ∅. Thus, A.1 is verified.
• Since σ(G) is feasible, tasks from B(q α+1 ) are schedulable at time α + 1 and thus, properties A.2 and A.3 are verified.

• Since σ(G) is an as-soon-as-possible schedule, property A.4 is fulfilled.

• Lastly, since σ(G) satisfies the preferred sons property, A.5 is fulfilled.

We conclude that (q 0 , q 1 , . . . , q C-1 ) is a path of S(G). Moreover, since σ(G) is of makespan C, W (q C-1 ) = T , and thus the lemma is verified. of makespan C is defined as follows:

• By Lemma 4.3.2, for any task i ∈ T , there exists a unique value α ∈ {0, . . . , C -1} with i ∈ B(p α ). Thus, we set t σ i = α.

• For any arc (i, j) ∈ A, we set

x σ ij = 1 if t σ j > t σ i + 1, otherwise x σ ij = 0.
We prove that the schedule σ(G) satisfies the integer linear program (P ) defined in Section 2.1.1

with

p i = 1 and c ij = 1.
According to the condition A.2, we get

Γ -(i) ⊆ W (p α-1 ), so t σ j + 1 ≤ t σ i , ∀(j, i) ∈ A.
Following the definition of x σ , we observe that equations (1) are true. such that t σ j ⋆ = α + 1 = t σ i + 1. The task j ⋆ is thus the unique successor of i for which

Now, by definition of σ(G), t

x σ ij ⋆ = 0 and ∀j ∈ Γ + (i) -{j ⋆ }, x σ ij = 1. Thus, ∀i ∈ T , j∈Γ + (i) x σ ij = |Γ + (i)| -1. C.2 If P S W (pα),B(pα) (i) ∩ X α+1 = ∅, then no successor of i is scheduled at time α + 1, thus ∀j ∈ Γ + (i), x σ ij = 1 and j∈Γ + (i) x σ ij = |Γ + (i)|.
Therefore, equations (3) are checked. Lastly, according to the condition A.3, any task i ∈ B(p α+1 )

cannot have more than one predecessor in B(p α ), thus i has at least one predecessor j ⋆ such that 

x σ j ⋆ i = 0. Therefore, ∀i ∈ T , j∈Γ -(i) x σ ji ≥ |Γ -(i)| -

Complexity results

In this section, we prove that Algorithm 1 is a fixed-parameter tractable algorithm. 

Conclusion

We have shown in this paper that the problem P |prec,

p i = 1, c ij = 1|C max is fixed-parameter tractable.
The parameter considered is the pathwidth associated with an upper bound C of the makespan. For this purpose, we have developed a dynamic programming algorithm of complexity

O(n 3 • pw(C) • 2 4pw(C)
). This is, as far as we know, the first fixed-parameter algorithm for a scheduling problem with communication delays.

Extensions to maximum lateness

In the previous chapter, we have given an algorithm to minimizing the makespan on UET-UCT model. In this chapter, we will do some modification to the algorithm to minimizing the maximum lateness L max of a schedule. It considers the minimization of the maximum lateness for a set of dependent tasks with unit duration, unit communication delays release times and due dates. The number of processors is limited, and each task requires one processor for its execution.

A fixed-parameter algorithm based on a dynamic programming approach is developed to solve this optimization problem. This is, as far as we know, the first fixed-parameter algorithm for a scheduling problem with communication delays and limited number of processors.

This chapter is submitted to journal RAIRO and is co-authored by my supervisor Alix Munier-Kordon.

Problem definition

The scheduling problem considered is described in Section 5.1.1, while a small example is presented in Section 5.1.2. In Section 5.1.3, a dominance property of active schedules is described.

Problem definition

Let G = (T , A) be a precedence graph of unit execution time tasks. For each task i ∈ T , let

Γ + (i) (resp. Γ -(i)) be the set of direct successors (resp. predecessors) of i, i.e. Γ + (i) = {j ∈ T , (i, j) ∈ A} and Γ -(i) = {j ∈ T , (j, i) ∈ A}.
We observe that a feasible schedule σ is completely defined by the starting times vector t σ ∈ N n . Indeed, for any arc e = (i, j) ∈ A, we note x σ ij the communication delay between the tasks i and j; we set x σ ij = 0 if the execution of the task j starts right after the task i. These two tasks are necessarily executed by a same processor and the communication delay is removed. Otherwise, a communication delay is required between the completion time of the task i and the starting time of the task j and thus x σ ij = 1. We then set x σ ij = min{t σ j -t σ i -1, 1} for each arc e = (i, j) ∈ A. 

A general dominance property of active schedules

Let us consider that σ is a feasible schedule of maximum lateness bounded by L. For every

integer α ∈ {-1, . . . , C -1}, we set W α = α β=0
T σ β and B α = T σ α . The set W α contains all the tasks that are executed in time [0, α + 1), and B α contains all the tasks that are executed at time α.

Notice that W -1 = B -1 = ∅.
For a fixed value α ∈ {-1, . . . , C -2}, we note S(W α , B α ) to be the set of tasks from X α+1 -W α that are schedulable at time α + 1 following W α and B α . Formally,

S(W α , B α ) = {i ∈ X α+1 -W α , Γ -(i) ⊆ W α and |Γ -(i) ∩ B α | ≤ 1}.
Now, we observe that a set of tasks B can be scheduled at time α + 1 following W α and B α if

B ⊆ S(W α , B α )
with |B| ≤ m and there is no couple of tasks (i, j) ∈ B 2 with a same predecessor in B α (i.e. for each couple of tasks

(i, j) ∈ B 2 , Γ -(i) ∩ Γ -(j) ∩ B α = ∅). We set then C(W α , B α )
to be the set of all the subsets of S(W α , B α ) that fulfills all these conditions.

Lastly, we may reduce our study to active schedules without loss of generality; then we set A(W α , B α ) to be the set of the elements from C(W α , B α ) that are maximum for the inclusion.

by L. For any value α ∈ {-1, . . . , C -2}, T σ α+1 ∈ A(W α , B α ).

Proof. Let us suppose by contradiction that, for a fixed value α ∈ {-1, . . . , C -2}, T σ α+1 ̸ ∈ A(W α , B α ). Since tasks from T σ α+1 are all schedulable together at time α + 1,

T σ α+1 ∈ C(W α , B α ),
and thus

T σ α+1 ∈ C(W α , B α ) -A(W α , B α ).
The consequence is that T σ α+1 is not maximum for the inclusion in C(W α , B α ), and thus σ is not active, a contradiction.

Description of the algorithm

This section is dedicated to the description of our algorithm. Subsection 5.2.1 describes the multistage graph S(G) built, while Subsection 5.2.2 is devoted to the algorithm.

Description of the multistage graph

Our algorithm builds an associated multistage graph S(G) = (N, A) described as follows:

Nodes of S(G)

The 

∈ N α , W (p) -Z α ⊆ X α ∩ X α+1 .
The algorithm is composed by three main sections. Lines 1-4 correspond to the initialization step. Lines 5-6 build all the possible nodes following conditions N.1, N.2 and N.3. Lines 7-18 build the arcs and delete all the non connected nodes.

Algorithm 2: Minimum maximum lateness L opt if L opt ≤ L, false otherwise.

1 for α ∈ {0, 1, . . . , C} do 2 Calculate X α and Z α 3 N -1 = {s = (W, B, L), W = B = ∅ and L = -∞} 4 N = N -1 , A = ∅, L opt = +∞ 5 for α ∈ {0, . . . , C -1} do 6 N α = {p = (W, B, L), W = Y ∪ Z α , Y ∈ P(X α ∩ X α+1 ), B ∈ P(X α ), B ⊆ W, |B| ≤ m and L = +∞} 7 for α ∈ {-1, . . . , C -2} do 8 for p ∈ N α do 9 if W (p) ̸ = T then 10 for B ∈ A(W (p), B(p)) do 11 Find q ∈ N α+1 such that (W (p) ∪ B, B) = (W (q), B(q)) 12 ℓ(q) = α + 2 -min i∈B(q) d i 13
if L(q) > ℓ(q) then 14 L(q) = max(ℓ(q), min(L(p), L(q)))

15 Proof. Let suppose by contradiction that r n > 2(n -1), and let i ⋆ be the smallest value i ∈ {1, . . . , n} with r i > 2(i -1); since r 1 = 0, we get that i ⋆ > 1. For every task j ∈ {1, . . . , i ⋆ -1},

A = A ∪ {(p, q)} 16 else 17 L opt = min(L opt , L(p)) 18 N α+1 = {q ∈ N α+1 , Γ -(q) ̸ = ∅}, N = N ∪ N α+1 19 if L opt = +∞ then
r j ≤ 2(j -1).
The biggest values for the release date of tasks j in {1, . . . , i ⋆ -1} is r ′ j = 2(j -1) and the most constrained instance is a path 1 → 2 . . . → i ⋆ -1. In this case, the only active feasible schedule σ is t σ j = 2(j -1). Thus, any active feasible schedule of tasks {1, . . . , i ⋆ -1} would end at time 2(i ⋆ -2) + 1 or before. Since r i ⋆ ≥ 2(i ⋆ -1) + 1, there will be at least two idle time 

O(n × 2 2pw(L) × pw(L) × 2 pw(L) ).
The overall complexity of the algorithm is thus O(n 2 + n × pw(L) × 2 3pw(L) ), and the theorem holds.

Conclusion and perspectives

We proved that the scheduling problem P |r i , prec, p i = 1, c ij = 1|L max is fixed-parameter tractable in the pathwidth pw( L) associated to an upper bound L of the maximum lateness. We extended previous approaches [START_REF] Munier-Kordon | A fixed-parameter algorithm for scheduling unit dependent tasks on parallel machines with time windows[END_REF][START_REF] Tang | A fixed-parameter algorithm for scheduling unit dependent tasks with unit communication delays[END_REF] to tackle both communications delay, a limited number of machine, and to optimize the maximum lateness. We also limit our enumeration to active schedules, which allows to decrease the worst-case complexity of the method.

We believe that this work opens up many perspectives. From a theoretical point of view, many

fundamental questions remain open as the existence of a fixed-parameter algorithm in the width, or the possible extension of this work to scheduling problems with large communication delays.

From a practical point of view, our algorithm defines an original exploration scheme probably well suited to general scheduling problems. Similarly to Branch-And-Bound methods, dominance properties allow to reduce the size of the generated multistage graph. It would then be interesting to test this new class of algorithms to compare their performance with those from the literature.

Evaluation of the Age Latency of a Real-Time Communicating System using the LET paradigm

A real-time system (RTS) is a system that responds to external events created by its environment in a timely fashion [START_REF] Li | Real-time concepts for embedded systems[END_REF]. It has been developed and has been researched in demand in the market especially in industrial environments [4,[START_REF] Davis | A survey of hard real-time scheduling for multiprocessor systems[END_REF]. Typical examples include Air Traffic Control Systems, Networked Multimedia Systems, Command Control Systems etc. In a Real-Time System the quality of the system services depend not only on the correctness of the computations, but also on the instant at which the computation results are obtained. It is expected to have the correct computation at the correct time. The responses have specified constraints or deadlines, there are two types of real-time systems according to the timing constraints:

1. Hard real-time system: This type of system does not allowed missed deadlines such as avionics or automotive control systems. These systems must verify hard timing constraints, a missed deadline can cause system failure or disastrous consequences. Their design and analysis are usually a complex processes that require efficient methods, for example, automated piloting systems.

2. Soft real-time system: In this type of system, missed deadline is allowed with acceptable low probability or tardiness, for example the telephone switches systems, audio and video steaming software for entertainment (lag will cost the quality of service but not be a disaster)

A real-time system usually communicates with its environment through sensors that detect events and actuators that traduce its reaction. Paths from a sensor to an actuator are usually referred to event chains (see as example [START_REF] Hamann | Communication centric design in complex automotive embedded systems[END_REF]). The time needed to propagate a data from a sensor to an actuator is closely related to the reaction delay of the system. One of the most important features is that the response time of a real-time system must be predictable and limited. Several measures can be defined to capture these delays, as presented by Feiertag et al. [START_REF] Feiertag | A compositional framework for end-to-end path delay calculation of automotive systems under different path semantics[END_REF]. We limit out study to the age latency, also called the end-to-end latency, which is the maximum time interval from a specific input value on a sensor and the last corresponding output value. It can be interpreted as the maximum delay that a specific data spends in the system. This value measures the freshness of a data producing a response of the system, and insures that the action of the actuator is not too old.

Real-time computer systems are often associated with low-latency systems. Many applications of real-time computing are also low-latency applications. However, a hard real-time system must be guaranteed that the system finishes a certain task by a certain time. Therefore, it is important that the latency in the system be measurable and a maximum allowable latency for tasks be set.

A real-time system is a system that responds to external events created by its environment in a timely fashion [START_REF] Li | Real-time concepts for embedded systems[END_REF]. In various contexts such as avionics or automotive, these systems must verify hard timing constraints. Their design and analysis are usually a complex processes that require efficient methods.

We consider a set T of periodic tasks with different periods that are executed following the model of Liu and Layland [START_REF] Liu | Scheduling algorithms for multiprogramming in a hardreal-time environment[END_REF]. A directed acyclic graph G = (T , E) defines communication links between tasks executions. Each arc (t i , t j ) ∈ E between the two tasks t i and t j is associated to a shared memory variable that is modified by t i and read by t j . We assume that each execution of t i updates the variable at its completion time, while each execution of t j read it at its starting time.

This communication scheme, usually known as "implicit communication" follows the AUTOSAR requirement [1] and is commonly used for the design of automotive real-time systems.

However, the instants of the exchanges between tasks depend on the successive starting times and completion times of the tasks, and are thus not predictable. Logical Execution Time (LET in short) paradigm [START_REF] Kirsch | The logical execution time paradigm[END_REF] delays writings to the periodic deadlines of the tasks and advances the reading to their periodic release dates. The communication instants are then fixed before the execution of the tasks and the system is deterministic. This communication scheme was implemented by the time-triggered language Giotto [START_REF] Henzinger | Giotto: a timetriggered language for embedded programming[END_REF]. This timing predictability makes it particularly suitable for safety-critical applications. This model was thus considered in industrial domains as automotive [START_REF] Biondi | Achieving predictable multicore execution of automotive applications using the LET paradigm[END_REF][START_REF] Hamann | Communication centric design in complex automotive embedded systems[END_REF] or avionics [START_REF] Henzinger | From control models to real-time code using Giotto[END_REF][START_REF] Wyss | End-to-end latency computation in a multi-periodic design[END_REF]. We suppose in this chapter that tasks are periodic with different periods and that all communications follow LET paradigm.

The major contribution of the chapter is to develop and to prove a general framework to model the communications on the successive tasks executions using LET communications for a general graph. The computation of the age latency of the application can then be seen as an example of concrete application. Observe that most of the authors limited their methods to chains [START_REF] Becker | Synthesizing job-level dependencies for automotive multi-rate effect chains[END_REF][START_REF] Feiertag | A compositional framework for end-to-end path delay calculation of automotive systems under different path semantics[END_REF][START_REF] Martinez | Analytical characterization of endto-end communication delays with logical execution time[END_REF] and that our methodology can handle easily a general graph.

Indeed, we first prove that dependencies induces by a LET communication e = (t i , t j ) ∈ E between the successive executions of t i and t j can be modelled by an original simple inequality involving parameters of the tasks t i and t j and the execution numbers considered.

Then, it can easily be observed that, if T i denotes the period of task t i , these dependence relations between tasks executions are repeated within the hyper-period T = lcm t i ∈T (T i ). An expanded valued graph P N (G) can then be easily built by duplicating each task N i = T T i times. We prove in this chapter that setting any vector K with K i ∈ {1, . . . , N i } for any t i ∈ T , a partial expanded graph P K (G) can be built by duplicating each task K i times. Each arc of this graph includes the modelling of the dependence relation between the corresponding executions of its adjacent tasks duplicates. This partial expanded graph is inspired from Bodin et al. [START_REF] Bodin | K-periodic schedules for evaluating the maximum throughput of a synchronous dataflow graph[END_REF] and de Groote [START_REF] De | On the analysis of synchronous dataflow graphs: a system-theoretic perspective[END_REF] for Synchronous DataFlow Graph [START_REF] Lee | Synchronous data flow[END_REF], for which the initial inequality modelling dependence is slightly different. Subsequently, we show that upper bounds of the latency between adjacent duplicates of P K (G) can be derived and considered as a valuation of the arcs. The longest paths of P K (G) provide then an upper bound of the latency. However, the computation of these paths has a time complexity proportional to e=(t i ,t j )∈E K i × K j . The main problem is then to find the values of K that minimises this function with an exact evaluation of the age latency.

We first prove that our study can be limited to vectors K such that, for any task t i , K i divides N i . We then develop a greedy algorithm that converges to a vector K ⋆ that provides the exact value of the age latency. This algorithm can be seen as an adaptation of the K-iter algorithm [START_REF] Bodin | Optimal and fast throughput evaluation of CSDF[END_REF] for the determination of the maximum throughput of a Synchonous DataFlow Graph, which is up to now one of the best algorithm to solve this latter problem. Our algorithm was experimentally tested on random generated graphs with periods inspired from automotive real-life benchmarks [START_REF] Hamann | Waters industrial challenge 2017[END_REF][START_REF] Kramer | Real world automotive benchmarks for free[END_REF]. This chapter is organised as follows. Section 6.1 presents related works. The problem and our characterisation of the dependence between tasks executions are presented in Section 6.2. Section 6.3 is devoted to the construction of the partial expanded graph P K (G) for any fixed vector K. It is shown in Section 6.4 that our exploration can be limited to K vectors such that, for any task t i ∈ T , K i is a divisor of N i . Section 6.5 presents our greedy algorithm for the computation of a vector K ⋆ leading to an optimum value of the age latency. This algorithm is experimented in Section 6.6 on a the Case study ROSACE [START_REF] Pagetti | The ROSACE case study: from simulink specification to multi/many-core execution[END_REF] and in Section 6.7 on randomly generated graphs. Section 6.8 is our conclusion.

Related works

The evaluation of the age latency of an event chain is a challenging question tackled by several authors. Feirtag et al. [START_REF] Feiertag | A compositional framework for end-to-end path delay calculation of automotive systems under different path semantics[END_REF] first introduced the definition of dependence between tasks of an event chain and four metrics to evaluate the delay between a sensor and an actuator. Becker et al. [START_REF] Becker | Synthesizing job-level dependencies for automotive multi-rate effect chains[END_REF] developed a general framework to evaluate the age latency of an event chain using feasible intervals. They built an expanded graph by evaluating the possible propagation of an input data by the successive execution of tasks. They tested in [START_REF] Becker | Endto-end timing analysis of cause-effect chains in automotive embedded systems[END_REF] their approach against the evaluation of the latency of a fixed schedule or under the LET hypothesis. They concluded that if there is no information on the communications nor on the schedule, a pessimistic value of the age latency will be obtained, which is very similar to the value obtained using LET paradigm. However, the computation time grows exponentially with the number of tasks if an enumeration is needed, while it remains constant for LET paradigm.

Under the LET assumption, times of the communications between tasks are known before the executions of the tasks. This strong assumption allows to characterise the dependencies between tasks if their parameters are fixed. Martinez et al. [START_REF] Martinez | Analytical characterization of endto-end communication delays with logical execution time[END_REF] gave a formal characterisation of the dependencies between tasks in an event chain using time instants. They then derived the age latency by enumerating all the possible paths of the corresponding expanded graph. They also proved that the release times influence the age latency and they developed a heuristic to fix them in order to minimise it.

All these approaches cannot be extended easily to a general graphs. Indeed, the number of paths between two vertices is exponential. The complexity of a method that enumerates all the paths for evaluating their age latency will thus grow exponentially following the parameters of the graph.

Forget et al. [START_REF] Forget | Verifying end-to-end real-time constraints on multi-periodic models[END_REF] has developed a language to express the constraints and a multi-periodic synchronous model to represent the whole system for a general graph. This approach supports several metrics. However, the complexity of the method to evaluate the different latencies is equivalent to building the expanded graph. Khatib et al. [START_REF] Khatib | Computing latency of a real-time system modeled by synchronous dataflow graph[END_REF] proved that constraints between the successive executions of two adjacent tasks can be modelled using a Synchronous DataFlow Graph [START_REF] Lee | Synchronous data flow[END_REF]. Our equation is slightly different since for any arc e = (t i , t j ), they do not considered the successive constraints between two adjacent tasks if T i > T j , dealing only with precedence constraints. They then compute the age latency using the expansion of the Synchronous DataFlow graph which is equivalent to P N (G).

They also proposed the computation of a polynomial upper bound of the age latency equivalent to the determination of the longest paths of P 1 n G with n = |T |. Lastly, they showed that the difference between this bound and the age latency is around 30 percent. This result motivates the development of efficient methods to evaluate more precisely the age latency of a graph G.

Modelling of the system

This section presents formally the problem tackled in this chapter. Subsection 6.2.1 defines the periodic tasks model considered according to LET restrictions. Subsection 6.2.2 is dedicated to the definition of the dependence relation between the successive executions of two adjacent tasks. Subsection 6.2.3 defines formally the age latency of a graph. Subsection 6.2.4 is devoted to the definition of the problem and the presentation of a small pedagogic example. 

⟨t j , ν j ⟩ iff T i ≥ M e + T i ν i -T j ν j > 0.
Proof. There exists a dependence from ⟨t i , ν i ⟩ to ⟨t j , ν j ⟩ iff the two following conditions hold:

1. ⟨t j , ν j ⟩ begins after the end of ⟨t i , ν i ⟩, thus S(t i , ν i ) + D i ≤ S(t j , ν j ). Since S(t i , ν i ) = r i + (ν i -1) × T i and S(t j , ν j ) = r j + (ν j -1) × T j , we get

r i + (ν i -1) × T i + D i ≤ r j + (ν j -1) × T j , thus , 
T i ≥ T j + (r i -r j + D i ) + T i ν i -T j ν j ,
and since in the inequality above only r i -r j + D i can't be divided by gcd e T , we obtain that

T i ≥ M e + T i ν i -T j ν j .
2. At the beginning of ⟨t j , ν j ⟩, data from ⟨t i , ν i + 1⟩ are not available, thus S(t i , ν i + 1) + D i > S(t j , ν j ) and then

r i + ν i T i + D i > r j + (ν j -1) × T j , thus, T j + (r i -r j + D i ) + T i ν i -T j ν j > 0.
Since M e ≥ T j + (r i -r j + D i )

M e + T i ν i -T j ν j > 0.
Merging the two equations, we get the theorem. Let us consider as example the two tasks t 1 and t 2 with the LET communication e = (t 1 , t 2 )

presented by Figure 6 

Age latency

Let us suppose that e = (t i , t j ) ∈ E and let the set R(e) be the couples

(ν i , ν j ) ∈ N ⋆ × N ⋆
such that e induces a dependence from ⟨t i , ν i ⟩ to ⟨t j , ν j ⟩. Then, for any couple (ν i , ν j ) ∈ R(e), the latency of the executions ⟨t i , ν i ⟩ and ⟨t j , ν j ⟩ associated to e is 

L ν i ,ν j (e) = S(t j , ν j ) -S(t i , ν i ) = r j -r i + T i -T j -(T i ν i -T j ν j ). ( 6 
L ν 1 ,...,ν k (p) = k-1 ℓ=1 L ν ℓ ,ν ℓ+1 (e ℓ ) + D k .
The maximum latency of a path p of G is then defined as

L ⋆ (p) = max{L ν 1 ,...,ν k (p), (ν 1 , . . . , ν k ) ∈ R(p)}
and the maximum latency of a directed graph G corresponds to

L ⋆ (G) = max{L ⋆ (p), p path of G}.
Let us observe that, if the initial graph G contains circuits, its latency may be not bounded. So, we suppose in the following that G is acyclic. Moreover, since the latency between two executions is positive, L ⋆ (G) is reached for a path p such that t 1 has no predecessor and t k no successor.

Problem definition and example

The problem tackled in this chapter can be formalised as follows: let us consider a directed acyclic graph G = (T , E), each arc modelling a LET communication. Each periodic task t i ∈ T is associated to a triplet (r i , D i , T i ). The problem is to compute the maximal age latency L ⋆ (G). 

Construction of a partial expanded graph

The aim of this section is to detail and prove the construction of a partial expanded graph P K G associated to a fixed vector K. The main idea is to duplicate any task t i K i times and to express the dependence directly on duplicates. Subsection 6.3.1 is devoted to the proof of Theorem 6.3.3 that characterises the dependence relations between the duplicates of two adjacent tasks. An upper bound of the latency between two duplicates corresponding to dependant executions is then evaluated in Subsection 6.3.2. Subsection 6.3.3 defines formally the partial expanded graph P K G associated with a vector K, while subsection 6.3.4 evaluates the complexity its computation.

Dependence between duplicates of the partial expanded graph

Let us suppose that for any task t i , a number of duplicates K i ∈ N ⋆ is fixed. Then, for any .

a i ∈
If e induces a dependence from ⟨t i , ν i ⟩ to ⟨t j , ν j ⟩, then

T i ν i -T j ν j = π e (p i , p j ) • gcd e K + α(a i , a j ) • gcd e T
with π e (p i , p j ) ∈ {π min e (a i , a j ), . . . , π max e (a i , a j )}.

Proof. By definition of ν i and ν j ,

T i ν i -T j ν j = T i × (a i + K i • p i ) -T j × (a j + K j • p j ) = (T i K i p i -T j K j p j ) + (T i a i -T j a j ) = π e (p i , p j ) • gcd e K + α e (a i , a j ) • gcd e T .
By Theorem 6.2.2, T i -M e ≥ T i ν i -T j ν j > -M e . Thus, since all the terms of this inequality are divisible by gcd e T , its right part is equivalent to (a i , a j ).

T i -M e ≥ T i ν i -T j ν j ≥ -M e -
On the same way, the left part of the previous inequality is 

T i -M e -

For the general case, let us define

A(e) = {(a i , a j ) ∈ {1, . . . , K i } × {1, . . . , K j }, π max e (a i , a j ) ≥ π min e (a i , a j )}.

Next Lemma is the reverse of Lemma 6.3.1. Lemma 6.3.2. Let e = (t i , t j ) ∈ E and a couple (a i , a j ) ∈ A(e).

For any value π ∈ {π min e (a i , a j ), . . . , π max e (a i , a j )}, there exist an infinite number of couples

(p i , p j ) ∈ N 2 such that π = π e (p i , p j ). Moreover, setting ν i = a i + p i K i and ν j = a j + p j K j , e induces a relation from ⟨t i , ν i ⟩ to ⟨t j , ν j ⟩.
Proof. By Bezout, there exists (x, y) ∈ Z 2 such that xK i T i + yK j T j = gcd e K and thus πxK i T i + πyK j T j = πgcd e K .

For z ∈ N, let us define p i = πx + zK j T j and p j = -πy + zK i T i . Let us also consider values ν i and ν j such that ν i = a i + K i p i and ν j = a j + K j p j . For z sufficiently large (z ≥ z 0 ), p i ≥ 1 and p j ≥ 1 and thus ν i and ν j are both greater than 1. Then,

T i p i K i -T j p j K j = K i T i (πx + zK j T j ) -K j T j (-πy + zK i T i ) = xπK i T i + yπK j T j = πgcd e K ,
thus π = π e (p i , p j ). Now, Then

T i ν i -T j ν j = a i T i -a j T j + K i T i p i -K j Z j p j = a i T i -a j T j +
L max (a i ,a j ) (e) = r j -r i + T i -T j -(π min e (a i , a j ) • gcd e K + α e (a i , a j ) • gcd e T )
is the maximal value of the latency L ν i ,ν j (e) for (ν i , ν j ) ∈ R(e) with ν i = a i mod K i and ν j = a j mod K j .

Proof. By Equation 6.2.1, the latency between executions ⟨t i , ν i ⟩ and ⟨t j , ν j ⟩ for

(ν i , ν j ) ∈ R(e) is L ν i ,ν j (e) = r j -r i + T i -T j -(T i ν i -T j ν j ). Assuming that ν i = a i + p i K i and ν j = a j + p j K j
with (p i , p j ) ∈ N 2 we get by Lemma 6.3.1 that (a i , a j ) and the theorem is proved.

L ν i ,ν j (e) = r j -r i + T i -T j -(π e (p i , p j ) • gcd b k + α b (a i , a j ) • gcd b T ) ( 

Definition of the partial expanded graph

We suppose that the vector K ∈ N ⋆n is fixed. The associated expanded graph P K (G) = (V, B, L max ) is a valued directed acyclic graph defined as follows: 

For every arc

β = (t a i , t b j ) ∈ B, L max (β) = L max (a,b) (e) following Theorem 6.3.4.
4. Lastly, two additional fictitious tasks s and f are considered with the arcs defined as:

• For any duplicate t a i without predecessor, add the arcs β = (s, t a i ) with L max (β) = 0;

• For any duplicate t a i without successor, add the arcs β = (t a i , f ) with L max (β) = D i .

Let K be a fixed positive integer vector. Let us denote by LP max (P K (G)) the length of the longest path of the associated partial expanded graph P K (G). By Theorem 6.3.4, LP max (P K (G))

is an upper bound of the maximum latency of G. for the instance pictured by Figure 6.2. The longest path is given by p = s, t Note that the total number of vertices of

P K (G) is |V | = n i=1 K i + 2, while the number of arcs |B| is bounded by O( e=(t i ,t j )∈B K i × K j ).
These two values may be huge for important values of K. The main problem consists then in the determination of the vector K of small values such that the bound LP max (P K (G)) is as close as possible from the optimum value of the latency.

Dominant set for the expansion vector K

This section is devoted to the study of dominance properties on K w.r.t the age latency to reduce the set of vectors K. Subsection 6.4.1 formally proves that the value of the longest paths of expanded graphs P N (G) associated with the hyper-period of G is the age latency L ⋆ (G). We prove in Subsection 6.4.2 that we can reduce our study to the set of the partial expansions P K (G) such that each component K i divises N i and we provide a partial order relation between these vectors that will be exploited in next section for the computation of the latency.

Optimal value of the age latency for K = N

Let the least common multiplier define as T = lcm t i ∈T (T i ) and the vector N ∈ N * n define as

N i = T T i
for any task t i ∈ T . N is usually called the repetition vector, since if we consider N i successive executions of each task t i , the set of constraints between tasks are repeated. (T i , t j ) of G. For any arc β = (t a i i , t a j j ) ∈ B associated with e and any couple (q i , q j ) ∈ N 2 , π e (q i , q j ) = q i -q j .

Proof. By definition of π e , π e (q i , q j ) = T i q i K i -T j q j K j gcd e K . As T i K i = T j K j = T = gcd e K , we get π e (q i , q j ) = q i -q j and the lemma is proved.

We prove formally in the following that the value of the longest paths of the expanded graph Proof. By Theorem 6.3.4, LP max (P N (G)) ≥ L ⋆ (G). We prove that LP max (P N (G)) ≤ L ⋆ (G).

Let consider a path p

N = t a 1 1 β 1 t a 2 2 . . . β k-1 t a k k of P N (G)
and the corresponding path p = t 1 e 1 , . . . , e k-1 t k of G. By Lemma 6.4.1, we get for any vector (q 1 , . . . , q k ) ∈ N k and ℓ ∈ {1, . . . , k-1}, π e ℓ (q ℓ , q ℓ+1 ) = q ℓ -q ℓ+1 .

Let us consider the sequence of integers q1 , . . . , qk defined as follows:

• qℓ+1 = qℓ + π max e ℓ (a ℓ , a ℓ+1 )

• q1 is fixed arbitrarily sufficiently large such that, ∀ℓ ∈ {1, . . . , k}, qℓ ≥ 0.

This sequence verifies that, ∀ℓ ∈ {1, . . . , k -1}, π e ℓ (q ℓ , qℓ+1 ) = π max e ℓ (a ℓ , a ℓ+1 ), thus by Theorem 6.3.3, there is a dependence relation from ⟨t ℓ , a ℓ + qℓ K ℓ ⟩ to ⟨t ℓ+1 , a ℓ+1 + qℓ+1 K ℓ+1 ⟩. Moreover, by definition of the sequence L max , L max (β ℓ ) = L qℓ ,q ℓ+1 (e ℓ ) and then L q1 ,...,q k (p) = LP max (p N ).

If p N is the longest path P N (G), LP max (P N (G)) = LP max (p N ) = L q1 ,...,q k (p) ≤ L ⋆ (G), which proves the theorem. 

i ∈ T , K ′ i is a divisor of K i , then LP max (P K ′ (G)) ≥ LP max (P K (G)).
Proof. Let us consider the arc e = (t i , t j ) of G. By hypothesis, there exists (x i , x j ) ∈ N ⋆2 , such that

K i = x i K ′ i and K j = x j K ′ j . Let β = (t a i i , t a j j
) be an arc of P K (G) with (a i , a j ) ∈ {1, . . . , K i } × {1, . . . , K j }. Then, there exists (ν i , ν j ) ∈ N * 2 such that ν i = a i + p i K i , ν j = a j + p j K j and the latency between execution ⟨t i , ν i ⟩ and ⟨t j , ν j ⟩, L ν i ,ν j (t i , t j ), reaches the maximum latency of arc

β, i.e. L ν i ,ν j (t i , t j ) = L max (β).

Let us consider now integer values a

′ i ∈ {1, 2, . . . , K ′ i }, a ′ j ∈ {1, 2, . . . , K ′ j }, y i and y j such that a i = a ′ i +y i K ′ i and a j = a ′ j +y j K ′ j . Thus, ν i = a ′ i +(y i +x i p i )K ′ i and ν j = a ′ j +(y j +x j p j )K ′ j .
Since there is a dependence relation between ⟨t i , ν i ⟩ and ⟨t j , ν j ⟩, β ′ = (t

a ′ i i , t a ′ j j ) belongs to P K ′ (G)
and L ν i ,ν j (t i , t j ) ≤ L max (β ′ ), thus we get L max (β) ≤ L max (β ′ ).

For any path p = t a 1 1 β 1 t a 2 2 β 2 . . . β n-1 t aq q in P K (G), there is a corresponding path

p ′ = t a ′ 1 1 β ′ 1 t a ′ 2 2 β ′ 2 . . . β ′ n-1 t a ′ q q in P K ′ (G)
that includes all executions represented by path p. Therefore, LP max (P K ′ (G)) ≥ LP max (P K (G)).

For any couple of vectors (K, K ′ ) ∈ N ⋆2 , we set K ′ ⪯ K if, for any t i ∈ T , K ′ i divides K i .

By Theorem 6.4.2, the optimum value of the latency is reached for K = N . The consequence of this last theorem is that we can limit our study to the set K of vectors K ⪯ N . Let us consider the graph H = (K, ⪯). The evaluation of the age latency is improved following paths from K = 1 n to K = N . Figure 6.5 shows the graph H associated with the example pictured by Figure 6.2. We observe that the optimum value of the age latency can be reached for vectors K smaller than N .

Determination of an optimum vector K

The problem considered in this section is to compute iteratively a vector K ∈ K to reach a vector K ⋆ such that LP max (P K ⋆ (G)) = L ⋆ (G). Our algorithm is based on the optimality test expressed by next lemma: Lemma 6.5.1 (Optimality test). Let us consider a vector K ∈ K, a longest path p K of P K (G) and its corresponding path p of G. If, for every task t i ∈ p, K i is a multiple of N i (p) = lcm t j ∈p {T j } T i , then LP max (p K ) = L ⋆ (G).

Proof. Let a vector K and the path p of G following the assumptions of the theorem. Then, by definition of p, LP max (P K (G)) = LP max (p K ).

By optimality of L ⋆ , L ⋆ (p) ≤ L ⋆ (G) ≤ LP max (P K (G)). Now, since for any task t i of p, N i (p) 

ROSACE Case Study

ROSACE is the acronym for Research Open-Source Avionics and Control Engineering. This case study was developed by Pagetti et al. [START_REF] Pagetti | The ROSACE case study: from simulink specification to multi/many-core execution[END_REF] to illustrate the implementation of a real-time system on a many-core architecture.

Figure 6.7 presents an instance of the problem extracted from [START_REF] Forget | Verifying end-to-end real-time constraints on multi-periodic models[END_REF]. We arbitrarily set r i = 0 and D i = T i for any task t i ∈ T . The partial expanded graph P K (G) built at the second iteration is pictured by Figure 6.9. p K = s, t we can identify that paths s, t 5 , t 3 , t 4 , f and s, t 6 , t 4 , f are not critical, thus tasks can be delayed without influence on the age latency.

t

Experimental results

Our experimentations aim at testing the performance of the Algorithm 3. Following the experimentations of Khatib et al. [START_REF] Khatib | Computing latency of a real-time system modeled by synchronous dataflow graph[END_REF], the bound obtained from the longest paths of P 1 n (G) can be computed quickly, but its performance is in average around 30 percent from the optimal value L ⋆ (G). Moreover, their method does not identify precisely the real critical paths w.r.t the age latency of the initial graph.

Our Benchmarks were randomly generated: they are detailed is Subsection 6.7.1. The analysis of the computation time of our algorithm is presented in Subsection 6.7.2. Subsection 6. with the analysis of the critical vectors K ⋆ obtainde by our algorithm. All our experiments were performed on an Intel(R) Core(TM) i5-8400 CPU (6 cores at 2.80GHz) and 15 GB of RAM.

Benchmarks

Random instances of n tasks were generated as follows. Periods of tasks are selected uniformly in H = {1, 2, 5, 10, 20, 50, 100}. H is a subset of the values presented by Kramer et al. [START_REF] Kramer | Real world automotive benchmarks for free[END_REF] for the 2015 WATERS challenge and several authors dealing with the age latency for automotive applications [START_REF] Becker | Endto-end timing analysis of cause-effect chains in automotive embedded systems[END_REF][START_REF] Hamann | Communication centric design in complex automotive embedded systems[END_REF].

Release times r i are uniformly selected in {0, 1, 2, 3, 4, 5}, while we fix the relative deadline D i equal to the period of the task i.e. D i = T i for any task t i ∈ T . All functions dealing with graphs were implemented using the Python package NetworkX. Graphs are randomly generated using the function dense_gnm_random_graph. Nodes are arbitrary numbered from 1 to n. A directed acyclic graph is then built by replacing each edge e = {i, j} with i < j by an arc e = (i, j).

For any number n of tasks, we set the number of arcs to m ℓ = ⌊ (n(n-1)

4

⌋ arcs for low density graphs and m h = ⌈ (n(n-1)

3

⌉ for high density. We start with n = 5 tasks with a step of 5. For each data point, 150 random instances were generated and an average value of the functions considered that good algorithms should be sought to identify critical paths of a graph.

Conclusion

We exhibited in this chapter a new definition of the dependence between the successive executions of two tasks that communicate following a LET paradigm. This definition was exploited to build a partial expanded graph P K (G) associated to any vector K ∈ N ⋆n for the computation of a lower bound of the age latency. A greedy algorithm to compute an accurate value K ⋆ leading to the optimal value of the age latency was developed and tested on random realistic instances. This optimal partial expansion allows to identify the critical paths of the graph G.

Many extensions of our study may be considered. This methodology can surely be applied to evaluate accurate lower bounds of the age latency. Coupling the upper and the lower bounds will allow then to measure precisely the error between the longest paths of P K (G) and L ⋆ (G).

Our general framework should also be extended to tackle other possible latencies [START_REF] Feiertag | A compositional framework for end-to-end path delay calculation of automotive systems under different path semantics[END_REF]. Lastly, an implicit communication between two tasks of same period (which corresponds to two tasks in the same runnable for an AUTOSAR compatible system) can also easily be considered in our model. optimization criteria like total weighted tardiness and total weighted completion time? Besides, researches on reducing the size of time windows are important for this algorithm to limit pathwidth. In parameterized complexity theory, Courcelle's theorem identifies a set of problems on undirected graphs that can be solved with FPT algorithms with treewidth as the parameter. However, it remains open if Courcelle's theorem be extended to scheduling problems with pathwidth as the parameter.

In application point of view, when the parameter is bounded, comparison of the performance between our algorithms and branch and bound method, integer linear programming method is interesting. Industrial cases in which pathwidth can be tractable still need to be identified. Experiments on industrial cases with bounded pathwidth are to be conducted.

Calculation of age latency in real time systems

The goal of this part of thesis is to develop mathematical and algorithmic tools to compute efficiently the age latency of a real-time system of multi-periodic communicating tasks under LET assumption. It is answered with an original method that computes efficiently the age latency of a general task communication graph G of a real-time system without circuit. A wide number of methods to this problem limit their study to chains, but they can not be applied efficiently on general graph by simply enumerate them because the number of paths between two nodes is potentially exponential.

A new definition of the dependence between the successive executions of two tasks communicating in LET paradigm was provided This definition was exploited to build a partial expanded graph P K (G) associated to any vector K ∈ N ⋆n for the computation of a lower bound of the age latency. A greedy algorithm to compute the optimal value of the age latency was developed and tested on random realistic instances. This algorithm also allows to identify the critical paths of the graph G.

This research is limited to real-time systems with LET paradigm, extension to other real-time system communication paradigm is waiting to be researched. Cooperation with automotive design industry is needed to test the method in a more complex environment.
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 211 Let C i (σ) and G(σ) denote respectively the completion time of task i and the value of criterion G for schedule σ.

For

  the first field α = α 1 α 2 specifying the machine environment, we have α 1 indicates the types of machines and α 2 indicates the number of machines. Let • donates the empty symbol. All possible values of α 1 are characterized as follows: α 1 = •: single machine; α 1 = P : identical parallel machines. Tasks have the same processing time on different machines; α 1 = Q: uniform parallel machines. A processing speed is specified for each machine; α 1 = R: unrelated parallel machines; α 1 = O: open shop; α 1 = F : flow shop; α 1 = J: job shop; If α 2 is a positive number, then there is a fixed number of machines. If α 2 = •, then the number of machines is unavailable.

  The precedence graph to be scheduled.

  The best schedule without duplication above the time axe and the best schedule with duplication below.

Figure 2 . 2 :

 22 Figure 2.2: Example of task duplication.

  for example the precedence graph of a UET-UCT model, presented by Figure 2.3a for T = {1, 2, . . . , 8}.

Figure 2 . 5 .

 25 3b presents an associated feasible schedule σ(G) of makespan Associated starting time is t = (0, 0, 1, 2, 2, 3, 3, 4).

  A precedence graph G = (T , A).

  An optimum schedule for the precedence graph G = (T , A) of Figure 2.3a.

Figure 2 . 3 :

 23 Figure 2.3: A precedence graph G = (T , A) and an associated optimum schedule.

  max is N P -hard. An exact dynamic programming algorithm of time complexity O(2 w(G) .n 2w(G) ) was developed by Veltman [88] for P |prec, p i = 1, c ij = 1|C max where w(G) is the width of the precedence graph G. The width of a directed graph is the cardinality of the largest antichain of G. for the problem P |prec, p i = 1, c ij = 1|C max and P |prec, p i = 1, c ij = 1|L max . Hanen and Munier [49] gave an approximation algorithm to the problem P |prec, p i = 1, c ij = 1|C max and proved that the worst relative performances of their algorithms are bounded by 7/3 -4/m.
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 24 Figure 2.4: A depth-2, weft-2 circuit.
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 22525 Figure 2.5: Time windows of precedence graph in Figure 2.3a.

Figure 2 . 6 :

 26 Figure 2.6: The interval graph of time windows in Figure 2.5.

Figure 2 . 7 :

 27 Figure 2.7: A path-decomposition of Figure 2.6.

  and the pathwidth of G is the minimum width of any path-decomposition of G.

Figure 2 .

 2 Figure 2.7 is an example of a path-decomposition of the interval graph of Figure 2.6.

Figure 3 .

 3 Figure 3.1a shows the release time and deadline of tasks from the graph presented by Figure 2.3a with the upper bound of the makespan C = 6.Figure 3.1b shows the associated sets X α and Z α for α ∈ {0, 1, . . . , 5}. For this example, pw(C) = |X 3 | -1 = 5. Let us consider that σ(G) is a feasible schedule of makespan C ≤ C. For every integer α ∈ {0, . . . , C -1}, we set T σ α = {i ∈ T , t σ i = α}.

Figure 3 . 1 :

 31 Figure 3.1: Release times, deadlines, and sets X α and Z α , α ∈ {0, . . . , 5} for the instance presented by Figure 2.3a and C = 6 on unlimited number of machines.

  An optimal non-active schedule of Figure2.3a. An optimal active schedule of Figure2.3a.

Figure 3 . 2 :

 32 Figure 3.2: Example of active and non-active schedules.

  A precedence graph G = (T , A).

  An optimum schedule for the precedence graph G = (T , A) of Figure2.3a.

Figure 3 . 3 :Definition 3 . 3 . 2 ( 1 . 3 . 3 . 4 .

 333321334 Figure 3.3: Task 3 and task 4 are preferred sons of task 1, task 5 is not.

  which can be modelled using an integer linear program (P ) defined in Section 2.1.1 with p i = 1 and c ij = 1.

  have developed an original techniques to reduce the space of exploration and to speed up branch-and-bound methods. Davies et. al. [29] gave a polynomial time O(log c • log m)-approximation algorithm for this problem, where m is the number of machines and c is the communication delay, which based on a Sherali-Adams lift of a linear programming relaxation and a randomized clustering of the semimetric space induced by this lift. Jansen et. al. [56] presented an efficient polynomial time approximation scheme (EPTAS) for scheduling fork-join task graphs with communication delay on homogeneous processors, denoted as P |f ork -graph, c ij |C max , which is based on an integer program. Liu et al. [67] provided an O( ln c ln ln c )-approximation algorithm with near-linear running time, i.e. in Õ(|V | + |E|) time.

  A node p ∈ N is a couple (W (p), B(p)), where W (p), B(p) are subsets of tasks and B(p) ⊆ W (p) ⊆ T . If p ∈ N α , tasks from W (p) have to be completed at time α + 1, while those from B(p) are scheduled exactly at time α. N 0 contains only one node p 0 with B(p 0 ) = {i ∈ T , Γ -(i) = ∅} and W (p 0 ) = B(p 0 ).

N 3 N 2 N 1 N 0 Figure 4 . 1 :Figure 4 . 2 :

 32104142 Figure 4.1: The multistage graph associated with the precedence graph of Figure 2.3a and C = 6.

Lemma 4 . 3 . 1 .

 431 Any feasible schedule σ(G) of makespan C ≤ C corresponds to a path of S(G) ending with a node p with W (p) = T . Proof. Let suppose that σ(G) is a feasible active schedule of makespan C ≤ C. By Lemma 3.3.5,

Algorithm 1 : 2 Calculate r i and d i 3 4 Calculate X α and Z α 5

 12345 Optimum makespan C ≤ C if it exists, false otherwise. Input: A precedence graph G = (T , A), an upper bound of the makespan C Output: Optimum makespan C ≤ C if it exists, false otherwise 1 for i ∈ T do for α ∈ {0, 1, . . . , C -1} do Initialize a set of arcs A = ∅ 6 Let N 0 = {p 0 } with B(p 0 ) = {i ∈ T , Γ -(i) = ∅} and W (p 0 ) = B(p 0 ) 7 for α ∈ {1, 2, . . . , C -1} do 8

15 return α + 2 16

 152 2, A.3, A.4, A.5 are met for (p, q) then 13 A = A ∪ {(p, q)} 14 if W (q) = T then Delete all the vertices p ∈ N α+1 without predecessor 17 return False {0, . . . , C -1}.

Lemma 4 . 3 . 2 .

 432 Let C ≤ C and (p 0 , p 1 , . . . , p C-1 ) be a path of S(G) with W (p C-1 ) = T . Then, for each task i ∈ T , there exists a unique value α ∈ {0, . . . , C -1} such that i ∈ B(p α ). Proof. According to the definition of S(G), W (p 0 ) ⊂ W (p 1 ) ⊂ • • • ⊂ W (p C-1 ). Moreover, by assumption, W (p C-1 ) = T . Thus, for each task i ∈ T , there is a unique α ∈ {0, . . . , C -1} with i ∈ W (p α ) and i / ∈ W (p α-1 ). Since W (p α-1 ) ∪ B(p α ) = W (p α ), we get i ∈ B(p α ).

Lemma 4 . 3 . 3 .

 433 Every path (p 0 , p 1 , . . . , p C-1 ) of S(G) with C ≤ C and W (p C-1 ) = T is associated to a feasible schedule whose makespan is equal to C. Proof. Let (p 0 , p 1 , . . . , p C-1 ) be a path of S(G) with C ≤ C and W (p C-1 ) = T . A schedule σ(G)

σ i ≤ C - 1 ,

 1 ∀i ∈ T and thus equations (2) are validated. According to the condition A.5, for any task i ∈ B(p α ), α ∈ {0, . . . , C -2} C.1 If P S W (pα),B(pα) (i) ∩ X α+1 ̸ = ∅, then there is exactly one task j ⋆ ∈ Γ + (i) ∩ B(p α+1 ), i.e.

Lemma 4 . 4 . 1 .Lemma 4 . 4 . 2 .

 441442 Let us denote by n the number of tasks and pw(C) the pathwidth of the interval graph built with the upper bound C of the minimum makespan. The number of nodes |N | of the multistage graph S(G) = (N, A) is O(n • 2 2pw(C) ) and the number of arcs |A| is O(n • 2 4pw(C) ). Proof. According to Algorithm 1, each node p ∈ N α is such that p = (W (p), B(p)) with W (p) = Y (p) ∪ Z α and Y (p) ⊆ X α ∩ X α+1. The number of possibilities for Y (p) is thus bounded by 2 |Xα∩X α+1 | ≤ 2 |Xα| . Now, since B(p) ⊆ X α , the number of possibilities for B(p) is bounded by 2 |Xα| . Then, the number of nodes in N α for α ∈ {0, . . . , C -1} is bounded by 2 2|Xα| . By definition of the pathwidth, the value |X α | is bounded by pw(C) + 1, thus the number of nodes |N α | is O(2 2pw(C) ). Now, since C ≤ n, the number of nodes |N | is O(n•2 2pw(C) ). Moreover, the size of N α × N α+1 for α ∈ {0, . . . , C -1} is O(2 4pw(C) ), thus the whole number of arcs |A| is O(n • 2 4pw(C) ), and we get the lemma. For any α ∈ {0, . . . , C -2}, the time complexity of checking the conditions A.1 to A.5 for a couple of nodes (p, q)∈ N α × N α+1 is O(n 2 • pw(C)).Proof. The time complexity for checking the condition A.1 is O(n). For the condition A.2, we need to build the set {i ∈ X α+1 , Γ -(i) ⊆ W (p)}. If we denote by m the number of arcs of G, building this set requires to enumerate all the successors of tasks in X α+1 , which is in time complexity equal to O(m). Since m ≤ n 2 , the time complexity for checking the condition A.2 is thus O(n 2 • pw(C)). For the same reasons, time complexity for checking the conditions A.3 and A.4 is also O(n 2 • pw(C)). For condition the A.5, the time complexity of the computation of the preferred sons of a task i ∈ B(p) is also O(n 2 ), and thus checking this condition also takes O(n 2 • pw(C)), and the lemma holds.

Theorem 4 . 4 . 3 (

 443 Complexity of Algorithm 1). The time complexity of Algorithm 1 is O(n 3 •pw(C)• 2 2pw(C) ), where pw(C) is the pathwidth of the interval graph associated to the time windows [r i , d i ], i ∈ T . Proof. The time complexity of the computation of the release dates and deadlines (lines 1 -2) and the sets X α and Z α for α ∈ {0, . . . C} (lines 3 -4) is O(n 2 ) since C is bounded by n. The time complexity for building N at lines 7 -9 is O(n • 2 2pw(C) ) by Lemma 4.4.1. Following Lemma 4.4.1 and 4.4.2, the complexity of building arcs of S(G) in lines 10 -17 is O(n 3 • pw(C) • 2 4pw(C) ), thus the theorem holds.

Figure 5 . 1 :

 51 Figure 5.1: An instance of P |r i , prec, p i = 1, c ij = 1|L max with m = 2 machines.

Figure 5 . 2 :

 52 Figure 5.2: A feasible schedule σ of maximum lateness L max (σ) = 2 associated to the example given in Figure 5.1.

N. 1 N. 2

 12 set of nodes N is partitioned into C + 1 stages. For any value α ∈ {-1, . . . , C -1}, N α is the set of nodes at stage α. A node p ∈ N α is a triple (W (p), B(p), L(p)), where B(p) ⊆ W (p) ⊆ T and L(p) ∈ Z ∪ {+∞}. The node p is associated to the feasible schedules σ(p) of tasks from W (p) ending at time α + 1 with tasks from B(p) scheduled at time α. L(p) is the minimum maximum lateness among all the feasible schedules associated to p. Moreover, N -1 = {s} with W (s) = B(s) = ∅ and L(s) = -∞. For each value α ∈ {0, . . . , C -1}, each node p ∈ N α fulfils next conditions: Tasks from Z α must be completed before time α + 1, thus for each p ∈ N α , Z α ⊆ W (p); For each node p ∈ N α , the tasks from B(p) are all executed simultaneously at time α, thus B(p) ⊆ X α and |B(p)| ≤ m; N.3 By Lemma 3.2.3, for each node p

Figure 5 . 3 Figure 5 . 1 1 .Lemma 5 . 4 . 3 .

 53511543 Figure 5.3 presents the graph S(G) built by Algorithm 2 associated to the example shown byFigure 5.1 and the upper bound L = 2. Algorithm 2 returns the optimal value L opt = 1.We observe that the schedule presented by Figure5.2 is associated to the path s → p 0 → p 1 → p 2 → p 3 → p 4 with p 0 = ({1, 2}, {1, 2}, 0), p 1 = ({1, 2, 3}, {3}, 1), p 2 = ({4, 5}, {4, 5}, 1), p 3 = ({6}, {6}, 1) and p 4 = (∅, {7}, 2). The maximum lateness of the path is L(p 4 ) = 2.

slots at time 2 (

 2 i ⋆ -2) + 1 and 2(i ⋆ -1) before the beginning of tasks in {i ⋆ , i ⋆ + 1, . . . n}. Since release times are compatible with respect to precedence, we can treat separately the two sets of tasks {1, . . . , i ⋆ -1} and {i ⋆ , . . . , n}. The second scheduling problem considers tasks {i ⋆ , . . . , n} with release times rj = r j -r i ⋆ and due dates dj = d j -r i ⋆ . Thus, the first part of the lemma is proved. Now, since C = min(r max + 2n, d max + L), C ≤ 4n -2 and the lemma is proved. Theorem 5.4.4 (Complexity of Algorithm 2). The time complexity of Algorithm 2 is O(n 2 + n × pw(L) × 2 3pw(L) ), where pw(L) is the pathwidth of the interval graph associated to the time windows (r i , d i + L), i ∈ T . Proof. The time complexity of the computation of the sets X α and Z α for α ∈ {0, . . . , C} (lines 3-4) is O(n 2 ) since C is bounded by 4n -2 following Lemma 5.4.3. The time complexity for building N at lines 7-8 is O(n × 2 2pw(L) ) by Lemmas 5.4.1 and 5.4.3. Following Lemma 5.4.2, the whole complexity of building arcs of S(G) in lines 9-20 is

Figure

  Figure 6.1 presents successive time windows of the first executions of two periodic tasks t 1 and

. 1 .

 1 We get gcd e T = gcd(3, 4) = 1 and M e = 3 + (0 -1 + 3) = 5. The inequality of Theorem 6.2.2 is 4 ≥ 5 + 4ν 1 -3ν 2 ≥ 0. One can observe that the first executions of t 1 and t 2 with a dependence relation correspond to the couples that verify this inequality. For (ν 1 , ν 2 ) = (1, 2), we get 5+4ν 1 -3ν 2 = 5+4-6 = 3 ∈ {1, . . . , 4}. Similarly, for (ν 1 , ν 2 ) = (2, 3), we get 5 + 4ν 1 -3ν 2 = 5 + 8 -9 = 4 ∈ {1, . . . , 4}. Now, if we consider (ν 1 , ν 2 ) = (2, 5), 5 + 4ν 1 -3ν 2 = 5 + 8 -15 = -2 ̸ ∈ {1, . . . , 4} and there is no dependence from ⟨t 1 , 2⟩ to ⟨t 2 , 5⟩.

Figure 6 .

 6 Figure 6.2 presents an instance of our problem composed by 4 periodic tasks and the associated directed acyclic graph G. Dependence relations between the first executions of tasks t 1 , t 2 and t 4

Figure 6 .

 6 Figure 6.4 presents the expanded graph P K (G) associated with the vector K = (2, 4, 1, 2)

Figure 6 . 4 :

 64 Figure 6.4: Expanded graph P K (G) = (V, B, L max ) for the instance pictured by Figure 6.2 associated with the vector K = (2, 4, 1, 2). Arcs β ∈ B are valued by L max (β) in gray.

For our example pictured by Figure 6 . 2 ,Lemma 6 . 4 . 1 .

 62641 we get T = lcm(2, 1, 6, 3) = 6 and thus N = (3, 6, 1, 2). Lemma 6.4.1 is a simple technical lemma. Let P N (G) = (V, B, L max ) be the expanded graph with K = N and an arc e =

PTheorem 6 . 4 . 2 .

 642 N (G) is the age latency of G, i.e. L ⋆ (G): For any acyclic directed graph G, LP max (P N (G)) = L ⋆ (G).

6. 4 . 2 Theorem 6 . 4 . 3 .

 42643 Order relation between the divisors of the repetition vector N Next theorem introduces an order relation between vectors K ∈ N ⋆n : For any acyclic directed graph G, let us suppose that K and K ′ are two different vectors such that ∀t

Figure 6 . 5 :

 65 Figure 6.5: Graph H = (K, ⪯) associated with the example pictured by Figure 6.2. Values LP max (P K (G)) is given in gray for each vertex K ∈ K.

Figure 6 . 6 :

 66 Figure 6.6: The partial expanded graph for the instance pictured by Figure 6.2 and a unit vector K = (1, 1, 1, 1). Arcs are valued by L max in gray.

Figure 6 . 7 :

 67 Figure 6.7: An instance of 6 periodic tasks and the associated DAG G extracted from ROSACE case study [41].

Figure 6 .Figure 6 . 8 :

 668 Figure 6.8 presents the partial expansion of the instance of Figure 6.7 for the unit expansion vector K = 1 6 . The path of maximum length is pK = s, t 1 1 , t 1 2 , t 1 3 , t 1 4 , f with LP max (P K (G)) = LP max (P K (p)) = 260ms.At the first iteration of Algorithm 3, p = s, t 1 , t 2 , t 3 , t 4 , f is expanded. We get T (p) = lcm(60, 40, 30) = 120, N 1 (p) = N 2 (p) = 2, N 3 (p) = 3 and N 4 (p) = 4. For next iteration,

N 3 (

 3 p) = 3 and N 4 (p) = 4. The optimality test is true and we getK ⋆ = (2, 2, 3, 4, 1, 1). The maximum age latency of G is thus L ⋆ (G) = LP max (p K ⋆ ) = 240ms.We observe in this example that all the tasks of the critical path (i.e. the paths p of G such that L ⋆ (p) = L ⋆ (G)) were expanded at least following N (p). Moreover, tasks from other paths are not necessarily duplicated: as example, K ⋆ 5 = K ⋆ 6 = 1 with repetition vectors N 5 = N 6 = 4. Thus,

Figure 6 . 9 :

 69 Figure 6.9: The partial expanded graph P K (G) for the instance pictured by Figure 6.7 and the vector K = (2, 2, 3, 4, 1, 1). Each β arc is valued by L max (β).

Figure 6 . 10 :

 610 Figure 6.10: Average running times (on the top) and average number of iterations (on the bottom) of Algorithm 3 for randomly generated high density and low density instances.

Figure 6 . 11 :

 611 Figure 6.11: Average ratio r(n) =

  

  A small node in a circuit has indegree at most 2, a large node has indegree > 2. The weft of a circuit is the maximum number of large nodes on a path from an input node to the output node.Let C t,d be the class of circuit with weft at most t and depth at most d. See example in Figure2.4. It is W[2]-hardness for problems like P |prec, p j = 1|C max , P 2|prec, p j ∈ {1, 2}|C max , and P 3|prec, size j ∈ {1, 2}|C max considered by Bodlaender et al.[START_REF] Hans | W[2]-hardness of precedence constrained kprocessor scheduling[END_REF] and van Bevern et al.[START_REF] René Van Bevern | Precedence-constrained scheduling problems parameterized by partial order width[END_REF].

	antichain. Besides, it is proved by Bodlaender et al. [17] that even for chains of jobs with exact delays, on
	a single machine, parameterized by the number of chains, the problem is in XP by dynamic pro-
	gramming. For UET-UCT problem, an exact dynamic programming algorithm of time complexity
	O(2 w(
	Definition 2.2.4 (WCS problem). Given a boolean circuit C and an integer k, the WCS problem
	is to decide if C has a satisfying assignment of weight exactly k.
	Definition 2.2.5 (W -hierarchy). For t ≥ 1, a parameterized problem L belongs to the class W [t]
	if there is a parameterized reduction from L to WCS[C t,d ] for some d ≥ 1.
	Mnich and van Bevern [70] surveyed main results on parameterized complexity for schedul-
	ing problems and identified 15 open problems. They identified width of precedence graph as a
	parameter for problems without communication delays, which is defined as the size of its largest

  A time window (r i , d i ) associated to the task i ∈ T is given by a release date r i ∈ N and a deadline d i ∈ N such that the task i must be completed during the time interval (r i , d i ), i.e.t i ≥ r i and t i + p i ≤ d i .We give the algorithms in Section 3.2.1, to any upper bound C of the minimum makespan, to calculate feasible release date r i and deadline d i for any task i ∈ T considering the precedence graph G. For the problems to minimize the maximum lateness L max , due date d i for each task i is provided. With an upper bound of the maximum lateness L, we can get the deadline d i = d i + L for any task i. Then we can set a upper bound of minimum makespan

	C = max i∈{1,2,...,n}	{d i } = max i∈{1,2,...,n} {d i + L}.
	With time windows (r i , d i ) for all tasks, we can create an interval graph. An interval graph of
	a set of interval is an undirected graph with one vertex per interval and an edge between vertices
	whose intervals overlap. The formal definition is following.
	Definition 2.3.1. An interval graph is an undirected graph I formed from a family of intervals
		(r i , d i ), ∀i ∈ {1, 2, . . . , n}
	by creating one vertex v i for each interval (r i , d i ), and connecting two vertices v i and v j by an edge
	whenever the corresponding two sets have a nonempty intersection. That is, the edge set of I is

  2.3. Lemma 3.2.2. Any feasible schedule σ with makespan bounded by C for the precedence graph G is also feasible for the deadlines d i provided by equation 3.2.3. Proof. Let σ be a feasible schedule of precedence graph G with makespan bounded by C, the starting time of task i ∈ T is t σ i . We need to prove that t σ i ≤ d i -1 provided by equation 3.2.3.

  1} be the first time instant at which the property is not fulfilled, and i ⋆ ∈ B α is a corresponding task with P S Wα,Bα(i ⋆ ) ̸ = ∅ and t σ i ⋆ = α. Then we have |B α+1 | < m and all the preferred sons of i ⋆ , i.e. j ∈ P S Wα,Bα (i ⋆ ), are scheduled after time α + 1, i.e. t σ j ≥ α + 2 For any task j ∈ P S Wα,Bα (i ⋆ ), its predecessors are in W α , thus ∀k ∈ Γ -(j), t σ k ≤ α. According to the definition of communication delays, for every task j ∈ Γ +

. Let us suppose that σ(G) does not verify the preferred sons property. Let (t σ 1 , t σ 2 , . . . , t σ n ) be the time vector and x σ be the delay signal vector. Let α ∈ {0, . . . , C -

  1 and equations (4) are validated. We conclude that σ(G) is a feasible schedule, and the lemma is proved.

	Theorem 4.3.4 (Validity of Algorithm 1). Algorithm 1 returns the minimum makespan C of a
	feasible schedule if C ≤ C, false otherwise.

Proof. Let us suppose first that our algorithm returns C ≤ C, then the minimum path from p 0 to a node p with W (p) = T is of length C. By Lemma 4.3.3, this path is associated to a feasible schedule of makespan C. Thus this schedule is optimal. Now, let us suppose that such a path does not exist; in this case, Algorithm 1 returns false. By Lemma 4.3.1, there is no feasible schedule of makespan C ≤ C and the theorem is proved.

  6.1 presents successive time windows of the first executions of two periodic tasks t 1 and t 2 with a LET communication e = (t 1 , t 2 ) ∈ E. Since T 1 > T 2 a same data from t 1 can be read by several executions of t 2 . Figure6.1: Time windows associated to two periodic tasks t 1 and t 2 with a LET dependence e = (t 1 , t 2 ). Parameters of tasks are respectively (r 1 , D 1 , T 1 ) = (0, 3, 4) and (r 2 , D 2 , T 2 ) = (1, 2, 3). Theorem 6.2.2. Let suppose that e = (t i , t j ) ∈ E. Let gcd e T = gcd(T i , T j ) and M e = T j + ⌈ r i -r j +D i For any couple (ν i , ν j ) ∈ N ⋆ × N ⋆ , there exists a dependence from ⟨t i , ν i ⟩ to

		t 1	1	2	3	4		5	6
		t 2	1	2	3	4	5	6	7	8
	Next theorem characterises formally the dependence relation between the executions of two
	communicating tasks:						
	gcd e T	⌉ × gcd e T .							

  .2.1)Now, for any path p = t 1 e 1 t 2 e 2 . . . e k-1 t k of G, let us define the set R(p) as the k-uplets (ν 1 , . . . , ν k ) ∈ N ⋆k such that ∀ℓ ∈ {1, . . . , k -1}, (ν ℓ , ν ℓ+1 ) ∈ R(e ℓ ). Then, for any k-uplet

	t 2		t i t 1 t 2 t 3 t 4 r i 0 1 2 3
	t 1	t 4	D i 1 0.5 4 3
	t 3		T i 2	1	6 3
	Figure 6.2: An instance of 4 periodic tasks and the associated DAG G.
	(ν 1 , . . . , ν k ) ∈ R(p), we get			

  Dependence relations between the first executions of tasks t 1 , t 2 and t 4 are pictured by Figure6.3.following the path p = t 1 t 2 t 4 of G. The latency of the path from ⟨t 1 , 1⟩ to ⟨t 4 , 1⟩ is L 1,2,1 (p) = S(t 4 , 1) -S(t 1 , 1) + 2 = 3 -0 + 2 = 5. On the same way, the latency of the path p from ⟨t 1 , 3⟩ to ⟨t 4 , 2⟩ is L 3,5,2 (p) = S(t 4 , 2) -S(t 1 , 3) + 2 = 6 -4 + 2 = 4. We deduce that L ⋆ (p) = 5. Figure 6.3: A path p = t 1 e 1 t 2 e 2 t 4 from the graph G pictured by Figure 6.2.

	t 1 1	2	3	4	5	6
	t 2	1 2 3 4 5 6 7 8 9 10 11 12
	t 4	1		2	3	4

  {1, . . . , K i }, the a i th duplicate of t i is simply associated to the executions a i + pK i for p ∈ N.Next technical lemma characterises the dependence relation between two executions of adjacenttasks taking into account the number of duplicates of the tasks: Lemma 6.3.1. Let e = (t i , t j ) ∈ E and gcd e T (resp. gcd e K ) the greatest common divisor between T i and T j (resp. K i T i and K j T j ). Let ν i = a i + p i K i and ν j = a j + p j K j with (a i , a j ) ∈ {1, . . . , K i } × {1, . . . , K j } and (p i , p j ) ∈ N × N. Let us define the four values• α e (a i , a j ) = T i a i -T j a j + T i -α e (a i , a j ) • gcd e

					T gcd e	,
	• π e (p i , p j ) =	T i p i K i -T j p j K j K gcd e	,
	• π max e	(a i , a j ) =	-M e T K gcd e	,
	• and π min e	(a i , a j ) =	-M e + gcd e T -α e (a i , a j )gcd e T gcd e K

  From the right part of the inequality, π e (p i , p j ) ≥ -M e + gcd e T -α e (a i , a j ) • gcd e Since π e (p i , p j ) is an integer, we can tighter the lower bound of π e (p i , p j ) by π e (p i , p j ) ≥ ⌈ -M e + gcd e T -α e (a i , a j ) • gcd e

	we get	gcd e K T T T K gcd e ⌉ = π min . e	gcd e T and

i -M e ≥ π e (p i , p j ) • gcd e K + α e (a i , a j ) • gcd e T ≥ -M e + gcd e T .

Table 6 .

 6 α e (a i , a j ) • gcd e Since π e (p i , p j ) is an integer, we can tighter the upper bound of π e (p i , p j ) by:⌊ T i -M e -α e (a i , a j )• gcd e , a j ) ≥ π e (p i , p j ) and the lemma is proved.Let consider as example the arc e = (t 2 , t 4 ) of the example pictured by Figure6.2 with fixed values K 2 = 4 and K 4 = 2. We get gcd e For the couple (a 2 , a 4 ) = (3, 2), let suppose that there exists a dependence from ⟨t 2 , ν 2 ⟩ to⟨t 4 , ν 4 ⟩ with ν 2 = a 2 + p 2 K 2 = 3 + 4p 2 and ν 4 = a 4 + p 4 K 4 = 2 + 2p 4 . T 2 ν 2 -T 4 ν 4 = ν 2 -3ν 4 -3p 4 ) -3 =gcd e K π e (p 2 , p 4 ) -α e (3, 2). 1: Values α e (a 2 , a 4 ), π max e (a 2 , a 4 ) and π min e (a 2 , a 4 ) for a 2 ∈ {1, 2, 3, 4} and a 4 ∈ {1, 2}. By Lemma 6.3.1, we get π e (p 2 , p 4 ) = 2p 2 -3p 4 = 1. Let consider now the couple (a 2 , a 4 ) = (1, 1). Then, since π max decomposition of the difference T 2 ν 2 -T 4 ν 4 with ν 2 = 1 + p 2 K 2 and ν 4 = 1 + p 4 K 4 is not possible; a simple consequence of Lemma 6.3.1 is that there is no dependence relation between executions ⟨t 2 , 1 + p 2 K 2 ⟩ and ⟨t 4 , 1 + p 4 K 4 ⟩.

	K gcd e	T	≥ π e (p i , p j )
	K gcd e	T	⌋ ≥ π e (p i , p j )

Table 6

 6 πgcd e From equations 6.3.1 and 6.3.2, we get T i ≥ M e + T i ν i -T j ν j > 0 and by Theorem 6.2.2 there is a dependence relation from ⟨t i , ν i ⟩ to ⟨t j , ν j ⟩. The lemma is proved. There exists a dependence relation from ⟨ti , a i + p i K i ⟩ to ⟨t j , a j + p j K j ⟩ for (p i , p j ) ∈ N 2 iff π e (p i , p j ) ∈For the arc e = (t 2 , t 4 ) pictured by Figure6.2 with values K 2 = 4 and K 4 = 2, we get from By Theorem 6.3.3, there is no dependence due to e between ⟨t 2 , a 2 + 4p 2 ⟩ to ⟨t 4 , a 4 + 2p 4 ⟩ for any value p 2 and p 4 if (a 2 , a 4 ) ̸ ∈ A(e). Now, if we consider for example (a 2 , a 4 ) = (3, 2) ∈ A(e), the set of dependence due to e between ⟨t 2 , 3 + 4p 2 ⟩ to ⟨t 4 , 2 + 2p 4 ⟩ is exactly couples (p 2 , p 4 ) that verifies 2p 2 -3p 4 = 1.6.3.2 Upper bound on the latencyFor any arc e = (t i , t j ) ∈ E and any couple (a i , a j ) ∈ A(e), Theorem 6.3.3 proved the existence of a dependence from some executions ⟨t i , ν i ⟩ to ⟨t j , ν j ⟩ with ν i = a i + p i K i and ν

	(6.3.1)

K

and thus, by definition of α e , T i ν i -T j ν j = α e (a i , a j )gcd e T + πgcd e K . Recall now that π ∈ {π min e (a i , a j ), . . . , π max e (a i , a j )}, thus

T i ν i -T j ν j ≤ α e (

a i , a j )gcd e T + π max e (a i , a j )gcd e K , and, since π max e (a i , a j )gcd e K ≤ -M e + T i -α e (a i , a j )gcd e T , T i ν i -T j ν j ≤ -M e + T i . e (a i , a j )gcd e K ≥ -M e + gcd e T -α e (a i , a j )gcd e T , T i ν i -T j ν j ≥ π min e (a i , a j )gcd e K + α e (a i , a j )gcd e Theorem 6.3.3. Let t i and t j be two tasks such that t i (resp. t j ) is duplicated K i (resp. K j ) times. Let also e = (t i , t j ) ∈ E and (a i , a j ) ∈ {1, . . . , K i } × {1, . . . , K j }. j = a j + p j K i . In order to evaluate the age latency of the whole graph G, next theorem evaluates the maximum latency associated to these executions of t i and t j . Theorem 6.3.4 (Upper bound of the latency between two tasks). Let t i and t j be two tasks such that t i (resp. t j ) is duplicated K i (resp. K j ) times. Let also e = (t i , t j ) ∈ E and (a i , a j ) ∈ A(e).

  6.3.3) By Theorem 6.3.3, π e (p i , p j ) ∈ {π min e (a i , a j ), . . . , π max e (a i , a j )}. We conclude that L ν i ,ν j (e) is maximum for π e (p i , p j ) = π min e

  1. Each task t i is duplicated K i times. For any value a ∈ {1, . . . , K i }, the ath duplicate of t i is denoted by t a i and is associated to the executions ⟨t i , a + pK i ⟩ for p ∈ N.

2. For any arc e = (t i , t j ) ∈ E, we build an arc (t a i , t b j ) for every couple (a, b) ∈ {1, . . . , K i } × {1, . . . , K j } if π max e (a, b) ≥ π min e (a, b).

  1 1 , t 2 2 , t 2 3 , t 4 4 , f is a longest path of P K (G) with LP max (P K (G)) = LP max (p) = 240 Moreover, its associated path p = s, t 1 , t 2 , t 3 , t 4 , f verifies T (p) = lcm(30, 40, 60), N 1 (p) = N 2 (p) = 2,

  This is the fitting function and the standard errors of the fitting below:

	measurements density	Fitting function	standard deviation errors
	iter	high	1.34log(0.62(n + 5.89)) -0.64 [2.90e -01, 1.08e + 06, 5.66e + 00, 2.32e + 06]
	iter	low	1.96log(1.59(n + 13.42)) -4.81 [3.01e -01, 1.04e + 06, 6.36e + 00, 1.29e + 06]
	i N i	high	27.04n -11.59	[0.33, 17.57]
	i N i	low	27.75n -37.99	[0.37, 19.83]
	rt	high	2.02e -03n 2 -0.03n + 0.29	[1.08e -04, 1.05e -02, 2.17e -01]
	rt	low	1.53e -03n 2 -0.05n + 0.51	[1.29e -04, 1.26e -02, 2.60e -01]
	i K i i N i	high	8.67e -04n + 0.69	[1.71e -04, 9.26e -03]
	i K i i N i	low	9.10e -04n + 5.27e -01	[2.37e -4, 1.28e -2]

Table 6 .
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2: Fitting function of each measurements.
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executed at time α + 1 and those from B(p) at time α. The nodes p and q satisfy then the following conditions:

A.1 Since p is associated to a partial schedule of q, W (p) ∪ B(q) = W (q) and since tasks can only be executed once, W (p) ∩ B(q) = ∅.

A.2 Any task i ∈ B(q) must be schedulable at time α + 1, thus all its predecessors must belong to W (p). Then, B(q) ⊆ {i ∈ X α+1 , Γ -(i) ⊆ W (p)}.

A.3 Any task i ∈ B(q) cannot have more than one predecessor scheduled at time α, thus B(q) ⊆ {i ∈ X α+1 , |Γ -(i) ∩ B(p)| ≤ 1}.

A.4 Any task i ∈ X α+1 -W (p) for which all its predecessors are completed at time α must be scheduled at time α + 1. Thus, if Γ -(i) ⊆ W (p) -B(p), then i ∈ B(q). A. 5 For any task i ∈ B(p), if P S W (p),B(p) (i) ∩ X α+1 ̸ = ∅, then by Definition 3.3.1, these successors of i are schedulable at time α + 1. Following Lemma 3.3.5, we impose that exactly one among them is executed at time α on the same processor as i and thus |P S W (p),B(p) (i) ∩ B(q)| = |Γ + (i) ∩ B(q)| = 1. Otherwise, if P S W (p),B(p) (i) ∩ X α+1 = ∅, no successor of i can be scheduled at time α + 1 which corresponds to |Γ + (i) ∩ B(q)| = 0. Remark 4.2.1. The preferred sons of a task i ∈ T were initially defined with respect to two sets of tasks W α and B α built from a feasible schedule. Here, for any node p ∈ N α , the definition of P S is extended to consider the sets W (p) and B(p) simply by assuming that tasks from W (p) (resp. B(p)) are those which are completed at time α + 1 (resp. performed at time α). We observe that the path (p 0 , p 1 1 , p 1 2 , p 1 3 , p 1 4 ) corresponds to the schedule shown in Figure 2.3b.

On the same way, the path (p 0 , p 0 1 , p 0 2 , p 0 3 , p 0 4 ) corresponds to the schedule shown by Figure 4.2.

Description of the algorithm

Algorithm 1 builds iteratively the multistage graph S(G) = (N, A). This algorithm returns false if there is no feasible schedule of makespan bounded by C, otherwise it returns the optimum This work opens up several perspectives. The first one is to test experimentally the efficiency of this algorithm, and to compare it to other exact methods such as integer linear programming or dedicated exact methods [START_REF] Orr | Optimal task scheduling benefits from a duplicate-free statespace[END_REF][START_REF] Sinnen | Reducing the solution space of optimal task scheduling[END_REF]. A second perspective is to study the extension of this algorithm to more general problems in order to get closer to applications and to evaluate if these approaches can be considered to solve real-life problems.

The problem considered is expressed below. A time-indexed formulation should be considered to transform it into an integer linear program [START_REF] Sousa | A time indexed formulation of non-preemptive single machine scheduling problems[END_REF] for modelling the resource constraints. We set d max = max i∈T d i (resp. r max = max i∈T r i ) the maximum due date (resp. release time);

we also suppose that an upper bound of the maximum lateness L is fixed. We then observe that C = min(r max + 2n, d max + L) is an upper bound of the makespan of any active feasible schedule which maximum lateness is bounded by L.

Since communications delays and length of the tasks are unitary, starting times can be reduced to integer values; Inequalities (2) come from the definition of the maximum lateness and the release dates. Communication delays are defined from the starting time of the tasks (3). Inequalities (4), ( 5) and (6) express the communication delay constraints: any task i has at most one successor (resp. predecessor) performed at its completion time (resp. just before its starting time) on the same processor. Inequalities [START_REF] Arnborg | Easy problems for tree-decomposable graphs[END_REF] express the limitation on the number of processors.

Example

Let us consider an instance of our scheduling problem defined by 7 tasks of unit length. The precedence graph, release dates and due dates are reported by Figure 5.1. The number of machines is fixed to 2. A feasible schedule σ of maximum lateness L max (σ) = 2 is given by Figure 5.2.

Arcs of S(G)

For each value α ∈ {0, . . . , C -2} and (p, q) ∈ N α × N α+1 , there is an arc (p, q) ∈ A if the following conditions are fulfilled:

A.1 Tasks from W (q) are completed at time α+2 with tasks from B(q) executed at time α+1 and those from B(p) at time α. Thus, W (p) ∪ B(q) = W (q) and since tasks are only executed once, W (p) ∩ B(q) = ∅;

A.2 Any task i ∈ B(q) must be schedulable at time α + 1 and all the schedule considered are active, thus B(q) ∈ A(W (p), B(p));

A.3 The node s is a source of S(G), thus for any node p ∈ N 0 , (s, p) ∈ A.

Maximum Lateness of a node of S(G)

For any node q ∈ N α with α ∈ {0, . . . , C -1}, let ℓ(q) = α + 1 -min i∈B(q) d i be the maximum lateness of the tasks from B(q). Recall that these tasks are executed at time α.

For any value α ∈ {-1, . . . , C -1} and q ∈ N α , L(q) is the minimum maximum lateness of a schedule of tasks from W (q) with B(q) ⊆ W (q) scheduled at time α. L is defined as follows:

1. by convention, L(s) = -∞;

2. for any value α ∈ {0, . . . , C -1} and q ∈ N α , L(q) = max(ℓ(q), min

Here, Γ -(q) is the set of the immediate predecessors of q in S(G).

Description of the algorithm

Algorithm 2 builds iteratively the multistage graph S(G) = (N, A). For any set of tasks X ⊆ T , let P(X) be the set of all subsets of X including the empty set. This algorithm returns the minimum value of the maximum lateness if it is upper bounded by L, false otherwise.

(∅, {7}, 2) Conversely, the path s → q 0 → q 1 → q 2 → q 3 with q 0 = ({1, 3}, {1, 3}, 0), q 1 = ({1, 2, 3, 4}, {2, 4}, 0), q 2 = ({4, 5, 6}, {5, 6}, 1) and q 3 = ({6, 7}, {7}, 1) corresponds to the active feasible schedule σ of maximum lateness L max (σ) = 1 presented by Figure 5.4.

Correctness of the algorithm

This section is devoted to the proof of the correctness of Algorithm 2. Lemma 5.3.1 shows that the evaluation of the maximum lateness L(q) for each node q ∈ N is correct with respect to the definition of Subsection 5.2.1. Lemma 5.3.2 shows that any active feasible schedule is associated The active feasible schedule σ of maximum lateness L max (σ) = 1 associated to the path s → q 0 → q 1 → q 2 → q 3 with q 0 = ({1, 3}, {1, 3}, 0), q 1 = ({1, 2, 3, 4}, {2, 4}, 0), q 2 = ({4, 5, 6}, {5, 6}, 1) and q 3 = ({6, 7}, {7}, 1).

to a path of S(G) from s to a node without successor, while Lemma 5.3.4 proves that extremum paths of S(G) are associated to feasible schedules. Our main theorem follows.

Lemma 5.3.1. For any node q ∈ N α with α ∈ {-1, . . . , C -1}, the value L(q) computed by Algorithm 2 follows the definition of the minimum maximum lateness of a node (see. Subsection

5.2.1).

Proof. L(s) is set to -∞ and is not modified. Let us consider a node q ∈ N α of S(G) with α ∈ {0, . . . , C -1} and the value ℓ(q

Now, if α > 0, L(q) = +∞ at the initialization of the node q. Since q belongs to S(G), then Γ -(q) ̸ = ∅, thus the value L(q) is adjusted once for each predecessor of q. At the first adjustment, corresponding to its predecessor p 1 , we set L(q) = max(ℓ(q), L(p 1 )) since L(q) was initialized to +∞.

Now, if there exists a predecessor p of q such that L(p) ≤ ℓ(q), then, let p 1 be the first predecessor of q considered by the Algorithm 2 such that L(p 1 ) ≤ ℓ(q). At its corresponding loop, L(q) is set to ℓ(q) and is not modified further; the maximum lateness of q is then correct.

Otherwise, all the predecessors p of q verify L(p) > ℓ(q), thus L(q) > ℓ(q) and L(q) is then equal to min p∈Γ -(q) L(p), which is also the right definition of the maximum lateness of q.

Lemma 5.3.2. Any active feasible schedule σ of maximum lateness bounded by L is associated to a path ν(σ) of S(G) ending at a node p with W (p) = T . Moreover, the maximum lateness

Proof. Let us consider an active feasible schedule of maximum lateness bounded by L. Let us denote by C(σ) the length of the schedule σ, i.e.

The set A(∅, ∅) contains the maximum sets of tasks schedulable at time 0. Since σ is a feasible active schedule, there exists q 0 ∈ N 0 such that W (q 0 ) = B(q 0 ) = W 0 = B 0 . Moreover, (s, q 0 ) ∈ A and thus A.3 is verified.

Moreover, since σ is feasible, for every value α ∈ {0, . . . , C(σ

So the node q α = (W (q α ), B(q α ), +∞) has been built at stage α in the loop of lines 5-6 of Algorithm 2.

We prove that for every value α ∈ {0, . . . , C(σ) -2}, (q α , q α+1 ) ∈ A.

• Since σ is a feasible active schedule, A.2 is verified.

We conclude that (s, q 0 , q 1 , . . . , q C(σ)-1 ) is a path of S(G). Moreover, W (q C(σ)-1 ) = T since the schedule σ ends at time C(σ), thus p = q C(σ)-1 is an ending node.

Lastly, by Lemma 5.3.1, each value L(q α ) computed by Algorithm 2 for α ∈ {0, . . . , C(σ)-1}

is the minimum maximum lateness of the sub-schedule associated to q α ; the maximum lateness of the schedule σ is thus L max (σ) = max q∈ν(σ) L(q), which concludes the proof. Proof. Let us consider a node p ∈ N C-1 with W (p) = T and C ∈ {0, . . . , C -1}. We build iteratively a sequence of nodes p -1 , p 0 , p 1 , . . . , p C-1 of S(G) as follows:

This sequence is defined since each node of N α with α ∈ {0, . . . , C -1} has at least one predecessor (or it will be deleted at line 18). Moreover, Now, let us suppose that there is no node p ∈ N such that W (p) = T ; in this case, Algorithm 2 returns false. By Lemma 5.3.2, there is no active feasible schedule and the theorem is proved.

Complexity analysis

We study in this section the complexity of Algorithm 2 to conclude that our scheduling problem is fixed-parameter tractable in the pathwidth. ), and the lemma is proved.

Periodic tasks model considering LET communications

Let us consider a set T = {t 1 , . . . , t n } of real-time periodic tasks following the model of Liu

and Layland [START_REF] Liu | Scheduling algorithms for multiprogramming in a hardreal-time environment[END_REF]. Each task t i ∈ T is characterised by a quadruplet (r i , C i , D i , T i ) such that:

• r i is the release date (the offset) of the first execution of t i ;

• C i is the worst-case execution time of t i ;

• D i is the relative deadline of t i ;

• T i is the period of t i .

For any value n ∈ N ⋆ , we denote by ⟨t i , n⟩ the nth execution of t i and by s(t i , n) its starting time. For any value n ∈ N ⋆ , the execution of ⟨t i , n⟩ must be scheduled in its time window, that is

Logical execution time communication model separates the tasks executions to the communications. In this model, data are read at the release dates of the reading tasks, while they are sent at the deadlines of its sending task. Moreover, reading tasks always get the last emitted data. The main advantage of this model is to define a deterministic communications system even if tasks are delayed inside their time window.

In this chapter, we only consider LET communications and we limit the characterization of the tasks to their successive time windows. The execution times associated to the nth execution of t i is then set to its release date, that is

Each task t i is then given by the triplet (r i , D i , T i ).

LET dependencies

Communications are expressed by a directed graph G = (T , E). Every arc e = (t i , t j ) ∈ E is associated to a LET communication from t i to t j . A dependence between two executions of adjacent tasks is defined as follows: Definition 6.2.1. Let us suppose that e = (t i , t j ) ∈ E and that ν i and ν j are two positive integers.

There exists a dependence relation from 

Recall that p K is of maximum age latency in

) by Theorem 6.4.3, and thus LP max (P K (G)) = L ⋆ (G) = LP max (p K ), which achieves the proof.

Algoritm 3 is inspired from K-iter algorithm [START_REF] Bodin | Optimal and fast throughput evaluation of CSDF[END_REF] which computes an expansion vector K for the determination of the optimum throughput of a Synchronous DataFlow Graph. For the initialisation phase, K = 1 n . K is simply increased at each step for tasks from the longest path of P K (G) until the optimality test is met.

Algorithm 3: Compute the maximum latency of G.

Require: 

until OptPathFound Theorem 6.5.2 shows the convergence of the algorithm. Theorem 6.5.2. For any directed acyclic graph G, Algoritm 3 converges to a vector

Proof. For any q > 0, we denote by K(q) the vector K at the end of the qth iteration. q = 0 corresponds to the initialisation phase. We show that for any integer q ≥ 0, K(q) ∈ K and K(q) ⪯ K(q + 1) with K(q) ̸ = K(q + 1).

• At the initialisation step, K(0) = 1 n ∈ K.

• Now, let suppose that at step q, the optimality test is not true and that K(q) ∈ K.

Let consider a task t i ∈ T . If t i does not belong to p, K i (q + 1) = K i (q). Otherwise, K i (q + 1) = lcm(K i (q), N i (p)) where K i (q) and N i (p) are both divisors of N i . Thus, K i (q + 1) is also a divisor of N i , and we get that K(q + 1) ∈ K with K(q) ⪯ K(q + 1).

• Lastly, we prove by contradiction that K(q) ̸ = K(q + 1). Indeed, let suppose that K i (q) = K i (q + 1) for any task t i ∈ T , then since K i (q + 1) = lcm(K i (q), N i (p)), we deduce that N i (p) is a divisor of K i (q). We get that the optimality test is true, which is a contradiction.

We conclude that vectors K(q) are strictly increasing while the optimality test is false. By Lemma 6.5.1, the vector K(q) obtained leads to an optimal value of the age latency when the optimality test is true. The optimality test is be true for the repetition vector N , this insures the convergence of the algorithm.

The number of iterations of Algoritm 3 is not bounded and can be theoretically proportional to the maximum length of a path of the graph H = (K, E ⪯ ). We will show in Section 6.7 that it can be bounded experimentally for our benchmark to a logarithmic function of n = |T |.

For example, let us consider the first step of Algorithm 3 for the example pictured by Figure 

The optimality test fails, and we get N (p) = (3, 6, 1, 2) which is here the repetition vector and thus K ⋆ = K(1) = N . Our algorithm simply obtained the repetition vector. However, our experimentations show that in the general case, the vectors obtained are slightly inferior than the repetition vector.

are shown.

Analysis of the computation time of the Algorithm 3

For n sufficiently large, the hyper-period of an instance is exactly T = lcm{α ∈ H} = 100.

The consequence is that the number of duplicates (resp. the number of arcs) of the expanded graph

We measured the running time and the number of iterations of Algorithm 3. We stopped at n = 90 tasks, since the running time exceeded 15 minutes in average for instances with higher values of n. Figure 6.10 reports the average running times (on the top) and the average number of iterations (on the bottom) following the number of tasks.

We observed that the running time of Algorithm 3 is a quadratic function of the number of tasks, and thus is linear following the number of arcs of the graph G. With no surprise, these running times are more important for high density graphs. This observation seems to be in opposition with the experimental results of Becker et al. [START_REF] Becker | Endto-end timing analysis of cause-effect chains in automotive embedded systems[END_REF]: indeed, they remarked that the average running time for the computation of the age latency of a chain is linear w.r.t the number of tasks. However the number of arcs here equals n -1, the running time is then also linear w.r.t the number of arcs, which is coherent with our result.

We also noticed that the whole number of iterations of the Algorithm 3 grows in average following a logarithmic way. Our first experimental conclusion is thus that the convergence of the algorithm to the exact value seems to be a logarithmic function of the number of tasks. The important running time is thus due to the time needed to build the successive partial expansion and not to the increase of the number of iterations of the algorithm. These algorithms are inspired by the work of Alix Kordon-Munier [START_REF] Munier-Kordon | A fixed-parameter algorithm for scheduling unit dependent tasks on parallel machines with time windows[END_REF]. These are the first fixed-parameter tractable algorithms for scheduling with communication delays. These results opens the discussion of the parameter: pathwidth of interval graph of time windows. For example, can this parameter be extended to other scheduling problems such as large communication delay problems, problems on multiple types of machines system? Can the parameter be simplified to numbers of chains, width or treewidth of precedence graph etc? Can it be extended to other LIST OF TABLES 

Analysis of the partial expanded graph obtained